

Lecture Notes in Computer Science 4957
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Eduardo Sany Laber Claudson Bornstein
Loana Tito Nogueira Luerbio Faria (Eds.)

LATIN 2008:
Theoretical Informatics

8th Latin American Symposium
Búzios, Brazil, April 7-11, 2008
Proceedings

13

Volume Editors

Eduardo Sany Laber
PUC-RIO
Departamento de Informática
RDC ANDAR 5, Rua Marques de São Vicente, Gávea, Brazil
E-mail: laber@inf.puc-rio.br

Claudson Bornstein
Universidade Federal do Rio de Janeiro
Departamento de Ciência da Computação
21941-590, Rio de Janeiro, RJ, Brazil
E-mail: claudson@ufrj.br

Loana Tito Nogueira
Universidade Federal Fluminense
Instituto de Computação
Rua Passo da Patria 156, 24210-240, São Domingos, Niterói, RJ, Brazil
E-mail: loana@ic.uff.br

Luerbio Faria
Universidade Estadual do Rio de Janeiro
Rua Dr. Francisco Portela, 24435-005, São Gonçalo, RJ, Brazil
E-mail: luerbio@cos.ufrj.br

Library of Congress Control Number: 2008922953

CR Subject Classification (1998): F.2, F.1, E.1, E.3, G.2, G.1, I.3.5, F.3, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78772-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78772-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12244744 06/3180 5 4 3 2 1 0

Preface

The Latin American Theoretical INformatics Symposium (LATIN) is becoming
a traditional and high-quality conference on the Theory of Computing. Previous
conferences have been organized twice in Brazil: São Paulo (1992) and Campinas
(1998); twice in Chile: Valparáıso (1995) and Valdivia (2006); once in Uruguay:
Punta del Este (2000); once in Mexico: Cancun (2002); and once in Argentina:
Buenos Aires (2004).

This volume contains the proceedings of the 8th Latin American Theoreti-
cal INformatics Symposium (LATIN 2008), which was held in Búzios, Rio de
Janeiro, Brazil, April 7–11, 2008.

A total of 242 papers were reviewed by the program committee. Among them,
66 were selected for presentation at the conference. The selection was based on
the papers’ originality, quality and relevance to Theoretical Computer Science.

This volume also contains the extended abstract associated with the invited
talk of Wojciech Szpankowski. We also had 4 invited talks by Cláudio Leonardo
Lucchesi, Eva Tardos, Moni Naor and Robert Tarjan.

We would like to thank all members of the PC for their thorough work, which
resulted in a good selection of papers; the members of the Steering Committee for
their insightful advice and for sharing their experience with us; and the members
of our community who served as referees.

In addition, we thank all our sponsors, Microsoft, UOL, IFIP, HP, Yahoo!,
FAPERJ, CNPq and CAPES, and Springer for their continuous support.

April 2008 Eduardo Laber
Claudson Bornstein

Loana Nogueira
Luerbio Faria

Organization

Program Committee

Michael Bender Stony Brook U., USA
Leo Bertossi Carleton U., Canada
Claudson Bornstein

(vice-chair)
U. F. Rio de Janeiro, Brazil

Ferdinando Cicalese U. of Salermo, Italy
José Correa U. Adolfo Ibáñez, Chile
Cristina G. Fernandes U. de São Paulo, Brazil
David Fernández-Baca Iowa State U., USA
Fedor Fomin U. Bergen, Norway
Joachim von zur Gathen U. of Bonn, Germany
Andrew Goldberg Microsoft Research Silicon Valley, USA
Venkatesan Guruswami U. of Washington, USA
Alejandro Hevia U. Chile, Chile
John Iacono Polytechnic U., USA
Eduardo Laber (chair) PUC-Rio, Brazil
Alejandro López-Ortiz U. of Waterloo, Canada
Arnaldo Mandel U. de São Paulo, Brazil
Guilhermo Matera U. Nacional de General Sarmiento, Argentina
Flávio Miyazawa Unicamp, Brazil
Mike Molloy U. of Toronto, Canada
Ojas Parekh Emory U., USA
Boaz Patt-Shamir Tel Aviv U., Israel
Artur Pessoa U. F. Fluminense, Brazil
Jean-Éric Pin U. of Paris 7, France
Satish Rao U. of Berkeley, USA
R. Ravi Carnegie Mellon U., USA
Andrea Richa Arizona State U., USA
Miklós Ruszinkó Computer and Automation Res. Inst., Hungary
Gelasio Salazar U. Autónoma de San Luis Potosi, Mexico
Jayme L. Szwarcfiter U. F. Rio de Janeiro, Brazil
Tamir Tassa The Open U., Israel
Jorge Urrutia U. Nacional Autónoma de Mexico, Mexico
Ugo Vaccaro U. of Salerno, Italy
Vijay Vazirani Georgia Tech, USA
Alfredo Viola U. de la República, Uruguay
Renato Werneck Microsoft Research Silicon Valley, USA
Frances Yao City U. of Hong Kong, Hong Kong

VIII Organization

Plenary Speakers

Cláudio Lucchesi, Unicamp, Brazil
Moni Naor, Weizmann Institute, Israel
Wojciech Szpankowski, Purdue University, USA
Éva Tardos, Cornell U., USA
Robert Tarjan, Princeton U., USA

Steering Committee

Martin Farach-Colton, Rutgers U., USA
Marcos Kiwi, U. Chile, Chile
Yoshiharu Kohayakawa, U. de São Paulo, Brazil
Daniel Panario, Carleton U., Canada
Sergio Rajsbaum, U. Nacional Autónoma de México, Mexico
Gadiel Seroussi, HP Labs, USA

Executive Committee

Conference Chair Eduardo Laber (PUC-Rio, Brazil)
Conference Vice-chair Claudson Bornstein (U. F. Rio de Janeiro, Brazil)
Co-organizer Luerbio Faria (U. E. Rio de Janeiro, Brazil)
Co-organizer Loana T. Nogueira (U. F. Fluminense, Brazil)

Sponsoring Institutions

Brazilian Research Agencies:

– CNPq - Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
– CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
– FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado

do Rio de Janeiro

Corporate Sponsors:

– UOL
– Microsoft
– Yahoo!
– HP

Computer Science Societies:

– IFIP - International Federation for Information Processing
– SBC - Sociedade Brasileira de Computação

Organization IX

Referees

Hernan Abeledo
David Abraham
Warren P. Adams
Louigi Addario-Berry
Peyman Afshani
Dorit Aharonov
Laila El Aimani
Ali Akhavi
Gorjan Alagic
Srinivas Alluru
Jorge Almeida
Helmut Alt
Andris Ambainis
Amihood Amir
Diogo Andrade
Spyros Angelopoulos
Vera Asodi
Mike Atkinson
Vincenzo Auletta
Gábor Bacsó
Mukul S. Bansal
Nikhil Bansal
Jeremy Barbay
Rommel M. Barbosa
Valmir Barbosa
Pablo Barcelo
Jean-Marie Le Bars
Jan Baumbach
Amos Beimel
Andre Berger
Jean Berstel
Gerd Bohlender
Tom Bohman
Flavia Bonomo
Endre Boros
Prosenjit Bose
Yacine Boufkhad
Mireille Bousquet-Mélou
Ulrik Brandes
Peter Brass
Loreto Bravo
Hajo Broersma
David Bryant
John Brzozowski

Rainer E. Burkard
Konstantin Busch
Edson N. Caceres
Antonio Cafure
Gruia Calinescu
Monica Caniupan
Robert D. Carr
Marcelo H. Carvalho
Márcia R. Cerioli
Eda Cesaratto
D. Chakrabarty
Timothy Chan
Chandra Chekuri
Eric Y. Chen
Markus Chimani
Eden Chlamtac
Christian Choffrut
Marek Chrobak
Andrea Clementi
Charlie Colbourn
Seshadhri Comandur
Thierry Coquand
Denis Cornaz
Derek Corneil
Marcelo Correa
Ricardo Correa
Nadia Creignou
Maxime Crochemore
Pierre-Louis Curien
Ricardo Dahab
D. Dellamonica Jr.
Daniel Delling
Jean-Charles Delvenne
Erik Demaine
Camil Demetrescu
Jérémie Detrey
Nikhil Devanur
Luc Devroye
Riccardo Dondi
Reza Dorrigiv
Mitre Dourado
Feodor Dragan
Ezequiel Dratman
Orr Dunkelman

Guillermo Duran
Christoph Durr
Amit Dvir
Zeev Dvir
Zdenek Dvorak
Martin R. Ehmsen
Stephan Eidenbenz
Leah Epstein
P.L. Erdõs
D. Espinoza
Luerbio Faria
Sandor Fekete
Dan Feldman
Paulo Feofiloff
Celina M.H. deFigueiredo
Rudolf Fleischer
Guilherme Fonseca
Ennrico Formenti
Robert Fraser
Travis Gagie
Silvia Gago-Alvarez
Jie Gao
Luisa Gargano
Serge Gaspers
Blaise Genest
Loukas Georgiadis
Mark Giesbrecht
Gagan Goel
Lukasz Golab
Petr Golovach
Parikshit Gopalan
Dov Gordon
Vineet Goyal
Marcos Goycoolea
Jens Gramm
Etienne Grandjean
Michelangelo Grigni
Roberto Grossi
André L.P. Guedes
Jiong Guo
Venkatesan Guruswami
Vladimir Gurvich
Gregory Gutin
András Gyárfás

Edward Haeusler
Hermann Haeusler
Iftach Haitner
M.T. Hajiaghayi
Angele M. Hamel
Russell Harmer
Nick Harvey
Meng He
Joos Heintz
Glenn Hickey
Petr Hlineny
Pieter Hofstra
Carlos Hoppen
Doug Howe
Nicole Immorlica
Riko Jacob
Svante Janson
Michael Kaltenbach
Marcin Kaminski
Haim Kaplan
Chinmay Karande
Jarkko Kari
Louis H. Kauffman
Ken-ichi Kawarayabashi
David Kempe
Walter Kern
Alex Kesselman
Zoltán Király
Ákos Kisvölcsey
Marcos Kiwi
Pang Ko
Yoshiharu Kohayakawa
Goran Konjevod
Guy Kortsarz
Evangelos Kranakis
Dieter Kratsch
Dalia Krieger
Michael Krivelevich
Alexander S. Kulikov
Gábor Kun
Alair Pereira do Lago
Zeph Landau
Michael Langberg
Gregoire Lecerf
Orlando Lee

Sangjin Lee
Erik Jan van Leeuwen
Christos Levcopoulos
Asaf Levin
Ming Li
Min Chih Lin
Zsuzsanna Liptak
Yi-Kay Liu
Errol Lloyd
Daniel Loebenberger
Martin Loebl
Sylvain Lombardy
Zvi Lotker
Q. Louveaux
Gabor Lugosi
Marco Macchetti
Frederic Maffray
Veli Makinen
Toufik Mansour
Roberto Mantaci
Gianluca De Marco
Javier Marenco
Mauricio Maŕın
Daniel Martin
Ryan Martin
Conrado Martinez
Fabio Martinez
Carlos A. Martinhon
Walter Mascarenhas
Martin Matamala
Nicole Megow
Marta Mejail
Manor Mendel
Criel Merino
Pascal Michel
Martin Milanic
Alexandre Miquel
David Mitchell
Thomas Moelhave
Cristopher Moore
Tal Moran
Eduardo Moreno
Rob Morris
Nicolas Stier Moses
Haiko Müller

Wolfgang Mulzer
Viswanath Nagarajan
Jorge Nakahara Jr.
Sergio Nesmachnow
C.F.X. de MendonçaNeto
Loana T. Nogueira
Michael Nüsken
Zeev Nutov
Nicolas Ollinger
Melih Onus
Alois Panholzer
Rina Panigrahy
Rohit Parikh
Andrzej Pelc
Todd Philips
Cynthia A. Phillips
Teo Chung Piaw
Christian Pich
Jose Coelho de Pina
Wojciech Plandowski
David Pritchard
Helmut Prodinger
Guido Proietti
Fabio Protti
Jens Putzka
Artem Pyatkin
Jose A.A. Qitzau
S.P. Radziszowski
Prasad Raghavendra
Anup Rao
Dieter Rautenbach
S.S. Ravi
Dror Rawitz
Igor Razgon
Daniel Reichman
Nora Reyes
Pedro J. de Rezende
Diego Rial
Rosiane de F. Rodrigues
Peter Rossmanith
Nicolau Saldanha
Alejandro Salinger
N. Deniz Sarier
Saket Saurabh

OrganizationX

Organization XI

Carla Savage
Gabriel Scalosub
Nicolas Schabanel
Christian Scheideler
Claus Peter Schnorr
Michael Schnupp
Eric Schost
Michael Segal
Noa Segal-Agmon
Gil Segev
Luc Segoufin
Géraud Sénizergues
Gadiel Seroussi
Olivier Serre
Hovav Shacham
Alexander Sherstov
Yaoyun Shi
Maise D. Silva
Marcel Silva
Mohit Singh

Rene Sitters
Martin Skutella
Jose Soares
Yasmin Rios Solis
Motti Sorani
Cid Carvalho de Souza
Srinath Sridhar
R. Sritharan
Cliff Stein
Jorge Stolfi
Howard Straubing
K. Subramani
Zoya Svitkina
Kavitha Telikepalli
Eduardo Tengan
Guillaume Theyssier
Dimitrios Thilikos
Alex Thomo
Srikanta Tirthapura
Eric Tressler

Eduardo Uchoa
Ryuhei Uehara
Edgardo Ugalde
Jean-Marie Vanherpe
S. Venkatasubramanian
Adrian Vetta
Alfredo Viola
Ariel Waissbein
Yoshiko Wakabayashi
Lusheng Wang
Carola Wenk
Udi Wieder
Ryan Williams
David Wood
Eduardo Candido Xavier
Donglin Xia
Sergey Yekhanin
Xu Yichen
Uri Zwick
Grazyna Zwozniak

Table of Contents

Profile of Tries . 1
G. Park, H.-K. Hwang, P. Nicodème, and W. Szpankowski

Random 2-XORSAT at the Satisfiability Threshold 12
Hervé Daudé and Vlady Ravelomanana

On Dissemination Thresholds in Regular and Irregular Graph
Classes . 24

I. Rapaport, K. Suchan, I. Todinca, and J. Verstraete

How to Complete a Doubling Metric . 36
Anupam Gupta and Kunal Talwar

Sorting and Selection with Random Costs . 48
Stanislav Angelov, Keshav Kunal, and Andrew McGregor

Guided Search and a Faster Deterministic Algorithm for 3-SAT 60
Dominik Scheder

Comparing and Aggregating Partially Resolved Trees 72
Mukul S. Bansal, Jianrong Dong, and David Fernández-Baca

Computing the Growth of the Number of Overlap-Free Words with
Spectra of Matrices . 84

Raphaël M. Jungers, Vladimir Yu. Protasov, and Vincent D. Blondel

On Stateless Multihead Automata: Hierarchies and the Emptiness
Problem . 94

Oscar H. Ibarra, Juhani Karhumäki, and Alexander Okhotin

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 106
Andreas Maletti

The View Selection Problem for Regular Path Queries 121
Sergey Afonin

Optimal Higher Order Delaunay Triangulations of Polygons 133
Rodrigo I. Silveira and Marc van Kreveld

Coloring Geometric Range Spaces . 146
Greg Aloupis, Jean Cardinal, Sébastien Collette,
Stefan Langerman, and Shakhar Smorodinsky

XIV Table of Contents

Local Algorithms for Dominating and Connected Dominating Sets of
Unit Disk Graphs with Location Aware Nodes . 158

J. Czyzowicz, S. Dobrev, T. Fevens, H. González-Aguilar,
Evangelos Kranakis, J. Opatrny, and J. Urrutia

Spanners of Complete k-Partite Geometric Graphs 170
Prosenjit Bose, Paz Carmi, Mathieu Couture, Anil Maheshwari,
Pat Morin, and Michiel Smid

Minimum Cost Homomorphisms to Reflexive Digraphs 182
Arvind Gupta, Pavol Hell, Mehdi Karimi, and Arash Rafiey

On the Complexity of Reconstructing H-free Graphs from Their Star
Systems . 194

Fedor V. Fomin, Jan Kratochv́ıl, Daniel Lokshtanov,
Federico Mancini, and Jan Arne Telle

Optimization and Recognition for K5-minor Free Graphs in Linear
Time . 206

Bruce Reed and Zhentao Li

Bandwidth of Bipartite Permutation Graphs in Polynomial Time 216
Pinar Heggernes, Dieter Kratsch, and Daniel Meister

The Online Transportation Problem: On the Exponential Boost of One
Extra Server . 228

Christine Chung, Kirk Pruhs, and Patchrawat Uthaisombut

Average Rate Speed Scaling . 240
Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs

Geometric Aspects of Online Packet Buffering: An Optimal Randomized
Algorithm for Two Buffers . 252

Marcin Bienkowski and Aleksander M ↪adry

Maximizing the Minimum Load for Selfish Agents . 264
Leah Epstein and Rob van Stee

Approximate Polynomial gcd: Small Degree and Small Height
Perturbations . 276

Joachim von zur Gathen and Igor E. Shparlinski

Pseudorandom Graphs from Elliptic Curves . 284
Igor E. Shparlinski

Speeding-Up Lattice Reduction with Random Projections (Extended
Abstract) . 293

Ali Akhavi and Damien Stehlé

Table of Contents XV

Sparse Approximate Solutions to Semidefinite Programs 306
Elad Hazan

On the Facets of Mixed Integer Programs with Two Integer Variables
and Two Constraints . 317

Gérard Cornuéjols and François Margot

A Polyhedral Investigation of the LCS Problem and a Repetition-Free
Variant . 329

Cristina G. Fernandes, Carlos E. Ferreira,
Christian Tjandraatmadja, and Yoshiko Wakabayashi

Competitive Cost Sharing with Economies of Scale 339
Martin Hoefer

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 350
George Karakostas and Euripides Markou

Fully-Compressed Suffix Trees . 362
Lúıs M.S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira

Improved Dynamic Rank-Select Entropy-Bound Structures 374
Rodrigo González and Gonzalo Navarro

An Improved Algorithm Finding Nearest Neighbor Using Kd-trees 387
Rina Panigrahy

List Update with Locality of Reference . 399
Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz

Approximating Steiner Networks with Node Weights 411
Zeev Nutov

Approximating Minimum-Power Degree and Connectivity Problems 423
Guy Kortsarz, Vahab S. Mirrokni, Zeev Nutov, and Elena Tsanko

Energy Efficient Monitoring in Sensor Networks . 436
Amol Deshpande, Samir Khuller, Azarakhsh Malekian, and
Mohammed Toossi

Approximation Algorithms for k-Hurdle Problems . 449
Brian C. Dean, Adam Griffis, and Adam Whitley

Approximating Crossing Minimization in Radial Layouts 461
Seok-Hee Hong and Hiroshi Nagamochi

New Upper Bound on Vertex Folkman Numbers . 473
Andrzej Dudek and Vojtěch Rödl

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 479
Andreas Brandstädt and Christian Hundt

XVI Table of Contents

A Representation Theorem for Union-Difference Families and
Application (Extended Abstract) . 492

B.-M. Bui-Xuan and M. Habib

Algorithms to Locate Errors Using Covering Arrays 504
Conrado Mart́ınez, Lucia Moura, Daniel Panario, and Brett Stevens

On Injective Colourings of Chordal Graphs . 520
Pavol Hell, André Raspaud, and Juraj Stacho

Spanning Trees with Many Leaves in Graphs without Diamonds and
Blossoms . 531

Paul Bonsma and Florian Zickfeld

On 2-Subcolourings of Chordal Graphs . 544
Juraj Stacho

Collective Additive Tree Spanners of Homogeneously Orderable
Graphs (Extended Abstract) . 555

Feodor F. Dragan, Chenyu Yan, and Yang Xiang

The Generalized Median Stable Matchings: Finding Them Is Not That
Easy . 568

Christine T. Cheng

Stateless Near Optimal Flow Control with Poly-logarithmic
Convergence . 580

Baruch Awerbuch and Rohit Khandekar

The Least-Unpopularity-Factor and Least-Unpopularity-Margin
Criteria for Matching Problems with One-Sided Preferences 593

Richard Matthew McCutchen

Randomized Rendez-Vous with Limited Memory . 605
Evangelos Kranakis, Danny Krizanc, and Pat Morin

Origami Embedding of Piecewise-Linear Two-Manifolds 617
Marshall Bern and Barry Hayes

Simplifying 3D Polygonal Chains Under the Discrete Fréchet
Distance . 630

Sergey Bereg, Minghui Jiang, Wencheng Wang, Boting Yang, and
Binhai Zhu

Weighted Rectilinear Approximation of Points in the Plane 642
Mario A. Lopez and Yan Mayster

Paths with no Small Angles . 654
Imre Bárány, Attila Pór, and Pavel Valtr

Table of Contents XVII

Simpler Constant-Seed Condensers . 664
Domingos Dellamonica

Parallel Repetition of the Odd Cycle Game . 676
Kooshiar Azimian and Mario Szegedy

I/O-Efficient Point Location in a Set of Rectangles 687
Yakov Nekrich

Finding Heavy Hitters over the Sliding Window of a Weighted Data
Stream . 699

Regant Y.S. Hung and H.F. Ting

Fixed-Parameter Algorithms for Cluster Vertex Deletion 711
Falk Hüffner, Christian Komusiewicz, Hannes Moser, and
Rolf Niedermeier

Paths and Trails in Edge-Colored Graphs . 723
A. Abouelaoualim, K.Ch. Das, L. Faria, Y. Manoussakis,
C. Martinhon, and R. Saad

Efficient Approximation Algorithms for Shortest Cycles in Undirected
Graphs . 736

Andrzej Lingas and Eva-Marta Lundell

Domination in Geometric Intersection Graphs . 747
Thomas Erlebach and Erik Jan van Leeuwen

An Efficient Quantum Algorithm for the Hidden Subgroup Problem in
Nil-2 Groups . 759

Gábor Ivanyos, Luc Sanselme, and Miklos Santha

Quantum Property Testing of Group Solvability . 772
Yoshifumi Inui and François Le Gall

Solving NP-Complete Problems with Quantum Search 784
Martin Fürer

Author Index . 793

Profile of Tries

G. Park1, H.-K Hwang2, P. Nicodème3, and W. Szpankowski4

1 Department of Computer Science, State University of New York at Geneseo,
Geneseo, 14554, USA
park@geneseo.edu

2 Institute of Statistical Science, Academia Sinica, 11529 Taipei, Taiwan
hkhwang@stat.sinica.edu.tw

3 Laboratory LIX, École polytechnique, 91128 Palaiseau Cedex, France
nicodeme@lix.polytechnique.fr

4 Department of Computer Sciences, Purdue University, 250 N. University Street,
West Lafayette, Indiana, 47907-2066, USA

spa@cs.purdue.edu

Abstract. The profile of a trie, the most popular data structures on
words, is a parameter that represents the number of nodes (either in-
ternal or external) with the same distance to the root. Several, if not
all, trie parameters such as height, size, depth, shortest path, and fill-
up level can be uniformly analyzed through the (external and internal)
profiles. The analysis of profiles is surprisingly arduous but once it is
carried out it reveals unusually intriguing and interesting behavior. We
present a detailed study of the distribution of the profiles in a trie built
over strings generated by a memoryless source (extension to Markov
sources is possible). Our results are derived by methods of analytic algo-
rithmics such as generating functions, Mellin transform, Poissonization
and de-Poissonization, the saddle-point method, singularity analysis and
uniform asymptotic analysis.

1 Introduction

Tries are prototype data structure useful for many indexing and retrieval pur-
poses. Due to their simplicity and efficiency, tries found widespread use in diverse
applications ranging from document taxonomy to IP addresses lookup and dis-
tributed hashing, from data compression to dynamic hashing, from partial-match
queries to speech recognition, from leader election algorithms to distributed hash-
ing tables (see [3,7,8,15]). In this paper, we are concerned with probabilistic
properties of the profiles of tries, where the profile of a tree is the sequence of
numbers each counting the number of nodes with the same distance to the root.
We discover several new phenomena in the profiles of tries built over strings gen-
erated by a random memoryless source, and develop asymptotic tools to describe
them.

Tries are natural choice of data structures when the input records involve a
notion of alphabets or digits. They are often used to store such data so that
future retrieval can be made efficient. Given a sequence of n words over the

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 1–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 G. Park et al.

alphabet {a1, . . . , am}, m ≥ 2, we can construct a trie as follows. If n = 0, then
the trie is empty. If n = 1, then a single (external) node holding the word is
allocated. If n ≥ 1, then the trie consists of a root (internal) node directing
words to the m subtrees according to the first symbol of each word, and words
directed to the same subtree are themselves tries (see [7,8,15] for more details).
For simplicity, we deal only with binary tries in this paper. In Figure 1 we plot
a binary trie of 5 strings.

0000

0

0001

1

0

0

0

10

0

110

0

111

1

1

1

Bn,0 = 0, In,0 = 1

Bn,1 = 0, In,1 = 2

Bn,2 = 1, In,2 = 2

Bn,3 = 2, In,3 = 1

Bn,4 = 2, In,4 = 0

Fig. 1. A trie of n = 5 records and its profiles: the circles represent internal nodes and
rectangles holding the records are external nodes

Throughout the paper, we write Bn,k to denote the number of external nodes
(leaves) at distance k from the root; the number of internal nodes at distance
k from the root is denoted by In,k. For simplicity, we will refer to Bn,k as the
external profile and In,k the internal profile. Figure 1 shows a trie and its profiles.

In this paper we study the profiles of a trie built over n binary strings gen-
erated by a memoryless source. More precisely, we assume that the input is a
sequence of n independent and identically distributed random variables, each
being composed of an infinite sequence of Bernoulli random variables with mean
p, where 0 < p < 1 is the probability of a “1” and q := 1−p is the probability of
a “0”. The typical behaviors under this simple model often hold under more gen-
eral models such as Markovian or dynamical sources, although the technicalities
are usually more involved.

The motivation of studying the profiles is multifold. First, there are fine shape
measures closely connected to many other cost measures on tries; some of them
are indicated below. Second, at least for the first moment, they are also as-
ymptotically close to the profiles of suffix trees, which in turn have a direct
combinatorial interpretation in terms of words; see [9,15] for more information
and another interpretation in terms of urn models. Third, not only the analytic
problems are mathematically challenging, but the diverse new phenomena they
exhibit are highly interesting and unusual. Fourth, our findings imply several
new results on other shape parameters. Finally, most properties of random tries
have also a prototype character and are expected to hold for other varieties
of digital search trees (and under more general random models), although the
proofs are generally more complicated.

Profile of Tries 3

Due to the usefulness of tries, many cost measures, discussed below, on random
tries have been studied in the literature since the early 1970’s, and most of
these measures can be expressed and analyzed through the profiles studied in
this paper. The depth of a trie is the distance from the root to a randomly
selected node; its distribution is given by the expected external profile divided
by n. The total path length, the sum of distances between nodes and the root, is
defined as

∑
j jIn,j . The size of a trie is the total number of internal nodes, or∑

j In,j . The height of a trie is the length of the longest path from the root, or
max{j : Bn,j > 0}. The shortest path, the length of the shortest path from the
root to an external node, is given by min{j : Bn,j > 0}. The largest full level of
a trie, called a fill-up level, is given by max{j : In,j = 2j}.

We observe that by assumption of the model, the probability generating func-
tion Pn,k(y) := E(yBn,k) of the external profile satisfies the recurrence

Pn,k(y) =
∑

0≤j≤n

(
n

j

)

pjqn−jPj,k−1(y)Pn−j,k−1(y) (n ≥ 2; k ≥ 1), (1)

with the initial conditions Pn,k(y) = 1 + δn,1δk,0(y − 1) when either n ≤ 1 and
k ≥ 0 or k = 0 and n ≥ 0, where δa,b is the Kronecker symbol. Observe that this
recurrence depends on two parameters n and k, which makes the analysis quite
challenging, as we will demonstrate in this paper. The probability generating
functions of the internal profile satisfy the same recurrence (1) but with different
initial conditions.

From (1), the moments of Bn,k and In,k (centered or not) are seen to satisfy
a recurrence of the form

xn,k = an,k +
∑

0≤j≤n

(
n

j

)

pjqn−j (xj,k−1 + xn−j,k−1) ,

with suitable initial conditions, where an,k are known (either explicitly or in-
ductively). A standard approach is to consider the Poisson generating function
f̃k(z) := e−z

∑
n xn,kzn/n!, which in turn satisfies the functional equation

f̃k(z) = g̃k(z) + f̃k−1(pz) + f̃k−1(qz),

with a suitable g̃k(z). This equation can be solved explicitly by a simple iteration
argument and asymptotically by using the Mellin transform ([2,15]). The final
step is to invert from the asymptotics of the Poisson generating function f̃k(z) to
recover the asymptotics of xn,k. This last step is guided by the Poisson heuristic,
which roughly states that

if a sequence {xn}n is “smooth enough,” then xn ∼ e−n
∑

j≥0 xjn
j/j! (2)

where xn ∼ yn if limn→∞ xn/yn = 1. By means of the Poisson heuristic
(2), we expect that the expected profile μn,k := E(Bn,k) satisfies μn,k ∼
e−n

∑
j≥0 μj,knj/j!. However, as we will see, such a heuristic holds in our case

when q2kn → 0 but fails otherwise. The reason is that μn,k is too small in this

4 G. Park et al.

range. We should mention that we need uniformity for our asymptotic approxi-
mations in k (varying with n) and in z (in some region in the complex plane) in
order to invert the results to obtain xn,k by suitable complex analysis.

As far as probabilistic properties of the profiles of random tries are concerned,
very little is known in the literature. Since the distribution of the depth Dn in
random tries is given by P(Dn = k) = μn,k/n, where we recall μn,k := E(Bn,k),
the asymptotics of the expected profile μn,k for n → ∞ and varying k = k(n)
can be regarded as local limit theorems for Dn. Although many papers addressed
the limiting behaviors of the depth, none dealt with the local limit theorem of
Dn and the asymptotics of μn,k for varying k. Our result implies an unusual
type of local limit theorem for Dn.

On the other hand, Pittel [12] showed that the distribution of the number of
pairs of input-strings having a common prefix of length at least k is asymptoti-
cally Poisson when k is close to the height. Devroye [1] showed that

if
E(Bn,k)√

n
→ ∞ then

Bn,k

E(Bn,k)
→ 1 in probability;

if E(In,k) → ∞ then
In,k

E(In,k)
→ 1 in probability,

under very general assumptions on the underlying models. These represent known
results concerning profiles. We will see that convergence in probability in both
cases holds as long as the variance tends to infinity.

Our results are described in details in the next section. In a brief summary,
we show inter alia that for k ≤ (1 − ε) log n/ log(1/q) the average profile μn,k is
exponentially small, where ε > 0 is small. When k increases and lies in the range
(log n − log log log n + O(1))/ log(1/q), then μn,k decays to zero logarithmically
until k > k∗ for a specific threshold k∗ in this range beyond which μn,k suddenly
grows unbounded in a logarithmic rate. The rate becomes polynomial Θ(nυ) for
some 0 < υ ≤ 1 when

1
log(1/q)

(1 + ε) log n ≤ k ≤ 2
log(1/(p2 + q2))

(1 − ε) log n.

Surprisingly enough, for this range of k an oscillating factor emerges in the
expected profile behavior, that is, E(Bn,k) ≈ G(logp/q pkn)nv/

√
log n, where G

is a bounded periodic function. Such a behavior is a consequence of an infinite
number of saddle-points appearing in the integrand of the associated Mellin
integral transform. This was first observed for the internal profile by Nicodème
[9]. For larger values of k, these oscillations disappear since the behavior of the
expected profile is dominated by a polar singularity. We also show that a central
limit theorem holds for both external and internal profiles for a wide range of k;
furthermore, we also show that for k near the height the limiting distribution of
the profiles becomes Poisson. Some of these results were already anticipated in
[10] and the full version of this paper is [11].

Profile of Tries 5

2 Summary of Main Results

We summarize in this section our main results. Crucial to our analysis of the
profiles is the asymptotics of the expected profiles. Not only are the results
fundamental and highly interesting, but also the analytic methods we used are
of certain generality.

From (1), we see that the expected external profile μn,k := E(Bn,k) satisfies
the following recurrence

μn,k =
∑

0≤j≤n

(
n

j

)

pjqn−j(μj,k−1 + μn−j,k−1), (3)

for n ≥ 2 and k ≥ 1 with the initial values μn,0 = 0 for all n 	= 1 and 1 for n = 1.
Furthermore, μ0,k = 0, k ≥ 0 and μ1,k = 0 for k ≥ 1 and equal to 1 when k = 0.

We solve asymptotically (3) for various ranges of k when p 	= q; a crude
description of the asymptotics of μn,k is as follows.

log μn,k

log n
→

⎧
⎪⎪⎨

⎪⎪⎩

0, if α ≤ α1;
−ρ + α log(p−ρ + q−ρ), if α1 ≤ α ≤ α2;
2 + α log(p2 + q2), if α2 ≤ α ≤ α3;
0, if α ≥ α3,

(4)

where

α1 :=
1

log(1/q)
, α2 :=

p2 + q2

p2 log(1/p) + q2 log(1/q)
, and α3 :=

2

log(1/(p2 + q2))
(5)

are delimiters of α := limn k/ logn (k = k(n)), and

ρ :=
1

log(p/q)
log

(
1 − α log(1/p)
α log(1/q) − 1

)

.

We also define α0 := 2/(log(1/p) + log(1/q)). Note that α1 ≤ α2; see Figure 2.
The limiting estimate (4) gives a rough picture of μn,k as follows: μn,k is of
polynomial growth rate when α1 + ε ≤ α ≤ α3 − ε, and is smaller than any
polynomial powers when 0 ≤ α ≤ α1−ε and α ≥ α3+ε. Near the two boundaries
α1 and α3, the behaviors of μn,k will undergo phase-changes from being sub-
polynomial to being polynomial or the other way around.

To derive more precise asymptotics of μn,k than the phase transitions (4) of the
polynomial order of μn,k, we divide all possible values of k into four overlapping
ranges.

(I) Elementary range: 1 ≤ k ≤ α1(log n − log log log n + O(1));
(II) Saddle-point range: α1(log n−log log log n+Kn) ≤ k ≤ α2(log n−Kn

√
log n);

(III) Gaussian transitional range: k = α2 log n + o((log n)2/3);
(IV) Polar singularity range: k ≥ α2 log n + Kn

√
log n,

where, throughout this paper, Kn ≥ 1 represents a (generic) sequence tending
to infinity.

6 G. Park et al.

p
0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

α1

α2

α3

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

p = 0.9

p = 0.85

α2

Fig. 2. Left: A plot of α1, α2, and α3 (defined in (5)) as functions of p. Right:
The (non-zero) limiting order of log μn,k/ log n plotted against α = limn k/ log n for
p = 0.55, 0.6, . . . , 0.9 (the spans of the curves increase as p grows). The vertical lines
represent the positions of α2 (to the right of which the curves are straight lines);
see (4).

For convenience, we also write

Ln := log n, LLn := log log n, LLLn := log log log n.

The generic symbol ε is always used to represent a suitably small constant whose
value may vary from one occurrence to another, and Kn denotes any sequence
tending to infinity. The symbol f(n) = Θ(g(n)) means that there are positive
constants C and C′ such that C|g(n)| ≤ |f(n)| ≤ C′|g(n)|.

Theorem 1 below precisely characterize the profile in range (I). Define

km := α1

(

Ln − LLLn + log
(

p

q
− 1

)

+ m log
p

q

)

(m ≥ 0), (6)

Sn,k,j :=
(

k

j

)

pjqk−jn
(
1 − pjqk−j

)n−1
(0 ≤ j ≤ k).

Also, define k−1 = 0.

Theorem 1 (Asymptotics of μn,k in Range (I)). Assume m ≥ 0. If

km−1 +
α1Kn

LLn
≤ k ≤ km − α1Kn

LLn
, (7)

then

μn,k = Sn,k,m

(
1 + O((m + 1)e−Kn)

)
. (8)

If k = km + α1x/LLn, where x = o(
√

LLn), then

μn,k = Sn,k,m

(

1 +
pα1e

x

q(m + 1)

) (
1 + O

(
x2LL−1

n + (m + 1)L−(1−q/p)
n

))
. (9)

Profile of Tries 7

Roughly speaking, for k lying in range (I) the expected external profile μn,k

decays first exponentially fast (asymptotic to qkn(1 − qk)n−1). Then, when k
is around α1(log n − log log log n + log(p/q − 1) + m log(p/q)) for some integer
m ≥ 0,

μn,k ∼ km

m!
pmqk−mne−npmqk−m

,

which is of order

μn,k = O

(
log log n

logξ−m n

)

,

for some ξ. Thus, for m < ξ the expected external profile decays only logarith-
mically, but for m ≥ ξ it increases logarithmically.

The behavior of μn,k in range (II) is described in Theorem 2 below. This is
the most interesting region.

Theorem 2 (Asymptotics of μn,k in Range (II)). If k is in range (II), then

μn,k = G1

(
ρ; logp/q pkn

) n−ρ (p−ρ + q−ρ)k

√
2πβ2(ρ)k

(

1 + O

(
1

k(p/q)ρ
+

1
k(ρ + 2)2

))

,

(10)

where ρ = ρ(n, k) > −2 is chosen to satisfy the saddle-point equation
⎧
⎪⎨

⎪⎩

∂

∂ρ

(
ρρe−ρn−ρ(p−ρ + q−ρ)k

)
= 0, if ρ ≥ 1;

∂

∂ρ

(
n−ρ(p−ρ + q−ρ)k

)
= 0, if ρ ≤ 1,

(11)

and

β2(ρ) :=
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
, (12)

G1(ρ; x) =
∑

j∈Z

g(ρ + itj)Γ (ρ + 1 + itj)e−2jπix (tj := 2jπ/ log(p/q))

where g(s) = 1 − 1/(p−s + q−s), and G1(ρ, x) is a 1-periodic function (see Fig-
ures 3).

As clearly spelled out in the above findings, the situation in range (II) becomes
highly nontrivial and interesting. More precisely, for α1(1+ε) logn ≤ k ≤ α2(1−
ε) log n, we find that

μn,k ∼ G1

(
ρ; logp/q pkn

) pρqρ(p−ρ + q−ρ)
√

2παn,k log(p/q)
× nυ1

√
log n

,

where (αn,k := k/ logn)

υ1 = −ρ + αn,k log(p−ρ + q−ρ),

ρ = − 1
log(p/q)

log
(

−1 − αn,k log q

1 + αn,k log p

)

,

8 G. Park et al.

and G1(ρ; x) is a periodic function. We plot in Figures 3 the periodic parts of
G1(−1, x) for a few values of p. These oscillations are consequences of an infinite
number of saddle-points appearing in the integrand of the associated Mellin
transform of the expected profile.

6 × 10−23

−6 × 10−23

1
p = 0.55

3 × 10−7

−3 × 10−7

1

p = 0.65

6 × 10−3

−6 × 10−3

1 p = 0.75

p = 0.85

p = 0.95

Fig. 3. The fluctuating part of the periodic function G1(−1; x) for p =
0.55, 0.65, . . . , 0.95 and for x in the unit interval; its amplitude tends to zero when
p → 0.5+

Finally, in ranges (III) and (IV) the expected profiles behaves as described in
the following two theorems.

Theorem 3. In range (IV), if

k ≥ α2

(
Ln + Kn

√
α2β2(−2)Ln

)
, (13)

where β2 is defined in (12), then

μn,k = 2pqn2(p2 + q2)k−1
(
1 + O

(
K−1

n e−K2
n/2+O(K3

n/
√

Ln)
))

, (14)

uniformly for 1
 Kn = o(
√

Ln).

Theorem 4. In range (III), if

k = α2

(
Ln + ξ

√
α2β2(−2)Ln

)
, (15)

where ξ = ξn,k = o(L1/6
n), then

μn,k = |g(−2)|Φ(ξ)n2
(
p2 + q2

)k
(

1 + O

(
1 + |ξ|3√

Ln

))

, (16)

uniformly in ξ, where Φ(ξ) = (2π)−1/2
∫ ξ

−∞ e−t2/2dt.

Roughly speaking, in Theorem 3 we prove that for k in range (IV)

μn,k ∼ 2pq

p2 + q2
nυ2 ,

Profile of Tries 9

where υ2 = 2 + αn,k log(p2 + q2), and the periodic function disappears. In this
region, the asymptotic behavior of the expected profile is dictated by the expected
number of pairs (of input-strings) having common prefixes of length at least k. This
property is analytically reflected by a polar singularity in the associated Mellin
transform. Asymptotics of μn,k in range (III) for k = α2 log n + o(log2/3 n) is pre-
sented in Theorem 4. In this transitional range, the saddle-point coalesces with the
polar singularity, so we use the Gaussian integral to describe the behavior of μn,k.

In summary, our results roughly state that μn,k → 0 when 1 ≤ k ≤ k∗ for some
k∗ close to α1(log n− log log log n+O(1)), then μn,k tends abruptly to infinity at a
logarithmic rate when k > k∗. Such an abrupt change has already been observed
before in the literature for the shortest path and the fill-up level (see [6,12]), but not
much is known for μn,k beyond that. Then we show that μn,k grows polynomially
when k lies in the range α1(1 + ε) log n ≤ k ≤ α3(1 − ε) log n, reaching the peak
where it is of order n/

√
log n; it decays in a slower rate afterwards until it tends to

zero again when k ≥ α3(log n + Kn). A salient feature here is the presence of an
oscillating function in the asymptotic approximation when p 	= q1.

The expected value of the internal profile E(In,k) is analyzed in a similar
fashion. In particular, the expected internal profile is asymptotically equivalent
to 2k for k ≤ α0(log n − Kn

√
log n), where α0 := 2/(log(1/p) + log(1/q)). When

k ≥ α2(log n+Kn

√
log n), then E(In,k) ∼ (p2+q2)E(Bn,k)/pq. Between these two

ranges, it is again the infinite number of saddle-points that yields the dominant
asymptotic approximation. Unlike μn,k, an additional phase transition appears
in the asymptotics of the E(In,k) when k = α0 log n + O(

√
log n), reflecting the

structural change of the internal nodes from being asymptotically full to being
of the same order as the number of external nodes.

Next we deal with variances of the external and internal profiles. Theorem 5
describes their the asymptotic behaviors.

Theorem 5. (i) If 1 ≤ k ≤ α1(1 + o(1))Ln, then

σ2
n,k ∼ μn,k. (17)

(ii) If α1(Ln − LLLn + Kn) ≤ k ≤ α2(Ln − Kn

√
Ln), then

σ2
n,k = G2

(
ρ; logp/q pkn

) n−ρ (p−ρ + q−ρ)k

√
2πβ2(ρ)k

(

1 + O

(
1

k(p/q)ρ
+

1
k(ρ + 2)2

))

,

(18)

where ρ = ρ(n, k) > −2 is given in (11) and

G2(ρ; x) =
∑

j∈Z

h(ρ + itj)Γ (ρ + 1 + itj)e−2jπix (tj := 2jπ/ log(p/q)).

(iii) If k ≥ α2(1 − o(1))Ln, then
1 The expected values of many shape characteristics of random tries often exhibit the

asymptotic pattern: ∼ F (logc n)n if log p/ log q is rational for some periodic function
F and constant c expressible in terms of p, and ∼ Cn if log p/ log q is irrational; see
[5,14,15]

10 G. Park et al.

σ2
n,k ∼ 2μn,k. (19)

We observe that asymptotically the variance of the profile turns out to be of
the same order as the expected value for all ranges of k ≥ 1, namely, V(Bn,k) =
Θ(E(Bn,k)). In fact, we show that V(Bn,k) ∼ E(Bn,k) in range (I), while V(Bn,k) ∼
2E(Bn,k) in range (IV), and in range (II) (polynomial growth) the variance and the
expected profile differ only by the oscillating functions. The variance of the internal
profile behaves almost identically to the variance of the external profile; roughly,
V(In,k) = Θ(V(Bn,k)) for all k.

Finally, we establish some distributional results as shown below.

Theorem 6. (i) If σn,k → ∞, then

Bn,k − μn,k

σn,k

d−→ N (0, 1), (20)

where N (0, 1) denotes a standard normal random variable and d−→ stands for
convergence in distribution. (ii) If σn,k = Θ(1), then

{
P (Bn,k = 2m) =

λm
0

m!
e−λ0 + o(1),

P (Bn,k = 2m + 1) = o(1),
(21)

uniformly for (finite) m ≥ 0, where λ0 := pqn2(p2 + q2)k−1.

Similarly, for the internal profile we have the following result.

Theorem 7. (i) If V(In,k) → ∞, then

In,k − E(In,k)
√

V(In,k)
d−→ N (0, 1)

(ii) If V(In,k) = Θ(1), then, with λ1 := n2(p2 + q2)/2,

P(In,k = m) =
λm

1

m!
e−λ1 + o(1), (22)

for all m ≥ 0.

References

1. Devroye, L.: Laws of large numbers and tail inequalities for random tries and
PATRICIA trees. Journal Computational and Applied Mathematics 142 (2002)

2. Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic
sums. Theoretical Computer Science 144, 3–58 (1995)

3. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

4. Hwang, H.-K.: Profiles of random trees: plane-oriented recursive trees (preprint
submitted for publication, 2005)

Profile of Tries 11

5. Jacquet, P., Szpankowski, W.: Analytical depoissonization and its applications.
Theoretical Computer Science 201, 1–62 (1998)

6. Knessl, C., Szpankowski, W.: On the number of full levels in tries. Random Struc-
tures and Algorithms 25, 247–276 (2004)

7. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Search-
ing, 2nd edn. Addison Wesley, Reading (1998)

8. Mahmoud, H.M.: Evolution of Random Search Trees. John Wiley & Sons, New
York (1992)

9. Nicodème, P.: Average profiles, from tries to suffix-trees. In: Mart́ınez, C. (ed.)
2005 International Conference on Analysis of Algorithms. Discrete Mathematics
and Theoretical Computer Science, pp. 257–266 (2005)

10. Park, G., Szpankowski, W.: Towards a complete characterization of tries. In: SIAM-
ACM Symposium on Discrete Algorithms, Vancouver, pp. 33–42 (2005)

11. Park, G., Hwang, H.K., Nicodeme, P., Szpankowski, W.: Profile of Tries (preprint,
2006)

12. Pittel, B.: Paths in a random digital tree: limiting distributions. Advances in Ap-
plied Probability 18, 139–155 (1986)

13. Prodinger, H.: How to select a loser. Discrete Mathematics 120, 149–159 (1993)
14. Schachinger, W.: Asymptotic normality of recursive algorithms via martingale dif-

ference arrays. Discrete Mathematics and Theoretical Computer Science 4, 363–397
(2001)

15. Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. Wiley, New
York (2001)

Random 2-XORSAT at the Satisfiability

Threshold

Hervé Daudé1 and Vlady Ravelomanana2

1 Laboratoire d’Analyse, Topologie et Probabilités
UMR CNRS 6632 – Université de Provence

39, rue Joliot Curie, 13453 Marseille Cedex 13, France
2 Laboratoire d’informatique de Paris Nord

UMR CNRS 7030 – Institut Galilée - Université Paris Nord
99, Av. Clément, 93430 Villetaneuse, France

Abstract. We consider the random 2-XOR satisfiability problem, in
which each instance is a formula that is a conjunction of m Boolean equa-
tions of the form x ⊕ y = 0 or x ⊕ y = 1. Random formulas on n Boolean
variables are chosen uniformly at random from among all

�
n(n−1)

m

�
possi-

ble choices. This problem is known to have a coarse transition as n and
m tends to infinity in the ratio m/n → c in particular the probability
p(n, cn) that a random 2-XOR formula is satisfiable tends to zero when
c reaches c = 1/2. We determine the rate n−1/12 at which this proba-
bility approaches zero inside the scaling window m = n

2 (1 + μn−1/3).
This main result is based on a first exact enumeration result about the
number of connected components of some constrained family of random
edge-weighted (0/1) graphs, namely those without cycles of odd weight.
This study relies on the symbolic method and analytical tools coming
from generating function theory which enable us to describe the evo-
lution of n1/12 p(n, n

2 (1 + μn−1/3)) as a function of μ. Our results are
in accordance with those obtained by statistical physics methods, their
tightness points out the benefit one could get in developping generating
function methods for the investigation of phase transition associated to
Constrained Satisfaction Problems.

1 Introduction

1.1 Context

The last decade has seen a growth of interest in the phase transition for Boolean
Satisfiability (SAT) and more generally for Constraint Satisfaction Problems
(CSP). For any k ≥ 2, the random version of the famous k-SAT problem is
known to exhibit a sharp [12] phase transition in the sense that, as the density
c of formulas (where the number of clauses is c times the number of variables) is
increased, formulas abruptly change from being satisfiable to being unsatisfiable
at a critical threshold point. For general CSP, determining the nature of the
phase transition (sharp or coarse), locating it, determining a precise scaling
window and better understanding the structure of the space of solutions turn

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 12–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Random 2-XORSAT at the Satisfiability Threshold 13

out to be very challenging tasks, which have aroused a lot of interest in different
communities, namely mathematics, computer science and statistical physics (see
e.g. [11], [1]). It is well known that a random 2-SAT formula with density c < 1
is satisfiable with probability tending to 1 as the number n of variables tends
to infinity, while for c > 1, the probability of satisfiability tends to 0 as n tends
to infinity [9], [13]. Indeed there is now, [2], a detailed picture of the transition
yielding a scaling window of size Θ(n2/3). For greater values of k much less is
known about the precise behaviour of random k-SAT near the threshold point
whose exact location is still an open problem.

The difficulty of identifying transition factors and of performing theoretical
explorations of the SAT transition has incited many researchers to turn to a vari-
ant of the SAT problem: the k-XORSAT problem. One is given a linear system
over n Boolean variables, composed of m equations modulo 2, each involving ex-
actly k ≥ 2 variables. This problem introduced in [5] has contributed to develop
or validate techniques, thus revealing typical behaviors of both random instances
and their space of solutions for SAT-type problems (see, e.g., [4,10,23]). Partic-
ularly 2-XORSAT appears to be a seed of coarseness for the transition of a wide
class of CSP [7]. Our main goal is to give a precise description of the scaling
window associated to the critical ratio c = 1

2 , the zero point of satisfiability
for 2-XORSAT. In using the so-called symbolic method from generating func-
tion theory [19], we give enumerative and analytic results related to random
2-XORSAT formula that make possible a rigorous verification of the prediction
made by statistical physics technique.

Let us note that the satisfiability of 2-XORSAT formulas is strongly related to
the existence of cycles in graphs. Such a formula s of density c can be represented
by a weighted graph G(s) with n vertices (one for each variable) and cn weighted
(0 or 1) edges. For each equation xi ⊕ xj = ε, we add the edge {xi, xj} weighted
ε. Then, observe that formula s is satisfiable if and only if G(s) does not contain
any cycle of odd weight. From this, one can deduce, see [6], that the probability
p(n, m) that a random 2-XORSAT formula over n variables with m equations is
satisfiable verifies:

lim
n→+∞ p(n, cn) = exp(c/2) · (1 − 2c)1/4 for 0 ≤ c ≤ 1/2 and 0 otherwise.

Figure 1 shows the evolution of p(n, cn) as function of the density c, and for
various sizes n, as well as the asymptotic limiting curve i.e. the threshold dis-
tribution function of the monotone property 2-XORSAT. As noticed in [27], a
spectacular change of finite-size effects appears when c gets closer to c = 1

2 , the
zero satisfiability point. We will give a precise characterization of this phenom-
enon, in particular we will show that the probability of satisfiability is of order of
magnitude Θ(n−1/12) as the number of variables n gets large and whenever the
number of equations satisfies m = n

2 (1 + μn−1/3), μ being a fixed real number.

1.2 Main Result and Outline of Proof

Whenever the tuned parameter μ is fixed, our main finding can be stated pre-
cisely as follows :

14 H. Daudé and V. Ravelomanana

0,6

0,4

0,2

c

0
0,80,60,40,20

1

0,8

Fig. 1. Probability p(n, cn) that a
random 2-XOR formula with cn
equations and n variables is satisfi-
able as a function of the ratio c, for
various size of n (dashed n = 1000,
dotted n = 2000) and the asymp-
totic threshold function (bold full
line)

1,6

1,2

0,8

4

0,4

0
20-2-4

Fig. 2. Rescaled probability at the
zero threshold point c = 1/2:
n1/12 p(n, n/2 + μn−1/3) as a func-
tion of μ , for n = 1000 (dashed),
n = 2000 (dotted) with the theoret-
ical limit (bold full line)

Theorem 1. Let μ be any real constant. The probability p(n, m) that a ran-
dom 2-XORSAT formula with n variables and m = n

2 (1 + μn−1/3) equations is
satisfiable verifies :

lim
n→∞n1/12p(n, m) =

(∞∑

r=0

√
2π e1/4er

2r
A(3r + 1/4, μ)

)

, (1)

where the sequence (er)r∈N satisfies

∞∑

r=0

erx
r = exp

(∞∑

r=1

(6r)!
25r−132r(3r)! (2r)!

xr

)

(2)

and

A(y, μ) =
e−μ3/6

3(y+1)/3

∑

k≥0

(
1
232/3μ

)k

k! Γ
(
(y + 1 − 2k)/3

) . (3)

Outline of the proof. For any r ≥ 0, let pr (n, m) be the probability that
an edge-weighted graph with m = 1

2n
(
1 + μn−1/3

)
weighted (0/1) edges and n

vertices has no cycle of odd weight and exactly n − m + r acyclic components (r
is the total excess of the graph see for example [21]). We have:

p(n, m) =
∑

r≥0

pr (n, m) .

Then, the two following facts show that our main result is a direct consequence
of the dominated convergence theorem.

Random 2-XORSAT at the Satisfiability Threshold 15

Fact (i): For all integer r ≥ 0

n1/12pr (n, m) ∼
√

2π e1/4er

2r
A(3r + 1/4, μ) . (4)

Fact (ii): There exits R, C, ε > 0 such that for all r ≥ R and all n:

n1/12 pr (n, m) ≤ C e−ε r . (5)

In contrast with the above mentionned results on random 2-SAT, we obtain
sharper characterization in the scaling window. The accuracy of our results can
be compared to the one on the finite size scaling for the core of large random
hypergraphs in [14] expressed in terms of the Airy function. This function has
been encountered in the physics of the classical random graphs [21] and is shown
in [17,18] related to A(y, μ) appearing in our formula (1). In Figure 2, we give
empirical results corresponding to random 2-XORSAT formulas with n = 1000
(resp. n = 2000) variables around the point phase transition m = n

2 + μn2/3

2
with μ ∈ [−4, 4]. The figure illustrates the accuracy of formula (1).

1.3 Organization of the Paper and Further Results as |μ| is Large

In this paper, we embark on 2-XORSAT phase transition study with the pow-
erful tools developped by analytic combinatorics. We show that methods devel-
opped on simple graphs [29,30,17,21,24,25] are also well suited for constrained
weighted graphs associated to random 2-XORSAT formulas. In Section 2, The-
orem 2 gives an explicit differential recurrence between Exponential Generating
Functions C� of �-connected components of weighted graph without cycle of odd
weight. Then we deduce inequalities on C� involving simpler generating func-
tions that concentrate essential informations about the asymptotical behaviour
of C�’s coefficients. In Section 3 we give the extended proof of our main theorem
that is the one of facts (i) and (ii) mentionned above. To end this introductory
section, we mention without proof more estimates that might be obtained within
the same framework.

When |μ| growswith n (say for example μ = +n1/15 orμ = − log n2), the results
presented here can be extended to show that the probability p

(
n, n

2 + μn2/3

2

)
is

about ∼ e1/4|μ|1/4n−1/12 whenever μ tends to −∞. Similarly, p
(
n, n

2 + μn2/3

2

)
is

of order of magnitude O
(
μ−7/8 exp

(
−μ3/6

)
n−1/12

)
when μ tends to +∞ with n

but μ = O(n1/12). The proofs rely on the same principles except that instead of (4)
we have (6) and (7) :

• ∀r ∈ N and μ(n) s. t. |μ(n)| = O(n1/12) and limn→∞ μ(n) = −∞

lim
n→∞ n1/12|μ(n)|3r−1/4pr(n, m) =

e1/4er

2r
. (6)

16 H. Daudé and V. Ravelomanana

•• ∀r ∈ N and μ(n) s. t. μ(n)
 1 but μ(n) = O(n1/12)

lim
n→∞n1/12 exp

(
μ(n)3

6

)

μ(n)7/8−3r/2 pr(n, m) =
1

23r/2+1/8Γ (3r/2 + 1/8)
.

(7)

2 Exact Enumeration

Recall that 2-XORSAT formula is satisfiable if and only if the associated weighted
graphs have no cycle of odd weight. In this paragraph, we investigate the EGF of
these combinatorial structures.

2.1 Generating Functions

We adapt the definitions on simple graphs [17,21] to simple (without self-loops
nor multiple edges), undirected and labeled graphs with weighted edges 0 or 1.

Let t(z) be the exponential generating function (EGF for short) of rooted
labeled trees, we know from [3] that:

t(z) = zet(z) =
∞∑

n=1

nn−1 zn

n!
. (8)

Recall that a tree on n vertices has n − 1 edges thus, in our case, the EGF of
rooted labeled weighted trees with edge weight from {0, 1} is:

T (z) =
∞∑

n=1

(2n)n−1 zn

n!
=

t(2z)
2

= ze2T (z) . (9)

The differential operator ϑz = z ∂
∂z corresponds to marking a vertex. To con-

sider a pair of distinct vertices we will use the differential operator ϑ2
z−ϑz

2 . From
(9) we get:

ϑz(T) =
T

1 − 2T
ϑ2

z(T) =
T

(1 − 2T)3
. (10)

For sake of simplicity, throughout the rest of this paper T ≡ T (z) which is given
by (9).

We say that a connected graph has excess � if it has �(≥ −1) more edges than
vertices. A connected component of excess � is also called �-component. If � > 0,
�-components are called complex. Let C� be the EGF of �-components without
cycles of odd weight. Observe that C−1 is the EGF of unrooted weighted trees
thus ϑz(C−1) = T , it follows that:

C−1(z) = T − T 2 =
∞∑

n=1

nn−22n−1 zn

n!
(11)

When the random graph [15,16] evolves, it has many sparse �-components (−1 ≤
�). Let us define the total excess of a graph as follows (see also [21, Section 13]) :

Random 2-XORSAT at the Satisfiability Threshold 17

the total excess of a graph is the number of edges plus the number of acyclic
components, minus the number of vertices. Let Er(z) be the EGF of all complex
graphs (connected or not) without cycles of odd weight with a positive total
excess r. By definition, we have E0(z) = 1, E1(z) = C1(z) and the relations

Er(z) = [xr] exp

(∞∑

i=1

xiCi(z)

)

rEr =
r∑

k=1

kCk Er−k . (12)

(The last equality is obtained by differentiating
∑

xrEr(z) w.r.t. x and equating
the coefficients of xr−1.)

A smooth graph is one without vertices of degree one. Smooth graphs can
be obtained by recursively pruning the vertices of degree one, i.e. by cutting off
repeatedly any vertex of degree 1 in the graph. Conversely, given any smooth
graph, we obtain all graphs that prune down to it by simply sprouting a (rooted)
tree from each reduced vertex. Accordingly, let C̃� be the EGF of smooth �-
components without cycles of odd weight, it follows that the EGFs C�, C̃� and
T satisfy for any � ≥ 0:

C�(z) = C̃� (T (z)) . (13)

From n(≥ 3) labeled vertices, one can form 2nn!
2n distinct elementary weighted

cycle of length n. There is only one weighted (odd) cycle of length 2 and for
greater length as many cycles of odd weight as cycles of even weight. Thus, we
obtain

C̃0(z) =
1
4

∞∑

n=3

2n zn

n!
=

1
4

log
(

1
1 − 2z

)

− z

2
− z2

2
.

From (13) we then have

C0 =
1
4

log
(

1
1 − 2T

)

− T

2
− T 2

2
. (14)

In order to study random 2-XORSAT formula by means of enumerative ap-
proach, we have to compute the EGFs C�.

2.2 Differential Recurrence for EGFs

Observe that our combinatorial structures are constrained since the considered
weighted graphs are without cycles of odd weights. As shown by the longstanding
open problem of enumerating exactly triangle-free graphs [20], it is in general
extremely difficult to derive EGFs of such structures [26]. However, the following
Theorem gives exact enumerative results for the EGFs C� for all � ≥ −1.

Theorem 2. Let C� be the EGF of �-components without cycles of odd weight.
We have,

C−1 = T − T 2, C0 =
1
4

log
(

1
1 − 2T

)

− T

2
− T 2

2

18 H. Daudé and V. Ravelomanana

and for � ≥ 0, C�+1(z) verifies the differential equation

(1 − 2T (z))ϑzC�+1(z) + (� + 1)C�+1(z) =

(
ϑ2

z − 3ϑz − 2�
)

2
C�(z)

+
�∑

p=0

(ϑzCp(z)) (ϑzC�−p(z)) ,

(15)

where ϑz = z ∂
∂z and T is given by (9).

Proof. We shall use multivariate exponential generating functions (EGF’s) to
study family of graphs with labeled vertices and edges weighted in {0, 1}. If F
is such a family the associated EGF is the formal power series

F (w, u, z) =
∑

M∈F
wm1(M)um0(M) zn(M)

n(M)!
, (16)

where n(M) is the number of vertices of a graph M and m0(M) (resp. m1(M))
denotes the number of edges of weight 0 (resp. 1) of M . Also, a graph M is of
odd (resp. even) weight iff m1(M) is odd (resp. even).

To prove (15), we show the following

(ϑw + ϑu)C�+1 + (u + w)
(

ϑ2
z − ϑz

4

)

C� = w

(
ϑ2

z − ϑz

2
− ϑw

)

C�

+ u

(
ϑ2

z − ϑz

2
− ϑu

)

C� +
(w + u)

2

�+1∑

p=−1

(ϑzCp) (ϑzC�−p) , (� ≥ 0) . (17)

which gives more lights on the combinatorial interpretations of (15).
The second term, i.e. the summation, in the RHS of (17) reflects the choices of

one vertex vp from a connected p-component (p ∈ [−1 , � + 1]) and another vertex
v�−p from an (�−p)-component (both components without cycles of odd weight)
in order to add a distinguished edge of weight 1 (resp. 0), viz. vp 1− − v�−p (resp.
vp 0− − v�−p), between the two previously disconnected components.

In the RHS of (17), the two terms before the summation correspond to adding
a distinguished edge (respectively of weight 1 or 0) to an existing �-component
without cycles of odd weight. To add this last edge, we may choose a pair of
distinct vertices not already connected by an edge of weight 1 (resp. 0) thus
the operator ϑ2

z−ϑz

2 − ϑw (resp. ϑ2
z−ϑz

2 − ϑu). We observe that this last edge
(independently of its weight) can introduce cycles of odd weight.

Next, the first term in the LHS of (17) corresponds to starting with a con-
nected component of C�+1 having a distinguished edge.

Finally, the second term in the LHS of (17) take into account the constructions
containing cycles of odd weight with a marked edge whose deletion will suppress
all the cycles of odd weight. For this last term, let us first remark that if we
choose any pair of distinguished vertices in a connected component without

Random 2-XORSAT at the Satisfiability Threshold 19

cycles of odd weight there is exactly one possibility to insert a weighted edge
between these two vertices in order to create an odd cycle. Second, observe that
the number of such constructions obtained in adding an edge of weight 0 is equal
to the one when adding an edge of weight 1, thus the operator ϑ2

z−ϑz

4 .
Observe that univariate EGF can be obtained from multivariate EGF by

setting w = u = 1, thereby ignoring the number of edges and their respective
weights. Now (15) appears as a direct consequence of (17).

Note that equations (10) and (15) allow us to compute the sequence of EGFs
(C�)�≥−1 and the first of them are given by: C1 = 2 T 4(3−2T)

3(1−2 T)3
and

C2 =
T 4(1+28 T−46 T 2+36 T 3−8 T 4)

3(1−2 T)6
. When performing partial fraction decomposi-

tion w.r.t. T , it yields

C1 =
5
48

1
(1 − 2 T)3

− 19
48

1
(1 − 2 T)2

+
13
24

1
(1 − 2 T)

− 1
4

− 1
8
T +

1
12

T 2 .

2.3 Inequalities for EGFs

For our purpose, we need the following notations :

Definition 1. If A(z) =
∑

n anzn and B(z) =
∑

n bnzn are two formal power
series, we write A(z) � B(z) if and only if ∀n ∈ N and n ≥ 3, an = [zn] A(z) ≤
bn = [zn] B(z).

Expanding the series (1 − 2 T)ϑzA(z) + (� + 1)A(z) we have:

n! [zn]
��

(1−2 T
�
ϑzA(z)+(�+1)A(z)

�
= (n+ �+1)an −

n�
k=1

�
n

k

�
2kkk−1(n−k)an−k

(18)

This proves the following result :

Lemma 1. Let A(z) =
∑

n≥0

an
zn

n!
, and � ∈ N. If

(
1−2 T

)
ϑzA(z)+(�+1)A(z) 0

then A(z) 0.

Theorem 3. Let b1 = 5
48 , c1 = 19/48. For � ≥ 1

2(� + 1)b�+1 = 3�(� + 1)b� + 6
�−1∑

p=1

p(� − p)bpb�−p and

2(3� + 2)c�+1 = 8(� + 1)b�+1 + 3�b� + (3� − 1)(3� + 2)c�

+ 12
�−1∑

p=1

p(3� − 3p − 1)bpc�−p . (19)

Then, for � ≥ 1

b�

(1 − 2T)3�
− c�

(1 − 2T)3�−1
� C�(z) � b�

(1 − 2T)3�
. (20)

20 H. Daudé and V. Ravelomanana

Proof. By induction on �. Due to place limitation, the proof is omitted.

As a consequence of Theorem 3, we have:

Corollary 1. We have E0(z) = 1 and E1(z) = C1(z). For � ≥ 1, the EGFs E�

satisfies
e�

(1 − 2T)3�
− f�

(1 − 2T)3�−1
� E� � e�

(1 − 2T)3�
, (21)

where the sequences (b�), (c�) and (e�) are defined respectively by (19) and by
e� =

∑�
k=1 k bk e�−k; f1 = c1 = 19

48 and

f� = c� +
1
�

�−1∑

k=1

(kcke�−k + kbkf�−k) , (� ≥ 2) . (22)

Proof. The bounds are derived by induction.

3 Proof of Theorem 1

In this paragraph, we focus on the studies of random 2-XORSAT formula in-
side the critical window. Recall that we consider random formulas on n Boolean
variables, chosen uniformly at random from among all

(
n(n−1)

m

)
possible choices.

The satisfiability of such formulas is the same as the probability that our ran-
dom weighted graphs have no cycles of odd weight. Such graphs with exactly
n vertices, m edges and a total excess r (r ≥ 0) have exactly n − m + r tree
components. Thus, they are enumerated by the following EGF:

C−1(z)n−m+r

(n − m + r)!
Er(z) exp (C0(z))

Therefore, the probability pr (n, m) that a graph with m = 1
2n

(
1 + μn−1/3

)

edges and n vertices has total excess r with all components without cycles of
odd weights is exactly

pr (n, m) =
n!

(
n(n−1)

m

) [zn]

(
T − T 2

)n−m+r

(n − m + r)!
Er(z)

e−T/2−T 2/2

(1 − 2T)1/4
. (23)

We used (11) and (14) for respectively C−1 and C0.

3.1 Proof of Fact (i)

The formula (24) below based on techniques introduced in [17] and following [21,
Lemma 3], is a key tool for the computation of such probabilities. Let r ∈ N be
fixed. If m = 1

2n
(
1 + μn−1/3

)
and if y is any real constant, we have

e−μ3/6−n

22m−n−2r
[zn]

(
T − T 2

)n−m+r
e−T/2−T 2/2

(1 − 2T)y
∼ e−3/8 A(y, μ)ny/3−2/3 (24)

Random 2-XORSAT at the Satisfiability Threshold 21

where A(y, μ) is given by (3). To prove (24), we first use Cauchy’s integral
formula and after the substitution τ = z

2e−z, so that T (τ) = z
2 . We then obtain

[zn]

(
T − T 2

)n−m+r
e

�
−T

2 −T2
2

�

(1 − 2T))y =
en22m−n−2r−1

πi
×

∮

(1 − z)1−ye−z/4−z2/8enh(z) dz

z
, (25)

where

h(z) = z − 1 − log z −
(
1 − m

n

)
log

1
1 − (z − 1)2

. (26)

The proof of (24) can now be completed following the one of [21, Lemma 3], by
choosing the path of integration z = e−(α+it)n−1/3

where t runs from −πn1/3 to
πn1/3 and α is the positive solution of μ = 1

α − α. Note that h defined in (26)
is exactly the same as in [21, equation (10.12)] satisfying h(1) = h′(1) = 0 and
if m = n

2 h′′(1) = 0.
Next, using Stirling approximation it yields

n!
(
n(n−1)

m

)
1

(n − m + r)!
∼ π1/2 2−μn2/3+r+1/2

nr−1/2
e−μ3/6−n+5/8 . (27)

The ‘ny/3’ in (24) tells us that we have only to consider the term er

(1−2T)3r from
Er (the other term in the lower-bound of Er in the inequalities of Corollary 1
can be neglegted). Taking y = 3r + 1/4 after multiplying (24), (27) and er, we
obtain the result announced by (4).

3.2 Sketch of the Proof of Fact (ii)

By Corollary 1, (23) and using the change of variable τ = z
2e−z, the probability

pr (n, m) verifies

pr (n, m) ≤ n!
(
n(n−1)

m

)
er

(n − m + r)!
en22m−n−r−1

πi
×

∮ (
z(2 − z)
1 − z

)r

(1 − z)3/4−2re−z/4−z2/8enh(z)dz , (28)

with h(z) as in (26) and where the contour is a circle z = ρeiθ with 0 < ρ < 1.
Using complex analysis, it can be proved (details omitted) that

pr (n, m) < α2 r−5/12 n−1/12 exp
(

−μ3

6
+ μr2/3 +

(

log 3 − 2 log 2 − 1
2

)

r

)

,(29)

for some constant α2 > 0. Note that, the quantity (log 3 − 2 log 2 − 1
2) =

−.787 · · · < 0. Therefore, for r sufficiently large we have (5).

22 H. Daudé and V. Ravelomanana

4 Conclusion

We have shown that the generating function approach is well suited to make
precise the scaling window of a particular Contraint Satisfaction Problem: 2-
XORSAT. This problem is governed by the behaviour of cycles in random
weighted graphs thus our analysis is a first step towards a fine description of
the scaling window associated to other random CSPs like 2-Colourability, i.e.
bipartitness, or to random quantified XOR-formulas [8].

References

1. Achlioptas, D., Moore, C.: Random k-SAT: Two Moments Suffice to Cross a Sharp
Threshold. SIAM Journal of Computing 36, 740–762 (2006)

2. Bollobás, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The scaling window
of the 2-SAT transition. Random Structures and Algorithms 18, 201–256 (2006)

3. Cayley, A.: A Theorem on Trees. Quart. J. Math. Oxford Ser. 23, 376–378 (1889)
4. Cocco, S., Dubois, O., Mandler, J., Monasson, R.: Rigorous decimation-based con-

struction of ground pure states for spin glass models on random lattices. Phys.
Rev. Lett. 90, 047205 (2004)

5. Creignou, N., Daudé, H.: Satisfiability threshold for random XOR-CNF formulas.
Discrete Applied Mathematics 96-97, 41–53 (1999)

6. Creignou, N., Daudé, H.: Coarse and sharp thresholds for random k-XOR-CNF
satisfiability. Informatique théorique et applications/Theoretical Informatics and
Applications 37(2), 127–147 (2003)

7. Creignou, N., Daudé, H.: Coarse and sharp transitions for random generalized
satisfiability problems. In: Proceedings of the third colloquium on mathematics
and computer science, Vienna, Austria, pp. 507–516. Birkhäuser, Basel

8. Creignou, N., Daudé, H., Egly, U.: Phase Transition for Random Quantified XOR-
Formulas. Journal of Artificial Intelligence Research 28, 1–17 (2007)

9. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627.
IEEE, Los Alamitos (1992)

10. Dubois, O., Mandler, J.: The 3-XOR-SAT threshold. In: Proceedings of the 43th
Annual IEEE Symposium on Foundations of Computer Science, pp. 769–778.
IEEE, Los Alamitos (2002)

11. Dubois, O., Monasson, R., Selman, B., Zecchina, R.: Editorial. Theoretical Com-
puter Science 265(1-2)

12. Friedgut, E., Bourgain, J.: Sharp thresholds of graph properties, and the k-sat
problem. Journal of the A.M.S. 12(4), 1017–1054

13. Goerdt, A.: A threshold for unsatisfiability. Journal of of Computer and System
Sciences 53(3), 469–486

14. Dembo, A., Montanari, A.: Finite size scaling for the core of large random hyper-
graphs. Ann. of App. Prob. (to appear, 2008)

15. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)
16. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci. 5, 17–61 (1960)
17. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Discrete

Math. 75, 167–215 (1989)

Random 2-XORSAT at the Satisfiability Threshold 23

18. Flajolet, P., Salvy, B., Schaeffer, G.: Airy phenomena and analytic combinatorics
of connected graphs. The Electronic Journal of Combinatorics 11(1), R34 (2004)

19. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Forthcoming book (chap-
ters are avalaible as INRIA research reports at Philippe Flajolet’s home page),
http://algo.inria.fr/flajolet/Publications/books.html

20. Harary, F., Palmer, E.: Graphical Enumeration. Academic Press, New York and
London (1973)

21. Janson, S., Knuth, D.E., Luczak, T., Pittel, B.: The birth of the giant component.
Random Structures and Algorithms 4, 233–358 (1993)

22. Sloane, N.J.A., Plouffe, S.: Encyclopedia of Integer Sequences. Academic Press,
London, http://www.research.att.com/∼njas/sequences/

23. Mézard, M., Ricci-Tersenghi, F., Zecchina, R.: Alternative solutions to diluted p-
spin models and XORSAT problems. J. Stat. Phys. 111, 505 (2003)

24. Ravelomanana, V.: The Average Size of Giant Components between the Double-
Jump. Algorithmica 46(3-4), 529–555 (2006)

25. Ravelomanana, V.: Another Proof of Wright’s inequalities. Inf. Proc. Let-
ters 104(1), 36–39 (2007)

26. Ravelomanana, V., Thimonier, L.: Forbidden subgraphs in connected graphs.
Theor. Comput. Sci. 314(1-2), 121–171 (2004)

27. Rémi, M.: Introduction to phase transitons in random optimization problems. Per-
sonnal communication (2007)

28. Wright, E.M.: Asymptotic relations between enumerative functions in graph theory.
Proc. London Math. Soc. 20, 558–572 (1970)

29. Wright, E.M.: The Number of Connected Sparsely Edged Graphs. Journal of Graph
Theory 1, 317–330 (1977)

30. Wright, E.M.: The Number of Connected Sparsely Edged Graphs. III. Asymptotic
results. Journal of Graph Theory 4, 393–407 (1980)

http://algo.inria.fr/flajolet/Publications/books.html
http://www.research.att.com/~njas/sequences/

On Dissemination Thresholds in Regular and

Irregular Graph Classes�

I. Rapaport1, K. Suchan1,2, I. Todinca3, and J. Verstraete4

1 Departamento de Ingenieŕıa Matemática and Centro de Modelamiento Matemático,

Universidad de Chile

rapaport@dim.uchile.cl
2 Faculty of Applied Mathematics, AGH - University of Science and Technology,

Cracow, Poland

karol@suchan.info
3 LIFO, Université d’Orléans, France

Ioan.Todinca@univ-orleans.fr
4 University of California, San Diego, California, USA

jverstra@math.ucsd.edu

Abstract. We investigate the natural situation of the dissemination of

information on various graph classes starting with a random set of in-

formed vertices called active. Initially active vertices are chosen inde-

pendently with probability p, and at any stage in the process, a vertex

becomes active if the majority of its neighbours are active, and there-

after never changes its state. We show that in any cubic graph, with high

probability, the information will not spread to all vertices in the graph

if p < 1
2 . We give families of graphs in which information spreads to all

vertices with high probability for relatively small values of p.

1 Introduction

Let G = (V, E) be a simple undirected graph. A configuration C of G is a function
that assigns to every vertex in V a value in {0, 1}. The value 1 means that the
corresponding vertex is active while the value 0 represents passive vertices.

We investigate the natural situation in which a vertex v needs a strong major-
ity of its neighbours, namely strictly more than 1

2d(v) neighbours, to be active
in order to become an active vertex. Therefore, consider the following rule of dis-
semination that acts on configurations: a passive vertex v whose strict majority
of neighbours are active becomes active; once active, a vertex never changes its
state. The initial configuration of a dissemination process is called an insemina-
tion. Since the set of active vertices grows monotonically in a finite set V , a fixed
point has to be reached after a finite number of steps. If the fixed point is such
� Authors acknowledge the support of CONICYT via Anillo en Redes ACT08 (I.R.,

K.S.), ECOS-CONICYT (I.R., I.T.), Fondap on Applied Mathematics (I.R.) and an

Alfred P. Sloan Fellowship (J.V.).

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 24–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Dissemination Thresholds in Regular and Irregular Graph Classes 25

that all vertices have become active, then we say that the initial configuration
overruns the graph G. A community [10] (also called an alliance) in G is a subset
of nodes X ⊆ V each of which has at least as many neighbours in X as in V \X ,
i.e. for every v ∈ X , |N(v) ∩ X | ≥ |N(v) ∩ (V \ X)|. Notice that a configuration
overruns G if and only if it contains no community of passive vertices.

Dissemination has been intensively studied in the literature, using various
dissemination rules (see e.g. [17] for a survey). Among other types of rules we
can cite models in which a vertex becomes active if the total weight of its ac-
tive neighbours exceeds a fixed value [12], or symmetric majority voting rules,
for which an active vertex may also become passive if the number of passive
neighbours outweights the number of active neighbours [17]. One of the main
questions for each of these models is to find small sets of active vertices which
overrun the network. Several authors considered the problem of finding small
communities in arbitrary graphs or special graph classes [8,10].

In this work we consider a probabilistic framework. A random configuration
in which each vertex is active with probability p and passive with probability
1 − p is called a p-insemination. We are interested in the probability θp(G) that
a p-insemination overruns G. It is clear that θp(G) is a monotonic increasing
function of p. We investigate the majority dissemination process starting with a
p-insemination for various graph classes. Such random dissemination processes,
with different types of dissemination rules, have been studied in the literature
in the context of cellular automata or in bootstrap percolation [11].

One of the basic questions is to determine the ratio of active vertices (in
other words, the critical value of p) one needs in order to overrun the whole
graph with high probability. Without any restriction on the structure of the
underlying graph, it appears to be difficult to determine this ratio. It is therefore
more instructive to consider whole classes of graphs. If G is a class of graphs, let
G = (Gn)n∈N denote a generic sequence of graphs Gn ∈ G such that |V (Gn)| <

|V (Gn+1)| for all n ∈ N. We define dissemination half-thresholds p+
c and p−c of

class G by

p+
c (G) = inf{p | ∃G : lim θp(Gn) = 1}

p−c (G) = sup{p | ∀G : lim θp(Gn) = 0}

In words, for p < p−c and any increasing sequence G in G, the probability that
a random p-insemination overruns the graph tends to zero.

For example, for the class K of all complete graphs, it is straightforward to
see that p+

c (K) = p−c (K) = 1
2 . If for a class G the two half-thresholds are equal,

we say that pc(G) = p+
c (G) = p−c (G) is the dissemination threshold of class G.

It is convenient to introduce the following terminology: throughout the paper, if
(An)n∈N is a sequence of events in a probability space such that limn→∞ P[An] =
1, we write An a.a.s (asymptotically almost surely). For example, if p < p−c (G)
then a.a.s Gn ∈ G is not overrun by a p-insemination.

26 I. Rapaport et al.

In this paper, we consider dissemination on regular graphs and particular
classes of irregular graphs. First we consider regular graphs, for which we give
simple lower bounds for the dissemination half-threshold p−c , and we prove that
the threshold pc is exactly 1

2 for cubic graphs. In the second part, we give simple
explicit constructions of graph classes with relatively small dissemination half-
threshold p+

c (G). This counters the naive intuition that one should need about
half of the vertices to overrun the whole graph.

Regular graphs. The dissemination process, as we have mentioned, has been
studied for specific families of graphs, such as integer lattices, hypercubes, and
so on, all of which are regular graphs. More generally, let Gr be the family of
r-regular graphs. We observe that pc(G2) = 1, since a p-insemination overruns
a cycle if and only if there are no two consecutive passive vertices. A more
interesting case is the class Q of hypercube graphs: these are regular graphs
but with growing degrees. Following from more general results on families of
regular graphs with growing degrees, Balogh, Bollobás and Morris [5] showed
pc(Q) = 1

2 . Balogh and Pittel [6] considered dissemination on random r-regular
graphs. Consider Gn,r, a graph chosen uniformly at random from the family of
all r-regular graphs on n vertices, so G(r) = {Gn,r : n ∈ N}. It turns out that
pc(G(r)) a.a.s. exists and equals

pr := 1 − inf
y∈(0,1)

y

F (r − 1, 1 − y)

where F (r, y) is the probability of obtaining at most r/2 successes in r indepen-
dent trials with the success probability equal y. This leaves the determination
of the dissemination threshold for Gr for fixed r > 3 as an open question. Let us
have a look at the values of pr for small r, though:

r 3 4 5 6 7
pr 0.5 0.667 0.275 0.397 0.269

We conjecture that the dissemination thresholds pc(Gr) exist and equal pr.
Towards this conjecture, we show the following modest result:

Theorem 1. For all positive integers r, p−c (Gr) ≤ pr and

p−c (Gr) ≥
{

1
r if r is odd
2
r if r is even

We will prove the conjecture in the case r = 3:

Theorem 2. pc(G3) = 1
2

Irregular graphs. It is natural to search for graph classes G for which p+
c (G) is

small. If, as we conjecture, regular graphs behave like random regular graphs,
then regular graphs cannot have very low thresholds. One should consider graphs

On Dissemination Thresholds in Regular and Irregular Graph Classes 27

whose vertices have varying degrees – we refer to these loosely as irregular graphs.
To this end, we consider the class of wheels and toroidal graphs. Let Cn denote
the cycle on n vertices and C2

n denote the toroidal grid on n2 vertices. Notice
that C2

n is, indeed, the cartesian square of Cn. In general, let Ck
n denote the

k-dimensional torus. Let u ∗ Ck
n denote the k-dimensional torus augmented with

a single universal vertex u. We will consider the class of wheels – i.e. the family
W = {u∗Cn | n ∈ N} – and the class of toroidal grids plus a universal vertex – i.e.
T = {u ∗C2

n | n ∈ N}. Our main result is that for both classes the dissemination
threshold is small:

Theorem 3. For the class W, we have p+
c (W) = 0.4030..., where 0.4030... is

the unique root in the interval [0, 1] of the equation p+p2 −p3 = 1
2 . For the class

T of toroidal grids plus a universal vertex, we have 0.35 ≤ p+
c (T) ≤ 0.372.

Since our goal is to find graph classes with small dissemination thresholds, clearly
the second result is stronger than the first. Nevertheless, we shall present their
proofs in parallel. For establishing the bounds on toroidal grids plus a universal
vertex we need (a small amount of) computer-aided computations, while on
wheels all computations are easy to check by hand.

The results of Balogh and Pittel on 7-regular graphs imply the existence of
graph classes with half-threshold p+

c < 0.27. Although this bound is smaller
than in our case, our result has the advantage of giving explicit constructions
of graph classes with small half-threshold p+

c . We also believe that our proof
techniques might give new tools for constructing classes with even smaller values
of p+

c . Let us remark that computer simulations for higher dimension tori with a
universal vertex u ∗Ck

n indicate even lower thresholds. In simulations, a random
p-insemination overruns u ∗C2

n the graph a.a.s. already with p = 0.37, which fits
within the bounds shown in this paper. For k equal 3, 4 and 5 the graph u ∗ Ck

n

is a.a.s. overrun by a random p-insemination already with p equal 0.35, 0.32 and
0.3, respectively. We leave the following as an open problem: Is there a family
of graphs on which any p-insemination overruns the graph a.a.s for any p > 0?

2 Regular Graphs

In this section we outline the proof of Theorem 1. Balogh and Pittel [6] showed
that for the class of random r-regular graphs, the dissemination threshold is a
constant pr a.a.s. where p3 = 1

2 , p4 = 2
3 and so on. This establishes the upper

bound in Theorem 1. For the lower bound, we use the following easy observation.
The average degree of a graph G is 2e(G)/|V (G)|.

Lemma 1. Let G be a graph of average degree more than 2k − 2, where k ∈ N.
Then G has a subgraph of minimum degree at least k.

Proof. Let G be such a graph. We recursively remove vertices of degree at most
k−1. Each step this removes at most k−1 edges, thus at the end of this process

28 I. Rapaport et al.

we must obtain a non-empty subgraph of G. This subgraph has the required
property.
�
Let I be the set of active vertices of a p-insemination of G ∈ Gr, and Ic =
V (G) \ I. Then

E[|Ic|] = (1 − p)n and E[e(Ic)] =
r

2
(1 − p)2n

where e(Ic) is the number of edges of G with both ends in Ic. Note that |Ic| is
a binomial random variable, in particular the Chernoff Bound [2] implies:

|Ic| ∼ (1 − p)n a.a.s. (2.1)

We also need to prove that

e(Ic) ∼ r

2
(1 − p)2n a.a.s. (2.2)

This is proved using the Independent Bounded Differences (IBD) inequality
(see [14]).

Theorem 4 ([14]). Let X = (X1, X2, . . . , Xq) be a family of independent ran-
dom variables with Xi taking values in a set Ai for each i. Suppose that the
real-valued function f defined on ΠAi satisfies

|f(x) − f(x′)| ≤ ci

whenever vectors x and x′ only differ on the ith coordinate. Let μ be the expected
value of f(X). Then for any t ≥ 0,

P(|f(X) − μ| ≥ t) ≤ 2e−2t2/
�

c2
i .

Note that e(Ic) can be considered as a function of the independent variables
Xv, for all vertices v of the graph, where Xv = 1 if v is active in the initial
configuration, and Xv = 0 if v is initially passive. By changing the value of only
one variable Xv, we simply move vertex v from I to Ic or vice-versa. Thus the
value of e(Ic) changes by at most r since G ∈ Gr. By applying Theorem 4 to
e(Ic), we obtain (2.2). If p < 1/r for r odd and p < 2/r for r even, by (2.1) and
(2.2), we have

e(Ic) >
(⌈r

2

⌉
− 1

)
|Ic| a.a.s.

Lemma 1 with k = r/2� implies that the graph G[Ic] induced by Ic a.a.s
has a subgraph of minimum degree at least r/2�, and so Ic a.a.s contains a
community. This gives θp(G) → 0, as required.

3 Cubic Graphs

In this section, we prove Theorem 2, which determines the dissemination thresh-
old for cubic graphs. We observe that a community in a cubic graph contains
a cycle, and therefore the obstruction to a p-insemination overrunning a cubic
graph is a cycle of passive vertices.

On Dissemination Thresholds in Regular and Irregular Graph Classes 29

3.1 Random Cubic Graphs

In this section, we outline the proof of Theorem 2. To prove that pc(G3) ≤ 1
2

we shall find a family of cubic graphs G such that θp(G) → 1 as |V (G)| → ∞
for all p > 1

2 . Note that the existence of such a family is implied by the work
of Balogh and Pittel [6]. Nevertheless, our proof is short, self-contained and can
be easily turned into an explicit construction of such a family. This family of
cubic graphs is generated by considering cubic graphs chosen at random from
all cubic graphs, and then showing that such a random graph has the required
properties. A survey of random regular graphs is found in Wormald [15]. The
specific property we shall require of such graphs G is that the length of the
shortest cycle in G tends to infinity as |V (G)| tends to infinity, and G contains
no more than 2i cycles of length i for every i ≤ |V (G)|. We call such graphs
cycle-sparse. The following fundamental result on short cycles in random regular
graphs was proved by Bollobás [3]:

Proposition 1. Let Xi denote the number of cycles of length i in a random
cubic graph on n vertices, for i ≤ n. Then, for any fixed integer g > 3,

lim
n→∞ P[∀i ≤ g : Xi = 0] = exp

(

−
g∑

i=1

i−12i−1

)

.

This result was recently extended to longer cycles in random cubic graphs by
Garmo [9]. Omitting technical details, the results of Garmo show that for any
i ≤ n, P[Xi > 2i] = O(i−2). Since the Euler sum converges, we deduce that with
positive probability Xi ≤ 2i for all i. A few more technical considerations show
that we can ensure that with positive probability, Xi = 0 for i ≤ g and Xi ≤ 2i

for i > g, no matter what constant value of g we prescribe. It follows that there
are infinitely many cycle-sparse cubic graphs.

To finish the proof that pc(G3) ≤ 1
2 , we fix p > 1

2 and apply the Harris-
Kleitman inequality [2]. For this inequality we consider the probability space
Qn, whose underlying sample space is the n-dimensional Boolean lattice {0, 1}n

endowed with the natural product probability measure

P(ω) :=
n∏

i=1

pωi(1 − p)1−ωi for ω ∈ {0, 1}n.

We may consider ω ∈ {0, 1}n as the incidence vector of a subset of {1, 2, . . . , n}.
Taking this stance, a downset in Qn is an event A ⊂ {0, 1}n such that if ω ∈ A

and ω′ ⊆ ω, then ω′ ∈ A. An event is an upset if its complement is a downset.

Proposition 2. Let A1, A2, . . . , Ar be downsets in Qn. Then

P[A1 ∩ A2 ∩ · · · ∩ Ar] ≥
r∏

i=1

P[Ai].

The same holds if the events are all upsets.

30 I. Rapaport et al.

In the current context, we take a p-insemination of a cycle-sparse n-vertex cubic
graph Gn (seen as a {0, 1}n vector), and observe that the events AC that all
vertices of a cycle C ⊂ Gn are passive are downsets in Qn. By the Harris-
Kleitman inequality,

P[
⋂

C⊂Gn

AC] ≥
∏

C⊂Gn

P[AC]

where the products and intersections are over all cycles C ⊂ G. Observe that AC

has probability (1 − (1 − p)�) if C has length �. Using the cycle-sparse property
of Gn, we see ∏

C⊂Gn

P[AC] ≥
∏

i>g

(1 − (1 − p)i)2
i

.

Since p > 1
2 , 1 − (1 − p)i > e−2(1−p)i

. Consequently,

∏

C⊂Gn

P[AC] > exp
(
2

∑

i>g

(2(1 − p))i
)

> exp
(
−2(2(1 − p))g

1 − 2p

)
.

We conclude that for any p > 1
2 and any constant g,

lim sup
n→∞

θp(Gn) ≤ 1 − lim
n→∞ exp

(
−2(2p)g

1 − 2p

)
.

Since g was an arbitrary constant,

lim
n→∞ θp(Gn) = 1

and this shows pc(G3) ≤ 1
2 .

3.2 pc(G3) ≥ 1
2

With high probability, the existence of many short vertex-disjoint cycles in a
cubic graph prevents a p-insemination from overrunning the graph. Therefore,
to prove pc(G3) ≥ 1

2 , it is enough to consider cubic graphs which have very few
short disjoint cycles – after some technical details, we may assume that we have
an infinite sequence G where an n-vertex cubic graph Gn in G has no cycles
of length at most 2g where g = 1

8 log n. These details will be presented in the
full version of the paper. We now outline the proof that for any p < 1

2 and any
increasing sequence of graphs Gn, θp(Gn) → 0 as n → ∞.

Let Cλ(Gn) denote the number of sets of λ vertices of Gn through which
Gn contains a cycle of length λ – we shall call these cyclic sets. Note that, in
general, Cλ(Gn) is less than the number of cycles of length λ in Gn. The key
idea in showing θp(Gn) → 0 is the following technical proposition:

Proposition 3. For some λ satisfying λ = Θ(log n),

Cλ(Gn) = Ω(λ−42λ).

On Dissemination Thresholds in Regular and Irregular Graph Classes 31

An intuitive way to see this is via eigenvalues: the number of closed walks of
length k in Gn is exactly n

∑n
i=1 λk

i , where λi is the ith largest eigenvalue of the
adjacency matrix of Gn. Since Gn is cubic, λ1 = 3. Now it is possible, although
fairly detailed, to show by subtracting walks on trees, that about Ω(2k/k) of
these walks contain cycles provided k is a large enough constant times log n. A
similar computation is carried out in [13] (see Proposition 4.2). Putting k = λ,
and using the girth condition, one arrives at the bound on Cλ(G) in Proposition
3. We also observe that in a random cubic graph, the expected number of cycles
of length λ is roughly 2λ/λ, so in the sense of counting cycles, Gn is close to a
random cubic graph, and these were discussed in the last section. We consider
the events AX that all vertices in a cyclic set X of size λ are passive. The Harris-
Kleitman Inequality – Proposition 2 – gives a lower bound on the probability
that no AX occurs, whereas we require an upper bound. The requisite inequality
for such an upper bound is Janson’s Inequality [16]:

Proposition 4. Let A1, A2, . . . , Ar be downsets in the probability space Qn, and
define

� =
∑

i∼j

P[Ai ∩ Aj]

where i ∼ j means the events Ai and Aj are dependent and μ is the expected
number of Ai which occur. Then

P[
r⋂

i=1

Ai] ≤ e−μ2/2	.

Showing θp(Gn) → 0 is equivalent to showing that some AX occurs a.a.s., and
we shall establish this with Janson’s Inequality by showing that for the events
AX , μ2/� → ∞.

To prove this, note that from Proposition 3,

μ = (1 − p)λCλ(Gn) = Ω
((2 − 2p)λ

λ4

)
.

It is trickier to estimate �, and this relies heavily on the assumption that Gn

has no cycles of length at most 2g. To estimate �, we fix a cyclic set X and
ask, for each i ∈ N, for the number �i(X) of cycles C of length λ for which
|X ∩ V (C)| = i. It turns out that

�i(X) = λO(1)2λ−i−g for 1 ≤ i < λ − g

and �i(X) = 0 otherwise. This allows us to estimate �:

32 I. Rapaport et al.

� ≤ Cλ(Gn)
λ−g−1∑

i=1

(1 − p)2λ−i�i(Gn)

= O(μ2) · λO(1)

λ−g−1∑

i=1

(1 − p)−i2−i−g

= O(μ2)λO(1)2−g.

Here we used the fact that p < 1
2 . By the choice of g, λO(1)2−g → 0, and we are

done: �/μ2 → 0. In words, some λ-cycle is passive a.a.s by Janson’s Inequality,
and therefore θp(Gn) → 0.

4 Wheels and Toroidal Grids

We prove here Theorem 3: wheels and toroidal grids plus a universal vertex u

have (relatively) small dissemination half-thresholds p+
c . One of the main ob-

servations is that, for any probability p > 0, if the universal vertex becomes
active during the dissemination process, then the graph is overrun a.a.s. Thus,
for any value p such that p-inseminations contaminate a.a.s. more than half of
the vertices of the cycle or of the toroidal grid, we deduce that the whole graph
is overrun.

There has been much research on dissemination on the k-dimensional torus
and grid graphs. The considered rules were the l-neighbours rule, which are more
general than the majority rule: in this setting a vertex becomes active if at least
l of its neighbours already are active. In particular, Aizenman and Lebowitz [1]
studied the 2-neighbours dissemination on P 2

n and their results extend to C2
n.

Notice that the majority dissemination on C2
n is the 3-neighbours dissemination,

since C2
n is a four-regular graph.

Our approach is based on the observation that once the universal vertex u

becomes active, the majority dissemination in the Ck
n part of u ∗ Ck

n, in fact,
follows the weak majority rule restricted to Ck

n . In the weak majority rule a vertex
becomes active if at least half of its neighbours are active. If the p-insemination
of u ∗ Ck

n is such that half plus one vertex of Ck
n become active, then u becomes

active as well. Moreover, for any p > 0, the weak majority rule dissemination
process for Ck

n will almost surely overrun the whole graph (the result is trivial
for cycles, and due to Aizenman and Lebowitz for toroidal grids):

Lemma 2 (see [1]). Let Ow
p (G) be the random event that a p-insemination

overruns G under the weak majority rule, and let us denote ow
p (G) the corre-

sponding probability. Then for any p > 0 and any k ∈ {1, 2},

lim
n→∞ ow

p (Ck
n) = 1

On Dissemination Thresholds in Regular and Irregular Graph Classes 33

Therefore, for any probability p > 0 on graphs of type u∗Ck
n, if the dissemination

contaminates the vertex u it will almost surely overrun the whole graph.

Lemma 3. Denote by Fp(G) the number of active vertices obtained by the p-
dissemination process on G. For every class of graphs G of type u ∗Ck

n, p+
c (G) =

inf{p ∈ [0, 1] over all values p such that there exists an increasing sequence u∗Ck
ni

satisfying limi→∞ P(Fp(Ck
ni

) > nk
i /2) = 1.

From now on we only consider the p-dissemination process in cycles and toroidal
grids, under the strong majority rule. Recall that Fp(G) is the random variable
counting the number of active vertices in the final state, after a p-dissemination
process in G. We give upper and lower bounds for the expected value of Fp for
cycles and toroidal grids. Moreover, we shall see that, with very high probability,
the value of Fp(Ck

n) is very close to its expectation, when n → ∞. Therefore, it
is sufficient to see for which values of p this quantity E(Fp(Ck

n)) is strictly bigger
than nk/2, and for which values it is strictly smaller than nk/2. According to
Lemma 3, the dissemination threshold for the class u ∗ Ck

n lies between the two
values.

Since we are unable to give an exact formula for Fp(Ck
n), we give upper and

lower bounds for this quantity. Consider a window Dd(v) formed by all vertices
at distance at most d from v in Ck

n. Let Sd
p(v) be a random variable equal

to 1 if v becomes active when we replace, in the original p-insemination, all
vertices outside the window Dd(v) by passive vertices, and equal to 0 otherwise.
Let sd

p(Ck
n) be the probability that Sd

p (v) = 1 (by symmetry this probability is
the same for all vertices). Dually, let W d

p (v) = 1 if v becomes active when, in
the initial p-insemination, all vertices outside Dd(v) are transformed into active
vertices, and W d

p (v) = 0 otherwise. The probability that W d
p (v) = 1 is denoted

wd
p(Ck

n). Finally, let Sd
p (G) =

∑
v Sd

p (v) and W d
p (G) =

∑
v W d

p (v)1.

Clearly, we have

Lemma 4. For any constant d and any k ≥ 1,

Sd
p(Ck

n) ≤ Fp(Ck
n) ≤ W d

p (Ck
n)

For any fixed values of k and d, the probabilities sd
p(Ck

n) and wd
p(Ck

n) can be
expressed as polynomials on p.

Lemma 5

1. For any n ≥ 3,
s1

p(Cn) = w1
p(Cn) = p + p2 − p3.

1 In the case of cycles, it is easy to see that the dissemination process stops in exactly

one step: a passive vertex becomes active iff both neighbours are active, therefore

Sd
p(Cn) = Fp(Cn) = W d

p (Cn) for any n ≥ 3 and any d ≥ 1.

34 I. Rapaport et al.

2. For any n ≥ 5, s3
p(C

2
n) and w3

p(C2
n) are polynomials of degree 25 on p. Their

exact formula has been computed by a program.

Proof. Let us prove the first part of the lemma. Let v be a vertex of the cycle and
assume that all vertices at distance at least 2 from v are passive. Then v will be
active if and only if initially v is already active (which occurs with probability
p) or initially v is passive and both his neighbours are active (which occures
with probability (1 − p)p2. Therefore the probability that u becomes active is
p + p2 − p3 = s1

p. Now if we configure all non-neighbours of v to be active, the
situation is exactly the same: v will be active iff it was active since the begining,
or if it was initially passive and both neighbours were active.

For the second part of the proof, the polynomials corresponding to s3
p and w3

p

have been computed by a program. The program considers the window D3(v)
formed by the 25 vertices of distance at most 3 from vertex v in C2

n. For each
number i, with 0 ≤ i ≤ 25, we count the number of configurations with exactly
i active vertices and such that v belongs to a passive community. (We consider
both settings, when vertices outside the window are all active, respectively all
passive.) We find e.g. 1 community with 0 active vertices, 24 communities with
one active vertex, 276 communities with 2 active vertices, etc. The probability of
such a configuration being pi(1−p)25−i, we obtain the required polynomials.
�

The expectation of the variable Sd
p(Ck

n) (respectively W d
p (Ck

n)) is nksd
p(Ck

n) (re-
spectively nksd

p(C
k
n)). Moreover, we have:

Sd
p (Ck

n) ∼ nksd
p(C

k
n) and W d

p (Ck
n) ∼ nkwd

p(Ck
n) a.a.s. (4.1)

For proving that the two quantities are very close to their expectations we use
again the Independent Bounded Differences inequality (Theorem 4). Consider
Sd

p(Ck
n) and W d

p (Ck
n) as real functions on all possible initial configurations of Ck

n

(so their domain is {0, 1}nk

). For each vertex v of Ck
n, let Xv be the random

variable s.t. Xv = 1 if v is active in the initial configuration, and Xv = 0 if v is
initially passive. Clearly the variables Xv are independent. Recall that Sd

p(Ck
n) =

∑
w Sd

p(w), where Sd
p (w) is the boolean random variable corresponding to the

event “vertex w becomes active if we replace, in the original p-insemination, all
vertices at distance larger that d from w by passive vertices”. If in the initial
configuration we only change the value of one vertex v, this only changes the
values Sd

p (w) for vertices w at distance at most d from v. Hence the value of
Sd

p(Ck
n) is modified by at most a constant value. By similar arguments, the

value of W d
p (Ck

n) also changes by at most a constant. Therefore we can apply
Theorem 4 to both functions, and deduce Equation 4.1.

We are now able to prove our Theorem 3. Consider the case of wheels. For
any p > 0.4030..., we have s1

p(Cn) = p + p2 − p3 > 1/2. By Lemma 4 and
Equation 4.1, we have that Fp(Cn) > n/2 a.a.s. Therefore p+

c (W) ≤ p, for any
p > 0.4030.... by Lemma 3. Symmetricaly, for any p < 0.4030..., w1

p(Cn) < 1/2

On Dissemination Thresholds in Regular and Irregular Graph Classes 35

and thus Fp(Cn) < n/2 a.a.s. We deduce by Lemma 3 that p+
c (W) ≥ 0.4030...,

which proves the first part of Theorem 3.

The same kind of arguments can be applied to toroidal grids plus one vertex.
For any p ≥ 0.372 (resp. any p ≤ 0.35), the polynomial s3

p(C
2
n) (resp. w3

p(C2
n),

see Lemma 5) has value strictly greater (resp. smaller) than 1/2. We conclude
by Lemma 3 that 0.35 ≤ p+

c (T) ≤ 0.372.

References

1. Aizenman, A., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys.

A: Math. Gen. 21, 3801–3813 (1988)
2. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, Chichester (1992–

2000)
3. Bollobás, B.: Random graphs, 2nd edn. Academic Press, Cambridge University

Press (1985–2001)
4. Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Probab. Theory

Related Fields 134(4), 624–648 (2006)
5. Balogh, J., Bollobás, B., Morris, J.: Majority bootstrap percolation on the hyper-

cube. (manuscript, 2007)
6. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random

Structures Algorithms 30(1-2), 257–286 (2007)
7. Bollobás, B., Szemerédi, E.: Girth of sparse graphs. J. Graph Theory 39(3), 194–

200 (2002)
8. Carvajal, B., Matamala, M., Rapaport, I., Schabanel, N.: Small alliances in graphs.

In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 218–227.

Springer, Heidelberg (2007)
9. Garmo, H.: The asymptotic distribution of long cycles in random regular graphs.

Random Struct. Algorithms 15(1), 43–92 (1999)
10. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Global deffensive alliances in

graphs. Electronic J. Comb. 10, 139–146 (2003)
11. Holroyd, A.: Sharp Metastability Threshold for Two-Dimensional Bootstrap Per-

colation. Probability Theory and Related Fields 125(2), 195–224 (2003)
12. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the Spread of Influence through

a Social Network. In: Proceedings of KDD 2003, pp. 137–146 (2003)
13. Lubotsky, A., Phillips, R., Sarnak, R.: Ramanujan graphs. Combinatorica 8, 261–

278 (1988)
14. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Meth-

ods for Algorithmic Discrete Mathematics. Series: Algorithms and Combinatorics,

vol. 16. Springer, Heidelberg (1998)
15. Wormald, N.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A.

(eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Se-

ries, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)
16. Janson, S., �Luczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in

Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)
17. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theo-

retical Computer Science 282, 231–257 (2002)

How to Complete a Doubling Metric

Anupam Gupta1,� and Kunal Talwar2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213
2 Microsoft Research, Silicon Valley Campus, Mountain View, CA 94043

Abstract. In recent years, considerable advances have been made in the
study of properties of metric spaces in terms of their doubling dimension.
This line of research has not only enhanced our understanding of finite
metrics, but has also resulted in many algorithmic applications. How-
ever, we still do not understand the interaction between various graph-
theoretic (topological) properties of graphs, and the doubling (geometric)
properties of the shortest-path metrics induced by them. For instance,
the following natural question suggests itself: given a finite doubling met-
ric (V, d), is there always an unweighted graph (V ′, E′) with V ⊆ V ′ such
that the shortest path metric d′ on V ′ is still doubling, and which agrees
with d on V . This is often useful, given that unweighted graphs are often
easier to reason about.

A first hurdle to answering this question is that subdividing edges
can increase the doubling dimension unboundedly, and it is not difficult
to show that the answer to the above question is negative. However,
surprisingly, allowing a (1 + ε) distortion between d and d′ enables us
bypass this impossibility: we show that for any metric space (V, d), there
is an unweighted graph (V ′, E′) with shortest-path metric d′ : V ′ ×V ′ →
R≥0 such that

– for all x, y ∈ V , the distances d(x, y) ≤ d′(x, y) ≤ (1 + ε) · d(x, y),
and

– the doubling dimension for d′ is not much more than that of d, where
this change depends only on ε and not on the size of the graph.

We show a similar result when both (V, d) and (V ′, E′) are restricted
to be trees: this gives a simple proof that doubling trees embed into
constant dimensional Euclidean space with constant distortion. We also
show that our results are tight in terms of the tradeoff between distortion
and dimension blowup.

1 Introduction

The algorithmic study of finite metrics has become a central theme in theoretical
computer science in recent years. Of particular interest has been the study of
the geometry of metrics—embeddings into Minkowski spaces have been the most
obvious example, accompanied by the study of notions of metric dimension which
� This research was partly supported by the NSF CAREER award CCF-0448095, and

by an Alfred P. Sloan Fellowship.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 36–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How to Complete a Doubling Metric 37

have allowed us to partially quantify geometric properties that make metrics
tractable for several algorithmic problems.

Given these advances in our understanding of the geometric properties of ab-
stract metric spaces, it is worth remarking that our comprehension of the topo-
logical properties of metric spaces—and of the relationship between topology and
geometry has lagged behind: we do not yet have a good comprehension of how
the structure of a graph interacts with the dimensionality of the shortest-path
metric induced by it. One such example shows up in a paper [8], where a fairly
simple algorithm is given for low-distortion Euclidean embeddings of unweighted
trees whose shortest-path metric is doubling—however, extending the result to
embed weighted trees (also with doubling shortest-path metrics) requires signif-
icantly more work. This raises the natural question: given a doubling tree metric
M = (V, d), is there an unweighted tree G = (V ′, E′) whose shortest-path metric
is also doubling, and contains M as a submetric? In fact, the situation is even
more embarrassing: we do not know the answer even if we drop the requirement
that G be a tree, and look for any unweighted graph!

An immediate obstacle to answering these question is the observation that
subdividing the edges of a weighted tree to convert it into an unweighted tree
can increase the dimension unboundedly. For example, take a star K1,n, and set
the length of the ith edge {v0, vi} to be 2i. It is easy to check that the metric
dG has constant doubling dimension; however, subdividing the ith edge into 2i

parts to make it unit-weighted creates a new graph with n points at unit distance
from each other, which has a doubling dimension log n that is unbounded. On
the positive side, it is easy to show that this metric can be embedded into the real
line with distortion 2 (e.g., the map vi �→ 2i), which we can subdivide without
altering the doubling dimension. In this paper, we show that this positive result
is not an aberration: any tree metric can be represented as a submetric of an
unweighted tree metric which has almost the same doubling dimension. We show
a similar result for arbitrary graphs as well, and show that our tradeoff between
distortion and the dimension blowup is asymptotically optimal.

Formal Definitions: To define the problems we study, let us define the convex
closure of a graph, which is an extension of the notion of subdividing edges.
Given a graph G = (V, E) with edge lengths � : E → R≥0, assume that the
names of the vertices in V belong to some total order (V, ≺). Let V G be the
uncountably infinite set of points V ∪ {e[x] | e ∈ E, x ∈ (0, �(e))} obtained by
considering each edge as a continuous segment of length �(e). Let MG = (V, dG)
be the shortest-path metric of the graph G: we can define a natural metric on
the set V G as

dG(e[x], e′[y]) = min{x + d(u, u′) + y, x + d(u, v′) + (�(e′) − y),

(�(e) − x) + d(u′, v) + y, (�(e) − x) + d(u′, v′) + (�(e′) − y)},

if e = {u, v} (with u ≺ v) and e′ = {u′, v′} (with u′ ≺ v′). We now define the
convex closure of the graph G to be the metric space conv(G) .= MG = (V G, dG).
Note the metric obtained by subdividing edges of G is a sub-metric of the convex
closure of G, and hence it suffices to study the doubling dimension of this convex
closure conv(G).

38 A. Gupta and K. Talwar

1.1 Our Results

The example of K1,n with exponential edge weights shows that even if the
shortest-path metric MG of a graph G is doubling, its convex closure MG may
not be doubling. The goal of this paper is to show that despite this, there is a
“close-by” graph G′ whose convex closure MG′ is indeed doubling. In particular,
the main theorem is the following:

Theorem 1 (Main Theorem). Given a graph G = (V, E) with specified edge-
lengths, we can efficiently find a graph G′ = (V, E′) (also with non-negative
edge-lengths) such that

• The distances in G and G′ are within a multiplicative factor of (1 + ε) of
each other, and

• Ifdim(MG) = k, then dim(MG′) = O(k), anddim(conv(G′)) = O(k log ε−1).

Since Theorem 1 does not give any guarantees about the topology of the graph
G′, we prove an analogous result about tree metrics, with improved guarantees
on the dimension:

Theorem 2. Given a tree T = (V, E) with specified edge-lengths, we can ef-
ficiently find a tree T ′ = (V ′, E′) with V ⊆ V ′ (and with non-negative edge-
lengths) such that

• For x, y ∈ V , the distance between them in T and T ′ are within a multi-
plicative factor of (1 + ε) of each other, and

• If dim(MT) = k, then dim(MT ′) = O(k), and dim(conv(T ′)) = O(k +
log log ε−1).

As a corollary of this result, we obtain an independent proof of the following
result about embeddings of doubling tree metrics into �p spaces:

Corollary 3 ([8]). Every (weighted) doubling tree metric embeds into �p with
constant distortion and constant dimension.

(Another proof of this embedding result for doubling trees appears in [21], using
completely different techniques.)

In addition, we show that the tradeoff between the distortion and the dimen-
sion of the convex closure shown in Theorem 2 is asymptotically optimal:

Theorem 4. There exists a tree metric T = (V, E) with dim(MT) = O(1) such
that for any tree metric T ′ = (V ′, E′) with V ⊆ V ′, the following holds. If
dT (u, v) ≤ dT ′(u, v) ≤ (1 + ε)dT (u, v) for all u, v ∈ V , then dim(conv(T ′)) must
be Ω(log log ε−1).

For general graphs, we show that our tradeoff is asymptotically optimal, under
the restriction that the graph G′ is defined on the same vertex set as G, i.e. we
do not use any steiner points.

Theorem 5. There exists a metric G = (V, E) with dim(MG) = O(1) such
that for any graph G′ = (V, E′), the following holds. If dG(u, v) ≤ dG′(u, v) ≤
(1 + ε)dG(u, v) for all u, v ∈ V , then dim(conv(G′)) must be Ω(log ε−1).

How to Complete a Doubling Metric 39

Proofs of Theorems 4 and 5 are omitted from this extended abstract and can be
found in the full version [10].

1.2 Related Work

The notion of doubling dimension was introduced by Assouad [1] and first used
in algorithm design by Clarkson [5]. The properties of doubling metrics and their
algorithmic applications have since been studied extensively, a few examples of
which appear in [8,18,19,25,11,2,6,12,16,17].

Somewhat similar in spirit to our work is the 0-extension problem [14,3,7].
Given a graph G, the 0-extension (cf. Lipschitz Extendability [13,23,20]) problem
deals with extending a (Euclidean) embedding of the vertices of the graph to an
embedding of the convex closure of the graph, while approximately preserving the
Lipschitz constant of the embedding. Our results can be interpreted as analogues
to the above where the goal is to approximately preserve the doubling dimension.

A number of papers have dealt with geometric implications of topological
properties of the graph inducing the metric, e.g. when the graph is planar [15,24],
outer-planar [9], series-parallel [9], or a tree [22].

2 Preliminaries and Notation

Given a graph G, the shortest path metric on it is denoted by dG and we shall
use BG(x, r) to denote the “ball” {y ∈ VG : dG(x, y) < r}. We will often omit the
subscript G when it is obvious from context. There are several ways of defining
the doubling constant λ and the doubling dimension dim for a metric space, all
of them within a constant factor of each other: here is the one that will be most
useful for us.

Definition 6 (Doubling Constant and Doubling Dimension). A metric
space (X, d) has doubling constant λ if for each x ∈ X and r ≥ 0, given the ball
B(x, 2r), there is a set S ⊆ X of size at most λ such that B(x, 2r) ⊆ ∪y∈SB(y, r).
The doubling dimension dim((X, d)) = log2 λ.

Fact 7 (Subset Closed). Let metric M = (V, d) have doubling dimension k.
If X ′ ⊆ X, and d′ = d|X′×X′ , then (X ′, d′) has doubling dimension at most k.
Fact 8 (Small Uniform Metrics). If a metric M = (V, d) has doubling di-
mension k then there exists a point x and a radius r such that the ball B(x, r)
contains at least 2k points with interpoint distances at least r/2.
Given a metric (X, d), an r-packing is a subset P ⊆ X such that any two points
in P are at least distance r from each other. An r-covering is a subset C ⊆ X
such that for each point x ∈ X , there is a point c ∈ C at distance d(x, c) ≤ r.
An r-net is a subset N ⊆ X that is both an r-packing and an r-covering.

Fact 9 (“Small” Nets). Let metric M = (V, d) have doubling dimension k,
and N is an r-net of M , then for any x ∈ V and radius R, the set B(x, R) ∩ N
has size at most (4R/r)k.

40 A. Gupta and K. Talwar

3 A Structure Theorem

In this section, we show how to characterize the dimension of the convex closure
of a graph H in terms of some easier-to-handle parameters of the graph.

Definition 10 (Long Edges). Given a graph H = (V, E), a vertex u ∈ V and
a radius r ≥ 0, call an edge e = {v, w} a long edge with respect to u, r if one
endpoint of e is at distance at most r from u, and l(e) > r.

Let the set of long edges with respect to u, r be denoted by Lu(r). The follow-
ing structure theorem gives us a characterization of the doubling dimension of
conv(H) in terms of the number of long edges. The proof is omitted from this
extended abstract and can be found in the full version [10].

Theorem 11 (Structure Theorem). There exist constants c1 and c2 such
that the following holds. Consider any graph H = (V, E), and any k ≥ dimH : if
the number of long edges |Lu(r)| ≤ 2k for every u ∈ V and every r ≥ 0, then the
doubling dimension of the convex closure conv(H) is at most c1k. Moreover, if
the doubling dimension of the convex closure conv(H) is at most k, then for every
vertex u ∈ V and every radius r ≥ 0, the number of long edges |Lu(r)| ≤ 2c2k.

4 Convex Completions for Graphs

In this section, we show how to take a graph G = (V, E) and obtain a graph
G′ = (V, E′) on the same vertex set, which has (almost) the same distances
as in G, but whose doubling dimension does not change by much under taking
the convex closure. In particular, we use a bounded-degree spanner construction
due to Chan et al. [4]: they give an algorithm that given a metric (V, d) with
dimension dim = dim(G) and a parameter ε < 1/4, outputs a spanner G′ =
(V, E′) such that d(x, y) ≤ dG′(x, y) ≤ (1 + ε) d(x, y) for all pairs x, y ∈ V , and
moreover the degree of each vertex x ∈ V is bounded by ε−O(dimG). We show that
the convex closure of this spanner has doubling dimension of O(dimG log ε−1).

4.1 The Spanner Construction

We start with a graph G and carry out a series of transformations to obtain graph
G′. Let ε < 1

4 be given and let τ = 6 + �log(1
ε)�. Without loss of generality,

the smallest pairwise distance in G is at least 2τ . We start with some more
definitions.

Definition 12 (Hierarchical Tree). A hierarchical tree for a set V is a pair
(T, φ), where T is a rooted tree, and φ is a labeling function φ : T → V that
labels each node of T with an element in V , such that the following conditions
hold.

1. Every leaf is at the same depth from the root.
2. The function φ restricted to the leaves of T is a bijection into V .

How to Complete a Doubling Metric 41

3. If u is an internal node of T, then there exists a child v of u such that
φ(v) = φ(u). This implies that the nodes mapped by φ to any x ∈ V form a
connected subtree of T.

Definition 13 (Net-Tree). A net tree for a metric (V, d) is a hierarchical tree
(T, φ) for the set V such that the following conditions hold.

1. Let Ni be the set of nodes of T that have height i. (The leaves have height
0.) Let r0 = 1, and ri+1 = 2ri, for i ≥ 0. (Hence, ri = 2i.) Then, for i ≥ 0,
φ(Ni+1) is an ri+1-net for φ(Ni).

2. Let node u ∈ Ni, and its parent node be pu. Then, d(φ(u), φ(pu)) ≤ ri+1.

It is easy to see that net-trees exist for all metrics, and Har-Peled and Mendel
show how to construct a net-tree efficiently [11].

To construct their bounded-degree spanner, Chan et al. [4] define the fol-
lowing: suppose we are given a graph G = (V, E), whose shortest-path metric
(V, dG) has doubling dimension dimG. Let ε > 0 and (T, φ) be any net tree for
M . For each i > 0, let

Ei :=
{

{u, v} | u, v ∈ φ(Ni), dG(u, v) ≤ (4 +
32
ε

) · ri

}
\

⋃

j≤i−1

Ej , (4.1)

where E0 is the empty set. (Here the parameters Ni, ri are as in Definition
13.) Letting Cε denote (4 + 32

ε), we note that all edges in Ei have length in
(Cεri−1, Cεri].

While the graph Ĝ = (V, Ê = ∪iEi) is a (1+ε)-spanner for the original metric
with few edges, obtaining a bounded-degree spanner requires some modifications
to the basic construction. First, the edges in Ê are directed (merely for the
purposes of the algorithm, and the proof). For each v ∈ V , define i∗(v) :=
max{i|v ∈ φ(Ni)}. For each edge (u, v) ∈ Ê, we direct the edge from u to v if
i∗(u) < i∗(v). If i∗(u) = i∗(v), the edge can be directed arbitrarily. Chan et al.
show that each vertex x ∈ V has out-degree bounded by β = ε−O(dimG). Then,
the following steps are performed:

– Consider any vertex x, and all the edges that are directed into x. These
edges come from various sets Ei: let us denote by Fi = Fi(x) the subset of
edges directed into x that belong to Ei.

– Suppose the non-empty subsets are Fi1 , Fi2 , . . . , Fit , where ij < ij+1. We do
nothing to the first 7 log ε−1 of these edge sets; these contribute ε−O(dimG)

to the final degree of x.
– Consider a value of j > 7 log ε−1: from the set Fi(j−7 log ε−1)

of edges directed
into x, we choose an arbitrary one {u, x}. We replace edges of the form
{y, x} ∈ Fij by edges {y, u}—and refer to these (at most ε−O(dimG)) edges
as edges donated from x to u.

Note that the length of the edge {u, x} is at most Cε 2i(j−7 log ε−1) ≤
Cε ε72i, whereas the length of any edge in {y, x} ∈ Fij is at least Cε 2i−1;
hence dG(u, x) ≤ (ε7/2)dG(x, y) ≤ ε6dG(x, y), since ε ≤ 1/4. By the triangle
inequality, dG(u, y) ∈ (1 ± ε6)dG(x, y).

42 A. Gupta and K. Talwar

Additionally, note that if x donates a long edge (x, y) ∈ Fij to u, then
(u, x) ∈ Fij−7 log ε−1 so that dG(x, u) is at least Cε2(ij−7 log ε−1)−1.

Theorem 14 ([4]). The spanner thus constructed has degree ε−O(dimG) and
stretch (1 + ε).

From the construction of the bounded-degree spanner, note that each vertex
u ∈ V has the following edges incident to it:

– Type-A edges. These correspond to the ε−O(dimG) edges that were directed
away from u.

– Type-B edges. These correspond to the edges directed into u that belong
to the smallest 7 log ε−1 levels; this gives another (ε−O(dimG)) edges in total.

– Type-C edges. For each edge e = {u, x} of type-A incident to u, there are
at most (ε−O(dimG)) other edges incident to u that are not counted above.
Each such edge e′ = {y, u} corresponds to some edge of the form {y, x} ∈ Ei

(for some i such that x, y ∈ φ(Ni)), such that the edge was “donated” from
x to u to maintain x’s degree bound.

4.2 Bounding the Dimension of the Convex Closure

Simply by the distortion bound, it follows that the doubling dimension of the
bounded-degree spanner G′ is close to dimG. Of course, the bounded-degree does
not imply that conv(G′) has low doubling dimension: in this section, we use the
Structure Theorem 11 to show this fact, and hence prove Theorem 1.

Lemma 15. Given the graph G′ defined as above, fix any vertex v and radius
R, and ε < 1

4 . Then the number of long edges |Lv(R)| with respect to v, R is at
most O(ε−O(dimG)).
Proof. Recall that Lv(R) is the set of edges that have one endpoint within
the ball B(v, R), and have length at least R. Define � ∈ Z≥0 such that R ∈
(Cε2�−1, Cε2�].

By the spanner construction, any type-A or type-B edge that is long must
belong to ∪i≥� Ei, and hence must have both endpoints in φ(N�). Moreover, one
endpoint of each such a long edge must lie in the ball B(v, R) ⊆ B(v, Cε2�);
since the points in φ(N�) are at distance at least 2� from each other, there can
be at most (Cε)O(dimG) many such endpoints within the ball. Moreover, each one
of these endpoints has at most ε−O(dimG) type-A or type-B edges; multiplying
them together, using the fact that Cε = O(ε−1), and simplifying gives an upper
bound of ε−O(dimG) on the number of type-A and type-B edges in Lv(R).

Let us now consider the edges in Lv(R) that are of type-C with respect to their
endpoint within B(v, R). Recall that each type-C edge {u, y} can be associated
with some edge {x, y} ∈ Ê (of almost the same length—up to a factor of (1 ±
ε6)) such that x donates the edge to u. Let us fix one such long edge e =
{u, y} associated with {x, y} ∈ Ei—hence the distance dG(x, y) ∈ (Cε2i−1, Cε2i],
and also x, y ∈ φ(Ni). By the construction of the type-C edges, the distance
dG(u, x) ≤ ε6 · dG(x, y), and hence x lies in the ball B(v, R + ε6Cε2i).

How to Complete a Doubling Metric 43

Given any fixed level i ≥ � − 1, the number of donor vertices is bounded by
the number of points in B(v, Cε(2� + ε62i)) that are at least 2i distance apart
from each other, which can be loosely bounded by ε−O(dimG). Each such donor
vertex could donate ε−O(dimG) edges, which would give us a total of ε−O(dimG)

edges for the level i. Summing this over all levels would give us too many edges,
so we use this bound only for levels i such that � − 1 ≤ i ≤ � + O(log ε−1).

Consider any level i > �+6 log ε−1: any donor vertex for such a level must lie
in the ball B(v, Cε(2� +ε62i)) ⊆ B(v, Cεε

62i+1) ⊆ B(v, Cε ε5 2i). A little algebra
shows that

ε5Cε = ε5(4 +
32
ε

) ≤ ε5 33
ε

≤ ε4 · 33 ≤ ε,

and thus the donor vertex must be at distance at most ε2i from v. However,
since the donor vertex must belong to φ(Ni), it must be at distance at least 2i

from any other donor vertices. Now, if there were two donor vertices at distance
ε2i from v, they would be at distance 2ε2i < 2i from each other—this implies
that there can be at most one donor vertex for such a “high” level.

Finally, it remains to show that the total number of long edges donated by
this donor vertex x to vertices in B(v, R) is small. Let i1, i2, . . . , it, ij < ij+1 be
the levels for which x donates a long edge to vertices in B(v, R); we shall show
that t is at most O(log ε−1). Since the first edge is long, R ≤ Cε2i1+1. Moreover,
since x donates this edge to u, we conclude that dG(x, u1) ≤ ε6Cε2i1 , so that
dG(v, x) ≤ R + ε6Cε2i1 ≤ (2+ ε6)Cε2i1 . Suppose that t > 7 log ε−1 +3. Then an
edge in Fit is donated from x to ut, and we have that dG(x, ut) ≥ Cε2i4−1. On
the other hand, since ut ∈ B(v, R), by triangle inequality, dG(x, ut) ≤ dG(x, v)+
dG(v, ut) ≤ (3+ε6)Cε2i1 . Since i4 ≥ i1+3, this gives us the desired contradiction.
Thus t ≤ O(log ε−1). Since there are at most ε−O(dimG) edges donated to B(v, R)
from each of these levels, the claim follows. �
Using Lemma 15 along with the Structure Theorem 11 implies that the dimen-
sion of conv(G′) is bounded by O(dimG log ε−1), which proves Theorem 1.

5 Convex Completions for Trees

The construction of the previous section showed that given any graph G, we
could construct a new graph G′ such that distances in G and G′ are within
(1 + ε) of each other, and conv(G′) has low doubling dimension. However, since
the construction starts with the shortest-path metric dG and completely ignores
the topological structure of G itself, it is not suited to proving Theorem 2 which
seeks to start with a tree and end with another tree. In this section, we show a
different approach that allows us to monitor the graph structure more closely.

5.1 The Construction for Trees

We give a procedure that takes a general graph G and outputs a graph G′

(since the construction itself does not depend on G being a tree); we then show
some properties that hold when G is a tree. The procedure takes a graph G =

44 A. Gupta and K. Talwar

(V, E), and constructs a new graph G′ = (V ′, E′) with V ⊆ V ′ (by way of an
intermediate graph Ĝ) as follows. Define an exponential tail with k edges as
a path P = 〈v0, v1, v2, . . . , vk〉, where the length of the edge {vi−1, vi} is 2i.
Without loss of generality, the smallest edge length in G is at least 2τ , where
τ = 6 + �log(1

ε)�.
We construct the graph G′ in the following way:

– As in Section 4.1, we consider a net-tree (T, φ) for the graph G. If Ni is the
set of nodes in T at height i, then for u ∈ V define i∗(u) to be the largest
i such that u ∈ φ(Ni). Attach to each u ∈ V an exponential tail with i∗(u)
edges; refer to the jth vertex on this path as u[j], with u[0] = u. Let Ĝ be
this intermediate graph consisting of G along with the tails.

– Consider an edge e = {u, v} ∈ E(G), and suppose its length lies in the interval
(Cε2i−1, Cε2i]. Some leaf of T must be mapped by φ to u ∈ V : let the level-(i)
ancestor of that node be mapped by φ to û; similarly, define v̂ be defined for v.
We now make an edge {û[i], v̂[i]} of length �e in the graph G′.

Note that if we start off with a tree T , the above procedure adds exponential
tails to T to get the intermediate graph T̂ , and then “moves the edges up the
tails” to get the final graph T ′.

Proposition 16 (Distance Preservation). Let ε < 1/4. If the input graph
is a tree T = (V, E), then the above procedure results in a connected tree T ′ =
(V ′, E′) such that for any x, y ∈ V ,

(1 + ε)−1dT (x, y) ≤ dT ′(x, y) ≤ (1 + ε)dT (x, y).

Proof. Let us consider performing the above-mentioned transformation for edges
in increasing order of edge-length. Given j ∈ Z≥0, let Tj be the forest formed
by deleting all edges of length more than Cε2j from T ; also, let T ′

j be the forest
formed by deleting the corresponding edges in T ′. We will prove by induction
on j that for all x, y that lie in some connected component in Tj, their distance
in T ′

j will satisfy the desired stretch bound. The base case is trivial, since all
components of T0 have single nodes in them.

To prove the claim for j, we inductively assume it for j − 1. Now consider
taking some edge e = {u, v} of length �e ∈ (Cε2j−1, Cε2j]. In this case we find
some nodes û and v̂, and add an edge of length �e between û[j] and v̂[j]. By
the properties of the net-tree, the distance dT (u, û) ≤ 2j+1 − 2. Since Tj already
contains all edges of length at most Cε2j−1, and Cε ≥ 4, the net point û lies in the
same component as u in Tj. By the induction hypothesis, dT ′(u, û) ≤ (1+ε)2j+1;
note that this implicitly proves that u and û are in the same component in T ′

j .
A similar claim holds for dT (v, v̂). Hence the distance in T ′

j+1 between u and v
is at most

dT ′
j
(u, û) + dT ′

j
(û, û[j]) + �e + dT ′

j
(v̂[j], v̂) + dT ′

j
(v̂, v)

= 2 × (1 + ε)2j+1 + 2 × 2j+1 + �e

≤ �e (8(1+ε)+8
Cε

+ 1) ≤ (1 + ε)�e,

How to Complete a Doubling Metric 45

where we used the fact that Cε = (4 + 32
ε) and ε < 1/4. Since each of the edges

of T are not stretched by more than (1 + ε), this implies that the stretch for all
pairs is bounded by the same value.

We also need to show that the distances are not shrunk too much in T ′: to
show this, we go via T̂ . (Recall that T̂ was the original tree T along with the
exponential tails.) First note that for any u, v ∈ V , dT (u, v) = d

�T (u, v). We show
that distance do not shrink in going from T̂ to T ′. It suffices to show this for the
edges of T ′. For an edge e′ = (û[j], v̂[j]) that has length �e ≥ Cε2j−1, we note
that their distance in T̂

d
�T (�u[j], �v[j]) ≤ d

�T (�u[j], �u) + d
�T (�u, u) + �e + d

�T (v, �v) + d
�T (�v, �v[j]) ≤ 4(2j+1 − 2) + �e

(5.2)

Since Cε > 32/ε, this is at most (1 + ε)�e. Thus the contraction going from T̂
to T ′ is at most (1 + ε).

Finally, we note that we have shown that T ′ is connected, and the number of
edges in T ′ is equal to the number of edges in T̂ , which is a tree. Thus T ′ is a
tree as well. �

5.2 Bounding the Dimension of the Convex Closure: The Tree Case

Finally, to show that the doubling dimension of conv(T ′) is small, we will again
invoke Theorem 11. However, since we have added additional vertices in going
from T to T ′, we first show that dim(T ′) is O(dim(T)). Since we have already
shown that distances are preserved in going from T̂ to T ′, it suffices to bound
the doubling dimension of T̂ (proof omitted).

Lemma 17. The doubling dimension of T̂ is at most O(dim(T)).
Finally, Theorem 2 follows from the following bound on the number of long edges
in T ′

Lemma 18 (Few Long Edges). For any vertex v ∈ T ′ and every radius R,
the number of long edges in T ′ is bounded by 2O(dim) log ε−1.

Proof. First consider some v ∈ V , and R ≥ 0, and define � ∈ Z≥0 such that
R ∈ (Cε2�−1, Cε2�]. Every long edge incident on B(v, R) must have length at
least R. Further, edges longer than 2CεR are incident on a tail node further
than R from its root, and hence such an edge cannot be incident on B(v, R).
For each of the length scales (Cε2�+j−1, Cε2�+j) : 0 ≤ j ≤ log Cε, we will
bound the number of long edges in that length scale. Fix one such scale, and let
L(v, R, j) = {(ui, wi) : 1 ≤ i ≤ |L(v, R, j)|} be the set of long edges of length
in (Cε2�+j−1, Cε2�+j), such that d(v, ui) ≤ R. Since each long edge has length
more than R, there is a path from v to ui that does not use any of the long
edges. Consider the set of nodes W = {wi : 1 ≤ i ≤ |L(v, R, j)|}. Clearly, for any
w, w′ ∈ W , d(w, w′) is at most 2R + 2Cε2�+j ≤ 4Cε2�+j. Moreover, since T is a
tree, the symmetric difference of the v-w and v-w′ paths gives the shortest path
from w′ to w. Since the long edges incident on w and w′ are in this symmetric
difference, we conclude that d(w, w′) ≥ 2Cε2�+j−1. Thus from the bound on

46 A. Gupta and K. Talwar

doubling dimension, we conclude that |W | ≤ 2O(dim). Adding the contribution
of the O(log ε−1) distance scales, we get the desired bound.

We now extend the argument to a vertex v[i] on an exponential tail hanging off
v. If i ≥ j, then B(v[i], R) = {v[i]}. All edges incident on v have, up to a factor of
two, the same length, and thus their endpoints form a near uniform submetric.
Thus we can bound the degree of v[i] by 2O(dim) and the claim follows. On the
other hand, when i < j, B(v[i], R) ⊆ B(v, 2R) and an argument analogous to
the one for the case v ∈ V above suffices. �

Acknowledgments. We would like to thank Robi Krauthgamer and Ravis-
hankar Krishnaswamy for discussions.

References

1. Assouad, P.: Plongements lipschitziens dans Rn. Bull. Soc. Math. France 111(4),
429–448 (1983)

2. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
The 23rd International Conference on Machine Learning (ICML) (2006)

3. Călinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for the 0-
extension problem. In: Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pp. 8–16. ACM Press, New York (2001)

4. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in DOu-
bling metrics. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 762–771 (2005)

5. Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete Comput.
Geom. 22(1), 63–93 (1999)

6. Cole, R., Gottlieb, L.-A.: Searching dynamic point sets in spaces with bounded
doubling dimension. In: The thirty-eighth annual ACM symposium on Theory of
computing (STOC) (2006)

7. Fakcharoenphol, J., Harrelson, C., Rao, S., Talwar, K.: An improved approximation
algorithm for the 0-extension problem. In: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 257–265. Society for Industrial
and Applied Mathematics (2003)

8. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low–
distortion embeddings. In: Proceedings of the 44th Symposium on the Foundations
of Computer Science (FOCS), pp. 534–543 (2003)

9. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and �1-embeddings
of graphs. Combinatorica 24(2), 233–269 (2004) (Preliminary version in 40th FOCS
1999)

10. Gupta, A., Talwar, K.: How to complete a doubling metric (2008), http://arxiv.
org/abs/0712.3331v1

11. Har-Peled, S., Mendel, M.: Fast constructions of nets in low dimensional metrics,
and their applications. In: Proceedings of the twenty-first annual symposium on
Computational geometry, pp. 150–158 (2005)

12. Indyk, P., Naor, A.: Nearest neighbor preserving embeddings. In: ACM Transac-
tions on Algorithms (to appear)

13. Johnson, W.B., Lindenstrauss, J., Schechtman, G.: Extensions of lipschitz maps
into banach spaces. Israel J. Math. 54(2), 129–138 (1986)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/bx/n/5 {OT1/cmr/m/n/9 }OT1/cmr/bx/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/bx/n/5 {OT1/cmr/m/n/9 }OT1/cmr/bx/n/5 size@update enc@update http://arxiv.org/abs/0712.3331v1
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://arxiv.org/abs/0712.3331v1

How to Complete a Doubling Metric 47

14. Karzanov, A.: Minimum 0-extensions of graph metrics. European Journal of Com-
binatorics 19(1), 71–101 (1998)

15. Klein, P., Plotkin, S.A., Rao, S.B.: Excluded minors, network decomposition, and
multicommodity flow. In: Proceedings of the 25th ACM Symposium on the Theory
of Computing (STOC), pp. 682–690 (1993)

16. Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact
routing in doubling metrics. In: The twenty-fifth annual ACM symposium on Prin-
ciples of distributed computing (2006)

17. Konjevod, G., Richa, A.W., Xia, D.: Optimal scale-free compact routing schemes in
doubling networks. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2007)

18. Krauthgamer, R., Lee, J.R.: The intrinsic dimensionality of graphs. In: Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pp. 438–447.
ACM Press, New York (2003)

19. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 798–807. Society for Industrial and Applied Mathematics (2004)

20. Lee, J., Naor, A.: Absolute lipschitz extendability. Comptes Rendus de l’Académie
des Sciences - Series I - Mathematics 338(11), 859–862 (2004)

21. Lee, J., Naor, A., Peres, Y.: Trees and Markov convexity. Geometric and Functional
Analysis. Preliminary version in SODA (to appear, 2006)

22. Matoušek, J.: On embedding trees into uniformly convex Banach spaces. Israel
Journal of Mathematics 114, 221–237 (1999); (Czech version in: Lipschitz distance
of metric spaces, C.Sc. degree thesis, Charles University 1990).

23. Matoušek, J.: Extension of Lipschitz mappings on metric trees. Commentationes
Mathematicae Universitatis Carolinae 31(1), 99–104 (1990)

24. Rao, S.B.: Small distortion and volume preserving embeddings for planar and
Euclidean metrics. In: 15th Annual ACM Symposium on Computational Geom-
etry, pp. 300–306 (1999)

25. Talwar, K.: Bypassing the embedding: Algorithms for low-dimensional metrics. In:
Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC),
pp. 281–290 (2004)

Sorting and Selection with Random Costs

Stanislav Angelov1, Keshav Kunal1, and Andrew McGregor2

1 Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, USA

{angelov,kkunal}@cis.upenn.edu
2 Information Theory & Applications Center,

University of California, San Diego, CA 92093, USA
andrewm@ucsd.edu

Abstract. There is a growing body of work on sorting and selection in
models other than the unit-cost comparison model. This work treats a
natural stochastic variant of the problem where the cost of comparing
two elements is a random variable. Each cost is chosen independently
and is known to the algorithm. In particular we consider the following
three models: each cost is chosen uniformly in the range [0, 1], each cost
is 0 with some probability p and 1 otherwise, or each cost is 1 with
probability p and infinite otherwise. We present lower and upper bounds
(optimal in most cases) for these problems. We obtain our upper bounds
by carefully designing algorithms to ensure that the costs incurred at
various stages are independent and using properties of random partial
orders when appropriate.

1 Introduction

In the relatively recent area of priced information [5,6,4], there is a set of facts each
of which can be revealed at some cost. The goal is to pay the least amount such
that the revealed facts allow some inference to be made. A specific problem in this
framework, posed by Charikar et al. [4], is that of sorting and selection where each
comparison has an associated cost. Here we are given a set V of n elements and
the cost of comparing two elements u and v is c(u,v). This cost is known to the al-
gorithm. We wish to design algorithms for sorting and selection that minimize the
total cost of the comparisons performed. Results can be found in [15,11,12] where
the performance of the algorithms is measured in terms of competitive analysis. In
all cases assumptions are made about the edge costs, e.g., that there is an under-
lying monotone structure [15,11] or metric structure [12].

A related problem that predates the study of priced information is the problem
of sorting nuts and bolts [1,17]. This is a problem that may be faced by “any
disorganized carpenter who has a mixed pile of bolts and nuts and wants to
find the corresponding pairs of bolts and nuts” according to the authors of [1].
The problem amounts to sorting two sets, X and Y , each with n elements given
that comparisons are only allowed between u ∈ X and v ∈ Y . It can be shown
that this problem can be generalized to the priced information problem in which
comparison costs are either 1 or ∞.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 48–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sorting and Selection with Random Costs 49

In this paper we study a natural stochastic variant of the sorting problem. We
consider each comparison cost to be chosen independently at random. Specifi-
cally, we consider the following three models:

(a) Uniform Costs: c(u,v) is chosen uniformly in the range [0, 1],
(b) Boolean Costs: c(u,v) = 0 with probability p and 1 otherwise,
(c) Unit and Infinite Costs: c(u,v) = 1 with probability p and ∞ otherwise.

The first model is in the spirit of the work on calculating the expected cost
of the minimum spanning tree [10]. The second and third models are related
to the study of random partially ordered sets (see [3] for an overview) and
linear extensions [9,13,2]. Specifically, in Model (b), the free comparisons define a
partial order (V, �) that is chosen according to the random graph model. To sort
V we need to do the minimum number of remaining comparisons to determine
the linear extension, or total order. In Model (c) we have the problem of inferring
properties of the random partial order (V, �) defined by the cost 1 edges.

1.1 A Motivation from Game Theory

The framework of priced information lends itself naturally to a game theoretic
treatment where there are numerous sellers each owning one or more facts. Some
facts will be, in a sense, more valuable than others. In the case of sorting, the
value of a comparison (u, v) is inversely related to |{w : u < w < v or v < w <
u}| because for each such w, the comparisons (u, w) and (w, v) together provide
an alternative way of implying (u, v). How should sellers price their information
in an effort to maximize their profit? Herein lies the dilemma — if the pricing
of the facts is strictly monotonic with their value, the buyer can infer the sorted
order from the prices themselves and by performing a single (cheapest) compar-
ison! Yet, if there is no correlation, the seller is not capitalizing on the value of
the information they have to sell. It seems likely that the optimum pricing of a
fact will be a non-deterministic function of the value. While a treatment of the
game theoretic problem seems beyond our reach at this time, we feel that a first
step will be to find optimal buyer strategies when the price of each fact is chosen
randomly and independently of the value of the fact.

1.2 Our Results

For p = 1/2, our results are summarized in Table 1. In general, we will present
bounds in terms of both n and p. Note that rather than using a competitive
analysis of our algorithms (as in [15,11,12]) we estimate the expected cost of our
algorithms and the expected cost of the respective minimum certificate.

We would like to note that for the first three rows of Table 1, the expected cost
of each comparisons is 1/2 but the variance differs. For selection type problems
the variance makes a big difference since there are many ways to certify the rank
of an element. However for sorting there is only one (minimal) certificate for the
sorted order. Nevertheless, a little bit of variance makes it possible to sort with
only linear cost rather than O(n log n) cost.

50 S. Angelov, K. Kunal, and A. McGregor

Table 1. Comparison between the expected costs of our algorithms and the minimum
certificates for sorting and selection for various cost functions when p = 1/2. The first
row follows from standard algorithms and is given as a reference point for comparison.
Also, in the case of c(u,v) ∈ {1, ∞} we consider finding all maximal/minimal elements.

Max and Min Selection Sorting

Upper Bound Min. Certificate Upper Bound Min. Certificate Upper Bound Min. Certificate

c(u,v) = 1/2 O(n) Ω(n) O(n) Ω(n) O(n log n) Ω(n)

c(u,v) ∈ [0, 1] O(log n) Ω(log n) O(log6 n) Ω(log n) O(n) Ω(n)

c(u,v) ∈ {0, 1} O(1) Ω(1) O(log n) Ω(1) O(n) Ω(n)

c(u,v) ∈ {1, ∞} O(n log n) Ω(n) − − − −

One of the main challenges in the analysis of our algorithms is to ensure that
the costs incurred at various stages of the algorithm are independent. We achieve
this by carefully designing the algorithms and describing an alternative random
process of cost assignment that we argue is equivalent to the original random
process of cost assignment.

2 Preliminaries

We are given a set V of n elements, drawn from some totally ordered set. We are
also given a non-negative symmetric function c : V ×V → R+ which determines
the cost of comparing two elements of V . Given V and c, we are interested in
designing algorithms for sorting and selection that minimize the total cost of the
performed comparisons.

The above setting is naturally described by the complete weighted graph on
V , call it G, where the weight ce of an edge e is determined by the cost function
c. The direction of each edge (u, v) in G is consistent with the underlying total
order and is unknown unless the edge e is probed, i.e., the comparison between u
and v is performed, or it is implied by transitivity, i.e., a directed path between
u and v is already revealed. In this case we call u and v comparable.

An algorithm for sorting or selection should reveal a certificate of the cor-
rectness of its output. In the case of sorting, the minimal certificate is unique,
namely the Hamiltonian path in G between the largest and the smallest elements
of V . In the case of selection, the certificate is a subgraph of G that includes a
(single) directed path between the element of the desired rank and each of the
remaining elements of V . In the special case of max-finding, the certificate is a
rooted tree on V , the maximum element being the root. The cost of a certificate
is defined as the total cost of the included edges.

In this paper we consider three different stochastic models for determining
the cost function c (see Section 1). In Models (b) and (c), the graphs induced
respectively by the cost 0 or 1 edges have natural analogue to random graphs with
parameter p, denoted by Gn,p. Note that in Models (a) and (b), the maximum

Sorting and Selection with Random Costs 51

cost of a comparison is 1. When this is case, the following proposition will be
useful and follows from a natural greedy strategy to find the maximum element
in the standard comparison model.

Proposition 1. Given a set V of n elements, drawn from a totally ordered set,
where the cost of the comparison between any two elements is at most 1, we can
find (and certify) the maximum element performing n−1 comparisons incurring
a cost of at most n − 1.

We will measure the performance of our algorithms by comparing the expected
total cost of the edges probed with the expected cost of a minimum certificate.
Note that the cost of the minimum certificate is concentrated around the mean
in most cases. Even when the minimum certificate cost is far from the mean,
we can obtain good bounds on the expected ratio by using algorithms from [4]
(Model (a)) or standard algorithms (Model (b) and (c)).

Finally, in the analysis, it would be often useful to number the elements of
V , v1, · · · , vn such that v1 < · · · < vn. We also define the rank of an element v
with respect to a set S ⊆ V to be rkS(v) = |{u : u ≤ v, u ∈ S}|.

3 Uniform Comparison Costs

In this section we will assume that the cost of each comparison is chosen uni-
formly at random in the range [0, 1]. We consider the problems of finding the
maximum or minimum elements, general selection, and sorting. The algorithms
are presented in Fig. 1.

Theorem 1. The expected cost of UniformFindMax is at most 2(Hn −1) where
Hk =

∑k
i=1 1/i.

Proof. We analyze a random process where we consider edges one by one in a
non-decreasing order of their cost. Note that the costs of edges define a random
permutation on the edges. If an edge is incident to two candidate elements, i.e.,
elements that have not lost so far a performed comparison, we probe the edge,
otherwise we ignore the edge. Either way we say the edge is processed.

We divide the analysis in rounds. A round terminates when an edge is probed.
After the end of a round, the number of candidates for the maximum decreases
by one. Therefore after n − 1 rounds the last candidate would be the maximum
element. For r ∈ {1, . . . , n − 1}, let tr denote the random variable which counts
the number of edges processed in the rth round. Let Tr =

∑r
i=1 ti denote the

rank of the edge (in the sorted by costs order) found in the rth round. Therefore,
the expected cost of the performed comparison is E [Tr] /(

(
n
2

)
+ 1).

It remains to show an upper bound on the value of E [Tr] =
∑r

i=1 E [ti]. So far
Tr−1 edges have been processed. The probability that the next edge is between
two candidate elements is p =

(
n−(r−1)

2

)
/

((
n
2

)
− Tr−1

)
≥

(
n−(r−1)

2

)
/
(
n
2

)
. Hence,

for r ∈ {1, . . . , n − 2}, E [tr] ≤ 1/p ≤
(

n
2

)
/
(
n−(r−1)

2

)
, and for r = n − 1, we have

52 S. Angelov, K. Kunal, and A. McGregor

E [Tr] ≤
(
n
2

)
. We conclude that the total expected cost is at most,

n−1∑

r=1

E [Tr]
(
(
n
2

)
+ 1)

≤ 1 +
n−2∑

r=1

r∑

i=1

1
(
n−(i−1)

2

) ≤ 1 +
n−2∑

r=1

2
n − r + 1

= 2(Hn − 1) .

Theorem 2. The expected cost of the cheapest rank k certificate is Hk +
Hn−k+1 − 2.

Proof. Consider vi with i < k. Any certificate must include a comparison with
at least one of vi+1, . . . , vk. The expected cost of the minimum of these k − i
comparisons is 1

k−i+1 . Summing over i, i < k, yields Hk − 1. Similarly, now
consider vi with i > k. Any certificate must include a comparison with at least
one of vk, . . . , vi−1. The expected cost of the minimum of these i−k comparisons
is 1

i−k+1 . Summing over i, n ≥ i > k, yields Hn−k+1 − 1. The theorem follows.

Note that the theorem above also implies a lower bound of Ω(log n) on the
expected cost of the cheapest certificate for the maximum (minimum) element.
To prove a bound on the performance of UniformSelection we need the following
preliminary lemma.

Lemma 1. Let v ∈ V and perform each comparison (not just those involving v)
with probability p . Then, with probability at least 1−1/n4 (assuming p > 1/n3),
for all u such that

| rkV (u) − rkV (v)| ≥ 150 logn (log n + log(1/p))
p

,

the relationship between u and v is certified by the comparisons performed.

Proof. Without loss of generality, rkV (v) ≥ n/2. We will consider elements in
S = {u : rkV (u) < rkV (v)}. The analysis for elements among {u : rkV (u) >
rkV (v)} is identical and the result follows by the union bound. Throughout the
proof we will assume that n is sufficiently large.

Let D be the subset of S such that u ∈ D is comparable to v. We partition S
into sets,

Bi = {u : rkV (v) − wi ≤ rkV (u) < rkV (v) − w(i − 1)} ,

where w = 12 log n
p(1−e−1) . Let Xi = D ∩Bi, that is, the elements from set Bi that are

comparable to v. For the sake of notation, let X0 = {v}. Let Di =
⋃

0≤j≤i−1 Xj .
If we perform a comparison between an element of Di and an element u of Bi

then we certify that u is less than v. The probability that an element of Bi gets
compared to an element of Di is,

1 − (1 − p)Di ≥ 1 − e−pDi ≥ (1 − e−1)max{1, pDi} .

Let (Yi)1≤i be a family of independent random variables distributed as Bin(w, q)
where q = (1 − e−1)max{pDi, 1}. Note that E [Yi] = 12Di log n if pDi ≤ 1.

Sorting and Selection with Random Costs 53

1. For i such that Di < 1/p. Using the Chernoff Bounds,

P [Xi < Di log n] = P

�
Xi <

qw

12

�
≤ P

�
Yi <

E [Y]

12

�
≤ e−6(11/12)2Di log n ≤ n−5 .

In other words, the number of comparable elements increases by at least a
log n factor until Di ≥ 1/p. Hence, with probability at least 1− log(1/p)/n5,
for all i, Di ≥ min{1/p, (logn)i−1}. In particular, Dlog 1/p ≥ 1/p.

2. Assume that i > log(1/p) and therefore Dlog 1/p ≥ 1/p. Using Chernoff
Bounds, we get

P

�
Xi <

1

p

�
≤ P

�
Yi <

1

p

�
≤ P

�
Yi <

E [Yi]

12 log n

�
≤ e−(1− 1

12 log n
)26Di log n ≤ n−5 .

Therefore with probability at least 1− t/n5, Dt ≥ 6p−1 log n where t = 6 log n+
log(1/p). Consider an element u ∈ Bt′ where t′ > t. The probability that u
is not in D is at most (1 − p)6 log n/p ≤ 1/n6. Hence, with probability at least
1 − (1 + t)/n5,

|S \ D| ≤ wt ≤ 150 logn (log n + log(1/p))
p

.

Lemma 2. Consider the algorithm UniformFindRankCertificate called on a
randomly chosen v. With probability at least 1 − n−3 the algorithm returns a
certificate for the rank of v. The expected cost of the comparisons is O(log5 n).

Proof. Let Vi be the set of elements at the start of iteration i. Let p1 = α/n be the
probability that ce ∈ [0, α/n]. For i > 1, let pi = α2i−1/n be the probability that
ce ∈ [α2i−1/n, α2i/n]. First we show that, with probability at least 1− log2(n/α)

n4 ,
for all 1 ≤ i ≤ log2(n/α), |Vi| < n/2i−1. Assume that |Vi| < n/2i−1. Appealing
to Lemma 1, there are less than

300 log |Vi|(log |Vi| + log(1/p))
p

≤ 600 log2 n

α2i−1/n
= |Vi|/2

elements in Vi+1 \ Vi and hence |Vi+1| < n/2i. It remains to show that the cost
per iteration is O(log4 n). This follows since the expected number of comparisons
is O(V 2

i α2i/n) = O(αn/2i) and each comparison costs at most α2i/n.

The following theorem can be proved using standard analysis of the appropriate
recurrence relations and Lemma 2.

Theorem 3. The algorithm UniformSelection can be used to select the kth ele-
ment. The expected cost of the certificate is O(log6 n). The algorithm UniformSort
returns a sorting certificate with expected cost O(n).

Note that we can check if a certificate is a valid one without performing any
additional comparisons. In the case when UniformFindRankCertificate fails, we
can reveal all edges to obtain a certificate without increasing asymptotically the
overall expected cost.

54 S. Angelov, K. Kunal, and A. McGregor

Algorithm UniformFindMax(V)
1. for j = 1 to n − 1
2. do Perform cheapest remaining comparison
3. Remove the smaller element of the performed comparison
4. return remaining element

Algorithm UniformFindRankCertificate(V, v)
1. Let α = 1200 log2 n
2. Perform all comparisons e such that ce ∈ [0, α/n]
3. for u ∈ V
4. do if u is comparable with v
5. then V ← V \ {u}
6. if u < v then V1 ← V1 ∪ {u} else V2 ← V2 ∪ {u}
7. for i = 1 to log2(n/α)
8. do Perform all comparisons e such that ce ∈ [α2i−1/n, α2i/n]
9. Repeat Steps 3-6
10. return V1, V2

Algorithm UniformSelection(V, k)
1. if |V | = 1 then return V
2. Pick random pivot v ∈ V
3. (V1, V2) ←UniformFindRankCertificate(V, v)
4. V ← V \ {v}
5. if |V1| > k then UniformSelection(V1, k) else UniformSelection(V2, k − |V1|)

Algorithm UniformSort(V)
1. Pick random pivot v ∈ V
2. (V1, V2) ←UniformFindRankCertificate(V, v)
3. return (UniformSort(V1), v,UniformSort(V2))

Fig. 1. Algorithms for uniform comparison costs

Theorem 4. The expected cost of the cheapest sorting certificate is (n − 1)/2.

Proof. For each 1 ≤ i ≤ n − 1 there must be a comparison between vi and vi+1.
The expected cost of each is 1/2. The theorem follows by linearity of expectation.

4 Boolean Comparison Costs

In this section we assume that comparisons are for free with probability p and
have cost 1 otherwise. We consider the problems of finding the maximum or
minimum elements, general selection, and sorting. The algorithms for maximum
finding and selection are presented in Fig. 2. For sorting we use results from [2]
and [15] to obtain a bound on the number of comparisons needed to sort the
random partial order defined by the free comparisons.

Theorem 5. The expected cost of BooleanFindMax is 1/p − 1 as n → ∞.

Sorting and Selection with Random Costs 55

Algorithm BooleanFindMax(V)
1. Perform all free comparisons
2. Find the maximum element among the elements that have not lost a compar-

ison in Step 1 using cost 1 comparisons.

Algorithm BooleanSelection(V, k)
1. Perform all free comparisons
2. w ← 3(log n)/p2

3. S ← {v : v wins at least k − 1 − w comparisons and loses at least n − k − w
comparisons}

4. Find the minimum and maximum element of S and determine their exact rank
by comparing them to all elements whose relation to them is unknown.

5. rmin ← rkV (minimum element of S)
6. rmax ← rkV (maximum element of S)
7. T ← {v : rmin ≤ rkV (v) ≤ rmax}
8. if rmin ≤ k and rmax ≥ k
9. then return StandardSelection(T, k − rmin)
10. else return StandardSelection(V, k)

Fig. 2. Algorithms for boolean comparison costs

Proof. Consider the ith largest element. The probability that there is no free
comparison to a larger element is (1 − p)i−1. Hence, after performing all the
free comparisons, the expected number of non-losers, in the limit as n tends to
infinity, is

lim
n→∞

n∑

i=1

(1 − p)i−1 = lim
n→∞

1 − (1 − p)n

p
= 1/p .

Hence, by Proposition 1, the expected number of comparisons of cost 1 that are
necessary is 1/p − 1.

The theorem above leads to an immediate corollary:

Corollary 1. The expected cost of the cheapest certificate for the maximum el-
ement and the element of rank k is Ω(1/p) as n → ∞.

Using Theorem 5, we obtain a sorting algorithm with expected cost of at most
(1/p − 1)(n − 1) by repeating n − 1 times BooleanFindMax . We improve this
result (for sufficiently small p) by observing that the free comparisons define a
random partial order on the n elements, call it Gn,p. In [2], the expected number
of linear extensions of Gn,p was shown to be

p−1
n∏

k=1

1 − (1 − p)k ≤ 1/pn−1 .

A conjecture, proposed by Kislitsyn [16], Fredman [9], and Linial [18], states
that given a partial order P , there is a comparison between two elements such

56 S. Angelov, K. Kunal, and A. McGregor

that the fraction of extensions of P where the first elements precedes the second
one is between 1/3 and 2/3. Ignoring running time, this would imply sorting
with cost log3/2 e(P), where e(P) denotes the number of linear extensions of P .
In [14], a weaker version of the conjecture was shown giving rise to an efficient,
via randomization [8], sorting algorithm with cost log11/8 e(P). Taking a differ-
ent approach, Kahn and Kim [13] described a deterministic polynomial time,
O(log e(P)) cost algorithm to sort any partial order P .

Combining the above results, and using Jensen’s inequality, we obtain a sort-
ing algorithm with expected cost at most,

log11/8 e(Gn,p) ≤ (log11/8 p−1)(n − 1) .

Note that for p < 0.1389, log11/8(1/p) < 1/p − 1. Combining the two sorting
methods, we obtain the following theorem.

Theorem 6. There is a sorting algorithm for the Boolean Comparison Model
with expected cost of min{log11/8 1/p, 1/p − 1} · (n − 1).

The proof of the following theorem about the cheapest sorting certificate is nearly
identical to that of Theorem 4.

Theorem 7. The expected cost of the cheapest sorting certificate is (1−p)(n−1).

We next present our results for selection.

Theorem 8. The algorithm BooleanSelection can be used to select the kth ele-
ment. The expected cost of the algorithm is O(p−2 log n).

Proof. We want to bound the size of set S as defined in the algorithm. Fix an
element vj . For an element vi such that i < j, let l = j − i − 1. Consider the
event that we can infer vi < vj from the free comparisons because there exists an
element vi′ such that vi < vi′ < vk and c(vi,vi′) = c(vi′ ,vj) = 0. The probability
of this event is 1− (1−p2)l and hence with probability at least 1−1/n3 we learn
vi < vj if l ≥ w = 3(log n)/p2. Therefore, with probability at least 1 − 1/n2, vj

wins at least j −1−w comparisons. Similarly with probability at least 1−1/n2,
vj loses at least n − j + w comparisons.

Hence, with probability 1 − 2/n2, every element from the set

S′ = {v : k − w ≤ rkV (v) ≤ k + w} ,

belongs to the set S and in particular the element of rank k also belongs to
S. Note that no element from outside S′ can belong to S and hence |S| ≤ 2w.
By Proposition 1, it takes O(w) comparisons to compute the minimum and
maximum elements in S. There are at most 2w elements incomparable to the
minimum (maximum) element with probability at least 1 − 2/n2 and hence the
expected cost for determining the exact rank of minimum (maximum) element
from S is bounded by

2w(1 − 2/n2) + (n − 1)2/n2 = O(w)

Sorting and Selection with Random Costs 57

Algorithm PosetFindMaximal
1. Pick v ∈ V
2. while |V | > 0
3. do Perform cost 1 comparisons with v until it loses (or is certified maximal)
4. if v wins all of its comparisons then return v maximal
5. else V ← V \ {v} and set v to the winner of the last comparison

Algorithm PosetFindAllMaximal
1. for each v ∈ V
2. do Perform, in a random order, cost 1 comparisons with v
3. until v loses or all such comparisons are performed
4. return All elements that did not lose comparison

Fig. 3. Algorithms for 1/∞ comparison costs

in expectation. Since the size of T is also O(w), step 5 takes O(w) time if vk ∈ T ,
which happens with probability at least 1 − 2/n2, and O(n) otherwise. Similar
to the previous step, the expected cost is O(w).

Note that with a slight alteration to the BooleanSelection algorithm it is
possible to improve upon Theorem 8 if p is much smaller than 1/ logn. Namely,
setting w = 150p−1 log n log(n/p), and appealing to Lemma 1 in the analysis,
gives an expected cost of O

(
p−1 log n log(n/p)

)
.

5 Unit and Infinite Comparison Costs

In this section we consider the setting where only a subset of the comparisons
is allowed. More specifically, each comparison is allowed with probability p (has
cost 1) and is not allowed otherwise (has infinite cost). Here, the underlying total
order might not be possible to infer even if all comparisons are performed. This is
because, for example, adjacent elements can be compared only with probability
p. Hence, even the maximum element might not be possible to certify exactly.
We therefore relax our goals to finding maximal elements and inferring the poset
defined by the edges of cost 1. In what follows, we present algorithms for finding
a maximal element as well as all maximal elements (see Fig. 3). We consider an
element maximal if it wins (directly or indirectly) all allowed comparisons to its
neighbors.

Theorem 9. The expected cost of the cheapest certificate for all maximal ele-
ments is Ω

(
n(1 − (1 − p)n−1)

)
.

Proof. In this setting, each element that has no edges of cost 1 incident to it is a
maximal element. In expectation, there are n(1 − p)n−1 such elements. For each
of the remaining elements we need to do at least one comparison. Note that each
comparison satisfies this requirement for two elements. Therefore, we need to do
at least 1

2 (n − n(1 − p)n−1) comparisons in expectation.

58 S. Angelov, K. Kunal, and A. McGregor

Theorem 10. The expected cost of PosetFindAllMaximal is O(n log n). The
expected cost of PosetFindMaximal is at most n − 1.

Proof. We first analyze PosetFindAllMaximal . Fix an element v. Let i = rkV (v).
Consider the following equivalent random process that assigns costs (1 or ∞) to
edges in the following way:

1. Pick t from a random variable T distributed as Bin(n − 1, p).
2. Repeat t times: Assign cost 1 to a random edge adjacent to v whose cost has

not yet been determined.
3. Declare the cost of all other edges adjacent to v to be ∞.
4. For each remaining graph edge assign cost 1 with probability p and ∞

otherwise.

We may assume that the algorithm probes the cost 1 edges in this order until
v loses a comparison or until all cost 1 edges are revealed. If v has not lost
a comparison, v loses the next performed comparison with probability at least
(i − 1)/(n − 1). Hence, the expected number of comparisons involving v is

∑

t

P [T = t]
t∑

j=1

i − 1
n − 1

(

1 − i − 1
n − 1

)j−1

j ≤
∑

t

P [T = t]
n − 1
i − 1

≤ n − 1
i − 1

.

Therefore, by linearity of expectation the total number of comparisons we expect
to do is at most (n − 1)Hn−1 + (n − 1).

The second part of the theorem follows easily from Proposition 1. The algo-
rithm PosetFindMaximal is given for completeness.

Recently, Daskalakis et al. [7] gave algorithms with O(wn) cost for finding
all maximal elements in a poset where w is the width or maximum size of in-
comparable elements in the poset. Note that for p < 1/2, E [w] = Ω(log n) but
for higher values of p, their algorithm yields a cheaper solution. However, their
results also apply in the worst case, not just the expected case.

6 Conclusions and Open Questions

We have presented a range of algorithms for finding cheap sorting/selection
certificates in three different stochastic priced-information models. Most of our
algorithms are optimal up to constants and the remaining algorithms are optimal
up to poly-logarithmic terms (for constant values of the parameter p). Beyond
improving the existing algorithms there are numerous ways to extend this work.
In particular,

– What about the price model in which the comparison costs are chosen in an
adversarial manner but the order of the elements is randomized?

– In this work we have compared expected cost of minimum certificates to
expected cost of the algorithms presented. Is it possible to design algorithm
which are optimal in the sense that the expected cost of the certificate found
is minimal over all algorithms? Perhaps this would admit an information
theoretic approach.

Sorting and Selection with Random Costs 59

Finally, this work was partially motivated by the game theoretic framework
described in Section 1.1. A full treatment of this problem was beyond the scope of
the present work. However, the problem seems natural and deserving of further
investigation.

References

1. Alon, N., Blum, M., Fiat, A., Kannan, S., Naor, M., Ostrovsky, R.: Matching nuts
and bolts. In: SODA, pp. 690–696 (1994)

2. Alon, N., Bollobás, B., Brightwell, G., Janson, S.: Linear extensions of a random
partial order. Annals of Applied Probability 4, 108–123 (1994)

3. Brightwell, G.: Models of random partial orders, pp. 53–83 (1993)
4. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.M., Raghavan, P., Sahai,

A.: Query strategies for priced information. J. Comput. Syst. Sci. 64(4), 785–819
(2002)

5. Cicalese, F., Laber, E.S.: A new strategy for querying priced information. In:
Gabow, H.N., Fagin, R. (eds.) STOC, pp. 674–683. ACM, New York (2005)

6. Cicalese, F., Laber, E.S.: An optimal algorithm for querying priced information:
Monotone boolean functions and game trees. In: Brodal, G.S., Leonardi, S. (eds.)
ESA 2005. LNCS, vol. 3669, pp. 664–676. Springer, Heidelberg (2005)

7. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and
Selection in Posets (2007), http://arxiv.org/abs/0707.1532

8. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for
approximating the volume of convex bodies. In: STOC, pp. 375–381. ACM, New
York (1989)

9. Fredman, M.L.: How good is the information theory bound in sorting? Theor.
Comput. Sci. 1(4), 355–361 (1976)

10. Frieze, A.M.: Value of a random minimum spanning tree problem. J. Algo-
rithms 10(1), 47–56 (1985)

11. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: FOCS, pp.
416–425 (2001)

12. Gupta, A., Kumar, A.: Where’s the winner? Max-finding and sorting with metric
costs. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005
and RANDOM 2005. LNCS, vol. 3624, pp. 74–85. Springer, Heidelberg (2005)

13. Kahn, J., Kim, J.H.: Entropy and sorting. J. Comput. Syst. Sci. 51(3), 390–399
(1995)

14. Kahn, J., Saks, M.: Balancing poset extensions. Order 1, 113–126 (1984)
15. Kannan, S., Khanna, S.: Selection with monotone comparison cost. In: SODA, pp.

10–17 (2003)
16. Kislitsyn, S.S.: A finite partially ordered set and its corresponding set of permuta-

tions. Mathematical Notes 4, 798–801 (1968)
17. Komlós, J., Ma, Y., Szemerédi, E.: Matching nuts and bolts in O(n log n) time.

SIAM J. Discrete Math. 11(3), 347–372 (1998)
18. Linial, N.: The information-theoretic bound is good for merging. SIAM J. Com-

put. 13(4), 795–801 (1984)

http://arxiv.org/abs/0707.1532

Guided Search and a Faster Deterministic

Algorithm for 3-SAT

Dominik Scheder�

Theoretical Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland

dscheder@inf.ethz.ch

Abstract. Most deterministic algorithms for NP-hard problems are
splitting algorithms: They split a problem instance into several smaller
ones, which they solve recursively. Often, the algorithm has a choice be-
tween several splittings. For 3-SAT, we show that choosing wisely which
splitting to apply, one can avoid encountering too many worst-case in-
stances. This improves the currently best known deterministic worst case
running time for 3-SAT from O(1.473n) to O(1.465n), n being the num-
ber of variables in the input formula.

1 Introduction

Most deterministic algorithms for NP-hard problems like k-SAT, k-colorability
and Maximum Independent Set use the idea of splitting: A problem instance I
is replaced by several smaller instances I1, . . . , I�, which are solved recursively.
Of course, we want � to be small and the size of the instances Ii to be much
smaller than the size of I—whatever size means in this context. Most algorithms
use several branching rules, i.e. rules for replacing I by I1, . . . , I�. Inevitably, not
every rule will apply to every instance, and some rules will amount to higher
running time and some to lower. Often, a single rule is responsible for the worst-
case behavior of the algorithm. Imagine you have a “meta-rule” that tells you
what branching rule to apply in order to avoid encountering too many worst-case
instances. This will of course speed up your algorithm. For our 3-SAT-algorithm,
we find such a meta-rule. The general idea is to run a preliminary search on a
given instance I that simply aborts when a worst case instance is encountered.
We pick one such worst-case instance I ′ and again start the preliminary search on
I ′. Repeating, we will find an instance I∗ and a search tree for I∗ that contains no
worst-case instances. The trick is that one can show, for our particular algorithm,
that this very search tree is also a search tree for I. We use the instance I∗ as a
search guide for I, always applying the branching rules that would have applied
in the search tree for I∗. The algorithm to which we apply this idea is the
deterministic local search algorithm for 3-SAT by Dantsin et al. [3], of which
we improve the running time from the previously best known O(1.473n) [2] to
O(1.465n) (here, n is the number of variables). The idea is in fact not limited
to 3-SAT, it can be applied for general k-SAT, but the improvement over the
original algorithm by [3] becomes smaller and smaller.
� Research is supported by the SNF Grant 200021-118001/1.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 60–71, 2008.
� Springer-Verlag Berlin Heidelberg 2008

Guided Search and a Faster Deterministic Algorithm for 3-SAT 61

Previous Results

In recent years, a lot of research has been done in designing “modestly exponen-
tial” algorithms deciding 3-SAT, i.e. running in time O(an), for a considerably
smaller than 2. The currently fastest randomized algorithm, given by Daniel
Rolf [7], achieves a running time of O(1.32216n).

The running times of deterministic algorithms for 3-SAT are much higher:
Dantsin et al. [3] gave a deterministic algorithm based on local search, with a
running time of O(1.481n). Later, Brueggemann and Kern [2] further improved
this algorithm and obtained a running time of O(1.473n), which was the previ-
ously fastest known deterministic algorithm.

We apply the idea of guided search to the splitting algorithm in Dantsin
et al. [3] and Brueggemann and Kern [2], thus avoiding encountering too many
worst-case formulas and improving the running time of deterministic local search
algorithms for 3-SAT from O(1.473n) to O(1.465n).

Notation

A CNF formula, or simply a CNF, is a conjunction (and) of clauses, and a
clause is a disjunction (or) of literals. A literal is either a boolean variable x or
its negation x̄. We can assume that no clause contains both a variable and its
negation. A k-CNF is a CNF in which every clause contains at most k literals,
and k-SAT is the problem whether a given k-CNF is satisfiable. If γ is a partial
truth assignment, then we denote by F [γ] the k-CNF obtained by setting the
variables of F as described by γ. If γ does not set variable x, we may write
[γ, x �→ 1] (or [γ, x �→ 0]) to denote the partial assignment that behaves like γ,
and in addition sets x to 1 (or to 0).

2 The Local Search Algorithm k-SAT

In [3], Dantsin et al. give a surprising approach to deciding k-SAT. Let F be
a k-CNF and n be the number of variables in F . Let {0, 1}n be the set of
all possible truth assignments to these variables. We search for a satisfying
assignment not in the whole cube {0, 1}n, but locally in some Hamming ball
Br(α) := {β ∈ {0, 1}n : d(α, β) ≤ r} of radius r centered at some α ∈ {0, 1}n.
We say F is Br(α)-satisfiable if Br(α) contains an assignment satisfying F . We
will see below how this can be decided for k-CNFs in time O(krpoly(n)). For
certain values of r, kr is much smaller than the volume of Br(α). By choos-
ing N(n, r) many Hamming balls that together cover {0, 1}n, we can decide
satisfiability of F in time O(N(n, r)krpoly(n)). There is of course a trade-off
between the radius r of the balls and the number of balls needed to cover
{0, 1}n. Dantsin et al. [3] show how to choose r optimally such that if Br(α)-
satisfiability can be decided in O(arpoly(n)), satisfiability of F can be decided

in O
((

2 − 2
1+a

)n

poly(n)
)
.

62 D. Scheder

Note that by the symmetry of {0, 1}n, Br(α)-satisfiability is basically the
same problem for each α ∈ {0, 1}n. Hence we will assume for the rest of the
paper that α = (1, . . . , 1) and write Br for Br

(
(1, . . . , 1)

)
. Algorithm 1, given in

Dantsin et al. [3], decides Br-satisfiability in O(krpoly(n)) steps.

Algorithm 1. searchball(Formula F , depth r)
1: if F contains no negative clause then
2: return true
3: else if � ∈ F or r ≤ 0 then
4: return false
5: else
6: pick some negative clause {x̄1, . . . , x̄�} ∈ F
7: return

��
i=1 searchball(F [xi �→0], r − 1)

8: end if

Here, a negative clause is a clause containing only negative literals (and thus
is not satisfied by α = (1, . . . , 1)). Let us see why this algorithm works. The first
four lines should be clear: If F contains no negative clause, α satisfies F , and
surely α ∈ Br. Otherwise, if � ∈ F , then F is clearly unsatisfiable. Also, if α
does not satisfy F , and r = 0, then F is clearly not Br-satisfiable.

So much for the base cases. The interesting step is of course the recursion.
Consider the negative clause {x̄1, . . . , x̄�}. If there is some satisfying assignment
α∗ ∈ Br, it must set some xi to 0. Let α∗

i be the assignment setting xi to 1, but
else agreeing with α∗. Since d(α∗, α) ≤ r, it holds that d(α∗

i , α) ≤ r − 1. Note
that α∗

i satisfies F [xi �→0]. Therefore, F ′ is Br−1-satisfiable, and the recursive
call searchball(F [xi �→0], r − 1) will return true. Conversely, if some F [xi �→0] is
Br−1-satisfiable, it is easy to see that F is Br-satisfiable.

3 Branching Rules

We say in lines 6 and 7 searchball performs a branching. To be more precise,
define branchings as follows:

Definition 3.1. For a partial assignment γ, let |γ| denote the number of vari-
ables γ sets to 0. A branching for F is a set Γ = {γ1, . . . , γ�} of partial assign-
ments with |γi| ≥ 1 for all 1 ≤ i ≤ �.

Note that we only count variables γ sets to 0. This has two reasons. First, almost
no assignment we encounter sets any variable to 1. We will see an exception at the
end of the paper, but this will not cause any trouble. Second, we want to measure
how far a partial assignment takes us from α = (1, . . . , 1), and setting variables
to 1 obviously does not increase the distance from α. The intuition behind the
definition of branchings is that searchball first computes some branching Γ for
F and then recurses on each of the formulas F [γ] for each γ ∈ Γ . The following
definition and observation ensure that this is legal, i.e. will give a correct result.

Guided Search and a Faster Deterministic Algorithm for 3-SAT 63

Definition 3.2. We define valid branchings inductively. Let F be a CNF. For
every negative clause {x̄1, . . . , x̄�} ∈ F the branching

{[x1 �→ 0], . . . , [x� �→ 0]}

is valid for F . If some branching Γ is valid for F , and there is some γ ∈ Γ and
a branching Γ ′ = {β1, . . . , β�} that is valid for F [γ], then

Γ \ γ ∪ {γβ1, . . . , γβ�}

is valid for F .

Here, γβi denotes the combination of both partial assignments. Note that this is
well defined, as these two partial assignments refer to disjoint sets of variables.
The following observation gives meaning to the previous definition.

Observation. If Γ is a branching valid for F , then F is Br-satisfiable if and
only if there exists some γ ∈ Γ such that F [γ] is Br−|γ|-satisfiable.

One might think that these definitions are overly formal, since the notion of
branchings in the context of recursive algorithms is a familiar one. However, as
our algorithm becomes more involved, it will become clear that it pays to have
things defined formally. Using the definition of branchings, we can replace lines
6 and 7 by

6: apply some rule to obtain a valid branching {γ1, . . . , γ�} for F

7: return
∨�

i=1 searchball(F [γi], r − |γi|)

It is clear that for 3-CNFs, we always find a valid branching containing at most
3 partial assignments, thus searchball has a running time of O (3rpoly(n)). Our
goal is to decrease the basis of the exponential to some a < 3. To achieve this,
we first give four relatively simple branching rules for 3-CNFs.

3.1 Simple Branching Rules

Let Neg(F) denote the set of all negative clauses in F , i.e. clauses without posi-
tive literals. Accordingly, the empty clause � is a negative clause, too. If Neg(F)
consists of pairwise disjoint clauses, we say F is Neg-disjoint. From now on, we
assume that all negative 3-clauses in F are pairwise disjoint, i.e. that F is Neg-
disjoint or contains some negative clause of size at most two. We will show at the
end of the paper how to deal with intersecting negative 3-clauses. Let us state
four simple rules the algorithm tries to apply. See Figure 1 for an illustration.

Rule 1. If there is some {x̄1, . . . , x̄�} ∈ Neg(F) with � ≤ 2, then use the branch-
ing {[x1 �→ 0], . . . , [x� �→ 0]}. This includes the case � ∈ F .

64 D. Scheder

Note that if Rule 1 does not apply, then by assumption F is Neg-disjoint.
Clearly, any satisfying assignment needs to set at least |Neg(F)| variables to 0.
Hence if |Neg(F)| > r at this point, the algorithm immediately returns “not
Br-satisfiable”. We assume from now on that |Neg(F)| ≤ r.

Rule 2. Suppose F contains two clauses of the form {u} and {ū, v̄, w̄}. Use the
branching {[v �→ 0], [w �→ 0]}. Note that the partial assignment [u �→ 0] need not
be part of the branching, because F [u�→0] contains the empty clause.

Rule 3. Suppose F contains clauses of the form {u, ā} and {ū, v̄, w̄}. Use the
branching {[u �→ 0, a �→ 0], [v �→ 0], [w �→ 0]}.

Rule 4. Suppose F contains clauses of the form {u, x}, {x̄, ȳ, z̄} and {ū, v̄, w̄},
the latter two being distinct. Use the branching {[u �→ 0, y �→ 0], [u �→ 0, z �→
0], [v �→ 0], [w �→ 0]}. Similarly to the case for Rule 2, the partial assignment
[u �→ 0, x �→ 0] is not part of the branching, since � ∈ F [u�→0,x �→0].

{ū, v̄, w̄}{ū, v̄, w̄} {ū, v̄, w̄}

{x̄, ȳ, z̄}

�

�

v = 0v = 0 v = 0u = 0 u = 0u = 0 w = 0w = 0 w = 0

x = 0 y = 0 z = 0a = 0

{ā}

Fig. 1. Visualization of Rules 2, 3 and 4, respectively

It should be noted that there is nothing new about these branching rules. They
all appear in [2], and some appear already in [3]. Each formula occurring in the
computation of searchball(F ,r) is of the form F [γ] for some partial assignment
γ. In this sense, branching rules extend γ: For example, Rule 3 extends it to
[γ, u �→ 0, a �→ 0], [γ, v �→ 0] and [γ, w �→ 0] in the recursive calls.

4 Partial Exact Assignments and Guided Search

If some of Rules 1–4 applies to F , then searchball applies a branching Γ and
calls itself recursively on F [γ] for each γ ∈ Γ . If none of these rules applies to
F , we call F reduced. This is where the difficult part begins. The approach of
[3] and [2] is (briefly) to define additional rules and then prove a non-trivial
theorem that if these rules do not apply, there is some other way to decide
quickly whether F is Br-satisfiable. Unfortunately, the additional rule causes a
higher running time. Our approach is not completely different, however, we do
not introduce any additional rules. Observe that Rules 1–4 might give several

Guided Search and a Faster Deterministic Algorithm for 3-SAT 65

valid branchings for the same formula. It turns out that, depending on which
branching we decide to apply, we may encounter reduced formulas very often
or very rarely. We show that we can find a “guide” formula that tells us which
branchings to apply in order to avoid encountering too many reduced formulas.
Central to our algorithm will be the following special type of partial assignments:

Definition 4.1. Let F be a Neg-disjoint CNF. A partial assignment γ to the
variables of F is called a partial exact assignment w.r.t. F , short pea, if

– it sets no variable to 1, and
– in each clause C ∈ Neg(F), it satisfies at most one literal (i.e. it sets the

corresponding variable to 0), and
– it does not set further variables.

For example, if F = {{ū, v̄}, {x̄, ȳ}, {x, ā}}, then γ = [u �→ 0, y �→ 0] is a pea
for F , but [u �→ 0, v �→ 0] and [u �→ 0, a �→ 0] are not. Please note that though
defined in more general terms, we will use the term pea w.r.t. F only if F is
a reduced 3-CNFs. A crucial fact in our algorithm will be that Rules 2 and 4
behave “nicely” with respect to peas. This means, if γ is a pea w.r.t. some F ,
and Rule 2 or Rule 4 applies to F [γ], then the extensions of γ produced by the
branching will be peas w.r.t. F , as well. This is because all variables set to 0
in Rule 2 and 4 occur in a 3-clause of F [γ]. Since applying γ does not create
new 3-clauses, these must already have been in F . However, Rules 1 and 3 can
produce non-peas, as they set variables to 0 which do not necessarily occur in a
3-clause.

If we encounter a reduced formula F , we cannot apply any of Rules 1–4 and
thus have to pick some {x̄1, x̄2, x̄3} ∈ Neg(F) and recurse on the three formulas
F [xi �→0], i = 1, 2, 3. This branching rule, if applied over and over again, would
amount to a running time of O (3rpoly(n)). Having applied it once, we would
like to make sure that we will not encounter any further reduced formulas in the
subsequent recursive calls. This is too much to ask for, but what we definitely do
not want is to encounter a reduced formula F [γ] where γ is a pea for F . Think of
peas as being especially benign and well-behaved partial assignments. We surely
do not want these nice peas to bring us into trouble.

Definition 4.2. We call a computation of searchball(F , r) good if for any
F [γ] occurring in the computation with γ being a pea w.r.t. F and |γ| ≥ 1, the
formula F [γ] is non-reduced.

We will give a procedure that runs in reasonable time, and for every reduced F ,
finds either a satisfying assignment in Br or a good computation. The benefit of
a good computation is clear: As long as our branchings produce peas w.r.t. F ,
we will not encounter reduced formulas. Recall that Rules 2 and 4 never extend a
pea γ to a non-pea. Rules 1 and 3 might, but these rules are so efficient that this
compensates for the possibility of encountering a reduced formula afterwards.

We will compute a “guide” formula G for which we find a good computation,
and then show that the same computation can be performed on F . Let us be

66 D. Scheder

more precise: We pick a negative clause {x̄1, x̄2, x̄3} in Neg(F), called the starting
clause of F . For each i = 1, 2, 3, we try to extend the partial assignment [xi �→ 0]
to a pea γ w.r.t. F such that F [γ] is reduced. We do this by recursively applying
Rules 1–4, but aborting the recursion on formulas F [γ] if γ is not a pea w.r.t. F ,
or if γ is a pea and F [γ] is reduced. This procedure searchball-prelim is given
in detail in Algorithm 2. The number of leaves visited by searchball-prelim
is ≤ fr−1, where

fi :=
{

2fi−1 + 2fi−2 if i ≥ 1,
1 if i ≤ 0 .

(1)

Algorithm 2. searchball-prelim(Formula F , partial assignment γ, radius r)
1: if γ is not a pea w.r.t. F then
2: return undefined
3: else if F [γ] is reduced then
4: return γ
5: else if r ≤ 0 then
6: return undefined
7: else
8: Apply one of Rules 1–4 and obtain a branching {γ1, . . . , γ�}
9: for 1 ≤ i ≤ � do

10: γ′ := searchball-prelim(F , γγi, r − |γi|)
11: if γ′ �= undefined then
12: return γ′

13: end if
14: end for
15: return undefined
16: end if

This can easily be seen by induction on r: If Rule 4 is applied, it causes two
calls with r − 1 and two with r − 2. Rules 1, 2 and 3 are clearly even better.
So we call searchball-prelim(F , [xi �→ 0], r − 1) for each i = 1, 2, 3. Suppose
each of these three calls returns undefined. Then searchball-prelim did not
encounter any reduced F [γ] for γ being a pea, i.e. this was a good computation.
Otherwise, let γ1 be the returned pea and consider F2 := F [γ1]. As for F , pick a
negative clause {ȳ1, ȳ2, ȳ3} ∈ Neg(F2) as starting clause of F2 (if there is one).
Call searchball-prelim(F2, [yi �→ 0], r−1) for each i = 1, 2, 3. Either every call
returns undefined, or some γ2 is returned. In the latter case, define F3 := F

[γ2]
2

and we do for F3 what we did for F2. This creates a sequence F = F1, F2, . . .

where Fi+1 = F
[γi]
i , γi is a pea w.r.t. Fi returned by searchball-prelim, and

every Fi is reduced. Since each Fi+1 contains strictly fewer variables than Fi,
this process terminates in some Fm =: G. Furthermore, it is not difficult to see
that γ1γ2 . . . γm−1 is a pea w.r.t. F , and thus |γ1γ2 . . . γm−1| ≤ r: Recall that F
is Neg-disjoint, and we assume |Neg(F)| ≤ r, hence every pea has size ≤ r. See
Figure 2.

Guided Search and a Faster Deterministic Algorithm for 3-SAT 67

F

F2

Fm

γ1

γ2

Fig. 2. Constructing a sequence F1, F2, . . . , Fm of reduced formulas. The process
terminates in Fm. Either Neg(Fm) = ∅, or for every γ in the tree of Fm that is a pea

w.r.t. Fm, F
[γ]
m is non-reduced.

There are two cases: First, the process above could terminate with Neg(G) =
∅. Then setting all variables in G to 1 satisfies it. Since G = F [γ1γ2...γm−1] and
|γ1γ2 . . . γm−1| ≤ r, F is Br-satisfiable.

Second, the process could terminate with G for which searchball-prelim
returned undefined. Let us contemplate for a moment what this means. When
reaching G in the process described above, we pick a starting clause {z̄1, z̄2, z̄3} ∈
Neg(G) and call searchball-prelim(G, [zi �→ 0], r − 1) for i = 1, 2, 3, and
each call returns undefined. This means that for any pea γ that occurs in
the computation of searchball-prelim, G[γ] is non-reduced. Therefore, one
of Rules 1–4 applies to it, giving a branching Γ . We will show that Γ is valid
for F [γ], as well, i.e. we can perform the same computation on F instead of G,
which will be a good computation of searchball on F . We say we use G as a
search guide for searchball(F , r) telling us which branching to apply. Here it is
important that the branching in Line 8 of searchball-prelim is chosen among
all possible branchings by some deterministic rule, such that when performing
the same computation for F , we will get exactly the same branching again. This
will be a good computation, and we will not encounter reduced formulas F [γ] as
long as γ is a pea w.r.t. G. We need the following technical lemma to show that
any branching which is valid for G[γ] is also valid for F [γ], if γ is a pea w.r.t. G.

Lemma 4.3. Let F and G be reduced 3-CNFs. Let F3, G3 denote the set of all
3-clauses of F and G, respectively. If G3 ⊆ F3, and γ is a pea w.r.t. G, then
Neg(G[γ]) ⊆ Neg(F [γ]).

Proof. Consider any C ∈ Neg(G[γ]). We will show that C ∈ Neg(F [γ]). There
is some clause D ∈ G with D[γ] = C. If |D| = 3, then by assumption D ∈ F
and C = D[γ] ∈ F [γ], and we are done. Otherwise, |D| ≤ 2, and thus D is not a
negative clause, because G is reduced. Thus, D is either of the form {u}, {u, ā}
or {u, x}. If D = {u} or {u, ā}, then γ(u) = 0, since D[γ] is a negative clause.

68 D. Scheder

Since γ is a pea w.r.t. G, there is a clause {ū, v̄, w̄} in G. Hence Rule 2 or 3 ap-
plies to G, contradicting the assumption that G is reduced. If D = {u, x}, then
C = ∅, and γ(u) = γ(x) = 0. Therefore G contains distinct clauses {ū, v̄, w̄}
and {x̄, ȳ, z̄}, and Rule 4 applies. This is again a contradiction. It follows that
|D| = 3 and C ∈ F [γ], thus Neg(G[γ]) ⊆ Neg(F [γ]). �

Lemma 4.4. Let F and G be reduced 3-CNFs and suppose that G3 ⊆ F3. If γ
is a pea w.r.t. G and one of Rules 1–4 applies to G[γ] yielding a branching Γ ,
then Γ is valid for F [γ], as well.

Proof. Let γ be a pea w.r.t. G. The idea of the proof is the same for each of
the four rules, but for the sake of completeness, we will show all four cases.

Case 1. If Rule 1 applies to G[γ], then G[γ] contains a clause C = {x̄1, . . . , x̄�}
with � ≤ 2. Let {[x1 �→ 0], . . . , [x� �→ 0]}, � ≤ 2 be the branching. By Lemma 4.3,
C ∈ F [γ], thus the branching is valid for F [γ].

Case 2. If Rule 2 applies, G[γ] contains clauses C = {ū, v̄, w̄} and D = {u}. By
Lemma 4.3, C ∈ F [γ]. Note that � = D[u�→0] ∈ G[γ,u�→0]. Since [γ, u �→ 0] is
a pea w.r.t. G, too, and we consider the empty clause to be a negative clause,
Lemma 4.3 applies again, thus � ∈ F [γ,u�→0], and the branching {[v �→ 0, w �→ 0]}
is valid for F [γ].

Case 3. If Rule 3 applies, there are clauses {u, ā} and {ū, v̄, w̄} in G[γ]. By
Lemma 4.3, {ū, v̄, w̄} ∈ F [γ], as well. Hence the branching {[u �→ 0], [v �→
0], [w �→ 0]} is valid for both G[γ] and F [γ]. Since [γ, u = 0] is a pea w.r.t.
G, Lemma 4.3 applies and {ā} ∈ Neg(F [γ,u�→0]). Therefore, the branching {[u �→
0, a �→ 0], [v �→ 0], [w �→ 0]} is valid for F [γ].

Case 4. If Rule 4 applies, G[γ] contains clauses of the form {u, x}, {x̄, ȳ, z̄} and
{ū, v̄, w̄}. By Lemma 4.3, the latter two are in F [γ], as well. When applying Rule
4, we do not recurse on G[γ,u�→0,x �→0], because in this formula, {u, x} has become
an empty clause. Note that according to our definition, the empty clause is a
negative clause, and since [γ, u �→ 0, x �→ 0] is a pea w.r.t. G, Lemma 4.3 im-
plies that F [γ,u�→0,x �→0] contains the empty clause, too. Therefore the branching
{[u �→ 0, y �→ 0], [u �→ 0, z �→ 0], [v �→ 0], [w �→ 0]} is valid for F [γ]. �

Let us summarize our algorithm. If F is not reduced, the algorithm applies one
of Rules 1–4. Otherwise, it computes the search guide G = F [γ1γ2...γm−1]. Let
{z̄1, z̄2, z̄3} be the starting clause of G. We call searchball(F [zi�→0],
r − 1) for i = 1, 2, 3. As each partial assignment [zi �→ 0] is a pea w.r.t. G,
and searchball-prelim(G, [zi �→ 0], r − 1) returned undefined, G[zi �→0] is not
reduced, and hence one of Rules 1–4 applies to it, yielding a branching Γ . By
Lemma 4.4, this branching is valid for F [zi �→0], as well, hence searchball applies
this very branching in the recursive call searchball(F [zi�→0], r − 1). The same
argument holds for every subsequent recursive call searchball(F [γ], r′), as long

Guided Search and a Faster Deterministic Algorithm for 3-SAT 69

as γ is a pea w.r.t. G. If searchball is called with some F [γ] and γ is not a pea
w.r.t. G, we have to discard our search guide. In this case, it may happen that
F [γ] is reduced again, and we would have to run searchball-prelim on F [γ],
to find a new search guide.

We will now analyze the running time. It turns out that Rule 4 is the “worst
case rule” that dominates the running time of the algorithm. However, we have
to be careful in our calculations because we do a lot of additional work in
searchball-prelim. We have to make sure that the running time is still domi-
nated by fr, defined in (1).

Theorem 4.5. If F contains no intersecting negative 3-clauses, the number of
leaves visited by searchball(F , r) is ≤ 3(r + 1)2fr−1.

Proof. We prove a stronger statement. We claim in addition that if F is reduced
and G is used as a search guide for searchball, and γ is a pea w.r.t. G, then
searchball(F [γ], r) visits ≤ (r + 1)2fr leaves.

We use induction on r. For r = 0, the statement is trivial. If F is reduced,
we compute a search guide formula G. Doing this, we call searchball-prelim
≤ 3r times, each time creating ≤ fr−1 leaves. Then we pick a clause {ȳ1, ȳ2, ȳ3} ∈
Neg(G) and call searchball(F [yi�→0], r − 1) for i = 1, 2, 3. Since each [yi �→ G]
is a pea w.r.t. G, by induction each call causes ≤ r2fr−1 leaves. Together, this
amounts to ≤ 3(r + 1)2fr−1 calls.

If F is not reduced and we are not using a search guide, then one of Rules
1–4 applies, and it is straightforward to show that the number of leaves is ≤
3(r + 1)2fr−1.

The most interesting case is when searchball is called for F [γ], using G as
a search guide, and γ is a pea w.r.t. G. If Rule 4 applies, we pick clauses {u, x},
{x̄, ȳ, z̄} and {ū, v̄, w̄} ∈ G[γ] and use the branching {[u �→ 0, y �→ 0], [u �→ 0, z �→
0], [v �→ 0], [w �→ 0]}. Recall that all four extended assignments are peas w.r.t.
G, hence the recursive calls cause ≤ 2r2fr−1 +2(r− 1)2fr−2 ≤ (r +1)2fr leaves.
For Rule 2, the argument is exactly the same. This is really the crucial point in
this algorithm: Of all four rules, Rule 4 yields the worst running time. However,
using our search guide, we can be sure not to encounter a reduced formula after
applying Rule 4.

If Rule 3 applies, we pick {u, ā}, {ū, v̄, w̄} ∈ G[γ] and use the branching {[u �→
0, a �→ 0], [v �→ 0], [w �→ 0]}. Note that γ[v �→ 0] and γ[w �→ 0] are peas w.r.t.
G, hence these calls cause ≤ 2r2fr−1 leaves. However, γ[u �→ 0, a �→ 0] is per-
haps not a pea w.r.t. G, hence F [u�→0,a�→0] might be reduced, and this call causes
≤ 3(r−1)2fr−3 leaves. Altogether, this is surely ≤ 2(r+1)2fr−1 +3(r+1)2ff−3,
which is ≤ (r + 1)2fr. If Rule 1 applies, we cause ≤ 2 × 3r2fr−2 ≤ 3(r + 1)2fr−1

leaves. This completes the proof. �

To summarize, computing and using a search guide guarantees that reduced
formulas might be encountered once, but in subsequent calls, they will be en-
countered only after Rule 1 or Rule 3 has been applied. These rules are so effi-
cient that they compensate for the possibility of encountering a reduced formula

70 D. Scheder

afterwards. To complete our algorithm, we have to show finally what to do when
F is not Neg-disjoint. We basically do the same as Brueggemann and Kern [2].

Theorem 4.6. Let F be a 3-CNF. The number of leaves visited by searchball(F ,
r) is ≤ 3(r + 1)2fr−1.

Proof. If F contains a negative clause of size ≤ 2, we obtain by induction that
searchball(F , r) causes ≤ 2 × 3r2fr−2 ≤ 3(r + 1)2fr−1 leaves. Otherwise, all
negative clauses are of size three. There are three cases:

First, there could be clauses {ū, v̄, w̄}, {ū, v̄, z̄} intersecting in exactly two
literals. We use the branching {[u �→ 0], [u �→ 1, v �→ 0], [u �→ 1, v �→ 1, w �→
0, z �→ 0]}. Though not valid according to our definition, it still holds that F is
Br-satisfiable if and only if F [γ] is Br−|γ|-satisfiable, for some γ in the branching.
The claimed time bound follows after a short computation.

Second, if F contains two 3-clauses {ū, v̄, w̄}, {ū, ȳ, z̄} intersecting in exactly
one literal, use the branching {[u �→ 0], [u �→ 1, v �→ 0, y �→ 0], [u �→ 1, v �→ 0, z �→
0], [u �→ 1, w �→ 0, y �→ 0], [u �→ 1, w �→ 0, z �→ 0]}. Again, a short calculation
shows that this causes ≤ 3(r + 1)2fr−1 leaves.

Third, it could be that F does not contain intersecting negative clauses. Then
Theorem 4.5 applies. This completes the proof. �

It is standard to show that fr ∈ O(ar), where a ≈ 2.74 is the largest root of x2 −
2x−2. Therefore, Br-satisfiability can be decided in time O(arpoly(n)), and thus,
by the results of Danstin et al., we can decide 3-SAT in time O (1.465npoly(n)).

5 Conclusions

Observe that Lemma 4.3, though looking innocent, is really the core reason why
our algorithm works. It is also what causes trouble when ones tries to directly
apply guided search to other backtracking algorithms. Take for example Beigel
and Eppstein’s Algorithm [1] for solving (3,2)-CSP. For this algorithm we cannot
find and apply an equivalent of Lemma 4.3, because the algorithm uses some
kind of resolution which introduces new constraints, whereas our application of
Lemma 4.3 relies crucially on the fact that if G was created from F by steps of
the algorithm, then G does not contain any 3-clauses that F does not contain.

For traditional backtracking algorithms for k-SAT, often called DPLL algo-
rithms, after Davis, Putnam, Logemann and Loveland [4,5], there is an even
simpler technique than guided search. Consider a backtracking algorithm that
chooses a shortest clause C = {u1, . . . , ui} ∈ F and recurses on F1 := F [u1 �→1]

and F0 := F [u1 �→0], where F0 contains an (i − 1)-clause. In this context, call a
formula reduced if every clause in F has size exaclty k. It is clear that if F is a k-
CNF and in the recursive computation of F , a reduced formula F [γ] occurs, then
F [γ] ⊂ F , and the two formulas are SAT-equivalent in the sense that one is satis-
fiable if and only if the other is. Hence all other open branches of the search tree
can be pruned, and the algorithm only needs to recurse on F [γ]. This is known

Guided Search and a Faster Deterministic Algorithm for 3-SAT 71

as the autark assignment rule and was used by Monien and Speckenmeyer [6] to
speed up their k-SAT algorithm.

It should be mentioned that we first tried to prove some kind of autarky re-
sult, i.e. that if F is reduced and F [γ] is reduced as well, then one formula is
Br-satisfiable if and only if the other is. Unfortunately, this is not true. One
can, however, obtain a SAT-equivalence under certain conditions stronger than
reducedness, which leads to a simpler proof of the O(1.473n)-bound of Bruegge-
mann and Kern [2].

Acknowledgements

I want to thank Andreas Razen and Emo Welzl for fruitful and thorough discus-
sions, which greatly helped to improve this paper. Further I am grateful for the
comments and suggestions of the referees.

References

1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In:
Proc. 36th Symp. Foundations of Computer Science, October 1995, pp. 444–453.
IEEE, Los Alamitos (1995)

2. Brueggemann, T., Kern, W.: An improved local search algorithm for 3-SAT. Memo-
randum 1709, Department of Applied Mathematics, University of Twente, Enschede
(2004)

3. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C.,
Raghavan, O., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT
based on local search. Theoretical Computer Science 289, 69–83 (2002)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Comm. ACM 5, 394–397 (1962)

5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. Assoc.
Comput. Mach. 7, 201–215 (1960)

6. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10, 287–295 (1985)

7. Rolf, D.: Improved bound for the PPSZ/Schöning-algorithm for 3-SAT. Electronic
Colloquium on Computational Complexity (ECCC) 159 (2005)

Comparing and Aggregating Partially Resolved Trees�

Mukul S. Bansal, Jianrong Dong, and David Fernández-Baca

Department of Computer Science, Iowa State University, Ames, IA, USA
{bansal,jrdong,fernande}@cs.iastate.edu

Abstract. We define, analyze, and give efficient algorithms for two kinds of dis-
tance measures for rooted and unrooted phylogenies. For rooted trees, our mea-
sures are based on the topologies the input trees induce on triplets; that is, on
three-element subsets of the set of species. For unrooted trees, the measures are
based on quartets (four-element subsets). Triplet and quartet-based distances pro-
vide a robust and fine-grained measure of the similarities between trees. The dis-
tinguishing feature of our distance measures relative to traditional quartet and
triplet distances is their ability to deal cleanly with the presence of unresolved
nodes, also called polytomies. For rooted trees, these are nodes with more than
two children; for unrooted trees, they are nodes of degree greater than three.

Our first class of measures are parametric distances, where there is parameter
that weighs the difference between an unresolved triplet/quartet topology and a
resolved one. Our second class of measures are based on Hausdorff distance. Each
tree is viewed as a set of all possible ways in which the tree could be refined to
eliminate unresolved nodes. The distance between the original (unresolved) trees
is then taken to be the Hausdorff distance between the associated sets of fully
resolved trees, where the distance between trees in the sets is the triplet or quartet
distance, as appropriate.

1 Introduction

Evolutionary trees, also known as phylogenetic trees or phylogenies, represent the evo-
lutionary history of sets of species. Such trees have uniquely labeled leaves, correspond-
ing to the species, and unlabeled internal nodes, representing hypothetical ancestors.
The trees may be rooted, if the evolutionary origin is known, or unrooted, otherwise.

This paper addresses two related questions: (1) How does one measure how close
two evolutionary trees are to each other? (2) How does one combine or aggregate the
phylogenetic information from conflicting trees into a single consensus tree? Among
the motivations for the first question is the growth of phylogenetic databases, such as
TreeBase [19], with the attendant need for sophisticated querying mechanisms and for
means to assess the quality of answers to queries. The second question arises from the
fact that phylogenetic analyses — e.g., by parsimony — typically produce multiple
evolutionary trees (often in the thousands) for the same set of species.

We address the above questions by defining appropriate distance measures between
trees. While several such measures have been proposed before (see below), ours pro-
vide a feature that previous ones do not: The ability to deal elegantly with the presence

� This work was supported in part by National Science Foundation AToL grant EF-0334832.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Comparing and Aggregating Partially Resolved Trees 73

of unresolved nodes, also called polytomies. For rooted trees these are nodes with more
than two children; for unrooted trees, they are nodes of degree greater than three. Poly-
tomies cannot simply be ignored, since they arise naturally in phylogenetic analysis.
Furthermore, they must be treated with care: A node may be unresolved because it truly
must be so or because there is not enough evidence to break it up into resolved nodes
— that is, the polytomies are either “hard” or “soft” [17].

Our Contributions. We define and analyze two kinds of distance measures for phyloge-
nies. For rooted trees, our measures are based on the topologies the input trees induce
on triplets; that is, on three-element subsets of the set of species. For unrooted trees,
the measures are based on quartets (four-element subsets). Our approach is motivated
by the observation that triplet and quartet topologies are the basic building blocks of
rooted and unrooted trees, in the sense that they are the smallest topological units that
completely identify a phylogenetic tree [21]. Triplet and quartet-based distances thus
provide a robust and fine-grained measure of the differences and similarities between
trees1. In contrast with traditional quartet and triplet distances, our two classes of dis-
tance measures deal cleanly with the presence of unresolved nodes.

The first kind of measures we propose are parametric distances: Given a triplet (quar-
tet) X , we compare the topologies that each of the two input trees induces on X . If they
are identical, the contribution of X to the distance is zero. If both topologies are fully
resolved but different, then the contribution is one. Otherwise, the topology is resolved
in one of the trees, but not the other. In this case, X contributes p to the distance, where
p is a real number between 0 and 1. Parameter p allows one to make a smooth transition
between hard and soft views of polytomy. At one extreme, if p = 1, an unresolved
topology is viewed as different from a fully resolved one. At the other, when p = 0,
unresolved topologies are viewed as identical to resolved ones. Intermediate values of
p allow one to adjust for the degree of certainty one has about a polytomy.

The second kind of measures proposed here are based on viewing each tree as a set
of all possible fully resolved trees that can be obtained from it by refining its unresolved
nodes. The distance between two trees is defined as the Hausdorff distance between the
corresponding sets, where the distance between trees in the sets is the triplet or quartet
distance, as appropriate.

After defining our distance measures, we proceed to study their mathematical and
algorithmic properties. We obtain exact and asymptotic bounds on expected values of
parametric triplet distance and parametric quartet distance. We also study for which
values of p, parametric triplet and quartet distances are metrics, near-metrics (in the
sense of [15]), or non-metrics.

Aside from the mathematical elegance that metrics and near-metrics bring to tree
comparison, there are also algorithmic benefits. We formulate phylogeny aggregation
as a median problem, in which the objective is to find a consensus tree whose total
distance to the given trees is minimized. We do not know whether finding the median
tree relative to parametric (triplet or quartet) distance is NP-hard, but conjecture that
it is. This is suggested by the NP-completeness of the maximum triplet compatibility
problem (see [8]). However, by the results mentioned above and well-known facts about

1 Biologically-inspired arguments in favor of triplet-based measures can be found in [11].

74 M.S. Bansal, J. Dong, and D. Fernández-Baca

the median problem [26], there is a simple constant-factor approximation algorithm for
aggregating rooted and unrooted trees relative to parametric distance: Simply return the
input tree with minimum distance to the remaining input trees. We show that there are
values of p for which parametric distance is a metric, but the median tree may not be
fully resolved even if all the input trees are. However, beyond a threshold, the median
tree is guaranteed to be fully resolved if the input trees are fully resolved.

We suspect that computing Hausdorff triplet (quartet) distance between two trees
is NP-hard. However, we show that one can partially circumvent the issue by proving
that, under a certain density assumption, Hausdorff distance is within a constant factor
of parametric distance — that is, the measures are equivalent in the sense of [15].

Finally, we present a O(n2)-time algorithm to compute parametric triplet distance
and a O(n2) 2-approximate algorithm for parametric quartet distance. To our knowl-
edge, there was no previous algorithm for computing the parametric triplet distance
between two rooted trees, other than by enumerating all Θ(n3) triplets. Two algorithms
exist that can be directly applied to compute the parametric quartet distance. One runs
in time O(n2 min{d1, d2}), where, for i ∈ {1, 2}, di is the maximum degree of a node
in Ti [10]; the other takes O(d9n logn) time, where d is the maximum degree of a
node in T1 and T2 [24].2 Our faster O(n2) algorithm offers a 2-approximate solution
when an exact value of the parametric quartet distance is not required. Additionally, our
algorithm gives the exact answer when p = 1

2 .

Related Work. Several other measures for comparing trees have been proposed; we
mention a few. A popular class of distances are those based on symmetric distance
between sets of clusters (that is, on sets of species that descend from the same internal
node in a rooted tree) or of splits (partitions of the set of species induced by the removal
of an edge in an unrooted tree); the latter is the well-known Robinson-Foulds (RF)
distance [20]. It is not hard to show that two rooted (unrooted) trees can share many
triplet (quartet) topologies but not share a single cluster (split). Cluster- and split-based
measures are also coarser than triplet and quartet distances.

One can also measure the distance between two trees by counting the number of
branch-swapping operations needed to convert one of the trees into the other [2]. How-
ever, the associated measures can be hard to compute, and they fail to distinguish be-
tween operations that affect many species and those that affect only a few. An alterna-
tive to distance measures are similarity methods such as maximum agreement subtree
(MAST) approach [16]. While there are efficient algorithms for computing the MAST,
the measure is coarser than triplet-based distances.

There is an extensive literature on consensus methods for phylogenetic trees. A non-
exhaustive list of methods based on splits or clusters includes strict consensus trees
[18], majority-rule trees [3], and the Adams consensus [1]. For a thorough survey on
the subject, see [9].

The fact that consensus methods tend to produce unresolved trees, with an attendant
loss of information, has been observed before. An alternative approach is to cluster the
input trees into groups using some distance measure, each of which is represented by a
consensus tree, in such a way as to minimize some measure of information loss [25].

2 Note that unresolved nodes seem to complicate distance computation: The quartet distance
between a pair of fully resolved unrooted trees can be obtained in O(n log n) time [7].

Comparing and Aggregating Partially Resolved Trees 75

In addition to consensus methods, there are techniques that take as input sets of
quartet trees or triplet trees and try to find large compatible subsets or subsets whose
removal results in a compatible set [5,22]. These problems are related to the supertree
problem, which generalizes the consensus problem by allowing the leaves of the input
trees to overlap only partially [6].

The consensus problem on trees exhibits parallels with the rank aggregation problem
[14,15]. Here we are given a collection of rankings (that is, permutations) of n objects,
and the goal is to find a ranking of minimum total distance to the input rankings. A
distance between rankings of particular interest is Kendall’s tau, defined as the number
of pairwise disagreements between the two rankings. Like triplet and quartet distances,
Kendall’s tau is based on elementary ordering relationships. Rank aggregation under
Kendall’s tau is NP-complete even for four lists [14].

A permutation is the analog of a fully resolved tree, since every pairwise relationship
between elements is given. The analog to a partially-resolved tree is a partial ranking,
in which the elements are grouped into an ordered list of buckets, such that elements
in different buckets have known ordering relationships, but elements within a bucket
are not ranked [15]. Our definitions of parametric distance and Hausdorff distance are
inspired by Fagin et al.’s Kendall tau with parameter p and their Hausdorff version of
Kendall’s tau, respectively [15]. We note, however, that aggregating partial rankings
seems computationally easier than the consensus problem on trees. For example, while
the Hausdorff version of Kendall’s tau is easily computable [15], it is unclear whether
the Hausdorff triplet or quartet distances are polynomially-computable for trees.

Organization of the Paper. Section 2 reviews basic notions in phylogenetics and dis-
tances. Our distance measures and the consensus problem are formally defined in Sec-
tion 3. The basic properties of parametric distance are proved in Section 4. Section 5
studies the connection between Hausdorff and parametric distances. Section 6 gives ef-
ficient algorithms for computing parametric distance.

2 Preliminaries

Phylogenies. By and large, we follow standard terminology (i.e., similar to [21]). We
write [N] to denote the set {1, 2, . . . , N}, where N is a positive integer.

Let T be a rooted or unrooted tree. We write V(T), E(T), and L(T) to denote,
respectively, the node set, edge set, and leaf set of T . A taxon (plural taxa) is some
basic unit of classification; e.g., a species. Let S be a set of taxa. A phylogenetic tree or
phylogeny for S is a tree T such that L(T) = S. Furthermore, if T is rooted, we require
that every internal node have at least two children; if T is unrooted, every internal
node is required to have degree at least three. We write RP (n) and P (n) to denote,
respectively, the sets of all rooted and unrooted phylogenetic trees over S = [n].

An internal node in a rooted phylogeny is resolved if it has exactly two children; oth-
erwise it is unresolved. Similarly, an internal node in an unrooted phylogeny is resolved
if it has degree three, and unresolved otherwise. Unresolved nodes in rooted and un-
rooted trees are also referred to as polytomies or multifurcations. A phylogeny (rooted
or unrooted) is fully resolved if all its internal nodes are resolved.

76 M.S. Bansal, J. Dong, and D. Fernández-Baca

A contraction of a phylogeny T is obtained by deleting an internal edge and iden-
tifying its endpoints. A phylogeny T2 refines phylogeny T1 if and only if T1 can be
obtained from T2 through 0 or more contractions. T2 is a full refinement of T1 if T2 is a
fully resolved tree that refines T1. F(T) denotes the set of all full refinements of T .

Let X be a subset of L(T) and let T [X] denote the minimal subtree of T having X
as its leaf set. The restriction of T to X , denoted T |X , is the phylogeny for X defined
as follows. If T is unrooted, then T |X is the tree obtained from T [X] by suppressing
all degree-two nodes. If T is rooted, T |X is obtained from T [X] by suppressing all
degree-two nodes except for the root.

A triplet is a three-element subset of S; a quartet is a four-element subset of S. A
triplet (quartet) X is said to be resolved in a phylogenetic tree T over S if T |X is fully
resolved; otherwise, X is unresolved.

Finally, we need some special notation for rooted trees T . We write rt(T) to denote
the root node of T . Let v be a node in T . Then, pa(v) denotes the parent of v in T and
Ch(v) is the set of children of v. Furthermore, T (v) denotes the subtree of T rooted at
v and T (v) denotes the tree obtained by deleting T (v) from T , as well as the edge from
v to its parent, if such an edge exists.

Distance Measures, Metrics, and Near-metrics. A distance measure on a set D is a
binary function d on D satisfying the following three conditions: (i) d(x, y) ≥ 0 for
all x, y ∈ D; (ii) d(x, y) = d(y, x) for all x, y ∈ D; and (iii) d(x, y) = 0 if and only
if x = y. Function d is a metric if, in addition to being a distance measure, it satisfies
the triangle inequality; i.e., d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ D. Distance
measure d is a near-metric if there is a constant c, independent of the size of D, such that
d satisfies the relaxed polygonal inequality: d(x, z) ≤ c(d(x, x1) + d(x1, x2) + · · · +
d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 ∈ D [15]. Two distance measures
d and d′ with domain D are equivalent if there are constants c1, c2 > 0 such that
c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y) for every pair x, y ∈ D [15].

3 Distance Measures for Phylogenies

Let T1 and T2 be any two rooted (unrooted) phylogenies over the same taxon set S. We
partition the set of triplets (quartets) over S into the following five sets.3

1. S(T1, T2): triplets (quartets) X that are resolved in T1 and T2, and T1|X = T2|X .
2. D(T1, T2): triplets (quartets) X that are resolved in T1 and T2, but T1|X �= T2|X .
3. R1(T1, T2): triplets (quartets) that are resolved in T1, but not in T2.
4. R2(T1, T2): triplets (quartets) that are resolved in T2, but not in T1.
5. U(T1, T2): triplets (quartets) that are unresolved in both T1 and T2.

Let p be a real number in the interval [0, 1]. The parametric triplet (quartet) distance
between T1 and T2 is defined as

d(p)(T1, T2) = |D(T1, T2)| + p (|R1(T1, T2)| + |R2(T1, T2)|) . (1)

3 Note that the sets S(T1, T2) and U(T1, T2) are not used in this section, but are needed later.

Comparing and Aggregating Partially Resolved Trees 77

Parameter p allows one to make a smooth transition from soft to hard views of poly-
tomy: When p = 0, resolved triplets (quartets) are treated as equal to unresolved ones,
while when p = 1, they are treated as being completely different. Intermediate values
of p allow one to adjust for the amount of evidence required to resolve a polytomy.

Let d be a metric over fully resolved trees. Metric d can be extended to partially
resolved trees via Hausdorff distance, as follows.

dHaus(T1, T2) = max
{

max
t1∈F(T1)

min
t2∈F(T2)

d(t1, t2), max
t2∈F(T2)

min
t1∈F(T1)

d(t1, t2)
}

(2)

When d is the triplet (quartet) distance, dHaus is called the Hausdorff triplet (quartet)
distance. In Equation (2), maxt1∈F(T1) mint2∈F(T2) d(t1, t2) gives the maximum dis-
tance between a full refinement of T1 and the set of full refinements of T2. Similarly,
maxt2∈F(T2) mint1∈F(T1) d(t1, t2) is the maximum distance between a full refinement
of T2 and the set of full refinements of T1. Therefore, T1 and T2 are at Hausdorff
distance r of each other if every full refinement of T1 is within distance r of a full
refinement of T2 and vice-versa.

Aggregating Phylogenies. Let k be a positive integer and S be a set of taxa. A profile
of length k (or simply a profile) is a mapping P that assigns each i ∈ [k] a phylogenetic
tree P(i) over S. We refer to these trees as input trees. A consensus rule is a function
that maps a profile P to some phylogenetic tree T over S called a consensus tree.

Let d be a distance measure whose domain is the set of phylogenies over S. We ex-
tend d to define a distance measure from profiles to phylogenies as d(T, P) =
∑k

i=1 d(T, P(i)). A consensus rule is a median rule for d if for every profile P it
returns a phylogeny T ∗ of minimum distance to P ; such a T ∗ is called a median. The
problem of finding a median for a profile with respect to a distance measure d is referred
to as the median problem (relative d), or as the aggregation problem.

4 Properties of Parametric Distance

In what follows, unless mentioned explicitly, whenever we refer to parametric distance,
we mean both its triplet and quartet varieties. We begin with a useful observation.

Proposition 1. For every p, q such that p, q ∈ (0, 1], d(p) and d(q) are equivalent.

The proof of the next theorem is along the lines of an analogous result for aggregating
partial rankings by Fagin et al. [15] and is omitted from this extended abstract.

Theorem 1. (1) For p = 0, d(p) is not a distance measure. (2) For 0 < p < 1/2, d(p)

is a near-metric, but not a metric. (3) For p ≥ 1/2, d(p) is a metric.

Part (3) of Theorem 1 leads directly to approximation algorithms. Part (2) indicates
that the measure degrades nicely, since constant factor approximation ratios are also
achievable with near-metrics [15].

The next result establishes a threshold for p beyond which a collection of fully re-
solved trees give enough evidence to produce a fully resolved tree.

78 M.S. Bansal, J. Dong, and D. Fernández-Baca

Theorem 2. Let P be a profile of length k, such that for all i ∈ [k], tree P(i) is fully
resolved. Then, if p ≥ 2/3, there exists median tree T for P relative to d(p) such that T
is fully resolved.

Proof (sketch). Suppose T is a median tree that contains an unresolved node v. The key
idea is to show that there is a way to refine v into two nodes such that the number of
input triplet (quartet) topologies with which the resulting tree disagrees is at most twice
the number with which it agrees. The theorem follows by applying this refinement step
repeatedly, until a fully resolved tree is obtained. ��

We can, in fact, show that if p > 2/3 and the input trees are fully resolved, the median
tree relative to d(p) must be fully resolved. On the other hand, it is easy to show that
when p ∈ [1/2, 2/3), there are profiles of fully resolved trees whose median tree is only
partially resolved.

It is interesting to compare Theorem 2 with analogous results for partial rankings.
Consider the variation of Kendall’s tau for partial rankings in which a pair of items
that is ordered in one ranking but is in the same bucket in the other contributes p to
the distance, where p ∈ [0, 1]. This distance measure is a metric when p ≥ 1/2 [15].
Furthermore, if p ≥ 1/2 the median ranking relative to this distance is a full ranking if
the input consists of full rankings [4]. In contrast, Proposition 1 and Theorem 2 show
that, for p ∈ [1/2, 2/3], parametric triplet or quartet distance are metrics, but the median
tree is not guaranteed to be fully resolved even if the input trees are. This opens up a
range of values for p wherein parametric triplet/quartet distance is a metric, but where
one can adjust for the degree of evidence needed to resolve a node.

We now consider the expected value of parametric triplet and quartet distances.

Theorem 3. Let u(n) and r(n) denote the probabilities that a given quartet is, respec-
tively, unresolved or resolved in an unrooted phylogeny chosen uniformly at random
from P (n). Then,

(i) E(d(p)(T1, T2)) =
(
n
4

)
·
(

2
3 · r(n)2 + 2 · p · r(n) · u(n)

)
, if T1 and T2 are un-

rooted phylogenies chosen uniformly at random with replacement from P (n), and
(ii) E(d(p)(T1, T2)) =

(
n
3

)
·
(

2
3 · r(n + 1)2 + 2 · p · r(n + 1) · u(n + 1)

)
, if T1 and

T2 are rooted phylogenies chosen uniformly at random with replacement from
RP (n).

Part (i) of Theorem 3 follows directly from [13,23]. Part (ii) follows from part (i) and

the relationship between rooted and unrooted trees [21]. Since u(n) ∼
√

π(2 ln 2−1)
4n

[23] and r(n) = 1 − u(n), Theorem 3 implies that E(d(p)(T1, T2)) is asymptotically
2
3 ·

(
n
4

)
for unrooted trees and 2

3 ·
(
n
3

)
for rooted trees.

5 Relationships Among the Metrics

We do not know whether the Hausdorff triplet or quartet distances are computable in
polynomial time. Indeed, we suspect that, unlike its counterpart for partial rankings,
this may not be possible. On the positive side, we show here that, in a broad range of

Comparing and Aggregating Partially Resolved Trees 79

cases, it is possible to obtain an approximation to the Hausdorff distance by exploiting
its connection with parametric distance. As in the previous section, our results apply to
both triplet and quartet distances.

Lemma 1. For every two phylogenies T1 and T2 over S, |D(T1, T2)| + 2
3 ·

max{|R1(T1, T2)|, |R2(T1, T2)|} ≤ dHaus(T1, T2) ≤ |D(T1, T2)| +|R1(T1, T2)|
+|R2(T1, T2)| +|U(T1, T2)|.

Proof (sketch). The proof of the lower bound on dHaus is in two steps. We first show
that T1 can be refined so that it disagrees with T2 in at least two thirds of the triplets
(quartets) in R2(T1, T2). Next, we show the existence of an analogous refinement of T2.
Note that the triplets (quartets) in D(T1, T2) are resolved differently in any refinements
of T1 and T2. This gives lower bounds for both arguments in the outer max of the
definition of dHaus(T1, T2) (Equation 2) and yields the lemma.

The upper bound follows by assuming that T1 and T2 are refined so that the triplets
(quartets) in R1(T1, T2), R2(T1, T2), and U(T1, T2) are resolved differently. ��

It is instructive to compare Lemma 1 with the situation for partial rankings. In the
Hausdorff version of Kendall’s tau, each partial ranking is viewed as the set of all pos-
sible full rankings that can be obtained by refining it (that is, ordering elements within
buckets). The distance is then the Hausdorff distance between the two sets, where the
distance between two elements is Kendall’s tau. Let L1 and L2 be two partial rankings.
Re-using notation, let D(L1, L2) be the set of all pairs that are ordered differently in L1

and L2, R1(L1, L2) be the set of pairs that are ordered in L1 but in the same bucket in
L2, and R2(L1, L2) be the set of pairs that are ordered in L2 but in the same bucket in
L1. Then, dHaus(L1, L2) = |D(L1, L2)| + max{|R1(L1, L2)|, |R2(L1, L2)|} [12,15].
This expression leads to an efficient way to compute dHaus(L1, L2) and establishes an
equivalence with the parametric version of Kendall’s tau defined in Section 4 [15]. It
seems unlikely that a similar simple expression can be obtained for Hausdorff triplet
or quartet distance. There are at least two reasons for this. Let L1 and L2 be partial
rankings. Then, it is possible to resolve L1 so that it disagrees with L2 in any pair in
R2(L1, L2). Similarly, there is a way to resolve L2 so that it disagrees with L1 in any
pair in R1(L1, L2). An analog for trees cannot be established for this property; hence,
the 2

3 factor in the lower bound of Lemma 1. The second reason is due to the properties
of the set U(L1, L2). It can be shown that is one can refine L1 and L2 in such a way
that pairs of elements that are unresolved in both rankings are resolved the same way
in the refinements. This is, in general, impossible for trees and leads to the presence of
|U(T1, T2)| in the upper bound of Lemma 1.

While the above observations are an obstacle to establishing equivalence between
dHaus and d(p), we can show equivalence when the number of triplets (quartets) that
are unresolved in both trees is suitably small. The result below follows from Lemma 1.

Theorem 4. Let β be a positive real number. Suppose we restrict ourselves to pairs of
trees (T1, T2) such that |U(T1, T2)| ≤ β(|D(T1, T2)| + |R1(T1, T2)| + |R2(T1, T2)|).
Then, Hausdorff distance and parametric distance are equivalent.

80 M.S. Bansal, J. Dong, and D. Fernández-Baca

6 Computing Parametric Distance

Let R(T) and U(T) denote the sets of all triplets (quartets) that are, respectively re-
solved and unresolved in T . We need the following fact, which holds for rooted and
unrooted trees.

Proposition 2. For any two phylogenies T1, T2 over the same set of taxa,

d(p)(T1, T2) = |R(T1)| − |S(T1, T2)| + p · (|U(T1)| − |U(T2)|)
+ (2p − 1) · |R1(T1, T2)|. (3)

Proof. It can be shown that |R1(T1, T2)| + |U(T1, T2)| = |U(T2)|, |R2(T1, T2)| +
|U(T1, T2)| = |U(T1)|, and |S(T1, T2)|+ |D(T1, T2)|+ |R1(T1, T2)| = |R(T1)|. These
relationships, along with Equation (1), establish Equation (3). ��

6.1 Computing the Parametric Triplet Distance

Theorem 5. The parametric triplet distance d(p)(T1, T2) for two rooted phylogenetic
trees T1 and T2 over the same set of n taxa can be computed in O(n2) time.

Proof (sketch). Our algorithm computes d(p)(T1, T2) via Equation (3). For this, it needs
|R(T1)|, |U(T1)|, |U(T2)|, |S(T1, T2)| and |R1(T1, T2)|. The first three values can eas-
ily be obtained in O(n) time. Below we outline an algorithm that computes the remain-
ing two values in O(n2) time. This gives a O(n2) parametric triplet distance algorithm.

Our algorithm relies on a preprocessing step that calculates and stores the following
four quantities for every pair u, v such that u, v are internal nodes of T1 and T2, re-
spectively: |L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|, and
|L(T1(u)) ∩L(T2(v))|. All these O(n2) values can be computed in O(n2) time by vis-
iting the pairs according to interleaved postorder traversals of T1 and T2, in which the
set intersection sizes for each pair of nodes are computed by using the set intersection
sizes computed for their children. We omit the details.

We need two definitions. Let T be a rooted phylogenetic tree. Let X = {x, y, z} be
a triplet. Suppose X is resolved in T . We say that X is induced by edge (pa(v), v) in
T if x, y are in L(T (v)), and z is in L(T (v)). Note that X may be induced by multiple
edges in T . Now suppose X is unresolved in T . We say that X is associated with the
least common ancestor (lca) v of X in T . Observe that node v is unique and that it must
be unresolved.

To compute |S(T1, T2)| we enumerate all pairs of internal edges (pa(u), u) ∈ E(T1)
and (pa(v), v) ∈ E(T2) according to an order obtained by interleaving postorder tra-
versals of T1 and T2. For each pair, we compute the number of common triplet topolo-
gies induced by the pair in O(1) time by using the values |L(T1(u)) ∩ L(T2(v))|, and
|L(T1(u)) ∩ L(T2(v))| computed in the preprocessing step. Thus, each identically re-
solved triplet is counted at least once. Since a triplet may be induced by multiple edges,
it is necessary to adjust for over counting. Indeed, among the triplets induced by the
edges (pa(u), u) ∈ T1 and (pa(v), v) ∈ T2, the ones that have already been counted at
an earlier step are exactly those that are either (i) induced by both edges (pa(u), u) and
(u, y) in T1, for some y ∈ Ch(u), and are induced by the edge (pa(v), v) in T2, or, (ii)

Comparing and Aggregating Partially Resolved Trees 81

induced by both edges (pa(v), v) and (v, y) in T2, for some y ∈ Ch(v), and are induced
by the edge (pa(u), u) in T1. Both the counting and the correction for over counting
can be done in O(| Ch(u)| + | Ch(v)|) per pair, for a total of O(n2) time.

To compute the value of |R1(T1, T2)| we enumerate all pairs formed by picking an
edge e = (pa(u), u) ∈ E(T1) and an internal unresolved node v ∈ V(T2) according
to interleaved postorder traversals of T1 and T2. At each step, we count the number of
triplets that are induced by e in T1 and associated with v in T2. Such triplets must be
resolved in T1 but unresolved in T2. Let us say that a triplet X is relevant if it is induced
by edge (pa(u), u) in T1, and T2[X] is a subtree of T2(v). There are m =

(|P |
2

)
· |Q|

relevant triplets, where P = L(T2(v)) ∩ L(T1(u)) and Q = L(T2(v)) ∩ L(T1(u)).
Out of these, we are interested in counting the number of triplets X whose lca in T2

is v, and X is unresolved in T2. Any such triplet X falls into one of three categories:
(i) the lca of X in T2 is not v, (ii) the lca of X in T2 is v, X is resolved in T1 and
T2, and T1|X = T2|X , (iii) the lca of X in T2 is v, X is resolved in T1 and T2, but
T1|X �= T2|X . The sizes of these sets can be obtained in O(| Ch(u)| · | Ch(v)|) time
— details are omitted. The number thus computed is then subtracted from m to get the
quantity we need. The total time over all pairs u, v is O(n2). As in the computation
of |S(T1, T2)|, we must correct for over counting. Indeed any triplet induced by edge
(pa(u), u) and edge (u, y) in T1, for some y ∈ Ch(u), has already been counted in
an earlier step of the interleaved traversals of T1 and T2. It can be shown that one can
adjust for this over counting while keeping within the required time bound. ��

6.2 An Approximation Algorithm for Parametric Quartet Distance

Theorem 6. Let T1 and T2 be two unrooted phylogenetic trees on the same n leaves.
Then, for p = 1

2 , d(p)(T1, T2) can be computed in O(n2) time. For p ∈ (1
2 , 1], a value

x such that d(p)(T1, T2) ≤ x ≤ 2 · d(p)(T1, T2) can be computed in O(n2) time.

Proof (sketch). Our algorithm first computes the values of |S(T1, T2)|, |R(T1)|,
|U(T1)|, and |U(T2)| — this can be done in O(n2) time [10]. If p = 1

2 , these values suf-
fice to obtain d(p)(T1, T2) exactly, since the term involving |R1(T1, T2)| in Equation (3)
vanishes. For p > 1

2 , we also use Equation (3), but instead of |R1(T1, T2)| we use a 2-
approximation y to |R1(T1, T2)|; that is, y satisfies |R1(T1, T2)| ≤ y ≤ 2|R1(T1, T2)|.
Below, we outline how to compute such a y in O(n2) time. As a result, we obtain an
O(n2)-time 2-approximate algorithm for d(p)(T1, T2).

Let (u, v) be an edge in tree T . We denote the subtree of T − (u, v) that contains
node u by T (u ← v), and the one that contains v by T (v ← u). Quartet {a, b, c, d} is
induced by edge (u, v) if {a, b} ∈ L(T (u ← v)) and {c, d} ∈ L(T (v ← u)). Note that
every resolved quartet is induced by at least one edge. Quartet {a, b, c, d} is associated
with node v in T if the paths from v to a, v to b, v to c, and v to d are edge-disjoint.
Note that each unresolved quartet is associated with exactly one node in T .

Our algorithm roots T1 by adding a root node to an arbitrarily chosen edge in T1. It
then enumerates each edge e = (pa(u), u) ∈ E(T1) according to a preorder traversal
of T1 and each internal node v ∈ V(T2) of degree at least 4. For each pair, it counts the
number of quartets that are induced by e in T1 and associated with v in T2. As in the
rooted case (Theorem 5), we do this indirectly. We first obtain the number of relevant

82 M.S. Bansal, J. Dong, and D. Fernández-Baca

quartets; namely those induced by (pa(u), u). This can be done efficiently with suitable
preprocessing. To find the size of the subset of these quartets that are unresolved and
associated with v (which is what we need), we count the number of all other quartets
and subtract it from the number of relevant quartets. Each of these other quartets appears
in one of the following five configurations in the tree T2: (i) there exists a neighbor x of
v in T2, such that the quartet is completely contained in T2(x ← v), (ii) there exist two
neighbors x, y of v in T2, such that T2(x ← v) contains three leaves from the quartet
and T2(y ← v) contains the other leaf, (iii) there exist two neighbors x, y of v in T2,
such that T2(x ← v) contains two leaves from the quartet and T2(y ← v) contains
the other two leaves, and (iv) there exist three neighbors x, y, z of v in T2, such that
T2(x ← v) contains two leaves from the quartet, T2(y ← v) contains one leaf of the
quartet, and T2(z ← v) contains the remaining leaf. Handling cases (i), (ii) and (iii)
efficiently is relatively easy, but case (iv) requires computing first a combined value
that counts each quartet from case (iii) twice and each quartet from (iv) once, and then
deriving the value for case (iv). The time per pair (pa(u), u) ∈ E(T1), v ∈ V(T2) is
O(| Ch(u)| · | adj(v)|), where adj(v) is the set of neighbors of v in T2, for a total of
O(n2) time.

Note that, as described, the above computation over counts some quartets. It is not
clear how to correct for this while staying within a O(n2) time bound. However, within
this time, we can guarantee that no quartet is counted at least once and more than twice.
Thus, instead of computing |R1(T1, T2)| exactly, we obtain a 2-approximation to its
value. ��

References

1. Adams III, E.N.: N-trees as nestings: Complexity, similarity, and consensus. J. Classifica-
tion 3(2), 299–317 (1986)

2. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary
trees. Annals of Combinatorics 5, 1–13 (2001)

3. Barthélemy, J.P., McMorris, F.R.: The median procedure for n-trees. Journal of Classifica-
tion 3, 329–334 (1986)

4. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell
who won the election. Social Choice and Welfare 6, 157–165 (1989)

5. Berry, V., Jiang, T., Kearney, P.E., Li, M., Wareham, H.T.: Quartet cleaning: Improved al-
gorithms and simulations. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 313–324.
Springer, Heidelberg (1999)

6. Bininda-Emonds, O.R.P. (ed.): Phylogenetic supertrees: Combining Information to Reveal
the Tree of Life. Computational Biology Series, vol. 4. Springer, Heidelberg (2004)

7. Brodal, G.S., Fagerberg, R., Pedersen, C.N.S.: Computing the quartet distance in time
O(n log n). Algorithmica 38(2), 377–395 (2003)

8. Bryant, D.: Building trees, hunting for trees, and comparing trees: Theory and methods in
phylogenetic analysis. PhD thesis, Department of Mathematics, University of Canterbury,
New Zealand (1997)

9. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M., La-
pointe, F.-J., McMorris, F., Mirkin, B.B., Roberts, F. (eds.) Bioconsensus. Discrete Math-
ematics and Theoretical Computer Science, vol. 61, pp. 163–185. American Mathematical
Society, Providence (2003)

Comparing and Aggregating Partially Resolved Trees 83

10. Christiansen, C., Mailund, T., Pedersen, C.N., Randers, M., Stissing, M.S.: Fast calculation
of the quartet distance between trees of arbitrary degrees. Algorithms for Molecular Biol-
ogy 1(16) (2006)

11. Cotton, J.A., Slater, C.S., Wilkinson, M.: Discriminating supported and unsupported rela-
tionships in supertrees using triplets. Systematic Biology 55(2), 345–350 (2006)

12. Critchlow, D.E.: Metric Methods for Analyzing Partially Ranked Data. Lecture Notes in
Statist, vol. 34. Springer, Berlin (1980)

13. Day, W.H.E.: Analysis of quartet dissimilarity measures between undirected phylogenetic
trees. Systematic Zoology 35(3), 325–333 (1986)

14. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web.
In: Tenth International World Wide Web Conference, Hong Kong, May 2001, pp. 613–622
(2001)

15. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings.
SIAM J. Discrete Math. 20(3), 628–648 (2006)

16. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. J. Classification 2(1), 225–276
(1985)

17. Maddison, W.P.: Reconstructing character evolution on polytomous cladograms. Cladistics 5,
365–377 (1989)

18. McMorris, F.R., Meronk, D.B., Neumann, D.A.: A view of some consensus methods for
trees. In: Felsenstein, J. (ed.) Numerical Taxonomy, pp. 122–125. Springer, Heidelberg
(1983)

19. Piel, W., Sanderson, M., Donoghue, M., Walsh, M.: Treebase (last accessed, February 2,
2007), http://www.treebase.org

20. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Bio-
sciences 53, 131–147 (1981)

21. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics. Oxford Uni-
versity Press, Oxford (2003)

22. Snir, S., Rao, S.: Using max cut to enhance rooted trees consistency. IEEE/ACM Trans.
Comput. Biol. Bioinformatics 3(4), 323–333 (2006)

23. Steel, M., Penny, D.: Distributions of tree comparison metrics — some new results. System-
atic Biology 42(2), 126–141 (1993)

24. Stissing, M., Pedersen, C.N.S., Mailund, T., Brodal, G.S., Fagerberg, R.: Computing the
quartet distance between evolutionary trees of bounded degree. In: Sankoff, D., Wang, L.,
Chin, F. (eds.) APBC. Advances in Bioinformatics and Computational Biology, vol. 5, pp.
101–110. Imperial College Press (2007)

25. Stockham, C., Wang, L.-S., Warnow, T.: Statistically based postprocessing of phylogenetic
analysis by clustering. In: ISMB, pp. 285–293 (2002)

26. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

http://www.treebase.org

Computing the Growth of the Number of

Overlap-Free Words with Spectra of Matrices�

Raphaël M. Jungers1, Vladimir Yu. Protasov2, and Vincent D. Blondel1,��

1 Department of Applied Mathematics, Université catholique de Louvain, 4 avenue
Georges Lemaitre, B-1348 Louvain-la-Neuve, Belgium
{raphael.jungers,vincent.blondel}@uclouvain.be

2 Department of Mechanics and Mathematics, Moscow State University, Vorobyovy
Gory, Moscow, 119992, Russia

v-protassov@yandex.ru

Abstract. Overlap-free words are words over the alphabet A = {a, b}
that do not contain factors of the form xvxvx, where x ∈ A and v ∈
A∗. We analyze the asymptotic growth of the number un of overlap-
free words of length n. We obtain explicit formulas for the minimal and
maximal rates of growth of un in terms of spectral characteristics (the
lower spectral radius and the joint spectral radius) of one set of matrices
of dimension 20. Using these descriptions we provide estimates of the
rates of growth that are within 0.4% and 0.03% of their exact value. The
best previously known bounds were within 11% and 3% respectively. We
prove that un actually has the same growth for “almost all” n. This
“average” growth is distinct from the maximal and minimal rates and
can also be expressed in terms of a spectral quantity (the Lyapunov
exponent). We use this expression to estimate it.

1 Introduction

Binary overlap-free words have been studied for more than a century. These
are words over the binary alphabet A = {a, b} that do not contain factors of
the form xvxvx, where x ∈ A and v ∈ A∗. For instance, the word baabaa is
overlap free, but the word baabaab is not, since it can be written xuxux with
x = b and u = aa. See [1] for a recent survey. Thue [19, 20] proved in 1906 that
there are infinitely many overlap-free words. Indeed, the well-known Thue-Morse
sequence1 is overlap-free, and so the set of its factors provides an infinite number

� This is a shortened version of a journal paper submitted for publication; see [7].
�� The research reported here was partially supported by the “Communauté francaise

de Belgique - Actions de Recherche Concertées”, by the EU HYCON Network of
Excellence (contract number FP6-IST-511368), and by the Belgian Programme on
Interuniversity Attraction Poles initiated by the Belgian Federal Science Policy Of-
fice. The scientific responsibility rests with its authors. Raphaël Jungers is a FNRS
fellow (Belgian Fund for Scientific Research).

1 The Thue-Morse sequence is the infinite word obtained as the limit of θn(a) for
n → ∞ with θ(a) = ab, θ(b) = ba; see [6].

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 84–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing the Growth of the Number of Overlap-Free Words 85

of different overlap-free words. The asymptotics of the number un of such words
of a given length n was analyzed in a number of subsequent contributions2. The
number of factors of length n in the Thue-Morse sequence is proved in [4] to be
larger than 3n, thus providing a linear lower bound on un:

un ≥ 3 n.

The next improvement was obtained by Restivo and Salemi [17]. By using a
certain decomposition result, they showed that the number of overlap-free words
grows at most polynomially:

un ≤ C n r,

where r = log(15) ≈ 3.906. This bound has been sharpened successively by
Kfoury [10], Kobayashi [11], and finally by Lepisto [12] to the value r = 1.37. One
could then suspect that the sequence un grows linearly. However, Kobayashi [11]
proved that this is not the case. By enumerating the subset of overlap-free words
of length n that can be infinitely extended to the right he showed that un ≥
C n 1.155 and so we have

C1 n 1.155 ≤ un ≤ C2 n 1.37.

It is worth noting that the sequence un is 2-regular, as shown by Carpi [5]. On
Figure 1(a) we show the values of the sequence un for 1 ≤ n ≤ 200 and on
Figure 1(b) we show the behavior of log un/ logn for larger values of n. One can
see that the sequence un is not monotonic, but is globally increasing with n.
Moreover the sequence does not appear to have a polynomial growth since the
value log un/ log n does not seem to converge. In view of this, a natural question
arises: is the sequence un asymptotically equivalent to nr for some r ? Cassaigne
proved in [6] that the answer is negative. He introduced the lower and the upper
exponents of growth:

α = sup
{
r

∣
∣∃C > 0, un ≥ Cnr

}
, (1)

β = inf
{
r

∣
∣∃C > 0, un ≤ Cnr

}
,

and showed that α < β. Cassaigne made a real breakthrough in the study
of overlap-free words by characterizing in a constructive way the whole set of
overlap-free words. By improving the decomposition theorem of Restivo and
Salemi he showed that the numbers un can be computed as sums of variables that
are obtained by certain linear recurrence relations. These relations are explicitly
given in the next section. As a result of this description, the number of overlap-
free words of length n can be computed in logarithmic time. For the exponents
of growth Cassaigne has also obtained the following bounds: α < 1.276 and
β > 1.332. Thus, combining this with the earlier results described above, one
has the following inequalities:

1.155 < α < 1.276 and 1.332 < β < 1.37. (2)

86 R.M. Jungers, V. Yu. Protasov, and V.D. Blondel

(a) (b)

Fig. 1. The values of un for 1 ≤ n ≤ 200 (a) and log un/ log n for 1 ≤ n ≤ 10000 (b)

In this paper we develop a linear algebraic approach to study the asymptotic
behavior of the number of overlap-free words of length n. Using the results of
Cassaigne we show in Theorem 2 that un is asymptotically equivalent to the
norm of a long product of two particular matrices A0 and A1 of dimension
20× 20. This product corresponds to the binary expansion of the number n − 1.
Using this result we express the values of α and β by means of certain joint
spectral characteristics of these matrices. We prove that α = log2 ρ̌(A0, A1)
and β = log2 ρ̂(A0, A1), where ρ̌ and ρ̂ denote, respectively, the lower spectral
radius and the joint spectral radius of the matrices A0, A1 (we define these
notions in the next section). In Section 2, we estimate these values and we
obtain the following improved bounds for α and β:

1.2690 < α < 1.2736 and 1.3322 < β < 1.3326. (3)

Our estimates are, respectively, within 0.4% and 0.03% of the exact values. In
addition, we show in Theorem 3 that the smallest and the largest rates of growth
of un are effectively attained, and there exist positive constants C1, C2 such that
C1 nα ≤ un ≤ C2 nβ for all n ∈ N.

Although the sequence un does not exhibit an asymptotic polynomial growth,
we then show in Theorem 6 that for “almost all” values of n the rate of growth
is actually equal to σ = log2 ρ̄(A0, A1), where ρ̄ is the Lyapunov exponent of
the matrices. For almost all values of n the number of overlap-free words does
not grow as nα, nor as nβ, but in an intermediary way, as nσ. This means in
particular that the value log un

log n converges to σ as n → ∞ along a subset of
density 1. We obtain the following bounds for the limit σ, which provides an
estimation within 0.8% of the exact value:

1.3005 < σ < 1.3098.

These bounds clearly show that α < σ < β.
Our linear algebraic approach not only allows us to improve the estimates

of the asymptotics of the number of overlap-free words, but also clarifies some
2 The number of overlap-free words of length n is referenced in the On-Line Encyclo-

pedia of Integer Sequences under the code A007777; see [18]. The sequence starts 1,
2, 4, 6, 10, 14, 20, 24, 30, 36, 44, 48, 60, 60, 62, 72,...

Computing the Growth of the Number of Overlap-Free Words 87

aspects of the nature of these words. For instance, we show that the “non purely
overlap-free words” used in [6] to compute un are asymptotically negligible when
considering the total number of overlap-free words.

The paper is organized as follows. In the next section we formulate the main
theorems (Theorems 2 and 3). The proofs of these theorems are quite technical
and are not presented here for sake of conciseness. We refer the reader to [7]
for a presentation of the proof and all numerical values. We deduce from these
results sharp estimates for α and β. Then in Section 3 we introduce the average
growth rate σ and approximate it.

2 The Minimal and Maximal Rates of Growth of the
Overlap-Free Words

In the sequel we use the following notation: R
d is the d-dimensional space, in-

equalities x ≥ 0 and A ≥ 0 mean that all the entries of the vector x (respectively,
of the matrix A) are nonnegative. We denote R

d
+ = {x ∈ R

d, x ≥ 0}, by |x| we
denote a norm of the vector x ∈ R

d, and by ‖ · ‖ any matrix norm. In particular,

|x|1 =
d∑

i=1

|xi|, ‖A‖1 = sup|x|1=1 |Ax| = maxj=1,...d

∑d
i=1 |Aij |. We write 1 for

the vector (1, . . . , 1)T ∈ R
d, ρ(A) for the spectral radius of the matrix A, that

is, the largest magnitude of its eigenvalues. If A ≥ 0, then there is a vector
v ≥ 0 such that Av = ρ(A)v (the so-called Perron-Frobenius eigenvector). For
two functions f1, f2 from a set Y to R+ the relation f1(y)
 f2(y) means that
there are positive constants C1, C2 such that C1f1(y) ≤ f2(y) ≤ C2f1(y) for all
y ∈ Y .

To compute the number un of overlap-free words of length n we use several
results from [6] that we summarize in the following theorem:

Theorem 1. There exist two nonnegative matrices F0, F1 ∈ R
30×30, and non-

negative vectors w, y3, . . . , y15 ∈ R
30
+ allowing to compute the number of overlap-

free words in the following way: For n ≥ 16, let yn be the solution of the recur-
rence equations:

y2n = F0yn

y2n+1 = F1yn.
(4)

Then, for any n ≥ 16, the number of overlap-free words of length n is equal to
wT yn−1.

It follows from this result that the number un of overlap-free words of length
n ≥ 16 can be obtained by first computing the binary expansion dk · · ·d1 of
n − 1, i.e., n − 1 =

∑k−1
j=0 dj+12j , and then defining

un = wT Fd1 · · ·Fdk−4ym (5)

where m = dk−3 + dk−22 + dk−122 + dk23. To arrive at the results summarized
in Theorem 1, Cassaigne builds a system of recurrence equations allowing the
computation of a vector Un whose entries are the number of overlap-free words of

88 R.M. Jungers, V. Yu. Protasov, and V.D. Blondel

certain types (there are 16 different types). These recurrence equations also in-
volve the recursive computation of a vector Vn that counts other words of length
n, the so-called “single overlaps”. The single overlap words are not overlap-free,
but have to be computed, as they generate overlap-free words of larger lengths.
We now present the main result of this section which improves the above theo-
rem in two directions. First we reduce the dimension of the matrices from 30 to
20, and second we prove that un is given asymptotically by the norm of a matrix
product. The reduction of the dimension to 20 has a straightforward interpre-
tation: when computing the asymptotic growth of the number of overlap-free
words, one can neglect the number of “single overlaps” Vn defined by Cassaigne.
We call the remaining words purely overlap-free words, as they can be entirely
decomposed in a sequence of overlap-free words via Cassaigne’s decomposition
(see [6] for more details).

Theorem 2. There exist two nonnegative matrices A0, A1 ∈ R
20×20
+ allowing

to describe the asymptotics of the number of overlap-free words in the following
way: let ‖ · ‖ be a matrix norm, and let A(n) : N → R

20×20
+ be defined as

A(n) = Ad1 · · · Adk
with dk . . . d1 the binary expansion of n − 1. Then,

un
 ||A(n)||. (6)

These matrices A0, A1 are submatrices of F0 and F1 described in Theorem 1.

The matrices F0, F1 in Theorem 1 are both nonnegative and hence possess a
common invariant cone K = R

30
+ . We say that a cone K is invariant for a linear

operator B if BK ⊂ K. All cones are assumed to be solid, convex, closed, and
pointed. We start with the following simple result proved in [15].

Lemma 1. For any cone K ⊂ R
d, for any norm | · | in R

d and any matrix norm
‖ · ‖ there is a homogeneous continuous function γ : K → R+ positive on intK
such that for any x ∈ intK and for any matrix B that leaves K invariant one
has

γ(x)‖B‖ · |x| ≤ |Bx| ≤ 1
γ(x)

‖B‖ · |x|.

Corollary 1. Let two matrices A0, A1 possess an invariant cone K ⊂ R
d. Then

for any x ∈ intK we have |Ad1 · · ·Adk
x|
 ‖Ad1 · · · Adk

‖ for all k and for all
indices d1, . . . , dk ∈ {0, 1}.

In view of Corollary 1 and of Eq. (5), Theorem 2 may seem obvious, at least if
we consider the matrices Fi instead of Ai. One can however not directly apply
Lemma 1 and Corollary 1 to the matrices A0, A1 or to the matrices F0, F1 be-
cause the vector corresponding to x is not in the interior of the positive orthant,
which is an invariant cone of these matrices. To prove Theorem 2 we construct
a wider invariant cone of A0 and A1 by using special properties of these matri-
ces. Theorem 2 allows us to express the rates of growth of the sequence un in
terms of norms of products of the matrices A0, A1 and then to use joint spectral
characteristics of these matrices to estimate the rates of growth. More explicitly,
Theorem 2 yields the following corollary:

Computing the Growth of the Number of Overlap-Free Words 89

Corollary 2. Let A0, A1 ∈ R
20×20
+ be the matrices defined in Theorem 2 and

let A(n) : N → R
20×20
+ be defined as A(n) = Ad1 · · · Adk

with dk . . . d1 the binary
expansion of n − 1. Then

log un

log n
− log ‖A(n)‖1/k → 0 as n → ∞. (7)

Proof. Since log2 n
k → 1 as n → ∞, we have

lim
n→∞

(
log2 un

log2 n − log2 ‖Ad1 ···Adk
‖

k

)
=

lim
n→∞

log2 un−log2 ‖Ad1 ···Adk
‖

k = lim
n→∞

log2

(
un·‖Ad1 ···Adk

‖−1
)

k .

By Theorem 2 the value log2

(
un · ‖Ad1 · · · Adk

‖−1
)

is bounded uniformly over
n ∈ N, hence it tends to zero, being divided by k. �
We now analyze the smallest and the largest exponents of growth α and β defined
in Eq. (1). For a given set of matrices Σ = {A1, . . . , Am} we denote by ρ̌ and ρ̂
its lower spectral radius and its joint spectral radius:

ρ̌(Σ) = lim
k→∞

min
d1,...,dk∈{1,...,m}

‖Ad1 · · · Adk
‖1/k, (8)

ρ̂(Σ) = lim
k→∞

max
d1,...,dk∈{1,...,m}

‖Ad1 · · · Adk
‖1/k.

Both limits are well-defined and do not depend on the chosen norm. Moreover,
for any product Ad1 · · ·Adk

we have

ρ̌ ≤ ρ(Ad1 · · · Adk
)1/k ≤ ρ̂ (9)

(see [14, 3] for surveys on these notions).

Theorem 3. For k ≥ 1, let αk = min
2k−1<n≤2k

log un

log n and βk = max
2k−1<n≤2k

log un

log n .

Then, with A0, A1 defined in Theorem 2,

α = lim
k→∞

αk = log2 ρ̌(A0, A1) and β = lim
k→∞

βk = log2 ρ̂(A0, A1). (10)

Moreover, there are positive constants C1, C2 such that

C1 ≤ min
2k−1<n≤2k

unn−α and C1 ≤ max
2k−1<n≤2k

unn−β ≤ C2 (11)

for all k ∈ N.

The proof of this theorem can be found in [7].

Corollary 3. There are positive constants C1, C2 such that

C1n
α ≤ un ≤ C2n

β , n ∈ N.

90 R.M. Jungers, V. Yu. Protasov, and V.D. Blondel

We end this section by giving sharp estimates for α and β, obtained thanks to
their representations as joint spectral quantities of A0 and A1. We also conjecture
that the lower bound on β is actually its exact value. We refer the reader to the
journal version of the present paper [7] for a complete description of how these
bounds have been derived.

Theorem 4
1.2690 < α < 1.2736
1.3322 < β < 1.3326 (12)

In [7] we also make (and give arguments for) the following conjecture:

Conjecture 1
β = log2

√
ρ(A0A1) = 1.3322

3 The Average Rate of Growth: The Lyapunov Exponent

We have seen that α < β. In particular, the sequence un does not have a constant
rate of growth, and the value log un

log n does not converge as n → ∞. This was
already noted by Cassaigne in [6]. Nevertheless, it appears that the value log un

log n
actually has a limit as n → ∞, not along all the natural numbers n ∈ N, but
along a subsequence of N of density 1. In other terms, the sequence converges
with probability 1. The limit, which differs from both α and β can be expressed
by the so-called Lyapunov exponent ρ̄ of the matrices A0, A1. To show this we
apply the following result proved by Oseledets in 1968. For the sake of simplicity
we formulate it for two matrices, although it can be easily generalized to any
finite set of matrices.

Theorem 5. [13] Let A0, A1 be arbitrary matrices and d1, d2, . . . be a sequence
of independent random variables that take values 0 and 1 with equal probabilities
1/2. Then the value ‖Ad1 · · ·Adk

‖1/k converges to some number ρ̄ with probability
1. This means that for any ε > 0 we have P

(∣
∣‖Ad1 · · · Adk

‖1/k − ρ̄
∣
∣ > ε

)
→ 0

as k → ∞.

The limit ρ̄ in Theorem 5 is called the Lyapunov exponent of the set {A0, A1}.
This value is given by the following formula:

ρ̄(A0, A1) = lim
k→∞

(∏

d1,...,dk

‖Ad1 · · ·Adk
‖1/k

)1/2k

(13)

(for the proof see, for instance, [16]). To understand what this gives for the
asymptotics of our sequence un we introduce some further notation. Let P be
some property of natural numbers. For a given k ∈ N we denote

Pk(P) = 2−(k−1)Card
{
n ∈ {2k−1 + 1, . . . , 2k}, n satisfiesP

}
.

Thus, Pk is the probability that the integer n uniformly distributed on the
set {2k−1 + 1, . . . , 2k} satisfies P . Combining Proposition 2 and Theorem 5 we
obtain

Computing the Growth of the Number of Overlap-Free Words 91

Theorem 6. There is a unique number σ such that for any ε > 0 we have

Pk

(∣
∣
∣
log un

log n
− σ

∣
∣
∣ > ε

)
→ 0 as k → ∞.

Moreover, σ = log2 ρ̄, where ρ̄ is the Lyapunov exponent of the matrices {A0, A1}
defined in Theorem 2.

Thus, for almost all numbers n ∈ N the number of overlap-free words un has the
same exponent of growth σ = log2 ρ̄. Let us recall that a subset A ⊂ N is said to
have density 1 if 1

nCard
{
r ≤ n, r ∈ A

}
→ 1 as n → ∞. We say that a sequence

fn converges to a number f along a set of density 1 if there is a set A ⊂ N of
density 1 such that lim

n→∞,n∈A
fn = f . Theorem 6 yields.

Corollary 4. The value log un

log n converges to σ along a set of density 1.

We show in [7] how to derive bounds on σ:

Theorem 7
1.3005 < σ < 1.3098. (14)

4 Conclusions

The goal of this paper is to precisely characterize the asymptotic rate of growth
of the number of overlap-free words. Based on Cassaigne’s description of these
words with products of matrices, we first prove that these matrices can be simpli-
fied, by decreasing the state space dimension from 30 to 20. This improvement
is not only useful for numerical computations, but allows to characterize the
overlap-free words that “count” for the asymptotics: we call these words purely
overlap free, as they can be expressed iteratively as the image of shorter purely
overlap free words.

We have then proved that the lower and upper exponents α and β defined by
Cassaigne are effectively reached for an infinite number of lengths, and we have
characterized them respectively as the logarithms of the lower spectral radius
and the joint spectral radius of the simplified matrices that we constructed. This
characterization allows us to compute them within 0.4% of their exact value.
Finally we have shown that for almost all values of n, the number of overlap-free
words of length n do not grow as nα, nor as nβ, but in an intermediary way as
nσ, and we have provided sharp bounds for this value of σ.

The computational results we report in this paper have all been obtained in
a few minutes of computation time on a standard PC desktop and can therefore
easily be improved.

This work opens obvious questions: Can joint spectral characteristics be used
to describe the rate of growth of other languages, such as for instance the
more general repetition free languages ? The generalization does not seem to
be straightforward for several reasons: first, the somewhat technical proofs of

92 R.M. Jungers, V. Yu. Protasov, and V.D. Blondel

the links between un and the norm of a corresponding matrix product take into
account the very structure of these particular matrices, and second, it is known
that a bifurcation occurs for the growth of repetition-free words: for some mem-
bers of this class of languages the growth is polynomial, as for overlap-free words,
but for some others the growth is exponential [9], and one could wonder how the
joint spectral characteristics developed in this paper could represent both kinds
of growth.

Acknowledgment. We would like to thank Prof. Stephen Boyd (Stanford Uni-
versity), Yuri Nesterov, and François Glineur (Université catholique de Louvain)
for their helpful suggestions on semi-definite programming techniques. This re-
search was carried out during the visit of the second author to the Université
catholique de Louvain (Louvain-la-Neuve, Belgium). That author is grateful to
the university for its hospitality.

References

1. Berstel, J.: Growth of repetition-free words–a review. Theoretical Computer Sci-
ence 340(2), 280–290 (2005)

2. Blondel, V.D., Nesterov, Y., Theys, J.: On the accuracy of the ellipsoid norm ap-
proximation of the joint spectral radius. Linear Algebra and its Applications 394(1),
91–107 (2005)

3. Blondel, V.D., Tsitsiklis, J.N.: A survey of computational complexity results in
systems and control. Automatica 36(9), 1249–1274 (2000)

4. Brlek, S.: Enumeration of factors in the thue-morse word. Discrete Applied Math-
ematics 24, 83–96 (1989)

5. Carpi, A.: Overlap-free words and finite automata. Theoretical Computer Sci-
ence 115(2), 243–260 (1993)

6. Cassaigne, J.: Counting overlap-free binary words. In: Enjalbert, P., Wagner, K.W.,
Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 216–225. Springer, Heidelberg
(1993)

7. Jungers, R.M., Protasov, V., Blondel, V.D.: Overlap-free words and spectra of
matrices (submitted, preprint, 2007), http://arxiv.org/abs/0709.1794

8. Jungers, R.M., Blondel, V.D.: On the finiteness conjecture for ratio-
nal matrices. In: Linear Algebra and its Applications (to appear, 2007),
doi:10.1016/j.laa.2007.07.007

9. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free
binary words. Journal of Combinatorial Theory Series A 105(2), 335–347 (2004)

10. Kfoury, A.J.: A linear time algorithm to decide whether a binary word contains an
overlap. Theoretical Informatics and Applications 22, 135–145 (1988)

11. Kobayashi, Y.: Enumeration of irreducible binary words. Discrete Applied Mathe-
matics 20, 221–232 (1988)

12. Lepistö, A.: A characterization of 2+-free words over a binary alphabet, Master
thesis, University of Turku, Finland (1995)

13. Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers
for dynamical systems. Transactions of the Moscow Mathematical Society 19, 197–
231 (1968)

http://arxiv.org/abs/0709.1794

Computing the Growth of the Number of Overlap-Free Words 93

14. Protasov, V.Y.: The joint spectral radius and invariant sets of linear operators.
Fundamentalnaya i prikladnaya matematika 2(1), 205–231 (1996)

15. Protasov, V.Y.: On the asymptotics of the partition function. Sbornik Mathe-
matika 191(3-4), 381–414 (2000)

16. Protasov, V.Y.: On the regularity of de rham curves. Izvestiya Mathematika 68(3),
27–68 (2004)

17. Restivo, A., Salemi, S.: Overlap-free words on two symbols. In: Perrin, D., Nivat,
M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer,
Heidelberg (1985)

18. Sloane, N.J.A.: On-line encyclopedia of integer sequences, http://www.research.
att.com/ njas/sequences

19. Thue, A.: Uber unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Mat.
Nat. Kl. 7, 1–22 (1906)

20. Thue, A.: Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.
Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl. 1, 1–67 (1912)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.research.att.com/~njas/sequences
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.research.att.com/~njas/sequences

On Stateless Multihead Automata:

Hierarchies and the Emptiness Problem

Oscar H. Ibarra1,�, Juhani Karhumäki2,��, and Alexander Okhotin2,3,��

1 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

{karhumak,alexander.okhotin}@utu.fi
3 Academy of Finland

Abstract. We look at stateless multihead finite automata in their two-
way and one-way, deterministic and nondeterministic variations. The
transition of a k-head automaton depends solely on the symbols cur-
rently scanned by its k heads, and every such transition moves each
head one cell left or right, or instructs it to stay. We show that stateless
(k + 4)-head two-way automata are more powerful than stateless k-head
two-way automata. In the one-way case, we prove a tighter result: state-
less (k + 1)-head one-way automata are more powerful than stateless
k-head one-way automata. Finally, we show that the emptiness problem
for stateless 2-head two-way automata is undecidable.

1 Introduction

Inspired by biologically-motivated models of computing [3,4,6], stateless multi-
head two-way finite automata and stateless multicounter machines were recently
introduced by Yang, Dang and Ibarra [7]. These stateless machines are essen-
tially one-state machines. The previous results [7] are mostly concerned with
decidability/undecidability of decision problems such as emptiness and reach-
ability. In this paper, we investigate the language accepting power of stateless
multihead finite automata.

Denote two-way nondeterministic (deterministic) finite automata by 2NFA
(2DFA), similarly denote their one-way variants by 1NFA (1DFA). We consider
stateless k-head 2NFAs and define them as pairs of an alphabet Σ and a set of
transitions δ. Let c, $ /∈ Σ, be the left and right end markers. Each transition
in δ is of the form a1 . . . ak → d1 . . . dk, where ai ∈ Σ ∪ {c, $} is the symbol
scanned by i-th head, while di ∈ {�, s, r} tells where each i-th head is to be
moved (�, s and r stand for left, stay and right, respectively). If there is at most
one transition for every collection of symbols a1, . . . , ak ∈ Σk, we refer to such
an automaton as a stateless k-head 2DFA. If none of the transitions move any
heads to the left, such an automaton is called a stateless k-head 1NFA (1DFA).

� Supported in part by NSF Grants CCF-0430945 and CCF-0524136, and a Nokia
Visiting Fellowship at the University of Turku.

�� Supported by the Academy of Finland under grants 44087 and 118540.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 94–105, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Stateless Multihead Automata: Hierarchies and the Emptiness Problem 95

For an input string w ∈ Σ∗, machines work on a tape containing cw$ and
start with all heads on the left end marker. At every step of the computation,
the symbols a1, . . . , ak currently scanned by all k heads are considered, any cor-
responding transition a1 . . . ak → d1 . . . dk ∈ δ is chosen, and each i-th heads is
moved according to di. If no such transition exists, the automaton rejects. If any
of the heads falls off the tape, the automaton rejects as well. If the transition
instructs all heads to stay, the automaton halts and accepts. The string is ac-
cepted if there exists a computation resulting in acceptance. As an example, the
stateless 2-head 1DFA with instructions cc → sr, ca → sr, cb → rr, ab → rr,
and b$ → ss recognizes the language L = {anbn+1 | n � 0}.

We shall also consider the well-known k-head 2NFAs (2DFAs) with states,
which use a finite set of states Q, and in which transitions are quintuples
(q, a1, . . . , ak, q′, d1, . . . , dk), with ai ∈ Σ ∪ {c, $} and di ∈ {�, s, r}, and with
q, q′ ∈ Q being the current and the next states of the automaton. The automa-
ton starts on a tape containing cw$ with all heads over c and having an internal
state q0 ∈ Q. At every step of the computation such an automaton may apply
only transitions labelled by the current state q, and along with moving the heads
it enters state q′. The automaton accepts by entering a designated state qf ∈ Q.

It is known that for both for multihead 2NFAs with states and for 2DFAs
with states, k + 1 heads are better than k heads [2]. For stateless machines,
we would like to be able to show a similar result, i.e., that for k � 1, stateless
(k + 1)-head 2NFAs (resp., 2DFAs) are better than those with only k heads.
Although the case k = 1 is obvious, we are not able to give a proof for the general
case at this time. Proving such a result using diagonalization (as in the case of
automata with states [2]) seems quite difficult, as this would involve constructing
a stateless multihead 2-NFA M that is capable of diagonalizing over all stateless
k-head 2NFAs. However, it is not at all clear how M can accomplish this without
states. Nevertheless, in Section 2, we show how to reduce the hierarchy problem
for stateless multihead 2NFAs (resp., 2DFAs) to the hierarchy for multihead
2NFAs (resp. 2DFAs) with states. But the resulting hierarchy we obtain is not
as tight, as we are only able to prove that stateless (k + 4)-head 2NFAs (resp.,
2DFAs) are better than those with k heads.

In Section 3, we consider stateless multihead one-way machines. We show that
stateless (k + 1)-head 1NFAs (resp., 1DFAs) are more powerful than stateless
k-head 1NFAs (resp., 1DFAs), matching the known hierarchy for one-way ma-
chines with states. In Section 4, we show that the emptiness problem (deciding
if the language accepted is empty) for stateless 2-head 2DFAs is undecidable,
strengthening a recent result [7]. It remains an interesting open question whether
this result can be shown to hold for stateless 2-head 1DFAs (or 1NFAs).

2 Stateless Multihead Two-Way Automata

Weshallmainly establish hierarchies of stateless automata by simulating automata
with states and using known hierarchy theorems for the latter automata. How-
ever, a rough infinite hierarchy of languages recognized by stateless multihead

96 O.H. Ibarra, J. Karhumäki, and A. Okhotin

automata (with respect to heads) can be established directly, without using any
previous work:

Proposition 1. There is an infinite head-hierarchy of stateless multihead
1DFAs (resp., 1NFAs, 2NFAs, 2DFAs) over a unary alphabet.

Proof. It is sufficient to show that for every k � 1, there is a language that
cannot be accepted by any stateless k-head 2NFA but can be accepted by a
stateless k′-head 1DFA for some k′ > k.

For k � 1, define the singleton language Lk = {ak}. Lk can be accepted by
the stateless (k + 1)-head 1DFA with the following transitions:

ck+1 → skr, cka → sk−1rr, ck−1a2 → sk−2rsr, ck−2a3 → sk−3rssr, . . . ,
cak → rsk−1r, ak$ → sk+1.

Clearly, for every k, there are at most a finite number of stateless k-head 2NFAs
that we can define and, hence, only a finite number of distinct unary languages
that can be accepted by such machines, and this number depends only on k.
Let this number be f(k). It follows that there is an 1 � i � f(k) + 1 such that
Li cannot be accepted by any stateless k-head 2NFA, but Li can be accepted
by a stateless (i + 1)-head 1DFA and, hence, also by a stateless (f(k) + 1)-head
1DFA. ��

Let us now establish more precise separations. Our first hierarchy relies upon
the following simulation:

Lemma 1. Let M1 be a k-head 2DFA (2NFA) with states, where k � 1. Let Σ be
the input alphabet of M1. Then there exists a stateless (k+3)-head 2DFA (2NFA,
respectively) M2 over Γ ⊃ Σ and a string x ∈ Γ ∗, such that L(M2) ∩ xΣ∗ =
x · L(M1).

Proof. Let M1 have states q1, . . . , qn, with initial state q1 and unique halt-
ing/accepting state qn. We assume that none of qi’s is in Σ. An input to M1 is
of the form ca1 . . . am$, with m � 0 and ai ∈ Σ.

We show how to construct from M1 a stateless (k + 3)-head 2DFA or 2NFA
M2, which, when given cq1 . . . qna1 . . . an$, accepts if and only if M1 accepts
ca1 . . . an$, that is, the string x in the statement of the theorem is q1 . . . qn.
Given cq1 . . . qna1 . . . an$, M2 simulates M1 on the input ca1 . . . an$.

In the beginning, heads k + 1 and k + 2 stand over q1, head k + 3 remains at
the left end marker, while heads 1, . . . , k proceed to the beginning of the input.
This is done by the following transitions:

ckccc → rkrrs

(qi)kq1q1c → rksss (1 � i < n)

To simplify the notation, assume that the symbol qn is the left end marker used
by M1 (instead of c). Then heads 1, . . . , k assume their initial position at qn.

Three extra heads of M2 are used as follows. Head k + 3 will stand either
at c or at q1, thus storing a single bit, the number of steps of the simulated

On Stateless Multihead Automata: Hierarchies and the Emptiness Problem 97

computation modulo 2. At the first step (as well as at every odd step), when
head k + 3 sees c, head k + 1 scans the current state of M1, while head k + 2 is
moving to the next state of M1. At every even step, when head k+3 sees q1, the
roles of heads k + 1 and k + 2 are reversed: k + 2 stands over the current state,
while k + 1 looks for the next state.

The behaviour at odd steps is implemented as follows. For each transition
(qi, a1, . . . , ak, qi′ , d1, . . . , dk) of M1, where qi, qj ∈ Q, a1, . . . , ak ∈ Σ ∪ {qn, $}
and d1, . . . , dk ∈ {�, s, r}, define the following transition of M2:

a1 . . . akqiqjc →

⎧
⎨

⎩

sksrs if qj < qi′

sks�s if qj > qi′

d1 . . . dkssr if qj = qi′

That is, while head k + 2 scans a state other than qi′ , it moves towards qi′ ,
while other heads wait and continue scanning their symbols. This allows us to
know the exact state of M1 during the entire movements of head k + 2. Once
head k + 2 reaches qi′ , the transition of M1 is simulated in a single step of M2,
and at the same time head k +3 is moved from c to q1, thus indicating that it is
head k+2 that currently sees the state of M1, while head k+1 can be anywhere
and should move towards the next state of M1.

The behaviour at even steps of the computation of M1 is implemented in M2

symmetrically:

a1 . . . akqjqiq1 →

⎧
⎨

⎩

skrss if qj < qi′

sk�ss if qj > qi′

d1 . . . dkss� if qj = qi′

Finally, once M1 enters the accepting state qn, M2 should accept as well, that
is, and for all qj ∈ Q and a1, . . . , ak ∈ Σ ∪ {qn, $},

a1 . . . akqnqjc → sksss

a1 . . . akqjqnq1 → sksss

This completes the construction of M2, which is applicable both to deterministic
and nondeterministic cases. ��

It is known that (k + 1)-head 2DFAs are more powerful than k-head 2DFAs
[2], and the same result holds for 2NFAs. This gives an infinite hierarchy (with
respect to heads) of stateless multihead two-way DFAs.

Theorem 1. For k � 1, stateless (k + 4)-head 2DFAs (2NFAs) are more pow-
erful than stateless k-head 2DFAs (2NFAs, respectively).

Proof. Let L ⊆ a∗ be a language defined by Monien [2], which is accepted
by a (k + 1)-head 2DFA M1 with states (2NFA, respectively), but cannot be
accepted by any k-head 2DFA with states (2NFA, respectively). Let M2 be the
corresponding (k+4)-head two-way stateless machine defined in Lemma 1, which
recognizes L′ ⊆ Γ ∗ with L′ ∩ xΣ∗ = xL ⊆ xa∗.

98 O.H. Ibarra, J. Karhumäki, and A. Okhotin

Suppose L′ can be accepted by a stateless k-head 2DFA (2NFA) M3. We can
then construct from M3 a k-head 2DFA (2NFA) with states M4 accepting the
original language L. The input to M4 is cad$. M4 simulates the computation of
M3 on cxad$, but since x is not on its input, M4 simulates the moves of the k
heads on x in its finite-state control. Hence, L can be accepted by a k-head 2DFA
(2NFA) with states. This is a contradiction, which shows that L′ is a desired
example. ��

It is an interesting open question whether Theorem 1 can be made tighter. Note
that if one can improve the simulation in Lemma 1 so that M2 needs less than
k + 3 heads, one can do this.

Next, we show that any language accepted by a multihead 2DFA (resp., 2NFA)
with states can be accepted by a stateless multihead 2DFA (resp., 2NFA) at the
price of more heads. The proof is based upon the following simulation, which is
similar to the one by Yang, Dang and Ibarra [7].

Lemma 2. Every language accepted by a k-head 2DFA (resp., 2NFA) with n
states is accepted by a stateless (k +
log2 n�)-head 2DFA (resp., 2NFA).

Proof. Consider an arbitrary k-head 2DFA (resp., 2NFA) M with states
q0, . . . , qn−1. We construct a stateless DFA (resp., 2NFA) M ′ to simulate the
k-head 2DFA M . The automaton M ′ has k +
log2 n� heads: heads 1, . . . , k
operate exactly as the corresponding heads of M , while the additional heads
k+1, . . . , k+
log2(n+1)� are used to keep track of the state. At every moment,
the position of heads k + 1, . . . , k +
log2(n + 1)� represents a number between
0 and n − 1 in binary notation: if head k + i, with 1 ≤ i ≤
log2 n�, is at the left
end marker marker, we consider the i-th bit as 0, and if it is at the next symbol
to the left (whether it is the first symbol of the input, or the right end marker if
the input is empty), we consider this bit as 1. This number represents the index
of the current state of M .

The automaton M ′ starts with all heads on the left end marker; the position of
heads k + 1, . . . , k +
log2(n + 1)� represents the state q0, that is, the initial state
of M . At every step of the computation, M ′ simulates a single transition of M . It
can see the current state of M from the symbols observed by heads k + 1, . . . , k +

log2(n + 1)�. Then M ′ moves its heads 1, . . . , k with all its hends on the left end
marker according to the transition table of M , and at the same time moves its
heads k + 1, . . . , k +
log2(n + 1)� to encode the next state of M . ��

Theorem 2. Stateless multihead 2DFAs (resp., 2NFAs) are equivalent to mul-
tihead 2DFAs (resp., 2NFAs) with states, which are, in turn, equivalent to log n
space-bounded deterministic (resp., nondeterministic) Turing machines.

Since over a unary alphabet, (k + 1)-head 1DFAs (resp., 1NFAs) with states are
better than k-head 1DFAs (resp, 1NFAs) with states [2], we again obtain, as a
corollary, that there is an infinite head-hierarchy of stateless multihead 2DFAs
(resp., 2NFAs) over a unary alphabet.

On Stateless Multihead Automata: Hierarchies and the Emptiness Problem 99

3 Stateless Multihead One-way Automata

We now look at stateless multihead 1DFAs (resp., 1NFAs) and show a tight
hierarchy. Our starting point is the result of Rosenberg [5] that the language

Lk = {u k(k−1)
2

#u k(k−1)
2 −1

. . .#u2#u1#v1#v2# . . .#u k(k−1)
2 −1

#u k(k−1)
2

|

ui, vi ∈ {a, b}∗, ui = vi}

is recognized by a k-head 1DFA with states. Yao and Rivest [8] have further
established that this language cannot be recognized by any (k − 1)-head 1NFA
with states. Using a variant of this language, we show a tight hierarchy for
stateless multihead one-way automata.

Theorem 3. There is a language that is accepted by a stateless k-head 1DFA
that cannot be accepted by any (k − 1)-head 1NFA with states.

Proof. Let m = k(k−1)
2 . Consider the language

L′
k = {um†m−1um−1†m−2 . . . †1u1‡1v1‡2v2‡3 . . . ‡mvm | ui, vi ∈ {a, b}∗, ui = vi}

over the alphabet Σk = {a, b, †1, . . . , †m−1, ‡1, . . . , ‡m}.
We construct a stateless k-head 1DFA M1 which accepts all the strings in L′

k

plus some extraneous strings not in L′
k. This is because M1 cannot check the

number, locations, and the markings (symbols different from a, b). However, as
we shall see, these extraneous strings will not affect the correctness of the proof.

The construction, which is done inductively on k, is an adaptation of the
method of Rosenberg [5]. While Rosenberg essentially relies on internal states,
in our stateless construction the automaton is guided by the numbers attached
to the markers.

Basis k = 2: the language {w‡1w | w ∈ {a, b}∗} is recognized by a 2-head
1-DFA with the following transitions: cc → rs, ac → rs, bc → rs, ‡1c → rr,
aa → rr, bb → rr, $‡1 → ss.

Induction step. The computation proceeds as follows. At the first phase, heads
are moved to their initial positions: head k goes to ‡m−k+2, each head i (2 �
i � k − 1) proceeds to †m−i+1, while head 1 stays at the start marker. At the
second phase, head k moves across the substrings vm−k+2, . . . , vm, and as it starts
from each ‡m−i+1 to read vm−i+1, head i simultaneously starts from †m−i+1 and
reads um−i+1. Finally, at the third phase heads 1, . . . , k−1 are moved to †m−k+1,
from where the inner part of the string will be tested for membership in L′

k−1

as claimed in the induction hypothesis. The third phase has a special form for
k = 3.

The first phase is implemented by moving heads 2, . . . , k together, and once
the destination of each head is reached, this head is left behind and the rest of
the heads continue their movement, until k reaches its final point. This is done
using following transitions:

100 O.H. Ibarra, J. Karhumäki, and A. Okhotin

cck−1 → srk−1,

c†m−1 . . . †m−i+2xxk−i → si−1rrk−i
(
i ∈ {2, . . . , k − 1}, x ∈ {†m−i+2, a, b}

)
,

c†m−1 . . . †m−k+2x → sk−1r
(
x ∈ {†m−k+1, . . . , †1, ‡1, . . . , ‡m−k+1, a, b}

)
.

Note that the sequence †m−1 . . . †m−i+2 is empty when i = 2.
The movement of heads in phase two is defined in the following way:

c†m−1 . . . †m−i+2x†m−i−1 . . . †m−k+1y → si−1rsk−i−1r

(for all i ∈ {2, . . . , k − 1} and xy ∈ {†m−i+1‡m−i+1, aa, bb}),
x†m−2 . . . †m−k+1y → rsk−2r (for all xy ∈ {c‡m, aa, bb}),

Let us first define the third phase for the case k = 3. The tape contains
cu3†2u2†1u1‡1v1‡2v2‡3v3$, and after the second phase head 1 is over †2, head 2
is over †1 and head 3 is over $. Now head 2 is to be moved to ‡1, which is done
by transitions †2x$ → srs with x ∈ {†1, a, b}, and then head 1 is moved to †1

using transitions x‡1$ → rss with x ∈ {†2, a, b}. It remains to compare u1 to v1.
Instead of applying the induction hypothesis, for k = 3 it is easier to implement
this comparison again using transitions xy$ → rrs, for all xy ∈ {†1‡1, aa, bb}.
Acceptance is done by ‡1‡2$ → sss.

Let us now define phase three for k � 4. All heads should catch up with head
k − 1, which is currently over †m−k+1. The heads are moved one by one in the
following order: first k − 2, then k − 3, and so on until head 1. The following
transitions implement this:

†m−1 . . . †m−i+1x(†m−k+1)
k−i−2$ → si−1rsk−i−1

(for all i ∈ {1, . . . , k − 2} and x ∈ {†m−i+1, . . . , †m−k+2, a, b})

Once the first three phases check the conditions ui = vi for all i ∈ {m, m −
1, . . . , m − k + 2} and put heads 1, . . . , k − 1 over †m−k+1, it remains to check
the membership of the string um−k+1†m−k+2 . . . †1u1‡1v1 . . . ‡m−k+1vm−k+1 in
L′

k−1, By the induction hypothesis, there exists a (k − 1)-head DFA recognizing
this language. Let T ⊆ (Σk−1)k−1 × {s, r}k−1 be its set of transitions. For
every transition c1 . . . ck−1 → d1 . . . dk−1 in this automaton, the constructed
automaton contains the transition c′1 . . . c′k−1$ → d1 . . . dk−1s, where

c′i =

⎧
⎨

⎩

†m−k+1, if ci = c
‡m−k+2, if ci = $

ci, otherwise

The resulting automaton recognizes L′
k.

Now suppose L(M1) is accepted by a (k − 1)-head 1NFA M2 with states.
Then, we can construct from M2 a (k − 1)-head 1NFA M3 with states accepting
the original language Lk as follows: When M3 is given cw$ (note that the † and
‡ markings are not in w), M3 simulates the computation of M2, but uses its
finite-state to remember the markings and their order and insert these markings

On Stateless Multihead Automata: Hierarchies and the Emptiness Problem 101

at the appropriate places for the heads to simulate. Note also that M3 can make
sure that it is only simulating the computation of M2 on strings with valid
format. Hence L can be accepted by a (k − 1)-head 1NFA with states. This is
impossible. It follows that there is a language accepted by a stateless k-head
1DFA that cannot be accepted by k-head 1NFA. ��

Corollary 1. Stateless k-head 1DFAs (resp, 1NFAs) are strictly more powerful
than stateless (k − 1)-head 1DFAs (resp., 1NFAs).

Let us now recall another result by Yao and Rivest [8], who constructed a lan-
guage recognized by a 2-head 1NFA with states but not recognized by a k-head
1DFA with states for any k. The following stronger statement involving stateless
1NFAs can be established:

Theorem 4. There exists a language recognized by a stateless 2-head 1NFA,
which is not recognized by any k-head 1DFA with states for any k.

Proof. Yao and Rivest [8] give the following example:

L = {#w1x1 . . . #wnxn | n � 0, wi ∈ {a, b}∗, xi ∈ {0, 1}∗, ∃i∃j : wi = wj , xi �= xj}

Let Σ = {†, ‡, a, b, 0, 1, c, $} and consider a variant of the above language:

L′ = {†‡w1x1 . . . †‡wnxn | n � 0, wi ∈ {a, b}∗, xi ∈ {0, 1}∗, ∃i∃j : wi = wj , xi �= xj}

Let us prove that this language is also not recognized by any k-head 1DFA with
states. Suppose the contrary; then, given a k-head 1DFA with states for this
language, one can easily construct a k-head 1DFA for L, which contradicts the
result of Yao and Rivest [8, Th.4].

Construct a stateless 2-head 1NFA that recognizes L′ modulo intersection
with (†‡{a, b}∗{0, 1}∗)∗. In general, this automaton operates similarly to the 2-
head 1NFA with states sketched by Yao and Rivest, and uses double markers
to simulate a few internal states. In the beginning, head 1 nondeterministically
chooses an instance of ‡, using transitions σc → rs, for all σ ∈ {c, †, ‡, 0, 1, a, b}.
Next, head 1 waits over ‡, while head 2 nondeterministically chooses another
instance of ‡ as follows: ‡σ → sr, for all σ ∈ {c, †, ‡, 0, 1, a, b}. Once head 1 scans
‡ in front of wixi, while head 2 scans ‡ before wjxj , both heads synchronously
move to the right, ensuring that wi = wj : ‡‡ → rr, aa → rr, bb → rr. Once the
symbols from xi and xj are encountered, the heads proceed further as long as
these strings remain identical: 00 → rr, 11 → rr. If any symbols in xi and xj do
not match, the string is accepted: 01 → ss, 10 → ss. If one of these substrings
is shorter than the other, then one head arrives to †, while the other still reads
symbols; in this case the automaton also accepts: †0 → ss, †1 → ss, 0† → ss,
1† → ss. If xi and xj are identical, then both heads come to † simultaneously,
and since the transition by †† is undefined, the automaton rejects.

Let L′′ be the language recognized by this automaton and suppose it is recog-
nized by a k-head 1DFA with states for some k � 1. Then one can construct a
k-head 1DFA with states for L′′∩(†‡{a, b}∗{0, 1}∗)∗ = L′, which contradicts the
claim proved above. ��

102 O.H. Ibarra, J. Karhumäki, and A. Okhotin

Next we show, that even for unary inputs, multihead 1DFAs are surprisingly
powerful:

Theorem 5. For every m � 1, the singleton language Lm = { a2m−1 } can be
accepted by a stateless (2m + 1)-head 1DFA.

Proof. Of 2m + 1 heads used by the automaton, head 1 is the main head, and the
rest of the heads form m pairs (i, i + m). At the first step, heads 1, 2, . . . , m + 1
(that is, the main head and the first head from each pairs) are moved to posi-
tion 1, while heads m + 2, . . . , 2m + 1 (second components of all pairs) remain in
position 0.

Then heads (m+1, 2m+1) (that is, the last pair), which are only one position
apart, are moved towards the end of the string, until m+1 sees the end marker.
From here, heads 1, 2, . . . , m (the main head and the first components of all
unused pairs) move synchronously with head 2m+ 1, until head 2m+ 1 sees the
end marker. For the last pair, this will take only one step, and after that heads
1, 2, . . . , m will be at position 2, heads m+2, . . . , 2m will be at the start marker,
while heads m + 1 and 2m + 1 will be at the end marker.

Then the next pair (m, 2m) is taken, and the same sequence of steps is re-
peated. Note that the distance between these heads is now 2. The result is that
heads m and 2m are moved to the end, while heads 1, 2, . . . , m − 1 are moved
to position 4. This is continued with the rest of the pairs, until the following
configuration is reached: heads 1 and 2 are in position 2m−1, head m + 2 is in
position 0, the rest of the heads are at the end marker.

From here, heads 2 and m + 2 are moved towards the end of the string, until
head 2 sees the end marker. At this point, heads 1 and m + 2 are at the same
position if and only if the length of the string is 2m −1. After that head m+2 is
moved together with head 1, and the input is accepted if and only if these two
heads arrive to the end at the same time. This happens if and only if the input
has length 2m − 1. ��

4 The Emptiness Problem

It has been shown by Yang, Dang and Ibarra [7] that the emptiness problem (is
the language accepted by a given machine empty?) for stateless 3-head 1DFAs
is undecidable. It remains open whether this result holds for stateless 2-head
1DFAs (or 1NFAs). In this section, we show that the emptiness problem for
stateless 2-head machines is undecidable if two-way movement is allowed.

Theorem 6. The emptiness problem for stateless 2-head 2DFAs is undecidable,
even when each head makes only one reversal on the input tape.

The proof is by reduction from the emptiness problem for a restricted class of
2-head 1DFAs with states. Let us define this class.

Definition 1. A 2-head 1DFA with states, with initial offset and with simul-
taneous movement of heads is a sextuple (Σ, #, Q, q0, δ, qf), where # ∈ Σ

On Stateless Multihead Automata: Hierarchies and the Emptiness Problem 103

is a designated symbol, q0, qf ∈ Q are the initial and the accepting states,
δ : Q × Σ × Σ → Q is the transition function. Given an input of the form
u#v, with u ∈ Σ+ \ {#}∗ and v ∈ Σ∗, the automaton starts in state q0 with
head 1 over the first symbol of u and head 2 over # in front of v. If the au-
tomaton is in state q, the first head scans a and the second head scans b, the
automaton goes to state δ(q, a, b) and both heads are moved to the right by one
square. The input is accepted if and only if the state when head 2 reaches the
end of the string is qf .

In a typical case, u will be much shorter than v, and eventually head 1 will reach
the marker #. It will process it uniformly with the rest of the symbols, according
to the transition function.

Lemma 3. The emptiness problem for the class of 2-head 1DFAs with states
given in Definition 1 is undecidable.

Proof. Let us define a variant of the language of valid accepting computations
of a Turing machine T operating over the input alphabet Γ . The configuration
of T on the input w ∈ Γ ∗ at step i using workspace s is given by a string of
length s over some auxiliary alphabet Ω. Denote this string by CT (w, s, i). Then
the language of computation histories is defined as

VALC(T) = {CT (w, s, 0)#CT (w, s, 1)� . . . �CT (w, s, n) |
at each i-th step T uses at most s squares

CT (w, s, n) is an accepting configuration}

The exact form of CT can be defined so that this language can be recognized by
a two-head automaton as is Definition 1. On the other hand, VALC(T) = ∅ if
and only if L(T) = ∅. Since the emptiness of a Turing machine is undecidable,
so is the given decision problem. ��

Proof (Proof of Theorem 6). The proof is a reduction from the emptiness prob-
lem for the automata given in Definition 1.

Let A = (Σ, #, Q, qinit, δ, qf) be such an automaton, let Σ′ = Σ × Q × Q ×
{1, 2}. Let w = a1 . . . am−1#am+1 . . . an be a string given to A, let qi (m � i � n)
be the state of A after 2nd head reads ai. Then qm = qinit. For convenience,
define q0 = q1 = . . . = qm−1 = qinit (though head 2 never reads a0, . . . am−1).
Then the computation of A on w is represented by the following string over Σ′:

x(1)
n x(2)

n x
(1)
n−1x

(2)
n−1 . . . x

(1)
1 x

(2)
1 , with x

(j)
i = (ai, qi−1, qi, j) (1)

Each quadruple (ai, qi−1, qi, j) represents A with its heads 1 and 2 in positions
i − m and i, respectively, with symbol ai under head 2, currently being in state
qi−1 and about to enter state qi. Note that the order of symbols is reversed, and
each symbol of w is represented by an “odd” and an “even” symbol, which differ
only in the last component.

Construct a stateless 2-head 2DFA B over Σ′ to accept the language of all
strings of this form corresponding to the strings accepted by A. At the first stage

104 O.H. Ibarra, J. Karhumäki, and A. Okhotin

of the computation of B, its heads go together to the end of the input, with head
2 always being one square ahead of head 1. While travelling like this, the heads
check the general form (1) of the computation. This behaviour is implemented
by the following transitions:

cc → sr (2)
c(a, qf , q′, 1) → rr (a ∈ Σ; q, q′ ∈ Q) (3)

(a, q, q′, 1)(a, q, q′, 2) → rr (a ∈ Σ; q, q′ ∈ Q) (4)
(a, q′, q′′, 1)(b, q, q′, 2) → rr (a, b ∈ Σ; q, q′, q′′ ∈ Q) (5)

Transition (3) checks the last state for being accepting. If an odd and an even
symbol in some pair have different data, then (4) will not be applicable and the
input will be rejected. Similarly, if two consecutive pairs violate the sequence of
states, then (5) is not applicable.

Once head 2 reaches the end marker, with head 1 lagging behind by one
symbol, the heads exchange their positions using the transition

(a, qinit, qinit, 2)$ → r�, (6)

and then head 1 stays over the end marker, while head 2 proceeds to the left
until it encounters #:

$(a, qinit, qinit, i) → s� (a ∈ Σ \ {#}, i ∈ {1, 2})
$(#, qinit, q, 2) → �s (q ∈ Q)

At this point, head 1 is over the last symbol before $, which should be of the
form (a, qinit, qinit, 2), while head 2 scans the leftmost symbol (#, qinit, q, 2). At
this time, both heads are reading even symbols, and they start simultaneously
moving left, maintaining equal parity of the symbols they scan. This allows the
transitions in this phase to be distinct from the previously defined transitions.
The following transitions simulate the operation of A:

(b, q′′, q′′′, i)(a, q, q′, i) → �� (a, b ∈ Σ; q, q′, q′′, q′′′ ∈ Q; δ(q, a, b) = q′; i ∈ {1, 2})

If all transitions are correct, head 2 will eventually reach the start marker, where
B accepts:

(b, q′′, q′′, 2)c → ss (b ∈ Σ; q′′, q′′′ ∈ Q)

It remains to consider the cases when the input is ill-formed. Suppose the
general form (1) is violated, that is, let the string be of the form

x(1)
n x(2)

n x
(1)
n−1x

(2)
n−1 . . . x

(j)
i y . . . (7)

where symbols up to x
(j)
i are as in (1), while y is not as required. Then B

eventually reaches a configuration with head 1 over x
(j)
i and head 2 over y.

Suppose it is the alternation of even and odd symbols that has been violated.
Then x

(j)
i = (ai, qi−1, q, j) and y = (b, q′, q′′, j), and the transition is either

On Stateless Multihead Automata: Hierarchies and the Emptiness Problem 105

undefined, or it is of the form (a, q, q′, i)(b, q′′, q′′′, i) → ��. In the latter case,
both heads move left by one symbol and reach their previous configuration,
from which they will again move over x

(j)
i and y. Thus the computation goes

into an infinite loop.
If the string prematurely ends with an odd symbol, then eventually head 1

will scan (a, q, q′, 1), while head 2 will scan $. The transition (6) will not be
applicable, and the input will be rejected. In this way the syntax of the input
string will be checked before the simulation of A starts, and hence syntactic
garbage will not cause mistakes in the simulation. ��
Although we are not able to resolve at this time the question of whether or not
the emptiness problem for stateless 2-head 1DFAs (or 1NFAs) is undecidable,
we can show an interesting result using the following lemma.

Lemma 4 (Domaratzki [1]). Let Σ be an alphabet, let Σ′ = {a′ |a ∈ Σ} be its
copy and define a homomorphism h : Σ∗ → (Σ′)∗ by h(a) = a′ for all a ∈ Σ∗.
Then the language

⋃
w∈Σ∗ w h(w) is recognized by a stateless 2-head 1DFA.

Theorem 7. There is a fixed stateless 2-head 1DFA M1 over a 4-letter alpha-
bet, such that it is undecidable to determine, given a DFA M2, whether or not
L(M1) ∩ L(M2) = ∅.

Proof. Let Σ = {a, b} and consider the twin shuffle language L1 as in Lemma 4,
defined over the alphabet {a, b, a′, b′}. Let {(u1, v1), . . . , (um, vm)} be an instance
of PCP over {a, b}, and consider the regular language L2 =

(⋃m
i=1 uih(vi)

)+.
The intersection L1 ∩L2 is empty if and only if this is a yes-instance. Since PCP
is undecidable, this proves undecidability of the emptiness of intersection. ��
It remains an interesting open question whether the emptiness problem for state-
less 2-head 1DFAs (or 1NFAs) is undecidable.

References

1. Domaratzki, M.: Personal communication (August 2007)
2. Monien, B.: Two-way multihead automata over a one-letter alphabet. RAIRO In-

formatique theoretique 14(1), 67–82 (1980)
3. Păun, G.: Computing with membranes. Journal of Computer and System Sci-

ences 61(1), 108–143 (2000)
4. Păun, G.: Membrane Computing, An Introduction. Springer, Heidelberg (2002)
5. Rosenberg, A.L.: On multi-head finite automata. IBM Journal of Research and

Development 10(5), 388–394 (1966)
6. Yang, L., Dang, Z., Ibarra, O.H.: Bond computing systems: a biologically inspired

and high-level dynamics model for pervasive computing. In: Akl, S.G., Calude, C.S.,
Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618,
pp. 226–241. Springer, Heidelberg (2007)

7. Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and P systems. In: Pre-
Proceedings of Workshop on Automata for Cellular and Molecular Computing (Au-
gust 2007)

8. Yao, A.C., Rivest, R.L.: k + 1 heads are better than k. Journal of the ACM 25(2),
337–340 (1978)

Myhill-Nerode Theorem for

Recognizable Tree Series Revisited�

Andreas Maletti��

International Computer Science Institute
1947 Center Street, Suite 600, Berkeley, CA 94704, USA

Abstract. In this contribution the Myhill-Nerode congruence rela-
tion on tree series is reviewed and a more detailed analysis of its prop-
erties is presented. It is shown that, if a tree series is deterministically
recognizable over a zero-divisor free and commutative semiring, then
the Myhill-Nerode congruence relation has finite index. By [Bor-
chardt: Myhill-Nerode Theorem for Recognizable Tree Series. LNCS 2710.
Springer 2003] the converse holds for commutative semifields, but not in
general. In the second part, a slightly adapted version of the Myhill-

Nerode congruence relation is defined and a characterization is obtained
for all-accepting weighted tree automata over multiplicatively cancella-
tive and commutative semirings.

1 Introduction

By the Myhill-Nerode theorem, we know that for every regular string lan-
guage L, there exists a unique (up to isomorphism) minimal deterministic finite
string automaton that recognizes L. This result was extended to several devices
including finite tree automata (see the discussion in [1]), to weighted string au-
tomata [2] over (multiplicatively) cancellative semirings, and to weighted tree
automata [3] over semifields (see [4,5] for an introduction to semirings). For the
weighted devices, the minimal deterministic automaton is no longer unique up to
isomorphism. The structure of it is still unique but the distribution of the weights
on the transitions may vary. In [2] this is called unique up to pushing. Weighted
tree automata and transducers recently found promising applications (see [6]
for a survey) in natural language processing, where the size of the automata is
crucial and thus minimization essential.

Let us recall the Myhill-Nerode congruence of [7]. Two trees t and u are
equal in the Myhill-Nerode congruence ≡ψ for a given tree series ψ over the
semifield (A, +, ·, 0, 1), if there exist nonzero coefficients a, b ∈ A such that for
all contexts C we observe the equality a−1 · (ψ, C[t]) = b−1 · (ψ, C[u]). In this
expression, the coefficients a and b can be understood as the weights of t and u,
� This is the extended abstract of a talk first presented at AutoMathA 2007, Palermo,

Italy.
�� Author is on leave from the Institute for Theoretical Computer Science, Technische

Universität Dresden, 01062 Dresden, Germany. The author gratefully acknowledges
the support of DAAD and the AutoMathA program of the ESF.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 106–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 107

respectively. Both sides of the previous equation can be understood as futures;
the futures ψt and ψu are given for every context C by (ψt, C) = a−1 · (ψ, C[t])
and (ψu, C) = b−1 · (ψ, C[u]). Roughly speaking, in ψt a context is assigned the
weight of C[t] in ψ with the weight of t cancelled out. In other words, trees
t and u are equal if and only if their futures ψt and ψu coincide.

The Myhill-Nerode congruence ≡ψ has two major applications: (i) it ex-
actly characterizes whether ψ is deterministically recognizable; i.e., ψ is deter-
ministically recognizable if and only if ≡ψ has finite index; and (ii) it presents
a minimal deterministic wta that recognizes the tree series ψ. In this contri-
bution, we consider the Myhill-Nerode relation for semirings which are not
necessarily semifields. We will show that, for all commutative and zero-divisor
free (i.e., a · b = 0 implies that 0 ∈ {a, b}) semirings, a deterministically recog-
nizable tree series ψ yields a Myhill-Nerode congruence ≡ψ with finite index.
Thus whenever ≡ψ has infinite index, then ψ is not deterministically recogniz-
able. This extends a result of [7] from commutative semifields to commutative
and zero-divisor free semirings. Secondly, we also consider the opposite direc-
tion with a particular focus on the minimal deterministic wta. We show how
all-accepting [8] wta over cancellative semirings are related to unweighted tree
automata. This connection can be used to minimize deterministic all-accepting
wta over commutative and cancellative semirings. A Myhill-Nerode theorem
for all-accepting wta over semifields is already presented in [8]. We contribute
an explicit minimization and an extension of the result to cancellative semirings.
Note that every cancellative semiring can be embedded into a semifield, but solv-
ing the problem in the semifield might yield a wta using coefficients that do not
exist in the cancellative semiring (e.g., for the natural numbers the resulting wta
might use fractions). It then remains open whether a wta using only coefficients
of the cancellative semiring exists.

Finally, we also investigate the construction of a minimal wta in the gen-
eral case (again over a cancellative semiring). To this end, we present a slightly
adapted Myhill-Nerode relation. However, one main point remains open: In
cancellative semirings (as opposed to semifields) the Myhill-Nerode congru-
ence relation is not always implementable. It remains an open problem to define
suitable properties on ψ and the underlying semiring A such that the refined
Myhill-Nerode congruence is implementable. We demonstrate the applicabil-
ity of the general approach by deriving such properties and thus a Myhill-

Nerode theorem for deterministic all-accepting weighted tree automata.

2 Preliminaries

We use N to represent the nonnegative integers. Further we denote {n ∈ N | 1 � n
� k} by [1, k]. A set Σ that is nonempty and finite is also called an alphabet. A
ranked alphabet is an alphabet Σ with a mapping rkΣ : Σ → N. We write Σk for
{σ ∈ Σ | rkΣ(σ) = k}. Given a ranked alphabet Σ, the set of Σ-trees, denoted
by TΣ , is inductively defined to be the smallest set T such that for every k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . We generally write α instead

108 A. Maletti

of α() whenever α ∈ Σ0. Let � be a distinguished nullary symbol. A context C
is a tree from TΣ∪{�} such that the nullary symbol � occurs exactly once in C.
The set of all contexts over Σ is denoted by CΣ . Finally, we write C[t] for the
tree of TΣ that is obtained by replacing in the context C ∈ CΣ the unique
occurrence of � with the tree t ∈ TΣ.

Let ≡ and ∼= be equivalence relations on a set S. We write [s]≡ for the equiva-
lence class of s ∈ S and (S/≡) = {[s]≡ | s ∈ S} for the set of equivalence classes.
We drop the subscript from [s]≡ whenever it is clear from the context. We say
that ≡ is coarser than ∼= if ∼= ⊆ ≡. Now suppose that S = TΣ . We say that
∼= is a congruence (on the term algebra TΣ) if for every k ∈ N, σ ∈ Σk, and
s1, . . . , sk, t1, . . . , tk ∈ TΣ with si

∼= ti also σ(s1, . . . , sk) ∼= σ(t1, . . . , tk).
A (commutative) semiring is an algebraic structure (A, +, ·, 0, 1) consisting of

two commutative monoids (A, +, 0) and (A, ·, 1) such that · distributes over +
and 0 is absorbing with respect to · . As usual we use

∑
i∈I ai for sums of fam-

ilies (ai)i∈I of ai ∈ A where for only finitely many i ∈ I we have ai �= 0.
The semiring (A, +, ·, 0, 1) is called zero-sum free if for every a, b ∈ A the condi-
tion a+b = 0 implies that a = 0 = b. We call a semiring (A, +, ·, 0, 1) zero-divisor
free if a · b = 0 implies that a = 0 or b = 0. Moreover, A is called cancellative
if a · b = a · c implies b = c for every a, b, c ∈ A with a �= 0. Generally, we write
a|b whenever there exists an element c ∈ A such that a · c = b. Note that in
a cancellative semiring such an element c, if any exists, is uniquely determined
unless a = 0 = b. In cancellative semirings, we thus write b/a for that uniquely
determined element c provided that (i) a|b and (ii) a �= 0 or b �= 0. Finally, a
semifield A = (A, +, ·, 0, 1) is a semiring such that for every a ∈ A \ {0} there
exists an element a−1 ∈ A such that a · a−1 = 1.

Let S be a set and (A, +, ·, 0, 1) be a semiring. A (formal) power series ψ is
a mapping ψ : S → A; the set of all such mappings is denoted by A〈〈S〉〉. Given
s ∈ S, we denote ψ(s) also by (ψ, s) and write the series as

∑
s∈S(ψ, s) s. The

support of ψ is supp(ψ) = {s ∈ S | (ψ, s) �= 0}. The series with empty support
is denoted by 0̃. Power series ψ, ψ′ ∈ A〈〈S〉〉 are added componentwise and mul-
tiplied componentwise with a semiring element; i.e., (ψ +ψ′, s) = (ψ, s)+ (ψ′, s)
and (a · ψ, s) = a · (ψ, s) for every s ∈ S and a ∈ A. In this paper, we only
consider power series in which the set S is a set of trees. Such power series are
also called tree series.

There exists an abundance of (conceptionally) equivalent definitions of
weighted tree automata [9,10,11] for various restricted semirings. Here we will
only consider the general notion of [11,7]. A weighted tree automaton [7] (for
short: wta) is a tuple (Q, Σ, A, F, μ) where Q is a nonempty, finite set of states ; Σ
is a ranked alphabet of input symbols ; A = (A, +, ·, 0, 1) is a semiring; F : Q → A

is a final weight assignment ; and μ = (μk)k∈N with μk : Σk → AQk×Q is a tree
representation. The wta M is called (bottom-up) deterministic (respectively,
(bottom-up) complete), if for every k ∈ N, σ ∈ Σk, and q1, . . . , qk ∈ Q there
exists at most (respectively, at least) one q ∈ Q such that μk(σ)q1···qk,q �= 0. The
wta induces a mapping hμ : TΣ → AQ that is defined for every k ∈ N, σ ∈ Σk,
q ∈ Q, and t1, . . . , tk ∈ TΣ by

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 109

hμ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q

μk(σ)q1···qk,q · hμ(t1)q1 · . . . · hμ(tk)qk
.

The wta M recognizes the tree series S(M) ∈ A〈〈TΣ〉〉 given by

(S(M), t) =
∑

q∈Q

F (q) · hμ(t)q

for every tree t ∈ TΣ. A tree series ψ ∈ A〈〈TΣ〉〉 is called recognizable (re-
spectively, deterministically recognizable), if there exists a wta M (respectively,
deterministic wta M) such that S(M) = ψ. The sets of all recognizable and de-
terministically recognizable tree series are denoted by Arec〈〈TΣ〉〉 and Arec

det〈〈TΣ〉〉,
respectively.

3 Recognizable Yields Finite Index

In this section, we show that the Myhill-Nerode congruence given by [3,
Section 5] is necessarily of finite index for every deterministically recognizable
series over a zero-divisor free semiring. Thus we derive a necessary criterion for
a series ψ ∈ A〈〈TΣ〉〉 to be recognizable by some deterministic wta. Moreover,
we also obtain a lower bound on the number of states of any deterministic wta
that recognizes ψ. The development in this section closely follows [7, Chapter 7]
where the same statements are proved for semifields.

Let us start with the definition of the Myhill-Nerode relation for a tree
series ψ ∈ A〈〈TΣ〉〉. Intuitively, two trees t, u ∈ TΣ are related if they behave
equal in all contexts C ∈ CΣ (up to fixed factors). The factors can be imagined
to be the weights of the trees t and u.

Definition 1 (see [7, Chapter 7]). Let ψ ∈ A〈〈TΣ〉〉. The relation
≡ψ ⊆ TΣ × TΣ is defined for every t, u ∈ TΣ by t ≡ψ u if and only if there
exist a, b ∈ A \ {0} such that for every C ∈ CΣ we observe

a · (ψ, C[t]) = b · (ψ, C[u]) .

The relation ≡ψ is equivalent to the Myhill-Nerode relation presented in [3,
Section 5] provided that the semiring is a semifield. Our first lemma states that
≡ψ is indeed an equivalence relation, and moreover, a congruence whenever the
underlying semiring is zero-divisor free.

Lemma 2 (cf. [7, Lemma 7.1.2(ii)]). Let A be a zero-divisor free semiring
and ψ ∈ A〈〈TΣ〉〉. Then ≡ψ is a congruence.

Proof. The proof follows the proof of [7, Lemma 7.1.2(ii)], where it is proved for
semifields.
�
We presented a congruence which is uniquely determined by ψ. First we show
that every deterministic and complete wta M = (Q, Σ, A, F, μ) also induces
a congruence relation. For the development of this we need some additional
notions. The fta underlying M (see [12,13] for a detailed introduction to finite
tree automata; for short: fta) is defined as B(M) = (Q, Σ, δ, F ′) where

110 A. Maletti

– q ∈ δσ(q1, . . . , qk) iff μk(σ)q1···qk,q �= 0 for every k ∈ N, σ ∈ Σk, and
q, q1, . . . , qk ∈ Q; and

– q ∈ F ′ iff Fq �= 0 for every q ∈ Q.

We note that the fta underlying a deterministic and complete wta is de-
terministic and complete. Now let M be a deterministic and complete wta
and B(M) = (Q, Σ, δ, F ′) be the fta underlying M . We define the mapping
RM : TΣ → Q for every t ∈ TΣ by RM (t) = q where q ∈ Q is the unique state
such that q ∈ δ(t). Existence and uniqueness are guaranteed by completeness and
determinism of B(M), respectively. We denote ker(RM) by ≡M . The following
lemma follows the traditional unweighted approach.

Lemma 3. Let M be a deterministic and complete wta over Σ. Then ≡M is a
congruence with finite index.

Having two congruences, namely ≡M and ≡S(M), let us try to relate them. In
fact, it turns out that ≡S(M) is coarser than ≡M for every deterministic and
complete wta M over a zero-divisor free semiring. This shows that we need at
least as many states as there are equivalence classes in ≡ψ to recognize ψ with
some deterministic and complete wta.

Theorem 4. Let A be a zero-divisor free semiring, and let M be deterministic
and complete wta over A. Then ≡S(M) is coarser than ≡M .

Proof. Let M = (Q, Σ, A, F, μ), and let t, u ∈ TΣ be such that t ≡M u; that
is RM (t) = RM (u). Let p = RM (t). Thus, also RM (C[t]) = RM (C[u]). Let
a = hμ(u)RM (u) and b = hμ(t)RM (t). We claim that for every context C ∈ CΣ

a · (S(M), C[t]) = b · (S(M), C[u]) .

Let us distinguish two cases for q = RM (C[t]). First, let us suppose that Fq = 0.
Then the displayed equation holds because (S(M), C[t]) = 0 = (S(M), C[u]). In
the remainder suppose that Fq �= 0. Clearly, since t ≡M u also C[t] ≡M C[u]
because ≡M is a congruence by Lemma 3. Thus

a · (S(M), C[t]) = hμ(u)p · Fq · hμ(C[t])q = hμ(u)p · Fq · hμ(C)p
q · hμ(t)p

= hμ(t)p · Fq · hμ(C[u])q = b · (S(M), C[u])

where hμ(C[t])q = hμ(C)p
q · hμ(t)p can be proved in a straightforward manner.

Consequently, ≡S(M) is coarser than ≡M .
�

As already argued this theorem admits an important corollary, which shows a
lower bound on the number of states of any deterministic and complete wta that
recognizes a certain series.

Corollary 5. Let A be a zero-divisor free semiring and ψ ∈ A〈〈TΣ〉〉. Every
deterministic and complete wta M over A with S(M) = ψ has at least index(≡ψ)
states.

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 111

Proof. Let M = (Q, Σ, A, F, μ). By Theorem 4, we have that ≡ψ is coarser
than ≡M . Thus card(Q) ≥ index(≡M) ≥ index(≡ψ).
�

Let us show that the statement does not hold, if we consider arbitrary semirings.
Essentially, if the semiring admits zero-divisors, then it can store information in
the weight.

Example 6. Let Z4 = ({0, 1, 2, 3}, +, ·, 0, 1) where + and · are the usual addition
and multiplication, respectively, modulo 4. Clearly, 2 · 2 = 0 and thus Z4 is not
zero-divisor free. Let Σ = {σ(2), α(0), β(0)}. We consider the series ψ ∈ Z4〈〈TΣ〉〉
which is defined for every t ∈ TΣ by

(ψ, t) =

⎧
⎪⎨

⎪⎩

1 if |t|α = 0
2 if |t|α = 1
0 otherwise.

Let M = ({�}, Σ, Z4, F, μ) with F� = 1 and

μ0(α)� = 2 μ0(β)� = 1 μ2(σ)��,� = 1 .

It can easily be checked that S(M) = ψ. Let us suppose that still ≡ψ is coarser
than ≡M . Since card(Q) = 1 this means that t ≡ψ u for all t, u ∈ TΣ. We
consider the trees σ(α, α) and β. By definition, we should have that there exist
a, b ∈ [1, 3] such that for every C ∈ CΣ

a · (ψ, C[σ(α, α)]) = b · (ψ, C[β]) .

Now consider the context C = �. Thus a · 0 = b · 1 and thus b = 0. However,
b ∈ [1, 3] which is the desired contradiction. Thus σ(α, α) �≡ψ β and ≡ψ is not
coarser than ≡M .

Finally, let us conclude this section with an application of Corollary 5. We can
envision at least two uses of Corollary 5. It can be used to show that some
wta is minimal (or almost so), and it can be used to show that some tree se-
ries ψ is not recognizable. The standard examples for the latter use concerns
the tree series size and height over the natural numbers and the arctic semi-
ring (N ∪ {−∞}, max, +, −∞, 0), respectively (see discussion at [7, Examples
7.3.2 and 8.1.8]). We demonstrate the application of Corollary 5 on another
example.

Example 7. Let Σ be a ranked alphabet such that Σ = Σ2 ∪ Σ0. We use the
tropical semiring T = (N ∪ {∞}, min, +, ∞, 0). It is easily checked that T is
zero-divisor free (and cancellative), but not a semifield. We define the mapping
zigzag: TΣ → N for every α ∈ Σ0 and σ, δ ∈ Σ2 and t1, t2, t3 ∈ TΣ by

zigzag(α) = 1
zigzag(σ(α, t1)) = 2

112 A. Maletti

zigzag(σ(δ(t1, t2), t3)) = 2 + zigzag(t2) .

It is straightforward to show that zigzag ∈ T rec〈〈TΣ〉〉. In fact, zigzag can be
recognized by a top-down deterministic wta [7, Section 4.2] with only 2 states.
But can zigzag be recognized by a (bottom-up) deterministic wta over Σ and T ?
We use Corollary 5 to show that no deterministic wta recognizes zigzag. Clearly,
this is achieved by proving that ≡zigzag has infinite index. Let t, u ∈ TΣ. Suppose
that t ≡zigzag u. Then there exist a, b ∈ N such that for every context C ∈ CΣ

a + (zigzag, C[t]) = b + (zigzag, C[u]) .

Now consider the contexts C1 = � and C2 = σ(α, �). We obtain the equations

a + zigzag(t) = b + zigzag(u)
a + 2 = b + 2

From the second equality we can conclude that a = b and zigzag(t) = zigzag(u).
Hence ker(zigzag) is coarser than ≡zigzag. However, ker(zigzag) has infinite index,
which shows that also ≡zigzag has infinite index, and thus, by Corollary 5, no
deterministic wta can recognize zigzag.

4 Finite Index Yields Recognizable

In this section we investigate whether the lower bound established in the previ-
ous section can be achieved. Certainly, [7, Theorem 7.4.1] shows that for every
ψ ∈ Arec

det〈〈TΣ〉〉 (with A a semifield) there exists a deterministic and complete
wta over A with exactly index(≡ψ) states so that S(M) = ψ. In this section
we investigate this issue for deterministic all-accepting wta over cancellative
semirings. The principal approach can also be extended to deterministic wta
over certain cancellative semirings. Let us illustrate the problem in the semiring
(N, +, ·, 0, 1) that is not a semifield but cancellative.

Consider the series ψ : TΣ → N with Σ = {γ(1), α(0)} and

(ψ, γn(α)) =

⎧
⎪⎨

⎪⎩

2 if n = 0
3 if n = 1
4 otherwise.

It is easily checked that α �≡ψ γ(α) �≡ψ γn(α) �≡ψ α for every n > 1 as well as
γm(α) ≡ψ γn(α) for every m > 1 and n > 1. Thus, index(≡ψ) = 3. However, it
can be shown that there exists no deterministic all-accepting [8] wta M such that
S(M) = ψ. On the other hand, it is surprisingly easy to construct a deterministic
wta M such that S(M) = ψ. In fact, M can be constructed such that it has
3 states.

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 113

4.1 Minimization of Deterministic All-Accepting wta

Let us discuss the problem for deterministic all-accepting wta [8, Section 3.2].
It is known that for every deterministic all-accepting wta M over a semifield
there exists a unique (up to isomorphism) minimal deterministic and complete
all-accepting wta that recognises S(M) [8, Lemma 3.8]. We plan to extend this
result to cancellative semirings. Now let us formally introduce the all-accepting
property. We say that the wta M = (Q, Σ, A, F, μ) is all-accepting [8] if F (q) = 1
for all q ∈ Q. We abbreviate all-accepting wta simply to aa-wta.

Let M be a deterministic aa-wta M . The tree series S(M) recognised by M
is subtree-closed [8, Section 3.1]; that is, for every tree t with (S(M), t) �= 0 also
(S(M), u) �= 0 for every subtree u of t. We repeat [8, Observation 3.1] for ease
of reference.

Proposition 8 (see [8, Observation 3.1]). Let M be a deterministic aa-wta.
Then S(M) is subtree-closed.

In order to avoid several cases, we assume that 0/0 = 0 (i.e., we allow to cancel 0
from 0) for the rest of the paper. First we begin with two conditions which are
necessary for a series ψ ∈ A〈〈TΣ〉〉 to be recognizable by a deterministic aa-wta.
The first condition checks whether the weight of a tree can be obtained from the
weights of the subtrees and the second condition checks whether finitely many
coefficients are sufficient. We say that ψ is implementable if

– ((ψ, t1) · . . . · (ψ, tk))|(ψ, σ(t1, . . . , tk)) for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ; and

– for every k ∈ N the following set Ck(ψ) is finite.

Ck(ψ) =
{ (ψ, σ(t1, . . . , tk))

(ψ, t1) · . . . · (ψ, tk)

∣
∣
∣ σ ∈ Σk, t1, . . . , tk ∈ TΣ

}

Proposition 9. Let M be a deterministic aa-wta over a cancellative semiring.
Then S(M) is implementable.

Proof. The proof is standard and hence omitted.
�

This shows that a series that is not implementable cannot be recognized by any
deterministic aa-wta. In fact, this is the reason why the series ψ given at the
beginning of Section 4 cannot be recognized by any deterministic aa-wta. Now
we will show that the notion of recognizability by deterministic aa-wta over
cancellative semirings is closely related to classical unweighted recognizability
(as induced by fta). In fact, the weights of the deterministic aa-wta are uniquely
determined so that they can also be included in the input ranked alphabet.

Definition 10. Let ψ ∈ A〈〈TΣ〉〉 be implementable over the cancellative semi-
ring A. We define the ranked alphabet Δ by Δk = Σk × Ck(ψ) for every k ∈ N.
Moreover, let ·|1 : TΔ → TΣ be the mapping that replaces every node label of the
form 〈σ, c〉 in the input tree simply by a node with label σ. Finally, we define the

114 A. Maletti

tree language L(ψ) ⊆ TΔ as the smallest language L such that for every k ∈ N,
σ ∈ Σk, and u1, . . . , uk ∈ L with ti = ui|1 for every i ∈ [1, k]

〈
σ,

(ψ, σ(t1, . . . , tk))
(ψ, t1) · . . . · (ψ, tk)

〉
(u1, . . . , uk) ∈ L ⇐⇒ σ(t1, . . . , tk) ∈ supp(ψ) .

Theorem 11. Let ψ ∈ A〈〈TΣ〉〉 with A a cancellative semiring. Then ψ is recog-
nizable by some deterministic aa-wta if and only if ψ is implementable and L(ψ)
is recognizable.

Proof. Let M = (Q, Σ, A, F, μ) be a deterministic aa-wta and M ′ = (Q, Δ, δ, Q)
be a deterministic fta. We call M and M ′ related if

μk(σ)q1···qk,q = c ⇐⇒
(
〈σ, c〉(q1, . . . , qk) → q

)
∈ δ

μk(σ)q1···qk,q = 0 ⇐⇒ ∀c ∈ A :
(
〈σ, c〉(q1, . . . , qk) → q

)
/∈ δ

for every k ∈ N, σ ∈ Σk, c ∈ Ck(ψ) \ {0}, and q, q1, . . . , qk ∈ Q.
Now suppose that M and M ′ are related. We claim that L(M ′) = L(S(M));

the proof of this statement is omitted. Finally, let us now turn to the
main statement. First let us suppose that there exists a deterministic aa-
wta M = (Q, Σ, A, F, μ) such that S(M) = ψ. By Proposition 9 it follows
that ψ is implementable. Clearly, we can construct a deterministic fta M ′

such that M and M ′ are related. By the claimed property, we then have
L(M ′) = L(S(M)) = L(ψ), which proves that L(ψ) is recognizable.

For the remaining direction, let ψ be implementable and, without loss of gen-
erality, let M ′ = (Q, Δ, δ, F ′) be a deterministic fta such that L(M ′) = L(ψ)
and every state is reachable and co-reachable. It follows from the implementabil-
ity condition that ψ is subtree-closed. With this in mind, we necessarily have
F ′ = Q because any reachable state in Q \ F ′ would not be co-reachable. More-
over, for every k ∈ N, σ ∈ Σk, and q, q1, . . . , qk ∈ Q there exists at most one
c ∈ C such that 〈σ, c〉(q1, . . . , qk) → q ∈ δ because every state is final and
L(M ′) = L(ψ). Finally, no tree in L(ψ) can contain a node 〈σ, 0〉 for some σ ∈ Σ.
This is due to the fact that 0 = (ψ, σ(t1, . . . , tk))/((ψ, t1) · . . . · (ψ, tk)) only if
(ψ, σ(t1, . . . , tk)) = 0 by zero-divisor freeness of A and subtree-closedness of ψ.
Thus, any reachable state that can recognize a tree of which one node is 〈σ, 0〉
is not co-reachable. Consequently, there exists no such state and hence no tran-
sition which processes 〈σ, 0〉. For the given fta M we can easily construct a re-
lated deterministic aa-wta and the previously proved statements guarantee that
L(S(M)) = L(M ′) = L(ψ). One final observation yields that L : A〈〈TΣ〉〉 → TΔ

is injective. Thus L(S(M)) = L(ψ) yields that S(M) = ψ.
�

The theorem admits a very important corollary. Namely, it can be observed that
every minimal deterministic aa-wta M recognizing a given tree series ψ yields
a minimal deterministic fta recognizing L(ψ). In the opposite direction, every
minimal deterministic fta recognizing L(ψ) where ψ is implementable, yields a
minimal deterministic aa-wta recognizing ψ.

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 115

Corollary 12 (of Theorem 11). Let A be a cancellative semiring. For every
deterministic aa-wta M there exists a unique (up to isomorphism) minimal de-
terministic aa-wta recognizing S(M).

Let us shortly describe a minimization procedure. Let M be a deterministic
aa-wta. Then S(M) is implementable and by the proof of Theorem 11 we can
obtain a deterministic fta N recognizing L(S(M)). Then we minimize N to
obtain the unique minimal deterministic fta N ′ recognizing L(S(M)). Finally,
we can construct a deterministic aa-wta M ′ recognizing S(M) again using the
notion of relatedness from the proof of Theorem 11.

We can imagine that the established relation between aa-wta and fta can
also be exploited in the learning task of [8]. There the underlying semiring is a
semifield (and hence cancellative).

4.2 A Myhill-Nerode Congruence for Cancellative Semirings

In this section we consider general deterministic wta over certain cancellative
semirings. The main problem is the implementability condition; it is crucial to
the condition given in the previous section that the series is subtree-closed. In
the general setting, subtree-closedness cannot be assumed.

A more careful analysis shows that the implementation of ≡ψ [3,7] uses in-
verses in an essential manner. Here we present a more refined version of the
Myhill-Nerode congruence. Let ψ ∈ A〈〈TΣ〉〉. Let ∼=ψ ⊆ TΣ × TΣ be defined
for every t, u ∈ TΣ by t ∼=ψ u if and only if there exist a, b ∈ A \ {0} such that
for every C ∈ CΣ there exists a d ∈ A with

(ψ, C[t]) = d · a and (ψ, C[u]) = d · b .

This relation has several drawbacks as we will see next (it is, in general, no
equivalence relation), however, we can already see that ≡ψ is coarser than ∼=ψ.

Lemma 13. Let ψ ∈ A〈〈TΣ〉〉. In general, ≡ψ is coarser than ∼=ψ. If A is a
semifield, then ≡ψ and ∼=ψ coincide.

Proof. Let A = (A, +, ·, 0, 1). Moreover, let t, u ∈ TΣ such that t ∼=ψ u. Thus
there exist a, b ∈ A\{0} such that for every context C ∈ CΣ there exists a d ∈ A
with

(ψ, C[t]) = d · a and (ψ, C[u]) = d · b .

Thus we also have that b · (ψ, C[t]) = a · (ψ, C[u]), and consequently, t ≡ψ u.
For the second statement, suppose that A is a semifield and t ≡ψ u. Thus there
exist a, b ∈ A \ {0} such that for every C ∈ CΣ

a · (ψ, C[t]) = b · (ψ, C[u]) .

Hence (ψ, C[t]) = (ψ, C[u]) · (a−1 · b) and (ψ, C[u]) = (ψ, C[t]) · (b−1 · a). Clearly,
a−1 · b and b−1 · a are both nonzero, and consequently, t ∼=ψ u.
�

116 A. Maletti

Now let us investigate when ∼=ψ is actually a congruence. A similar analysis
was already done in [2] for weighted automata over strings. However, we slightly
adapted the notions of greedy factorization and minimal residue (cf. [2, Sec-
tion 4]).

Lemma 14. The relation ∼=ψ is reflexive for every ψ ∈ A〈〈TΣ〉〉.

Proof. Let t ∈ TΣ. We need to prove that there exists an a ∈ A \ {0} such that
for every C ∈ CΣ there exists d ∈ A with (ψ, C[t]) = d · a. To this end, we let
a = 1 and d = (ψ, C[t]).
�

Clearly, ∼=ψ is symmetric, so it remains to investigate transitivity. For this, we
need an additional property. The semiring A allows greedy factorization if for
every a, b ∈ A there exist a′, b′ ∈ A such that for every c, d ∈ A there exists an
e ∈ A such that a ·c = b ·d �= 0 implies c = a′ ·e and d = b′ ·e. A similar property
was already defined in [2].

Intuitively, the property demands that when a and b are divisors of a common
element h, then there should be elements a′ and b′, that depend only on a and b
and not on h, such that when cancelling a and a′ from h we obtain the same
element as we would obtain by cancelling b and b′. In this sense it represents
a confluency property. It does not matter whether we first cancel a or b; we
can later find elements a′ and b′, which depend solely on the cancelled elements
a and b, that we can cancel to obtain a common element.

In semifields the property is trivially fulfilled because if we set a′ = b and
b′ = a and e = c · b−1 then a · c = b ·d �= 0 implies c = b · c · b−1 and d = a · c · b−1.
The first part of the conclusion is trivial and the second part is given by the
hypothesis.

Let us try to give another example in order to explain the property. Sup-
pose that A is a cancellative semiring with the additional property that a least
common multiple (lcm) is defined for every two elements (e.g., the semiring of
natural numbers fulfils these restrictions). We can then set a′ = lcm(a, b)/a
and b′ = lcm(a, b)/b and e = (a · c)/ lcm(a, b) provided that a · c = b · d
otherwise set e = 1. Since the semiring is cancellative and a| lcm(a, b) and
b| lcm(a, b) and lcm(a, b)|a · c (because a|a · c and b|a · c), the elements a′, b′,
and e are uniquely determined. We thus obtain that a · c = b · d �= 0 implies that
c = (lcm(a, b)/a) ·((a ·c)/ lcm(a, b)) and d = (lcm(a, b)/b) ·((a ·c)/ lcm(a, b)). The
first part of the conclusion is again trivial and the second part yields b ·d = a · c,
which holds by the hypothesis.

Lemma 15. Let A be a zero-divisor free semiring that allows greedy factoriza-
tion. Then ∼=ψ is transitive for every ψ ∈ A〈〈TΣ〉〉.

Thus we successfully showed that ∼=ψ is an equivalence relation. The only re-
maining step is to show that ∼=ψ is even a congruence. Fortunately, this is rather
easy.

Lemma 16. Let A be a zero-divisor free semiring that allows greedy factoriza-
tion. Then ∼=ψ is a congruence for every ψ ∈ A〈〈TΣ〉〉.

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 117

Now let us proceed with the implementation of the congruence by some deter-
ministic and complete wta. We prepare this by presenting conditions that imply
that we can successfully implement a congruence. We chose to rephrase Con-
ditions (MN1) and (MN2) from [7] in order to improve readability. In essence,
we can already see the automaton in that modified definition of Conditions
(MN1) and (MN2).

Definition 17. Let ∼= ⊆ TΣ × TΣ be a congruence and ψ ∈ A〈〈TΣ〉〉. We say
that ∼= respects ψ if there exists a mapping F : (TΣ/∼=) → A and a mapping
c : TΣ → A \ {0} such that

– (ψ, t) = F ([t]) · c(t) for every t ∈ TΣ; and
– for every k ∈ N, σ ∈ Σk, and T1, . . . , Tk ∈ (TΣ/∼=) there exists an a ∈ A,

denoted by bσ(T1, . . . , Tk), such that

c(σ(t1, . . . , tk)) = a · c(t1) · . . . · c(tk)

for every ti ∈ Ti with i ∈ [1, k].

Next we state that every series ψ ∈ A〈〈TΣ〉〉 that is respected by some con-
gruence with finite index can be recognized by a deterministic wta. Thus, the
previous definition establishes sufficient conditions so that the congruence is im-
plementable.

Lemma 18. Let ψ ∈ A〈〈TΣ〉〉. Moreover, let ∼= be a congruence with finite index
that respects ψ. Then ψ ∈ Arec

det〈〈TΣ〉〉.

Proof. Since ∼= respects ψ, there exist F : (TΣ/∼=) → A, c : TΣ → A \ {0}, and
bσ : (TΣ/∼=)k → A for every k ∈ N and σ ∈ Σk such that the conditions of
Definition 17 hold. We construct the wta M∼= = ((TΣ/∼=), Σ, A, F, μ) where

μk(σ)[t1]···[tk],[σ(t1,...,tk)] = bσ([t1], . . . , [tk])

for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ and the remaining entries in μ are 0.
Clearly, M∼= is deterministic. The proof of S(M) = ψ is straightforward.
�

In fact, the “respects” property is necessary and sufficient, which can be seen in
the next theorem.

Theorem 19. Let A be a zero-divisor free semiring, and let ψ ∈ A〈〈TΣ〉〉. The
following are equivalent:

1. There exists a congruence relation with finite index that respects ψ.
2. ψ is deterministically recognizable.

Proof. The implication 1 to 2 is proved in Lemma 18. It remains to show that
2 implies 1. Let M = (Q, Σ, A, F, μ) be a deterministic and complete wta such
that S(M) = ψ. Clearly, ≡M is a congruence with finite index by Lemma 3.

Finally, it remains to show that ≡M respects ψ. Let G : (TΣ/∼=) → A and
c : TΣ → A \ {0} be defined by G([t]) = FRM (t) and c(t) = hμ(t)RM (t) for every

118 A. Maletti

t ∈ TΣ. It is easily verified that both mappings are well-defined. First we need
to prove that (ψ, t) = G([t]) · c(t) for every t ∈ TΣ .

G([t]) · c(t) = FRM (t) · hμ(t)RM (t) = (S(M), t) = (ψ, t)

because M is deterministic. We observe that for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ

c(σ(t1, . . . , tk))
= hμ(σ(t1, . . . , tk))RM (σ(t1,...,tk))

= μk(σ)RM (t1)···RM (tk),RM (σ(t1,...,tk)) · hμ(t1)RM (t1) · . . . · hμ(tk)RM (tk)

= μk(σ)RM (t1)···RM (tk),RM (σ(t1,...,tk)) · c(t1) · . . . · c(tk)

which proves that ≡M respects ψ.
�

In analogy to Theorem 4 we can show that ∼=S(M) is coarser than ≡M for every
deterministic and complete wta over a zero-divisor free semiring. Thus, the only
remaining question is whether ∼=ψ respects ψ. If this would be true and ∼=ψ

would have finite index, then ∼=ψ would be implementable and thus a minimal
deterministic and complete wta would be found.

Open problem: Find suitable conditions on ψ and A so that ∼=ψ respects ψ!

4.3 A Myhill-Nerode Theorem for All-Accepting wta

In this section we show how we can use the approach of the previous section to
derive a Myhill-Nerode theorem for deterministic aa-wta.

Let ψ ∈ A〈〈TΣ〉〉 be a tree series over the cancellative semiring A. We de-
fine �ψ ⊆ TΣ × TΣ by t �ψ u if and only if there exist a, b ∈ A \ {0} such that
for every C ∈ CΣ there exists a d ∈ A with

(ψ, C[t]) = d · a and (ψ, C[u]) = d · b and d ∈ {0, 1} if C = � .

Lemma 20. If ψ is implementable and A allows greedy factorization, then �ψ

is a congruence.

Proof. The proof can be obtained by reconsidering the proofs of Lemmata 14,
15, and 16.
�

Let us consider the open problem for deterministic aa-wta over cancellative semi-
rings.

Theorem 21. Let ψ ∈ A〈〈TΣ〉〉 be implementable with A a cancellative semiring
that allows greedy factorization. Then �ψ respects ψ.

Proof. By Lemma 20, �ψ is a congruence. Thus we need to show that there exist
mappings F : (TΣ/�ψ) → A and c : TΣ → A \ {0} such that the conditions of
Definition 17 are met. For every t ∈ TΣ let

F ([t]) =

{
1 if t ∈ supp(ψ)
0 otherwise

and c(t) =

{
(ψ, t) if t ∈ supp(ψ)
1 otherwise.

Myhill-Nerode Theorem for Recognizable Tree Series Revisited 119

We first verify that F is well-defined. Let t �ψ u. We need to prove that
t ∈ supp(ψ) if and only if u ∈ supp(ψ). Since t �ψ u there exist a, b ∈ A \ {0}
such that for every context C ∈ CΣ there exists d ∈ A with

(ψ, C[t]) = d · a and (ψ, C[u]) = d · b and d ∈ {0, 1} if C = � .

Now consider the context C = �. Thus (ψ, t) = d · a and (ψ, u) = d · b with
d ∈ {0, 1}. Depending on d either (i) (ψ, t) = 0 = (ψ, u) or (ii) t, u ∈ supp(ψ),
which proves that F is well-defined. It remains to verify the properties of Defi-
nition 17. First, for every t ∈ TΣ

F ([t]) · c(t) =

{
1 · (ψ, t) if t ∈ supp(ψ)
0 otherwise

= (ψ, t) .

Second, let k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. We
need to show that there exists a bσ([t1], . . . , [tk]) such that
c(σ(t1, . . . , tk)) = bσ([t1], . . . , [tk]) · c(t1) · . . . · c(tk). Since ψ is implementable,
we can define bσ([t1], . . . , [tk]) = (ψ, σ(t1, . . . , tk))/((ψ, t1) · . . . · (ψ, tk)). We
should first verify that this is independent of the representatives. Thus, let
u1, . . . , uk ∈ TΣ be such that ti �ψ ui for every i ∈ [1, k]. Then there exist
ai, bi ∈ A \ {0} such that for every context C ∈ CΣ there exists di ∈ A with

(ψ, C[ti]) = di · ai and (ψ, C[ui]) = di · bi and di ∈ {0, 1} if C = �

for every i ∈ [1, k]. Now if (ψ, ti) = 0 then also (ψ, C[t]) = 0 because ψ is imple-
mentable. The same argument holds for ui and C[ui]. Suppose that there exist
i ∈ [1, k] such that (ψ, ti) = 0. Then (ψ, σ(t1, . . . , tk))/((ψ, t1) · . . . · (ψ, tk)) = 0
and since (ψ, ui) = 0 by ti �ψ ui also (ψ, σ(u1, . . . , uk))/((ψ, u1)·. . .·(ψ, uk)) = 0.
Now suppose that (ψ, ti) �= 0 for every i ∈ [1, k]. It is immediately clear that
ai = (ψ, ti) and bi = (ψ, ui) by considering the context �. Consequently,

(ψ,σ(t1, . . . , tk))/
� k�

i=1

(ψ, ti)
�

= (ψ,σ(u1, t2, . . . , tk))/
�
(ψ, u1) ·

k�
i=2

(ψ, ti)
�

(via the context σ(�, t2, . . . , tk))

= . . .

= (ψ,σ(u1, . . . , uk−1, tk))/
�k−1�

i=1

(ψ, ui) · (ψ, tk)
�

= (ψ,σ(u1, . . . , uk))/
� k�

i=1

(ψ,ui)
�

(via the context σ(u1, . . . , uk−1, �))

��

Let us now derive a Myhill-Nerode theorem for deterministic aa-wta. In [8]
such a theorem is shown for the case that the underlying semiring is a semifield.
We extend this result to certain cancellative semirings.

120 A. Maletti

Corollary 22. Let ψ ∈ A〈〈TΣ〉〉 be implementable with A a cancellative semiring
that allows greedy factorization. The following are equivalent:

1. �ψ has finite index.
2. There exists a congruence with finite index that respects ψ.
3. ψ is deterministically recognizable.
4. ψ is recognized by some deterministic aa-wta M .

Proof. 1 → 2 was shown in Theorem 21. The equivalence of 2 and 3 is due to
Theorem 19. Moreover, we already remarked that �ψ is coarser than ≡M , which
shows 4 → 1. It remains to show 3 → 4. This can be shown by a straightforward
construction that normalizes the final weights to 1. In general, this is only possi-
ble in a semifield, but due to the implementability of ψ, it can also be performed
in the cancellative semiring A.
�
Clearly, the above corollary shows that the tree series that can be recognized
by deterministic aa-wta are exactly the implementable tree series that can be
recognized by deterministic wta. Moreover, it can be shown that the determin-
istic aa-wta that can be constructed from the deterministic wta using the final
weight normalization mentioned in the proof of Corollary 22 is indeed the mini-
mal deterministic aa-wta recognizing ψ.

References

1. Kozen, D.: On the Myhill-Nerode theorem for trees. Bulletin of the EATCS 47,
170–173 (1992)

2. Eisner, J.: Simpler and more general minimization for weighted finite-state au-
tomata. In: HLT-NAACL (2003)

3. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Ésik,
Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 146–158. Springer, Heidelberg
(2003)

4. Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Com-
puter Science. World Scientific, Singapore (1998)

5. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)
6. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural lan-

guage processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, Springer,
Heidelberg (2005)

7. Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische
Universität Dresden (2005)

8. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Au-
tom. Lang. Combin (to appear, 2007)

9. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. In: EATCS
Monographs on Theoret. Comput. Sci., vol. 12, Springer, Heidelberg (1988)

10. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Sys-
tems 32(1), 1–33 (1999)

11. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
J. Autom. Lang. Combin. 8(3), 417–463 (2003)

12. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
13. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-

book of Formal Languages, vol. 3, pp. 1–68. Springer, Heidelberg (1997)

The View Selection Problem

for Regular Path Queries

Sergey Afonin�

Lomonosov Moscow State University, Russia
serg@msu.ru

Abstract. The view selection problem consists of finding a set of views
to materialize that can answer the given set of workload queries and is
optimal in some sense. In this paper we study the view selection prob-
lem for regular path queries over semistructured data and two specific
view-based query rewriting formalisms, namely single-word and arbitrary
regular rewritings. We present an algorithm that for a given finite set of
workload queries, i.e. for a set of regular languages, computes a set of
views that can answer every query in the workload and has minimal pos-
sible cardinality. If, in addition, a database instance is given then one
can construct a viewset such that its size, i.e. amount of space required
to store results, is minimal on the database instance.

Keywords: view selection problem, regular path queries, semigroups of
regular languages.

1 Introduction

The problem of view based query processing plays an important role in many
database applications, including information integration, query optimization,
mobile computing and data warehousing. In its general form, the problem is
stated as follows. Given a query over database schema and a set of materialized
views over the same schema (i.e. a set of queries with precomputed answers –
view extensions), is it possible to answer the query, completely or partially, us-
ing answers to the views? This question has been intensively studied for various
data models and different assumptions on views semantic (e.g., [13,11,5,20]). The
main approaches to view based query processing are query rewriting and query
answering (see [13] for a survey). In query rewriting approach, given a query Q
written in language Q, and a set of views V that are written in language V one
should construct a rewriting R, in language R, such that Q(D) = R ◦ V(D) for
each database instance D. It is worth noticing that query rewriting does not de-
pend on view extensions and can be thought as an algorithm that describes how
result of the query can be computed form the views. In contrast, query answering
consists of direct computing of all answers to Q from the view extensions. The
� This work has been supported in part by the Russian Federal Agency for Science

and Innovations under grant 02.514.11.4078 and by the Russian Foundation for Basic
Research under grant 08-01-00882-a.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 121–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 S. Afonin

connection between query rewriting and query answering studied in [20, 4]. In
this paper we follow query rewriting approach and we shall say that a viewset
V answers a query Q if there exists a rewriting of Q.

The ability to answer a query using only the answers to views can significantly
decrease query evaluation time. For example, in a mobile computing environment
the application does not need to access the network in order to process user’s
query. If the views can not completely answer a query, they can, nevertheless,
speed up query processing, because some computations needed for the query
processing may have been done while computing the views. From the other hand,
view maintaining can be computationally expensive, and the amount of space
that is available to store view results could be bounded. These constraints lead
to the natural optimization problem, known as the view selection problem, which
is, roughly speaking, asking for a set of views that can answer given queries and
satisfies specified constraints [6,21,18]. A dual problem is the view optimization
problem [17], which asks for a viewset that satisfies specified constraints and has
the same expressive power as a given viewset (i.e., answer every query that is an-
swered by a given viewset). Possible applications of these problem include view
selection and optimization in data management systems, intelligent data place-
ment, minimization of communication costs in distributed systems, optimization
of bulk query processing and others (see e.g. [6, 7, 21, 18, 17]).

The view selection problem was studied in various settings for relational data-
bases, see e.g. [6, 7], and for XPath queries [21, 18]. In this paper we consider
the view selection problems for regular path queries over semistructured data.
Informally, a database is an edge-labelled directed graph, and a query is a regu-
lar language over a finite alphabet Σ (without loss of generality we can assume
that Σ is the set of all possible labels of a database graph). The result of a
query Q is the set of all pairs (u, v) of graph vertices such that there exists at
least one labeled path between u and v in the graph and its labels comprise a
word in Q. Although the main topic of current research on semistructured data
has shifted toward tree data models and corresponding query languages graph
model is important in data integration domain. This model is quite flexible and
lays between full text search and XML-like tree data models [9]. Regular path
query evaluation has polynomial time complexity with respect to both database
and query size (one should check non-emptiness of the intersection of some reg-
ular languages), but it can be expensive for large databases because the whole
database graph may need to be searched, which is inefficient. Materialized views
may decrease query processing time drastically.

For regular path query rewritings the so called complete [3] and partial [10]
rewritings were proposed. In both cases a rewriting of a query Q over Σ with
respect to a set of views V is a regular language R over a fresh alphabet Δ, such
that a substitution of languages over Σ instead of corresponding letters of Δ
yields the original language Q. The two approaches differ in possible mappings
for letters of Δ. In complete rewriting Δ letters are mapped into elements of V
only, while in partial rewriting a Δ-letter can be mapped into a Σ-letter as well.
For example, R1 = δ∗1 is a complete rewriting of Q1 = a∗, and R2 = δ1cb

∗+δ1cδ2

The View Selection Problem for Regular Path Queries 123

is a partial rewriting of Q2 = a∗cb∗ with respect to the views V = {a∗, b∗} and
the natural substitution δ1 �→ a∗, δ2 �→ b∗. In general, both rewriting techniques
may be considered as special cases of the language substitution problem which is
stated as follows. Given a regular language Q over a finite alphabet Σ and a reg-
ular language substitution ϕ from finite set Δ into regular languages over Σ one
should find a language R over Δ, such that ϕ(R) = Q. Additional constraints
on the structure of language R may be posed. It is known [14] that for any finite
set V of regular languages over Σ, and the subset T ⊆ {·, ∪,∗ } of language
operations (concatenation, union, and iteration) it is decidable whether or not
the regular language Q may be constructed from elements of V using a finite
number of operations from T . Note, that if all three operations are allowed then
we have complete rewriting problem mentioned above. The algorithm for par-
tial rewriting construction [10] computes the exhaustive rewriting that, roughly
speaking, uses available views as much as possible. In the above example this
algorithm gets the rewriting R′

2 = δ1cδ2 but not R2 = δ1cb
∗ + δ1cδ2.

In this paper we deal with two types of complete rewritings: a single word
rewriting (the subset T contains only concatenation), and an arbitrary regular
rewriting. Clearly, that if there exists a single word rewriting of a query, then
there exists an arbitrary rewriting of this query with respect to the same set of
views. Thus, single word rewritings have weaker expressive power then arbitrary
rewritings. Practical meaning of single word rewritings can be justified by some
redundancy presented in arbitrary regular rewritings. Known algorithms for reg-
ular rewritings of a query Q [3, 14] compute the so-called maximal rewriting,
which is the set of all words over Δ, such that the substitution of corresponding
languages yields a subset of Q. For instance, in the previously considered exam-
ple the maximal rewriting is R = δ∗1 , while more efficient single word rewriting
R′ = δ1 exists. In this case the single word rewriting R′ shows that the query can
be answered by the views without any computations at all. In order to compute
the answer using maximal rewriting R the transitive closure of the view should
be constructed. Another attractive property of single word rewritings is that they
does not contain recursion (i.e. Kleene star) and admit efficient processing algo-
rithms. Finally, the set of all single word rewritings is an effectively constructable
regular language [2].

For now, let us consider the problems under investigation. Assume that a
database workload, i.e. the set Q of the most popular queries, is known. What
views should be materialized in the database in order to speed up these queries?
Trivial solution when every query from the workload correspond to a view is not
practical because view maintaining is computationally expensive. In this respect,
view selection should be based not only on the ability to answer queries from
the workload but on some “efficiency” measure as well. Possible measures are
cost of workload queries evaluation, storage constraints, cardinality of a viewset,
and efficiency of rewriting. We consider the following specific problems (for both
single word and regular rewritings).

– Viewset of minimal cardinality. What is the minimal number of views that
should be materialized in order to answer every query from the workload?

124 S. Afonin

– Instance based minimal size viewset. If a particular database instance is
given, what is the minimal amount of space required to store the results
of a viewset (over this instance) that answer every query from the workload?

– Oracle based minimal size viewset. Assume that there is an oracle that for
every regular path query estimates the size of the result. What is the minimal
size of a viewset that answers queries from the workload?

– p-Containment of viewsets. Given two viewsets V1 and V2 is it decidable
whether or not every query Q that can be rewritten in terms of V1 can be
rewritten in terms of V2?

It is worth noticing that in some cases (e.g., in data integration systems based
on local-as-view approach) there exist a set of views that can not be changed (the
views that describe information sources). Nevertheless, database applications
are allowed to define “top-level” views that are subject to optimization. Our
contribution is the following.

– First, we prove that the search space for minimal cardinality and instance
based minimal size viewset construction problems is finite, both for single
word and regular rewritings. Thus, both problems are decidable and we
propose the algorithms for such viewsets construction.

– We prove that p-containment of viewsets of regular path queries is decidable
for single word and regular rewritings.

– We present an algorithm which for a given workload and a database instance
computes a viewset of minimal size (on this particular database instance).

The results on single-word rewritings may be considered as a contribution to
formal language theory. In particular, we prove that the rank problem for finitely
generated semigroups of regular languages is decidable.

The structure of this paper is the following. In Section 2 we introduce ba-
sic definition and known results on regular path query rewritings. Algorithms
for minimal cardinality viewset construction, for both single word and regular
rewritings, are presented in Section 3. This section also contains the the al-
gorithm for checking p-containment of viewsets, for both types of rewritings.
Minimal size viewset problem is discussed in Section 4.

2 Regular Path Query Rewritings

In order to fix the notation we start this section with basic notions of formal
languages.

An alphabet is a finite non-empty set of symbols. A finite sequence of symbols
from an alphabet Σ is called a word in Σ. The empty word is denoted by ε.
Any set of words is called a language over Σ. Σ∗ denotes the set of all words
(including the empty word) in a given alphabet, Σ+ denotes the set of all non-
empty words in Σ, ∅ is the empty language (containing no words), and 2Σ∗

is
the set of all languages over Σ.

The View Selection Problem for Regular Path Queries 125

Let u be a word in Σ and A ⊆ Σ∗. The right quotient of A with respect
to u is the language u−1A = {v ∈ Σ∗ | uv ∈ A}, and the left quotient is
Au−1 = {v ∈ Σ∗ | vu ∈ A}. If A = {w} we shall write u−1w instead of u−1{w}.

The union of languages L1 and L2 is the language L1 ∪ L2 = {w ∈ Σ∗ | w ∈
L1 ∨ w ∈ L2}. The language L1L2 = {w ∈ Σ∗ | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2}
is called a concatenation of L1 and L2. Lk = LLk−1 is L to the power k. By
definition, L to the power zero is the empty word: L0 = {ε}. The Kleene closure
(or star) of L is the language L∗ = ∪∞

k=0L
k. A language is regular if it can be

obtained from singleton languages (i.e., the letters of the alphabet), the empty
language, and {ε}, using a finite number of operations of concatenation, union
and closure. The set of all regular languages over an alphabet Σ is denoted by
Reg(Σ). In the sequel all the languages are assumed regular.

Let Δ be an alphabet and S be a semigroup. A morphism ϕ : Δ+ → S
is any function satisfying ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Δ+. A morphism
ϕ : Δ+ → 2Σ∗

is called a regular language substitution if ϕ(δ) is a regular
language over Σ for all δ ∈ Δ. Every regular language substitution ϕ : Δ+ →
Reg(Σ) generates the semigroup Sϕ = 〈{ϕ(δ) | δ ∈ Δ)}〉. Conversely, with every
semigroup (S, ·) = 〈V1, . . . , Vn〉 of regular languages we can associate a language
substitution ϕ defined by the rule δi �→ Vi.

We turn now to regular path queries over semistructured data and query
rewritings. A semistructured database is an ordered edge-labeled graph B =
〈O, E, Σ, ψ〉, where O is a finite set of nodes (objects), Σ is a set of labels (a
database alphabet), E ⊆ O × O is a set of edges, and ψ : E → Σ is the edge-
labeling function. With every path in the database graph, i.e. a set of adjusting
edges (e1, e2, . . . , em), we associate the word w = a1a2 . . . am in Σ, defined by
the rule ai = ψ(ei). Let us denote the regular language of all words associated
with all paths between given pair of database nodes, say u and v, as L(u,v)(B).
A query is a regular language over Σ. The result of a query Q on the database
B is the set

Q(B) = {(u, v) ∈ O × O | L(u,v)(B) ∩ Q = ∅}.

Let ϕ : Δ+ → Reg(Σ) be a regular language substitution. The maximal
rewriting of a regular language R ⊆ Σ∗ with respect to ϕ is the set

Mϕ(R) = {w ∈ Δ+ | ϕ(w) ⊆ R}.

The maximal rewriting Mϕ(R) is called exact, if

⋃

w∈Mϕ(R)

ϕ(w) = R.

The following theorem is due to D.Calvanese et al. [3], and K.Hashiguchi [14].

Theorem 2.1. Let ϕ : Δ+ → Reg(Σ) be a regular language substitution. For
any regular language R ⊆ Σ∗ the maximal rewriting Mϕ(R) is a regular language
over Δ.

126 S. Afonin

As it was mentioned above, the maximal rewriting could be redundant. We say,
that a regular language Q admits a single word rewriting with respect regular
language substitution ϕ if there exists a word w ∈ Δ+, such that Q = ϕ(w). The
decidability of single word rewriting problem was proved by K.Hashiguchi [14]
and the following theorem was proved in [2].
Theorem 2.2. Let ϕ : Δ+ → Reg(Σ) be a regular language substitution and w
be a word in Δ+. The membership problem for the semigroup Sϕ

[w] = {u ∈ Δ+ | ϕ(u) = ϕ(w)}
is a regular language over Δ.
Theorem 2.2 implies that, given a finite set of views and a regular path query
Q, one can effectively construct a finite automaton that recognize the set of all
possible single word rewritings of Q wrt the viewset.

3 Viewsets of Minimal Cardinality and p-Containment

In this section we study the problem of finding a viewset of minimal cardinality
and show decidability of p-containment between viewsets of regular path queries.
We focus our attention on single word rewritings and then extend the result
to arbitrary regular rewritings. For single word rewritings both problems may
be reformulated in terms of finitely generated semigroups of regular languages.
Indeed, given a finite set V of regular languages over Σ one can consider the
semigroup S = 〈V, ·〉 with V as the set of generators and language concatenation
as a semigroup product. The semigroup S consists exactly of languages that can
be rewritten in terms of V using single word rewriting. Now, a viewset V1

is p-contained in a viewset V2 iff the semigroup 〈V1, ·〉 is a subsemigroup of
〈V2, ·〉, and minimal cardinality viewset problem is the following. Given a finite
set Q = {Q1, . . . , Qn} of regular languages over an alphabet Σ one should find
a natural number k and a set G = {G1, . . . , Gk} of regular languages over Σ
satisfying the following conditions:
– Qi ∈ 〈G〉 for every i ∈ {1, . . . , n}, and
– for every k′ < k and every set G′ = {G′

1, . . . , G
′
k′} there exists Q ∈ Q such

that Q /∈ 〈G′〉.
The above conditions imply that 〈Q〉 ⊆ 〈G〉. Note, that k is bounded by the
number of elements in Q and set G always exists, although it can not be con-
structed by a “trivial” brute force algorithm.

The main idea of the algorithm proposed in this section is to construct fac-
torizations of Qi (with respect to concatenation) and choose minimal subset of
factors that forms a basis of a semigroup. The difficulty related to this approach
arise from the fact that a regular language has infinitely many factorizations,
in general. For example, the language L = a∗ admits infinitely many factoriza-
tions of the form L = FM , e.g., every pair of languages F and M such that
F ∪ M = a∗ and ε ∈ F ∩ M forms a factorizations of L. In order to resolve this
problem we show that there exist finite set of languages, that can be effectively
constructed from Q, and minimal basis consist of elements of this set.

The View Selection Problem for Regular Path Queries 127

3.1 Maximal Factors of Regular Languages

Let L ⊆ Σ∗ be a regular language. Consider a family of language equations
of the form L = X1 . . . Xm. A m-tuple (L1, . . . , Lm) of languages is a solu-
tion to the equation L = X1 . . . Xm if the equality L = L1 . . . Lm holds. A
m-tuple (L1, . . . , Lm) is contained in a m-tuple (L′

1, . . . , L
′
m) if Li ⊆ L′

i for all
i = 1, . . . , m. A solution (L1, . . . , Lm) is called maximal if it is not contained
in any other solution to the equation. A language F is called a maximal factor
of L if there exist a natural number m such that F is a component of some
maximal solution to the equation L = X1 . . . Xm. The set of all maximal factors
of a language L is denoted by F(L).

Theorem 3.1 (J.Conway [8]). A regular language L has finitely many maxi-
mal factors and all these factors are regular languages. Moreover, maximal fac-
tors are effectively constructable.

The algorithm for viewset selection depends on maximal factors construction and
we briefly describe how this can be done. First, consider the univariate language
equation of the form AY = L where A, L ∈ Reg(Σ). A language F ⊆ Σ∗ is
called a solution to the equation AY = L if AF = L. Since the union of two
solutions is a solution as well, the equation AY = B has at most one maximal
solution and this solution is the language Ymax =

⋂
u∈A u−1L. Similarly, the

language Xmax =
⋂

u∈A Lu−1 is the maximal solution to the equation XA = B.
Since every regular language has finitely many different right (left) quotients the
equation XY = L has at most finitely many maximal solutions.

Let (Pi, Qi) i = 1, . . . , p be the maximal solutions to the equation XY = L.
The set of maximal factors of L is exactly the union of {Pi}, {Qi}, and the
set of maximal solutions of equations PiXQj = L. Maximal solutions to such
equations are to intersection of some left and right quotients of L.

3.2 Algorithm

Let A be a set of languages over Σ. By intersection closure of A, denoted as A,
we mean the set of all languages that can be obtained by finite intersections of
elements of A:

A = {I ⊆ Σ∗ | ∃A1, . . . , Am ∈ A I = A1 ∩ . . . ∩ Am} .

Theorem 3.2. Let Q be a finite set of regular languages and F be the set of all
maximal factor of its elements, i.e.

F = ∪Q∈QF(Q).

There exists a minimal cardinality set G of generators for Q such that G ⊆ F.

Proof. Let A and B be regular languages. We call a language F a common factor
of A and B if A = P1FP2, B = Q1FQ2 for some languages P1, P2, Q1, Q2. We
prove now that if there exits a common factor F for A and B when F can be

128 S. Afonin

extended to the intersection F ′ = FA ∩ FB of some maximal factors FA ∈ F(A)
and FB ∈ F(B), that is F ⊆ F ′ and F ′ is a common factor of A and B.

Indeed, languages (P1, F, P2) form a solution to the equation A = X1X2X3.
By Theorem 3.1 there exists a maximal solution, say (M1, M2, M3), that contains
the solution (P1, F, P2). It is follows that every tuple (P1, L, P2) is a solution to
the equation if L satisfy the inequalities F ⊆ L ⊆ M2. Similarly, the solution
(Q1, F, Q2) is contained in some maximal solution to the equation B = X1X2X3,
and the intersection of corresponding components of these maximal solutions is
the desired language F ′. Clearly, that if F is a common factor of languages
A1, . . . , Ap, then there exists a common factor F ′ that is the intersection of
some maximal factors of the languages A1, . . . , Ap.

Now assume that G = {G1, . . . , Gk} is a minimal cardinality set of generators
and this set is not contained in F. Without loss of generality assume that F1 /∈ F.
Every language Q ∈ Q has a factorization of the form

Q = Gi1 . . .Gim ,

and G1 is a common factor of some languages from Q. Thus, there exists G′
1 ∈ F

such that the set G1 = {G′
1, G2 . . . , Gk} is the set of generators for Q. Repeat-

edly applying this procedure to all elements of G one can construct the set of
generators that has the same cardinality as G. ��

In the sequel we shall call a viewset that is a subset of F the maximal viewset. It
is worth noting that in the proof we did not assume that the “initial” minimal
cardinality set consists of regular languages, thus if we drop the restriction that
minimal set should contains only regular languages we will not decrease the
number of generators.

As an immediate corollary from Theorem 3.2 and the finiteness of the set of
maximal factors of a regular language we have

Theorem 3.3. Minimal cardinality viewset problem is decidable for single word
rewriting.

Proof. Given a finite set Q = {Q1, . . . , Qn} the algorithm first computes the
intersection closure F of the set F(Q) of all maximal factors, and then, for every
subset G of F, checks whether or not G is the set of generators for Q. ��

The algorithm proposed by this theorem relies on maximal factor construction
and the algorithm that checks that a language is representable as concatenation
of given regular languages. The number of maximal factors of a regular language
L is at most 22N ,where N is the number of states of the minimal deterministic
automaton for L. The best known bound for the number of intersection of
maximal factors is 2N2

[19]. Thus, the size of set F is double-exponential
in the total size of minimal automata for languages in Q. Known algorithms
for single word rewritings [1,14] are based on the limitedness property of distance

The View Selection Problem for Regular Path Queries 129

automata which is Pspace-complete [16,15] and for which only exponential time
complexity algorithms are known. The number of states of a distance automaton
to be checked is no more then 2M , where M is the number of states of determin-
istic automaton for Q. Summing up, this algorithm requires Pspace-complete
problem to be called a triple-exponential number of times.

In the rest of this section we show how the minimal cardinality viewset se-
lection problem can be reduced to the minimal test length problem. The crucial
point in this reduction is Theorem 2.2. Let ϕ be a substitution defined by the
rule ϕ(Δ) = F. We shall abuse the notation and denote by [Q] the set of all
words w over Δ such that ϕ(w) = Q. The minimal cardinality viewset can be
represented as a subset B ⊆ Δ. For every query Q from the workload Q one
can construct an automaton for [Q], and the set B should satisfy the following
condition: [Q]∩B∗ = ∅ for every Q ∈ Q. For every query Qi one can effectively
construct the finite set of subsets of Δ, say R

(i)
1 , . . . , R

(i)
ki

⊆ Δ, such that Qi can

be represented in terms of ϕ(B) iff R
(i)
j ⊆ B for some j � ki. These sets corre-

spond to (labels on) simple paths in minimal automaton for [Qi]. The minimal
cardinality viewset is the minimal cardinality subset B ⊆ Δ such that for every
Qi there exists j � ki satisfying R

(i)
j ⊆ B. Although the minimal test length

problem is NP-complete such reduction allows to avoid checking every possible
subset of the set F. Moreover, when membership languages [Q] are constructed
for all Q ∈ Q the remaining computations use transparent structures and the
complexity does not depend on number of states of automata for F.

3.3 Arbitrary Rewritings and p-Containment of Viewsets

Similarly to maximal solutions to linear language equations one can consider
maximal solutions to equations of the form r(X1, . . . , Xn) = L where r is an
arbitrary regular expression over alphabet Σ ∪ {X1, . . . , Xn}. It is known that
for every regular language L there exist only finitely many different languages
that are components of maximal solutions (see e.g. [19]).

Theorem 3.4. Let Q be a finite set of regular languages. There exists a finite
set of languages F, that can be effectively constructed from Q, such that at least
one minimal cardinality viewset (wrt regular rewriting) is contained in F.

The proof is essentially the same as for Theorem 3.2.
The algorithm described in the previous section may produce several viewsets

of minimal cardinality. Different viewsets can be compared by their expressive
power. We say that a viewset V1 is p-contained in a viewset V2 if every query
that can be answered using V1 can be answered using V2. The following theorem
gives an algorithm for p-containment checking.

Theorem 3.5. A viewset V1 is p-contained in a viewset V2 with respect to
regular rewritings iff every view V ∈ V1 may be rewritten in terms of the view-
set V2.

130 S. Afonin

4 Viewsets of Minimal Size

For now assume that the database instance B is fixed. Every regular path query
defines a (finite) binary relation on the set of the database nodes and we define
the size of a query Q, denoted by |Q|, as the cardinality of the corresponding
relation. This quantity is proportional to the amount of space, in bytes, required
to store the results to the query. Minimal size viewset selection problem is stated
as follows: given a workload Q and a database instance B find a viewset V such
that its total size

∑
V ∈V |V | is minimal on the database B (the minimum is

taken among all the viewsets that answers every query in the workload). The
following proposition states that every minimal size viewset is contained in some
maximal viewset.

Proposition 4.1. Let V be a minimal size viewset for Q and B. There exists
a viewset G such that:

– for every V ∈ V there exists G ∈ G satisfying V ⊆ G;
– every language G ∈ G is the intersection of some maximal factors: G ⊆

F(Q).

The proof is straightforward. The main idea of the algorithm for instance based
minimal size viewset construction is to start from a maximal viewsets and then
minimize their elements by subtracting some regular languages.

Proposition 4.2. Let G = {G1, . . . , Gk} be a maximal viewset for the workload
Q, and B be a database instance. There exists an effectively constructable viewset

G′ = {G′
1, . . . , G

′
k}

such that the following conditions hold:

– G′
i ⊆ Gi for all i = 1, . . . , k;

– for any viewset G′′ = {G′′
1 , . . . , G′′

k} satisfying the above condition the in-
equality |G′| � |G′′| holds.

Proof. Let G = {G1, . . . , Gk} be a maximal viewset that is not a minimal size
viewset. There exist a component G ∈ G such that |G′| < |G|, where G′ is
obtained from G by replacing G with some language G′ ⊆ G. Clearly, that
G′(B) ⊂ G(B) and the language

G′′ = G \
⋃

(u,v)∈G(B)

L(u,v)(B)

has exact the same size as G. Since the database instance is finite, the number
of views to be checked is finite and a minimal size viewset (contained in a given
viewset) may be constructed by checking all possible combinations. ��

As an immediate corollary of Propositions 4.1 and 4.2 we have:

The View Selection Problem for Regular Path Queries 131

Theorem 4.1. There exists an algorithm that, for a given workload Q and a
database instance B, computes a viewset of minimal size.

Now, suppose that the database instance is not known, but there exists an oracle
E : Reg(Σ) → N that estimates the size of a query result. Estimation function
E is called exact if E(Q) equals to actual query result size. In this case we have
implication Q1 ⊆ Q2 ⇒ E(Q1) � E(Q2). We show that the problem of minimal
size (with respect to the oracle E) requires construction of minimal solutions to
language equations. Indeed, let Q = {Q1, Q2} and the equation Q1X = Q2 has
a solution. A possible minimal size viewset in this case is a pair {Q1, S}, where
S is a minimal solution to the equation such that E(S) � E(S′) for every other
(minimal) solutionS′. The problem is that even such simple linear equation admits
uncountably many minimal solution. For example, the equation {ε, a}X = {a}∗
over the unary alphabet Σ = {a} has infinitely many minimal solutions: every
language K ⊆ Σ∗ that contains the empty word and satisfies the condition that
if K contains the word an (n � 0) then it contains only one of the words an+1 or
an+2 is a minimal solution. It is not clear whether or not the minimal size viewset
can be computed with respect to exact query size estimation function.

5 Conclusion

In this paper we proved that the search space for minimal cardinality and in-
stance based minimal size viewset construction problems is finite, both for single
word and regular rewritings. Thus, both problems are decidable and we proposed
algorithms for such viewsets construction. We also proved that p-containment of
viewsets of regular path queries is decidable for single word and regular rewrit-
ings. The main result on single-word rewritings may be stated in terms of semi-
groups of regular languages: The rank problem for finitely generated semigroups
of regular languages is decidable.

It could be interesting to consider similar problems for partial rewritings.
Recursionless (i.e., finite) partial rewritings was recently investigated in [12].
It seems that the main problem for view selection under partial rewriting is
to choose an appropriate measure for the viewset. Since partial rewriting ad-
mits letters of original alphabet in the rewriting language, the empty viewset
is the minimal cardinality and minimal size viewset. Thus, a relevant viewset
quality measure should take into account (in addition cardinality and storage
constraints) how often a query evaluation algorithm will access the database.

References

1. Afonin, S., Khazova, E.: Membership and finiteness problems for rational sets of
regular languages. International Journal of Foundations of Computer Science 17(3),
493–506 (2006)

2. Afonin, S., Khazova, E.: A note on finitely generated semigroups of regular lan-
guages. In: Andre, J.M., et al. (eds.) Proceedings of the International Conference
“Semigroups and Formal Languages”, pp. 1–8. World Scientific, Singapore (2007)

132 S. Afonin

3. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.: Rewriting of regular
expressions and regular path queries. Journal of Computer and System Sciences 64,
443–465 (2002)

4. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: View-based query
processing: On the relationship between rewriting, answering and losslessness. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 321–336. Springer,
Heidelberg (2004)

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Answering regular path
queries using views. In: ICDE, pp. 389–398 (2000)

6. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection
problem. The VLDB Journal 11(3), 216–237 (2002)

7. Chirkova, R., Li, C.: Materializing views with minimal size to answer queries. In:
PODS 2003, pp. 38–48. ACM Press, New York (2003)

8. Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton
(1971)

9. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. SIGMOD Rec. 34(4), 27–33 (2005)

10. Grahne, G., Thomo, A.: Algebraic rewritings for optimizing regular path queries.
Theoretical Computer Science 296(3), 453–471 (2003)

11. Grahne, G., Thomo, A.: Query containment and rewriting using views for regular
path queries under constraints. In: PODS 2003, pp. 111–122. ACM Press, New
York (2003)

12. Grahne, G., Thomo, A.: Boundedness of regular path queries in data integration
systems. In: Proc. of IDEAS, pp. 85–92. IEEE Computer Society, Los Alamitos
(2007)

13. Halevy, A.Y.: Theory of answering queries using views. SIGMOD Record (ACM
Special Interest Group on Management of Data) 29(4), 40–47 (2000)

14. Hashiguchi, K.: Representation theorems on regular languages. Journal of computer
and system sciences 27, 101–115 (1983)

15. Kirsten, D.: Desert automata and the finite substitution problem. In: Diekert, V.,
Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 305–316. Springer, Heidelberg
(2004)

16. Leung, H., Podolskiy, V.: The limitedness problem on distance automata:
Hashiguchi’s method revisited. Theoretical Computer Science 310(1–3), 147–158
(2004)

17. Li, C., Bawa, M., Ullman, J.D.: Minimizing view sets without losing query-
answering power. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 99–113. Springer, Heidelberg (2000)

18. Mandhani, B., Suciu, D.: Query caching and view selection for XML databases.
In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.-Å., Ooi, B.C.
(eds.) VLDB, pp. 469–480. ACM Press, New York (2005)

19. Polák, L.: Syntactic semiring and language equations. In: Champarnaud, J.-M.,
Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 182–193. Springer, Heidelberg
(2003)

20. Segoufin, L., Vianu, V.: Views and queries: determinacy and rewriting. In: PODS
2005, pp. 49–60. ACM Press, New York (2005)

21. Tajima, K., Fukui, Y.: Answering XPath queries over networks by sending minimal
views. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley,
J.A., Schiefer, K.B. (eds.) VLDB, pp. 48–59. Morgan Kaufmann, San Francisco
(2004)

Optimal Higher Order Delaunay Triangulations

of Polygons�

Rodrigo I. Silveira and Marc van Kreveld

Department of Information and Computing Sciences
Utrecht University, 3508 TB Utrecht, The Netherlands

{rodrigo,marc}@cs.uu.nl

Abstract. This paper presents an algorithm to triangulate polygons
optimally using order-k Delaunay triangulations, for a number of qual-
ity measures. The algorithm uses properties of higher order Delaunay
triangulations to improve the O(n3) running time required for normal
triangulations to O(k2n log k + kn log n) expected time, where n is the
number of vertices of the polygon. An extension to polygons with points
inside is also presented, allowing to compute an optimal triangulation
of a polygon with h ≥ 1 components inside in O(kn log n) + O(k)h+2n
expected time. Furthermore, through experimental results we show that,
in practice, it can be used to triangulate point sets optimally for small
values of k. This represents the first practical result on optimization of
higher order Delaunay triangulations for k > 1.

1 Introduction

One of the best studied topics in computational geometry is the triangulation.
When the input is a point set P , it is defined as a subdivision of the plane
whose bounded faces are triangles and whose vertices are the points of P . When
the input is a polygon, the goal is to decompose it into triangles by drawing
diagonals.

Triangulations have applications in a large number of fields, including com-
puter graphics, multivariate analysis, mesh generation, and terrain modeling.
Since for a given point set or polygon, many triangulations exist, it is possible to
try to find one that is the best according to some criterion that measures some
property of the triangulation.

The properties of interest are application-dependent, but are generally either
local properties of the triangles (like area, height or minimum angle) or global
properties of the triangulation (such as total edge length). For example, in au-
tomatic mesh generation for finite element methods, criteria like minimizing the
minimum/maximum angle and height of the triangles are related to the error of
the finite element approximation [3,21]. In the context of terrain modeling, ter-
rains are many times represented by triangulated irregular networks, which are
� This research has been partially funded by the Netherlands Organisation for Scien-

tific Research (NWO) under the project GOGO.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 133–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 R.I. Silveira and M. van Kreveld

Fig. 1. A Delaunay triangulation (k = 0) (left), and an order-2 triangulation (right).
Light gray triangles are first order, the medium grey ones are second order.

triangulations where each point has an elevation. When terrain models need to
be realistic, for example in visualization or terrain analysis for hydrology, criteria
like avoiding ill-shaped triangles and having few local minima are particularly
relevant [6,18].

For a given set of points P , a well-known triangulation is the Delaunay tri-
angulation. It is defined as a triangulation where the circumcircle of the three
vertices of any triangle does not contain any other point of P . It is unique when
no four points are cocircular, and can be computed in O(n log n) time for n
points. The Delaunay triangulation has a large number of known properties,
and it optimizes several measures, like max min angle or min max smallest en-
closing circle, among others. This is the reason why its triangles are said to be
well-shaped. However, for many applications, the Delaunay triangulation is not
flexible enough. For example, when used for terrain modeling, the triangulation
does not take the third dimension into account, which may result in artifacts
like interrupted valley lines or artificial local minima.

To overcome this limitation, Gudmundsson et al. [11] define higher order De-
launay triangulations, a class of well-shaped triangulations where a few points are
allowed inside the circumcircles of the triangles. A triangle is said to be order-k
Delaunay if its circumcircle contains at most k points. A triangulation is order-
k Delaunay if all its triangles are order-k Delaunay (see Figure 1). For k = 0,
each non-degenerate point set has only one higher order Delaunay triangulation,
equal to the Delaunay one. As the parameter k is increased, more points inside
the circumcircles imply a reduction in the shape quality of the triangles, but
also an increase in the number of triangulations that are considered, and hence
greater flexibility to optimize some other criterion, while limiting the badness of
the shape of the triangles. The concept of higher order Delaunay triangulation
has been successfully applied to several areas, including terrain modeling [7],
minimum interference networks [1] and multivariate splines [20].

In this paper we focus mainly on triangulations of polygons. Optimal polygon
triangulation has been a subject of study for a long time, both because it has
applications of its own, like in finite element methods, and also because it gives
insight into the generally harder problem of optimal point set triangulation.
When the goal is to optimize only one criterion, optimal polygon triangulations
can be computed in polynomial time for many measures. The constrained De-
launay triangulation [5], which generalizes the standard definition in order to
force certain edges into the triangulation, can be used to triangulate polygons,

Optimal Higher Order Delaunay Triangulations of Polygons 135

Fig. 2. Three different triangulations of a polygon: the constrained Delaunay trian-
gulation (left), the minimum weight triangulation (center), and the minimum weight
triangulation constrained to order-2 Delaunay triangulations (right). The third one
combines nicely shaped triangles with the minimization of the weight.

with triangle shape properties similar to the ones of the Delaunay triangulation.
Many other measures can be optimized using a dynamic programming algorithm
attributed to Klincsek [15], and also, independently, proposed by Gilbert [10].
This approach allows to find in O(n3) time an optimal triangulation of a simple
polygon for any decomposable measure. Intuitively, a measure is decomposable
if the measure of the whole triangulation can be computed efficiently from the
measures of two pieces, together with the information on how the pieces are
glued together. See [3] for a formal definition. Decomposable measures include
the following: min / max angle, min / max circumcircle, min / max length of an
edge, min / max area of triangle, and the sum of the edge lengths. The algorithm
by Klincsek can be extended to other measures that are not decomposable, like
maximum vertex degree. For convex polygons, the min/max area of triangle
measures can be optimized even faster, in O(n2 log n) time [14].

Triangulating point sets optimally is in general more difficult than triangulat-
ing polygons. For example, the minimum weight triangulation can be computed
for polygons in cubic time using Klincsek’s algorithm, but is NP-hard for point
sets [19]. Only a few methods exist for optimal triangulations of point sets.
The edge insertion paradigm [2] can be used to optimize several measures in
O(n2 log n) or O(n3) time (depending on the measure). A triangulation of a
point set minimizing the maximum edge length can be computed in O(n2) time
[8]. The greedy triangulation, which lexicographically minimizes the sorted vector
of length edges, can be constructed in O(n log n) time [17].

Our problem is more involved, since we aim at optimizing a measure over
higher order Delaunay triangulations, therefore enforcing well-shaped triangles
at the same time as optimizing some other measure. Figure 2 shows an example.
There are not many results on optimal higher order Delaunay triangulations. For
the case k = 1, the triangulations have a special structure that allows a number
of measures (for example max/min area triangle, total edge length, number of
local minima in a terrain) to be optimized in O(n log n) time [11]. A few other
measures, like minimizing the maximum area ratio of edge-adjacent or vertex-
adjacent triangles, can also be optimized efficiently [16]. Other measures like
maximizing the number of convex edges or minimizing the maximum vertex de-
gree have been shown to be NP-hard [16]. For k > 1, fewer results are known.

136 R.I. Silveira and M. van Kreveld

Minimizing local minima in a terrain is NP-hard for orders at least nε, where ε
is any positive constant [7].

In this paper we present an extension of the algorithm by Klincsek [15] that
allows to optimize a decomposable measure for a simple polygon over order-
k Delaunay triangulations. A straightforward extension of Klincsek’s algorithm
leads to O(kn3+n3 log n) running time. Our main contribution is improving this
to O(k2n log k + kn log n), by exploiting properties of this special class of trian-
gulations. This represents an important improvement, given that small values of
k are most important [7].

We also explain how to extend our algorithm to triangulate polygons with
points inside, and present experimental results on the structure of order-k De-
launay triangulations that suggest that in practice, the same approach can be
used to triangulate point sets for small values of k optimally. This constitutes
the first practical result on optimization of higher order Delaunay triangulations
for k > 1.

Note that in this paper we use the standard definition of order of a triangle, as
in [11,20], which does not take the boundary edges of the polygon into account.
This implies that for a given polygon and value k, our algorithm may find that no
order-k triangulation of that polygon exists. In such a case, it is always possible
to increase k until a triangulation is found. The authors recently studied possible
definitions of the order of a triangle that take a set of constraining edges into
account [22], which guarantee that a polygon can always be triangulated for any
k. However, although seven different definitions for this notion of constrained
order were proposed in [22], no single definition can be regarded as the natural
or right one.

2 Higher Order Delaunay Triangulations

In this section we present some basic concepts on higher order Delaunay trian-
gulations, together with some results that will be needed later. From now on we
assume non-degeneracy of the input set P : no four points are cocircular.

Definition 1. (from [11]) A triangle �uvw in a point set P is order-k Delaunay
if its circumcircle C(u, v, w) contains at most k points of P . A triangulation of
a set P of points is an order-k Delaunay triangulation if every triangle of the
triangulation is order-k.

Definition 2. (from [11]) Let P be a set of points, and let pq be an edge between
two points p, q ∈ P . pq is an order-k Delaunay edge if there exists a circle that
passes through p and q that has at most k points of P inside. The useful order
of an edge is the lowest order of a triangulation that includes that edge.

For brevity, we will sometimes write order-k instead of order-k Delaunay, and
k-OD edge instead of order-k Delaunay edge. We also assume that k ≥ 1 is a
given integer, and write useful edge instead of useful k-OD edge. It is worth
mentioning that the order and the useful order of an edge can differ arbitrarily
much.

Optimal Higher Order Delaunay Triangulations of Polygons 137

r1

r2

rζ

u

v

l1

l2

lη

r1

r2

rk+1

u

v

(a) (b)

Fig. 3. (a) At most k + 1 third points. (b) Finding the k-OD triangles incident to uv.

Lemma 1. (from [11]) Let uv be a k-OD edge, let s1 be the point to the left of
−→vu, such that the circle C(u, s1, v) contains no points to the left of −→vu. Let s2 be
defined similarly but to the right of −→vu. Edge uv is a useful k-OD edge if and
only if �uvs1 and �uvs2 are k-OD triangles.

We extend the basic definitions and lemma above with one more lemma.

Lemma 2. Let uv be a useful k-OD edge. There are O(k) order-k triangles that
have uv as one of their edges.

Proof. We will show that −→uv can be part of at most k + 1 triangles on each side.
Imagine we slide a circle in contact with u and v until it touches a first point
r1 to the right of the edge (see Figure 3(a)). This could potentially be a third
point of a triangle that includes −→uv because it is possible for the circumcircle of
triangle �ur1v to contain less than k+1 points. If we slide the circle again until
it touches a second point r2, we now know that the circle contains at least one
point (r1). Continuing in this way it can be seen that the circle defined by u,
v and the (k + 1)-th touching point, rk+1, contains at least k points, hence no
further point can be a third point because then the circle would contain k + 1
points. Since an identical argument can be applied to the left side, we conclude
that at most O(k) triangles can have −→uv as one of its edges. �
Next we show that all the order-k triangles formed by useful k-OD edges can be
computed efficiently.

Lemma 3. Let P be a set of n points in the plane. In O(k2n log k + kn log n)
expected time one can compute all order-k triangles of P that are incident to at
least one useful k-OD edge.

We provide a sketch of the algorithm. An order-k triangle must meet two
conditions: its circumcircle must contain at most k points and it must be empty.
For a set of n points there are O(kn) useful k-OD edges [11], and by Lemma 2,
a given useful edge can be part of O(k) order-k triangles. This makes the total
number of order-k triangles O(k2n).

All the useful edges can be computed in O(k2n+kn logn) expected time [11].
Moreover, without increasing the previous asymptotic running time, we can store

138 R.I. Silveira and M. van Kreveld

for every useful edge −→uv, the two sets of points that are contained in the two
circles that determine its usefulness (see Lemma 1). There are at most k of these
points on each side. For each side, we will sort the points according to the order
in which they are touched when sliding a circle in contact with u and v (in the
same way as in the proof of Lemma 2). This can be done in O(k log k) time by
sorting the centers of the circles.

To find out which third points can make an order-k triangle, we need to count
the number of points inside each circumcircle. This can be done using the two
sorted lists of points as follows. We explain how to do it for the right side, the
left side is identical. Let L = {lη, ..., l1} be the sorted points to the left of −→uv,
and R = {r1, ..., rζ} the ones to its right. See Figure 3(b). The circumcircle
of �uvr1, denoted C(u, v, r1), contains by definition no points to the right of
−→uv and η points to its left. For the second point, r2, we know that C(u, v, r2)
contains exactly one point to the right of −→uv (namely, r1). To find out how many
points it contains to the left of −→uv, we check whether lη is inside C(u, v, r2) or
not. If it is, then C(u, v, r2) contains exactly η points to the left of −→uv. If it
is outside, we go through L until we find the first lj that is inside C(u, v, r2).
That implies C(u, v, r2) contains exactly j points to the left of −→uv. This is then
repeated for r3, r4, ..., rζ . The running time is linear in k because both lists are
scanned only once, from left to right. Hence for each useful edge −→uv, we can find
part of the triangles incident to −→uv whose circumcircles contain at most k points
in O(k log k) time.

Notice that this algorithm, when applied to one edge −→uv, does not necessarily
find all the order-k triangles adjacent to −→uv. It may happen that some of the
order-k triangles adjacent to it have a third point that is not among the points
included in the two circles defining the usefulness of −→uv, because these circles
contain at most k points, but may contain less. However, we show in the full
paper that any triangle composed of three useful order-k edges that is missing
will be considered when processing one of the other two useful edges that make
the triangle, hence no relevant triangle will be missed at the end.

Still, some of these triangles may contain points inside, so we need to discard
the ones that are not empty. Let �uvx and �uvy be two triangles, and let αu

(αv) denote the angle of �uvx at u (at v), and βu (βv) the same for �uvy. It
is easy to see that �uvx contains point y if and only if βu < αu and βv < αv.
Each triangle can be represented by a point in the plane using its angles at u
and at v. The empty triangles are the ones lying on the lower-left staircase of
the point set, and can be found in O(k log k) time by a sweep line algorithm.

The total time needed to find the triangles for one useful edge is O(k log k).
Since there are O(kn) useful edges, all the useful edges and order-k triangles can
be computed in O(k2n log k + kn logn) expected time, proving Lemma 3.

3 Triangulating Polygons

As mentioned in the introduction, Klincsek’s algorithm allows to triangulate
polygons optimally for a large number of measures using dynamic programming.

Optimal Higher Order Delaunay Triangulations of Polygons 139

In this paper we have the additional requirement that the resulting triangulation
must be order-k, therefore the classical algorithm must be adapted to include
only order-k triangles.

The input of the algorithm is a polygon P , defined by its vertices in clockwise
order: p0, p1, . . . , pn−1. The output is a k-OD triangulation of optimum cost, if
it exists. It may be that the useful order of some of the polygon edges is such
that no order-k triangulation of P exists at all.

The dynamic programming algorithm finds an optimal solution by combining
solutions of smaller problems in a systematic way. The typical algorithms have
O(n3) running time and use an n × n matrix L, which in our problem has the
following meaning: L[i, i+j] is the cost of the optimal k-OD triangulation of the
polygon Pi,i+j , defined by the edges of P between pi and pi+j , plus edge pi+jpi.

The matrix can be filled in a recursive way. The simplest entries are the ones
of the form L[i, i + 1], which have cost 0. The recursive formula for L[i, i + j] is:

L[i, i + j] = min
q=1,2,...,j−1

(Cost(pi, pi+q, pi+j) � L[i, i + q] � L[i + q, i + j]) (1)

The expression Cost(pi, pi+q, pi+j) denotes the cost of triangle �pipi+qpi+j ,
and the operator � represents a way to combine the values of the subproblems.
Their precise meaning depends on the measure being optimized. Edges pipi+q

and pi+qpi+j must be diagonals. Triangles that are not contained entirely inside
P or are not k-OD have cost +∞. Checking the latter (verifying that there
are no more than k points inside the circumcircle of the triangle) would take
O(log n + k) time [11], but if we precompute all the order-k triangles for each
useful edge (see Section 2) and store them in a perfect hashing table [9], we can
find out in O(1) time if the triangle is among the order-k triangles. Note that
measures of the type min max(. . .) can also be optimized with the same method,
by using a recursive formula similar to (1).

We can take advantage of the properties of higher order Delaunay triangula-
tion to reduce the running time significantly. The main steps of the algorithm are
the following (details are given below). In the preprocessing phase we compute
all the useful edges and filter out the ones that are not fully contained inside the
polygon. The order-k triangles adjacent to each useful edge are precomputed.
The triangulation algorithm proceeds by applying Equation (1), using a perfect
hashing table to store the solutions to the subproblems already computed.

For a given edge pipj, the number of possible third points to form a triangle is
not O(n), as in the normal triangulation problem, but O(k) (see Lemma 2). If for
every edge we precompute these O(k) points, we can improve the O(n3) dynamic
programming running time to O(kn2), after spending O(k2n log k + kn log n)
time in the precomputation of the useful edges and the order-k triangles (see
Lemma 3).

Every time an edge is considered as a candidate to be in an optimal trian-
gulation, we must also check that it does not intersect the polygon boundary
and that it does not lie outside the polygon. This check can be done in O(log n)

140 R.I. Silveira and M. van Kreveld

time per edge using an algorithm for ray shooting in polygons [13]. This adds an
O(kn log n) term to the preprocessing time, which does not increase the previous
asymptotic running time.

Finally, the matrix L has O(n2) cells, each corresponding to one potential
edge. However, we know that only O(kn) edges will be useful, so it is not neces-
sary to keep a data structure of quadratic size. In order to avoid wasting time
and space on edges that are not useful, we will not use the standard matrix-based
dynamic programming algorithm, but we will use a memoized version instead.
The idea is to use Equation (1) to compute L[0, n − 1], and maintain a perfect
hashing table where we will store all the subproblems already solved. Notice
that each subproblem L[i, j] is associated with the insertion of an edge pipj ,
which must be useful k-OD. Hence, only O(kn) subproblems will be computed
and stored. The same table used to store the order-k triangles incident to an
edge can be extended to also store the value of the subproblem associated with
that edge. To solve one particular problem O(k) time is needed, yielding a total
running time of O(k2n), plus O(k2n log k + kn log n) preprocessing time.

Theorem 1. In O(k2n log k + kn log n) expected time one can compute an op-
timal order-k Delaunay triangulation of a simple polygon with n vertices that
optimizes a decomposable measure.

4 Triangulating Polygons with Points Inside

In this section we consider the more general problem of finding an optimal tri-
angulation of a simple polygon that contains h components in its interior. A
component can be either a point or a connected component made of several
points connected by edges. We will denote the polygon with the components by
P . We can reuse the algorithm from the previous section if we connect one vertex
of each component to some other vertex in order to remove all the loose parts.
To find the optimal triangulation we must try, in principle, all the possible ways
to make these connections. The number of them depends on h and on the order
k. In principle, there are O(n) ways to connect each component. However, since
we need only one edge that connects the component to the outer boundary of
the polygon, we don’t need to try O(n) but only O(k) edges.

Lemma 4. Let P be a polygon with h components inside. There is a collection
of O(k)h sets, of h edges each, such that: (i) for every set in the collection, the
edges in the set connect all the components in P to the outer boundary; (ii) any
order-k Delaunay triangulation includes the edges of some set in the collection.

Proof. First we show that for a given component in P , any order-k triangulation
T of P must connect the component to the rest of the polygon by one of O(k)
edges. Let u be the topmost point among the boundary points of the components
inside the polygon. Everything above u is part of the outer polygon boundary.
Let uv be an edge of the Delaunay triangulation of the point set induced by P

Optimal Higher Order Delaunay Triangulations of Polygons 141

and its components (ignoring the edges), with v higher than u. Since uv is a
Delaunay edge, we know from [11] that the useful k-OD edges that cross it have
O(k) endpoints on each side of uv. If uv is not part of T , at least one of the
useful edges that cross it must be. Let xy be the first of these edges (the first one
encountered when going from u to v along uv) in T , then triangle �uxy must
be part of T . This implies that edges ux and uy are part of it as well. Hence,
either uv or one of the O(k) possible edges of type uz (for z = x or z = y) must
be in T , and connects v to a higher point of the outer boundary of P .

Following the same idea, for each of the h components we can find a set of
O(k) useful k-OD edges such that any triangulation T connects each component
using one of these O(k) edges. The result follows. �

Using the previous result, our algorithm will try the O(k)h different ways to con-
nect the loose components in P . Let P1, · · · , Pη be the O(k)h different polygons
that are tried, and let Hi be the set of new boundary edges of Pi. For each Pi,
besides computing the boundary, we must compute the intersections between the
O(kn) useful edges and the new h edges in Hi, which were added to connect the
loose components. This is because during the triangulation we need to consider
only edges that make the polygon simply-connected.

The computation of these intersections can be done once and maintained
between successive polygons without increasing the asymptotic running time.
During the preprocessing phase, we will compute all the intersections between
useful k-OD edges. A useful k-OD edge can intersect O(k2) other useful k-OD
edges [11]. Therefore the total number of intersections is O(k3n), and they can
be computed in time O(kn log kn + k3n)=O(kn log n + k3n) [4]. We store for
each useful edge all the other useful edges that it intersects and in addition we
keep a counter. The counter will be used to keep track of how many edges in Hi

each useful edge intersects.
The algorithm will iterate through the polygons in such a way that two consecu-

tive polygons Pi and Pi+1 differ only in the edge chosen for one of the components.
Then during the (i +1)-th step the counters for Hi are already computed, and one
can compute the counters for Hi+1 very easily, as follows: let eout be the edge that is
removed and ein the new edge (that is, Hi+1 = Hi\{eout} ∪ {ein}). Firstly, all the
O(k2) useful edges that intersect eout must have their counters decreased by one.
Secondly, all counters of the O(k2) edges that intersect ein are incremented by one.
Both sets of edges were previously computed during the preprocessing phase and
can be accessed in constant time. Hence the time needed to update the intersection
information from one polygon to the next one is O(k2).

We conclude that the total time required to compute all the new intersections
is O(kn log n+ k3n) for the preprocessing and O(k2) per polygon. Note that the
useful edges and order-k triangles do not need to be recomputed, since they only
depend on the point set, which has not changed.

Triangulating each generated polygon using the algorithm from the previous
section takes O(k2n) time, yielding a total time of O(k2n log k + nk log n +
kn logn + k3n) + O(k)h(k2 + k2n)=O(kn log n) + O(k)h+2n (because h ≥ 1).

142 R.I. Silveira and M. van Kreveld

Theorem 2. An optimal order-k Delaunay triangulation of a simple polygon
with n boundary vertices and h ≥ 1 components inside that optimizes a decom-
posable measure can be computed in O(kn log n) + O(k)h+2n expected time.

5 Some Other Measures

The approach described above can also be used to optimize some other, non-
decomposable, measures. The challenging part is adapting the recursive formula
to make the subproblems independent. In the full paper we show how this can
be done for minimizing the maximum vertex degree, minimizing the number of
local minima (if the points have an elevation), and even optimizing functions of
quadrilaterals, such as minimizing the maximum area ratio of triangles sharing
an edge. In general these variations involve more complicated algorithms and
have higher running time.

Interestingly, a similar approach also allows to find the lowest order completion
of a polygon and a set of diagonals, that is, finding a higher order Delaunay
triangulation, with the lowest possible order, which contains the given diagonals.
The more general problem of finding a lowest order completion of a point set
with respect to a set of edges is still open; polynomial time algorithms are known
only for k ≤ 3 [12].

6 Application to Point Sets

Any point set can be optimally triangulated using the results from Section 4 if
it is seen as a polygon made of its convex hull with points inside. In general,
this will lead to a running time exponential in n, so this is of no practical
use. For low order Delaunay triangulations, the situation is better. Given a
point set and an order k, there are fixed edges that are present in any order-k
triangulation, and partition the convex hull of the point set into a number of
polygons with components inside. For k = 1, it is known that these polygons are
always empty triangles or quadrilaterals [11], which simplifies the optimization
of several measures. As k increases, the number of fixed edges decreases until it
is reduced to little more than the convex hull. Moreover, for k > 1 the polygons
may be larger and may have many components inside. However, our experiments
on the structure of higher order Delaunay triangulations suggest that in practice,
for small values of k, the appearance of such polygons is rather unlikely.

We summarize part of the results of experiments carried out on randomly
generated point sets, which show that for small values of k, the polygons cre-
ated contain only a few components. The experiments consisted in generating
random point sets of between 1000 and 5000 points, and for different values of
k, computing the partition into polygons with components inside given by the
fixed edges. The size of the polygons and the number of components was regis-
tered. These are the two factors, besides k, involved in the running time of the
algorithm of Section 4. Tables 1 and 2 show the results for point sets between
1000 and 5000 points, and k = 1, . . . , 10. It is worth mentioning that since the

Optimal Higher Order Delaunay Triangulations of Polygons 143

Table 1. Structure of order-k triangulations: average / maximum number of compo-
nents per polygon for random point sets of n points, averaged over 200 runs

k n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
2 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
3 0.00 / 0.03 0.00 / 0.03 0.00 / 0.04 0.00 / 0.06 0.00 / 0.07
4 0.00 / 0.44 0.00 / 0.68 0.00 / 0.80 0.00 / 0.94 0.00 / 0.90
5 0.01 / 1.15 0.01 / 1.35 0.01 / 1.50 0.01 / 1.53 0.01 / 1.57
6 0.05 / 2.22 0.05 / 2.63 0.04 / 2.77 0.04 / 2.91 0.04 / 3.13
7 0.18 / 5.52 0.17 / 6.77 0.16 / 6.82 0.16 / 7.38 0.16 / 7.87
8 0.55 / 18.95 0.53 / 24.19 0.52 / 29.85 0.52 / 31.28 0.52 / 35.85
9 1.45 / 61.05 1.47 / 108.70 1.47 / 150.83 1.52 / 205.30 1.53 / 242.75

10 3.08 / 115.55 3.33 / 225.36 3.44 / 332.13 3.62 / 443.35 3.72 / 552.41

Table 2. Structure of order-k triangulations: average / maximum size of polygons for
random point sets of n points, averaged over 200 runs. Since the dynamic program-
ming algorithm works by considering triangles, the size is measured as the number of
Delaunay triangles that the polygon contains. More details in the full version.

k n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

1 1.35 / 2.00 1.35 / 2.00 1.35 / 2.00 1.36 / 2.0 1.35 / 2.00
2 1.99 / 6.82 1.99 / 7.41 1.99 / 7.54 2.00 / 7.63 2.00 / 7.77
3 2.84 / 12.77 2.85 / 13.84 2.84 / 14.60 2.85 / 15.14 2.85 / 15.59
4 4.02 / 23.54 4.04 / 25.95 4.04 / 28.02 4.04 / 28.37 4.04 / 29.95
5 5.80 / 43.97 5.82 / 52.90 5.83 / 54.55 5.84 / 56.25 5.85 / 59.72
6 8.63 / 91.66 8.68 / 108.55 8.74 / 115.63 8.74 / 123.63 8.78 / 129.58
7 13.48 / 222.25 13.56 / 263.83 13.72 / 292.36 13.83 / 310.12 13.86 / 337.01
8 21.71 / 569.40 22.40 / 749.15 22.76 / 980.10 23.21 / 1038.78 23.41 / 1223.43
9 34.99 / 1294.76 37.26 / 2425.46 38.32 / 3434.07 39.89 / 4716.74 40.58 / 5661.38

10 49.91 / 1755.54 56.27 / 3566.14 59.04 / 5341.94 62.56 / 7195.49 64.77 / 9034.72

convex hull of the point set limits the growth of the polygons, the results may
be influenced slightly by boundary effects.

A few observations are in order. The experiments confirm that for k ≤ 3, it
is very unlikely to find polygons with components inside. Even though for k ≥ 2
one can build examples where that is the case, they hardly arise in random point
sets. Even for orders up to 5 or 6, the size of the polygons and number of com-
ponents are small enough to be useful for practical purposes. As a result, finding
optimal triangulations that in general are NP-hard, like the minimum weight
triangulation, can be done in practice if the Delaunay order is low enough. The
small values of k are the most useful in practice, for several reasons. On the
one hand, as k increases, the shape of the triangles deteriorates. On the other
hand, previous experimental results [7], related to realistic terrain modeling,
have shown that low values of k are enough to obtain important improvements

144 R.I. Silveira and M. van Kreveld

on several terrain measures (like the number of local minima), making small
values of k particularly interesting for these applications.

7 Discussion

We studied algorithms to find higher order Delaunay triangulations of poly-
gons that optimize a decomposable measure. Based on an existing technique for
polygon triangulation, we proposed an algorithm to compute an optimal triangu-
lation of a polygon restricted to order-k triangulations. Their specific properties
allowed us to reduce an O(n2) factor to O(k2), a substantial improvement since
k will be, in general, much smaller than n [7]. Our method can also be extended
to some non-decomposable measures, like maximum vertex degree. For the more
general problem of triangulating optimally a polygon with components inside,
we presented an algorithm that is fixed-parameter tractable for k = O(1).

We also gave experimental evidence suggesting that the specific structure
of order-k Delaunay triangulations, for small values of k, makes the algorithm
presented here applicable to point sets. This constitutes the first practical result
on optimal higher order Delaunay triangulations for k > 1, allowing to optimize
any decomposable function over a class of well-shaped triangulations.

Acknowledgments. We thank Remco Burema for carrying out the experimental
work in this paper.

References

1. Benkert, M., Gudmundsson, J., Haverkort, H.J., Wolff, A.: Constructing
interference-minimal networks. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková,
M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 166–176. Springer, Hei-
delberg (2006)

2. Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., Tan, T.S.: Edge insertion
for optimal triangulations. Discrete Comput. Geom. 10(1), 47–65 (1993)

3. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Du, D.-Z.,
Hwang, F.K. (eds.) Computing in Euclidean Geometry, Lecture Notes Series on
Computing, 2nd edn. vol. 4, pp. 47–123. World Scientific, Singapore (1995)

4. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments
in the plane. J. ACM 39(1), 1–54 (1992)

5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)
6. De Floriani, L., Falcidieno, B., Pienovi, C.: Delaunay-based representation of

surfaces defined over arbitrarily shaped domains. Comput. Vision Graph. Image
Process. 32, 127–140 (1985)

7. de Kok, T., van Kreveld, M., Löffler, M.: Generating realistic terrains with higher-
order Delaunay triangulations. Comp. Geom. Theory Appl. 36, 52–65 (2007)

8. Edelsbrunner, H., Tan, T.S.: A quadratic time algorithm for the minmax length
triangulation. SIAM J. Comput. 22, 527–551 (1993)

9. Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst
case access time. J. ACM 31(3), 538–544 (1984)

Optimal Higher Order Delaunay Triangulations of Polygons 145

10. Gilbert, P.D.: New results in planar triangulations. Report R-850, Coordinated Sci.
Lab., Univ. Illinois, Urbana, IL (1979)

11. Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangu-
lations. Comput. Geom. Theory Appl. 23, 85–98 (2002)

12. Gudmundsson, J., Haverkort, H., van Kreveld, M.: Constrained higher order De-
launay triangulations. Comput. Geom. Theory Appl. 30, 271–277 (2005)

13. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take
a walk. J. Algorithms 18, 403–431 (1995)

14. Keil, J.M., Vassilev, T.S.: Algorithms for optimal area triangulations of a convex
polygon. Comput. Geom. Theory Appl. 35(3), 173–187 (2006)

15. Klincsek, G.T.: Minimal triangulations of polygonal domains. Discrete Math. 9,
121–123 (1980)

16. van Kreveld, M., Löffler, M., Silveira, R.I.: Optimization for first order Delau-
nay triangulations. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 175–187. Springer, Heidelberg (2007)

17. Levcopoulos, C., Krznaric, D.: The greedy triangulation can be computed from the
Delaunay triangulation in linear time. Comput. Geom. Theory Appl. 14, 197–220
(1999)

18. Mark, D.: Network models in geomorphology. In: Anderson, M.G. (ed.) Modelling
Geomorphological Systems, ch. 4, pp. 73–97. John Wiley & Sons, Chichester (1988)

19. Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. 22nd
Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2006)

20. Neamtu, M.: Delaunay configurations and multivariate splines: a generalization of
a result of B. N. Delaunay. Trans. Amer. Math. Soc. 359(7), 2993–3004 (2007)

21. Pebay, P.P., Baker, T.J.: A comparison of triangle quality measures. In: Proceedings
of the 10th International Meshing Roundtable, pp. 327–340 (2001)

22. Silveira, R.I., van Kreveld, M.: Towards a Definition of Higher Order Constrained
Delaunay Triangulations. In: Proceedings of the 19th Annual Canadian Conference
on Computational Geometry (CCCG 2007), pp. 161–164 (2007)

Coloring Geometric Range Spaces

Greg Aloupis1, Jean Cardinal1, Sébastien Collette1,�, Stefan Langerman1,��,
and Shakhar Smorodinsky2,���

1 Université Libre de Bruxelles, CP212, Bld. du Triomphe, 1050 Brussels, Belgium.
Partially supported by the Communauté française de Belgique - ARC

{greg.aloupis,jcardin,secollet,slanger}@ulb.ac.be
2 Institute of Mathematics, Hebrew University, Givat-Ram, Jerusalem 91904, Israel

shakhar@cims.nyu.edu

Abstract. Given a set of points in R
2 or R

3, we aim to color them
such that every region of a certain family (for instance disks) containing
at least a certain number of points contains points of many different
colors. Using k colors, it is not always possible to ensure that every
region containing k points contains all k colors. Thus, we introduce two
relaxations: either we allow the number of colors to increase to c(k), or
we require that the number of points in each region increases to p(k). We
give upper bounds on c(k) and p(k) for halfspaces, disks, and pseudo-
disks. We also consider the dual question, where we want to color regions
instead of points. This is related to previous results of Pach, Tardos and
Tóth on decompositions of coverings.

1 Introduction

In this contribution, we are interested in coloring finite sets of points in R
2 or R

3

so that any region (within a specified family) that contains at least some fixed
number of points, also contains a significant number of distinctly colored points.
For example, we study the following problem: Does there exist a constant α such
that given any set of points in the plane, it is always possible to color the points
with k colors so that any halfplane containing at least αk points contains a point
of each color? In Section 2 we answer this question on the affirmative.

We also allow the number of available colors and the number of required
distinct colors to be different. We ask, for instance, Does there exist a constant
α such that given a set of points in the plane, it is always possible to color
the points with αk colors so that any halfplane containing at least k points also
contains points of k distinct colors? We show this is true as well. We ask similar
questions for other types of regions such as disks and pseudo-disks

These types of problems can be seen as coloring range spaces induced by
intersections of sets of points with geometric objects. The corresponding dual
range spaces are those obtained by considering a finite set of regions in R

2 or R
3,

� Chargé de Recherches du FRS-FNRS.
�� Chercheur Qualifié du FRS-FNRS.

��� http:// www.cims.nyu.edu/∼shakhar/

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 146–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coloring Geometric Range Spaces 147

and defining the ranges as the subsets of all regions containing a given point, for
every possible point. We also consider coloring problems on these kinds of range
spaces. The types of problems we ask when dealing with dual range spaces are
analogous to the preceding questions. For instance: Does there exist a constant
α such that given any set of disks in the plane, it is always possible to color the
disks with αk colors while ensuring that any point contained in at least k disks
is contained in disks of k distinct colors?

Definitions. A range space (or hypergraph) is a pair (S, R) where S is a set
(called the ground set) and R is a set of subsets of S. Here, we consider finite
restrictions of infinite geometric range spaces of the form S = (Rd, R) for d = 2
or 3, where R is an infinite family of regions of R

d. Such a finite restriction is a
range space (S, R) where the ground set S is a finite set of points in R

d and the
set of ranges R is the collection of subsets of S defined by the intersection of S
with elements of R : R = {S ∩ r : r ∈ R}.

We also consider the corresponding dual range spaces, denoted by S̃, of the
form S̃ = (R, {r(p) : p ∈ R

d}), where r(p) = {r ∈ R : p ∈ r} is the set of regions
containing the point p. The finite restrictions of these dual range spaces are of
the form (S, {r(p) ∩ S : p ∈ R

d}), where S ⊂ R is finite.
A coloring of a range space is an assignment of colors to the elements of the

ground set. A c-coloring is a coloring that uses exactly c colors. A range is k-
colorful if it contains at least k elements of distinct color. We are interested in
the following two functions, for a range space S:

1. cS(k) is the minimum number for which there always exists a cS(k)-coloring
of any finite restriction of S, such that every range r is min{|r|, k}-colorful.

2. pS(k) is the minimum number for which there always exists a k-coloring
of any finite restriction of S such that every range of size at least pS(k) is
k-colorful.

Note that cS(k) and pS(k) are monotone non-decreasing functions. The goal of
this paper is to provide upper bounds on cS(k), pS(k), cS̃(k), and pS̃(k) for
various families of regions.

Previous results. The functions defined above are related to two previously
studied problems. The first one is the decomposition of f -fold coverings in the
plane: given a covering of the plane by a set of regions such that every point
is covered by at least f regions, is it possible to decompose it into two disjoint
coverings? This question was first asked by Pach in 1980 [6]. It is similar to
deciding whether pS̃(2) ≤ f for the dual range space S̃ defined by the considered
family of regions, the difference being that we do not assume that all points are
f -covered. This difference is important in some cases, for instance it is known
that all (d+1)·f -covers of d-space by halfspaces decompose into f covers but the
proof does not directly yield a bound for pS̃(2). For T the range space defined by
translates of a centrally symmetric convex polygon, Pach and Tóth [10] recently
proved that pT (k) = O(k2) and pT̃ (k) = O(k2). So for these types of regions,
a covering can be decomposed into k coverings if each point is covered at least

148 G. Aloupis et al.

ck2 times for some constant c. On the negative side, for the range space induced
by arbitrary disks (denoted by D), Pach, Tardos, and Tóth [9] proved that even
pD(2) is unbounded: for any constant k, there exists a set of points that cannot
be 2-colored so that all open disks containing at least k points contain one
point of each color. In the same paper, a similar result is obtained for pÃ(2)
where A is the range space induced by the family of either strips or axis-aligned
rectangles. The fact that pS̃(2) is unbounded implies that for every k > 2, pS̃(k)
is unbounded as well, since any bound for the latter would imply a bound for the
former by merging color classes. The previous impossibilities constitute our main
motivation for introducing some slack and defining the problem of c(k)-coloring
a finite range space such that ranges are k-colorful, with k ≤ c(k).

The second previously studied problem is that of computing the chromatic
number of geometric hypergraphs, defined as the minimum number of colors
needed to make all ranges polychromatic, that is, 2-colorful [12]. One of the main
results of that contribution is that any dual range space induced by a finite set
of pseudo-disks admits a O(1)-coloring that makes all ranges 2-colorful. Hence,
for the family of pseudo-disks P , cP̃(2) = O(1). A recent result of Chen, Pach,
Szegedy and Tardos ([4], Thm. 3) implies that for any constants c, p, the following
holds: there exists a point set such that for any c-coloring of its elements, we
can find an axis-aligned rectangle containing at least p points, all of which have
the same color. This implies that cA(k) and pA(k) are unbounded, where A is
the range space induced on R

2 by the set of all axis-aligned rectangles.
Furthermore, Pach and Tardos [8] proved that for any n, there exists a set

of n axis-parallel rectangles in the plane such that one needs Ω(log n) colors for
coloring the rectangles such that no point is covered by a monochromatic set.
Thus, cÃ(2) = ∞, implying cÃ(k) = ∞.

Our results. In Section 2, we consider the range space H = (R2, R), where R
is the set of all halfplanes. We prove that cH(k) ≤ 3k − 2, and pH(k) ≤ 4k − 1.
In other words, we can ensure that a halfplane contains k points of different
colors in two ways: either we k-color the point set but require that the halfplane
contains at least 4k − 1 points, or we allow the point set to be (3k − 2)-colored.

In Section 3, we consider the range space L = (R3, R), where R is the set of
all lower halfspaces. We prove that cL(k) = O(k); and that cL̃(k) = O(k).

We provide a number of results on range spaces defined by disks and pseudo-
disks in Section 4. For the range space D defined by disks, we prove that cD(k) =
O(k) by mapping disks in R

2 to lower halfspaces in R
3 and using the result

of Section 3. For a dual range space P̃ defined by pseudo-disks we prove that
cP̃(k) = O(k). Since halfplanes are a special case of pseudo-disks, we directly
have cH̃(k) = O(k). We also show that cP(k) = O(k), with similar arguments.

By lifting a 2D point set to the unit paraboloid z = x2 + y2 in 3D, every
lower halfspace in 3D isolates a set of points which is contained in a disk in the
original set of points, and thus pL(k) ≥ pD(k). We also prove that pL̃(k) = pL(k):
coloring lower halfspaces is equivalent in the projective dual to coloring points
with respect to lower halfspaces.

Coloring Geometric Range Spaces 149

All the proofs are constructive, and polynomial-time algorithms can easily be
derived from them. The results are summarized in the following table, where
the symbol � indicates new results; and the symbol ∞ indicates a function un-
bounded in terms of k.

S cS(k) pS(k) c
�S(k) p

�S(k)

halfplanes ≤ 3k − 2 ≤ 4k − 1 O(k) ≤ 8k − 3
(Thm. 1)� (Thm. 2)� (Thm. 4)� (Cor. 1)�

lower halfspaces O(k) ∞ (Implied O(k) ∞ (Implied
in R

3 (Thm. 3)� by disks) (Cor. 2)� by disks)

translates of a cent. O(k) O(k2) [10] O(k) O(k2) [10]
sym. convex polygon (Thm. 5)� (Thm. 4)�

axis-aligned ∞ [4] ∞ [4] ∞ [8] ∞ [9]
rectangles

disks O(k) ∞ ≤ 24k + 1
(Cor. 3, Thm. 3)� (open disks [9]) (Rem. 1)�

pseudo-disks O(k) (Thm. 5)� ∞ O(k)
(open disks [9]) (Thm. 4)�

Application to Sensor Networks. Let R be a collection of sensors, each of
which monitors the area within a surrounding disk. Assume further that each
sensor has a battery life of one time unit. The goal is to monitor a given planar
region A for as long as possible. If we activate all sensors in R simultaneously,
A will be monitored for only one time unit. This can be improved if R can be
partitioned into c pairwise disjoint subsets, each of which covers A. Each subset
can be used in turn, allowing us to monitor A for c units of time. Obviously if
there is a point in A covered by only c sensors then we cannot partition R into
more than c families. Therefore it makes sense to ask the following question:
what is the minimum number p(k) for which we know that if every point in A is
covered by p(k) sensors then we can partition R into k pairwise disjoint covering
subsets? This is exactly the type of problem that we described. For more on the
relation between these partitioning problems and sensor networks, see the paper
of Buchsbaum et al. [2].

2 Halfplanes

In this section we study the case where the family R is the set of all halfplanes
in R

2. We denote by H = (R2, R) the corresponding infinite range space.
It is not always possible to color a set of points S with k colors such that every

halfplane of size k (containing k points of S) is k-colorful, even for k = 2. The
simplest example consists of an odd number of points in convex position. This
is our main motivation for allowing either the number of colors or the range size
to be greater than k.

For the proof of Theorems 1 and 2 the notion of Tukey depth is used.

Definition 1 ([15]). Given a set S of points in R
d, the Tukey depth of a point

p (not necessarily in the set) is the maximum integer t with the property that
every halfspace containing p contains at least t points of S.

150 G. Aloupis et al.

It is well known that for any set of n points in the plane, there exists a point in
R

2 at depth t ≥ n/3. The depth-k region is the set of all points at Tukey depth
k or more. It is easily seen that this region is the intersection of all halfplanes
containing more than n − k points of S and therefore its boundary is a convex
polygon. We now turn to some useful observations regarding depth-k regions.

Lemma 1. Let S be a finite set of more than 3k points in R
2. Then every open

halfplane not intersecting the depth-k region of S and the bounding line of which
is tangent to the depth-k region of S contains at most 2k − 2 points of S. The
corresponding closed halfplane contains at least k points.

Proof. Let Π be an open halfplane not intersecting the depth-k region such
that its bounding line � is tangent to the depth-k polygon, and let Π ′ be the
corresponding closed halfplane. Π ′ contains at least k points since the point of
tangency belongs to Π ′ and has depth k. On the other hand, � contains either
a side of the polygon or precisely one of its vertices, v. In the former case Π
contains less than k points because its complement contains more than n − k
points. In the latter case, Π is contained in the union of two open halfplanes,
Π1 and Π2; their bounding lines pass through v and its two neighbors in the
polygon (respectively). Since each of Π1 and Π2 contains at most k − 1 points,
Π contains at most 2k − 2 points. �	

We define the orientation of a halfplane as the absolute angle of the inward
normal of the line bounding it. Thus, for example, the orientation of the halfplane
defined by all points lying above the x-axis is π

2 .
Let p be a point of S lying outside the depth-k region. It is easily seen that the

set of orientations of all closed halfplanes that are tangent to the depth-k region
and that contain p form a closed (circular) interval of length at most π. Thus,
each point may be represented as an arc on the unit circle. Let A be the set
of arcs corresponding to points in S outside or on the boundary of the depth-k
region, and let A′ be the same set of arcs but open (in particular, degenerate
arcs that consisted of only one point are removed).

Lemma 2. Every point on the unit circle is covered by at most 2k − 1 arcs of
A′, and every point that is not the endpoint of an arc is covered by at least k
arcs. Furthermore, the minimum number of segments covering any point is at
most k − 1.

Proof. Every point p on the unit circle represents the orientation of a closed
halfplane Π ′ tangent to the depth-k region. Thus if p is not the endpoint of an
arc, then the number of arcs that cover p is at least the number of points in Π ′,
which is at least k by Lemma 1. As in the proof of Lemma 1, if the boundary
� of the halfplane contains a vertex v but no edge of the depth k region, then
Π ′ is contained in the union of v and two open halfplanes Π1 and Π2 which
have their bounding lines passing through v and its two neighboring edges in
the polygon. Since each of Π1 and Π2 contains at most k − 1 points, and there
might be a point at v, Π ′ contains at most 2k − 1 points. If � contains an edge

Coloring Geometric Range Spaces 151

of the depth k region, then all points on � correspond to either empty arcs or
to the endpoint of some arc. Thus the arcs that cover p correspond to points in
the open halfplane Π bounded by � and their number is at most k − 1. �	

Theorem 1. cH(k) ≤ 3k − 2. That is, we can color any set of points in the
plane with 3k−2 colors such that any halfplane containing h points is min{h, k}-
colorful.

Proof. A proper coloring of a set of arcs on the unit circle is an assignment of
colors to the arcs such that no pair of arcs of the same color overlap. In [14] it
was proved that every set of arcs on the unit circle has a proper coloring with
m + M colors, where m (resp. M) is the minimum (resp. maximum) number
of arcs covering each point of the circle. Combining this with Lemma 2, we
conclude that the corresponding set A′ can be (3k − 2)-colored. Accordingly we
can color the points (outside the depth-k region) of S that correspond to A′. The
remaining points are colored arbitrarily. Thus there exists a (3k − 2)-coloring of
S such that every open halfplane not intersecting – but tangent to – the depth-k
region is colorful (the colors of points inside that halfplane are pairwise distinct).

Now it remains to prove that every halfplane of size h is min{h, k}-colorful.
Given such a halfplane Π , there are two cases: (i) Π does not intersect the
depth-k region, meaning that it is strictly contained in an open halfplane Π ′

which has its boundary line tangent to the depth-k region, and thus no two
points in it are colored with the same color. (ii) Π intersects the depth-k-region
and thus contains a closed halfplane Π ′ tangent to it. If the point p on the circle
corresponding to Π ′ is not the endpoint of an arc, then Π ′ contains at least k
points of different colors. If p is the endpoint of an arc then Π ′ contains at least
all points corresponding to arcs that cover a point infinitesimally to the left of
p, which also have at least k different colors. �	

We now consider the depth-2k region. As described in the preceding, points
outside the depth-2k region are associated with a set of closed arcs, A, on the
unit circle. Recall that each arc in A has length at most π and that by Lemma 1
every point on the unit circle is covered by at least 2k arcs.

Lemma 3. Let A be a set of arcs of length at most π on the unit circle. If every
point on the circle is covered at least 2k times then A has a k-colorful k-coloring.

Proof. As Pach noticed [7], a 2k-covering of the unit circle with arcs of length
at most π is decomposable into k disjoint coverings (by repeatedly removing a
minimal covering of the unit circle). Thus we can assign one color to all arcs
within each covering, so that each point on the circle is covered by k colors. �	

Theorem 2. pH(k) ≤ 4k − 1. That is, we can color any set of points in the
plane with k colors such that any halfplane containing at least 4k − 1 points is
k-colorful.

Proof. Let A be the set of arcs corresponding to the points that lie outside or on
the boundary of the depth-2k region. By Lemma 3, A can be made k-colorful, as

152 G. Aloupis et al.

it covers every point of the unit circle at least 2k times. This means that there
exists a k-coloring of S such that every closed halfplane tangent to the depth-2k
region is k-colorful. As we consider large point sets in comparison to k, there
always exists a depth-2k region (specifically, as long as n ≥ 6k).

Let Π be a halfplane containing at least 4k − 1 points. Π must intersect (or
touch) the depth-2k region, because every open halfplane tangent to the region
contains at most 4k−2 points, by Lemma 1. Thus Π contains a closed halfplane
Π ′ with its boundary tangent to the depth-2k region. By construction, Π ′ must
be k-colorful and therefore so must Π . �	

Corollary 1. pH̃(k) ≤ 8k−3. That is, we can color any set of halfplanes with k
colors such that any point in the plane covered by 8k − 3 halfplanes is contained
in halfplanes of k different colors.

Proof. If we restrict ourselves to lower halfplanes, then pH̃(k) = pH(k) by pro-
jective duality. So if we are given a set of halfplanes (lower and upper), every
point which is covered 8k − 3 times is covered at least 4k − 1 times by either
lower halfplanes or upper halfplanes. Thus we can color the lower and the upper
halfplanes independently, using theorem 2 and obtain: pH̃(k) ≤ 8k − 3. �	

3 Lower Halfspaces in R
3

Here, we deal with the case where R consists of all lower halfspaces in R
3. We

call L = (R3, R) the corresponding infinite range space and consider the value
of cL(k). The depth-k region in R

3 is bounded by a convex polyhedron.

Lemma 4. Given a set of more than 4k points in R
3, every open halfspace not

intersecting the depth-k polyhedron and which has a bounding plane tangent to
the depth-k polyhedron contains at most 3k − 3 points. The corresponding closed
halfspace contains at least k points.

Proof. The proof is similar to that of Lemma 1 in R
2. We consider open and

closed halfspaces tangent to the depth-k polyhedron and note that any tangent
closed halfspace contains at least k points otherwise a point of the depth-k
polyhedron has depth less than k. A halfspace is either tangent at a vertex, an
edge, or a face of the polyhedron; if an open halfspace is tangent at a face, it
contains at most k−1 points; if an open halfspace is tangent at an edge (a vertex
resp.) it is contained in the union of two (three resp.) open halfspaces tangent
at a face of the polyhedron. �	

In what follows, we consider lower halfspaces defined by planes tangent to the
depth-k polyhedron. Each normal vector to one of these planes corresponds to
precisely one lower halfspace and defines one point on the unit sphere. We map
the points from the unit sphere onto the xy plane so that every lower halfspace
corresponds to a single point in R

2. This representation is used in the remainder
of the section.

Coloring Geometric Range Spaces 153

Lemma 5. Let Rx denote the set of points in R
2 corresponding to lower half-

spaces tangent to the depth-k polyhedron and containing x ∈ S. Let p and q be
two points of S outside the depth-k polyhedron. Then,

1. Rx is a connected subset of R
2.

2. The boundaries of Rp and Rq intersect at most twice.

Proof. The first property follows directly from the convexity of the depth-k
polyhedron. Given a point x outside the depth-k region, any convex combination
of the normal vectors of all planes tangent to the polyhedron and incident to x
define a halfspace containing x.

To prove that the boundaries of Rp and Rq intersect at most twice, we look
at all planes tangent to the polyhedron, and incident to p and q. These map to
points that are on the boundary of both Rp and Rq. As p and q are distinct they
define a line. Through this line, there exist at most two planes tangent to the
depth-k polyhedron. �	

The proof of the next theorem uses the following definition and lemma [5]. We
use the standard notion of chromatic number χ(G) of a graph G, defined as
the minimum number of colors needed to color the vertices so that no edge is
monochromatic.

Definition 2. A simple graph G = (V, E) is called k-degenerate for some posi-
tive integer k, if every (vertex-induced) subgraph of G has a vertex of degree at
most k.

Lemma 6. Let G = (V, E) be a k-degenerate graph. Then χ(G) ≤ k + 1.

Proof. Proceed by induction on n = |V |. Let v ∈ V be a vertex of degree at
most k. By the induction hypothesis, the graph G \ v (obtained by removing v
and all of its incident edges from G) is (k + 1)-colorable. Since v has at most k
neighbors there is always a color that can be assigned to v, and that is distinct
from the colors of its neighbors. �	

Theorem 3. cL(k) = O(k). That is, we can color any set of points in R
3

with O(k) colors such that any lower halfspace containing h points is min{h, k}-
colorful.

Proof. Let A = {Rx|x ∈ S, outside or on the surface of the depth-k polyhedron}.
By Lemma 5, we know that A is a set of pseudo-disks. Let A′ be the corresponding
open pseudo-disks. By Lemma 4, we also know that every point in the projection
of the sphere on R

2 belongs to at most 3k − 2 regions of A′.
By a lemma of Sharir [11], the complexity of an arrangement of the set of

bounding curves of n pseudo-disks such that any point belongs to the interior
of at most i of the pseudo-disks is O(ni). Thus the complexity of the bounding
curves in A′ is O(nk). Now consider the intersection graph of A′. This graph is
O(k)-degenerate. To see this, consider a pair of intersecting regions r1, r2 ∈ A′.
Either the boundaries of r1 and r2 intersect (at some vertex) in which case we

154 G. Aloupis et al.

know that there are O(nk) such vertices, or one of the regions, say r1, is contained
in r2. However, since every point belongs to at most 3k − 2 regions, every region
is contained in at most 3k−3 other regions, hence the total number of such pairs
of regions is at most O(nk). Thus the number of edges in the intersection graph
is O(nk). This is true for every induced subgraph and hence by Lemma 6, this
graph is O(k)-colorable. A similar observation was made by Chan [3].

Now it remains to prove that every halfspace of size h ≥ k is k-colorful.
Given such a halfspace, there are two possibilities. Either the halfspace does
not intersect the depth-k polyhedron, meaning that it is strictly contained in an
open halfspace tangent to the polyhedron, and thus every point it contains has
a unique color; or the halfspace intersects the polyhedron and thus contains a
closed halfspace tangent to it, meaning that it contains at least k different colors.

�	

Corollary 2. cL̃(k) = O(k). That is, we can color any set of lower halfspaces
in R

3 with O(k) colors so that any point in the intersection of more than k of
them is covered by k different colors.

Proof. Given a set of halfspaces in R
3, we consider their bounding planes. By

projective duality, a set of planes can be mapped to a set of points, such that a
point is above k planes if and only if in the projective dual a plane is above k
points. In other words, by applying Theorem 3 in the dual, we derive a coloring
for the halfspaces in the primal, which is correct as the inclusion relation (above-
below) is preserved by projective duality: every lower halfspace containing at
least k points in the primal is a point covered by k halfspaces in the dual. �	

4 Disks and Pseudo-disks

In this section we consider the case where the ranges in R are disks or pseudo-
disks. We denote by D = (R2, R) the range space for disks, and by D̃ its dual,
where the ground set is the set of disks and the ranges are the subsets of all
disks having a common point. Similarly, we use the notations P and P̃ for the
range spaces defined by pseudo-disks.

The proof given above for lower halfspaces in R
3 can be used to prove that

cD(k) = O(k). This is seen by a standard lifting transformation of disks and
points in the plane, to points and halfspaces in R

3 that preserves the incidence
relations.

Corollary 3. cD(k) = O(k).

Proof. Given a set S of points in R
2, we proceed by lifting the points onto the

parabola of equation z = x2 + y2 in R
3. It is known that any disk in R

2 is
the projection onto the plane xy of the intersection between the parabola and a
lower halfspace in R

3. The result follows by applying Theorem 3 to this set. �	

In the following, we give a bound for the value of cP̃(k), where P̃ is the dual range
space defined by pseudo-disks. Similar to the proof of Theorem 3, we analyze
the degeneracy of a graph induced by a finite set of regions.

Coloring Geometric Range Spaces 155

Definition 3. Let S be a finite family of simple closed Jordan regions in R
2.

We denote by Gk(S) the graph on S where the edges are all pairs r, s ∈ S such
that there exists a point p that belongs to r ∩ s and at most k other regions of S.

Lemma 7. Let S be a family of pseudo-disks. Then Gk(S) is O(k)-degenerate
and hence the chromatic number of Gk(S) is at most O(k).

We aim to show that the number of edges in any (vertex-induced) subgraph of
G with m vertices is at most O(km), and therefore, the average degree in any
induced subgraph is at most O(k). Thus, there must exist a vertex of degree at
most O(k) in any induced subgraph. Hence, Gk(S) is O(k)-degenerate and by
Lemma 6 it is O(k)-colorable as asserted. We need the following lemmas.

Lemma 8. There exists a constant c such that for any set S of n pseudo-disks,
G0(S) has at most cn edges.

Proof. See for instance the proof of Lemma 5.1 in [12]. �	

Lemma 9. Let S be a family of n pseudo-disks and let G = (S, E) be a subgraph
of the intersection graph of S (thus E is a subset of the set of all pairs of regions
from S that have a non-empty intersection). For each edge e = (a, b) ∈ E choose
a point pe ∈ a ∩ b that belongs to the intersection of a and b. Let X be the set of
all pairs (e, r) such that e ∈ E and r ∈ S \ {a, b} contains the point pe chosen
for the edge e. Suppose that |E| > 4cn where c is the constant from Lemma 8.
Then |X | ≥ |E|2

4cn

Proof. The proof proceeds in two steps. In the first step, we prove the following
bootstrapping inequality: |X | ≥ |E| − cn. In the second step we use a random
sampling argument similar to the one used for the Crossing Lemma (see [1]).

The proof of the first step proceeds by induction on |E| − cn. For the case
|E| − cn ≤ 0 the claim is trivial. Assume that the claim holds for some positive
integer k (namely, for |E| and n satisfying |E|−cn = k). Suppose that |E|−cn =
k+1. Since |E| > cn, Lemma 8 implies that there must exist a region r ∈ S, and
an edge e ∈ E which generates at least one configuration (e, r) ∈ X (namely, that
point pe belongs to r, for otherwise X is empty, meaning that there is no edge of
Gk(S) for any k > 0; thus the graph is a subgraph of G0(S) and the number of
edges in E by Lemma 8 is at most cn). After removing e from E we are left with
|E| − 1 edges, n regions, and a set X ′ of configurations, where |X | ≥ |X ′| + 1.
We have |E| − 1 − cn = k, so we can apply the induction hypothesis to obtain
|X ′| ≥ |E| − 1 − cn. Thus |X | ≥ |X ′| + 1 ≥ |E| − cn. This completes the proof
of the first step.

Let X denote the set of configurations, as above. We take a random sample
S′ of the regions in S by choosing each region independently with some fixed
probability p (to be determined later on). Let E′ denote the subset of edges in E,
for which all defining regions are in S′. Let n′ = |S′|; m′ = |E′|, and let X ′ ⊂ X
denote the subset of configurations in X for which all the defining regions a, b
and r are in S′. By the above bootstrapping inequality, we have |X ′| ≥ m′ − cn′.
Note that |X ′|, m′ and n′ are random variables, so the above inequality holds

156 G. Aloupis et al.

for their expectations as well. Hence, using linearity of expectation, E[|X ′|] ≥
E[m′] − cE[n′]. It is easily seen that E[n′] = pn. We have E[m′] = p2 |E| and
E[|X ′|] = p3 |X |. Indeed, the probability that a given edge e ∈ E belongs to E′

is the probability that the two regions defining e are chosen in S′, which is p2

for any fixed e ∈ E. Similarly, the probability that a configuration of a region
r ∈ S that contains a point pe is counted in X ′ is p3. Substituting these values
in the above inequality, we get p3 |X | ≥ p2 |E| − cpn, or |X | ≥ |E|

p − cn
p2 . This

inequality holds for any 0 < p ≤ 1, and we choose p = 2cn/ |E| (by assumption,
p ≤ 1) to obtain |X | ≥ |E|2/4cn. This completes the proof of the lemma. �	
Proof of Lemma 7: Let X denote the set of configurations as above when E
is the set of edges of Gk(S) and for each edge e ∈ E, pe is the point witnessing
that e ∈ E (i.e., pe is a point that belongs to the regions defining e and at most
k other regions of S). By Lemma 9 we have: |X | ≥ |E|2/4cn.

On the other hand, note that by definition of Gk(S) any point pe can belong
to at most k regions of S so obviously |X | ≤ k |E|.

Combining the two bounds we have: |E| ≤ 4ckn. Thus the sum of degrees of
vertices in the graph Gk(S) is at most 8ckn, so the average degree is at most
8ck. Thus there always exists a vertex with degree at most 8ck, hence Gk(S) is
8ck-degenerate. This completes the proof of the lemma. �	
Theorem 4. cP̃(k) = O(k)

Proof. We know by Lemma 7 that there exists a constant c such that Gk(S)
is ck-degenerate. We show that we can color the pseudo-disks in S with ck + 1
color such that for any point p with depth d(p), the set of disks Ep containing p
is min{d(p), k}-colorful. We use ck + 1 colors to color pseudo-disks inductively.
The proof is by induction on |S| = n. Let r ∈ S be a region for which the degree
in Gk(S) is at most ck. By Lemma 7, there exists such a region. The induction
hypothesis is that S \ {r} admits a valid coloring. To complete the inductive
step, we must assign a color to r so that the new coloring is still valid. Note
that by the inductive hypothesis, points that belong to r and at least k other
regions are already contained in some k regions (in S \ {r}), all colors of which
are distinct. Hence, the color of r will not affect the validity for those points.
We may only run into trouble for those points p ∈ r that are contained in at
most i (for i ≤ k − 1) other regions. However, note that any region containing
p is a neighbor of r in Gk(S) by definition. Note also that by the induction
hypothesis, all regions containing such a point p get distinct colors. Moreover,
since the number of neighbors of r in Gk(S) is at most ck we can color r with
a color distinct from all its neighbors in Gk(S). Thus for any point in r that
belongs to exactly i (for i ≤ k − 1) other regions, all regions covering this point
including r will have distinct color. This completes the inductive step and hence
the proof of the theorem. �	
Remark 1. For the special case of real disks, it can be shown that the constant
in Lemma 8 is c = 3 (we omit the details here). Thus by Lemma 7, the graph
Gk(S) is 24k-degenerate. Hence in the special case of real disks, we have that
cD̃(k) ≤ 24k + 1.

Coloring Geometric Range Spaces 157

For the version in the primal range space in which we color points rather than
regions, we can also prove the following:

Theorem 5. cP(k) = O(k)

Proof. The proof is very similar to the proof of Theorem 4 and uses the same
ingredients. The analog of Lemma 8 is provided in [13]. �	

Acknowledgements. The authors thank Janos Pach, as well as the participants
to the algorithmic lunches at the ULB CS Department, for helpful discussions.

References

1. Aigner, M., Ziegler, G.M.: Proofs from the book. Springer, Heidelberg (1998)
2. Buchsbaum, A., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted

strip covering and the sensor cover problem. In: ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2007) (2007)

3. Chan, T.M.: Low-dimensional linear programming with violations. SIAM Journal
on Computing 34(4), 879–893 (2005)

4. Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the
plane with respect to axis-parallel rectangles (manuscript, 2006)

5. Lick, D.R., White, A.T.: k-degenerate graphs. Canadian Journal on Mathemat-
ics 12, 1082–1096 (1970)

6. Pach, J.: Decomposition of multiple packing and covering. In: 2. Kolloq. über
Diskrete Geom., Inst. Math. Univ. Salzburg, pp. 169–178 (1980)

7. Pach, J.: Personal communication (2007)
8. Pach, J., Tardos, G.: Personal communication (2006)
9. Pach, J., Tardos, G., Tóth, G.: Indecomposable coverings. In: Akiyama, J., Chen,

W.Y.C., Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005. LNCS, vol. 4381, pp.
135–148. Springer, Heidelberg (2007)

10. Pach, J., Tóth, G.: Decomposition of multiple coverings into many parts. In: Proc.
of the 23rd ACM Symposium on Computational Geometry, pp. 133–137 (2007)

11. Sharir, M.: On k-sets in arrangement of curves and surfaces. Discrete & Computa-
tional Geometry 6, 593–613 (1991)

12. Smorodinsky, S.: On the chromatic number of some geometric hypergraphs. SIAM
Journal on Discrete Mathematics (to appear)

13. Smorodinsky, S., Sharir, M.: Selecting points that are heavily covered by pseudo-
circles, spheres or rectangles. Combinatorics, Probability and Computing 13(3),
389–411 (2004)

14. Tucker, A.: Coloring a family of circular arcs. SIAM Journal of Applied Mathe-
matics 229(3), 493–502 (1975)

15. Tukey, J.: Mathematics and the picturing of data. In: Proceedings of the Interna-
tional Congress of Mathematicians, vol. 2, pp. 523–531 (1975)

Local Algorithms for Dominating and Connected

Dominating Sets of Unit Disk Graphs with
Location Aware Nodes

J. Czyzowicz1, S. Dobrev2, T. Fevens3, H. González-Aguilar4, E. Kranakis5,
J. Opatrny3, and J. Urrutia6

1 Départ. d’informatique, Univ. du Québec en Outaouais, Gatineau, QC, Canada
2 Slovak Academy of Sciences, Bratislava, Slovakia

3 Department of CSE, Concordia University, Montréal, QC, Canada
4 Centro de Investigacion en Matematicas, Guanajuato, Gto., Mexico

5 School of Computer Science, Carleton University, Ottawa, ON, Canada
6 Instituto de Matemáticas, Área de la investigación cientifica, D.F. México, México

Abstract. Many protocols in ad-hoc networks use dominating and con-
nected dominating sets, for example for broadcasting and routing. For
large ad hoc networks the construction of such sets should be local in
the sense that each node of the network should make decisions based
only on the information obtained from nodes located a constant num-
ber of hops from it. In this paper we use the location awareness of the
network, i.e. the knowledge of position of nodes in the plane to provide
local, constant approximation, deterministic algorithms for the construc-
tion of dominating and connected dominating sets of a Unit Disk Graph
(UDG). The size of the constructed set, in the case of the dominating
set, is shown to be 5 times the optimal, while for the connected domi-
nating set 7.453 + ε the optimal, for any arbitrarily small ε > 0. These
are to our knowledge the first local algorithms whose time complexities
and approximation bounds are independent of the size of the network.

Keywords: Approximation factor, Dominating set, Connected dominat-
ing set, Local algorithm, Location awareness, Unit disk graph.

1 Introduction

Many of the existing networks are large and complex. The number of connections
(links) between nodes often remains relatively small, each node being capable
to communicate, on average, with a bounded number of neighbors. Distributed
algorithms implemented over such networks must often achieve some global com-
putational tasks, like computing good approximations of dominating and inde-
pendent sets, vertex and edge colorings, spanners, etc., despite the fact that
each node is confined to local communication. Consequently, in the last twenty
years, local algorithms have been investigated by several researchers in distrib-
uted computing. For example, in a k-local algorithm, for a given parameter k,
a node is allowed to communicate at most k times with its neighbors. Work on

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Local Algorithms for Dominating and Connected Dominating Sets 159

this model includes Luby’s randomized independent set algorithm [23], sparse
partitions introduced in [3], and particularly the seminal work of Linial [22].

A distributed algorithm is called local if each node of the network makes
decisions based on the information obtained uniquely from the nodes located no
more than a constant (independent of the size of the network) number of hops
from it. Thus, during the algorithm, no node is ever aware of the existence of
the parts of the network further away than this constant number of hops. There
are several reasons why such local algorithms are practical for networks:

1. A solution is consistent regardless of the order in which the nodes or edges
are considered in the calculations.

2. Changes in the network outside of a fixed-size neighborhood do not influence
the computation of in a node. Moreover, a change in the network requires
solely a local recalculation of the solution.

3. It is possible to calculate only a part of the required solution as needed by
a subnetwork.

4. Messages do not propagate indefinitely throughout the network and the al-
gorithm terminates in a constant number of steps.

Wireless ad hoc and sensor networks are most often modeled by Unit Disk Graphs
(abbreviated by UDGs). Nodes of a UDG are located on a plane and two nodes
are considered adjacent when their distance is at most equal to some given
constant. Hence it is assumed that the wireless nodes have equal transmission
range c. Most NP-hard graph theory problems remain NP-hard when restricted
to the class of UDGs. However, it turns out that for the class of UDGs it is
possible to design algorithms offering better approximative solutions.

Many graph-theoretic problems do not admit local algorithms solving them,
even if restricted to the class of UDGs. Conversely, it turns out, that several of
these problems become solvable in the local setting when the network is location
aware, i.e. when each node knows its geographic position (e.g. Cartesian coordi-
nates). Furthermore algorithms for location aware networks are sometimes easier
to design and they may lead to better time complexities and/or approximation
bounds. With the advent of Global Positioning System (GPS) the assumption
of location awareness seems relevant.

The recent survey of open problems in [2] lists the problem of local com-
putation of dominating sets for UDGs as one of the important open problems
in distributed computing. In this paper we consider the problems of minimum
dominating set and minimum connected dominating set for a location aware
network, represented by a UDG graph. We design local algorithms providing
constant approximation solutions to both problems. To the best of our knowl-
edge this is the first solution when both of these parameters, i.e. time complexity
and approximation bounds are independent on the size of the network.

1.1 Related Work

The dominating set and connected dominating set problems are known to be
NP-hard, even when restricted to the class of UDGs, see [7]. The importance of

160 J. Czyzowicz et al.

these problems have motivated researchers to investigate approximation schemes.
For general graphs there exists an O(log n) approximation algorithm for the
minimum dominating set problem [15], and it is known that no polynomial-
time approximation of o(log n) exists unless every problem in NP can be solved
deterministically in O(npoly log n) time [24]. For general graphs it is also known
that, unless P = NP , there is an ε > 0 such that the minimum independent
dominating set cannot be approximated within a factor of O(nε), [12].

The situation is quite different in the case of UDGs. Despite the fact that
the dominating set and connected dominating set problems for the class of unit
disk graphs remain NP-hard, constant approximation is possible (e.g. [25], [1]),
even polynomial-time approximation schemes (PTAS) are known for this case,
e.g., [6]. The first such solution has been proposed by [11], where the geometric
representation of the UDG was supposed to be part of the input. Additionally,
[27] have given a PTAS for the minimum dominating set problem of a UDG for
which the geometric representation was not given.

The approximation bounds, which appear to be better when restricted to
the class of UDGs apply mainly to the centralized setting. In the distributed
scenario, however, especially if the geometric information of the input UDG is not
given, the best approximation of the minimum dominating set problem is often
not better than one obtained for the case of general graphs. The first algorithm
achieving a nontrivial approximation ratio o(Δ), for Δ being the maximum node
degree, in a nontrivial time o(diam(G)) was developed in [14]. Kuhn et al. [16]
proposed a distributed approximation based on LP relaxation techniques. In[19]
they designed a PTAS for the minimum dominating set for the class of graphs of
polynomially bounded growth. In such graphs in the k-neighborhood of any node
the size of an independent set is bound by a polynomial function of k and they
include the class of UDGs.

Since the pioneering work of Linial [22] on locality in distributed comput-
ing many papers on local algorithms have been published. However, despite the
fact that several lower bounds and impossibility results in distributed comput-
ing are now known (e.g. [9]), most of them apply to the computational models
which do not involve locality. The only nontrivial lower bound in local distrib-
uted computing known to the authors of this paper has been Ω(log∗ n) time
for 3-coloring of the ring by Linial. On the other hand, it was shown in [26]
that there are nontrivial Locally Checkable Labeling (LCL) problems having lo-
cal, i.e. constant-time solutions. Peleg discussed several problems in distributed
computing in the context of a locality-sensitive approach [28]. Wang et al. [29]
proposed a local algorithm that constructs a bounded degree and planar spanner
for UDGs.

For the class of general graphs Kuhn et al. [17] have given approximation
lower bounds for covering problems as a function of the size of the neighborhood
through which each message may be propagated. In the case of UDGs Kuhn et
al. [20] have given local approximation algorithms for the class of covering and
packing linear programs. The recent paper of Kuhn et al. [21] offers the best
solution for the dominating set problem for the class of UDGs.

Local Algorithms for Dominating and Connected Dominating Sets 161

The local algorithms mentioned above are such that, either the approximation
bounds proposed, or the worst case time bounds obtained depend on the size n
of the network. However, these algorithms do not use the geographic informa-
tion. In this paper we prove that these bounds are not always valid when the
location of nodes is allowed to be part of the input. Since finding a geographic
representation of a given UDG graph (cf. [4]) or even its approximation (cf. [18])
is known to be NP-hard, it seems that the locality is a powerful information
and using it may result in better algorithmic bounds. For example, for a dif-
ferent problem of broadcasting in the geometric radio networks [8] have shown
an O(n) time algorithm using the geographic information and Ω(n log n) time
lower bound when the geographic information was not available. In this paper we
present two local, constant time distributed algorithms producing constant ap-
proximations of minimum dominating sets and minimum connected dominating
sets, respectively.

1.2 Preliminaries and Results of the Paper

Consider a graph G(V, E) with vertex set V and edge set E. A subset S of V is
called dominating set if every vertex of G is either in S or adjacent to a vertex
in S. A dominating set S is called a connected dominating set if the subgraph
of G induced by S is connected. S is an independent set if there is no edge of G
between any two elements of S.

We assume that a wireless network consists of nodes that have the same
circular transmission range of size 1. Thus, it can be represented by a UDG
with an edge connecting two nodes when they are at most a unit distance from
each other. We assume that the network is location aware, i.e. each node of the
graph knows its geometric position in the plane.

We suppose that at each time unit a vertex may send a message to each of its
neighbors or receive a message from its neighbour. Notice that, due to the local
nature of our algorithms, nodes do not need to send their full coordinates, but
only last k digits of them for some constant k.

In Sect. 2 we give an algorithm for the construction of a dominating set of
a unit disk graph whose competitive ratio is 5 (Theorem 1). Section 3 gives an
algorithm for the construction of a connected dominating set of a unit disk graph.
This algorithm has a competitive ratio 7.453 + ε, for any ε > 0 (Theorem 2).
Both algorithms are of constant time complexity (the constant is a function of
the degree of the network) and independent of the size of the network.

Because of the page limit, most proofs have been removed.

2 Local Algorithm for Dominating Set of a UDG

As previously noted, given a UDG a local algorithm decides to include a node
into a dominating set using a fixed size neighborhood independently of decisions
possibly taken at other nodes. Thus the algorithm could actually construct a very
large dominating set due to symmetries that could be present in the graph. We

162 J. Czyzowicz et al.

therefore need to make sure that potential symmetries in the graph are broken
in some way. Using the coordinates of nodes we associate with each node a class
number that depends on the position of the node within a regular tiling of the
plane. As depicted in Fig. 1, in the tiling used by our algorithms each tile consists
of 12 hexagons of unit diameter and each hexagon of the tile represents a single
class. In a hexagon we assume that its right-hand side boundary, starting from
the top apex of the hexagon up to the bottom apex of the hexagon belongs to the
hexagon; thus, only the top apex and the two right upper apexes are considered
to belong to the hexagon (see Fig. 1). Note, that the scattered class numbering
of the tile does not improve the worst-case time complexity of the subsequent
algorithms, but it may enhance their performance in practice.

1/2

1/2

x

1

2

3

45

6

8

7

9

10

12

11

Fig. 1. Left: the dimensions of the hexagon, “bold” lines show the boundary belonging
to the hexagon. Right: a tile divided into 12 hexagons of diameter 1 and the class
numbering of the hexagons.

We assume that the tiling starts by placing one tile with the center of the
hexagon of class number 1 in coordinates (0, 0), while other tiles are placed so
that the hexagon of Class 3 is made adjacent to hexagons of classes 7 and 10 or
the hexagon of Class 11 is made adjacent to hexagons of Classes 8 and 4, etc.
Figure 2 depicts the tiling of the plane that is used in our algorithm.

The following Lemma 1 provides an important separation property of the
hexagons of the tiling that is useful in the sequel.

Lemma 1. In the tiling of the plane given above, any two points of the plane that
are of the same class, but belonging to two different hexagons, are at Euclidean
distance greater than 2. Moreover, given the coordinates of a point P in the
plane, one can determine the class number of P using a constant number of
basic arithmetic and mod operations.

As a consequence of Lemma 1, if each node is aware of the tiling being used,
then any node can calculate from its own coordinates its class number. In the

Local Algorithms for Dominating and Connected Dominating Sets 163

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

1

2

3

45

6

8

7

9

10

12

11

Fig. 2. Tiling of the plane with tiles consisting of 12 hexagons each

following discussions, this knowledge of the tiling as well as class numbering
being used is assumed to be available to each node. Also note that this is a
constant size information.

2.1 Construction of the Dominating Set

The main idea of our algorithm for computing locally a dominating set is as
follows. Nodes determine their class number and acquire the class numbers of all
their neighbors. In each hexagon, a dominator, if any, is the node closest to the
center of the hexagon not dominated by any node of lower class. More precisely,
to calculate a dominating set of a unit disk graph G, each node of G executes
Algorithm 1. Let D be the set of all nodes of G designated by Algorithm 1 as
dominators. In the next few lemmas we discuss some properties of Algorithm 1
and of the associated dominating set D. We conclude with Theorem 1.

Lemma 2. The selection of a dominator by Algorithm 1 in a hexagon of Class
i depends only on information received from nodes that are at most i − 1 hops
away from nodes in the given hexagon.

Lemma 3. Every vertex of G is either in D or adjacent to a vertex in D. Thus,
set D is a dominating set of G.

Lemma 4. The Euclidean distance between any two nodes of D is more than
one. Thus D is an independent set of G.

164 J. Czyzowicz et al.

Algorithm 1. Local Dominating Set Algorithm
// Execution starts by a node either when a node needs to find its dominator,
// or if it receives a request to find a dominator in its hexagon.

1: Determine your class number using your coordinates and the tiling information.
2: Find all your neighbors and obtain their coordinates and class numbers.
3: If your class number is 1 then the node N in your hexagon closest to the center of

it is designated as a dominator. Continue to Step 6.
4: Find whether there is a node in your hexagon that has no neighbor of lower class.

If such nodes exist then the one of them that is closest to the center of the
hexagon is designated as a dominator. Continue to Step 6.

5: If you have a neighbor M of a lower class number then send to M a request
to execute the algorithm for finding its dominator. Once the replies from all
neighbors of lower class number are received, determine if you are already
dominated. Inform your neighbors in your hexagon of the result. When all
nodes of your hexagon finish this calculation, node N in your hexagon closest
to the center and not dominated yet is designated as a dominator, if such a
node exists.

6: Inform all your neighbors that a dominator selection in your hexagon is completed
and give them its result.

7: Terminate your execution of the algorithm.

We now summarize the properties of the dominating set calculated by Algorithm 1
in the following theorem.

Theorem 1. Let G be a unit disk graph and D be the set of dominators cal-
culated by Algorithm 1. D is a dominating, independent set of G and for any
dominating set D∗ of G, we have |D|/|D∗| ≤ 5. Thus the competitive ratio of
Algorithm 1 is 5.

Proof. According to Lemmas 3 and 4, D is both a dominating and an indepen-
dent set of G. To show that |D|/|D∗| ≤ 5 is done as in [25]. ��

Figure 3 gives an example of a unit disk graph and its placement for which the
ratio between the minimum dominating set and the dominating set D calculated
by Algorithm 1 is equal to 5. The dominating set D computed by the algorithm
consists of vertices of degree 1 or 2 while the optimum one consists of the vertices
of degree 6. Thus the competitive ratio in Theorem 1 cannot be improved.

3 Local Algorithm for Connected Dominating Set of a
UDG

Our construction of a connected dominating set starts with the dominating set
constructed by the algorithm of Sect. 2 and we make it connected by adding
selected vertices, called bridges. We first need to introduce some notation and
study properties of optimal connected dominating sets.

Let OCDS denote an optimal connected dominating set, i.e. the minimal subset
of vertices which induces a connected subgraph of a given unit disk graph G

Local Algorithms for Dominating and Connected Dominating Sets 165

12

1

3 6

8

7

1 8

10

3 6

5 4 2 12

1

3 6

8

7

1 8

10

3 6

5 4 2 . . .

Fig. 3. Graph realizing competitive ratio 5

and such that any vertex of G has a neighbor in OCDS. Consider a Minimum
Spanning Tree T of OCDS, i.e. a connected subgraph of G containing the OCDS
and such that it has the smallest possible sum of lengths of its edges. Note that
the minimal angle between any two incident edges (x, y) and (x, z) of T is π/3,
otherwise edge (y, z) would be used in T instead of (x, y) or (x, z). Suppose that
T is rooted at some vertex r, of degree smaller than six. We denote by Dv the
disk of radius 1 centered at v. Consider the dominating set D constructed in
Sect. 2. We will find an upper bound on the number of vertices of D. For this
purpose we will charge to vertices of T small subsets of D as follows. Suppose
(u, v) ∈ T , i.e. u is the parent of v in T . We charge to v all vertices centered
inside Dv except those which are inside Du. Hence the number dv of vertices
charged to v is dv = |D ∩ (Dv \ Du)|. Note that, since T contains a dominating
set of the UDG, each vertex of D is charged to at least one vertex of T .

Furthermore, let Ev be the set of children of v, such that there is no vertex
of D reachable from both v and a vertex of Ev, i.e., Ev = |{w : w is a child of v
in T and D ∩ (Dv ∩ Dw) = ∅}|. Denote ev = |Ev|.
Lemma 5. Let T be a Minimum Spanning Tree with root r of an optimal con-
nected dominating set of UDG G with dv, ev defined for any vertex v of T as
above.

1. If v is different from r then dv + ev ≤ 4.
2. dr + er ≤ 5.

Corollary 1. Let f be the number of edges {u, v} in T such that D∩Du∩Dv �= ∅.
Then |D| ≤ 3|OCDS| + 2 + f .

Proof. Indeed, from the definition of f and ev we derive that
|OCDS| − 1 − f =

∑
v∈OCDS ev. Summing over all v ∈ OCDS we get

|D| =
∑

v∈OCDS dv = dr +
∑

v∈OCDS\{r} dv ≤ 1 +
∑

v∈OCDS(4 − ev) =
4 · |OCDS| + 1 −

∑
v∈OCDS ev. Now observe that the term in right-hand side is

equal to 4 · |OCDS| + 1 − (|OCDS| − 1 − f) = 3 · |OCDS| + 2 + f . ��

Note that the competitive ratio of D with respect to the OCDS is better than
the one from Theorem 1 since f can be at most |OCDS| − 1.

Just like the dominating set previously considered in Sect. 2, we consider a
tiling of the plane with tiles. Each tile consists of c hexagons of radius 1 that are

166 J. Czyzowicz et al.

being assigned different class numbers and such that hexagons of the same class
number are at distance at least k from each other. The tiles we consider in this
section achieve distances k larger than 2 and it can be easily proved that in this
case the required class number c is in Θ(k2).

Intuitively, the algorithm for constructing a connected dominating set is as
follows. Find a dominating set using Algorithm 1 and select a coordinator vertex
in each non-empty hexagon using some election procedure. The coordinators are
responsible for augmenting the existing dominating set by adding bridges, each
bridge (one or two vertices) joining at least two connected components. We sup-
pose that each vertex will communicate information at distance less than k hops
from it. Each hexagon is assigned a class number between 1 to c so that vertices
of two hexagons of the same class number are at least at distance k from each
other. The algorithm consists of two phases, each of which consists of c rounds.
In the first phase, the algorithm repeatedly inserts single vertex bridges, while
in the second phase, the double vertex bridges are added, eventually resulting in
the set becoming connected. In round i, 1 ≤ i ≤ c, coordinators from hexagons
of class i will act, by trying to add connecting bridges within their hexagons.
We suppose that each coordinator takes a decision about adding a bridge based
on its knowledge of the part of the UDG at distance less than k from it. Hence,
when a coordinator decides to add a bridge it is possible that the bridge is not
joining two components from global perspective but rather two components as
perceived from the local, limited perspective of the coordinator, and the result-
ing graph thus may contain some cycles. Algorithm 2 which is described below
is a more formal outline of this idea. The complexity analysis of this algorithm
follows in the sequel. However, note that previous “global algorithms” made use
of a “globally constructed spanning tree” in order to find one-node bridges. We
can no longer use a global algorithm to ensure that all our bridges consist of
a single node. Rather we can use the structure of the dominating sets to show
that if we first add all the single node bridges then we can limit the number of
the remaining two-node bridges not just by the size of the dominating set, but
rather by the size of the connected dominating set.

Lemma 6. Consider the set S′ =
⋃

H∈H S′
H , where S′

H is the set of selected
vertices of hexagon H after the first phase, and H is the set of all non-empty
hexagons. Consider the Minimum Spanning Tree T of the OCDS used in Lemma
5. Let f be the number of edges {u, v} of T such that D ∩ (Du ∩ Dv) �= ∅. Then
the UDG of S′ has at most |OCDS| − f connected components.

Lemma 7. S as constructed by Algorithm 2 is a connected dominating set.

We will also use the following lemma from [10]:

Lemma 8. The size of any independent set in a unit disk graph G is at most
3.453 · |OCDS| + 8.291

We are now ready to prove the main theorem of this section.

Local Algorithms for Dominating and Connected Dominating Sets 167

Algorithm 2. Local Algorithm for Connected Dominating Set
1: Compute the dominating set D applying Algorithm 1.
2: Select a coordinator vertex in each non-empty hexagon and determine its class c

based on the coordinates.
// The rest of the algorithm is specified for a hexagon H.

3: Set the local set of selected vertices SH to be the vertices of D at distance less than
k hops from H (i.e. each vertex of D is broadcasted up to distance k).

4: for bridgesize= 1 to 2 do
5: for round= 1 to c do
6: if class(H) = round then
7: Determine all connected components of the UDG induced by the vertices

of SH .
8: repeat
9: Find a set B of vertices of H , such that |B| = bridgesize and such

that adding B to SH connects at least two different connected
components.

10: Add B to SH and locally recompute the connected components.
11: until no such set B can be found
12: Broadcast the newly added vertices up to distance k hops.

// Hexagon H has done its job for this bridgesize, now it only
participates in the broadcasts and updates its SH .

13: else
14: for each non-empty hexagon H ′ at distance at most k do
15: wait for a message containing the vertices V ′

H added in H ′.
16: SH ← SH ∪ V ′

H

17: end for
18: end if
19: end for
20: end for
21: The union of SH for all hexagons H is the desired connected dominating set S .

Theorem 2. Let k > 3 be an integer and S be the connected dominating set
computed by Algorithm 2 with parameter k. Then

|S| ≤
(

7.453 +
15

k − 3

)

· |OCDS| +
16.6
k − 3

(1)

Algorithm 2 does not produce an optimal connected dominating set of a given
graph. It is rather obvious that a strictly local algorithm cannot produce an
optimal connected dominating set even for a long cycle. In some cases we can
lower the number of vertices in our connected dominating set by adding one
more phase to Algorithm 2: after the addition of bridges is finished we can check
for each vertex of D whether it is still needed for domination, following the
order of the class numbers, and remove it from the connected dominating set if
it is not needed for domination and it does not create a disconnection using the
neighborhood of size k−1. However, this does not improve the competitive ratio
of Theorem 2.

168 J. Czyzowicz et al.

4 Conclusion

This paper gives the first ever local (constant time) algorithms for constructing
constant approximations of dominating and connected dominating sets of unit
disk graphs with location aware nodes with approximation ratios 5 and 7.453+ε,
respectively. Although it was shown that the approximation ratio of the first
algorithm could not be improved further, we do not have a lower bound on the
competitive ratio of the second algorithm. It is important to note, that in the case
of location aware networks, assumed in this paper, the dominating set problem
is simpler than in the case of general UDGs. This poses a rather fundamental
question about the “power of location awareness” and its impact on distributed
computing, which we believe may have repercussions on future research studies
on this subject.

Note that one of the concepts of this paper of tiling the plane and electing a
node inside each tile is a version of an idea exploited, for example, in [20] and
[13] where a single node was chosen to represent a cluster of related nodes.

References

1. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-optimal connected-dominating-
set construction for routing in mobile ad hoc networks. In: MOBIHOC 2002, pp.
157–164 (2002)

2. Aspnes, J., Bush, C., Dolev, S., Fatouroum, P., Georgiou, C., Shvartsman, A., Spi-
rakis, P., Wattenhofer, R.: Eight open problems in distributed computing. Bulletin
of the European Association for Theoretical Computer Science 90(109) (October
2006) Columns: Distributed Computing.

3. Awerbuch, B., Peleg, D.: Sparse partitions (extended abstract). In: IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 503–513 (1990)

4. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computa-
tional Geometry: Theory and Applications 9, 3–24 (1998)

5. Chávez, E., Dobrev, S., Kranakis, E., Opatrny, J., Stacho, L., Urrutia, J.: Local
construction of planar spanners in unit disk graphs with irregular transmission
ranges. In: Correa, J.R., Hevia, A., Kiwi, M.A. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 286–297. Springer, Heidelberg (2006)

6. Cheng, X., Huang, X., Li, D., Du, D.-Z.: A polynomial-time approximation scheme
for the minimum-connected dominating set in ad hoc wireless networks. Net-
works 42, 202–208 (2003)

7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86, 165–177 (1990)

8. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Dis-
crete Algorithms 5, 187–201 (2007)

9. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing.
Distributed Computing 16, 121–163 (2003)

10. Funke, S., Kesselman, A., Meyer, U., Segal, M.: A simple improved distributed
algorithm for minimum cds in unit disk graphs. ACM Transactions on Sensor
Networks 2(3), 444–453 (2006)

11. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs. Journal of Algorithms 26(2), 238–274 (1998)

Local Algorithms for Dominating and Connected Dominating Sets 169

12. Irving, R.W.: On approximating the minimum independent dominating set. Infor-
mation Processing Letters 37, 197–200 (1991)

13. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Discrete Mobile Centers.
Discrete & Computational Geometry 30(1), 45–63 (2001)

14. Jia, L., Rajaraman, R., Suel, R.: An efficient distributed algorithm for constructing
small dominating sets. Distributed Computing 14, 193–205 (2002)

15. Johnson, D.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

16. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-
tion. Distributed Computing 17(4), 303–310 (2005)

17. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
23th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pp. 300–309 (2004)

18. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Unit disk graph approximation. In:
DialM: Proceedings of the Discrete Algorithms and Methods for Mobile Comput-
ing & Communications; later DIALM-POMC Joint Workshop on Foundations of
Mobile Computing, pp. 17–23 (2004)

19. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local approximation
schemes for ad hoc and sensor networks. In: DialM: Proceedings of the Discrete
Algorithms and Methods for Mobile Computing & Communications; later DIALM-
POMC Joint Workshop on Foundations of Mobile Computing, pp. 97–103 (2005)

20. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In:
24th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pp. 60–68 (2005)

21. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
SODA, pp. 980–989. ACM Press, New York (2006)

22. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

23. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
In: Proc. 17th Annual ACM Symposium on Theory of Computing (STOCS), May
1985, pp. 1–10 (1985)

24. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. Journal of the ACM 41, 960–981 (1994)

25. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Geometry
based heuristics for unit disk graphs. ArXiv Mathematics e-prints (1994)

26. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. on Comput-
ing 24, 1259–1277 (1995)

27. Nieberg, T., Hurink, J.: A PTAS for the minimum dominating set problem in unit
disk graphs. In: Approximation and Online Algorithms, pp. 296–306 (2006)

28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications (2000)

29. Wang, Y., Li, X.: Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. In: Proc. of the 2003 joint workshop on Foundations
of mobile computing (DIALM-POMC 2003), pp. 59–68. ACM Press, New York
(2003)

Spanners of Complete k-Partite

Geometric Graphs�

Prosenjit Bose, Paz Carmi, Mathieu Couture, Anil Maheshwari, Pat Morin,
and Michiel Smid

School of Computer Science, Carleton University
Ottawa, Ontario, Canada

Abstract. We address the following problem: Given a complete k-partite
geometric graph K whose vertex set is a set of n points in R

d, compute a
spanner of K that has a “small” stretch factor and “few” edges. We present
two algorithms for this problem. The first algorithm computes a (5 + ε)-
spanner of K with O(n) edges in O(n log n) time. The second algorithm
computes a (3 + ε)-spanner of K with O(n log n) edges in O(n log n) time.
Finally, we show that there exist complete k-partite geometric graphs K
such that every subgraph of K with a subquadratic number of edges has
stretch factor at least 3.

1 Introduction

Let S be a set of n points in R
d. A geometric graph with vertex set S is an

undirected graph H whose edges are line segments pq that are weighted by the
Euclidean distance |pq| between p and q. For any two points p and q in S, we
denote by δH(p, q) the length of a shortest path in H between p and q. For
a real number t ≥ 1, a subgraph G of H is said to be a t-spanner of H , if
δG(p, q) ≤ t · δH(p, q) for all points p and q in S. The smallest t for which this
property holds is called the stretch factor of G. Thus, a subgraph G of H with
stretch factor t approximates the

(
n
2

)
pairwise shortest-path lengths in H within

a factor of t. If H is the complete geometric graph with vertex set S, then G is
also called a t-spanner of the point set S.

Most of the work on constructing spanners has been done for the case when
H is the complete graph. It is well known that for any set S of n points in R

d

and for any real constant ε > 0, there exists a (1 + ε)-spanner of S containing
O(n) edges. Moreover, such spanners can be computed in O(n log n) time; see
Salowe [7] and Vaidya [8]. For a detailed overview of results on spanners for point
sets, see the book by Narasimhan and Smid [6].

For spanners of arbitrary geometric graphs, much less is known. Althöfer et
al. [1] have shown that for any t > 1, every weighted graph H with n vertices con-
tains a subgraph with O(n1+2/(t−1)) edges, which is a t-spanner of H . Observe
that this result holds for any weighted graph; in particular, it is valid for any
� Research partially supported by NSERC, MRI, CFI, and MITACS.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 170–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Spanners of Complete k-Partite Geometric Graphs 171

geometric graph. For geometric graphs, a lower bound was given by Gudmunds-
son and Smid [5]: They proved that for every real number t with 1 < t < 1

4 log n,
there exists a geometric graph H with n vertices, such that every t-spanner of
H contains Ω(n1+1/t) edges. Thus, if we are looking for spanners with O(n)
edges of arbitrary geometric graphs, then the best stretch factor we can obtain
is Θ(log n).

In this paper, we consider the case when the input graph is a complete k-
partite Euclidean graph. Let S be a set of n points in R

d, and let S be partitioned
into subsets S1, S2, . . . , Sk. Let KS1...Sk

denote the complete k-partite graph on
S. This graph has S as its vertex set and two points p and q are connected by
an edge (of length |pq|) if and only if p and q are in different subsets of the
partition. The problem we address is formally defined as follows:

Problem 1. Let k > 1 be an integer, let S be a set of n points in R
d, and let S

be partitioned into subsets S1, S2, . . . , Sk. Compute a t-spanner of the k-partite
complete graph KS1...Sk

that has a “small” number of edges and whose stretch
factor t is “small”.

The main contribution of this paper is to present an algorithm that computes
such a t-spanner with O(n) edges in O(n log n) time, where t = 5 + ε for any
constant ε > 0. We also show that if one is willing to use O(n log n) edges,
then our algorithm adapts easily to reach a stretch factor of t = 3 + ε. Fi-
nally, we give an example of a complete k-partite geometric graph K such that
every subgraph of K with a subquadratic number of edges has stretch factor at
least 3.

We remark that in a recent paper, Bose et al. [2] considered the problem of
constructing spanners of point sets that have O(n) edges and whose chromatic
number is a most k. This problem is different from ours: Bose et al. compute
a spanner of the complete graph and their algorithm can choose a “good” k-
partition of the vertices. In our problem, the k-partition is given and we want
to compute a spanner of the complete k-partite graph.

The rest of this paper is organized as follows. In Section 2, we recall prop-
erties of the Well-Separated Pair Decomposition (WSPD) that we use in our
algorithm. In Section 3, we provide an algorithm that solves the problem of con-
structing a spanner of the complete k-partite graph. In Section 4, we show that
the spanner constructed by this algorithm has O(n) edges and that its stretch
factor is bounded from above by a constant that depends only on the dimension
d. In Section 5, we show how a simple modification to our algorithm improves
the stretch factor to 5 + ε while still having O(n) edges. In Section 6, we show
how to achieve a stretch factor of 3+ ε using O(n log n) edges. We also provide a
lower bound of 3 on the stretch factor for the general geometric k-partite spanner
problem.

For ease of presentation, we will present all our results for the case when
k = 2. The generalization to arbitrary values of k is a little bit more involved
and will be given in the full version.

172 P. Bose et al.

2 The Well-Separated Pair Decomposition

In this section, we recall crucial properties of the Well-Separated Pair Decompo-
sition (WSPD) of Callahan and Kosaraju [4] that we use for our construction.
Our presentation follows the one in Narasimhan and Smid [6].

Definition 1. Let S be a set of points in R
d. The bounding box β(S) of S is

the smallest axes-parallel hyperrectangle that contains S.

Definition 2. Let X and Y be two sets of points in R
d and let s > 0 be a real

number. We say that X and Y are well-separated with respect to s if there exists
two balls B1 and B2 such that (i) B1 and B2 have the same radius, say ρ, (ii)
β(X) ⊆ B1, (iii) β(Y) ⊆ B2, and (iv) min{|xy| : x ∈ B1∩R

d, y ∈ B2∩R
d} ≥ sρ.

Definition 3. Let S be a set of points in R
d and let s > 0 be a real number. A

well-separated pair decomposition (WSPD) of S with separation constant s is
a set of unordered pairs of subsets of S that are well-separated with respect to s,
such that for any two distinct points p, q ∈ S there is a unique pair {X, Y } in
the WSPD such that p ∈ X and q ∈ Y .

Lemma 1 (Lemma 9.1.2 in [6]). Let s > 0 be a real number and let X and
Y be two point sets that are well-separated with respect to s.

1. If p, p′, p′′ ∈ X and q ∈ Y , then |p′p′′| ≤ (2/s)|pq|.
2. If p, p′ ∈ X and q, q′ ∈ Y , then |p′q′| ≤ (1 + 4/s)|pq|.

Callahan and Kosaraju [3] have shown how to construct a t-spanner of S from
a WSPD: All one has to do is pick from each pair {X, Y } an arbitrary edge
(p, q) with p ∈ X and q ∈ Y . In order to compute a spanner of S that has a
linear number of edges, one needs a WSPD that has a linear number of pairs.
Callahan and Kosaraju [4] showed that a WSPD with a linear number of pairs
always exists and can be computed in time O(n log n). Their algorithm uses a
split-tree.

Definition 4. Let S be a non-empty set of points in R
d. The split-tree of S is

defined as follows: if S contains only one point, then the split-tree is a single node
that stores that point. Otherwise, the split-tree has a root that stores the bounding
box β(S) of S, as well as an arbitrary point of S called the representative of S
and denoted by rep(S). Split β(S) into two hyperrectangles by cutting its longest
interval into two equal parts, and let S1 and S2 be the subsets of S contained in
the two hyperrectangles. The root of the split-tree of S has two sub-trees, which
are recursively defined split-trees of S1 and S2.

The precise way Callahan and Kosaraju used the split-tree to compute a WSPD
with a linear number of pairs is of no importance to us. The only important
aspect we need to retain is that each pair is uniquely determined by a pair
of nodes in the tree. More precisely, for each pair {X, Y } in the WSPD that
is output by their algorithm, there are unique internal nodes u and v in the

Spanners of Complete k-Partite Geometric Graphs 173

split-tree such that the sets Su and Sv of points stored at the leaves of the
subtrees rooted at u and v are precisely X and Y . Since there is such a unique
correspondence, we will denote pairs in the WSPD by {Su, Sv}, meaning that u
and v are the nodes corresponding to the sets X = Su and Y = Sv.

If R is an axes-parallel hyperrectangle in R
d, then we use Lmax(R) to denote

the length of a longest side of R.

Lemma 2 (Lemma 9.5.3 in [6]). Let u be a node in the split-tree and let u′

be a node in the subtree of u such that the path between them contains at least d
edges. Then Lmax(β(Su′)) ≤ 1

2 · Lmax(β(Su)).

Lemma 3 (Lemma 11.3.1 in [6]). Let {Su, Sv} be a pair in the WSPD, let
� be the distance between the centers of β(Su) and β(Sv), and let π(u) be the
parent of u in the split-tree. Then Lmax(β(Sπ(u))) ≥ 2�√

d(s+4)
.

3 A First Algorithm

We now show how the WSPD can be used to address the problem of computing a
spanner of a complete bipartite graph. In this section, we introduce an algorithm
that outputs a graph with constant stretch factor and O(n) edges. The analysis of
this algorithm is presented in Section 4. In Section 5, we show how this algorithm
can be improved to achieve a stretch factor of 5 + ε.

The input set S ⊆ R
d is the disjoint union of two sets R and B containing red

and blue points, respectively. The graph KRB is the complete bipartite geometric
graph. We first need a definition.

Definition 5. Let T be the split-tree of S that is used to compute the WSPD.

1. For a node u in T , we denote by Su the set of all points in the subtree rooted
at u.

2. We define BWSPD to be the subset of the WSPD obtained by removing all
pairs {Su, Sv} such that Su ∪ Sv ⊆ R or Su ∪ Sv ⊆ B.

3. A node u in T is bichromatic if there exist points r and b in Su and a node
v in T such that r ∈ R, b ∈ B, and {Su, Sv} is in the BWSPD.

4. A node u in T is a red-node if Su ⊆ R and there exists a node v in T such
that {Su, Sv} is in the BWSPD.

5. A red-node u in T is a red-root if it does not have a proper ancestor that is
a red-node in T .

6. A red-node u in T is a red-leaf if it does not have another red-node in its
subtree.

7. A red-node u′ in T is a red-child of a red-node u in T if u′ is in the subtree
rooted at u and there is no red-node on the path strictly between u and u′.

8. The notions of blue-node, blue-root, blue-leaf, and blue-child are defined as
above, by replacing red by blue.

9. For each set Su that contains at least one red point, repR(Su) denotes a fixed
arbitrary red point in Su. For each set Su that contains at least one blue
point, repB(Su) denotes a fixed arbitrary blue point in Su.

174 P. Bose et al.

10. The distance between two sets Sv and Sw, denoted by dist(Sv, Sw), is defined
to be the distance between the centers of their bounding boxes.

11. Let u be a red-node or a blue-node in T . Consider all pairs {Sv, Sw} in the
BWSPD, where v is a red-node on the path in T from u to the root (this path
includes u). Let {Sv, Sw} be such a pair for which dist(Sv, Sw) is minimum.
We define cl(Su) to be the set Sw.

Algorithm 1 computes a spanner of a complete bipartite geometric graph. It
considers each pair {Su, Sv} of the WSPD, and decides whether or not it adds a
red-blue and/or a blue-red edge between Su and Sv. The outcome of this decision
is based on the following three cases.
Case 1: All points of Su ∪Sv are of the same color. In this case, there is no edge
of KRB to approximate, so the algorithm just ignores this pair.
Case 2: Both Su and Sv are bichromatic. In this case, the algorithm adds the
two edges (repR(Su), repB(Sv)) and (repB(Su), repR(Sv)); see line 21. These two
edges will allow us to approximate each edge of KRB having one vertex in Su

and the other vertex in Sv.
Case 3: All points in Su are of the same color, say red. In this case, only
the edge (repR(Su), repB(Sv)) is added; see line 11. In order to approximate
each edge of KRB having one (red) vertex in Su and the other (blue) vertex
in Sv, other edges have to be added. This is done in such a way that our final
graph contains a “short” path between every red point r of Su and the red
representative repR(Su) of Su. Observe that this path must contain blue points
that are not in Su. One way to achieve this is to add an edge between each
point of Su and repB(cl(Su)); we call this construction a star. However, since
the subtree rooted at u may contain other red-nodes, many edges may be added
for each point in Su, which could possibly lead to a quadratic number of edges in
the final graph. To guarantee that the algorithm does not add too many edges,
it introduces a star only if u is a red-leaf; see line 7. If u is a red-node, the
algorithm only adds the edge (repR(Su), repB(cl(Su))); see line 10. Then, the
algorithm links each red-node u′′ that is not a red-root to its red-parent u′. This
is done through the edge (repR(Su′′), repB(cl(u′))); see line 13.

4 Analysis of Algorithm 1

Lemma 4. The graph G computed by Algorithm 1 has O(|R ∪ B|) edges.

Lemma 5. Let r be a point of R, let b be a point of B, and let {Su, Sv} be the
pair in the BWSPD for which r ∈ Su and b ∈ Sv. Assume that u is a red-node.
Then there is a path in G between r and repR(Su) whose length is at most c|rb|,
where

c = 4
√

d(μd + 1)(1 + 4/s)3, μ =
⌈
log

(√
d(1 + 4/s)

)⌉
+ 1,

and s is the separation constant of the WSPD.

Spanners of Complete k-Partite Geometric Graphs 175

Algorithm 1.
Input: S = R ∪ B, where R and B are two disjoint sets of red and blue points in R

d.
Output: A spanner G = (S,E) of the complete bipartite graph KRB .
1: compute the split-tree T of R ∪ B
2: using T , compute the WSPD with respect to a separation constant s > 0
3: using the WSPD, compute the BWSPD
4: E ← ∅
5: for each red-root u in T do
6: for each red-leaf u′ in the subtree of u do
7: for each r ∈ Su′ , add to E the edge (r, repB(cl(Su′)))
8: end for
9: for each red-node u′ that is in the subtree of u (including u) do

10: add to E the edge (repR(Su′), repB(cl(Su′)))
11: for each pair {Su′ , Sv′} in BWSPD, add to E the edge (repR(Su′), repB(Sv′))

12: for each red-child u′′ of u′, add to E the edge (repR(Su′′), repB(cl(Su′)))
13: end for
14: end for
15: for each blue-root u in T do
16: //do the same as on lines 5–16, with red and blue interchanged
17: end for
18: for each {Su, Sv} in the BWSPD for which both u and v are bichromatic do
19: add to E the edges (repR(Su), repB(Sv)) and (repB(Su), repR(Sv))
20: end for
21: return the graph G = (R ∪ B, E)

Proof. Let w be the red-leaf such that r ∈ Sw, and let w = w0, . . . , wk = u be
the sequence of red-nodes that are on the path in T from w to u. Let Π be the
path

r → repB(cl(Sw0)) → repR(Sw0) → repB(cl(Sw1)) → repR(Sw1)
→ . . . → repB(cl(Swk

)) → repR(Swk
) = repR(Su).

The first edge on this path, i.e., (r, repB(cl(Sw0))), is added to the graph G
in line 7 of the algorithm. The edges (repB(cl(Swi)), repR(Swi)), 0 ≤ i ≤ k, are
added to G in line 10. Finally, the edges (repR(Swi−1), repB(cl(Swi))), 1 ≤ i ≤ k,
are added to G in line 13. It follows that Π is a path in G. We will show that
the length of Π is at most c|rb|.

Let 0 ≤ i ≤ k. Recall the definition of cl(Swi); see Definition 5: We consider
all pairs {Sx, Sy} in the BWSPD, where x is a red-node on the path in T from
wi to the root, and pick the pair for which dist(Sx, Sy) is minimum. We denote
the pair picked by (Sxi , Syi). Thus, xi is a red-node on the path in T from wi to
the root, {Sxi, Syi} is a pair in the BWSPD, and cl(Swi) = Syi . We define

�i = dist(Sxi , Syi).

176 P. Bose et al.

Consider the first edge (r, repB(cl(Sw0))) on the path Π . Since r ∈ Sw0 ⊆ Sx0

and repB(cl(Sw0)) ∈ Sy0 , it follows from Lemma 1 that

|r, repB(cl(Sw0))| ≤ (1 + 4/s)dist(Sx0 , Sy0) = (1 + 4/s)�0.

Let 0 ≤ i ≤ k and consider the edge (repB(cl(Swi)), repR(Swi)) on Π . Since
repR(Swi) ∈ Swi ⊆ Sxi and repB(cl(Swi)) ∈ Syi , it follows from Lemma 1 that

(1) |repB(cl(Swi)), repR(Swi)| ≤ (1 + 4/s)dist(Sxi , Syi) = (1 + 4/s)�i.

Let 1 ≤ i ≤ k and consider the edge (repR(Swi−1), repB(cl(Swi))) on Π . Since
repR(Swi−1) ∈ Swi−1 ⊆ Sxi and repB(cl(Swi)) ∈ Syi , it follows from Lemma 1
that

|repR(Swi−1), repB(cl(Swi))| ≤ (1 + 4/s)dist(Sxi , Syi) = (1 + 4/s)�i.

Thus, the length of the path Π is at most
∑k

i=0 2(1 + 4/s)�i. Therefore, it is
sufficient to prove that

∑k
i=0 �i ≤ 2

√
d(μd + 1)(1 + 4/s)2|rb|. It follows from the

definition of cl(Su) = cl(Swk
) that �k = dist(Sxk

, Syk
) ≤ dist(Su, Sv). Since, by

Lemma 1, dist(Su, Sv) ≤ (1 + 4/s)|rb|, it follows that

(2) �k ≤ (1 + 4/s)|rb|.

Thus, it is sufficient to prove that

(3)
k∑

i=0

�i ≤ 2
√

d(μd + 1)(1 + 4/s)�k.

If k = 0, then (3) obviously holds. Assume from now on that k ≥ 1. For each
i with 0 ≤ i ≤ k, we define

ai = Lmax(β(Swi)),

i.e., ai is the length of a longest side of the bounding box of Swi .
Let 0 ≤ i ≤ k. It follows from Lemma 1 that Lmax(β(Sxi)) ≤ 2

s �i. Since wi is
in the subtree of xi, we have Lmax(β(Swi)) ≤ Lmax(β(Sxi)). Thus, we have

(4) ai ≤ 2
s
�i for 0 ≤ i ≤ k.

Lemma 2 states that

(5) ai ≤ 1
2
ai+d for 0 ≤ i ≤ k − d.

Let 0 ≤ i ≤ k−1. Since wi is a red-node, there is a node w′
i such that {Swi , Sw′

i
} is

a pair in the BWSPD. We have �i = dist(Sxi , Syi) ≤ dist(Swi , Sw′
i
). By applying

Lemma 3, we obtain

dist(Swi , Sw′
i
) ≤

√
d(s + 4)

2
Lmax(β(Sπ(wi))) ≤

√
d(s + 4)

2
Lmax(β(Swi+1)) =

√
d(s + 4)

2
ai+1.

Spanners of Complete k-Partite Geometric Graphs 177

Thus, we have

(6) �i ≤
√

d(s + 4)
2

ai+1 for 0 ≤ i ≤ k − 1.

First assume that 1 ≤ k ≤ μd. Let 0 ≤ i ≤ k − 1. By using (6), the fact that
the sequence a0, a1, . . . , ak is non-decreasing, and (4), we obtain

�i ≤
√

d(s + 4)
2

ai+1 ≤
√

d(s + 4)
2

ak ≤
√

d(1 + 4/s)�k.

Therefore,

k∑

i=0

�i ≤ k
√

d(1+4/s)�k + �k ≤ (k+1)
√

d(1+4/s)�k ≤ (μd+1)
√

d(1+4/s)�k,

which is less than the right-hand side in (3).
It remains to consider the case when k > μd. Let i ≥ 0 and j ≥ 0 be integers

such that i + 1 + jd ≤ k. By applying (6) once, (5) j times, and (4) once, we
obtain

�i ≤
√

d(s + 4)
2

ai+1 ≤
√

d(s + 4)
2

(
1
2

)j

ai+1+jd ≤
√

d(1+4/s)
(

1
2

)j

�i+1+jd.

For j = μ =
log(
√

d(s+4)
s)� + 1, this implies that, for 0 ≤ i ≤ k − 1 − μd,

(7) �i ≤ 1
2
�i+1+μd.

By re-arranging the terms in the summation in (3), we obtain

k∑

i=0

�i =
μd∑

h=0

�(k−h)/(μd+1)�∑

j=0

�k−h−j(μd+1).

Let j be such that 0 ≤ j ≤ �(k − h)/(μd + 1). By applying (7) j times, we
obtain

�k−h−j(μd+1) ≤
(

1
2

)j

�k−h.

It follows that

�(k−h)/(μd+1)�∑

j=0

�k−h−j(μd+1) ≤
∞∑

j=0

(
1
2

)j

�k−h = 2�k−h.

Thus, we have

k∑

i=0

�i ≤ 2
μd∑

h=0

�k−h.

178 P. Bose et al.

By applying (6), the fact that the sequence a0, a1, . . . , ak is non-decreasing, fol-
lowed by (4), we obtain, for 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − i,

�i ≤
√

d(s + 4)
2

ai+1 ≤
√

d(s + 4)
2

ai+j ≤
√

d(1 + 4/s)�i+j .

Obviously, the inequality �i ≤
√

d(1 + 4/s)�i+j also holds for j = 0. Thus, for
i = k − h and j = h, we get

�k−h ≤
√

d(1 + 4/s)�k for 0 ≤ h ≤ μd.

It follows that

k∑

i=0

�i ≤ 2
μd∑

h=0

√
d(1 + 4/s)�k = 2

√
d(μd + 1)(1 + 4/s)�k,

completing the proof that (3) holds. ��

Lemma 6. Assuming that the separation constant s of the WSPD satisfies s ≥
8 + 6/c, the graph G computed by Algorithm 1 is a t-spanner of the complete
bipartite graph KRB, where t = 2c + 1 + 4/s and c is as in Lemma 5.

Proof. It suffices to show that for each edge (r, b) of KRB, the graph G contains
a path between r and b of length at most t|rb|. We will prove this by induction
on the lengths of the edges in KRB.

Let r be a point in R, let b be a point in B, and let {Su, Sv} be the pair in
the BWSPD for which r ∈ Su and b ∈ Sv.

The base case is when (r, b) is a shortest edge in KRB. Since s > 2, it follows
from Lemma 1 that u is a red-node and v is a blue-node. In line 11 of Algorithm 1,
the edge (repR(Su), repB(Sv)) is added to G. By Lemma 1, the length of this
edge is at most (1+4/s)|rb|. The claim follows from two applications of Lemma 5
to get from r to repR(Su) and from repB(Sv) to b.

In the induction step, we distinguish four cases.
Case 1: u is a red-node and v is a blue-node. This case is identical to the base
case.
Case 2: u is a bichromatic node and v is a blue-node. In the equivalent of line 11
for the blue-nodes, Algorithm 1 adds the edge (repR(Su), repB(Sv)) to G. By
Lemma 1, the length of this edge is at most (1+4/s)|rb|. Let b∗ be a blue node in
Su. Since s > 2, it follows from Lemma 1 that |rb∗| < |rb|. Thus, by induction,
there is a path in G between r and b∗ whose length is at most t|rb∗|. By a
similar argument, there is a path in G between b∗ and repR(Su) whose length
is at most t|b∗, repR(Su)|. Applying Lemma 1, it follows that there is a path in
G between r and repR(Su) whose length is at most t(|rb∗| + |b∗, repR(Su)|) ≤
t(2|rb|/s + 2|rb|/s) = 4t|rb|/s. By Lemma 5, there is a path in G between b and
repB(Sv) whose length is at most c|rb|. We have shown that there is a path in
G between r and b whose length is at most (1 + 4/s)|rb| + 4t|rb|/s + c|rb|. Since
s ≥ 8 + 6/c, this quantity is at most t|rb|.

Spanners of Complete k-Partite Geometric Graphs 179

Case 3: Both u and v are bichromatic nodes. In line 21, Algorithm 1 adds the
edge (repB(Su), repR(Sv)) to G. By Lemma 1, the length of this edge is at most
(1 + 4/s)|rb|. By induction, there is a path in G between r and repB(Su) whose
length is at most t|r, repB(Su)|, which, by Lemma 1, is at most 2t|rb|/s. By a
symmetric argument, there is a path in G between b and repR(Sv), whose length
is at most 2t|rb|/s. We have shown that there is a path in G between r and b
whose length is at most (1 + 4/s)|rb| + 4t|rb|/s, which is at most t|rb|. ��

Lemma 7. The running time of Algorithm 1 is O(n log n), where n = |R ∪ B|.
To summarize, we have shown the following: Algorithm 1 computes a t-spanner
of the complete bipartite graph KRB having O(n) edges, where t is given in
Lemma 6. The running time of this algorithm is O(n log n). By choosing the
separation constant s sufficiently large, the stretch factor t converges to

8
√

d

(

d

⌈
1
2

log d

⌉

+ d + 1
)

+ 1.

5 An Improved Algorithm

As before, we are given two disjoint sets R and B of red and blue points in R
d.

Intuitively, the way to improve the bound of Lemma 5 is by adding shortcuts along
the path from each red-leaf to the red-root above it. More precisely, from (7) in the
proof of Lemma 5, we know that if we go 1 + μd levels up in the split-tree, then the
length of the edge along the path doubles. Thus, for each red-node in T , we will add
edges to all 2δ(1 + μd) red-nodes above it in T . Here, δ is an integer constant that
is chosen such that the best result is obtained in the improved bound.

Definition 6. Let u and u′ be red-nodes in the split-tree such that u′ is in the
subtree rooted at u. For an integer ζ ≥ 1, we say that u is ζ-levels above u′, if
there are ζ − 1 red-nodes on the path strictly between u and u′. We say that u′

is a ζ-red-child of u if u is at most ζ-levels above u′. These notions are defined
similarly for the blue-nodes.

Algorithm 2.
Input: S = R ∪ B, where R and B are two disjoint sets of red and blue points in R

d,
respectively, and a real constant 0 < ε < 1.

Output: A (5 + ε)-spanner G = (S, E) of the complete bipartite graph KRB .
1: Choose a separation constant s such that s ≥ 12/ε and (1 + 4/s)2 ≤ 1 + ε/36 and

choose an integer constant δ such that 2δ

2δ−1 ≤ 1 + ε/36.
2: The rest of the algorithm is the same as Algorithm 1, except for lines 12–14, which

are replaced by the following:

let ζ = 2δ(μd + 1)
for each ζ-red-child u′′ of u′ do

add to E the edges (repR(Su′′), repB(cl(Su′))) and (repB(cl(Su′′)), repR(Su′))
end for

180 P. Bose et al.

Lemma 8. Let r be a point of R, let b be a point of B, and let {Su, Sv} be the
pair in the BWSPD for which r ∈ Su and b ∈ Sv. Assume that u is a red-node.
Let G be the graph computed by Algorithm 2. There is a path in G between r and
repR(Su) whose length is at most (2 + ε/3)|rb|.

Proof. Due to space constraints, the complete proof is omitted. Here, we only
state how the path can be obtained. Let w be the red-leaf such that r ∈ Sw, and
let w = w0, w1, . . . , wk = u be the sequence of red-nodes that are on the path in
T from w to u. Throughout the proof, we will use the variables xi, yi, �i, and
ai, for 0 ≤ i ≤ k, that were introduced in the proof of Lemma 5.

If 0 ≤ k ≤ 2δ(μd + 1), then the path

r → repB(cl(Sw)) → repR(Su)

satisfies the condition in the lemma. Assume that k > 2δ(μd + 1). We define
m = k mod (δ(μd + 1)) and m′ = k−m

δ(μd+1) . We consider the sequence of red-
nodes w = w0, wδ(μd+1)+m, w2δ(μd+1)+m, w3δ(μd+1)+m, . . . , wk = u. The path

r → repB(cl(Sw0)) → repR(Swδ(μd+1)+m
)

→ repB(cl(Sw2δ(μd+1)+m
)) → repR(Sw2δ(μd+1)+m

)
→ repB(cl(Sw3δ(μd+1)+m

)) → repR(Sw3δ(μd+1)+m
)

...
...

→ repB(cl(Swk
)) → repR(Swk

) = repR(Su)

satisfies the condition in the lemma. ��

Lemma 9. Let n = |R∪B|. The graph G computed by Algorithm 2 is a (5+ ε)-
spanner of the complete bipartite graph KRB and the number of edges of this
graph is O(n). The running time of Algorithm 2 is O(n log n).

We have proved the following result.

Theorem 1. Let S be a set of n points in R
d which is partitioned into two subsets

R and B, and let 0 < ε < 1 be a real constant. In O(n log n) time, we can compute
a (5 + ε)-spanner of the complete bipartite graph KRB having O(n) edges.

6 Improving the Stretch Factor

We have shown how to compute a (5+ε)-spanner with O(n) edges of any complete
bipartite graph. In this section, we show that if we are willing to use O(n log n)
edges, the stretch factor can be reduced to 3 + ε. We start by showing that a
stretch factor less than 3 using a subquadratic number of edges is not possible.

Theorem 2. For every real number t < 3, there is no algorithm that, when
given as input two arbitrary disjoint sets R and B of points in R

d, computes a
t-spanner of the complete bipartite graph KRB having less than |R| · |B| edges.

Spanners of Complete k-Partite Geometric Graphs 181

Proof. Let us assume by contradiction that there exists such an algorithm A for
some real number t < 3. Let ε = 3 − t, let B1 and B2 be two balls of diameter ε/6
such that the distance between their centers is 1+ ε/6. Let R be a set of points that
are contained in B1 and let B be a set of points that are contained in B2. Let G be
the graph obtained by running algorithm A on R and B. By our hypothesis, G has
less than |R| · |B| edges. Thus, there exist a point r in R and a point b in B, such
(r, b) is not an edge in G. Since any path in G between r and b contains at least three
edges, the length of the shortest path in G between r and b in G is at least three.
Since |rb| ≤ 1 + ε/3, it follows that the stretch factor of G is at least 3

1+ε/3 , which
is greater than t = 3 − ε, contradicting the existence of A. ��
Theorem 3. Let S be a set of n points in R

d which is partitioned into two
subsets R and B, and let 0 < ε < 1 be a real constant. In O(n log n) time,
we can compute a (3 + ε)-spanner of the complete bipartite graph KRB having
O(n log n) edges.

Proof. Consider the following variant of the WSPD. For every pair {X, Y } in
the standard WSPD, where |X | ≤ |Y |, we replace this pair by the |X | pairs
{{x}, B}, where x ranges over all points of X . Thus, in this new WSPD, each
pair contains at least one singleton set. Callahan and Kosaraju [4] showed that
this new WSPD consists of O(n log n) pairs.

We run Algorithm 2 on R and B, using this new WSPD. Let G be the graph
that is computed by this algorithm. Observe that Lemma 8 still holds for G. In
the proof of Lemma 9 of the upper bound on the stretch factor of G, we apply
Lemma 8 only once. Therefore, the stretch factor of G is at most 3 + ε. ��

References

1. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

2. Bose, P., Carmi, P., Couture, M., Maheshwari, A., Smid, M., Zeh, N.: Geometric
spanners with small chromatic number. In: Proceedings of the 5th Workshop on
Approximation and Online Algorithms. LNCS, Springer, Berlin (2007)

3. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph prob-
lems in higher dimensions. In: Proceedings of the 4th ACM-SIAM Symposium on
Discrete Algorithms, pp. 291–300 (1993)

4. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1),
67–90 (1995)

5. Gudmundsson, J., Smid, M.: On spanners of geometric graphs. In: Arge, L.,
Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 388–399. Springer, Heidelberg
(2006)

6. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York (2007)

7. Salowe, J.S.: Constructing multidimensional spanner graphs. International Journal
of Computational Geometry & Applications 1, 99–107 (1991)

8. Vaidya, P.M.: A sparse graph almost as good as the complete graph on points in K
dimensions. Discrete & Computational Geometry 6, 369–381 (1991)

Minimum Cost Homomorphisms to Reflexive

Digraphs

Arvind Gupta�, Pavol Hell∗, Mehdi Karimi, and Arash Rafiey

School of Computing Science
Simon Fraser University

Burnaby, B.C., Canada, V5A 1S6
{arvind,pavol,mmkarimi,arashr}@cs.sfu.ca

http://cs.sfu.ca

Abstract. For a fixed digraph H , the minimum cost homomorphism
problem, MinHOM(H), asks whether an input digraph G, with given
costs ci(u), u ∈ V (G), i ∈ V (H), and an integer k, admits a homomor-
phism to H of total cost not exceeding k.

Minimum cost homomorphism problems encompass many well studied
optimization problems such as list homomorphism problems, retraction
and precolouring extension problems, chromatic partition optimization,
and applied problems in repair analysis.

For undirected graphs the complexity of the problem, as a function of
the parameter H , is well understood; for digraphs, the situation appears
to be more complex, and only partial results are known. We focus on
the minimum cost homomorphism problem for reflexive digraphs H . It is
known that MinHOM(H) is polynomial if H has a Min-Max ordering. We
prove that for any other reflexive digraph H , the problem MinHOM(H) is
NP-complete. (This was earlier conjectured by Gutin and Kim.) Apart
from undirected graphs, this is the first general class of digraphs for
which such a dichotomy has been proved. Our proof involves a forbidden
induced subgraph characterization of reflexive digraphs with a Min-Max
ordering, and implies a polynomial test for the existence of a Min-Max
ordering in a reflexive digraph H .

Keywords: homomorphism, minimum cost homomorphism, reflexive di-
graph, polynomial time algorithm, NP-completeness, dichotomy.

1 Introduction and Terminology

For digraphs G and H , a mapping f : V (G)→V (H) is a homomorphism of G
to H if uv is an arc of G implies f(u)f(v) is an arc of H . Let H be a fixed
digraph: the homomorphism problem for H , denoted HOM(H), asks whether or
not an input digraph G admits a homomorphism to H . The list homomorphism
problem for H , denoted ListHOM(H), asks whether or not an input digraph G,
with lists Lu ⊆ V (H), u ∈ V (G), admits a homomorphism f to H in which all
f(u) ∈ Lu, u ∈ V (G).
� Supported by an NSERC Discovery Grant.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 182–193, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://cs.sfu.ca

Minimum Cost Homomorphisms to Reflexive Digraphs 183

Suppose G and H are digraphs, and ci(u), u ∈ V (G), i ∈ V (H), are real
costs. The cost of a homomorphism f of G to H is

∑
u∈V (G) cf(u)(u). If H is

fixed, the minimum cost homomorphism problem for H , denoted MinHOM(H),
is the following problem. Given an input digraph G, together with costs ci(u),
u ∈ V (G), i ∈ V (H), and an integer k, decide if G admits a homomorphism to
H of cost not exceeding k.

If the graph H is symmetric (each uv ∈ A(H) implies vu ∈ A(H)), we
may view H as an undirected graph. In this way, we may view the problem
MinHOM(H) as applying also to undirected graphs.

The minimum cost homomorphism problem was introduced, in the context of
undirected graphs, in [16]. There, it was motivated by a real-world problem in
defense logistics; in general, the problem seems to offer a natural and practical
way to model many optimization problems. Special cases include for instance the
list homomorphism problem [19,21] and the optimum cost chromatic partition
problem [18,24,25] (which itself has a number of well-studied special cases and
applications [27,29]).

Our interest is in proving dichotomies: given a class of problems such as
HOM(H), we would like to prove that for each digraph H the problem is
polynomial-time solvable, or NP-complete. This is, for instance, the case for
HOM(H) with undirected graphs H [20]; in that case it is known that HOM(H)
is polynomial time solvable when H is bipartite or has a loop, and NP-complete
otherwise [20]. This is a dichotomy classification, since we specifically classify
the complexity of the problems HOM(H), depending on H .

For undirected graphs H , a dichotomy classification for the problem
MinHOM(H) has been provided in [17]. (For ListHOM(H), consult [6].) Thus,

the minimum cost homomorphism problem for graphs has been handled, and in-
terest shifted to directed graphs. The first studies [13,14,15] focused on irreflex-
ive digraphs (no vertex has a loop), where dichotomies has been obtained for
digraphs H such that U(H) is a complete or complete multipartite graph. More
recently, [11] promoted the study of digraphs with loops allowed; and, in partic-
ular, of reflexive digraphs. Dichotomy has been proved for reflexive digraphs H
such that U(H) is a complete graph, or a complete multipartite graph without
digons [10,12]. In this paper, we give a full dichotomy classification of the com-
plexity of MinHOM(H) for reflexive digraphs; this is the first dichotomy result
for a general class of digraphs - our only restriction is that the digraphs are
reflexive. The dichotomy classification we prove verifies a conjecture of Gutin
and Kim [10]. (Partial results on ListHOM(H) for digraphs can be found in
[3,5,7,8,9,23,32].

Let H be any digraph. An arc xy ∈ A(H) is symmetric if yx ∈ A(H); the
digraph H is symmetric if each arc of H is symmetric. Otherwise, we denote by
S(H) the symmetric subgraph of H , i.e., the undirected graph with V (S(H)) =
V (H) and E(S(H)) = {uv : uv ∈ A(H) and vu ∈ A(H)}. We also denote by
U(H) the underlying graph of H , i.e., the undirected graph with V (U(H)) =
V (H) and E(U(H)) = {uv : uv ∈ A(H) or vu ∈ A(H)}. If H is a reflexive

184 A. Gupta et al.

digraph, then both S(H) and U(H) are reflexive graphs. Finally, we denote by
B(H) the bipartite graph obtained from H as follows. Each vertex v of H gives
rise to two vertices of B(H) - a white vertex v′ and a black vertex v′′; each arc vw
of H gives rise to an edge v′w′′ of B(H). Note that if H is a reflexive digraph, then
all edges v′v′′ are present in B(H). The converse of G is the digraph obtained
from G by reversing the directions of all arcs.

We say that an undirected graph H is a proper interval graph if there is an
inclusion-free family of intervals Iv, v ∈ V (H), such that vw ∈ E(H) if and
only if Iv intersects Iw. Note that by this definition proper interval graphs are
reflexive. Wegner proved [30] that a reflexive graph H is a proper interval graph
if and only if it does not contain an induced cycle Ck, with k ≥ 4, or an induced
claw, net, or tent, as given in Figure 1.

c) Tent

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������������������
��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

a) Claw b) Net

Fig. 1. The claw, the net, and the tent

We say that a bipartite graph H (with a fixed bipartition into white and
black vertices) is a proper interval bigraph if there are two inclusion-free families
of intervals Iv, for all white vertices v, and Jw for all black vertices w, such that
vw ∈ E(H) if and only if Iv intersects Jw. By this definition proper interval
bigraphs are irreflexive and bipartite. A Wegner-like characterization (in terms
of forbidden induced subgraphs) of proper interval bigraphs is given in [22]: H
is a proper interval bigraph if and only if it does not contain an induced cycle
C2k, with k ≥ 3, or an induced biclaw, binet, or bitent, as given in Figure 2.

A linear ordering < of V (H) is a Min-Max ordering if i < j, s < r and
ir, js ∈ A(H) imply that is ∈ A(H) and jr ∈ A(H). For a reflexive digraph H ,
it is easy to see that < is a Min-Max ordering if and only if for any j between
i and k, we have ik ∈ A(H) imply ij, jk ∈ A(H). (Clearly, a Min-Max ordering
has the property, by the definition applied to ik and jj. Conversely, the prop-
erty implies that is ∈ A(H) and jr ∈ A(H) if j and s are between i and r or
conversely - by considering the arcs ir respectively js; in the remaining cases
i < s < r < j or s < i < j < r we apply the property to the two arcs ir and js.)
For a bipartite graph H (with a fixed bipartition into white and black vertices),

Minimum Cost Homomorphisms to Reflexive Digraphs 185

it is easy to see that < is a Min-Max ordering if and only if < restricted to
the white vertices, and < restricted to the black vertices satisfy the condition of
Min-Max orderings, i.e., i < j for white vertices, and s < r for black vertices,
and ir, js ∈ A(H), imply that is ∈ A(H) and jr ∈ A(H)). A bipartite Min-Max
ordering is an ordering < specified just for white and for black vertices.

It is known that if H admits a Min-Max ordering, then the problem MinHO-
M(H) is polynomial time solvable [13], see also [4,26]; however, there are digraphs
with polynomial MinHOM(H) which do not have Min-Max ordering [14]. For
undirected graphs, all H without a Min-Max ordering yield an NP-complete
MinHOM(H) [17]; moreoever, having a Min-Max ordering can be characterized
by simple forbidden induced subgraphs, and recognized in polynomial time [17].
In particular, a reflexive graph admits a Min-Max ordering if and only if it is a
proper interval graph, and a bipartite graph admits a Min-Max ordering if and
only if it is a proper interval bigraph [17].

 c) Bitent

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

����������������������

����������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

x 1

1

x

xx

y

4

yy 3 2

3 2

x
1

x

x

x

x 1

1

x

xx

3

2 4

1

y

y y2 3

4
y

y 2

y 3

3 2

 a) Biclaw b) Binet

�
�
�
�

Fig. 2. The biclaw, the binet, and the bitent

We shall give a combinatorial description of reflexive digraphs with Min-Max
ordering, in terms of forbidden induced subgraphs. Our characterization yields a
polynomial time algorithm for the existence of a Min-Max ordering in a reflexive
digraph. It also allows us to complete a dichotomy classification of MinHOM(H)
for reflexive digraphs H , by showing that all problems MinHOM(H) where H
does not admit a Min-Max ordering are NP-complete. This verifies a conjecture
of Gutin and Kim in [10].

2 Structure and Forbidden Subgraphs

Since both reflexive and bipartite graphs admit a characterization of existence
of Min-Max orderings by forbidden induced subgraphs, our goal will be accom-
plished by proving the following theorem. It also implies a polynomial time
algorithm to test if a reflexive digraph has a Min-Max ordering.

186 A. Gupta et al.

Theorem 1. A reflexive digraph H has a Min-Max ordering if and only if

• S(H) is a proper interval graph, and
• B(H) is a proper interval bigraph, and
• H does not contain an induced subgraph isomorphic to Hi with i = 1, 2, 3, 4,

5, 6.

The digraphs Hi are depicted in Figure 3. The resulting forbidden subgraph
characterization is summarized in the following corollary. Note that forbidden
subgraphs in S(H) directly describe forbidden subgraphs in H , and it is easy to
see that each forbidden induced subgraph in B(H) can also be translated to a
small family of forbidden induced subgraphs in H .

6

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

x 1
x 1

x 1

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

x

xx

x x

xx

x 1 x

xx

2 1 2

34

2

34

x 1

x
x

x

x

x x

x

x

2
3

4 4

2

3

2

3

3 4

H H

H H H

H 1 2 3

4 5

Fig. 3. The obstructions Hi with i = 1, 2, 3, 4, 5, 6

Corollary 1. A reflexive digraph H has a Min-Max ordering if and only if S(H)
does not contain an induced Ck, k ≥ 4, or claw, net, or tent, B(H) does not
contain an induced C2k, k ≥ 3, or biclaw, binet, or bitent, and H does not contain
an induced Hi with i = 1, 2, 3, 4, 5, 6.

We proceed to prove the Theorem.

Proof: Suppose first that < is a Min-Max ordering < of H . It is easily seen that
< is also a Min-Max ordering of S(H), and that < applied separately to the
corresponding white and black vertices of B(H) is a bipartite Min-Max ordering
of B(H). To complete the proof of necessity, we now claim that none of the
digraphs Hi, i = 1, 2, 3, 4, 5, 6 admits a Min-Max ordering. We only show this for
H3, the proofs of the other cases being similar. Suppose that < is a Min-Max
ordering of H3. For the triple x1, x2, x3, we note that x2 must be between x1 and
x3 in the ordering <, as otherwise the arcs between x2 and x1, x3 would imply
that x1x3 ∈ E(S(H)). Without loss of generality assume that x1 < x2 < x3.

Minimum Cost Homomorphisms to Reflexive Digraphs 187

Since x1 and x4 are independent and x1x2 ∈ E(S(H)), we must have x4 > x1.
A similar argument yields x4 < x3; however, x1 < x4 < x3 is impossible, as
x1x3 ∈ A(H) but x1x4 �∈ A(H).

To prove the sufficiency of the three conditions, we shall prove the following
claim.

Lemma 1. If S(H) has a Min-Max ordering and B(H) has a bipartite Min-
Max ordering, then either H has a Min-Max ordering, or H contains an induced
Hi (or its converse) for some i = 1, 2, 3, 4, 5, 6.

Proof: Suppose < is a bipartite Min-Max ordering of B(H). A pair u, v of
vertices of H is proper for < if u′ < v′ if and only if u′′ < v′′ in B(H). We say a
bipartite Min-Max ordering < is proper if all pairs u, v of H are proper for <. If
< is a proper bipartite Min-Max ordering, then we can define a corresponding
ordering ≺ on the vertices of H , where u ≺ v if and only if u′ < v′ (which
happens if and only if u′′ < v′′). It is easy to check that ≺ is now a Min-Max
ordering of H .

Suppose, on the other hand, that the bipartite Min-Max ordering < on B(H)
is not proper. Thus there are vertices v′, u′ such that v′ < u′ and u′′ < v′′.
Suppose there is no vertex s′ such that s′v′′ ∈ E(B(H)), s′u′′ �∈ E(B(H)):
then we can exchange the position of v′′ and u′′ in < and still have a bipartite
Min-Max ordering. Furthermore, this exchange strictly increases the number
of proper pairs in H : any w with u′′ < w′′ < v′′ and u′ < w′ creates a new
improper pair u, w but also creates a new proper pair v, w (and the pair u, v is
also a new proper pair). Analogously, if there is no vertex t′′ such that u′t′′ ∈
E(B(H)), v′t′′ �∈ E(B(H)), we can exchange u′, v′ and increase the number of
proper pairs in H . Suppose we have performed all exchanges until we reached
a bipartite Min-Max ordering < which admits no more exchanges. Then there
are two possibilities: either < is now proper, and H admits a Min-Max ordering
as above, or < is still not proper, and one of the following two cases must occur
(up to symmetry):
Case 1: s′v′′, v′t′′ ∈ E(B(H)) and s′u′′, u′t′′ �∈ E(B(H)).

It is easy to see that since < is a bipartite Min-Max ordering, we must have
u′ < s′ and t′′ < u′′. (Note that means that s′′ �= t′′.) Since u′u′′, v′v′′ ∈
E(B(H)), by the same argument we must have u′v′′, v′u′′ ∈ E(B(H)); and sim-
ilarly we obtain s′t′′ �∈ E(B(H)). If both v′s′′ and t′v′′ are edges of B(H) then
u, v, s, t induce a claw in S(H): indeed in B(H), we have the edges v′t′′, t′v′′, v′u′′,
u′v′′, v′s′′, s′v′′ and the non-edges u′t′′, s′u′′, s′t′′. This is a contradiction, as S(H)
is assumed to have a Min-Max ordering, i.e., be a proper interval graph.

If neither v′s′′ nor t′v′′ is an edge of B(H), then if u′s′′ is an edge of B(H),
then s, v, u induce a copy of H1 in H , and if , t′u′′ is an edge of B(H), then
t, v, u induce a copy of H1. Thus consider the case when u′s′′, t′u′′ �∈ E(B(H)).
If t′s′′ ∈ E(B(H)), then s′, s′′, t′, t′′, v′, v′′ would induce a copy of C6 in B(H),
contrary to our assumption that B(H) has a bipartite Min-Max ordering, i.e.,
is a proper interval bigraph. Thus t′s′′ �∈ E(B(H)) and t, s, v, u induce a copy of
H2 in H .

188 A. Gupta et al.

If only one of v′s′′ or t′v′′ is an edge of B(H), assume first that v′s′′ ∈ E(B(H))
and t′v′′ �∈ E(B(H)). If t′u′′ is an edge of B(H), then t, v, u induce a copy of
H1 in H , and if t′s′′ is an edge of B(H), then t, v, s similarly induce a copy of
H1; thus asume that t′u′′, t′s′′ �∈ E(B(H)). Note that u′s′′ ∈ E(B(H)), else the
vertices u′, u′′, v′, t′′, t′, s′′, s′ would induce a biclaw in B(H), contrary to B(H)
being a proper interval bigraph. It now follows that s, t, u, v induce a copy of H3

in H . If v′s′′ �∈ E(B(H)) and t′v′′ ∈ E(B(H)), the proof is similar, except we
obtain copies of H1 and the converse of H3.
Case 2: s′v′′, u′t′′ ∈ E(B(H)) and s′u′′, v′t′′ �∈ E(B(H)).

We again easily observe that we must have u′ < s′′, v′′ < t′′, and u′v′′, v′u′′ ∈
E(B(H)). If s′′ = t′′ we obtain a copy of H1 induced by u, v, s in H ; hence
we assume that s′′ �= t′′. Suppose first that u′s′′, t′v′′ �∈ E(B(H)). We have
s′ < t′ and t′′ < s′′, and so t′s′′, s′t′′ ∈ A(H), implying that u, v, s, t induce
a copy of H4 in H . Suppose next that both t′v′′, u′s′′ ∈ E(B(H)). If v′s′′ is
not an edge of B(H), vertices u, v, s induce a copy of H1 in H , and if t′u′′ is
not an edge of B(H), vertices u, v, t induce a copy of H1 in H . Thus we have
v′s′′, t′u′′ ∈ E(B(H)). Now we have t′ < s′ and s′′ < t′′, and hence t′s′′, s′t′′ ∈
E(B(H)). This is impossible, since u, v, s, t would induce a copy of C4 in S(H).
Finally, if only one of t′v′′, u′s′′ is an edge of B(H), say u′s′′ ∈ E(B(H)) and
t′v′′ �∈ E(B(H)) (the other case is symmetric), then with the same argument
as above, v′s′′ ∈ E(B(H)), s′t′′ ∈ E(B(H)), and s, t, u, v induce (depending on
which of the pairs t′u′′, t′s′′ are edges of B(H)) one of H1, H5 (or its converse),
or H6 (or its converse). �	

3 Complexity

If H has a Min-Max ordering, then MinHOM(H) is polynomial time solvable [13]
see also [4,26]. Now using our forbidden induced subgraph characterization we can
prove that reflexive digraphs H without a Min-Max ordering yield NP-complete
MinHOM(H) problems. Note that we already know that MinHOM(S(H)) is NP-
complete if S(H) is not a proper interval graph, and MinHOM(B(H)) is NP-
complete if B(H) is not a proper interval bigraph [13]. We begin with a few simple
observations. The first one is easily proved by setting up a natural polynomial time
reduction from MinHOM(B(H)) to MinHOM(H) [11].

Proposition 1. [11] If MinHOM(B(H)) is NP-complete, then MinHOM(H)
is also NP-complete. �	

The next two observations are folklore, and proved by obvious reductions,
cf. [10].

Proposition 2. If MinHOM(S(H)) is NP-complete, then MinHOM(H) is also
NP-complete. �	

Proposition 3. Let H ′ be an induced subgraph of the digraph H. If
MinHOM(H ′) is NP-complete then MinHOM(H) is NP-complete. �	

Minimum Cost Homomorphisms to Reflexive Digraphs 189

We now continue to prove that MinHOM(H) is NP-complete for digraphs H =
H1, . . . , H6. Let I denote the following decision problem: given a graph X and
an integer k, decide whether or not X contains an independent set of k vertices.
This problem has been useful for proving NP-completeness of minimum cost
homomorphism problems for undirected graphs [17], and we use it again for
digraphs.

Proposition 4. [17] The problem I is NP-complete, even when restricted to
three-colourable graphs (with a given three-colouring). �	

We denote by I3 the restriction of I to graphs with a given three-colouring. In
the following Lemmas, we give polynomial time reductions from I3. Note that
all problems MinHOM(H) are in NP. The NP-completeness of MinHOM(H1)
follows from [10], Lemma 2-4.

Lemma 2. The problem MinHOM(H2) is NP-complete.

Proof: We now construct a polynomial time reduction from I3 to MinHOM-
(H2). Let X be a graph whose vertices are partitioned into independent sets
U, V, W , and let k be a given integer. We construct an instance of MinHOM(H2)
as follows: the digraph G is obtained from X by replacing each edge uv of X with
u ∈ U, v ∈ V by an arc uv, replacing each edge uw of X with u ∈ U, w ∈ W by an
arc uw, and replacing each edge vw of X with v ∈ V, w ∈ W by an arc wv. The
costs are defined by (writing for simplicity ci(y) for cxi(y)) c1(u) = 0, c2(u) = 1
for u ∈ U , c4(v) = 0, c2(v) = 1 for v ∈ V , and c3(w) = 0, c2(w) = 1, for w ∈ W .
All other ci(y) = |V (X)|.

We now claim that X has an independent set of size k if and only if G admits
a homomorphism to H2 of cost |V (X)| − k. Let I be an independent set in G.
We can define a mapping f : V (G) → V (H2) as follows:

• f(u) = x1 for u ∈ U ∩ I and f(u) = x2 for u ∈ U − I
• f(v) = x4 for v ∈ V ∩ I and f(v) = x2 for v ∈ V − I
• f(w) = x3 for w ∈ W ∩ I and f(w) = x2 for w ∈ W − I

This is a homomorphism of G to H2 of cost |V (X)| − k.
Let f be a homomorphism of G to H2 of cost |V (X)| − k. If k ≤ 0 then we

are trivially done, so assume that k > 0, which implies that all individual costs
are either zero or one. Let I = {y ∈ V (X) | cf(y)(y) = 0} and note that |I| ≥ k.
It can be seen that I is an independent set in G: for instance when uv ∈ E(G)
with u ∈ I ∩ U and v ∈ I ∩ V , then f(u) = x1 and f(v) = x4, contrary to f
being a homomorphism. (The other possibilities are similar, or easier.) �	

Lemma 3. MinHOM(H3) is NP-complete.

Proof: The reduction from the proof of Lemma 2 also applies here. �	

Lemma 4. MinHOM(H4) is NP-complete.

190 A. Gupta et al.

Proof: We now construct a polynomial time reduction from I3 to MinHOM-
(H4). Let X be a graph whose vertices are partitioned into independent sets
U, V, W , and let k be a given integer. An instance of MinHOM(H4) is formed as
follows: the digraph G is obtained from X by replacing each edge uv of X with
u ∈ U, v ∈ V by an arc vu, replacing each edge uw of X with u ∈ U, w ∈ W by
a directed path umuww, and replacing each edge vw of X with v ∈ V, w ∈ W
by a directed path vmvww. The costs are defined by c1(u) = 1, c3(u) = 0 for
u ∈ U ; c2(v) = 0, c3(v) = 1 for v ∈ V ; c4(w) = 0, c1(w) = 1 for w ∈ W ;
c3(muw) = c4(muw) = |V (X)| for each edge uw of X with u ∈ U, w ∈ W ;
c2(mvw) = c4(mvw) = |V (X)| for each edge vw of X with v ∈ V, w ∈ W ; and
ci(m) = 0 for any other vertex m ∈ V (G) − V (X), and ci(y) = |V (X)| for any
other vertex y ∈ V (X).

We now claim that X has an independent set of size k if and only if G admits
a homomorphism to H4 of cost |V (X)| − k. Let I be an independent set in G.
We can define a mapping f : V (G) → V (H2) as follows:

• f(u) = x3 for u ∈ U ∩ I and f(u) = x1 for u ∈ U − I
• f(v) = x2 for v ∈ V ∩ I and f(v) = x3 for v ∈ V − I
• f(w) = x4 for w ∈ W ∩ I and f(w) = x1 for w ∈ W − I
• f(muw) = x2 when f(u) = x1, and f(muw) = x1 when f(u) = x3 for each

edge uw of X with u ∈ U, w ∈ W
• f(mvw) = x3 when f(w) = x4 and f(mvw) = x1 when f(w) = x1 for each

edge vw of X with v ∈ V, w ∈ W

This is a homomorphism of G to H4 of cost |V (X)| − k.
Let f be a homomorphism of G to H4 of cost |V (X)|−k. We may again assume

that all individual costs are either zero or one. Let I = {y ∈ V (X) | cf(y)(y)
= 0} and note that |I| ≥ k. It can be again seen that I is an independent
set in G, as if uw ∈ E(G), where u ∈ I ∩ U and w ∈ I ∩ V then f(u) = x3

and f(w) = x4, thus, f(muw) = x3 or f(muw) = x4. However, the cost of
homomorphism is greater than |V (X)|, a contradiction. The other cases can
also be treated similarly. �	

Lemma 5. MinHOM(H5) is NP-complete.

Proof: We similarly construct a polynomial time reduction from I3 to Min-
HOM(H5): this time the digraph G is obtained from X by replacing each edge
uv of X with u ∈ U, v ∈ V by an arc uv; replacing each edge uw of X with
u ∈ U, w ∈ W by arcs umuw, wmuw ; and replacing each edge wv of X with
w ∈ W, v ∈ V by a directed path wmwvv. The costs are c1(u) = 1, c2(u) = 0
for u ∈ U ; c2(v) = 1, c4(v) = 0 for v ∈ V ; c3(w) = 1, c1(w) = 0 for w ∈ W ;
c1(muw) = c2(muw) = |V (X)| for each edge uw of X with u ∈ U, w ∈ W ;
c1(mwv) = c4(mwv) = |V (X)| for each edge wv of X with w ∈ W, v ∈ V ;
ci(m) = 0 for any other vertex m ∈ V (G) − V (X), and ci(y) = |V (X)| for any
other vertex y ∈ V (X).

We again claim that X has an independent set of size k if and only if G
admits a homomorphism to H5 of cost |V (X)| − k. Let I be an independent set

Minimum Cost Homomorphisms to Reflexive Digraphs 191

in G. We can define a mapping f : V (G) → V (H2) by f(u) = x2 for u ∈ U ∩ I
and f(u) = x1 for u ∈ U − I; f(v) = x4 for v ∈ V ∩ I and f(v) = x2 for
v ∈ V − I; f(w) = x1 for w ∈ W ∩I and f(w) = x3 for w ∈ W − I; f(muw) = x3

when f(u) = x2, and f(muw) = x4 when f(u) = x1, for each edge uw of X
with u ∈ U, w ∈ W ; f(mwv) = x3 when f(w) = x3 and f(mwv) = x2 when
f(w) = x1, for each edge wv of X with w ∈ W, v ∈ V . This is a homomorphism
of G to H5 of cost |V (X)| − k.

Let f be a homomorphism of G to H5 of cost |V (X)| − k. Assuming again
that all individual costs are either zero or one, let I = {y ∈ V (X) | cf(y)(y) = 0}
and note that |I| ≥ k. It can be seen that I is an independent set in G, as if
uw ∈ E(G), where u ∈ I ∩U and w ∈ I ∩V then f(u) = x2 and f(w) = x1, thus,
f(muw) = x1 or f(muw) = x2. However, the cost of homomorphism is greater
than |V (X)|, a contradiction. The other cases can also be treated similarly. �	

Lemma 6. MinHOM(H6) is NP-complete.

Proof: The proof is again similar, letting the digraph G be obtained from X
by replacing each edge uv of X with u ∈ U, v ∈ V by an arc uv; replacing each
edge uw of X with u ∈ U, w ∈ W by a directed path umuww; and replacing each
edge vw of X with v ∈ V, w ∈ W by an arc wv. The costs are defined by c1(u) =
0, c2(u) = 1 for u ∈ U ; c3(v) = 0, c1(v) = 1 for v ∈ V ; c4(w) = 0, c3(w) = 1;
c1(muw) = c4(muw) = |V (X)| for each edge uw of X with u ∈ U, w ∈ W ; and
letting ci(m) = 0 for any other vertex m ∈ V (G) − V (X), and ci(y) = |V (X)|
for any other vertex y ∈ V (X).

It can again be seen that X has an independent set of size k if and only if G
admits a homomorphism to H6 of cost |V (X)| − k: letting I be an independent
set in G, we define a mapping f : V (G) → V (H2) by f(u) = x1 for u ∈ U ∩I and
f(u) = x2 for u ∈ U − I; f(v) = x3 for v ∈ V ∩ I and f(v) = x1 for v ∈ V − I;
f(w) = x4 for w ∈ W ∩ I and f(w) = x3 for w ∈ W − I; f(muw) = x3 when
f(u) = x2 and f(muw) = x2 when f(u) = x1 for each edge uw, u ∈ U, w ∈ W .
This is a homomorphism of G to H6 of cost |V (X)| − k.

Let f be a homomorphism of G to H6 of cost |V (X)| − k and assume again
that all individual costs are either zero or one. Let I = {y ∈ V (X) | cf(y)(y) = 0}
and note that |I| ≥ k. It can again be seen that I is an independent set in G. �	
We have proved the following result, conjectured in [10].

Theorem 2. Let H be a reflexive digraph. If H has a Min-Max ordering, then
MinHOM(H) is polynomial time solvable; otherwise, it is NP-complete.

References

1. Alekseev, V.E., Lozin, V.V.: Independent sets of maximum weight in (p, q)-
colorable graphs. Discrete Mathematics 265, 351–356 (2003)

2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer, London (2000)

3. Brewster, R.C., Hell, P.: Homomorphisms to powers of digraphs. Discrete Mathe-
matics 244, 31–41 (2002)

192 A. Gupta et al.

4. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: A maximal tractable class of soft
constraints. J. Artif. Intell. Res. 22, 1–22 (2004)

5. Feder, T.: Homomorphisms to oriented cycles and k-partite satisfiability. SIAM J.
Discrete Math 14, 471–480 (2001)

6. Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomor-
phisms, J. Graph Theory 42, 61–80 (2003)

7. Feder, T., Hell, P., Tucker-Nally, K.: Digraph matrix partitions and trigraph ho-
momorphisms. Discrete Applied Mathematics 154, 2458–2469 (2006)

8. Feder, T., Hell, P., Huang, J.: List homomorphisms to reflexive digraphs (manu-
script, 2005)

9. Feder, T.: Classification of Homomorphisms to Oriented Cycles and k-Partite Sat-
isfiability. SIAM Journal on Discrete Mathematics 14, 471–480 (2001)

10. Gutin, G., Kim, E.J.: Complexity of the minimum cost homomorphism problem
for semicomplete digraphs with possible loops (submitted)

11. Gutin, G., Kim, E.J.: Introduction to the minimum cost homomorphism problem
for directed and undirected graphs. Lecture Notes of the Ramanujan Math. Society
(to appear)

12. Gutin, G., Kim, E.J.: On the complexity of the minimum cost homomorphism
problem for reflexive multipartite tournaments (submitted)

13. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost and List Homomorphisms to Semi-
complete Digraphs. Discrete Appl. Math. 154, 890–897 (2006)

14. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Semicomplete
Multipartite Digraphs. Discrete Applied Math. (submitted)

15. Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Semicomplete
Bipartite Digraphs (submitted)

16. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost
homomorphisms of graphs. Discrete Appl. Math. 154, 881–889 (2006)

17. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph
homomorphisms. European J. Combin. (to appear)

18. Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Minimizing average completion
of dedicated tasks and interval graphs. In: Goemans, M.X., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129,
pp. 114–126. Springer, Heidelberg (2001)

19. Hell, P.: Algorithmic aspects of graph homomorphisms. In: Survey in Combina-
torics 2003, London Math. Soc. Lecture Note Series, vol. 307, pp. 239–276. Cam-
bridge University Press, Cambridge (2003)

20. Hell, P., Nešetřil, J.: On the complexity of H-colouring. J. Combin. Theory B 48,
92–110 (1990)

21. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

22. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,
313–327 (2004)

23. Hell, P., Nešetřil, J., Zhu, X.: Complexity of Tree Homomorphisms. Discrete Ap-
plied Mathematics 70, 23–36 (1996)

24. Jansen, K.: Approximation results for the optimum cost chromatic partition prob-
lem. J. Algorithms 34, 54–89 (2000)

25. Jiang, T., West, D.B.: Coloring of trees with minimum sum of colors. J. Graph
Theory 32, 354–358 (1999)

26. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.: The approximability of con-
straint satisfaction problems. SIAM Journal on Computing 30, 1863–1920 (2000)

Minimum Cost Homomorphisms to Reflexive Digraphs 193

27. Kroon, L.G., Sen, A., Deng, H., Roy, A.: The optimal cost chromatic partition
problem for trees and interval graphs. In: D’Amore, F., Marchetti-Spaccamela, A.,
Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 279–292. Springer, Heidel-
berg (1997)

28. Lovász, L.: Three short proofs in graph theory. J. Combin. Theory, Ser. B 19,
269–271 (1975)

29. Supowit, K.: Finding a maximum planar subset of a set of nets in a channel. IEEE
Trans. Computer-Aided Design 6, 93–94 (1987)

30. Wegner, G.: Eigenschaften der nerven homologische-einfactor familien in Rn, Ph.D.
Thesis, Universität Gottigen, Gottigen, Germany (1967)

31. West, D.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996)
32. Zhou, H.: Characterization of the homomorphic preimages of certain oriented cy-

cles. SIAM Journal on Discrete Mathematics 6, 87–99 (1993)

On the Complexity of Reconstructing H-free

Graphs from Their Star Systems

Fedor V. Fomin1, Jan Kratochv́ıl2,�, Daniel Lokshtanov1, Federico Mancini1,
and Jan Arne Telle1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{fomin, daniello, federico, telle}@ii.uib.no.

2 Dept. of Applied Mathematics and Institute for Theoretical Computer Science,
Charles University, Praha, Czech Republic

Abstract. In the Star System problem we are given a set system and
asked whether it is realizable by the multi-set of closed neighborhoods of
some graph, i.e., given subsets S1, S2, · · · , Sn of an n-element set V does
there exist a graph G = (V, E) with {N [v] : v ∈ V } = {S1, S2, · · · , Sn}?
For a fixed graph H the H-free Star System problem is a variant of
the Star System problem where it is asked whether a given set system
is realizable by closed neighborhoods of a graph containing no H as an
induced subgraph. We study the computational complexity of the H-free
Star System problem. We prove that when H is a path or a cycle on at
most 4 vertices the problem is polynomial time solvable. In complement
to this result, we show that if H belongs to a certain large class of
graphs the H-free Star System problem is NP-complete. In particular,
the problem is NP-complete when H is either a cycle or a path on at
least 5 vertices. This yields a complete dichotomy for paths and cycles.

1 Introduction

The closed neighborhood of a vertex in a graph is sometimes called the “star”
of the vertex. The “star system” of a graph is then the multi-set of closed neigh-
borhoods of all the vertices of the graph and the Star System problem is the
problem of deciding whether a given system of sets is a star system of some
graph. The Star System problem is a natural combinatorial problem that fits
into a broader class of realizability problems. In a realizability problem we are
given a list P of invariants or properties (like a sequence of vertex degrees, set
of cliques, number of colorings, etc) and the question is whether the given list is
graphical, i.e., corresponds to the list of parameters of some graph. One of the
well studied problems of realizability is the case when P is a degree sequence.
This can be seen as a modification of the Star System problem where, instead
of stars, the list P contains only the sizes of the stars. In this case, graphic
sequences can be characterized by the Erdős-Gallai Theorem [7].

The Star System problem (also known as the Closed Neighborhood Real-
ization problem) is equivalent to a number of other interesting problems. For
� Supported by Czech research grant 1M0545.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 194–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Complexity of Reconstructing H-free Graphs 195

example, it is equivalent to the question of whether a given 0 − 1 matrix A is
symmetrizable, i.e., whether by permuting rows (or columns) A can be turned
into a symmetric matrix with all diagonal entries equal to 1. We refer to the
recent survey of Boros et al. [6] for further equivalent problems related to the
Matrix Symmetrization and Star System problems.

The question of the computational complexity of the Star System problem was
first posed by Gert Sabidussi and Vera Sós at a conference in the mid-70s [8] (and
since this appears to be the oldest reference to the problem, we choose to use the
Star System terminology). At the same conference Babai observed that the Star
System problem was at least as hard as the Graph Isomorphism problem. There
are strong similarities with Graph Isomorphism, e.g., the Star System problem is
equivalent to deciding if a given bipartite graph allows an automorphism of order
2 such that each vertex is adjacent to its image. In view of these connections
to Graph Isomorphism the NP-hardness of the Star System problem came as
a surprise. The proof of this fact was achieved in two steps. First, a related
effort of Lubiw [11] showed that deciding whether an arbitrary graph has an
automorphism of order 2 is NP-complete. Then Lalonde [10] showed that the
Star System problem was NP-complete by a reduction from Lubiw’s problem.
This reduction came as a small surprise considering that, after Lubiw’s proof,
Babai had written that between Lubiw’s problem and the Star System problem
he “did not believe there was a deeper relationship” [3].

The result of Lalonde was rediscovered by Aigner and Triesch [1,2] who proved
it in a stronger form, and indeed discovered a subproblem which is equivalent to
Graph Isomorphism. It is easy to see that the problems of reconstructing graphs
from their closed neighborhood hypergraphs and from their open neighborhood
hypergraphs are polynomially equivalent. It is more convenient however, to de-
scribe the results of Aigner and Triesch in the language of open neighborhoods.
They proved that deciding if a set system is the open neighborhood hypergraph
of a bipartite graph is Graph Isomorphism-complete, while deciding if the open
neighborhood hypergraph of a bipartite graph can be realized by a nonisomor-
phic (and non-bipartite) graph becomes again NP-complete.

Since bipartite graphs (and their complements) are hereditary classes of graphs,
it is natural to pay closer attention to restriction of the Star System problem to
classes of graphs defined by forbidden induced subgraphs. The problem we inves-
tigate in this paper is the following variation of the Star System problem, for a
fixed graph H :

H-free Star System Problem
Input: A set system S over a ground set V
Question: Does there exist an H-free graph G = (V, E) such that S is the star
system of G?

Our main result is a complete dichotomy in the case when H is either a cycle
Ck, or a path Pk on k vertices. We prove that the H-free Star System problem
for H ∈ {Ck, Pk} is polynomial time solvable when k ≤ 4 (Section 3) and NP-
complete when k > 4 (Section 4). Our NP-completeness result for paths and
cycles follows from a more general result, which shows that there exists a much

196 F.V. Fomin et al.

larger family of graphs for which if H belongs to it then the H-free Star System
problem is NP-complete.

2 Preliminaries

We use standard graph notation with G = (V, E) being a simple loopless undi-
rected graph with vertex set V and edge set E. We denote by N [v] and N(v)
the closed and open neighborhoods of a vertex v, respectively, and by G the
complement of a graph G having an edge uv iff u �= v and uv �∈ E(G). We also
call N [v] the star of v and say that v is the center of N [v]. An automorphism
of a graph G = (V, E) is an isomorphism f : V → V of the graph to itself,
and it has order 2 if for every vertex x we have f(f(x)) = x, i.e., the image of
its image is itself. For a graph G = (V, E) we define the |V |-element multi-set
Stars(G) = {N [v] : v ∈ V }. For a fixed graph H we say that a graph G is H-free
if G does not contain an induced subgraph isomorphic to H .

3 Forbidding Short Paths and Cycles

3.1 Forbidding Short Paths

In this section we show that the Pk-free Star System Problem is solvable in
polynomial time for k ≤ 4. For k ≤ 2 the Pk-free System Problem is trivially
polynomial time solvable. For k = 3 the realizable graph is a disjoint union of
cliques, and in this case the problem is again trivial. The proof that the P4-free
Star System can be solved in polynomial time occupies the remaining part of
this subsection.

The graphs without induced P4 are called cographs. We exploit the following
characterization of cographs.

Proposition 1 ([5]). A graph G is a cograph if and only if every non-trivial
induced subgraph of G contains at least one pair of vertices x and y, such that
either N [x] = N [y] or N(x) = N(y).

For a set system S over a ground set V , we say that (x, y) ∈ V 2 is a closed pair
(of S) if for every S ∈ S we have that x ∈ S if and only if y ∈ S. Also, we define
(x, y) to be an open pair (of S) if there is exactly one set Sx ∈ S containing x and
not y, exactly one set Sy ∈ S containing y and not x, and Sx \ {x} = Sy \ {y}.

We will show that a given set system S is the star system of a cograph G
if and only if it can be reduced to one set on a single element by sequentially
contracting closed and open pairs. We start by showing that, if S is the star
system of a cograph, then S contains a closed or an open pair.

Lemma 1. If S = Stars(G) for a nontrivial cograph G = (V, E) then S has
either a closed or an open pair.

Proof. First of all recall that, since S = Stars(G), for every v ∈ V , we have that
N [v] = Sv ∈ S. By Proposition 1, G has a pair of vertices x and y such that either

On the Complexity of Reconstructing H-free Graphs 197

N [x] = N [y] or N(x) = N(y). In the first case (x, y) is a closed pair in S, because
for every z ∈ V we have that x ∈ N [z] if and only if y ∈ N [z]. Hence every set of S
contains either both x and y, or none of them. In the latter case, N [x] contains x
and not y, N [y] contains y and not x, and N [x]\{x} = N(x) = N(y) = N [y]\{y}.
Thus for every z ∈ V \ {x, y} it follows that x ∈ N [z] if and only if y ∈ N [z].
This means that (x, y) is an open pair because every set in S contains either
both x and y, or none of them, and there are exactly two sets, Sx and Sy, such
that Sx \ {x} = Sy \ {y}.

In the rest of the subsection, we will show how to contract closed and open
pairs, such that the resulting star system represents a cograph if and only if it
did before the contraction. We start with the closed pairs.

Lemma 2. Given a set system S on V , let R be an inclusion maximal subset
of V containing no closed pairs, and let SR be the set {Z | ∃S ∈ S such that
S ∩ R = Z}. Then there is a cograph G = (V, E) with Stars(G) = S if and only
if there is a cograph G′ with Stars(G′) = SR.

Proof. Let us assume that there is a cograph G with Stars(G) = S and let
G[R] = G′. Then we claim that Stars(G′) = SR. First, note that for every
v ∈ R, NG′ [v] is in SR. Additionally, consider S ∈ SR. Let x be a vertex of
G such that S = N [x] ∩ R. By maximality of R there is x′ ∈ R such that
N [x′] = N [x], thus NG′ [x′] = N [x] ∩ R = S. Hence, for every S ∈ SR there is
a v in R such that S = NG′ [v]. Finally, observe that by construction SR has no
duplicate sets, and that Stars(G′) also has no duplicate sets because a duplicate
set would imply that R contains a closed pair, contradicting that R has none.
Together, this implies that Stars(G′) = SR.

On the other hand, suppose that there is a cograph G′ with Stars(G′) = SR.
For every element v in V there is a unique x in R such that (v, x) is a closed
pair. Let f : V → R be the mapping such that for every vertex v ∈ V , the
pair (v, f(v)) is a closed pair. Also, let f−1 be the inverse image of f . That
is, for a vertex x ∈ R, we have that f−1(x) = {v ∈ V | f(v) = x}. Finally,
let G = (V, {(u, v) : f(u) = f(v) ∨ (f(u), f(v)) ∈ E(G′)}). We claim that
Stars(G) = S and that G is a cograph.

For each v ∈ V , N [v] =
⋃

x∈NG′ [f(v)] f
−1(x) by the definition of G and

NG′ [f(v)] ∈ SR. Furthermore, for every set S ∈ SR, we have that
⋃

x∈S f−1(x) ∈
S by definition of SR. Thus, since for every v ∈ V there exists S ∈ SR such that
S = NG′ [f(v)], we can conclude that N [v] is in S. On the other hand, for every
S ∈ S, there exists S′ in SR such that S =

⋃
x∈S′ f−1(x). Let u be the element of

R such that NG′ [u] = S′. Then S =
⋃

x∈NG′ [u] f
−1(x) = N [u]. This means that

S ∈ Stars(G). Finally, we know that for each vertex u ∈ R, there are |f−1(u)|
copies of the star

⋃
x∈NG′ [u] f

−1(x) = N [u] in S. Also, we know that in V there
are |f−1(u)| vertices with the same closed neighborhood N [u] for each u ∈ R.
This proves that Stars(G) = S.

198 F.V. Fomin et al.

We will now prove that G is also a cograph, by showing that it does not
contain an induced P4. Observe first that G[R] = G′ is a cograph by definition.
For the sake of contradiction, let us assume that there is a set P ⊆ V of 4
vertices that induces a P4 in G. If there is a pair u and v of distinct vertices in P
such that f(u) = f(v) then N [u] = N [v], and specifically u and v have the same
neighbourhood in P which is impossible because no pair of distinct vertices of a
P4 have the same neighbourhood. If no such pair exists, then P ′ = {f(x) : x ∈ P}
must induce a P4 in G′ as well. This leads to a contradiction, concluding the
proof of the lemma.

Before we show how to contract the open pairs, we give a lemma to resolve some
ambiguity about open pairs and cographs. Notice, in fact, that given a cograph G
and the corresponding star system, there might be an open pair (x, y) such that
NG(x) �= NG(y) (see Fig. 1). However, we will prove that given any open pair,
we can always find a cograph G′ isomorphic to G, such that NG′(x) = NG′(y).

a

b c

d e

a

b e

d c

a
b c

d e

b a
c

d

c
ae

b

d
e

ba

e

ca

d

S1 S3 S4 S5S2

G G’

Fig. 1. If we consider the cograph G on the left, we can see that the vertices b and c
form an open pair in the corresponding star system (the stars S4 and S5 satisfy the
conditions), even though their open neighborhoods in the graph are different. However
it is possible to find a cograph G′ relabelling the vertices of G, such that: the two
graphs have the same star system; b and c form an open pair; and NG′ (b) = NG′(c).

Lemma 3. If Stars(G) = S for a cograph G = (V, E) and (x, y) is an open
pair of S, there is a cograph G′ = (V ′, E′) such that Stars(G′) = S, xy /∈ E′

and NG′(x) = NG′(y).

Proof. If xy /∈ E, then N [x] contains x and not y, N [y] contains y and not x, so
by uniqueness of Sx and Sy we have that N(x) = N(y). By letting G′ = G we
are done. Now, let us assume xy ∈ E. Then there are vertices x′ and y′ such that
N [x′] contains x and not y and N [y′] contains y and not x. Clearly, x, y, x′ and
y′ must be distinct vertices. Following this, if x′y′ /∈ E, then {x′, x, y, y′} induces
a P4 in G. Thus, as G is a cograph, x′y′ ∈ E. This means that C = {x′, x, y, y′}
induces a C4 in G.

On the Complexity of Reconstructing H-free Graphs 199

We now proceed to show that C is a module of G, that is, for any z ∈ V \ C,
either N [z] ∩ C = C or N [z] ∩ C = ∅. Observe that as x and y are an open pair,
N [x′] \ {x} = N [y′] \ {y} so x′ ∈ N [z] if and only if y′ ∈ N [z]. As x′ is the only
vertex such that N [x′] contains x but not y and y′ is the only vertex such that
N [y′] contains y and not x it follows that x ∈ N [z] if and only if y ∈ N [z]. For
the sake of contradiction, let us suppose that x ∈ N [z] and y′ /∈ N [z]. Then,
by the discussion above x′ /∈ N [z] so {z, x, x′, y′} induces P4 in G, contradicting
that G is a cograph. Let us assume now that x /∈ N [z] and y′ ∈ N [z]. Similarly
to the previous case, y /∈ N [z] so {z, y′, y, x} induces a P4 in G, again giving a
contradiction. From this it follows that x ∈ N [z] if and only if y′ ∈ N [z]. Together
with the equivalences above this proves that each of the vertices z, y′, x′ and x,
is in N [z] for a given z, if and only if the other three are as well. This means
that C is a module of G.

We build G′ from G by simply switching the labels of y and y′. We prove that
G′ meets the requirements of the statement of the Lemma. Clearly (x, y) /∈ E(G′)
and NG′(x) = NG′(y). Furthermore NG′ [z] = N [z] for any z ∈ V \ C. It remains
to show that {N [x], N [y], N [x′], N [y′]} = {NG′[x], NG′ [y], NG′ [x′], NG′ [y′]}. But
N [x] = NG′ [x′], N [x′] = NG′ [x], N [y] = NG′ [y′] and N [y′] = NG′ [y]. Thus
Stars(G′) = Stars(G) = S which concludes the proof.

We are now ready to give the contraction rule for open pairs.

Lemma 4. Let (x, y) be an open pair of S, and let S′ be the set system obtained
by deleting the unique star of S containing x but not y, and removing x from
all the other stars of S. There is a cograph G with Stars(G) = S if and only if
there is a cograph F with Stars(F) = S′.

Proof. Suppose there is a cograph G with Stars(G) = S. By Lemma 3, there
exists a cograph G′ for which Stars(G′) = S and the only star in S containg
x but not y, is exactly NG′ [x]. This means that removing the star representing
NG′ [x] from S and x from all the other sets of S, we get exactly the star system
of F = G′ \ {x} which clearly is a cograph.

Suppose now that there is a cograph F with S′ = Stars(F). We build G from
F by adding the vertex x and making x adjacent to the open neighbourhood
of y. Clearly Stars(G) = S. We prove that G is a cograph by obtaining a
contradiction. Observe that both G \ {x} and G \ {y} are isomorphic to F ,
meaning that they cannot contain an induced P4. Thus, if there is a P4 in G,
it contains both x and y. However x and y have the same open neighbourhood,
which leads to a contradiction because no pair of distinct vertices of a P4 has
the same open neighbourhood.

We are now in the position to prove the main result of this subsection.

Theorem 1. The P4-free Star System Problem is solvable in O(n4) time.

Proof. To decide whether a given set system S is a star system of a P4-free graph,
we use the following algorithm. If S has an open pair, apply Lemma 4 to create
a new and smaller set system S′ that is a star system of a cograph if and only if

200 F.V. Fomin et al.

S is. Apply the algorithm recursively on S′. If S has a closed pair, apply Lemma
2 to create a new and smaller set system SR that is a star system of a cograph
if and only if S is. Apply the algorithm recursively on SR. If S contains a single
set on a single element, answer ”yes“. If neither of the above cases apply, answer
”no“. Correctness follows directly from Lemma 1. Let us argue for the runtime.
We store our set system so that we can insert, delete and check membership
in a set in constant time. At every step of the algorithm, if we do not answer
”no“, we reduce the set system by at least one element by applying Lemma 4
or Lemma 2. Hence the algorithm can have at most n main steps. To check
whether a given pair is an open pair or a closed pair takes O(n) time, therefore
finding all closed, or all open pairs takes O(n3) time. When we apply Lemma 4
to reduce the graph we need to remove a set and an element from all other sets.
This can be done in O(n) time. When Lemma 2 is applied, we need to delete at
most n elements from all sets, and then remove all duplicate sets. Deleting the
elements takes O(n2) time, while finding and deleting all duplicates takes O(n3)
time. Thus we can conclude that the algorithm terminates in O(n4) time.

3.2 Forbidding C3 and C4

In this subsection we show that the C3-free and C4-free Star System Problems
are solvable in polynomial time.

Theorem 2. The C3-free Star System problem is solvable in O(n3) time.

Proof. Let S be a set system on a ground set V . The crucial observation is that
if S is a star system of a C3-free graph G = (V, E), then for every edge uv ∈ E
there are exactly two sets containing u and v. In fact, since uv ∈ E, we have that
u and v should be in at least two stars, one of which is centered in u and one
centered in v. Let Su and Sv be these stars. If there is a third star S containing
u and v, then the center of this star, x �= u, v is adjacent to u and v, and thus
xuv forms a C3 in G, which is a contradiction.

Let us assume that the system S is connected, i.e., for every two elements
u and v there is a sequence of elements u = u1, u2, . . . , uk = v such that for
every i ∈ {1, . . . , k − 1} there is a set S ∈ S containing ui and ui+1. (If S is not
connected, then we apply our arguments for each connected component of S.)

Assume that we have correctly guessed the star Sv ∈ S of a vertex v in some
C3-free graph G with Stars(G) = S. Then each x ∈ Sv, x �= v, is adjacent to v
in G. Thus there is a unique star Sx �= Sv containing both v and x, and vertex
x should be the center of Sx. Now every vertex y from Sx should have a unique
star containing x and y, and so on. Since S is connected, we thus have that
after guessing the star for the first vertex v we can uniquely assign stars to the
remaining vertices. There are at most n guesses to be made for the first vertex
and we can in O(n2) time check the correctness of the guess, i.e., check if the
star system of the constructed graph corresponds to S, to prove the theorem.

Theorem 3. The C4-free Star System Problem is solvable in O(n4) time.

On the Complexity of Reconstructing H-free Graphs 201

Proof. The proof is based on the following observation. Let G = (V, E) be a C4-
free graph and let x, y ∈ V . Let S1, S2, . . . , St be the set of stars of G containing
both x and y. Then

2 ≤ |
t⋂

i=1

Si| ≤ t if xy ∈ E (1)

t = 0 or |
t⋂

i=1

Si| ≥ t + 2 if xy �∈ E (2)

In fact, if xy ∈ E, then x and y have t − 2 common neighbors. Every vertex
v ∈ ∩t

i=1Si \ {x, y} is adjacent to x and y, thus v is the center of the star Si for
some i ∈ {1, . . . , t} and (1) follows.

If xy �∈ E and t > 0, then x and y have t neighbors in common. Moreover,
because G is C4-free, these neighbors form a clique in G. Thus ∩t

i=1Si contains
all these t vertices plus the vertices x and y which yields (2).

Given a set system S on ground set V , the algorithm checking if S is a star
system of some C4-free graph is simple. We construct a graph G = (V, E) with
xy ∈ E if and only if the sets of S containing both x and y satisfy (1). Finally,
we check that Stars(G) = S and that G is C4-free. If this is the case then the
answer is yes, otherwise the answer is no.

4 Forbidding Long Paths and Cycles

In this section we show that there exists an infinite family of graphs H for which
the H-free Star System problem is NP-complete. In particular both Pk and Ck,
with k > 4, belong to it.

Definition 1. For an arbitrary graph H, we define B(H) to be its bipartite
neighborhood graph, i.e., the bipartite graph with both color classes having |V (H)|
vertices labelled by V (H) and having an edge between a vertex labelled u in one
color class and a vertex labelled v in the other color class iff uv ∈ E(H).

For example, for the cycle on 5 vertices C5, we have C5 = C5 and B(C5) = C10.
Our main NP-completeness result is that the H-free Star System problem is
NP-complete whenever B(H) has a cycle or two vertices of degree larger than
two in the same connected component. For a bipartite graph G = (V, E) with
color classes V1, V2 we say that an automorphism f : V → V is side-switching if
f(V1) = V2 and f(V2) = V1. Consider the following two problems.

AUT-BIP-2SS
Input: A bipartite graph G
Question: Does G have an automorphism of order 2 that is side-switching?

AUT-BIP-2SS-NA
Input: A bipartite graph G

202 F.V. Fomin et al.

Question: Does G have an automorphism of order 2 that is side-switching where
every vertex and its image are non-adjacent?

Lalonde [10] has shown that the AUT-BIP-2SS problem is NP-complete. To-
gether with Sabidussi he also reduced AUT-BIP-2SS to AUT-BIP-2SS-NA. The
proof of our main NP-completeness result is a (nontrivial) refinement of the re-
duction of Lalonde-Sabidussi, which will ensure that AUT-BIP-2SS-NA remains
NP-complete for various restricted classes of bipartite graphs.

To relate NP completeness of AUT-BIP-2SS-NA to the Star System Problem,
we use the following lemma.

Lemma 5. If AUT-BIP-2SS-NA is NP-complete on bipartite B(H)-free graphs,
then the H-free Star System Problem is NP-complete.

Proof. We reduce the first problem, which takes as input a bipartite B(H)-free
graph F , to the second, which takes as input a set system S. We may assume
the two partition sides of F are of equal size, since otherwise an automorphism
switching the two sides cannot exist. Let the vertices of one color class of F be
{v1, v2, · · · , vn} and of the other {w1, w2, · · · , wn}. The set system we construct
will be S = {S1, S2, · · · , Sn} where Si = {wj : viwj �∈ E(F)}, i.e., the non-
neighbors of vi on the other side.

As already noted by Babai [3], it is not hard to see that F is a Yes-instance of
AUT-BIP-2SS-NA iff there exists a graph G with Stars(G) = S. Let us give the
argument. The equivalence of those two problems is most naturally proved by
noting that they are both equivalent to the question if the bipartite complement
CF of F , with V (CF) = V (F) and E(CF) = {viwj : viwj �∈ E(F)}, has an
automorphism of order 2 such that every vertex is adjacent to its image, and
thus also side-switching.

It remains to show that if Stars(G) = S then G must be H-free. First note
that if Stars(G) = S, then its bipartite closed neighborhood graph C(G) -
constructed by adding to its bipartite neighborhood graph B(G) all |V (H)|
edges between pairs of vertices having the same label - is isomorphic to CF .
We therefore have that B(G) = F , in other words, the bipartite neighborhood
graph of the complement of G is isomorphic to F . Moreover, if H is an induced
subgraph of G then clearly B(H) is an induced subgraph of B(G) = F and thus
since F is B(H)-free we must have G being H-free.

Definition 2. Let Dp be the class of bipartite graphs of girth larger than p where
any two vertices of degree three or more have distance at least p.

Theorem 4. For any integer p the problem AUT-BIP-2SS-NA is NP-complete
even when restricted to graphs in Dp.

Proof. We reduce from the NP-complete AUT-BIP-2SS problem and adapt the
construction given by Lalonde and Sabidussi [10] for our purposes.

Given a bipartite graph G = (V, E) with color classes A and B we describe how
to construct H ∈ Dp with the property that G is a yes-instance of AUT-BIP-2SS
iff H is a yes-instance of AUT-BIP-2SS-NA. Note firstly that we can assume G

On the Complexity of Reconstructing H-free Graphs 203

has no vertex v of degree 1 since if we remove each such v (simultaneously) and
add a cycle of length 2k, where k is greater than the maximum cycle length in G,
attached to the unique neighbor of v, then G has a side-switching automorphism
of order 2 if and only if the new graph has one.

Let p′ be the smallest even integer at least as large as p. Let H be the graph
obtained by replacing each edge of G by two paths of length p′ + 1. Note that
the inner vertices of these paths are then the only vertices of degree 2 in H .
Moreover, we have H ∈ Dp and the two color classes of H respect A and B.

If f : V (G) → V (G) is an order-two side-switching automorphism of G, then
define g : V (H) → V (H) as follows:

– g(v) = f(v) for every v ∈ A ∪ B,
– for the newly added vertices of degree 2, let u, uv1

1, uv1
2 , . . . , uv1

p′ , v and
u, uv2

1, uv2
2 , . . . , uv2

p′ , v be the two paths joining u and v, and let x, xy1
1 , xy1

2 ,

. . . , xy1
p′ , y and x, xy2

1 , xy2
2 , . . . , xy2

p′ , y be the two paths joining x = f(v) and
y = f(u). Then set g(uvi

j) = xy3−i
p′+1−j for i = 1, 2 and j = 1, 2, . . . , p′.

It is straightforward to see that g is an order-two side-switching automorphism.
The only place where ug(u) might be an edge would be in the middle of a path
u, uv1

1, uv1
2 , . . . , uv1

p′ , v when f(u) = v, but note that the vertices of one path are
mapped onto vertices of the other one and xg(x) �∈ E(H) is fulfilled.

On the other hand, suppose g : V (H) → V (H) is an order-two side-switching
automorphism of H . Since the original vertices of G have degrees greater than
2 in H , the restriction of g to V (G) is a correctly defined mapping g : V (G) →
V (G). Since the paths of length p′ + 1 uniquely correspond to edges of G, this
restriction of g is an automorphism of G. It is obviously of order 2, and since
the sides of H respect the sides of G, it is side-switching. (Note that we even did
not need to assume that ug(u) �∈ E(H) for this implication.)

Definition 3. Let H be a graph. We define a function f(H) from graphs to
integers and infinity. If B(H) is acyclic with no connected component having
two vertices of degree larger than two then let f(H) = ∞. Otherwise, let f(H)
be the smallest of i) the length of the smallest induced cycle of B(H), and ii) the
length of the shortest path between any two vertices of degree larger than two in
B(H).

For example, for the cycle on 5 vertices C5, we have B(C5) = C10 and thus
f(C5) = 10. Note that if f(H) �= ∞ then Df(H) is contained in the class of bi-
partite B(H)-free graphs. We therefore have the following Corollary of Lemma 5
and Theorem 4.

Corollary 1. The H-free Star System Problem is NP-complete whenever f(H)
�= ∞. Moreover, if F is a set of graphs for which there exists an integer p such
that for any H ∈ F we have f(H) ≤ p, then the F-free Star System Problem
(i.e., deciding on an input S if there is a graph having no induced subgraph
isomorphic to any graph in F) is NP-complete.

Since B(Ck) contains a cycle for any k ≥ 5 we have the corollary.

204 F.V. Fomin et al.

Corollary 2. For any k ≥ 5, the Ck-free Star System problem is NP-complete.

Similarly, B(Pk) is connected and contains at least 2 vertices of degree greater
or equal to 3 for any k ≥ 5. Hence we also have the following corollary.

Corollary 3. For any k ≥ 5, the Pk-free Star System problem is NP-complete.

5 Closing Remarks

In this paper we obtained a complete dichotomy for the H-free Star System
problem when the forbidden graph H is either a path or a cycle. Moreover, our
NP-completeness result holds for H taken from a much larger family of graphs,
so that the remaining cases in which the problem might not be NP-complete are
very restricted. It is tempting to ask if the H-free Star System problem has a P vs
NP-completeness dichotomy in general, i.e., whether for any graph H the H-free
Star System problem is either polynomial-time solvable or NP-complete (and
thus presumably not Graph Isomorphism-complete). See [4,9] for a discussion of
such dichotomy results.

A closely related question is on the complexity of the Star System problem
restricted to graph classes defined by several forbidden induced subgraphs as in
Corollary 1. By the result of Aigner and Triesch [1,2] (see also [6]) we do then not
have dichotomy in general, as there are classes of graphs defined by an infinite set
of forbidden induced subgraphs (like forbidding the complements of odd cycles)
such that the Star System problem is Graph Isomorphism complete on these
classes. However, we do not know whether there is a graph class characterized
by a finite set of forbidden induced subgraphs such that the Star System problem
on this class is Graph Isomorphism complete, or if instead dichotomy may hold
in this case.

References

1. Aigner, M., Triesch, E.: Reconstructing a graph from its neighborhood lists. Com-
bin. Probab. Comput. 2, 103–113 (1993)

2. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discrete Math. 136,
3–20 (1994)

3. Babai, L.: Isomorphism testing and symmetry of graphs. Ann. Discrete Math. 8,
101–109 (1980)

4. Bulatov, A., Dalmau, V.: Towards a Dichotomy Theorem for the Counting Con-
straint Satisfaction Problem. In: Proceedings 44th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2003, pp. 562–570 (2003)

5. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-
crete Appl. Math. 3, 163–174 (1981)

6. Boros, E., Gurvich, V., Zverovich, I.: Neighborhood hypergraphs of bipartite
graphs, tech. rep., RUTCOR (2006)

7. Erdős, P., Gallai, T.: Graphs with prescribed degrees of vertices (in hungarian).
Matematikai Lapok 11, 264–274 (1960)

On the Complexity of Reconstructing H-free Graphs 205

8. Hajnal, A., Sós, V.: Combinatorics. vol. II, vol. 18 of Colloquia Mathematica So-
cietatis János Bolyai. North-Holland, Amsterdam (1978)

9. Hell, P., Nesetril, J.: Graphs and homomorphisms. Oxford Lecture Series in Math-
ematics and its Applications, vol. 28 (2004)

10. Lalonde, F.: Le problème d’étoiles pour graphes est NP-complet. Discrete Math. 33,
271–280 (1981)

11. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM J.
Comput. 10, 11–21 (1981)

Optimization and Recognition for K5-minor Free

Graphs in Linear Time

Bruce Reed1,2 and Zhentao Li3

1 Canada Research Chair in Graph Theory
McGill University, Montreal, Canada

2 Project Mascotte, INRIA
Laboratoire I3S, CNRS, Sophia-Antipolis, France

breed@cs.mcgill.ca
3 School of Computer Science

McGill University, Montreal, Canada
zhentao.li@mail.mcgill.ca

Abstract. We present a linear time algorithm which determines whether
an input graph contains K5 as a minor and outputs a K5-model if the input
graph contains one. If the input graph has no K5-minor then the algorithm
constructs a tree decomposition such that each node of the tree corresponds
to a planar graph or a graph with eight vertices. Such a decomposition can
be used to obtain algorithms to solve various optimization problems in lin-
ear time. For example, we present a linear time algorithm for finding an
O(

√
n) seperator and a linear time algorithm for solving k-realisation on

graphs without a K5-minor. Our algorithm will also be used, in a separate
paper, as a key subroutine in a nearly linear time algorithm to test for the
existence of an H-minor for any fixed H .

1 Results and Related Work

We say that H is a minor of G if H can be obtained from a subgraph of G via a
sequence of edge contractions (see Figure 1). Many natural classes of graphs, such
as planar graphs, are characterized by forbidding members of some obstruction
set as a minor. In seminal work, Robertson and Seymour [22,23] gave, for any
H , a decomposition theorem which yields structural properties of every H-minor
free graph. This theorem allows us to obtain fast algorithms for optimization
problems on such a class of graphs.

The complexity of the algorithm depends on the exact structure theorem
obtained. For example, if H is planar then the H-minor free graphs have bounded
tree width. Bodlaender [6] showed we can obtain the decomposition for such
graphs in linear time. Using this decomposition, many optimization problems
can be solved in linear time, including any problem which can be expressed in
second order monadic logic [7] (see also: [24,2,4,5]).

For arbitrary H , a polynomial time algorithm to construct the decomposi-
tion was recently developed by Demaine et al. [10]. In the same paper these
authors, building on earlier work of Baker [3], Grohe, and others, develop poly-
nomial time algorithms for a number of optimization problems on this class of

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 206–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimization and Recognition for K5-minor Free Graphs 207

G H

Fig. 1. H is minor of G. The sequence of edge contraction is shown. At each step, we
contract the highlighted edge to obtain the next graph.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
���
��
��
����
��
��
��

����
����
����
����

�
�
�
�

����
����
����
����

�����������
���
���
����

�
�
����

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������

W

Fig. 2. The special graph W with 8 vertices and 12 edges

graphs. The exponent in the running time of the algorithm depends on |V (H)|.
It exceeds

(|V (H)|
2

)
. Kawarabayashi, Li, and Reed [14] have developed a near

linear time algorithm (running time nα(n) log(n) where α is the inverse Acker-
mann function) for constructing this decomposition. This allows them to solve
many optimization problems in near-linear time. Their algorithm follows the
Robertson-Seymour proof, but needs ideas from this paper and other tools.

In this paper, we restrict our attention to graphs which do not have a clique
of order 5 (which we denote by K5) as a minor. Planar graphs contain no such
minors. Indeed Kuratowski [16] showed that a graph is planar precisely if it has
neither K5 nor K3,3 as a minor. Wagner [26] proved that a 4-connected graph
is planar precisely if it contains no K5-minor. More strongly, he proved that
a graph is K5-minor free precisely if it is a subgraph of a graph which arises
from planar graphs and the graph W of Figure 2 by repeatedly pasting together
graphs on cliques. As discussed in detail below, this yields a tree decomposition
of G whose nodes correspond to planar graphs.

We present a linear time algorithm which given a graph G either finds a
K5-minor in G or constructs such a tree decomposition. This improves on an
O(n2) algorithm due to Kézdy and McGuiness [15]. This allows us to solve many
optimization problems in linear time on K5-minor free graphs. Some of these
problems are discussed by Demaine et al [9,8] who develop O(n3) algorithms
for the same problems. Another application is to find separators. We can find
an O(

√
n) separator in linear time in K5-minor free graphs extending results of

Lipton, Tarjan and others for the planar case [17]. This improves an O(n3/2)
time algorithm due to Alon et. al [1], and also a linear time algorithm due to

208 B. Reed and Z. Li

Reed and Wood [20] which finds an O(n2/3)-separator. We give further details
of these applications in the final section of the paper.

Our algorithm is recursive. Given an input graph G we construct an auxiliary
graph G′, solve our problem on G′ and use the solution when obtaining a solution
for G. We use three different reductions. Two are easy to handle. The third
involves constructing G′ by contracting the edges of a carefully chosen induced
matching with at least ε|V (G)| edges, for some ε > 0. If we find a K5-minor in
G′, after uncontracting the edges we will have a K5-minor in G. We only need to
do any work if we return a tree decomposition of G′. It turns out that, because
of the care we took when choosing the matching we contract, the 3-cuts of G are
either subsets of the uncontraction of the 3-cuts of G′ or correspond to a P3 in
one of the planar pieces of our decomposition of G′. This allows us to find them
all quickly. It is then a simple matter to construct the desired decomposition of
G (or find a K5-minor).

The paper is organized as follows. We first discuss some structural results on
K5-minor free graphs. We then examine how the cutsets of size three in a graph
can interact, developing some results which to us are of independent interest.
We then describe the algorithm. Finally we turn to applications.

In what follows, an (i, j)-cut X has i vertices and G − X has at least j
components.

2 The Structure of K5-minor Free Graphs

A graph has K5 as a minor precisely if it has 5 disjoint connected subgraphs
every two of which are joined by an edge. From this, it follows easily that G has
K5 as a minor precisely if one of its 2-connected components has such a minor.
Furthermore, if X = {x, y} is a cutset in G then G has a K5-minor precisely if
there is a component U of G−X such that the graph obtained from the subgraph
of G induced by X ∪ U by adding the edge xy has K5 as a minor. Finally, if
X is (3, 3)-cut then G has a K5-minor precisely if there is a component U of
G − X such that the graph obtained from the subgraph of G induced by X ∪ U
by adding edges so that X is a clique has K5 as a minor.

On the other hand, Wagner [26] proved that if a 3-connected graph has no K5-
minor then either it is planar or it has a cutset X of size three such that G−X has
at least three components. Thus, by recursing on the subproblems discussed in
the last paragraph, we can eventually reduce our problem to testing the planarity
of some auxiliary graphs. To be more precise we need some definitions.

A 2-block tree is only defined for 2-connected graphs.

Definition 1. A 2-block tree of a 2-connected graph G, written [T, G], is a tree
T with a set G = {Gt}t∈T with the following properties.

– Gt is a graph for each t ∈ T
– If G is 3-connected then T has a single node r which is coloured 1 and

Gr = G.
– If G is not 3-connected then there exists a colour 2 node t ∈ T such that

Optimization and Recognition for K5-minor Free Graphs 209

1. Gt is a graph with two vertices u and v and no edges for some 2-cut
{u, v} in G.

2. Let T1, . . . , Tk be the connected components (subtrees) of T − t. Then
G − {u, v} has k components U1, . . . , Uk and there is a labelling of these
components such that Ti is a 2-block tree of Gi = G[Ui ∪ {u, v}] ∪ {uv}.

3. For each i, there exists exactly one colour 1 node ti ∈ Ti such that
{u, v} ⊆ Gti .

4. For each i, tti ∈ E(T).

Note that as discussed below, this tree is not unique. It is essentially a refinement
of the SPQR tree (see [11]).

A (3, 3)-block tree is only defined for 3-connected graphs.

Definition 2. A (3,3)-block tree of a 3-connected graph G, written [T, G], is a
tree T with a set G = {Gt}t∈T with the following properties.

– Gt is a graph for each t ∈ T
– If G has no (3, 3)-cut then T has a single node r which is coloured 1 and

Gr = G.
– If G has a (3, 3)-cut then there exists a colour 2 node t ∈ T such that

1. Gt is a graph with vertices u,v and w and no edges for some (3, 3)-cut
{u, v, w} in G.

2. Let T1, . . . , Tk be the connected components (subtrees) of T − t. Then
G − {u, v, w} has k components U1, . . . , Uk and there is a labelling of
these components such that Ti is a 3-block tree of Gi = G[Ui∪{u, v, w}]∪
{uv, vw, uw}.

3. For each i, there exists exactly one colour 1 node ti ∈ Ti such that
{u, v, w} ⊆ Gti .

4. For each i, tti ∈ E(T).

We call a colour 2 node a cutting node. We call a colour 1 node a graph node.
Given an input graph G, we first find the blocks of G using depth first search

(see [25]), then construct the 2-block trees for the blocks, and finally construct
the (3, 3)-block tree for each graph node of the 2-block tree. In doing the latter,
we use the fact, proven below, that unless G is K3,3, there is a unique (3, 3)-
block tree for G (K3,3 has two decompositions, as we can use either side of the
bipartition as the unique cutset in a decomposition). We then test if all the graph
nodes of each (3, 3)-block tree are planar and if so find planar embeddings of
them in linear time. If one of these graphs is non-planar then G has a K5-minor.

We also use the fact that if G has more than 64|V (G)| edges then there is a
simple linear time algorithm to find a K5-minor in it, as discussed in [21].

3 Cutset Structure

In order to prove that the (3, 3)-block tree for a 3-connected graph G other
than K3,3 is unique, it is enough to prove that every (3, 3)-cut of G appears in

210 B. Reed and Z. Li

a cutting node of every (3, 3)-block tree. To do this, we need only show that
if we start to construct a (3, 3)-block tree using some (3, 3)-cut X , then every
(3, 3)-cut Y of G is a (3, 3)-cut of one of the auxiliary graphs corresponding to
the components of G − Y . We say that Y separates X if there are vertices of X
in different components of G − Y . It is not hard to see that we need only show
that Y does not separate X . I.e., the uniqueness of the (3, 3)-block trees follows
from:

Lemma 3. Let U be a 3-connected graph that is not K3,3. Let X be a (3, 3)-cut
in U or a (3, 2)-cut such that U [X] is connected. There does not exist a (3, 3)-cut
separating the vertices of X.

Proof. Suppose the lemma is false. Let X = {a, b, c}. Let U1, . . . , Uk be the
connected components of U −X . Let Y be a (3, 3)-cut separating X . WLOG, Y
separates {a, b}.

Y must contain a vertex of U1 and a vertex of U2. Hence, every component of
U − Y which contains a neighbour of every vertex of Y must intersect X . Since
there are three such components, we see that the vertices of X are in different
components of U −Y . This implies that G[X] is not connected and hence k ≥ 3.
Since U [U3 ∪ X] is connected, Y contains a vertex of U3. Thus, X and Y are
disjoint and the vertices of Y are in different components of G − X . Thus, each
component of G − X − Y has edges to at most one vertex of X and at most one
vertex of Y . Since G is 3-connected, there are no such components and G is a
K3,3.

It follows easily from this lemma that the (3, 3)-block tree is unique. We will
also need the following similar results whose proofs we omit:

Lemma 4. Let U be a 3-connected graph that is not K3,3. Let X be a 3-cut in U
which contains an edge. There does not exist a (3, 3)-cut separating the vertices
of X.

Lemma 5. Let U be a 3-connected graph that is not K3,3. Let X be a (3, 3)-cut
in U . There does not exist a 3-cut Y separating X such that G[Y] is connected.

On the other hand, it is well known that 2-block trees are not unique. For
example, every triangulation of a cycle corresponds to a 2-block tree for it, and
these are all distinct. In fact, this is essentially the only way in which different
2-block trees of a graph can arise. This fact is captured in the two following
lemmas (see [13,11]).

Lemma 6. A 2-cut X in a 2-connected graph G whose vertices are joined by 3
internally vertex disjoint paths does not seperate the vertices of any other 2-cut.

Lemma 7. A 2-cut {x, y} of a 2-connected graph G is in every 2-block tree of G
precisely if either xy is an edge or x and y are joined by three internally vertex
disjoint paths. Furthermore, reducing using these 2-cuts breaks G up into pieces
each of which is either 3-connected or an induced cycle.

Optimization and Recognition for K5-minor Free Graphs 211

This lemma implies a technical result which we will need:

Corollary 8. The number of vertices in the 2-cuts of a 2-block tree is at most
four times the number of cutting nodes in the tree.

3.1 Cutset Structure Relative to a Reduction

In this section, we study the correspondence between the cuts in a 3-connected
graph G and those in the graph H obtained by contracting an induced matching
M in G.

To ease notation, we use f to refer to the function from V (G) to V (H) cor-
responding to the contraction of a fixed matching M . If v is in no edge of the
matching then f(v) = v, so H = f(G) and G = f−1(H).

Note that if Y is a cut in H then f−1(Y) is a cut in G. Therefore since M is
matching and G is 3-connected, H is 2-connected. The converse is almost true
for cutsets of size three in G. For any such 3-cut X , |f(X)| = 3 or |f(X)| = 2.
If f(X) is not a cut in H , then for some component U of G − X we must have
that f(U) ⊆ f(X). If U has more than one vertex then there is an edge uv of
U . This is not an edge of M as otherwise f(U) �⊆ f(X). Since M is induced,
we can therefore assume WLOG that f(u) = u. But, again, we contradict that
f(U) ⊆ f(X).

So U is a vertex u. Since f(U) ⊆ f(X), we know that xu is an edge of the
matching M for some vertex x of X . Since M is induced it follows that f(v) = v
for every other neighbour v of v and hence N(u) ⊆ X . Since u has at least
three neighbours, it follows that v has exactly three neighbours x, y, z in G and
X = {x, y, z}. Thus the only cutsets of size three in G whose image in H is not
a cutset are N(u) for vertices u of degree three which are in the matching and
for which G − u − N(u) is connected.

We are actually more interested in which (3, 3)-cuts of G do not correspond
to (2, 3)-cuts or (3, 3)-cuts of H . If this is to happen then for some component
U of G − X f(U) ⊆ f(X).

Mimicing the arguments above, we see that this occurs precisely if U = {u}
and X = N(u) for some vertex u which has degree three, is in the matching and
for which G−u−N(u) has exactly two components. Note that in this case f(X)
is a (3, 2)-cut of H which induces a P3 or a triangle.

In summary then, the (3, 3)-cuts of G are of one of the following types:

1. f(X) is a (2, 3)-cut of H
2. f(X) is a (3, 3)-cut of H ,
3. f(X) is (3, 2) cut of H which induces a connected subgraph of H , and X =

N(v) for some vertex v of degree 3 in G which is in the matching we contract.

4 The Algorithm

We are now ready to describe our algorithm. We consider only the 3-connected
case, as it is easy to construct the block tree and 2-block tree of a graph in linear
time(see [25,13,12]). We need the following:

212 B. Reed and Z. Li

Theorem 9 Let G be a graph of minimum degree three with at most 64|V (G)|
edges. Let d = 100000 and let ε = d−6. In linear time we can find one of the
following:

1. A set S of at least 5ε|V (G)| vertices of degree 3 which have the same neigh-
bourhood as at least d + 1 other such vertices.

2. A matching M in the subgraph of G induced by the vertices of degree at most
d which has size ≥ d4ε|V (G)|.

3. A minor G′ of G such that |E(G′)| ≥ 64|V (G′)|, or G′ is a subdivision of
K5, in which case we find and return a K5-model in G.

Our algorithm starts by obtaining one of the structures 1.,2., or 3. of this theorem
in linear time. To do so, this algorithm considers a maximal matching M in the
subgraph induced by the set X of vertices of degree less than d. If this matching is
large enough, we can return with output 2. If we do not find such a matching, we
use a greedy assignment algorithm and bucketsort to attempt to obtain output
1. If we fail we will find a minor of H which has so many edges that we can use
the linear time algorithm of [21] to find a K5-minor.

If output 3 is returned then we are essentially done. If it returns output 1.,
we recurse on G − S. For each vertex v in S, the neighbourhood of v will be a
cutting node of G − S, and we can add a graph node which is a leaf incident to
this node and contains the clique on v + N(v). Adding all these nodes at once
yields the (3, 3)-block tree for G.

If we return with output 2., then we contract M and look at the 2-block tree
for the resultant graph. If there are many 2-cuts then looking at these 2-cuts al-
lows us to find many 3-cuts in G. If there are only a few 2-cuts, then our tech-
nical corollary tells us that we can find a small set of matching edges such that
by uncontracting these edges we end up with a graph with no 2-cuts. Thus, from
M we construct either an induced matching N with at least εn edges such that
contracting the edges of N in G yields a 3-connected graph GN , or a set of 3-cuts
of G each of which contains an edge of M and none of which seperates another,
which decompose G into at least εn pieces. In the latter case, we recurse by de-
composing on this set of 3-cuts. In the former case we recurse on GN . We then
uncontract N and construct the (3, 3)-block tree of G from the (3, 3)-block tree
of GN , using our results on the cutset structure relative to a reduction. These tell
us that every (3, 3)-cut of G corresponds either to a (3, 3)-cut of GN or to a P3

in one of the planar graph nodes. Those interested in further details may consult
http://cgm.cs.mcgill.ca/∼breed/newk5free.ps which contains the full de-
tails and will eventually contain a pointer to the journal version of this paper.

5 Running Time

We now briefly sketch some of the techniques used to analyse the algorithm’s run-
ning time. For full details, we refer the readers to http://cgm.cs.mcgill.ca/∼
breed/newk5free.ps. First, we show that if we use linear time to process each
graph before and after the recursion and the total size of the graphs we recurse

http://cgm.cs.mcgill.ca/~breed/newk5free.ps
http://cgm.cs.mcgill.ca/~
breed/newk5free.ps

Optimization and Recognition for K5-minor Free Graphs 213

on is a fraction of the size of the original graph, the total running time of the al-
gorithm is linear. Then, we use greedy algorithms and bucksort to obtain graphs
to recurse on in linear time. It is easy to return a K5-model given a K5-model
on a graph we recursed on. To obtain a (3, 3)-block tree or a K5-model from a
(3, 3)-block tree obtained recursively in linear time, we examine the pre-images
of the cutting nodes and the graph nodes of the (3, 3)-block tree. The graph
nodes are planar as a non-planar graph node contains a K5-minor which we
can find. In each such graph node, we find a special set of 3-cuts which are the
(3, 3)-cuts we missed as discussed in Section 3.1. We omit further details.

6 Applications

6.1 Finding a Separator

We now explain how our algorithm can be combined with a linear time algorithm
for finding a O(

√
n) separator in a planar graph to find a O(

√
n) separator in

a graph without a K5-minor in linear time. In this abstract, we restrict our
attention to the 3-connected case.

We build the (3, 3)-block tree for G. Using dynamic programming, for each
node t of the tree (cutting or graph) corresponding to a planar graph Ht with
vertex set Vt, we can compute the number of vertices in each component of
G − Vt. It is easy to see that there is some t such that every such component
contains at most half the vertices of G. We consider such a node t. If t is a
cutting node then Xt is a cutset of size three. Otherwise, for every triangular
face f of Ht, we compute the number of vertices nf in components of G − Vt

attached to this face, and add a vertex vf in f and a set Xf of nf −1 vertices of
degree 1 incident only to vf . We then find a O(

√
n) separator S in the resultant

planar graph. We obtain a separator in G of size at most 3s by taking S ∩V (G)
along with the vertices of any triangular face f for which S intersects vf ∪ Xf .
We can then use this separator to solve various optimization problems on G. See
[18] for further details.

6.2 k-Realizations

The k-Realization problem (k fixed) has the following form. Given a graph G,
and a set X of k vertices of G, find all partitions Δ = (D1, . . . , Dl) of X such
that there is a set of disjoint trees {T1, . . . , Tl} with Di ⊆ V (Ti). This problem
can be solved in O(n3) time in general using Robertson and Seymour’s seminal
results. In [19], Reed et al. showed that this problem could be solved in linear
time on planar graphs. Our decomposition allows us to extend this result to
graphs with no K5-minor. We first consider the 3-connected case.

We construct the (3, 3)-block tree for G. If there is a graph node which is a leaf
of the (3, 3)-block tree which contains none of X , then we can simply contract
it to a vertex without changing the answer to the problem. Indeed, a similar
linear time reduction allows us to reduce to a 3-connected minor H of G such

214 B. Reed and Z. Li

that the (3, 3)-block tree [T, H] for H has at most k leaves. We now actually
solve the Realization problem for X ∪ Y where Y is the set of (at most 3k)
vertices which appear in the cutting nodes of our tree decomposition of H . We
do so by restricting our attention to the planar instance (H ′

t, (X ∪ Y) ∩ Ht) of
k-Realizations for each graph node t where H ′ is the graph obtained from H by
deleting the extra edges we added for the decomposition. H ′

t is planar. We can
then combine these solutions because G is obtained by pasting together these
subgraphs on cutsets contained in X ∪ Y .

If G is 2-connected there are further technical complications, but no major
additional difficulties.

6.3 Further Applications

Many other optimization problems can be solved in linear time using the de-
composition we have developed. These include most of the problems discussed
in [9] and [8]. For example, in [8], many problems are solved in O(n2) time on
K5-minor free graphs by applying Theorem 5 which says that we can find a tree
decomposition of a certain subgraph in quadratic time for K5-minor free graphs.
But as discussed in that paper, we can actually find the desired tree decom-
positions in linear time if the graph is planar (and hence has no K3,3 minor).
So in linear time, we can find such tree decompositions of all the pieces in our
(3, 3)-block tree for these subgraphs. We can then paste these together to obtain
a tree decomposition of the whole subgraph. Since we are pasting on cliques it is
an easy matter to carry out this second step in linear time. Further details will
be given in the full version of our paper.

7 More Details

A longer version of this paper can be found at http://cgm.cs.mcgill.ca/∼
breed/newk5free.ps. The version found there is a draft but will allow referees
to determine correctness.

References

1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs.
Journal of the American Mathematical Society 3(4), 801–808 (1990)

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for np-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. Assoc. Comput. Mach. 41, 153–180 (1994)

4. Bodlaender, H.L.: Dynamic programming algorithms on graphs of bounded tree-
width. In: Lepisto, T., Salomaa, A. (eds.) 15th International Colloquium on Au-
tomata, Languages and Programming, vol. 317, pp. 105–118. Springer, Heidelberg
(1988)

5. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

http://cgm.cs.mcgill.ca/~
breed/newk5free.ps

Optimization and Recognition for K5-minor Free Graphs 215

6. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

7. Courcelle, B.: The monadic second order logic of graphs. I. recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

8. Demaine, E., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.: Approxima-
tion algorithms for classes of graphs excluding single-crossing graphs as minors.
Journal of Computer and System Sciences 69(2), 166–195 (2004)

9. Demaine, E., Hajiaghayi, M., Thilikos, D.: Exponential speedup of fixed parameter
algorithms on k. Algorithmica 41(4), 245–267 (2005)

10. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor the-
ory: Decomposition, approximation and coloring. In: Proc. 46th Ann. IEEE Symp.
Found. Comp. Sci., pp. 637–646 (2005)

11. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components
with SPQR-trees. Algorithmica 15, 302–318 (1996)

12. Gutwenger, C., Mutzel, P.: A linear time implementation of spqr-trees. In: Marks, J.
(ed.) Graph Drawing, Colonial Williamsburg, 2000, pp. 77–90. Springer, Heidelberg
(2001)

13. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 3, 135–158 (1973)

14. Kawarabayashi, K., Li, Z., Reed, B.: Near linear time algorithms for optimization
and recognition for minor closed families (in preparation)

15. Kézdy, A., McGuinness, P.: Sequential and parallel algorithms to find a k5 mi-
nor. In: Third Annual Symposium on Discrete Algorithms, pp. 345–356. Springer,
Heidelberg (1992)

16. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fundamenta
Mathematica 16, 271–283 (1930)

17. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36(2), 177–189 (1979)

18. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9, 615–627 (1980)

19. Reed, B., Robertson, N., Schrijver, L., Seymour, P.: Finding disjoint trees in planar
graphs in linear time. In: Graph Structure Theory, pp. 295–302. AMS (1993)

20. Reed, B., Wood, D.: Fast separation in a graph with an excluded minor. In: Euro-
Conference on Combinatorics, Graph Theory and Applications, pp. 45–50 (2005)

21. Robertson, N., Seymour, P.D.: Graph minors. XIII: the disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

22. Robertson, N., Seymour, P.D.: Graph minors. XVI. excluding a non-planar graph.
Journal of Combinatorial Theory, Series B 89, 43–76 (2003)

23. Robertson, N., Seymour, P.D.: Graph minors. XX. wagner’s conjecture. J. Comb.
Theory Ser. B 92(2), 325–357 (2004)

24. Lagergren, J., Arnborg, S., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 308–340 (1991)

25. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1,
146–160 (1972)

26. Wagner, K.: Über eine eigenschaft der ebenen komplexe. Math. Ann. 114, 570–590
(1937)

Bandwidth of Bipartite Permutation Graphs in

Polynomial Time�

Pinar Heggernes1, Dieter Kratsch2, and Daniel Meister1

1 Department of Informatics, University of Bergen, PO Box 7803,
N-5020 Bergen, Norway

Pinar.Heggernes@ii.uib.no, Daniel.Meister@ii.uib.no
2 Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine -

Metz, 57045 Metz Cedex 01, France
kratsch@univ-metz.fr

Abstract. We give the first polynomial-time algorithm that computes
the bandwidth of bipartite permutation graphs. Prior to our work, poly-
nomial-time algorithms for exact computation of bandwidth were known
only for caterpillars of hair length 2, chain graphs, cographs, and interval
graphs.

1 Introduction

The bandwidth problem asks, given a graph G and an integer k, whether there
exists a linear layout of the vertices of G such that no edge of G has its endpoints
mapped to positions with difference more than k. The problem is motivated from
Sparse Matrix Computations, where given an n × n matrix A and an integer k,
the goal is to decide whether there is a permutation matrix P such that PAPT

is a matrix with all nonzero entries on the main diagonal or on the k diagonals
on either side of the main diagonal [9]. The graph and the matrix version of the
bandwidth problem are equivalent, and both have been studied extensively in
the last 40 years.

The bandwidth problem is NP-complete [18], and it remains NP-complete
even on very restricted subclasses of trees, like caterpillars of hair length at most
3 [17]. Bandwidth is a benchmark problem known for its difficulty among the of-
ten studied NP-hard graph problems. With respect to parameterized complexity
[5], the bandwidth problem (with parameter k) is W [k]-hard [4]. Thus, not only
is it unlikely that an O(f(k) ·p(n))-time algorithm exists for its solution with an
arbitrary function f and a polynomial p, but it is also much harder than most
other well-studied graph problems with respect to parameterized complexity.

Due to the difficulty of the bandwidth problem, approximation algorithms
for it attracted much attention. For any constant c, it is NP-hard to compute a
c-approximation of the bandwidth of general graphs [20] and even of trees [2].
� This work is supported by the Research Council of Norway through grant

166429/V30. In this extended abstract most proofs are omitted; they can be found
in a technical report [12].

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 216–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bandwidth of Bipartite Permutation Graphs 217

Consequently approximation algorithms on restricted graph classes have been
received with great interest by the research community, and approximation algo-
rithms have been given for the bandwidth of trees and even caterpillars [7,10,11].
Constant factor approximation algorithms for the bandwidth of AT-free graphs
and subclasses of them, including permutation graphs, exist [15]. There are ap-
proximation algorithms for the bandwidth of general graphs using advanced
techniques [3,6].

Polynomial-time algorithms to compute the bandwidth exactly are known for
only a few and very restricted graph classes: caterpillars with hair length at
most two [1], chain graphs [14], and cographs [21]. The outstanding result is the
polynomial-time algorithm of Kleitman and Vohra that computes the bandwidth
of interval graphs [13]. The knowledge on the algorithmic complexity of band-
width on particular graph classes did not advance much during the last decade.
The only progress was made when the NP-completeness of bandwidth of cocom-
parability graphs was observed, and simple 2-approximation algorithms for the
bandwidth of permutation graphs were given [15,16]. Permutation graphs are
precisely those graphs for which the graph and its complement are cocompara-
bility, and thus a subclass of cocomparability graphs. However, the algorithmic
complexity of the bandwidth problem on permutation graphs remained open for
a long time, and is still open. Despite various attempts since the late 1980’s,
not even the computational complexity of bandwidth of bipartite permutation
graphs was resolved prior to our work.

In this paper, we give the first polynomial time algorithm to compute the
bandwidth of bipartite permutation graphs, with running time O(n4 log n). Our
algorithm is based on structural properties of bipartite permutation graphs,
in particular the use of strong orderings. Moreover we rely heavily on a deep
theorem concerning linear extensions and linear labelings of posets, that for
cocomparability graphs guarantees the existence of an optimal bandwidth layout
which is a cocomparability ordering [8]. Finally, a novel local exchange algorithm
to find so called normalized (partial) k-layouts is the key algorithmic idea of our
work. No tools from previous bandwidth algorithms for special graph classes have
been used; rather, our algorithm is especially tailored for bipartite permutation
graphs through non-standard techniques.

2 Preliminaries

A graph is denoted by G = (V, E), where V is the set of vertices with n = |V | and
E is the set of edges with m = |E|. The set of neighbors of a vertex v is denoted
by N(v), and N [v] = N(v) ∪ {v}. Similarly, for S ⊆ V , N [S] =

⋃
v∈S N [v], and

N(S) = N [S] \ S. The subgraph of G induced by the vertices in S is denoted
by G[S]. For G′ = G[S] and v ∈ V \ S, G′+v denotes G[S ∪ {v}], and for any
v ∈ V , G−v denotes G[V \ {v}].

For a given graph G = (V, E) with V = {v1, v2, ..., vn}, a layout β : {1, . . . , n}
→ V of G is an ordering (vπ(1), . . . , vπ(n)) where π is a permutation of {1, . . . , n}.
The distance between two vertices u, v in a layout β is dβ(u, v) = |β−1(u) −

218 P. Heggernes, D. Kratsch, and D.Meister

β−1(v)|. For a given layout (or ordering) β, we write u ≺β v when β−1(u) <
β−1(v). For a vertex v in G, every vertex u with u ≺β v is to the left of v, and
every vertex w with v ≺β w is to the right of v in β. We will also informally
write leftmost and rightmost vertices accordingly.

For an integer k ≥ 0, we call β a k-layout for G if, for every edge uv of G,
dβ(u, v) ≤ k. The bandwidth of G, bw(G), is the smallest k such that G has a k-
layout. In this paper a layout will be called optimal if it is a bw(G)-layout for G.

Bipartite permutation graphs are permutation graphs that are bipartite. Let
G = (A, B, E) be a bipartite graph. Sets A and B are called color classes. A
strong ordering for G is a pair of orderings (σA, σB) on respectively A and B such
that for every pair of edges ab and a′b′ in E with a, a′ ∈ A and b, b′ ∈ B, a ≺σA a′

and b′ ≺σB b imply that ab′ and a′b are in E. The following characterization of
bipartite permutation graphs is the only property that we will need in this paper.

Theorem 1 ([19]). A bipartite graph is a bipartite permutation graph if and
only if it has a strong ordering.

Spinrad et al. give a linear time recognition algorithm for bipartite permutation
graphs that produces a strong ordering if the input graph is bipartite permuta-
tion [19]. It follows from the definition of a strong ordering that if G = (A, B, E)
is a connected bipartite permutation graph then any strong ordering (σA, σB)
satisfies the following. For every vertex a of A, the neighbors of a appear con-
secutively in σB . Furthermore, if N(a) ⊆ N(a′) for two vertices a, a′ ∈ A then a
is adjacent to the leftmost or the rightmost neighbor of a′ with respect to σB .

An ordering σ of a graph G is called a cocomparability ordering if for all
u, v, w with u ≺σ v ≺σ w, uw ∈ E implies that uv ∈ E or vw ∈ E. A graph
that has a cocomparability ordering is called a cocomparability graph. (Bipartite)
permutation graphs are cocomparability graphs.

Let V be a set, and let ≺P be a binary reflexive, antisymmetric and transitive
relation over V . Then P = (V, ≺P) is called a partially ordered set. A linear
extension β of P is a layout of V satisfying a ≺P b ⇒ a ≺β b. Hence for all pairs
of elements of V , a linear extension preserves their order relation of P . For an
integer k ≥ 0, a k-linear labeling for P is a linear extension β of P such that
for every pair a, b of elements of V , a
= b: a ≺P b ⇒ dβ(a, b) ≤ k. Fishburn et
al. showed an interesting connection between linear labelings of partially ordered
sets and the bandwidth of graphs [8]. The incomparability graph G = G(P) of
a partially ordered set P has vertex set V , and two vertices are adjacent if and
only if the corresponding elements a
= b of V are not in relation in P (neither
a ≺P b nor b ≺P a). It is well-known that if β is a linear extension of P then
β is a cocomparability ordering of the incomparability graph G = G(P), and
vice versa.

Theorem 2 ([8]). Let P = (V, ≺P) be a partially ordered set, where V is finite.
Let k ≥ 0. Then, P has a k-linear labeling if and only if the incomparability
graph of P has bandwidth at most k.

For each cocomparability graph G, there is a partially ordered set P such that
G is the incomparability graph of P . Therefore, Theorem 2 implies that every

Bandwidth of Bipartite Permutation Graphs 219

cocomparability graph G has an optimal layout β such that β is a linear extension
of P , and thus a cocomparability ordering of G. We shall heavily rely on the
following consequence of this for connected bipartite permutation graphs.

Corollary 1. Let G = (A, B, E) be a connected bipartite permutation graph,
and let k ≥ 0 be an integer. Let (σA, σB) be a strong ordering for G. If G has
a k-layout then G has a k-layout β (a cocomparability ordering) satisfying the
following two conditions:

(C1) for every pair a, a′ of vertices from A, a ≺σA a′ implies a ≺β a′, and for
every pair b, b′ of vertices from B, b ≺σB b′ implies b ≺β b′

(C2) for every triple a, b, b′ of vertices of G where a ∈ A and b, b′ ∈ B and
ab ∈ E and ab′
∈ E, neither a ≺β b′ ≺β b nor b ≺β b′ ≺β a.

3 Bandwidth of Bipartite Permutation Graphs

We call a layout of a connected bipartite permutation graph normalized if it
satisfies conditions (C1) and (C2) with respect to some given strong ordering.
Hence, to decide whether a given connected bipartite permutation graph has a
k-layout for some k ≥ 0, it suffices to check normalized k-layouts. In this section
we give the main idea behind our algorithm, and these arguments will be used
to prove the correctness of the final algorithm presented in Section 5.

For the rest of the paper, we let Gi = G[N [{a1, a2, ..., ai}]] for 1 ≤ i ≤ s.
If there is a normalized k-layout α for Gi, α satisfies one of the following two
conditions, which we will analyze separately.

1. α−1(ai) > |V (Gi−1)| : To check whether a normalized k-layout α exists for
Gi that satisfies this condition, we place all vertices of N [ai] \ V (Gi−1) to the
right of the rightmost vertex of Gi−1 according to β. The order of the newly
added B-vertices is according to σB , and we place ai as far to the left as its
rightmost neighbor allows (at most k positions away from the end), but not
further left than position |V (Gi−1)| + 1. Let us call this new layout for Gi, β′.
Let b be the leftmost neighbor of ai in β′. If dβ′(ai, b) ≤ k then β′ is the desired
k-layout and we are done. In the opposite case, we need to move dβ′(ai, b) − k
A-vertices between b and ai to the left of b. If there are fewer A-vertices between
b and ai, it means that there are more than dβ′(ai, b) − k B-vertices between
them. In this case, the distance between b and ai cannot be reduced, and since
ai is to the right of all B-vertices of Gi−1 by our assumption on α, we conclude
that a desired k-layout does not exist. Otherwise, let a be the (dβ′(ai, b) − k)th
closest A-vertex to b to the right of b. A normalized k-layout α as assumed exists
if and only if there is a normalized k-layout β∗ of Gi−1 where b appears to the
right of a. To see this, observe that none of the vertices in N(ai) \ V (Gi−1)
has neighbors in Gi−1, and b is the leftmost neighbor of ai in every normalized
k-layout of Gi, since b cannot exchange places with other B-vertices in such a
layout. Thus appending the layout of N [ai] \ V (Gi−1) as described above to the
end of β∗ gives a k-layout for Gi. Checking whether β∗ exists for Gi−1 and how
to compute it from β is one of the two key points of our algorithm, and the

220 P. Heggernes, D. Kratsch, and D.Meister

next section is devoted to this task. The case that we have explained in this
paragraph will be resolved by Theorem 4.

2. α−1(ai) ≤ |V (Gi−1)| : To check whether a normalized k-layout α exists
for Gi that satisfies this condition, we place all vertices of N(ai) \ V (Gi−1)
to the right of the rightmost vertex of Gi−1 according to β. The order of the
newly added B-vertices is according to σB . A normalized k-layout α for Gi

as assumed in this case exists if and only if there is a normalized k-layout β∗
for Gi−1+ai where ai is placed between bp−1 and bp (there might be other A-
vertices between bp−1 and bp as well) for some B-vertex bp in Gi−1 with p ≥ 2,
and β−1

∗ (ai) ≥ |V (Gi)| − k. To see this, observe that ai is the only vertex in
Gi−1+ai that has neighbors in N(ai) \ V (Gi−1). Hence if β∗ is a k-layout for
Gi−1+ai, the ordering obtained by appending the vertices of N(ai) \ V (Gi−1)
to the end of β∗ gives a k-layout for Gi. The condition β−1

∗ (ai) ≥ |V (Gi)| − k
is necessary since ai is adjacent to the rightmost vertex in every normalized k-
layout of Gi satisfying the condition of this case. To see that we do not need
to consider the case where ai is moved to the left of b1, notice that if there is
a normalized k-layout for Gi−1+ai where ai appears to the left of b1, then all
A-vertices appear before all B-vertices, and exchanging the places of ai and b1

results also in a normalized k-layout since ai has no neighbors to its left, and b1

has no neighbors to its right. Thus we need to check for each B-vertex bp of Gi−1

whether there is a normalized layout β∗ for Gi−1+ai where ai is placed between
bp−1 and bp. We check this for at most k of the rightmost B-vertices in β, since
otherwise the distance between ai and its rightmost neighbor will be too large.
Placing ai between bp−1 and bp might of course require moving other A-vertices.
How to check whether such a layout exists for Gi−1+ai is the second of the two
key points of our algorithm, and it will be handled in the next section. The case
that we have explained in this paragraph will be resolved by Theorem 5.

4 Deciding the Existence of Desired Layouts

We need to decide, given a normalized k-layout for Gi−1, whether there exists a
normalized k-layout for Gi−1 where a given B-vertex b is required to appear to
the left of a given A-vertex a, and whether there exists a normalized k-layout for
Gi−1+ai where ai appears between two given B-vertices bp−1 and bp. To check
this, our approach is to indeed place the vertices as desired, and then check if
the modified layout can be repaired to become a normalized k-layout. For the
first question, we want to place b immediately to the right of a, forbid b to
move left, and check whether this layout can be turned into a k-layout with this
restriction. For the second question, we want to place ai between bp−1 and bp,
forbid it to move in any direction, and check whether this layout can be turned
into a k-layout with this restriction. Hence, we need an algorithm that takes as
input a given layout with restrictions on how the vertices are allowed to move,
and checks whether this can be turned into a normalized k-layout.

In this section we present exactly such an algorithm. Let u and v be adjacent
vertices of G. We want to obtain another normalized layout by moving u one

Bandwidth of Bipartite Permutation Graphs 221

position closer to v. This is possible if and only if there is a vertex of the color
class of v between u and v in β. Let w be such a vertex that is closest to u.
We define the layout obtained from β by moving u one position closer to v to
be layout β′ which we obtain by exchanging the position of w with the vertex
next to it in the direction towards u repeatedly until w is next to u, and then
exchanging the positions of u and w. It is important to note that whenever two
consecutive vertices exchange positions, they are neighbors in G. The orderings
defined by β and β′ restricted to A or B are equal, v has the same position in β
and β′, and dβ′(u, v) = dβ(u, v) − 1.

Lemma 1. Let G = (A, B, E) be a connected bipartite permutation graph, and
let (σA, σB) be a strong ordering for G. Let β be a normalized layout for G.
Let u and v be adjacent vertices, and let there be a vertex of the color class of
v between u and v in β. The layout obtained from β by moving u one position
closer to v is normalized.

Now we formalize how to restrict the positions of certain vertices when modifying
a given layout. A direction assignment h on the vertices of a graph is a function
that assigns one of the following four symbols to each vertex: ·, ←, →, ←→ . These
symbols stand for directions in which a vertex can be moved relative to a given
initial layout. A vertex v with h(v) = ← can be moved only to the left, and
a vertex with h(v) = → can only be moved to the right. If h(v) = ←→ then
v can be moved in any direction, whereas v cannot at all change position if
h(v) = ·. Let k ≥ 0, let β be a normalized layout for G, and let h be a direction
assignment for G. We define Δ(β, h) to be the set of normalized k-layouts γ for
G satisfying the following three properties for every vertex x of G: if h(x) = ·
then γ−1(x) = β−1(x); if h(x) = ← then γ−1(x) ≤ β−1(x); if h(x) = → then
γ−1(x) ≥ β−1(x).

(Os1)
←
·
�

>k
�→

· reject

(Os2) ←→ >k
�→

· replace by → >k
�→

·
(Os3)

←
·
�

>k ←→ replace by
←
·
�

>k ←

(Os4) → >k
�→

· MoveAttempt left vertex to right

(Os5)
←
·
�

>k ← MoveAttempt right vertex to left

Fig. 1. Patterns and rules for deciding the existence of a desired layout

Next we describe the algorithm which we call MoveRepair. Input is a graph
G, an integer k ≥ 0, a layout β of G, and a direction assignment h. Algo-
rithm MoveRepair generates a sequence of layout and direction assignment
pairs (β, h)=(β0, h0), (β1, h1), . . . , (βl, hl) such that Δ(βi, hi) = Δ(βi+1, hi+1)
for 0 ≤ i < l. In particular, the algorithm detects patterns in the current layout
and works according to a set of rules, presented in Figure 1. Let β and h be the

222 P. Heggernes, D. Kratsch, and D.Meister

layout and assignment before a rule is applied, and let β∗ and h∗ be the mod-
ified layout and assignment as a result of the applied rule. The interpretation
is as follows: let u and v be adjacent vertices with u ≺β v and dβ(u, v) > k. If
h(u) ∈ {·, ←} and h(v) ∈ {·, →} then the first rule is applied and the algorithm
rejects β. If h(u) = ←→ and h(v) ∈ {·, →} then the second rule is applied, and
the symbol of u is changed to →, hence β∗ is the same as β, whereas h∗ is the
same as h except that h∗(u) = →.

Algorithm MoveRepair
Input: A graph G, a layout β of G, a direction assignment h to the vertices of G.
Output: A layout β∗, and a reply accept or reject.

while there is an edge uv in G satisfying one of the given patterns in Figure 1 do
execute the corresponding operation on edge uv with input (β, h) and output
(β∗, h∗); β =def β∗; h =def h∗;

end-while
accept;

We should mention that whenever a reject is executed, the algorithm ter-
minates with output reject, and the consecutive instructions are not executed.
Assume that u ≺β v. We describe the operation MoveAttempt left vertex to right.
(MoveAttempt right vertex to left is symmetric and defined analogously.)

Operation MoveAttempt left vertex to right
Input: A graph G, a layout β and a direction assignment h on G, two adjacent vertices
u, v with distance more than k in β that satisfy the condition of (Os4) in Figure 1.
Output: A layout β∗ and a direction assignment h∗ on G, or a reply reject.

if there is no vertex of the color class of v between u and v in β then
reject

else
let w be the closest vertex to the right of u belonging to the color class of v;
if h(w) /∈ {←, ←→} then

reject
else

if all vertices between u and w in β have symbol → or ←→ in h then
h∗ =def h;
for every vertex x between u and w in β do h∗(x) =def → end-for
h∗(w) =def ←;
β∗ =def the layout obtained from β by moving u one position closer to v;

else
reject

end-if
end-if

end-if

Since this operation is invoked, u has symbol → and v has · or →. If there
is a vertex between u and v belonging to the color class of v then u can be
moved one position closer to v if the symbols of vertices between u and w allow

Bandwidth of Bipartite Permutation Graphs 223

this, otherwise not. Let w be a vertex of the color class of v that is to the right
of u and closest to u of all such vertices. Moving u one position closer to v is
only possible if w has symbol ← or ←→ , and all vertices between u and w have
symbol → or ←→ .

By Lemma 1 and the description of the algorithm, it follows that if the input
layout to Algorithm MoveRepair is normalized then the layout produced after
each single operation is also normalized. It is important to note that whenever
a vertex is moved in one direction, its direction symbol is fixed to indicate this
direction, and it is not allowed to move in the other direction during the same
execution of Algorithm MoveRepair.

A bad situation would occur if an edge of distance more than k between its
endpoints had on both its endpoints “inward” arrows or ←→ , which would give
several possibilities to repair this edge and too many possibilities in total. We
will ensure that this situation never occurs. We say that (β, h) has the outward
arrows property if the following is true for every edge uv of G with u ≺β v:
if dβ(u, v) > k then h(u) ∈ {·, ←} or h(v) ∈ {·, →}. Observe that the rules of
Algorithm MoveRepair apply precisely to those edges. Algorithm MoveRepair
will always be called with input that has the outward arrows property. With the
following two lemmas we show that if (β, h) has the outward arrows property
then Algorithm MoveRepair correctly decides whether Δ(β, h) is empty.

Lemma 2. Let G = (A, B, E) be a connected bipartite permutation graph, and
let (σA, σB) be a strong ordering for G. Let k ≥ 0. Let β be a normalized layout
for G, and let h be a direction assignment for G that has the outward arrows prop-
erty. Then each of the layout-assignment pairs generated throughout Algorithm
MoveRepair has the outward arrows property, and if Algorithm MoveRepair ac-
cepts input (β, h) and outputs β∗ then β∗ ∈ Δ(β, h).

Lemma 3. Let G = (A, B, E) be a connected bipartite permutation graph, and
let (σA, σB) be a strong ordering for G. Let β be a normalized layout for G and let
h be a direction assignment for G. If Algorithm MoveRepair rejects input (β, h)
then Δ(β, h) is empty.

Proof. To prove the lemma, we assume that the algorithm rejects but Δ(β, h) is
non-empty. Let (β, h)=(β0, h0), . . . , (βl, hl) be the layout-assignment pairs gen-
erated by the algorithm, where (βi, hi) is the result after algorithm step i. In
step l + 1, the algorithm decides rejection. We first show properties relating as-
signed direction symbols and vertex positions in layouts in Δ(β, h).

Claim. Let Δ(β, h) be non-empty. For every i ∈ {0, . . . , l} and every vertex x
of G, the following holds:
– if hi(x) = · then γ−1(x) = β−1

i (x) for every γ ∈ Δ(β, h)
– if hi(x) = ← then γ−1(x) ≤ β−1

i (x) for every γ ∈ Δ(β, h)
– if hi(x) = → then γ−1(x) ≥ β−1

i (x) for every γ ∈ Δ(β, h).

Proof of the claim. Let γ be a layout in Δ(β, h). We show by induction on
i that the claim holds for γ. The claim holds for i = 0 by the definition of

224 P. Heggernes, D. Kratsch, and D.Meister

Δ(β, h). Let the claim be true for (βi−1, hi−1) for some i > 0. Let (βi, hi) be
obtained from (βi−1, hi−1) by application of operation o. For all vertices x such
that β−1

i (x) = β−1
i−1(x) and hi(x) = hi−1(x), the claim holds for (βi, hi) by

the induction hypothesis. For the other vertices, we distinguish between cases
according to o. Let uv be the edge to which o is applied, u ≺βi−1 v. Let o be one
of the two operations of (Os2). Then, βi = βi−1 and hi differs from hi−1 only
for u. By definition, hi−1(v) ∈ {·, →}, and γ−1(v) ≥ β−1

i−1(v) by the induction
hypothesis. Since dβi−1(u, v) > k, u must be further to the right in γ, i.e.,
γ−1(u) ≥ β−1

i−1(u). Since hi(u) = →, the claim holds for this case. Analogously,
it is proved that the claim holds in case o is an operation from (Os3). Let o be
from (Os4) or (Os5). Since both cases are symmetric, we consider an operation
from (Os4). Since (βi, hi) is defined, u is moved one position closer to v. Since
γ−1(v) ≥ β−1

i−1(v) by induction hypothesis and dβi−1(u, v) > k by the assumption
about application of o, γ−1(u) > β−1

i−1(u). And since β−1
i (u) = β−1

i−1(u) + 1 and
hi(u) = →, we conclude that the claim holds for u. Let w be the closest vertex
to the right of u in βi−1 from the color class of v. Remember that w ≺βi−1 v.
The only further vertices that change position or direction symbol in (βi, hi)
with respect to (βi−1, hi−1) are w and the vertices between u and w in βi−1.
Since γ is a normalized layout, we conclude that w cannot be to the right of
u in γ; otherwise, γ−1(u) ≤ β−1

i−1(u), which contradicts the conclusion above.
So, γ−1(w) ≤ β−1

i−1(u) = β−1
i (w), and the claim holds for w with hi(w) = ←.

Correctness for the vertices between u and w in βi−1 then immediately follows
from the restriction of γ to a normalized layout and the correctness for u, since
all these vertices are assigned symbol → by hi. �
Now we continue the proof of Lemma 3. Let uv be the edge which is considered by
the algorithm in step l +1. Let u ≺βl

v. Since the algorithm rejects in step l +1,
the executed operation is one of the set (Os1) or (Os4–5). We first consider
set (Os1). According to the definition of (Os1) and the claim, γ−1(u) ≤ β−1

l (u)
and β−1

l (v) ≤ γ−1(v) for all γ ∈ Δ(β, h). Since dβl
(u, v) > k, γ cannot be a k-

layout for G. Let the executed operation now be from set (Os4). The case (Os5)

is analogous. According to the definition of MoveAttempt left vertex to right,
we have to distinguish between three cases which can imply rejection. Let w
be the closest vertex to u from the color class of v to the right of u in βl.
Note that w exists. If w = v then all vertices between u and v in βl are from
the color class of u, and u can be closer to v only by moving v closer to u.
This, however, is not possible for a layout in Δ(β, h) and hl(v) = →. So, let
w ≺βl

v. Let hl(w) ∈ {·, →}. Then, β−1
l (w) ≤ γ−1(w) for all γ ∈ Δ(β, h). By

definition of normalized layouts and since there are only vertices from the color
class of u between u and w in βl, it follows that γ−1(u) ≤ β−1

l (u), which means
γ−1(u) = β−1

l (u) according to the claim and with hl(u) = →. This, however,
is not possible for layouts in Δ(β, h). Finally, let x be a vertex between u and
w in βl and let hl(x) ∈ {·, ←}. This particularly means that x ≺γ w for all
γ ∈ Δ(β, h). We conclude like in the previous case that γ−1(u) = β−1

l (u) for
all γ ∈ Δ(β, h), which is a contradiction to γ being a k-layout for G. Since

Bandwidth of Bipartite Permutation Graphs 225

we showed contradictions for every possible case, Δ(β, h) cannot be non-empty.
This completes the proof of Lemma 3.

Theorem 3. There is an algorithm that can be implemented to run in time
O(kn) on normalized layouts of connected bipartite permutation graphs for every
k ≥ 1 and simulates a possible computation of algorithm MoveRepair.

Theorem 4. Let G = (A, B, E) be a connected bipartite permutation graph, and
let (σA, σB) be a strong ordering for G. Let k ≥ 0. Assume that the following
holds:

(A1) A = {a1, . . . , as} and B = {b1, . . . , bt} where a1 ≺σA · · · ≺σA as and
b1 ≺σB · · · ≺σB bt.

(A2) bq is a neighbor of as.
(A3) r ∈ {1, . . . , s}.

Then, given a normalized k-layout for G, there is a polynomial-time algorithm
that decides whether there is a normalized k-layout for G such that bq is to the
right of ar. In the positive case, the algorithm outputs such a layout.

Theorem 5. Let G = (A, B, E) be a connected bipartite permutation graph, and
let (σA, σB) be a strong ordering for G. Let k ≥ 0. Assume that the following
holds:

(A1) A = {a1, . . . , as, as+1} and B = {b1, . . . , bt} where a1 ≺σA · · · ≺σA as+1

and b1 ≺σB · · · ≺σB bt.
(A2) N(as+1) ⊆ N(as).
(A3) bp is a neighbor of as+1, where p ≥ 2.

Then, given a normalized k-layout for G−as+1, there is a polynomial-time algo-
rithm that decides whether there is a normalized k-layout for G such that as+1

is between bp−1 and bp. In the positive case, the algorithm outputs such a layout.

5 A Polynomial-Time Algorithm for Computing the
Bandwidth of Bipartite Permutation Graphs

Our main algorithm, called BPG-Bandwidth, is presented on the next page.

Lemma 4. Let G = (A, B, E) be a connected bipartite permutation graph, and
let (σA, σB) be a strong ordering for G. Let k ≥ 0. Then, BPG-Bandwidth on
input G, (σA, σB) and k accepts if and only if bw(G) ≤ k. In the accepting case,
the output layout is a k-layout for G.

Theorem 6. There is an algorithm with running time O(n4 log n) that com-
putes the bandwidth of a bipartite permutation graph and outputs a corresponding
optimal layout.

226 P. Heggernes, D. Kratsch, and D.Meister

Algorithm BPG-Bandwidth (Bipartite Permutation Graphs Bandwidth)
Input: A connected bipartite permutation graph G = (A, B,E), a strong order-
ing (σA, σB) for G and an integer k.
Output: A reply accept and a k-layout β for G if bw(G) ≤ k, or a reply reject if
bw(G) > k.

let A = {a1, . . . , as} and B = {b1, . . . , bt} where a1 ≺σA
· · · ≺σA

as and b1 ≺σB
· · · ≺σB

bt;
if |N(a1)| > 2k then

reject; stop;
end-if
let β be a normalized k-layout for G1;
for i = 2 to s do

let δ be a normalized k-layout for G[N [ai] \ V (Gi−1)] with ai leftmost possible;
let δ′ be a normalized k-layout for G[N(ai) \ V (Gi−1)];
β′ =def β ◦ δ;
if β′ is a k-layout for Gi then

β =def β′;
goto the next iteration of main for-loop;

else
let b be the leftmost neighbor of ai in β′;
if there are less than dβ′(ai, b) − k A-vertices between ai and b then

reject; stop;
else

let a be the (dβ′(ai, b) − k)th A-vertex closest to b between b and ai in β′;
(1) if there is a normalized k-layout β∗ for Gi−1 in which b appears to the right of a then

β =def β∗ ◦ δ; goto the next iteration of main for-loop (*);
end-if

end-if
end-if
for each of the k last B-vertices bp in β do

(2) if there is a normalized k-layout β∗ for Gi−1+ai where ai appears between bp−1 and bp then
β′ =def β∗ ◦ δ′;
if the distance between ai and its rightmost neighbor in β′ is at most k then

β =def β′;
goto the next iteration of main for-loop;

end-if
end-if

end-for
reject; stop;

end-for
accept;

We use Theorem 4 to decide condition (1). Note that ai is adjacent to b in
this case. We use Theorem 5 to decide condition (2).

Acknowledgments

We would like to thank Fedor V. Fomin and Saket Saurabh for useful discussions
on the importance of the bandwidth problem.

References

1. Assmann, S.F., Peck, G.W., Sys�lo, M.M., Zak, J.: The bandwidth of caterpillars with
hairs of length 1 and 2. SIAM J. Algebraic and Discrete Methods 2, 387–393 (1981)

2. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the
bandwidth problem. Technical report, University of Bonn (1997)

Bandwidth of Bipartite Permutation Graphs 227

3. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-Definite Relaxations for Min-
imum Bandwidth and other Vertex-Ordering Problems. In: Proceedings of STOC
1998, pp. 100–105. ACM, New York (1998)

4. Bodlaender, H.L., Fellows, M.R., Hallet, M.T.: Beyond NP-completeness for prob-
lems of bounded width (extended abstract): hardness for the W hierarchy. In:
Proceedings of STOC 1994, pp. 449–458. ACM, New York (1994)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

6. Feige, U.: Approximating the Bandwidth via Volume Respecting Embeddings. In:
Proceedings of STOC 1998, pp. 90–99. ACM, New York (1998)

7. Feige, U., Talwar, K.: Approximating the Bandwidth of Caterpillars. In: Chekuri,
C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM
2005. LNCS, vol. 3624, pp. 62–73. Springer, Heidelberg (2005)

8. Fishburn, P., Tanenbaum, P., Trenk, A.: Linear discrepancy and bandwidth. Or-
der 18, 237–245 (2001)

9. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1981)

10. Gupta, A.: Improved bandwidth approximation for trees. In: Proceedings of SODA
2000, pp. 788–793. ACM, SIAM (2000)

11. Haralambides, J., Makedon, F., Monien, B.: Bandwidth Minimization: An Approx-
imation Algorithm for Caterpillars. Mathematical Systems Theory 24(3), 169–177
(1991)

12. Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs
in polynomial time. In: Reports in Informatics, University of Bergen, Norway,
vol. 356 (2007)

13. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM
J. Disc. Math. 3, 373–375 (1990)

14. Kloks, T., Kratsch, D., Müller, H.: Bandwidth of chain graphs. Information
Processing Letters 68, 313–315 (1998)

15. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for AT-free
graphs. Journal of Algorithms 32, 41–57 (1999)

16. Meister, D.: Recognition and computation of minimal triangulations for AT-free
claw-free and co-comparability graphs. Disc. Appl. Math. 146, 193–218 (2005)

17. Monien, B.: The bandwidth minimization problem with hair length 3 is NP-
complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)

18. Papadimitriou, C.: The NP-completeness of the bandwidth minimization problem.
Computing 16, 263–270 (1976)

19. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Disc. Appl.
Math. 18, 279–292 (1987)

20. Unger, W.: The Complexity of the Approximation of the Bandwidth Problem. In:
Proceedings of FOCS 1998, pp. 82–91. IEEE, Los Alamitos (1998)

21. Yan, J.H.: The bandwidth problem in cographs. Tamsui Oxf. J. Math. Sci. 13,
31–36 (1997)

The Online Transportation Problem: On the

Exponential Boost of One Extra Server�

Christine Chung, Kirk Pruhs, and Patchrawat Uthaisombut

University of Pittsburgh
{chung,kirk,utp}@cs.pitt.edu

Abstract. We present a poly-log-competitive deterministic online algo-
rithm for the online transportation problem on hierarchically separated
trees when the online algorithm has one extra server per site. Using met-
ric embedding results in the literature, one can then obtain a poly-log-
competitive randomized online algorithm for the online transportation
on an arbitrary metric space when the online algorithm has one extra
server per site.

1 Introduction

The setting for the online transportation problem is a collection of k server sites
located in some metric space. Points in the metric space, which represent requests
for service, arrive online over time. Server site j has a fixed capacity Bj specifying
the number of requests that can be handled by site j. After each request arrives,
the online algorithm must irrevocably match that request to a single server site
that has not yet reached its capacity. Conceptually it is convenient to think of Bj

as the number of servers at site j, and one of these servers traveling to a request
that is assigned to site j. The objective is to minimize the total (or equivalently
average) distance between the requests and their assigned server sites.

If the locations of the requests are known a priori, then this is the standard
offline transportation problem [9,11]. Many of the applications of the transporta-
tion problem are naturally online problems. We give two examples here. In the
first example, the server sites could be fire stations, the capacity of a fire station
could be the number of fire trucks stationed there, and the requests could be the
location of a fire. The objective would then be to minimize the average distance
that fire trucks travel. In the second example, the server sites could be schools,
the capacity of a school could be the number of students that the school can
handle, and the requests could be the locations of new students that move to the
school district. The objective would then be to minimize the average distance
between students and their assigned schools.

1.1 Previous Results

The online weighted matching problem is a special case of the online trans-
portation problem in which each server site has unit capacity. The competitive
� Supported in part by NSF grants CNS-0325353, CCF-0514058 and IIS-0534531.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 228–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Online Transportation Problem: On the Exponential Boost 229

ratio of every deterministic algorithm for online matching, and hence for online
transportation, is at least 2k − 1 [6,10]. The metric space in the lower bound
instances that establish this bound is a star. In a star there is a unique root
point that is a unit distance from all other points, and all pairs of non-center
points, called leaves, are distance two from each other. [6,10] give a (2k − 1)-
competitive algorithm, called Permutation in [6], for online matching. However,
the competitive ratio of Permutation for the more general online transportation
problem is Θ(B), where B =

∑k
i=1 Bi is the aggregate capacities of the server

sites [7]. In contrast, [6] shows that the competitive ratio of the natural greedy
algorithm, that always matches each request to an arbitrary nearest server site
with residual capacity, is 2k − 1 for online transportation.

The fact that the optimal deterministic competitive ratios are so high promp-
ted [8] to consider resource augmentation analysis for online transportation. Re-
source augmentation analysis compares the performance of an online algorithm
to the optimal solution with less resources. In the context of online transporta-
tion, the resource is the number of servers per site. So an s-server c-competitive
algorithm A guarantees that if A has s · Bj servers at each site j then the
cost of A’s assignment is at most c times the cost of the optimal assignment
assuming Bj servers at each site j. [6] show that the greedy algorithm is 2-
server Θ(min(k, log B))-competitive for online transportation. [8] then considers
a slightly modified greedy algorithm, that in the cases of approximate ties for the
nearest server site, picks a server site that has been assigned the least requests so
far. [8] show that this modified greedy algorithm is 2-server O(1)-competitive for
online transportation. One can also see from the analyses in [8] that the greedy
algorithm is 3-server O(1)-competitive for online transportation.

[3,12] consider randomized algorithms for the online matching problem against
an oblivious adversary that must specify the input a priori. In particular, [3,12]
consider the simple randomized greedy algorithm that services each request with
an unused server site picked uniformly at random from the closest server sites. It
is easy to see that the randomized greedy algorithm is O(log k)-competitive for
online matching in a star. [3,12] extend this analysis to show that randomized
greedy is O(log k)-competitive in (log k)-Hierarchically Separated Trees (log k-
HST’s). [1,4] show that for every metric space, there exists a probability distri-
bution over log k-HST’s, for which the expected distance between any pair of
points in a randomly drawn log k-HST is at most O(log2 k) times the distance
between this pair of points in the metric space. Combining these two results
gives an O(log3 k)-competitive randomized algorithm (note that this algorithm
is not randomized greedy) against an oblivious adversary for online matching on
an arbitrary metric space.

For a summary of results for online matching problems, and related online
network optimization problems, see [7].

1.2 Our Results

One motivation for considering resource augmentation analysis is that it allows
one to show that an algorithm is competitive, without additional resources, for

230 C. Chung, K. Pruhs, and P. Uthaisombut

instances where the optimal solution is not so sensitive to changes in the number
of available servers per site. More precisely, an s-server c-competitive algorithm
would be c ·d-competitive on instances where a factor of s change in the number
of servers per site does not change the optimal cost by more than a factor of d.
The smallest resource augmentation considered in [8] was doubling the number
of servers per site. Our main aim here is consider the effect of more modest
resource augmentation. More precisely, we consider the effect of adding just one
additional server per site. We will say that an online algorithm A is +1-server
c-competitive if A guarantees that if A has Bj + 1 servers at each site j then
the cost of A’s assignment is at most c times the cost of the optimal assignment
assuming Bj servers at each site j. Then a +1-server c-competitive algorithm
would be c · d-competitive on instances where adding one server per site does
not change the optimal cost by more than a factor of d.

In this paper we consider a natural deterministic online algorithm that we call
Balancing of Displaced Servers (BODS). Intuitively, BODS prefers using server
sites that have serviced less requests (of positive cost), as did the modified greedy
algorithm in [8], but for BODS this preference is only relevant in the case of
exact ties.
BODS Description: BODS always assigns the request to a nearest server with
residual capacity. BODS breaks ties among closest servers by assigning the re-
quest to a server site that has been to date assigned the least number of requests
with positive cost. (Note that this is not the same as assigning the request to
the site that has serviced the least requests so far, since a request on site j costs
nothing if assigned to site j.) If a tie remains, BODS uses the first server site
with residual capacity in some arbitrary ordering of the server sites.

From what is known to date about online transportation and matching, the
hardest metric space for the online algorithm is always the star. The results
in [3,12] can be viewed as a reduction from a general metric space to the star
via HST’s. So we begin by first considering the star metric space. We show
BODS is +1-server O(log k)-competitive for online transportation in a star. We
found it surprising that such modest resource augmentation drops the compet-
itive ratio so dramatically, from linear in k to logarithmic in k. We then show
that BODS is essentially optimally competitive. That is, we show that there
is no +1-server o(log k)-competitive deterministic online algorithm for online
transportation on a star. We then generalize our analysis to show that BODS
is +1-server O(log k)-competitive for online transportation on a log k-HST. Our
proof proceeds by induction on the height of the HST, following the same general
structure as the proof in [12]. However the introduction of resource augmentation
adds some technical difficulties. For example, when the analysis in [12] consid-
ers the subinstances on the subtrees of the root, we now have to be concerned
about the possibility that in some of these subinstances there are more requests
than servers available to the adversary, and thus there is no feasible optimal
solution without resource augmentation. Using the results in [1,4], we obtain a
+1-server O(log3 k)-competitive randomized algorithm for online transportation
for an arbitrary metric space against an oblivious adversary.

The Online Transportation Problem: On the Exponential Boost 231

Our results extend those in [3,12] in two ways: (1) For arbitrary metric spaces,
our analysis holds for the more general online transportation, not just for the
special case of online matching, and (2) for stars and HST’s, we obtain a deter-
ministic bound on the competitive ratio instead of a randomized bound against
an oblivious adversary. Of course these extensions come at the cost of requiring
modest resource augmentation.

2 Online Transportation on a Star

In this section, we assume that the k server sites are at the leaves of a star. We
show that BODS is +1-server O(log k)-competitive on a star, and that this is
essentially the best possible result that one can obtain. We start with the lower
bound.

When a request arrives at a leaf, and a server from the leaf site is assigned
to the request, we refer to it as a local service or local assignment. If a request
arrives at a leaf site and a server from a different leaf site is assigned to the
request, we call it a remote service or remote assignment. Thus, all root requests
cost 1 to service, a leaf request serviced locally costs 0, and a leaf request serviced
remotely costs 2. A request is called an excess request if it arrives at a server site
s after Bs requests have already arrived at site s. Hence, the only requests that
optimal will pay for are those that arrive at the root and those that are excess
requests. We define CA(I) to be the cost of algorithm A on input I.

2.1 The General Lower Bound

Theorem 1. There is no deterministic +1-server o(log k)-competitive algorithm
for online transportation on a uniform star with k leaves.

Proof. Consider the input instance where for all sites j, for 1 ≤ j ≤ k, we have
Bj = b. Assume that the online algorithm has e extra servers per site (so we will
eventually use e = 1 to prove the statement of the theorem). Let x be an integer
value to be set later. First, xb requests arrive at the root node, then continue
to arrive b at a time at the next leaf with the fewest remaining available servers
until a total of B = bk requests have been made. Call each set of b requests
made from a leaf node a hit.

First note that the cost of the optimal offline solution COPT is always xb
since it knows the request sequence in advance and for the requests from each
hit it will reserve local servers from that site. So it services the xb root requests
using the remaining servers that are not already reserved. Then it will be able
to service requests from each hit locally. The adversary’s strategy finds a value
for x that maximizes the competitive ratio.

Since xb requests are initially made from the root node, and there are bk total
requests, there are k−x total hits. Let f(i) for all 1 ≤ i ≤ k−x be the maximum
(over all un-hit server sites) after hit i of the number of servers that have been
used at any site by the online algorithm. Define f(0) to be the maximum number

232 C. Chung, K. Pruhs, and P. Uthaisombut

of servers used at any site by the online algorithm for the initial xb root requests.
Define c(i) as the number of requests in hit i that are serviced remotely (at a cost
of 2) by the online algorithm. By definition of f(i) and the adversarial strategy
outlined above, we know that c(i) = f(i − 1) − e for 1 ≤ i ≤ k − x, where we
subtract e from f(i−1) because there are b+e servers at each of the server sites
allowing us to service e extra requests locally.

After hit i, for 1 ≤ i ≤ k − x, xb + ib total requests have been made, whereas
at most i(b + e) have been used at the i sites that have been hit so far. That
leaves at least (x + i)b − i(b + e) servers missing at the remaining k − i unhit
sites. So, by the pigeon-hole principle, for 1 ≤ i ≤ k − x,

f(i) ≥ (x + i)b − i(b + e)
k − i

=
xb − ie

k − i
.

By the definition of c(i), the total cost CON of the solution returned by any
online algorithm ON is therefore:

CON = xb + 2
k−x∑

i=1

c(i) = xb + 2
k−x∑

i=1

(f(i − 1) − e)

≥ xb + 2
k−x−1∑

i=0

(
xb − ie

k − i
− e

)

= xb + 2(xb − ek)(Hk − Hx) .

Thus,
CON

COPT
≥ xb + 2(xb − ek)(Hk − Hx)

xb
≥ 1 + 2

(

1 − ek

xb

) (

ln
k + 1

x
− 1

)

.

By choosing x = 1, we get CON

COP T
≥ ln k. ��

2.2 BODS on the Star

A live site is a site with at least one server still unassigned. A dead site is a site
whose servers have all been assigned, so there are no more available at that site
to service any future requests. A server is called displaced if it has been assigned
to a remote request. We define a restricted instance to be one where: (A) no
more than Bj requests arrive at server site j, (B) no request is serviced locally
by BODS, and (C) B requests arrive. We now show, without loss of generality,
that we may restrict our analysis of BODS to restricted instances.

Lemma 1. If there is an instance I for which the +1-server competitive ratio of
BODS is at least c, then there is a restricted instance I ′ for which the +1-server
competitive ratio of BODS is at least c.

Proof. We consider the restrictions in order. (A) Consider request number Bj +i
to site j. If i > 1 then this request in I ′ will appear at the root instead of at j. If
i = 1 and Bj > 0 then we decrement the value of Bj in I ′ by 1, and there is no
corresponding request in I ′. If i = 1 and Bj = 0 then remove this server site and
the request in I ′. (B) Let q be a leaf request in I that arrives at a site j and is

The Online Transportation Problem: On the Exponential Boost 233

serviced locally by BODS. We create I ′ by removing q from I, and decrementing
Bj by 1. (C) For any instance with fewer than B requests, for each unassigned
server in the optimal solution another request can arrive at its site. ��
Theorem 2. BODS is +1-server O(log k)-competitive for online transportation
on a star with k leaves.

Proof. By Lemma 1, we need only consider restricted inputs. For notational
convenience, we relabel the sites based on the number of servers at each site as
well as tie-breaking order. In particular, we label the sites so that B1 ≤ B2 ≤
... ≤ Bk. Furthermore, we label them such that if Bj = Bj+1, then site j comes
earlier than site j + 1 in the tie-breaking order. Let ei be the number of servers
that site i is augmented by in our online setting for BODS. Eventually we will set
each ei to one, but we believe that it is instructive to leave the ei’s as variables in
the proof. The only properties we need of the ei’s is that they are non-decreasing,
that is, ei ≤ ei+1, and that if Bi = Bi+1 then ei = ei+1.

We claim that the server sites die in order of increasing site number. To see
why, remember that each request in a restricted input is remotely serviced by
BODS. Thus the first requests must be root requests, and BODS will choose
to assign servers from server sites in a round robin fashion. Root requests will
continue until site 1 is dead. We know that site 1 will be the first to die since we
have numbered the sites in non-decreasing order of the number of servers at each
site, and in the case of sites with the same number of servers, we have taken
care to assign lower numbers to sites that are earlier in BODS’s tie-breaking
order. After site 1 is dead, again since BODS services all requests remotely, all
successive requests must arrive at either site 1 or the root until site 2 is dead,
and so on.

Define round 0 to be the sequence of requests from the first request up until
site 1 is dead. For i ≥ 1, define round i to be the sequence of requests after round
i − 1 up until site i + 1 is dead, or until a total of B requests have been made,
whichever comes first. For i ≥ 0, let ri be the number of requests in round i.
Note that round 0 consists only of root requests, whereas for i ≥ 1, round i may
consist of both root requests and leaf requests at dead sites.

Let m be the round in which the Bth request appears. Note that 1 ≤ m ≤
k − 1 since site m + 1 dies in round m and there are only k server sites. For
j = 1 . . .m, let xj be the number of root requests in round j. Note that x0 = r0

and 0 ≤ xi ≤ ri for 1 ≤ i ≤ m. Recall that until the end of round i, requests are
made only at the root and the first i dead sites. The number of root requests
through round i is

∑i
j=1 xj . Since the input is restricted, there are at most Bj

requests on site j. Thus, the number of leaf requests through round i is at most∑i
j=1 Bj . So for 1 ≤ i ≤ m,

i∑

j=1

rj ≤
i∑

j=1

(Bj + xj) . (1)

Note that r0 +
∑m

j=1 xj is the number of total root requests in a restricted
input. In a restricted input the optimal solution only pays for root requests.

234 C. Chung, K. Pruhs, and P. Uthaisombut

Hence,

COPT (I) = r0 +
m∑

j=1

xj . (2)

Since BODS pays at most 2 to service a request, then

CBODS(I) ≤ 2B ≤ 2

⎛

⎝r0 +
m∑

j=1

xj +
m∑

j=1

Bj

⎞

⎠ . (3)

We now formulate the number of requests in each round. Let α1 be the position
of site 1 in BODS’s tie-breaking order on the sites 1 through k. Since no site
has fewer than B1 + e1 servers, and there are k sites, there must be r0 = e1k +
(B1 − 1)k + α1 requests before site 1 is dead. To see this, note that a total of
e1 servers at each site are assigned after the first e1k requests, and B1 − 1 more
servers are assigned from each site after the next (B1 − 1)k requests, and the
B1 + e1th server of site 1 is assigned after another α1 requests.

Similarly, since at the beginning of round i, only k − i sites are alive, let
αi+1 ≤ k − i be the position of site i + 1 in BODS’s tie-breaking order on the
remaining sites i + 1 through k. The number of requests that are in round i is
then ri = (k − i + 1 − αi) + (Bi+1 + ei+1 − (Bi + ei) − 1)(k − i) + αi+1, for
1 ≤ i ≤ m. To see why, consider two cases.
Case 1 (Bi+1 > Bi). We need k − i + 1 − αi requests to finish clearing the
Bi + eith server at each of the remaining k − i + 1 − αi sites. We then need
another (Bi+1 + ei+1 − (Bi + ei)− 1)(k − i) requests to use up all but one server
at the site(s) with Bi+1 + ei+1 servers. Finally, we need αi+1 more requests to
reach the Bi+1 + ei+1th server of site i + 1 in the tie-breaking order.
Case 2 (Bi+1 = Bi). The k − i + 1 − αi requests will finish clearing off the
Bi+ei = Bi+1+ei+1th server at the remaining k−i+1−αi sites. Then reverting
k − i requests brings us to the point where only the first Bi + ei = Bi+1 + ei+1th
server at any site was used (this site may or may not be site 1). So we need
αi+1 more requests which, by definition of αi+1, bring us to the point where the
Bi+1 + ei+1th server of site i + 1 is used.

Thus, for 1 ≤ i ≤ m,
∑i

j=1 rj can be written
∑i

j=1 ((k − j + 1 − αj) + (Bj+1 + ej+1 − (Bj + ej) − 1)(k − j) + αj+1)
= k − α1 + (Bi+1 + ei+1)(k − i) − (B1 + e1)k +

∑i
j=1(Bj + ej) − (k − i) + αi+1.

Substituting into (1) then solving for Bi+1 gives us for all i where 1 ≤ i ≤ m:

Bi+1 ≤
B1k +

∑i
j=1 xj + α1 − αi+1 − i

k − i
+

e1k −
∑i

j=1 ej − ei+1(k − i)
k − i

≤
B1k +

∑i
j=1 xj

k − i
+ 1 +

e1k −
∑i

j=1 ej − ei+1(k − i)
k − i

because αi+1 ≥ 1

≤
B1k +

∑i
j=1 xj

k − i
+ 1 + e1 − ei+1 because e1 ≤ e2 ≤ ... ≤ ek

≤
B1k +

∑i
j=1 xj

k − i
+ 1 . (4)

The Online Transportation Problem: On the Exponential Boost 235

By (3) and (4) we have

CBODS(I) ≤ 2

⎛

⎝r0 +
m∑

j=1

xj +
m−1∑

j=0

B1k +
∑j

i=1 xi

k − j
+

m−1∑

j=0

1

⎞

⎠

≤ 2

⎛

⎝r0 +
m∑

j=1

xj +

⎛

⎝B1k +
m−1∑

j=1

xj

⎞

⎠
m−1∑

j=0

1
k − j

+ m

⎞

⎠

≤ 2
(

COPT (I) + COPT (I) ln
k

k − m
+ COPT (I)

)

by (2).

Finally, since m ≤ k − 1, we have CBODS(I) ≤ (2 lnk + 4)COPT (I). ��

The following lemma will be useful in our analysis of BODS on HST’s. The proof
mimics the proof of Theorem 2.

Lemma 2. In a star, the number of requests serviced remotely by BODS is at
most 2 ln k + 4 times the number of requests serviced remotely by any optimal
assignment with Bj servers per site.

3 Generalization to HSTs

We now generalize this result to one on hierarchically separated trees. The the-
orem and proof presented in this section are based on that of section 3 in [12].

Definition 1. An α-hierarchically separated tree (α-HST) is a rooted tree T =
(V, E) with a distance function on the edges such that (1) If two nodes are siblings
in the tree, they are both the same distance from their parent; (2) The distance
from a node to its parent is α times the distance of the node to its child; and (3)
All leaves are at the same level of the tree.

To enable us to analyze BODS when the metric space is an HST, we define a
variation of our original problem. The results we obtain on this variation will
translate back to the original problem. Let our original transportation problem
be referred to as TRN. Recall that in TRN the input request sequence was made
up of at most B requests, one request for each server that OPT has. We now
define the problem TRN2 to be the same as our original problem except for the
following modifications. The input request sequence may now have up to B + k
requests (the number of servers available to BODS). At any time, to service
a request, an algorithm may choose to pay a service fee instead of assigning a
server to the request. The cost of the service fee is defined to be the length of the
path from the request, to the root of the tree, to a leaf of the tree. For example,
if a request appears at the root of the tree, the service fee is equal to the root
to leaf distance in the HST. As another example, if a request appears at a leaf
of the tree, the service fee is equal to twice the root to leaf distance in the HST.

236 C. Chung, K. Pruhs, and P. Uthaisombut

We must now describe the algorithm BODS for this new problem. BODS will
always assign a server to a request, never choosing to pay the service fee. To
choose a server, BODS behaves exactly as described above.

Note that the service fee is always an upper bound on the cost of servicing
a request using a server. The service fee is set intentionally high to deter the
optimal offline algorithm from choosing to pay a service fee over assigning a
server to the request. Thus, we may assume that the optimal offline algorithm
chooses to pay the service fee for a request only when it runs out of servers.

Lemma 3. If BODS is +1-server c-competitive for TRN2, then BODS is +1-
server c-competitive for TRN.

Lemma 4. There exists a worst-case input instance I in TRN2 against BODS
in which OPT does not pay any service fees.

Theorem 3. BODS is +1-server (8 lnk + 18)-competitive for TRN2 when the
metric space is an α-HST T where α ≥ 4 lnk + 9, the server sites are at the
leaves of T , and the requests arrive at the leaves or at the root of T .

Proof. By Lemma 4, we need only consider input instances where there are at
most B requests.

The proof is by induction on the number of levels in T . The base case is the
uniform star metric, which we already proved in Theorem 2. For the inductive
step, we show that if the theorem is true for each subtree Si of T that is rooted
at child i of the root of T , 1 ≤ i ≤ z, then it must be true for T itself.

To be more precise, let H be the height of T , let S be any α-HST of height
h ≤ H − 1 with server sites at the leaves, and let CALG(S) be the cost of
running the algorithm ALG on any input sequence of requests at the leaves or
root of S. We assume that CBODS(S)/COPT (S) ≤ 8 lnk + 18 holds for any S,
and show that this assumption implies that for any α-HST T of height h + 1,
CBODS(T)/COPT (T) ≤ 8 ln k + 18.

Let δ be the distance from r, the root of T , to each of its children. Let
β =

∑H−1
i=1 1/αi, where H is the number of levels in T . Note that, (β + 1)δ is

the distance from r to a leaf of T and βδ is the distance from one of r’s children
to one of the leaves of T descendant from that child. Let m∗

i and mi be the
number of times that OPT and BODS (respectively) assigned servers in subtree
Si to requests that are not in Si. Let m∗ =

∑z
i=1 m∗

i and m =
∑z

i=1 mi. So m∗

and m are the number of servers that OPT and BODS, respectively, assign to
requests outside their subtrees. Let S+

i be the instance on subtree Si defined by
the servers of T in Si, and a subsequence of the requests of the input sequence
in T that consists of requests that are serviced by BODS using servers in Si,
where requests outside of Si are replaced by requests at the root of Si. Note that
there are mi replacements. Note that Si is an α-HST with depth H − 1. Let SB

i

be the instance on subtree Si obtained from S+
i by removing the mi requests at

the root of Si. It is the case that

CBODS(T) ≤
z∑

i=1

CBODS(S+
i) +

z∑

i=1

((β + 1)δ + δ)mi . (5)

The Online Transportation Problem: On the Exponential Boost 237

To justify this, first note that the second term of the right hand side reflects (for
each subtree) mi times the distance from the requests outside Si (at the leaves
of T) to the root r of T , then down to the root of Si. Also, remember that by
definition of BODS there are no requests for which BODS pays a service fee.
Thus, any request x is assigned by BODS to a server y. If server y is in subtree
Si, then x belongs to S+

i . If x appears in Si, the cost of servicing x is accounted
for in the i’th summand in the first summation. If x appears in another subtree
or at the root of T , then the cost of servicing x is accounted for in the i’th
summand in both the first and the second summations.

Let R = 8 ln k + 18. By the inductive hypothesis, we know for all 1 ≤ i ≤ z,

CBODS(S+
i) ≤ R · COPT (S+

i) . (6)

We can also observe that

COPT (S+
i) = COPT (SB

i) + βδmi . (7)

By (5), (6), (7), and the definition of m,

CBODS(T) ≤ R

z∑

i=1

COPT (SB
i) + (Rβδ + 2δ + βδ)m . (8)

Now all we have left to show is that the right hand side of (8) is less than or
equal to R · COPT (T).

We start by observing that

COPT (T) ≥
z∑

i=1

COPT (SB
i) + δm∗ . (9)

Let Rm = 2 lnk + 4. By our assumption that α ≥ 2Rm + 1, we have

β =
H−1∑

i=1

1
αi

≤ 1
1 − 1/α

− 1 =
1

α − 1
≤ 1

2Rm
. (10)

Note that R = 4Rm + 2. Using this fact along with (10), we have

R =
1
2
R + 2Rm + 1 ≥ 1

2
R(2Rmβ) + 2Rm + 2Rmβ ≥ Rm(Rβ + 2 + β) . (11)

We now need to relate the values m and m∗. Recall that BODS always services
requests as locally as possible. If we think of a request that is matched to a server
within its own subtree as a local assignment, we can reduce this input instance
on T to one on the uniform star, where the subtrees of T are the leaves of the
star. Since all inputs under consideration have at most B servers, this reduction
will be an instance of the problem from section 2. Therefore by Lemma 2, we
know that

m ≤ Rm · m∗ . (12)

By combining (8), (9), (11), and (12), we have CBODS(T) ≤ R ·COPT (T). ��

238 C. Chung, K. Pruhs, and P. Uthaisombut

Combining Theorem 3 with Lemma 3 gives us the following result.

Theorem 4. BODS is +1-server (8 ln k + 18)-competitive for TRN when the
metric space is an α-HST T where α ≥ 4 lnk + 9, the server sites are at the
leaves of the tree, and the requests arrive at the leaves of T .

4 Generalization to Any Metric Space

We are now ready to extend our results to any metric space that has k server
sites plus one server per site for the online algorithm. In this setting requests
may arrive at any point in the metric space, whether or not they are designated
server sites.

The new algorithm (GBODS) is as follows: first use the procedure given in
[4] to generate a random (4 lnk + 9)-HST, call it T , from the metric induced
on the k server sites. Then, whenever a request q arrives in the original metric
space, we find its nearest server site, and create a new request there, calling
it q′. Let Q = {q1, q2, . . . , qB} be the sequence of requests that arrive, and let
Q′ = {q′2, q′3, . . . , q′B} be the corresponding set of requests created at the server
sites nearest to the requests in Q. Let T (Q′) be the input instance on HST T
with request sequence Q′. We use BODS on T (Q′) to find an available server s′i
for each q′i in Q′. We then assign each server s′i to each original request qi in Q.

Fakcharoenphol et al [4] showed that any metric space of n points can be
approximated by a randomly generated α-HST where the points in the metric
will be at the leaves of the tree, and the expected distance between points in
the tree will be no more than α log n times their original distance. Applying this
fact along with our Theorem 4, and losing a constant factor due to applications
of the triangle inequality when mapping the solution of input T (Q′) back to the
points of Q in the original metric space, we have the following theorem.

Theorem 5. In expectation, for the online transportation problem, the algo-
rithm GBODS is +1-server O(log3 k)-competitive.

5 Conclusions

The interesting question that naturally arises from the results here is:

Is there a +1-server poly-log-competitive deterministic algorithm for on-
line transportation on an arbitrary metric space?

Intuitively the star is the hardest metric space, and the deterministic +1-server
O(log k)-competitiveness result for a star should extend to an arbitrary metric
space. But current metric embedding techniques do not seem sufficient to ad-
dress this question. One can obtain a poly-log-competitive deterministic offline
algorithm by deterministically generating a collection of HST’s, and then using
the tree that gives the best results [2]. But it is not clear how an online algorithm
should learn or construct the right metric embedding online as it sees requests.

The Online Transportation Problem: On the Exponential Boost 239

So it seems like the above question could well be a vehicle to extend the current
understanding of metric embeddings. We are aware of the result in [5] that gives
a deterministic online algorithm that uses a collection of HST’s and is poly-
log-competitive. In the algorithm in [5], log k different HST’s are generated a
priori, and then the online algorithm always uses an HST that is guaranteed to
approximate the distance between points that arrive online. This does not work
for online matching and online transportation because it essentially simulates
the greedy algorithm, which is not competitive in a general metric space.

Alternatively, if it somehow turned out that there is no +1-server poly-log-
competitive deterministic algorithm for online transportation on an arbitrary
metric space, then this would be interesting because it would be the first example
of an online matching/transportation problem where the hardest metric space
was not a star.

Acknowledgments. We thank Anupam Gupta for helpful discussions.

References

1. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: ACM Sympo-
sium on Theory of Computing, pp. 161–168 (1998)

2. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a fi-
nite metric by a small number of tree metrics. In: Symposium on Foundations of
Computer Science, p. 379 (1998)

3. Csaba, B., Pluhar, A.: A randomized algorithm for the on-line weighted bipartite
matching problem. Journal of Scheduling (to appear)

4. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences Special Issue
on STOC 2003 69(3), 485–497 (2004)

5. Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In: ACM-SIAM
Symposium on Discrete Algorithms, pp. 970–979 (2006)

6. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. Journal of Algo-
rithms 14(3), 478–488 (1993)

7. Kalyanasundaram, B., Pruhs, K.: On-line network optimization problems. In: De-
velopments from a June 1996 seminar on Online Algorithms, pp. 268–280. Springer,
Heidelberg (1998)

8. Kalyanasundaram, B., Pruhs, K.R.: The online transportation problem. SIAM
Journal of Discrete Mathematics 13(3), 370–383 (2000)

9. Kennington, J.L., Helgason, R.V.: Algorithms for Network Programming. John
Wiley & Sons, Inc., New York, NY, USA (1980)

10. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science 127(2), 255–267
(1994)

11. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
& Winston, New York (1976)

12. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for min-
imum metric bipartite matching. In: ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 954–959 (2006)

Average Rate Speed Scaling�

Nikhil Bansal1, David P. Bunde2, Ho-Leung Chan3, and Kirk Pruhs3

1 IBM T. J. Watson Research Center
nikhil@us.ibm.com

2 Computer Science Department, Knox College
dbunde@knox.edu

3 Computer Science Department, University of Pittsburgh
{hlchan,kirk}@cs.pitt.edu

Abstract. Speed scaling is a power management technique that involves
dynamically changing the speed of a processor. This gives rise to dual-
objective scheduling problems, where the operating system both wants
to conserve energy and optimize some Quality of Service (QoS) measure
of the resulting schedule. Yao, Demers, and Shenker [8] considered the
problem where the QoS constraint is deadline feasibility and the objective
is to minimize the energy used. They proposed an online speed scaling
algorithm Average Rate (AVR) that runs each job at a constant speed
between its release and its deadline. They showed that the competitive
ratio of AVR is at most (2α)α/2 if a processor running at speed s uses
power sα. We show the competitive ratio of AVR is at least ((2−δ)α)α/2,
where δ is a function of α that approaches zero as α approaches infinity.
This shows that the competitive analysis of AVR by Yao, Demers, and
Shenker is essentially tight, at least for large α. We also give an alterna-
tive proof that the competitive ratio of AVR is at most (2α)α/2 using a
potential function argument. We believe that this analysis is significantly
simpler and more elementary than the original analysis of AVR in [8].

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor
to be changed dynamically. Intel’s SpeedStep and AMD’s PowerNOW technolo-
gies allow the Windows XP operating system to dynamically change the speed
of such a processor to conserve energy. In this setting, the operating system must
not only have a job selection policy to determine which job to run, but also a speed
scaling policy to determine the speed at which the job will be run. In current
CMOS based processors, the speed satisfies the well-known cube-root-rule, that
the speed is approximately the cube root of the power. Energy consumption is
power integrated over time. The operating system is faced with a dual objective
optimization problem as it both wants to conserve energy, and optimize some
Quality of Service (QoS) measure of the resulting schedule.
� D.P. Bunde was supported in part by Howard Hughes Medical Institute grant

52005130. Ho-Leung Chan and Kirk Pruhs were supported in part by NSF grants
CNS-0325353, CCF-0514058 and IIS-0534531.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 240–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Average Rate Speed Scaling 241

The first theoretical worst-case study of speed scaling algorithms was in the
seminal paper [8] by Yao, Demers, and Shenker. Their QoS objective was deadline
feasibility and the objective was to minimize the energy used. More precisely,
each job i has a release time ri when it arrives in the system, a work requirement
wi, and a deadline di by which the job must be finished. If job i runs at constant
speed s, then it completes in wi/s units of time. In this setting, an optimal
job selection policy is Earliest Deadline First (EDF). They assumed a speed to
power function P (s) = sα, where α > 1 is some constant. If the cube-root rule
holds, then α = 3. Yao, Demers, and Shenker [8] showed that the optimal energy
feasible schedule is found by a simple greedy algorithm that we call YDS.

Yao, Demers, and Shenker [8] also proposed an online speed scaling algorithm,
Average Rate (AVR). Conceptually, AVR runs each job i at speed wi/(di − ri)
throughout interval [ri, di], independent of other jobs. This spreads the work
of each job as evenly over time as possible. By the convexity of the speed to
power function, this even spreading is energy optimal if the instance consists of
only one job. The speed of the processor at any time t is then just the sum of
the speeds of the jobs active at that time, that is

∑
i:t∈[ri,di]

wi

di−ri
. AVR is an

appealing speed scaling algorithm because in some sense it is perfectly fair to
all jobs, and each job runs as if it were the only job in the instance.

Yao, Demers, and Shenker [8] showed that the competitive ratio, with respect
to energy, of AVR is at least αα. They also showed that the competitive ratio
of AVR, with respect to energy, is at most (2α)α/2. We now outline this upper
bound competitive analysis of AVR. A job is defined to be of type A if the optimal
schedule is always ahead of AVR on this job. A job is defined to be of type B if
AVR is always ahead of the optimal schedule on this job. A schedule is bitonic if
every job is of type A or type B. [8] observes that there is a worst-case instance
that is bitonic, and that the competitive ratio of AVR is at most 2α−1 times
the competitive ratio of AVR on instances of jobs of just one type (A or B).
[8] then considers instances consisting only of type-A jobs. [8] then introduces
an auxiliary objective function that is related to, but is not exactly, the energy
used. In a somewhat involved reduction, [8] shows that with respect to this
auxiliary objective, there is a worst-case instance where the optimal schedule is
non-preemptive, each job starts when it is released, and the spans of the jobs
are nested (where the span of job i is the interval [ri, di]). When α = 2, [8] then
shows that for such instances, optimizing the auxiliary objective function can
be represented in terms of the eigenvalues of a particular tree-induced matrix,
and shows how to bound the largest eigenvalue for such tree-induced matrices.
[8] states that this argument can be readily generalized to an arbitrary α, and
using Hölder’s inequality, give a bound on the �p norm of a certain tree-induced
matrix that would replace the eigenvalue argument used in the α = 2 case.

So the natural question left open is, “What is the exact competitive ratio of
AVR?” Based on simulation results, [8] conjectured that the competitive ratio of
AVR is exactly αα. That is, that the lower bound in [8] is correct, and intuitively,
that AVR can not simultaneously be losing badly on both type-A and type-B
jobs. In the case that the cube-root rule holds, αα = 33 = 27 is the best known

242 N. Bansal et al.

competitive ratio for any online algorithm. If the conjecture from [8] was true,
this would be evidence in favor of adopting the AVR speed scaling policy. Not
only would AVR have the best known competitive ratio in the case that the
cube-root rule holds, but AVR is appealingly fair to all jobs.

Unfortunately, in section 4, we show that the upper bound on the competitive
ratio from [8] is essentially tight, at least for larger α. More precisely, we show
that AVR has competitive ratio at least ((2−δ)α)α/2, where δ is a function of α
that approaches zero as α approaches infinity. In the case obeying the cube-root
rule, we get a lower bound of approximately 48 on the competitive ratio of AVR.

In section 5, we give an alternative proof that the competitive ratio of AVR
is at most (2α)α/2. Our analysis uses a potential function argument. We believe
that this analysis is significantly simpler and more elementary than the original
analysis of AVR in [8]. Our competitive analysis of AVR branches off from the
analysis in [8] outlined above after the observation that the competitive ratio
of AVR is at most 2α−1 times the competitive ratio of AVR on jobs of just one
type. We give a potential function argument that AVR is αα-competitive on
type-A jobs. We include a complete analysis of AVR in this paper, including the
elements of the analysis from [8] that we use. In principle, verifying this analysis
requires only basic algebra, except that some basic calculus is used to verify the
positivity/negativity of certain polynomials over particular ranges.

2 Other Related Results

There are now enough speed scaling papers in the literature that it is not prac-
tical to survey all such papers here. We limit ourselves to those papers most
related to the results presented here.

Yao, Demers, and Shenker [8] also proposed another online speed scaling al-
gorithm, Optimal Available (OA). The algorithm OA runs at the optimal speed
(which can be computed using the YDS algorithm) assuming the current state
and that no more jobs will be released in the future. [8] showed that the com-
petitive ratio of OA is at least αα. Using a potential function analysis, Bansal,
Kimbrel, and Pruhs [2] showed that OA is actually αα-competitive.

Bansal, Kimbrel, and Pruhs [2] also introduced an online speed scaling al-
gorithm that we call BKP. Intuitively, BKP tries to mimic the offline YDS
schedule in some way. Formally, at time t BKP runs at speed e v(t) where
v(t) = maxt′>t

w(t,et−(e−1)t′,t′)
e(t′−t) and w(t, t1, t2) is the amount of work that has

release time at least t1, deadline at most t2, and that has already arrived by
time t. [2] showed that BKP is simultaneously O(1)-competitive for total en-
ergy, maximum temperature (assuming cooling obeys Fourier’s law), maximum
power, and maximum speed. Specifically, [2] showed that the competitive ratio
of BKP with respect to energy is at most 2(α/(α−1))αeα. With respect to max-
imum speed, [2] showed that BKP is e-competitive and that this competitive
ratio is optimal among randomized algorithms.

A naive implementation of YDS runs in time O(n3). This can be improved
to O(n2) if the intervals have a tree structure [4]. Li, Yao and Yao [5] gave an

Average Rate Speed Scaling 243

implementation that runs in O(n2 log n) time for the general case. For hard real-
time jobs with fixed priorities, Yun and Kim [9] showed that it is NP-hard to
compute a minimum-energy schedule. They also gave a fully polynomial time
approximation scheme for the problem. Kwon and Kim [3] gave a polynomial
time algorithm to schedule a processor with discrete speeds. Li and Yao [6] gave
an algorithm with running time O(d · n log n) where d is the number of speeds.

Albers, Müller, and Schmelzer [1] consider the problem of finding energy-
efficient deadline-feasible schedules on multiprocessors. [1] showed that the of-
fline problem is NP-hard, and gave O(1)-approximation algorithms. [1] also gave
online algorithms that are O(1)-competitive when job deadlines occur in the
same order as their release times.

3 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time ri, a deadline
di > ri, and work wi > 0. In the online version of the problem, the scheduler
learns about a job only at its release time; at this time, the scheduler also learns
the exact work requirement and the deadline of the job. We assume that time
is continuous. A schedule specifies for each time a job to be run and a speed at
which to run the job. The speed is the amount of work performed on the job
per unit time. A job with work w run at a constant speed s thus takes w

s time
to complete. More generally, the work done on a job during a time period is the
integral over that time period of the speed at which the job is run. A schedule
is feasible if for each job i, work at least wi is done on job i during [ri, di]. Note
that the times at which work is performed on job i do not have to be contiguous.
If a job is run at speed s, then the power is P (s) = sα for some constant α > 1.

The energy used during a time period is the integral of the power over that
time period. Our objective is to minimize the total energy used by the schedule.

If A is a scheduling algorithm, then A(I) denotes the schedule output by A
on input I. A schedule is R-competitive for a particular objective function if the
value of that objective function on the schedule is at most R times the value of
the objective function on an optimal schedule. An online scheduling algorithm
A is R-competitive, or has competitive ratio R, if A(I) is R-competitive for all
instances.

For a schedule T , let sT,j(t) denote the speed job j runs at time t in the
schedule T , and let sT (t) =

∑
j sT,j(t) denote the speed of the processor at time

t in schedule T . If U is a subcollection of jobs, let sT,U (t) denote the sum of the
speeds of the jobs in U at time t in the schedule T . We will also substitute an
algorithm for a schedule in this notation. So for example, sAV R(t) is the speed
of the algorithm AVR at time t. We use OPT to denote a particular optimal
schedule. We say that job i is active between its release time and its deadline.
We call wi/(di − ri) the density of job i since this is the job’s work divided by
the length of the interval in which it is active.

Algorithm AVR: At all times t, run the earliest-deadline job at speed sAV R(t) =∑
i

wi

di−ri
, where the sum is over jobs i active at time t.

244 N. Bansal et al.

Consider a fixed optimum schedule OPT. A job is said to be of type A if
∫ t

rj

sOPT,j(t)dt ≥
∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj

Intuitively, these are the jobs that OPT runs consistently ahead of their density.
Similarly, the jobs of type B are those that OPT runs consistently behind their
density, meaning they satisfy

∫ t

rj

sOPT,j(t)dt ≤
∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj .

In general, a job need not be of either type (or it can also be of both types, in
which case OPT executes exactly as in AVR). We say an instance is bitonic if
every job is of type A, type B, or both (in which case it is arbitrarily assigned
one of the types). A simple observation (Lemma 5) shows that if AVR is c-
competitive for bitonic instances, then it is also c-competitive in general.

4 The Lower Bound

We give an instance on which AVR uses up at least ((2 − δ)α)α/2 times the
energy used by an energy optimum solution, where δ is a function of α that
tends to zero as α increases.

Instance Description: For convenience we will work with a continuous version
of the job instance. We say that work arrives at rate a(t) at time t to mean that
a(t)dt units of work arrive during the infinitesimally small interval [t, t + dt].

The instance consists of two sets of jobs A and B. The work in A arrives
during the time interval [0, 1 − ε], at rate

a(t) =
1

(1 − t)1/α

and all the work in A has deadline 1. Here ε > 0 is an arbitrarily small but fixed
constant. The work in B arrives during the interval [1 − 1/c, 1 − ε/c] (where c is
a constant that will be set to α − 1 later) at rate

b(t) =
c

c1/α(1 − t)1/α

and the work in B arriving at time t has deadline 1 + c(1 − t).

Lemma 1. On the instance above, the optimal algorithm uses total energy at
most 2 ln(1/ε).

Proof: It suffices to give some feasible schedule that uses energy 2 ln(1/ε). Con-
sider the schedule that completes all jobs in A by running at speed a(t) during
[0, 1 − ε]. The energy usage is

∫ 1−ε

0

(a(t))αdt = [− ln(1 − t)]1−ε
0 = ln(1/ε)

Average Rate Speed Scaling 245

For jobs in B, note that they are released before time 1 and have deadlines
in [1 + ε, 2]. Consider any time x ∈ [1 + ε, 2]. The jobs with deadline in [1 + ε, x]
are released during [1 − x−1

c , 1 − ε
c]. Their total amount of work is

∫ 1−ε/c

1−(x−1)/c

b(t)dt =
∫ 1−ε/c

1−(x−1)/c

c

c1/α(1 − t)1/α
dt

Let y = 1 + c(1 − t). Then dy = −c · dt, and the amount of work equals
∫ 1−ε/c

1−(x−1)/c

c

c1/α(1 − t)1/α
dt =

∫ 1+ε

x

−1
(y − 1)1/α

dy =
∫ x

1+ε

1
(y − 1)1/α

dy

Therefore, consider the schedule that processes jobs in B at speed b̂(y) = 1
(y−1)1/α

continuously during [1+ ε, 2]. For any x ∈ [1+ ε, 2], the amount of work done by
time x equals the amount work with deadline by x. So the schedule completes
each job in B by its deadline. The energy usage to complete all jobs in B is

∫ 2

1+ε

(b̂(t))αdt = [ln(y − 1)]21+ε = ln(1/ε)

Since the intervals of execution of work in A and B do not overlap, the total
energy used is 2 ln(1/ε) and the lemma follows. ��

Lemma 2. On the instance above, AVR uses total energy at least
αα(1 + c

c1/α(c+1)
)α ln(1/ε) + K, where K is a constant independent of ε.

Proof: Consider the work in A. The work released at time t is scheduled by AVR
uniformly during the interval [t, 1]. Thus, at any time x ∈ [0, 1], the density due
to work in A is

dena(x) =
∫ x

0

a(t) · 1
1 − t

dt =
∫ x

0

1
(1 − t)1/α

· 1
1 − t

dt = α

(
1

(1 − x)1/α
− 1

)

Now consider the work in B. Note that for work released at time t, the duration
between its release time and deadline is 1 + c(1 − t) − t = (c + 1)(1 − t). Thus,
at any time x ∈ [1 − 1

c , 1 − ε
c], the density due to work in B is

denb(x) =
∫ x

1−1/c

c

c1/α(1 − t)1/α
· 1
(c + 1)(1 − t)

dt

=
c

c1/α(c + 1)
· α

(
1

(1 − x)1/α
− c1/α

)

During the interval [1− 1
c , 1− ε], AVR runs at speed equal to the total density

due to work in A and B. Therefore, the energy usage of AVR is at least
∫ 1−ε

1−1/c

(dena(t) + denb(t))
α

dt

=
∫ 1−ε

1−1/c

(

α

(

1 +
c

c1/α(c + 1)

)

· 1
(1 − t)1/α

− α
2c + 1
c + 1

)α

dt (1)

246 N. Bansal et al.

Let Y = 1+ c
c1/α(c+1)

. Note that for all t ∈ [1− 1
c , 1− ε], we have that 1− t ≤ 1/c

and hence

2c + 1
c + 1

· (1 − t)1/α

Y
≤ 2c + 1

c + 1
· 1
c1/α

· c1/α(c + 1)
c1/α(c + 1) + c

≤ 2c + 1
(c + 1) + c

= 1

Then, by factoring αY 1
(1−t)1/α , the right side of (1) can be written as

∫ 1−ε

1−1/c

ααY α 1
1 − t

(

1 − 2c + 1
c + 1

· (1 − t)1/α

Y

)α

dt

≥
∫ 1−ε

1−1/c

ααY α

1 − t

(

1 − α
2c + 1
c + 1

· (1 − t)1/α

Y

)

dt as 1 − αx ≤ (1 − x)α for x ≤ 1

=
∫ 1−ε

1−1/c

ααY α

(
1

1 − t
− Z(1 − t)(1/α)−1

)

dt where Z = α(2c+1)
Y (c+1)

= ααY α
[
− ln(1 − t) + αZ(1 − t)1/α

]1−ε

1−1/c

= ααY α

(

− ln ε + αZε1/α + ln
1
c

− αZ(
1
c
)1/α

)

≥ ααY α ln(1/ε) + ααY α

(

ln
1
c

− αZ(
1
c
)1/α

)

since ε > 0

Since α, c, Y and Z are independent of ε the lemma follows. ��
Theorem 3. The competitive ratio of AVR is at least ((2− δ)α)α/2, where δ is
a function of α that tends to zero as α increases.

Proof: By Lemma 1 and 2, when ε tends to zero, the competitive ratio of AVR is
at least ((1 + c1−1/α

c+1)α)α/2. Putting c = α − 1, the competitive ratio is at least

((1 + (α−1)1−1/α

α)α)α/2, which equals ((2 − δ)α)α/2 where δ = 1 − (α−1)1−1/α

α .
Note that for large α (in particular for α ≥ 2, we have that

δ = 1 − (α − 1)−1/α α − 1
α

= 1 − e(−1/α) ln(α−1)(1 − 1
α

)

≤ 1 −
(

1 − 1
α

ln(α − 1)
)

(1 − 1
α

) using ex ≥ 1 + x for x < 0

=
ln(α − 1)

α
+

1
α

− ln(α − 1)
α2

(2)

Hence δ approaches zero as α approaches infinity. ��
We remark that our bound ((2 − δ)α)α/2 is asymptotically 2α−1αα−1/2−o(1)

for large α, and hence within α1/2+o(1) of the best known upper bound. To see
this, by (2), we obtain that

lim
α→∞

(α

ln α

)
δ ≤ lim

α→∞

(
ln(α − 1)

ln α
+

1
ln α

− ln(α − 1)
α ln α

)

= 1.

Average Rate Speed Scaling 247

Similarly,

δ ≥ 1 − α1−1/α

α
= 1 − 1

e(ln α/α)
≥ 1 − 1

1 + 1
α ln α

=
ln α

α + lnα
,

and hence
lim

α→∞

(α

ln α

)
δ ≥ lim

α→∞
α

α + lnα
= 1.

Thus the expression (2 − δ)ααα/2 = 2α−1αα(1 − δ/2)α ≈ 2α−1ααα−δα/(2 ln α) =
2α−1ααα−1/2−o(1).

5 An Elementary Proof that AVR is 2α−1αα-competitive

This section gives a complete elementary proof that AVR is 2α−1αα-competitive.
This proof uses some elements of the analysis of AVR in [8] and some variations
on elements of the analysis of OA in [2]. We start with the analysis of AVR on
instances consisting of only type-A jobs. The analysis for general instances then
follows along the same lines as in [8], and is included here for completeness.

Lemma 4. For instances consisting of only type-A jobs, AVR is αα-competitive
with respect to energy.

Proof: We use an amortized local competitiveness argument (for more informa-
tion on such arguments in scheduling problems, see [7]). At any time t, either
a task arrives or finishes, or else an infinitesimal interval of time dt elapses and
AVR consumes sAV R(t)αdt units of energy. We will define a potential function
φ(t) that satisfies the following properties:

– The potential function φ(t) has value 0 before any jobs arrive and after the
last deadline.

– The potential function φ(t) does not increase as a result of AVR completing
a job, OPT completing a job, or the release of a job.

– At any time t,

sAV R(t)α +
dφ(t)

dt
≤ ααsOPT (t)α. (3)

Integrating equation 3 over time and using the other two stated properties, we
can conclude the desired result.

Before we can define the potential function we need to introduce some no-
tation. Let t0 denote the current time and ti denote the time of the ith dead-
line occurring after t0. Then let Ii denote the interval of time [ti, ti+1). Let
τi = ti+1 − ti be the length of interval Ii. Let si denote the speed at which
AVR will work during interval Ii if no new jobs arrive. This can be computed by
summing the densities of active jobs whose deadline is at or after time ti+1. Let
wAV R,i = siτi denote the amount of work that AVR plans to complete during
interval Ii. Let wOPT,i be the portion of the work AVR allocates to interval Ii

that OPT has not yet completed. Because all jobs are of type A, all work that

248 N. Bansal et al.

is unfinished by OPT is also unfinished by AVR. Without loss of generality, we
assume that when OPT is working on a job j, work is removed from the term
wOPT,i that contains work from job j with the smallest index i. That is, OPT
removes work from the earlier intervals first.

We define the potential function φ(t) as follows:

φ(t) = α
∑

i≥0

sα−1
i (wAV R,i − αwOPT,i) (4)

This potential function is a slight modification of the potential function used in
[2] to analyze the algorithm OA. The difference is that their potential function
uses wOPT,i to denote the work of jobs unfinished for OPT with deadline in Ii.

Now we show that φ has the claimed properties. This function is clearly 0
when there are no active jobs. The completion of a job by OPT also has no effect
since the potential is a continuous function of wOPT,i. The situation when AVR
completes a job is slightly more complicated. Observe that a job completes under
AVR if and only if the size of the interval I0 shrinks to 0, i.e. when the current
time t0 becomes equal to t1, which shifts all the indices. At the moment this
happens AVR has completed all the work allocated to I0 and hence wAV R,0 = 0.
Because all jobs are of type A, OPT has also completed the work allocated to
I1 so wOPT,0 = 0. Thus, the potential is continuous even in this case. (This is
the only time we use that all the jobs are of type A.)

Arrival Case: The next case to consider is when a new job j arrives. First
observe that adding a zero work job with deadline dj does not change the value
of the potential function φ. Thus, we may assume that the new job’s deadline
is tk for some k. Let y be the density of the new job. Then the release increases
the density of intervals I0, I1, . . . , Ik−1 by y, increasing the weight of interval Ii

by yτi for 0 ≤ i ≤ k − 1. This changes the potential function by

Δφ = α

k−1∑

i=0

(
wAV R,i + yτi

τi

)α−1

((wAV R,i + yτi) − α(wOPT,i + yτi))

−α

k−1∑

i=0

(
wAV R,i

τi

)α−1

(wAV R,i − αwOPT,i). (5)

This expression can be rearranged into

k−1∑

i=0

α

τα−1
i

(
(wAV R,i + yτi)α−1(wAV R,i − αwOPT,i − (α − 1)yτi)

−wα−1
AV R,i(wAV R,i − αwOPT,i)

)

By making the substitutions q = wAV R,i, δ = yτi and r = wOPT,i each term of
this sum becomes a quantity shown to be at most 0 by Lemma 8.

Working case: We now consider times when no job arrives, and no jobs com-
plete. Each si, including s0, remains fixed during this time. We have to show

Average Rate Speed Scaling 249

sAV R(t0)α − ααsOPT (t0)α +
dφ(t)

dt
≤ 0 (6)

or equivalently,

sα
0 − ααsOPT (t0)α +

d

dt
(α

∑

i≥0

sα−1
i (wAV R,i − αwOPT,i)) ≤ 0 (7)

As AVR works, wAV R,0 is decreasing at rate s0, and wAV R,i remains fixed for
all i ≥ 1. Since OPT takes work from a single interval Ii, only one of the wOPT,i

changes; let it be wOPT,k. Then equation (7) is equivalent to

sα
0 − ααsOPT (t0)α + (−αsα−1

0 s0 + α2sα−1
k sOPT (t0)) ≤ 0

Since a job active during one interval is also active in all earlier intervals, sk ≤ s0

and it suffices to show that

(1 − α)sα
0 + α2sα−1

0 sOPT (t0) − ααsOPT (t0)α ≤ 0

Substituting z = s0/sOPT (t0) gives

(1 − α)zα + α2zα−1 − αα ≤ 0 (8)

Let u(z) be the polynomial on the left hand side of inequality 8. Note that
u(0) = −αα and u(+∞) = −∞. In addition, the derivative of u(z) is 0 at only
the point z = α. Since u(α) = 0, we conclude that u(z) is non-positive for z ≥ 0,
which holds because of the definition of z. This establishes inequality 6. ��
Lemma 4 and the argument of Yao, Demers, and Shenker [8] proves the 2α−1αα-
competitiveness of AVR. We now give their argument for completeness.

Lemma 5. [8] Among those instances on which AVR has it worst-case compet-
itive ratio, there is a bitonic instance.

Proof: Consider a worst-case instance I that is not bitonic. We explain how to
transform I into another worst-case instance that is bitonic. There must be a
job i that is of neither type A nor type B. By the definition of the types, there
has to be some times s, u, with s < u, for which one of AVR or OPT is ahead
of the other on job i at time s, but behind at time u. By the intermediate value
theorem, there must be a time t ∈ (s, u) where AVR and OPT have completed
an equal amount of work w on job i. We say that the lead changes at such a
time t. We now create a new instance I ′ from I by replacing job i with two
jobs: one with work w released at time ri with deadline t, and one with work
wi − w released at time t with deadline di. It is easy to see that both AVR and
OPT always run at the same speed in I ′ that they did in I. This transformation
however reduces the number of lead changes by one. Since there can only be a
bounded number of lead changes between YDS = OPT and AVR, a bounded
number of applications of this transformation leads to a bitonic instance. ��

250 N. Bansal et al.

Lemma 6. [8] AVR is 2α−1αα-competitive on bitonic instances.

Proof Sketch: Given a bitonic instance, let A be the set of type-A jobs and B
be the others. Let AVRA and AVRB denote the energy attributable to A and
B in the AVR schedule, respectively. Define OPTA and OPTB similarly with
reference to the schedule OPT.

Next observe that the roles of type-A jobs and type-B jobs can be swapped
by reversing time and swapping the release time and deadline for each job. Both
YDS and AVR give the same schedule to the forward and backwards versions
so Lemma 4 implies that AVR is simultaneously αα-competitive with respect to
energy attributable to type-A jobs and energy attributable to type-B jobs.

The proof follows by combining the schedules for the jobs of different types.
The optimal cost is clearly at least OPTA + OPTB. To bound the cost of AVR,
define sAV R,A(t) and sAV R,B(t) as the speed of AVR on type-A and type-B jobs
respectively. Then the cost of AVR is at most

∫

sAV R(t)αdt =
∫

(sAV R,A(t) + sAV R,B(t))α dt

≤
∫

2α−1 (sAV R,A(t)α + sAV R,B(t)α) dt

= 2α−1 (AVRA + AVRB)
≤ 2α−1αα(OPTA + OPTB),

which gives the desired ratio. ��
Thus we reach our final theorem, which is an immediate consequence of Lemma
4, Lemma 5, and Lemma 6.

Theorem 7. AVR is 2α−1αα-competitive.

The following lemma from [2] was used in the proof of Lemma 4:

Lemma 8. [2] Let q, r, δ ≥ 0 and α ≥ 1. Then (q + δ)α−1(q − αr − (α − 1)δ) −
qα−1(q − αr) ≤ 0.

Proof: The lemma is equivalent to showing that

(q − αr)[(q + δ)α−1 − qα−1] − (q + δ)α−1(α − 1)δ ≤ 0

Since [(q + δ)α−1 − qα−1] ≥ 0, it suffices to show that

q[(q + δ)α−1 − qα−1] − (q + δ)α−1(α − 1)δ ≤ 0

Let δ = zq, which implies z ≥ 0. The left hand side of the above becomes

qα[(1 + z)α−1 − 1] − qα[(1 + z)α−1(α − 1)z]

Factoring out qα and differentiating the rest with respect to z gives

((α − 1)(1 + z)α−2[1 − (α − 1)z] + (1 + z)α−1(−α + 1))
= ((α − 1)(1 + z)α−2[1 − (α − 1)z − (1 + z)]
= −α(α − 1)z(1 + z)α−2

Average Rate Speed Scaling 251

This is non-positive since α > 1 and z ≥ 0. Thus, the expression is maximized
at z = 0, where it has value 0. This implies the result. ��

6 Conclusion

Even though AVR is not optimally competitive, one could imagine situations
where a system designer might still adopt AVR because AVR is in some sense
fair to each job. This is analogous to the reason that Processor Sharing (Round
Robin) is adopted in some systems even though Processor Sharing is known not
to have the best competitive ratio for the standard QoS measures.

Acknowledgments: We thank Don Coppersmith for helpful discussions.

References

1. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proc.
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 289–298
(2007)

2. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and tempera-
ture. J. ACM 54(1) (2007)

3. Kwon, W.-C., Kim, T.: Optimal voltage allocation techniques for dynamically vari-
able voltage processors. In: Proc. ACM-IEEE Design Automation Conf., pp. 125–130
(2003)

4. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks.
Journal of Combinatorial Optimization 11(3), 305–319 (2006)

5. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for
variable voltage processors. In: Proc. of the National Academy of Sciences USA,
vol. 103, pp. 3983–3987 (2006)

6. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage
schedules. SIAM J. on Computing 35, 658–671 (2005)

7. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Perfor-
mance Evaluation Review 34(4), 52–58 (2007)

8. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proc. IEEE Symp. Foundations of Computer Science, pp. 374–382 (1995)

9. Yun, H., Kim, J.: On energy-optimal voltage scheduling for fixed priority hard real-
time systems. ACM Trans. on Embedded Computing Systems 2(3), 393–430 (2003)

Geometric Aspects of Online Packet Buffering:
An Optimal Randomized Algorithm for Two

Buffers�

Marcin Bienkowski1 and Aleksander Mądry1,2

1 Institute of Computer Science, University of Wroclaw, Poland
2 CSAIL, MIT, Cambridge, MA, USA

Abstract. We study packet buffering, a basic problem occurring in net-
work switches. We construct an optimal 16/13-competitive randomized
online algorithm PB for the case of two input buffers of arbitrary sizes.
Our proof is based on geometrical transformations which allow to iden-
tify the set of sequences incurring extremal competitive ratios. Later we
may analyze the performance of PB on these sequences only.

Keywords: online algorithms, network problems, packet buffering.

1 Introduction

Nowadays, the performance of network backbones depends on the speed, with
which network devices can switch data packets arriving at the input ports to
the appropriate output ports. Since the traffic is usually bursty, the rate of
arriving packets might be much higher than the rate with which the device can
transmit them, and in result packets might get lost. This motivates the use
of buffers attached to the input ports; these buffers can accumulate incoming
packets and store them for later transmission. The capacity of buffers — although
usually large — is limited, which makes buffer management techniques crucial
for minimizing the data loss.
We study a basic problem in this context. We consider a network device which

has m input ports and one output port. Each input port has an attached buffer
which can store up to B packets; we assume that all packets are of unit size.
Time is slotted into time steps. At any time step, any number of packets may
arrive at the input ports and they are appended to the appropriate buffers. If
a buffer cannot accommodate all the packets, the excess is lost. At any time
step, the device can transmit one packet from one buffer; the buffer managing
algorithm has to choose which buffer to send from. The scenario described above
is typical for input-queued switches or routers. Additionally, this model, in which
packets are equally important, is typical for current IP networks.

� Extended abstract. The full version of this paper is available online. Research sup-
ported by MNiSW grant number N206 001 31/0436, 2006–2008, MNiSW grant num-
ber N206 1723 33, 2007–2010, and by an Akamai Presidential Fellowship.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 252–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Geometric Aspects of Online Packet Buffering 253

In our setting no information about the future is available to the algorithm. In
particular, we make no probabilistic assumptions about the input. For analyzing
the efficiency of our algorithms we use competitive analysis [13], and — on any
input sequence — compare the throughput (the number of packets transmitted)
of our algorithm and the optimal offline schedule. For any algorithm A and any
sequence of packets arrival τ , we denote the throughput of A on τ by TA(τ).
We call a deterministic algorithm Alg c-competitive if for all sequences τ , it
holds that c · TALG(τ) ≥ TOPT(τ), where Opt denotes the optimal offline algo-
rithm. Number c is called a competitive ratio of the algorithm Alg. If Alg is
a randomized algorithm, then in the definition above we replace TALG(τ) with
its expected value.

Previous Results. There are several results for the basic model described
above. As the optimal competitive ratios can differ depending on the values B
and m, the results address particular classes of these values.
First, we consider deterministic algorithms. The general upper bound holding

for all values of B andm was given by Azar and Richter [2]. They proved that any
deterministic work-conserving (i.e. serving a non-empty queue) algorithm is 2-
competitive. They showed that for B = 1 no deterministic strategy can be better
than (2 − 1

m)-competitive and presented a lower bound on the competitive ratio
of 1.366 − Θ(1

m) which holds for any fixed B. Albers and Schmidt [1] improved
that bound showing that for any fixed B and for large m the lower bound can
be arbitrarily close to e/(e − 1) ≈ 1.582. They also showed an algorithm Semi-
Greedy which is 1.944-competitive for B ≥ 2 (see [12]). For B = 2 this algorithm
is optimal and 1.857-competitive; for B → ∞ the algorithm is 1.889-competitive.
For m = 2 and B → ∞, Schmidt [11] demonstrated a lower bound of 16/13 =
1.231 and proved that a greedy algorithm achieves a ratio of 9/7 ≈ 1.286.
Randomized algorithms were also considered: Schmidt [11] showed a 3/2-

competitive Random Permutation algorithm; the competitive ratio holds for any
values of B and m. For the lower bound, define h(n, k) as

h(n, k) =
k + n

k + 1 + (n−1)k+1

nk

and h(n) = min
k∈N

h(n, k) . (1)

A lower bound claimed by Albers and Schmidt in [1], whose proof can be found
in [12], states that for any value of B the competitive ratio of any randomized
algorithm is at least h(m). This value is equal to 16/13 form = 2 and approaches
1.466 for m → ∞.

Our Contribution and Paper Outline. In this paper, we present the first
randomized online algorithm which — for the case of m = 2 buffers with arbi-
trary buffer size B — achieves the optimal competitive ratio of 16/13 ≈ 1.231.
Most papers on packet buffering concentrate around developing a smart algo-

rithm and then comparing its behavior to the optimal one. Hence, the optimal
algorithm is considered only in the analysis. We employ a different approach.
In each step, we trace the set of possible states of the algorithm, which would

254 M. Bienkowski and A. Mądry

so far serve the sequence in optimal manner. Then by keeping the state of our
online algorithm as close to the center of this set as possible, we ensure that it
performs well compared to the optimal solution. This technique bears some sim-
ilarities to the well-known work-function technique, used for constructing many
optimal or almost optimal online algorithms (for example for k-server [7] or page
migration [3]).
Initially, we construct and analyze a deterministic algorithm PBF in a setting

that allows PBF to have fractional number of packets in its buffers. We note
that the lower bound on the competitive ratio of h(2) = 16/13 holds also for
such model. The proof of PBF optimality consists of two parts. In Sect. 3.2, we
show how the hardest sequences for PBF look like. We show that these input
sequences (we call them regular) have very special structure, which we exploit
to bound the competitiveness of PBF. We prove this by developing a geometric
view on the packet buffering problem; such approach turns out to be surprisingly
successful. Finally, using a potential function-like argument, in Sect. 3.3 we show
that the performance ratio of PBF on any regular sequence is at most 16/13.
We note that the idea of reductions of arbitrary sequences to the most difficult
ones can be found in the previous papers, for example in [11].
As we mentioned above, PBF is a deterministic algorithm which is optimal

in an extended, fractional model. We note that the most straightforward trans-
lation of this solution into a randomized non-fractional one does not work in
our model. Instead, using techniques similar to randomized rounding [10], we
construct a two-dimensional rounding technique, which yields an optimal algo-
rithm PB.
Due to space limitations, the proofs of all technical lemmas appear in the full

version of the paper.

Related Work. One of the most straightforward generalizations of the simple
scenario considered is the model in which packets have values and the objective is
to maximize the total value of packets sent. Although yet not commonly seen in
practice, these Differentiated Services allow Internet Service Providers to assign
different levels of Quality of Service to different data streams.
There are several results concerning the case of maintaining a single buffer,

where packets have to be transmitted in FIFO order and where preemption (evic-
tion of packets already in buffer) is allowed. Currently, the best deterministic pre-
emptive greedy algorithm due to Englert and Westermann [4] achieves a competi-
tive ratio of 1.732 and the best known lower bound for this problem, 1.419, is due to
Kesselman et al [6]. There has also been work on a so-called bounded-delay model,
in which no FIFO order is enforced but packets have deadlines (see e.g. [5]).
Azar and Richter [2] showed how to cope with multiple queues, presenting

a general technique of transforming algorithms for single queue into multiple
queue algorithms, losing factor 2 in the competitive ratio.
The packet buffering problems were also considered under some probabilistic

assumptions on the input sequence (see e.g. [9]). However, there is an observed
evidence that the nature of data traffic in networks is chaotic [8] and does not
follow standard patterns like Poisson arrival model.

Geometric Aspects of Online Packet Buffering 255

2 Preliminaries

First, let us formally define the input sequence. We transform a description of
packets arrivals τ into a sequence of requests σ with more convenient form.
For each time step in which there are no new incoming packets, we append
a request Idle to sequence σ. For a step in which there are new packets at
input ports, say x0 packets at buffer 0 and x1 packets at buffer 1, we append
Add(0)x1 Add(1)x2 Idle to σ.
By σt we understand the t-th element of σ and by σ|ba the contiguous subse-

quence of σ starting at position (step) a and ending at b. Let σt = σ|t1. We say
that the request σt is processed in step t. For any two sequences σ and σ′ we
denote their concatenation by σσ′.

Semantics of Request Sequence. For any algorithm Alg, the state of its
buffers at the end of a given step can be described by a pair xALG ∈ {0, . . . , B}×
{0, . . . , B}, where the coordinates denote the number of packets in the respective
buffers. For any request (sub)sequence σ, we use xALG(σ) to denote the state of
Alg after it starts with empty buffers and serves the sequence σ. In particular,
by xALG(σt) we mean the state of Alg after processing the first t steps of σ
and xALG(σ0) = (0, 0).
The semantics of the requests from σ sequence is straightforward. Fix any

step t. For Idle request, Alg may choose a non-empty buffer i and transmit one
packet from it. Although the algorithm may also choose not to transmit a packet,
any such algorithm can be transformed to a work-conserving one, which sends
a packet whenever possible, and the competitiveness of the obtained algorithm
is not worse. The way of choosing the buffer for transmission is called pivoting
rule. Note that this rule is the only factor that determines the behavior of the
algorithm.
If σt is an Add(i) request, a new packet is added to the buffer i. If the number

of packets at the i-th buffer is already B, then the packet is immediately lost.
Let �ALG(σt) be the number of packets that are actually added to the buffer in
step t, �ALG(σt) ∈ {0, 1}.
At the end of the input sequence, the algorithm empties all the buffers; we

may assume that they are all transmitted in one batch.
Let H = [0, B] × [0, B]. We may view xALG, the state of Alg, as a point

from H ∩N
2. Then, the Idle and Add operations described above have obvious

geometric interpretation. For any state x , x0 and x1 denote the number of
packets in the respective buffers, and ‖x ‖ = x0 + x1.

Fractional Model. It is now straightforward to generalize the above description
to a fractional model, where the state of Alg can be any point from H (also
the one with fractional coordinates). In particular, the algorithm serving Idle
request may choose to transmit fractional parts of packets from different buffers,
with the only requirement that the total mass of the packets transmitted is at
most 1. Note that the definition of �ALG(σt) can be extended to the fractional
model in a straightforward manner.

256 M. Bienkowski and A. Mądry

Although we allow online algorithms to use fractional parts of the packets, to
simplify our analysis we compare them to the optimal offline algorithm which
still works in the standard model. We note that the lower bound of 16/13 holds
in the fractional model, as well.

Competitiveness. For any sequence σ and any deterministic (not necessarily
online) algorithm Alg, we define a function lossALG(σ) as the number of pack-
ets lost by the strategy Alg on σ, under the condition that ALG starts with
empty buffers. For any algorithm Alg and two sequences σ and τ we define
Δσ lossALG(τ) = lossALG(στ) − lossALG(σ).
Obviously, the losses can occur only due to Add requests which overflow

some buffer. Therefore, if σ is the whole sequence, lossALG(σ) =
∑

t:σt=ADD(1 −
�ALG(σt)). Let S(σ) denote the total number of packets added in σ, i.e. the
number of Add requests. The throughput of Alg, denoted TALG(σ), i.e. the
number of packets transmitted by Alg, is then equal to S(σ) − lossALG(σ).
Consider a sequence σ. Let Opt be an optimal (offline) algorithm for the

packet buffering problem, i.e. the one which minimizes the number of packets
lost. We define the performance ratio of (an online) algorithm Alg on σ as

RALG(σ) =
TOPT(σ)
TALG(σ)

=
S(σ) − lossOPT(σ)
S(σ) − lossALG(σ)

. (2)

If Σ is any set of sequences, then RALG(Σ) = supσ∈Σ{RALG(σ)}. Let Q be
the set of all possible sequences; then the competitive ratio can be defined as
RALG = RALG(Q). If RALG ≤ α, then we call Alg α-competitive.

OPT State Space. As mentioned in the introduction, we would like to rely the
behavior of our algorithm on tracing the state of some optimal off-line algorithm
buffers in each step. Obviously, the complete knowledge about this state is not
available to an on-line algorithm. Instead we will focus on extrapolating a set
of possible Opt states which can be inferred from the already seen prefix of σ.
In each step we trace a certain set I(σt) of possible states whose relation to
an optimal solution is presented in Lemma 1.
We define set I inductively as I(σ0) = {(0, 0)}, and

Ipre(σt) =

⎧
⎪⎨

⎪⎩

(I(σt−1) − (1, 0)) ∪ (I(σt−1) − (0, 1)) if σt = Idle
I(σt−1) + (1, 0) if σt = Add(0)
I(σt−1) + (0, 1) if σt = Add(1)

, (3)

I(σt) =

{
Ipre(σt) ∩ H if Ipre(σt) ∩ H �= ∅
I(σt−1) otherwise .

(4)

An intuition behind the set I(σt) is that it contains states of all algorithms
which try to greedily reduce their loss, i.e. postpone losing packets. A straight-
forward induction shows that the number of packets in each state from the set I

Geometric Aspects of Online Packet Buffering 257

Fig. 1. Illustration of the set I and PBF parameters; r0 > 0, r1 < 0

is the same (we denote this number by ‖I‖) and I consists of non-fractional
states contained in an anti-diagonal interval (see Fig. 1a). The following lemma
shows a relation between the set I and optimal solutions.

Lemma 1. There exists an algorithm A, such that xA(σt) ∈ I(σt) for any
step t. Every algorithm with such property is optimal and loses a packet in step t
on Add request if and only if I(σt) �= Ipre(σt).

The main implication of Lemma 1 is that we get a convenient description of the
loss of an optimal algorithm. Namely, we can compute lossOPT(σ) by counting
all Add requests, for which I(σt) �= Ipre(σt).

3 Algorithm PBF

In this section, we present an algorithm PBF, which is optimal in the fractional
model. Let

ri(σ) = xPBFi (σ) − min
z∈I(σ)

zi for i ∈ {0, 1} . (5)

Assume that the adversary decides to issue a maximum number of Add(i) re-
quests without incurring a loss to Opt. Then ri would be the number of packets
lost by PBF. If ri ≤ 0, PBF cannot lose packets in this way (see r1 in Fig. 1b).
We note that ri can be efficiently computed by an online algorithm (as I can be
described by a few parameters). Let bal(σ) = r0(σ) − r1(σ) be called balance.
If PBF encounters Idle request in step t of σ, it computes a new shape

of the set I(σt) first. Then it transmits a total mass of 1 packet, so that the
resulting value of |bal(σt)| is as small as possible. This rule can be interpreted
geometrically as choosing a new state xALG(σt) as close to the perpendicular
bisector (hence the abbreviation PB; F stands for fractional model) of the set I
as possible.

3.1 Outline of the Proof

In the remaining part of this section, we prove the following theorem.

258 M. Bienkowski and A. Mądry

Theorem 1. For any buffer size B, PBF on two buffers is 16/13-competitive.

Below we present the roadmap of the proof. As we mentioned in the introduction,
the proof is divided into two parts. In the first one, we narrow down instances
on which PBF has high competitive ratio. In the second part, we restrict our
analysis only to these instances.
For any integers x,y, by a block, denoted B(x, y), we understand a subsequence

IdlexAdd(0)y. We also denote the sequence Add(0)B Add(1)B by A. By main
diagonal (MD) we mean the diagonal of the square, which contains all fractional
states z such that ‖z ‖ = B. We say that I is above, at, or below MD if ‖I‖ is,
respectively, greater, equal, or less than B. We introduce the following classes of
sequences.

Definition 1. We denote the set of all sequences by Q. We also define the
following sets of sequences.

– QN : non-trivial. σ ∈ QN if it ends with Add incurring loss to PBF and
x PBF(σt) �= (0, 0) for t > 0.
– QP : proper. σ ∈ QP if it is non-trivial, starts with A, and I(σt) is above
MD for all t ≥ |A|.
– QU : uniform. σ ∈ QU if σ is proper and after initial A, consists only of
Add(0) and Idle requests.
– QR: regular. σ ∈ QR if σ is uniform and has a form AB(x1, y1)B(x2, y2) . . .

B(xn, yn), where after each block B(xi, yi), x PBF0 = B.

The course of the proof is to show each of consecutive relations below.

RPBF ≤ RPBF(QN) ≤ RPBF(QP) = RGR(QP) ≤ RGR(QU) ≤ RGR(QR) (6)

RGR denotes the performance ratio of a natural Greedy algorithm (see [11]),
which is defined formally later. We show these inequalities in Sect. 3.2. Then,
in Sect. 3.3, we prove that RGR(QR) ≤ 16/13. We note that by [1,12], the
competitive ratio of any online algorithmAlg is at least h(2) = 16

13 , and therefore
PBF is optimal and all the inequalities in (6) can be replaced by equalities.

3.2 Worst-Case Sequences

In this section, we consecutively prove all inequalities of (6) but the last one.
In general, in order to show that RALG(Q1) ≤ RALG(Q2), we show that for
any σ ∈ Q1, we can transform it to obtain a sequence σ̂ ∈ Q2, such that the
performance ratio of Alg does not decrease. Intuitively, σ̂ is more difficult for
Alg than σ.

Changes in Balance. We start from several simple definitions and observa-
tions. We define len(I) as the length of the smallest interval containing set I.
This amount is equal to the number of I elements minus 1.
We conceptually divide each step into two parts. In the first one, the adversary

issues a request and as a result the set I is changed. In case of an Add request,

Geometric Aspects of Online Packet Buffering 259

x PBF is changed as well. In the second part, which is present only for Idle
requests, PBF transmits some packets.
As a result of anAdd(i) request, ri may decrease by one. This can happen only

if just before this request the set I touches (i.e. has non-empty intersection with)
the upper i-boundary of H, where upper i-boundary is H ∩ {(k0, k1) : ki = B}.
We call such an Add(i) request a hit; such an Add reduces the value of len(I)
by one.
If I is above MD, then in a step with Idle request, both ri increase by 1, and

therefore the balance remains unchanged. On the other hand, if I is at or below
MD and it touches the lower i-boundary of H, the corresponding ri remains
unchanged. If I touches only one boundary, the balance may therefore change
by one. In total, upon an Idle request, in the first part of a step len(I) increases
by 1 minus the number of lower boundaries I touches and in the second part
PBF changes its state according to its pivoting rule. This observation leads to
the following technical lemma.

Lemma 2. For any sequence σ, there exists a non-trivial sequence σ̂, such that
RPBF(σ) ≤ RPBF(σ̂).

Proper Sequences. Consider a non-trivial sequence σ. By the definition, at
the end of σ set I touches an upper boundary (in the following informal de-
scription, we assume that it touches both boundaries). However, if we look from
the adversary point of view, it is not obvious when this should happen for the
first time. It is also not clear that keeping the set I below the main diagonal is
not preferable — even if this constraints the growth of the set I, the resulting
constraints on PBF’s behavior might be beneficial for the adversary.
We address the issues above by showing that proper sequences incur the worst

performance ratio of PBF. Namely, we prove that for any sequence σ, there exists
another sequence σ̂ with not smaller performance ratio, such that σ̂ starts with
filling the buffers with packets and later it keeps the set I all the time above the
diagonal.
We construct σ̂ on the basis of σ, so that after initial filling the buffers, σ̂

contains almost the same steps as σ. We can imagine that we have two instances
of PBF running “in parallel” on σ and on σ̂. We show that it is possible to
maintain an invariant that the set I and the point x PBF for σ̂ are equal to I
and x PBF for σ translated by some vector. This invariant allows us to prove that
the performance of PBF can only worsen by replacing σ with σ̂.
How do we create σ̂? If the request of σ does not change I and the spatial

relation between I and x PBF, we do not append anything to σ̂ . Otherwise, if
we have an Add request in σ, which is a hit, then this Add appended to σ̂ is a
hit as well (as I(σ̂) touches both boundaries). The only problem arises when we
have an Idle request in σ occurring when I touches both lower boundaries, as
in this case len(I) decreases. To simulate such change also on the instance σ̂, we
introduce an additional request Lift. We justify this enhancement later in this
section, by showing that the adversary does not need Lift to impose the worst
competitive ratio.

260 M. Bienkowski and A. Mądry

Lift adds a half of a packet to both buffers of PBF. When it is issued in step
t, it changes set I in a way opposite to the effect an Idle request would have.
Namely, we extend the definition (3) by the following case.

Ipre(σt) = (I(σt−1) + (1, 0)) ∪ (I(σt−1) + (0, 1)) if σt = Lift (7)

Lemma 3. For any non-trivial sequence σ, there exists a proper sequence σ̂
(possibly containing Lift requests) such that RPBF(σ) ≤ RPBF(σ̂).

Uniform Sequences. An important observation at this stage is that when
we constrain our consideration only to proper sequences σ (possibly containing
Lifts), PBF behaves like a Greedy algorithm. The set I always touches both
upper boundaries of H (and in fact, the whole set I is therefore defined by
a single variable ‖I‖). Thus, its perpendicular bisector always coincides with the
main anti-diagonal of H and PBF just tries to move as close to it as possible,
i.e. transmits packets to minimize the maximal level of packets in its buffers.
This is exactly the pivoting rule of Greedy.
Now we want to further simplify the structure of the worst-case instances.

Lemma 4. Let λ, λ′ be two proper sequences possibly containing Lift requests,
such that xGR

0 (λ′) ≥ xGR
0 (λ), xGR

0 (λ′) ≥ xGR
1 (λ′), and ‖xGR(λ)‖ ≥ ‖xGR(λ′)‖.

Let τ be a sequence consisting only of Add(0) and Idle requests, such that λτ
and λ′τ are proper. Then Δλ′ lossGR(τ)−ΔλlossGR(τ) ≥ ‖xGR(λ′)‖−‖xGR(λ)‖.

Lemma 5. For any proper sequence σ, which may contain Lift requests, there
exists a uniform sequence σ̂, such that RGR(σ) ≤ RGR(σ̂).

Proof. We show a series of transformations of σ, which eventually lead to a uni-
form sequence σ̂ . Assume that σ contains some other request than Add(0) and
Idle, and σt is the last such request. Then σ||σ|t+1 consists only of Add(0) and
Idle requests. If necessary, by swapping the labels of buffers in σt, we may
ensure that xGR

0 (σt−1) ≥ xGR
1 (σt−1). We call the resulting sequence σ̃.

Let λ = σt, λ′ = σ̃t−1Add(0), and τ = σ||σ|t+1. Obviously, λτ = σ, λ′τ = σ̃,
S(σ̃) = S(σ), As the set I changes in the same manner on Add and Lift re-
quests, lossOPT(σ̃) = lossOPT(σ). We also have ‖xGR(σ̃t−1)‖ = ‖xGR(σt−1)‖
and lossGR(σ̃t−1) = lossGR(σt−1). Since xGR

0 (σ̃t−1) ≥ xGR
1 (σ̃t−1), it holds that

Δ
�σt−1 lossGR(Add(0)) ≥ Δσt−1 lossGR(σt). Additionally, lossGR(λ′)−lossGR(λ) =

‖xGR(λ)‖ − ‖xGR(λ′)‖ ≥ 0. Since λ, λ′, and τ satisfy the requirements of
Lemma 4, we get that lossGR(λ′τ) ≥ lossGR(λτ) and thus RGR(σ̃) ≥ RGR(σ).
After repeating the above operation at most |σ| times, we end up with a de-

sired sequence σ̂ , which is actually equal to σ with all Add(1) and Lift requests
replaced by Add(0). �

Regular Sequences. We cannot analyze uniform sequences easily, because
Idle and Add(0) requests can be arbitrarily mixed. In order to alleviate this
problem, we show how to change a uniform sequence into a regular one.

Geometric Aspects of Online Packet Buffering 261

Lemma 6. For any uniform sequence σ, there exists a regular sequence σ̂, such
that RGR(σ) ≤ RGR(σ̂).

Proof. We denote a subsequence Add(0) Idle by F . We process σ from the
beginning to the end, looking for F . We show that if σ contains F and xGR

0 ≤
B − 1 after processing Add(0) request from F , then such F can be removed
from σ without decreasing the performance ratio. Moreover, after the removal the
sequence remains proper. By applying this removal inductively to any occurrence
of F in σ, we eventually get a regular σ̂ .
Assume that σ = σprecF σsucc. We look separately at the change of the

throughput of Opt and Greedy. If xGR
0 (σprec) ≤ B − 1, then obviously the

removal of F from σ does not change the state of Greedy and decreases
its throughput by 1. The change of TOPT is twofold. First, it decreases by 1,
since one Idle was removed. Second, on σsucc it may only increase because
‖I(σprec)‖ ≥ ‖I(σprecF)‖. Moreover, in either case, ‖I‖ can only increase after
the removal, which implies that the new sequence is also proper. �

3.3 Performance Ratio on Regular Sequences

In this section we prove that the performance ratio of Greedy on any regular
sequence is at most 16/13. By the previous section, this will prove the competi-
tiveness of PBF. We begin with an observation on the behavior of Greedy on
regular sequences.

Lemma 7. Fix any regular sequence σ = AB(x1, y1), B(x2, y2) . . . B(xn, yn).
Then xGR(σ) = (B, B − γi), where γ0 = 0 and γi ∈ [0, B) for all i ≤ n.
Moreover, we have the following recurrence relation for γi

γi =

{
γi−1 if xi ≤ γi−1
γi−1+xi

2 if xi > γi−1

.

Fix any x ∈ [0, 1). Let i be an integer such that x ∈ [1 − 2−i, 1 − 2−(i+1)). We
define

s(x) = i +
x − (1 − 2−i)

2−(i+1)
. (8)

Lemma 8. s(x) is continuous, piecewise linear, and monotonically increasing.
Moreover, for any 0 ≤ a < b ≤ 1, it holds that s(a+b

2) − s(a) ≤ b and s(a) ≥
16
3 · a − 2.

By a simple induction, we may prove the following bound.

Lemma 9. For any regular sequence σ = AB(x1, y1)B(x2, y2) . . . B(xn, yn),
and a corresponding sequence γ1, γ2, . . . , γn, it holds that

∑n
i=1 xi/B ≥ s(γn/B).

Lemma 10. For any regular sequence σ, RGR(σ) ≤ 16/13.

262 M. Bienkowski and A. Mądry

Fig. 2. Distribution of PB possible states

Proof. Let σ = AB(x1, y1)B(x2, y2) . . . B(xn, yn). This determines the sequence
γ1, γ2, . . . , γn. Since σ is non-trivial, both Opt and Greedy transmit packets
during all

∑n
i=1 xi Idle requests of σ. Afterwards, xGR = (B − γn, B) and

Opt has at most 2 · B packets; these packets are transmitted at the end of σ.
Therefore, the reciprocal of the performance ratio on σ is

(
∑n

i=1 xi) + B + (B − γn)
(
∑n

i=1 xi) + B + B
= 1 − γn/B

2 +
∑n

i=1 xi/B
≥ 1 − γn/B

2 + s(γn/B)
≥ 13

16
,

where the last two inequalities follow from Lemmas 9 and 8, respectively. �

4 Randomization

In this section we describe a randomized algorithm PB, which works in a stan-
dard model and whose expected loss on a sequence σ is exactly the same as the
loss of PBF on σ in the fractional model.
PB traces the current state of PBF. In case of Idle requests, PB tries to

transmit a packet in such a way, that the expected number of packets in its
buffers is equal to the actual number of packets in the buffers of PBF. We
define PB algorithm implicitly, i.e. in each step we show what its probability
distribution over possible states should be.

Definition 2. Fix any (fractional) state of the buffers x = (k0 + a, k1 + b),
where k0, k1 ∈ N and a, b ∈ [0, 1]. Define the following random variables:

�(x) =

⎧
⎪⎨

⎪⎩

(1, 0) w.prob. a
(0, 1) w.prob. b
(0, 0) w.prob. 1 − a − b

�(x) =

⎧
⎪⎨

⎪⎩

(1, 0) w.prob. 1 − b

(0, 1) w.prob. 1 − a

(1, 1) w.prob. a + b − 1

Let μ(x) = (k0, k1)+�(x) if a+ b ≤ 1, and μ(x) = (k0, k1)+�(x) if a+ b ≥ 1.

We observe that E[μ(x)] = x . For more intuitions about function μ, see Fig. 2.
Each point from the square represents a legal state of an algorithm in the frac-
tional model. Legal states of the algorithm in the standard model are represented
by dots (points with integer coordinates). Then μ(x) is just a function which
assigns probabilities to the vertices of a triangle enclosing x .

Geometric Aspects of Online Packet Buffering 263

Lemma 11. It is possible to construct a randomized online algorithm PB for
the standard model, such that x PB(σ) = μ(x PBF(σ)) for any sequence σ. In
effect, lossPB(σ) = lossPBF(σ).

Theorem 2. PB is 16
13 -competitive for the packet buffering problem on two

buffers.

References

1. Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffer-
ing. In: Proc. of the 36th ACM Symp. on Theory of Computing (STOC), pp. 35–44
(2004)

2. Azar, Y., Richter, Y.: Management of multi-queue switches in QoS networks. In:
Proc. of the 35th ACM Symp. on Theory of Computing (STOC), pp. 82–89 (2003)

3. Chrobak, M., Larmore, L.L., Reingold, N., Westbrook, J.: Page migration algo-
rithms using work functions. Journal of Algorithms 24(1), 406–415 (1993) In:
Proc. of the 4th ISAAC, pp. 406–415 (1993)

4. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer manage-
ment in QoS switches. In: Proc. of the 14th European Symp. on Algorithms (ESA),
pp. 352–363 (2006)

5. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in QoS switches. In: Proc. of the 18th ACM-SIAM Symp. on Dis-
crete Algorithms (SODA), pp. 209–218 (2007)

6. Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive guarantees for
QoS buffering. Algorithmica 43(1–2), 63–80 (2005) In: Proc. of the 11th ESA, pp.
361–372 (2003)

7. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. Journal of the
ACM 42(5), 971–983 (1995) In: Proc. of the 26th STOC, pp. 507–511 (1994)

8. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar na-
ture of ethernet traffic (extended version). IEEE/ACM Transactions on Network-
ing 2(1), 1–15 (1994)

9. May, M., Bolot, J., Jean-Marie, A., Diot, C.: Simple performance models of differ-
entiated services schemes for the internet. In: Proc. of the IEEE INFOCOM, pp.
1385–1394 (1999)

10. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

11. Schmidt, M.: Packet buffering: Randomization beats deterministic algorithms. In:
Proc. of the 22nd Symp. on Theoretical Aspects of Computer Science (STACS),
pp. 293–304 (2005)

12. Schmidt, M.: Online Packet Buffering. PhD thesis, Albert-Ludwigs-Universität
Freiburg (2006)

13. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Maximizing the Minimum Load for Selfish

Agents

Leah Epstein1 and Rob van Stee2,�

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
vanstee@mpi-inf.mpg.de

Abstract. We consider the problem of maximizing the minimum load
for machines that are controlled by selfish agents, who are only inter-
ested in maximizing their own profit. Unlike the classical load balancing
problem, this problem has not been considered for selfish agents until
now.

For a constant number of machines, m, we show a monotone poly-
nomial time approximation scheme (PTAS) with running time that is
linear in the number of jobs. It uses a new technique for reducing the
number of jobs while remaining close to the optimal solution. We also
present an FPTAS for the classical problem, i.e., where no selfish agents
are involved (the previous best result for this case was a PTAS) and use
this to give a monotone FPTAS.

Additionally, we give a monotone approximation algorithm with ap-
proximation ratio min(m, (2 + ε)s1/sm) where ε > 0 can be chosen ar-
bitrarily small and si is the (real) speed of machine i. Finally we give
improved results for two machines.

1 Introduction

In this paper, we are concerned with a fair allocation of jobs to parallel re-
lated machines, in the sense that each machine should contribute a ’reasonable
amount’ (compared to the other machines) to the processing of the jobs. Specif-
ically, we are interested in maximizing the minimum load which is assigned to
any machine. This value is also known as the cover, as it is the amount to which
all machines are “covered”. This problem has been studied in the past on identi-
cal [11,10,19] as well as related machines [7] and also in the online setting where
jobs arrive one by one and need to be assigned without information about fu-
ture jobs [6]. It is also closely related to the max-min fairness problem [9,15,8],
where we want to distribute indivisible goods to players so as to maximize the
minimum valuation.

In our case, the players (machines) have negative valuations for the jobs, since
there is a cost incurred in running the jobs. So our goal becomes maximizing the
� Research supported by the German Research Foundation (DFG). Work performed

while the author was at the University of Karlsruhe, Germany.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 264–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Maximizing the Minimum Load for Selfish Agents 265

minimum loss, i.e., making sure that the cost of processing is not distributed too
unfairly. Moreover, the machines are controlled by selfish agents that only care
about maximizing their individual profit (or minimizing their individual loss).
The speeds of the machines are unknown to us, but before we allocate the jobs,
the agents will give us bids which may or may not correspond to the real speeds
of their machines.

Our goal in this paper will be to design truthful mechanisms, i.e., design
games in such a way that truth telling is a dominant strategy for the agents:
it maximizes the profit for each agent individually. This is done by introducing
side payments for the agents. In a way, we reward them (at some cost to us) for
telling us the truth. The role of the mechanism is to collect the claimed private
data (bids), and based on these bids to provide a solution that optimizes our
desired objective, and hand out payments to the agents. The agents know the
mechanism and are computationally unbounded in maximizing their utility.

The seminal paper of Archer and Tardos [3] considered the general problem of
one-parameter agents. The class of one-parameter agents contain problems where
any agent i has a private value ti and his valuation function has the form wi · ti,
where wi is the work assigned to agent i. Each agent makes a bid depending on
its private value and the mechanism, and each agent wants to maximize its own
profit. The paper [3] shows that in order to achieve a truthful mechanism for
such problems, it is necessary and sufficient to design a monotone approximation
algorithm. An algorithm is monotone if for every agent, the amount of work
assigned to it does not increase if its bid increases. More formally, an algorithm
is monotone if given two vectors of length m, b, b′ which represent a set of m
bids, which differ only in one component i, i.e., bi > b′i, and for j �= i, bj = b′j ,
then the total size of the jobs (the work) that machine i gets from the algorithm
if the bid vector is b is never higher than if the bid vector is b′.

Using this result, monotone (and therefore truthful) approximation algorithms
were designed for several classical problems, like scheduling on related machines
to minimize the makespan [3,5,1,17], shortest path [4,13], set cover and facility
location games [12], and combinatorial auctions [18,2].

Formal definition. Denote the number of jobs by n, and the size of job j by pj

(j = 1, . . . , n). Denote the number of machines by m, and the speed of machine
i by si (i = 1, . . . , m). As stated, each machine belongs to a selfish user. The
private value (ti) of user i is equal to 1/si, that is, the cost of doing one unit of
work. The load on machine i, Li, is the total size of the jobs assigned to machine
i divided by si. The profit of user i is Pi − Li, where Pi is the payment to user
i by the payment scheme defined by Archer and Tardos [3]. Let b−i denote the
vector of bids, not including agent i. We write b (the total bid vector) also as
(b−i, bi). Then the payment function for user i is defined as

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi) −
∫ bi

0

wi(b−i, u)du,

where wi(b−i, bi) is the work (total size of jobs) allocated to user i given the bid
vector b and the hi are arbitrary functions.

266 L. Epstein and R. van Stee

Our goal is to maximize min Li. This problem is NP-complete in the strong
sense [14] even on identical machines. In order to analyze our approximation
algorithms we use the approximation ratio. For an algorithm A, we denote its
cost by A as well. An optimal algorithm is denoted by opt. The approximation
ratio of A is the infimum R such that for any input, A ≤ R · opt. If the
approximation ratio of an offline algorithm is at most ρ we say that it is a
ρ-approximation.

Previous results (non-selfish machines). For identical machines, Woeginger [19]
designed a polynomial time approximation scheme (PTAS). He also showed that
the greedy algorithm is m-competitive. This is optimal for deterministic on-
line algorithms. Azar and Epstein [6] presented a randomized O(

√
m log m)-

competitive online algorithm and an almost matching lower bound of O(
√

m).
In [7], a PTAS was designed for related machines. For the semi-online case in

which jobs arrive in non-increasing order, [6] gave an m-competitive algorithm
called Biased-Greedy and showed that no algorithm could do better. For the
case where jobs arrive in non-increasing order and also the optimal value is
known in advance, [6] gave a 2-competitive algorithm Next Cover.

For unrelated machines, Bezáková and Dani [9] give several algorithms. One
gives a solution value which is at most opt − pmax less than the optimum,
where pmax is the largest job size (on any machine). Note that this result may
be close to zero. Two other algorithms have performance guarantee n − m + 1.
Golovin [15] gave an algorithm which guarantees that at least a (1−1/k) fraction
of the machines receive jobs of total value at least opt/k, for any integer k. In
the same paper, he also gave an O(

√
n)-approximation for the case of restricted

assignment (each job can only be assigned to a subset of the machines, and has
the same size on each allowed machine) where all job sizes are either 1 or some
value X .

For the case of restricted assignment (without further restrictions on job sizes),
Bansal and Sviridenko [8] provided an O(log log m/ log log log m)-approximation.
Bezáková and Dani [9] showed that no polynomial-time algorithm can have a
performance guarantee better than 2 unless P=NP. In particular, no PTAS is
possible.

Our results. We present a monotone strongly polynomial time approximation
scheme (PTAS) for a constant number of related machines. Its running time is
linear in the number of jobs, n. To the best of our knowledge, the technique
it uses for reducing the number of jobs while remaining close to the optimal
solution is new. We then give a new result for non-selfish related machines (the
classical problem) by presenting an FPTAS for it. We use this to give a monotone
FPTAS with running time polynomial in n and ε and the logarithm of sum of
job sizes.

Additionally, we present a monotone approximation algorithm which is based
on Next Cover and achieves an approximation ratio of min(m, (2 + ε)s1/sm).
This algorithm is strongly polynomial-time for an arbitrary number of machines,
and it is the first such algorithm that is monotone. It seems difficult to design a

Maximizing the Minimum Load for Selfish Agents 267

monotone approximation algorithm with a constant approximation ratio for an
arbitrary number of machines. Finally, we study two monotone algorithms for
two machines, and analyze their approximation ratios as a function of the speed
ratio between them. These algorithms are very simple and in many cases faster
than applying the PTAS or FPTAS on two machines.

Sorting. Throughout the paper, we assume that the jobs are sorted in order of
non-increasing size (p1 ≥ p2 ≥ . . . ≥ pn), except in Section 3, and the machines
are sorted in a fixed order of non-decreasing bids (i.e. non-increasing speeds,
assuming the machine agents are truthful, s1 ≥ s2 ≥ . . . ≥ sm).

2 Unsuccessful Directions

To give a flavor of the problem, we begin by describing some algorithms that
seem reasonable, but that have a very high approximation ratio and/or are not
monotone. First we note that it is known that any deterministic algorithm which
can be seen as a purely online algorithm (i.e., does not have any a-priori infor-
mation on jobs, and cannot perform sorting), cannot have finite approximation
ratio [6]. It follows from the same paper that algorithms which sort the jobs by
non-increasing size but are otherwise online (i.e. after sorting, no information
about later jobs is used apart from the fact that they will not be larger than the
current job) cannot be better than m-competitive. Nor can online algorithms
that only know the value of the optimal cover do better.

The following natural algorithms are either not monotone, or have an infinite
approximation ratio.

– Least Processing Time (LPT). This algorithm does not even have finite ap-
proximation ratio. Given two machines of speeds 1 and 4, and two jobs of
size 1, it will assign both jobs to the machine of speed 4. But then the cover
is 0. Moreover, it is known that LPT is not monotone but an adaptation
called LPT* is monotone [17]. However, the adaptation acts the same on
this input and thus it cannot be used for the current problem.

– A greedy algorithm which sorts the jobs first, and assigns every job, in turn,
to the least loaded machine, ignoring the effect of the new job on the schedule,
has an infinite approximation ratio. This can be seen from the following
example. There are two machines, of speeds 1 and M (for a large positive
M) and two jobs of sizes M and 1. If the larger job is assigned to the slower
machine and the smaller on to the faster machine, we get an approximation
ratio of M .

– Biased-Greedy is a a special case of the previous algorithm which prefers
faster machines in case of ties. As stated above, it cannot be better than
m-competitive. Moreover, is not monotone. Consider an example with three
machines of speeds 10, 9, 9 and four jobs of sizes 3, 3, 2, 2. One of the two
slowest machines receives two jobs of size 2. If the speed of this machine
increases to 10, it would only get one job of size 3.

268 L. Epstein and R. van Stee

– LPT-Cover. This is a natural variant of LPT for the covering problem. It
orders the jobs by size as before, but now, assign each job to that machine
where it improves the cover the most. In particular, as long as there are
empty machines, assign jobs there. This algorithm assigns job arbitrarily to
empty machines, therefore it is no better than the previous greedy algorithm.
If it is defined to give preference to faster machines, then it acts as Biased-
Greedy on the input stated above.

Approach-Average. To conclude this section, we state another direction that
was not studied before and initially seems promising, but fails. Calculate A =∑

j pj/
∑

i si. Assign jobs (ordered by size) to a machine which after assignment
of the job has load closest to A (which is an upper bound on opt). This algorithm
also has unbounded approximation ratio. Consider the following input. There are
m machines, one of them has speed 1, the others have speed 1/m. There are m
jobs of size 1. It can be seen that a cover of (only) 1/m can be achieved. But A
is slightly more than m/2, and the first m/2 jobs of size 1 will be assigned to
the fast machine, which results in a load of zero on at least one slow machine.

3 PTAS for Constant m

To derive a PTAS, we would as usual like to reduce the number of options to
be considered by rounding job sizes. However, a main problem here is that the
rounding should be independent of the bids, since otherwise when one agent
lies we get a different rounding and possibly a completely different set of jobs,
making it unlikely to give a monotone assignment and certainly very hard to
prove monotonicity. This was the main technical problem that we had to address
in developing our PTAS. Due to space constraints, it is the only issue that we
address here.

We construct an input for which we can find an optimal job assignment which
is the smallest assignment lexicographically, and thus monotone. We build it in
a way that the value of an optimal assignment for the adapted input is within a
multiplicative factor of 1 − 3ε from the value of an optimal assignment for the
original input. This is done by reducing the number of jobs of size no larger than
opt to a constant number (dependent on m and ε), using a method which is
oblivious of the machine speeds.

Let Δ = 2m2/ε2 + m. If the input consists of at most Δ jobs, then we are
done. Otherwise, we keep the Δ largest such jobs as they are. This set is denoted
by JL. Let JS be the rest of the jobs.

Let A be the total size of the jobs in JS . Let a be the size of the largest job
in JS . If A ≤ 3aΔ, we combine jobs greedily to create mega-jobs of size in the
interval [a, 3a]. One mega-job is created by combining jobs until the total size
reaches at least a, this size does not exceed 2 · a. If we are left with a remainder
of size less than a, it is combined into a previously created job. The resulting
number of mega-jobs created from JS is at most 3Δ.

Otherwise, we apply a “List Scheduling” algorithm with as input the jobs in
JS and Δ identical machines. These machines are only used to combine the jobs

Maximizing the Minimum Load for Selfish Agents 269

of Js into Δ mega-jobs and should not be confused with the actual (m) machines
in the input.

List Scheduling (LS) works by assigning the jobs one by one (in some order)
to machines, each job is assigned to the machine with minimum load (at the
moment the job is assigned). LS thus creates Δ sets of jobs and the maximum
difference in size between two sets is at most a [16]. The jobs in each set are now
combined into a mega-job. Thus we get Δ mega-jobs with sizes in the interval
[A
Δ − a, A

Δ + a]. Since A
Δ ≥ 3a, we get that the ratio between the size of two such

mega-jobs is no larger than 2.
In all three cases we get a constant number of jobs and mega-jobs.

Running time. We reduce the number of jobs to a constant. Note that we are only
interested in identifying the Δ largest jobs. After this we merge all remaining jobs
using a method based on their total size. These things can be done in time linear
in n. Finally, once we have a constant number of jobs, we only need constant
time to find an optimal solution for them. Thus our algorithm has running time
which is linear in the number of jobs n.

4 FPTAS for Constant m

In the full version of this paper, we present a monotone fully polynomial-time
approximation scheme for constant m. This scheme uses as a subroutine a non-
monotone FPTAS which is described in Section 4.1. We explain how this sub-
routine can be used to create a monotone FPTAS in the full paper.

In the current problem, it can happen that some jobs are superfluous: if they
are removed, the optimal cover that may be reached remains unchanged. Even
though these jobs are superfluous, we need to take special care of these jobs to
make sure that our FPTAS is monotone. In particular, we need to make sure
that these superfluous jobs are always assigned in the same way, and not to very
slow machines. We therefore needed to modify the FPTAS mechanism from [1]
because we cannot simply use any “black box” algorithm as was possible in [1].

4.1 An FPTAS Which is Not Monotone

Choose ε so that 1/ε is an integer. We may assume that n ≥ m, otherwise
opt = 0 and we assign all jobs to machine 1. In the proof of Lemma 2 we show
that this assignment is monotone.

We give an algorithm which finds the optimal cover up to a factor of 1 −
2ε. We can again use an algorithm which is an m-approximation [6], therefore
we can assume we can find opt within a factor of m. We scale the problem
instance such that that algorithm returns a cover of size 1. Then we know that
opt ∈ [1, m]. We are now going to look for the highest value of the form j · ε
(j = 1/ε, 1/ε + 1, . . . , m/ε) such that we can find an assignment which is of
value at least (1 − ε)jε. That is, we partition the interval [1, m] into many small
intervals of length ε. We want to find out in which of these intervals opt is, and
find an assignment which is at most one interval below it.

270 L. Epstein and R. van Stee

Given a value for j, we scale the input up by a factor of n
jε2 ≥ m

mε ≥ 1. Now
the target value (the cover that we want to reach) for a given value of j is not
jε but S = n/ε. Sort the machines by speed. For machines with the same speed,
sort them according to some fixed external ordering. For job k and machine i,
let �k

i = �pk/si� (k = 1, . . . , n; i = 1, . . . , m).
We use dynamic programming based on the numbers �k

i . A load vector of a
given job assignment is an m-dimensional vector of loads induced by the assign-
ment. Let T (k, a) be a value between 0 and m for k = 0, . . . , n and an (integer!)
load vector a. T (k, a) is the maximum number such that job k is assigned to
machine T (k, a) and a load vector of a (or better) can be achieved with the jobs
1, . . . , k. If the vector a cannot be achieved, T (k, a) = 0. If a (or better) can be
achieved, T (k, a) is a number between 1 and m.

We initialize T (0, 0) = m, representing that a cover of 0 can be achieved
without any jobs (this is needed for the dynamic program), and T (0, a) = 0
for any a > 0. For a load vector a = (a1, . . . , am), T (k, a) is computed from
T (k − 1, a) by examining m values (each for a possible assignment of job k):

T (k, a) = max
(
0,

{
i ∈ {1, . . . , m}

∣
∣ai − �k

i ≥ 0 ∧ T (k − 1, (a−i, ai − lki)) > 0
})

The notation (a−i, x) represents the load vector in which the ith element of a
has been replaced by x and all other elements are unchanged. Each value T (k, a)
is set only once, i.e., if it is nonzero it is not changed anymore. When a value
T (k, a) is set to a nonzero value x, we also set T (k, (a−i, ai − y)) = x for every
y = 1, . . . , lki − 1 such that T (j, (a−i, ai − y)) = 0. This represents the fact that
although a load vector of precisely a cannot be achieved with this assignment,
a load vector that dominates a (is at least as large in every element) can be
achieved by assigning job k to machine T (k, a).

The size of the table T for one value of k is (S+1)m. The n tables are computed
in total time nmS(S + 1)m = O(m(n/ε)m+2). (The factor S is from updating
the table after setting some T (k, a) to a nonzero value.) As soon as we find a
value k ≤ n such that T (k, S, . . . , S) > 0, we can determine the assignment for
the first k jobs by going back through the tuples. Each time, we can subtract the
last job from the machine where it was assigned according to the value of the
tuple to find the previous load vector. If some element of the load vector drops
below 0 due to this subtraction, we replace it by 0. If k < n, the last n − k jobs
are assigned to machine 1 (the fastest machine).

If T (n, S, . . . , S) = 0 after running the dynamic program, the target value
cannot be achieved. In this case we adjust our choice of j (using binary search)
and try again. In this way, we eventually find the highest value of j such that
all machines can be covered to jε using jobs that are rounded.

Note that the loss by rounding is at most n per machine (in the final scaled
instance): if we replace the rounded job sizes by the actual job sizes as they were
after the second scaling, then the loss is at most 1 per job, and there are at
most n jobs on any machine. So the actual cover given by the assignment found
by the dynamic program is at least S − n. Since the target value S = n/ε, we
lose a factor of 1 − ε with regard to S. After scaling back (dividing by n/(jε2)

Maximizing the Minimum Load for Selfish Agents 271

again) we have that the actual cover found is at least (1 − ε)jε. On the other
hand, due to the binary search a cover of (j + 1)ε cannot be reached (not even
with job sizes that are rounded up). This implies that our cover is at least
(1 − ε)(opt − ε) ≥ (1 − 2ε)opt since opt ≥ 1.

5 Approximation Algorithm SNC for Arbitrary Values
of m

In this section, we present an efficient approximation algorithm for an arbitrary
number of machines m. Our algorithm uses Next Cover [6] as a subroutine. This
semi-online algorithm is defined in Figure 1. Azar and Epstein [6] showed that
if the optimal cover is known, Next Cover (NC) gives a 2-approximation. That
is, for the guess G = opt/2 it will succeed. NC also has the following property,

Input: guess value G, m machines in a fixed order of non-increasing speeds, n jobs
in order of non-increasing sizes.
For every machine in the fixed order, starting from machine 1, allocate jobs to the
machine according to the sorted order of jobs until the load is at least G.
If no jobs are left and not all machines reached a load level of G, report failure. If
all machines reached a load of G, allocate remaining jobs (if any) to machine m,
and report success.

Fig. 1. Algorithm Next Cover (NC)

which we will use later.

Lemma 1. Suppose NC succeeds with guess G but fails with guess G+ ε, where
ε ≤ 1

3G. Then in the assignment for guess G, the work on machine m is less
than mw + ε, where w ≥ G is the minimum work on any machine.

Our algorithm Sorted Next Cover (SNC) works as follows. A first step is to derive
a lower bound and an upper bound on the largest value which can be achieved
for the input and m identical machines. To find these bounds, we can apply LPT
(Longest processing Time), which assigns the sorted (in non-increasing order)
list of jobs to identical machines one by one. Each job is assigned to the machine
where the load after this assignment is minimal. It was shown in [11,10] that the
approximation ratio of LPT is 4m−2

3m−1 < 4
3 . Thus we define A to be the value of

the output assignment of LPT. We also define L = A
2 and U = 4

3A. We have
that A and U are clear lower an upper bounds on the optimal cover on identical
machines. Since NC always succeeds to achieve half of an optimal cover, it will
succeed with the value G = L. Since a cover of U is impossible, the algorithm
cannot succeed with the value G = U . Throughout the algorithm, the values L
and U are such that L is a value on which NC succeeds whereas U is a failure
value. We perform a geometrical binary search. It is possible to prove using
induction that if NC succeeds to cover all machines with a guess value G, then it

272 L. Epstein and R. van Stee

succeeds to cover all machines using a smaller guess value G′ < G. The induction
is on the number of machines and the claim is that in order to achieve a cover
of G′ on the first i machines, NC uses the same subset or a smaller subset used
to achieve G.

The algorithm has a parameter ε ∈ (0, 1/2) that we can set arbitrarily. See
Figure 2. Since the ratio between U and L is initially constant, it can be seen
that the algorithm completes in at most O(1

log(1+ε/2)) steps. The overall running
time is O(n(log n + 1/ log(1 + ε/2)) due to the sorting. Note that Steps 2 and 6
are only executed once.

Input: parameter ε ∈ (0, 1/2), sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine
bids (b1 ≤ . . . ≤ bm).

1. If there are less than m jobs, assign them to machine 1 (the machine of speed
s1), output 0 and halt.

2. Scale the jobs so that
�n

i=1 pj = 1. Run LPT on identical machines and denote
the value of the output by A. Set L = A

2 and U = 4
3A.

3. Apply Next Cover on identical machines with the guess G =
√

U · L.
4. If Next Cover reports success, set L = G, else set U = G.
5. If U − L > ε

2L, go to step 3, else continue with step 6.
6. Apply Next Cover on identical machines with the value L. Next Cover partitions

the jobs in m subsets, each of total size of jobs at least L. Sort the subsets in
non-increasing order and allocate them to the machines in non-increasing order
of speed according to the bids.

Fig. 2. Algorithm Sorted Next Cover (SNC)

Lemma 2. SNC is monotone.

Proof. The subsets constructed in step 3 and 6 do not depend on the speeds of
the machines. If a machine claims it is faster than it really is, the only effect is
that it may get a larger subset. Similar if it is slower.

If the algorithm halts in step 1, then we again have a situation that jobs are
partitioned into sets, and the sets are assigned in a sorted way. This is actually
the output that steps 2–6 would produce if SNC was run with a guess value 0.

Theorem 1. For any 0 < ε < 1, SNC maintains an approximation ratio of
min(m, (2 + ε)s1/sm).

Proof. We start with the second term in the minimum. The load that SNC
has on machine i is at least L/si, and Next Cover cannot find a cover above
U ≤ (1+ε/2)L on identical machines. So the optimal cover on identical machines
of speed 1 is at most 2(1+ε/2)L = (2+ε)L. Thus the optimal cover on machines
of speed sm is at most (2+ε)L/sm, and the optimal cover on the actual machines
can only be lower since sm is the smallest speed. We thus find a ratio of at most
((2 + ε)L/sm)/(L/si) = (2 + ε)si/sm ≤ (2 + ε)s1/sm.

Maximizing the Minimum Load for Selfish Agents 273

We prove the upper bound of m using induction.
Base case: On one machine, SNC has an approximation ratio of 1.
Induction hypothesis: On m − 1 machines, SNC has an approximation ratio

of at most m − 1.
Induction step: Recall that the jobs are scaled so that their total size is 1.

Suppose each machine j has work at least 1/(jm) (j = 1, . . . , m). Then the
load on machine j is at least 1/(jmsj). However, the optimal cover is at most
1/(s1 + s2 + ... + sm) ≤ 1/(jsj + (m − j)sm) ≤ 1/(jsj). Thus SNC maintains an
approximation ratio of at most m in this case.

Suppose there exists a machine i in the assignment of SNC with work less
than 1/(im). Consider the earliest (fastest) such machine i. Due to the resorting
we have that the work on machines i, . . . , m is less than 1/(im). So the total
work there is less than (m − i + 1)/(im). The work on the first i − 1 machines is
then at least 1− (m− i+1)/(im) = (im−m+ i−1)/(im) = (i−1)(m+1)/(im)
and the work on machine 1 is at least (m + 1)/(im). This is more than m + 1
times the work on machine i.

We show that in this case there must exist a very large job, which is assigned
to a machine by itself. Let L′ and U ′ be the final values of L and U in the
algorithm. Let w be the minimum work assigned to any machine for the guess
value L′. Since SNC gives machine i work less than 1/(im), we have w < 1/(im).
We have U ′ − L′ ≤ ε

2L′. SNC succeeds with L′ and fails with U ′ and thus, since
ε ≤ 1

2 and by Lemma 1, machine m receives at most mw + ε
2L′ ≤ mw + 1

4L′ ≤
(m + 1

4)w ≤ (m + 1
4)/(im) running NC with the guess value L′. Moreover, NC

stops loading any other machine in step 6 as soon as it covers L′.
We conclude that the only way that any machine can get work more than

(m + 1)L′ is if it gets a single large job. This means that in particular the first
(largest) job has size p1 > (m + 1)w ≥ 3w ≥ 3L′. SNC assigns this job to its
first machine, and the remaining work on the other machines.

To complete the induction step, compare the execution of SNC to the execu-
tion of SNC with as input the m−1 slowest machines and the n−1 smallest jobs.
Denote the first SNC by SNCm and the second by SNCm−1. We first show that
SNCm−1 fails on U ′. Since U ′ ≤ (1 + ε

2)w < 2w, then SNCm assigns only p1 to
machine 1, and thus SNCm−1 executes exactly the same on the other machines.
Since machine 1 is covered, SNCm fails on some later machine, and then this also
happens to SNCm−1. Therefore, SNCm−1 cannot succeed with U ′ or any larger
value. A similar reasoning shows that SNCm−1 succeeds with any guess that is
at most L′. Finally, L′ is at least the starting guess A/2. So p1 > 3L′ ≥ 3

2A
implies that LPT also puts only the first job on the first machine, since its ap-
proximation ratio is better than 4/3. Therefore, LPT gives the same guess value
A for the original input on m machines as it would for the n − 1 smallest jobs
on m − 1 machines. This means that SNCm and SNCm−1 maintain the same
values U and L throughout the execution, and then we can apply the induction
hypothesis.

In the full paper, we show that the simple algorithm Round Robin has an ap-
proximation guarantee of m, so this algorithm can also be used in case the speed

274 L. Epstein and R. van Stee

ratio is large. It should be noted that if we find an algorithm with a better
guarantee than m, we cannot simply run both it and SNC and take the best
assignment to get a better overall guarantee. The reason that this does not work
is that this approach does not need to be monotone, even if this hypothetical
new algorithm is monotone: we do not know what happens at the point where
we switch from one algorithm to the other.

6 Algorithms for Small Numbers of Machines

We next consider the case of two machines. Even though previous sections give
algorithms for this case with approximation ratio arbitrarily close to 1, we are
still interested in studying the performance of SNC for this case. The main
reason for this is that we hoped to get ideas on how to find algorithms with
good approximation ratios for m > 2 machines that are more efficient than our
approximation schemes. However, unfortunately, several obvious adaptations of
SNC are not monotone, and it seems we will need more sophisticated algorithms
for m > 2.

Our results for two machines are as follows. SNC has an approximation ratio
of max{ 3

s+1 , 2s
s+1}. A speed-aware variation of SNC has an approximation ratio

of min{1+ s
s+1 , 1+ 1

s}, which is better than that of SNC for s ≤ 1+
√

2. Already
on three machines, this algorithm is not monotone. Rounding speeds to a power
of some number a ≥

√
2 does not give a monotone algorithm (and most likely it

also does not help to round to powers of a smaller number). Rounding job sizes
does not give a monotone algorithm already for two machines.

Acknowledgment. The authors would like to thank an anonymous referee who
pointed out an error in an earlier version of our approximation scheme in Section 3,
another referee who helped improve the presentation, and Motti Sorani for helpful
discussions.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful Approximation Mechanisms for
Scheduling Selfish Related Machines. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

2. Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In: Proc. of
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 205–
214 (2003)

3. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: Proc.
42nd Annual Symposium on Foundations of Computer Science, pp. 482–491 (2001)

4. Archer, A., Tardos, E.: Frugal path mechanisms. In: Proc. of 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 991–999 (2002)

5. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truthful approx-
imation mechanisms for scheduling related machines. In: Diekert, V., Habib, M.
(eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

Maximizing the Minimum Load for Selfish Agents 275

6. Azar, Y., Epstein, L.: On-line machine covering. In: Burkard, R.E., Woeginger,
G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 23–36. Springer, Heidelberg (1997)

7. Azar, Y., Epstein, L.: Approximation schemes for covering and scheduling on
related machines. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS,
vol. 1444, pp. 39–47. Springer, Heidelberg (1998)

8. Bansal, N., Sviridenko, M.: The Santa Claus Problem. In: Proc. of 38th Annual
ACM Symposium on Theory of Computing (STOC), pp. 31–40 (2006)

9. Bezáková, I., Dani, V.: Nobody left behind: fair allocation of indivisible goods.
ACM SIGecom Exchanges, 5.3 (2005)

10. Csirik, J., Kellerer, H., Woeginger, G.J.: The exact LPT-bound for maximizing the
minimum completion time. Operations Research Letters 11, 281–287 (1992)

11. Deuermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize the min-
imum processor finish time in a multiprocessor system. SIAM J. Discrete Meth-
ods 3, 190–196 (1982)

12. Devanur, N.R., Mihail, M., Vazirani, V.V.: Strategyproof cost-sharing mechanisms
for set cover and facility location games. In: ACM Conference on E-commerce, pp.
108–114 (2003)

13. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proc. of 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 701–709 (2004)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the theory
of NP-Completeness. Freeman and Company, New York (1979)

15. Golovin, D.: Max-min fair allocation of indivisible goods. Technical Report,
Carnegie Mellon University, CMU-CS-05-144 (2005)

16. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Techni-
cal J. 45, 1563–1581 (1966)

17. Kovacs, A.: Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

18. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted com-
binatorial auctions. In: Proc. of the 18th National Conference on Artificial Intel-
ligence and 14th Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI), pp. 379–384 (2002)

19. Woeginger, G.J.: A polynomial time approximation scheme for maximizing the
minimum machine completion time. Operations Research Letters 20(4), 149–154
(1997)

Approximate Polynomial gcd:

Small Degree and Small Height Perturbations

Joachim von zur Gathen1 and Igor E. Shparlinski2

1 B-IT, Universität Bonn
53113 Bonn, Germany

gathen@bit.uni-bonn.de
2 Department of Computing, Macquarie University

NSW 2109, Australia
igor@ics.mq.edu.au

Abstract. We consider the following computational problem: we are
given two coprime univariate polynomials f0 and f1 over a ring R and
want to find whether after a small perturbation we can achieve a large
gcd. We solve this problem in polynomial time for two notions of “large”
(and “small”): large degree (when R = F is an arbitrary field, in the
generic case when f0 and f1 have a so-called normal degree sequence),
and large height (when R = Z).

Keywords: Euclidean algorithm, gcd, approximate computation.

1 Introduction

Symbolic (exact) computations of the gcd of two univariate polynomials form
a well-developed topic of computer algebra. These methods are not directly ap-
plicable when the coefficients are “inexact” real numbers, maybe coming from
physical measurements. The appropriate model here is to ask for a “large” gcd,
allowing “small” additive perturbations of the inputs. Numerical analysis pro-
vides several ways of formalizing this, and “approximate gcd” computations are
an emerging topic of computer algebra with a growing literature. We only point
to Bini & Boito (2007) and its references.

The present paper considers two “exact” notions of approximate gcds. Namely,
let f0, f1 ∈ F[x] be two univariate polynomials over a field F, both of degree at
most n, and d and e integers. We are interested in perturbations u0, u1 ∈ F[x]
of degree at most e such that deg gcd(f0 + u0, f1 + u1) ≥ d. We show that if
e < min{2d − n, n − d}, then the problem has at most one solution, and if one
exists, we can find it in polynomial time. Then we also consider polynomials
over Z and obtain similar results for perturbations v ∈ Z[x] of small height that
achieve a gcd(f0, f1 + v) of large height (without any restrictions on their degree
except that deg v ≤ n).

These results are natural polynomial analogues of those obtained recently by
Howgrave-Graham (2001).

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 276–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximate Polynomial gcd 277

We prove that our algorithms solve the problem under rather restrictive as-
sumptions. It remains an open question whether either a variant or some other
algorithm can tackle a larger set of input values.

We also remark that finding multidimensional analogues, that is, constructing
algorithms to find “small” perturbations u0, . . . , us−1 of f0, . . . , fs−1 such that
gcd(f0 + u0, . . . , fs−1 + us−1) is “large” (in both number and polynomial cases)
is another interesting direction of research.

2 Gcd of Large Degree

We write f quo g and f rem g for the quotient and remainder on division of f by
nonzero g. Thus f = (f quo g) · g + (f rem g) and deg(f rem g) < deg g.

The degree sequence of two univariate polynomials f0, f1 ∈ F[x] is the se-
quence of degrees deg f0, deg f1, deg f2, . . . of the remainders f0, f1, f2, . . . in the
Euclidean algorithm. Usually, but not always, deg fi−1 = 1 + deg fi, and we
say that f0, f1 have a normal degree sequence if that is the case for all i. We
denote by M a polynomial multiplication time over F, so that two polynomi-
als of degree at most n can be multiplied with O(M(n)) operations in F. We
may use M(n) = n log n log log n. In particular M(n) ∈ O (̃n), where as usual
A ∈ O (̃B) means that |A| ≤ c1B(log(B + 2))c2 for some constants c1, c2 > 0;
see von zur Gathen & Gerhard (2003, Chapter 8).

For our first result, we consider a field F and univariate polynomials f0, f1 ∈
F[x]. We ask for perturbations u0, u1 ∈ F[x] of small degree so that the perturbed
polynomials have a gcd of large degree. More precisely, we also have integers
e0, e1, d, and we consider the set

U = {(u0, u1) ∈ F[x]2 : deg ui ≤ ei for i = 0, 1, deg gcd(f0 + u0, f1 + u1) = d}.
(1)

If ei is negative, then the condition is meant to imply that ui = 0. As an
example, we can take f1, g, u0 ∈ F[x] of degrees n1, m, e0, respectively, with
e0 < n1 < m, and f0 = gf1−u0, d = n1, and e1 = n1−m−1. Then U = {(u0, 0)},
and the hypotheses in the theorem below are satisfied.

The algorithm below executes the Extended Euclidean Algorithm (EEA)
for (f0, f1). It produces a finite series of “lines” (rj , sj , tj) such that
sjf0 + tjf1 = rj , where deg rj ≤ n is strictly decreasing with growing j
(see von zur Gathen & Gerhard 2003, Section 3.2). We have s1 = t0 = 0, and
all other si and ti are nonzero. Furthermore, since deg sj and deg tj are strictly
increasing (see von zur Gathen & Gerhard 2003, Lemma 3.10), there is at most
one “line” (r, s, t) with a prescribed degree for s (or t). We denote as lc(f) the
leading coefficient of a polynomial f .

Algorithm 2. Approximate gcd of large degree.
Input: f0, f1 ∈ F[x] monic of degrees n0 > n1, respectively, coprime and with a

normal degree sequence. Furthermore, integers d, e0, e1 with d > 0 and

e0 < min{2d − n1, n0 − d}, e1 < min{2d − n0, n1 − d}.

278 J. von zur Gathen and I.E. Shparlinski

Output: U as in (1).

1. Execute the EEA with input (f0, f1).
2. Check if the EEA computes (r, s, t) with sf0 + tf1 = r and n0 − deg t =

n1 − deg s = d. If not, return U = ∅.
3. Otherwise, if s = 0, then let u0 = −(f0 rem f1) and return U = {(u0, 0)} if

deg u0 ≤ e0, and else U = ∅. If t = 0, then return U = ∅.
4. {We now have sf0 + tf1 = r and st �= 0.} Compute

h0 = f0 quo t,

h1 = f1 quo s.

If h0 and h1 are not associates, return U = ∅.
5. Else, compute

h = lc(h0)−1h0,

α = lc(t)−1,

q0 = αt,

q1 = −αs,

ui = qih − fi for i = 0, 1.

6. If deg ui ≤ ei for i = 0, 1, then return U = {(u0, u1)}, else return U = ∅.

Theorem 3. Let f0, f1, n = n0, n1, d, e0, e1 satisfy the input specification of
Algorithm 2. Then the set U contains at most one element, and Algorithm 2
computes it with O(M(n) log n) operations in F.

Proof. We have noted above that there is at most one “line” (r, s, t) in the EEA
with sf0 + tf1 = r and n0 − deg t = n1 − deg s = d. If there is no such line, then
our algorithm returns U = ∅. Otherwise we take that line.

We first have to check that any (u0, u1) returned by the algorithm is actually
in the set U . This is clear in Step 3. For an output in Step 6, we note that

gcd(f0 + u0, f1 + u1) = gcd(q0h, q1h) = h gcd(s, t) = h,

since gcd(s, t) = 1 (see von zur Gathen & Gerhard 2003, Lemma 3.8 (v)),

deg h = deg h0 = deg f0 − deg t = d,

and indeed (u0, u1) ∈ U .
To show correctness of the algorithm it remains to show that if U �= ∅, then

the algorithm indeed returns this set U , and that U has at most one element.
So we now suppose that U �= ∅, let (u0, u1) ∈ U , and h = gcd(f0+u0, f1+u1),

so that deg h = d. One first checks that the algorithm deals correctly with the
two special cases d = n0 and d = n1. In the other cases, there exist uniquely
determined q0, q1 ∈ F[x] such that

fi = qih − ui for i = 0, 1, (4)

Approximate Polynomial gcd 279

since deg ui < 2d − n1−i < d = deg h. Eliminating h from these two equations,
we find

q1f0 − q0f1 = q0u1 − q1u0, (5)

and call this polynomial g = q0u1 − q1u0. We have deg q0 = n0 − d < n0. Now g
is nonzero, because otherwise f0 would divide q0, a polynomial of smaller degree
than f0, which would imply that q0 = 0, a contradiction.

We have

deg q0 + deg g ≤ n0 − d + max{(n0 − d) + e1, (n1 − d) + e0} < n0,

since ei < 2d − n1−i for i = 0, 1.
Thus (5) satisfies the degree inequalities of the EEA, and by the well-

known uniqueness property of polynomial continued fractions (see, for example,
von zur Gathen & Gerhard (2003, Lemma 5.15)), there exist a remainder r and
corresponding Bézout coefficients s, t in the EEA for f0 and f1, and nonzero
α ∈ F[x] so that

sf0 + tf1 = r and (g, q1, −q0) = α(r, s, t).

Furthermore, since the Euclidean degree sequence is normal, α is a constant.
We have n0 − deg q0 = n0 − deg t = d, similarly n1 − deg q1 = d, and deg ui ≤
ei < ni − d = deg qi, so that ui equals the remainder of fi on division by qi, for
i = 0, 1. It follows from (4) that indeed (u0, u1) is returned by the algorithm.

In particular, since at most one (u0, u1) is returned by the algorithm and it
equals each element of U (if U �= ∅), U contains at most one element.

The cost for computing a single line in the Extended Euclidean Scheme is
O(M(n) log n); see von zur Gathen & Gerhard (2003, Algorithm 11.4). All other
operations are not more expensive. ��

In particular the cost of Algorithm 2 is in O (̃n).
Figure 1 indicates at the bottom the triangle of values in the e0-d-plane sat-

isfying the restriction required for e0, with large n0 = n1 + 1. There are trivial
solutions ui = −fi rem h for i = 0, 1 when e0, e1 ≥ d − 1, for any h of degree
d; these form the area above the diagonal. We ran experiments with “random”
polynomials, with and without a planted perturbed gcd. Values in the bottom
triangle were, of course, correctly dealt with. We also ran the algorithm without
any of the bounds d, e0, e1. Then it would typically compute (u0, u1) ∈ U with
e0 = n0 − d and 1 ≤ d ≤ n1, which is the dotted line in Figure 1. Planted gcds
with d < n0/2 were usually not detected.

3 Gcd of Large Height

We now look at the same problem in a different setting which we consider only for
polynomials over Z (although it can be extended to polynomials over other fields

280 J. von zur Gathen and I.E. Shparlinski

d
n0

e0

Fig. 1. The three areas – bottom triangle, half-plane, dotted line – are explained in
the text

and rings). Namely, we consider the case where the height H(f) = max{|fj | : 0 ≤
j ≤ n} of a polynomial

f =
n∑

j=0

fjx
j ∈ Z[x]

is the measure of interest.
We first need to know that a large polynomial takes a small value only very

rarely. Our bound is in fact the same as for the number of roots of the polynomial.

Lemma 6. Let h ∈ Z[x] have degree d ≥ 3, let A ≥ 2 be an integer, and

A = {a ∈ Z : − A ≤ a ≤ A, |h(a)| ≤ H(h)2−dA−d2
}.

Then #A ≤ d.

Proof. Let a0, . . . , ad ∈ {−A, . . . , A} be d + 1 distinct integers, and let V =
(aj

i)0≤i,j≤d be the corresponding (d + 1) × (d + 1) Vandermonde matrix. Each
column of V has L2-norm at most

(
∑

0≤i≤d

A2i)1/2 ≤ 21/2Ad.

We write h = hdx
d + · · · + h1x + h0. Then

V · (h0, . . . , hd)T = (h(a0), . . . , h(ad))T

Approximate Polynomial gcd 281

The determinant of V is a nonzero integer, therefore from Cramer’s rule and
Hadamard’s inequality we find

H(h) = max
0≤k≤d

|hk| ≤ (21/2Ad)d

⎛

⎝
∑

0≤j≤d

h(aj)2

⎞

⎠

1/2

≤ (d + 1)1/2(21/2Ad)d max
0≤j≤d

|h(aj)| ≤ 2dAd2
max

0≤j≤d
|h(aj)|,

which proves the claim. ��

The bound of Lemma 6 can be improved slightly by estimating the determinant
of V more carefully.

We also need the following statement which has essentially been proved
in Howgrave-Graham (2001). For the sake of completeness we present a suc-
cinct proof. The gcd of two integers, at least one of which is nonzero, is taken
to be positive.

Lemma 7. Let F0 and F1 be integers. Then the set of all integers V with
|V | < |F1| and

gcd(F0, F1 + V) ≥ 2
√

|F0V |

can be computed in time polynomial in log (|F0F1| + 1).

Proof. For an integer V we write

Δ = gcd(F0, F1 + V), G0 =
F0

Δ
, G1 =

F1 + V

Δ
.

We have |F1 + V | < 2|F1|. Then one verifies that

F0G1 − F1G0 =
F0V

Δ
=

(F1 + V1)(F0V1 − F1V0)
G1Δ2

.

Hence ∣
∣
∣
∣
F0

F1
− G0

G1

∣
∣
∣
∣ ≤ 2|F1|(|F0V |)

|F1|G2
1Δ

2
≤ 1

2G2
1

.

Thus G0/G1 is one of the convergents in the continued fraction expansion of
F0/F1, and can be found in polynomial time. Thus Δ = F0/G0 can take only
polynomially many values. For each of them, we verify whether V = G1Δ − F1

satisfies the condition of the lemma. ��

The gcd of polynomials f0 and f1 in Z[x] is monic if one of f0 or f1 is. We now
consider for given f0, f1 ∈ Z[x] and integers D, E the set

V = {v ∈ Z[x] : H(v) ≤ E, H(gcd(f0, f1 + v)) ≥ D}. (8)

282 J. von zur Gathen and I.E. Shparlinski

Algorithm 9. Approximate gcd of large height.
Input: f0, f1 ∈ F[x] monic of degrees n ≥ n1 and heights H0 and H1, respec-

tively, and such that gcd(f0, f1) = 1. Furthermore, we are given a positive
ε < 1 and positive integers D and E.

Output: V as in (8).

1. Initialize V = ∅. Put A =
⌈
4ε−1n2

⌉
and choose n + 1 distinct integers

a0, . . . , an+1 uniformly at random in the interval {−A, . . . , A}.
2. Evaluate fi(aj) for j = 0, . . . , n and i = 0, 1.
3. For each j = 0, . . . , n, compute continued fraction expansions of

f0(aj)/f1(aj) and find the set of all Vj with

gcd (f0(aj), f1(aj) + Vj) ≥ D2−nA−n2
.

4. For each possible choice (V0, . . . , Vn) compute the unique interpolation poly-
nomial v ∈ Q[x] of degree at most n with v(aj) = Vj for all j. If v satisfies
the conditions in (8), then add v to V .

5. Return V .

Theorem 10. Let f0, f1, ε, D, E be inputs to Algorithm 9. If

E < H12−n−1(4ε−1n2 + 1)−n2−n

and
D ≥ 2n+2(4ε−1n2 + 1)n2+n(H0E)1/2,

then Algorithm 9 computes V with probability 1 − ε in time polynomial in
(log(DH1ε

−1))n.

Proof. Let v ∈ V as in (8), h = gcd(f0, f1 + v), and d = deg h. We want to show
that with probability at least 1 − ε, v is found in step 4.

For a0, . . . , an chosen in step 1, by Lemma 6 we see that with probability at
least (

1 − 4n

2A + 1

)n

>
(
1 − ε

2n

)n

> 1 − ε,

we have simultaneously

|h(aj)| ≥ H(h)2−dA−d2 ≥ D2−nA−n2
and |fi(aj)| ≥ Hi2−nA−n2

for each j = 0, . . . , n and i = 0, 1, since each aj has to avoid the at most
d + 2n ≤ 3n “small” values of h, f0 and f1, and also the values a0, . . . , aj−1. We
also have

|f1(aj)| ≥ H12−nA−n2
> 2EAn ≥ |v(aj)|

for each j, so that f1(aj)+v(aj) �= 0. Since the value of a polynomial gcd divides
the gcd of the polynomial values, we find

gcd (f0(aj), f1(aj) + v(aj)) ≥ |h(aj)| ≥ D2−nA−n2
.

Approximate Polynomial gcd 283

On the other hand,

|fi(aj)| ≤ 2HiA
n and |v(aj)| ≤ 2EAn

for each j = 0, . . . , n and i = 0, 1. Thus, under the conditions of the theorem we
have

2(|f0(aj)v(aj)|)1/2 ≤ (16H0EA2n)1/2

≤ (16D22−2n−4(4ε−1n2 + 1)−2n2−2nA2n)1/2

≤ (D22−2nA−2n2
)1/2 = D2−nA−n2

.

The above inequalities show that Lemma 7 applies and step 3 indeed finds the
value Vj = v(aj). Thus Algorithm 9 works correctly. For any j, the set of all Vj

in step 3 can be computed in time polynomial in n log(H0H1ε
−1), by Lemma 7.

Finally, the number of possibilities for the vector (V0, . . . , Vn) is polynomial in
(log DH1ε

−1)n. ��

Acknowledgements

The first author’s work was supported by the B-IT Foundation, and the second
author’s by ARC grant DP0556431. Thanks go to Daniel Loebenberger for help
with the figure, and to Mark Giesbrecht.

References

1. Bini, D.A., Boito, P.: Structured Matrix-Based Methods for Polynomial ε-gcd:
Analysis and Comparisons. In: Proceedings of the 2007 International Symposium
on Symbolic and Algebraic Computation ISSAC 2007, Waterloo, Ontario, Canada,
pp. 9–16 (2007)

2. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cam-
bridge University Press, Cambridge (2003); 1st edn. (1999), http://www-math.upb.
de/∼aggathen/mca/

3. Howgrave-Graham, N.: Approximate integer common divisor. In: Silverman, J.H.
(ed.) Cryptography and Lattices: International Conference, CaLC 2001, Provi-
dence. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001), http://www.
springerlink.com/content/ak783wexe7ghp5db/

http://www-math.upb.
de/~aggathen/mca/
http://www.
springerlink.com/content/ak783wexe7ghp5db/

Pseudorandom Graphs from Elliptic Curves

Igor E. Shparlinski�

Department of Computing, Macquarie University
NSW 2109, Australia
igor@ics.mq.edu.au

Abstract. Most of the constructions of pseudorandom graphs are based
on additive or multiplicative groups of elements of finite fields. As a
result the number of vertices of such graphs is limited to values of prime
powers or some simple polynomial expressions involving prime powers.
We show that elliptic curves over finite fields lead to new constructions
of pseudorandom graphs with a new series of parameters. Accordingly,
the number of vertices of such graphs can take most of positive integer
values (in fact, any positive value under some classical conjectures about
the gaps between prime numbers).

Keywords: Pseudorandom graph, elliptic curve, exponential sum.

1 Introduction

1.1 Motivation

Let VG denote the set of vertices of an undirected graph G. Given two disjoint
subsets U , W ⊆ VG we define eG(U , W) as the number of edges which lead from
vertices in U to vertices in W . We also write EG for the number of edges in G.

It is natural to expect that for a graph with a reasonably uniform distribution
of edges the quantity

Δ(G) = max
U ,W⊆VG

U∩V=∅

∣
∣
∣
∣eG(U , W) − EG

(#VG)2
#U#W

∣
∣
∣
∣ ,

which is called the discrepancy of G, is small compared to EG. In particular,
with high probability, this property holds for various families of random graphs.
Accordingly, graphs for which this is the case, are called pseudorandom, see [6,9]
for surveys of pseudorandom graphs, their various equivalent definitions and
applications.

We note that for d-regular graphs G, which are of our main interest, the
definition of the discrepancy simplifies as

Δ(G) = max
U ,W⊆VG

∣
∣
∣
∣eG(U , W) − d

n
#U#W

∣
∣
∣
∣ ,

� This work was supported in part by ARC grant DP0556431.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 284–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pseudorandom Graphs from Elliptic Curves 285

where n = #VG is number of vertices of G.
Since the adjacency matrix of an undirected graph is symmetric, its eigenval-

ues are real and we order them as λ1 ≥ . . . ≥ λn. If G is d-regular then λ1 = d.
We also note that λn = −d if and only if G is bipartite. Moreover, the second
largest absolute value of the eigenvalues, which we denote as

ρ(G) = max{|λj | : |λj | < d, j = 1, . . . , n}

plays an exceptionally important role in the theory of pseudorandom graphs,
see [2,6,9]. For example,

∣
∣
∣
∣eG(U , W) − d

n
#U#W

∣
∣
∣
∣ ≤ ρ(G)

√
#U#W , (1)

see [6, Lemma 2.5] or [9, Theorem 2.11]. We also refer to [2] for a detailed study
of relations between ρ(G) and various properties of G.

Several explicit constructions of pseudorandom graphs are known, see [6,9]
and references therein. Typically such constructions are based on additive or
multiplicative groups (and their combinations) of elements of a finite field, or
sometimes on matrix groups or supersingular elliptic curves over finite fields.
For example, such are all known constructions of Ramanujan graphs which are
d-regular graphs G with ρ(G) ≤ 2

√
d − 1 which is asymptotically optimal, see

the recent survey [11]. Accordingly, this leads to cardinalities n which are prime
powers q, or shifted prime powers q ± 1, or some simple polynomial expressions
of them (for example such as qt(q − 1) with an integer t ≥ 2 for the so-called
projective norm graphs of [1]). The choice of possible values of the total number
of edges EG is usually quite constrained too.

1.2 Our Results

Here we use arbitrary elliptic curves over finite fields to produce a new construc-
tion of d-regular pseudorandom Cayley graphs with a new series of parameters.
In particular, we estimate ρ(G) for these graphs G, which together with (1)
implies a bound on Δ(G). We also obtain another bound which gives a more
precise estimate on eG(U , W) in the case when one of the sets is rather thin.

Our construction works for every n which is the number of IFp-rational points
of some elliptic curve over a field of p elements IFp, where p is an arbitrary prime.

By the classical results of Deuring [4] for any prime p > 3 and integer n in
the interval [p + 1 − 2p1/2, p + 1 + 2p1/2] is taken as the number of IFp -rational
points of some elliptic curve over IFp.

Note that the probability that an integer n is not in such an interval for some
prime p is very small. More precisely, for x → ∞, the number of such integers
n ≤ x is O(x2/3+o(1)) which follows via partial summation from the estimate

∑

pj≤z

pj+1−pj>z1/2

(pj+1 − pj) ≤ z2/3+o(1)

286 I.E. Shparlinski

which is given in [10], where pj the jth prime number, j = 1, 2, . . ., see also [12].
By the classical Cramer conjecture [3],

pj+1 − pj = O
(
(log pj)2

)
.

Certainly under this conjecture or even its much more relaxed version

pj+1 − pj < 4p
1/2
j . (2)

every positive integer n presents a cardinality of some elliptic curve over a finite
field. On the other hand, even the Riemann Hypothesis falls a little short of (2)
(at least without some additional arguments).

1.3 Outline of the Paper and Notation

We provide all necessary facts on elliptic curves in Section 2.1 and this is enough
to understand our construction given in Section 3.1.

The proofs of our bounds of the second largest eigenvalue and other estimates,
which are given in Section 3.2 are based on some recent bounds exponential sums
over points of elliptic curves, which we present in Section 2.2.

Throughout the paper, the implicit constants in the symbols ’O’ and ‘�’
and ‘	’ may occasionally depend on an integer parameter ν and are absolute
otherwise (we recall that U = O(V) and U � V are both equivalent to the
inequality |U | ≤ cV with some constant c > 0).

We always use p to denote a prime number.
We also assume that IFp is represented by the set {0, . . . , p − 1}.

2 Preparation

2.1 Background on Elliptic Curves

Since considering elliptic curves over non-prime fields does not substantially
extend the set of parameters our construction produces we only consider elliptic
curves E over IFp where p is a prime. In this case, E can be given an affine
Weierstrass equation of the form

y2 = x3 + ax + b, (3)

with coefficients a, b ∈ IFp, such that 4a3 + 27b2 �= 0.
It is known, see [14], that the set E(IFp) of IFp-rational points of E forms

an Abelian group under an appropriate composition rule, which we call addition
and denote ⊕, and with the point at infinity O as the neutral element (we also
use in its obvious meaning as the operation inverse to ⊕). Thus, given a point
Q ∈ E(IFp) and an integer m we write mQ for the sum of m copies of Q. We
also recall that

|#E(IFp) − p − 1| ≤ 2p1/2,

Pseudorandom Graphs from Elliptic Curves 287

where #E(IFp) is the number of IFp-rational points, including the point at in-
finity O. Given a point Q ∈ E(IFp) with Q �= O we denote by x(Q) and y(Q) its
affine components, Q = (x(Q), y(Q)). The negative of Q = (x(Q), y(Q)) is given
by −Q = (x(Q), −y(Q)) = O Q.

For a prime � denote by E[�] the group of �-torsion points on E, that is the
set of points Q on E, defined over the algebraic closure of IFp for which �Q = O.
Then for � �= p we have

#E[�] = �2.

Let XE be the group of characters on E(IFp) (considered as an Abelian group).
It is known that E(IFp) is of rank at most 2 and thus is isomorphic to ZZ/M×ZZ/L
for unique positive integers M and L with L | M and #E(IFp) = ML. Thus
one can find points G1, G2 ∈ E(IFp) of orders M and L, respectively, and such
that any point in E(IFp) can be written uniquely in the form mG1 + �G2 with
1 ≤ m ≤ M and 1 ≤ � ≤ L. Now XE can be explicitly described as

XE = {χ | χ(mG1 + �G2) = exp(2πiam/M) exp(2πia�/L),
0 ≤ a < M, 0 ≤ b < L}

(this set does not depend on the choice of generators G1 and G2). The trivial
character χ0 corresponds to a = b = 0.

For an elliptic curve E over IFp and a positive integer h, we use E(IFp; h) to
denote the set of points Q ∈ E(IFp) with x(Q) ∈ {0, . . . , h − 1}. We need the
following special case of much more general results of [5,15].

Lemma 1. Let p be a prime. Then for any integer h with 1 ≤ h < p, we have
#E(IFp; h) = h + O(p1/2 log p).

We also recall, that for any ε > 0 and sufficiently large p, for the set E(IFp; h)
generates the whole group E(IFp) provided h ≥ p1/2+ε, see [8].

2.2 Exponential Sums

For a prime p we denote
ψp(z) = exp(2πiz/p),

which is an additive character of IFp. We have the following orthogonality relation

1
p

(p−1)/2∑

r=−(p−1)/2

ψp(rz) =
{

1, if z ≡ 0 (mod p),
0, if z �≡ 0 (mod p), (4)

which is used to express various characteristic functions and thus to relate various
counting questions to exponential sums.

The identity (4) is very often complemented by the bound

W+Z∑

z=W+1

ψp(rz) � min{Z, p/|r|} (5)

288 I.E. Shparlinski

which holds for any integers r, W and Z ≥ 1 with 0 < |r| ≤ p/2, see [7,
Bound (8.6)].

We need to recall some bounds of exponential sums over points of elliptic
curves.

Our basic tool is the following result from [8].

Lemma 2. Let p be a prime and let E be an elliptic curve over IFp. For any
nontrivial character χ ∈ XE and an integer r with gcd(r, p) = 1 the bound

∑

Q∈E(IFp)
Q�=O

χ(Q)ψp (rx(Q)) � p1/2

holds.

We also need the following result from [13].

Lemma 3. Let p be a prime and let E be an elliptic curve over IFp. For any
subsets Q, R ⊆ E(IFp) and an integer r with gcd(r, p) = 1, the bound

∑

Q∈Q,R∈R
Q�=R

ψp (rx(Q R)) � (#Q)1−1/2ν(#R)1/2p1/2ν + (#Q)1−1/2ν#Rp1/4ν

holds for any integer ν ≥ 1, where the implied constant depends only on ν.

As in [13], we remark that for any ε ∈ (0, 1/2), taking ν = �1/ε�, Lemma 3 gives
a nontrivial bound provided #Q > q1/2+ε and #R > qε. Certainly #Q and #R
can be interchanged on the right hand side of that bound too (it is enough to
apply Lemma 3 to the new set −Q and −R).

3 Main Results

3.1 Construction

Let p ≥ 3 be a prime and let E be an elliptic curve over IFp. For any integer
h with 1 ≤ h < p, we denote by Ẽ(IFp; h) obtained from E(IFp; h) by removing
points of order 2, that is,

Ẽ(IFp; h) = E(IFp; h) \ E[2].

Finally, given a positive integer k < 0.5# (E(IFp) \ E[2]), we find a largest h
with

2k ≥ #Ẽ(IFp; h)
and choose a set S with

#S = k, S ∩ −S = ∅, Ẽ(IFp; h) ⊆ (S ∪ −S) ⊆ Ẽ(IFp; h + 1), (6)

where −S denotes the set of points −P with P ∈ S.
We define the graph Gp(E, S) as the graph whose vertices are labeled by the

n = #E(IFp) points of E(IFp) and two distinct vertices Q and R are connected
if and only if Q R ∈ S or R Q ∈ S.

Since S ∩ E[2] = ∅, we see that only one of the points P and −P may belong
to S. Therefore Gp(E, S) is a 2k-regular Cayley graph on n = #E(IFp) vertices.

Pseudorandom Graphs from Elliptic Curves 289

3.2 Estimates

Now we are prepared to formulate our main estimate on the second largest
eigenvalue of the graphs Gp(E, S).

Theorem 1. Let p ≥ 3 be a prime and let E be an elliptic curve over IFp. Then
for any set S with (6) the graph G = Gp(E, S) is a 2k-regular Cayley graph on
n = #E(IFp) vertices for which

ρ(G) � n1/2 log n.

Proof. The eigenvalues of G are given by the character sums
∑

P∈S∪−S
χ(P), χ ∈ XG,

see [6, Proposition 11.7] (see also [9, Section 3]), where the trivial character χ0

corresponds to the trivial eigenvalue 2k.
Clearly there are at most 2 points Q ∈ E(IFp) with x(Q) = h. Thus

#
(
(S ∪ −S) \ Ẽ(IFp; h)

)
≤ #

(
Ẽ(IFp; h + 1) \ Ẽ(IFp; h)

)
≤ 2.

We also have
#

(
E(IFp; h) \ Ẽ(IFp; h)

)
≤ #E[2] ≤ 4

from which we deduce

(E(IFp; h) \ (S ∪ −S)) ≤ 6. (7)

Therefore
∑

P∈S∪−S
χ(P) =

∑

P∈S
(χ(P) + χ(−P)) =

∑

P∈E(IFp;h)

χ(P) + O(1). (8)

Using the identity (4), we write

∑

P∈E(IFp;h)
P �=O

χ(P) =
∑

P∈E(IFp)

χ(P)
h−1∑

z=0

1
p

(p−1)/2∑

r=−(p−1)/2

ψp (r (x(P) − z))

=
1
p

(p−1)/2∑

r=−(p−1)/2

∑

P∈E(IFp)
P �=O

χ(P)ψp (rx(P))
h−1∑

z=0

ψp (−rz) .

For a nontrivial character χ �= χ0 we now use Lemma 2 and then the bound
(5), getting

∑

P∈E(IFp;h)
P �=O

χ(P) � p−1/2

(p−1)/2∑

r=−(p−1)/2

∣
∣
∣
∣
∣

h−1∑

z=0

ψp (−rz)

∣
∣
∣
∣
∣

� p1/2

(p−1)/2∑

r=−(p−1)/2

1
|r| � p1/2 log p.

290 I.E. Shparlinski

Substituting this bound in (8) and using that n = p + O(p1/2), we conclude
the proof. ��
Combining Theorem 1 with (1), we deduce that for the graph G = Gp(E, S) and
any disjoint subsets Q, R ⊆ E(IFp) we have

eG(Q, R) − 2k

n
#Q#R �

√
n#Q#R log n. (9)

In particular
Δ(G) � n3/2 log n

which is better than the trivial bound Δ(G) ≤ kn when k = #S ≥ n1/2+ε for
any fixed ε > 0 and sufficiently large n. As we have remarked in Section 2.1, the
graph G is connected under this condition.

We now obtain another bound on eG(Q, R) which improves (9) when one of
the sets Q and R is small.

Theorem 2. Let p ≥ 3 be a prime and let E be an elliptic curve over IFp. Then
for any set S with (6) the graph G = Gp(E, S) is a 2k-regular Cayley graph on
n = #E(IFp) vertices and for any disjoint subsets Q, R ⊆ E(IFp) we have

eG(Q, R) − 2k

n
#Q#R

�
(
(#Q)1−1/2ν(#R)1/2n1/2ν + (#Q)1−1/2ν#Rn1/4ν

)
log n

that for any integer ν ≥ 1.

Proof. We have eG(Q, R) = eG,0(Q, R) + eG,1(Q, R) where

eG,0(Q, R) = #{(Q, R) ∈ Q × R : Q R ∈ S},

eG,1(Q, R) = #{(Q, R) ∈ Q × R : R Q ∈ S}.

Certainly both quantities can be considered analogously, so we only concentrate
on eG,0(Q, R).

Using (7) we write

eG,0(Q, R) =
∑

(Q,R)∈Q×R
Q
R∈S

1 =
∑

(Q,R)∈Q×R
Q
R∈E(IFp;h)

1 + O (min{#Q, #R}) . (10)

Now, using the identity (4), we obtain

∑

(Q,R)∈Q×R
Q
R∈E(IFp;h)

1 =
∑

Q∈Q,R∈R

h−1∑

z=0

1
p

(p−1)/2∑

r=−(p−1)/2

ψp (r (x(Q R) − z))

=
1
p

(p−1)/2∑

r=−(p−1)/2

∑

Q∈Q,R∈R
ψp (rx(Q R))

h−1∑

z=0

ψp (−rz)

=
h

p
#Q#R + W,

Pseudorandom Graphs from Elliptic Curves 291

where

W =
1
p

∑

0<|r|≤(p−1)/2

∑

Q∈Q,R∈R
ψp (rx(Q R))

h−1∑

z=0

ψp (−rz) .

Applying Lemma 3 and then the bound (5) we derive that for any integer ν ≥ 1,

|W | � 1
p

(
(#Q)1−1/2ν(#R)1/2p1/2ν + (#Q)1−1/2ν#Rp1/4ν

)

∑

0<|r|≤(p−1)/2

∣
∣
∣
∣
∣

h−1∑

z=0

ψp (−rz)

∣
∣
∣
∣
∣

�
(
(#Q)1−1/2ν(#R)1/2p1/2ν + (#Q)1−1/2ν#Rp1/4ν

)
log p.

Thus from (10), using the trivial bound

min{#Q, #R} ≤
√

#Q#R ≤ (#Q)1−1/2ν(#R)1/2p1/2ν ,

we obtain

eG,0(Q, R) − h

p
#Q#R

�
(
(#Q)1−1/2ν(#R)1/2p1/2ν + (#Q)1−1/2ν#Rp1/4ν

)
log p.

Since eG,1(Q, R) satisfies the same bound, we derive

eG(Q, R) − 2h

p
#Q#R

�
(
(#Q)1−1/2ν(#R)1/2n1/2ν + (#Q)1−1/2ν#Rn1/4ν

)
log n.

By Lemma 1 and (7) we have

k = #E(IFp; h) + O(1) = h + O(p1/2 log p) = h + O(n1/2 log n).

It remains to note that

2h

p
=

2k + O(n1/2 log n)
n + O(n1/2)

=
2k

n
+ O(kn−3/2 log n) =

2k

n
+ O(n−1/2 log n)

and also that #Q#Rn−1/2 ≤ (#Q)1−1/2ν#Rn1/4ν . ��

Exactly as Lemma 3, Theorem 2 is nontrivial provided #Q > n1/2+ε and #R >
nε for any fixed ε > 0 and sufficiently large n (as before, Q and R can be
interchanged).

292 I.E. Shparlinski

4 Remarks

Different Weierstrass equations (3) may define isomorphic curves. However it
seems that the corresponding graphs Gp(E, S) are not isomorphic. It would be
interesting to estimate the total number of non-isomorphic graphs our construc-
tion produces over all curves E over IFp with #E(IFp) = n and the corresponding
sets S with #S = k.

We also hope that our graphs, combined with some ideas of constructions
of [16,17], may lead to new strong hash functions.

References

1. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: Variations and applications. J. Com-
bin. Theory, Ser. B 76, 280–290 (1999)

2. Chung, F.R.K.: Spectral graph theory. Amer. Math. Soc., Providence, RI (1997)
3. Cramer, H.: On the order of magnitude of the difference between consecutive prime

numbers. Acta Arith. 2, 23–46 (1936)
4. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.

Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)
5. Granville, A., Shparlinski, I.E., Zaharescu, A.: On the distribution of rational func-

tions along a curve over IFp and residue races. J. Number Theory 112, 216–237
(2005)

6. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc. 43, 439–561 (2006)

7. Iwaniec, H., Kowalski, E.: Analytic number theory. Amer. Math. Soc., Providence,
RI (2004)

8. Kohel, D.R., Shparlinski, I.E.: Exponential sums and group generators for elliptic
curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp.
395–404. Springer, Heidelberg (2000)

9. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. In: More Sets, Graphs and
Numbers. Bolyai Society Mathem. Studies 15, pp. 199–262. Springer, Heidelberg
(2006)

10. Matomäki, K.: Large differences between consecutive primes. Quart. J. Math. 58,
489–518 (2007)

11. Murty, M.R.: Ramanujan graphs. J. Ramanujan Math. Soc. 18, 1–20 (2003)
12. Peck, A.S.: Differences between consecutive primes. Proc. London Math. Soc. 76,

33–69 (1998)
13. Shparlinski, I.E.: Bilinear character sums over elliptic curves. Finite Fields and

Their Appl. (to appear)
14. Silverman, J.H.: The arithmetic of elliptic curves. Springer, Berlin (1995)
15. Vajaitu, M., Zaharescu, A.: Distribution of values of rational maps on the IFp-points

on an affine curve. Monatsh. Math. 136, 81–86 (2002)
16. Tillich, J.-P., Zémor, G.: Hashing with SL2. In: Desmedt, Y.G. (ed.) CRYPTO

1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)
17. Zémor, G.: Hash functions and Cayley graphs. Designs, Codes and Cryptography 4,

381–394 (1994)

Speeding-Up Lattice Reduction with Random

Projections (Extended Abstract)

Ali Akhavi1 and Damien Stehlé2

1 Université de Caen/GREYC, Bd Maréchal Juin, F-14032 Caen Cedex, France
ali.akhavi@info.unicaen.fr

http://users.info.unicaen.fr/∼akhavi
2 CNRS/LIP/INRIA/ENS/UCBL, 46 allée d’Italie, F-69364 Lyon Cedex 07, France

damien.stehle@ens-lyon.fr
http://perso.ens-lyon.fr/damien.stehle

Abstract. Lattice reduction algorithms such as LLL and its floating-
point variants have a very wide range of applications in computational
mathematics and in computer science: polynomial factorization, cryptol-
ogy, integer linear programming, etc. It can occur that the lattice to be
reduced has a dimension which is small with respect to the dimension of
the space in which it lies. This happens within LLL itself. We describe
a randomized algorithm specifically designed for such rectangular matri-
ces. It computes bases satisfying, with very high probability, properties
similar to those returned by LLL. It significantly decreases the complex-
ity dependence in the dimension of the embedding space. Our technique
mainly consists in randomly projecting the lattice on a lower dimensional
space, by using two different distributions of random matrices.

1 Introduction

A lattice L is a set of integer linear combinations of some linearly independent
vectors b1, . . . , bd ∈ R

n. These vectors are called a basis of the lattice. A given
lattice has infinitely many bases, but their cardinality d is always the same: it
is called the lattice dimension. The dimension n of the basis vectors is called
the degree of the lattice. The degree of a given lattice cannot be smaller than its
dimension. In this article, we are interested in lattices whose degrees are much
higher than their dimensions: we will informally call rectangular such lattices.
When the degree and the dimension match, the lattice is full-dimensional.

Lattices are an algorithmic tool that proved crucial in many areas in com-
puter science and mathematics, ranging from cryptology [12,1,19] to computer
arithmetic [6,7,24] and algorithmic number theory [20,11]. They became popular
in 1982, when Arjen Lenstra, Hendrik Lenstra Jr, and László Lovász introduced
the renowned algorithm now known under the acronym LLL [17]. Given a lat-
tice basis made of integer vectors, the LLL algorithm discloses a short non-zero
lattice vector in time polynomial in the bit-size of the input. This algorithm has
complexity O(d5n log3 B), where B is the maximum of the norms of the input
vectors. The practical variants of LLL rely on floating-point arithmetic (for the

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 293–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://users.info.unicaen.fr/~akhavi
http://perso.ens-lyon.fr/damien.stehle

294 A. Akhavi and D. Stehlé

underlying Gram-Schmidt orthogonalization), and the best fully proved such
variant is due to Nguyen and Stehlé [18]. The so-called L2 algorithm has bit-
complexity O(d4n log B(d + log B)). We will consider this variant here, though
the technique we introduce works with any other variant of LLL.

Our main result is to provide a randomized algorithm taking as input a lattice
basis and computing another basis such that with overwhelming probability (e.g.,
as d grows to infinity) this basis satisfies properties similar to those returned by
LLL. If one neglects all terms polynomial in log d, log n and log log B, then it runs
in time Õ(d2(d3 + n) log B(d + log B)): the cost dependence in the degree of the
lattice is considerably weakened. Moreover, the bit-size of the integers involved
in the algorithm is essentially the same as the bit-size of the initial basis. A
simpler strategy than the one we develop is based on the Gram matrix (the
symmetric matrix of the pairwise inner-products): one can compute the LLL-
transformation by reducing the Gram matrix. It is deterministic and decreases
the cost dependence in n, but it suffers from two drawbacks: the bit-sizes of the
entries of the Gram matrix are essentially twice bigger than the ones of the input
basis and the floating-point inaccuracies can be significantly larger if we start
from the Gram matrix. Strong heuristics [22] tend to show that one can use half
the precision required by the L2 algorithm by disregarding the Gram matrix.

Rectangular lattices arise in the two following situations. First of all, they
sometimes occur in Coppersmith’s methods to find small roots of polynomials
over the integers and modulo an integer [12]. These methods have numerous
applications in cryptology. The involved lattice bases are full-dimensional but
highly structured. This structure sometimes creates situations where subsets of
the input basis vectors suffice to provide the short vectors found by LLL. The
number of vectors to be considered can be drastically decreased, while their
embedding dimension remains constant, thus creating rectangular lattices. This
arises in [4], where Coppersmith’s method is used to cryptanalyse RSA when
the secret exponent is unusually small, and in [23], where it is used to find
bad cases for the rounding of mathematical functions, in the field of computer
arithmetic. In [4], the ratio between the degree and the dimension is constant,
while in [23] the degree grows as the square of the dimension. Another con-
text where rectangular lattices arise is the LLL algorithm itself (and most of
its variants, including L2), even for full-dimensional lattices. In LLL, the basis
is reduced incrementally. There is a main loop whose main parameter is an in-
dex k. The meaning of this index is that in the current basis (b1, . . . , bd), the
vectors b1, . . . , bk−1 are already LLL-reduced and one is trying to extend this
property to b1, . . . , bk. At the beginning of the execution, the index k is set to 2,
while at the end it reaches d + 1. As long as the index k has not been beyond
some arbitrary k0, we are in fact applying LLL to the vectors b1, . . . , bk0 ∈ Z

n.
The smaller the considered k0, the more rectangular the lattice being reduced.
Our technique may be used within LLL to speed it up by a constant factor.

To achieve the result, we develop a few tools, which may be of independent
interest. Firstly, we decrease the degree of the lattice by applying a random pro-
jection technique: we multiply the n × d input basis matrix by a random d × n

Speeding-Up Lattice Reduction with Random Projections 295

matrix, and show that by reducing the randomly projected lattice we get use-
ful information for the initial lattice with very high probability. This resembles
the famous Johnson-Lindenstrauss theorem [15], which shows that one can ran-
domly map N vectors in a O(log N)-dimensional space without modifying sig-
nificantly the pairwise distances between the vectors. We cannot directly apply
such a method since we do not consider the input vectors solely, but their infi-
nitely many integer linear combinations (i.e., in our case N would be infinite).
Moreover, we need to keep the Euclidean structure of the initially spanned vec-
tor space. In particular, we do not decrease the degree of our lattice below its
dimension.

In this paper we consider two random projections. In both models each row of
the projection matrix are chosen independently with a common distribution μn.
In the first model, called the Gaussian model, νn = N (0, In), the standard nor-
mal distribution. In other words, each entry of the projection matrix is sampled
independently with the standard normal distribution N (0, 1). These random
matrices have been studied extensively and we will rely on a result about their
condition numbers, due to Chen and Dongarra [9]. In the second random model,
called the unit ball model, νn is the uniform distribution inside Bn(0, 1), the n-
dimensional ball of radius 1 that is centered in 0. So each row of the projection
matrix is sampled uniformly and independently inside Bn(0, 1). Such random
matrices have been already studied in [13,2,3]. We will rely on some of the re-
sults of these papers. Notice that Rouault [21] recently studied the asymptotic
behavior of the determinant of the lattice generated by the rows of a rectangular
random matrix with both distributions that we consider here.

All the proofs in this paper are done in continuous random models, i.e. en-
tries of our random matrices are real numbers, which is unsuitable to devise
an algorithm. In practice, random matrices are generated with the associated
discretised law. Due to space limitation, we chose to skip these difficulties and
to to describe them in the full version of the paper.

We performed tests on our reduction technique. They worked very well for
many different classes of random projections, including easily samplable ones
(such as entries chosen independently and uniformly in {−1, 0, 1}). As theoret-
ically predicted, the speed-ups can be made arbitrarily large by increasing the
ratio between the lattice degree and the lattice dimension.
Related work. Chen and Storjohann [10] introduced in 2005 a probabilistic
technique to compute a reduced basis of a lattice given by a generating family:
one is given more vectors than the lattice dimension. Our work can be seen as
dual to theirs. We deal with vertically rectangular matrices by multiplying them
on the left by a random matrix, whereas they deal with horizontally rectangular
matrices by multiplying them on the right by a random matrix. They use the
arithmetic structure of the lattice whereas we consider its geometric embedding.
The two techniques may be used together.
Road-map of the paper. In Section 2, we provide the necessary background
on lattices. In Section 3, the core of the paper, we describe our randomized
algorithm and perform its complexity analysis. Section 4 is devoted to show its

296 A. Akhavi and D. Stehlé

correctness with two different sources of random matrices. Finally, in Section 5,
we describe our experiments.
Notations. All costs are given for the bit-complexity model and we assume
that we have a perfect source of random bits. We use only naive arithmetic and
naive linear algebra. The results may be improved by using fast arithmetic and
fast linear algebra. We let Bn(a, R) denote the n-dimensional ball of radius R
centered in a. If B is a matrix, we denote by L(B) the lattice spanned by its
columns. We denote by ‖B‖2 the matrix norm induced by the Euclidean norm,
also called the spectral. The maximum of the absolute values of B’s entries is
the usual max norm denoted by ‖B‖.

2 Some Reminders on Lattices

We refer to [8] and [11] for comprehensive introductions to lattices and their
computational aspects. We give below only the material that is necessary to the
description and proof of our probabilistic reduction technique.

Let b1, . . . , bd ∈ R
n be linearly independent vectors. Their Gram-Schmidt

orthogonalization is defined as follows: the vector b∗
i is the component of the

vector bi which is orthogonal to the linear span of the vectors b1, . . . , bi−1. We
have b∗i = bi −

∑i−1
j=1

rj,i

rj,j
b∗j where rj,i =

〈bi,b
∗
j 〉

‖b∗
j ‖ . If B is a full-rank n × d matrix,

its QR-factorization is the unique pair of matrices (Q, R) such that B = Q · R,
Q is an n × d matrix made of orthonormal column vectors and R is an upper
triangular d × d matrix with positive diagonal coefficients. The Gram-Schmidt
orthogonalization and the QR-factorization of the matrix made of the bi’s are
closely related: the i-th column of Q is b∗

i

‖b∗
i ‖ and the matrix R is made of the ri,j ’s.

Let b1, . . . , bd and c1, . . . , cd be two bases of the same lattice. If B and C
are the matrices whose columns are the bi’s and ci’s, then there exists a d × d
integer matrix T of determinant ±1 such that B = C · T . Such a matrix is
called unimodular. Moreover, if two matrices can be obtained one another by
unimodular matrices, their columns span the same lattice. Let L be a lattice.
The length of any shortest non-zero vector is called the lattice minimum and
denoted by λ(L).

Consider the bi’s as a basis of a lattice L. The determinant of L is de-
fined by detL =

∏d
i=1 ‖b∗i ‖. This does not depend on the choice of the basis.

Hadamard’s inequality gives that detL ≤
∏d

i=1 ‖bi‖. Let δ ∈ (1/4, 1] and η ∈
[1/2,

√
δ). The bi’s are said (δ, η)-LLL-reduced if for any i < j, we have |ri,j | ≤

η · ri,i, and for any i, we have δ · r2
i−1,i−1 ≤ r2

i,i + r2
i−1,i. When introduced in [17],

LLL-reduction referred to the pair (3/4, 1/2). The vectors of a LLL-reduced
basis are relatively short. In particular, we have ‖b1‖ ≤ (δ − η2)−

d−1
4 (detL)

1
d

and
∏d

i=1 ‖bi‖ ≤ (δ − η2)−
d(d−1)

4 (det L). We refer to [18] for a proof of this fact
and for the cost of the algorithm mentioned in the following theorem. The prop-
erty on the unimodular transformation matrix is classical and a proof can be
found in [16].

Speeding-Up Lattice Reduction with Random Projections 297

Theorem 1. Let η ∈ (1/2, 1) and δ ∈ (η2, 1). There exists an algorithm such
that when given as input any linearly independent vectors b1, . . . , bd ∈ Z

n it
computes a (δ, η)-LLL-reduced basis of the lattice they span in time O(d4n(d +
log B) log B), where B = maxi ‖bi‖. Furthermore, the bit-lengths of the entries
of the transformation matrix are bounded by O(d log B).

3 Probabilistic Reduction of Rectangular Lattices

3.1 High-Level Description of the Algorithm

We are given an n × d integer matrix B and try to find a small integer linear
combination of its columns. Instead of applying an LLL-type algorithm directly,
we apply a random d × n dimensional projection P to the matrix and LLL-
reduce the d × d projected matrix B′ = P · B. By doing so, we decrease the cost
with respect to n. We wish that with high probability the unimodular transfor-
mation T obtained by LLL-reducing B′ somehow reduces B as well. Figure 1
sums up the general method. The top arrow is computationally expensive and
is approximately and probabilistically simulated by the succession of plain ar-
rows, that are cheaper. The main result of the paper is the theorem following
the description of the algorithm.

B

B′ = P · B C′ = B′ · T

C = B · T

LLL

Direct LLL

Fig. 1. High-level description of the algorithm of Figure 2

Input: A lattice basis B = (b1, . . . , bd) ∈ Z
n×d.

Output: Another basis of the same lattice, hopefully made of short vectors.
Parameters: (δ, η) such that η ∈ (1/2, 1) and δ ∈ (η2, 1).
1. Generate a random d × n matrix P with a fixed distribution.
2. Compute B′ = P · B.
3. Compute C′ = LLLδ,η(B′).
4. Compute T = (B′)−1 · C′.
5. Return B · T .

Fig. 2. Probabilistic reduction of a rectangular lattice

Theorem 2. Let (b1, . . . , bd) ∈ Z
n×d be a basis of a lattice L with B =

max ‖bi‖. The algorithm of Figure 2 will compute a basis (c1, . . . , cd) of L with
the expected running time:

298 A. Akhavi and D. Stehlé

O
(
d5 log nB(d + log nB) + d2n log nB(log nB + d log log nB)

)
.

If the entries of the random matrix P are independent Gaussian random vari-
ables, then for all x < 1 then with probability greater than 1 − x,

1. The vector c1 satisfies ‖c1‖ ≤ 28d2

x3 (δ − η2)−
d−1
4 · (detL)

1
d .

2. The basis (c1, . . . , cd) satisfies
∏

i≤d ‖ci‖ ≤
(

28d2

x3 (δ − η2)−
d−1
4

)d

· (detL).

If the rows of the random matrix P are independent random vectors each one
picked up uniformly inside the n dimensional unit ball then for any d, there
exists n0(d) such that for any n ≥ n0(d), with probability greater than 1 − 2−d,

1. The vector c1 satisfies ‖c1‖ ≤ 24d(det L)1/d.
2. The basis (c1, . . . , cd) satisfies

∏
i≤d ‖ci‖ ≤ 24d2

(det L).

Notice that one can take x = 2−d and obtain that with probability exponentially
close to 1 the output still satisfies properties similar to what would have been
returned by LLL. On both model the length of the first vector may also be
expressed as an approximation of the first minimum of the lattice by a factor
similar to what would have been returned by LLL. Subsection 3.2 proves the
complexity statement and Section 4 the correctness in the continuous models.

3.2 Complexity Analysis

We now prove the complexity statements of Theorem 2. We assume the reader is
familiar with the Chinese Remainder Theorem (CRT for short). We refer to [14]
for an introduction to the CRT.

From the previous subsection, we know that Step 1 of the algorithm
of Figure 2 costs O(dn log n) bit operations. Step 2 is a multiplication of
a d × n matrix whose entries have length O(log n) with an n × d matrix
whose entries have length O(log B). The entries of the d × d matrix B′ have
length O(log nB). The matrix multiplication is performed with the CRT. One
takes O

(
log nB

log log nB

)
prime numbers, each of them of length O(log log nB). The

construction of the primes is computationally negligible. The matrix multi-
plications modulo the primes cost O(d2n log nB log log nB). The conversions
of the input matrices into matrices modulo the primes cost O(dn log2 nB),
whereas the conversion of the output matrices modulo the primes into the
integer matrix B′ costs O(d2 log2 nB). Theorem 1 gives us that Step 3
costs O

(
d5 log nB(d + log nB)

)
. At Step 4, we use again the CRT. Thanks to

Theorem 1, we know that the entries of the matrix T have length O(d log nB).
By an analysis similar to the one developed for Step 2, we get that the cost is
bounded by O

(
d4 log nB(log d + log log nB) + d4 log2 nB

)
. At Step 5, we have

to multiply an n × d matrix whose entries have length O(log B) with a d × d
matrix whose entries have length O(d log nB). We split each entry of the ma-
trix T into d blocks of roughly Θ(log nB) bits, which gives rise to d matrices
of dimensions d × d and whose entries have length O(log nB). We thus have d

Speeding-Up Lattice Reduction with Random Projections 299

balanced matrix multiplications to perform. For each of them we use the CRT.
The overall bit-cost of this step is O

(
d3n log nB log log nB + d2n log2 nB

)
. This

concludes the proof for the bit-complexity bound of the algorithm of Figure 2
claimed by Theorem 2.

4 Probabilistic Correctness in Two Continuous Models

We consider an input basis (b1, . . . , bd) given by an n × d matrix B. Let B =
QBRB be its QR-factorization. Let P be a d × n random matrix, either from
the Gaussian model or from the unit ball model. Let B′ = P ·B and P ′ the d×d
matrix P · QB. We are to show that, with high probability, if an integer linear
combination of the columns of B′ = P ′RB is a short vector of the lattice L(B′),
then the same combination of columns of B will be a short vector in L(B).
Let c′ ∈ L(B′) be defined by c′ = B′x = P ′RBx, with x ∈ Z

d. Let c be defined
by the same linear combination of the bi’s: c = Bx = QBRBx.

Our goal is to compare the ratios ‖c′‖
(detL(B′))1/d and ‖c‖

(detL(B))1/d . Lemma 1
provides an upper bound to detL(B′)/detL(B) which holds with high proba-
bility. Moreover if c′ ∈ L(B′) is the first vector of the basis output by LLL,
then ‖c‖ ≤ 2O(d)(detL(B′))

1
d . To compare ‖c′‖ and ‖c‖, we proceed as follows.

Since the columns of QB are orthonormal, we have ‖c‖ = ‖RBx‖. We
get ‖c‖ = ‖(P ′)−1c′‖ ≤

∥
∥(P ′)−1

∥
∥

2
· ‖c′‖. Lemma 3 provides an upper bound

to
∥
∥(P ′)−1

∥
∥

2
which also holds with high probability in the Gaussian model.

Similarly, if (c′1, . . . , c
′
d) is an LLL-reduced basis of L(B′), then

∏
i≤d ‖c′i‖ ≤

2O(d2) detL(B′). If (c1, . . . , cd) is the basis of L(B) where any ci is expressed in
terms of the input basis B with the same integer linear combination than c′i in
terms of B′, then:

∏d
i=1 ‖ci‖ =

∏d
i=1 ‖(P ′)−1c′i‖ ≤

∥
∥(P ′)−1

∥
∥d

2
·
∏d

i=1 ‖c′i‖.
To achieve computations in the unit ball model, we decompose once more

the matrix P ′: let P ′ = RP ′QP ′ be the transpose of the QR-decomposition
of (P ′)t. Since the rows of QP ′ are orthonormal, we have ‖c‖ = ‖QP ′RBx‖. We
get ‖c‖ = ‖(RP ′)−1y‖ ≤ d

∥
∥(RP ′)−1

∥
∥ · ‖c′‖. Analogously to the previous case,

Lemma 5 provides an upper bound to
∥
∥(RP ′)−1

∥
∥ in the unit ball model. There

is also an analogous upper bound for
∏d

i=1 ‖ci‖ that is dd
∥
∥(RP ′)−1

∥
∥d ∏d

i=1 ‖ci‖.
Notice that in Theorem 2, one could also compare the first vector output by

our algorithm with the first minimum of the lattice (as it is usually done in the
LLL case): we use the facts that |c1‖ ≤ ‖(P ′)−1‖2 · ‖c′1‖, ‖c′1‖ ≤ 2O(d) ·λ(L′(B))
and λ(L′(B)) ≤ ‖P ′‖2 · λ(L(B)). For the last inequality, consider s ∈ Z

d such
that ‖Bs‖ = λ(L(B)). For the same reasons as above, ‖B′s‖ ≤ ‖P ′‖2 · ‖Bs‖. It
now suffices to see that λ(L(B′)) ≤ ‖B′s‖.

Lemma 1. For any λ > 1, the following holds with probability at least 1−1/λ2:

(i) In the Gaussian model, (detL(B′))2 ≤ dd · (1 + 3λ) · (det L(B))2.
(ii) In the unit ball model, (det L(B′))2 ≤ d!

(n+2)d · (1 + 2dλ) · (detL(B))2.

300 A. Akhavi and D. Stehlé

Proof. We have B′ = P · B = P · QB · RB, which gives that detL(B′) = det(P ·
QB) detRB = det(P · QB) detL(B). It thus suffices to focus on the determinant
of the d × d matrix P ′ = P · QB.

Notice first that the matrix QB can be extended to an n × n orthogonal
matrix Q′

B = (QB|·). We are interested in P · QB, i.e., the d × d left sub-matrix
of P · Q′

B. Since the both distributions of P that we consider are invariant
under right multiplication by an orthonormal matrix, the random matrices P
and P · Q′

B follow the same distribution. The distribution of P · QB is thus the
same as the distribution of the left d × d sub-matrix of P , denoted by Pl.
Proof of (i). The random matrix P is Gaussian. Let the rows of the d × d left
sub-matrix of P be denoted by p1, . . . , pd. Thanks to Hadamard’s inequality, we

have detP ′ (d)
= detPl ≤

∏d
i=1 ‖pi‖. Let X be

∏d
i=1 ‖pi‖.

Any ‖pi‖2 is the sum of d squared independent Gaussians. Thus E(‖pi‖2) = d

and E(‖pi‖4) = d(d + 2). Since they are independent, one gets:

E(X2) = dd and σ(X2) = E(X2) ·
√

f(d),

where f(d) =
(

d+2
d

)d − 1 ≤ 9. Chebyshev’s inequality gives that for λ > 0:

P
{
X2 − E(X2) > 3λE(X2)

}
≤ 1/λ2.

Proof of (ii). Now P is distributed under the unit ball model. Let H be a d-
dimensional linear subspace. Consider the distribution of the orthogonal pro-
jections of the rows of P onto H . Since the distribution of the rows of P is
invariant under rotation, the distribution of their orthogonal projections is the
same no matter onto which subspace H the projection is performed. Let us
pick up n − d additional vectors p1, . . . , pn−d in the n-dimensional unit ball
and let H be the orthogonal coset of the (almost surely (n − d)-dimensional)
space spanned by these additional vectors: H =< p1, . . . , pn−d >⊥. Let the
rows of P be denoted by pn−d+1, . . . , pn. Let us denote by p∗

1, . . . , p
∗
n the

Gram-Schmidt orthogonalization of the random vectors p1, . . . , pn. We then
have det(P · QB) =

∏n
i=n−d+1 ‖p∗

i ‖. Let X be the random variable correspond-
ing to det(P · Q). It is proved in [13] that the ‖p∗

i ‖2’s are independent random

variables and that their distribution is given by ‖p∗
i ‖2 (d)

= β
(

n−i+1
2 , i+1

2

)
. The

Beta law is classical in probability theory and its moments are well known:

E(‖p∗
i ‖

2) = n−i+1
n+2 and E(‖p∗

i ‖
4) = (n−i+1)(n−i+3)

(n+4)(n+2) .

Then the independence of ‖p∗
i ‖

2’s leads to:

E(X2) = d!/(n + 2)d and σ2(X2) = E(X2) ·
√

f(d, n),

where f(d, n) = (d+1)(d+2)
2

(
n+2
n+4

)d

− 1. By routine computation, one sees that
√

f(d, n) ≤ 2d and conclude thanks to Bienaymé’s inequality. ��

Speeding-Up Lattice Reduction with Random Projections 301

4.1 Probabilistic Correctness in the Gaussian Model

The correctness claims of Theorem 2 derive from Lemmas 1 and 3. To bound
the quantity ‖(P ′)−1‖, we use the following result on the condition number of a
Gaussian random matrix.

Lemma 2 ([9]). Let κ be the condition number of the matrix P ′, i.e., ‖P ′‖ ·
‖(P ′)−1‖. Then for any λ ≥ 1, the probability that κ > λd is smaller than 4/λ.

The last ingredient to the proof of correctness of theorem 2 is the following.

Lemma 3. Let t < 1. Then
∥
∥(P ′)−1

∥
∥ ≤ 32d/t2 holds with probability greater

than 1 − t.

Proof. Let x < 1/2. We upper-bound by 1 the density function of the first entry
of P ′. So with probability greater than 1 − 2x, we have ‖P ′‖2 ≥ ‖P ′‖2 ≥ x. By
using Lemma 2, we obtain that with probability greater than 1 − 2x − 4/λ we
have ‖(P ′)−1‖2 ≤ λd/x. Setting x = t/4 and λ = 8/t provides the result. ��

By using Lemmas 1 and 3, we see that, with probability greater than 1−t−1/λ2,
the first vector computed by the algorithm of Figure 2 satisfies:

‖c1‖ ≤ (δ − η2)−
d−1
4

32 · d
3
2 (1 + 3λ)

1
2d

t2
· (detL(B))

1
d .

By choosing λ =
√

2/x and t = x/2, we obtain the result claimed in Theorem 2.

4.2 Probabilistic Correctness in the Unit Ball Model

The correctness claims of Theorem 2 derive from Lemmas 1 and 5.

Lemma 4. Suppose that p1, . . . , pn are n vectors chosen independently and uni-
formly in the n-dimensional unit ball. Then for any d ≤ n and any v < 1

4
√

n
:

P{min1≤k≤d ‖p∗
n−d+k‖ ≤ v} ≤ 4

√
nv.

Proof. Let
i = ‖p∗
i ‖. The distributions of the
i’s are given by [13]:

P[ln−d+k ≤ v] =
2

B
(

d−k+1
2 , n−d+k+1

2

)

∫ v

0

ud−k(1 − u2)
n−d+k−1

2 du.

Since 1 − u2 ≤ 1, the integral smaller than vd−k+1. Rewriting the denominator

in terms of the Gamma function, we get P[
n−d+k ≤ v] ≤ 2 Γ(n+2
2) vd−k+1

Γ(d−k+1
2)Γ(n−d+k+1

2) .

Using classical properties of the Gamma function, we obtain

P[
n−d+k ≤ v] ≤ 2
(

nv2

2

) d−k+1
2

and P[min
1≤k≤d

n−d+k ≤ v] ≤ 2
d∑

k=1

(
n v2

2

) d−k+1
2

.

Finally, if nv2 ≤ 1/2, we have P [min1≤k≤d
n−d+k ≤ v] ≤ 4
√

nv. ��

302 A. Akhavi and D. Stehlé

Lemma 5. Let P be a random matrix chosen as previously. Let P = RQ be
the transpose of the QR-decomposition of P t. Let u and v be two reals satisfying
u < 1

√
3 and v < 1

4
√

n
. For any d there exists n1 such that for all n ≥ n1(d, u),

with probability greater than 1 − d2(u2

1+u2)d − 4
√

nv, we have:

∥
∥R−1

∥
∥ ≤ 1

v
(1 +

1
u

)d.

Proof (Sketch). First, notice that as explained in the proof of Lemma 1, the rows
of P ′ = P ·QB have the same distributions as the projections p∗

n−d+1, pn−d+2[n−
d+1], . . . , pn[n−d+1] of n vectors p1, . . . , pn chosen independently and uniformly
in Bn(0, 1) in the orthogonal of the span of the n − d first ones. Let us denote
i

the norm of p∗
i . The proof, available in the full version, the previous lemma and

classical bounds on the Gamma and Beta functions together with the following
tools:

– an asymptotic equivalent for P[
n+j/
n+i < v] when n grows to infinity and
i and j are two constants. This is available in [2](using the Laplace method
for evaluating integrals asymptotically)

– an explicit expression of the coefficients of R−1
P as a function of the coeffi-

cients ri,j (using the fact that the matrix RP is lower triangular and so is
R−1

P as well) ��

By using Lemmas 1 and 5 after routine computations we see that, with proba-
bility greater than 1 − 4

√
nv − d2(u2

1+u2)d − λ−2, the first vector computed by
the algorithm of Figure 2 satisfies:

‖c1‖ ≤ (δ − η2)−
d−1
4 · v ·

(

1 +
1
u

)d−1 4 · d 3
2 · λ

1
2d

√
n + 2

(detL(B))
1
d .

Finally we choose λ = 2d/2, u =
√

1/8, v = 1/(2d√n).

5 Experimental Data

In this section, we report experiments supporting the validity of our method.
The experiments are very promising in the sense that the random projection
technique seems to work with a wide range of random matrices and seems to
perform better than what we proved. Indeed, the output bases are not only made
of vectors of small lengths, but LLL terminates very quickly given them as input.

The experiments were performed using Magma [5] V2.14 on an AMD
Opteron 2.40GHz. Each figure corresponds to an average over at least ten
samples. We used the LLL routine with the default options (δ = 0.75, η =
0.51). Magma’s LLL is based on the floating-point L2 algorithm [18]. The
Magma code corresponding to our experiments is available under the GPL at:
http://perso.ens-lyon.fr/damien.stehle/DIMREDUCTION.html. We consid-
ered the following families of random projections.

http://perso.ens-lyon.fr/damien.stehle/DIMREDUCTION.html

Speeding-Up Lattice Reduction with Random Projections 303

– R1(N): each vector is sampled independently in the sphere Bn

(
0, 10N

)
. The

computations are performed with decimal precision N . The sampling would
be uniform if the computations were performed with infinite precision.

– R2(N): each entry is Gaussian variate approximated to decimal precision N .
– R3(N): each entry is taken uniformly and independently in Z ∩

[
−2N , 2N

)
.

– R4: each matrix entry is taken uniformly and independently in {−1, 1}.

The matrices to be reduced are generated in the following way. We first create
a d × d random matrix of the following shape:

�
����

x1 x2 . . . xd

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

�
����,

where the xi’s are chosen uniformly and independently in [0, B] for some fixed B.
When B is large enough, the columns form lattice bases that are far from being
reduced. To obtain n × d lattice bases, we multiply them by matrices sampled
from R3(100). This provides rectangular bases that are far from being reduced
with large and balanced entries. We tested our technique with varying para-
meters d, n and B and for the classes of random projections described above.
We also measured the time LLL takes on the output basis. We compared our
technique with the direct LLL approach and with the Gram matrix approach
described in the introduction (LLL-reducing the Gram matrix and applying the
computed transformation to the input basis). We also compared the lengths of
the first vectors of the outputs. The results are described in Figures 3 and 4.

d 20 30 40 50 20 30 40 50

Direct LLL 0.62 8.47 13.6 23.9 1.30 15.8 92.7 341.0

Gram-based approach 0.40 2.26 8.41 25.3 0.52 3.70 16.3 70.7

Random projection approach 0.22 1.19 4.20 13.1 0.25 1.42 5.19 24.8
Direct LLL on the output basis 0.01 0.03 0.07 0.10 0.02 0.09 0.41 1.22

Fig. 3. Timings in seconds of the different LLL approaches for rectangular lattices,
when the random matrix is chosen from R4 and n = 5d, B = 2100·d, (first four columns)
and n = d2/2, B = 2100·d (last four columns)

Figure 3 shows that the random projection technique can be significantly
faster than the direct technique, in particular when n is much larger than d,
even if one includes the running-time of LLL on the output basis. Figure 4
shows that the output quality is similar to that of the direct LLL approach. The
vector found by the random projection method is most often longer than the
one computed by the direct LLL approach, but the ratio remains small. The
technique seems to provide reasonably short vectors for all the afore-mentioned
families of projections.

304 A. Akhavi and D. Stehlé

d 10 20 30 40 50

R1(100) 2.34/0.99 3.24/1.06 2.95/1.18 3.90/0.99 5.55/0.88

R2(100) 3.04/1.02 12.9/1.00 4.13/0.98 4.57/1.00 4.19/0.94

R2(1000) 3.02/1.04 3.07/0.87 4.40/1.12 5.55/1.16 5.02/1.07

R3(3) 3.54/1.03 6.67/1.04 3.10/1.02 6.52/0.98 6.21/0.95

R3(10) 2.98/0.96 2.97/0.99 4.37/1.09 5.58/1.03 3.70/0.99

R4 3.91/0.96 3.73/1.06 7.00/1.00 4.20/1.03 3.49/1.00

Fig. 4. Ratios between the lengths of the first output vectors after the random projec-
tion technique (respectively after LLL on the output basis) and after the direct LLL ap-
proach (left of each entry, respectively right of each entry), with n = 3d and B = 2100·d

Acknowledgments. We are grateful to Richard Brent, Philippe Flajolet, Guil-
laume Hanrot, Luis Pardo, Brigitte Vallée and Gilles Villard for helpful discus-
sions. This work was partially funded by the LaRedA project of the Agence
Nationale de la Recherche. It was initiated while the first author was hosted
within the computer science laboratory of the University of Paris 7 (LIAFA)
and completed while the second author was hosted within the Magma group at
the University of Sydney.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proc. of STOC 1997, pp. 284–293. ACM, New York (1997)

2. Akhavi, A.: Random lattices, threshold phenomena and efficient reduction algo-
rithms. TCS 287(2), 359–385 (2002)

3. Akhavi, A., Marckert, J.-F., Rouault, A.: On the reduction of a random basis. In:
Proc. of the ANALCO 2007, New Orleans, SIAM, Philadelphia (2007)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans Inform Theor 46(4), 233–260 (2000)

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. JSC 24(3–4), 235–265 (1997)

6. Brisebarre, N., Chevillard, S.: Efficient polynomial L-approximations. In: Proc. of
ARITH’18, pp. 169–176. IEEE, Los Alamitos (2007)

7. Brisebarre, N., Hanrot, G.: Floating-point L2-approximations to functions. In:
Proc. of ARITH’18, pp. 177–186. IEEE, Los Alamitos (2007)

8. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Heidel-
berg (1971)

9. Chen, Z., Dongarra, J.: Condition numbers of gaussian random matrices. SIAM J
Matrix Anal A 27(3), 603–620 (2005)

10. Chen, Z., Storjohann, A.: A BLAS based C library for exact linear algebra on
integer matrices. In: Proc. of ISSAC 2005, pp. 92–99. ACM, New York (2005)

11. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Hei-
delberg (1995)

12. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. of Cryptology 10(4), 233–260 (1997)

Speeding-Up Lattice Reduction with Random Projections 305

13. Daudé, H., Vallée, B.: An upper bound on the average number of iterations of the
LLL algorithm. TCS 123(1), 95–115 (1994)

14. von zur Gathen, J., Gerhardt, J.: Modern Computer Algebra. Cambridge Univer-
sity Press, Cambridge (2003)

15. Johnson, W.B., Lindenstrauss, J.: Extension of Lipschitz mappings into a Hilbert
space. Comm Contemp Math 26, 189–206 (1984)

16. Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 67–80. Springer, Heidelberg (2001)

17. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math Ann 261, 513–534 (1982)

18. Nguyen, P., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

19. Nguyen, P., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

20. Odlyzko, A.M., te Riele, H.J.J.: Disproof of Mertens conjecture. J reine angew
Math 357, 138–160 (1985)

21. Rouault, A.: Asymptotic behavior of random determinants in the laguerre, gram
and jacobi ensembles. Latin American Journal of Probability and Mathematical
Statistics (ALEA) 3, 181–230 (2007)

22. Schnorr, C.P.: Progress on LLL and lattice reduction. In: Proc. of the LLL+25
conference (to appear)

23. Stehlé, D.: On the randomness of bits generated by sufficiently smooth functions.
In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 257–274.
Springer, Heidelberg (2006)

24. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching worst cases of a one-variable
function. IEEE Trans Comp. 54(3), 340–346 (2005)

Sparse Approximate Solutions to Semidefinite

Programs

Elad Hazan

IBM Almaden Research Center
650 Harry Road, San Jose, 95120 CA, USA

hazan@us.ibm.com

Abstract. We propose an algorithm for approximately maximizing a
concave function over the bounded semi-definite cone, which produces
sparse solutions. Sparsity for SDP corresponds to low rank matrices,
and is a important property for both computational as well as learning
theoretic reasons. As an application, building on Aaronson’s recent work,
we derive a linear time algorithm for Quantum State Tomography.

1 Introduction

In this paper we describe a simple algorithm for approximately solving a special
case of Semi-Definite Programs (SDP), in which the goal is to maximize a concave
function in the bounded semi-definite cone, which also produces a sparse solution.
Our notion of sparsity is not the usual one, i.e. small number of non-zero entries
in the solution matrix. Rather, the notion of sparsity in the SDP setting is low
rank, coupled with a Cholesky composition representation of the solution. That
is, our solutions will be of the form X = V V � ∈ R

n×n, and the solution X is
represented by the matrix V ∈ R

n×k. This notion of sparsity is computationally
appealing: the time to compute vector-matrix products with the matrix X , as
well as the space required to store it is O(nk).

Our algorithm and its analysis are different from previous work on approxi-
mation algorithms for SDP. Unlike previous approximate SDP approaches, the
algorithm is not based on the multiplicative weights method and its extensions.
Rather, the main ingredient is an extension of the Frank-Wolfe [FW56] algorithm
1 for optimizing a single function over the bounded PSD cone. The analysis of
this part crucially depends on the dual SDP, and goes beyond the use of online
learning techniques which were prevalent in all previous approaches.

The algorithm has the appealing property of proceeding in iterations, such
that in each iteration the solution is provably better than the preceding one,
and has rank at most one larger. Thus after k iterations the algorithm attains
a 1

k -approximate 2 solution with rank at most k. The previous algorithm of

1 Whose analysis was recently revisited, simplified and extended in [Cla]. The latter
paper inspired this work.

2 A ε-approximate solution to a SDP over the bounded cone is a PSD matrix with
trace equal to one, which satisfies all constraints up to an additive term of ε.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 306–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sparse Approximate Solutions to Semidefinite Programs 307

[AHK05], which was based on the multiplicative weights method, also produces
sparse solutions, but requires Ω(k2) iterations to achieve the same approxima-
tion guarantee. Besides elementary computation, in each iteration our algorithm
performs at most one eigenvector computation (which can be replaced by two
approximate eigenvector computations).

Next, we apply our method to the problem of Quantum State Tomography.
In this problem the goal is to approximately learn a mixed quantum state given
access to independent measurements. Recently, Aaronson [Aar] showed how a
combination of techniques from learning theory and quantum computation can
be used to learn an n-bit mixed quantum state with a linear number of measure-
ments (an exponential improvement over previous techniques). We show how to
approximately solve Aaronson’s proposed SDP in linear time.

This application is particularly suited for our method for the following reasons:
First, Aaronson proved that an approximate solution to his SDP guarantees low
generalization error. Thus solving the SDP approximately (rather than exactly)
is part of the problem statement and suited for approximation techniques. Even
more so, an exact solution corresponds to an exact match of the hypothesis to
the data, and could lead to “overfitting”. Second, a widely accepted principle
known as “Occam’s Razor” roughly states that simple hypothesis are preferable.
Our algorithm generates a simple hypothesis, taking low-rank is a notion of
simplicity. Third, the state matrix of an n-cubit state is of size 2n. For even a
small number of qubits the size of the matrices is too large to effective deploy any
algorithm with super-linear complexity. This rules out interior point methods.
For this reason also, exploiting the sparsity of the input is absolutely necessary.

Finally, we show how to extend the optimization routine over the bounded
semi-definite cone in order to approximately solve general SDPs. However, for
general SDPs we do not improve the running time over existing techniques.
Whereas for optimization over the bounded SDP cone our algorithm produces
an ε-approximation in O(1

ε) iterations, which improves upon all existing approx-
imation methods, for general SDPs we need O(1

ε2) iterations.

1.1 Existence of Sparse Solutions

In the first part of the paper we focus on the problem of maximizing a single
concave function over the cone of semi-definite matrices with trace bounded
by one. A natural question concerning sparse solutions is what is the minimal
rank required of a solution which is “close” to the optimum. Obviously, if the
concave objective function happens to be linear, then the problem reduces to an
eigenvector computation, and the optimal solution is of rank one. However, this
is not the case in general, and even for quadratic functions the optimal solution
can have full rank.

It follows from the work of Clarkson [Cla], that in order to attain an ε-additive
approximation (in a sense that will be made precise below), the rank of the
approximation needs to be at least Ω(1

ε). However it does not follow from pre-
vious work that there even exists an ε-approximate solution with such rank.

308 E. Hazan

The best bound we know of is from [AHK05], which implies the existence of an
ε-approximate solution with rank O(1

ε2).
In this paper we give a constructive proof that an ε-approximate solution

with rank O(1
ε) exists by giving an efficient algorithm to find it (see Theorem 1

below).

2 Preliminaries

For two matrices A, B ∈ C
n×n we denote by A•B the inner product of these ma-

trices when thought of as vectors in C
n2

, i.e. A•B =
∑

ij Aij ·Bij = Tr(AB). All
results in this paper apply to Hermitian matrices, and this generality is impor-
tant for our application to Quantum State Tomography. However, for simplicity
the reader may think of real matrices.

A matrix A ∈ C
n×n is positive semi-definite (PSD), denoted by A � 0, if

and only if all its eigenvalues are non-negative real numbers. We write A � B
if the matrix A − B � 0 is PSD. In the analysis we require the following basic
characterization of PSD matrices.

Fact 2.1 A matrix X is PSD if and only if X • V � 0 for all V � 0.

Consider a general SDP feasibility problem (as is standard, the optimization
version is reduced to feasibility by binary search)

∀i ∈ [m] . Ai • X ≤ bi (1)
X ∈ P

We say that a matrix X � 0 is ε-approximate solution to (1) if it satisfies
∀i . Ai • X − bi ≤ ε.

QuantumStateTomography. In the problemof quantumstate tomography (QST),
the goal is to learn an approximate description of a certain quantum state given
access to independent measurements of the state. Recently,Aaronson [Aar] showed
that a small set of measurements (linear in the number of qubits) can be used to
accurately learn a state in this model.

The problem of finding a mixed n-qubit state which approximately agrees
with the measurements can be cast as the following optimization problem. The
input is m Hermitian matrices E1, ..., Em ∈ C

N×N (for the QST problem we
denote N = 2n) with eigenvalues in [0, 1], and m real numbers b1, ..., bm ∈ [0, 1].
The goal is to find a Hermitian positive semidefinite matrix X that satisfies (for
a given constant η > 0)

∀i . |Ei • X − bi| ≤ η (2)
X � 0 , Tr(X) = 1

As alternative (and equivalent up to the approximation parameter) formula-
tion, which may even be more interesting for both theoretical reasons as well as
applications, is

Sparse Approximate Solutions to Semidefinite Programs 309

∑

i

(Ei • X − bi)2 ≤ η (3)

X � 0 , Tr(X) = 1

As Aaronson notes, the above formulation is a convex program with semi-
definite constraints, and thus solvable in polynomial time using interior point
methods [NN94, Ali95] or the ellipsoid method [GLS88]. However, the exponen-
tial size of the measurement matrices quickly render any super-linear method
impractical.

3 A Sparse Approximate SDP Solver

Let P = {X � 0 , Tr(X) = 1} be the cone of SDP matrices with trace equals
one. This convex set is a natural generalization of the simplex, and is the set of all
quantum distributions. In this section we consider the the following optimization
problem:

max f(X) (4)
X ∈ P

Besides an interesting problem by its own right, we show in the next section
how to use the algorithm we develop in this section to solve general SDP. The
following simple and efficient algorithm always maintains a sparse PSD matrix,
rank at most k after k iterations. The algorithm can be viewed as a generalization
of the Frank-Wolfe algorithm for optimizing over the simplex, which was recently
revisited by Clarkson [Cla].

Algorithm 1. SparseApproxSDP
1: Let f be a given concave function, with curvature constant Cf as defined below.

Initialize X1 = v0v
�
0 for an arbitrary rank one matrix v0v

�
0 (with trace one).

2: for k = 1, ..∞ do
3: Let εk =

Cf

k2 . Compute vk ← ApproxEV(∇f(Xk), εk).
4: Let αk = 1

k
.

5: Set Xk+1 = Xk + αk(vkv�
k − Xk).

6: end for

The procedure ApproxEV used in algorithm 1 is an approximate eigenvalue
solver. It guarantees the following: for a negative semidefinite matrix M and any
ε > 0, the vector x = ApproxEV(M, ε) satisfies x�Mx ≥ λmax(M)− ε. At this
point the reader may think of this procedure as an exact maximum eigenvalue
computation. In the end of this section we prove that ApproxEV can be made
to have running time which is linear in the number of non-zero entries of M .

A crucial property of the function f which effects the convergence rate is its
curvature constant, defined by Clarkson [Cla], as follows.

310 E. Hazan

Definition 1. Define the curvature constant of f as

Cf � sup
x,z∈P y=x+α(z−x)

1
α2

[f(x) − f(y) + (y − x)�∇f(x)]

Note that Cf is upper bounded by the largest eigenvalue of the Hessian of −f .

Our main performance guarantee is given by the following Theorem. Henceforth
let X∗ denote the optimal solution to (4).

Theorem 1. Let Cf be defined as in the following section. Then the iterates Xk

of Algorithm 1 satisfy forall k > 1

∀X∗ ∈ P . f(Xk) ≥ f(X∗) − 4Cf

k

REMARK: A similar guarantee can be given for αk chosen greedily by binary
search (instead of 1

k).
Before proving this theorem, we define some notation.

– Denote by
z(X) = max

‖v‖=1
v�∇f(X)v = λmax(∇f(X))

the largest eigenvalue of the gradient of f at X .
– Let w(X) = z(X) + f(X) − X • ∇f(X). As we show in Lemma 1 below,

w(X) is the dual objective to optimization problem (4).
– We also denote by h(X) = f(X∗)−f(X)

4Cf
the normalized distance to the opti-

mum at X (in value) and by g(X) = w(X)−f(X)
4Cf

the duality gap at X .

Lemma 1. Weak duality:

w(X) ≥ w(X∗) ≥ f(X∗) ≥ f(X)

Proof. It suffices to prove that the formulation:

min
X∈ S

w(X)

(here S is the set of all matrices in R
n×n) is the dual of (4). To see that, let’s

write the Lagrangian relaxation of (4), which is equivalent to − minX∈P −f(X)
(for this formulation recall Fact 2.1):

− max
V �0,z∈R

min
X∈S

−f(X) − X • V + z(X • I − 1)

The optimum is obtained when all derivatives w.r.t x are zero, i.e.

−∇f(X) − V + zI = 0

Sparse Approximate Solutions to Semidefinite Programs 311

which implies V = zI − ∇f(X). There is also the obvious constraint that 0 	
V = zI − ∇f(X). Plugging back we get that the optimization problem becomes

− max
z∈R

min
X∈S

−f(X) − X • (zI − ∇f(X)) + z(X • I − 1) =

− max
z∈R

min
X∈S

−f(X) + X • ∇f(X) − z =

− max
z∈R,X∈S

−f(X) + X • ∇f(X) − z =

min
z∈R,X∈S

f(X) − X • ∇f(X) + z

Subject to zI ≥ ∇f(X), or z ≥ λmax{∇f(X)}. So w.l.o.g we have z = z(X) =
λmax{∇f(X)} and the above becomes minX∈S w(X).

In particular, the above implies that g(X) ≥ h(X). We can now prove the
theorem:

Proof (Proof of Theorem 1). By the definitions above we have

v�k ∇f(Xk)vk ≥ z(Xk) − εk = w(Xk) − f(Xk) + Xk • ∇f(Xk) − εk

Therefore

(vkv�k − X) • ∇f(Xk) = v�k ∇f(Xk)vk − X • ∇f(Xk)
≥ w(Xk) − f(Xk) − εk (5)

Now,

f(Xk+1) = f(Xk + αk(vkv�k − Xk))
≥ f(Xk) + αk(vkv�k − Xk) • ∇f(Xk) − α2

kCf by definition of Cf

≥ f(Xk) + αk(w(Xk) − f(Xk)) − α2
kCf − εk by (5)

= f(Xk) + 4Cfg(Xk)αk − Cfα2
k − εk

≤ f(Xk) + 4Cfh(Xk)αk − Cfα2
k − εk

By definition of h(Xk) and Lemma 1 this implies

h(Xk+1) ≤ h(Xk) − αkh(Xk) +
1
4
α2

k +
εk

4Cf

Let εk = Cf

k2 .
Now we prove inductively that h(xk) ≤ 1

k . In the first iteration we assume
w.l.o.g that it’s true, else we could have taken α1 = 1, and get that h(X2) ≤ 1

2 ,
now rename k. So by taking αk = 1

k we have

h(Xk+1) ≤ h(Xk)(1 − αk) +
1
4
α2

k +
εk

4Cf

≤ 1
k

− 1
k2

+
1

4k2
+

1
4k2

≤ 1
k

312 E. Hazan

3.1 Using Approximate Eigenvector Computations

We now describe how to efficiently implement an eigenvector computation pro-
cedure using the Lanczos algorithm with a random start. This was first shown
by [AHK05].

Lemma 2. Given a NSD matrix M with Ñ non-zero entries and eigenvalues
in the range [−C, 0], there exists an algorithm which produces in time Õ(Ñ

√
C√
ε

)
a vector x such that

x�Mx ≥ λmax(M) − ε

Proof. We need Theorem 3.2(a) of Kuczyński and Wozńiakowski [KW92]:

Lemma 3. Let M ∈ R
n×n be a positive semidefinite matrix with Ñ non-zero

entries. Then with high probability, the Lanczos algorithm produces in O(log(n)√
γ)

iterations a unit vector x such that xT Mx
λmax(M) ≥ 1 − γ.

Note that each iteration of the Lanczos algorithm takes Õ(Ñ) time. Now let
M2 = CI+M . Notice that M2 is positive semidefinite, and λi(M2) = C+λi(M).
We apply Lemma 3 with γ = ε

C to obtain in time Õ(Ñ√
γ) a unit vector x such

that:
C + xT Mx

C + λmax(M)
=

xT M2x

λmax(M2)
≥ 1 − ε

C

Simplifying this gives the lemma statement.

Combining the pieces together we obtain:

Theorem 2. Let Ck be a bound on the absolute value of the largest eigenvalue
of ∇f(Xk), C = maxk{Ck} and Ñ be the maximal number of non-zero entries
in ∇f(X). Algorithm 1 returns a δ-approximate solution in time

Õ

(
Cf (n + TGD)

δ
+

Ñ
√

CC1.5
f

δ2

)

Where TGD is the time to compute ∇f(Xk).

Proof. By Theorem 1, we have f(Xk) ≥ f(X∗) − 4Cf

k , hence it suffices to have
k = 4Cf

δ iterations. Besides the calls to ApproxEV, the computation required
in each iteration is the computation of the gradient (in time TGD) and other
elementary computations which can be carried out in time O(n). By lemma 2,
the k’th invokation of ApproxEV runs in time Õ(Ñ

√
Ck√

εk
) = Õ(kÑ

√
Ck/Cf).

The total running time thus comes to

4Cf

δ
· (n + TGD) +

k∑

i=1

Õ(
i · Ñ

√
Ci

√
Cf

)

Sparse Approximate Solutions to Semidefinite Programs 313

4 Solving General SDPs

In this section we apply the sparse SDP solver to approximately solve general a
SDP in the form 1. We note that the results in this section do not improve over
[AHK05] in terms of running time (whereas for the case of optimizing a single
function over the bounded semi-definite cone we do obtain an an improvement
in running time), and are given here only to illustrate how similar results can be
obtained through a very different analysis. In fact, the algorithm below is almost
identical to the one obtained in [AHK05] via Multiplicative Weights techniques.

Algorithm 2. Fast SDP
1: Input: set of constraints given by A1, ..., Am ∈ C

N×N and b1, ..., bm ∈ R. Desired
accuracy ε. Let ω = maxi{λmax(Ai)}.

2: Let M = log m
ε

3: Apply algorithm 1 to the following function for k rounds, with k = 1
ε
.

f(X) = − 1

M
log

�
m�

i=1

eM·(Ai•X−bi)

�

4: if f(Xk) < −ε return FAIL. Else, return Xk.

Lemma 4. A matrix X for which f(X) ≥ −ε is a ε-approximate solution to
QST.

Proof. Consider the function (for M = log m
ε and y ∈ R

m)

Φ(y) =
1
M

log(
∑

i

eM·yi)

It is a well known fact (see [GK94]) that for M ≥ 0, we have

λ(x) ≤ Φ(x) ≤ λ(x) +
log m

M

Where
λ(x) � max

i
yi

Therefore, if X satisfies f(X) ≥ −ε, we have Φ(X) ≤ ε for yi = Ai • X − bi.
This implies that maxi yi ≤ Φ(x) ≤ ε and hence

∀i . Ai • X − bi ≤ ε

Lemma 5. The function f above is concave, and its Cf value is bounded by
ω2 log m

ε . The value C is bounded by C ≤ ω.

314 E. Hazan

Proof. See [BV04] for a proof that that −f is convex.
Let us now define z(X) ∈ R

2m as the vector such that z(X)i = eM·(Ai•X−bi)

for i ∈ [m]. In the following we just say z when there’s no ambiguity as for the
X in question.

Differentiating g(X) = −f(X) with respect to X we get

M · ∇g(X) =
1

1�z

m∑

i=1

zi · MAi (6)

So we can bound the parameter C by

C ≤ λmax(∇g) = λmax(
1

1�z

m∑

i=1

ziAi) ≤ ω

And taking the second derivative we get

M · ∇2g(X) = − 1
(1�z)2

m∑

i,j=1

zizjAi • Aj · M2 +
1

1�z

∑

i

ziAi • Ai · M2

Hence,

∇2g(X) 	 M · 1
1�z

∑

i

ziAi • Ai 	 M · ω2I

and therefore λmax(∇2g(X)) ≤ Mω2. Since Cf is bounded by the absolute value
of the smallest eigenvalue of ∇2f on P , this gives the Lemma.

Theorem 3. If SDP (1) is feasible, then Algorithm 2 returns a ε-approximate
solution, else it returns FAIL. The algorithm performs ω2 log m

ε2 approximate
eigenvalue computations and has total running time of

Õ

(
ω2n

ε2
+ Ñ · ω3.5

ε3.5

)

Where Ñ is the total number of non-zero entries in A1, ..., Am.

Proof. For the feasible solution X∗, we have y∗
i = Ai • X∗ − bi ≤ 0. Hence,

f(X∗) = − 1
M

log(
∑

i

eMy∗
i) ≥ − 1

M
log(m) = −ε

Therefore, we get a δ = ε approximation after Cf

ε ≤ ω2 log m
ε2 iterations, and

have f(Xk) ≥ f(X∗) − ε ≥ −2ε, which according to Lemma 4 is a 2ε approxi-
mation solution to QST.

According to Theorem 2 the total running time is bounded by

Õ

(
Cf (n + TGD)

δ
+

Ñ
√

CC1.5
f

δ2

)

Sparse Approximate Solutions to Semidefinite Programs 315

The gradient of f is (see equation (6))

∇f(Xk) = − 1
1�z

m∑

i=1

zi · Ai

This is a convex combination of the matrices {−Ai} according to the distribution
z. Note that the distribution z at iteration k, denoted zk, can be obtained from
zk−1 in time Õ(Ñ) since Xk = (1−αk)Xk−1 +αkvkv�k . Therefore TGD = Õ(Ñ).
Also, in our case δ = ε, and Cf , C are bounded as in lemma 5.

Plugging these bounds the lemma is obtained.

5 QST in Linear Time

The application to QST is straightforward. To solve formulation (3), apply The-
orem 1 to obtain the corollary below. We note that the curvature constant
Cf is bounded by the largest eigenvalue of the Hessian, which is bounded by
Cf ≤ 2

∑m
i=1 λmax(Ei)2.

Corollary 1. Algorithm 1 returns a ε-approximate solution to an instance of
QST in 4Cf

ε iterations.

As for formulation (2), we have 2m constraints of the form Ei • X − bi ≤ η and
bi − Ei • X ≤ η. The parameter ω is bounded by the maximum eigenvalue of
Ei, which is just 1. Also recall that for QST the dimension of the matrices Ei is
N = 2n. By Theorem 3 we conclude

Corollary 2. Algorithm 2 returns a ε-approximate solution to an instance of
QST in log m

ε2 iterations and has total running time of

Õ

(
N

ε2
+

Ñ

ε3.5

)

Where Ñ is the total number of non-zero entries in the matrices Ei, ..., Em.

Using (standard) clever implementation techniques, one can remove the depen-
dence on N = 2n completely, and obtain a running time of

Õ

(
Ñ

ε3.5

)

References

[Aar] Aaronson, S.: The learnability of quantum states. arXiv:quant-ph/0608142v3
[AHK05] Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semide.nite

programming using the multiplicative weights update method. In: 46th
IEEE FOCS, pp. 339–348 (2005)

316 E. Hazan

[Ali95] Alizadeh, F.: Interior point methods in semidefinite programming with ap-
plications to combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)

[BV04] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University
Press, New York, NY, USA (2004)

[Cla] Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe
algorithm. In: SODA 2008: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms,

[FW56] Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Re-
search Logistics Quarterly 3, 149–154 (1956)

[GK94] Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for con-
vex programs with many block and coupling constraints. SIAM Journal on
Optimization 4, 86–107 (1994)

[GLS88] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combi-
natorial Optimization. Springer, Heidelberg (1988)

[KW92] Kuczyński, J., Woźniakowski, H.: Estimating the largest eigenvalue by the
power and lanczos algorithms with a random start. SIAM Journal on Matrix
Analysis and Applications 13(4), 1094–1122 (1992)

[NN94] Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Methods in Convex
Programming: Theory and Applications. Society for Industrial and Applied
Mathematics, Philadelphia (1994)

On the Facets of Mixed Integer Programs

with Two Integer Variables and Two Constraints

Gérard Cornuéjols1,� and François Margot2,��

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
and LIF, Université d’ Aix-Marseille, Faculté des Sciences de Luminy, France

gc0v@andrew.cmu.edu
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA

fmargot@andrew.cmu.edu

Abstract. In this paper we consider an infinite relaxation of the mixed
integer linear program with two integer variables and two constraints,
and we give a complete characterization of its facets. We then derive an
analogous characterization of the facets of the underlying finite integer
program.

Keywords. integer programming, intersection cut, group relaxation.

1 Introduction

We consider the mixed 2-integer-variable linear program with two constraints

x = f +
∑k

j=1 rjsj

x ∈ ZZ2

s ∈ IRk
+

(1)

where f ∈ Q2 \ ZZ2, k ≥ 1, and rj ∈ Q2. Let Rf (r1, . . . , rk) be the convex
hull of all vectors s ∈ IRk

+ such that f +
∑k

j=1 rjsj is integral. Rf (r1, . . . , rk)
is a polyhedron (We refer the reader to [11] for standard definitions). Model
(1) was considered by Andersen, Louveaux, Weismantel and Wolsey [1]. They
showed that the nontrivial facets of Rf (r1, . . . , rk) are necessarily defined by split
inequalities or intersection cuts (Balas [2]) arising from triangles or quadrilaterals
in IR2. A goal of this paper is to give a converse to the result in [1]: which splits,
triangles and quadrilaterals actually define facets of Rf (r1, . . . , rk)?

Gomory and Johnson [8] suggested relaxing the k-dimensional space of vari-
ables s = (s1, . . . , sk) to an infinite-dimensional space, where the variables sr are
defined for any r ∈ Q2. We get the infinite program with two integer variables
and two constraints

x = f +
∑

rsr

x ∈ ZZ2

s ≥ 0 with finite support.
(2)

� Supported by NSF grant CMMI-0653419, ONR grant N00014-97-1-0196 and ANR
grant BLAN06-1-138894.

�� Supported by ONR grant N00014-97-1-0196.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 317–328, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

318 G. Cornuéjols and F. Margot

The vector s = (sr)r∈Q2 is said to have finite support if sr �= 0 for a finite
number of r ∈ Q2. Let Rf be the convex hull of all vectors s ≥ 0 with finite
support such that f +

∑
rsr is integral. Note that the polyhedron Rf (r1, . . . , rk)

is the face of Rf obtained by setting sr = 0 for all r ∈ Q2 \ {r1, . . . , rk}. The
motivation for working with Rf instead of Rf (r1, . . . , rk) is that it only has
one parameter, namely f , and therefore the results are cleaner. Moreover results
obtained for Rf can be carried over to the model used in [1].

We say that an inequality is valid for Rf (resp. Rf (r1, . . . , rk)) if it is satisfied
by all vectors in Rf (resp. Rf (r1, . . . , rk)). Inequalities si ≥ 0 are called trivial
valid inequalities. In this paper, we discuss only nontrivial valid inequalities. The
solution s = 0 is not feasible for Rf . Any valid inequality for Rf that cuts off
the vector s = 0 is of the form

∑
ψ(r)sr ≥ 1 (3)

where ψ : Q2 → IR∪{+∞} and, as above, we only consider vectors s with finite
support. To avoid ambiguity, the product +∞ · 0 is defined as 0.

Any valid inequality for Rf yields a valid inequality for Rf (r1, . . . , rk) by
simply restricting it to the space r1, . . . , rk. Furthermore, a full description of
the polyhedron Rf (r1, . . . , rk) is obtained from the set of valid inequalities for
Rf by adding the constraints sr = 0 for r �= r1, . . . , rk. Therefore we will assume
in the remainder that valid inequalities for Rf (r1, . . . , rk) are restrictions of valid
inequalities for Rf .

An inequality
∑

ψ(r)sr ≥ 1 valid for Rf is minimal if there is no valid in-
equality

∑
ψ′(r)sr ≥ 1 where ψ′ ≤ ψ and ψ′(r) < ψ(r) for at least one r ∈ Q2.

We also say that such a function ψ is minimal. The following result was proved
in [3].

Theorem 1. A minimal valid function ψ is nonnegative homogeneous piecewise
linear and convex. Furthermore, the closure of the set

Bψ := {x ∈ Q2 : ψ(x − f) ≤ 1}. (4)

is a full-dimensional polyhedron with 2, 3 or 4 edges, it contains no integral point
in its interior but each edge contains an integral point in its relative interior.

A function ψ is positively homogeneous if ψ(λr) = λψ(r) for all λ ≥ 0. Since ψ is
always nonnegative in this paper, we simply say homogeneous to mean positively
homogeneous. We will also simply say in the interior of an edge to mean in the
relative interior of that edge.

The point f is in Bψ since ψ(0) = 0. When f is in the interior of Bψ, then ψ is
continuous and Bψ is closed (we call this the nondegenerate case), see Figure 1.
In this case, the boundary of Bψ is the set of points x ∈ Q2 that satisfy ψ(x −
f) = 1. Thus, the knowledge of f and of the boundary of Bψ together with
the homogeneity of ψ is enough to compute the value of ψ(r) for any vector
r ∈ Q2 \ {0}: If f + λr is a point on the boundary of Bψ for some λ > 0, we get
that ψ(r) = 1/λ. Otherwise, if there is no such λ, r is an unbounded direction of

On the Facets of Mixed Integer Programs 319

Bψ

BψBψ

f
f

f

Fig. 1. Representation of Bψ for nondegenerate cases

Bψ and ψ(r) = 0. We use the graphic representation of Bψ to describe ψ when
possible. The inequalities corresponding to the three cases of Figure 1 will be
called split, triangle and quadrilateral inequalities. They are special case of the
intersection cuts of Balas [2]. Solid lines in Figure 2 give level curves of ψ(r)
with values 0 and 1 for the three examples of Figure 1.

r

r r r2

r2
r2

0

0
0

11

1

1

1

1

1

1

1
1

1

1

Fig. 2. Level curves of ψ(r) for nondegenerate cases

When f is a vertex of clBψ (the closure of Bψ) or when f lies on one of its
edges, ψ is neither continuous nor finite everywhere [3] (degenerate case), see
Figure 3. In particular, for any direction r �= 0 such that the half-line Lr = {x =
f + λr for λ > 0} is outside clBψ, we have ψ(r) = +∞. For the directions such
that the half-line Lr goes through the interior of clBψ, let f + λr be the point
where Lr intersects the boundary of clBψ; then we get ψ(r) = 1/λ. Finally, when
Lr supports an edge of clBψ, let y = f+λr be the first integral point encountered
on Lr starting from f and let x = f +μr be the first vertex of clBψ encountered
(if any); if y is encountered first, we get ψ(r) = 1/λ and if x is encountered first,
we get ψ(r) = 1/μ. There are five different degenerate inequalities, depending of
the type of set clBψ and the position of f on its faces: degenerate split, vertex-
degenerate triangle, edge-degenerate triangle, vertex-degenerate quadrilateral and
edge-degenerate quadrilateral inequalities. Solid lines in Figure 4 give level curves
of ψ(r) with values 0 and 1 for the three examples of Figure 3.

320 G. Cornuéjols and F. Margot

Bψ

BψBψ

f

f

f

Fig. 3. Representation of Bψ for degenerate cases

r

r

r r2

r2

r2

+∞

+∞

+∞

+∞

+∞

0

0
0

1
1

1

11

1 1

1

1

1
1

1

1

1

Fig. 4. Level curves of ψ(r) for degenerate cases

Note that Dey et al. [5] showed in a more general context that, if ψ(r) < +∞
everywhere, then ψ is continuous, and therefore ψ is nondegenerate.

Polyhedra with no integral point in their interior but with an integral point in
the relative interior of each facet are called maximal lattice-free [9]. The complete
list of all maximal lattice-free convex sets in the plane is known:

Theorem 2. [9] A maximal lattice-free convex set in the plane (x1, x2) is one
of the following:

i) An irrational line ax1 + bx2 = c, where a/b is irrational and c �∈ aZZ + bZZ;
ii) A strip c ≤ ax1 + bx2 ≤ c + 1 where a and b are coprime integers and c is

an integer;
iii) A triangle with an integral point in the interior of each of its edges;
iv) A quadrilateral containing exactly four integral points, with exactly one of

them in the interior of each of its edges; Moreover, these four integral points
are vertices of a parallelogram of area 1.

The polyhedra referred to in Theorem 1 correspond to the last three cases in
Theorem 2. The first case does not play a role here as we only consider rational
vectors f and r in the definition of Rf .

On the Facets of Mixed Integer Programs 321

A valid inequality
∑

ψ(r)sr ≥ 1 for Rf defines a facet of Rf if there does
not exist two distinct valid inequalities

∑
ψj(r)sr ≥ 1, j = 1, 2, such that

ψ = 1
2ψ1 + 1

2ψ2. Note that, although we only use nontrivial inequalities in this
definition, including them would give an equivalent definition. By extension, we
also say that such a function ψ defines a facet of Rf . Gomory [7] recently raised
the question of describing the facets of Rf . In this paper, we give a complete
characterization of the facets of Rf .

A valid inequality
∑k

i=1 ψj(ri)si ≥ 1 for Rf (r1, . . . , rk) defines a facet of
Rf (r1, . . . , rk) if two distinct valid inequalities

∑k
i=1 ψj(ri)si ≥ 1, j = 1, 2, do

not exist such that ψ(ri) = 1
2ψ1(ri) + 1

2ψ2(ri) for i = 1, . . . , k. This definition
of a facet of Rf (r1, . . . , rk) is consistant with the usual definition of a facet of
a polyhedron only if the polyhedron is full dimensional. The next lemma shows
that this is the case.

Lemma 1. If Rf (r1, . . . , rk) is non empty, then it is full dimensional.

Proof. The recession cone of Rf (r1, . . . , rk) is IRk
+.

The paper is organized as follows. Section 2 explains how results for the facets of
Rf can be used to derive results for the facets of Rf (r1, . . . , rk). Section 3 shows
that split inequalities are always facet defining for Rf , and that degenerate split
inequalities also are. Section 4 deals with triangle and quadrilateral inequalities.
It shows that triangle inequalities are always facets of Rf and it gives a neces-
sary and sufficient condition for a quadrilateral inequality to define a facet. For
the remaining degenerate cases, vertex-degenerate and edge-degenerate triangle
inequalities are facet defining only if a condition on the integral points in the
boundary of Bψ is satisfied, whereas degenerate quadrilaterals never define a
facet of Rf .

2 Facets of Rf and Facets of Rf(r
1, . . . , rk)

In this section, we give a relation between facets of Rf and facets of Rf (r1, . . . , rk).
We first show that the degenerate cases can be ignored when dealing with
Rf (r1, . . . , rk).

Theorem 3. Let r1, . . . , rk be a set of k ≥ 1 rays. Every nontrivial facet of
Rf (r1, . . . , rk) can be obtained from a nondegenerate minimal valid function ψ
for Rf .

We will see in Theorem 6 that split inequalities always define facets of Rf . The
situation for Rf (r1, . . . , rk) is a little bit more complicated, as the next theorem
shows. See also Andersen et al. [1].

Theorem 4. Let ψ be valid and minimal for Rf , with Bψ unbounded and f in
its interior. Let r1, . . . , rk be a set of k ≥ 1 rays. Then ψ defines a split inequality∑k

i=1 ψ(ri)sri ≥ 1 for Rf (r1, . . . , rk). This inequality can also be obtained as a
quadrilateral inequality if ψ(ri) > 0 for i = 1, . . . , k, and it defines a facet of
Rf (r1, . . . , rk) otherwise.

322 G. Cornuéjols and F. Margot

Nondegenerate minimal valid inequalities that are not split inequalities are
generated by a function ψ with Bψ bounded and f in the interior of Bψ. Let
x1, . . . , xk be the vertices of Bψ. We always assume that these vertices are topo-
logically ordered so that the edges of the boundary of Bψ are convex combina-
tions of xi and xi+1 with indices taken modulo k. We define the corner rays of
Bψ to be the rays {r1, . . . , rk} joining f to the vertices of Bψ, with ri = xi − f
for i = 1, . . . , k.

The next theorem shows that if r1, . . . , rk are the corner rays of Bψ then ψ is
facet defining for Rf if and only if it is facet defining for Rf (r1, . . . , rk).

Theorem 5. Assume that Bψ is a polytope with f in its interior. Let ψ be valid
and minimal for Rf and let r1, . . . , rk be the corner rays of Bψ. Then ψ is facet
defining for Rf (r1, . . . , rk) if and only if ψ is facet defining for Rf .

The assumption of Theorem 5 that the rays are the corner rays of Bψ can be
relaxed slightly, keeping the proof almost identical:

Corollary 1. Assume that Bψ is a polytope with f in its interior. Let ψ be valid
and minimal for Rf and let r1, . . . , r� be a set of rays including the corner rays of
Bψ. Then ψ is facet defining for Rf (r1, . . . , r�) if and only if ψ is facet defining
for Rf .

In [1], Andersen, Louveaux, Weismantel and Wolsey study Rf (r1, . . . , rk) and
they prove that, when nonnegative combinations of r1, . . . , rk span IR2, all the
nontrivial facets of Rf (r1, . . . , rk) are split inequalities or are triangle or quadri-
lateral inequalities where the vertices of Bψ are on the rays f + λri, λ > 0,
for i = 1, . . . , k. They do not, however, describe precisely which triangles and
quadrilaterals generate facets. Theorems 3, 4 and Corollary 1 show that the
characterization obtained in this paper of the triangles and quadrilaterals that
generate facets for Rf (Theorems 8 and 9) gives a complete characterization of
the nontrivial facets of Rf (r1, . . . , rk).

3 Split Inequalities

3.1 Nondegenerate Case

Consider a direction r0 ∈ Q2\{0} such that the line L0 := {x = f +αr0, α ∈ IR}
contains no integral point. Let L1 and L2 be parallel lines to L0, each containing
integral points, such that the set of points between L1 and L2 contains no integral
point in its interior and contains L0. (See Figure 5.) Define ψ(r0) = ψ(−r0) = 0,
ψ(x − f) = 1 for any x ∈ L1 ∪ L2. Since ψ is homogeneous, this defines ψ(r) for
all r ∈ Q2. The valid inequality

∑
ψ(r)sr ≥ 1 is the well known split inequality

[4]. These inequalities are equivalent to Gomory’s mixed integer inequalities [6].

Theorem 6. Split inequalities define facets of Rf .

On the Facets of Mixed Integer Programs 323

Bψ

2

f

1

L

L

Fig. 5. Illustration for Theorem 6

3.2 Degenerate Case

Consider a direction r0 ∈ Q2 \{0} such that the line L0 := {x = f +αr0, α ∈ IR}
contains integral points. Let L1 be a line parallel to L0 that contains integral
points, such that the set of points between L0 and L1 contains no integral point in
its interior. Let y1 and y2 be the first integral points encountered on the half-lines
f +αr0, α ≥ 0, and f −αr0, α ≥ 0 respectively. Define ψ(y1−f) = ψ(y2−f) = 1
and ψ(x − f) = 1 for any x ∈ L1. Since ψ is homogeneous, this defines ψ(r) for
all r ∈ Q2 in the closed half-space limited by L0 and containing L1. For all other
r ∈ Q2 \{0}, define ψ(r) = +∞. The inequality

∑
ψ(r)sr ≥ 1, a degenerate split

inequality, is valid for Rf .

Theorem 7. Degenerate split inequalities define facets of Rf .

4 Triangle and Quadrilateral Inequalities

In this section, we assume that ψ is valid and minimal for Rf with f in the
interior of Bψ and that Bψ is a polytope. Then by Theorem 1 and Theorem 2,
Bψ is either a triangle or a quadrilateral such that each of its boundary edges
contains an integral point in its interior.

Let x1, . . . , xk be the vertices of Bψ and r1, . . . , rk be the corner rays of Bψ

and let yi be an integral point that can be obtained as a nontrivial convex
combination of xi and xi+1 for i = 1, . . . , k (indices are always implicitly taken
modulo k).

Define M as the 2 × k matrix whose column i is the vector yi for i = 1, . . . , k
(Recall that k = 3 or 4). Define X as the 2 × k matrix whose column i is the
vector xi for i = 1, . . . , k. Let S be the k×k matrix whose column i is the vector
corresponding to the coefficients in the convex combination of xi and xi+1 giving
yi for i = 1, . . . , k.

We then have

M = X · S (5)

with

324 G. Cornuéjols and F. Margot

S =

⎛

⎝
α 0 1 − γ

1 − α β 0
0 1 − β γ

⎞

⎠ or S =

⎛

⎜
⎜
⎝

α 0 0 1 − δ
1 − α β 0 0

0 1 − β γ 0
0 0 1 − γ δ

⎞

⎟
⎟
⎠

where α, β, γ and δ are all strictly between 0 and 1.
Since we are interested in the dimension of faces of polyhedra, which requires

checking affine independence of points, we add a third row full of 1s to the
matrices M (resp. X) to obtain matrix M̄ (resp., X̄). Due to the specific form
of the matrix S, we still have

M̄ = X̄ · S . (6)

Let A be an m × n matrix. The nullspace of A is N (A) = {x ∈ IRn | Ax = 0}
and the columnspace of A is C(A) = {z ∈ IRm | z = Ax for some x ∈ IRn}.

The following three results are classical results of linear algebra [10]:

Lemma 2. Let A be an m × n matrix and B be an n × p matrix. Then

rank(A · B) = rank(B) − dim(N (A) ∩ C(B)) .

Corollary 2. Let A be an m×n matrix and B be an n×p matrix. If rank(A) =
n, then

rank(A · B) = rank(B) .

Proof. If rank(A) = n, then N (A) = {0} and has dimension 0. Applying
Lemma 2 yields the result.

Corollary 3. Let A be an m × n matrix and B be an n × p matrix. Then

rank(A · B) ≤ min{rank(A), rank(B)} .

Proof. Apply Lemma 2 to A · B and its transpose.

4.1 Triangle Inequalities

Theorem 8. Triangle inequalities define facets of Rf and of Rf (r1, r2, r3) where
r1, r2 and r3 are the corner rays of the maximal lattice-free triangle.

Proof. Since k = 3 and Bψ is a triangle, both M̄ and X̄ have rank 3. By Corol-
lary 2, S has rank 3 too. It implies that the columns of S are affinely inde-
pendent. Since they all satisfy with equality the inequality

∑3
i=1 ψ(ri)si ≥ 1,

this inequality defines a facet of Rf (r1, r2, r3). By Theorem 5, ψ defines a facet
of Rf .

On the Facets of Mixed Integer Programs 325

4.2 Quadrilateral Inequalities

When k = 4, both M̄ and X̄ have rank 3. By Lemma 2, we have

3 = rank(M̄) = rank(X̄ · S) = rank(S) − dim(N (X̄) ∩ C(S)) .

Since rank(X̄) = 3, we have that N (X̄) is a one-dimensional linear space.
Hence dim(N (X̄) ∩ C(S)) ≤ 1 and rank(S) = 4 if and only if N (X̄) ⊆ C(S).

Theorem 9. Consider a maximal lattice-free quadrilateral with vertices xi, in-
tegral point yi on edge xixi+1 (indices taken modulo 4) and corner rays ri, i =
1, . . . , 4. The corresponding quadrilateral inequality defines a facet of Rf (r1, r2,
r3, r4) (and therefore of Rf) if and only if there is no t ∈ IR+ such that the point
yi divides the edge joining xi to xi+1 in a ratio t for odd i and in a ratio 1/t for
even i, i.e.

||yi − xi||
||yi − xi+1|| =

{
t for i = 1, 3
1
t for i = 2, 4 .

Proof. Let F be the face of Rf (r1, . . . , r4) defined by
∑4

i=1 ψ(ri)si = 1. As
f + ri = xi is on the boundary of Bψ, we have ψi(ri) = 1 for i = 1, . . . , 4.
Hence, if s ∈ F then

∑4
i=1 si = 1. Recall that Rf (r1, . . . , rk) is the convex hull

of vectors in the set H := {s ∈ IR4
+ | f +

∑4
i=1 risi is integral}. Thus, if F is a

facet, then there exists four affinely independent vectors sj , for j = 1, . . . , 4, in
H with

4∑

i=1

sj
i = 1 and zj = f +

4∑

i=1

ris
j
i =

4∑

i=1

(f + ri)s
j
i integer .

This implies that zj is in the convex hull of x1, . . . , x4, for j = 1, . . . , 4. Theorem 2
shows that the only integral points in Bψ are the points y1, . . . , y4. Moreover,
for each j = 1, . . . , 4, there is a unique convex combination of x1, . . . , x4 that
produces yj , namely column j of matrix S. In other words, F is a facet if and
only if the columns of S are affinely independent. Observe that the columns of
S are affinely independent if and only if they are linearly independent since the
sum of the entries in any column of S is 1. It follows that F is a facet if and only
if rank(S) = 4.

Let u = (1, −1, 1, −1)T . By Theorem 2 iv), the points y1, . . . , y4 are the ver-
tices of a parallelogram. This implies that M̄ ·u = 0. Then (6) gives X̄ ·S ·u = 0.
We now have two cases:

i) S · u = 0. Then rank(S) ≤ 3 and Corollary 3 shows that rank(S) = 3.
Solving the linear system S · u = 0 gives α = 1 − β = γ = 1 − δ. This is
equivalent to the ratio condition of the statement.

ii) S · u �= 0. Then for v = S · u we have X̄ · v = 0, and as v �= 0, we have that
N (X̄) is the linear space spanned by v. Since v is obtained as a linear combination
of the columns of S, we have N (X̄) ⊆ C(S) and by Lemma 2 we get rank(S) = 4.
Since all the columns of S satisfy with equality the inequality

∑4
i=1 ψ(ri)si ≥ 1,

326 G. Cornuéjols and F. Margot

this inequality defines a facet of Rf (r1, r2, r3, r4). By Theorem 5, ψ defines a
facet of Rf .

We illustrate the condition in Theorem 9 by a couple of examples. This condition
implies that the quadrilateral inequality generated from the square whose edges

contain the integral points
(

0
0

)

,

(
1
0

)

,

(
0
1

)

,

(
1
1

)

in their middle (usually

called octahedron inequality) does not define a facet. However, if one tilts just
one edge of the square around its (integral) middle point, the resulting trapezoid
has three distinct ratios ||yi−xi||

||yi−xi+1|| . Therefore Theorem 9 states that the resulting
quadrilateral inequality defines a facet of Rf .

We give another more complicated example, see Figure 6. Let f =
(1

2
1
2

)

and Q the quadrilateral with vertices x1 =
(7

6
1
6

)

, x2 =
(7

8
13
8

)

, x3 =
(− 7

6
1
6

)

,

x4 =
(7

8

− 1
8

)

.

x

x2

x3

x4

yy2

y3 y4

(a) The quadrilateral Q. (b) The two triangles T and T2.

ff

1

1

1

Fig. 6. Illustration for the second example

Edge x1x2 contains integral point y1 =
(

1
1

)

with ratio ||y1−x1||
||y1−x2|| = 4

3 .

Edge x2x3 contains integral point y2 =
(

0
1

)

with ratio ||y2−x2||
||y2−x3|| = 3

4 .

Edge x3x4 contains integral point y3 =
(

0
0

)

with ratio ||y3−x3||
||y3−x4|| = 4

3 .

Edge x4x1 contains integral point y4 =
(

1
0

)

with ratio ||y4−x4||
||y4−x1|| = 3

4 .

Theorem 9 states that the quadrilateral inequality obtained from Q is not a
facet.

On the Facets of Mixed Integer Programs 327

Indeed, it can be obtained as a convex combination of two triangle inequalities,

each with a multiplier 1
2 . The first triangle T1 has vertices

(3
2

0

)

,
(4

5
7
5

)

,
(

−2
0

)

.

The second triangle has vertices
(

1
− 1

3

)

,
(

1
2

)

,
(− 3

4
1
4

)

. Both triangles have all

four points y1, y2, y3, y4 on their boundaries. The corner rays of Q are r1 =(2
3

− 1
3

)

, r2 =
(3

8
9
8

)

, r3 =
(− 5

3

− 1
3

)

, r4 =
(3

8

− 5
8

)

. Triangle T1 has corner rays

positive multiples of r1, r2 and r3. Triangle T2 has corner rays positive multiples
of r2, r3 and r4. If ψ, ψ1 and ψ2 denote the functions defined by Q, T1 and T2

respectively, it is easy to verify that ψ = 1
2ψ1 + 1

2ψ2 in each of the cones riri+1

(indices defined modulo 4). Indeed, each of these functions is linear in each of
the cones. So it is sufficient to verify the equality ψ(r) = 1

2ψ1(r) + 1
2ψ2(r) in

each of the directions ri, i = 1, . . . , 4. In direction r1 we have ψ1

(
1

− 1
2

)

= 1

and ψ2

(1
2

− 1
4

)

= 1. This implies ψ1(r1) = 2
3 and ψ2(r1) = 4

3 . Therefore ψ(r1) =

1
2ψ1(r1) + 1

2ψ2(r1) as required. Similarly, for the other rays, we find ψ1(r2) = 5
4

and ψ2(r2) = 3
4 ; ψ1(r3) = 4

3 and ψ2(r3) = 2
3 ; ψ1(r4) = 3

4 and ψ2(r4) = 5
4 .

5 Degenerate Triangle and Quadrilateral Inequalities

Theorem 10. A vertex-degenerate triangle inequality defines a facet of Rf if
and only if the edge of T opposite f contains at least two integral points in its
interior.

Theorem 11. An edge-degenerate triangle inequality defines a facet of Rf if
and only if at least one of the two edges not containing f contains two integral
points y with ψ(y − f) = 1.

Theorem 12. Vertex-degenerate and edge-degenerate quadrilateral inequalities
never define facets of Rf .

References

1. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Cutting Planes from Two
Rows of a Simplex Tableau. In: Proceedings of IPCO XII, Ithaca, New York, June
2007, pp. 1–15. (2007)

2. Balas, E.: Intersection Cuts - A New Type of Cutting Planes for Integer Program-
ming. Operations Research 19, 19–39 (1971)

3. Borozan, V., Cornuejols, G.: Minimal Valid Inequalities for Integer Constraints,
technical report (July 2007)

4. Cook, W., Kannan, R., Schrijver, A.: Chvátal Closures for Mixed Integer Program-
ming Problems. In: Mathematical Programming, vol. 47, pp. 155–174 (1990)

328 G. Cornuéjols and F. Margot

5. Dey, S.S., Richard, J.-P.P., Miller, L.A., Li, Y.: Extreme Inequalities for Infinite
Group Problems, technical report (2006)

6. Gomory, R.E.: An Algorithm for Integer Solutions to Linear Programs. In: Graves,
R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–
302. McGraw-Hill, New York (1963)

7. Gomory, R.E.: Thoughts about Integer Programming. In: 50th Anniversary Sym-
posium of OR, Corner Polyhedra and Two-Equation Cutting Planes, George
Nemhauser Symposium, University of Montreal, Atlanta (January 2007) (July
2007)

8. Gomory, R.E., Johnson, E.L.: Some Continuous Functions Related to Corner Poly-
hedra, In: Mathematical Programming, Part I. vol. 3, pp. 23–85 (1972)

9. Lovász, L.: Geometry of Numbers and Integer Programming. In: Iri, M., Tanabe,
K. (eds.) Mathematical Programming: Recent Developments and Applications, pp.
177–210. Kluwer, Dordrecht (1989)

10. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia
(2000)

11. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
Chichester (1988)

A Polyhedral Investigation of the LCS Problem

and a Repetition-Free Variant

Cristina G. Fernandes, Carlos E. Ferreira,
Christian Tjandraatmadja, and Yoshiko Wakabayashi

Universidade de São Paulo, Brazil
{cris,cef,christj,yw}@ime.usp.br

Abstract. We consider the longest common subsequence problem (lcs)
and a variant of it where each symbol may occur at most once in the
common subsequence. The lcs is a well-known problem that can be
solved in polynomial time by a dynamic programming algorithm. We
provide a complete description of a polytope we associate with the lcs.
The integrality of this polytope can be derived by showing that it is in
fact the clique polytope of a perfect graph. The repetition-free version of
the problem is known to be difficult. We also associate a polytope with
this version and investigate its facial structure. We present some valid
and facet-defining inequalities for this polytope and discuss separation
procedures. Finally, we present some computational results of a branch
and cut algorithm we have implemented for this problem.

1 Introduction

Given two finite sequences s and t over an alphabet, the longest common sub-
sequence problem (lcs) consists in finding a longest common subsequence of s
and t. It is well known that this problem can be solved in polynomial time by
a dynamic programming algorithm that runs in O(|s||t|) time (see [4]). The lcs

has important applications in Bioinformatics and Computational Biology, where
the sequences are genomes and a common subsequence may be interpreted as
a similarity measure between the genomes. It is also present in the core of the
unix diff command.

We associate a polytope with the lcs and study its facial structure. For that,
given an instance of the problem, we represent the feasible solutions of this
instance as vectors in R

n (for some dimension n) and consider the polytope
defined as the convex hull of these vectors. We give a complete description of
this polytope, exhibiting all of its facets (faces of maximal dimension). Since the
lcs is polynomially solvable, it is expected that such a complete description can
be provided (see [6,7] for details). We discuss the description we provide in this
paper and relate it with other known results.

We also study a variation of the lcs in which each symbol of the alphabet
is allowed to occur at most once in the sought common subsequence. We refer

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 329–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

330 C.G. Fernandes et al.

to this version as the Repetition-Free LCS problem (rflcs). It has been
proved that this problem is NP-hard. Indeed, Adi et al. [1] proved that it is apx-
hard even if each symbol appears at most twice in each of the given sequences.
Another variation considered in the literature is the so-called exemplar model.
In this problem, as in the rflcs, each symbol may appear at most once in the
common subsequence. Besides, some symbols are mandatory and must appear in
the subsequence. This model has been studied by Bonizzoni et al. [2] who proved
that the problem is also apx-hard. Yet another related variation was proposed
by Sankoff [9] in the studies of gene families. All these variations may be useful
in the comparisons of genomes [2,9] and may prove to be useful in other contexts
as well.

This paper is organized as follows. In Section 2 we give a complete description
of the polytope we associate with the lcs and show how to solve the separation
problem for it in polynomial time. Moreover we show the relationship between
the lcs polytope and the clique polytope of a class of perfect graphs. In Section 3
we provide a formulation for the rflcs and present some results on valid and
facet-defining inequalities for the corresponding polytope. Some computational
results of a branch and cut algorithm we developed for the rflcs are shown in
Section 4. Finally, in Section 5 we present some conclusions.

2 A Polyhedral Study of the LCS Polytope

Consider an instance of the lcs consisting of two sequences s = s1, . . . , sn and
t = t1, . . . , tm over some alphabet. For each symbol a of the alphabet, let s(a)
be the set of indices i of s such that si = a, and let t(a) be defined analogously.
Let E ⊆ {1, . . . , n} × {1, . . . , m} be the set of all pairs (i, j) in s(a) × t(a) where
a ranges over all symbols of the alphabet. That is, E = ∪a

(
s(a) × t(a)

)
.

Note that any common subsequence w of s and t can be represented by a vector
z in {0, 1}E as follows. If w = si1 , . . . , sip = tj1 , . . . , tjp , where i1 < · · · < ip and
j1 < · · · < jp, then for each pair ij in E we have that zij = 1 if and only if there
exists an index � in {1, . . . , p} such that i = i� and j = j�. Thus, the feasible
solutions of this instance of the lcs are the vertices of the following polytope
(defined as the convex hull of these solutions).

Plcs := conv{z ∈ {0, 1}E | z represents a common subsequence of s and t}.

Obviously, finding a vector z∗ in Plcs with maximum number of nonzero com-
ponents is equivalent to finding a longest common subsequence of s and t.

Proposition 1. The polytope Plcs is full-dimensional.

Proof. It is sufficient to observe that the zero vector and the unit vectors eij ,
for all (i, j) in E (that is, the vector such that eij

ij = 1 and eij
k� = 0 for all

(k, �) �= (i, j)), are in Plcs and are affinely independent. Thus the polytope Plcs

has dimension |E|. ��

A Polyhedral Investigation of the LCS Problem 331

We say that two distinct pairs (i, j) and (k, �) in E cross if (i ≤ k and j ≥ �)
or (k ≤ i and � ≥ j). A simple integer programming formulation for the lcs

follows.

maximize
∑

(i,j)∈E zij

subject to zij + zk� ≤ 1 for all (i, j) and (k, �) in E that cross,
zij ∈ {0, 1} for all (i, j) in E.

(1)
Observe that z is a feasible solution of (1) if and only if it corresponds to a

common subsequence of s and t.

Proposition 2. For every (i, j) in E, the inequality zij ≥ 0 defines a facet of
Plcs.

Proof. Fix an (i, j) in E. It is easy to see that the zero vector and the unit
vectors ek� for all (k, �) �= (i, j) are vertices of Plcs that satisfy zij = 0 and they
are affinely independent. ��

We note that the inequalities in (1) do not always induce facets of Plcs. As we
will see in what follows, some of them may possibly be facet-defining. To simplify
the notation, if z is a vector and S is a subset of E, then we denote by z(S) the
sum

∑
(i,j)∈S zij .

We say that a set S ⊆ E is a star if any two distinct pairs in S cross. If S is
a star then the inequality z(S) ≤ 1 is called a star inequality. Note that the
inequalities in (1) are star inequalities defined by stars of cardinality 2.

Lemma 1. Consider a star S ⊆ E. Then the star inequality z(S) ≤ 1 is valid
for Plcs, and it defines a facet if and only if S is maximal.

Proof. It is immediate that the star inequality z(S) ≤ 1 is valid for Plcs. Now,
let us prove that it defines a facet when S is maximal.

Consider a facet-defining inequality az ≤ α and suppose

{z ∈ R
E | z(S) = 1} ⊆ F := {z ∈ R

E | az = α}.

Note that, for each pair (p, q) in E \ S, there exists a pair (i, j) in S such that
(i, j) and (p, q) do not cross (since S is maximal). Thus, eij and eij + epq are
incidence vectors of common subsequences of the sequences s and t and are in
F . So, aij = aeij = a(eij +epq) = aij +apq, and therefore apq = 0 for every (p, q)
in E \ S. Now observe that, for every (i, j) and (k, �) in S, we have that eij

and ek� are in F . Then, aij = aeij = aek� = ak� = α, for some constant α.
This proves that az ≤ α can be rewritten as αz(S) ≤ α, and therefore the star
inequality z(S) ≤ 1 is facet-defining.

Conversely, suppose that the star inequality z(S) ≤ 1 defines a facet of Plcs.
If S is not maximal, there exists a pair (p, q) in E \ S such that (p, q) crosses
all pairs in S. Thus, S′ := S ∪ {(p, q)} is a star and the inequality z(S′) ≤ 1 is
valid. In this case, the star inequality z(S) ≤ 1 can be written as the sum of the
inequality z(S′) ≤ 1 and the inequality zpq ≥ 0, a contradiction. ��

332 C.G. Fernandes et al.

A nice result is that the inequalities given in the lemma above define completely
the polytope Plcs. More precisely, any facet-defining inequality of Plcs is either
a nonnegativity inequality or a maximal star inequality. This result is proved
in the next theorem. First, consider the following order relation on the pairs on
E. Given (i, j) and (k, �) in E, we write (i, j)
 (k, �) if i < k or (i = k and
j ≤ �). Now, we can define a lexicographical order on the subsets of E as follows.
Consider two subsets S1 and S2 of E. For k = 1, 2, let ((ik1 , jk

1), . . . , (ik�k
, jk

�k
))

be the sequence of the pairs in Sk sorted according to this (total) order and
refer to it as the sorted Sk. We say that S1 is lexicographically smaller than
or equal to S2, and write S1
 S2, if either the sorted S1 is a prefix of the
sorted S2 or (i1p, j1

p)
 (i2p, j2
p) for the first index p such that (i1p, j1

p) �= (i2p, j2
p) (if

it exists).

Theorem 1

Plcs = {z ∈ R
E | zij ≥ 0 for all (i, j) ∈ E and

z(S) ≤ 1 for all maximal star S ⊆ E}.

Proof. Let az ≤ α be an inequality that induces a facet, say F , of Plcs. First we
prove that, if this inequality has negative coefficients, it must be a nonnegativity
constraint for some (i, j) in E. Say aij < 0 and suppose that the inequality
az ≤ α is not a multiple of −zij ≤ 0. Then, there must be a vector z in Plcs such
that az = α and zij = 1 (otherwise, F would be contained in the hyperplane
zij = 0). But then z − eij is also a vector in Plcs, and a(z − eij) = az − aij > α,
a contradiction.

So, we may assume that aij ≥ 0 for all (i, j) in E. Consider now the support T
of the inequality az ≤ α and some (i, j) in E \T . It is easy to see that there must
exist some (k, �) in T that does not cross (i, j). Otherwise F would be contained
in the hyperplane zij = 0. It remains to be proved that T is a star.

Let S1 = {(i1, j1), (i2, j2), . . . , (it, jt)} be the first maximal star in T in the
lexicographical order defined above. If az ≤ α is not a maximal star inequality,
there must exist some z in R

E such that az = α and z(S1) = 0. Thus, there must
exist two distinct pairs (i, j) and (k, �) in T \ S1 with zij = zk� = 1 such that
every pair in S1 either crosses (i, j) or (k, �). Assume without loss of generality
that (i, j)
 (k, �). As S1 is maximal, (i, j) cannot cross all pairs in S1. Since
S1 is the first maximal star in the lexicographical order, there is an index p in
{1, . . . , t} such that (i, j) does not cross (ip, jp) and (ip, jp)
 (i, j). Thus, j ≥ jp.
But then, (k, �) must cross (ip, jp), and therefore � ≤ jp. This implies that i ≤ k
and j ≥ jp ≥ �, and hence (i, j) and (k, �) cross, a contradiction. ��

2.1 The Separation Problem for the Star Inequalities

A polynomial-time algorithm to solve the separation problem for the star in-
equalities is the following. Let s and t be the two sequences for which we want
to find a longest common subsequence, and let z ∈ R

E be such that 0 ≤ zij ≤ 1
for all (i, j) in E. Consider the problem of finding a maximum weight common
subsequence of the reversal of s and the sequence t, where the weight of aligning

A Polyhedral Investigation of the LCS Problem 333

si with tj is zij . This problem can be solved in polynomial time using a dynamic
programming algorithm (see [4]). Observe that such a common subsequence of
the reversal of s and t corresponds to a maximal star (since the weights are non-
negative). So, if such a maximum weight star, say S, has value greater than 1,
the corresponding star inequality z(S) ≤ 1 is violated by z. Conversely, if this
value is less than or equal to 1, no star inequality is violated by the current
solution z.

2.2 The Integrality of the LCS Polytope

Another way of proving that the polytope described in Theorem 1 is integral is by
means of the following result shown by Fulkerson [5], Lovász [8] and Chvátal [3].
Given an undirected graph G = (V, E), the clique polytope of G is defined as
the convex hull of the incidence vectors of the cliques in G. We say a set S ⊆ V
is a stable set of G if S is a set of pairwise non-adjacent vertices. Consider the
polytope:

PC(G) = {x ∈ R
V | xv ≥ 0 for all v ∈ V and

x(S) ≤ 1 for all stable set S ⊆ V }.

Chvátal [3] proved that the description above is indeed the description of the
clique polytope of G (and therefore integral) if and only if G is a perfect graph.
(A graph is perfect if for every induced subgraph H of G the maximum size of
a clique in H is equal to the minimum coloring of H).

Now we observe that the lcs polytope defined in Theorem 1 is the clique
polytope of a perfect graph. Let Gst be the graph defined as follows: its vertex
set consists of all pairs (i, j) in E (as we defined in the beginning of Section 2),
and two vertices are adjacent if and only if the corresponding pairs do not cross.

Thus, finding a longest common subsequence of s and t is equivalent to finding
a largest clique in the graph Gst. Note that the maximal star inequalities z(S) ≤
1 that are facets of Plcs are in fact inequalities of the form x(S) ≤ 1 of the clique
polytope PC(Gst), where S is a maximal stable set of Gst. Thus, Plcs = PC(Gst),
that is, Plcs is precisely the clique polytope of the graph Gst. Hence, Plcs is
integral if and only if Gst is perfect.

Now it remains to show that the graph Gst is perfect. To this end, we show
that its complement Ḡst is perfect (it is known that the complement of a perfect
graph is also a perfect graph [8]). We claim that Ḡst is a comparability graph,
and therefore a perfect graph. We recall that a comparability graph is a graph
that has a transitive orientation, that is, an orientation such that the resulting
directed graph satisfies a transitive law: whenever there exist directed edges (a, b)
and (b, c), there must exist a directed edge (a, c).

It is not difficult to prove that Ḡst is a comparability graph. It suffices to note
that the following orientation Gst of Ḡst is transitive: if e = {u, v} is an edge
of Ḡst, where u = (i, j) and v = (k, �) (note that the pairs (i, j) and (k, �) cross),
then orient e from u to v if i ≤ k and j ≥ � (see Figure 1). It is immediate that
if u = (i, j), v = (k, �) and w = (p, q) are vertices of Gst, and in this graph there

334 C.G. Fernandes et al.

are arcs going from u to v and from v to w, then this graph has an arc going
from u to w. This follows because we have i ≤ k and j ≥ � (as there is an arc
from u to v) and we have k ≤ p and � ≥ q (as there is an arc from v to w) and
therefore we have i ≤ k and j ≥ q. Thus the orientation we defined is transitive.

Although the lcs polytope can be described as the clique polytope of the
graph Gst, the proof of the complete description of Plcs we have presented (by
means of star inequalities) is interesting, as it is short and self-contained (it does
not rely on the result concerning the clique polytope of perfect graphs).

3 Formulation for the RFLCS

Given two sequences s and t, the problem of finding a repetition-free lcs of s
and t can be formulated as the following integer program.

maximize
∑

(i,j)∈E zij

subject to z(Ea) ≤ 1 for all symbol a of the alphabet,
zij + zkl ≤ 1 for all (i, j) and (k, l) in E that cross,

zij ∈ {0, 1} for all (i, j) in E.
(2)

As in the case of lcs, we can associate with rflcs the following polytope:

Prflcs := conv{z ∈ {0, 1}E | z represents a repetition-free
common subsequence of s and t}.

It is easy to see that the maximal star inequalities are valid for Prflcs. However,
these inequalities are not facet-defining.

For a set S ⊆ E, let Sa = S∩(s(a)×t(a)), where a is a symbol of the alphabet.
We say that a set S ⊆ E is an extended star if, for every two distinct symbols a
and b, each pair in Sa crosses all pairs in Sb. We prove in the next theorem that
if S is a maximal extended star then the corresponding star inequality z(S) ≤ 1
is facet-defining for Prflcs.

(1, 3) (1, 5)

(3, 1)

(2, 2)

(3, 4)(4, 2)

(5, 3)

(5, 5)

(a) (b)

aa

aa

bb

b

c

cc
s

t

Fig. 1. (a) A graph indicating all pairs in E with respect to s = acbca and t = bcaba .
(b) The graph Gst for s and t.

A Polyhedral Investigation of the LCS Problem 335

Theorem 2. Let S be a maximal extended star. The inequality z(S) ≤ 1 defines
a facet of Prflcs.

Proof. It is immediate that the inequality z(S) ≤ 1 is valid for Prflcs. In order
to prove that it defines a facet of Prflcs, consider an inequality az ≤ α that
defines a facet F of Prflcs and suppose

{z ∈ R
E | z(S) = 1} ⊆ F := {z ∈ RE | az = α}.

Consider a pair (i, j) in Ea \S for some symbol a. Since S is a maximal extended
star, there is a pair (k, �) in S ∩ Eb, with b �= a, that does not cross (i, j). Then,
ek� and ek� + eij are both in F , and this implies that aij = 0 for every (i, j) in
Ea \ S. Since this holds for every symbol a, we conclude that aij = 0 for every
(i, j) in E \ S.

Now observe that for every (i, j) in S we have that eij ∈ F . Thus, aij = α for
every (i, j) in S. Hence, the inequality az ≤ α can be rewritten as αz(S) ≤ α
and we conclude that the extended star inequality z(S) ≤ 1 is facet-defining. ��

3.1 The Separation Problem for the Extended Star Inequalities

We show now that a polynomial-time algorithm using a dynamic programming
algorithm can be used to solve the separation problem for the extended star
inequalities. The idea of the algorithm is similar to the separation algorithm
shown in the previous section. Let z be a fractional point we intend to separate.
Every extended star (see Figure 2(a)) corresponds to an alignment as the one
depicted in Figure 2(b), between the sequence s reversed, which we denote by sr,
and the sequence t. In the alignment shown in Figure 2(b) each star corresponds
to some particular symbol (that is, only pairs corresponding to the same symbol
can cross).

(a) (b)s sr

tt

Fig. 2. (a) An extended star between s and t. (b) The corresponding alignment between
sr and t.

The separation algorithm has to find an extended star whose corresponding
inequality is violated. For that, it looks for a maximum weight alignment, as the
one in Figure 2(b), between sr and t. The weights for the alignments are given
by z. Such an alignment allows crossings only among pairs corresponding to a
common symbol. One can find such an alignment by a dynamic programming
algorithm.

336 C.G. Fernandes et al.

Indeed, let mw(n, m) be the weight of such a maximum weight alignment
between the sequences sr[1 . . n] and t[1 . . m]. The following recurrence holds for
mw(n, m):

mw(n, m)=

⎧
⎨

⎩

0 if n = 0 or m = 0,
max{mw(n − 1, m), mw(n, m − 1)} if sr[n] �= t[m],
max1≤i,j≤n{mw(i − 1, j − 1) + ba(i, n, j, m)} if sr[n] = t[m] = a,

where ba(i, n, j, m) =
∑

{zkl : i ≤ k ≤ n, j ≤ l ≤ m, (k, l) ∈ Ea}.

It is not hard to see that mw(n, m) can be computed by an O(n2m2) al-
gorithm. It is also not hard to derive an algorithm that finds an alignment
between sr and t of weight mw(n, m). If mw(n, m) < 1, then such an align-
ment corresponds to an extended star that is violated. If mw(n, m) ≥ 1, then
no extended star is violated.

4 Computational Results

We implemented a branch and cut algorithm for the rflcs using the exact
separation procedure for the extended star inequalities shown in the previous
section. We considered instances consisting of two sequences of equal length
n = 512, and with alphabet sizes 1

8n, 2
8n, . . . , 7

8n. The instances are generated
randomly with uniform probability. To solve the linear programming relaxation
we use the GLPK (Gnu Linear Programming Kit), an ANSI C set of routines
organized in the form of a callable library.

In the first experiment we tested our branch and cut algorithm on 10 random
instances, each one with the above mentioned alphabet size. We limited the
running time for each instance to one hour. The results obtained are summarized
in Table 1. In each line the results shown correspond to 10 instances with the
given alphabet size. The first column shows the alphabet size. In the second
column we indicate the average computational time for the 10 instances; and
we also indicate in parenthesis the minimum and maximum running time. The
next column shows the average number of cuts added to the linear program.
Then, we indicate how many of the instances could be solved to optimality
within one hour. The next two columns show the average lower and upper bound
achieved within the fixed time limit. Finally, the last two columns exhibit the
average number of active nodes at the moment the program was interrupted and
the average number of nodes visited in the branch and bound tree during the
execution of the program.

In Table 1, we note that it becomes more difficult to solve instances in which
the alphabet size is small compared to the length of the sequences (up to 3

8n).
This difficulty might be explained by the fact that when the alphabet is small
then the number of repetitions in the sequences is large, and this implies that
such instances may have many feasible solutions. It is interesting to note that
we could solve all instances to optimality when the size of the alphabet is at
least 1

2n. The average number of nodes in the branch and cut tree (last column)

A Polyhedral Investigation of the LCS Problem 337

Table 1. Computational results with extended star inequalities

alph. size time (min/max) cuts exact lb ub active nodes

64 3604.5 (3600/3609) 1162.5 0 44.4 63.9 1.0 0.0

128 3601.6 (3600/3604) 1927.7 0 56.8 75.2 1.0 0.0

192 2761.8 (762/3600) 2532.1 6 58.8 59.7 1.7 10.7

256 604.4 (224/1582) 1474.0 10 54.2 54.2 0.0 5.6

320 245.9 (93/498) 1077.1 10 46.5 46.5 0.0 1.8

384 113.0 (72/200) 797.0 10 43.0 43.0 0.0 1.0

448 76.0 (52/108) 660.6 10 40.7 40.7 0.0 1.4

indicate that most of the work was done in the root node. For the instances with
small alphabet we achieve an average gap under 50% to the value of the best
solution found in one hour.

In order to investigate the strength of the extended star inequalities we ran
GLPK with the integer programming formulation (2). We set the parameters
of the solver to use clique and Gomory cuts (these are the best parameters we
could found). The results for the easier instances (with alphabet size at least
1
2n) are summarized in Table 2.

Table 2. Branch and bound with formulation (2)

alph. size time (min/max) cuts exact lb ub active nodes

256 3669.3 (3642/3724) 300.0 0 13.3 56.0 29.0 3.0

320 2739.3 (771/3631) 282.6 4 45.7 47.3 45.6 91.7

384 1159.9 (534/2886) 271.9 10 43.0 43.0 0.0 87.2

448 746.1 (254/2537) 236.5 10 40.7 40.7 0.0 117.0

As shown in Table 2, we could solve all 10 instances only for alphabet sizes 384
and 448. It is interesting to observe that in these cases the average time to solve
the instances is around 10 times larger than the time we needed using the facet-
defining inequalities and our separation procedure. In the other cases, we could
solve only 4 instances to optimality, while using the extended star inequalities
we could solve all instances within one hour.

5 Conclusion

The lcs is a well-known problem that has many nice applications. Perhaps
because of the fact that a polynomial-time algorithm for this problem is known,
a polyhedral approach to this problem has not been considered in the literature.
We think the polyhedral results we have shown for the lcs in this paper have
many interesting aspects: we give a complete and irredundant description of the
polytope Plcs we have associated to it and show that the separation problem for

338 C.G. Fernandes et al.

this polytope is polynomial. Furthermore, we have given an alternative proof of
the integrality of this polytope by showing its relation with the clique polytope of
the graph Gst, which we show to be perfect. The repetition-free version of lcs, an
NP-hard problem, also has applications in the study of genomes. This variant has
been less investigated. The polyhedral approach and the computational results
we presented for the rflcs show that this approach is an improvement to pure
branch and bound strategies or simple heuristics. Further facets of this polytope,
as well as some heuristics, may be incorporated to the present code, leading to
improvements that can be useful to solve some larger instances of the problem.

Acknowledgements

We would like to thank José Coelho de Pina for some valuable comments re-
lated to the contents of Section 2.2. We also thank the financial support from
CNPq (Proc. 490333/04, 307011/03-8, 308138/04-0, 301919/04-6), ProNEx -
Fapesp/CNPq Proc. No. 2003/09925-5 and Fapesp (Proc. 07/54282-6), Brazil.

References

1. Adi, S.S., Braga, M., Fernandes, C.G., Ferreira, C.E., Martinez, F.H.V., Sagot, M.-
F., Stefanes, M.A., Tjandraatmadja, C., Wakabayashi, Y.: Repetition-free longest
common subsequence. In: Proc. IV Latin-American Algorithms, Graphs and Opti-
mization Symposium (to appear) (2007)

2. Bonizzoni, P., Della Vedova, G., Dondi, R., Fertin, G., Vialette, S.: Exemplar longest
common subsequence. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Don-
garra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 622–629. Springer, Heidelberg
(2006)

3. Chvátal, V.: On certain polytopes associated with graphs. J. Combinatorial Theory
Ser. B 18, 138–154 (1975)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

5. Fulkerson, D.R.: Anti-blocking polyhedra. J. Combinatorial Theory Ser. B 12, 50–71
(1972)

6. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

8. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete
Math. 2(3), 253–267 (1972)

9. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–
917 (1999)

Competitive Cost Sharing with
Economies of Scale

Martin Hoefer�

Department of Computer Science, RWTH Aachen, Germany
mhoefer@cs.rwth-aachen.de

Abstract. We consider a general class of non-cooperative buy-at-bulk cost shar-
ing games, in which k players must contribute to purchase a number of resources.
The resources have costs and must be paid for to be available to players. Each
player can specify payments and has a certain constraint on the number and types
of resources that she needs to have available. She strives to fulfill this constraint
with the smallest investment possible. Our model includes a natural economy of
scale: for a subset of players, capacity must be installed at the resources. The
cost increase for larger sets of players is composed of a fixed price c(r) for each
resource r and a global concave capacity function g. This cost can be shared ar-
bitrarily between players. We consider the quality and existence of pure-strategy
exact and approximate Nash equilibria. In general, prices of anarchy and stability
depend heavily on the economy of scale and are Θ(k/g(k)). For non-linear func-
tions g pure Nash equilibria might not exist and deciding their existence is NP-
hard. For subclasses of games corresponding to covering problems, primal-dual
methods can be applied to derive cheap and stable approximate Nash equilibria in
polynomial time. In addition, for singleton games optimal Nash equilibria exist.
In this case expensive exact as well as cheap approximate Nash equilibria can
be computed in polynomial time. Some of our results can be extended to games
based on facility location problems.

1 Introduction

In this paper we consider a general class of non-cooperative buy-at-bulk cost sharing
games, which can for instance be used to model crucial competitive cost sharing as-
pects of networks like the Internet, e.g. service installation, facility location or various
network design problems. The formulation captures a realistic aspect of networks by
including costs with economies of scale. In particular, we consider a game for k players
that strive to obtain a number of resources with minimum investment. There is a set
of resources, and each resource has a certain cost. Each player picks as a strategy a
function that specifies their offer to each resource. If the sum of offers made by a set
of players exceeds the resource cost, it is considered available for these players. For
each player there is a constraint on the number and types of resources that must be
available for her. She strives to fulfill this constraint with minimum total investment in
her strategy. A resource becomes more expensive when it shall be available to a larger

� Supported by DFG through German excellence cluster UMIC at RWTH Aachen.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 339–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 M. Hoefer

set of players. In particular, if resource r is available to a set of i players, the cost is
c(r, i) = c(r)g(i), in which c(r) is a fixed cost and g is a non-decreasing and concave
function, which is used for every resource r. A variety of problems, e.g. buy-at-bulk
variants of set cover, facility location, and network design, can be turned into a game
with the help of this model.

We first study our games with respect to the existence of pure-strategy exact Nash
equilibria. We characterize prices of anarchy [17] and stability [2], which measure the
cost of the worst and best Nash equilibria in terms of the cost of a socially optimum
solution, respectively. We also consider a situation, in which a central institution with
some means to influence agent behavior tries to induce a state that is as cheap and
stable as possible. This poses a two-parameter optimization problem captured by the
notion of (relative) (α, β)-approximate Nash equilibria. These are states, in which the
equilibrium condition is relaxed by a factor of α and that represent a β-approximation
to the socially optimum cost. We refer to α as the stability ratio and β as the approx-
imation ratio. In accordance with previous work we consider properties of games, in
which player constraints are equivalent to well-known covering and facility location
problems. Our interest is to investigate the influence of the function g on the efficiency
and computational complexity of exact and approximate Nash equilibria.

Related Work. There are a number of related game-theoretic models. Cooperative
games have been studied quite intensively in the past (see [9, 11] and the references
therein). In [9] the authors prove that the core of cooperative games based on covering
and packing integer programs is non-empty if and only if the integrality gap is 1. They
also show results on polynomial time computability of core solutions in a number of
special cases. In [11] similar results are shown for class of cooperative facility loca-
tion games. Some of these games have also been analyzed with respect to mechanism
design. In addition, cost sharing mechanisms have been considered for games based
on set cover and facility location. The authors in [10] presented strategyproof mech-
anisms for set cover and facility location games. For set cover games this work was
extended [20,18] to different fairness aspects and formulations with items or sets being
agents, for facility location games computing cross-monotonic cost sharing schemes
was considered in [19], and in [16] lower bounds on their budget-balance were pro-
vided. In contrast, our approach is an extension of non-cooperative games, which were
first studied in [3] in a Steiner forest network design context. Recent work [5, 15, 14]
presented extended results for exact and approximate Nash equilibria in covering and
facility location games. Prices of anarchy and stability in these games are generally as
large as Θ(k). For singleton games, in which each player is interested only in a sin-
gle element, however, optimal Nash equilibria exist. In [5, 14] we proved the applica-
bility of primal-dual methods to derive cheap and stable approximate Nash equilibria.
None of these previous models, however, considers the influence of different economies
of scale.

Starting with [4] network design problems with economies of scale became a vivid
area of research. Typically, there are a number of source-sink pairs with demands that
must be routed by an unsplittable flow. Edge and/or vertex costs increase with the de-
mand routed over them. Recently, polylogarithmic approximation algorithms [6,7] and
logarithmic hardness results for general resource costs [1] were derived. For special

Competitive Cost Sharing with Economies of Scale 341

cases, e.g. single-souce or rent-or-buy problems [12] there exist constant-factor approx-
imation algorithms. This is also the case for unit-demand metric facility location [13].

Our Contribution. Buy-at-bulk investment games studied in this paper are a new gen-
eral model to consider cost sharing in optimization problems with economies of scale.
In addition, as an extension they address a frequent criticism to previous cost sharing
games [3, 15, 14, 5], which in the following we will call regular cost sharing games. In
regular games, only a fixed cost for each resource must be paid for to make it available
to every player, no matter whether she contributes or not. Hence, the game inherently
allows free riders who can obtain a resource for free. This problem has been addressed
e.g. in [2,8] by fixing a Shapley-value cost sharing. In contrast, our model allows smaller
groups of players to obtain the resource at cheaper costs. This creates a force on every
player to contribute for availability. The severeness of this force depends on the number
of players that request a resource and is dynamically adjusted by g. Some undesirable
properties of the game like a high price of anarchy are directly affected by this, the price
of anarchy is exactly k

g(k) . Other properties are independent of this adjustment, e.g. for
any non-linear g there are games without Nash equilibria. The price of stability is as

large as Θ
(

k
g(k)

)
, and it is NP-hard to decide the existence of Nash equilibria. Inter-

estingly, some upper bounds on approximate Nash equilibria for regular games can be
extended to hold for buy-at-bulk games. There are (f, f)-approximate Nash equilibria
for set cover games, where f is the maximum frequency of any element in the sets.
If each player wants to cover exactly one element, optimal Nash equilibria exist, and
(1 + ε, β)-approximate Nash equilibria can be obtained in polynomial time by a local
search from any β-approximate starting state. In addition, we provide a procedure to
find an exact Nash equilibrium in polynomial time, which was not known before even
for regular singleton games. A number of these results directly translate to a class of
buy-at-bulk investment games for facility location. Due to space limitations some of the
proofs are shortened or omitted.

2 Model and Basic Properties

In a buy-at-bulk cost sharing game there is a set [k] of k non-cooperative players and a
set R of resources. Each resource r ∈ R has a fixed cost c(r) ≥ 0. In addition, there
is a function g : N → R

0
+, which is non-negative, non-decreasing, concave, and has

g(0) = 0 and g(1) > 0. We normalize the function to obey g(1) = 1. For convenience,
we use μ(i) = g(i) − g(i − 1), which is non-increasing and non-negative for all i ≥ 1.
The bundle cost of resource r is c(r, i) = c(r) g(i). A strategy sp of a player p is
a function sp : R → R

0
+ to specify her non-negative payment to each resource. A

state is a vector s = (s1, . . . , sk) with a strategy for each player. We denote by s−p

the same vector without sp. A resource r is available to a player p if there is a subset
p ∈ Q ⊂ [k] of players such that they purchase the corresponding bundle cost, i.e.∑

q∈Q sq(r) ≥ c(r, |Q|). For a player p we use ρp(s) to denote the set of her available
resources, and we drop the argument whenever context allows. Each player p has a
player-specific constraint on ρp, which has a covering aspect in the sense that it can
never be violated by having additional resources available to the ones required. If ρp in
the current state s does not fulfill the constraint, we assume that the player is penalized

342 M. Hoefer

with a prohibitively large cost, i.e. for her individual cost cp(s) = +∞. Otherwise,
if her constraint is satisfied, the individual cost is her total investment cp(sp, s−p) =∑

r∈R sp(r). A player wants to minimize her individual cost, so she strives to fulfill her
constraint with ρp at the least possible investment. A Nash equilibrium (denoted NE) is
a state, in which no player can reduce her individual cost by changing her strategy. We
restrict our attention to pure states in this paper and leave a deeper study of mixed NE
for future work. As social cost of a state s of the game we use the sum of individual costs
c(s) =

∑
p∈[k] cp(s). A (α, β)-approximate Nash equilibrium (denoted (α, β)-NE) is

a state, in which no player can reduce her individual cost by a factor of more than α,
and for which the social cost is a β-approximation to the minimum social cost over all
states of the game. A social optimum state minimizing social cost will be denoted s∗

throughout.
In a NE and in a social optimum state s∗ the available resources for each player

satisfy her constraints. Also, in NE and s∗ due to concavity of g, there is a unique maxi-
mal set of players (denoted Qr), for which the resource is available. This set includes as
subsets all other sets of players, for which the resource is available. In NE no subset of
i players will contribute more than c(r, i) to any resource r. The strategies exactly pur-
chase the bundle cost c(r, |Q|) of every resource. Thus, a NE s represents a cost sharing
of the set of resources. This property can be assumed for s∗ as well, because here the
cost distribution is irrelevant. Finding s∗ is equivalent to finding a solution to the un-
derlying buy-at-bulk minimization problem given by satisfying all player constraints at
minimum total cost. In this problem, a feasible solution is a vector that indicates for
each player, which resources are available to him, such that all constraints are satisfied.

Finally, the function g(i) ∈ [1, i] for all i ≥ 1. Previously considered regular cost
sharing games were buy-at-bulk games with g(i) = 1 for all i ≥ 1 [5, 14, 15, 3]. When
referring to games in this paper - e.g. vertex cover games - we generally mean the buy-
at-bulk version. It is explicitly mentioned when regular games are under consideration.

2.1 Covering and Facility Location

The definition allows a variety of games to be defined in this framework. A simple class
is a (buy-at-bulk) vertex cover game on an undirected graph G = (V, E). The resources
R = V , and each player corresponds to a subset of edges Ep ⊂ E. Her constraint is
satisfied, if for each edge there is at least one incident vertex available to her. In this way
we generalize to set multi-cover games. There is a set of elements E, and the resources
are given by R = M ⊆ 2E of subsets M ∈ M, such that M ⊆ E. Each player
corresponds to a subset Ep ⊆ E of elements, and there is a number b(e) > 0 for each
e ∈ E. Player p is satisfied if for each e ∈ Ep there are at least b(e) sets available to her
that include e.

Facility location games can be obtained as follows. We are given two sets T of
terminals and F of facilities. The resources are facilities and connections, i.e., R =
F ∪ (T × F). A player p corresponds to a subset of terminals Tp ⊆ T . She strives
to connect her terminals to facilities. As both the connections and the facilities are re-
sources, they both generate a cost. We will refer to them as connection and opening
costs, respectively. The constraint of a player p is satisfied if for each of her terminals

Competitive Cost Sharing with Economies of Scale 343

t ∈ Tp at least one connection (t, f) and the corresponding facility f ∈ F are available
to her. In metric games the connection costs satisfy the triangle inequality.

3 Cost and Complexity of Nash Equilibria

In this section we consider the behavior of prices of anarchy and stability in the game
and the hardness of finding NE. Our first result concerns the price of anarchy.

Theorem 1. The price of anarchy in the buy-at-bulk cost sharing game is exactlyk/g(k).

Proof. First, we prove the lower bound. Consider a vertex cover game on a star network,
in which every player owns a single edge and each vertex v has fixed cost c(v) = 1. If
every player contributes exactly the cost of the leaf node incident to her edge, a NE of
cost k evolves. The optimum solution, however, consists of the center vertex v and has
bundle cost c(v, k) = g(k). This proves that the price of anarchy is at least k/g(k).

For the upper bound consider any NE s of any buy-at-bulk cost sharing game with
strategies sp. In addition, let ρ−p be a set of resources for player p, which has minimum
total fixed cost. Now consider a social optimum state s∗. Denote by ρ∗p a subset of
minimum cost of the available resources of player p in s∗, which suffices to satisfy her
constraint. It is obvious that for the fixed cost

∑

r∈ρ−
p

c(r) ≤
∑

r∈ρ∗
p

c(r). (1)

The concavity of g ensures that with increasing demands for resources in ρ−p , the cost
to be paid for by player p can only decrease. Hence, it becomes ever more attractive for
p to deviate to a strategy, which contributes only to ρ−p . However, as s is a NE, the fixed
cost of ρ−p is an upper bound on current total contribution of p in s, i.e.

∑
r∈R sp(r) ≤∑

r∈ρ−
p

c(r). Since s is a NE, the cost of the purchased resources must be fully paid for.
Using the bound from (1) we get

∑

p∈[k]

∑

r∈R

sp(r) ≤
∑

p∈[k]

∑

r∈ρ−
p

c(r) ≤
∑

p∈[k]

∑

r∈ρ∗
p

c(r). (2)

Consider the following procedure of constructing a lower bound on the cost of the social
optimum solution. Iteratively add players and the cost of their available resources ρ∗p to
the solution. The presence of the i-th player on ρ∗i adds at least a cost μ(i)

∑
r∈ρ∗

i
c(r)

to the cost of s∗. As μ is monotonic decreasing, we can lower bound c(s∗) by

k∑

i=1

μ(i)
∑

r∈ρ∗
i

c(r) ≤ c(s∗). (3)

Note that the cost of the resources is determined by the final set Qr, and this is indepen-
dent of the ordering in which players are considered. Hence, the value of this lower bound
is the same for any ordering of the players chosen. By making k − 1 cyclic rotations of

344 M. Hoefer

an initial ordering of players, we ensure that each player appears at each position i ex-
actly once. Adding all resulting inequalities (3) we get

∑
p∈[k]

∑k
i=1 μ(i)

∑
r∈ρ∗

p
c(r) =

g(k)
∑

p∈[k]

∑
r∈ρ∗

p
c(r) ≤ kc(s∗), and together with (2) this proves the theorem:

c(s) =
∑

p∈[k]

∑

r∈R

sp(r) ≤
∑

p∈[k]

∑

r∈ρ∗
p

c(r) ≤ k

g(k)
c(s∗).

�

In fact, our proof bounds the price of anarchy for both, pure and mixed NE. If for
a game g(k) = k, the game exhibits a decomposition property that allows for optimal
NE. The previous theorem states that every NE is a social optimum. The reverse is also
true, i.e. in this case there is always an optimum NE. However, once g is sublinear, then
for a vertex cover game with sufficiently large number of players, there is no NE.

(a) (b)

Fig. 1. (a) Vertex cover game without a NE. Edge labels indicate player ownership. Grey parts
are introduced when considering auxiliary players to deal with arbitrary values of k0. (b) Trans-
formation into a facility location game. Filled vertices are facilities, empty vertices are terminals.
Labels of terminals indicate player ownership.

Lemma 1. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for any k > k0 there is
a vertex cover game with k players without a Nash equilibrium.

Consider the game in Figure 1(a) and k0 = 1. Intuitively, whenever player 1 contributes
the fixed cost to some vertex v1 or v2, player 2 is motivated to contribute to bundles of
v1 and v2. In particular, she will purchase the fixed cost of the other vertex. This gives
player 1 an incentive to remove payments, which gives player 2 an incentive to purchase
vertex u. While this is not a formal argument, it can be verified that for each possible
feasible solution no stable cost-sharing can be obtained. The transition to arbitrary k0

uses additional k0 − 1 auxiliary players. These players own a star with an expensive
center and u, v1, v2 as leaves. They never contribute to the center and simply serve to
“boost” the dynamics on the original game into the region, where the drop in function
g occurs. Hence, as soon as players can profit from the investment of other players,

Competitive Cost Sharing with Economies of Scale 345

they might not be able to agree upon a set of resources to purchase. Based on this
observation we can show that given any fixed, non-linear function g, there is a class
of games with sufficiently many players, in which determining existence of a NE is

NP-hard. In addition, the price of stability can be as high as Θ
(

k
g(k)

)
.

Theorem 2. Given any non-linear function g, for which g(i) = i for i ≤ k0 and
g(i) < i for k > k0, then for each k > k0 there is a class of vertex cover games with g
and k players, for which it is NP-hard to determine the existence of a Nash equilibrium.

Theorem 3. For vertex cover games the price of stability is in Θ
(

k
g(k)

)
.

Fig. 2. Vertex cover game, in which the price of stability is Θ
�

k
g(k)

�
. Edge labels indicate player

ownership. Grey parts are introduced when considering auxiliary players to deal with arbitrary
values of k0.

Proof. Consider the game in Figure 2. Suppose every leaf vertex of the star and the
star center vc have constant fixed cost of at most 1 + μ(k0 + 1). The fixed cost of v1

and v2 are 1, for u it is 2 > c(u) > 1 + μ(k0 + 1). There are k0 − 1 auxiliary players
k−k0+2, . . . , k, and each has a star centered at an additional vertex wp. The cost c(wp)
is prohibitively high, so these players will boost the game to a range where g becomes
sublinear. Now suppose there is at least one of the players 1, 2, 4, . . . , k − k0 + 1, who
strives to make vc available to her. Then there are at least k0 players, who pay a cost
of c(vc, k0) for vc. Player 3 will contribute at most c(vc)μ(k0 + 1) = (1 + μ(k0 +
1))μ(k0 + 1) < c(u)μ(k0 + 1) to u. Thus, player 2 has to invest at least c(u) to
make vertex u available. As previously noted there can be no NE in this case. Thus,
none of the players 1, 2, 4, . . . , k0 + 1 shall make star center vc available to her. Then
player 3 can contribute c(vc) to a bundle cost of vertex u. Player 2 can add less than
1 + μ(k0 + 1) to u, and together with the auxiliary players this purchases the bundle
cost of c(u, k0 + 1). Note that player 1 sticks to purchasing one of v1 and v2, and the
remaining edges of the star can be covered by purchasing the leaf vertices. A NE of cost
at least (1 + μ(k0 + 1))k + 1 + (μ(k0 + 1))2 + μ(k0 + 1) + 3(k0 − 1) evolves. In the
social optimum, however, all players 1, . . . , k0 + 1 contribute to vc yielding a state of
cost at most (1 + μ(k0 + 1))g(k) + 2 + μ(k0 + 1) + 4(k0 − 1). For fixed g, parameter
k0 is a constant, and the ratio grows with k/g(k).
�

346 M. Hoefer

Note that any vertex cover game can be translated easily to a metric facility loca-
tion game, which is equivalent in terms of the structure of NE. We replace each edge
e = (u, v) by a terminal te and two connections (te, u) and (te, v) of connection cost
cmax = maxv∈V c(v). This creates the set of terminals. The former set of vertices
becomes the set of facilities. For the remaining connections between facilities and ter-
minals we assume a cost given by the shortest path metric, i.e. they are at least 3cmax

(see Figure 1(b) for an example). Observe that a NE for the facility location game pro-
vides a NE for the corresponding vertex cover game and vice versa.

Corollary 1. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for any k > k0 there
is a class of metric facility location games with g and k players, for which it is NP-hard
to determine the existence of a Nash equilibrium.

4 Approximate Nash Equilibria

In this section we consider set cover games with b(e) = 1 for all elements e ∈ E.
While the lower bounds shown for vertex cover games extend to this case, it is possible
to obtain (f, f)-NE in polynomial time, in which f = maxe∈E |{M ∈ M, e ∈ M}|
denotes the maximum frequency of any element in the sets.

Algorithm 1. (f, f)-NE for set cover games

sp(M) ← 0 for all players p and sets M1

γp(e) ← 0 for all players p and elements e2

for every player p = 1, . . . , k do3

Set cp(M) = minQ{c(M, |Q| + 1) −
�

q∈Q sq(M)} for Q ⊆ [p − 1] and all M4

while there is an uncovered element e ∈ Ep do5

Let γp(e) ← mine∈M cp(M)6

Increase payments: sp(M) ← sp(M) + γp(e) for all M with e ∈ M7

Add all purchased sets to the cover8

Reduce set costs: cp(M) ← cp(M) − γp(e) for all M with e ∈ M9

Theorem 4. Algorithm 1 returns a (f, f)-approximate Nash equilibrium for set cover
games in polynomial time.

Proof. The algorithm can be implemented to run in polynomial time. In line 4 we take
all previous contributions into account and determine a set of players Q ∪ p, for which
the missing contribution to the bundle cost is minimal. The set Q is a subset of [p−1] =
1, . . . , p − 1, because for all other players all contributions are still 0. We start with
Q = ∅ and add players q < p in non-increasing order of the contributions sq(M). This
yields the desired set Q.

Our algorithm represents an adjustment of the primal-dual algorithm for mini-
mum set cover (see for instance [21, chapter 15]). An approximation guarantee of
f for the buy-at-bulk set cover problem has most likely been observed before, so
a proof is omitted. For the stability ratio, we consider the p-th player after the ex-
ecution of the algorithm and her best move taking into account the payments of

Competitive Cost Sharing with Economies of Scale 347

all other players q = p. For that purpose, we consider for each set M the cost
c′(M) = minQ⊂[k],p�=Q c(M, |Q| + 1) −

∑
q∈Q sq(M). We have to show that the

sum of the payments of player p is not greater than f times the cost of the cheap-
est set cover of Ep with respect to the costs c′. From the algorithm and the fact that
bundle costs are concave we know that sp(M) ≤ c′(M). Also from the algorithm,
we know that for any set M that includes one or more elements of Ep, we have
sp(M) =

∑
e∈M∩Ep

γp(e), so for any such M we have
∑

e∈M∩Ep
γp(e) ≤ c′(M).

Now let us consider a minimum cost set cover R∗
p of Ep with respect to c′. We have:∑

M∈R∗
p

∑
e∈M∩Ep

γp(e) ≤
∑

M∈R∗
p
c′(M) = c′(R∗

p). Since R∗
p is a set cover of Ep,

the charge γp(e) of each element e in Ep is counted at least once in the left-hand side
above. Hence

∑
e∈Ep

γp(e) ≤
∑

M∈R∗
p

∑
e∈M∩Ep

γp(e) ≤ c′(R∗
p). Now we can con-

clude
∑

M∈M sp(M) = f
∑

e∈Ep
γp(e) ≤ fc′(R∗

p), which proves the theorem.
�

In the special case of vertex cover ratios of f = 2 is tight even for regular vertex cover
games [5]. The analysis cannot be strengthened to a ratio depending on g, because stabil-
ity and approximation ratio coincide for single player games. For linear g the greedy al-
gorithm achieves logarithmic stability and approximation ratio, but for regular set cover
games this algorithm has an unbounded stability ratio [14]. It is an interesting open prob-
lem to obtain a procedure with improved bounds for intermediate functions g.

5 Single Element Players

In the previous section we showed that vertex cover games, in which each player owns at
most two edges, might have no NE. Now we consider singleton set multi-cover games,
in which each player has only a single element. For these games a NE always exists and
can be found in polynomial time.

Theorem 5. Algorithm 2 returns an exact Nash equilibrium for singleton set multi-
cover games in polynomial time.

Algorithm 2. Exact NE for singleton set multi-cover games

dM ← 1 for all sets M1

Construct Gs = (M, A) with (M1, M2) ∈ A iff M1 ∩ M2 �= ∅ and2

μ(M1, dM1) < μ(M2, dM2)
while there are remaining players do3

for every remaining player p do4

if element e of p is included in exactly b(e) sets Me then5

Assign p to contribute sp(M) = c(M, dM + 1) to all these sets M ∈ Me6

Increase dM ← dM + 1 and drop p from consideration7

Adjust the arc set of Gs for the new values of dM8

Find a sink in Gs and drop the corresponding set from consideration9

Proof. Clearly, Algorithm 2 can be implemented to run in polynomial time. A set M1

dominates a set M2 iff there is a player who prefers M1 over M2 with the bundle costs

348 M. Hoefer

given with dM1 and dM2 . The algorithm constructs and maintains a directed acyclic
graph Gs, which contains a directed edge between sets M1 and M2 iff M1 dominates
M2. A set M that is dropped from consideration represents a sink in Gs. Then for each
remaining player with e ∈ M it is dominated by all remaining sets that contain her
element. None of these players will contibute to M , as they have a cheaper alternative to
cover their element. As no contribution will be assigned to M after it has been dropped,
no player wants to contribute to sets that were dropped before she was dropped. When
player p gets dropped, she is left with the set Me of exactly b(e) sets to cover e. The
previous arguments show that she cannot profit from contributing to any other sets that
contain her element. This is also true for the sets in Me. Consider another player q, who
is assigned to contribute to M ∈ Me after p has been dropped. q will only pay a cost
representing the concave increase in bundle cost with p already counted towards dM .
Hence, there is no subset of players whose payments allow p to lower her contribution
to Me. Thus, each player plays a best repsonse. This proves the theorem.
�

Unfortunately, the proposed algorithm can compute worst-case NE, whose cost is a
factor arbitrarily close to k

g(k) worse than c(s∗). In contrast, there are social optimal
NE in every singleton set multi-cover game. Computing them is NP-hard, but with a
local search procedure we can obtain near-stable and near-optimal approximate NE.
The arguments can transfered to buy-at-bulk versions of connection-restricted facility
location (CRFL) games [14]. Proofs are omitted due to space limitations.

Theorem 6. For singleton set multi-cover and singleton CRFL games the price of sta-
bility is 1. For any constant ε > 0, a (1 + ε, β)-approximate Nash equilibrium can
be obtained in polynomial time from any state representing a β-approximation to the
optimum social cost.

References

1. Andrews, M.: Hardness of buy-at-bulk network design. In: Proc. 45th FOCS, pp. 115–124
(2004)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Roughgarden, T., Tardos, É., Wexler, T.: The
price of stability for network design with fair cost allocation. In: Proc. 45th FOCS, pp. 295–
304 (2004)

3. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with
selfish agents. In: Proc. 35th STOC, pp. 511–520 (2003)

4. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: Proc. 38th FOCS, pp. 542–547
(1997)

5. Cardinal, J., Hoefer, M.: Selfish Service Installation in Networks. In: Spirakis, P.G., Mavron-
icolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 174–185. Springer,
Heidelberg (2006)

6. Chekuri, C., Hajiaghayi, M.T., Kortarz, G., Salavatipour, M.: Approximation algorithms for
non-uniform buy-at-bulk network design. In: Proc. 47th FOCS, pp. 677–686 (2006)

7. Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.: Approximation algorithms for
node-weighted buy-at-bulk networks. In: Proc. 18th SODA (2007)

8. Chen, H.-L., Roughgarden, T.: Network design with weighted players. In: Proc. 18th SPAA,
pp. 29–38 (2006)

Competitive Cost Sharing with Economies of Scale 349

9. Deng, X., Ibaraki, T., Nagamochi, H.: Combinatorial optimization games. In: Proc 8th
SODA, pp. 720–729 (1997)

10. Devanur, N., Mihail, M., Vazirani, V.: Strategyproof cost-sharing mechanisms for set cover
and facility location problems. Decision Support Systems 39(1), 11–22 (2005)

11. Goemans, M., Skutella, M.: Cooperative facility location games. J Algorithms 50(2), 194–
214 (2004)

12. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: Simpler
and better approximation algorithms for network design. J ACM 54(3), 11 (2007)

13. Hajiaghayi, M.T., Mahdian, M., Mirrokni, V.: The facility location problem with general cost
functions. Networks 42(1), 42–47 (2003)

14. Hoefer, M.: Non-cooperative facility location and covering games. In: Asano, T. (ed.) ISAAC
2006. LNCS, vol. 4288, pp. 369–378. Springer, Heidelberg (2006)

15. Hoefer, M.: Non-cooperative tree creation. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 517–527. Springer, Heidelberg (2006)

16. Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of cross-monotonic cost sharing
schemes. In: Proc. 16th SODA, pp. 602–611 (2005)

17. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

18. Li, X., Sun, Z., Wang, W.: Cost sharing and strategyproof mechanisms for set cover games.
In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 218–230. Springer,
Heidelberg (2005)

19. Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms. In: Proc.
44th FOCS, pp. 584–593 (2003)

20. Sun, Z., Li, X., Wang, W., Chu, X.: Mechanism design for set cover games when elements are
agents. In: Megiddo, N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 360–369.
Springer, Heidelberg (2005)

21. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2000)

Emergency Connectivity in Ad-Hoc Networks

with Selfish Nodes

George Karakostas1,2,� and Euripides Markou2,3,��

1 Department of Computing & Software.
2 School of Computational Engineering & Science.

McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
3 Department of Computer Science, University of Ioannina, Greece

karakos@mcmaster.ca, emarkou@cs.uoi.gr

Abstract. Inspired by the CONFIDANT protocol [1], we define and
study a basic reputation-based protocol in multihop wireless networks
with selfish nodes. Its reputation mechanism is implemented through
the ability of any node to define a threshold of tolerance for any of its
neighbors, and to cut the connection to any of these neighbors that refuse
to forward an amount of flow above that threshold. The main question we
would like to address is whether one can set the initial conditions so that
the system reaches an equilibrium state where a non-zero amount of every
commodity is routed. This is important in emergency situations, where
all nodes need to be able to communicate even with a small bandwidth.
Following a standard approach, we model this protocol as a game, and
we give necessary and sufficient conditions for the existence of non-trivial
Nash equilibria. Then we enhance these conditions with extra conditions
that give a set of necessary and sufficient conditions for the existence of
connected Nash equilibria. We note that it is not always necessary for
all the flow originating at a node to reach its destination at equilibrium.
For example, a node may be using unsuccessful flow in order to effect
changes in a distant part of the network that will prove quite beneficial
to it. We show that we can decide in polynomial time whether there
exists a (connected) equilibrium without unsuccessful flows. In that case
we calculate (in polynomial time) initial values that impose such an
equilibrium on the network. On the negative side, we prove that it is
NP-hard to decide whether a connected equilibrium exists in general
(i.e., with some nodes using unsuccessful flows at equilibrium).

1 Introduction

In recent years there has been a great effort in designing robust and efficient
wireless networks of devices that take upon themselves certain network respon-
sibilities that used to be the responsibilities of a central network designer in
traditional network design. For example, in ad-hoc networks the topology of the

� Research supported by an NSERC Discovery Grant and MITACS.
�� Research supported by MITACS.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 350–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 351

network is the result of cooperation amongst the nodes themselves: in a multi-
hop wireless network, a successful transmission between a pair of nodes requires
the cooperation of intermediate nodes in order for the transmitted packets to
reach their destination. While this may be guaranteed in networks with a cen-
tral authority forcing the nodes to cooperate, in the absence of such an authority
cooperation may not be guaranteed. This is due to the selfishness of each node,
i.e., the effort by the node to maximize its own utility without caring about
the results of its actions on the overall network-wide outcome. For example, if
battery life is a valuable resource for a node, forwarding packages between two
other nodes consumes energy that doesn’t result in any kind of pay-off for this
node, and as a result it may decide to stop cooperating in forwarding pack-
ages for others. If this behavior prevails throughout the whole network, it may
eventually result in zero throughput for everybody, a phenomenon better known
as the “Tragedy of the Commons” [5]. To cope with this problem one can of-
fer incentives to nodes such as rewards for their cooperation or punishment for
non-cooperation.

The two most commonly proposed forms of incentives are micro-payments,
and reputation-based mechanisms. One of the main motivation for developing
them is the desire of the network designer to not permanently punish a misbe-
having node, but ‘re-socialize’ it if it changes its uncooperative behavior.

Micro-payment schemes are based on the concept of distribution of credit to
nodes, so that nodes are compensated for their cooperation by (virtual) credit
payments, that they can then use to pay intermediate nodes for forwarding
their own traffic. Hence if a node is consistently uncooperative, it will run out
of credit and will have to stop transmitting. Usually, the distribution and/or
the expenditure of credit is controlled by a central authority. Examples of such
protocols are [2,10,11,3].

Reputation-based systems are based on lists that the nodes keep on the rep-
utation of their neighbors, i.e., the fraction of packets forwarded by them. They
use this information in order to decide how much traffic they should forward
towards their neighbors. This may be decided in a Tit-for-Tat fashion, i.e., when
a node has to relay a packet on behalf of a neighbor, it does so with the same
probability with which this neighbor forwards its own packets (see [8,9] for exam-
ples of such mechanisms). Or, the amount to forward can be decided according
to (centralized or local) ratings tables, that give the nodes an indication of the
behavior of other nodes; if a node’s rating of another node falls below a certain
threshold, then the latter cannot be trusted to forward traffic, and therefore
nothing is forwarded to it by the former, i.e., the edge connecting the two nodes
is cut by the first node. An example of such a mechanism that actually distributes
the reputation information so that each node can form its own ratings table is
the CONFIDANT protocol [1]. More recent protocols [6,7] limit the distribution
of reputation information only to one-hop neighbors.
Our results: In this work we address the connectivity issues arising in such
reputation-based systems. More specifically, we would like to study whether it is
possible in such a selfish environment to lead all nodes towards an equilibrium

352 G. Karakostas and E. Markou

with good connectivity properties. In fact, we are very ambitious: we are looking
for driving them towards an equilibrium that permits a non-zero quantity of
every traffic demand to be satisfied. The reason for such a strict requirement is
the fact that in an emergency situation police, firemen, emergency medical per-
sonnel, etc. should be able to communicate with each other even if the achieved
bandwidth is very small (but still enough for emergency signals to be able to
travel through the network). From the above, it is not at all obvious whether such
a goal can be achieved, given the fact that each network node is autonomously
playing a protocol game, after it’s been set in its initial condition. Given the
game-theoretic nature of such protocols, it is only natural to study them in
terms of their (Nash) equilibrium states. Under this light, and given the rules
of the game, i.e., the protocol, the most appropriate (indeed, in some cases the
only) time a network designer can intervene in order to control the outcome is
during the setting of the initial conditions, or, equivalently, by ‘rebooting’ the
protocol with new initial values. This can be achieved by a separate broadcasting
channel that all nodes are listening (‘snooping’) in, and whose packets are of the
highest priority. Obviously, this is a very intruding method, and it would defy the
purpose of selfishness if it were to be applied very frequently. But one does not
(hopefully) expect catastrophic emergency situations to arise that frequently.
Therefore broadcasting will not be used often.

Inspired by the CONFIDANT mechanism, we study a basic reputation-based
system. The strategy of every node consists of the amount of traffic flow it sends
to its various receivers, the routing of this flow, the amount of flow it forwards
for every commodity in which it doesn’t participate as a sender or a receiver, and
a non-negative threshold value for each outgoing edge. The latter set of values
is an abstraction of the reputation mechanism: if the amount of flow that is
forwarded by node x to node y (including flow that originates at x), but is cut
by y is more than the threshold value x has for y, then x disconnects edge (x, y).
Later on, y may end up cutting flow that is less than the current threshold value
of x for (x, y), in which case (x, y) reappears. The utility for every node increases
with the flow originating at or destined for this node and reaches its destination,
while decreases with the flow sent out or forwarded by this node (because, for
example, the node has to spend battery energy to transmit).

The main drawback of this protocol is the assumption that every node has
to make its strategy known to every other node. But at the same time, this
complete knowledge of the game state gives great potential power to each node
to affect parts of the network that are very far away, even in counter-intuitive
ways, e.g., by sending flow whose sole purpose is to affect the current topology
and discourage the flow of other nodes. Hence, this assumption may make our
demand for complete connectivity even harder to achieve, and it may mean that
things can be easier in a more restricted setting. As a first step towards achieving
this goal, we are able to characterize the complexity of computing initial values
that lead to a connected Nash equilibrium in our protocol. We do that, by giving
necessary and sufficient conditions for the existence of non-trivial Nash equilib-
ria. Then we enhance these conditions with extra conditions that give a set of

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 353

necessary and sufficient conditions for the existence of connected Nash equilibria.
Note that it is not always necessary for all the flow originating at a node to reach
its destination at equilibrium. As mentioned above, a node may be using such
unsuccessful flow in order to effect changes in a distant part of the network that
will prove quite beneficial to it. We show that in case there is a connected Nash
equilibrium without unsuccessful flows, we can calculate (in polynomial time)
initial values that impose such an equilibrium on the network using linear pro-
gramming. On the other hand, if the connected Nash equilibrium(-ia) exist, but
nodes are allowed to use unsuccessful flows, then it is NP-hard even to decide
whether an equilibrium exists.

Our results are derived using game-theoretic concepts, which is the standard
approach for analyzing such protocols, modeled as games. But we emphasize
that, other than the assumptions mentioned above, we don’t impose any re-
strictions on the network topology, or any statistical distribution on the nodes’
decisions.1

2 Model and Terminology

In this section we describe our model for the network and the protocol the nodes
follow. The set of connections that can be realized is given by a directed graph
G(V, E). We emphasize that, depending on the current state of the game, not
all these edges may be present. For every origin-destination pair (commodity)
(u, v), u, v ∈ V there is a demand d(u,v) that u wants to send to v. The flow
is splittable, and u decides how to split and route this flow. Again, the current
state of the game may not allow u to send all of d(u,v), so the latter serves more
as an upper bound on the flow actually sent. We denote by Pi the set of paths
connecting the i-th origin-destination pair in G, and let P := ∪iPi.

The current state of the network, together with the nodes’ strategies are
described by the following set of variables:

• F y
(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y �= u, v:

This is the flow of commodity (u, v) that y receives through e, and forwards
further through e′.

• fy
(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y �= u, v:

This is the decision variable of y that sets an upper bound on the amount
of flow

∑

g=(w,x)

F x
(u,g,e,v) routed through e′ that y actually forwards through

e′, i.e., F y
(u,e,e′,v) = min{fy

(u,e,e′,v),
∑

g=(w,x)

F x
(u,g,e,v) routed through e′} (notice

that edge e′ can be disconnected; in that case, what is being forwarded by y
through e′ is simply lost). We emphasize that fy

(u,e,e′,v) is just the y’s decision

1 We don’t assume any kind of synchronization amongst the nodes, but we do assume
that the decision variables changes are instantaneous. Note that the game modeling
the protocol is not a repeated game, and there isn’t any notion of rounds.

354 G. Karakostas and E. Markou

variable that determines what y will do if there is flow from u to v which has
been forwarded from x to y and needs to be forwarded through e′ = (y, z),
while

∑

g=(w,x)

F x
(u,g,e,v) is the actual flow that comes to y from x through e.

So y maintains such a variable fy
(u,e,e′,v), for every incoming edge e = (x, y)

and every outgoing edge e′ = (y, z), and every commodity (u, v).
• Oy

(u,e,v) with e ∈ E, e = (x, y), u, v, x, y ∈ V and y �= u, v: This is an aux-

iliary variable, defined as Oy
(u,e,v) =

∑

e′=(y,z)

F y
(u,e,e′,v). It is simply the total

flow of commodity (u, v) coming to y through edge e, and being forwarded
by y through all its outgoing edges e′ = (y, z).

• Iy
(u,e′,v) with e′ ∈ E, e′ = (y, z), u, v, y, z ∈ V and y �= v: This is also an

auxiliary variable, defined as Iy
(u,e′,v) =

∑

e=(x,y)

F y
(u,e,e′,v). It is simply the

total flow of commodity (u, v) coming to y through all its incoming edges
e = (x, y), and being forwarded by y through edge e′. Note that Iy

(y,e′,v) is
the flow originated at y and routed through e′ with destination v.

• εy
x: This auxiliary variable is defined as εy

x =
∑

com.(u,v),v �=y

(Ix
(u,e,v) − Oy

(u,e,v)),

i.e., as the part of the total flow that comes to y through e and is being
blocked by y.

• su
(u,P,v): This is the decision variable of u that determines how much flow of

commodity (u, v) node u routes through path P (whether this flow amount
eventually reaches v or not).

• THRx(y): This is the decision variable of node x that defines an upper
bound on the flow forwarded by x and cut by y that x can tolerate before
it cuts edge (x, y). We consider edge (x, y) disconnected when εy

x > 0 AND
THRx(y) ≤ εy

x. Hence edge (x, y) exists in the network provided εy
x = 0 OR

THRx(y) > εy
x.

The following definition will be used repeatedly throughout this paper:

Definition 1. An edge (x, y) is connected if εy
x = 0 OR THRx(y) > εy

x, and
disconnected otherwise.

Therefore, the strategy of a node x is determined by the vector (sx, THRx, fx).
Note that the routing of the flow x sends out is incorporated in the values for
sx. Therefore x decides the following:

• Threshold THRx(y) ≥ 0, and hence decides whether edge (x, y) is connected
or not.

• Variables εx
w, by deciding fx

(u,e,e′,v) which, in turn, change the flows F x
(u,e,e′,v).

As a result, x decides whether edge e = (w, x) is connected or not.
• The routing of the flow originating at x and its quantity, by deciding sx

(x,P,y)

for any path P connecting x to y. But always
∑

P sx
(x,P,y) ≤ d(x,y).

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 355

We repeat that every node sees all decision variables of all other nodes, we don’t
assume any kind of synchronization amongst the nodes, but we do assume that
the decision variables changes are instantaneous.

Definition of the utility function: Every node plays in a selfish way, i.e.,
so that its utility (defined below) is maximized. At any time t, we denote by
C−

y , C+
y , D−

y , D+
y the sets of connected incoming, connected outgoing, discon-

nected incoming and disconnected outgoing edges respectively, adjacent to node
y. Then, for every node y its utility function is defined as follows:

utilt(y) =
flow sent by y
and reached its

destination

+
flow received

by y
− flow forwarded

by y
−

flow sent by y
and didn’t reach
its destination

.

More specifically,

utilt(y) =
∑

e∈C+
y

Sy
e +

∑

e∈C−
y

Ry
e −

∑

e′∈C+
y ∪D+

y

∑

u�=y,v∈G

Iy
(u,e′,v)−

⎛

⎝
∑

e′∈C+
y ∪D+

y

∑

v∈G

Iy
(y,e′,v) −

∑

e∈C+
y

Sy
e

⎞

⎠ (1)

where

• Sy
e is the flow which has been sent by y (i.e. originated at y) through edge e

and has reached its destination,
• Ry

e is the flow which has been received by y through edge e,
• Iy

(u,e′,v) is the flow of commodity (u, v) with y �= v, and node y attempts
to forward (or sent, if u = y) through edge e′ (note that e′ may be discon-
nected).

The intuition behind this definition of utility (which is very similar to the
definition used in [1]), is that a node exchanges resource units (e.g., battery
energy) for information units (i.e., packets received or sent successfully). Our
assumption is that the correspondence is one for one. Different weighting of
resources and information is a generalization left for future work.

Throughout this work, we use the standard definition of Nash equilibria, i.e.,
at equilibrium, no node gains an increase of its utility by changing its decision
variables (strategy), while the other nodes maintain their own strategies. We
will focus on non-trivial equilibria.

Definition 2. A trivial equilibrium is any equilibrium with fx = 0, ∀x, and
with su

(u,(u,v),v) = d(u,v), ∀ commodities (u, v) s.t. (u, v) ∈ E and su
(u,P,v) = 0

otherwise.

So from now on, whenever we write ‘equilibrium’ we mean ‘non-trivial equlib-
rium’, unless otherwise stated. We also assume that there is always at least one
demand between non-adjacent nodes in G, since otherwise a trivial equilibrium
is a connected one, and this case is not very interesting.

356 G. Karakostas and E. Markou

Definition 3. An amount of flow with origin a node u and destination a node
v routed through a path P is successful if it reaches node v, otherwise it is
unsuccessful.

3 Characterization of Nash Equilibria

In this section we give necessary and sufficient conditions for the existence of
an equilibrium. Our hope will be that these conditions (probably together with
additional ones) will simplify the study of connected equilibria.

Definition 4. An unsuccessful flow Φ which has been routed through edge e is
responsible for disconnecting edge e if e would be connected without Φ.

We group the (non-disconnected) incoming and outgoing edges for a node x as
follows:

• group 1: these edges transfer only successful flows,
• group 2: these edges transfer successful and unsuccessful flows,
• group 3: these edges transfer only unsuccessful flows.

The proof of the following Theorem appears in the full version:

Theorem 1. The game is at an equilibrium if and only if for any node x the
following conditions hold:

1. εy
x = 0, where g = (x, y) ∈ C+

x (i.e., node y does not cut any flow forwarded
by x through the connected edge g),

2. if there is a successful flow between nodes u,v �= y routed through edge g =
(x, y), then THRx(y) = 0,

3. if there is no unsuccessful flow going through an edge e = (t, x), then Rx
e ≥∑

u�=x,v

∑

g=(x,y)

F x
(u,e,g,v) (i.e., the flow that node x receives through edge e =

(t, x) is not less than the total flow which is coming through e and x has to
forward, if all this latter flow is successful),

4. for any disconnected edge g′ = (x, y′) ∈ D+
x it holds that THRx(y′) =

εy′

x > 0, node x does not send any flow through g′, and the (unsuccessful)
flows which are responsible for disconnecting g′ are being sent by at least two
nodes, other than x,

5. let e = (t, x) be an incoming connected edge to x such that all unsuccessful
flows which pass through e, have been routed through outgoing disconnected
edges g′ = (x, y′

i) ∈ D+
x of x; then:

• THRt(x) = 0,
• Rx

e ≥
∑

u�=x,v

∑

g′∈D+
x

F x
(u,e,g′,v) +

∑

u�=x,v

∑

g∈C+
x

F x
(u,e,g,v),

6. the flow that node x sends successfully through all of its (connected) outgoing
edges Φ(x) is maximized over all possible routings sx,

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 357

7. any combination of the following possible actions taken by x cannot increase
its utility:
(a) disconnecting a number of edges of group 2,
(b) decreasing the unsuccessful flow that x lets go through edges of group 3,
(c) connecting edges e′ = (t′, x) ∈ D−

x ,
(d) sending successful and unsuccessful flow through the outgoing edges of x,
(e) increasing thresholds

Theorem 1 is essentially a codification of all the conditions that happen simulta-
neously at equilibrium. But showing that such a (non-trivial) equilibrium exists
(or, even more, compute it) is non-trivial. In fact, we will show that deciding
the existence of an equilibrium is NP-hard. But it turns out it is much easier to
check whether there is a non-trivial equilibrium with only successful flows; this
can be reduced to the solution of a simple LP.

For every edge e = (u, v), we set d(e) equal to d(u,v) if commodity (u, v) exists,
and 0 otherwise. Let D :=

∑
e∈E d(e). We will use the following notation:

• e ∈∗ P , when edge e ∈ P is not the last edge of P ,
• e ∈0 P , when edge e ∈ P is the last edge of P .

In the following LP, variables x(P) represent the amount of flow sent along
path P :

max
∑

P∈P
x(P) s.t. (LP-S)

∑

P :e∈∗P

x(P) −
∑

P :e∈0P

x(P) ≤ 0 ∀e ∈ E

∑

P∈Pi

x(P) ≤ d(ui,vi) ∀i

x(P) ≥ 0 ∀P ∈ P

Theorem 2. A non-trivial equilibrium with only successful flows exists if and
only if (LP-S) has a solution x(P) with

∑
P∈P x(P) > D.

Proof: The proof appears in the full version. �

The solution of (LP-S) by standard techniques [4] implies the following

Corollary 1. We can compute in polynomial time user strategies that are at
equilibrium with only successful flows, if such an equilibrium exists.

4 Connected Equilibria

In this section we study the following question: given an underlying network
topology along with a set of demands between nodes, is it possible to assign
values to the decision variables, so that the game converges to a connected
equilibrium, when such an equilibrium exists?

358 G. Karakostas and E. Markou

Recall that we call the network connected iff a non-zero amount of every com-
modity reaches its destination. Therefore, if, in addition to being at equilibrium,
we want the network to be connected, we have to add to Theorem 1 the condition
that for every commodity (u, v), there is a successful non zero flow sent from u
to v through a path P in the network. This translates to the following condition
for every edge e = (x, y) in path P : THRx(y) ≥ εy

x = 0 AND Ix
(u,e,v) > 0 (espe-

cially when y �= v, it must hold THRx(y) = εy
x = 0, as follows from condition 2

of Theorem 1).

Theorem 3. A network is at a connected equilibrium if and only if in addition
to the Theorem 1 conditions, for every commodity (u, v), either edge (u, v) is
connected or there is a path connecting u, v, so that for every edge e = (x, y) in
the path it holds that Ix

(u,e,v) > 0 AND εy
x = 0.

It is easy to see that there are cases in which it is impossible for a game to
converge to a connected equilibrium. For example, suppose that there is an edge
e = (x, y) in the network such that node x is neither a source nor a sink, and
there is a commodity (u, v) such that all paths between u and v pass through e.
Then it is easy to see that, in any equilibrium, there will be no flow from u to
v. Indeed, suppose that there is a connected equilibrium. Hence there should be
an edge e = (t, x) in the network which carries some successful flow. If e carries
only successful flow then the condition 3 of Theorem 1 would be violated. On the
other hand if e carries successful and unsuccessful flow condition 7(a) would be
violated since x would have a profit to disconnect edge e and gain in its utility.

As mentioned in the Introduction, the proof of existence, and the computation
of strategies that lead to connected equilibria is, in general, very difficult, since we
will prove in the next section that it is an NP-hard problem. But, building on the
results of the previous section, we can prove the existence (or not) of a connected
equilibrium with only successful flows in polynomial time, and compute strategies
that achieve it. Using the characterization of such equilibria by Theorem 3, we
can reduce this computation to the solution of the following extension of (LP-S):

max w s.t. (LP-C)
∑

P :e∈∗P

x(P) −
∑

P :e∈0P

x(P) ≤ 0 ∀e ∈ E

∑

P∈Pi

x(P) ≤ d(ui,vi) ∀i

∑

P∈Pi

x(P) ≥ w ∀i

x(P) ≥ 0 ∀P ∈ P
w ≥ 0

Similarly to Theorem 2, we can prove the following

Theorem 4. A connected equilibrium with only successful flows exists if and
only if (LP-C) has a solution x(P), w with w > 0.

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 359

v5

v1

v2
v3 v4

v6

v7

v8

v9

v13

v10
v11

v12

Fig. 1. A variable-subgraph

Again, the solution of (LP-C) by standard techniques [4] implies the following

Corollary 2. We can compute in polynomial time user strategies that induce a
connected equilibrium with only successful flows, if such an equilibrium exists.

5 NP-hardness of Existence of a Connected Nash
Equilibrium

Suppose a network is given together with a set of demands. In this section we
prove that it is NP-hard to decide whether there exist values for the decision
variables of the nodes so that the game converges to a connected equilibrium
(that possibly uses successful and unsuccessful flows). We prove this by reduction
from the satisfiability problem (Sat):
Sketch of the reduction: Given an instance I of the Sat problem we construct
(in polynomial time on the number of the boolean variables) a network and a
set of demands between nodes. The basic element of the construction is the
variable-subgraph (Figure 1) which corresponds to a boolean variable of I and
it is constructed in such a way, so that in any connected Nash equilibrium, in
exactly one of its edges there is no successful flow at all. We then show that
there is a truth assignment which satisfies an instance I of Sat if and only if
there is a Nash equilibrium in the constructed network with the network being
connected (i.e., for any demand there is a flow being delivered). We prove this by
giving explicitly values to decision variables of the nodes so that the network is
connected at a Nash equilibrium. We show that if a boolean variable A has value
FALSE in the truth assignment and appears as ¬A in a literal of I (negative
literal) then the corresponding subgraph (Figure 2a) is connected at a Nash
equilibrium with only successful flows. If variable A has value TRUE in the
truth assignment and appears as A in a literal of I (positive literal) then the
corresponding subgraph (Figure 2b) is connected at a Nash equilibrium with
successful and unsuccessful flows.

360 G. Karakostas and E. Markou

vc

uc

v6

v3v1

v2
v4

v13

v8

v9

v5

v7

v10
v11

v12

v2

v6

v3

vc

v1

uc

v4

v13

v8

v9

v5

v7

v10

v11

v12

(a) (b)

Fig. 2. (a) A negative-literal-subgraph which corresponds to a variable with value
FALSE, with routed flow-paths. (b) A positive-literal-subgraph which corresponds to
a variable with value TRUE, with routed flow-paths.

Theorem 5. Given a network and a set of demands between nodes, it is NP-
hard to decide whether there exist values for the decision variables of the nodes
so that the game converges to a connected Nash equilibrium.

The details and proofs appear in the full version of the paper.

6 Conclusion

The question of inducing Nash equilibria with specific attributes is a very gen-
eral one, and applies to any protocol. In this work we study the property of
connectivity, but other natural goals are the maximization of total utility, the
maximization of the minimum demand satisfied (similar to concurrent multicom-
modity flow problems), the maximization of total bandwidth etc. We focused on
a basic reputation-based model for ad-hoc networks, but the achievement of most
of these goals remains open for this model as well. On the other hand, we were
able to characterize the Nash equilibria for it in a way that allowed us to study
connectivity properties in a very general setting, i.e., for general topologies and
multiple commodities. We would like to combine these properties with additional
ones, e.g., maximization of the minimum demand. This would involve network
design decisions at the level of setting-up the topology, since there are simple
examples with throughput (i.e. the minimum (over all commodities) fraction
of satisfied demand) equal to dmin

(k−1)dmax
, where dmin, dmax are the minimum,

maximum demands respectively, and k is the number of commodities. Hence, a
natural extension of our results would be to study these extra network design

Emergency Connectivity in Ad-Hoc Networks with Selfish Nodes 361

decisions when the installation of every new edge incurs a cost. Another natural
extension would be the study of a minimal subset of nodes whose setting of ini-
tial values induces an equilibrium with the desired properties. Note that in our
results we set the initial values for all nodes, thus inducing an equilibrium ‘in
one shot’.

References

1. Buchegger, S., Le Boudec, J.-Y.: Performance Analysis of the CONFIDANT Proto-
col: Cooperation Of Nodes Fairness In Dynamic Ad-hoc NeTworks. In: Proceedings
of MOBIHOC 2002, pp. 226–236 (2002)

2. Buttyan, L., Hubaux, J.-P.: Stimulating Cooperation in Self-Organizing Mobile Ad
Hoc Networks. In: Proceedings of ACM/Kluwer Mobile Networks and Applications,
vol. 8(5), pp. 579–592 (2003)

3. Eidenbenz, S., Resta, G., Santi, P.: COMMIT: a sender-centric truthful and energy-
efficient routing protocol for ad hoc networks with selfish nodes. In: Proceedings of
IEEE Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(WMAN) (2005)

4. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin (1993)

5. Hardin, G.: The Tragedy of the Commons. Science 162(3859), 1243–1248 (1968)
6. He, Q., Wu, D., Khosla, P.: SORI: A Secure and Objective Reputation-based In-

centive Scheme for Ad-hoc Networks. In: Proceedings of IEEE Wireless Commu-
nications and Networking Conference (WCNC2004), pp. 825–830 (2004)

7. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Sustaining Cooperation in
Multihop Wireless Networks. In: Proceedings of Second USENIX Symposium on
Networked System Design and Implementation (NSDI 2005) (2005)

8. Milan, F., Jaramillo, J.J., Srikant, R.: Achieving cooperation in multihop wireless
networks of selfish nodes. In: Proceedings of the 2006 workshop on Game theory
for communications and networks (GameNets) (2006)

9. Srinivasan, V., Nuggehalli, P., Chiasserini, C.-F., Rao, R.: Cooperation in wireless
ad-hoc networks. In: Proceedings of IEEE INFOCOM 2003, pp. 808–817 (2003)

10. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple, Cheat-proof, Credit-based Sys-
tem for Mobile Ad-hoc Networks. In: Proceedings of IEEE INFOCOM 2003, pp.
1987–1997 (2003)

11. Zhong, S., Li, L.E., Liu, Y.G., Yang, Y.R.: On designing incentive-compatible rout-
ing and forwarding protocols in wireless ad-hoc networks: an integrated approach
using game theoretic and cryptographic techniques. Wireless Networks 13(6), 799–
816 (2007)

Fully-Compressed Suffix Trees

Lúıs M. S. Russo1,�, Gonzalo Navarro2,��, and Arlindo L. Oliveira1

1 INESC-ID, R. Alves Redol 9, 1000 LISBOA, Portugal
{lsr,aml}@algos.inesc-id.pt

2 Dept. of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. Suffix trees are by far the most important data structure
in stringology, with myriads of applications in fields like bioinformatics
and information retrieval. Classical representations of suffix trees require
O(n log n) bits of space, for a string of size n. This is considerably more
than the n log2 σ bits needed for the string itself, where σ is the alphabet
size. The size of suffix trees has been a barrier to their wider adoption
in practice. Recent compressed suffix tree representations require just
the space of the compressed string plus Θ(n) extra bits. This is already
spectacular, but still unsatisfactory when σ is small as in DNA sequences.

In this paper we introduce the first compressed suffix tree represen-
tation that breaks this linear-space barrier. Our representation requires
sublinear extra space and supports a large set of navigational operations
in logarithmic time. An essential ingredient of our representation is the
lowest common ancestor (LCA) query. We reveal important connections
between LCA queries and suffix tree navigation.

1 Introduction and Related Work

Suffix trees are extremely important for a large number of string processing prob-
lems. Their many virtues have been described by Apostolico [1] and Gusfield [2].
The combinatorial properties of suffix trees have a profound impact in the bioin-
formatics field, which needs to analyze large strings of DNA and proteins with
no predefined boundaries. This partnership has produced several important re-
sults, but it has also exposed the main shortcoming of suffix trees. Their large
space requirements, together with their need to operate in main memory to be
useful in practice, renders them inapplicable in the cases where they would be
most useful, that is, on large texts.

The space problem is so important that it has originated a plethora of research
results, ranging from space-engineered implementations [3] to novel data struc-
tures to simulate it, most notably suffix arrays [4]. Some of those space-reduced
variants give away some functionality in exchange. For example suffix arrays
� Supported by the Portuguese Science and Technology Foundation by grants

SFRH/BD/12101/2003, SFRH/BPD/34373/2006 and projects DBYeast, POSI/
EIA/57398/2004 and ARN, PTDC/EIA/67722/2006.

�� Partially funded by Millennium Institute for Cell Dynamics and Biotechnology,
Grant ICM P05-001-F, Mideplan, Chile.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 362–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fully-Compressed Suffix Trees 363

miss the important suffix link navigational operation. Yet, all these classical ap-
proaches require O(n log n) bits, while the indexed string requires only n logσ
bits1, n being the size of the string and σ the size of the alphabet. For example
the human genome requires 700 Megabytes, while even a space-efficient suffix
tree on it requires at least 40 Gigabytes [5], and the reduced-functionality suffix
array requires more than 10 Gigabytes. This problem is particularly evident in
DNA because log σ = 2 is much smaller than log n.

These representations are also much larger than the size of the compressed
string. Recent approaches [6] combining data compression and succinct data
structures have achieved spectacular results for the pattern search problem. For
example Ferragina et al. [7] presented a compressed suffix array that requires
nHk + o(n log σ) bits and computes occ in time O(m(1 + (logσ log n)−1)). Here
nHk denotes the k-th order empirical entropy of the string [8], a lower bound
on the space achieved by any compressor using k-th order modeling.

It turns out that it is possible to use this kind of data structures, that we will
call compressed suffix arrays2, and, by adding a few extra structures, support all
the operations provided by suffix trees. Sadakane was the first to present such a
result [5], adding 6n bits to the size of the compressed suffix array.

In this paper we break the Θ(n) extra-bits space barrier. We build a new
suffix tree representation on top of a compressed suffix array, so that we can
support all the navigational operations and our extra space fits within the sub-
linear o(n log σ) extra bits of the compressed suffix array. Our central tools are
a particular sampling of suffix tree nodes, its connection with the suffix link and
the lowest common ancestor (LCA) query, and the interplay with the compressed
suffix array. We exploit the relationship between these actors and uncover some
relationships between them that might be of independent interest.

A comparison between Sadakane’s representation and ours is shown in Table 1.
The result for the time complexities is mixed. Our representation is faster for the
important Child operation, when log σ = o(log log n), yet Sadakane’s is usu-
ally faster on the rest. On the other hand, our representation requires much less
space. For DNA, assuming realistically that Hk ≈ 2, Sadakane’s approach requires
8n + o(n) bits, whereas our approach requires only 2n + o(n) bits. We choose a
compressed suffix array that has the best Letter time, for nHk + o(n log σ) bits.
Only when σ = ω(polylog(n)) and there are O(nH0) + o(n log σ) bits available is
Sadakane’s compressed suffix array [9] faster at computing the Letter operation.
In that case, using his compressed suffix array, Sadakane’s suffix tree would work
faster, while ours does not benefit from that. As such, Table 1 shows the time com-
plexities that can be obtained for suffix trees using the best asymptotic space achieved
for compressed suffix arrays alone. This space is optimal in the sense that no k-th
order compressor can achieve asymptotically less space to represent T .

There exists a previous description [10] of a technique based on interval rep-
resentation and sampling of suffix tree. However it is extremely brief and no
theoretical bounds on the result are given.

1 In this paper log stands for log2.
2 These are also called compact suffix arrays, FM-indexes, etc., see [6].

364 L.M.S. Russo, G. Navarro, and A.L. Oliveira

Table 1. Comparing compressed suffix tree representations. The operations are de-
fined along Section 2. Time complexities, but not space, are big-O expressions. Notice
that Letter(v, i) can also be computed in O(iψ) time. Also Child can, alternatively,
be computed using FChild and at most σ times NSib. We give the generalized perfor-
mance and an instantiation using δ = (logσ log n) log n, assuming σ = O(polylog(n)),
and using the FM-Index of Ferragina et al. [7] as the compressed suffix array (CSA).

Sadakane’s Ours

Space in bits |CSA| + 6n + o(n)
= nHk + 6n + o(n log σ)

|CSA| + O((n/δ) log n)
= nHk + o(n log σ)

SDep/ Locate Φ = (logσ log n) log n Ψδ = (logσ log n) log n

Count/ Ancestor 1 = 1 1 = 1

Parent/ FChild/
NSib

1 = 1 (Ψ + t)δ = (logσ log n) log n

SLink Ψ = 1 (Ψ + t)δ = (logσ log n) log n

SLink
i Φ = (logσ log n) log n Φ + (Ψ + t)δ = (logσ log n) log n

Letter(v, i) Φ = (logσ log n) log n Φ = (logσ log n) log n

LCA 1 = 1 (Ψ + t)δ = (logσ log n) log n

Child Φ log σ = (log log n) log n log σ + Φ log δ + (Ψ + t)δ
= (log log n)2 logσ n

TDep 1 = 1 (Ψ + t)δ2 = ((logσ log n) log n)2

LAQt 1 = 1 log n + (Ψ + t)δ2 = ((logσ log n) log n)2

LAQs Not Supported log n + (Ψ + t)δ = (logσ log n) log n

WeinerLink t = 1 t = 1

2 Basic Concepts

Figure 1 shows an example that illustrates the concepts in this section. We
denote by T a string; by Σ the alphabet of size σ; by T [i] the symbol at position
(i mod n); by T.T ′ concatenation; by T = T [..i−1].T [i..j].T [j+1..] respectively
a prefix, a susbtring and a suffix; by Parent(v) the parent node of node v; by
TDep(v) its tree-depth; by FChild(v) its first child; by NSib(v) the next child
of the same parent; by LAQt(v, d) its level-d ancestor; by Ancestor(v, v′)
whether v is an ancestor of v′; by LCA(v, v′) the lowest common ancestor.

The path-label of a node v in a labeled tree is the concatenation of the
edge-labels from the root down to v. We refer indifferently to nodes and to
their path-labels, also denoted by v. The i-th letter of the path-label is denoted
as Letter(v, i) = v[i]. The string-depth of a node v, denoted by SDep(v),
is the length of its path-label. LAQs(v, d) is the highest ancestor of node v
with SDep ≥ d. Child(v, X) is the node that results of descending from v
by the edge whose label starts with symbol X , if it exists. The suffix tree
of T is the deterministic compact labeled tree for which the path-labels of the
leaves are the suffixes of T $, where $ is a terminator symbol not belonging to
Σ. We will assume n is the length of T $. For a detailed explanation see Gus-
field’s book [2]. The suffix-link of a node v �= Root of a suffix tree, denoted

Fully-Compressed Suffix Trees 365

1 2 3 4 5 60

0 1234 56A:

b
a
b

b
$ $ $ $ $ $ $

b
aa

b
a
b

a
b

b

b

b

Fig. 1. Suffix tree T of string abbbab, with the
leaves numbered. The arrow shows the SLink

between node ab and b. Below it we show the
suffix array. The portion of the tree correspond-
ing to node b and respective leaves interval is
highlighted with a dashed rectangle. The sam-
pled nodes have bold outlines.

1 2
i: 01 234 56 7890 12 345 67 8901

((0)((1)(2))((3)(4)((5)(6))))

((3)(4))
i: 0 1 23 4 5

Fig. 2. Parentheses represen-
tations of trees. The paren-
theses on top represent the
suffix tree and those on the
bottom represent the sampled
tree. The numbers are not part
of the representation; they are
shown for clarity. The rows la-
beled i: give the index of the
parentheses.

SLink(v), is a pointer to node v[1..]. Note that SDep(v) of a leaf v identifies
the suffix of T $ starting at position n − SDep(v) = Locate(v). For example
T [Locate(ab$)..] = T [7−3..] = T [4..] = ab$. The suffix array A[0, n−1] stores
the Locate values of the leaves in lexicographicall order. The suffix tree nodes
can be identified with suffix array intervals: each node corresponds to the range of
leaves that descend from v. The node b corresponds to the interval [3, 6]. Hence
the node v will be represented by the interval [vl, vr]. Leaves are also represented
by their left-to-right index (starting at 0). For example by vl − 1 we refer to the
leaf immediately before vl, i.e. [vl − 1, vl − 1]. With this representation we can
Count in constant time the number of leaves that descend from v. The number
of leaves below b is 4 = 6 − 3 + 1. This is precisely the number of times that
the string b occurs in the indexed string T . We can also compute Ancestor in
O(1) time: Ancestor(v, v′) ⇔ vl ≤ v′l ≤ v′r ≤ vr.

3 Using Compressed Suffix Arrays

We are interested in compressed suffix arrays because they have very compact
representations and support partial suffix tree functionality (being usually more
powerful than the classical suffix arrays [6]). Apart from the basic functionality
of retrieving A[i] = Locate(i), state-of-the-art compressed suffix arrays support
operation SLink(v) for leaves v. This is called ψ(v) in the literature: A[ψ(v)] =
A[v] + 1, and thus SLink(v) = ψ(v), let its time complexity be O(Ψ). The
iterated version of ψ, denoted as ψi, can usually be computed faster than O(iΨ)
with compressed indexes [6]. This is achieved with the A and A−1, let its time
complexity be O(Φ). It also supports the WeinerLink(v, a) operation [11] for
nodes v: WeinerLink(v, X) gives the suffix tree node with path-label X.v[0..].
This is called the LF mapping in compressed suffix arrays, and is a kind of

366 L.M.S. Russo, G. Navarro, and A.L. Oliveira

inverse of ψ, let its time complexity be O(t). Consider the interval [3, 6] that
represents the leaves whose path-labels start by b. In this case we have that
LF(a, [3, 6]) = [1, 2], i.e. by using the LF mapping with a we obtain the interval
of leaves whose path-labels start by ab. We use an extension of LF to strings,
LF(X.Y, v) = LF(X,LF(Y, v)).

Finally, compressed suffix arrays are usually self-indexes, meaning that they
replace the text: it is possible to extract any substring, of size 	, of the indexed
text in O(Φ + 	Ψ) time. A particularly easy case that is solved in constant time
is to extract T [A[v]] for a suffix array cell v, that is, the first letter of a given
suffix3. This corresponds to v[0], the first letter of the path-label of leaf v.

As anticipated, our compressed suffix tree representation will consist of a
sampling of the suffix tree plus a compressed suffix array representation. A well-
known compressed suffix array is Sadakane’s CSA [9], which requires 1

ε nH0 +
O(n log log σ) bits of space and has times Ψ = O(1), Φ = O(logε n), and t =
O(log n), for any ε > 0. For our results we favor a second compressed suffix array,
called the FM-index [7], which requires nHk+o(n log σ) bits, for any k ≤ α logσ n
and constant 0 < α < 1. Its complexities are Ψ = t = O(1 + (logσ log n)−1) and
Φ = O((logσ log n) log n).4 The instantiation in Table 1 is computed for the FM-
index, but the reader can easily compute the result of using Sadakane’s CSA. In
that case the comparison would favor more Sadakane’s compressed suffix tree,
yet the space would be considerably higher.

4 The Sampled Suffix Tree

A pointer based implementation of suffix trees requires O(n log n) bits to repre-
sent a suffix tree of (at most) 2n nodes. As this is too much, we will store only a
few sampled nodes. We denote our sampling factor by δ, so that in total we sample
O(n/δ) nodes. Hence, provided δ = ω(logσ n), the sampled tree can be repre-
sented using o(n log σ) bits. To fix ideas we can assume δ = �(logσ log n) log n�.
In our running example we use δ = 4.

To understand the structure of the sampled tree notice that every tree with 2n
nodes can be represented in 4n bits as a sequence of parentheses (see Figures 1
and 2). The representation of the sampled tree can be obtained by deleting the
parentheses of the non-sampled nodes, as in Figure 2. For the sampled tree to
be representative of the suffix tree it is necessary that every node is, in some
sense, close enough to a sampled node.

Definition 1. A δ-sampled tree S of a suffix tree T with Θ(n) nodes is formed
by choosing O(n/δ) nodes of T so that for each node v of T there is an i < δ
such that node SLink

i(v) is sampled.

3 This is computed in O(1) as the c ∈ Σ satisfying C[c] ≤ i < C[c + 1], see [6].
4 ψ(i) can be computed as selectT [A[i]](T

bwt, T [A[i]]) using the multiary wavelet
tree [12]. The cost for Φ is obtained using a sampling step of (logσ log n) log n, so
that o(n log σ) stands for O((n log σ)/ log log n) as our other structures.

Fully-Compressed Suffix Trees 367

This means that if we start at v and follow suffix links successively, i.e. v,
SLink(v), SLink(SLink(v)), . . ., we will find a sampled node in at most δ
steps. Note that this property implies that the Root must be sampled, since
SLink(Root) is undefined. We sample the nodes v for which SDep(v) ≡δ/2 0
and there is a another node v′ and a string |T ′| ≥ δ/2 such that v′ = LF (T ′, v).
Notice that this guarantees that from the nodes LF (T ′[..i], v), for −1 ≤ i ≤ |T ′|,
only one is sampled. To be precise this guarantees that we sample at most
4n/δ�
nodes from a suffix tree with 2n nodes.

In addition to the pointers, that structure the sampled tree, we store in the
sampled nodes their interval representation; their SDep and TDep; the infor-
mation to answer LCA queries in S, LCAS , in constant time [13,14]; and the
information to LAQ queries in S, LAQS , in constant time [15,16]; some further
data is introduced later. All this requires O((n/δ) log n) bits of space.

In order to make effective use of the sampled tree, we need a way to map
any node v to its lowest sampled ancestor, LSA(v). Another important op-
eration is the lowest common sampled ancestor LCSA(v, v′), i.e. lowest com-
mon ancestor in the sampled tree S. For example LCSA(3, 4) is the Root,
whereas LCA(3, 4) is [3, 6], i.e. the node labeled b. Note that LCSA(v, v′) =
LCAS(LSA(v),LSA(v′)) = LSA(LCA(v, v′)). Next we show how LSA is sup-
ported for leaves in constant time and O((n/δ) log n) extra bits. With that we
also have LCSA in constant time (for leaves; later, we extend this to any node).

4.1 Computing LSA for Leaves

LSA is computed by using an operation Reduce(v), that receives the numeric
representation of leaf v and returns the position, in the parentheses representa-
tion of the sampled tree, where that leaf should be. Consider for example the
leaf numbered by 5 in Figure 2. This leaf is not sampled, but in the original
tree it appears somewhere between leaf 4 and the end of the tree, more specif-
ically between parenthesis ’)’ of 4 and parenthesis ’)’ of the Root. We assume
Reduce returns the first parenthesis, i.e. Reduce(5) = 4. In this case since the
parenthesis we obtain is a ’)’ we know that LSA should be the parent of that
node. Hence we compute LSA as follows:

LSA(v) =
{

Reduce(v) , if there is a ’(’ at Reduce(v)
Parent(Reduce(v)) , otherwise

To compute Reduce we use a bitmap RedB and an array RedA. The bitmap
RedB is initialized with zeros. For every sampled node v represented as [vl, vr]
we set bits RedB[vl] and RedB[vr + 1] to 1. In our example RedB is 1001110.
This bitmap indicates the leaves for which we must store partial solutions to
Reduce. In our example the leaves are 0, 3, 4, 5. These partial solutions are
stored in array RedA (in case of a collision vr + 1 = v′l, the data for v′l is
stored). In our example these partial results are respectively 0, 1, 3, 4. Therefore
Reduce(v) = RedA[Rank1(RedB, v)−1], where v is a leaf number and Rank1

counts the number of 1’s in RedB up to and including position v.
First we show that Reduce can be computed in O(1) time with O((n/δ) log n)

bits. The bitmap RedB cannot be stored in uncompressed form because it would

368 L.M.S. Russo, G. Navarro, and A.L. Oliveira

require n bits. We store RedB with the representation of Raman et al. [17] that
needs only m log n

m + o(n) bits, where m = O(n/δ) is the number of 1’s in
the bitmap (as every sampled node inserts at most two 1’s in RedB). Hence
RedB needs O((n/δ) log δ) = O((n/δ) log n) bits, and supports Rank1 in O(1)
time. On the other hand, since there are also O(n/δ) integers in RedA, we
can store them explicitly to have constant access time in O((n/δ) log n) bits.
Therefore Reduce can be computed within the assumed bounds. According to
our previous explanation, so can LSA and LCSA, for leaves.

5 The Kernel Operations

We have described the two basic components of our compressed suffix tree rep-
resentation. Most of our functionality builds on the LCA operation, which is
hence fundamental to us. In this section we present an entangled mechanism
that supports operations LCA and SLink depending on each other.

5.1 Two Fundamental Observations

We point out that SLink’s and LCA’s commute on suffix trees.

Lemma 1. For any nodes v, v′ such that LCA(v, v′) �= Root we have that
SLink(LCA(v, v′)) = LCA(SLink(v),SLink(v′)).

Proof. Assume that the path-labels of v and v′ are respectively X.α.Y.β and
X.α.Z.β′, where Y �= Z. According to the definitions of LCA and SLink, we
have that LCA(v, v′) = X.α and SLink(LCA(v, v′)) = α. On the other hand
the path-labels of SLink(v) and SLink(v′) are respectively α.Y.β and α.Z.β′.
Therefore the path-label of LCA(SLink(v),SLink(v′)) is also α. Hence this
node must be the same as SLink(LCA(v, v′)). �
Figure 3 illustrates this lemma; ignore the nodes associated with ψ. The condi-
tion LCA(v, v′) �= Root is easy to verify, in a suffix tree, by comparing the first
letters of the path-label of v and v′, i.e. LCA(v, v′) �= Root iff v[0] = v′[0].

The next Lemma shows a fundamental property for the kernel operations.

Lemma 2. Let v, v′ be nodes such that SLink
r(LCA(v, v′)) = Root, and let

d = min(δ, r + 1). Then:
SDep(LCA(v, v′)) = max0≤i<d{i + SDep(LCSA(SLink

i(v),SLink
i(v′)))}

Proof. The following reasoning holds for any valid i:

SDep(LCA(v, v′)) = i + SDep(SLink
i(LCA(v, v′))) (1)

= i + SDep(LCA(SLink
i(v),SLink

i(v′))) (2)
≥ i + SDep(LCSA(SLink

i(v),SLink
i(v′))) (3)

Equation (1) holds by iterating the fact that SDep(v′′) = 1+SDep(SLink(v′′))
for any node v′′ for which SLink(v′′) is defined. Equation (2) results from apply-
ing Lemma 1 repeatedly. Inequality (3) comes from the definition of LCSA and

Fully-Compressed Suffix Trees 369

ψ
ψ

v′v

Y Z

α

X

Y Z

α

Fig. 3. Schematic represen-
tation of the relation be-
tween LCA and SLink, see
Lemma 1. Curved arrows rep-
resent SLink and straight ar-
rows the ψ function.

2

2

d − i

δ

δ

ParentS(v′)

v′

LF

Parent

Fig. 4. Schematic representation of the
vi,j nodes of the LAQs operation. The
nodes sampled because of definition 1 are
in bold and the nodes sampled because of
the condition of TDep are filled.

the fact that if node v′′′ is an ancestor of node v′′ then SDep(v′′) ≥ SDep(v′′′).
Therefore SDep(LCA(v, v′)) ≥ max0≤i<d{. . .}. On the other hand, from Defini-
tion 1 we know that for some i < δ the node SLink

i(LCA(v, v′)) is sampled. The
formula goes only up to d, but d < δ only if SLink

d(LCA(v, v′)) = Root, which
is also sampled. According to the definition of LCSA inequality (3) becomes an
equality for that node. Hence SDep(LCA(v, v′)) ≤ max0≤i<d{. . .}. �

5.2 Entangled Operations

To apply Lemma 2 we need to support operations LCSA, SDep, and SLink.
Operation LCSA is supported in constant time, but only for leaves (Section 4.1).
Since SDep is applied only to sampled nodes, we have it readily stored in the
sampled tree. Sadakane [5] showed that SLink(v) = LCA(ψ(vl), ψ(vr)), when-
ever v �= Root. This is not necessarily equal to the [ψ(vl), ψ(vr)] interval, see
node X.α in Figure 3. In general SLink

i(v) = LCA(ψi(vl), ψi(vr)).
Hence all we need is to support LCA. However this depends on Lemma 2.

Lemma 3. LCA(v, v′) = LF(v[0..i−1],LCSA(SLink
i(v),SLink

i(v′))) for any
nodes v, v′, where i is given by Lemma 2.

Proof. This is a direct consequence of Lemma 2. Let i be the index of the max-
imum of the set in Lemma 2, i.e. SLink

i(LCA(v, v′)) is a sampled node and
hence it is the same as LCSA(SLink

i(v),SLink
i(v′)). Note that from the def-

inition of LF mapping we have that LF(v′′[0],SLink(v′′)) = v′′. Applying this
iteratively to SLink

i(LCA(v, v′)) we obtain the equality in the lemma. �
To use this lemma we must know which is the correct i. This is easily determined
if we first compute SDep(LCA(v, v′)). Accessing the letters to apply LF is
not a problem, as we have always to obtain the first letter of a path-label,
SLink

i(v)[0] = SLink
i(v′)[0].

370 L.M.S. Russo, G. Navarro, and A.L. Oliveira

5.3 Breaking the Cycle

To get out of this dependency we need a new idea. We will handle all the compu-
tation over leaves, for which we can compute SLink(v) = ψ(v) and LCSA(v, v′).

Lemma 4. LCA(v, v′) = LCA(min{vl, v
′
l}, max{vr, v

′
r}) for any nodes v, v′.

Proof. Let v′′ and v′′′ be respectively the nodes on the left and on the right of the
equality. Assume that they are represented as [v′′l , v′′r] and [v′′′l , v′′′r] respectively.
Hence v′′l ≤ vl, v

′
l and v′′r ≥ vr, v

′
r since v′′ is an ancestor of v and v′. This

means that v′′l ≤ min{vl, v
′
l} ≤ max{vr, v

′
r} ≤ v′′r , i.e. v′′ is also an ancestor

of min{vl, v
′
l} and max{vr, v

′
r}. Since v′′′ is by definition the lowest common

ancestor of these nodes we have that v′′l ≤ v′′′l ≤ v′′′r ≤ v′′r . Using a similar
reasoning for v′′′ we conclude that v′′′l ≤ v′′l ≤ v′′r ≤ v′′′r and hence v′′ = v′′′. �

Observe this property in Figure 3; ignore SLink, ψ and the rest of the tree.
Using this property and ψ the equation in Lemma 2 reduces to:

SDep(LCA(v, v′)) = SDep(LCA(min{vl, v
′
l}, max{vr, v

′
r}))

= max0≤i<d{i+SDep(LCSA(SLink
i(min{vl, v

′
l}),SLink

i(max{vr, v
′
r})))}

= max0≤i<d{i + SDep(LCSA(ψi(min{vl, v
′
l}), ψi(max{vr, v

′
r})))}

Operationally, this corresponds to iteratively taking the ψ function, δ times
or until the Root is reached. At each step we find the LCSA of the two cur-
rent leaves and retrieve its stored SDep. The overall process takes O(Ψδ) time.
Likewise SDep and LCA simplify to:

SDep(v) = SDep(LCA(v, v)) = max0≤i<d{i+SDep(LCSA(ψi(vl), ψi(vr)))}
LCA(v, v′) = LF(v[0..i − 1],LCSA(ψi(min{vl, v

′
l}), ψi(max{vr, v

′
r})))

Now it is finally clear that we do not need SLink to compute LCA. The
time to compute LCA is thus O((Ψ + t)δ). Using LCA we compute SLink in
O((Ψ + t)δ) and SLink

i in O(Φ + (Ψ + t)δ) time. Note that the arguments to
LCSA do not correspond necessarily to nodes. Note also that using Lemma 4
we can extend LSA for a general node v as LSA(v) = LSA(LCA(v, v)) =
LSA(LCA(vl, vr)) = LCSA(vl, vr).

6 Further Operations

We now show how other operations can be computed on top of the kernel ones.

Computing Letter: Since Letter(v, i) = SLink
i(v)[0] = ψi(vl)[0], we can

solve it in time O(min(Φ, iΨ)).

Computing Parent: For any node v represented as [vl, vr] we have that
Parent(v) is either LCA(vl − 1, vl) or LCA(vr, vr + 1), whichever is lowest.
This computation is correct because suffix trees are compact. Notice that if one
of these nodes is undefined, either because vl = 0 or vr = n, then the parent is
the other node. If both nodes are undefined the node in question is the Root

which has no Parent node.

Fully-Compressed Suffix Trees 371

Computing Child: Suppose for a moment that every sampled node stores a
list of its children and the corresponding first letters of the edges. In our ex-
ample the Root would store the list {($, [0, 0]), (a, [1, 2]), (b, [3, 6])}, which can
be reduced to {($, 0), (a, 1), (b, 3)}. Hence, for sampled nodes, it would be pos-
sible to compute Child(v, X) in O(log σ) time by binary searching its child
list. To compute Child on non-sampled nodes we could use a process simi-
lar to Lemma 3: determine which SLink

i(v), with i < δ, is sampled; com-
pute Child(SLink

i(v), X); and use the LF mapping to obtain the answer,
i.e. Child(v, X) = LF(v[0..i − 1],Child(SLink

i(v), X)). This process requires
O(log σ + (Ψ + t)δ) time. Still, it requires too much space since it may need to
store O(σn/δ) integers.

To avoid exceeding our space bounds we mark one leaf out of δ, i.e. mark leaf
v if v ≡δ 0. Do not confuse this concept with sampling, they are orthogonal.
In Figure 1 we mark leaves 0 and 4. For every sampled node, instead of storing
a list with all the children, we consider only the children that contain marked
leaves. In the case of the Root this means excluding the child [1, 2], hence the
resulting list is {($, 0), (b, 3)}. A binary search on this list no longer returns only
one child. Instead, it returns a range of, at most, δ children. Therefore it is
necessary to do a couple of binary searches, inside that range, to delimit the
interval of the correct child. This requires O(Φ log δ) time because now we must
use Letter to drive the binary searches. Overall, we can compute Child(v, X)
in O(log σ + Φ log δ + (Ψ + t)δ) time. Let us now consider space. Ignoring unary
paths in the sampled tree, whose space is dominated by the number of sampled
nodes, the total number of integers stored amortizes to O(n/δ), the number of
marked leaves. Hence this approach requires at most O((n/δ) log n) bits.

Computing TDep: To compute TDep(v) we need to add other O(n/δ) nodes
to the sampled tree S, so as to guarantee that, for any suffix tree node v,
Parent

j(v) is sampled for some 0 ≤ j < δ. Recall that the TDep(v) values
are stored in S. Notice that TDep(v) = TDep(LSA(v)) + j where LSA(v) =
Parent

j(v), hence, computing TDep(v) consists in reading TDep(LSA(v))
and adding the number of nodes between v and LSA(v). The sampling guaran-
tees that j < δ. Hence to determine j we iterate Parent until reaching LSA(v).
The total cost is O((Ψ + t)δ2).

Computing LAQt: We extend the ParentS(v) notation to represent LSA(v)
when v is a non-sampled node. Recall that the sampled tree supports constant-
time level ancestor queries. Hence we have any Parent

i
S(v) in constant time

for any node v and any i. We binary search Parent
i
S(v) to find the node v′

with TDep(v′) ≥ d > TDep(ParentS(v′)). Notice that this can be computed
evaluating only the second inequality. Now we iterate the Parent operation,
from v′, exactly TDep(v′)−d times. We need the additional sampling introduced
for TDep to guarantee TDep(v′) − d < δ. Hence the total time is O(log n +
(Ψ + t)δ2).

Computing LAQs: We start by binary searching Parent
i
S(SLink

δ−1(v)) to
find a node v′ for which SDep(v′) ≥ d − (δ − 1) > SDep(ParentS(v′)). Now

372 L.M.S. Russo, G. Navarro, and A.L. Oliveira

we scan all the sampled nodes vi,j = Parent
j
S(LSA(LF(v[i..δ − 1], v′))) with

SDep(vi,j) ≥ d − i and i, j < δ. This means that we start at node v′, follow
LF, reduce every node found to the sampled tree S and use ParentS until the
SDep of the node drops below d − i. Our aim is to find the vi,j that minimizes
SDep(vi,j) − (d − i) ≥ 0, and then apply the LF mapping to it. The answer is
necessarily among the nodes considered.

The time to perform this operation depends on the number of existing vi,j

nodes. For this operation the sampling must satisfy Definition 1 and the condi-
tion of TDep. Each condition contributes with at most two sampled nodes for
every δ nodes. Therefore, there are at most 4δ nodes vi,j (see Figure 4). Unfor-
tunately, the same trick does not work for TDep and LAQt, because we cannot
know which is the “right” node without bringing all of them back with LF.

Computing FChild: To find the first child of v = [vl, vr], where vl �= vr,
we simply ask for LAQs(vl,SDep(v) + 1). Likewise if we use vr we obtain the
last child. By TDepS(v) = i we mean that Parent

i
S(v) = Root. This is also

defined when v is not sampled. It is possible to skip the binary search step by
choosing v′ = Parent

i
S(vl), for i = TDepS(vl) − TDepS(LSA(v)) − 1.

Computing NSib: The next sibling of v = [vl, vr] is LAQs(vr +
1,SDep(Parent(v)) + 1) for any v �= Root. Likewise we can obtain the pre-
vious sibling with vl − 1. We must check that the answer has the same parent
as v, to cover the case where there is no previous/next sibling. We can also skip
the binary search.

We are ready to state our summarizing theorem.

Theorem 1. Using a compressed suffix array (CSA) that supports ψ, ψi,
T [A[v]] and LF in times O(Ψ), O(Φ), O(1), and O(t), respectively, it is pos-
sible to represent a suffix tree with the properties given in Table 1.

7 Conclusions and Future Work

We presented a fully-compressed representation of suffix trees, which breaks
the linear-bits space barrier of previous representations at a reasonable (and
in some cases no) time complexity penalty. Our structure efficiently supports
common and not-so-common operations, including very powerful ones such as
lowest common ancestor (LCA) and level ancestor (LAQ) queries. In fact our
representation is largely based on the LCA operation. Suffix trees have been
used in combination with LCA’s for a long time, but our results show new ways
to explore this partnership.

With respect to practical considerations, we believe that the structure can
be implemented without large space costs associated to the sublinear term
o(n log σ). In fact, by using parentheses representations of the sampled tree and
compressed bitmaps, it seems possible to implement the tree with log n+O(log δ)
bits per sampled node. Our structure has the potential of using much less space

Fully-Compressed Suffix Trees 373

than alternative suffix tree representations. On the other hand, we can tune the
space/time tradeoff parameter δ to fit the real space needs of the application.
Even though some DNA sequences require 700 Megabytes, that is not always
the case. Hence it is reasonable to use larger representations of the suffix tree to
obtain faster operations, as long as the structure fits in main memory.

References

1. Apostolico, A.: Combinatorial Algorithms on Words. In: The myriad virtues of
subword trees. NATO ISI Series, pp. 85–96. Springer, Heidelberg (1985)

2. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Cambridge (1997)

3. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suffix trees.
Softw., Pract. Exper. 33(11), 1035–1049 (2003)

4. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

5. Sadakane, K.: Compressed Suffix Trees with Full Functionality. Theo. Comp. Sys.
(2007)

6. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
(2007) (article 2)

7. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algor. 3(2) (2007) (article 20)

8. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

9. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
of Algorithms 48(2), 294–313 (2003)

10. Foschini, L., Grossi, R., Gupta, A., Vitter, J.: When indexing equals compres-
sion: Experiments with compressing suffix arrays and applications. ACM Trans.
Algor. 2(4), 611–639 (2006)

11. Weiner, P.: Linear pattern matching algorithms. In: IEEE Symp. on Switching and
Automata Theory, pp. 1–11 (1973)

12. Lee, S., Park, K.: Dynamic rank-select structures with applications to run-length
encoded texts. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 96–
106. Springer, Heidelberg (2007)

13. Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

14. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

15. Bender, M., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comp. Sci. 321(1), 5–12 (2004)

16. Geary, R., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. In: Munro, J.I. (ed.) SODA, pp. 1–10. SIAM, Philadelphia (2004)

17. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

Improved Dynamic Rank-Select Entropy-Bound

Structures�

Rodrigo González and Gonzalo Navarro

Center for Web Research, Dept. of Computer Science, University of Chile
{rgonzale,gnavarro}@dcc.uchile.cl

Abstract. Operations rank and select over a sequence of symbols have
many applications to the design of succinct and compressed data struc-
tures to manage text collections, structured text, binary relations, trees,
graphs, and so on. We are interested in the case where the collections can
be updated via insertions and deletions of symbols. Two current solutions
stand out as the best in the tradeoff of space versus time (considering all
the operations). One solution, by Mäkinen and Navarro, achieves com-
pressed space (i.e., nH0 + o(n log σ) bits) and O(log n log σ) worst-case
time for all the operations, where n is the sequence length, σ is the
alphabet size, and H0 is the zero-order entropy of the sequence. The
other solution, by Lee and Park, achieves O(log n(1 + log σ

log log n
)) amor-

tized time and uncompressed space, i.e. n log σ + O(n) + o(n log σ) bits.
In this paper we show that the best of both worlds can be achieved.
We combine the solutions to obtain nH0 + o(n log σ) bits of space and
O(log n(1 + log σ

log log n
)) worst-case time for all the operations. Apart from

the best current solution to the problem, we obtain several byproducts
of independent interest applicable to partial sums, text indexes, suffix
arrays, the Burrows-Wheeler transform, and others.

1 Introduction and Related Work

Compressed data structures aims at representing classical data structures such
as sequences, trees, graphs, etc., in little space while keeping the functionality of
the structure. That is, compressed data structures should operate without the
need to decompress them. This is a very active area of research stimulated by
today’s steep memory hierarchies and large available data sizes. See e.g. [15].

One of the most useful structures are the bit vectors with rank and select
operations: rank(B, i) gives the number of 1-bits in B[1, i] and select(B, i) gives
the position of the i-th 1 in B. This generalizes to sequences T [1, n] over an
alphabet Σ of size σ, where one aims at a (hopefully compressed) representation
efficiently supporting the following operations: access(T, i) returns the symbol
T [i]; rankc(T, i) returns the number of times symbol c appears in the prefix
T [1, i]; and selectc(T, i) returns the position of the i-th c in T .

� Supported in part by Millennium Nucleus Center for Web Research, Grant P04-067-
F, Mideplan, and Fondecyt Grant 1-050493, Chile.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 374–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Dynamic Rank-Select Entropy-Bound Structures 375

Improvements in rank/select operations on sequences have a great impact on
many other succinct data structures, especially on those aimed at text indexing,
but also labeled trees, structured texts, binary relations, graphs, and others [15].

The first structure providing support for rank/select on a sequence of sym-
bols was the wavelet tree [7,5]. Wavelet trees are perfectly balanced static trees of
height log σ (logarithms are in base 2 by default). They answer the three queries
in O(log σ) time, by working O(1) per tree level. They store a bitmap of length
n per level, which is preprocessed for constant-time binary rank/select queries.
Their total space requirement is n log σ + o(n log σ), where the extra sublinear
term is the space needed by the binary rank/select structures [14]. By repre-
senting those bitmaps in compressed form [16] the constant-time rank/select
queries are retained and the space becomes nH0(T) + o(n log σ), where H0(T)
is the zero-order empirical entropy of T (that is,

∑
c∈Σ

nc

n log n
nc

, where c occurs
nc times in T). Since the wavelet tree gives access(T, i) to any symbol T [i], it
can be used to replace T .

A stronger version of wavelet trees are multiary wavelet trees [3], which achieve
the same space but improve the query times to O(1 + log σ

log log n). The trick is to
make the tree ρ-ary for some ρ = O(logα n) and constant 0 < α < 1, so that its
height is reduced. Now the tree does not store a bitmap per level, but rather a
sequence over an alphabet of size ρ. They show how to do rank/select on those
sequences in constant time for such a small ρ.

In [10] they add dynamism to the sequences, by adding operations insertc(T, i)
inserts symbol c between T [i] and T [i + 1]; and delete(T, i) deletes T [i] from T .

They represent dynamic bitmaps B using nH0(B) + o(n) bits of space and
solve all operations in O(log n) time. This is done with a binary tree that stores
Θ(log2 n) bits at the leaves, and at internal nodes stores summary rank/select
information on the subtrees. For larger alphabets, a wavelet tree using dynamic
bitmaps yields a dynamic sequence representation that takes nH0(T)+o(n logσ)
bits and solves all the operations in time O(log n log σ).

Very recently, in [9] they manage to improve the time complexities of this
solution. They show that the O(log n) time complexities can be achieved for
alphabets of size up to σ = O(log n). They combine this tool with a multiary
wavelet tree to achieve O(log n(1 + log σ

log log n)) time.
The key to the success of [9] is a clever detachment of two roles of tree leaves

that are entangled in [10]: In the latter, the leaves are the memory allocation
unit (that is, whole leaves are allocated or freed), and also the information sum-
marization unit (that is, the tree maintains information up to leaf granularity,
and the rest has to be collected by sequentially scanning a leaf). In [9] leaves
are the information summarization unit, but handle an internal linked list with
smaller memory allocation units. This permits moving symbols to accommodate
the space upon insertions/deletions within a leaf, without having to update sum-
marization information for the data moved. This was the main bottleneck that
prevented the use of larger alphabets in O(log n) time in [10].

However, compared to [10], the work in [9] has several weaknesses: (1) it is
not compressed, but rather takes n log σ + O(n) + o(n log σ) bits of space; (2) in

376 R. González and G. Navarro

addition to not compressing T , the extra space includes an O(n) term, as shown;
(3) times are amortized, not worst-case.

In this paper we show that it is possible to obtain the best from both worlds.
We combine the works in [10,9] to obtain a structure that (1) takes nH0(T) +
o(n log σ) bits of space, and (2) performs all the operations in O(log n(1 +

log σ
log log n)) worst-case time. (This is achieved even for the case where �log n�
changes and so does the length of the structure pointers in order to maintain
the promised space bounds.) The result becomes the most efficient dynamic
representation of sequences, both in time and space, and we show immediate
applications to other succinct data structures such as compressed text indexes.

This combination is by no means simple. Some parts are not hard to merge,
such as the role detachment for leaves [9] with the compressed representation of
sequences [3] and multi-ary wavelet trees, plus the memory management tech-
niques to support changes of �log n� within the same worst-case time bounds and
no extra space [10]. However, others require new algorithmic ideas. In [9] they
spend O(n) extra bits in bitmaps that maintain leaf-granularity information on
rank/select. We show that this can be replaced by dynamic partial sums, which
use sublinear space. However, we need σ partial sums and cannot afford to update
them individually upon a leaf insertion/deletion. Hence we create a new struc-
ture where a collection of σ sequences are maintained in synchronization. The
second problem was that leaf splitting/merging in [9] triggered too many updates
to summarization data, which could not be handled in O(log n) worst-case time,
only in O(log n) amortized time. To get rid of this problem we redefined the leaf
fill ratio invariants, preferring a weaker condition that still ensures that leaves
are sufficiently full and can be maintained within the O(log n)-worst-case-time
bound. Both ideas can be of independent interest.

As for the model of computation, our results (and all the mentioned ones) as-
sume a RAM model with word size w = Ω(log n), so that operations on O(log n)
contiguous bits can be carried out in constant time. For the dynamic structures,
we always allocate ω(log n)-bit chunks of the same size (or a finite set of sizes),
which can be handled in constant time and asymptotically no extra space [17].

2 Collection of Searchable Partial Sums with Indels

The Searchable Partial Sums with Indels (SPSI) problem [8] consists in main-
taining a sequence S of nonnegative integers s1, . . . , sn, each one of k = O(log n)
bits, supporting the following operations: sum(S, i) is

∑i
l=1 sl; search(S, y) is

the smallest i′ such that sum(S, i′) ≥ y; update(S, i, x) updates si to si + x (x
can be negative as long as the result is not); insert(S, i, x) inserts a new integer
x between si−1 and si; and delete(S, i) deletes si from the sequence.

It is possible to handle all these operations using kn+ o(kn) bits of space and
O(log n) time per operation [10]. We now define an extension of this problem,
that we call Collection of Searchable Partial Sums with Indels (CSPSI). This
problem consists in maintaining a collection of σ sequences C = {S1, . . . , Sσ} of
nonnegative integers {sj

i}1≤j≤σ,1≤i≤n, each one of k = O(log n) bits. We support

Improved Dynamic Rank-Select Entropy-Bound Structures 377

the following operations: sum(C, j, i) is
∑i

l=1 sj
l ; search(C, j, y) is the smallest

i′ such that sum(C, j, i′) ≥ y; update(C, j, i, x) updates sj
i to sj

i +x; insert(C, i)
inserts 0 between sj

i−1 and sj
i for all 1 ≤ j ≤ σ.; delete(C, i) deletes sj

i from the
sequence Sj for all 1 ≤ j ≤ σ; To perform delete(C, i) it must hold sj

i = 0 for
all 1 ≤ j ≤ σ. Next we show how to carry out all of these queries/operations in
O(σ + log n) time, using O(σkn) bits of space.

Data structure. We construct a red-black tree over C, where the size of each
leaf goes from 1

2 log2 n to 2 log2 n bits (they are allocated to hold 2 log2 n bits1).
The leftmost leaf contains s1

1 · · · s1
b1

s2
1 · · · s2

b1
· · · sσ

1 · · · sσ
b1

, the second leftmost
leaf contains s1

b1+1 · · · s1
b2

s2
b1+1 · · · s2

b2
· · · sσ

b1+1 · · · sσ
b2

, and so on. The size of the
leftmost leaf is σkb1 bits, the size of the second leftmost leaf is σk(b2 − b1) bits,
and so on. The size of the leaves is variable and bounded, so b1, b2, . . . are such
that 1

2 log2 n ≤ σkb1, σk(b2−b1), . . . ≤ 2 log2 n hold2. Each internal node v stores
counters {rj(v)}1≤j≤σ and p(v), where rj(v) is the sum of the integers in the
left subtree for sequence Sj and p(v) is the number of positions stored in the
left subtree (for any sequence).

Computing sum(C, j, i). We traverse the tree to find the leaf containing the
i-th position. We start with sum ← 0 and v ← root. If p(v) ≥ i we enter
the left subtree, otherwise we enter the right subtree with i ← i − p(v) and
sum ← sum+rj(v). We reach the leaf that contains the i-th position in O(log n)
time. Then we scan the leaf, summing up from where the sequence Sj begins, in
chunks of size 1

2 log n bits using a universal precomputed table Y , until we reach

position i. Table Y receives any possible sequence of dk bits, for d = �
1
2 log n

k �,
and gives the sum of the d k-bit numbers encoded. The last (at most d − 1)
integers must be added individually. (Note that if k > 1

2 log n we can just add
each number individually within the time bounds.) The sum query takes in total
O(log n) time, and table Y adds only O(

√
n polylog(n)) bits of space.

Computing search(C, j, y). We enter the tree to find the smallest i′ such that
sum(C, j, i′) ≥ y. We start with pos ← 0 and v ← root. If rj(v) ≥ y we enter
the left subtree, otherwise we enter the right subtree with y ← y − rj(v) and
pos ← pos + p(v). We reach the leaf that contains the i′-th position in O(log n)
time. Then we scan the leaf, summing up from where the sequence Sj begins,
in chunks of size 1

2 log n bits using table Y , until this sum is greater than y
after adding up i′ integers; the answer is then pos + i′. (Once an application of
the table exceeds y, we must reprocess the last chunk integer-wise.) The search
query takes in total O(log n) time.

Operation update(C, j, i, x). We proceed similarly to sum, updating rj(v) as we
traverse the tree. That is, we update rj(v) to rj(v)+x each time we go left from
v. When we reach the leaf we directly update sj

i to sj
i +x. The update operation

takes in total O(log n) time.

1 In most cases we ignore floors and ceilings for simplicity.
2 If σk > 2 log2 n, we just store σk bits per leaf. All the algorithms in the sequel are

simplified and the complexities are maintained.

378 R. González and G. Navarro

For the next operations, we note that a leaf has at most m = � 2 log2 n
σk � integers

from any sequence. Then a subsequence of a given sequence has at most mk bits.
So if we copy a subsequence in chunks of 1

2 log n bits, the subsequence will be
copied in 1 + 2mk

log n = O(1 + log n
σ) time in the RAM model (this requires shifting

bits, which in case it is not supported by the model, can be handled using small
universal tables of the kind of Y). As we have σ sequences, we can copy a given
subsequence of them all in O(σ + log n) time. The next operations are solved by
a constant number applications of these copying operations.

Operation insert(C, i). We traverse the tree similarly to sum, updating p(v) as
we traverse the tree. That is, we increase p(v) by 1 each time we go left from
v. Then we copy the leaf arrived at to a new memory area, adding a 0 between
sj

i−1 and sj
i for all j. This is done by first copying the subsequences . . . sj

i−1 for
all j, then adding 0 to each sequence, and finally copying the subsequences sj

i . . .
for all j. As we have just explained, this can be done in O(σ + log n) time.

If the new leaf uses more than 2 log2 n bits, the leaf is split in two. An over-
flowed leaf has m = �2 log2 n/(σk)� + 1 integers in each sequence. So we store
in the left leaf the first �m/2� integers of each sequence and in the right leaf we
store the rest. These two copies can be done again in O(σ + log n) time. These
new leaves are made children of a new node μ. We compute each rj(μ) by scan-
ning and summing on the left leaf. This summing can be done in O(σ + log n)
time using table Y . We also set p(μ) = �m/2�. Finally, we check if we need to
rebalance the tree. If needed, the read-black tree is rebalanced with just one
rotation and O(log n) red-black tag updates. After a rotation we need to update
rj(·) and p(·) only for three nodes, which is easily done in O(σ) time. The insert
operation takes in total O(σ + log n) time.

Operation delete(C, i). We traverse the tree similarly to sum, updating p(v)
while we traverse the tree. That is, we decrease p(v) by 1 each time we go left
from v. Then we copy the leaf to a new memory area, deleting sj

i for all j,
similarly to insert, in O(σ + log n) time.

There are three possibilities after this deletion: (i) The new leaf uses more
than 1

2 log2 n bits, in which case we are done. (ii) The new leaf uses less than
1
2 log2 n and its sibling is also a leaf, in which case we merge it with its sibling,
again in O(σ +log n) time. Note that this merging removes the leaf’s parent but
does not require any recomputation of rj(·) or p(·). (iii) The new leaf uses less
than 1

2 log2 n and its sibling is an internal node μ, in which case by the red-black
tree properties we have that μ must have two leaf children. In this case we merge
our new leaf with the closest child of μ, updating the counters of μ in O(σ) time,
and letting μ replace the parent of our original leaf.

In cases (ii) and (iii), the merged leaf might use more than 2 log2 n bits. In
this case we split it again into two halves, just as we do in insert (and including
the recomputation of rj(·) and p(·)). The tree might have to be rebalanced as
well. The delete operation takes in total O(σ + log n) time.

The space requirement is at most 4σkn bits for all the leaves. For each internal
node we have two pointers, a counter p(·), and σ counters rj(·) ≤ 2k·n, totalizing

Improved Dynamic Rank-Select Entropy-Bound Structures 379

O(log n)+ σ(k + logn) = O(σ log n) bits per node. So, all the internal nodes use
O(σkn

log2 n
σ log n) = O(σ2kn

log n) bits. We have proved our claim.

Theorem 1. The Collection of Searchable Partial Sums with Indels problem
with σ sequences of n numbers of k bits can be solved, in a RAM machine
of w = Ω(log n) bits, using O(σkn(1 + σ

log n)) bits of space, supporting all the
operations in O(σ + log n) worst-case time. Note that, if σ = O(log n) the space
is O(σkn) and the time is O(log n).

We note that we have actually assumed that w = Θ(log n) in our space compu-
tation (as we have used w-bit system pointers). The general case w = Ω(log n)
can be addressed using exactly the same techniques developed in [10], using a
more refined memory management with pointers of (log n)±1 bits, and splitting
the sequence into three in a way that retains the worst-case complexities.

We also note that the space can be improved to σkn(1 + O(σ
log n)) by using a

finer memory allocation policy for the leaves, just as done in the next sections
for sequences. The simpler result suffices for this paper.

3 Uncompressed Dynamic Rank-Select Structures for a
Small Alphabet

For a small alphabet of size σ = O(log n), we construct a red-black tree over
T [1, n] where each leaf contains a non-empty superblock of size up to 2 log2 n bits.
We will introduce invariants that guarantee that there are at most 1 + 2n log σ

log2 n

superblocks. Each internal node v stores counters r(v) and p(v), where r(v) is
the number of superblocks in the left subtree and p(v) is the number of symbols
stored in the left subtree. For each superblock i, we maintain sj

i , the number of
occurrences of symbol j in superblock i. We store all these sequences of numbers
using a Collection of Searchable Partial Sums with Indels, C. The length of each
sequence will be at most 2n log σ

log2 n
integers, σ = O(log n) and k = O(log log n). So

the partial sums operate in O(log n) worst-case time.
Each superblock is further divided into blocks of

√
log n log n bits, so each

superblock has up to 2
√

log n blocks. We maintain these blocks using a linked
list. Only the last block could be not fully used.

A superblock storing less than log2 n bits is called sparse. Operations insert
and delete will maintain the invariant that no two consecutive sparse superblocks
may exist. This ensures that every consecutive pair of superblocks holds at least
log2 n bits from T , and thus that there are at most 1 + 2n log σ

log2 n
superblocks.

The space usage of our structure is n log σ + O(n log σ√
log n

), as σ = O(log n):

The text itself uses n logσ bits of space. The CSPSI uses O(σ log log nn log σ
log2 n

) =

O(n log log n log σ
log n) bits of space. Each pointer of the linked list of blocks uses

O(log n) bits and we have O(n log σ√
log n log n

) blocks, totalizing O(n log σ√
log n

) bits. The
last block in each superblock is not necessarily fully used. We have at most
1 + 2n log σ

log2 n
superblocks, each of which can waste a full block of size

√
log n log n

380 R. González and G. Navarro

bits, totalizing O(n log σ√
log n

) bits. Inside each block, we can lose at most log σ bits

due to symbol misalignment, totalizing O(n log2 σ√
log n log n

) = O(n log log n log σ√
log n log n

) bits.

The tree pointers and counters use O(n log σ
log2 n

· log n) = O(n log σ
log n) bits.

Now we show how to carry out all the queries/operations in O(log n) time.
First, it is important to notice that each block can be scanned or shifted in

√
log n

time, using tables that process chunks of 1
2 log n bits (again, if σ > 1

2 log n we can
process each symbol individually within the time bounds). Given that there are
at most O(

√
log n) blocks in a superblock, we can scan or shift elements within

a superblock in O(log n) time, even considering block boundaries.

Computing access(T, i). We traverse the tree to find the leaf containing the i-th
position. We start with sb ← 1 and pos ← i. if p(v) ≥ pos we enter the left
subtree, otherwise we enter the right subtree with sb ← sb + r(v) and pos ←
pos − p(v). We reach the leaf that contains the i-th position in O(log n) time.
Then we directly access the pos-th symbol of sb. Note that, within the same
O(log n) time, we can extract any O(log n)-bit long sequence of symbols from T .

Computing rankc(T, i). We find the leaf containing the i-th position, just as
for access. Then we scan superblock sb from the first block summing up the
occurrences of c up to the position pos, using a table Z to sum the c’s. We add
to this quantity sum(C, c, sb − 1), the number of times that c appears before
superblock sb. The rank query takes in total O(log n) time. Table Z is of the
same spirit of Y and requires O(σ

√
n polylog(n)) = O(

√
n polylog(n)) bits.

Computing selectc(T, i). We calculate j = search(C, c, i); this way we know
that the i-th c belongs to superblock j and it is the i′-th appearance of c within
superblock j, for i′ = i − sum(C, c, j − 1). Then we traverse the tree to find the
leaf representing superblock j. We start with sb ← j and pos ← 0. if r(v) ≥ sb we
enter the left subtree, otherwise we enter the right subtree with sb ← sb − r(v)
and pos ← pos + p(v). We reach the correct leaf in O(log n) time. Then we
scan superblock j from the first block, searching for the position of the i′-th
appearance of symbol c within superblock j, using table Z. To this position we
add pos to obtain the final result. The select query takes in total O(log n) time.

Operation insertc(T, i). We obtain sb and pos just like in the access query, except
that we start with pos ← i − 1, so as to insert right after position i − 1. Then,
if superblock sb contains room for one more symbol, we insert c right after the
pos-th position of sb, by shifting the symbols through the blocks as explained.
We also carry out update(C, c, sb, 1) and retraverse the path from the root to sb
adding 1 to p(v) each time we go left from v.

If this insertion causes an overflow in the last block of sb, we simply add a new
block at the end of the linked list to hold the trailing symbol (which is usually
not the same symbol inserted). In this case we finish in O(log n) time.

If, instead, the superblock is full, we cannot carry out the insertion yet. We
first move one symbol to the previous superblock (creating a new one if this is not
possible). We first deleted(T, ·) the first symbol d from block sb, which cannot
cause an underflow of sb. Now, we check how many symbols does superblock

Improved Dynamic Rank-Select Entropy-Bound Structures 381

sb − 1 have: we traverse the tree searching for it, and deduce its size from the
r(v) counters in the tree. If it can hold one more symbol, we insertd(T, ·) the
removed symbol d at the end of superblock sb − 1. This recursive invocation to
insert will not overflow leaf sb − 1.

If superblock sb−1 is also full or does not exist, then we are entitled to create
a sparse superblock between sb − 1 and sb, without breaking the invariant on
sparse superblocks. We create such an empty superblock and insert symbol d
into it, using the following procedure: We retraverse the path from the root to
sb, updating r(v) to r(v) + 1 each time we go left from v. When we arrive again
at leaf sb we create a new node μ with r(μ) = 1 and p(μ) = 1. Its left child is
the new empty superblock, where the single symbol d is inserted, and its right
child is sb. We also execute insert(C, sb) and update(C, sb, d, 1).

Finally, we check if we need to rebalance the tree. If it is needed, it can be
done with one rotation and O(log n) red-black tag updates, given that we use a
red-black tree. After a rotation we need to update r(·) and p(·) only for three
nodes. These updates can be done in O(1) time.

Now that we have finally made room to carry out the original insertion, we
rerun insertc(T, i) and it will not overflow again. The whole insert operation
takes O(log n) time.

Operation delete(T, i). We obtain sb and pos just as in the access query, updating
p(v) to p(v) − 1 each time we go left from v. Then we delete the pos-th position
(let c be the symbol deleted) of the sb-th superblock, by shifting the symbols
back through the blocks. If this deletion empties the last block, we free it. In
any case we call update(C, c, sb, −1) on the partial sums.

There are three possibilities after this deletion: (i) superblock sb is not sparse
after the deletion, in which case we are done; (ii) sb was already sparse before
the deletion, in which case we have only to check that it has not become empty;
(iii) sb turned to sparse due to the deletion, in which case we have to care about
the invariant on sparse superblocks.

If superblock sb becomes empty, we retraverse the path from the root to it,
updating r(v) to r(v)−1 each time we go left from v, in O(log n) time. When we
arrive at leaf sb again, we delete it and do operation delete(C, sb). Finally, we
check if we need to rebalance the tree, in which case one rotation and O(log n)
red-black tag updates suffice, just as for insertion. After a rotation we also need
to update r(·) and p(·) only for three nodes. These updates take O(1) time.

If, instead, superblock sb turned to sparse, we make sure that neither su-
perblocks sb−1 or sb+1 are also sparse. If they are not, then superblock sb can
become sparse and hence we finish without further intervention.

If superblock sb−1 is sparse, we delete(T, ·) its last symbol d, and insertd(T, ·)
it in the beginning of superblock sb. This recursive call brings no problems
because sb − 1 is already sparse, and we restore the non-sparse status of sb. If
superblock sb − 1 becomes empty, we delete it just as explained for the case of
superblock sb. The action is symmetric if sb − 1 is not sparse but sb + 1 is.

The delete operation takes in total O(log n) time.

382 R. González and G. Navarro

Theorem 2. Given a text T of length n over a small alphabet of size σ =
O(log n), the Dynamic Sequence with Indels problem under RAM model with
word size w = Ω(log n) can be solved using n log σ + O(n log σ√

log n
) bits of space,

supporting all the operations in O(log n) worst-case time.

We note again that we have actually assumed that w = Θ(log n) in our space
computation, and that the general case w = Ω(log n) can be obtained using
exactly the same techniques developed in [10, Sec. 4.5, 4.6, and 6.4].

4 Compressed Dynamic Rank-Select Structures

Thm. 2 can be extended to use a compressed sequence representation, by just
changing the way we store/manage the blocks. The key idea is to detach the
representational and the physical (i.e., compressed) sizes of the storage units at
different levels.

We use the same red-black tree over T [1, n], where each leaf contains a non-
empty superblock representing up to 2 log2 n bits of the original text T (they will
actually store more or less bits depending on how compressible is the portion
of T they represent). The same superblock splitting/merging policy related to
sparse superblocks is used. Each internal node has the same counters and they
are managed in the same way. So all the queries/operations are exactly the same
up to the superblock level. Compression is encapsulated within superblocks.

In physical terms, a superblock is divided into blocks just as before, and they
are still of the same physical size,

√
log n log n bits. Depending on compressibility,

blocks will represent more or less symbols of the original text, as their physical
size is fixed.

In logical terms, a superblock is be divided into subblocks representing 1
2 log n

bits (that is, 1
2 logσ n symbols3) from T . We represent each subblock using the

(c, o)-pair encoding of [3]: The c part is of fixed width and tells how many
occurrences of each alphabet symbol are there in the subblock; whereas the o
part is of variable width and gives the identifier of the subblock among those
sharing the same c component. Each c component uses at most σ log log n bits;
while the o components use at most 1

2 log n bits each, and overall add up to
nH0(T) + O(n log σ/ log n) bits [3, Sec. 3.1].

In a block of
√

log n log n bits, we store as many subblocks as they fit, wasting
at most σ log log n + 1

2 log n unused bits at the end. The universal tables (like
Y) used to sequentially process the blocks in chunks of Θ(log n) bits must now
be modified to process the compressed sequence of (c, o) pairs. This is complex
because an insertion in a subblock introduces a displacement that propagates
over all the subblocks of the block, which must be completely recomputed and
rewritten (the physical size of the whole superblock can even double!). Fortu-
nately all those tedious details have been already sorted out in [10, Sec. 5.2,
6.1, and 6.2], where their superblocks play the role of our blocks, and their tree
rearrangements are not necessary for us because we are within a leaf now. Their
3 Or just one symbol if 1

2 logσ n < 1.

Improved Dynamic Rank-Select Entropy-Bound Structures 383

“partial blocks” mechanism is also not useful for us, because we can tolerate
those propagations to extend over all the blocks of our superblocks. Hence only
the last block of our superblocks is not as full as misalignments permit.

The time achieved in [10] is O(1) per Θ(log n) physical bits. Even in the worst
case (where compression does not work at all in the superblock), the number of
physical bits will be 2 log2 n

1
2 log n

(σ log log n + 1
2 log n) = O(log2 n + σ log n log log n),

and thus the time to solve any query or carry out any update on a superblock
will be O(log n + σ log log n).

We compute the space usage of these new structures, where it differs from the
uncompressed version: The text itself uses nH0(T) + O(σn log log n

logσ n) bits. Inside
each block, we can lose at most O(σ log log n + log n) bits due to misalignments,
totalizing O(n log σ(σ log log n+log n)√

log n log n
) bits. The extra space to operate the (c, o)

encoding is O(
√

n σ polylog(n)) bits.
The time and space complexities depend sharply on σ. Thus the solution is

indeed of interest only for rather small σ = o(log n/ log log n). For such a small
alphabet we have the following theorem. Again, all the issues of varying �log n�
and the case w = ω(log n) are handled just as in [10, Sec. 4.5, 4.6, and 6.4].

Theorem 3. Given a text T of length n over a small alphabet of size σ =
o(log n/ log log n) and zero-order entropy H0(T), the Dynamic Sequence with
Indels problem under RAM model with word size w = Ω(log n) can be solved
using nH0(T) + O(n log σ√

log n
) bits of space, supporting all operations in O(log n)

worst-case time.

To extend our results for a large alphabet of size σ = Ω(log n/ log log n), we use a
generalized ρ-ary wavelet tree [3] over T , where ρ = Θ(

√
log n). Essentially, this

generalized wavelet tree makes a sequence with the first log ρ bits of the symbols
at the first level, the next log ρ bits at the second level (where the symbols with
the same first log ρ bits are grouped in the same child of the root), and so on.
The tree has O(logρ σ) = O(log σ

log log n) levels. We store on each level a sequence
over an alphabet of size ρ, which can be handled using the solution of Thm. 3,
for which ρ is small enough. Hence each operation takes O(log n) time per level,
adding up O(log n log σ

log log n) worst-case time.
As shown in [3], the sum of the zero-order-entropy representations of the

sequences at each level adds up to the zero-order entropy of T . In addition, the
generalized ρ-ary wavelet tree handles changes in �log n� automatically, as this
is encapsulated within each level. We thus obtain our main theorem, where we
have included the case of small σ as well. We recall that, within the same time,
access can retrieve O(logσ n) consecutive symbols from T .

Theorem 4. Given a text T of length n over an alphabet of size σ and zero-
order entropy H0(T), the Dynamic Sequence with Indels problem under RAM
model with word size w = Ω(log n) can be solved using nH0(T) + O(n log σ√

log n
) bits

of space, supporting all the operations in O(log n(1 + log σ
log log n)) worst-case time.

384 R. González and G. Navarro

5 Conclusions

We have shown that the best two existing solutions to the Dynamic Sequence
with Indels problem [10,9] can be merged so as to obtain the best from both. This
merging is not trivial and involves some byproducts that can be of independent
interest. We show now a couple of immediate consequences of our result.

In [10,11] it is shown that a wavelet tree built over the Burrows-Wheeler
Transform T bwt of a text T [1], and compressed using the (c, o) pair technique,
achieves high-order entropy space, namely nHh(T) + o(n log σ) for any h + 1 ≤
α logσ n and constant 0 < α < 1, where Hh(T) is the h-th order empirical entropy
of T [13]. This is used in [10] to obtain a dynamic text index that handles a
collection C of texts and permits searching for patterns, extracting text snippets,
and inserting/deleting texts in/from the collection. Using the definitions of [10,
Sec. 7] and using the same sampling step, we can state a stronger version of
those theorems:

Theorem 5. The Dynamic Text Collection problem can be solved with a data
structure of size nHh(C) + o(n log σ) + O(σh+1 log n + m log n + w) bits, si-
multaneously for all h. Here n is the length of the concatenation of m texts,
C = 0 T10 T2 · · · 0 Tm, and we assume that σ = o(n) is the alphabet size and
w = Ω(log n) is the machine word size under the RAM model. The structure
supports counting of the occurrences of a pattern P in O(|P | log n(1 + log σ

log log n))
time, and inserting and deleting a text T in O(|T | log n(1 + log σ

log log n)) time. Af-
ter counting, any occurrence can be located in time O(log n + logσ n log log n).
Any substring of length 	 from any T in the collection can be displayed in time
O(log n+logσ n log log n+	(1+ log σ

log log n)). For h ≤ (α logσ n)−1, for any constant
0 < α < 1, the space complexity simplifies to nHh(C)+o(n log σ)+O(m log n+w).

Another important application that derives from this one is the compressed
construction of text indexes. For example, a variant of the FM-index [3] requires
h-th entropy space once built, but in order to build it we need O(n log n) bits
of space. The previous theorem can be used in order to build the FM-index of
a text by starting with an empty collection and inserting the text T of interest.
Our new results make this process faster.

Theorem 6. The Alphabet-Friendly FM-index of a text T [1, n] over an alphabet
of size σ can be built using nHh(T) + o(n log σ) bits, simultaneously for all h ≤
(α logσ n) − 1 and any constant 0 < α < 1, in time O(n log n(1 + log σ

log log n)).

We note that this is the same asymptotic space required for the final, static, FM-
index [3]. This result has some obvious consequences on building suffix arrays
[12] and computing the Burrows-Wheeler Transform [1] of T in little space, which
we omit for lack of space.

In [2] they show that the Dynamic Bit-Sequence with Indels problem can be
solved in O(log n

log log n) time for all operations, using O(n) bits of space. Combining
with wavelet trees one achieves O(n log σ) bits of space and O(log n log σ

(log log n)2) time

Improved Dynamic Rank-Select Entropy-Bound Structures 385

for Dynamic Sequences with Indels . This raises the challenge of achieving that
time within nH0 + o(n log σ) bits of space.

Alternatively, one would like to improve the space to high-order entropy (not
only for the Dynamic Text Collection problem, but for the Dynamic Sequence
with Indels problem). This has not been achieved even if we limit the operations
to access, insert, and delete. The dynamic support for the existing nHk-space
solutions to access is currently null or very rudimentary [18,6,4].

References

1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

2. Chan, H., Hon, W., Lam, T., Sadakane, K.: Compressed indexes for dynamic text
collections. ACM TALG 3(2), 21 (2007)

3. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM TALG 3(2) (2007) (article 20)

4. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science 372(1), 115–121 (2007)

5. Foschini, L., Grossi, R., Gupta, A., Vitter, J.: When indexing equals compression:
Experiments with compressing suffix arrays and applications. ACM TALG 2(4),
611–639 (2006)

6. González, R., Navarro, G.: Statistical encoding of succinct data structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 295–306.
Springer, Heidelberg (2006)

7. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

8. Hon, W.-K., Sadakane, K., Sung, W.-K.: Succinct data structures for searchable
partials sums. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS,
vol. 2906, pp. 505–516. Springer, Heidelberg (2003)

9. Lee, S., Park, K.: Dynamic rank-select structures with applications to run-length
encoded texts. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 95–
106. Springer, Heidelberg (2007)

10. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009,
pp. 307–318. Springer, Heidelberg (2006), ftp://ftp.dcc.uchile.cl/pub/users/
gnavarro/dynamic.ps.gz

11. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp.
214–226. Springer, Heidelberg (2007)

12. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM Journal of Computing 22, 935–948 (1993)

13. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407–430 (2001)

14. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

15. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1) (2007) (article 2)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/dynamic.ps.gz
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/dynamic.ps.gz

386 R. González and G. Navarro

16. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)

17. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 357–368. Springer, Heidelberg (2003)

18. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: Proc. 17th SODA, pp. 1230–1239 (2006)

An Improved Algorithm Finding Nearest

Neighbor Using Kd-trees

Rina Panigrahy

Microsoft Research, Mountain View CA, USA
rina@microsoft.com

Abstract. We suggest a simple modification to the Kd-tree search algo-
rithm for nearest neighbor search resulting in an improved performance.
The Kd-tree data structure seems to work well in finding nearest neigh-
bors in low dimensions but its performance degrades even if the number
of dimensions increases to more than two. Since the exact nearest neigh-
bor search problem suffers from the curse of dimensionality we focus on
approximate solutions; a c-approximate nearest neighbor is any neighbor
within distance at most c times the distance to the nearest neighbor. We
show that for a randomly constructed database of points if the query
point is chosen close to one of the points in the data base, the traditional
Kd-tree search algorithm has a very low probability of finding an approx-
imate nearest neighbor; the probability of success drops exponentially in
the number of dimensions d as e−Ω(d/c). However, a simple change to the
search algorithm results in a much higher chance of success. Instead of
searching for the query point in the Kd-tree we search for a random set of
points in the neighborhood of the query point. It turns out that search-
ing for eΩ(d/c) such points can find the c-approximate nearest neighbor
with a much higher chance of success.

1 Introduction

In this paper we study the problem of finding the nearest neighbor of a query
point in a high dimensional (at least three) space focusing mainly on the Euclid-
ean space: given a database of n points in a d dimensional space, find the nearest
neighbor of a query point. This fundamental problem arises in several appli-
cations including data mining, information retrieval, and image search where
distinctive features of the objects are represented as points in R

d [28,30,6,7,12,
11, 27, 10].

One of the earliest data structures proposed for this problem that is still
the most commonly used is the Kd-tree [3] that is essentially a hierarchical de-
composition of space along different dimensions. For low dimensions this struc-
ture can be used for answering nearest neighbor queries in logarithmic time
and linear space. However the performance seems to degrade as a number of
dimensions becomes larger than two. For high dimensions, the exact problem
of nearest neighbor search seems to suffer from the curse of dimensionality;
that is, either the running time or the space requirement grows exponentially

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 387–398, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

388 R. Panigrahy

in d. For instance Clarkson [5] makes use of O(n�d/2�(1+δ)) space and achieves
O(2O(d log d) log n) time. Meiser [24] obtains a query time of O(d5 log n) but with
O(nd+δ) space.

The situation is much of a better for finding an approximate solution whose
distance from the query point is at most 1 + ε times its distance from the
nearest neighbor [2, 21, 18, 22]. Arya et. al. [2] use a variant of Kd-trees that
they call BDD-trees (Balanced Box-Decomposition trees) that performs (1 + ε)-
approximate nearest neighbor queries in time O(d�1 + 6d/ε�d log n) and linear
space. For arbitrarily high dimensions, Kushilevitz et. al. [22] provide an algo-
rithm for finding an (1 + ε)-approximate nearest neighbor of a query point in
time Õ(d log n) using a data structure of size (nd)O(1/ε2). Since the exponent
of the space requirement grows as 1/ε2, in practice this may be prohibitively
expensive for small ε. Indeed, since even a space complexity of (nd)2 may be too
large, perhaps it makes more sense to interpret these results as efficient, practi-
cal algorithms for c-approximate nearest neighbor where c is a constant greater
than one. Note that if the gap between the distance to the nearest neighbor and
to any other point is more than a factor of c then the c-approximate nearest
neighbor is same as the nearest neighbor. So in such cases – which may very well
hold in practice – these algorithms can indeed find the nearest neighbor.

Indyk and Motwani [18] provide results similar to those in [22] but use hashing
to perform approximate nearest neighbor search. They provide an algorithm for
finding the c-approximate nearest neighbor in time Õ(d + n1/c) using an index
of size Õ(n1+1/c) (while their paper states a query time of Õ(dn1/c), if d is
large this can easily be converted to Õ(d + n1/c) by dimension reduction). In
their formulation, they use a locality sensitive hash function that maps points
in the space to a discrete space where nearby points out likely to get hashed
to the same value and far off points out likely to get hashed to different values.
Precisely, given a parameter m that denotes the probability that two points at
most r apart hash to the same bucket and g the probability that two points more
than cr apart hash to the same bucket, they show that such a family of hash
functions can find a c-approximate nearest neighbor in Õ(d + nρ) time using a
data structure of size Õ(n1+ρ) where ρ = log(1/m)/log(1/g). Recently, Andoni
and Indyk [1] obtained and improved locality sensitive hash function for the
Euclidean norm resulting in a ρ value of O(1/c2) matching the lower bounds for
locality sensitive hashing method from [25]. An information theoretic formulation
of locality sensitive hashing was studied in [26] resulting in a data structure of
linear size; the idea there was to perturb the query point before searching for it
in the hash table and do this for a few iterations.

However, to the best of our knowledge the most commonly used method in
practice is the old Kd-tree. We show that a simple modification to the search
algorithm on a Kd-tree can be used to find the nearest neighbor in high dimen-
sions more efficiently. The modification consists of simply perturbing the query
point before traversing the tree, and repeating this for a few iterations. This is
essentially the same idea from [26] on locality sensitive hash functions applied
to Kd-trees. For a certain database of random points if we choose a query point

An Improved Algorithm Finding Nearest Neighbor Using Kd-trees 389

close to one of the points in the database, we show that the traditional Kd-tree
search algorithm has a very low probability of finding the nearest neighbor –
e−Ω(d/c) where c is a parameter that denotes how much closer the query point
is to the nearest neighbor than to other points in the database. Essentially c
is the inverse ratio of the distance of the nearest query point to the nearest
and the second nearest neighbor; so one can think of the nearest neighbor as a
c-approximate nearest neighbor. Next we show that the modified algorithm sig-
nificantly improves the probability of finding the c-approximate nearest neighbor
by performing eO(d/c) iterations. One may be tempted to think that if the tradi-
tional algortithm has a success probability of e−Ω(d/c), perhaps we could simply
repeat it eO(d/c) times to boost the probability to a constant. However, this
doesn’t work in our situation since repeating the same query in a tree will al-
ways give the same result. One can use a different (randomly constructed) tree
each time but this will blow up the space requirement to that of eO(d/c) trees.
Our result essentially shows how to boost the probability while using one tree
but by perturbing the query point each time. The intuition behind this approach
is that when we perturb the query point and then search the tree, we end up
looking not only at one leaf region but also the neighboring leaf regions that are
close to the query point thus increasing the probability of success. This is similar
in spirit to some of the variants of Kd-trees such as [2] that maintain explicit
pointers from each leaf to near by leaves; our method on the other hand per-
forms this implicity without maintaining pointers which keep the data structure
simple. We also provide empirical evidence through simulations to show that
the simple modification results in high probability of success in finding nearest
neighbor search in high dimensions.

We apply the search algorithms on a planted instance of the nearest neighbor
problem on a database of n points chosen randomly in a unit d-dimensional
cube. We then plant a query point close of one of the database points p (chosen
randomly) and then ask the search algorithm for the nearest neighbor of our
planted query point. The query point is chosen randomly on a ball of a certain
radius around p so that it is much closer to p than to any other point in the
database – by a factor of c. We measure the efficacy of an algorithm by looking
at the probability that it returns the nearest neighbor p on query q. It is for
this distribution that we will show a low success probability for the traditional
Kd-tree search algorithm and a high probability of success for our modified
algorithm.

In our experiments we observed that our modified algorithm indeed boosts
the probability of success. For instance in a database of million points in 3
dimensions we plant a query point close to a random database point; the query
point is closer to its nearest neighbor than any other point by a factor of c =
2. For this instance we find that the Kd-tree search algorithm succeeds with
probability 74%; whereas, this can be boosted to about 90% byrunning our
modified algorithm with only 5 iterations. The success probability increases with
more iterations.

390 R. Panigrahy

2 Preliminaries

2.1 Problem Statement

Given a set S of n points in d-dimensions, our objective is to construct a data
structure that given a query finds the nearest (or a c-approximate) neighbor. A
c-approximate near neighbor is a point at distance at most c times the distance to
the nearest neighbor. Alternatively it can be viewed as finding the exact nearest
neighbor when the second nearest neighbor is more than c times the distance to
the nearest neighbor.

We also work with the following decision version of the c-approximate nearest
neighbor problem: given a query point and a parameter r indicating the distance
to its nearest neighbor, find any neighbor of the query point that is that distance
at most cr. We will refer to this decision version as the (r, cr)-nearest neighbor
problem and a solution to this as a (r, cr)-nearest neighbor. It is well known that
the reduction to the decision version adds only a logarithmic factor in the time
and space complexity [18,13]. We will be working with the euclidian norm in R

d

space.

2.2 Kd-trees

Although many different flavors of Kd-trees have been devised, their essential
strategy is to hierarchically decompose space into a relatively small number of
cells such that no cell contains too many input objects. This provides a fast way
to access any input object by position. We traverse down the hierarchy until
we find the cell containing the object. Typical algorithms construct Kd-trees by
partitioning point sets recursively along with different dimensions. Each node in
the tree is defined by a plane through one of the dimensions that partitions the
set of points into left/right (or up/down) sets, each with half the points of the
parent node. These children are again partitioned into equal halves, using planes
through a different dimension. Partitioning stops after logn levels, with each
point in its own leaf cell. The partitioning loops through the different dimensions
for the different levels of the tree, using the median point for the partition. Kd-
trees are known to work well in low dimensions but seem to fail as the number
of dimensions increase beyond three.

Notations:

– B(p, r): Let B(p, r) denote the sphere of radius r centered at p a point in
R

d; that is the set of points at distance r from p.
– I(X): For a discrete random variable X , let I(X) denote its information-

entropy. For example if X takes N possible values with probabilities
w1, w2, ..., wN then I(X) = I(w1, w2, .., wN) =

∑
I(wi) =

∑
−wi log wi.

For a probability value p, we will use the overloaded notation I(p, 1 − p) to
denote −p log p − (1 − p) log(1 − p)

– N(μ, r), η(x): Let N(μ, r) denote the normal distribution with mean μ and
variance r2 with probability density function given by 1

r
√

2π
e−(x−μ)2/(2r2).

Let η(x) denote the function 1√
2π

e−x2/2.

An Improved Algorithm Finding Nearest Neighbor Using Kd-trees 391

– Nd(p, r): For the d-dimensional Euclidean space, for a point p =
(p1, p2, ..., pd) ∈ R

d let Nd(p, r) denote the normal distribution in R
d around

the point p where the ith coordinate is randomly chosen from the normal
distribution N(pi, r/

√
d) with mean pi and variance r2/d. It is well known

that this distribution is spherically symmetric around p. A point from this
distribution is expected to be at root-mean squared distance r from p; in
fact, for large d its distance from p is close to r with high probability (see
for example lemma 6 in [18])

– erf(x), Φ(x): The well-known error function erf(x) = 2√
π

∫ x

0
e−x2

dx, is

equal to the probability that a random variable from N(0, 1/
√

2) lies be-
tween −x and x. Let Φ(x) = 1√

2π

∫ ∞
x

e−x2/2 dx = 1−erf(x/
√

2)
2 . For x ≥ 0,

Φ(x) is the probability that a random variable from the distribution N(0, 1)
is greater than x.

– Pinv(k, r): Let Pinv(k, r) denote the distribution of the time it takes to
see k events in a poisson process of rate r. Pinv(1, r) is the exponential
distribution with rate r.

3 An Improved Search Algorithm on Kd-trees

We will study the nearest neighbor search problem on the following planted
instance in a random database. Consider a database of points chosen randomly
and uniformly from the unit cube [0, 1]d. We will then choose a random database
point p and implant query point q that is about c times closer to p than its
distance to any other database point. Success of an algorithm is measured by
the probability of finding the nearest neighbor. Let r denote the distance of a
random point in [0, 1]d to the nearest database point. We will show that if the
query point is chosen to be a random point at distance about r/c around p (
precisely, q is chosen from Nd(p, r/c)) then the probability that a Kd-tree search
algorithm reports the nearest neighbor p is about e−Ω(d/c).

We then propose a minor modification to the search algorithm so as to boost
this probability to a large value. The modification is simple: Instead of search-
ing for the query point q in the Kd-tree, perturb it randomly by distance r/c
(precisely, the perturbed point is chosen from Nd(q, r/c)) and search for this
perturbed point in the Kd-tree using the regular Kd-tree search algorithm. Re-
peat this for eO(d/c) random perturbations and report the nearest neighbor found
using the Kd tree. We will show that this simple modification results in an a
much higher chance of finding the nearest neighbor p.

4 Traditional Kd-tree Algorithms Fails with High
Probability

In this section we show that the traditional Kd-tree algorithm fails in solving
the planted instance of the nearest neighbor problem with high probability; the

392 R. Panigrahy

success probability is at most e−Ω(d/c). The following lemma estimates r, the
distance from a random point in the unit cube to the nearest database point.

Lemma 1. With high probability of 1 − O(1/2d), the distance r of a random
point in the unit cube to the nearest point in the database is Θ(

√
d/n1/d)

Proof. The volume of a sphere of radius r in d dimensions is 2πd/2rd

dΓ (d/2) =
Θ(1) 1

d3/2 (2eπ
d)d/2rd. Since there are n random points in the database, the ex-

pected number of points in a ball of radius r is Θ(1)n 1
d3/2 (2eπ

d)d/2rd. So the
radius for which the expected number of points in this ball is one is given by
r = Θ(

√
d

n1/d) (We have used the Stirlings approximation for the Γ function which
is valid only for integral arguments. Although, d/2 may not be integral it lies be-
tween two consecutive integers and this proves the Θ bound on r. Note that even
if the point is near the boundary of the cube, at least 1/2d fraction of the sphere
is inside the cube which does not change the value of r by more than a constant
factor). The value of r is sharply concentrated around this value as the volume of
the sphere in high dimensions changes dramatically with a change in the radius;
by a factor of 2d with a factor 2 change in the radius. High concentration bounds
can be used to show that there must be at least one point for larger radii and al-
most no point for smaller radii. For this value of r, the probability that there is a
database point at distance r/2 is at most n1/(2dn) = 1/2d. And the probability
that there is no point within distance 2r is atmost (1 − 2d/n)n = exp(−2d).

Lemma 2. If we pick a random query point q at distance r/c from a random
point in the database then the probability that a Kd-tree search returns the nearest
neighbor is at most e−Ω(d/c).

Proof. Let us focus on a leaf cell containing the point p. We need to compute
the probability that a random query point q chosen from N(p, r/c) lies within
the same cell.

If we project the cell along any one dimension we get an interval. Since the
Kd-tree has depth log n, the number of branches along any one dimension is
log n

d . And since we are picking a random cell, the expected value of the length
l of this interval containing p is E[l] = 1/2

log n
d = 1/n1/d. So with probability at

least 1/2, l < 2/n1/d. Conditioned on the event that l < 2/n1/d, we will argue
that the probability that the query point q lies outside the interval is Ω(1/c).
To see this note that if x denotes the distance of p from one of the end points of
the interval then x is distributed uniformly in the range [0, l] since p is a random
point in its cell. Since along one dimension q and p are separated by a distance
of N(0, r

c
√

d
) = N(0, 1

cn1/d) (ignoring the Θ in the expression for r for simpler

notation), the probability that q does not line the interval is Φ(xcn1/d). By a
standard change of variable to z = xcn1/d this amounts to the expected value
of Φ(z) where z is uniformly distributed in the range [0, 2c]. Looking at integral
values of z, observe that Φ(z) = e−Ω(z2) drops at least geometrically with each
increment of z. So the expected value of Φ(z) is

∫ 2c

0
1
2ce−Ω(z2) dz = Ω(1/c).

An Improved Algorithm Finding Nearest Neighbor Using Kd-trees 393

This implies that along any one dimension the probability that q lies within the
projection along that dimension of the cell containing p is at most 1 − Ω(1/c).
Since values along all dimensions are independent, the probability that q lies
within the cell of p is at most (1 − Ω(1/c))d = e−Ω(d/c).

5 Modified Algorithm has a Higher Probability of
Success

We will show that the modified algorithm has a much higher probability of
success. Although our theoretical guarantee only provides a success probability
of Ω(c/d), we believe this is simply an artifact of our analysis. Our experimental
results show that the success probability is very high.

Theorem 1. With probability at least Ω(c/d), the new search algorithm finds
the nearest neighbor in eO(d/c) iterations for the random database and the planted
query point.

The proof of this theorem follows from the following two lemmas.
Guessing the value of a random variable: We first present a lemma that states the
number of times one needs to guess a random variable with a given distribution
so as to guess its correct value. If a random variable takes one of N discrete
values with equal probability then a simple coupon collection based argument
shows that if we guess N random values at least one of them should hit the
correct value with constant probability. The following lemma taken from [26]
states the required number of samples for arbitrary random variables so as to
‘hit’ a given random value of the variable.

Lemma 3. [26] Given an random instance x of a discrete random variable with
a certain distribution D with entropy I, if O(2I) random samples are chosen
from this distribution at least one of them is equal to x with probability at least
Ω(1/I).

Proof. Assume that the distribution D takes N values with probabilites
w1, w2, ..., wN . x is equal to the ith value with probability wi. If s samples are
randomly chosen from the distribution, the probability that at least one of them
takes the ith value is 1 − (1 − wi)s. After s = 4.(2I + 1) samples the probabil-
ity that x is chosen is

∑
i wi[1 − (1 − wi)s]. If wi ≥ 1/s then the term in the

summation is at least wi(1 − 1/e). Divide the probability values w1, w2, ..., wN

into two parts – those at least 1/s and the others less than 1/s. So if all the
w′

is that are at least 1/s add up to at least 1/I then the above sum is at least
Ω(1/I). Otherwise we have a collection of w′

is each of which is at most 1/s and
they together add up to more than 1 − 1/I.

But then by paying attention to these probabilities we see that the entropy I =∑
i wi log(1/wi) ≥

∑
i wi log s ≥ (1− 1/I) log s ≥ (1− 1/I)(I +2) = I +1− 2/I.

For I ≥ 4, this is strictly greater than I, which is a contradiction. If I < 4 then
the largest wi must be at least 1/16 as otherwise a similar argument shows that

394 R. Panigrahy

I =
∑

i wi log(1/wi) > wi log 16 = 4, a contradiction; so in this case even one
sample guesses x with constant probability.

Distribution of Kd-tree partition sizes: Let us now estimate the distribution of
the Kd-tree partition sizes as we walk down the tree. Consider a random point p
in the database and the Kd-tree traversal while searching p. As we walk down the
tree the cell containing p shrinks from the entire unit cube to the single leaf cell
containing p. The leaf cell of p is specified by log n choices of left or right while
traversing the Kd-tree. Let us track the length of the cell along a dimension as
we walk down the tree. The number of decisions along each dimension is log n

d .
Focusing on the first dimension (say x-axis), look at the interval along the x-axis
containing p. The interval gets shorter as we partition along the x-axis. Let li
denote the length of this interval after the ith branch along the x-axis; note that
two successive branches along the x-axis are separated by d − 1 branches along
the other dimensions. The initial cell length l0 = 1. E[li] = 1/2i; let us look at
the distribution of li. The database points projected along the x-axis gives us n
points randomly distributed in [0, 1]. For large n, any two successive values are
separated by an exponential distribution with rate 1/n, and the distance between
k consecutive points is given by Pinv(k, 1/n), the inverse poisson distribution at
rate 1/n for k arrivals. The median point is the first partition point dividing the
interval into two parts containing n/2 points each. p lies in one of these intervals
of length l1 distributed as Pinv(n/2, 1/n).

To find the distribution of l2, note that there are d − 1 branches along other
dimensions between the first and the second partition along the x-axis, and each
branch eliminates 1/2 the points from p’s cell. Since coordinate values along
different dimensions are independent, this corresponds to randomly sampling
1/2d−1 fraction of the points from the interval after the first branch. From the
points that are left, we partition again along the median and take one of the
two parts; each part contains n/2d points. Since the original n points are cho-
sen randomly and we sample at rate 1/2d−1, after the second branch successive
points are separated by an exponential distribution with rate 1/2d−1. So af-
ter the second branch along x-axis the side of the interval l2 is distributed as
Pinv(n/2d, 1/2d−1). Note that this is not entirely accurate since the points are
not sampled independently but instead exactly 1/2d−1 fraction of the points are
chosen in each part; however thinking of n and 2d as large we allow ourselves
this simplification.

Continuing in this fashion, we get that the interval corresponds to li con-
tains n/2di points and the distance between successive points is distributed
as the exponential distribution with rate 2(d−1)i/n. So li is distributed as
Pinv(n/2di, 2(d−1)i/n). Since p is a random point in its cell, the distance xi

between p and the dividing plane at the ith level is a random value between 0
and li. At the leaf level llog n/d is distributed as Pinv(1, 2

(d−1) log n
d /n) which is

same as the exponential distribution with rate 2
(d−1) log n

d /n = 1/n1/d. Extending
this argument to other dimensions tells us that at the leaf level the length of
the cell along any dimension is given by an exponential distribution with rate
O(1/n1/d).

An Improved Algorithm Finding Nearest Neighbor Using Kd-trees 395

Now p is a random database point and q is a random point with distribution
Nd(p, r/c). Let L(p) denote the leaf of the Kd-tree (denoted by T) where p
resides. For a fixed Kd-tree, look at the distribution of L(p) given q. We will
estimate I[L(p)|q, T] – the information required to guess the cell containing p
given the query point q and the tree structure T (the tree structure T includes
positions of the different partition planes in the tree).

Lemma 4. I[L(p)|q, T] = O(d/c)

Proof. The cell of p is specified by log n choices of left or right while traversing
the Kd-tree. The number of decisions along each dimension is log n

d . Let bij (i ∈
1·· log n/d, j ∈ 0··d−1) denote this choice in the ith branch along dimension j. Let
Bij denote the set of all the previous branches on the path to the branch point
bij . Then since the leaf cell L(p) is completely specified by the branch choices bij ,
I[L(p)|q, T] ≤

∑
i,j I[bij |Bij , q, T]. Let us now bound I[bij |Bij , q, T]. Focusing on

the first dimension for simplicity, for the ith choice in the first dimension, the
distance xi between p and the partition plane is uniform in the range [0, li]
where li has mean 1/2i (and distribution Pinv(n/2di, 2(d−1)i/n)). The distance
between q and p along the dimension is given by N(0, r

c
√

d
) = N(0, 1

cn1/d) (again
ignoring the Θ in the expression for r for simpler notations). So it is easy to verify
that the distribution of the distance yi of q from the partition plane is close to
uniform (up to constant factors) in the range [0, 1/2i] (essentially yi is obtained
by first picking a random value in the interval [0, li] and then perturbing it by a
small value drawn from N(0, 1

cn1/d)).
If the distance yi of q from the partition plane in the i-th branch is equal to y,

the probability that p and q are on different sides is Φ(ycn1/d). Since yi is com-
pletely specified by the path Bi0, q and the tree structure T , I[bi0|Bi0, q, T] ≤
I[bi0|yi = y] = Ey[I(Φ(ycn1/d), 1 − Φ(ycn1/d))]. So we need to bound the ex-
pected value of I(Φ(ycn1/d), 1 − Φ(ycn1/d)). Again by a change of variable to
z = ycn1/d this is equal to Ez[I(Φ(z), 1 − Φ(z))].

We will argue that this is O(2i

cn1/d). Looking at integral values of z, observe
that I(Φ(z), 1 − Φ(z)) = e−Ω(z2) drops faster than geometrically with each in-
crement of z. It is o(2i

cn1/d) for z > cn1/d

2i . Further since the distribution of y

in the range [0, 1/2i] is uniform (up to constant factor) so is the distribution of
z in the range [0, cn1/d

2i]. So the probability that z lies in any unit interval in
this range is O(2i

cn1/d). So the expected value of I(Φ(z), 1−Φ(z)) is O(2i

cn1/d). So
I[bi0|Bij , q, T] = O(2i

cn1/d). Similarly bounding and summing over all dimensions,
I[L(p)|q, T] ≤

∑
i,j I[bij |Bij , q, T] ≤ d

∑
i O(2i

cn1/d) = O(d/c)

We are now ready to complete the proof of Theorem 1.

Proof. [of Theorem 1]. The proof follows essentially from lemmas 3 and 4.
Lemma 4 states that I[L(p)|q, T] = O(d/c). But I[L(p)|q, T] is the expected
value of I[L(p)] for a random fixed choice of q and T . So by Markov’s inequality
for a random fixed choice of q and T , with probability at least 1/2, I[L(p)] ≤

396 R. Panigrahy

2I[L(p)|q, T] = O(d/c). So again with probability at least 1/2 for a random
instance of the problem, I[L(p)] = O(d/c). Now lemma 3 states that 2O(c/d)

samples from the distribution of L(p) given q must hit upon the correct cell
containing p, completing the proof.

6 Experiments

We perform experiments on the planted instance of the problem with both the
standard Kd-tree algorithm and our modified algorithm on a database of n = 1
million points chosen randomly in the unit cube in d dimensions. We then picked
a random point p in the database and measured its distance r from the nearest
other database point. We then planted a query point q with the distribution
Nd(p, r/c) so that it is at distance about r/c from p. We tried four different
values for d : 3, 5, 10 and 20; and three different values for c : 4/3, 2 and 4.
For each combination of values we performed 10, 000 search operations using
both the traditional Kd-tree search algorithm and our modified algorithm. In
the modified algorithm the query point was perturbed before the search and
this was repeated for a few iterations; the number of iterations was varied from
5 to 30.

The success rates of finding the nearest neighbor are summarized in table 1.
The third column shows the success rate of the traditional kd-tree search algor-
tihm and the remaining columns state the success rate for the modified algorithm
for different number of iterations. As can be seen, in 3 dimensions for c = 4, Kd-
trees report the nearest neighbor 84% of the time whereas even with 5 iterations
of the new algorithm this goes up to 96%. In 5 dimensions for c = 4 our algo-
rithm boosts the success rate from 73% to 91% in 5 iterations and to 97.5% in 15

Table 1. Simulation Results: The entries indicate the percentage of times the nearest
neighbor is found. As the number of iterations k is increased the success rate increases.
The third column gives the success rate for the standard Kd-tree search algorithm. The
latter columns report the performance of the modified algorithm for different number
of iterations of searching for perturbed points.

d c Kd-tree 5 iter 15 iter 20 iter 25 iter 30 iter

3 4 84 96.1 98.8 99.3 99.3 99.8
3 2 73.9 89.5 97.4 98.4 99.0 98.7
3 4/3 73 88.5 96 96.6 98.7 98.7
5 4 73.6 91 97.5 98.1 98.5 99.3
5 2 54 78 92.1 94.9 94.4 96.2
5 4/3 50.7 71.3 87 91.2 92.3 94
10 4 60.7 80.5 94.8 96.6 96.7 96.8
10 2 36 56.4 77.6 84.3 86.6 88.4
10 4/3 25 43.7 61 70 73.4 75.6
20 4/3 13 25 28 41 42 46
20 2 22 42 67 68 70 72

An Improved Algorithm Finding Nearest Neighbor Using Kd-trees 397

iterations. In 10 dimensions for c = 4, 15 iterations raises the success rate from
60% to about 95%. In 20 dimensions for c = 2, Kd-trees succeed only 22% of the
time, where as the new algorithm succeeds 67% of the time with 15 iterations.

References

1. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Near Neighbor Prob-
lem in High Dimensions. In: Proceedings of the Symposium on Foundations of
Computer Science (FOCS 2006) (2006)

2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal al-
gorithm for approximate nearest neighbor searching. In: Proc. 5th ACM-SIAM
Sympos. Discrete Algorithms, pp. 573–582 (1994)

3. Bentley, J.L., Friedman, J.H., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software 3(3),
209–226 (1977)

4. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest
neighbor search and related problems. In: Proceedings of the 31st ACM Symposium
on Theory of Computing, pp. 312–321 (1999)

5. Clarkson, K.L.: Nearest neighbor queries in metric spaces. In: Proceedings of the
29th Annual ACM Symposium on Theory of Computing, May 1997, pp. 609–617
(1997)

6. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Informa-
tion Theory IT-13, 21–27 (1967)

7. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. Journal of the Society for Information Sci-
ence 41(6), 391–407 (1990)

8. Dolev, D., Harari, Y., Parnas, M.: Finding the neighborhood of a query in a dic-
tionary. In: Proc. 2nd Israel Symposium on Theory of Computing and Systems,
pp. 33–42 (1993)

9. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions. In: Proceedings of the Symposium on
Computational Geometry (2004), Talk is available at: http://theory.lcs.mit.
edu/ indyk/brown.ps

10. Devroye, L., Wagner, T.J.: Nearest neighbor methods in discrimination. In: Kr-
ishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, North-Holland,
Amsterdam (1982)

11. Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: Proc. ACM Sym-
posium on Principles of Database Systems, pp. 1–10 (1998)

12. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani,
M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and
video content: The QBIC system. Computer 28, 23–32 (1995)

13. Har-Peled, S.: A replacement for voronoi diagrams of near linear size. In: Proceed-
ings of the Symposium on Foundations of Computer Science (2001)

14. Indyk, P.: High-dimensional computational geometry, Dept. of Comput. Sci., Stan-
ford Univ. (2001)

15. Indyk, P.: Approximate Nearest Neighbor under Frechet Distance via Product
Metrics. In: ACM Symposium on Computational Geometry (2002)

16. Indyk, P.: Nearest neighbors in high-dimensional spaces. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 39,
2nd edn., CRC Press, Boca Raton (2004)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://theory.lcs.mit.edu/~indyk/brown.ps
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://theory.lcs.mit.edu/~indyk/brown.ps

398 R. Panigrahy

17. Indyk, P., Motwani, R., Raghavan, P., Vempala, S.: Locality-preserving hashing in
multidimensional spaces. In: Proceedings of the 29th ACM Symposium on Theory
of Computing, pp. 618–625 (1997)

18. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Proc. 30th Symposium on Theory of Computing, pp.
604–613 (1998)

19. Indyk, P., Thaper, N.: Embedding Earth-Mover Distance into the Euclidean space
(manuscript, 2001)

20. Jayram, T.S., Khot, S., Kumar, R., Rabani, Y.: Cell-probe lower bounds for the
partial match problem. In: Proc. 35th Annu. ACM Symp. Theory Comput., pp.
667–672 (2003)

21. Kleinberg, J.: Two algorithms for nearest-neighbor search in high dimension. In:
Proc. 29th Annu. ACM Sympos. Theory Comput., pp. 599–608 (1997)

22. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. In: Proc. of 30th STOC, pp. 614–623 (1998)

23. Linial, N., Sasson, O.: Non-Expansive Hashing. In: Proc. 28th STOC, pp. 509–517
(1996)

24. Meiser, S.: Point location in arrangements of hyperplanes. Information and Com-
putation 106(2), 286–303 (1993)

25. Motwani, R., Naor, A., Panigrahy, R.: Lower Bounds on Locality Sensitive Hashing.
In: Proceedings of the 22nd Annual ACM Symposium on Computational Geometry
(2006)

26. Panigrahy, R.: Entropy based nearest neighbor search in high dimensions. In:
SODA 2006: Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, Miami, FL, pp. 1186–1195. ACM Press, New York (2006)

27. Pentland, A., Picard, R.W., Sclaroff, S.: Photobook: Tools for content-based ma-
nipulation of image databases. In: Proceedings of the SPIE Conference On Storage
and Retrieval of Video and Image Databases, February 1994, vol. 2185, pp. 34–47
(1994)

28. van Rijsbergen, C.J.: Information Retrieval, Butterworths, London, United King-
dom (1990)

29. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

30. Salton, G.: Automatic Text Processing. Addison-Wesley, Reading (1989)

List Update with Locality of Reference

Spyros Angelopoulos1,2, Reza Dorrigiv1, and Alejandro López-Ortiz1

1 Cheriton School of Computer Science, University of Waterloo
Waterloo, Ont., N2L 3G1, Canada

2 Max-Planck-Institut für Informatic, Saarbrücken, Germany
{sangelop,rdorrigiv,alopez-o}@uwaterloo.ca

Abstract. It is known that in practice, request sequences for the list
update problem exhibit a certain degree of locality of reference. Moti-
vated by this observation we apply the locality of reference model for
the paging problem due to Albers et al. [STOC 2002/JCSS 2005] in con-
junction with bijective analysis [SODA 2007] to list update. Using this
framework, we prove that Move-to-Front (MTF) is the unique optimal
algorithm for list update. This addresses the open question of defining an
appropriate model for capturing locality of reference in the context of list
update [Hester and Hirschberg ACM Comp. Surv. 1985]. Our results hold
both for the standard cost function of Sleator and Tarjan [CACM 1985]
and the improved cost function proposed independently by Mart́ınez and
Roura [TCS 2000] and Munro [ESA 2000]. This result resolves an open
problem of Mart́ınez and Roura, namely proposing a measure which can
successfully separate MTF from all other list-update algorithms.

1 Introduction

List update is a fundamental problem in the context of on-line computation.
Consider an unsorted list of l items. The input to the algorithm is a sequence
of n requests that must be served in an on-line manner. Let A be an arbitrary
on-line list update algorithm. To serve a request to an item x, A linearly searches
the list until it finds x. If x is the ith item in the list, A incurs a cost i to access
x. Immediately after this access, A can move x to any position closer to the front
of the list at no extra cost. This is called a free exchange. Also A can exchange
any two consecutive items at a cost of 1. These are called paid exchanges. An
efficient algorithm can thus use free and paid exchanges to minimize the overall
cost of serving a sequence. This is called the standard cost model [5].

The competitive ratio, first introduced formally by Sleator and Tarjan [22],
has served as a practical measure for the study and classification of on-line algo-
rithms in general and list-update algorithms in particular. An algorithm is said
to be α-competitive (assuming a cost-minimization problem) if the cost of serv-
ing any specific request sequence never exceeds α times the optimal cost (up to
some additive constant) of an off-line algorithm which knows the entire request
sequence. List update algorithms were among the first algorithms studied us-
ing competitive analysis. Three well-known deterministic on-line algorithms are

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 399–410, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

400 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz

Move-To-Front (MTF), Transpose, and Frequency-Count (FC). MTF moves the
requested item to the front of the list whereas Transpose exchanges the requested
item with the item that immediately precedes it. FC maintains an access count
for each item ensuring that the list always contains items in non-increasing order
of frequency count. Sleator and Tarjan showed that MTF is 2-competitive, while
Transpose and FC do not have constant competitive ratios [22]. Since then, sev-
eral other deterministic and randomized on-line algorithms have been studied
using competitive analysis. (See [16,1,4,14] for some representative results.)

Notwithstanding its wide applicability, competitive analysis has some draw-
backs. For certain problems, it gives unrealistically pessimistic performance
ratios and fails to distinguish between algorithms that have vastly differing
performance in practice. Such anomalies have led to the introduction of many
alternatives to competitive analysis of on-line algorithms (see [13] for a compre-
hensive survey). While list update algorithms with better competitive ratio tend
to have better performance in practice the validity of the cost model has been
debated. More precisely, Mart́ınez and Roura [18] and Munro [19], independently
addressed the drawbacks of the standard cost model. Let (a1, a2, . . . , al) be the
list currently maintained by an algorithm A. Mart́ınez and Roura argued that
in a realistic setting a complete rearrangement of all items in the list which pre-
cede item ai would in practice require time proportional to i, while this has cost
proportional to i2 in the standard cost model. Munro provided the example of
accessing the last item of the list and then reversing the entire list. The real cost
of this operation in an array or a linear link list should be O(l), while it costs
about l2/2 in the standard cost model. As a consequence, their main objection
to the standard model is that it prevents on-line algorithms from using their true
power. They instead proposed a new model in which the cost of accessing the ith

item of the list plus the cost of reorganizing the first i items is linear in i. We will
refer to this model as the modified cost model. Surprisingly, it turns out that the
off-line optimum benefits substantially more from this realistic adjustment than
the on-line algorithms do. Indeed, under this model, every on-line algorithm has
amortized cost of Θ(l) per access for some arbitrary long sequences, while an
optimal off-line algorithm incurs a cost of Θ(log l) on every sequence and hence
all on-line list update algorithm have a constant competitive ratio of Ω(l/ log l).
One may be tempted to argue that this is proof that the new model makes the
off-line optimum too powerful and hence this power should be removed, how-
ever this is not correct as in real life on-line algorithms can rearrange items at
the cost indicated. Observe that the ineffectiveness of this power for improving
the worst case competitive ratio does not preclude the possibility that under
certain realistic input distributions (or other similar assumptions on the input)
this power might be of use. Mart́ınez and Roura observed this and posed the
question: “an important open question is whether there exist alternative ways to
define competitiveness such that MTF and other good online algorithms for the
list update problem would be competitive, even for the [modified] cost model”.

As well, a common objection to competitive analysis is that it relies on an
optimal off-line algorithm, OPT, as a baseline for comparing on-line algorithms.

List Update with Locality of Reference 401

While this may be convenient, it is rather indirect: one could argue that in
comparing two online algorithms A and B all the information we should need
is the cost incurred by the algorithms on each request sequence. For example,
for some problems OPT is too powerful, causing all on-line algorithms to seem
equally bad. Certain alternative measures allow direct comparison of on-line
algorithms, for example the Max-Max Ratio [9], Relative Worst Order Ratio
[11], Bijective Analysis and Average Analysis [6]. These measures have been
applied mostly to the paging problem as well as some other on-line problems.
We are not aware of any result in the literature that applies the above measures
to on-line list update algorithms.

Another issue in the analysis of on-line algorithms is that “real-life” sequences
usually exhibit locality of reference. Informally, this property suggests that the
currently requested item is likely to be requested again in the near future. For
the paging problem, several models for capturing locality of reference have been
proposed [23,2,8]. Input sequences of list update algorithms in practice show
locality of reference [15,21,10] and on-line list update algorithms try to take
advantage of this property [15,20]. Hester and Hirschberg [15] posed the question
of providing a satisfactory formal definition of locality of reference for the list
update problem as an open problem. However, to the best of our knowledge,
locality of reference for list update algorithms has not been formally studied. In
addition, it has been commonly assumed, based on intuition and experimental
evidence, that MTF is the best algorithm on sequences with high locality of
reference, e.g., Hester and Hirschberg [15] claim: “move-to-front performs best
when the list has a high degree of locality” (see also [3], page 327).

To this end, we introduce a natural measure of locality of reference. Perhaps
not surprisingly, this measure seems to parallel MTF’s behaviour as the latter has
been tailored to benefit from locality of reference. This should not be construed
as a drawback of the measure, but rather as evidence of the fact that the design
of the MTF algorithm optimally incorporates the presence of locality of reference
into its choices. Our theoretical proof of the optimality of MTF in this context
is then perhaps not surprising, yet this fact had eluded proof until now.

Our Results. We begin by showing that all on-line list update algorithms are
equivalent according to Bijective Analysis under the modified cost model. We
then extend a model for locality of reference, proposed by Albers et al. [2] in the
context of the paging problem to the list update problem. The validity of the
extended model is supported by experimental results obtained on the Calgary
Corpus, which is frequently used as a standard benchmark for evaluating the per-
formance of compression algorithms (and by extension list update algorithms,
e.g. [7]). Thus, we resolve the open problem posed by Hester and Hirschberg
[15]. Our main result proves that under both the standard and the modified cost
functions MTF is never outperformed in our model, while it always outperforms
any other on-line list update algorithm in at least one instance. As mentioned
earlier, Mart́ınez and Roura [18] posed the open problem of finding an alterna-
tive measure that shows the superiority of MTF in the modified cost model and
suggested that this can be done by adding some restrictions over the sequences

402 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz

of requests. Our analysis technique allows us to resolve this problem as well. As
noted above the model used for this proof builds upon the work of Albers et
al. and Angelopoulos et al. for paging with locality of reference. As such, the
results in this paper also provide evidence of the applicability of these models
to problems other than paging.

2 Bijective Analysis

In this section, we first provide the formal definitions of Bijective Analysis and
Average Analysis and then we show equivalence of all list update algorithms
under the modified model according to these measures. We choose to employ
these measures since they reflect certain desirable characteristics for comparing
online algorithms: they allow for direct comparison of two algorithms without
appealing to the concept of the “optimal” cost (see [6] for a more detailed dis-
cussion), and they do not evaluate the performance of the algorithm on a single
“worst-case” request, but instead use the cost that the algorithm incurs on each
and all request sequences. These two measures have already been successfully
applied in the context of the paging problem [6].

For the sake of simplicity, in this paper we only consider the static list update
problem. This means that we only have accesses to list items and do not have
any insert or delete operations. In particular, we have a set S = {a1, a2, . . . , al}
of l items initially organized as a list L0 = (a1, a2, . . . , al). The results in this
paper can easily be extended to the dynamic version of the problem. For an
on-line algorithm A and a sequence σ, we denote by A(σ) the cost that A incurs
to serve σ. We denote by In the set of all request sequences of length n, and by
Ik+1(σ) where |σ| = k, the set of sequences in Ik+1 which have σ as their prefix.

Informally, Bijective Analysis aims to pair input sequences for two algorithms
A and B using a bijection in such a way that the cost of A on input σ is
no more than the cost of B on the image of σ, for all request sequences σ of
the same length. In this case, intuitively, A is no worse than B. On the other
hand, Average Analysis compares the average cost of the two algorithms over
all request sequences of the same length.

Definition 1. [6] We say that an on-line algorithm A is no worse than an
on-line algorithm B according to Bijective Analysis if there exists an integer
n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : In ↔ In satisfying
A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B. Otherwise we
denote the situation by A ��b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A. This is denoted by
A ≡b B. Lastly we say A is better than B according to Bijective Analysis if
A �b B and B ��b A. We denote this by A ≺b B.

Definition 2. [6] We say that an on-line algorithm A is no worse than an on-
line algorithm B according to Average Analysis if there exists an integer n0 ≥ 1
so that for each n ≥ n0,

∑
I∈In

A(I) ≤
∑

I∈In
B(I). We denote this by A �a B.

Otherwise we denote the situation by A ��a B. A ≡a B, and A ≺a B are defined
as for Bijective Analysis.

List Update with Locality of Reference 403

Observation 1. [6] If A ��a B, then A ��b B. In addition, if A �b B, then
A �a B and similar statements hold for A ≡b B and A ≺b B.

Suitability of the Measure. Note that rather than considering a worst case se-
quence, these measures take into account all sequences of the same length. To be
precise, bijective analysis compares the performance of two algorithms over pairs
of different inputs of the same size. A natural question is if this is a reasonable
comparison. To answer this, it is necessary to briefly review standard worst case
analysis. Worst case analysis of an algorithm A considers the running time of
A over all possible inputs of a given size n and selects as representative for this
set the maximum or worst case time observed in that class. Let IA,n denote this
worst case input of size n for A. Now when the worst case performance of A is
compared to that of algorithm B, worst case analysis compares the timing of A
on IA,n with that of B on IB,n. Observe that in general IA,n �= IB,n and hence
bijective analysis is no different than worst case analysis in terms of pairing
different inputs of the same size. The main difference is that bijective analysis
studies the performance of both algorithms across the entire spectrum on inputs
of size n as opposed to the worst case. This is similar to average case analysis
which also measures performance across all inputs of a given size.

The following theorem proves that under the modified cost model all list
update algorithms are equivalent. This result parallels the equivalence of all lazy
paging algorithms under Bijective Analysis as shown in [6].

Theorem 1. Let A and B be two arbitrary on-line list update algorithms. Under
the modified cost model, we have A ≡b B.

Proof. We prove that for every n ≥ 1 there is a bijection bn : In ↔ In so
that A(σ) ≤ B(bn(σ)) for each σ ∈ In. We show this by induction on n, the
length of sequences. Since A and B start with the same initial list, they incur
the same cost on each sequence of length 1. Therefore the statement trivially
holds for n = 1. Assume that it is true for n = k. Thus there is a bijection
bk : Ik ↔ Ik so that A(σ) ≤ B(bk(σ)) for each σ ∈ Ik. Let σ be an arbitrary
sequence of length k and σ′ = bk(σ). We map Ik+1(σ) to Ik+1(σ′) as follows.
Let L(A, σ) = (a1, a2, . . . , al) be the list maintained by A after serving σ and
L(B, σ′) = (b1, b2, . . . , bl) be the list maintained by B after serving σ′. Consider
an arbitrary sequence σ1 ∈ Ik+1(σ) and let its last request be to item ai. We
map σ1 to the sequence σ2 ∈ Ik+1(σ′) that has bi as its last request. Since
A(σ) ≤ B(σ′) and A’s cost on the last request of σ1 is the same as B’s cost
on the last request of σ2, we have A(σ1) ≤ B(σ2). Therefore we get the desired
mapping from Ik+1(σ) to Ik+1(σ′). We obtain a bijection bk+1 : Ik+1 ↔ Ik+1

by considering the above mapping for each sequence σ ∈ Ik. Thus our induction
statement is true and we have A �b B. Using a similar argument, we can show
B �b A. Therefore we have A ≡b B.

We will call a list update algorithm economical if it does not use paid exchanges.
Since an economical list update algorithm does not incur any cost for reorganiz-
ing the list we can prove the following statement using an argument analogous
to the proof of Theorem 1.

404 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz

Corollary 1. All economical on-line list update algorithms are equivalent ac-
cording to Bijective Analysis under the standard cost model.

These results show that so long as we consider all possible request sequences,
all on-line list update algorithms are equivalent in a strong sense. However, as
stated earlier, in practice request sequences tend to exhibit locality of reference.
Therefore, the algorithm can focus on input sequences with this property. In the
next section we show that we can use such an assumption to prove the superiority
of MTF.

3 List Update with Locality of Reference

As stated in the Introduction, several models have been proposed for paging
with locality of reference [23,2,8]. In this paper, we consider the model of Albers
et al. [2], in which a request sequence has high locality of reference if the number
of distinct requests in a window of size n is small. In Section 4 we will present
experimental evidence which supports the validity of this model for the list
update problem. Consider a function that represents the maximum number of
distinct items in a window of size n, on a given request sequence. For the paging
problem, extensive experiments with real data show that this function can be
bounded by a concave function for most practical request sequences [2]. Let f be
an increasing concave function. We say that a request sequence is consistent with
f if the number of distinct requests in any window of size n is at most f(n),
for any n ∈ N . In order to model locality, we restrict the request sequences
to those consistent with a concave function f . Let If denote the set of such
sequences. We can easily modify the definitions of Bijective Analysis and Average
Analysis (Definition 1 and Definition 2) by replacing I with If throughout. We
denote the corresponding relations by A �f

b B, A �f
a B, etc. Observe that the

performance of list update algorithms are now evaluated within the subset of
request sequences of a given length that are consistent with f , which we denote
as If

n , where n is the length of the requence sequences.
Note that the inductive argument used to prove that all on-line list update

algorithms are equivalent according to Bijective Analysis (Theorem 1) does not
necessarily carry through under concave analysis because the bijection of the
proof may map a sequence in If to one not in If .

Definition 3. Let A and B be list update algorithms, and f be a concave func-
tion. A is said to (m, f)-dominate B for some integer m, if we have

∑

σ∈If
m

A(σ) ≤
∑

σ∈If
m

B(σ).

A is said to dominate B if there exists an integer m0 ≥ 1 so that for each
m ≥ m0 and every concave function f , A (m, f)-dominates B.

Observation 2. A �f
a B if and only if there exists an integer m0 ≥ 1 so that

A (m, f)-dominates B for each m ≥ m0.

List Update with Locality of Reference 405

Lemma 1. For every on-line list update algorithm A, MTF dominates A.

Proof. Let f be an arbitrary concave function and m be a positive integer. For
any 1 ≤ i ≤ m, let Fi,m(A) be the total cost A incurs on the ith request of
all sequences in If

m. We will first show that Fi,m(MTF) ≤ Fi,m(A) for any
1 ≤ i ≤ m. For i = 1, we have F1,m(MTF) = F1,m(A), as all algorithms start
with the same list. Now suppose that i > 1. Let σ be an arbitrary sequence of
length i− 1, Tσ denote the set of all sequences in If

m that have σ as their prefix,
and Fi,m(A | σ) be the total cost A incurs on the ith request of all sequences in
Tσ. Denote by L(MTF, σ) = (a1, a2, . . . , al) and L(A, σ) = (b1, b2, . . . , bl) the
lists maintained by MTF and A after serving σ, respectively. Suppose that cj

(resp., dj) sequences in Tσ have aj (resp., bj) as their ith request, for 1 ≤ j ≤ l.
Note that

∑
1≤j≤l cj =

∑
1≤j≤l dj = |Tσ| and (d1, d2, . . . , dl) is a permutation of

(c1, c2, . . . , cl).
We first show that cj+1 ≤ cj for 1 ≤ j < l. Let Cj and Cj+1 denote the

set of sequences in Tσ that have aj and aj+1 as their ith request. We provide
a one-to-one mapping from Cj+1 to Cj which proves that |Cj+1| ≤ |Cj |. We
map every sequence τ in Cj+1 to a sequence τ ′ in Cj by replacing every aj

with aj+1 and every aj+1 by aj , starting from position i. Since aj occurs before
aj+1 in MTF’s list after serving σ, we know that the last request to aj occurs
after the last request to aj+1 in σ. Therefore if τ is consistent with f , so is τ ′.
Thus every sequence in Cj+1 is mapped to a unique sequence in Cj and we have
cj+1 = |Cj+1| ≤ |Cj | = cj .

Therefore (c1, c2, . . . , cl) is a permutation of (d1, d2, . . . , dl) in non-increasing
order, and thus Fi,m(MTF | σ) =

∑
1≤j≤l j × cj ≤

∑
1≤j≤l j ×dj = Fi,m(A | σ) .

Now since

Fi,m(MTF) =
∑

σ∈Ii−1

Fi,m(MTF | σ) and Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A | σ),

we get Fi,m(MTF) ≤ Fi,m(A). We have
∑

σ∈If
m

MTF (σ) =
∑

1≤i≤m

Fi,m(MTF) ≤
∑

1≤i≤m

Fi,m(A) =
∑

σ∈If
m

A(σ).

Thus MTF (m, f)-dominates A for every concave function f , and every integer
m ≥ 1. Hence MTF dominates A.

Corollary 2. For any concave function f and any on-line list update algorithm A,

MTF �f
a A.

Therefore MTF is an optimal algorithm according to Average Analysis, when
we classify the input sequences by locality of reference. A natural question is
whether MTF is a unique optimum or not, i.e., is there an on-line list update
algorithm A that dominates MTF?

Lemma 2. No on-line list update algorithm (other than MTF itself) dominates
MTF.

406 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz

Proof. Assume by way of contradiction that an on-line list update algorithm A
dominates MTF and that A is different from MTF. According to the definition,
there exists an integer m0 ≥ 1 so that for each m ≥ m0 and every concave
function f , A (m, f)-dominates MTF, i.e.,

∑

σ∈If
m

A(σ) ≤
∑

σ∈If
m

MTF (σ).

Following the proof of Lemma 1, this holds only if Fi,m(A | σ) = Fi,m(MTF | σ)
for every m ≥ m0, 2 ≤ i ≤ m, and every sequence σ of length i−1. Let σ ∈ If

i−1

be a sequence so that L(A, σ) is different from L(MTF, σ), k be the largest index
so that y = ak �= bk = x (for ak and bk defined as in Lemma 1, and p be the
smallest index so that σ[p..i−1] contains at most k−1 distinct items. Select the
concave function f so that
f(i−p)� =
f(i−p+1)� = k−1. Since y ∈ σ[p..i−1]
and x �∈ σ[p..i−1] , we have ck = 0 < dk (the sequence of length m > i obtained
by repeating y in any position starting from ith position is consistent with f).
Therefore

Fi,m(MTF | σ) =
∑

1≤j≤l

j × cj <
∑

1≤j≤l

j × dj = Fi,m(A | σ),

which is a contradiction.

Theorem 2. Let A be an on-line list update algorithm other than MTF. Then
MTF �f

b A and there exists at least one concave function f so that

A ��f
a MTF, which implies A ��f

b MTF.

We can prove separation with respect to Bijective Analysis between MTF and
specific algorithms, e.g., Transpose, for a much larger family of concave functions.

Theorem 3. For all concave functions f such that f(l) < l (l is the size of list),

Transpose ��f
b MTF.

Proof. Let L0 = (a1, a2, . . . , al) be the initial list. Assume by way of contradic-
tion that Transpose �f

b MTF . Therefore there is an integer n0 ≥ 1 so that
for each n ≥ n0, there is a bijection b : If

n ↔ If
n satisfying Transpose(σ) ≤

MTF (b(σ)) for each σ ∈ If
n . Now consider a sequence σ of length m ≥ n0 ob-

tained by considering the prefix of the infinite sequence alal−1alal−1 Trans-
pose incurs a cost of l on each request and we have Transpose(σ) = m × l.
Note that σ is consistent with f , because it has two distinct items.1 Thus
σ ∈ If

m and from the assumption there should exist some sequence σ′ ∈ If
m

so that m × l = Transpose(σ) ≤ MTF (σ′). Therefore MTF should incur a

1 We can assume that f(2) = 2 because otherwise we are restricted to sequences that
contain only one item.

List Update with Locality of Reference 407

cost of l on each request of σ′. Hence σ′ should be a prefix of the sequence
alal−1al−2 . . . a1alal−1al−2 . . . a1 Now any window of size l in σ′ has l dis-
tinct items. Since we started with f(l) < l, σ′ is not consistent with f and this
contradicts the assumption that σ′ ∈ If

m.

4 Experimental Results and Analysis

In this section we test the validity of the locality of reference assumption as
described in Section 3 against experimental data. For our experiments, we con-
sidered the fourteen files of the Calgary Compression Corpus [24] which are
frequently used as a standard benchmark for file compression. Recall that list
update algorithms can be used in a very direct way in file compression. For each
file, we computed the maximum number of characters in windows of all possible
sizes, up to the size of the whole file. Figures 1 and 2 show the resulting graphs.
Note that since we observed that the maximum number of distinct items does
not change much as we increase the size of window to values more than 3500,
we only show the results for windows of size up to 3500.

As can be seen from these graphs, the curves have an overall concave shape.
We should note that for some of the input files, the function we obtained is
not concave for some intervals. However, this is not a major concern, since we

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 #
 o

f d
is

tin
ct

 it
em

s

Size of window

book2
paper1
paper2

progc
progl

progp
pic

Fig. 1. Maximum number of distinct characters in windows of size up to 3500 for the
files in Calgary Compression Corpus

408 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 #
 o

f d
is

tin
ct

 it
em

s

Size of window

geo
book1

bib
news
obj1
obj2

trans

Fig. 2. Maximum number of distinct characters in windows of size up to 3500 for the
files in Calgary Compression Corpus

can bound said function by any concave function f which is such that f(i) is
an upper bound on the maximum number of distinct items in windows of size
i. For instance, we can take the upper convex hull of the data points. In fact,
Albers et al. [2] observed that similar non-concavity (mostly localized within
small intervals) was present in their experimental results concerning locality of
reference in typical request sequences for the paging problem. Albers et al. put
forth this argument to justify the fact that local small deviations from concavity
do not impose a serious problem.

Albers and Mitzenmacher [3] compared the efficiency of MTF and Timestamp
(TS) algorithms for compressing the files of the Calgary Compression Corpus.
TS is a list update algorithm that is 2-competitive [1]. After accessing an item a,
TS inserts a in front of the first item b that appears before a in the list and was
requested at most once since the last request for a. If there is no such item b, or if
this is the first access to a, TS does not reorganize the list. They compared MTF
and TS in two settings: with or without Burrows-Wheeler transform (BWT).
Informally, BWT transforms a string to one of its permutations that has more
locality of reference, which is hence more readily compressible [12,17]. Their
results show that although TS outperforms MTF on compression without BWT,
MTF usually has better performance when we use BWT. This is consistent with
our results as BWT is a transform designed with the goal of increasing the
locality of reference in the representation of the string.

List Update with Locality of Reference 409

5 Conclusions

In this paper we addressed certain open questions concerning the well-studied list
update problem. We first considered the issue of modeling locality of reference
for typical request sequences for this problem. We provided experimental evi-
dence which suggests that the concave-function model of Albers et al., originally
devised for the context of paging algorithms, can satisfactorily model locality of
reference within the domain of list update. We then combined this model with
two recently proposed measures for comparing online algorithms, namely Bijec-
tive Analysis and Average Analysis. Our choice was based on the fact that these
measures allow direct comparison of two online algorithms, by considering their
relative performance on all requests sequences of the same length, rather than
on some specific pathological sequences. These measures have been previously
applied with success in separating several paging algorithms, a situation which
has long been known but cannot be resolved by resorting solely to competitive
analysis.

Using the above framework, we showed that while all list update algorithms
are equivalent in the modified-cost model, when locality of reference is con-
sidered, MTF emerges as the sole optimum online algorithm for the problem.
This resolves an open problem posed by Mart́ınez and Roura. We believe that
our techniques might well be applicable to other problems in which competitive
analysis has failed to yield satisfactory results such as the online bin packing,
but this remains the subject of future work.

The model proposed is, to our knowledge, the first that both incorporates
locality of reference and achieves full separation of MTF. However locality of
reference is a phenomenon which has only recently begun to be thoroughly un-
derstood. Thus we fully expect that future further refinements of the model by
researchers in the field will reflect even more faithfully locality of reference as it
is observed in practice.

References

1. Albers, S.: Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing 27(3), 682–693 (1998)

2. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Journal
of Computer and System Sciences 70(2), 145–175 (2005)

3. Albers, S., Mitzenmacher, M.: Average case analyses of list update algorithms,
with applications to data compression. Algorithmica 21(3), 312–329 (1998)

4. Albers, S., von Stengel, B., Werchner, R.: A combined bit and timestamp al-
gorithm for the list update problem. Information Processing Letters 56, 135–139
(1995)

5. Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A. (ed.)
Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)

6. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equiva-
lence of paging strategies. In: Proceedings of the 18th ACM-SIAM Symposium on
Discrete Algorithms (SODA 2007), pp. 229–237 (2007)

410 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz

7. Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications:
Recent empirical evidence. In: Proc. 8th Annual ACM-SIAM Symp. on Discrete
Algorithms (SODA 1997), pp. 53–62 (1997)

8. Becchetti, L.: Modeling locality: A probabilistic analysis of LRU and FWF. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer,
Heidelberg (2004)

9. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

10. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

11. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. In:
Proceedings of the 5th Italian Conference on Algorithms and Complexity (2003)

12. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, DEC SRC (1994)

13. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line al-
gorithms. SIGACT News (ACM Special Interest Group on Automata and Com-
putability Theory) 36(3), 67–81 (2005)

14. El-Yaniv, R.: There are infinitely many competitive-optimal online list accessing
algorithms (manuscript, 1996)

15. Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. ACM Computing Sur-
veys 17(3), 295 (1985)

16. Irani, S.: Two results on the list update problem. Information Processing Letters 38,
301–306 (1991)

17. Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of burrows-wheeler based
compression. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009,
pp. 282–293. Springer, Heidelberg (2006)

18. Mart́ınez, C., Roura, S.: On the competitiveness of the move-to-front rule. Theo-
retical Computer Science 242(1–2), 313–325 (2000)

19. Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.) ESA
2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)

20. Reingold, N., Westbrook, J., Sleator, D.: Randomized competitive algorithms for
the list update problem. Algorithmica 11, 15–32 (1994)

21. Schulz, F.: Two new families of list update algorithms. In: Chwa, K.-Y., H. Ibarra,
O. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 99–108. Springer, Heidelberg (1998)

22. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28, 202–208 (1985)

23. Torng, E.: A unified analysis of paging and caching. Algorithmica 20(2), 175–200
(1998)

24. I. H. Witten and T. Bell. The Calgary/Canterbury text compression corpus.
Anonymous ftp from: ftp.cpsc.ucalgary.ca/pub/text.compression/corpus/
text.compression.corpus.tar.Z

file:protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ftp.cpsc.ucalgary.ca/pub/text.compression/corpus/text.compression.corpus.tar.Z
file:protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp.cpsc.ucalgary.ca/pub/text.compression/corpus/text.compression.corpus.tar.Z

Approximating Steiner Networks with Node

Weights

Zeev Nutov

The Open University of Israel, Raanana, Israel
nutov@openu.ac.il

Abstract. The (undirected) Steiner Network problem is: given a graph
G = (V, E) with edge/node weights and edge-connectivity requirements
{r(u, v) : u, v ∈ U ⊆ V }, find a minimum weight subgraph H of G con-
taining U so that the uv-edge-connectivity in H is at least r(u, v) for all
u, v ∈ U . The seminal paper of Jain [12], and numerous papers preceding
it, considered the Edge-Weighted Steiner Network problem, with weights
on the edges only, and developed novel tools for approximating minimum
weight edge-covers of several types of set functions and families. Howe-
ver, for the Node-Weighted Steiner Network (NWSN) problem, nontrivial
approximation algorithms were known only for 0, 1 requirements.

We make an attempt to change this situation, by giving the first non-
trivial approximation algorithm for NWSN with arbitrary requirements.
Our approximation ratio for NWSN is rmax · O(ln |U |), where rmax =
maxu,v∈U r(u, v). This generalizes the result of Klein and Ravi [14] for
the case rmax = 1. We also give an O(ln |U |)-approximation algorithm
for the node-connectivity variant of NWSN (when the paths are required
to be internally-disjoint) for the case rmax = 2. Our results are based on
a much more general approximation algorithm for the problem of finding
a minimum node-weighted edge-cover of an uncrossable set-family. We
also give the first evidence that a polylogarithmic approximation ratio
for NWSN might not exist even for |U | = 2 and unit weights.

1 Introduction

1.1 Motivation, Problem Definition, and Previous Work

Network design problems require finding a minimum weight (sub-)network that
satisfies prescribed properties, often connectivity requirements. Classic examples
with 0, 1 connectivity requirements are: Shortest Path, Minimum Spanning Tree,
Minimum Steiner Tree/Forest, and others. Examples of problems with high con-
nectivity requirements are: Min-Cost k-Flow, k-Edge/Node-Connected Spanning
Subgraph, Steiner Network, and others.

Two main types of weights are considered in the literature: the edge weights
and the node weights. We consider the latter, which is usually more general
than the former. For most undirected network design problems, a simple re-
duction transforms edge weights to node weights, but the inverse is usually not
true. The study of network design problems with node weights is well motivated

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 411–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

412 Z. Nutov

and established from both theoretical as well as practical considerations, c.f.,
[14,10,17,2,16]. For example, in telecommunication networks, expensive equip-
ment such as routers/switches/transmitters is located at the nodes of the net-
work, and thus it is natural to model these problems by assigning weights to the
nodes and/or to the edges, rather than to the edges only.

In directed graphs, it is often possible to reduce node weights case to the edge
weights case via an approximation ratio preserving reduction. However, this is
usually not so for undirected graphs, and an attempt to transform an undi-
rected problem into a directed one typically results in a problem which is sig-
nificantly harder to approximate; e.g., in undirected graphs, for Steiner Forest a
2-approximation is known for edge-costs [1], an O(log n)-approximation is known
for node-costs and this is tight [14], while the directed variant does not admit a
polylogarithmic ratio unless NP⊆Quasi(P) [3].

Let λH(u, v) denote the maximum number of edge-disjoint uv-paths in a graph
H . We consider the following fundamental problem on undirected graphs:

Node-Weighted Steiner Network (NWSN)
Instance: A graph G = (V, E), node weights {w(v) : v ∈ V }, and edge-connecti-

vity requirements {r(u, v) : u, v ∈ U ⊆ V }.
Objective: Find a minimum weight subgraph H of G containing U so that

λH(u, v) ≥ r(u, v) ∀u, v ∈ U . (1)

Let rmax = maxu,v∈U r(u, v). The Edge-Weighted Steiner Network problem
was studied extensively, starting from the first 2-approximation algorithm of
Agrawal, Klein, and Ravi [1] for rmax = 1 (see Goemans and Williamson [8] for
more general algorithm and simpler proof) continuing with 2rmax-approximation
of Williamson et. al [20] and 2 ln rmax-approximation of Goemans et. al [7], and
ending with the seminal 2-approximation of Jain [12]. See surveys in [9,13,15]
on approximation algorithms for various connectivity problems.

However, for the node-weighted version NWSN, nontrivial approximation al-
gorithms were known only for rmax = 1. The first approximation algorithm
for NWSN with rmax = 1 due to Klein and Ravi [14] appeared in 1995, at
the same time as the 2-approximation of Klein, Agrawal, and Ravi [1], for
the edge-weighted case with rmax = 1. The Klein-Ravi [14] algorithm uses a
greedy approach. Based on ”spider decomposition” of trees, they proved that
iteratively adding spiders (subtrees with at most one node of degree ≥ 3) that
minimize the ratio of the weight of the spider over the number of ”minimal de-
ficient sets” it connects minus 1, is a 2H(|U |)-approximation algorithm, where
H(n) =

∑n
i=1 1/i = O(ln n) is the nth Harmonic number. The approximation

ratio was improved by Guha and Khuller [10] to (1.35 + ε)H(|U |) using a slight
generalization of spiders. These ratios are nearly tight, as the case rmax = 1
of NWSN generalizes the Set-Cover problem, and thus has an (1 − ε) ln |U |-
approximation threshold [4]. However, unlike the case of edge weights, for node
weights almost no progress has been made since the Klein-Ravi paper [14]: no

Approximating Steiner Networks with Node Weights 413

approximation algorithm was known for NWSN with rmax > 1, not even for the
case rmax = 2.

1.2 Our Results

We give the first non-trivial algorithm for NWSN with arbitrary requirements.

Theorem 1. NWSN admits a 3rmax · H(|U |)-approximation algorithm.

The approximation ratio in Theorem 1 is tight (up to a constant factor) if rmax

is ”small” (usually, rmax ≤ 3 in practical networks), but may seem weak if
rmax is large. We give the first evidence that a polylogarithmic approximation
algorithm for NWSN may not exist even for very simple instances. Let the Node-
Weighted k-Flow (NWk-F) problem be the restriction of NWSN to instances with
U = {s, t} and r(s, t) = k. We show a reduction from the following extensively
studied problem to unit weight NWk-F. For an edge set E on V and X ⊆ V let
E(X) denote the set of edges in E with both endpoints in X .

Densest �-Subgraph (D�-S)
Instance: A graph G = (V, E) and an integer �.
Objective: Find X ⊆ V with |X | ≤ � and |E(X)| maximum.

The best known approximation ratio for D�-S due to Feige, Kortsarz, and Peleg
[5] is |V |−1/3+δ, where δ ≈ 1/60. This is so even for the case of bipartite graphs,
which is up to a constant factor is as hard to approximate as the general case.
In spite of numerous attempts to improve it, this ratio holds for more than 10
years. We prove:

Theorem 2. Suppose that NWk-F admits a ρ-approximation algorithm. Then:
– The Hitting-Set problem admits a ρ-approximation algorithm.
– D�-S on bipartite graphs admits a 1/(2ρ2)-approximation algorithm.

Remark 1. It was shown in [11] that directed NWk-F cannot be approximated
within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ Quasi(P); for edge weights,
this case is in P. On the other hand, the ”augmentation” version of NWk-F
that seeks to find a minimum node-weight augmenting edge set to increase the
st-edge-connectivity by 1 is reducible to the shortest path problem, and thus
is solvable in polynomial time, see Section 4. This implies a k-approximation
algorithm for NWk-F. Also, NWk-F with node-disjoint paths is easily reducible
to the Min-Cost k-Flow problem, and thus is solvable in polynomial time.

We also consider the node-connectivity version of NWSN, when the paths are re-
quired to be internally node-disjoint. The edge-weighted version with internally
disjoint paths is usually referred to as the Survivable Network Design Problem
(SNDP). SNDP does not admit a polylogarithmic approximation algorithm, un-
less NP⊆Quasi(P), even if the input graph G is complete with edge weights in
{0, 1} [18]. However, the {0, 1, 2}-SNDP admits a 2-approximation algorithm [6].
We consider the node weighted version NWSNDP of SNDP, and specifically the
{0, 1, 2}-NWSNDP, and prove:

414 Z. Nutov

Theorem 3. {0, 1, 2}-NWSNDP admits an O(ln n)-approximation algorithm.

Theorems 1 and 3 are just applications of a more general approximation al-
gorithm for finding a minimum ”node-weighted” (edge-)cover of an extensively
studied type of set-families. We need some definitions to present this result.

Definition 1. Let F ⊆ 2V be a set-family of subsets of a ground-set V .
– F is uncrossable if X∩Y, X∪Y ∈ F or X−Y, Y −X ∈ F for any intersecting

X, Y ∈ F .
– An edge set I on V covers F (or I is an F -cover) if for every X ∈ F there

is an edge in I with exactly one end-node in X.

Definition 2. For an edge set I on V let V (I) =
⋃

uv∈I{u, v} denote the set
of end-nodes of the edges in I. Given node weights {w(v) : v ∈ V }, let w(I) =
w(V (I)) be the node-weight of I.

We consider the following general problem:

Node-Weighted Set-Family (Edge-)Cover (NWSFC)
Instance: A set-family F , an edge set E on V , and node weights {w(v) : v ∈ V }.
Objective: Find a minimum node-weight F -cover I ⊆ E.

We give a 3H(|V |)-approximation algorithm for the problem of finding a min-
imum node-weight cover of an uncrossable family F , but its polynomial imple-
mentation requires that certain queries related to F can be answered in poly-
nomial time. Given an edge set I on V , the residual family FI of F (w.r.t. I)
consists of all members of F that are uncovered by the edges of I. It is well
known that if F is uncrossable, so is FI , for any I, c.f., [12].

Definition 3. A set C ∈ F is an F -core, or simply a core if F is understood, if
C does not contain two disjoint members of F . An inclusion minimal (maximal)
F-core is a min-F -core (max-F -core). Let C(F) denote the family of min-F-
cores. For s ∈ V and C ∈ C(F) let F(s, C) be the family of cores containing C
and not containing s.

Clearly, the members of C(F) are pairwise disjoint if F is uncrossable. For any
edge set I on V , make the following two assumptions:

Assumption 1
The family C(FI) of min-FI -cores can be found in polynomial time.
Assumption 2
A minimum node-weight FI(s, C)-cover can be found in polynomial time for any
s ∈ V and C ∈ C(FI).

Theorem 4. NWSFC with uncrossable F admits a 3H(|C(F)|)-approximation
algorithm under Assumptions 1 and 2.

Remark 2. Theorem 4 is unlikely to extend to arbitrary weakly supermodular
set-functions, due to our hardness result given in Theorem 2.

Section 2 presents our main tool – a novel decomposition of covers of uncrossable
families. Theorems 4 and 1 are proved in Sections 3 and 4, respectively. For proofs
of Theorems 2 and 3 see the full paper.

Approximating Steiner Networks with Node Weights 415

2 Decomposition of Covers of Uncrossable Families

2.1 Spider-Covers and Decompositions

The main tool used to prove Theorem 4 is a novel decomposition of covers of
uncrossable families into spider-covers, generalizing the Klein-Ravi [14] decom-
position of a forest into spiders. As uncrossable families and spiders arise in
various network design problems, we believe that our decomposition can have
further application. However, even extending properly the notions of ”spider”
and ”spider-decomposition” to set-families is already a nontrivial task. We start
by briefly describing the decomposition of [14] of a tree (or a forest) into spiders.

Definition 4. A spider is a tree having at least two leaves and at most one
node of degree ≥ 3. A spider decomposition D of a tree T is a collection of node
disjoint spiders, each of them is a subtree of T , so that every leaf of T belongs
to exactly one spider of D.

Lemma 1 ([14]). Any tree T admits a spider decomposition.

One possible proof of Lemma 1 is as follows. Let U be the set of leaves of T .
Consider the set-family F = {X ⊆ V : |X ∩ U | = 1}. It is easy to see that
F is uncrossable. It can be shown that any inclusion minimal F -cover F ⊆ T
is a collection D of pairwise node-disjoint spiders; consequently, D is a spider
decomposition of T . Note that a spider with leaf set U ′ and center s covers
all F -cores (in fact, all members of F) that contain a node from U ′ and do
not contain s. Motivated by the latter observation, we suggests the following
analogue of spiders for covers of set families.

Definition 5. Let F be a set-family on V , let s ∈ V , and let C ⊆ C(F). An edge
set S on V with s ∈ V (S) is an F(s, C)-cover with center if it is an F(s, C)-
cover for every C ∈ C, and if C = {C} then s does not belong to any F-core
containing C. An (s, C)-cover S is a spider-cover (or an (s, C)-spider-cover) if
it can be partitioned into F(s, C)-covers {SC : C ∈ C} such that the node sets
{V (SC) − {s} : C ∈ C} are pairwise disjoint.

Equivalently, spider-cover is a union of some (s, C)-covers, C ∈ C ⊆ C(F), so
that only s can be a common endnode of two of them. Spider-covers are much
more complex objects than [14] spiders, e.g., they are not even connected graphs.
Our definition of ”spider-cover decomposition” of covers of set-families is:

Definition 6. A sub-partition S1, . . . , Sq of an F-cover F is a spider-cover de-
composition of F if V (S1), . . . , V (Sq) are pairwise disjoint, and there exists
s1, . . . , sq ∈ V and a partition {C1, . . . , Cq} of C(F) so that each Si is a spider-
cover of F(si, Ci).

The main result of this section is the following:

Theorem 5 (The Spider-Cover Decomposition Theorem)
Any cover F of an uncrossable family F admits a spider-cover decomposition.

416 Z. Nutov

Unlike [14], we cannot use graph properties in the proof of Theorem 5, but can
rely only on properties of uncrossable families. In [19], a variant of Theorem 5
was proved for directed cover of an intersecting family, when X, Y ∈ F , X∩Y
= ∅
implies X ∩ Y, X ∪ Y ∈ F , and for every X ∈ F there should be an edge in F
entering X . The definition of a spider-covers and decompositions in [19] was
slightly different than the one here, e.g., it required disjointness of the tails. For
this case, in [19] is proved that there exists a spider-cover decomposition that
covers at least 2|C(F)|/3 min-cores (in the setting of [19], this bound is the best
possible). The proof of this result is easier than that of Theorem 5: in the case
of intersecting families, the max-cores are pairwise disjoint, and, because the
edges are directed, every edge with head in some max-core can cover only cores
contained in this core. Hence any such edge is assigned to a unique max-core.
This enables to apply some arguments as in the proof of Lemma 1. However,
for undirected covers of uncrossable families, the situation is more involved; the
max-cores may not be disjoint, many edges may cover the same max-core M ,
and edges contained in M may cover cores contained in other max-cores.

2.2 Cores and Laminar Families

The following property of cores is immediate:

Lemma 2. Let X, Y be cores of an uncrossable family F . Then:
– X ∩ Y, X ∪ Y ∈ F if, and only if, X, Y contain the same min-core.
– X − Y, Y − X ∈ F if, and only if, X, Y contain distinct min-cores.

Definition 7. X, Y ⊆ V cross if each one of the sets X ∩ Y , X − Y , Y − X is
nonempty. A set family L is laminar if its members are pairwise non-crossing,
namely, if for any intersecting X, Y ∈ L either X ⊂ Y or Y ⊂ X holds.

Definition 8. Let F be an F-cover and let e ∈ F . A set We ∈ F is a witness
set for e (w.r.t. F) if e is the unique edge in F that covers We. A family W ⊆ F
is a witness family for F if every e ∈ F has a unique witness set We ∈ W.

Clearly, any inclusion minimal cover F of a set-family F has a witness family.
The following statement was implicitly proved in several papers, c.f., [1,20,12].

Proposition 1. Let F be an inclusion minimal cover of a uncrossable family
F . Then there exists a laminar witness family L ⊆ F for F .

Let L ⊆ F be a laminar witness family for a minimal F -cover F . The following
two simple reductions enable to simplify the exposition.

Reduction 1: We may assume that every member of F is an F -core. This is since
Definitions 5 and 6 consider covers of F -cores only. Thus we may replace F by
the family of F -cores; the latter is uncrossable if F is, by Lemma 2. Note that in
the Node-Weighted Steiner Tree problem, F = {X ⊆ V : X∩U, (V −X)∩U
= ∅};
the spider decomposition covers the family {X ⊆ V : |X ∩ U | = 1} of F -cores,
but may not cover the entire family F .

Approximating Steiner Networks with Node Weights 417

Reduction 2: We may assume that the minimal members of L are the minimal
F -cores. Otherwise, apply the following transformation. For every C ∈ C(F) add
to V two new nodes vC , uC , replace every X ∈ F containing C by X ∪{vC , uC},
add {vC} to F , and add the edge uCvC to F . The new family is uncrossable,
F covers F if, and only if, F ∪ {uCvC : C ∈ C(F)} covers the new family, and
{vC} is the witness set for uCvC . Proving Theorem 5 for the modified family
implies Theorem 5 for the original family. This transformation is an analogue of
”moving terminals to leaves” used in [14] for the Node-Weighted Steiner Tree.

2.3 Proof of Theorem 5

Definition 9. For every C ∈ C(F) define (see Fig. 1):

• LC is the maximal set in L containing C (LC exists and is a core, by Re-
ductions 1,2).

• eC = sCvC is the unique edge in F covering LC, where vC ∈ LC .
• SC is the set of edges in F with both endpoints in LC plus eC.

M

C

CL

eC

CL

C

C

C

s

C

v

Fig. 1. Illustration to Definitions 9 and 10

Lemma 3

(i) The sets {LC : C ∈ C(F)} are pairwise disjoint.
(ii) For every e = uv ∈ F there is a unique C ∈ C(F) so that {u, v} ∩ LC
= ∅;

thus SC = {uv ∈ F : {u, v} ∩ LC
= ∅} and {SC : C ∈ C(F)} partition F .
(iii) SC covers all cores contained in LC for every C ∈ C(F).

Proof. (i) Part (i) follows from the laminarity of L and the maximality of LC .
(ii) Let We be the witness set for e = uv ∈ F . By the laminarity of L and the

maximality of the sets LC , We ⊆ LC for some C ∈ C(F). Consequently, e
has at least one end-node in LC . Furthermore, e has exactly one end-node in
LC if, and only if, e = eC ; in this case, LC is the witness set for e, and thus
e cannot have an end-node in LC′ for C′ ∈ C(F) − {C}, since every edge in
F has a unique witness set.

(iii) Part (iii) follows from part (ii) and the simple observation that if an edge e
covers a set contained in LC , then it has at least one end-node in LC .

418 Z. Nutov

Corollary 1. Any partition C1, . . . , Cq of C(F) induces a partition S1, . . . , Sq of
F , where Si = ∪{SC : C ∈ Ci}.
We obtain a spider-cover decomposition of F as a decomposition induced by
a certain partition of C(F). A natural partition of C(F) (see Fig. 1) is by the
stars of {eC : C ∈ C(F)}. As we show later (see Corollary 2), every star with at
least two edges indeed gives a spider-cover. However, this direct approach fails
because for a star consisting of a single edge eC = sCvC , the edge-set SC is not
a spider-cover, if there is a core MC containing LC + sC , see Fig. 1. We will
handle this difficulty by defining a partition of such ”dangerous” cores, showing
that every part of size at least 2 is a spider-cover, and joining every singleton
part to a ”non-dangerous” star. This motivates the following definition:

Definition 10. A min-core C is active if there exists a core containing LC +sC;
an active core is dangerous if degF (sC) = 1. Let A denote the set of active and
D the set of dangerous min-cores (note that D ⊆ A). For C ∈ A let MC be the
(unique, by Lemma 2) minimal core among the cores containing LC + sC .

Corollary 2

– If C ∈ C(F) − D then SC is an F(s, C)-cover for any s ∈ V − LC.
– If C ∈ D then SC is an F(s, C)-cover for any s ∈ MC − LC.

Proof. We will show that if some X ∈ F(s, C) is not covered by SC , then we must
have sC ∈ X . This immediately gives a contradiction to the case C ∈ C(F)−D.
In the case C ∈ D we obtain a contradiction to the minimality of MC : by
Lemma 2, Y = (LC ∪ X) ∩ MC ∈ F , but LC + sC ⊆ Y and Y ⊆ MC − s.

It remains to show that we must have sC ∈ X . By Lemma 2, LC ∩X ∈ F . By
Lemma 3 (iii), there is e ∈ SC that covers LC ∩X , say e = uv where v ∈ LC ∩X .
We have u /∈ LC , as otherwise e covers X . Hence e covers LC , implying that
e = eC and u = sC . However, u ∈ X , as otherwise e covers X .

Lemma 4. For every C ∈ A the following holds:

(i) MC ∩ LC′ = ∅ for any C′ ∈ C(F) − {C}.
(ii) MC is covered by some edge eC′ , C′ ∈ C(F) − {C}.
(iii) If MC ∩ MC′
= ∅ for C′ ∈ A then sC , sC′ ∈ MC ∩ MC′ .

Proof. (i) Assume to the contrary that MC∩LC′
= ∅ for some C′ ∈ C(F)−{C}.
By Lemma 2, MC − LC′ ∈ F . By Lemma 3(i), LC ⊆ MC − LC′. If sC ∈
MC −LC′, then LC +sC ⊆ MC −LC′, contradicting the minimality of MC .
Otherwise, sC ∈ MC ∩LC′ ; but then eC covers LC′ , contradicting that LC′

is a witness set for eC′ .
(ii) Part (ii) follows from part (i) and Lemma 3(ii).
(iii) Assume to the contrary that sC ∈ MC − MC′ ; the case sC′ ∈ MC′ − MC

is identical. By Lemma 2, MC − MC′ ∈ F . By part (i), LC ⊂ MC − MC′ .
Hence LC + sC ⊆ MC − MC′ , contradicting the minimality of MC .

Corollary 3. R = {(C, C′) ∈ A×A : MC∩MC′
= ∅} is an equivalence relation.

Proof. Clearly, R is symmetric and reflexive; transitivity is by Lemma 4(iii).

Approximating Steiner Networks with Node Weights 419

C

L

MC

e CM

L

C

C

(b)(a)
s

s

Fig. 2. (a) C is obtained from a star with center s by joining core C ∈ D with s ∈ MC .
(b) C is an equivalence class of the relation R = {(C, C′) ∈ D × D : MC ∩ MC′ �= ∅}.

We obtain a spider-cover decomposition of F as a decomposition induced by
a partition C1, . . . , Cq of C(F), which we define in two steps, as follows.

The first step defines a subpartiton of F(C) and the corresponding centers
as follows. Partition C(F) − D according to stars (equivalence classes of the
relation {(C, C′) : sC = sC′}) of {eC : C ∈ C(F) − D}. Add to this partition
the sub-partition of D into equivalence classes of size at least 2 of the relation R
in Corollary 3. Let C1, . . . , Cq be a sub-partition of C(F) obtained; si is chosen
arbitrarily from {sC : C ∈ Ci}. Note that if Ci is a part of C(F) − D then si is
unique, while if Ci is a part of D then there are |Ci| distinct choices of si.

In the second step we join every singleton part {C} of D to some part of
C(F)−D, as follows (see Fig. 2(a)). By Lemma 4(ii), there exists C′ ∈ C(F)−{C}
so that eC′ covers MC (namely, so that sC′ ∈ MC). Note that C′ ∈ C(F) − D,
as otherwise C, C′ would belong to the same class of R. Hence there is a part of
C(F) − D which contains a core C′ so that eC′ covers MC ; we join {C} to one
(arbitrarily chosen) such part of C(F) − D.

Let C1, . . . , Cq be the partition of C(F) obtained. We claim that the in-
duced partition S1, . . . , Sq of C1, . . . , Cq, where Si = ∪{SC : C ∈ Ci}, with
the corresponding centers s1, . . . , sq (chosen at the first step), is a spider-cover
decomposition of F . From Lemma 3(ii) and the construction it follows that
V (S1), . . . , V (Sq) are pairwise disjoint. Thus it remains to show that Si is an
(si, Ci)-spider-cover for every i = 1, . . . , q.

Fix some part C = Ci, and let S = Si and s = si. We prove that S is an
(s, C)-spider cover, where the corresponding partition of S is {SC : C ∈ C}. Note
that if C = {C}, then C /∈ D, hence no X ∈ F contains both C and s; otherwise,
if there is such X , then X ∪ LC ∈ F by Lemma 2, contradicting that C /∈ D.
Now recall that the pair C, s was obtained in one of the following two ways:
1. A subset of C(F) − D corresponding to a star with center s chosen at step 1,

to which we added at step 2 some cores C ∈ D with s ∈ MC (see Fig. 2(a)).
2. An equivalence class C of size at least 2 of the relation R on D, with s chosen

arbitrarily from {sC : C ∈ C} (see Fig. 2(b)).
In both cases, the node sets {V (SC) − s : C ∈ C} are pairwise disjoint by

Lemma 3(ii) and the construction, and SC is an F(s, C)-cover for every C ∈ C
by Corollary 2. Consequently, S is an (s, C)-spider-cover, as claimed.

420 Z. Nutov

3 Covering Uncrossable Families (Proof of Theorem 4)

We use a Greedy Algorithm for the following type of problems:

Covering Problem
Instance: A ground-set E and integral function ν, w on 2E, where ν(E) = 0.
Objective: Find I ⊆ E with ν(I) = 0 and with w(I) minimized.

In the Covering Problem, ν, w may be given by an evaluation oracle; ν is the
deficiency function that measures how far is I from being a feasible solution, and
w the weight function. Let ρ > 1 and let opt be the optimal solution value for
the Covering Problem. The ρ-Approximate Greedy Algorithm starts with I = ∅
and as long as ν(I) ≥ 1 adds to I a set S ⊆ E − I so that

σI(S) =
w(S)

ν(I) − ν(I + S)
≤ ρ · opt

ν(I)
. (2)

The following statement is known (c.f., [14] for a slightly weaker statement).

Theorem 6. For any Covering Problem so that ν is decreasing and w is increa-
sing and sub-additive, the ρ-Approximate Greedy Algorithm computes a solution
I so that w(I) ≤ ρH(ν(∅)) · opt.

For I ⊆ E define: ν(I) = |C(FI)|, w(I) = w(V (I)). Clearly, ν is decreasing,
and w is increasing and sub-additive. Theorem 4 will be proved if we prove:

Lemma 5. For ν(I) = |C(FI)| and w(I) = w(V (I)), an edge set S ⊆ E − I
satisfying (2) with ρ = 3 can be found in polynomial time under Assumptions 1,2.

For simplicity of exposition, let us revise our notation and use F instead of FI ,
and let ν = ν(∅). We assume that E is a feasible solution, thus ν(E) = 0. Let
Δ(S) = ν − ν(S). Then we need to show that under Assumptions 1 and 2 one
can find in polynomial time an edge set S ⊆ E so that:

σ∅(S) =
w(S)
Δ(S)

≤ 3 · opt
ν

. (3)

Lemma 6 (The Spider-Cover Lemma). Let F be an uncrossable set-family,
let S be an (s, C)-cover, and let Δ(S) = ν − ν(S). Then Δ(S) ≥ (|C| − 1)/2�
and Δ(S) ≥ 1 if |C| = 1.

Proof. The minimal FS-cores are pairwise disjoint, and each of them contains
some minimal F -core. Let t be the number of FS-cores containing exactly one
minimal F -core. By the definition of an (s, C)-cover, any FS-core C′ that contains
some F -core C, contains s or contains some other minimal F -core distinct from
C. Furthermore, if C = {C} only the latter can hold. Thus t ≤ |C(F)| − (|C| − 1)
if |C| ≥ 2, and t ≤ |C(F)| − 1 if |C| = 1. The statement follows.

Remark 3. The bound on Δ(S) given in Lemma 6 is tight, see the full paper.
This is the reason why our ratio is 3H(n), and not 2H(n), as in [14]. One might
think that a better definition of an (s, C)-spider-cover is: an edge-set that covers
all members of F separating s and some C ∈ C. However, then there are examples
showing that an appropriate decomposition as in Theorem 5 does not exist.

Approximating Steiner Networks with Node Weights 421

Corollary 4. There exists an (s, C′)-spider-cover S for which (3) holds.

Proof. Note that if S is an (s, C)-cover, then Δ(S) ≥ |C|/3, by Lemma 6; the
worse case is when |C| = 3, but in this case Δ(S) = 1. Let S1, . . . , Sq be a spider-
cover decomposition of an optimal F -cover F . Now the statement follows by a
simple averaging argument (see the full paper for a complete proof).

Let us show that Corollary 4 implies Lemma 5. The following algorithm finds
S ⊆ E satisfying (3). For every s ∈ V compute S ⊆ E as follows. For every
C ∈ C let W (C) be the minimum weight of an F(s, C)-cover, ignoring the
weight of s; W (C) can be computed in polynomial time by Assumption 2. Sort
the members of C by increasing weight W (C1) ≤ W (C2) ≤ . . . ≤ W (Cq). Let
Wj = w(s) +

∑j
i=1 W (Ci). Now set:

• σ1 = W1 if s is not in the maximal core containing C1 and σ1 = 0 otherwise;
• σj = Wj/(j − 1)/2�, j = 2, . . . , q.
We find the index j for which σj is maximum, which determines the edge set S.
Among the edge sets {S : s ∈ V } computed choose one with σ∅(S) maximum.
The time complexity is the time required to compute the family C(F) (polyno-
mial by Assumption 1), plus n|C(F)| times the time required to find a minimum
weight F(s, C)-cover (polynomial by Assumption 2).

4 Algorithm for NWSN (Proof of Theorem 1)

The algorithm has rmax iterations. Iteration k starts with a partial solution
H satisfying λH(u, v) ≥ min{r(u, v), k − 1} for all u, v ∈ V and returns an
augmenting edge set F ⊆ E − E(H) of node-weight w(F) ≤ 3H(|U |) · opt so
that λH+F (u, v) ≥ min{r(u, v), k} for all u, v ∈ V . Hence after rmax iterations,
a feasible solution of weight at most 3rmax · H(|U |) · opt is found.

By Menger’s Theorem, computing such F is equivalent to finding an F -cover
of the family F = {X ⊂ V : r(X) ≥ k, degH(X) = k−1}. This F is uncrossable,
c.f., [20]. To apply Theorem 4, we need to show that Assumptions 1,2 hold for F .
For that, we show a polynomial time algorithm for the following ”augmentation
version” of NWk-F:

Node-Weighted k-Flow Augmentation (NWk-FA)
Instance: A graph G = (V, E) with node weights {w(v) : v ∈ V }, s, t ∈ V , an

integer k, and a subgraph G0 = (V, E0) of G so that λG0(s, t) = k − 1.
Objective: Find F ⊆ E − E0 so that λG0+F (s, t) = k and w(V (F)) is minimum.

Proposition 2. NWk-FA can be solved using one shortest path computation.

Proof. See the full version.

Any edge set I added at some previous step of iteration k is included in H . To
show that Assumptions 1,2 hold for F , we prove in the full paper that:

Corollary 5. For F = {X ⊂ V : r(X) ≥ k, degH(X) = k − 1}:
1. The family C(F) can be found using |U |(|U | − 1)/2 max-flow computations.
2. A min-weight F(s, C)-cover can be found with one shortest path computation.

422 Z. Nutov

References

1. Agrawal, A., Klein, P.N., Ravi, R.: When trees collide: An approximation algorithm
for the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 440–456
(1995)

2. Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximation
algorithms for node-weighted buy-at-bulk network design. In: SODA, pp. 1265–
1274 (2007)

3. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: STOC,
pp. 750–759 (1999)

4. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

5. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29,
410–421 (2001)

6. Fleischer, L.K., Jain, K., Williamson, D.P.: An iterative rounding 2-approximation
algorithm for the element connectivity problem. In: FOCS, pp. 339–347 (2001)

7. Goemans, M.X., Goldberg, A.V., Plotkin, S., Shmoys, D.B., Tardos, E.,
Williamson, D.P.: Improved approximation algorithms for network design prob-
lems. In: SODA, pp. 223–232 (1994)

8. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. on Comput. 24, 296–317 (1995)

9. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation al-
gorithm and its application to network design problems. In: Hochbaum, D.S. (ed.)
Approximation Algorithms for NP-hard problems, ch. 4, pp. 144–191. PWS (1995)

10. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner
trees and connected dominating sets. Inf. Comput. 150(1), 57–74 (1999)

11. Hajiaghayi, M.T., Kortsarz, G., Mirokni, V.S., Nutov, Z.: Power optimization for
connectivity problems. Math. Programming 110(1), 195–208 (2007)

12. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21(1), 39–60 (2001)

13. Khuller, S.: Approximation algorithms for for finding highly connected subgraphs.
In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, ch. 6,
pp. 236–265. PWS (1995)

14. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted steiner trees. Journal of Algorithms 19(1), 104–115 (1995)

15. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In:
Gonzales, T.F. (ed.) Approximation Algorithms and Metahueristics, ch. 58, PWS
(2007)

16. Kortsarz, G., Nutov, Z.: Approximating some network design problems with node
costs (manuscript, 2007)

17. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted
Steiner tree problems. In: STOC, pp. 373–382 (2001)

18. Nutov, Z.: Approximating connectivity augmentation problems. In: SODA, pp.
176–185 (2005)

19. Nutov, Z.: Approximating minimum power covers of intersecting families and di-
rected connectivity problems. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U.
(eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 236–247. Springer,
Heidelberg (2006)

20. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual
approximation algorithm for generalized Steiner network problems. Combinator-
ica 15, 435–454 (1995)

Approximating Minimum-Power Degree and

Connectivity Problems

Guy Kortsarz1, Vahab S. Mirrokni2, Zeev Nutov3, and Elena Tsanko4

1 Rutgers University, Camden
guyk@camden.rutgers.edu

2 Microsoft Research
mirrokni@microsoft.com

3 The Open University of Israel, Raanana
nutov@openu.ac.il

4 IBM, Haifa
tsanko@il.ibm.com

Abstract. Power optimization is a central issue in wireless network de-
sign. Given a (possibly directed) graph with costs on the edges, the power
of a node is the maximum cost of an edge leaving it, and the power of a
graph is the sum of the powers of its nodes. Motivated by applications
in wireless networks, we consider several fundamental undirected network
design problems under the power minimization criteria. Given a graph
G = (V, E) with edge costs {ce : e ∈ E} and degree requirements {r(v) :
v ∈ V }, the Minimum-Power Edge-Multi-Cover (MPEMC) problem is to
find a minimum-power subgraph of G so that the degree of every node v is
at least r(v). We give an O(log n)-approximation algorithms for MPEMC,
improving the previous ratio O(log4 n) of [11]. This is used to derive an
O(log n+α)-approximation algorithm for the undirected Minimum-Power
k-Connected Subgraph (MPk-CS) problem, where α is the best known ra-
tio for the min-cost variant of the problem (currently, α = O(ln k) for n ≥
2k2 and α = O(ln2 k · min{ n

n−k
,

√
k

log n
}) otherwise). Surprisingly, it shows

that the min-power and the min-cost versions of the k-Connected Subgraph
problem are equivalent with respect to approximation, unless the min-cost
variant admits an o(log n)-approximation, which seems to be out of reach
at the moment. We also improve the best known approximation ratios for
small requirements. Specifically, we give a 3/2-approximation algorithm
for MPEMC with r(v) ∈ {0, 1}, improving over the 2-approximation by
[11], and a 3 2

3 -approximation for the minimum-power 2-Connected and
2-Edge-Connected Subgraph problems, improving the 4-approximation by
[4]. Finally, we give a 4rmax-approximation algorithm for the undirected
Minimum-Power Steiner Network (MPSN) problem: find a minimum-power
subgraph that contains r(u, v) pairwise edge-disjoint paths for every pair
u, v of nodes.

1 Introduction

1.1 Motivation and Problems Considered

Wireless networks are studied extensively due to their wide applications. The
power consumption of a station determines its transmission range, and thus

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 423–435, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

424 G. Kortsarz et al.

also the stations it can send messages to; the power typically increases at least
quadratically in the transmission range. Assigning power levels to the stations
(nodes) determines the resulting communication network. Conversely, given a
communication network, the cost required at v only depends on the furthest node
that is reached directly by v. This is in contrast with wired networks, in which
every pair of stations that need to communicate directly incurs a cost. We study
the design of symmetric wireless networks that meet some prescribed degree or
connectivity properties, and such that the total power is minimized. An impor-
tant network property is fault-tolerance, which is often measured by minimum
degree or node-connectivity of the network. Node-connectivity is much more
central here than edge-connectivity, as it models stations failures. Such power
minimization problems were vastly studied. See for example [1,3,11,18,19,4] for
a small sample of papers in this area. The first problem we consider is finding
a low power network with specified lower bounds on node degrees. This is the
power variant of the fundamental b-Matching/Edge-Multicover problem, c.f., [7].
The second problem is the Min-Power k-Connected Subgraph problem which is
the power variant of the classic Min-Cost k-Connected Subgraph problem. We
devise approximation algorithms for these problems, improving significantly the
previously best known ratios.

Definition 1. Let G = (V, E) be a graph with edge-costs {c(e) : e ∈ E}. For
v ∈ V , the power p(v) = pG(v) of v in G (w.r.t. c) is the maximum cost of an
edge in G leaving v, i.e., p(v) = pE(v) = maxvu∈E c(vu). The power of the graph
is the sum of the powers of its nodes.

Unless stated otherwise, graphs are assumed to be undirected and simple. Let
G = (V, E) be a graph. For X ⊆ V , ΓG(X) = {u ∈ V − X : v ∈ X, vu ∈ E} is
the set of neighbors of X , and dE(X) = |ΓE(X)| is the degree of X in G. Let
G = (V, E ; c) be a network, that is, (V, E) is a graph and c is a cost function on
E . Let n = |V | and m = |E|. Given a network G = (V, E ; c), we seek to find a
low power communication network, that is, a low power subgraph G = (V, E)
of G that satisfies some property. Two such fundamental properties are: degree
constraints and fault-tolerance/connectivity. In fact, these problems are related,
and we use our algorithm for the former as a tool for approximating the latter.

Definition 2. Given a requirement function r on V , we say that a graph G =
(V, E) (or that E) is an r-edge cover if dG(v) ≥ r(v) for every v ∈ V , where
dG(v) = dE(v) is the degree of v in G.

Finding a minimum-cost r-edge cover is a fundamental problem in combinatorial
optimization, as this is essentially the b-Matching problem, c.f., [7]. The following
problem is the power variant.

Minimum-Power Edge-Multi-Cover (MPEMC)
Instance: A network G = (V, E ; c) and degree requirements {r(v) : v ∈ V }.
Objective: Find a min-power subgraph G of G so that G is an r-edge cover.

Approximating Minimum-Power Degree and Connectivity Problems 425

We now define our connectivity problems. A graph is k-connected (k-edge-
connected) if it contains k internally-disjoint (k edge-disjoint) uv-paths for all
u, v ∈ V .

Minimum-Power k-Connected Subgraph (MPk-CS)
Instance: A network G = (V, E ; c), and an integer k.
Objective: Find a minimum-power k-connected spanning subgraph G of G.

We also consider min-power variant of the min-cost Steiner Network problem.

Minimum-Power Steiner Network (MPSN)
Instance: A network G = (V, E ; c) and requirement {r(u, v) : u, v ∈ V }.
Objective: Find a minimum-power subgraph G of G so that G contains r(u, v)

pairwise edge-disjoint uv-paths for every u, v ∈ V .

We give improved approximation algorithms for these problems. As a tool for
approximating MPEMC, we consider a special case of the following problem:

Budgeted Multi-coverage with Group Constraints (BMGC)
Instance: A bipartite graph G = (A + B, E), costs {c(a) : a ∈ A}, budget P ,

degree requirements {r(b) : b ∈ B}, and a partition A of A.
Objective: Find S ⊆ A with c(S) ≤ P and val(S) =

∑
b∈B min{|ΓG(b) ∩ S|, r(b)}

maximum, so that |S ∩ Ai| ≤ 1 for every Ai ∈ A.

If A is not a partition, but just a collection of subsets of A (even of size 2),
then BMGC includes the Independent Set problem even if r(b) = 1 for all b ∈ B.
Hence assuming that A partitions A is essential. BMGC generalizes both the
Budgeted Maximum Coverage problem (when A is a partition into singletons)
which admits a (1 − 1/e)-approximation [14], and the Maximum Coverage with
Group Constraints problem in which there is no global budget P and all the
requirement are 1. For this special case, [5] gave a 1/2-approximation. We also
mention that BMGC belongs to the class of problems that seek to maximize
a non-decreasing submodular function under certain constraints. There exists
a 1/2-approximation algorithm for matroid constrains [10], and there exist a
(1 − 1/e) approximation algorithm for knapsack constrains [21]. BMGC has both
matroid and knapsack constrains, and we are not aware of a technique that
handles both.

Studying the approximability of BMGC is beyond the scope of this paper. To
get the O(log n) approximation for MPEMC, we give a (1 − 1/e)-approximation
algorithm for the following special case.

Definition 3. A BMGC instance has the Star-Property if every Ai ∈ A admits
an ordering a1, a2, . . . by non-decreasing costs so that ΓG(aj−1) ⊆ ΓG(aj). Let
BMGC* be the restriction of BMGC to instances with the Star-Property.

1.2 Related Work

Results on MPEMC: The Minimum-Cost Edge-Multicover problem is essentially
the fundamental b-Matching problem, which is solvable in polynomial time, c.f.,

426 G. Kortsarz et al.

[7]. The previously best known approximation ratio for the min-power variant
MPEMC was min{rmax + 1, O(log4 n)} due to [11]. The directed MPEMC gen-
eralizes the classic Minimum-Cost Set-Multicover problem; the latter is a special
case when for every v ∈ V all the edges leaving v have the same cost.

Results on connectivity problems: The simplest connectivity problem is when we
require the network to be connected. In this case, the minimum-cost variant is
just the Minimum-Cost Spanning Tree problem, while the minimum-power variant
is APX-hard. A 5/3-approximation algorithm for the Minimum-Power Spanning
Tree problem is given in [1]. Minimum-cost connectivity problems for arbitrary
k were extensively studied, see surveys in [13] and [17]. The best known approx-
imation ratios for the Minimum-Cost k-Connected Subgraph (MCk-CS) problem
are O(ln2 k · min{ n

n−k ,
√

k
ln k}) for both directed and undirected graphs [16], and

O(ln k) for undirected graphs with n ≥ 2k2 [6]. It turns out that (for undirected
graphs) approximating MPk-CS is closely related to approximating MCk-CS and
MPEMC, as shows the following statement.

Theorem 1 ([11])
(i) If there exists an α-approximation algorithm for MCk-CS and a β-approxima-

tion algorithm for MPEMC then there exists a (2α + β)-approximation algo-
rithm for MPk-CS.

(ii) If there exists a ρ-approximation algorithm for MPk-CS then there exists a
(2ρ + 1)-approximation for MCk-CS.

One can combine various values of α, β with Theorem 1 to get approximation
algorithms for MPk-CS. In [11] the bound β = min{k+1, O(log4 n)} was derived.
The best known values for α are: α = �(k + 1)/2� for 2 ≤ k ≤ 7 (see [2] for
k = 2, 3, [8] for k = 4, 5, and [15] for k = 6, 7); α = k for k = O(log n) [15],
α = 6H(k) for n ≥ k(2k − 1) [6], and α = O(ln k · min{

√
k, n

n−k ln k}) for
n < k(2k − 1) [16]. Thus for undirected MPk-CS the following ratios follow: 3k
for any k, k + 2�(k + 1)/2� for 2 ≤ k ≤ 7, and O(log4 n) unless k = n − o(n).
Improvements over the above bounds are known only for k ≤ 2. Calinescu and
Wan [4] gave a 4-approximation algorithm for the case k = 2 of undirected MPk-
CS. They also gave a 2k-approximation algorithm for undirected MPk-ECS for
arbitrary k. For further results on other minimum-power connectivity problems,
among them problems on directed graphs see [3,11,19,18].

1.3 Our Results

The previous best approximation ratio for MPEMC was min{rmax+1, O(log4 n)}
[11]. We prove:

Theorem 2. Undirected MPEMC admits an O(log n)-approximation algorithm.

This result uses the following statement:

Lemma 1. BMGC* admits a (1 − 1/e)-approximation algorithm.

Approximating Minimum-Power Degree and Connectivity Problems 427

The previously best known ratio for MPk-CS was O(α + log4 n) [11], where α is
the best ratio for MCk-CS. From Theorems 2 and 1, and from [6], we get:

Theorem 3. MPk-CS admits an O(α + log n)-approximation algorithm, where
α is the best ratio for MCk-CS. In particular, for n ≥ 2k2, MPk-CS admits an
O(log n)-approximation algorithm.

Theorem 3 implies that the min-cost and the min-power variants of the k-
Connected Subgraph problem are equivalent with respect to approximation, un-
less the min-cost variant admits a better than O(log n)-approximation; the latter
seems to be out of reach at the moment, see [16,6]; the best known ratio for
MCk-CS when k = n − o(n) is Õ(

√
n) [16]. This equivalence can turn useful for

establishing a lower bound for MCk-CS. In particular, if we can show an approx-
imation threshold of Ω(log1+ε n) for MPk-CS, then the same threshold applies
for MCk-CS; on the other hand, if MPk-CS admits a logarithmic ratio, then so
does MCk-CS. Note that for n ≥ 2k2, our ratio for MPk-CS is O(log n), and this
matches the best known ratio for MCk-CS with n ≥ 2k2 of [6].

We also consider the case of small requirements which often arises in prac-
tical networks. For 0, 1-MPEMC (namely, MPEMC with 0, 1-requirements) the
previously best known ratio was 2 [11]. We prove:

Theorem 4. 0, 1-MPEMC admits a 3/2-approximation algorithm.

Theorem 5. Undirected MPk-ECS with k arbitrary and undirected MPk-CS
with k ∈ {2, 3} admit a (2k − 1/3)-approximation algorithm.

For k = 2, Theorem 5 improves the best previously known ratio of 4 [4] to 3 2
3 .

For k = 3 the improvement is from 7 to 5 2
3 .

We also consider the MPSN problem. Williamson et. al [22] gave a 2rmax-
approximation algorithm for the min-cost case. The currently best known ra-
tio for the min-cost case is 2 [12]. We show that the algorithm of [22] for the
minimum-cost case, has approximation ratio 4rmax for the minimum-power vari-
ant MPSN.

Theorem 6. Undirected MPSN admits a 4rmax-approximation algorithm.

Theorems 2 and 4 are proved in Sections 2 and 3, respectively. For the proofs of
Lemma 1 and Theorems 5 and 6, see the full paper.

1.4 Techniques

The technique used for approximating MPEMC is new and is not similar to
the weaker approximation given in [11]. For MPk-CS we use the easy reduction
from approximating MPk-CS to approximating MPEMC [11] and rely on our
new MPEMC approximation. Thus, designing new approximation for MPEMC
is the crux of the matter. Approximating MPEMC turned up to be a rather
challenging task (some reasons for that are explained in Section 1.5). Intuitively,
the difficulty is that adding an edge to the solution may cause the increase in

428 G. Kortsarz et al.

power for both endpoints of the edge. Thus if we are given a budget and attempt
to satisfy as much demand as possible within the budget, this turns out to be
as hard as the dense k-subgraph problem (see [9]), as explained in Section 1.5.
The algorithm of [11] is unsuited for deriving an O(log n) ratio for MPEMC, as
it pays a log2 n factor in the ratio, from the get-go. Hence, a completely new
strategy is required. The ideas of our algorithm are summarized as follows:

1. Reduction to bipartite graphs: We reduce the problem to a bipartite
graph G′ = (A + B, E ′), with each of A and B being a copy of V . Thus
every node has two occurrence, one in A and one in B. The side of B has
degree requirement while A is the “covering side” and has no demands. This
reduction is simple, but it is crucial for technical reasons.

2. Ignoring dangerous edges: The algorithm works in iterations. At every
iteration some edges are declared “dangerous”, hence forbidden for use in
the current iteration; this is our main new technique. Classifying edges as
dangerous depends not only on their cost, but also on the residual demand;
hence the set of dangerous edges changes from iteration to iteration. We
prove that at any specific iteration, the contribution of dangerous edges to
the cover cannot be too large, as they are too expensive to cover “too much”
of the demand. Intuitively, ignoring dangerous edges is a trick that allows us
to focus on minimizing the power of the nodes in A only; even if every b ∈ B
is touched by its most expensive non-dangerous edge, we are still able to
appropriately bound the increase in the power of the nodes in B. We believe
that this technique will have further applications.

3. Reduction to the BMGC*: At every iteration of the algorithm the goal is
to pay O(opt) in the power increase, and reduce the sum of the (residual)
demands by a constant fraction. Hence, after O(log n) iterations, all the
requirements are satisfied, and the O(log n) ratio follows. In every iteration,
after the dangerous edges are ignored, we are able to cast the problem we
need to solve as an instance of BMGC*.

4. Approximating BMGC*: We design a simple “local-replacement” (1−1/e)-
approximation algorithm for BMGC*. The analysis, which is quite involved,
generalizes the analysis of the algorithm of [14] for the Budgeted Maximum
Coverage problem. The difference is that the [14] algorithm only adds ele-
ments, and hence it is not a local replacement algorithm.

Our approach for 0, 1-MPEMC is inspired by the decomposition method used
by Prömel and Steger [20] for the Minimum-Cost Steiner Tree problem: decompos-
ing solutions into small parts, and then reducing the problem to the minimum-
cost case in 3-uniform hypergraphs, with loss of 5/3 in the approximation ratio.
A similar method was used in [1] for the Minimum-Power Spanning Tree problem.
In our case, to prove Theorem 4, we use a reduction to the minimum-cost case
in graphs, and the loss in the approximation ratio is 3/2. This method works
only for {0, 1} requirements.

For MPk-CS with k = 2, 3 and for MPk-ECS, we show a 2-approximation
algorithm for the ”augmentation problem” of increasing the connectivity by 1.
Combining with the 5/3-approximation algorithm of [1] for the Minimum-Power

Approximating Minimum-Power Degree and Connectivity Problems 429

Spanning Tree gives the ratio in Theorem 5. However, the 2-approximation for
the augmentation problem is not straightforward, and uses new techniques. The
augmentation version admits an easy 4-approximation by combining three facts:
(i) any minimal solution to the augmentation problems is a forest, c.f., [22];
(ii) the min-cost augmentation problem admits a 2-approximation [22,8];
(iii) c(F) ≤ p(F) ≤ 2c(F) if F is a forest, see Proposition 1.

This is how we obtain our 4rmax-approximation for MPSN in Theorem 6. How-
ever, getting a ratio of 2 for the augmentation version of MPk-CS with k = 2, 3
and for MPk-ECS, is not straightforward. This is done by considering directed
solutions to a related problem with so called k-inconnected graphs, and showing,
by a careful analysis, that they have low maximum indegree.

1.5 Power Optimization vs. Cost Optimization: A Comparison

Theorem 3 implies that, unless MCk-CS admits a better than O(log n) approx-
imation ratio, the minimum-power version MPk-CS and the minimum-cost ver-
sion MCk-CS of the k-Connected Subgraph problem are equivalent with respect
to approximation: one of the problems admits a polylogarithmic approximation
if, and only if, the other does, and the same holds for superlogarithmic ap-
proximation thresholds. This near approximability equivalence of MPk-CS and
MCk-CS is a rare and surprising example in power versus cost problems. Typi-
cally, problems behave completely differently in the minimum-power versus the
minimum-cost models. Power problems are “threshold” type of problems, in the
sense that, if many edges of the same (maximum) cost touch a node v, or just
one such edge touches v, the power of v is the same.

We now compare in detail some additional aspects of power versus cost prob-
lems. Note that p(G) differs from the ordinary cost c(G) =

∑
e∈E c(e) of G even

for unit costs; for unit costs, if G is undirected, then c(G) = |E| and (if G has no
isolated nodes) p(G) = |V |. For example, if E is a perfect matching on V then
p(G) = 2c(G). If G is a clique then p(G) is roughly c(G)/

√
|E|/2. For directed

graphs, the ratio of the cost over the power can be equal to the maximum out-
degree, e.g., for stars with unit costs. The following statement (c.f., [11]) shows
that these are the extremal cases for general edge costs.

Proposition 1. c(G)/
√

|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph G =
(V, E), and if G is a forest then c(G) ≤ p(G) ≤ 2c(G). For any directed graph
G holds: c(G)/Δ(G) ≤ p(G) ≤ c(G), where Δ(G) is the maximum outdegree of
a node in G.

Minimum-power problems are usually harder than their minimum-cost versions.
The Minimum-Power Spanning Tree problem is APX-hard. The problem of finding
minimum-cost k pairwise edge-disjoint paths is in P (this is the Minimum-Cost
k-Flow problem, c.f., [7]) while both directed and undirected minimum-power
variants are unlikely to have even a polylogarithmic approximation [11,18]. An-
other example is finding an arborescence rooted at s, that is, a subgraph that
contains an sv-path for every node v. The minimum-cost case is in P (c.f., [7]),

430 G. Kortsarz et al.

while the minimum-power variant is at least as hard as the Set-Cover problem.
For more examples see [1,3,18,19].

For min-cost problems, a standard reduction from the undirected variant to
the directed one is replacing every undirected edge e = uv by two opposite
directed edges uv, vu of the same cost as e, finding a solution D to the directed
variant and take the underlying graph G of D. However, this reduction does not
work for min-power problems. The power of G can be much larger than that
of D, e.g., if D is a star. In the power model, directed and undirected variants
behave rather differently, as illustrated by the following example.
Example: Suppose that we are given an instance of MPEMC and a budget P
and our goal is to solve the ”budgeted coverage” version of MPEMC: to cover the
maximum possible demand using power at most P . We will show that this prob-
lem is harder than the Densest k-Subgraph problem, which is defined as follows:
given a graph G = (V, E) and an integer k, find a subgraph of G with k nodes
that has the maximum number of edges. The best known approximation ratio
for Densest k-Subgraph is roughly n−1/3 [9], and in spite of numerous attempts
to improve it, this ratio holds for over 11 years. We prove:

Proposition 2. If there exists a ρ-approximation algorithm for the budgeted
coverage version of MPEMC with unit costs, then there exists a ρ-approximation
algorithm for Densest k-Subgraph.

Proof. Given an instance G = (V, E), k of Densest k-Subgraph, define an instance
(G, r, P) of budgeted coverage version of MPEMC with unit costs as follows:
r(v) = k − 1 for all v ∈ V and P = k. Then the problem is to find a node subset
U ⊆ V with |U | = k so that the number of edges in the subgraph induced by U
in G is maximum. The later is the Densest k-Subgraph problem.

The most natural heuristic for approximating MPEMC is as follows. Guess opt
(more precisely, using binary search, guess an almost tight lower bound on opt).
Cover maximum amount of the demand within budget opt, and iterate. Propo-
sition 2 shows that this strategy fails.

2 Approximating MPEMC (Proof of Theorem 2)

2.1 Reduction to Bipartite Graphs

We will show an O(log n)-approximation algorithm for (undirected) bipartite
MPEMC where G = (A + B, E) is a bipartite graph and r(a) = 0 for every
a ∈ A. The following statement shows that getting an O(log n)-approximation
algorithm for the bipartite MPEMC is sufficient.

Lemma 2. If there exists a ρ-approximation algorithm for bipartite MPEMC
then there exists a 2ρ-approximation algorithm for general MPEMC.

Proof. Given an instance (G = (V, E), c, r) of MPEMC, construct an instance
(G′ = (V ′ = A + B, E ′), c′, r′) of bipartite MPEMC as follows. Let A = {av :

Approximating Minimum-Power Degree and Connectivity Problems 431

v ∈ V } and B = {bv : v ∈ V } (so each of A, B is a copy of V) and for
every uv ∈ E add two edges: auav and avau each with cost c(uv). Also, set
r′(bv) = r(v) for every bv ∈ B and r′(av) = 0 for every av ∈ A. Given F ′ ⊆ E ′ let
F = {uv ∈ E : aubv ∈ F ′ or avbu ∈ F ′} be the edge set in E that corresponds to
F ′. Now compute an r′-edge cover E′ in G′ using the ρ-approximation algorithm
and output the edge set E ⊆ E that corresponds to E′, namely E = {uv ∈ E :
aubv ∈ E′ or avbu ∈ E′}. It is easy to see that if F ′ is an r′-edge cover then F
is an r-edge cover. Furthermore, if for every edge in F correspond two edges in
F ′ (|F ′| = 2|F |), then F is an r-edge cover if, and only if, F ′ is an r′-edge cover.
The later implies that opt′ ≤ 2opt, where opt and opt′ is the optimal solution
value to G, c, r and G′, c′, r′, respectively. Consequently, E is an r-edge cover,
and pE(V) ≤ pE′(V ′) ≤ ρopt′ ≤ 2ρopt.

2.2 Am O(log n)-approximation for Bipartite MPEMC

We prove that bipartite MPEMC admits an O(log n)-approximation algorithm.
The residual requirement of v ∈ V w.r.t. an edge set I is defined by rI(v) =
max{r(v) − dI(v), 0}. One of the main challenges is achieving the following re-
duction, which will be proved in the next section using our algorithm for BMGC.

Lemma 3. For bipartite MPEMC there exists a polynomial time algorithm that
given an integer τ and γ > 1 either establishes that τ < opt or returns an edge
set I ⊆ E such that for β = (1 − 1/e)(1 − 1/γ) the following holds:

pI(V) ≤ (γ + 1)τ (1)

rI(B) ≤ (1 − β)r(B) (2)

Note that if τ < opt the algorithm may return a edge set I that satisfies (1)
and (2); if the algorithm declares ”τ < opt” then this is correct. An O(log n)-
approximation algorithm for the bipartite MPEMC easily follows from Lemma 3:

While r(B) > 0 do
- Find the least integer τ so that the algorithm in Lemma 3

returns an edge set I so that (1) and (2) holds.
- E ← E + I, E ← E − I, r ← rI .

End While

We note that the least integer τ as in the main loop can be found in polynomial
time using binary search. For any constant γ > 1, say γ = 2, the number of
iterations is O(log r(B)), and at every iteration an edge set of power at most
(1+γ)opt is added. Thus the algorithm can be implemented to run in polynomial
time, and has approximation ratio O(log r(B)) = O(log(n2)) = O(log n).

2.3 Proof of Lemma 3

Let τ be an integer and let R = r(B) =
∑

b∈B r(b). An edge ab ∈ E , b ∈ B, is
dangerous if c(ab) ≥ γτ · r(b)/R. Let I be the set of non-dangerous edges in E .

432 G. Kortsarz et al.

Lemma 4. Assume that τ ≥ opt. Let F be a set of dangerous edges with
pF (B) ≤ τ . Then rF (B) ≥ R(1 − 1/γ). Thus rI(B) ≤ R/γ.

Proof. Let D = {b ∈ B : dF (b) > 0}. We show that r(D) ≤ R/γ, implying
rF (V) ≥ R − r(D) ≥ R(1 − 1/γ). Since all the edges in F are dangerous,
pF (b) ≥ γτ · r(b)/R for every b ∈ D. Thus

τ ≥ opt ≥
∑

b∈D

pF (b) ≥
∑

b∈D

(γτ · r(b)/R) =
γτ

R

∑

b∈D

r(b) =
γτ

R
r(D) .

For the second statement, note that there exists E ⊆ E with pE(V) ≤ τ so that
rE(B) = 0. Thus rI(B) ≤ R/γ holds for the set I of non-dangerous edges in E.
As I ⊆ I, the statement follows.

Lemma 5. pI(B) ≤ γτ .

Proof. Note that pI(b) ≤ γτ · r(b)/R for every b ∈ B. Thus:

pI(B) =
∑

b∈B

pI(b) ≤
∑

b∈B

(γτ · r(b)/R) =
γτ

R

∑

b∈B

r(b) = γτ .

Lemmas 4 and 5 imply that we may ignore the dangerous edges and still be
able to cover a constant fraction of the total demand. Once dangerous edges are
ignored, the algorithm does not need to take the power incurred in B into ac-
count, as the total power of B w.r.t. all the non-dangerous edges is γτ = O(opt).
Therefore, the problem we want to solve is similar to the bipartite MPEMC,
except that we want to minimize the power of A only. Formally:

Instance: A bipartite graph G = (A + B, I), edge-costs {c(e) : e ∈ I}, require-
ments {r(b) : b ∈ B}, and budget τ = P .

Objective: Find I ⊆ I with pI(A) ≤ P and maximum
∑

b∈B min{dI(b), r(b)}.

Lemma 6. The above problem admits a (1 − 1/e)-approximation algorithm.

Proof. We show that the problem above can be reduced, while preserving ap-
proximation ratio, to BMGC*. Given an instance of the above problem, construct
an instance of BMGC* as follows. For every a ∈ A do the following. Let e1, ..., ek

be the edges incident to a sorted by increasing costs. For every ei add a node ai of
cost c(ai) = c(ei) and for every edge ab of cost ≤ c(ei) add an edge aib. The group
corresponding to a ∈ A is Aa = {a1, . . . , ak}, so A = {Aa : a ∈ A}. Clearly, the
groups are disjoint, hence we obtain a BMGC instance. The Star-Property holds
by the construction. Every node in Aa corresponds an edge incident to a and
has the cost of this edge; thus choosing one node from Aa also determines the
power level of a. Thus, keeping costs, to every solutions to the obtained BMGC
instance, corresponds a unique solution to the problem defined above, and vice
versa. The statement now follows from Lemma 1.

Approximating Minimum-Power Degree and Connectivity Problems 433

The algorithm for Lemma 3 is as follows:

1. With budget τ , compute I ⊆ I using the (1 − 1/e)-approximation algorithm
from Lemma 6.

2. If rI(B) ≤ (1 − β)R (recall that β = 1/2(1 − 1/γ)) then output I;
Else declare ”τ < opt”.

We show that if τ ≥ opt then the algorithm outputs an edge set I that satisfies
(1) and (2). By Lemma 4, if the algorithm returns an edge set I then (1) holds
for I, and if the algorithm declares ”τ < opt” then this is correct. All the edges
in I are not dangerous, thus pI(B) ≤ γτ by Lemma 5. As we used budget τ ,
pI(A) ≤ τ . Thus pI(V) = pI(A) + pI(B) ≤ (1 + γ)τ .

3 Approximating 0, 1-MPEMC (Proof of Theorem 4)

Given S ⊆ V we say that an edge set F on V is an S-cover, if every node
in S has an edge in F incident to it. Note that 0, 1-MPEMC is equivalent to
the Minimum-Power S-Cover problem, where S = {v ∈ V : r(v) = 1}. We
reduce Minimum-Power S-cover to Minimum-Cost S-Cover in graphs, where
the problem is solvable in polynomial time, c.f., [7], with loss of 3/2 in the
approximation ratio. That is, given an instance (G, S) of Minimum-Power S-
Cover, we construct in polynomial time an instance (G′, S) of minimum-Cost
S-Cover such that opt(G′) ≤ 3opt(G)/2 and such that for any feasible solution
F ′ to G′ corresponds a feasible solution F to G with p(F) ≤ c′(F ′).

Clearly, any minimal S-cover is a union of node disjoint stars. Let F be (an
edge set of) a star with center v0. A partition F = {F1, . . . , F�+1} of F into stars
is a t-decomposition of F if |F�+1| ≤ t−1 and any other part has at most t edges;
F�+1 covers all the end-nodes of its edges (in particular, it covers v0) while each
part in F − F�+1 covers the end-nodes of its edges except v0 (so every node is
covered exactly once). The power p(F) =

∑
Fj∈F p(Fj) of F is the sum of the

powers of its parts. For a collection of stars the definition is similar.

Lemma 7. Any star F admits a t-decomposition F with p(F) ≤ (1+ 1/t)p(F).

Proof. Let v0 be the center of F , let {v1, . . . , vd} be the leaves of F , and let
ei = v0vi and ci = c(ei), i = 1, . . . , d. W.l.o.g., c1 ≥ c2 ≥ · · · ≥ cd ≥ 1.
Define a t-decomposition F of F as follows. Let
 = �(d − 1)/t�, and set: Fj =
{e(j−1)t+1, . . . , ejt} for j = 1, . . .
 − 1 and F� = {e(�−1)t+1, . . . , ed}. Note that
p(F) = c(F) + c1 and c(j−1)t+1 ≤ c(Fj)/t for j = 2, . . . ,
; the later is since
e(j−1)t+1 ∈ Fj , while every edge in Fj−1 has cost larger than any edge in Fj .
Therefore,

p(F) = c(F) + c1 +
�∑

j=2

c(j−1)t+1 ≤ c(F) + c1 +
�∑

j=2

c(Fj−1)/t ≤ (1 + 1/t)p(F) .

Given an instance (G = (V, E ; c), S) of MPEMC, construct an instance (G′ =
(S, E ′; c′), S) of min-cost edge-cover as follows. G′ is a complete graph on S, and

434 G. Kortsarz et al.

c′(uv) = p(Fuv) for every u, v ∈ S, where Fuv is some min-power {u, v}-cover
that consists of one edge or two adjacent edges. Clearly, we can construct (G′, S)
and compute a minimum-cost S-cover in G′ in polynomial time. The following
statement that follows from Lemma 7 with t = 2 finishes the proof of Theorem 4.

Corollary 1. If F ′ is a minimum-cost S-cover in G′ then F = ∪{Fuv : uv ∈ E′}
is an S-cover in G and p(F) ≤ c′(F ′) ≤ 3opt/2.

References

1. Althaus, E., Calinescu, G., Mandoiu, I., Prasad, S., Tchervenski, N., Zelikovsky,
A.: Power efficient range assignment for symmetric connectivity in static ad-hoc
wireless networks. Wireless Networks 12(3), 287–299 (2006)

2. Auletta, V., Dinitz, Y., Nutov, Z., Parente, D.: A 2-approximation algorithm for
finding 3-vertex-connected spanning subgraph. J. of Algorithms 32, 21–30 (1999)

3. Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and
power assignment in ad hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)

4. Calinescu, G., Wan, P.J.: Range assignment for biconnectivity and k-edge con-
nectivity in wireless ad hoc networks. Mobile Networks and Applications 11(2),
121–128 (2006)

5. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget con-
straints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.)
RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 72–83. Springer, Hei-
delberg (2004)

6. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the
minimum-cost k-vertex connected subgraph. SIAM J. on Computing 32(4), 1050–
1055 (2003)

7. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Scrijver, A.: Combinatorial
Optimization. Wiley, Chichester (1998)

8. Dinitz, Y., Nutov, Z.: A 3-approximation algorithm for finding 4,5-vertex-connected
spanning subgraph. J. of Algorithms 32, 31–40 (1999)

9. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica,
410–421 (2001)

10. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions–II. Math. Prog. Study 8, 73–87 (1978)

11. Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for
connectivity problems. Math. Program. 110(1), 195–208 (2007)

12. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21(1), 39–60 (2001)

13. Khuller, S.: Approximation algorithms for for finding highly connected subgraphs.
In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, ch. 6,
pp. 236–265. PWS (1995)

14. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Infor-
mation Processing Letters 70(1), 39–45 (1999)

15. Kortsarz, G., Nutov, Z.: Approximating node-connectivity problems via set covers.
Algorithmica 37, 75–92 (2003)

16. Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical
graphs. SIAM J. on Computing 35(1), 247–257 (2005)

Approximating Minimum-Power Degree and Connectivity Problems 435

17. Kortsarz, G., Nutov, Z.: Approximating min-cost connectivity problems. In: Gon-
zales, T. (ed.) Approximation algorithms and Metaheuristics, ch. 58 (2007)

18. Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 87–98. Springer,
Heidelberg (2007)

19. Nutov, Z.: Approximating minimum power covers of intersecting families and di-
rected connectivity problems. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U.
(eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 236–247. Springer,
Heidelberg (2006)

20. Prömel, H.J., Steger, A.: A new approximation algorithm for the Steiner tree prob-
lem with performance ratio 5/3. J. of Algorithms 36(1), 89–101 (2000)

21. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

22. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual ap-
proximation algorithm for generalized steiner network problems. Combinatorica 15,
435–454 (1995)

Energy Efficient Monitoring in Sensor Networks�

Amol Deshpande, Samir Khuller, Azarakhsh Malekian, and Mohammed Toossi

Department of Computer Science.
University of Maryland, College Park, MD 20742, USA

{amol,samir,malekian,toossi}@cs.umd.edu

Abstract. In this paper we study a set of problems related to efficient energy
management for monitoring applications in wireless sensor networks. We study
several generalizations of a basic problem called Set k-Cover, which can be de-
scribed as follows: we are given a set of sensors, and a set of regions to be mon-
itored. Each region can be monitored by a subset of the sensors. To increase the
lifetime of the sensor network, we would like to partition the sensors into k sets
(or time-slots) and activate each partition in a different time-slot. The goal is to
find the partitioning that maximizes the coverage of the regions. This problem is
known to be NP -hard. We first develop improved approximation algorithms for
this problem based on its similarities to the max k-cut problem. We then consider
a variation, called Set (k, α)-cover, where each sensor is allowed to be active in α
different time-slots. We develop a randomized routing algorithm for this problem.
We then consider extensions where each sensor can monitor only a bounded num-
ber of regions in any time-slot. We develop the first approximation algorithms for
this problem. An experimental evaluation of the algorithms we propose can be
found in the full version of the paper.

1 Introduction

Efficient energy management in sensor networks is a primary challenge as we expect
wireless devices to communicate and to continue to function effectively for long periods
of time. In this paper we study a basic set of problems dealing with energy efficient
monitoring in sensor networks. One particular question of this type was first formalized
in a paper by Slijepcevic and Potkonjak [11], in which they asked for a collection of
disjoint set covers.

Let H = (S ∪ R, E) denote a bipartite graph in which nodes in set S correspond to
sensors, and nodes in set R correspond to regions. There is an edge between node si and
node rj if sensor si can monitor region rj . By keeping all sensors activated all the time,
clearly all the regions can be monitored continuously (assuming no nodes in R have
zero degree). The problem with this solution is that the sensors may not last very long.
One might now wonder if a better solution can be obtained. There are multiple ways
in which we could formulate this problem. One approach is to partition the nodes in S
into k sets S1, . . . , Sk, such that the sensors in set Si cover all the regions in R. This is
also referred to as the domatic set problem [6] for which a randomized approximation
algorithm with factor O(log n) has been proposed. An alternative formulation (called

� Full version available at http://www.cs.umd.edu/∼samir/grant/latin-full.pdf

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 436–448, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Energy Efficient Monitoring in Sensor Networks 437

Set k-cover), studied by Abrams et al. [1], instead asks for a partitioning that maximizes
the total regions covered. More formally, let Ri ⊆ R denote the regions covered by the
sensors in Si; in other words, Ri = {r|(s, r) ∈ E ∧ s ∈ Si}. The goal is to maximize
∑k

i=1 |Ri|.
Given such a partitioning, the idea then is to cycle through the k sets Si in a round-

robin fashion. When we activate all sensors in set Si, we cover the regions in Ri. Thus
the objective function tries to maximize the coverage of the regions in the different time
slots. We will consume significantly less energy this way, as each sensor is activated
in only one of the k sets. Moreover there is evidence to suggest that the battery life
of sensors is increased significantly when batteries are used in short bursts, rather than
being used continuously [3].

At the same time we will maximize the coverage over time. Ideally, each region will
belong to Ri for each value of i. Notice that we have relaxed the requirement that each
region is always monitored. If k is not very large it is entirely possible that we can
actually monitor all regions at all times. Of course, the larger the value of k, the longer
we extend the lifetime of the system, while paying a penalty of lowering the coverage
level within each time-slot. It also depends on the redundancy of coverage, in other
words, it also depends on how many sensors are monitoring each region.

In this paper, we identify and address several generalizations of this problem, many
of which, to our best knowledge, have not been addressed before. One generaliza-
tion we define is called the Set (k, α)-Cover problem. We would like to find k sets,
S1, S2, . . . , Sk. As before, Si ⊂ S. We require that each vertex in S belong to at most
α such sets. More formally, for all sj ∈ S we require that |{i|sj ∈ Si}| ≤ α. A solution
for this problem can be mapped to a sensor schedule in which each sensor is active in α
of the k time-slots. We have relaxed the requirement that the Si sets are disjoint which
corresponds to the case when α = 1. Since this is a generalization of the set k-cover
problem, it is also NP -hard.

Since each sensor now belongs to α sets, the battery life is extended by a factor
of k

α . Our main goal really is to maximize the battery life, subject to adequate cover-
age requirements. However, for the development of the algorithms, it is easier to fix
the parameters k and α and to develop algorithms that work with these parameters. In
practice one would consider a spectrum of solutions produced by our algorithms for
different choices of k and α.

We then consider a generalization where sensors have capacity constraints. In many
scenarios, even though a sensor may be able to cover multiple regions, at any given time,
it may only be able to actually monitor one or a small number of them. For example, a
pan-and-tilt camera can monitor only one region (or a few regions) at any time. We call
this a capacity constraint, and denote by c(si) the maximum number of regions sensor
si can cover in one time slot. The goal is to solve the Set k-Cover or Set (k, α)-cover
problems given such capacity constraints.

Finally, given a k or a (k, α) pair, a sensor cover problem asks for the best partition
of the sensors (along with a designation of which regions to monitor for the capacity-
constrained version) that optimizes some coverage property. The optimization goal it-
self could be one of the following three:

438 A. Deshpande et al.

– avg-coverage: The average coverage over the k time slots. Formally this would be
�k

i=1 |Ri|
k .

– min-coverage(time): The minimum value of the fractional coverage in any time slot.
Formally, this would be mink

i=1
|Ri|
|R| .

– min-coverage(region): The minimum over all regions, of the fraction of time a re-
gion is covered. This is important for application where high coverage of regions is
required over time.

Different applications may demand support for different optimization goals. For ex-
ample, for the min-coverage(time) version, we could fix a coverage requirement, by
specifying that |Ri| ≥ γ|R| for some 1 ≥ γ > 0 and ask to minimize α.
Under this classification, Abrams et al. [1] study the {Set k-cover, NC, avg-coverage}
version of the problem (where NC denotes that there are no capacity constraints).

We now consider a slightly different view of the Set k-Cover problem. Given the
bipartite graph H describing the sensor-region relationship, we construct the following
hypergraph G = (V, E). Each node in V corresponds to a sensor. For each region r, we
create a hyperedge e that contains the set of sensors that cover the region. We assume
that each region is covered by at most d sensors, i.e., the hyper edge has size d. The
goal now is to color the nodes of the graph with k colors (this is simply a way to view
the partitioning into k sets). The objective is to maximize the total benefit of all hyper
edges. The benefit of a hyper edge is the number of different colors that the nodes in the
hyper edge are colored with. If all nodes in this hyper edge have the same color, then
the benefit is 1 since they are all in the same set. If the nodes have k different colors,
then this region is always monitored and its benefit is k.

The practical problem is of interest for small d, so it is worth studying this case in
more detail, since we do not expect too many sensors to cover the same region, oth-
erwise this suggests that the density of sensors is too high. For d = 2 this problem is
clearly related to the well studied max k-cut problem for which a SemiDefinite Pro-
gramming (SDP) based algorithm does very well [7,8]. The max k-cut problem asks
for a partitioning of the vertices of a graph into k groups so as to maximize the num-
ber of edges across the cut (edges connecting vertices in two different groups). While
both problems ask for a partitioning of the vertices, the precise objective functions are
different.

Outline of Contributions
Our first algorithm (see Section 3) shows how to “reduce” the set k-cover problem to the
max k-cut problem and then apply known approximation methods for the latter. In fact,
this approach gives rise to an extremely fast and practical method to solve the problem.
We also prove some improved approximation factors for small d using this approach
(see Section 3). For d ≤ 3, this gives significantly improved worst case approximation
factors compared to the randomized approach in [1]. However, the key point is that this
approach gives almost optimal solutions in practice, even for larger values of d. We also
present a worst case analysis of this method for large d.

In addition, we are also able to develop a direct SDP based algorithm for this problem
(the same approach was used to develop algorithms for max k-cut). This gives rise to
an algorithm that runs in polynomial time for constant d. The solutions produced are

Energy Efficient Monitoring in Sensor Networks 439

almost as good as the solutions produced by the max k-cut approach but the algorithm
is slower compared to the direct reduction to max k-cut. However we believe that this
approach will eventually give a better worst case approximation bound for the case
when the hyper-edges are large.

In Section 5 we develop an LP based randomized rounding algorithm for approxi-
mating the lifetime of the network for the {set (k, α)-cover, NC, min-coverage (time)}
version of the problem (an extension to the min-coverage (region) case is straightfor-
ward). We fix a k, α pair. Assuming that a feasible integral solution exists, we are guar-
anteed to find a feasible fractional solution. Once we obtain the fractional solution, we
round it. We use a scaling parameter s to do the rounding. This may increase the num-
ber of sets a node belongs to, with the expected number being sα. We can prove that
the probability that each region is covered is very high and at least 1 − 1

es .
For the case where each sensor can only cover one region (unit capacity) when it

is active, we develop a polynomial time algorithm that computes an optimal solution
for the capacitated set (k, α)-cover problem (see Section 6). For the case of arbitrary
capacities we develop a polynomial time (1− 1

e) approximation since we can show that
the problem is NP -hard even when the capacities are three.

2 Prior Work

Designing sleep schedules to maximize the network lifetime while guaranteeing cover-
age has been one of the most active research areas in wireless sensor networks. Cardei
and Wu [5] survey the work in this area, and identify two types of coverage problems,
area coverage (where the goal is to cover maximally cover the area the sensor network
is deployed in), and target coverage (where the goal is to cover a set of targets).

The problem we address in this paper can be seen as a target coverage problem,
and we briefly review the prior work on this problem. Slijepcevic and Potkonjak [11]
pose the problem with full coverage requirement; given a sensor network, the goal is
to identify mutually exclusive sets of sensor nodes such that the members of each set
cover the monitored regions (targets) completely. They provide several heuristics for
this problem. Abrams, Goel and Plotkin [1] develop approximation algorithms for the
Set k-Cover problem, where k is provided, and the goal is to find a partitioning that max-
imizes the coverage. They present a simple randomized algorithm, where each sensor is
assigned to one of the k sets, and they show that the resulting solution approximates the
optimal solution within a factor of 1 − 1

e . In fact their bound is 0.75 when k = 2, d = 2
and approaches (1 − 1

e) for large d and k. They also show that it is NP -hard to get
a polynomial time approximation algorithm with a factor better than 15

16 + ε for any
ε > 0. This is shown by a direct reduction from the E4-SET SPLITTING problem for
which a 7

8 + ε hardness has been shown by Hastad [9]. However, the gap between 1− 1
e

and 15
16 is significant and our goal is to try and consider other approaches that can be

used to narrow this gap further. They also present a distributed greedy algorithm that
is a 1

2 approximation for the problem. Unlike the algorithms we develop in this paper,
their randomized algorithms are oblivious to the actual graph structure. Cardei et al. [4]
consider a version of the problem that is similar to the Set (k, α)-cover problem, where

440 A. Deshpande et al.

they allow sensors to belong to multiple sets, and allow the sets to be active for differ-
ent durations. They present several heuristics for solving the problem. Another related
paper is [10] in which the unit capacity case is considered.

3 Max k-cut Approach

We now discuss the Set k-Cover problem. We are given a hyper graph G = (V, E),
where each node in V corresponds to a sensor. For each region r we create a hyper
edge e that contains the set of sensors that cover the region. The goal now is to color
the nodes of the graph with k colors. The objective is to maximize the total benefit of
all hyper edges. The benefit of a hyper edge is the number of different colors that the
nodes in the hyper edge are colored with.

Our algorithm works as follows. We replace each hyper edge e = {a1, . . . , ap} by
edges (ai, aj) for i 	= j, essentially replacing each hyper edge by a clique. We then
apply the SDP based Max k-Cut approximation algorithm [7] that tries to maximize the
number of edges across the cut after partitioning the vertices into k sets. We use the
partitioning produced by this algorithm, even though our original objective function is
different. Let αk be the approximation ratio of the SDP based algorithm [7] for Max
k-Cut. Frieze and Jerrum showed that αk satisfies the following.

(i) αk > 1 − 1
k

(ii) αk − (1 − 1
k) ∼ 2 lnk

k2

(iii) α2 ≥ 0.878, α3 ≥ 0.8, α4 ≥ 0.85, α10 ≥ 0.926, α100 ≥ 0.99.

In the next two subsections we present a worst case analysis of this method. We first
give a simple analysis for the case d = 2 and this will convey some intuition about why
this scheme works well. The analysis for general d is more complex, and we present it
subsequently.

3.1 Analysis for d = 2

In the Max k-Cut problem the goal is to partition the vertices into k sets to maximize the
number of edges whose end points are in different sets. By using an αk approximation
for Max k-Cut, we are able to obtain an approximation guarantee of 1

2 (1 + αk).
We know that we will get at least αkE∗ edges across the cut once we run the Max

k-Cut algorithm, where E∗ is the number of edges across the cut in an optimal solution
for Max k-Cut (which is derived from an optimal solution for set k-cover, each region
that is monitored in both time slots is essentially an edge across the cut). The optimal
solution has total benefit (E − E∗) + 2E∗ = E + E∗. We get a benefit of at least
2αkE∗ + (E − αkE∗) = E + αkE∗. Taking the ratio, and using the fact that E∗ ≤
E gives the desired bound. This is significantly better than the oblivious approach of
randomly coloring the nodes, regardless of the structure of the graph. If we plug in
α2 = 0.878 [8] then we obtain a bound of 0.939. If we plug in α3 = 0.8 [7], we get
a bound of 0.9. (In contrast the randomized method of [1] gives a bound of (1 − 1

2k),
which is 0.75 and 0.83 for k = 2, 3. Note that αk also improves as k increases [7].

Energy Efficient Monitoring in Sensor Networks 441

3.2 Analysis for General d

Recall that we constructed a new multi-graph G′ = (V ′, E′) based on the hyper graph
G = (V, E). V ′ = V but instead of each hyper edge e ∈ E, we add edges between all
pair of vertices belonging to hyper edge e. We then use the max k-cut algorithm due to
Frieze and Jerrum [7] on the graph G′. The next theorem presents the approximation
ratio obtained by the max k-cut approach.

The proof is more complicated for when all the hyper-edges have arbitrary sizes. We
illustrate the proof for the simpler case when all hyper-edges have the same size d. We
show the proof for the case k ≥ d since the proof is simpler. Some modifications are
required for arbitrary k.

Theorem 1. The benefit obtained from the method based on Max k-cut is at least 1
d +

αk

2 (1 − 1
d) fraction of the maximum benefit for the set k-cover problem.

Before starting the analysis, we need to define some notation.

Definitions
Ei: set of hyper edges that have i different colors in the optimal solution.
E′

i is the set of hyper edges that have i different colors in the solution based on Max
k-cut.
E represents the set of hyper edges in G.
C∗ is the Max k-cut in G′, with E∗ the edges across the cut.
Co is the cut in G′ obtained by the optimal solution for set k-cover, with Bo the corre-
sponding benefit function.
C′ is the cut obtained by the approximation algorithm for finding a max k-cut in G′ and
|C′| the benefit for set k-cover, and E′ the corresponding edges across the cut in G′.

We first prove that the optimal benefit for Set k-Cover can be upper bounded. In fact,
we show that the total benefit in the optimal solution is at most |E| + 2|E∗|

d (Lemma
1). We also show that the benefit obtained from the Max k-cut approach is at least
|E| + αk|E∗|

d (Lemma 2). By using these two observations, we can guarantee that the
approximation ratio is least 1

d + αk

2 (1 − 1
d).

Lemma 1. The total benefit (Bo) in the optimal solution for the set k-cover problem is
at most |E| + 2 |E∗|

d .

Proof. The benefit obtained from the optimal solution is simply
∑d

i=1 i|Ei|. Since
|E| =

∑d
i=1 |Ei| this can be rewritten as Bo =

∑d
i=1 |Ei|(i − 1) + |E|. The solu-

tion for set k-cover partitions the vertices into k sets. Consider a hyper edge e ∈ E that
has i different colors on the end points in an optimal solution. The minimum number of
edges that it can contribute to the cut obtained by the solution is

(
d
2

)
−

(
d−i+1

2

)
. This is

when we put all d − (i − 1) nodes into one partition, and each of the remaining (i − 1)
nodes into a separate partition. Hence we have: |Co| ≥

∑d
i=1(

(
d
2

)
−

(
d−i+1

2

)
)|Ei|.

Comparing the corresponding coefficients, it can be seen that the largest ratio is 2
d . So

Bo =
∑d

i=1 |Ei|(i − 1) + |E| ≤ 2|Co|
d + |E| ≤ 2|E∗|

d + |E|.

Let us briefly consider a diversion for the case d = 3. Lemma 1 shows that Bo ≤
|E| + 2

3 |E∗|. Before we prove Lemma 2 in general, we prove a lower bound on the

442 A. Deshpande et al.

quality of the obtained solution. There are two main reasons for this. The first is that
in fact we get a slightly better bound when d = 3 as follows (in contrast the bound
obtained by [1] is 0.70). The second reason is that it provides some intuition for the
case when d is arbitrary, but this proof is easier to understand.

Theorem 2. For the case when d = 3, we obtain an approximation factor of 1
3 + 1

2αk.

Proof. Essentially each hyper edge of size three is reduced to a triangle. Note that when
all three nodes belong to different time slots, the benefit function is 3, and we have 3
edges crossing the cut. When the nodes of this hyper edge belong to two time slots,
we also have two edges crossing the cut. This is better than the bound obtained by
randomized rounding given in [1] which is 0.703.

Let C′ be the cut produced by the max k-cut algorithm, and |E′| the number of edges
across the cut. The benefit from the max k-cut approach is

∑3
i=1 |E′

i|(i − 1) + |E|.
The number of edges across the cut in G′ is |E′|. Clearly |E′| = 2|E′

2| + 3|E′
3| =

2(|E′
2| + 3

2 |E′
3|). Hence |E′|

2 = |E′
2| + 3

2 |E′
3|. So we can conclude that |C′| = |E| +

|E′
2|+2|E′

3| ≥ |E|+ |E′|
2 ≥ |E|+ αk|E∗|

2 . We also know that |E| ≥ |E∗|
3 . Putting these

equations together gives us a lower bound on |C′|
Bo

. Using the bound from Lemma 1, the
benefit from the solution based on the Max k-cut approach is at least (1

3 + 1
2αk) of the

maximum benefit in the optimal solution.

When d = 3 our bound depends on αk and is at least 0.828 for large k. When k = 3,
αk is 0.8 and we get a bound slightly better than 0.733.

Lemma 2. The benefit obtained from the Max k-cut approach is at least |E| + αk|E∗|
d .

Proof. The benefit from the Max k-cut approach can be formulated as |C′| =
∑d

i=1 |E′
i|(i − 1) + |E|. Also |E′| ≤

∑d
j=2

∑� d
j−1 �

i=� d
j �

(
(
d
2

)
− d(j − 1) +

(
j
2

)
i)|E′

i|. This

is obtained basically by spreading out all d nodes into i sets as evenly as possible, with
each group having either �d

i � nodes or d
i � nodes. The ratio of the corresponding coeffi-

cients of |E′
i|’s is at least 1

d . So we can conclude that |C′| ≥ |E|+ |E′|
d ≥ |E|+ αk|E∗|

d .

Proof (Proof Of Theorem 1). Using the above two lemmas and considering the fact that
|E| ≥ |E∗|

(d
2)

it can be shown that the benefit from the solution based on the Max k-cut

approach is at least 1
d + αk

2 (1 − 1
d) fraction of the maximum benefit in the optimal

solution.

4 SDP-Based Formulation

Our approach will be to formulate this as a Semi definite programming (SDP) prob-
lem. Consider the following SDP for constant d (and arbitrary k). This formulation is
inspired by the Max k-Cut work by Frieze and Jerrum [7] (and the description in this
section is taken from their paper). However in our direct SDP formulation (Subsec-
tion 4), as we will see shortly, the constraints are significantly more complex.

Energy Efficient Monitoring in Sensor Networks 443

Let yj be one of k vectors a1, . . . , ak defined as follows. Consider an equilateral

simplex Σk in Rk−1 with vertices b1, . . . bk. Let c =
�k

i=1 bi

k be the centroid of Σk and
let ai = bi − c. Assume that Σk is scaled so that |ai| = 1 for all i.

Frieze and Jerrum show that ai · aj = −1
k−1 , when i 	= j. If i = j, clearly ai · aj = 1.

(We would like yj = ap if and only if vj ∈ Sp.)
In this framework, let Yij represent the dot product of the two vectors yi and yj . The

dot product of the two vectors is 1 if the vertices i and j belong to the same group. The
dot product is −1

k−1 if they belong to different groups.
The Max k-Cut problem can be formulated as follows:

max
k − 1

k

∑

i<j

wi,j(1 − yi · yj) such that yj ∈ {a1, . . . , ak}

Note that, 1 − yi · yj = 0 if yi = yj and = k
k−1 otherwise.

In this formulation, the graph has weights on the edges specified by wi,j . Since the
graph we compute G′ is a multi-graph, we define the weight of an edge to be the number
of copies of the edge in the multi-graph.

To obtain the SDP relaxation, now replace yi by vi where vi is any n-dimensional
unit vector. We add the constraint vi ·vj ≥ − 1

k−1 . Thus we obtain an SDP (semidefinite
program) of the following form:

max
k − 1

k

∑

i<j

wi,j(1 − vi · vj) such that vj ∈ Sn, vi · vj ≥ − 1
k − 1

∀ i 	= j

The (fractional) solution obtained from solving this SDP is now rounded by a simple
randomized rounding algorithm to obtain a solution for the Max k Cut problem. Rather
than using exactly the same rounding as given by Frieze and Jerrum [7] we developed
another procedure that had excellent performance.

After finding the solution to the convex program, we perform the following proce-
dure to find the partitioning into k sets. First we compute the V = v1, . . . vn ∈ Sn

from the decomposition of matrix Y . We choose k vectors at random from V , call them
z1, . . . , zk. Each of the vectors in Z represents one of the k sets. Vector vi (which rep-
resents sensor i) will be assigned to the set j if and only if zj is the closest vector to vi.
In other words vi is assigned to j iff |vi − zj | ≤ |vi − zi′ |, ∀i′ ∈ {1 . . . k}.

In this section we take a different route and explore a direct SDP formulation for
the set k-cover problem without first reducing to max k-cut. Consider a hyper edge
e = {ve

i1 , v
e
i2 , . . . , v

e
ide

}. For each hyper-edge e, we define a new variable αe. We can
formulate the problem as follows.

max
∑

e∈E

[(
k − 1

k
((de − 1) − αe)) + 1]

such that for each hyper edge e we have the following set of constraints.
Consider all possible Hamilton paths Pe among the set of vertices in the hyper

edge e. We will generate a constraint for each possible path. This formulation has an

444 A. Deshpande et al.

exponential number of constraints, but this is not a serious problem. In practice, each
region is only covered by a small number of sensors (for constant d, it is polynomial in
any case).

For each hyper edge e, we define a new variable αe and the following set of con-
straints (one constraint for each path Pe).

αe ≥
∑

(ip,iq)∈Pe

Yipiq such that yj ∈ {a1, . . . , ak}

If a hyper edge e has size de and intersects pe groups, then we show that the con-
tribution to the objective function is exactly pe. This can be seen as follows: Consider
the path P ′ ∈ Pe with the following structure – the path visits all the nodes in a group
before visiting the nodes in another group. Note that this path has exactly pe − 1 edges
(each dot product contributes − 1

k−1 for these edges) that go across two groups, and
de − pe local edges (each such dot product clearly contributes 1). For this path the rhs
of the constraint is exactly − pe−1

k−1 + (de − pe) (and this is the maximum value of the
rhs). Note that for every other path, if there fewer local edges, the sum is only smaller.
Putting this value for αe (the smallest valid choice) gives the correct objective function
value of pe. (k−1

k ((de − 1) + pe−1
k−1 − de + pe)) + 1 = pe.

We use the same rounding approach as described in the previous subsection. We
do not report on the computational results as the solutions obtained in practice were
slightly worse than the ones obtained by reducing to max k-cut, and the algorithm was
much slower.

5 Set (k, α)-Cover Problem

We start with the following Integer Program (IP) formulation (for fixed k, α). We define
a 0/1 variable xij , for i = 1 . . . k, j = 1 . . . n. When xij = 1 it means that sensor j is
active in time-slot i. Constraints are as follows:

∀j ∈ S
∑k

i=1 xij ≤ α

∀r ∈ R ∀i = 1 . . . k
∑

(r,p)∈E xip ≥ 1
The first constraint simply states that each sensor may belong to at most α time-slots.

The second constraint states that each region j is covered in each time slot.
Clearly there is no benefit to increasing a variable beyond 1. This gives us a linear

program (LP) which can be solved efficiently.
We now use randomized rounding to obtain an integral solution in which with high

probability each region is covered in all the time slots. This is a bicriteria approximation
algorithm in a sense that the approximation factor increases when we look for solutions
with higher probability for coverage. To do the randomized rounding, we first scale all
the xij variable by a scale factor s and then we round up xij to 1 with probability equal
to the scaled xij , call the new variable x′

ij = min(1, s · xij). Each sensor will be active
in sα time-slots (in expectation); and each region will be covered in each time-slot with
probability at least (1− 1

es). For each sensor j ∈ S, the expected value of E(
∑k

i=1 x′
ij) =

∑k
i=1 sxij = s

∑k
i=1 xij ≤ sα. So the expected cost of the new integral solution is at

most s · OPT . Now we show that each region will be covered in all the time slots with

Energy Efficient Monitoring in Sensor Networks 445

high probability. Probability that a given region r in a given time slot i is not covered
is equal to the probability that none of the xip variables ∀(r, p) ∈ E is rounded up to
one. In other words, Pr[r is not covered at time i] =

∏
(r,p)∈E(1 − sxip) ≤ 1

es . So each

region in each time slot will be covered with probability at least 1 − 1
es .

One might wonder if there is a rounding that satisfies all the constraints with constant
s, thus giving a constant approximation. However, it can be shown there is an non-
constant integrality gap for this problem. Consider a matrix M of size

(
k

k/2

)
× k. The

rows contain all the binary strings of length k that have exactly k
2 1’s. Consider each

column as a sensor and each row as a region. So if Mij = 1 , sensor j will cover region i
and otherwise not. Suppose we have k time slots. One (fractional) solution is to activate
each sensor fractionally for 2

k in each time slot so that each location is covered since we
have k

2 sensors covering each region. This gives us α = 2 for the fractional solution.
At each time step, at least (k

2 + 1) sensors have to be active (otherwise a region is
uncovered). Thus the total number of active sensors (summing over all times) is Ω(k2).
Hence at least one sensor is active in Ω(k) time slots, and has α = Ω(k). This shows an
integrality gap of Ω(k), and we can make k as large as Ω(log n

log log n), while still having a
polynomial number of regions.

Extensions for the min-coverage(region) are straightforward.

6 Sensors with Capacity Constraints

In many applications, sensors have constraints as to how many locations they can mon-
itor even when the sensor is active. For example, a camera sensor si may have the
capability to monitor a set of regions N(si), but in a time slot when si is active it can
only monitor at most c(si) regions. For a fixed camera sensor, in fact c(si) may just
be 1. For a moving sensor, it is possible that the sensor can cover multiple regions. In
this case, we also have to come up with an assignment of each sensor to at most c(si)
regions in a time-slot when the sensor is active.

6.1 NP-Completeness

We examine several cases and either provide polynomial time algorithms, or approxi-
mation algorithms when the problem can be shown to be NP -complete.

We first show that even when the capacities are as low as 3, even the basic problem
is NP -complete for k = 2 and each region being covered by exactly two sensors.

First recall that Max-Cut1 is NP -complete for graphs with degree at most 3 [12].
The question is - is there a way to partition the nodes of a graph G = (V, E) into two
groups so that at least Δ edges cross the cut?

We give a sketch of the reduction. Let S = {si|vi ∈ V }. Each edge (vi, vj) ∈ E
corresponds to a region in R that has neighbors si and sj . Since each node has degree
at most 3, in any case a sensor covers at most 3 regions so with a capacity of 3 each
sensor can cover all regions adjacent to it. Set k = 2. There is a partition in which the
total coverage is at least |E| + Δ if and only if there is a solution to Max Cut with at
least Δ edges across the cut.

1 This is the Max k-cut problem when k = 2.

446 A. Deshpande et al.

6.2 General Capacity

In this case, we consider the set (k, α)-cover problem. Each sensor can be activated in at
most α sets and the goal is to maximize the average coverage. Unlike the previous case,
each sensor si can cover c(si) regions in each time slot in which it is active. We develop
a randomized (1 − 1

e)-approximation algorithm for this problem. As in the previous
section we first construct a bipartite graph. Let Hc = (Sc, Rc, E

′
c). For each sensor

si we create α vertices s1
i , . . . , s

α
i ∈ Sc. We put an edge from each of the α copies

of a sensor to a region node if that the sensor can cover that region. Next, we select a
bounded degree subgraph of Hc with the maximum number of edges. The bound on the
degree of each si ∈ Sc is c(si) and the bound on the degree of each r ∈ Rc is k. As
in the previous case, we can find the subgraph with the maximum number of edges in
polynomial time using network flow.Call the subgraph H∗

c . It is easy to prove that the
number of edges in H∗

c is an upper bound on OPT . To actually find the schedule we
use the following randomized algorithm:
For each sensor, randomly, choose α of the k available time slots (without replacement).

Theorem 3. The expected value of the coverage given by the randomized algorithm is
at least 1 − 1

e of the number of edges in H∗
c .

Proof. The argument used here is similar to the one given in [1] with some adaptations
to work for the new method. We first compute the probability that a region r is not
covered in a given time slot t. We use Nr to denote the set of neighbors of r in H∗

c .
Also Nrs refers to the copies of sensor s that belongs to Nr.

We first show that the probability that r is not covered in a specified time slot t is
(1 − 1

k)Nr . For each sensor s, the probability that none of the copies of s belonging to

Nrs, have been covered it, is at most (1− |Nrs|
k). For k ≥ 1, (1− |Nrs|

k) ≤ (1− 1
k)|Nrs|.

The probability that a specified region r is not covered at a given time slot t is the
probability that it is not covered by any of its neighbors. Since for sensors i, j, the two
events that Nri is not covering r and Nrj is not covering r are independent events,
the probability that r is not covered in t is the product of all these probabilities for all
Nrs sets. So the probability that r is not covered is bounded by (1 − 1

k)
�

s∈Sc
|Nrs| =

(1 − 1
k)|Nr|. Since we know that Nr is the union of all Nrs sets for s ∈ S. In other

words, Nr = ∪s∈SNrs.
The probability that r is covered is at least in each time slot 1 − (1 − 1

k)Nr . Let lr
be the number of sensors covering region r, in our solution. We can see that E(lr) ≥
k − k((1 − 1

k)|Nr|. The optimal solution can be bounded by the number of edges in

the H∗
c which is

∑
r |Nr|. As shown in [1], for each region r, E(lr)

|Nr| ≥ (1 − 1
e) which

completes the proof.

Since H∗
c ≥ OPT , we have a (1 − 1

e) approximation.

6.3 Unit Capacity

We consider the set (k, α)-cover problem with the objective to maximize average cov-
erage. We show that this problem can be solved optimally in polynomial time. Our goal

Energy Efficient Monitoring in Sensor Networks 447

is to maximize the number of regions that can be covered. Recall that we need to define
k subsets Si such that each sensor belongs to at most α subsets.

We first construct the following bipartite multi-graph. Let H = (S, R, E′). We create
a vertex in S for each sensor and a vertex for each region in R. We put α parallel
edges between each sensor and region pair if that the sensor can cover the region. We
now select a maximum bounded degree subgraph2 of H with the maximum number of
edges. The degree bound on sensor nodes in S is exactly α and the degree bound on
region nodes in R is k. This problem can be solved in polynomial time for bipartite
graphs using network flows.Once we find a maximum subgraph (it is not necessarily
unique) H∗, we then find an edge coloring [2] of H∗ using at most k colors where k is
the maximum degree (since α ≤ k). An edge coloring of a graph is an assignment of
colors to the edges such that no pair of edges that are incident on a common vertex have
the same color. Each color class forms a matching in the bipartite graph and corresponds
to a time slot. The sensor nodes will be members of the α color classes corresponding
to the colors of the edges incident on the sensor nodes.

Theorem 4. The running time of the algorithm is constrained by the time taken to
compute the bounded degree subgraph with the maximum number of edges. This takes
O(n3) time in the worst case where n is the number of vertices in the graph.

Acknowledgements. This research was supported by NSF grants CCF-0430650, CCF-
0728839 and CNS-0509220. We thank David Kempe for useful discussions and Matt
McCutchen for useful comments on the writeup.

References

1. Abrams, Z., Goel, A., Plotkin, S.: Set k-cover algorithms for energy efficient monitoring in
wireless sensor networks. In: IPSN 2004: Proceedings of the third international symposium
on Information processing in sensor networks, pp. 424–432 (2004)

2. Alon, N.: A simple algorithm for edge-coloring bipartite multigraphs. Inf. Process.
Lett. 85(6), 301–302 (2003)

3. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: A discrete-time battery
model for high-level power estimation. In: DATE 2000: Proceedings of the conference on
Design, automation and test in Europe, New York, NY, USA, pp. 35–41 (2000)

4. Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor
networks. In: IEEE Infocom (2005)

5. Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad-hoc sensor networks.
In: Computer Communications, pp. 413–420 (2006)

6. Feige, U., Halldorsson, M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number.
SIAM J. on Comput. 32, 172–195 (2002)

7. Frieze, A.M., Jerrum, M.: Improved approximation algorithms for max k-cut and max bisec-
tion. In: Proceedings of the 4th International IPCO Conference, pp. 1–13 (1995)

8. Goemans, M.X., Williamson, D.P.: 879-approximation algorithms for max cut and max 2sat.
In: STOC 1994: Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pp. 422–431. ACM Press, New York (1994)

2 This problem can be viewed as a generalization of the problem of finding a matching in a
graph. Each node v has a upper bound of b(v) on the number of chosen edges in the subgraph.
With this restriction we wish to compute a subgraph with the maximum number of edges.

448 A. Deshpande et al.

9. Hastad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
10. Liu, H., Jia, X., Wan, P.: Maximizing lifetime of sensor surveillance systems. IEEE/ACM

Trans. on Networking 15, 172–195 (2007)
11. Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor networks. In:

IEEE International Conference on Communications (ICC 2001) (2001)
12. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC 1978: Proceed-

ings of the tenth annual ACM symposium on Theory of computing, pp. 253–264. ACM Press,
New York (1978)

Approximation Algorithms for k-Hurdle

Problems

Brian C. Dean, Adam Griffis, and Adam Whitley

School of Computing, Clemson University
Clemson, SC, USA

{bcdean,abgriff,awhitle}@cs.clemson.edu

Abstract. The polynomial-time solvable k-hurdle problem is a nat-
ural generalization of the classical s-t minimum cut problem where we
must select a minimum-cost subset S of the edges of a graph such that
|p ∩ S| ≥ k for every s-t path p. In this paper, we describe a set of ap-
proximation algorithms for “k-hurdle” variants of the NP-hard multiway
cut and multicut problems. For the k-hurdle multiway cut problem with
r terminals, we give two results, the first being a pseudo-approximation
algorithm that outputs a (k − 1)-hurdle solution whose cost is at most
that of an optimal solution for k hurdles. Secondly, we provide two dif-
ferent 2(1− 1

r
)-approximation algorithms. The first is based on rounding

the solution of a linear program that embeds our graph into a simplex,
and although this same linear program yields stronger approximation
guarantees for the traditional multiway cut problem, we show that its
integrality gap increases to 2(1 − 1

r
) in the k-hurdle case. Our second

approximation result is based on half-integrality, for which we provide a
simple randomized half-integrality proof that works for both edge and
vertex k-hurdle multiway cuts that generalizes the half-integrality results
of Garg et al. for the vertex multiway cut problem. For the k-hurdle mul-
ticut problem in an n-vertex graph, we provide an algorithm that, for
any constant ε > 0, outputs a �(1 − ε)k�-hurdle solution of cost at most
O(log n) times that of an optimal k-hurdle solution, and we obtain a
2-approximation algorithm for trees.

1 Introduction

Ever since the early work of Ford and Fulkerson [9], the minimum s-t cut prob-
lem and its dual, the maximum s-t flow problem, have together served as a
cornerstone for the foundation of the field of combinatorial optimization. Nu-
merous theoretical and practical applications are based on the duality between
minimum s-t cuts and maximum s-t flows.

In this paper, we study a natural generalization of the minimum s-t cut prob-
lem known as the k-hurdle problem, whose objective is to choose a minimum-
cost subset of the edges of a graph that cuts every s-t path at least k times.
Letting G = (V, E) be a graph with n = |V | vertices and m = |E| edges with
costs c : E → R+, we can write the k-hurdle problem as the following integer
program,

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 449–460, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

450 B.C. Dean, A. Griffis, and A. Whitley

OPT = Minimize
∑

e∈E

x(e)c(e)

Subject to
∑

e∈p
x(e) ≥ k ∀p ∈ Pst

x(e) ∈ {0, 1} ∀e ∈ E,

where Pst denotes the set of all s-t paths, each of which we assume has length
at least k edges or else there is no feasible solution. Since the two-terminal k-
hurdle problem has been well-studied in the literature and known to be solvable
in polynomial time, we focus in this paper on “k-hurdle” generalizations of the
NP-hard multiway cut and multicut problems.

The k-hurdle multiway cut problem takes as input a set of r terminals t1 . . . tr
and asks us to compute a minimum-cost subset of edges that cuts every terminal-
to-terminal path at least k times. We provide three approximation results for this
problem. The first is a pseudo-approximation algorithm that outputs a multiway
cut with at least k − 1 hurdles whose cost is no larger than the optimal cost of
a k-hurdle multiway cut, and other two are true approximation algorithms with
guarantee 2(1 − 1

r). One of these is based on rounding a “simplex embedding”
linear program (LP) that, for the classical multiway cut problem (k = 1) leads to
much stronger approximation guarantees (the current champion being a 1.3438-
approximation algorithm of [17]); however, we show that the integrality gap of
this LP surprisingly increases to 2(1− 1

r) in the k-hurdle case, thereby matching
our approximation bound. Our second approximation result is based on half-
integrality, where we simplify and extend the work of Garg et al. [13] to the
k-hurdle case.

The k-hurdle multicut problem takes as input r terminal pairs (si, ti) . . . (sr, tr)
and asks us to select a minimum-cost subset of edges that cuts each si-ti path
at least ki times, where the hurdle count ki can now vary by commodity. The
k-hurdle multicut problem seems somewhat more difficult to approximate well if
we wish to find a solution containing all of the required hurdles. For any constant
ε > 0, we show how to compute a solution that provides a 1 − ε fraction of the
required hurdles (rounded up) for each commodity, whose cost is at most O(log n)
times that of an optimal k-hurdle solution. If ki = O(1) for every commodity i,
we therefore obtain an O(log n)-approximation. For the special case of k-hurdle
multicut in a tree, we obtain a 2-approximation algorithm.

1.1 Literature Review

Many authors [4,21,22,25,26] have studied the k-hurdle problem (also known
as the minimum k-cut problem in the literature), and several polynomial-time
solution algorithms for it are known. Its linear programming relaxation can be
solved in polynomial time using the ellipsoid method (using a shortest path
algorithm as a feasibility oracle), and it can also be restated using a polynomial
number of constraints. Burch et al. [4] show that as a consequence of total
unimodularity, one can always find an optimal integer-valued solution.

The k-hurdle problem and its relatives arise often in practice in the domain
of network interdiction, also called network inhibition (see, e.g., [3,7,23,24,27]),

Approximation Algorithms for k-Hurdle Problems 451

where for example we might want to build multiple redundant layers of check-
points for inspecting goods being shipped through a network, or we might want
to disable multiple layers of edges in a network to inhibit the movement of a
malicious adversary. The k-hurdle problem and its LP relaxation can also be
viewed as special cases of “shortest path” network interdiction problems, where
we can pay c(e) per unit length to increase the length of edge e, with a goal of
increasing the shortest s-t path length to at least k; see also [16].

The dual of the k-hurdle problem is known in the literature as the k-maximum
flow problem [26], and since it can be expressed as a minimum cost circulation
problem with unit costs, we can solve it (and hence also the k-hurdle problem)
in Õ(mn) time [14], where Õ hides logarithmic factors. Linear programs of this
flavor are often found in network upgrading and improvement applications, where
we want to maximize the amount of additional flow one can send from s to t
(typically subject to a budget constraint), where the capacity of certain edges
can be upgraded at a price; see [10,18,20] for further details.

The classical (k = 1) multiway cut problem is APX-hard for r ≥ 3 terminals
[8], but can be approximated fairly well. There are several ways to obtain a
2(1−1/r)-approximation bound, the first being a simple “isolating cut” heuristic
due to Dahlhaus et al. [8]. A performance bound of 2 is also achievable via LP
rounding, since the natural LP relaxation of the multiway cut problem is known
to be 1/2-integral. Recently, Călinescu et al. [5] developed an elegant (1.5 − 1

r)-
approximation algorithm that solves an LP to embed a graph into an r-simplex,
then cuts the simplex using side-parallel cuts (hyperplanes parallel to the faces
of the simplex) to induce a multiway cut in the graph. This same approach was
improved by Karger et al. [17] to obtain a guarantee of 1.3438, and Karger et
al. as well as Cheung et al. [6] independently obtained a guarantee of 12/11 for
the special case of r = 3.

The classical multicut problem (ki = 1 for every commodity i = 1 . . . r), is
APX-hard for r ≥ 3 and can be approximated to within an O(log r) factor using
the prominent “region-growing” approach of Garg et al. [11]. In a tree, one can
obtain a 2-approximation algorithm using the primal-dual algorithm of Garg
et al. [12], or a more recent approach independently discovered by Golovin et
al. [15] as well as Levin and Segev [19].

2 k-Hurdle Multiway Cut

Let t1 . . . tr denote a set of terminals, and let P denote the set of all terminal-
to-terminal paths. We can write the NP-hard k-hurdle multiway cut problem as
the following integer program,

OPT = Minimize
∑

e∈E

x(e)c(e)

(IP2) Subject to x(p) ≥ k ∀p ∈ P
x(e) ∈ {0, 1} ∀e ∈ E,

whose corresponding LP relaxation we denote by LP2.

452 B.C. Dean, A. Griffis, and A. Whitley

2.1 Sacrificing One Hurdle

We begin our study of the k-hurdle multiway cut problem by showing the fol-
lowing pseudo-approximation result.

Theorem 1. In polynomial time, one can obtain a (k − 1)-hurdle solution of
cost at most OPT , where OPT denotes the cost of an optimal solution with k
hurdles.

Let x be an optimal solution to LP2 of cost zLP2, and let dx(u, v) denote
the shortest path distance from u to v using edge lengths x. Choose α uni-
formly at random from [0, 1] and consider making concentric cuts around each
terminal as follows. We define Ei,ρ as the set of edges uv ∈ E such that
ρ ∈ [dx(ti, u), dx(ti, v)] and let Ei denote the union of Ei,ρ over all ρ ∈ {α, 1 +
α, 2 + α, . . .} ∩ [0, �k/2�]. The “cutset” Ei contains the edges chosen by ti for
inclusion in our cut. Visually, we think of Ei as defined by a set of concentric
rings emanating out from ti at distances α, 1 + α, and so on. Although these
rings do not overlap, if k is even, an edge e straddling the frontier at mutual
distance k/2 from two terminals ti and tj could be included in both Ei and Ej ;
otherwise, e will belong to at most one cutset Ei. We now show that S = ∪r

i=1Ei

is a (k − 1)-hurdle multiway cut whose cost is at most zLP2 ≤ OPT .

Lemma 1. E[c(S)] ≤ zLP2.

Proof. Note that Pr[e ∈ S] ≤ xe, since due to the triangle inequality, the range
of values of α that result in e ∈ S has size at most xe. This is true even in
the special case where e belongs to two different cutsets Ei and Ej . Therefore,
E[c(S)] =

∑
e c(e)Pr[e ∈ S] ≤

∑
e c(e)x(e) = zLP2.

Lemma 2. The set S is a (k − 1)-hurdle multiway cut.

Proof. Consider any path p ∈ P connecting some terminal ti to some other
terminal tj . Let pi = p ∩ Ei and pj = p ∩ Ej . Suppose first that k is odd, in
which case |pi| ≥ (k − 1)/2, |pj | ≥ (k − 1)/2, and pi ∩ pj = ∅, from which it
follows that |p ∩ S| ≥ k − 1. On the other hand, if k is even, then |pi| ≥ k/2 and
|pj | ≥ k/2 but one edge e in p might appear in pi ∩ pj , so again |p ∩ S| ≥ k − 1.

A slight variation on the argument above allows us to prove that LP2 is 1/2-
integral, thereby giving an immediate 2-approximation algorithm for the k-
hurdle multiway cut problem, and also (by appropriately generalizing the meth-
ods in [13]) a (2 − 1

r)-approximation.

Theorem 2. LP2 is 1/2-integral.

Proof. Let x be an optimal fractional solution to LP2. Select α ∈ [0, 1/2] uni-
formly at random. For each terminal i, construct k sets of edges Ei,ρ as above
for ρ ∈ {α, 1 − α, 1 + α, 2 − α, 2 + α, 3 − α, . . .} ∩ [0, k/2]. Set x∗(e) to half
the total number of sets Ei,ρ in which edge e appears. We claim that the
1/2-integral solution x∗ is optimal for LP2. To show that x∗ is feasible for

Approximation Algorithms for k-Hurdle Problems 453

α2x = 1 +

x = 2 + α2

x = 3 +2 α

αx = 1 +3

αx = 2 +3

x = 3 + α3

x = α2
x = α3

1y(t) = (k, 0, 0)

3y(t) = (0, 0, k)2y(t) = (0, k, 0)

k/2

k/2

(k−1)/2

(k−1)/2

(k even) (k odd)

(b)

(a)

e

Fig. 1. Illustrations of (a) the cutting scheme used to obtain a 2(1−1/r)-approximation
(with k = 4), and (b) the cutting scheme used by our pseudo-approximation algorithm

LP2, note that x∗(e) ≤ 1 for every edge e (even in the special case where e
straddles the frontier at distance k/2 between two terminals), and also that
x∗(p) ≥ k for any p ∈ P connecting terminal ti to tj , since each of the 2k
total sets Ei,ρ and Ej,ρ contributes 1/2. By linearity of expectation, we have
E[x∗(e)] ≤ x(e) for each edge e, so letting C denote the cost of the solution
x∗, we have E[C] = E[

∑
e c(e)x∗(e)] ≤

∑
e c(e)x(e) = zLP2. However, since

C ≥ zLP2 always holds, we conclude that C = zLP2 irrespective of α.

We remark that if we replace edges with vertices, this same proof also establishes
1/2-integrality for the analogous LP relaxation of the vertex k-hurdle multiway
cut problem. Garg et al. [13] have previously proved 1/2-integrality for the vertex
version of the standard multiway cut problem, so our argument above gives
not only gives a simpler alternative proof of this result, but it also provides a
generalization to multiple layers of hurdles.

2.2 A 2(1 − 1/r)-Approximation Algorithm Via Simplex
Embeddings

The currently strongest approximation algorithms for the classical multiway cut
problem are based on a stronger linear programming relaxation that serves to
embed a graph G into the r-simplex, after which a randomized cutting scheme
slices up the simplex using side-parallel cuts (hyperplane cuts parallel to the faces
of the simplex), thereby inducing a multiway cut in G. In this section, we show
how to generalize this approach to obtain a 2(1− 1/r)-approximation algorithm
for the k-hurdle multiway cut problem. In addition, we show the (perhaps even
more interesting) result that the integrality gap of the embedding increases to
2(1−1/r) in the k-hurdle case, thereby matching our approximation bound. One
therefore cannot hope to achieve a stronger result by generalizing the stronger
multiway cut approximation algorithms of [5,6,17] to the k-hurdle case, since all
of these use the same linear program.

454 B.C. Dean, A. Griffis, and A. Whitley

Let ui denote the ith unit vector in Rr scaled up by k (with coordinate
xi = k, and all others zero), and let Δr = conv(u1 . . . ur) = {x ∈ Rr : (x ≥
0) ∧ (

∑r
i=1 xi = 1)} denote the r-simplex. We wish to compute an embedding

y : V → Δr of minimum volume V ol(y) = 1
2

∑
uv∈E c(uv)||y(u) − y(v)||1 such

that y(ti) = ui for each terminal i ∈ {1, . . . , r}, and such that 1
2 ||y(u)−y(v)||1 ≤

1 for all edges uv ∈ E. Note that the distance between two embedded vertices
y(u) and y(v) is measured as 1

2 ||y(u) − y(v)||1, since the L1 norm turns out
to be the “natural” norm to use for this embedding, and scaling by 1/2 makes
the corners of the simplex all lie at distance k from each-other. This geometric
relaxation is stronger than LP2, since by setting x(uv) = 1

2 ||y(u) − y(v)||1, we
can transform y into a feasible solution x for LP2 of cost V ol(y). As shown in
[5,6,17], an optimal embedding y can be computed by solving a simple linear
program. Moreover, by appropriately subdividing edges in the embedding, one
can assume each edge uv is i-j aligned, for some pair of terminals ti and tj ; that
is, y(u) and y(v) differ only in their ith and jth coordinates.

A valid k-hurdle cut of the simplex is a collection of surfaces in Rr such that
(i) any continuous (possibly curved) path p through Δr from any ui to any other
uj must cross at least k surfaces, and (ii) the crossing points must each be at
least 1 unit apart, measuring the distance between any two points x and x′ by
1
2 ||x − x′||1. Any such cut induces a feasible k-hurdle cut in G (by cutting every
edge e crossing a surface), since any terminal-to-terminal path in G must include
at least k edges in the cut. Condition (ii) above is particularly noteworthy, as
it is not necessary for the standard multiway cut problem — without it, we
could have a geometric cut comprised of k surfaces, but this might not cut as
many as k edges along a path in G since a single embedded edge might cross
two or more surfaces. It is this condition that will prevent us from obtaining an
approximation bound stronger than 2(1−1/r). Let C(i, ρ) denote the hyperplane
{x ∈ Rr : xi = ρ}. We call C(i, ρ) a side-parallel cut, since it runs parallel to
the face of Δr opposite ui. We henceforth focus only on side-parallel cuts.

A cutting scheme, is a probability distribution over k-hurdle cuts of the sim-
plex. Consider the following such distribution D: pick α ∈ [0, 1] uniformly at
random and select one terminal tj uniformly at random to remove from consid-
eration. For each of the r − 1 remaining terminals ti, we include the family of k
concentric side-parallel cuts C(i, α), C(i, 1 + α), . . . , C(i, k − 1 + α). Figure 1(a)
illustrates a the set of side-parallel cuts comprising one such cut from D. In the
literature, a cutting scheme comprised of side-parallel cuts is sometimes known
as a SPARC.

Theorem 3. The cutting scheme D gives us a 2(1 − 1/r)-approximation algo-
rithm for the k-hurdle multiway cut problem.

Proof. The expected cost of a k-hurdle multiway cut produced by D is
∑

uv∈E

c(uv)Pr[uv cut] =
(

1 − 1
r

) ∑

uv∈E

c(uv)||y(u)−y(v)||1 = 2
(

1 − 1
r

)

V ol(y),

where the first equality uses Lemma 3. Since V ol(y) ≤ OPT , the approximation
bound follows.

Approximation Algorithms for k-Hurdle Problems 455

1t

S1

S
2 t2 t3

S 3

S 32
 1

 1

 1 1

 1

 1

 8

 8 8

(0, 0, 3)

(a) (b)

(3, 0, 0)

(0, 3, 0)

(1/4, 1/4, 5/2)

(1/4, 11/8, 11/8)

(11/8, 1/4, 11/8)

(5/2, 1/4, 1/4)

(11/8, 11/8, 1/4)

(1/4, 5/2, 1/4)

t

S2

S1

1t

t3

Fig. 2. Graphs illustrating the integrality gap of 2(1 − 1/r) in Theorem 4: (a) G3,3,
along with its simplex embedding, and (b) G4,4

Lemma 3. For any edge uv, Pr[uv cut by D] = (1 − 1/r)||y(u) − y(v)||1.

Proof. Let x = y(u) and x′ = y(v). Assume without loss of generality that
uv is i-j aligned. Only cuts C(i, ·) or C(j, ·) can potentially cut uv (the others
are parallel to uv). The family of cuts C(i, ·) will cut uv with total probability
(1 − 1/r)|x′

i − xi| (this includes the probability that terminal i is used in D).
Similarly, the probability uv is cut by the family C(j, ·) is (1 − 1/r)|xj − x′

j |.
Applying a union bound, Pr[uv cut by D] = (1 − 1/r)(|x′

i − xi| + |x′
j − xj |) =

(1 − 1/r)||x − x′||1. Note that xk = x′
k for all k = i, j.

We note that our pseudo-approximation result from the preceding section is
also obtainable via a simple randomized cutting scheme, illustrated in Figure
1(b): pick α ∈ [0, 1] uniformly at random, and include cuts C(i, α), C(i, 1 +
α), . . . , C(i, �k/2� − 1 + α) for each terminal ti. A similar argument to that
of Lemma 3 shows that the expected cost of this cutting scheme is at most
V ol(y) ≤ OPT ; however, it does not guarantee k hurdles along any ti-tj path.
In the case that k is even, any such path p does indeed cross k cuts, but an
edge in the middle of the path might cross two cuts, as shown in the figure. If
k is odd, every path p only crosses k − 1 cuts; this is analogous to the proof of
Lemma 2.

Theorem 4. For k ≥ 2 and r ≥ 3, the integrality gap of our simplex embedding
is precisely 2(1 − 1/r).

Proof. Our approximation algorithm above provides an upper bound of 2(1 −
1/r), so we focus on the matching lower bound. For any k ≥ 2 and any r ≥ 3,
we construct a graph Gkr having integrality gap 2(1−1/r) as follows. Start with
an r-clique whose vertices are the r terminals t1 . . . tr. Then subdivide each edge
into k + 1 individual edges. Let Si denote the set of vertices adjacent to ti. For
each i = 1 . . . r, we form a clique of infinite-cost edges on the vertices in Si. Set
the cost of each remaining edge to zero, except the r(r−1) edges incident to the
terminals, which have unit cost. Figure 2 shows an example of G3,3 and G4,4.

456 B.C. Dean, A. Griffis, and A. Whitley

We achieve an optimal integral k-hurdle multiway cut in Gkr by setting with
xe = 1 for all zero-cost and unit-cost edges e except the unit-cost edges adjacent
to a single terminal, chosen arbitrarily. If there were two terminals ti and tj
incident to edges not selected in our solution, then a path from ti to tj containing
fewer than k selected edges would exist. Therefore, OPT = (r − 1)2. When we
embed Gkr in a simplex, the cliques S1 . . . Sr collapse into single points, the
embedded length of each unit-cost edge becomes 1/2 (again measured according
to half the L1 norm), and the zero-cost edges end up with unit length. Since
the total volume of this embedding is r(r − 1)/2, we obtain an integrality gap of
2(1 − 1/r).

3 k-Hurdle Multicut

As we have mentioned previously, the k-hurdle multicut problem seems some-
what more difficult to approximate than the classical multicut problem, partic-
ularly if we seek a solution that obtains all the required hurdles. In this section,
we describe a pseudo-approximation algorithm based on the prominent “region-
growing” algorithm of Garg et al. [11] that, for any constant ε > 0, outputs a
solution providing a 1 − ε fraction (rounded up) of the required hurdles for each
commodity, whose cost is at most O(log n) times that of an optimal k-hurdle so-
lution. After this, we describe a 2-approximation algorithm for the special case
of trees. We begin with the integer programming formulation of the k-hurdle
multicut problem,

OPT = Minimize
∑

e∈E

x(e)c(e)

(IP3) Subject to x(p) ≥ ki ∀i ∈ {1, . . . , r}, p ∈ Pi

x(e) ∈ {0, 1} ∀e ∈ E,

whose LP relaxation we denote by LP3. Our pseudo-approximation algorithm
is as follows:

1. Solve LP3 to obtain an optimal fractional solution x (this can be done in
polynomial time with the ellipsoid algorithm).

2. Set δ = ε2 and let x = x/δ.
3. Generate a new instance I ′ by adding a source-sink pair (u, v) for each

u, v ∈ V such that |dx(si, u) − dx(si, v)| ≥ 1 for some existing terminal
pair (si, ti).

4. Use the region-growing algorithm of Garg, Vazirani, and Yannakakis [11] to
round x to an integer solution x′ for instance I ′. Return x′.

Note that x would be an optimal fractional solution for LP3 for the instance
I ′ if only xe ≤ 1 for all e ∈ E. However, the GVY region-growing algorithm is
not adversely affected by the fact that xe > 1 for some edges e — it still returns
an integer solution of cost at most O(log R) times the objective value of our
LP, where R is the number of commodities in the instance. In our case, since
R ≤ n2 for the instance I ′, we obtain a solution of cose at most O(log n) times
zLP3/δ = zLP3/ε2).

Approximation Algorithms for k-Hurdle Problems 457

Theorem 5. The algorithm above returns an integer solution x′ for which
x′(p) ≥ �(1 − ε)ki� for every i ∈ {1, . . . , r} and p ∈ Pi.

Proof. We use the following fact about the GVY region-growing algorithm: for
each commodity (si, ti), it makes a cut at some radial distance ρi ≤ 1 from
either si or ti. Consider now any commodity i ∈ {1, . . . , r} and any path p ∈ Pi.
As we walk along p from si to ti, we acquire at least one hurdle for every
1+1/δ units of distance traveled. More precisely, we show how to obtain at least
�(x(p) − 1)/(1 + 1/δ)� hurdles, which is at least (1 − ε)ki since x(p) ≥ ki/δ and
δ = ε2.

Define q = �x(p)/(1 + 1/δ)�. Let v0 = si and vq = ti, and define vi for
i ∈ {1, . . . , q − 1} as the farthest vertex along p from si such si and v are no
more than q(1 + 1/δ) units of distance apart on p. Let pi, i = 1 . . . q denote the
subpath of p from vi−1 up to vi. We claim that x′(pi) ≥ 1 for each i ∈ {1 . . . q−1},
and that x′(pq) ≥ 1 if x(pq) ≥ 1. Consider any i ∈ {1, . . . , q−1}. Since x(e) ≤ 1/δ
for all e ∈ E, we must have x(pi) ≥ 1; otherwise, the first edge in pi+1 would
rightly belong to the end of pi, since the length of pi in this case would still be at
most 1 + 1/δ. Finally, if x(pi) ≥ 1, then pi must be cut by the GVY algorithm,
since a radial cut at distance ≤ 1 will be made from at least one endpoint of pi.

By setting ε appropriately, we obtain a true O(log n)-approximation algorithm
for the special case where ki = O(1) for all commodities i. Since in practice
we often wish to set up only two or three redundant layers of “checkpoints” for
inspecting traffic through a network, we expect this special case to occur quite
frequently.

3.1 A 2-Approximation for Trees

We now focus on the special case of a tree. We note with some interest that the
well-known primal-dual algorithm of Garg et al. [12] does not seem to generalize
in a straightforward fashion to the k-hurdle case, especially for the “non-uniform”
case where ki can vary by commodity. For the uniform case where all ki are equal,
the primal-dual approach does lead to a 3-approximation bound. However, by
generalizing a more recent approach of Golovin et al. [15] and Levin and Segev
[19], we show how to obtain 2-approximation algorithm.

Consider the integer programming formulation of the k-hurdle multicut prob-
lem in a tree,

OPT = Minimize
∑

e∈E

x(e)c(e)

(IP4) Subject to x(Pi) ≥ ki ∀i, 1 ≤ i ≤ r
x(e) ∈ {0, 1} ∀e ∈ E,

whose LP relaxation we denote by LP4. Our approach is based on the following
key property, mentioned in [15,19].

Lemma 4. If each commodity (si, ti) is unidirectional (si and ti having an
ancestor-descendant relationship), then LP4 is totally unimodular.

458 B.C. Dean, A. Griffis, and A. Whitley

We can therefore compute an integer optimal solution to LP4 in polynomial time
if all commodities are unidirectional. In fact, we can compute such a solution in
strongly polynomial time, since the dual of LP4 can be stated as a minimum-
cost flow problem (we will include more detail on this issue in the full version of
this paper). In the unit cost case, we can even use a simple combinatorial greedy
algorithm in lieu of solving LP4 [2]: root the tree and perform a postorder scan
over its edges, setting x(e) = 1 if |Pi ∩ Pe| − x(Pi ∩ Pe) = ki − x(Pi) for any
commodity i (here, Pe denotes the path from e up to the root).

Let x be an optimal solution to LP4 of cost zLP4. Although x may in general
be non-integral, we can use x to construct a new instance of LP4, NLP , whose
commodities are all unidirectional, and whose optimal (integral) solution gives
us a 2-approximate solution to IP . For each commodity i that is not unidirec-
tional, let ui be the lowest common ancestor of si and ti, and replace i with two
commodities i′ and i′′, having source-sink pairs (si′ , ti′) = (si, ui) and (si′′ , ti′′) =
(ui, ti) and hurdle demands ki′ = round(x(Pi′)) and ki′′ = round(x(Pi′′)) The
function round(x) evaluates to �x� if the fractional part of x is at least 0.5, and
�x� otherwise. This approach can be viewed as a strict generalization of [15,19]
for the simpler unit hurdle case of ki = 1, where i′ and i′′ are each included in
NLP only if x(Pi′) ≥ 0.5 or x(Pi′′) ≥ 0.5, respectively.

Consider now an optimal integer-valued solution x∗ to NLP . We know that x∗

is feasible for IP since x∗(Pi) = x∗(Pi′)+x∗(Pi′′) ≥ ki′ + ki′′ = round(x(Pi′))+
round(x(Pi′′)) ≥ �x(Pi)� ≥ ki for each original commodity i. We now only need
to show that the cost of x∗ is at most 2OPT . In [15,19], this is easily achieved
since LP4 in the unit hurdle case does require constraints of the form x(e) ≤ 1,
so 2x is a feasible solution for NLP , and therefore zNLP ≤ 2zLP4 ≤ 2OPT . In
our case, however, 2x may not be feasible for NLP , since doubling any x(e) > 0.5
will violate the constraint that x(e) ≤ 1. However, by first truncating 2x, we can
show an analogous result.

Lemma 5. The solution x = min(2x,1) is feasible for NLP .

Proof. Consider a particular unidirectional commodity j in NLP (so j = i′

or j = i′′ for some commodity i in the original instance). We will show that
x(Pj) ≥ kj . Note that kj was obtained by rounding x(Pj) up or down. If kj was
obtained by rounding x(Pj) down, then clearly x(Pj) ≥ x(Pj) ≥ kj . Henceforth,
let us therefore assume kj was obtained by rounding x(Pj) up, which implies
that �x(Pj)� − x(Pj) ≤ 0.5. Let Lj denote the set of “large” edges e ∈ Pj with
x(e) ≥ 0.5 and let Sj denote the “small” edges e ∈ Pj with x(e) < 0.5. We can
express x(Pj) = |Lj| + 2x(Sj). If x(Sj) = 0, then x(Pj) = |Lj | ≥ �x(Lj)� =
�x(Pj)� = kj . Therefore, we assume x(Sj) > 0 and consider two cases:

1. �x(Sj)�−x(Sj) ≤ 0.5. Here, since x(Sj) ≥ �x(Sj)�−0.5 and x(Sj) ≥ 0.5, we
have 2x(Sj) ≥ �x(Sj)�. Therefore, x(Pj) = |Lj| + 2x(Sj) ≥ |Lj | + �x(Sj)� =
�|Lj| + x(Sj)� ≥ �x(Lj) + x(Sj)� = �x(Pj)� = kj .

2. �x(Sj)� − x(Sj) > 0.5. By expanding out our assumption that �x(Pj)� −
x(Pj) ≤ 0.5, we obtain 0.5 ≥ �x(Sj) + x(Lj)� − (x(Sj) + x(Lj)), which
implies that x(Lj) > �x(Sj) + x(Lj)� − �x(Sj)�. Since |Lj | ≥ x(Lj) >

Approximation Algorithms for k-Hurdle Problems 459

�x(Sj) + x(Lj)� − �x(Sj)� and |Lj | is an integer, we have |Lj | ≥ �x(Sj) +
x(Lj)� − �x(Sj)�. Therefore, x(Pj) = |Lj| + 2x(Sj) ≥ |Lj | + �x(Sj)� ≥
�x(Sj) + x(Lj)� = �x(Pj)� = kj .

Since x is feasible for NLP and its cost is at most 2zLP4, we have zNLP ≤
2zLP4 ≤ 2OPT , so our integer optimal solution x∗ to NLP is a 2-approximation.

We close with one final note. 2-approximation algorithms for multicut on a
tree are often phrased as 2-approximation algorithms for the set cover problem
for the special case that we have a “tree representable” set system. Our result
above admits a similar interpretation:

Theorem 6. There exists a 2-approximation algorithm for the general covering
integer program min{cT x : Ax ≥ b} in the special case where A encodes a “tree
representable” set system.

4 Concluding Remarks and Open Problems

The primary open question remaining is whether one can develop stronger
approximation bounds for the k-hurdle multicut problem. Can one obtain a
true approximation algorithm for non-constant ki? Can one approximate an r-
commodity instance and obtain an approximation bound in terms of r rather
than n? Another interesting question one can address is whether a good approxi-
mation result can also be obtained for the k-hurdle version of the multi-multiway
cut problem [1].

References

1. Avidor, A., Langberg, M.: The multi-multiway cut problem. In: Hagerup, T., Kata-
jainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 273–284. Springer, Heidelberg
(2004)

2. Barany, I., Edmonds, J., Wolsey, L.A.: Packing and covering a tree by subtrees.
Combinatorica 6(3), 221–233 (1986)

3. Burch, C., Carr, R., Krumke, S., Marathe, M., Phillips, C.: A decomposition-
based pseudoapproximation algorithm for network flow inhibition. In: Woodruff,
D.L. (ed.) Network Interdiction and Stochastic Integer Programming, pp. 51–68.
Kluwer Academic Press, Dordrecht (2003)

4. Burch, C., Krumke, S., Marathe, M., Phillips, C., Sundberg, E.: Multicriteria ap-
proximation through decomposition, Technical Report (1997)

5. Călinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm
for MULTIWAY CUT. Journal of Computer and System Sciences 60(3), 564–574
(2000)

6. Cheung, K., Cunningham, W.H., Tang, L.: Optimal 3-terminal cuts and linear
programming. Mathematical Programming 106(1) (2006)

7. Cunningham, W.H.: Optimal attack and reinforcement of a network. Journal of
the ACM 32(3), 549–561 (1985)

8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894
(1994)

460 B.C. Dean, A. Griffis, and A. Whitley

9. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1962)

10. Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject
to a budget constraint. Mathematical Programming 13, 116–118 (1977)

11. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing 25(2), 235–251
(1996)

12. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

13. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs.
Journal of Algorithms 50(1), 49–61 (2004)

14. Goldberg, A., Tarjan, R.: Finding minimum-cost circulations by successive approx-
imation. Mathematics of Operations Research 15, 430–466 (1990)

15. Golovin, D., Nagarajan, V., Singh, M.: Approximation the k-multicut problem. In:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 621–630 (2006)

16. Israeli, E., Wood, R.K.: Shortest path network interdiction. Networks 40(2), 97–111
(2002)

17. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algo-
rithms for a geometric embedding of minimum multiway cut. Mathematics of Op-
erations Research 29(3), 436–461 (2004)

18. Krumke, S., Noltemeier, H., Ravi, R., Schwarz, S., Wirth, H.-C.: Flow improvement
and flows with fixed costs. In: Proceedings of the International Conference on
Operations Research (OR), pp. 158–167 (1998)

19. Levin, A., Segev, D.: Partial multicuts in trees. In: Erlebach, T., Persinao, G. (eds.)
WAOA 2005. LNCS, vol. 3879, pp. 320–333. Springer, Heidelberg (2006)

20. Meignen, R., Berthoud, G., Schwarz, S., Krumke, S.: On budget-constrained flow
improvement. Information Processing Letters 66(3), 291–297 (1998)

21. Nishihara, O., Inoue, K.: An algorithm for a multiple disconnecting set problem.
Unpublished manuscript, Department of Aeronautical Engineering, Kyoto Univer-
sity (1988)

22. Nishihara, O., Kumamoto, H., Inoue, K.: An algorithm for a multiple cut problem
and its application. In: 13th International Symposium on Mathematical Program-
ming (1988)

23. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the DARPA Information Survivability Conference and Exposi-
tion, pp. 71–79 (2000)

24. Phillips, C.A.: The network inhibition problem. In: Proceedings of the 25th Annual
ACM Symposium on Theory of Computing (STOC), pp. 776–785 (1993)

25. Wagner, D.K.: Disjoint (s, t)-cuts in a network. Networks 20, 361–371 (1990)
26. Wagner, D.K., Wan, H.: A polynomial-time simplex method for the maximum

k-flow problem. Mathematical Programming 30, 115–123 (1993)
27. Wood, R.K.: Deterministic network interdiction. Mathematical and Computer

Modeling 17(2), 1–18 (1993)

Approximating Crossing Minimization in

Radial Layouts�

Seok-Hee Hong1 and Hiroshi Nagamochi2

1 School of Information Technologies, University of Sydney
shhong@it.usyd.edu.au

2 Department of Applied Mathematics and Physics,
Kyoto University

nag@amp.i.kyoto-u.ac.jp

Abstract. We study a crossing minimization problem of drawing a bi-
partite graph with a radial layout of two orbits. Radial layouts have
strong application in social network visualization, displaying centrality
of actors. The problem is called the one-sided crossing minimization if the
positions of vertices in one of the two orbits are fixed, and is known to be
NP-hard. We present the first approximation algorithm, proving that the
one-sided crossing minimization in a radial layout is 15-approximable.

1 Introduction

Given a bipartite graph G = (V, W, E) with two parallel straight lines L1 and L2,
a 2-layered drawing consists of placing all vertices in the first vertex set V on L1

and placing all vertices in the second vertex set W on L2. In a 2-layered drawing,
each edge is represented as a straight-line segment joining the end-vertices, as
shown in Fig. 1(a). For a given ordering of vertices in W on L2, the one-sided
crossing minimization problem asks to find an ordering of vertices in V on L1 so
that the number of edge crossings between two layers is minimized, whereas the
two-sided version asks to find orderings of W on L2 and V on L1 to minimize
the number of edge crossings.

In a radial drawing of a bipartite graph, we consider orbits instead of hori-
zontal lines. Given two orbits O1 and O2 with the common center in the plane,
we draw a bipartite graph G = (V, W, E) so that the vertices in V (resp., W)
are placed on O1 (resp., O2) and each edge is drawn as a simple curve in the
area between O1 and O2 (see Fig. 1(b)).

In horizontal 2-layered drawings, the embedding is fully determined by the
vertex orderings of V and W . For radial drawings, however, it is also necessary
to know where the orderings start (without loss of generality, counter clockwise)
and end on each orbit. For this, we introduce a ray that indicates this borderline
between the first and last vertices in the orderings. The ray is a straight-line
segment that intersects each orbit exactly once, as shown in Fig. 1(b). An edge
e ∈ E is called a cut edge in a drawing if it intersects the ray of the drawing.
� This is an extended abstract. This research was partially supported by the Scientific

Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology
of Japan.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 461–472, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

462 S.-H. Hong and H. Nagamochi

ray
w4

v1

v2

w1

e2

e4

O1

O2

v3 w2

w3

e1

e3

(a) (b)

W

V

L1

L2

Fig. 1. (a) A horizontal drawing D = (π, σ); (b) A radial drawing D = (π, σ, ψ) with
two orbits O1 and O2, where ψ(e1) = 0, ψ(e2) = 1, ψ(e3) = −1, and ψ(e4) = −2

Both 2-layered horizontal and radial drawings are used in VLSI layout design,
and the fundamental building block for drawing graphs in a hierarchical fashion
[1,4,8]. In particular, radial layout is one of popular drawing convention in social
network visualization for displaying centralities. Centrality measures are one of
the fundamental concepts in social network analysis to identify important actors
in the social network [9]. In a radial drawing of a social network, the most
prominent actor is placed in the center, and then other actors are embedded on
the concentric circles, based on their centrality values.

Recently, human experiments suggested that edge crossing is one of the most
important aesthetics criteria for understanding of a graph drawing. Further, in
some applications such as VLSI layout design, layouts with less edge crossings
can lead to a product with less cost and higher reliability. As a result, there is a
rich literature on minimizing edge crossings of layouts in Graph Drawing.

Note that the crossing minimization problem in horizontal 2-layered drawings
are well studied. Both two-sided and one-sided crossing minimization problems
in horizontal layouts are NP-hard [2]. For the one-sided crossing minimization
problem, a number of heuristics, approximation algorithms and exact algorithms
have been proposed [2,3,5,8]. A well known lower bound LB(G, σ) on the min-
imum number of crossings is obtained by summing up min{χuv, χvu} over all
vertex pairs u, v ∈ V , where χuv denotes the number of crossings generated by
edges incident to u and v when u precedes v in the ordering. A median heuristic
produces a 3-approximate solution based on the lower bound LB(G, σ). Cur-
rently, the best known algorithm for the problem delivers a drawing with at
most 1.4664LB(G, σ) crossings [5]. For the two-sided crossing minimization, it
is shown that the problem is O(log n)-approximable, when the maximum degree
over the minimum degree is bounded by a constant [7].

However, the crossing minimization problem in radial layouts has not been
well studied. In this paper, we study the problem of finding a radial drawing D
of a bipartite graph G = (V, W, E) that minimizes the number of edge crossings

Approximating Crossing Minimization in Radial Layouts 463

in D, when a vertex ordering σ of W is fixed. We call this problem the one-sided
crossing minimization problem in a radial layout. Recently, this problem was
shown to be NP-hard, and a number of heuristics are presented [1]. However,
it was left open to obtain a constant-factor approximation algorithm for radial
layouts [1]. There is no approximation algorithm with a theoretical performance
guarantee for the crossing minimization in radial layouts.

Note that the problem of crossing minimization in radial layout is more chal-
lenging, as it involves both vertex ordering and edge routing problems. That is,
even if the orderings of vertices in both orbits are fixed, we still need to decide
how to route (i.e. clockwise or counter clockwise) each edge around the inner
orbit in order to minimize the number of edge crossings in a radial layout. It
would be the fundamental observation to know whether the freedom in drawing
edges around the inner orbit makes the one-sided crossing minimization hard
to be approximated or not. The one-sided crossing minimization problem in
horizontal layout admits the lower bound LB(G, σ). However, no such effective
lower bound is known to the one-sided crossing minimization problem in radial
layouts.

The main contribution of this paper is to provide the first constant-factor ap-
proximation algorithm to the one-sided crossing minimization in a radial layout.
More specifically, we prove the following.

Theorem 1. The one-sided crossing minimization in a radial layout is 15-
approximable. ��

Our main idea is to reduce a given instance of the one-sided crossing mini-
mization in a radial layout to that of the one-sided crossing minimization in a
horizontal layout. We present a new technique to convert a problem instance in
a radial layout into that in a horizontal layout by introducing a bounded num-
ber of new edge crossings. This enables us to use the well-known lower bound
on the one-sided crossing minimization in horizontal layouts and to derive a
15-approximation algorithm to the one-sided crossing minimization in a radial
layout.

In Section 2, we formally define a horizontal layout and a radial layout of a
bipartite graph, and review basic properties. Section 3 investigates a property
of radial drawings in which at least one edge receives no edge crossings, and
proves that among such drawings, there is a 3-approximate solution to the one-
sided crossing minimization problem in a radial layout. Section 4 proves that
the problem of finding an optimal radial drawing with a crossing-free edge is 5-
approximable, by reducing the problem to the one-sided crossing minimization
problem in a horizontal layout. The results in Sections 3 and 4 imply Theorem 1.
Section 5 makes some concluding remarks.

2 Preliminaries

Let G = (V, W, E) be a simple bipartite graph with vertex sets V and W and an
edge set E. For a vertex v ∈ V in G, let E(v; G) denote the set of edges incident

464 S.-H. Hong and H. Nagamochi

to v, Γ (v; G) denote the set of neighbors of v (i.e., vertices adjacent to v) in G,
and d(v; G) denote the degree of a vertex v, i.e., d(v; G) = |E(v; G)| = |Γ (v; G)|.
A subgraph G′ = (V ′, E′) of G = (V, E) is induced by V ′ if E′ is given by
E′ = {e ∈ E | the both end vertices of e belong to V ′}, and G′ may be denoted
by G[V ′]. Throughout the paper, we assume that d(u; G) ≥ 1 for all u ∈ V ∪W .

2.1 Horizontal Layouts

Let π and σ denote permutations of {1, 2, . . . , |V |} and {1, 2, . . . , |W |}, respec-
tively. A pair of π and σ defines a horizontal drawing of G in the plane in such
a way that, for two parallel horizontal lines L1 and L2, the vertices in V (resp.,
in W) are arranged on L1 (resp., L2) according to π (resp., σ) and each edge is
displayed by a straight line segment joining the end-vertices. For any choice of
coordinates of points for vertices in V ∪ W in a horizontal drawing of G defined
by (π, σ), two edges (v, w), (v′, w′) ∈ E intersect properly (or create a crossing)
if and only if (π(v) − π(v′))(σ(w) − σ(w′)) is negative.

Given a bipartite graph G = (V, W, E) and a permutation σ on W , the one-
sided crossing minimization problem asks to find a permutation π on V that
minimizes the number of crossings in a horizontal drawing (π, σ) of G.

For an ordered pair of two vertices u, v ∈ V , let χ(u, v; G) denote the number
of crossings generated by an edge incident to u and an edge incident to v when
π(u) < π(v) holds in a horizontal drawing D = (π, σ). The total number χ(D; G)
of edge crossings of D = (π, σ) in G is given by

χ(D; G) :=
∑

u,v∈V :π(u)<π(v)

χ(u, v; G).

From this formula, we observe the next lower bound on the minimum χ(D; G).

Lemma 1. Given a bipartite graph G = (V, W, E) and a permutation σ
on W , let LB(G, σ) =

∑
u,v∈V min{χ(u, v; G), χ(v, u; G)}, and χ∗

h(G, σ) =
min{χ(D; G) | D = (π, σ), a permutation π on V }. Then it holds LB(G, σ) ≤
χ∗

h(G, σ) ��

It is known that χ∗
h(G, σ) ≤ 1.4664LB(G, σ) always holds, and there is an in-

stance (G, σ) with χ∗
h(G, σ) = 1.1818LB(G, σ) [5].

Eades and Wormald [2] gave an algorithm, called the median heuristic, which
produces a horizontal drawing D = (π, σ) with χ(D; G) ≤ 3LB(G, σ), i.e., a
3-approximate solution. Here we review the median heuristic with a slight mod-
ification. Let σ be a fixed permutation on W . We define the median med(v)
of a vertex in v ∈ V , where dv = d(v; G) and Γ (v; G) = {w1, w2, . . . , wdv}
(σ(w1) < σ(w2) < · · · < σ(wdv)), by

med(v) :=

{
σ(w dv+1

2
) if dv is odd,

1
2 (σ(w dv

2
) + σ(w dv

2 +1)) if dv is positive and even,

Approximating Crossing Minimization in Radial Layouts 465

where med(v) for a vertex v with dv = 0 can take any value in {1, 2, . . . , |V |}.
Note that if dv ≥ 2 is even, then med(v) �∈ {σ(w) | w ∈ Γ (v; G)} (med(v) was
defined as σ(w dv

2
) if dv is even in [2]).

A permutation π has the median property with respect to σ if π is a total
order obtained from med, i.e., π(u) < π(v) implies med(u) ≤ med(v) for every
two vertices u, v ∈ V . It is known that if π has the median property with respect
to σ, then χ(D; G) ≤ 3LB(G, σ) holds for D = (π, σ) [2].

2.2 Radial Layouts

Let O1 and O2 be two orbits with the common center in the plane, where O1 is
the inner orbit and O2 is the outer orbit. The positions of vertices in V (resp.,
W) is defined as a bijective function π : V → {0, 1, . . . , |V | − 1}, (resp., σ : V →
{0, 1, . . . , |W | − 1}) where positions 0, 1, . . . , |V | − 1 (resp., 0, 1, . . . , |W | − 1)
appear in this order when we traverse O1 (resp., O2). Each edge is drawn as a
simple curve in the area between O1 and O2.

In horizontal drawings with two layers, a crossing between two edges only
depends on the orderings of the end vertices. In radial drawings, however, it is
also necessary to consider the direction in which the edges are wound around the
inner orbit. Moreover, edges can also be wound around the inner orbit multiple
times. We call this the offset, represented by a function ψr : E → Z, where Z

is the set of integers. Thus, |ψ(e)| counts the crossings of an edge e ∈ E with
the ray. An edge e is a cut edge if and only if |ψ(e)| > 0. If ψ(e) < 0 (resp.,
ψ(e) > 0), then e is a clockwise (resp., counter-clockwise) cut edge. Thus, the
sign of ψ(e) reflects the mathematical direction of rotation. Observe that in the
above definition a cut edge cannot cross the ray clockwise and counter-clockwise
simultaneously. See Fig 1(b). For simplicity, ψ(e) for an edge e = (u, v) may be
denoted by ψ(u, v).

We define a radial drawing D to consist of the vertex ordering of (π, σ) and
the edge offset ψ, i.e., D = (π, σ, ψ). Given a radial drawing and an edge e∗, let
denote ψ(e; e∗), e ∈ E − {e∗} the offset of e when e∗ is regarded as the ray. For
example, ψ(e2; e3) = 1 and ψ(e1; e3) = ψ(e4; e3) = 0 hold in Fig 1(b).

We are now ready to describe crossings between edges in a radial drawing
D. Note that there may be more than one crossing between two edges. Let
χ(e1, e2; D) denote the number of crossings between two edges e1, e2 ∈ E. Let
sgn : R → {−1, 0, 1} denote the signum function.

Lemma 2. [1] Let D = (π, σ, ψ) be a radial drawing of a bipartite graph G =
(V, W, E). Then the number of crossings between two edges e1 = (u1, v1), e2 =
(u2, v2) ∈ E is

χ(e1, e2; D) = max
{

0, |ψ(e2) − ψ(e1) +
b − a

2
| +

|a| + |b|
2

− 1
}

,

where a = sgn(π(u2) − π(u1)) and b = sgn(σ(v2) − σ(v1)). ��

466 S.-H. Hong and H. Nagamochi

We define
χ(e; D) =

∑

e′∈E−{e}
χ(e, e′; D) for e ∈ E,

χ(D; G) =
∑

e,e′∈E:e�=e′

χ(e, e′; D),

where χ(D; G) = 1
2

∑
e∈E χ(e; D) holds. We may write χ(D; G) as χ(D) if the

underlying graph G is clear from the context.
In this paper, we consider a radial drawing with the minimum number of edge

crossings, and hence we assume that a given radial drawing satisfies the following
conditions:

(C1) Every two edges e and e′ cross each other at most once.
(C2) No two edges e and e′ incident to the same vertex cross each other.

This is because otherwise we can reduce χ(e, e′; D) in (C1) by two (resp., (C2)
by one) without increasing the number of crossings between any other two edges.

In this paper, we consider the problem of finding a radial drawing D =
(π, σ, ψ) of a bipartite graph G = (V, W, E) that minimizes χ(D) when a vertex
ordering σ of W is fixed. We call this problem the one-sided crossing minimiza-
tion in a radial layout. Let χ∗

r(G, σ) denote the optimal value, i.e., the minimum
number of crossings over all radial drawings of G with a specified position σ
of W .

3 Radial Drawings with Crossing-Free Edges

An edge e is called crossing-free in a radial drawing D if χ(e; D) = 0.

Theorem 2. For any radial drawing D = (π, σ, ψ) of G = (V, W, E), there is
an offset ψ′ of E such that the radial drawing D′ = (π, σ, ψ′) of G has at least
one crossing-free edge and satisfies

χ(D′) ≤ 3χ(D).

Proof. Let k = min{χ(e; D) | e ∈ E}, and ê ∈ argmin{χ(e; D) | e ∈ E}. Hence

2χ(D) =
∑

e∈E

χ(e; D) ≥ k|E|.

Let Ê be the set of edges that cross ê, where we can assume that each edge e ∈ Ê
crosses ê exactly once by (C1). See Fig. 2(a). We now modify the offset ψ(e) of
each edge e ∈ Ê so that the resulting radial drawing D′ = (π, σ, ψ′) satisfy the
lemma. We redraw each edge e ∈ Ê by changing its offset ψ(e) into a new offset
ψ′(e) so that it no longer crosses ê. See Fig. 2(b). For this, let ψ′(e) = 0 for
e ∈ Ê with ψ(e) ∈ {−1, 1}, and ψ′(e) = −ψ(e; ê) for e ∈ Ê with ψ(e) = 0. Let
ψ′(e) = ψ(e) for all e ∈ E − Ê.

Approximating Crossing Minimization in Radial Layouts 467

V

W

(a)

v

ray

V

W

(b)

ray

^

w

ê

^

ê

v̂

ŵ

Fig. 2. (a) Edge ê in a radial drawing D; (b) Edges in �E redrawn

Let ψ′ be the resulting offsets of E, and let D′ = (π, σ, ψ′). We easily see that
χ(e, ê; D′) = 0 for all e ∈ E − {ê} and that χ(e, e′; D) = χ(e, e′; D) for all edges
e, e′ ∈ Ê. Since |ψ′(e) − ψ(e)| = 1 for all e ∈ Ê, Lemma 2 tells that redrawing
edge e ∈ Ê can increase the number of crossings between edges e and e′ ∈ E − Ê
at most by |E| − |Ê|. Therefore, we have χ(D′) ≤ χ(D) + k|E| ≤ 3χ(D). ��

By Theorem 2, a given graph G contains an edge ê = (v̂, ŵ) ∈ E (v̂ ∈ V , ŵ ∈ W)
such that χ(D) ≤ 3χ∗

r(G, σ) holds for some radial drawing D = (π, σ, ψ) of G
in which ê is crossing-free. Our aim is now to consider the problem of finding a
radial drawing D with crossing-free edge ê that minimizes the number of edge
crossings for a fixed position σ of W and a specified edge ê. Let Dê be the set
of all radial drawings with the position σ in which ê is crossing-free. Then we
prove the next result.

Theorem 3. For a position σ of W in a bipartite graph G = (V, W, E) and an
edge ê ∈ E, a radial drawing D0 ∈ Dê such that

χ(D0) ≤ 5 min{χ(D) | D ∈ Dê}

can be obtained in polynomial time. ��

By Theorems 2, if we apply Theorem 3 for all edges ê in E, and choose the
best drawing D0 among the resulting drawings, then χ(D0) ≤ 5 min{χ(D) | ê ∈
E, D ∈ Dê} ≤ 15χ∗

r(G, σ) holds. Thus this implies Theorem 1.
In the next section, we discuss how to find a position π and an offset ψ such

that D0 = (π, σ, ψ) satisfies Theorem 3.
In the rest of this section, we derive some conditions on offsets ψ : E →

{−1, 0, 1} such that D = (π, σ, ψ) ∈ Dê that minimizes χ(D) for given positions
π and σ. Consider offset ψ(v, w) of an edge e = (v, w) ∈ E −{ê} with v ∈ V and
w ∈ W . If e is not adjacent to ê, then the offset of e is uniquely determined by

468 S.-H. Hong and H. Nagamochi

. . .

. . .

. . .

ray
w

q+1

w 1

w 2

w=w

q-1 w w

d(v;G)

w

q

w . .
.

. . .

(a) (b)

ray

v 1

v

v d(w;G)

v p+1

w

v=v p v
p-h+1

v p-h

. . .

. .
.

d(v;G)+q-g+1

d(v;G)+q-g

^

^

^

^

^

^

^

^

Fig. 3. (a) A partition of E(v̂; G), where g > q; (b) A partition of E(ŵ; G), where
p > h

the positions of v and w in π and σ, because it does not cross edge ê in D. More
precisely, it is given by

ψ(v, w) =

⎧
⎨

⎩

0 if (π(v) − π(v̂))(σ(w) − σ(ŵ)) > 0,
1 if π(v) < π(v̂) and σ(w) > σ(ŵ),
−1 if π(v) > π(v̂) and σ(w) < σ(ŵ).

(1)

However, if e is adjacent to ê, then it still has two possible ways of drawing
without crossing ê, hence the offset of e cannot be determined only by (π, σ) (see
Fig. 3(a) and (b)). We can assume that no two edges in E(v̂; G) (resp., E(ŵ; G))
cross each other by (C2). There are d(v̂; G) such drawings for E(v̂; G) (resp.,
d(ŵ; G) such drawings for E(ŵ; G)). Thus, E(v̂; G)− {ê} is partitioned into two
subsets Eright

v̂ and Eleft
v̂ , called the right-set and left-set (each of which may be

empty), where edges in Eright
v̂ (resp., Eleft

v̂) are drawn so that they enter v̂ on
the right of ê (resp., the left of ê). We define the right-set Eright

ŵ and the left-
set Eleft

ŵ analogously. For g ∈ {1, 2, . . . , d(v̂; G)} and h ∈ {1, 2, . . . , d(v̂; G)}, we
denote by ψπ,σ,ê,g,h the offset of E such that ê is crossing-free, |Eright

v̂ | = g − 1,
and |Eright

ŵ | = h − 1. More precisely, ψπ,σ,ê,g,h is given as follows. For Γ (v̂; G) =
{w1, w2, . . . , wd(v̂;G)} (σ(w1) < σ(w2) < · · · < σ(wd(v̂;G)) and wq = ŵ), if g ≥ q
then

ψπ,σ,ê,g,h(v̂, wi) =
{

0 for 1 ≤ i ≤ d(v̂; G) + q − g,
1 for d(v̂; G) + q − g < i ≤ d(v̂; G)

(see Fig. 3(a)), and if g < q, then

ψπ,σ,ê,g,h(v̂, wi) =
{

−1 for 1 ≤ i ≤ q − g,
0 for q − g < i ≤ d(v̂; G).

Approximating Crossing Minimization in Radial Layouts 469

The offset ψπ,σ,ê,g,h(e) of edge e incident to ŵ also can be given analogously (see
Fig. 3(b)). For each edge e ∈ E not adjacent to ê, its offset ψπ,σ,ê,g,h(e) is defined
by (1). From the above argument, to prove Theorem 3, it suffices to consider only
radial drawings in the form of Dg,h = (π, σ, ψπ,σ,ê,g,h), (g ∈ {1, 2, . . . , d(v̂; G)},
h ∈ {1, 2, . . . , d(ŵ; G)}).

Lemma 3. For positions π of V and σ of W in a bipartite graph G = (V, W, E)
and an edge ê = (v̂, ŵ) ∈ E with v̂ ∈ V and ŵ ∈ W , let ψπ,σ,ê,g,h be the offset
with respect to π, σ, ê, g ∈ {1, 2, . . . , d(v̂; G)} and h ∈ {1, 2, . . . , d(ŵ; G)}, and
let Dg,h = (π, σ, ψπ,σ,ê,g,h). Then for any drawing D∗ = (π, σ, ψ∗) ∈ Dê of G, it
holds

min{χ(Dg,h) | 1 ≤ g ≤ d(v̂; G), 1 ≤ h ≤ d(ŵ; G)} ≤ χ(D∗).

��
To prove Theorem 3, we also assume that d(v; G) ≥ 2 for all v ∈ Γ (ŵ; G) −
{v̂}. We easily see that π attains the minimum χ(D) when all vertices v ∈
Γ (ŵ; G) with d(v; G) = 1 appears consecutively including v̂, in particular, they
are contained in Eright

ŵ or Eleft
ŵ completely. Thus, we only need to consider

these two cases, and removing those vertices from such a drawing makes a fixed
amount of change in the crossing number χ(D). Hence, in the next section, we
assume that no vertex with degree 1 (except for v̂) is adjacent to ŵ for simplicity.

4 Reduction from Radial Drawings to Horizontal
Drawings

Let D = (π, σ, ψ) be a radial drawing of a bipartite graph G = (V, W, E), and
ê = (v̂, ŵ) ∈ E be an edge with v̂ ∈ V and ŵ ∈ W . Consider a horizontal drawing
De = (π′, σ′) of the induced graph G[V ∪W −{v̂, ŵ}] as follows. Let π′ (resp., σ′)
denote the permutation of {1, 2, . . . , |V | − 1} (resp., {1, 2, . . . , |W | − 1}) induced
from π by V − {v̂} (resp., σ by W − {ŵ}), i.e.,

π′(v) = π(v) − π(v̂) (mod |V | − 1) for v ∈ V − {v̂},

σ′(w) = σ(w) − σ(ŵ) (mod |W | − 1) for w ∈ W − {ŵ}.

Then we say that π has the median property with respect to (σ, ê) if the permu-
tation π′ has the median property with respect to σ′ in G[V ∪W −{v̂, ŵ}]. Note
that such π can be computed from (σ, ê) in polynomial time without knowing
the information on ψ.

As observed in the previous section, we assume that no vertex v with d(v; G) =
1 (except for v̂) is adjacent to ŵ.

Lemma 4. For a position σ of W in a bipartite graph G = (V, W, E) and an
edge ê = (v̂, ŵ) ∈ E with v̂ ∈ V and ŵ ∈ W , let Dg,h = (π, σ, ψπ,σ,ê,g,h) and
D∗

g,h = (π∗, σ, ψπ∗,σ,ê,g,h) be two radial drawings of G with crossing-free edge ê,
where 1 ≤ g ≤ d(v̂; G) and 1 ≤ h ≤ d(ŵ; G). If π has the median property with
respect to (σ, ê), then, for each g ∈ {1, . . . , d(v̂; G)}, it holds

min{χ(Dg,t) | 1 ≤ t ≤ d(ŵ; G)} ≤ 5χ(D∗
g,h). ��

470 S.-H. Hong and H. Nagamochi

v 0

w 0 q-1 w w 2 w 1 w d(v;G) w
w q+1 w

v |V|

w

‘

‘ ‘

‘v 1 v v v p-1 v p+1 v d(w;G)

|W|

p-h+1 p-h

d(v;G)+q-g+1
d(v;G)+q-g ^

^

^

^

Fig. 4. Horizontal drawing DA = (πA, σA) of GA

Let D∗ ∈ Dê be a radial drawing with the minimum crossing number. By
Lemma 3, we can assume that D∗ ∈ Dê is given as D∗

g,h = (π∗, σ, ψπ∗,σ,ê,g,h) for
some g ∈ {1, . . . , d(v̂; G)} and h ∈ {1, . . . , d(ŵ; G)}. By applying Lemma 4 for all
g ∈ {1, . . . , d(v̂; G)}, it holds min{χ(Dg,t) | 1 ≤ g ≤ d(v̂; G), 1 ≤ t ≤ d(ŵ; G)} ≤
5χ(D∗

g,h) = 5χ(D∗), and the drawing D0 = Dg′,t′ attaining the minimum implies
Theorem 3.

Now the remaining task is to prove Lemma 4. For this, we use the median
property of π for a certain instance of the one-sided crossing minimization prob-
lem in a horizontal layout.

Based on G and D∗
g,h, we first define a graph GA and a horizontal drawing

DA as follows. Remove edge ê = (v̂, ŵ) from G. Then split vertex v̂ into two
new vertices v′0 and v′|V | changing the end vertex v̂ of each edge (v̂, wi) in the
right-set (resp., the left-set) of E(v̂; G) − {ê} to v′0 (resp., v′|V |). Analogously,
split vertex ŵ into w′

0 and w′
|W | changing end vertex ŵ of each edge (vi, ŵ) in

the right-set (resp., the left-set) of E(ŵ; G)−{ê} to w′
0 (resp., w′

|W |). We denote
the resulting bipartite graph by

GA = ((V − {v̂}) ∪ {v′0, v
′
|V |}, (W − {ŵ}) ∪ {w′

0, w
′
|W |}, E − {ê}).

See Fig. 4. Let πA and σA be the permutations of {0, 1, . . . , |V |} and
{0, 1, . . . , |W |}, respectively, such that πA(v′0) = 0, πA(v′|V |) = |V |, πA(v) =
π∗(v) − π∗(v̂) (mod |V |) for v ∈ V − {v̂}, σA(w′

0) = 0, σA(w′
|V |) = |V |, and

σA(w) = σ(w) − σ(ŵ) (mod |W |) for w ∈ W − {ŵ}. Then the number of edge
crossings in a horizontal drawing DA = (πA, σA) of GA is equal to that of D∗

g,h,
i.e.,

χ(DA; GA) = χ(D∗
g,h; G).

We next consider the graph

GB = (VB = V − {v̂}, WB = (W − {ŵ}) ∪ {w′
0, w

′
|W |}, EB = E − E(v̂; G)),

i.e., GB is obtained from GA by removing vertices v′0 and v′|V | together with
the incident edges (see Fig. 5(a)). Let πB be the permutation of {1, . . . , |V | − 1}

Approximating Crossing Minimization in Radial Layouts 471

such that πB(v) = πA(v) = π∗(v) for v ∈ V − {v̂}. Then a horizontal drawing
DB = (πB , σA) of GB satisfies

χ(DB; GB) + χ0 = χ(DA; GA),

where χ0 =
∑

{χ(e, e′; DB) | e ∈ E(v′0; GB) ∪ E(v′|V |; GB), e′ ∈ E − E(v′0; GB) ∪
E(v′|V |; GB)}. Note that χ0 with a fixed g is constant for any choice of π∗ in
D∗

g,h = (π∗, σ, ψπ∗,σ,ê,g,h).
Consider the induced graph

G[V ∪ W − {v̂, ŵ}] = (V − {v̂}, W − {ŵ}, E − E(v̂; G)).

Recall that σ′ is a permutation of {1, 2, . . . , |W |−1} such that σ′(w) = σ(w) for
w ∈ W −{ŵ}, and π′ is a permutation of {1, . . . , |V |−1}, which has the median
property with respect to σ′ in graph G[V ∪W − {v̂, ŵ}] by the assumption on π
in Lemma 4.

We eliminate all edge crossings between edges incident to w′
0 and w′

|W | in a
drawing DC of GB by modifying graph GB as follows. Find two crossing edges
(w′

0, v
′
j) and (w′

|W |, v
′
i), remove such edges, and add two new edges (w′

0, v
′
i) and

(w′
|W |, v

′
j) (see Fig. 5(a) and (b)). Repeat this edge-exchange operation as long

as it is applicable. Let GC = (V −{v̂}, W −{ŵ}, EC) denote the resulting graph
(note that GC may not be unique).

Consider horizontal drawing DC = (π′, σA) of GC . Observe that the drawing
DC in GC corresponds to a radial drawing with crossing-free edge ê; i.e., for
some t′ ∈ {1, 2, . . . , d(ŵ; G)}, Dg,t′ = (π, σ, ψπ,σ,ê,g,t′) satisfies

χ(Dg,t′) = χ(DC ; GC) + χ0.

To prove Lemma 4, it suffices to show that there is a way of constructing GC

from DB such that
χ(DC ; GC) ≤ 5χ(DB; GB), (2)

from which we have

min{χ(Dg,t) | 1 ≤ t ≤ d(ŵ; G)} ≤ χ(Dg,t′) ≤ χ(DC ; GC) + χ0

≤ 5χ(DB; GB) + χ0

≤ 5χ(DA; GA) = 5χ(D∗
g,h; G).

Lemma 5. A bipartite graph GC which satisfies (2) can be constructed from a
horizontal drawing DB = (πB , σA) by applying edge-exchange operations to GB.

Proof. Omitted due to space limitation. ��

Lemma 5 implies Lemma 4, from which Theorem 3 follows, as we already ob-
served.

472 S.-H. Hong and H. Nagamochi

w 0
‘

|W|-1W

V ‘

‘

(a)

v ‘i v ‘j

w 1
‘ w 2

‘ w ‘ |W|w ‘ w 0
‘

|W|-1W

V ‘

‘

(b)

v ‘ v ‘j

w 1
‘ w 2

‘ w ‘ |W|w ‘

Fig. 5. (a) Horizontal drawing DC = (π′, σA) in graph GB ; (b) Horizontal drawing
DC = (π′, σA) of graph GC

5 Conclusion

In this paper, we have proved that the one-sided crossing minimization problem
in radial 2-layered drawings is 15-approximable by converting an instance of
the problem into an instance of the one-sided crossing minimization problem in
horizontal 2-layered drawings where at least one edge is required to be crossing-
free. This is the first constant-factor approximation algorithm.

To best of our knowledge, the problem of finding an optimal offset for given
positions of vertices in the inner and outer orbits remains open. However, it is
not difficult to see that a 3-approximate solution for the problem can be obtained
by using Theorem 2 and Lemma 3.

References

1. Bachmaier, C.: A radial adaptation of the sugiyama framework for visualizing hier-
archical information. IEEE Trans. Vis. Comput. Graph. 13, 583–594 (2007)

2. Eades, P., Wormald, N.C.: Edge crossing in drawing bipartite graphs. Algorith-
mica 11, 379–403 (1994)

3. Jünger, M., Mutzel, P.: 2-layer straight line crossing minimization: performance of
exact and heuristic algorithms. J. Graph Algorithms and Applications 1, 1–25 (1997)

4. Leighton, F.T.: Complexity Issues in VLSI. MIT Press, Cambridge (1983)
5. Nagamochi, H.: An improved bound on the one-sided minimum crossing number in

two-layered drawings. Discrete and Computational Geometry 33, 569–591 (2005)
6. Sarrafzadeh, M., Wong, C.K.: An Introduction to VLSI Physical Design. McGraw-

Hill, New York (1996)
7. Shahrokhi, F., Sykora, O., Székly, L.A., Vrto, I.: On bipartite drawings and the

linear arrangement problem. SIAM Journal on Computing 30, 1773–1789 (2001)
8. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-

chical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11,
109–125 (1981)

9. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

New Upper Bound on Vertex Folkman Numbers

Andrzej Dudek and Vojtěch Rödl

Department of Mathematics and Computer Science
Emory University

Atlanta, GA 30322, USA
{adudek,rodl}@mathcs.emory.edu

Abstract. In 1970, J. Folkman proved that for a given integer r and a
graph G of order n there exists a graph H with the same clique num-
ber as G such that every r coloring of vertices of H yields at least one
monochromatic copy of G. His proof gives no good bound on the order
of graph H , i.e. the order of H is bounded by an iterated power func-
tion. A related problem was studied by �Luczak, Ruciński and Urbański,
who gave some explicite bound on the order of H when G is a clique.
In this note we give an alternative proof of Folkman’s theorem with the
relatively small order of H bounded from above by O(n3 log3 n). This
improves �Luczak, Ruciński and Urbański’s result.

Keywords: Ramsey theory, vertex Folkman numbers.

1 Introduction

For a given graph H = (V, E), let c : V (H) → {1, . . . , r} be an r-coloring of
vertices of H . We write H → (G)v

r (or H−−→
ind

(G)v
r) if for every r-coloring c

of vertices of H , there exists a copy of G (or an induced copy), say G′, such
that V (G′) ⊆ c−1(i), for some color i ∈ {1, . . . , k}. Moreover, let cl(G) be the
clique number of G, i.e. the order of a maximal clique in G. In [4], J. Folkman
proved that for every graph G there exists a graph H such that H → (G)v

r and
cl(H) = cl(G). Clearly cl(H) ≥ cl(G) for any graph with H → (G)v

r and thus
Folkman’s theorem is in this sense the best possible. For G = Kk, i.e. for a clique
of size k, a related question was studied e.g. in [6,8]. For positive integers r, k
and l with k < l the vertex Folkman number is

F (r, k, l) = min
{
|V (H)|

∣
∣ H → (Kk)v

r and cl(H) = l − 1
}
.

Clearly Folkman’s theorem yields that F (r, k, l) is well-defined for any k < l.
Determining the precise value of F (r, k, l) is not an easy problem in general.
Only few of these numbers are known and mostly they were found with the
aid of computers (see e.g. [2]). Some special cases were considered in [6,8].
Obviously, the most restrictive and challenging case is to determine the exact
value of F (r, k, k+1) (or more realistic to estimate it). The upper bound on this
number, based on Folkman’s proof [4], is an iterated power function. �Luczak,
Ruciński and Urbański [8] improved this bound and showed that for instance

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 473–478, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

474 A. Dudek and V. Rödl

for 2 colors F (2, k, k + 1) = O(k!). In this note we will prove a relatively small
upper bound on F (r, k, l) (see comments after Theorem 1). In fact, we will prove
a more general statement. In 1991, Brown and the second author [1] showed that
for every natural number r there are constants c1 and c2 such that

c1n
2 ≤ max

{
min

{
|V (H)|

∣
∣ H−−→

ind
(G)v

r

}}
≤ c2n

2 log2 n, (1)

where the maximum is taken over all graphs G of order n. In this note we will
not only enforce H → (G)v

r , but also require cl(H) = cl(G). Following the idea
from [1], we will show that adding this new constraint will increase the upper
bound in (1) only by a factor of n log n.

Theorem 1. For a given natural number r there exists a constant c = c(r) such
that for every graph G of order n the following inequality holds

min
{
|V (H)|

∣
∣ H−−→

ind
(G)v

r and cl(H) = cl(G)
}

≤ cn3 log3 n.

For G = Kk Theorem 1 immediately yields F (r, k, l) ≤ ck3 log3 k. In fact, mod-
ifying the proof of Theorem 1, one can show a stronger result, which we state
below without proof.

Theorem 2. For a given natural number r and an arbitrarily small ε > 0 there
exists a constant c = c(r, ε) such that for any natural numbers k and l with k < l
the vertex Folkman number satisfies

F (r, k, l) ≤ ck2+ε.

We were not able to find any nontrivial lower bound on F (r, k, l). It would be
interesting to decide if for every r the ratio F (r,k,k+1)

k tends to infinity as k tends
to infinity. This work is currently in progress.

2 Generalized Quadrangles

In this section we describe some basic properties of generalized quadrangles,
which we use to prove Theorem 1.

A generalized quadrangle (see e.g. [5]) is an incidence structure of a set P of
points and a set L of lines such that:

(i) any two points are on at most one line,
(ii) if p is a point not on a line �, then there is a unique point p′ ∈ � collinear

with p, and hence, no three lines form a triangle,
(iii) every line contains q + 1 points, and every point lies on q + 1 lines.

It is known that for every prime power q such incidence structure Q exists
with |P| = |L| = q3 + q2 + q +1 (see e.g. [7,9]). Let QI = (P , L, E) be a bipartite
graph, which corresponds to the above incidence structure Q, with the set of
vertices P ∪ L and the set of edges E = {(p, �) ∈ P × L | p lies on line �}. Note

New Upper Bound on Vertex Folkman Numbers 475

that QI is a (q + 1)-regular graph. For a given graph G and disjoint subsets B
and C of vertices of G we denote by e(B, C) the number of edges that connect a
vertex of B with a vertex of C. The following statement is an easy consequence
of the fact that the graph QI is (q + 1)-regular.

Fact 3. Let QI = (P , L, E) be the bipartite graph defined above with |P| =
|L| = N . Suppose that Y ⊆ P with |Y | = αN , for some 0 < α < 1. Then,

e(Y, L) = αN
4
3 (1 + o(1)).

3 Proof of Theorem 1

As we mentioned in the introduction, the proof of Theorem 1 goes along the
lines of the proof of Theorem 2.2 from [1].

Fix a natural number r, r ≥ 2 (for r = 1 Theorem 1 holds trivially). Let α be
a real number satisfying 0 < α ≤ 1

2 . Let G = (V, E) be a graph of order n with
V = {v1, . . . , vn}. We always assume that n is sufficiently large. We will show
that there exists a graph H of order cn3 log3 n, c = c(r), such that cl(H) = cl(G)
and any subgraph of H induced by a set of cardinality �α|V (H)|	 contains
an induced copy of G. For α = 1

r this will obviously imply the statement of
Theorem 1.

By Bertrand’s postulate we know that for any number z ≥ 1 there exists a
prime number between z and 2z. In particular for a given n there is a prime q
such that

4
α

n log n ≤ q + 1 ≤ 8
α

n log n.

For such q let t = q + 1 and let x be such that

t = xn + m, (2)

where 0 ≤ m < n. Consequently,

3
α

log n ≤ x ≤ 8
α

log n. (3)

Let Q be a generalized quadrangle from the previous section with |P| = |L| = N ,
where N = q3 + q2 + q + 1. We construct a “random graph” H with the vertex
set P as follows. In view of (2) one can partition each line into sets of size x
and x + 1, respectively. For each line � we choose one such ordered partition
�1, . . . , �n randomly and uniformly from the sets of all

γ =
t!

(
x!

)n−m(
(x + 1)!

)m (4)

partitions. For each u ∈ �i and w ∈ �j we join {u, w} by an edge if and only if
{vi, vj} ∈ E(G). Note that H is well-defined because of condition (i). Moreover,
condition (ii) yields that cl(H) = cl(G). In fact, more is true: every triangle

476 A. Dudek and V. Rödl

of H is contained entirely within some �. Observe that there are γN graphs H
constructed this way. We will show that the graph randomly chosen from the
space of all such graphs has the following property. Every set Y ⊆ V (H), |Y | =
� 1

r N	 induces a subgraph H [Y], which contains G as an induced subgraph.
For Y ⊆ V (H) with cardinality |Y | = � 1

r N	 = �αN	 let AY be the event
that G is an induced subgraph of H [Y]. For each � ∈ L let A� be the event that
some �i in the partition of � is disjoint from Y . Note that if AY fails, then all
events A�, � ∈ L, must occur. Consequently,

ĀY ⊆
⋂

�∈L
A�.

Furthermore, since all events A� are independent we obtain

Pr(ĀY) ≤
∏

�∈L
Pr(A�). (5)

For each � ∈ L we will bound from above the probability Pr(A�). Recall that
|�| = t and γ is the number of all ordered partitions of � into n sets (n − m
of size x and m of size x + 1). Let |Y ∩ �| = y�. For a fixed i, the number of
partitions of � for which �i, |�i| = x, is disjoint from Y is at most

(
t − y�

x

)
(t − x)!

(
x!

)n−m−1((x + 1)!
)m =

(
t−y�

x

)

(
t
x

) γ. (6)

Similarly, the number of partitions of � for which �i, |�i| = x + 1, is disjoint
from Y is at most

(
t − y�

x + 1

)
(t − x − 1)!

(
x!

)n−m(
(x + 1)!

)m−1 =

(
t−y�

x+1

)

(
t

x+1

) γ. (7)

Hence, (4), (6) and (7) yield

Pr(A�) ≤ (n − m)

(
t−y�

x

)

(
t
x

) + m

(
t−y�

x+1

)

(
t

x+1

) ≤ (n − m)e
−xy�

t + me
−(x+1)y�

t ≤ ne
−xy�

t .

The last inequality holds, since for for any natural numbers a, b, c with a−b ≥ c,
the following is true

(
a−b

c

)

(
a
c

) =
(a − b − c + 1) · · · (a − b)

(a − c + 1) · · ·a ≤
(a − b

a

)c

≤ e−
bc
a .

Consequently, by (5) we get

Pr(ĀY) ≤ nN exp
(

− x

t

∑

�∈L
y�

)
.

New Upper Bound on Vertex Folkman Numbers 477

Moreover, Fact 3 infers that
∑

�∈L y� = e(Y, L) ≥ α
2 N

4
3 , and hence

Pr(ĀY) ≤ nN exp
(

− α

2
x

t
N

4
3

)
.

Thus,

Pr
(⋃

Y

ĀY

)
≤

(
N

�αN	

)

nN exp
(

− α

2
x

t
N

4
3

)

≤
(e

α

)αN

nN exp
(

− α

2
x

t
N

4
3

)

= exp
(

N
(
α − α log α + log n − α

2
x

t
3
√

N
))

≤ exp
(

N
(
α − α log α + log n − α

2
3
α

log n
3
√

N

t

))

, (8)

where the last inequality follows from (3).
Since

3√N
t ∼ 1 we obtain that (8) tends to 0 as n goes to infinity. This yields

that
Pr

(⋂

Y

AY

)
> 0,

i.e. there is a graph H of order N = q3 + q2 + q + 1 = O(n3 log3 n) for which
every subgraph of order �αN	 contains G as an induced subgraph. In particular,
for α = 1

r we have H−−→
ind

(G)v
r and cl(H) = cl(G). This completes the proof of

Theorem 1.

4 Concluding Remarks

With some additional work (see e.g. [3]) one can reduce the factor n3 log3 n from
Theorem 1 to n3 log n.

References

1. Brown, J.I., Rödl, V.: A Ramsey type problem concerning vertex colourings.
J. Comb. Theory, Ser. B 52(1), 45–52 (1991)

2. Coles, J., Radziszowski, S.: Computing the Folkman number Fv(2, 2, 3; 4). J. Com-
binatorial Mathematics and Combinatorial Computing 58, 13–22 (2006)

3. Eaton, N., Rödl, V.: A canonical Ramsey theorem. Random Structures and Algo-
rithms 3(4), 427–444 (1992)

4. Folkman, J.: Graphs with monochromatic complete subgraphs in every edge color-
ing. SIAM J. Appl. Math. 18, 19–24 (1970)

5. Royle, G., Godsil, C.: Algebraic graph theory. Springer, New York (2001)

478 A. Dudek and V. Rödl

6. Kolev, N., Nenov, N.: New upper bound for a class of vertex Folkman numbers.
Electronic J. Comb. 13, #R14 (2006)

7. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Polarities and 2k-cycle-free graphs.
Disc. Math. 197/198, 503–513 (1999)

8. �Luczak, T., Ruciński, A., Urbański, S.: On minimal vertex Folkman graphs. Disc.
Math. 236, 245–262 (2001)

9. Thas, J.A.: Generalized polygons. In: Buekenhout, F. (ed.) Handbook on incidence
geometry, ch. 9, North Holland, Amsterdam (1995)

Ptolemaic Graphs and Interval Graphs

Are Leaf Powers

Andreas Brandstädt and Christian Hundt

Institut für Informatik, Universität Rostock, D-18051, Germany
{Andreas.Brandstaedt,Christian.Hundt}@uni-rostock.de

Abstract. Motivated by the problem of reconstructing evolutionary his-
tory, Nishimura, Radge and Thilikos introduced the notion of k-leaf pow-
ers as the class of graphs G = (V, E) which have a k-leaf root, i.e., a tree
T with leaf set V where xy ∈ E if and only if the T -distance between
x and y is at most k. It is known that leaf powers are strongly chordal
(i.e., sun-free chordal) graphs. Despite extensive research, the problem
of recognizing leaf powers, i.e., to decide for a given graph G whether
it is a k-leaf power for some k, remains open. Much less is known on
the complexity of finding the leaf rank of G, i.e., to determine the mini-
mum number k such that G is a k-leaf power. A result by Bibelnieks and
Dearing implies that not every strongly chordal graph is a leaf power.
Recently, Kennedy, Lin and Yan have shown that dart- and gem-free
chordal graphs are 4-leaf powers. We generalize their result and show
that ptolemaic (i.e., gem-free chordal) graphs are leaf powers. Moreover,
ptolemaic graphs have unbounded leaf rank. Furthermore, we show that
interval graphs are leaf powers which implies that leaf powers have un-
bounded clique-width. Finally, we characterize unit interval graphs as
those leaf powers having a caterpillar leaf root.

Keywords and Classification: Leaf powers; leaf roots; strongly cho-
rdal graphs; ptolemaic graphs; graph powers; graph class inclusions;
(unit) interval graphs; clique-width.

1 Introduction

Motivated by the problem of reconstructing evolutionary history, and by the
notion of k-th phylogenetic power and k-root phylogeny of a graph G introduced
by Lin, Kearney and Jiang [23] (see also [10]), Nishimura, Ragde and Thilikos
[26] introduced the following notion:

A tree T = (VT , ET) is a k-leaf root of a finite undirected graph G = (V, E) if
the set of leaves of T is V and for any two vertices x, y ∈ V , xy ∈ E if and only
if the distance of x and y in T is at most k. Graph G is a k-leaf power if it has
a k-leaf root. In general, G is a leaf power if it is a k-leaf power for some k, and
a k-leaf root T of G is also called leaf root.

The vertex set VT of T consists of leaves and internal nodes. Note that internal
nodes may have degree two; in phylogenetic roots, internal nodes have degree
larger than two but edges are weighted. The two models are equivalent because

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 479–491, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

480 A. Brandstädt and C. Hundt

a path of degree two nodes can be contracted to one edge with the length of the
corresponding path as its weight. For a leaf power G, its leaf rank lr(G) is the
smallest k such that G has a k-leaf root. For a class G of leaf powers, let lr(G)
be the maximum lr(G) over all G ∈ G, and infinite if it is unbounded.

Obviously, a graph G is a 2-leaf power if and only if it is the disjoint union
of cliques, i.e., G is P3-free (where P3 denotes the path with three vertices and
two edges). The 3-leaf powers are exactly the bull-, dart-, and gem-free chordal
graphs [14] (see Figure 1 for bull, dart and gem); equivalently, 3-leaf powers are
exactly the result of substituting cliques into the nodes of a tree. For this and
other characterizations of 3-leaf powers see [3,27]. A characterization of 4-leaf
powers in terms of forbidden subgraphs is much more complicated [27,6]. For
5-leaf powers, a polynomial time recognition was given in [9] but no structural
characterization of 5-leaf powers is known. Recently, [4] characterized distance-
hereditary 5-leaf powers (without true twins) in terms of forbidden induced sub-
graphs. The complexity of characterizing and recognizing leaf powers in general
is a major open problem.

However, leaf powers are strongly chordal (i.e., sun-free chordal) but not vice
versa. Moreover, in [21], Kennedy, Lin and Yan showed that strictly chordal (i.e.,
dart- and gem-free chordal) graphs are 4-leaf powers (but not vice versa). This
leaves a huge gap for a precise localization and characterization of the class of
leaf powers. The aim of this paper is to narrow this gap by showing the following
results (which also improve and extend various results in [18,21]):

(i) Every ptolemaic (i.e., gem-free chordal) graph is a leaf power (but not vice
versa as the gem shows).

(ii) In contrast to strictly chordal graphs (which are 4-leaf powers), the leaf rank
of ptolemaic graphs is unbounded.

(iii) Every interval graph is a leaf power; thus, as for strongly chordal graphs (but
unlike ptolemaic graphs), the clique-width of leaf powers is unbounded.

(iv) Unit interval graphs are exactly the leaf powers which have a caterpillar as
leaf root.

Due to space limitations, most of the proofs are omitted.

2 Notations and Basic Facts

Throughout this paper, let G = (V, E) be a finite undirected graph without
self-loops and multiple edges with vertex set V and edge set E, and let |V | = n,
|E| = m. For a vertex v ∈ V , let N(v) = {u | uv ∈ E} denote the (open)
neighborhood of v in G, and let N [v] = {v}∪N(v) denote the closed neighborhood
of v in G. A clique is a vertex set of mutually adjacent vertices. An independent
vertex set is a set of mutually nonadjacent vertices. A vertex is simplicial in G
if its neighborhood N(v) is a clique.

For a subset U ⊆ V , let G[U] = (U, EU) denote the induced subgraph of G
where EU consists of all edges in E with both end vertices in U .

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 481

If xy ∈ E then we also say that x sees y and vice versa. Two vertices x, y ∈ V
are true twins (false twins, respectively) if N(x) = N(y) and xy ∈ E (xy �∈ E,
respectively).

Let F denote a set of graphs. A graph G is F-free if none of its induced
subgraphs is in F . A sequence P = (v1, . . . , vk) of pairwise distinct vertices is an
induced path if its edge set is {v1v2, . . . , vk−1vk}; such paths with k vertices will
be denoted by Pk. If additionally, vkv1 is an edge then P is an induced cycle; such
cycles will be denoted by Ck. The length |Pk| of Pk (|Ck| of Ck, respectively) is
k − 1 (k, respectively). Subsequently, we only consider induced paths. Let the
distance dG(x, y) (or d(x, y) for short if G is understood) be the length of a
shortest path in G between x and y.

For k ≥ 1, let Gk = (V, Ek) with xy ∈ Ek if and only if dG(x, y) ≤ k denote
the k-th power of G. If the edges get weights then dG(x, y) is the minimum
weight sum on any path between x and y.

Figure 1 contains some graphs which are important for this paper. For k ≥ 3,
a k-sun is a graph of 2k vertices u1, . . . , uk and w1, . . . , wk such that u1, . . . , uk

is a clique, w1, . . . , wk is an independent stable set and for all i ∈ {1, . . . , k},
N(wi) = {ui, ui+1} (index arithmetic modulo k). A sun is a k-sun for some
k ≥ 3.

Fig. 1. Bull, diamond, dart, gem and 3-sun

Figure 1 shows the 3-sun. A graph is

– chordal if it contains no induced cycle of length more than three,
– strongly chordal if it is chordal and sun-free [16] (see also [5] for various

characterizations of (strongly) chordal graphs),
– ptolemaic if it is chordal and gem-free [19,20],
– strictly chordal if it is chordal, dart- and gem-free [21],
– a block graph if it is chordal and diamond-free (equivalently, a graph is a

block graph if and only if its blocks are cliques),
– a tree if it is cycle-free and connected.

It is easy to see that each of the above graph classes is properly contained in the
preceding one. Note that there is a close relationship between these graph classes
and certain acyclicity conditions of hypergraphs (which were called Berge-, γ-, β-
and α-acyclicity) motivated by desirable properties of relational database schemes
which are described by Fagin [15].

A graph G is distance hereditary if for every induced connected subgraph H
of G, the distance function in H is the same as in G. For various characteri-
zations of distance-hereditary graphs see [19,1]. It is well known that a chordal

482 A. Brandstädt and C. Hundt

graph is distance hereditary if and only if it is gem-free chordal (i.e., ptolemaic)
([19,20,1,5]). Ptolemaic graphs G were characterized by Bandelt and Mulder [1]
in terms of three operations adding a new vertex y to G with respect to an
existing vertex x:

– pendant vertex (pv): add y adjacent only to x.
– true twin (tt): add y as a true twin to x.
– restricted false twin (rft): add y as a false twin to x if x is simplicial.

Theorem 1 ([1]). A graph is ptolemaic if and only if it can be obtained from
a single vertex by recursively applying the operations pv, tt, and rft.

In this paper we will also use the following new characterization of ptolemaic
graphs found by Kloks [22]:

Lemma 1 ([22]). A graph is ptolemaic if and only if all its connected induced
subgraphs are a clique or contain a pair of true twins or contain a cut vertex.

Interval graphs, i.e., the intersection graphs of intervals on the real line, are an-
other important subclass of strongly chordal graphs (see e.g. [5]). If the intervals
have unit length then their intersection graphs are called unit interval graphs.

Subsequently, we also need the following notions: A graph is a split graph if
its vertex set has a partition into a clique and an independent set. A caterpillar
T is a tree consisting of a path (the backbone of T) and some leafs attached to
the backbone.

We frequently use the weighted version of a k-leaf root which is defined as
follows. A weighted k-leaf root of a finite undirected graph G = (V, E) is a tree
T = (VT , ET) where V is the set of leaves and edges have weights ω(e), e ∈ ET

such that for any two vertices x, y ∈ V , xy ∈ E if and only if the sum of the
edge weights on the path between x and y is at most k.

We say that a leaf root T is basic if at most one leaf is attached to each node
of T , and leaf power G is basic if it has a basic leaf root. Obviously, any set of
leaves with the same parent is a clique module whenever k ≥ 2, and thus, every
k-leaf power G results from a basic k-leaf power G′ by substituting cliques into
the vertices of G′.

Let G = (V, E) be a leaf power and T = (VT , ET) a leaf root of G. For all
distinct vertices u, v ∈ VT we denote by T [u, v] the path between u and v in
T . For any U ⊆ V we also denote by T [U] the subtree of T spanned by U , i.e.,
the union of the paths T [u, v] for all pairs u, v ∈ U . Proposition 1 collects some
useful facts on leaf powers (see e.g. [3,6]):

Proposition 1

(i) Every induced subgraph of a k-leaf power, k ≥ 2, is a k-leaf power.
(ii) A graph is a k-leaf power if and only if each of its connected components is

a k-leaf power.
(iii) Graph G is a basic (k+2)-leaf power if and only if G is an induced subgraph

of the k-th power T k of a tree T .

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 483

(iv) For every k ≥ 1, graph G is a k-leaf power if and only if G results from a
basic k-leaf power G′ by substituting cliques into the vertices of G′.

Subsequently, we need the following notion from [7]: A graph G = (V, E) is a
(k, l)-leaf power if there is a tree T with leaf set V such that for all xy ∈ E,
dT (x, y) ≤ k, and for all xy �∈ E, dT (x, y) ≥ l.

Theorem 2 ([7]). For graph G, the following conditions are equivalent:

(i) G is strictly chordal;
(ii) G is a (4, 6)-leaf power;
(iii) G results from a block graph by substituting cliques into its vertices.

It is known that the class of strongly chordal graphs is closed under powers:

Theorem 3 ([12,24,28]). If G is strongly chordal then for every k ≥ 1, Gk is
strongly chordal. �	

Moreover, strongly chordal graphs are closed under substitution of cliques. Since
trees are strongly chordal, by Proposition 1 (iii), basic leaf powers are induced
subgraphs of powers of trees and induced subgraphs of strongly chordal graphs
are strongly chordal, Theorem 3 and Proposition 1 imply:

Proposition 2. Leaf powers are strongly chordal.

Thus, it is natural to ask whether this is a strict inclusion. The following theorem
is based on results in [8] and [2].

Theorem 4. There are strongly chordal graphs which are no k-leaf power for
any k ≥ 2.

Fig. 2. A strongly chordal graph which is no k-leaf power for any k

484 A. Brandstädt and C. Hundt

3 Ptolemaic Graphs Are Leaf Powers

In this section we use Lemma 1 to introduce the following simple recursive
construction of a basic (2k, 2k + 2)-leaf root T = (VT , ET) for a given ptolemaic
graph G = (V, E) and a number k ≥ |V |:

Construction 1. For given G = (V, E) and k ≥ |V |, this construction builds
as an intermediate step a weighted (2k, 2k + 2)-leaf root T for G. If G contains
only a single vertex v, then G is itself the weighted (2k, 2k + 2)-leaf root T . If G
is a clique we construct a weighted (2k, 2k + 2)-leaf root T which contains one
internal node r parent to all leaves V of G and for all v ∈ V the edge rv has the
weight ω(rv) = k. If G is not a clique but contains a

pair x, y of true twins, we recursively apply Construction 1 on the graph G′ =
G[V \{y}] and the same number k to build a weighted (2k, 2k+2)-leaf root T ′

for G′. Let px be the parent node of x in T ′. We obtain a weighted (2k, 2k+2)-
leaf root T for G by attaching y as a new leaf to px and setting ω(pxy) =
ω(pxx).

cut vertex x, we recursively apply Construction 1 on each of the components
G′

1 = (V ′
1 , E′

1), . . . , G
′
� = (V ′

� , E′
�) of G incident to x and the same number

k to build weighted (2k, 2k + 2)-leaf roots T ′
1, . . . , T

′
� for G′

1, . . . , G
′
�. Define

c1 and c2 to be the two largest cardinalities of the sets V ′
1 to V ′

� . For all i ∈
{1, . . . , �} we identify the parent node pi of x in the tree T ′

i , replace the node x
by a new internal node px and set ω(pipx) = ω(pix)−(k−(c1+c2)+3). Then
we merge the trees T ′

1, . . . , T
′
� to a single tree T ′ by identifying their px nodes.

We obtain from T ′ a weighted (2k, 2k + 2)-leaf root T for G by appending
the leaf x to its parent node px and setting ω(pxx) = k − (c1 + c2) + 3.

Finally, to construct a basic (2k, 2k + 2)-leaf root we replace in T all edges e by
a path of length ω(e).

Theorem 5. Every ptolemaic graph G = (V, E) is a basic (2|V |, 2|V | + 2)-leaf
power, and a corresponding basic (2|V |, 2|V | + 2)-leaf root T = (VT , ET) can be
obtained by Construction 1 with given k = |V |.

Proof. For Construction 1 with given ptolemaic graph G = (V, E) and k ≥ |V | we
show by induction on n that (a) T is a weighted (2k, 2k+2)-leaf root for G and (b)
that for any leaf v ∈ V with parent node pv in T it is true k−|V |+2 ≤ ω(pvv) ≤ k.
This is trivially true for the base cases of G being a single vertex or a clique.
Otherwise, if G contains a

pair x, y of true twins, then by induction hypothesis T ′ is a weighted (2k,
2k+2)-leaf root for G′ = G[V \{y}] which fulfills the above weight criterion.
Now consider the tree T . Since ω(pxx) = ω(pxy) ≤ k, it follows that x and
y see each other and have equal T -distances to all other leaves. Therefore, T
is a weighted (2k, 2k + 2)-leaf root for G which fulfills the weight criterion
(even for y).

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 485

cut vertex x, then by induction hypothesis T ′
1, . . . , T

′
� are weighted (2k, 2k+2)-

leaf roots for the components G′
1 = (V ′

1 , E′
1), . . . , G

′
� = (V ′

� , E′
�) of G incident

to x such that for all i ∈ {1, . . . , �} it is true k − |V ′
i | + 2 ≤ ω(pvv) ≤ k

for all leaves v in T ′
i and pv the parent node of v. Now consider the tree T .

Trivially, for all i ∈ {1, . . . , �} the T ′
i -distance between nodes u, v ∈ V ′

i \ {x}
equals the T -distance between u and v. Moreover the T -distance between x
and v ∈ V ′

i \ {x} is

dT (v, x) = dT (v, pi) + ω(pipx) + ω(pxx)
= dT (v, pi) + ω(pix) − (k − (c1 + c2) + 3) + (k − (c1 + c2) + 3)
= dT (v, pi) + ω(pix) = dT ′

i
(v, pi) + ω(pix) = dT ′

i
(v, x)

and hence, equals the T ′
i -distance between x and v.

For T being a weighted (2k, 2k + 2)-leaf root for G it remains to show that
for all 1 ≤ i < j ≤ �, all u ∈ V ′

i \ {x} and all v ∈ V ′
j \ {x} the T -distance

between u and v is at least 2k + 2. Since (c1 + c2) ≥ (V ′
i + V ′

j) it follows:

dT (u, v) = dT (u, pi) + ω(pipx) + ω(pxpj) + dT (pj , v)
≥ ω(puu) + ω(pix) + ω(pjx) + ω(pvv) − 2(k − (c1 + c2) + 3)
≥ 2(k − |V ′

i | + 2) + 2(k − |V ′
j | + 2) − 2(k − (c1 + c2) + 3)

= 2k − 2(|V ′
i | + |V ′

j |) + 2(c1 + c2) + 2 ≥ 2k + 2

Moreover, T fulfills the weight criterion for pendant edges since ω(qxx) =
k − (c1 + c2) + 3 ≥ k − |V | + 2 which follows from (c1 + c2 − 1) ≤ |V |.

Finally, T is basic after weighted edges have been replaced by paths. Since
k ≥ |V | it follows for all leaves v with parent node pv that ω(pvv) ≥ k−|V |+2 ≥
2. Hence, each leaf has a unique parent node. �	

Theorem 5 has the following two implications:

Corollary 1. Let G = (V, E) be a ptolemaic graph.

(i) The leaf rank of G is at most 2|V |.
(ii) G is a k-leaf power for all k ≥ 2|V |.

4 Ptolemaic Graphs Have Unbounded Leaf Rank

In this section we show that the class of ptolemaic graphs has unbounded leaf
rank. Hence, in contrast to strictly chordal graphs there is no natural number
k such that for all ptolemaic graphs G, lr(G) ≤ k holds. In particular, we will
define a sequence Gi, i = 1, 2, . . . of ptolemaic graphs with linear lower bound.
We consider the following graphs:

Definition 1. Let G0 = ({x0}, ∅) be the graph with only one vertex x0. For all
k ∈ �, Gk results from Gk−1 by

486 A. Brandstädt and C. Hundt

(i) adding a true twin yk of xk−1 and
(ii) adding a false twin xk of yk.

Let Xk = {x0, . . . , xk} and Yk = {y1, . . . , yk}. Obviously, for all k, Xk and Yk

give a partition of the vertex set of Gk.

Lemma 2. Every graph Gk, k ∈ �, is a ptolemaic split graph with partition into
clique Xk and independent set Yk.

Since all Gk, k ∈ �, are ptolemaic, they are also leaf powers. In the following we
provide a recursive construction giving a (k + 2)-leaf root for each graph Gk:

Construction 2. For G1 to G4 we have depicted the 3- to 6-leaf roots in Figure
3. Now for k > 4 we assume that T ′ is a (k + 1)-leaf root for Gk−1 with the
following properties. Let T ′[Xk−1] denote the subtree of T ′ spanned by Xk−1.

(∗) If k = 2i + 1 then the diameter of T ′[Xk−1] is 2i + 2 and T [x2i, x2i−1] is a
diametral path; let z denote a central node of T ′[Xk−1]. Then dT ′(z, xj) ≤
i+1 for all j ∈ {1, . . . , 2i}, and dT ′(z, xj) = i+1 for j = 2i and j = 2i−1.

(∗∗) If k = 2i then the diameter of T ′[Xk−1] is 2i+1 and T [x2i−2, x2i−1] is a di-
ametral path; let z1z2 denote a central edge of T ′[Xk−1] such that z1 is closer
to x2i−2 and z2 is closer to x2i−1. Then dT ′(z1, x2i−2) = dT ′(z2, x2i−1) = i.

Then a (k + 2)-leaf root T for Gk is constructed from T ′ as follows:
First we subdivide all pendant edges in T ′ with leaves yj ∈ Yk−1, j ∈ {1, . . . ,

k − 1} by a new internal node. Then we add the nodes xk and yk as leaves of
new paths in the following way: If k is

odd, i.e., k = 2i + 1, then T ′[Xk−1] has a central node z. We attach new paths
Pxk

(Pyk
, respectively) of length i + 2 with new internal nodes and xk (yk,

respectively) as leaf to z.
even, i.e., k = 2i, then T ′[Xk−1] has a central edge z1z2. We attach a new path

Pxk
(Pyk

, respectively) of length i + 1 with new internal nodes and xk (yk,
respectively) as leaf to z1 (z2, respectively).

Lemma 3. For all k ∈ �, Construction 2 gives a (k + 2)-leaf root T of Gk.

Lemma 4 says that the upper bound in Lemma 3 cannot be improved.

Lemma 4. Let k ∈ �. If T is a leaf root of Gk, then there exist two adjacent
vertices xs, xt ∈ Xk such that dT (xs, xt) ≥ k + 2.

The following is a straightforward implication of Lemma 4:

Corollary 2. The leaf rank of ptolemaic graphs is unbounded.

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 487

x0 y1

x1 y2

x2

x3

y3

y4

x4

x0y1 x2 x1 y2

y4x4 x3y3

x0y1 x2 x1 y2

x3y3

x0y1 x2 x1 y2x0y1 x1

x0 y1

x1 y2

x2

x0 y1

x1

x3

y3

y2

x2

x0 y1

x1

Fig. 3. The first row shows the graphs G1, G2, G3 and G4. The second row depicts the
3-, 4-, 5- and 6-leaf roots obtained by Construction 2.

5 Interval Graphs Are Leaf Powers

Interval graphs are an important subclass of strongly chordal graphs and inter-
estingly they are leaf powers.

Theorem 6. Interval graphs are leaf powers (but not vice versa).

Proof. Let G = (V, E) be an interval graph with interval model (Iv)v∈V , and
let mv denote the midpoint of interval Iv. Without loss of generality, we can
assume that

(i) for all 1 ≤ i < j ≤ n it is true mvi < mvj ,
(ii) all midpoints have rational values and
(iii) the lengths of all intervals are at most one and have rational values.

Obviously, uv ∈ E, if and only if the two points mu and mv on the real line
have distance at most |Iu|+|Iv|

2 . From the interval model we construct a weighted
caterpillar T ′ = (VT ′ , ET ′) with leaf set V such that uv ∈ E if and only if the
distance of the two leaves u and v is at most one. The backbone of T ′ is the
path (p1, p2, . . . , pn) and we attach to each node pi, i ∈ {1, . . . , n} the leaf vi.
Now we define the edge weights ω : ET ′ → �

+: For all i ∈ {1, . . . , n − 1} let
ω(pipi+1) = mvi+1 − mvi and for all i ∈ {1, . . . , n} let ω(pivi) = 1−|Ivi

|
2 .

Let vi, vj ∈ V with i < j and assume that vivj ∈ E, i.e., mvj − mvi ≤
|Ivi

|+|Ivj
|

2 . The distance between the leaves vi and vj in T ′ is

ω(pivi) + mvj − mvi + ω(pjvj) = 1 + mvj − mvi −
|Ivi | + |Ivj |

2
≤ 1.

488 A. Brandstädt and C. Hundt

Conversely, if the T ′-distance between vi and vj is at most one then

1 − |Ivi |
2

+ mvj − mvi +
1 − |Ivj |

2
− 1 = mvj − mvi −

|Ivi | + |Ivj |
2

≤ 0

and hence, mvj − mvi ≤ |Ivi
|+|Ivj

|
2 . Thus, for all u, v ∈ V the two intervals Iu

and Iv intersect if and only if the T ′-distance between leaves u and v is at most
one.

Let N be the least common multiple of the values given by the denominators
of the edge weights ω(e), e ∈ ET ′ and let k = N + 2. We obtain a k-leaf root
T = (VT , ET) of G from T ′ if we replace for all i ∈ {1, . . . , n−1} the edge pipi+1

by a path of length N · ω(e) and replace for all i ∈ {1, . . . , n} the edge pivi by a
path of length N · ω(e) + 1 with leaf vi. It is easy to see that uv ∈ E if and only
if dT (u, v) ≤ k. Trees are leaf powers but in general no interval graphs. �	

Recently, the clique-width of graphs, as an important width measure on graphs,
has attracted considerable attention. It generalizes treewidth and leads to effi-
cient algorithms [11]. In [17], it was shown that the clique-width of ptolemaic
graphs is at most three and hence, it is natural question to ask whether leaf
powers have bounded clique-width. Golumbic and Rotics [17] showed that unit
interval graphs have unbounded clique-width and thus, as a byproduct, Theorem
6 also shows the following:

Corollary 3. Leaf powers have unbounded clique-width.

From a result of Todinca [30], which implies that k-leaf powers have bounded
clique-width for every fixed k, it follows that unit interval graphs have unbounded
leaf rank. See also [18] for upper bounds on clique-width of k-leaf powers.

An interesting subclass of leaf powers are the graphs which have caterpillar
leaf roots. It turns out that this is exactly the class of unit interval graphs.

Theorem 7. For a connected graph G, the following conditions are equivalent:

(i) G has a leaf root which is a caterpillar.
(ii) G results from an induced subgraph of the power of some path by substituting

cliques.
(iii) G is a unit interval graph.

Proof. Let G = (V, E) be a connected graph.
(i) =⇒ (ii): Let caterpillar T be a k-leaf root of G for some k ≥ 3 (without

loss of generality, we can assume that T is a basic leaf root) and let B be the
backbone path of T . For every v ∈ V let bv denote the backbone parent of v.
Now, uv ∈ E if and only if dT (u, v) ≤ k if and only if dB(bu, bv) ≤ k − 2. This
shows that G is an induced subgraph of Bk−2. If more than one vertex of G is
attached to a backbone node of T then corresponding clique substitutions give
the desired graph.

(ii) =⇒ (iii): Again, without loss of generality, assume that G itself is an
induced subgraph of the k-th power of some path Pl. In [25], Theorem 3.8 says

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 489

that a graph is a proper interval graph if and only if it is a unit interval graph,
and Theorem 3.10 says that G is a proper interval graph if and only if the vertex-
maxclique incidence matrix M(G) has the consecutive ones property for both
rows and columns (which is mentioned in [13] and goes back to [29]). Obviously,
powers of paths have the last property, and the property is hereditary for induced
subgraphs.

(iii) =⇒ (i): Let G = (V, E) be a unit interval graph with interval model
(Iv)v∈V , and let mv denote the midpoint of interval Iv. Without loss of generality,
we can assume that the midpoints have rational values. Let N be the least
common multiple of the denominators of mv, v ∈ V . By definition, uv ∈ E if
and only if d(mu, mv) ≤ 1. Thus, by multiplying the midpoints by N , we obtain a
path containing n midpoints m′

v such that uv ∈ E if and only if d(m′
u, m′

v) ≤ N .
This is the backbone B of a caterpillar T where we attach a leaf v to midpoint
m′

v such that uv ∈ E if and only if dT (u, v) ≤ N + 2. �	

6 Discussion and Outlook

In this paper, we investigated the relationship of the class of leaf powers to
ptolemaic, (unit) interval and strongly chordal graphs. Meanwhile, Peter Wagner
has shown that rooted directed path graphs, which contain ptolemaic graphs as
well as interval graphs, are a proper subclass of leaf powers, too. It remains for
future work to pinpoint leaf powers between these classes. In particular we hope
that our results will lead to characterizations and efficient recognition algorithms
for leaf powers.

Far less is known on how to find the leaf rank of a graph. In this paper we
gave narrow upper and lower bounds on how the leaf rank of ptolemaic graphs
grows linearly with the number of vertices. Moreover we showed that ptolemaic
and interval graphs have unbounded leaf rank.

Acknowledgement

The first author thanks Ch́ınh T. Hoàng for discussions on the relationship
between leaf powers and strongly chordal graphs and gratefully acknowledges
partial support by Wilfrid Laurier University. Moreover, thanks go to Peter
Wagner for a discussion on powers of paths and clique-width and to Dieter
Rautenbach for a remark and the reference [2] on constant neighborhood subtree
tolerance graphs.

References

1. Bandelt, H.J., Mulder, H.M.: Distance hereditary graphs. J. Combinatorial Theory
(B) 41, 182–208 (1986)

2. Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discrete
Applied Math. 43, 13–26 (1993)

490 A. Brandstädt and C. Hundt

3. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Information Processing Letters 98, 133–138 (2006)

4. Brandstädt, A., Le, V.B., Rautenbach, D.: Distance-hereditary 5-leaf powers (man-
uscript, 2006)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Mono-
graphs on Discrete Math. Appl., vol. 3, SIAM, Philadelphia (1999)

6. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of
4-leaf powers (manuscript, 2006)

7. Brandstädt, A., Wagner, P.: On (k, �)-Leaf Powers. In: Kučera, L., Kučera, A.
(eds.) MFCS 2007. LNCS, vol. 4708, pp. 525–535. Springer, Heidelberg (2007)

8. Broin, M.W., Lowe, T.J.: A dynamic programming algorithm for covering problems
with (greedy) totally balanced constraint matrices. SIAM J. Alg. Disc. Meth. 7,
348–357 (1986)

9. Chang, M.-S., Ko, T.: The 3-Steiner Root Problem. In: Extended abstract in: Pro-
ceedings 33rd International Workshop on Graph-Theoretic Concepts in Computer
Science WG 2007. LNCS, vol. 4769, pp. 109–120. Springer, Heidelberg (2007)

10. Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded de-
grees and errors. SIAM J. Computing 32, 864–879 (2003)

11. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique width. Theory of Computing Systems 33, 125–150
(2000)

12. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24 B,
23–30 (1987)

13. Deogun, J.S., Gopalakrishnan, K.: Consecutive Retrieval Property - Revisited. In-
formation Processing Letters 69, 15–20 (1999)

14. Niedermeier, R., Guo, J., Hüffner, F., Dom, M.: Error Compensation in Leaf Root
Problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp.
389–401. Springer, Heidelberg (2004); Algorithmica 44(4), 363-381 (2006)

15. Fagin, R.: A painless introduction. In: Protasi, M., Ausiello, G. (eds.) CAAP 1983.
LNCS, vol. 159, pp. 65–89. Springer, Heidelberg (1983)

16. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–
189 (1983)

17. Golumbic, M., Rotics, U.: On the clique-width of some perfect graph classes. In-
ternational J. Foundat. Computer Science 11(3), 423–443 (2000)

18. Gurski, F., Wanke, E.: The clique-width of tree powers and leaf-power graphs. Ex-
tended abstract In: Proceedings 33rd International Workshop on Graph-Theoretic
Concepts in Computer Science WG 2007. LNCS, vol. 4769, pp. 76–85. Springer,
Heidelberg (2007)

19. Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math.
Oxford 2(28), 417–420 (1977)

20. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5, 323–331
(1981)

21. Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. J. Discrete
Algorithms 4, 511–525 (2006)

22. Kloks, T.: Private communication (2007)
23. Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In:

Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer,
Heidelberg (2000)

24. Lubiw, A.: Γ -free matrices, Master Thesis, Dept. of Combinatorics and Optimiza-
tion, University of Waterloo, Canada (1982)

Ptolemaic Graphs and Interval Graphs Are Leaf Powers 491

25. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. In: SIAM
Monographs on Discrete Math. Appl., vol. 2, SIAM, Philadelphia (1999)

26. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf labeled trees.
J. Algorithms 42, 69–108 (2002)

27. Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306(13), 1456–1461
(2006)

28. Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars
Combinatoria 34, 147–160 (1992)

29. Roberts, F.S.: Representations of Indifference Relations, Ph.D. thesis, Standford
University, Standford, CA (1968)

30. Todinca, I.: Coloring powers of graphs of bounded clique-width. In: Bodlaender,
H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003)

A Representation Theorem for Union-Difference

Families and Application�

(Extended Abstract)��

B.-M. Bui-Xuan1 and M. Habib2

1 CNRS - LIRMM - Université Montpellier II
161 rue Ada, 34392 Montpellier Cedex 05, France

buixuan@lirmm.fr
2 CNRS - LIAFA - Université Paris Diderot

Paris 7 Case 7014, 75205 Paris Cedex 13, France
habib@liafa.jussieu.fr

Abstract. We give a quadratic O(|X|2) space representation based on a
canonical tree for any subset family F ⊆ 2X closed under the union and
the difference of its overlapping members. The cardinality of F is poten-
tially in O(2|X|), and the total cardinality of its members even higher. As
far as we know this is the first representation result for such families. As
an application of this framework we obtain a unique digraph decompo-
sition that not only captures, but also is strictly more powerful than the
well-studied modular decomposition. A polynomial time decomposition
algorithm for this case is described.

1 Introduction

Many combinatorial decompositions lead to interesting subset families, such as
crossing families for minimum cuts in network flows theory (see e.g. [21]), and
partitive families for modular decomposition in graph theory [4,10,19]. Cross-free
families as defined in [21] using the famous Edmonds-Giles’s theorem [9] admit a
tree structure and arise in many combinatorial decompositions such as the split
decomposition [6,7,8,18] and also in phylogeny [22].

For a given set family F ⊆ 2X , it is worth studying its distance from a tree
structure, namely to examine if it can be represented via a tree. Such a represen-
tation must allow the enumeration of all members of the family in O(|F|) time.
Let us define the complexity of a family as the size of its minimal tree. At first
level one can find simple hierarchies (c.f. laminar in [21]) and cross-free families.
Then, (weakly) partitive families which admit a unique tree decomposition with
3 types of nodes (prime, complete and linear) also have complexity O(|X |). For
crossing families only a representation tree in O(|X |2) space is known [13].

This paper deals with union-difference families – families closed under the union
and the difference of its overlapping elements – which is a natural generalisation
� Research supported by the ANR project Graph Decompositions and Algorithms.

�� Full version available at http://hal-lirmm.ccsd.cnrs.fr/lirmm-00175766.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 492–503, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Representation Theorem for Union-Difference Families and Application 493

of partitive families. We show the existence of a canonical tree representation in
O(|X |2) space. Furthermore, from this we obtain a new polynomial and unique
decomposition of directed graphs, generalising modular decomposition. A polyno-
mial time decomposition algorithm for this case is then depicted in the last section.

2 Representation Theorem

Let X be a finite set. Two sets A and B overlap, denoted by A©©B, if none
among A∩B, A\B, and B \A is empty. They cross, if we have both A©©B and
A©©B, where A = X \ A. A family F ⊆ 2X is a union-difference family if: F
contains the trivial members X and {x} (for all x ∈ X), and F is closed under the
union and the difference of its overlapping members. If a union-difference family
is also closed under the symmetric difference of its overlapping members, then it
is closed under the intersection of its overlapping members too. Union-difference-
intersection families are well-studied under the name of partitive families [4], and
are fundamental for modular graph decomposition [10,19].

Henceforth F is a union-difference family. Notice that if |X | ≤ 2 then F = 2X

and representing F is trivial. We assume throughout the paper that |X | ≥ 3.
A ∈ F is a strong member of F if A does not overlap any B ∈ F . Likewise,
A ∈ F is a semi-strong member of F if it does not cross any B ∈ F . Let S ⊆ F
be the family of semi-strong members of F . For sake of simplicity, X is excluded
from S although it is clearly semi-strong. By definition, no two members of S
cross, and S is called cross-free.

1

b

a

c

1

2

3

{a, b}, {a, b, c},

{2, 3, a, b, c}, {3, a, b, c},

{1, 2}, {2, 3} {1, 2, 3},

i.

ii. iii.

a

b c

2

3

double arcs

P P

L
b

a

c

1

2

3

X = {a, b, c, 1, 2, 3}

F = {
{a}, {b}, {c}, {1}, {2}, {3},

{a, b, c, 1, 2, 3},

}

{1, 2, 3, a, b},

Fig. 1. i. A union-difference family, circles represent their complement. ii. The semi-
strong subfamily excluding X. iii. Decomposition tree.

494 B.-M. Bui-Xuan and M. Habib

Let us now recall a cross-free family representation [9] which is widely used
in combinatorial optimisation research areas (refer to e.g. [21]). Let x ∈ X , we
consider S′ = {A | A ∈ S ∧x /∈ A}∪{A | A ∈ S ∧x ∈ A}. No two members of S′

overlap, and their inclusionwise ordering results in a tree rooted at X \ {x}. We
then add x to the children of the root and unroot the tree. The set of leaves is
now in bijection with X : by abusiveness we confound the two sets. In this tree,
deleting any edge gives rise to two connected components. If each component is
regarded as the set of its leaves, then at least one of them is a member of S.
Then, edge orientation can denote which ones belong to S (see Fig. 1). On the
other hand, each member of S corresponds to one edge of the tree.

Definition 1 (Decomposition tree). We define the decomposition tree of a
union-difference family F ⊆ 2X as the Edmonds-Giles’s tree representation [9]
of its semi-strong members, X is excluded. Such a tree has no degree 2 node.

We shall label this tree to obtain an enumerating object of all members of F . In
the tree, the deletion of an internal node n gives rise to k = d(n) connected com-
ponents, which can also be seen as a k−partition of X . Let {X1, . . . , Xk} denote
this partition. For instance, the node labelled “L” in Fig. 1 yields {{1}, {2}, {3},
{a, b, c}}. For later use, notice that we always have k ≥ 3. (This can also be seen
as a quick proof that the unlabelled decomposition tree is of linear O(|X |) size.)
Let us consider Y = {X1, . . . , Xk} as a set, and define the quotient of F with
respect to node n as the family Q(n) ⊆ 2Y such that
{

{Xi} belongs to Q(n) for all 1 ≤ i ≤ k,
Q = {Xi | i ∈ I} with |Q| 	= 1 belongs to Q(n) ⇔ ∪i∈I Xi belongs to F .

The membership of Xi in F (resp. exclusion of Xi from F) is already stored
by the edge orientation of the decomposition tree. Roughly, each member Q of
the quotient Q(n) corresponds to one and only one member of F , except for the
singletons {Xi}. Moreover, it is not obvious but folklore that the converse holds:

Proposition 1. For all member A ∈ F of a subset family F ⊆ 2X , there exists
a node n in the semi-strong tree of F such that A corresponds to a member of
the quotient Q(n) of F with respect to n. This node is unique.

Consequently, if there is a way to describe Q(n) for every node n of the de-
composition tree, then one can rebuild the initial family F in an exact manner.
As a step towards this aim, we say that a member A of F is quasi-trivial if
|A| = |X | − 1, and notice a second non obvious but folklore fact:

Proposition 2. Trivial and quasi-trivial members are semi-strong by vacuity.
On the other hand, any semi-strong member of a quotient Q(n) ⊆ 2Y is either
trivial or quasi-trivial.

Remark 1. Both Propositions 1 and 2 hold for arbitrary subset families.

Definition 2 (Quotient property). We say that a subset family satisfies the
quotient property if all its semi-strong members are either trivial or quasi-trivial.

A Representation Theorem for Union-Difference Families and Application 495

Obviously the quotient of a union-difference family is also a union-difference
family. We thus focus on families satisfying both union-difference and quotient
properties, which form a super-class of the quotient nodes of a union-difference
decomposition tree. We shall prove that there are at most 5 types of them.
Moreover, each type will be proved to be of “small enough” size, that is

Main Representation Theorem. There is a node-labelling of the decompo-
sition tree of a union-difference family F ⊆ 2X such that every member of F
can be retrieved from the tree and its labels. Moreover, the size of the tree and
its labels is in O(|X |2) space.

Proof. We shall consider two main categories. Simply-linked quotients (see fur-
ther in Definition 3) will be characterised by Theorem 1 into 4 types. Section 2.2
addresses the remaining ones. Theorem 2 proves the quadratic global size. ��

Before continuing, let us highlight a useful tool from previous works on partitive
families. A subset family F ⊆ 2X can also be seen as an undirected hypergraph
with vertex set X . Let us define the 2−graph of F as its restriction to size 2
hyperedges: GF = (X, E) with E = {A ∈ F and |A| = 2}. Though the following
property was discovered for partitive families, its proof only requires the union
and difference closures. (The proof given in [10] is recalled in the full version [1].)

Lemma 1. (c.f. [4,10] with partitive families) Let F be a union-difference fam-
ily. If its 2−graph GF is connected then GF is either a clique, a path, or a cycle.

2.1 Simply-Linked Quotients

We first focus on a case of “easy” decomposition, fully exploiting Lemma 1.
While a quasi-trivial member is clearly semi-strong, it is not necessarily strong.
Moreover, we say that

Definition 3 (Simply-linked Property). A subset family is simply-linked if
none of its quasi-trivial members is strong.

For simply-linked quotients, the following nice theorem holds. A family is prime
if it has only trivial and quasi-trivial members.

Theorem 1. If a union-difference family F satisfies both quotient and simply-
linked properties, then one and only one of the following holds:

– GF is a clique (we say that F is complete),
– GF is a path (we say that F is linear),
– GF is a cycle of length at least 4 (we say that F is circular),
– F is prime.

Proof. First we have to prove the two lemmas 2 and 3 (below). Then, notice by
Lemma 1 that if GF is connected, it is either a clique, a path, or a cycle. ��

By union closure, GF is a clique if and only if F = 2X , and we say that F is
complete. Likewise, GF is a path (resp. cycle) if and only if there is a linear

496 B.-M. Bui-Xuan and M. Habib

(resp. circular) ordering of X such that F is exactly the family of all intervals
(resp. circular intervals) of this ordering. F is then linear (resp. circular).

Corollary (Representing simply-linked quotients). Let X1, . . . , Xk denote
the resulting connected components of a decomposition tree when deleting a quo-
tient node. Representing a complete quotient node is easily done with O(1) label,
stating the quotient is the family of every union of some Xi’s. For a linear or cir-
cular node, we also need to code an ordering on the incident edges. Then, an O(1)
label can state the quotient is the family of every union of some consecutive Xi’s
(Fig. 1 gives an illustration on the node labelled “L”). Except for the special case
of X , members of a prime quotient node are already stored in the edge orientation
of the decomposition tree (they are semi-strong, and belong to S). Accordingly, we
only need an O(1) label for all prime nodes, stating there are no members bound
to the node other than those given by the edge orientation.

Let us head back to the proof of Theorem 1. A chain of length k of F is
a sequence (A1, . . . , Ak) of members of F such that Ai

©©Ai+1 for all i, and
Ai ∩ Aj = ∅ for all |i − j| > 1. The chain is covering if A1 ∪ · · · ∪ Ak = X , and
irreducible if |Ai| = 2 for all 1 ≤ i ≤ k. An irreducible and covering chain of F
can also be seen as a Hamiltonian path in the 2−graph GF , which would imply
its connectivity, and enable the use of Lemma 1.

Lemma 2. If a union-difference family F satisfies both quotient and simply-
linked properties, then either F is prime, or F has a length 3 covering chain.

Proof. Suppose that F is not prime, and let A ∈ F be neither trivial nor quasi-
trivial. We take A maximal by inclusion. The quotient property provides us with
B ∈ F such that A and B cross. The closure under union implies A ∪ B ∈ F .
Moreover, A is maximal. Hence A ∪ B is either trivial or quasi-trivial. However,
A ∪ B cannot be trivial since A and B cross. Then, the simply-linked property
implies that A ∪ B is not strong. Hence it overlaps some member C ∈ F . Here,
all cases lead to either D = C ∪B \A or E = C ∪A\B is a member of F . Then,
either (A, B, D) or (B, A, E) is a covering chain of length 3. �

Lemma 3. If a union-difference family F satisfies both quotient and simply-
linked properties, and has a covering chain of length at least 3, then F has an
irreducible covering chain (then GF is connected).

By lack of space, the proof of Lemma 3 is omitted. Please refer to the full
version [1] for any detail.

2.2 Other Quotients

We now address a family F ⊆ 2X that is not simply-linked. By definition it has
a quasi-trivial member that is strong. We note Y = X \ {x} that member. Since
Y is strong, except for X and {x}, F has no other member containing x. Let us
consider the sub-family G = F \{X, {x}}, which holds G ⊆ 2Y . Obviously, if F is
a union-difference family, so is G. Fainthearted, we represent F with the member

A Representation Theorem for Union-Difference Families and Application 497

{x} and the union-difference decomposition tree of G. We process the same way
with all quotient nodes that are not simply-linked. Therefore, such a tree may
have recursive levels. Fortunately enough, its total size still is polynomial:

Theorem 2. The global size of the labelled decomposition tree of a given union-
difference family F ⊆ 2X is in O(|X |2).

Proof. By induction on n = |X |. Let f(n) be the maximum size of all decom-
position trees of n leaves. Obviously, f(1) and f(2) are non null constants. Let
f(k) ≤ α×k2 hold for all k < n. We suppose without loss of generality that α is
greater than any other constant in this proof. Let us consider a decomposition
tree of n leaves and let N be the set of its internal nodes. For each i ∈ N , let ni

be its degree. The label of i is either of constant size (c.f. prime and complete
nodes), of linear size on ni (c.f. linear and circular nodes), or of size bounded by
f(ni − 1) + β (c.f. nodes that are not simply-linked). In all cases, it is bounded
by α × (ni − 1)2 + α since ni ≥ 3 and α ≥ β. The total size of leaves, edges, and
orientations is linear on n, hence bounded by α × n. We deduce that

f(n) ≤ α ×
(

∑

i∈N

((ni − 1)2 + 1) + n

)

≤ α ×
(

∑

i∈N

(ni − 1)2 + n′ + n

)

,

where n′ = |N |. Notice that
∑

i∈N ni = n + 2 × (n′ − 1) (the n pendant edges
are counted once while other edges are counted twice). In other words, S =∑

i∈N (ni − 1) = n + n′ − 2. Then, the greatest value that
∑

i∈N (ni − 1)2 can
reach happens when one among the ni gets the greatest value possible. Since
ni − 1 ≥ 2, we have

∑
i∈N (ni − 1)2 ≤ (n′ − 1) × 22 + (S − (n′ − 1) × 2)2. Then,

f(n) ≤ α × (n2 + n′2 + 5n′ + n(1 − 2n′) − 4). Besides, that there are no degree
2 nodes in the tree provides us with n ≥ n′ + 2. Finally, combining the previous
facts and 1 − 2n′ ≤ 0 allows to conclude. ��

Conjecture: There is for every union-difference family a representation of smal-
ler space than quadratic on the size of the ground set. The reason for the con-
jecture comes from the brute-force aspects of this section.

3 Application to Graphs: Sesquimodular Decomposition

In graph theory modular decomposition is now a well-studied notion [4,10,15,19],
as well as some of its generalisations [6,7,8,17,18,20]. As having been rediscov-
ered in other fields, the notion also appears under various names, including in-
tervals, externally related sets, autonomous sets, partitive sets, and clans. Direct
applications of modular decomposition include tractable constraint satisfaction
problems [5], computational biology [14], graph clustering for network analysis,
and graph drawing. This rich research field lays heavily on the nice combinato-
rial properties of modules. Among most important ones, that modules form a
partitive family allows representing them compactly with a tree [4,10,19].

Besides, in the area of social networks, several vertex partitioning have been
introduced in order to catch the idea of putting in the same part all vertices

498 B.-M. Bui-Xuan and M. Habib

b

a

c

1

2

3

(a) The family of sesquimodules of this digraph is

the one of Fig. 1 (refer therein for the decomposi-

tion tree). Notice that {2, 3} is also a module.

PP

P P
b

a

c

1

2

3

a

b c

3

2

1

(b) A modular prime digraph with its

sesquimodular decomposition tree.

Fig. 2. Modules v.s. sesquimodules

12

4
3

5

6

7

8

9

(a) A directed graph, bold arcs

denote all-to-all arcs.

P

Rec

L

3 4

56

L 2

1

3

4

56

7

8

9

(b) Its sesquimodular decomposition tree.

Fig. 3. Sesquimodular decomposition. The family of non-trivial sesquimodules of the
digraph is {{1, 2}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7, 8, 9}, {3, 4, 5, 6, 7, 8, 9},
{3, 4}, {3, 4, 5}, {3, 4, 5, 6}, {4, 5}, {4, 5, 6}, {5, 6}}.

acknowledging similar behaviour, in other words finding regularities [23]. Mod-
ular decomposition provides such a partitioning, yet seemingly too restrictive
for real life applications. The concept of a role [11] on the other hand seems
promising, however its computation is unfortunately NP−hard [12]. As a nat-
ural consequence, there is need for the search of relaxed, but tractable, variations
of the modular decomposition scheme. We here investigate the case of directed
graphs, and propose a weakened definition of module in order to further decom-
pose. Fortunately enough, we still obtain a well-structured variation, thanks to
union-difference families.

Digraphs here refer to loopless simple directed graphs where 2−cycles are
allowed. Let G = (V, A) be a digraph, M ⊆ V is a sesquimodule if:

– ∀x, y ∈ M , N−(x) \ M = N−(y) \ M , and
– ∀x, y ∈ M , either N+(x) \ M = N+(y) \ M or N+(x) \ M = N+(y) \ M .

In an undirected graph, there is only one requirement to be a module, which is
∀x, y ∈ M , N(x)\M = N(y)\M . The classical generalisation to directed graphs
requires two full conditions, one on in-neighbours and one on out-neighbours:
∀x, y ∈ M , N−(x) \ M = N−(y) \ M and N+(x) \ M = N+(y) \ M . In the new
definition, there is a full condition on in-neighbours, and a relaxed one on out-
neighbours: the exterior still has to be partitioned into out-/non-out-neighbour

A Representation Theorem for Union-Difference Families and Application 499

vertices, however, their order is irrelevant. This is the reason for the terminology.
Fig. 2(a) exemplifies an instance where the sesquimodules form the family given
in Fig. 1, while Fig. 2(b) shows that the generalisation of modules to sesquimod-
ules is proper. A more complex example of sesquimodular decomposition tree is
given in Fig. 3. We have the following theorem.

Theorem 3 (Uniqueness Decomposition Theorem). There is a unique un-
rooted tree associated to a digraph G = (V, A) such that: the leaves of the tree
are in one-to-one correspondence with the vertices of G; the edges of the tree are
oriented; the internal nodes of the tree are marked with at most 4 types of labels;
and all sesquimodules of G can be generated from this tree without the knowledge
of the graph. The size of this tree and its labels is in O(|V |2).

This theorem lays on the simple fact that

Proposition 3. The sesquimodules of a digraph form a union-difference family.
Furthermore there are no circular nodes in its decomposition tree.

Proof. Let G = (V, A) be a digraph. Clearly, the trivial vertex subsets are
sesquimodules of G. Let X and Y be two overlapping sesquimodules of G. It
follows straight from definition that X ∪ Y is a sesquimodule. We only need to
prove that Z = X \ Y is also a sesquimodule.

First suppose that there exist an exterior vertex s /∈ Z and two vertices
x, y ∈ Z s.t. (s, x) ∈ A and (s, y) /∈ A. We shall denote arc (x, y) ∈ A by xy, and
non-arc (x, y) /∈ A by xy. Since X is a sesquimodule s belongs to X∩Y . Moreover,
that X and Y overlap implies there is a vertex t belonging to Y \X . Notice that
s, t ∈ Y and x, y /∈ Y . Additionally, we have sx and sy. Since Y is a sesquimodule,
we have either tx∧ ty or tx∧ ty. But then X no more is a sesquimodule as t /∈ X
and x, y ∈ X . Hence, for all x, y ∈ Z, N−(x) \ Z = N−(y) \ Z.

Now let x, y ∈ Z and s, t /∈ Z. For convenience, we refer to the fact that
either xs ∧ xt or xs ∧ xt by “x is not a splitter of {s, t}”, denoted by x|st.
We need to prove that x|st ⇔ y|st. If none of s and t belong to X , that X is
a sesquimodule allows to conclude. If both s and t belong to Y , that Y is a
sesquimodule allows to conclude. By symmetry, the only remaining case is when
s ∈ X ∩Y and t /∈ X ∪Y . In this case, let u ∈ Y \X . Since X is a sesquimodule,
we already have x|tu ⇔ y|tu, but we would like the same property with vertex
u replaced by vertex s. For this, notice that x /∈ Y , but s, u ∈ Y , and Y is a
sesquimodule. Therefore, x|su. Likewise, y|su. Then, combining the two latter
facts and x|tu ⇔ y|tu leads to the desired property.

Finally, a circular sesquimodule quotient node would be a complete one. �

Remark 2. A 2−structure is roughly an edge-coloured complete digraph (see
e.g. [10]). Graph modules can be generalised to clans of a 2−structure: a vertex
subset M of a 2−structure is a clan if for all x, y ∈ M , for all s /∈ M , the arcs
(s, x) and (s, y) are of same colour, and the arcs (x, s) and (y, s) are also of
same colour (though the two colours may differ). Likewise, graph sesquimod-
ules can also be generalised to sesquimodules of a 2−structure as follows. M
is a sesquimodule of a 2−structure if it holds two following conditions. For all

500 B.-M. Bui-Xuan and M. Habib

x, y ∈ M , for all s /∈ M , the arcs (s, x) and (s, y) are of the same colour. For
all x, y ∈ M , for all s, t /∈ M , (x, s) and (x, t) are of the same colour if and
only if (y, s) and (y, t) are of the same colour. Then, one can check that the
family of sesquimodules of any 2−structure is a union-difference family. Hence,
for 2−structures we have a similar decomposition theorem as what has been said
for digraphs. However, the algorithm described in the next section wont apply.

Remark 3. We newly pointed out that the family of sesquimodules of a digraph
is also closed under the intersection of its crossing members. Based on this, we
improved the representation of the sesquimodules of a digraph G = (V, A) from
O(|V |2) (as in this paper) down to an O(|V |) space decomposition tree. We also
showed that the latter tree can be computed in polynomial time. All these new
results can be found in [2]. This does not apply to the family of sesquimodules
of a 2−structure since such a family could fail the closure under intersection of
its crossing members.

4 Polynomial Time Algorithm for Sesquimodular
Decomposition

This section describes a brute-force algorithm to compute in polynomial time the
sesquimodular decomposition tree of a given digraph G = (V, A). We divide the
computation into two main steps, generalising the two-step scheme introduced
by [3] for modular graph decomposition.

Definition 4 (Factoring Permutation). [3] A factoring permutation of a
decomposition tree is the visit order of the leaves of the underlying decomposition
tree by some depth-first graph search.

For sesquimodular decomposition tree, which is unrooted, we define the factoring
permutation as a circular permutation. This notion dues its name to the fact that
every node of the tree is a (circular) interval of the (circular) permutation. In the
following, results of Section 4.1 can not be used unless we meet a certain notion
of splitter. However, all the remaining is a scheme that can be used to compute
the semi-strong tree of any arbitrary subset family. Indeed, the union-difference
property will only be used for eventually typing the nodes.

4.1 Computing a Factoring Permutation

Like modular decomposition, we use a partition refinement technique (c.f. [16])
based on the notion of a splitter. There are two kinds of sesquimodule splitters:

– If there are s /∈ M and x, y ∈ M with (s, x) ∈ A (denoted by sx) and
(s, y) /∈ A (denoted by sy) then M is not a sesquimodule. We say that
vertex s splits x and y.

– If there are x, y ∈ M such that there are s, t /∈ M with x|st and y|st then
M is not a sesquimodule, where x|st denotes (xs ∧ xt) ∨ (xs ∧ xt) and x|st
denotes its negation. We say that vertex pair (x, y) is a self-splitter.

A Representation Theorem for Union-Difference Families and Application 501

Let us consider first category splitters. We begin with picking a vertex x ∈ V
and considering the ordered partition P = {N+(x), {x}, N+(x)}, which will be
seen as an ordered circular partition. We then perform a round, which consists
of performing the refinement operation (see right below) for all vertex y 	= x
until this modifies the partition P . The round ends and we restart a new one
whenever P is modified. If, through some whole round, the partition P remains
unchanged for all y 	= x, then the process stops.

The refinement operation w.r.t. a vertex y 	= x consists of splitting each part
P of the partition P into two parts: P+ = P ∩N+(y) and P+ = P \N+(y). The
reorganisation of the split parts is as follows. Though obviously the part Q = {x}
of the partition P is not split, we have to consider whether x ∈ N+(y). Let P
and R be the neighbour parts of Q in P : P = (. . . , P, Q, R, . . .). If x ∈ N+(y),
replace P with (P+, P+) and replace R with (R+, R+), else, replace P with
(P+, P+) and R with (R+, R+). If there are some empty set, we act as if they
were present, but skip storing them to the partition list. Thus, the elements that
y “sees” the same way as how y “sees” x are locally stick together. We do the
same processing for the parts before P and those after R in P (elements of same
vision by y are locally stick together). That there is in the initial partition an
odd number of parts – actually 3 – guarantees no conflict when closing the circle.

At this point, we obtain a partition P such that for all vertex v, and for all
part P of the partition P , v is not a first category splitter of P . Since each
refinement can be done in O(|N+(y)|) time (see [16]), a round takes O(n2) time,
where n = |V |. Since each round decreases the partition P to a thinner partition,
there are at most n rounds. The total time is in O(n3).

We now consider second category splitters, with the computed partition P .
While there is in P some part P containing a self-splitter (x, y) ⊆ P , replace P
with (Px, Py), which is defined as follows. First, push x in Px and y in Py. Let
s, t /∈ P such that x|st and y|st. Then, for every other vertex z of P , either z|st
or z|st, and we push z in Px or Py accordingly. Testing for self-splitters can be
done by just testing all vertex quadruplets. This would globally cost O(n5) time.

At the end, we obtain a circularly ordered partition P = (P1, . . . , Pk) of
unordered parts Pi’s. Then, ordering arbitrary the Pi’s results in a circular per-
mutation of V , which is a factoring permutation.

4.2 Computing the Decomposition Tree

We here constantly need to test if a subset is member of the initial family. Let
τ denotes the time for such a test. For digraphs, given a vertex subset, we can
test in τ = O(n4) time if the subset is member of the sesquimodule family
by checking every vertex quadruplets. Then, the shape of the decomposition
tree can easily be constructed in a brute-force manner as follows. Compute a
factoring permutation. For each interval of the factoring permutation, test if it
is a member of the initial family. For each pair of the latter members, if they
cross, then remove both. Represent the remaining members in a cross-free tree-
representation as explained at the beginning of Section 2. Since there are at most
n2 intervals in a circular permutation, these operations take O(n5 + n2τ) time.

502 B.-M. Bui-Xuan and M. Habib

The only remaining thing is to type the nodes. The main difficulty is how
to test for nodes that are not simply-linked. Actually, we avoid this test by
elimination of cases. For each internal node i of the decomposition tree:

Compute the 2−graphof the quotientw.r.t. node i (quadratic number of tests for
membership). If this is a clique, a path, or a cycle, conclude accordingly, and stop.
Compute all quasi-trivial members of the quotient. If there are more than one or
none of such, report a prime node, and stop. Else either the node is prime or it is
not simply-linkedwith that unique quasi-trivialmemberwhich is strong. Let {c}be
the complement of the unique quasi-trivial member. Assume node i is not simply-
linked and recursively compute the decomposition tree of the quotient excluding
{c} (refer to Section 2.2 for details). If the latter tree is anything except a single
prime node then node i effectively was not simply-linked, we conclude and stop.
The latter tree is a single prime node. If there is some quasi-trivial member therein
thennode i effectivelywasnot simply-linked,we concludeand stop.Otherwisenode
i was simply-linked. We report a prime node.

Without recursive calls the process is in O(n3τ) = O(n7) time. Then, an
inductive argument similar to the proof of Theorem 2 gives an O(n8) time bound.

Theorem 4. The sesquimodular decomposition tree of a given digraph G =
(V, A) can be computed in O(|V |8) time.

5 Conclusion and Perspectives

We have shown that union-difference families can be represented via a unique
tree, and applied this result to a new directed graph decomposition. Of course the
polynomial decomposition algorithm proposed here for this variation of modular
decomposition has to be improved for a practical use. Another interesting inves-
tigation could be on the properties of the family of complements of members of
a union-difference family. Such a family owns a quadratic representation straight
from the result of union-difference families. However, their intrinsic properties
are unclear, as the closure under difference does not behave symmetrically via
complementary. Besides, representing families satisfying a number of closure op-
erations remains an interesting question, and we are convinced that some other
combinatorial decompositions can be expressed in this framework, as in [2].

Acknowledgements. The first author is grateful to S. Thomassé for helpful
discussions and pointers.

References

1. http://hal-lirmm.ccsd.cnrs.fr/lirmm-00175766

2. Bui-Xuan, B.-M., Habib, M., Rao, M.: Representing partitive crossing Families
and union-difference Families, with Application to Sesquimodular Decomposition.
Available at: http://hal-lirmm.ccsd.cnrs.fr/lirmm-00199916

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00175766
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00199916

A Representation Theorem for Union-Difference Families and Application 503

3. Capelle, C., Habib, M.: Graph decompositions and factorizing permutations. In:
5th Israel Symposium on Theory of Computing and Systems (ISTCS 1997), pp.
132–143. IEEE Computer Society, Los Alamitos (1997)

4. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Mathemat-
ics 37(1), 35–50 (1981)

5. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn
clauses: Tractable optimization problems defined by tournament pair multimor-
phisms. Technical Report CS-RR-06-06, Oxford University (2006)

6. Crespelle, C.: Représentations dynamiques de graphes. PhD thesis, Université
Montpellier II (2007)

7. Cunningham, W.: Decomposition of directed graphs. SIAM Journal on Algebraic
and Discrete Methods 3, 214–228 (1982)

8. Cunningham, W., Edmonds, J.: A combinatorial decomposition theory. Canadian
Journal of Mathematics 32, 734–765 (1980)

9. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs.
Annals of Discrete Mathematics 1, 185–204 (1977)

10. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures- A Frame-
work for Decomposition and Transformation of Graphs. World Scientific, Singapore
(1999)

11. Everett, M.G., Borgatti, S.P.: Regular Equivalence: General Theory. Journal of
Mathematical Sociology 18, 29–52 (1994)

12. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theoretical Computer Science 349(1), 67–81 (2005)

13. Gabow, H.: Centroids, Representations, and Submodular Flows. Journal of Algo-
rithms 18(3), 586–628 (1995)

14. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of
protein-protein interaction networks. Genome Biology 5(8) (2004)

15. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scien-
tiarum Hungaricae 18, 25–66 (1967)

16. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting al-
gorithmic tool kit. International Journal of Foundations of Computer Science 10(2),
147–170 (1999)

17. Hsu, W.-L., McConnell, R.M.: PC-trees and circular-ones arrangements. Theoret-
ical Computer Science 296, 99–116 (2003)

18. Lanlignel, J.-M.: Autour de la décomposition en coupes. PhD thesis, Université
Montpellier II (2001)

19. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization. Annals of Discrete Math-
ematics 19, 257–356 (1984)

20. de Mongolfier, F., Rao, M.: The bi-join decomposition. In: 7th International Col-
loquium on Graph Theory (ICGT 2005) (2005)

21. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Heidelberg (2003)

22. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and
Its Applications, vol. 24 (2003)

23. White, D.R., Reitz, K.P.: Graph and Semigroup Homomorphisms on Networks of
Relations. Social Networks 5, 193–234 (1983)

Algorithms to Locate Errors Using Covering

Arrays�

Conrado Mart́ınez1, Lucia Moura2, Daniel Panario3, and Brett Stevens3

1 Universitat Politècnica de Catalunya
2 University of Ottawa
3 Carleton University

Abstract. In this paper, we define error locating arrays (ELAs), which
can be used to locate faulty interactions between parameters or com-
ponents in a software system. We give constructions of ELAs based on
covering arrays. Under certain assumptions on the structure of the faulty
interactions, we design and analyse efficient algorithms that locate errors.
Under the assumption of known “safe values”, our algorithm performs a
number of tests that is polynomial in log k and d, where k is the number
of parameters in the system and d is an upper bound on the number
of faulty pairwise interactions. For the binary alphabet case, we pro-
vide an algorithm that does not require safe values and runs in expected
polynomial time in log k whenever d ∈ O(log log k).

1 Introduction

Consider a complex system whose behavior depends on the values of k parame-
ters or factors. To temporarily simplify matters, suppose each of the k factors
may take any of two values. In order to exhaustively test the system, 2k tests
are required, rendering it infeasible in a practical setting, even when k is only
moderately large.

An alternative to exhaustive testing is provided by covering arrays. A binary
covering array (CA) is a 0-1 matrix with n rows and k columns. Each of its
columns represents a parameter and each of its rows gives a test to be performed.
The number of rows, n, is called the size of the array. The array is said to be
of strength t if for any t-subset of the k factors, the corresponding columns
exhaustively cover all possible 2t combinations. In other words, if we define a
t-way interaction to be the assignment of specific values to each factor from set
of t factors, a covering array tests each t-way interaction in some of its rows.

� Part of this research was done while the first author was on sabbatical leave at
Carleton Univ. and later while the second and third authors were on sabbatical
leave at Univ. Politècnica de Catalunya. C. Mart́ınez was supported by projects
ALINEX (TIN2005-05446 and TIN2006-11345) of the Spanish Min. of Education
and Science. L. Moura was supported by NSERC. D. Panario was supported by
NSERC and the Spanish Min. of Education and Science. B. Stevens was supported
by NSERC, CFI, OIT, and Ontario MRI.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 504–519, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithms to Locate Errors Using Covering Arrays 505

System:
factors: printer file format colours file size (MBs)

values: 0 =P1 0 = JPEG 0 =black & white 0 = (≤ 50)
1 =P2 1 = PDF 1 = colour 1 = (> 50 and < 500)

2 = PS 2 = (≥ 500)

factors: (1) printer (2) file format (3) colours (4) file size outcome

test 1 0 0 0 0 pass
test 2 0 0 1 1 fail
test 3 1 0 1 2 fail
test 4 1 1 1 0 pass
test 5 1 1 0 1 pass
test 6 0 1 0 2 fail
test 7 0 2 0 0 fail
test 8 0 2 1 1 pass
test 9 1 2 1 2 fail

Fig. 1. An MCA covering all pairwise interactions in a printing system

Since in many practical settings it is enough to test 2-, 3- or 4-way interactions,
we can tackle these problems with a moderately sized CA. The minimal size of a
binary covering array of strength t for k factors is denoted by CAN(t, k, 2). An
important result with practical implications establishes that this number grows
logarithmically in k (see [2] for binary arrays).

There is a vast literature on covering arrays, their properties and efficient
constructions (see Colbourn’s survey [7]). They have a wide range of applications,
in particular software and hardware testing [9,12,13,15,19], genomics [18] and
material sciences [6]. Besides the simplified version of CAs presented above,
there are immediate generalizations when each factor can take any of g different
values, or when each factor i has gi possible values, the so-called mixed covering
arrays (MCAs) [17]. Another generalization of CAs and MCAs targets situations
where some combinations need not [16] or must not be tested [10].

CAs are useful in software interaction testing, where individual software com-
ponents have been thoroughly tested but interaction among the components can
cause faults [22]. Empirical results show that testing all pairwise interactions
in a software system finds most of its faults [9,12,13]; some authors also link
pairwise coverage to good “code coverage” [5,11]. While there are situations in
which considering t-way interactions for t > 2 give additional benefits [12], in
this extended abstract we concentrate on pairwise interactions, i.e., t = 2.

Figure 1 shows a toy example of a system with k = 4 factors. Two of the factors
can have two possible values, while the other two can take any of three different
values. Testing exhaustively such a system would require 36 = 2×2×3×3 tests,
but an MCA of size 9 allows us to test all pairwise interactions. We also record
in the rightmost column the (alleged) outcome of each test.

506 C. Mart́ınez et al.

In this study, our goal is to define new combinatorial designs that help us
not only to test the system (i.e., to determine whether there are interactions
that cause failures) but also to identify and to determine which are the faulty
interactions causing the failing tests. For instance, in the test suite given in
Figure 1, does test 2 fail because we printed a JPEG file (0) in colour (1), or
because we printed a JPEG file (0) of medium size (1)? Or is this failure caused
by a faulty 3-way interaction?

In a recent paper, Colbourn and McClary introduce (d, t)-locating arrays and
(d, t)-detecting arrays. They are special types of CAs that allow for the location
of faulty t-way interactions, provided that a bound d on the number of faulty
interactions is given. These arrays are built to locate any set of up to d errors,
which unfortunately makes their existence very limited to small d with respect
to the number of values gi for each factor [8]. For instance, if all factors are
binary, there exist no detecting arrays if there is more than one pairwise faulty
interaction.

In this paper, we introduce error locating arrays (ELAs), a generalization of
(d, t)-detecting arrays in which we guarantee the location and detection of errors
whenever the structure, rather than the number, of the faulty interactions sat-
isfies some assumptions. In particular, since in this extended abstract we only
consider pairwise interactions, the faulty interactions can be conveniently mod-
eled as the edges of a graph. We study the existence and efficient construction of
ELAs when the structure of the errors belongs to particular families of graphs.
Furthermore, we consider here two types of testing: non-adaptive testing, when
we have to construct the full test suite in advance, without prior knowledge
of the outcome of any test; and adaptive testing, when the choice of each new
row/test can be based on the outcome of all previous tests. While in [8] the
parameter d is required to be constant in order to achieve a number of tests that
is polynomial in log k, our results allow d to grow as O(log log k) and, in the case
of one algorithm, as O(log k) to achieve polynomial growth in log k.

We summarize our contributions and the organization of the paper in what
follows. In Section 2, we give some definitions and background. In Section 3, we
study conditions for the existence of ELAs and for their logarithmic growth in k.
We introduce the notion of locatable graphs, the most general family of graphs for
which ELAs can exist. We also consider a special family of graphs, which we call
graphs with safe values, and which turns out to be always locatable. Briefly, these
graphs are such that every factor has a value for which the corresponding vertex
is not part of any edge/error. In the testing application, this models a situation
in which each parameter has a value not present in any faulty interaction. We
observe that for a random error graph with d ∈ o(k) the probability that the
graph has safe values goes to 1 as k → ∞ [14]. Therefore, the assumption that a
graph has safe values is not too restrictive in an asymptotic sense. In Section 4,
we give an adaptive algorithm that locates faults when safe values are known; for
this particular algorithm the graph may have loops, which corresponds to errors
given by single factor values. The algorithm perform tests adaptively, which
corresponds to building an ELA for the error graph, and performs O(d(log k)2 +

Algorithms to Locate Errors Using Covering Arrays 507

d2 log k) tests. While this algorithm is very efficient when we know safe values,
this may be too strong an assumption in many testing situations. Ultimately,
we would like to eliminate such a strong assumption, which in this paper is
accomplished for the binary case in Section 5. We characterize the family of
locatable graphs when gi = g = 2 for all i. Using this characterization, we
give an algorithm that adaptively builds tests that locate all errors, for any
locatable “binary” graph. This algorithm performs an expected number of tests
in O(d log k+(log k)2c′

), when d ≤ c′ log log k, for some constant c′. In Section 6,
we discuss some open problems.

2 Definitions and Preliminaries

Let us define the testing problem more formally. Consider a system with k factors
(parameters or components) 1, . . . , k. Each factor i can take one of gi possible
values, which we consider w.l.o.g. to be in the set {0, . . . , gi − 1}, denoted by
[0, gi − 1]. A test is an assignment of values to factors, i.e., a k-tuple in [0, g1 −
1] × · · · × [0, gk − 1]. The execution of a test can have two outcomes: pass or
fail; we call it a passing or a failing test, respectively. An interaction is a set
of values assigned to distinct factors: I = {(f1, a1), . . . , (ft, at)}, fi �= fj for
i �= j, and ai ∈ [0, gfi − 1], 1 ≤ i ≤ t. An interaction I is a t-way interaction
if |I| = t. We say that a test (or a k-tuple) T = (T1, . . . , Tk) covers interaction
I = {(f1, a1), . . . , (ft, at)}, if Tfi = ai for 1 ≤ i ≤ t. Thus, a test covers exactly
(
k
t

)
t-way interactions, 1 ≤ t ≤ k. We assume that failures are caused by faulty

interactions, that is, the execution of a test fails if and only if it covers one or more
faulty interactions. Covering arrays are combinatorial designs that correspond
to test suits that cover all t-way interactions of factor values, and consequently
all s-way interactions with 1 ≤ s ≤ t.

Definition 1. A mixed covering array, A, denoted by MCA(n; t, (g1, . . . , gk)),
is an n × k array, such that each column i (corresponding to a factor) has val-
ues from the alphabet [0, gi − 1], and every possible t-way interaction is cov-
ered by some row, or in other words, for every t-set of factors {f1, . . . , ft} and
every t-tuple of values (a1, . . . , at) ∈ [0, gf1 − 1] × · · · × [0, gft − 1], there ex-
ists at least one row r (corresponding to a test) such that A[r, fj] = aj for all
j ∈ [1, t]. Given t and g1, . . . , gk, the mixed covering array number, denoted by
MCAN(t, (g1, . . . , gk)), is the smallest n for which an MCA(n; t, (g1, . . . , gk))
exists. When gi = g for all 1 ≤ i ≤ k, we call the objects simply covering arrays
and simplify the notation to CA(n; t, k, g), and CAN(t, k, g).

The test suits in Figures 1 and 2 give examples of MCA(9; 2, (2, 3, 2, 3)). Since
g2g4 = 9 is a lower bound for n, this gives MCAN(2, (2, 3, 2, 3)) = 9.

Consider a graph whose edges represent the faulty pairwise interactions in a
system. Let G = G(g1,...,gk) denote a k-partite simple graph with k parts of sizes
g1, . . . , gk, respectively. The vertices of G are indexed by i, ai where i ∈ [1, k]
and ai ∈ [0, gi − 1]. If g1 = · · · = gk = g, then we simplify the notation to
G = Gk,g. Denote by G \ (e = {v, w}) the graph with vertex set V (G) and edge

508 C. Mart́ınez et al.

Faulty interactions: Error graph G:

printer P1 with file format PDF: {(1, 0), (2, 1)},
printer P2 with file size ≥ 500: {(1, 1), (4, 2)},
file format JPEG with colour: {(2, 2), (3, 0)},
file format PS with black&white: {(2, 0), (3, 1)}.

(1) (2) (3) (4)

0

1

2

value:

factor:

v4,1

factors: (1) printer (2) file format (3) colours (4) file size outcome

test 1 0 1 1 0 fail
test 2 1 0 1 0 fail
test 3 1 2 0 0 fail
test 4 1 1 0 2 fail
test 5 0 0 0 2 pass
test 6 0 2 1 2 pass
test 7 1 1 1 1 pass
test 8 0 0 0 1 pass
test 9 1 2 1 1 pass

Fig. 2. Error graph G and a test suit corresponding to an ELA(9; G)

set E(G) \ {e}. A k-tuple T = (T1, . . . , Tk) ∈ [0, g1 − 1] × · · · × [0, gk − 1] is
said to avoid G = G(g1,...,gk) if for all i, j ∈ [1, k], we have {vi,Ti , vj,Tj } �∈ E(G).
We say that an interaction {(i, a), (j, b)} is locatable if there exists a k-tuple T
with Ti = a and Tj = b that avoids G \ ({vi,a, vj,b}), if {vi,a, vj,b} ∈ E(G), or
avoids G, otherwise. We say that T locates interaction {(i, a), (j, b)} with respect
to G, and that {(i, a), (j, b)} is located by T . A graph is locatable if all pairwise
interactions are locatable.

Definition 2. An error-locating array for G = G(g1,...,gk) is an n × k array, A,
with each column i having symbols from the alphabet [0, gi − 1], and denoted by
ELA(n; G), such that each pairwise interaction {(i, a), (j, b)}, 1 ≤ i < j ≤ k,
0 ≤ a < gi, 0 ≤ b < gj, is located by some row of A. If G is a family of graphs
with each G ∈ G of the form G = G(g1,...,gk), an error-locating array for G,
denoted by ELA(n; G), is simply an ELA(n; G) for all G ∈ G.

It is easy to see that there exists an error-locating array for G if and only if G is
locatable. Also, every ELA(n; G) is a covering array with t = 2. In Figure 2, we
show a graph G and an ELA(9; G); note that each faulty interaction (marked in
bold in the array) appears in a distinct test. The covering array shown in Figure 1
is not an ELA(9, G), since interaction {(3, 1), (4, 2)} is not located by any of its
rows. The definition of ELAs can be easily adapted to locate t-way interactions
or even s-way interactions for all s ≤ t, given t, by using hypergraphs in place
of graphs [14].

Algorithms to Locate Errors Using Covering Arrays 509

3 Existence of ELAs and Logarithmic Growth

Given G, the existence of an ELA(n; G) for some n is equivalent to G being
locatable. We can show that the decision problem of whether G is locatable for
general g is NP-complete, while for g = 2 it is in P [14]. A necessary condition
for G to be locatable is that G does not have two vertices in different factors
such that the union of their neighbourhoods contains all the vertices of another
factor. We look at a sufficient condition.

Definition 3. (Graphs with safe values) A k-partitite graph G = Gg1,...,gk
with

parts V1, . . . Vk of cardinalities g1, . . . , gk, respectively, is said to have safe values
if for every i ∈ [1, k] there exists a vertex vi,si ∈ Vi such that vi,si is not incident
to any edge. The values s1, s2, . . . , sk are said to be safe values of G.

Proposition 4. If G is a k-partite graph with safe values, then G is locatable.

Proof. Take any interaction I = {(i, ai), (j, aj)} and a k-tuple T = (T1, . . . , Tk)
with Ti = ai and Tj = aj, and T� = s�, for � ∈ [1, k] \ {i, j}. We note that T
locates I. ��

Consider a family of k-partite graphs with g vertices per part and d edges.
Assume that we choose the d edges at random among the g2

(
k
2

)
possible edges.

It is possible to show that for constant g and d ∈ o(k), the probability that a
graph has safe values goes to 1 as k, d → ∞ [14].

Next, we give constructions of ELAs based on covering arrays of strength
higher than 2. Theorem 5 generalizes a result by Colbourn and McCleary (The-
orem 4.5 in [8]) about (d, 2)-detecting arrays, by removing the requirement that
d < gi, while adding the weaker requirement that the error graph has safe values.
Theorem 6 removes the hypothesis that the graphs have safe values. The proofs
are omitted due to lack of space [14].

Theorem 5. Fix d and k with d + 2 ≤ k and g1, . . . , gk. Let SG = SGd
(g1,...,gk)

be the class of graphs of the form G(g1,...,gk) with at most d edges and that have
safe values. Then, every MCA(n, d + 2, (g1, . . . , gk)) is an ELA(n; SG).

Theorem 6. Fix k and d, with 2(d+1) ≤ k and g1, . . . , gk. Let LG = LGd
(g1,...,gk)

be the class of locatable graphs of the form G(g1,...,gk) with at most d edges.
Then, any MCA(n; 2(d+1), (g1, . . . , gk)), A, is an ELA(n; LG). Moreover, if G
is not locatable then the outcomes of the tests in A are enough to detect this.

The next theorem implies that the size n of an ELA grows logarithmically in k
for fixed d and g. Moreover, even if d grows as O(log log k), n remains polynomial
in log k.

Theorem 7. (Size of ELAs for bounded gi) Fix g. Let G(k, d) = Gd
k,g be a class

of graphs of the form G(g1,...,gk), with at most d edges, with gi ≤ g, for all
i ∈ [1, k], and satisfying extra conditions specified below. Then,

510 C. Mart́ınez et al.

1. if all graphs in G(k, d) are locatable and 2(d + 1) ≤ k, then there exists an
ELA(n; G(k, d)) for n ∈ O(dg2d log k); and

2. if all graphs in G(k, d) have safe values and d + 2 ≤ k, then there exists an
ELA(n; G(k, d)) for n ∈ O(dgd log k).

Proof. It follows from the application of Theorems 5 and 6, using the construc-
tion in [4], which gives an MCA(n; s, k, g) with n ∈ O(sgs log k), for fixed g. ��

Proposition 4 and Theorems 5-7 can be generalized for t ≥ 2, which will be
included in the complete article version of this extended abstract [14].

4 Algorithm for Locating Graphs with Safe Values

In this section, we give an efficient algorithm for locating errors for graphs that
have safe values: Algorithm ErrorLocateWithSafeValues. Unlike previous
definitions in this paper, the graphs are allowed to have loops, i.e., faulty 1-
way interactions, as long as no faulty 1-way interaction is contained in a faulty
2-way interaction. In this case, Theorem 7 would provide a solution for non-
adaptive testing (which can be shown to work for graphs with loops) that
uses O(dgd log k) tests and requires the knowledge of d. In contrast, Algorithm
ErrorLocateWithSafeValues uses an adaptive testing approach that does
not require the knowledge of d, does require the knowledge of the safe values si,
1 ≤ i ≤ k, and uses a polynomial number of tests in d and log k, more specifically
O(d(log k)2 + d2 log k) tests.

Let G = G(g1,...,gk) be a graph with edge set that corresponds to faulty 1-way
and 2-way interactions, such that no faulty 1-way interaction is contained in
a 2-way interaction. Let s = (s1, . . . , sk) be a k-tuple of safe values for G, and
T = (T1, . . . , Tk) be a k-tuple corresponding to a failing test for G. Let A ⊆ [1, k]
be the inspection set of T , that is, a set of factors f such that vf,Tf

may be an
endpoint of an edge. In general, |A| ≤ k. The algorithms presented here detect
whether T is a passing or failing test by calling procedure Test(T).

First, we give the main steps of Algorithm ErrorLocateWithSafeValues

(k,(s1, . . . , sk), (g1, . . . , gk)), which locates failing interactions given safe values.
It starts by building A, an MCA(n; 2, (g1, . . . , gk)), using the greedy density
method by Bryce and Colbourn [3], which guarantees n ∈ O(log k) when the gi’s
are bounded by a constant. Since A is a mixed covering array of strength 2, it is
guaranteed that each 1-way and 2-way interaction is covered by some of its rows.
For each test T given by a row of A, run procedure Test(T). Finally, for each
failing test T found in the previous step, run procedure LocateErrorsInTest

((s1, . . . , sk), T, A = [1, k]) to identify the failing interactions covered by T . Now,
what is left to describe is procedure LocateErrorsInTest as well as its aux-
iliary procedures given in Algorithm 1 (page 512).

In Algorithm 1, procedure LocateErrorsInTest(s, T , A) is recursive and
works as follows. At each call, we assume T is a failing test with A its inspection
set. If |A| = 1, then the unique factor of A corresponds to an error of order 1,
which is a loop in the error graph. If |A| ≥ 2, we solve the problem recursively by

Algorithms to Locate Errors Using Covering Arrays 511

partitioning A into approximately equal sized sets A′ and A′′. Edges can involve
factors within A′, within A′′ or with one end in A′ and the other one in A′′. The
first type of edge we say to be within partition (A′, A′′) and the second type we
say to be across partition (A′, A′′). We use recursion to locate the edges within
the partition. Now, with knowledge of the edge sets, E′ and E′′, within the
partition, we use procedure AcrossLocate(s, T, A′, A′′, E′, E′′) to determine
the edges across the partition. Procedure AcrossLocate(s, T, A′, A′′, E′, E′′)
partitions A′ and A′′ into parts that do not include within edges. To do this,
we first remove the loops from A′ and A′′ creating B′ and B′′, respectively.
Then, we partition B′ into (A′

1, . . . , A
′′
c′) and B′′ into (A′′

1 , . . . , A′′
c′′), such that

there are no edges within A′
i for 1 ≤ i ≤ c′ or within A′′

j for 1 ≤ j ≤ c′′; in
other words, we c′-colour (c′′-colour) the graph corresponding to A′

i (A′′
j , re-

spectively). This can be done using a greedy colouring algorithm. Now, the only
unknown edges have one endpoint from each of A′

i and A′′
j , for some i, j, with

1 ≤ i ≤ c′, 1 ≤ j ≤ c′′. For each such candidate pair of sets, we apply pro-
cedure AcrossLocateAux to discover the edges between them. The objective
of AcrossLocateAux(s, T, A, B) is to find edges that have exactly one end
in inspection set A and one end in inspection set B. It is assumed that T is a
failing test and (A, B) does not contain within edges nor loops. If both A and
B consist of single factors a and b, respectively, we conclude that the only edge
across (A, B) is {va,Ta , vb,Tb

}. Otherwise, at least one of A and B has more than
one factor. Assume w.l.o.g. that A does. So, we partition A into parts C′ and
C′′, and we reduce the problem to recursively finding edges across (B, C′) and
across (B, C′′); in the next recursive call we partition B, if it has more than one
factor. In this way, A and B are alternatingly partitioned from one iteration to
the next, as long as their size is non-trivial. This alternation is controlled by the
selection of C and D in AcrossLocateAux.

The cost of Algorithm 1 is measured by the number of times a test is performed
via a call to Test(). This analysis follows from the next two lemmas.

Lemma 8. Let (A, B) be a partition without edges within it, and let da

be the total number of edges (with respect to values in test T) across par-
tition (A, B). Then, the number of times Test() is called by procedure
AcrossLocateAux(s, T, A, B) is at most 4da log2 k.

Proof. Let C(e) be the number of times AcrossLocateAux calls Test() with
a test that covers edge e. Consider two consecutive levels of recursion in a call
AcrossLocateAux(A, B), which involves six recursive calls and produces four
possible recursion tree nodes at the second level. Any of these four nodes have
an input size essentially half of |A ∪ B|; so the recursion tree height is at most
2(�log2 k − 1). Additionally, of the six recursion calls mentioned above, only
two can have input sets such that e has an endpoint in each set. So, C(e) ≤
2(�log2 k−1). Let D be the total number of calls to Test(). Now, each Test()

either covers some edge (fails), or it passes and the other call to Test() in the
same recursion-tree node covers some edge (fails). Therefore, D ≤ 2

∑da

i=1 C(ei) ≤
2

∑da

i=1 2(�log2 k − 1) ≤ 4da log2 k. ��

512 C. Mart́ınez et al.

Algorithm 1. Returns the errors “exposed” by test T , given safe tuple s and
inspection set A

procedure LocateErrorsInTest(s, T , A) � Main Procedure of Algorithm 1
if |A| = 1, say A = {a}, then return {{(a, Ta), (a, Ta)}}
else

partition A into (A′, A′′) of approximately equal sizes
� find edges within A′:
Define: T ′ by: T ′

f = Tf , if f ∈ A′, and T ′
f = sf , otherwise.

if Test(T ′) = fail then
E′ ← LocateErrorsInTest(s, T ′, A′)

� find edges within A′′:
Define: T ′′ by: T ′′

f = Tf , if f ∈ A′′, and T ′′
f = sf , otherwise.

if Test(T ′′) = fail then
E′′ ← LocateErrorsInTest(s, T ′′, A′′)

� find edges across (A′, A′′):
E′′′ ← AcrossLocate(s, T, A′, A′′, E′, E′′)
return E′ ∪ E′′ ∪ E′′′

procedure AcrossLocate(s, T , A′, A′′, E′, E′′)
B′ = A′ \ {x ∈ A′ : {x, x} ∈ E′}
partition B′ into c′ colour classes (A′

1, . . . , A
′
c′)

B′′ = A′′ \ {x ∈ A′′ : {x, x} ∈ E′′}
partition B′′ into c′′ colour classes (A′′

1 , . . . , A′′
c′′)

E′′′ ← ∅
for i ← 1 to c′ do

for j ← 1 to c′′ do
Define T ′ by: T ′

f = Tf , if f ∈ A′
i ∪ A′′

j , and T ′
f = sf , otherwise.

if Test(T ′) = fail then
E′′′ ← E′′′ ∪ AcrossLocateAux(s, T ′, A′

i, A
′′
j)

return E′′′

procedure AcrossLocateAux(s, T , A, B)
if |A| = |B| = 1, say A = {a} and B = {b}, then

return {{(a, Ta), (b, Tb)}}
else

if |A| > 1 then C ← A; D ← B � always partition first set, if possible
else C ← B; D ← A

Partition C into (C′, C′′) of approximately equal sizes
� Note that the recursive calls below invert the order of the sets.
E′ ← E′′ ← ∅
Define T ′ by: T ′

f = sf , if f ∈ C′′, and T ′
f = Tf , otherwise.

if Test(T ′) = fail then E′ ← AcrossLocateAux(s, T ′, D, C′)

Define T ′′ by: T ′′
f = sf , if f ∈ C′, and T ′′

f Tf , otherwise.
if Test(T ′′) = fail then E′′ ← AcrossLocateAux(s, T ′′, D, C′′)

return E′ ∪ E′′

Algorithms to Locate Errors Using Covering Arrays 513

Lemma 9. Let (A′, A′′) be a partition with d′ edges within part A′, d′′ edges
within part A′′, and da edges across partition (A′, A′′). Then, the number
of times Test() is called by procedure AcrossLocate(s, T, A′, A′′, E′, E′′) is
O(da log k + d′d′′).

Proof. Procedure AcrossLocate performs c′c′′ calls to Test() in its main
loop. Since the number of colours needed to greedy colour a graph with e edges
is at most e+1, we have c′c′′ ≤ (d′ +1)(d′′ +1). Let di,j

a be the number of edges
across partition (A′

i, A
′′
j). Since

∑c′

i=1

∑c′′

j=1 di,j
a = da and, by Lemma 8, each

call to AcrossLocateAux costs at most 4di,j
a log k calls to Test(), we have in

total at most 4da log k such calls. ��

Theorem 10. Let d̂ be the total number of failing 1-way or 2-way interactions
of values covered by test T . The number of times Test() is called by Algortihm 1
is O(d̂ log k + (d̂)2).

Proof. Associate with each possible subtree τ of the recursion tree of
LocateErrorInTest, the total number of failing interactions that are de-
tected on this subtree, and denote it by d(τ). Given a subtree τ , denote by τ1

and τ2, its left and right subtrees, respectively. We consider a full binary tree of
the maximum height �log k − 1, instead of a possibly smaller tree, by assigning
d(τ) = 0 for a subtree τ that is not generated by the recursion. Note that for
the recursion tree root r, d(r) = d̂, and that, considering the recursive calls at
subtree τ , we have d(τ1) > 0 if and only if (Test(T ′)=fail), and d(τ2) > 0 if
and only if (Test(T ′′)=fail). Moreover, letting da(τ) denote the number of edges
across the partition found by the call to AcrossLocate performed at the root
of subtree τ , we get d(τ) = d(τ1) + d(τ2) + da(τ).

So the number of tests C(�, τ) performed by Algorithm 1 at subtree τ with
|A| = � is given by: C (1, τ) = 0; C (�, τ) = 0, if d(τ) = 0; and

C(�, τ) ≤ C(��/2, τ1)+C(��/2�,τ2)+C(da(τ) log �+d(τ1)d(τ2))+2, if d(τ)> 0 and �>1;

where C is a constant given by Lemma 9. Let Δj be the set of subtrees rooted
at level j of the recursion tree, and denote dj

a =
∑

τ∈Δj
da(τ). Let N denote

the number of internal nodes in the recursion tree. Iterating the equations that
define C, and defining φ such that φ(τ) = 0, if d(τ) = 0, 1, and φ(τ) = φ(τ1) +
φ(τ2) + d(τ1)d(τ2), if d(τ) ≥ 2, we get for the root node r:

C(k, r) ≤ C

⎛

⎝
�log k�−1∑

j=0

dj
a log

k

2j

⎞

⎠ + Cφ(r) + 2N. (1)

We observe that
∑�log k�−1

j=0 dj
a = d̂, since each edge is identified as an across

edge in a distinct recursion tree node. This gives that the expression between
parenthesis in (1) is at most d̂ log k. Now, using d(τ1)+d(τ2) ≤ d(τ), it is easy to
show by induction that φ(τ) ≤ d(τ)2/2, which gives φ(r) ≤ (d̂)2/2. In addition,

514 C. Mart́ınez et al.

type b

type a

G’:

G:

type 2 type 3

(b)(a)

type 1

Fig. 3. Forbidden structures and connected components in locatable graphs with g = 2

at each level of the tree there cannot be more than d̂ nodes, and the tree has
at most �log k + 1 levels, so we get N ≤ d̂�log k. Substituting these bounds in
(1), gives:

C(k, r) ≤ Cd̂ log k+C(d̂)2/2+2d̂�log k ∈ O(d̂ log k+(d̂)2). �

Finally, we analyse Algorithm ErrorLocateWithSafeValues(k, (s1, . . . ,
sk), (g1, . . . , gk)), our main algorithm described at the begining of this section.

Theorem 11. Let d be the total number of failing 1-way and 2-way interactions,
k be the number of factors, and g be a constant such that g ≥ maxk

i=1{gi}. Then,
the number of calls to Test() by Algorithm ErrorLocateWithSafeValues

is in O(d(log k)2 + d2 log k).

Proof. Initially, we do n calls to Test() where n ∈ O(log k) is the number of rows
in the mixed covering array A. Then, for each row of A that gives a failing test
(at most O(log k) of them), we call procedure LocateErrorsInTest. Since, by
Theorem 10, each such call performs at most O(d̂ log k + (d̂)2) calls to Test(),
and d̂ ≤ d, the result follows. ��

5 Algorithm for Locating Graphs with g=2

The following theorem characterizes locatable graphs for the binary case (see
proof in [14]).

Theorem 12. Let G = Gk,2. Then, G is not locatable if and only if it contains
as a subgraph one of the two forbidden structures given by the solid lines in
Figure 3a. The dashed lines in Figure 3a indicate interactions that cannot be
located.

From the previous theorem we can deduce the structure of the connected
components of a locatable graph G. Define an auxiliary graph G′ such that
V (G′) = V (G) and E(G′) = E(G) ∪ {{vi,0, vi,1} : 1 ≤ i ≤ k}. Since G does
not contain any of the forbidden graphs with 2 edges, then G′ is formed by

Algorithms to Locate Errors Using Covering Arrays 515

procedure SearchEndPoint(T , D)
if |D| = 1, say D = {f}, then return {f}
else

V ′ ← V ′′ ← ∅
Partition D into (D′, D′′) of approximately equal sizes
� Flip bit in D′′ to relative safe value:
Define T ′ by: T ′

f = ¬(Tf), if f ∈ D′′, and T ′
f = Tf , otherwise

if Test(T ′) = fail then V ′ ← SearchEndPoint(T ′, D′)

� Flip bit in D′ to relative safe value:
Define T ′′ by: T ′′

f = ¬(Tf), if f ∈ D′, and T ′
f = Tf , otherwise

if Test(T ′′) = fail then V ′′ ← SearchEndPoint(T ′′, D′′)

return V ′ ∪ V ′′

Fig. 4. Auxiliary procedure used in Algorithm DiscoverEdges

connected components that can be of one of the following types, as illustrated
in Figure 3b: 1) a single edge {{vi,a, vi,a}} (type 1); 2) a cycle of the form
(vi,a, vj,b, vj,b, vi,a, vi,a), with i �= j (type 2); 3) a connected component with
each vertex of degree ≥ 1 belonging to a different factor of G′ with the other
vertex for each factor being a degree-one vertex hanging out of it (type 3). Using
the knowledge of this structure, we now give an efficient algorithm for locatable
graphs for g = 2. Algorithm DiscoverEdges is based on partitioning the set of
factors into subsets according to properties of their edges in relation to the ver-
tices associated with a passing test. Then, an investigation of which pair of factor
subsets can have edges between them guides our discovery of each type of edge
in the various steps of the algorithm. We assume w.l.o.g. that the test with all
factors set to value 0 is a passing test, and then define the following sets that par-
tition the set of factors: the set A of factors where 1 is an endpoint of a 1–0 edge,
A = {f ∈ [1, k] : there exists j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)}; the set B
of factors where 1 that is an endpoint of a 1–1 edge and are not in A, B = {f ∈
[1, k]\A : there exists f ′ ∈ [1, k]\A such that {vf,1, vf ′,1} ∈ E(G)}; and all the
remaining factors C = [1, k]\(A∪B). The set A is further partitioned into the sets
AP = {f ∈ A : there exists f ′ ∈ A such that {vf,1, vf ′,0} ∈ E(G)} and AS =
A\AP . The set AP is called the set of endpoints of “parallel edges”, whereas AS is
called the set of “single factors” factors in A. Finally, the set C is partitioned into
three sets C0 = {f ∈ C : there exists f ′ ∈ AS such that {vf,0, vf ′,1} ∈ E(G)},
C1 = {f ∈ C : there exists f ′ ∈ AS such that {vf,1, vf ′,1} ∈ E(G)} and
CI = C \ (C0 ∪ C1).

Note that C1 and C0 must be disjoint, for otherwise, a forbidden configuration
of type a or b (Figure 3a) would be present. By the above definition, the only
types of possible edges are: 1−0 inside AP , 1−1 inside AS , 1−1 inside B, 1−1
between AS and B, 1 − 0 between AS and C0, and 1 − 1 between AS and C1.

Our main algorithm uses the auxiliary procedure SearchEndPoint(T, D),
which is detailed in Figure 4. Here ¬a denotes the complement of the binary
value a. This method starts with a failing test T , and values in D̂ = [1, k]\D are

516 C. Mart́ınez et al.

fixed. We also know that ¬Tf has no edges to D̂, for all f ∈ D. This procedure
finds each f ∈ D such that vf,Tf

is the endpoint of an edge to vf̂ ,Tf̂
for some

f̂ ∈ D̂. The main algorithm is given next.

Algorithm DiscoverEdges:
Step 0. Discover a passing test:
Build A, a CA(n; 2, k, 2) with n ∈ O(log k) rows, and run Test(T) on each row
T of A. If A gives no failing test, return E(G) = ∅. Otherwise, if A contains
a passing test, call it P . Otherwise, run Test(P) on random tests P until a
passing test P is found. Relabel the values of A in such a way that the passing
test P becomes [0, 0, . . . , 0].
Step 1. Discover the set A:
This is done via binary searching for the 1-ends of 1−0 edges, using as a starting
point each failing test T given by a row of the covering array A, and then calling
SearchEndPoint(T, F1(T)), where F1(T) is the set of factors with value 1
in T .
Step 2. Discover EP (parallel edges), and so AP and AS :
We build EP by testing possible end points in A, two by two. For each i, j ∈ A,
consider the test T with values set to 0 except Ti = Tj = 1. It is easy to see that
Test(T) = pass if and only if {vi,1, vj,0}, {vi,0, vj,1} ∈ EP , so if Test(T) = pass,
then add i and j to AP .
Step 3. Discover B:
Let T be a test that fixes factors in A to zero, and initially have factors in
[1, k] \ A set to 1. This reduces the problem to edges internal to levels in B for
which 0s are safe values. Thus, we discover the edges internal to B (and thus B
itself) by running LocateErrorsInTest(s = (0, 0, . . . , 0), T, [1 : k] \ A).
Step 4. Determine the set E of edges with exactly one endpoint in AS (the
other endpoint corresponds to a factor that is in B or either in C1 or C0):

E ← ∅; C ← [1, k] \ (A ∪ B)
for all f ∈ AS do

Fix Tf = 1 and Ti = 0 for all i ∈ (A \ {f}) ∪ B
repeat

Randomly pick the values of Tj for j ∈ C
until Test(T) = pass
for all b ∈ B do

T ′ ← T ; T ′
b ← 1

if Test(T ′) = fail then E ← E ∪ {{vf,1, vb,1}}
� Binary search for mates of f in C using values in T as safe values for C
Set T ′′ with T ′′

i = Ti for i ∈ A ∪ B, and T ′′
i = ¬Ti for i ∈ C

L ← SearchEndPoint(T ′′, C)
E ← E ∪ {{vf,1, vc,T ′′

c
} : c ∈ L}

Step 5. Find the set E′ of all edges with both ends in AS :
For each i, j ∈ AS , define test T with all factors set to 0, except Ti = Tj = 1
and Tc = 1 for all c ∈ C0. If Test(T) = fail, then add {vi,1, vj,1} to E′.

Algorithms to Locate Errors Using Covering Arrays 517

Theorem 13. If G = G(2k) is locatable then algorithm DiscoverEdges is
correct. In addition, letting C(d, k) be the expected number of tests performed by
algorithm DiscoverEdges and δmax denote the maximum degree of a vertex
in G, we have C(d, k) ∈ O(d2 + d log k + d2δmax + 22d). Moreover, we get that
C(d, k) is polynomial on both d and log k, under extra assumptions:
1. If a passing test is found in the covering array A in Step 0, and δmax ≤

c log log k, for some c, then C(d, k) ∈ O(d2 + d log k + d(log k)c).
2. If d ≤ c′ log log k, for some c′, then C(d, k) ∈ O(d log k + (log k)2c′

).

Proof. The correctness of the algorithm is based on the definitions of sets AP ,
AS , B, C0, C1, and CI and the possible edges that can be found between
factors in these sets (see page 515); the proof of correctness is omitted here
(see [14]). Now we justify the running time of the algorithm. The running time
of SearchEndPoint is in O(d log |D|), since at each level of its recursion tree
the sum of the tests performed does not exceed d, and that the number of tree
levels does not exceed �log |D|. Now, we analyse steps 0-5.
Step 0: First, we call Test() once per row of covering array A, i.e., O(log k)
times. Let x be the number of factors involved in some edge, that is, the number
of factors that index vertices that are endpoints of some edge. Then, since the
graph is locatable, at least one of the 2x ≤ 22d combinations of possible values for
these factors determines a passing test, yielding the probability that a passing
test is selected to be at least 1/22d; therefore the expected number of random
trials until a passing test is found is in O(22d). Thus, the expected number of
calls to Test() for this step is O(log k + 22d).
Step 1: There are O(log k) tests given by the covering array A which might
fail, and for each of them, SearchEndPoint is run with |D| ≤ k, each con-
tributing to O(d log k) tests. Thus, the number of calls to Test() in this step is
O(d(log k)2).
Step 2: The number of tests for this step is |A|2 ≤ d2.
Step 3: This step is an application of LocateErrorsInTest while restricting
the problem to levels in set B, for which 0’s are safe values. By Theorem 10,
the number of tests performed is O(d2

B + dB log |B|), where dB is the number of
edges with both ends in B. Since dB ≤ d and |B| ≤ k, we get O(d2 + d log k).
Step 4: Let f ∈ AS as selected in the main loop. Once we fix the test to value 0
for all factors in A∪B, except for f that has value 1, by definition of C, the only
edges that can occur in any completion of this test involves factor f set to 1 and
at most one of the values (either 0 or 1) for each factor c in C. This means that the
probability of not hitting an edge for each attempt at completing C is 1/2δ(vf,1),
which gives an expected number of 2δ(vf,1) tests until a passing test is found.
Moreover, the number of edges that can be found within SearchEndPoint is
δ(vf,1), and so yields O(δ(vf,1) log k). As we sum over all iterations, we get a
total of O((

∑
f∈AS 2δ(vf,1)) + log k

∑
f∈AS δ(vf,1)) ⊆ O(d2δmax + d log k).

Step 5: The number of tests for this step is |AS |2 ≤ d2.
Therefore, if the covering array A in step 0 yields a passing test, we get

C(k, d) ∈ O(d2 + d log k + d2δmax), while if we need to find a passing test, then
C(k, d) ∈ O(d2 +d log k+d2δmax +22d). The theorem follows easily from this. ��

518 C. Mart́ınez et al.

6 Conclusion and Further Work

In this paper, we generalize recent work on locating faulty interactions in system
testing. We provide new results for non-adaptive testing (Section 3) and the first
algorithms for adaptive testing (Sections 4 and 5). The definitions and results in
Sections 2 and 3 can be generalized for locating t-way interactions with t ≥ 2,
as well as for locating s-way interactions with 1 ≤ s ≤ t, for some t ≥ 2 (see
full version of this paper [14]). Important open problems include generalizing
the algorithm in Section 4 for t > 2, and generalizing the algorithm in Section 5
for g > 2.

References

1. Aigner, M., Triesch, E.: Searching for an edge in a graph. J. Graph Theory 12,
45–57 (1988)

2. Azar, Y., Motwani, R., Naor, J.: Approximating probability distributions using
small sample spaces. Combinatorica 18, 151–171 (1998)

3. Bryce, R.C., Colbourn, C.J.: A density algorithm for pairwise interaction testing.
Softw. Test. Verif. Reliab. 17, 159–182 (2007)

4. R.C. Bryce and C.J. Colbourn, A density-based greedy algorithm for higher
strength covering arrays, 17 pages, (preprint, July 2007)

5. Burr, K., Young, W.: Combinatorial test techniques: Table-based automation, test
generation, and code coverage. In: Proc. Intl. Conf. on Soft. Test. Anal. and Rev.,
October 1998, pp. 503–513. ACM, New York (1998)

6. J.N. Cawse, Experimental design for combinatorial and high throughput materials
development, GE Global Research Technical Report 29, 769–781 (2002)

7. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Cata-
nia) 58, 121–167 (2004)

8. Colbourn, C.J., McClary, D.W.: Locating and detecting arrays for interaction
faults. Journal of Combinatorial Optimization (accepted, April 2007) (to appear)

9. Dalal, S.R., Karunanithi, A.J.N., Leaton, J.M.L., Patton, G.C.P., Horowitz, B.M.:
In: Model-based testing in practice, In Proc. Intl. Conf. on Software Engineering
(ICSE 1999), pp. 285–294 (1999)

10. Danziger, P., Mendelsohn, E., Moura, L., Stevens, B.: Covering arrays without
forbidden pairs, p. 10 (preparation, 2007)

11. Dunietz, S., Ehrlich, W.K., Szablak, B.D., Mallows, C.L., Iannino, A.: Applying
design of experiments to software testing. In: Proc. Intl. Conf. on Software Engi-
neering (ICSE 1997), October 1997, pp. 205–215. IEEE, Los Alamitos (1997)

12. Kuhn, D.R., Reilly, M.: An investigation of the applicability of design of experi-
ments to software testing. In: Proc. 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, October 2002, pp. 91–95. IEEE, Los Alamitos (2002)

13. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Soft. Eng. 30, 418–421 (2004)

14. Mart́ınez, C., Moura, L., Panario, D., Stevens, B.: Locating errors using ELAs,
covering arrays and adaptive testing algorithms, p. 35 (in preparation, 2007) (full
article version of this extended abstract)

15. Mandl, R.: Orthogonal latin squares: An application of experiment design to com-
piler testing. Communic. of the ACM 28, 1054–1058 (1985)

Algorithms to Locate Errors Using Covering Arrays 519

16. Meagher, K., Stevens, B.: Covering arrays on graphs. J. Combin. Theory. Ser. B 95,
134–151 (2005)

17. Moura, L., Stardom, J., Stevens, B., Williams, A.W.: Covering arrays with mixed
alphabet sizes. J. Combin. Des. 11, 413–432 (2003)

18. Shasha, D.E., Kouranov, A.Y., Lejay, L.V., Chou, M.F., Coruzzi, G.M.: Using com-
binatorial design to study regulation by multiple input signals: A tool for parsimony
in the pos-genomics era. Plant Physiology 127, 1590–2594 (2001)

19. Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits.
IEEE Transactions on Information Theory 34, 513–522 (1988)

20. Tang, D.T., Chen, C.L.: Iterative exhaustive pattern generation for logic testing.
IBM Journal Research and Development 28, 212–219 (1984)

21. Torney, D.C.: Sets pooling designs. Ann. Comb. 3, 95–101 (1999)
22. Williams, A.W., Probert, R.L.: A measure for component interaction test coverage.

In: Proc. ACS/IEEE Intl. Conf. Comput. Syst. & Applic., pp. 301–311 (2001)

On Injective Colourings of Chordal Graphs

Pavol Hell1,�, André Raspaud2, and Juraj Stacho1

1 School of Computing Science, Simon Fraser University
8888 University Drive, Burnaby, B.C., Canada V5A 1S6

{pavol,jstacho}@cs.sfu.ca
2 LaBRI, Université Bordeaux I

351 Cours de la Libération, F33405 Talence Cedex, France
raspaud@labri.fr

Abstract. We show that one can compute the injective chromatic num-
ber of a chordal graph G at least as efficiently as one can compute the
chromatic number of (G−B)2, where B are the bridges of G. In particu-
lar, it follows that for strongly chordal graphs and so-called power chordal
graphs the injective chromatic number can be determined in polynomial
time. Moreover, for chordal graphs in general, we show that the decision
problem with a fixed number of colours is solvable in polynomial time. On
the other hand, we show that computing the injective chromatic number
of a chordal graph is NP -hard; and unless NP = ZPP , it is hard to
approximate within a factor of n1/3−ε, for any ε > 0. For split graphs,
this is best possible, since we show that the injective chromatic number
of a split graph is 3

√
n-approximable. (In the process, we correct a result

of Agnarsson et al. on inapproximability of the chromatic number of the
square of a split graph.)

1 Introduction

In this paper, a graph is always assumed to be undirected, loopless and simple.
An injective colouring of a graph G is a colouring c of the vertices of G that
assigns different colours to any pair of vertices that have a common neighbour.
(That is, for any vertex v, if we restrict c to the (open) neighbourhood of v, this
mapping will be injective; whence the name.) Note that injective colouring is
not necessarily a proper colouring, i.e., it is possible for two adjacent vertices to
receive the same colour. The injective chromatic number of G, denoted χi(G),
is the smallest integer k such that G can be injectively coloured with k colours.

Injective colourings are closely related to (but not identical with) the notions
of locally injective colourings [9] and L(h, k)-labellings [2,3,11]. In particular,
L(0, 1)-labellings unlike injective colourings assign distinct colours only to non-
adjacent vertices with a common neighbour.

Injective colourings were introduced by Hahn, Kratochv́ıl, Širáň and Sotteau
in [12]. They attribute the origin of the concept to complexity theory on Ran-
dom Access Machines. They prove several interesting bounds on χi(G), and also

� Supported by a Discovery Grant from NSERC.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 520–530, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Injective Colourings of Chordal Graphs 521

show that, for k ≥ 3, it is NP -complete to decide whether the injective chro-
matic number of a graph is at most k. Here we look at the complexity of this
problem when the input graphs G are restricted to be chordal. A graph is chordal
if it does not contain any induced cycle of length four or more [10]. Several diffi-
cult combinatorial problems that are NP -complete in general (including graph
colouring [10], and many variants [5,7,13]) admit a polynomial time solution in
chordal graphs.

In Section 4, we show that determining χi(G) is still difficult when restricted
to chordal graphs. In fact, it is not only NP -hard, but unless NP = ZPP , the
injective chromatic number of a chordal graph cannot be efficiently approximated
within a factor of n1/3−ε, for any ε > 0. (Here ZPP is the class of languages
decidable by a randomized algorithm that makes no errors and whose expected
running time is polynomial.) For split graphs, this is best possible since we show
an 3

√
n-approximation algorithm for the injective chromatic number of a split

graph.
On the positive side, we show in Section 5 that for any fixed number k, one

can in linear time determine whether a chordal graph can be injectively coloured
using no more than k colours. Moreover, we describe large subclasses of chordal
graphs that allow computing the injective chromatic number efficiently. We show
that for a chordal graph G, one can efficiently compute the injective chromatic
number of G from the chromatic number of the square of G − B(G), that is,
the graph G with its bridges B(G) removed. It follows that for strongly chordal
graphs and power chordal graphs (the graphs whose powers are all chordal) the
problem is polynomial time solvable.

2 Preliminaries

We follow the terminology of [4,20]. For a subset S of the vertices (edges) of G,
we denote G[S] the subgraph of G induced on the vertices (edges) of S, and G−S
the subgraph of G that is obtained by removing from G the vertices (edges) of
S. In the case that S consists only of a single element x, we write G − x instead
of G − {x}.

For a connected graph G, a vertex u is a cutpoint of G if the graph G − u is
disconnected. An edge e = uv is a bridge of G if the graph G−e is disconnected.
A subset S of vertices of G is a separator of G if G−S is disconnected. As usual,
a clique of G is a complete subgraph of G, and an independent set of G is a
subgraph of G having no edges. For any graph G, we denote by χ(G) and α(G),
the chromatic number of G, and the size of a maximum independent set in G,
respectively. We denote by Gk the k-th power of G, i.e., the graph obtained from
G by making adjacent any two vertices in distance at most k in G. We denote by
n, respectively m, the number of vertices, respectively edges of G. For a vertex u
in G, we denote by N(u) the set of vertices of G adjacent to u (the neighbourhood
of u); and for a subset S of vertices of G, we denote by N(S) the set of vertices
of G − S adjacent to at least one vertex of S. We let deg(u) = |N(u)| be the
degree of u, and let Δ(G) be the maximum degree among the vertices of G.

522 P. Hell, A. Raspaud, and J. Stacho

A split graph is a graph which can be partitioned into a clique and an inde-
pendent set with no other restriction on the edges between the two. Any split
graph is also chordal. A tree-decomposition (T, X) of a connected graph G is a
pair (T, X) where T is a tree and X is a mapping from V (T) to the subsets
of V (G), such that (i) for any edge ab ∈ E(G), there exists u ∈ V (T) with
a, b ∈ X(u), and (ii) for any vertex a ∈ V (G), the vertices u ∈ V (T) with
a ∈ X(u) induce a connected subgraph in T . A clique-tree of a chordal graph G
is a tree-decomposition (T, X) of G where {X(u) | u ∈ V (T)} is precisely the
set of all maximal cliques of G.

3 Basic Properties

We have the following simple observation.

Observation 1. For any graph G, χi(G) ≥ Δ(G) and χ(G2) ≥ Δ(G) + 1.

For trees this is also an upper bound.

Proposition 2. For any tree T , χi(T) = Δ(T) and χ(T 2) = Δ(T) + 1.

Proof. Let u be a leaf in T and v the parent of u. Then clearly, χ(T 2) =
max

{
deg(v)+1, χ

(
(T −u)2

)}
and χi(T) = max{deg(v), χi(T −u))}. The claim

follows by induction on |V (T)|. �

Now we look at the general case. Let G(2) be the common neighbour graph
of a graph G, that is, the graph on the vertices of G in which two vertices are
adjacent if they have a common neighbour in G. It is easy to see that the injective
chromatic number of G is exactly the chromatic number of G(2). In general, as
we shall see later, properties of the graph G(2) can be very different from those
of G. For instance, even if G is efficiently colourable, e.g. if G is perfect, it may
be difficult to colour G(2). Note that any edge of G(2) must be also an edge of
G2 (but not conversely). This yields the following inequality.

Proposition 3. For any graph G, we have χi(G) ≤ χ(G2).

In fact, this inequality can be strengthened. Let F(G) be the set of edges of G
that do not lie in any triangle. Note that an edge of G is also an edge of G(2) if
and only if it belongs to a triangle of G. This proves the following proposition.

Proposition 4. For any graph G, we have χi(G) = χ(G2 − F(G)).

Now we turn to chordal graphs. The following is easy to check.

Observation 5. Any edge in a bridgeless chordal graph lies in a triangle.

Let B(G) be the set of bridges of G. Since a bridge of a graph can never be in a
triangle, we have the following fact.

Proposition 6. For any chordal G, we have χi(G) = χ(G2 − B(G)).

On Injective Colourings of Chordal Graphs 523

Now since B(G − B(G)) = ∅, we have the following corollary.

Corollary 7. For any chordal G, χi(G − B(G)) = χ
(
(G − B(G))2

)
.

It turns out that there is a close connection between χi(G − B(G)) and both
χi(G) and χ(G2).

Proposition 8. For any G, χ(G2) = max
{
Δ(G) + 1, χ

(
(G − B(G))2

)}

Proof. Let k = max
{
Δ(G)+1, χ

(
(G−B(G))2

)}
. It follows from Observation 1

and Corollary 7 that χ(G2) ≥ k. Now fix a set of k colours (k ≥ χ
(
(G−B(G))2

)
),

and consider a colouring of (G − B(G))2 using these k colours. We now add the
bridges of G one by one, modifying the colouring accordingly. Let uv be a bridge
of G and let X and Y be the connected components which become connected
by the addition of uv. Suppose that u ∈ X and v ∈ Y . We can permute the
colours of X and Y independently so that u and v obtain the same colour i.
Since we have k ≥ Δ(G) + 1 colours, there must be a colour j �= i not used in
the neighbourhood of v in Y . By the same argument for u, we may assume that
j is not used in the neighbourhood of u in X . Finally, we exchange in X the
colours i and j. It is easy to see that after adding all bridges of G one by one,
we obtain a proper colouring of G2. �

A similar argument proves the next proposition.

Proposition 9. For any split graph G, χi(G) = max{Δ(G), χi(G − B(G))}

Finally, combining Corollary 7, and Propositions 8 and 3, we obtain the following
tight lower bound on the injective chromatic number of a chordal graph.

Proposition 10. For any chordal graph G, we have

χ(G2) − 1 ≤ max{Δ(G), χi(G − B(G))} ≤ χi(G) ≤ χ(G2)

4 Hardness and Approximation Results

In this section, we focus on hardness results for the injective chromatic number
problem. We begin by observing that it is NP -hard to compute the injective
chromatic number of a split graph. This also follows from a similar proof in [12];
we include our construction here, since we shall extend it to prove an accompa-
nying inapproximability result in Theorem 13.

Theorem 11. It is NP -complete for a given split (and hence chordal) graph G
and an integer k, to decide whether the injective chromatic number of G is at
most k.

Proof. First, we observe that the problem is clearly in NP . We show it is also
NP -hard. Consider an instance of the graph colouring problem, namely a graph
G and an integer l. We may assume that G is connected and contains no bridges.
Let HG be the graph constructed from G by first subdividing each edge of G and

524 P. Hell, A. Raspaud, and J. Stacho

then connecting all the new vertices. That is, V (HG) = V (G)∪{xuv | uv ∈ E(G)}
and E(HG) = {uxuv, vxuv | uv ∈ E(G)} ∪ {xstxuv | uv, st ∈ E(G)}. The graph
HG can clearly be constructed in polynomial time. It is not difficult to see that
HG is a split graph, hence it is also chordal. Moreover, one can check that the
subgraph of H2

G induced on the vertices of G is precisely the graph G. Since
G is bridgeless, HG is also bridgeless, hence using Proposition 6 we have the
following.

χi(HG) = χ(H2
G) = χ(G) + m

Therefore χi(HG) is at most k = l + m if and only if χ(G) is at most l. That
concludes the proof. �

By Proposition 10, for any chordal graph G, the injective chromatic number of G
is either χ(G2) or χ(G2) − 1. Interestingly, merely distinguishing between these
two cases is already NP -complete.

Theorem 12. It is NP -complete to decide, for a given split (and hence chordal)
graph G, whether χi(G) = χ(G2) − 1. �

Now we extend the proof of Theorem 11 to show that under a certain complexity
assumption, it is not tractable to approximate the injective chromatic number
of a split (chordal) graph within a factor of n1/3−ε for all ε > 0.

Theorem 13. Unless NP = ZPP , for any ε > 0, it is not possible to efficiently
approximate χ(G2) and χi(G) within a factor of n1/3−ε, for any split (and hence
chordal) graph G.

Proof. In [8], it was shown that for any fixed ε > 0, unless NP = ZPP ,
the problem of deciding whether χ(G) ≤ nε or α(G) < nε for a given graph
G is not solvable in polynomial time. Consider an instance of this problem,
namely a graph G. Again, as in the proof of Theorem 11, we may assume that
G is connected and bridgeless. Let Hk,G be the split graph constructed from k
copies of HG (the graph used in the proof Theorem 11) by identifying, for each
uv ∈ E(G), all copies of xuv. That is, if v1, v2, . . . , vn are the vertices of G, we
have in Hk,G vertices V (Hk,G) =

⋃k
i=1{vi

1, v
i
2, . . . , v

i
n} ∪ {xuv | uv ∈ E(G)}, and

edges E(Hk,G) =
⋃k

i=1{uixuv, vixuv | uv ∈ E(G)} ∪ {xuvxst | uv, st ∈ E(G)}.
Now since G is bridgeless, Hk,G is also bridgeless. Consider an independent

set I of H2
k,G. It is not difficult to check that either I trivially contains only a

single vertex xuv, or for each pair of vertices ui, vj ∈ I, the vertices u and v
are not adjacent in G. Hence it follows that from any colouring of H2

k,G one can
construct a fractional k-fold colouring of G (i.e., a collection of independent sets
covering each vertex of G at least k times) by projecting each non-trivial colour
class of H2

k,G to G, i.e., mapping each ui to u. Using this observation we obtain
the following inequalities.

k · n
α(G)

+ m ≤ k · χf (G) + m ≤ χ(H2
k,G) = χi(Hk,G) ≤ k · χ(G) + m

On Injective Colourings of Chordal Graphs 525

Therefore if χ(G) ≤ nε then χ(H2
k,G) ≤ k · nε + m, and if α(G) < nε then

χ(H2
k,G) > k · n1−ε + m. Now we fix k = m, and denote by N the number of

vertices in Hm,G. For n ≥ 21/ε we obtain the following.

m · n1−ε + m

m · nε + m
≥ 1

2
n1−2ε ≥ n1−3ε ≥ (m · n + m)

1
3 (1−3ε) = N

1
3−ε

Hence if we can efficiently (N
1
3−ε)-approximate the colouring of H2

m,G then
we can decide whether χ(G) ≤ nε or α(G) < nε. That concludes the proof. �

Note that a seemingly stronger result appeared in [1]. Namely, the authors
claim that the chromatic number of the square of a split graph is not (n1/2−ε)-
approximable for all ε > 0. However this result is not correct. In fact, we show
below that there exists a polynomial time algorithm 3

√
n-approximating the chro-

matic number of the square of a split graph G, and also 3
√

n-approximating the
injective chromatic number of G. Note that this is also a strengthening of best
known

√
n-approximation algorithm for the chromatic number of the square in

general graphs (cf. [1]). We need the following lemma.

Lemma 14. For chordal graphs, the injective chromatic number is α-approxi-
mable if and only if the chromatic number of the square is α-approximable. �

Theorem 15. There exists a polynomial time algorithm that given a split graph
G approximates χ(G2) and χi(G) within a factor of 3

√
n.

Proof. Let G be a connected split graph with a clique X and an independent
set Y . Denote by H the subgraph of G2 induced on Y . Let p = |X |, N = |V (H)|,
and M = |E(H)|. Clearly, χ(G2) = p + χ(H). Consider an optimal colouring
of H with colour classes V1, V2, . . . , Vχ(H). Let Eij be the edges of H between
Vi and Vj . Clearly, for each edge uv ∈ Eij there must exist a vertex xuv in X
adjacent to both u and v. Moreover, for any two edges uv, st ∈ Eij we have
xuv �= xst, since otherwise we obtain a triangle in H [Vi ∪ Vj] which is bipartite.
Hence p ≥ |Eij | and considering all pairs of colours in H we conclude that
p ≥ M/

(
χ(H)

2

)
≥ 2M/χ2(H).

A simple edge count shows that any graph with t edges can be coloured with
no more than 1/2+

√
2t + 1/4 colours. Such a colouring can be found by a simple

greedy algorithm [4]. We can apply this algorithm to H , and use additional p
colours to colour the vertices of X . This way we obtain a colouring c of G2 using
at most p+1+

√
2M colours. Using the lower bound from the previous paragraph

one can prove the following inequalities (assuming M ≥ 6 or p ≥ 17).

p + 1 +
√

2M

χ(G2)
≤ p + 1 +

√
2M

p +
√

2M
p

≤ (2M)1/6 ≤ N1/3 ≤ n1/3

Hence, the colouring c is an 3
√

n-approximation of χ(G2), and by Lemma 14
we can obtain a 3

√
n-approximation of χi(G). �

526 P. Hell, A. Raspaud, and J. Stacho

5 Exact Algorithmic Results

Now we focus on algorithms for injective colouring of chordal graphs. Although,
computing the injective chromatic number of a chordal graph is hard, the asso-
ciated decision problem with a fixed number of colours has a polynomial time
solution, i.e., the problem is fixed parameter tractable. We need the following
lemma.

Lemma 16. For any chordal G, the treewidth of G2 is at most 1
4Δ(G)2 +

Δ(G). �

Theorem 17. Given a chordal graph G and a fixed integer k, one can decide
in time O

(
n · k · k(k/2+1)2

)
whether χi(G) ≤ k and also whether χ(G2) ≤ k.

Proof. It is easy to see that if χi(G) ≤ k or if χ(G2) ≤ k, then Δ(G) must be
at most k. Thus if Δ(G) > k, we can reject G immediately. Using Lemma 16, we
can construct in time O(nk2) a tree decomposition (T, X) of G2 whose width is
at most k2/4+k. Now, using standard dynamic programming techniques on the
tree T (cf. [4,7]), we can decide in time O(n · k · k(k/2+1)2) whether χ(G2) ≤ k
and whether χi(G) ≤ k. �

Now we show that for certain subclasses of chordal graphs, the injective chro-
matic number can be computed in polynomial time (in contrast to Theorem 11).
First, we summarise the results; the details are presented in subsequent sections.

We call a graph G a power chordal graph if all powers of G are chordal. Recall
that in Propositions 8 and 9, we showed how, from the chromatic number of
the square of the graph G − B(G), one can compute χ(G2) for any graph G,
respectively χi(G) for a split graph G. The following theorem describes a similar
property for the injective chromatic number in chordal graphs. The proof will
follow from Corollary 25 and Theorem 28 which we prove in sections 5.2 and 5.4
respectively.

Theorem 18. There exists an O(n + m) time algorithm that computes χi(G)
given a chordal graph G and χi(G − B(G)). Using this algorithm one can also
construct an optimal injective colouring of G from an optimal injective colouring
of G − B(G) in time O(n + m).

A class C of graphs is called induced-hereditary, if C is closed under taking induced
subgraphs. For an induced-hereditary subclasses of chordal graphs we have the
following property.

Proposition 19. Let C be an induced-hereditary subclass of chordal graphs.
Then the following statements are equivalent.

(i) One can efficiently compute χ(G2) for any G ∈ C.
(ii) One can efficiently compute χi(G − B(G)) for any G ∈ C.
(iii) One can efficiently compute χi(G) for any G ∈ C.

On Injective Colourings of Chordal Graphs 527

This follows from Theorem 18, Proposition 8, and the fact that each connected
component of G − B(G) must be in C. In some cases, e.g., in the class of power
chordal graph, this is true even if C is not induced-hereditary. The following corol-
lary will follow from Theorem 18 and Corollary 27 which we prove in section 5.3.

Corollary 20. The injective chromatic number of a power chordal graph can be
computed in polynomial time.

Thus the injective chromatic number of a strongly chordal graph can also be
computed in polynomial time.

Finally, observe that due to Theorem 12 one cannot expect the property from
Proposition 19 to hold for any subclass of chordal graphs.

5.1 Injective Structure

In order to prove Theorem 18, we investigate the structural properties of graphs
G that allow efficient computation of χi(G). In this section, G refers to an
arbitrary connected graph (not necessarily chordal).

A clique separator of G is a separator of G which induces a clique in G. A
tree decomposition (T, X) of G is a decomposition by clique separators, if for any
uv ∈ E(T), the set X(u) ∩ X(v) induces a clique in G. This type of decompo-
sition of graphs was introduced and studied by Tarjan [19]. The decomposition
turns out to be particularly useful for the graph colouring problem; namely, one
can efficiently construct an optimal colouring of G from optimal colourings of
G[X(u)] for all u ∈ V (T). We define and study a similar concept for the injective
colouring problem. Recall that G(2) denotes the common neighbour graph of G
defined in section 3.

We say that a subset S of vertices of G is injectively closed, if for any two
vertices x, y ∈ S having a common neighbour in G, there exists a common
neighbour of x and y that belongs to S. A subset S of vertices of G is called an
injective clique, if S induces a clique in G(2). Note that an injective clique is not
necessarily injectively closed in G. A subset of vertices S of G is called an injective
separator of G, if S is injectively closed in G, S is a separator of G(2), and G(2)

is connected. Note that G(2) can be disconnected even if G is connected, e.g., if
G is bipartite. An injective decomposition of G is a tree decomposition (T, X) of
G such that for any uv ∈ E(T), the set X(u) ∩ X(v) is an injective separator
of G. An injective separator S is an injective clique separator, if S is also an
injective clique. An injective clique decomposition is an injective decomposition
(T, X) such that for any uv ∈ E(T), the set X(u) ∩ X(v) is an injective clique.
Note that any injective clique decomposition of G is a decomposition of G(2) and
G2 by clique separators.

We have the following properties.

Lemma 21. Let (T, X) be an injective decomposition of a graph G. Then for
each u ∈ V (T), the set X(u) is injectively closed. �

Theorem 22. Let (T, X) be an injective clique decomposition of a graph G.
Then

528 P. Hell, A. Raspaud, and J. Stacho

χi(G) = χ(G(2)) = max
u∈V (T)

χ
(
G(2)

[
X(u)

])
= max

u∈V (T)
χi

(
G

[
X(u)

])
.

Proof. The first equality is by definition. We obtain the second equality from
the fact that (T, X) is a decomposition of G(2) by clique separators. The last
equality follows easily, since by Lemma 21, we have G(2)[X(u)] = G[X(u)](2),
and by definition χ

(
G[X(u)](2)

)
= χi

(
G[X(u)]

)
. �

5.2 Computing χi(G) in Chordal Graphs

In this section, we focus on injective clique decompositions of chordal graphs.
The following is easy to check.

Observation 23. Let H be a bridgeless graph having a dominating vertex. Then
H is an injective clique. �

We say that a graph G is decomposable, if G contains an an injective clique
separator S; we say that S decomposes G. A graph G is indecomposable, if it is
not decomposable. A graph G is called perfectly tree-dominated, if G contains an
induced tree T , such that any vertex and any connected component of G−V (T)
has exactly one neighbour in T . For such T , we say that T perfectly dominates
G, or that G is perfectly dominated by T .

The following statement relates indecomposable chordal graphs and perfectly
tree-dominated graphs.

Proposition 24. Any perfectly tree-dominated graph is indecomposable. Any
indecomposable chordal graph is either perfectly tree-dominated or bridgeless. �

The property above has an important corollary.

Corollary 25. For any chordal graph G, there exists an injective clique decom-
position (T, X) of G, such that for any u ∈ V (T), the set X(u) induces either a
bridgeless graph or a perfectly tree-dominated graph. This decomposition can be
constructed in time O(n + m).

Proof. First, we find the bridges B(G) of G. Then, we construct a tree decom-
position (T, X) of G such that for u ∈ V (T), the set X(u) is either a connected
component of G − B(G), or a connected component T of G[B(G)] augmented
with the neighbours of T in G. It follows from the proof of Proposition 24 that
(T, X) is a injective clique decomposition. �

5.3 Bridgeless Chordal Graphs

In this section, we describe some classes of chordal graphs G that allow efficiently
computing χ(G2).

We focus on chordal graphs whose square is also a chordal graph. Clearly, for
any such graph G, one can efficiently colour the square of G. Chordal graphs
whose powers are also chordal were already studied in the past. In particular,

On Injective Colourings of Chordal Graphs 529

it was shown by Duchet [16] that for any k, if Gk is chordal, then also Gk+2 is
chordal. Therefore, if a chordal graph G has a chordal square, then any power
of G must be chordal, that is, G is power chordal. Interestingly, many known
subclasses of chordal graphs, e.g. trees, interval graphs, and strongly chordal
graphs, were shown to be power chordal [1]. Moreover, Laskar and Shier [16]
found the following subgraph characterisation of power chordal graphs. A k-sun
is a graph formed by a cycle v0, v1, . . . , vk−1 with edges vivi+1 (and possibly other
edges), and an independent set w0, w1, . . . wk−1, where wi is adjacent only to vi

and vi+1 (all indices are taken modulo k). A k-sun of a graph G is suspended in
G, if there exists a vertex z in G adjacent to wi and wj where j �= i and j �= i±1
modulo k.

Theorem 26. [16] A graph G is power chordal if and only if any k-sun of G,
k ≥ 4, is suspended.

Based on this characterisation, it is easy to check the following.

Corollary 27. If G is power chordal, the graph G−B(G) is also power chordal. �
Note that by Theorem 26, strongly chordal graphs are trivially power chordal,
since no strongly chordal graph can contain an induced k-sun, k ≥ 3 [6]. Also
notice, that the class of power chordal graphs is not induced-hereditary (closed
under taking induced subgraphs), since a graph that contains a k-sun can be
power chordal, but the k-sun itself (taken as an induced subgraph) is not.

5.4 Perfectly Tree-Dominated Graphs

In this section, we show how to efficiently compute the injective chromatic num-
ber of a perfectly tree-dominated graph.

Let G be a perfectly tree-dominated graph. If G is a tree, then by Proposition
2, we have χi(G) = Δ(G), and a greedy injective colouring of G will be optimal.
Otherwise, let T be a minimal tree perfectly dominating G. We define a tree
decomposition (TG, X) of G as follows. We set TG = T , and for u ∈ V (T), we
set X(u) = N(u) ∪ {u}. Clearly, X(u) ∩ X(v) = {u, v} is injectively closed,
and the set X(u) ∩ X(v) is a separator of G(2). Hence (T, X) is an injective
decomposition of G. Note that for any u ∈ V (T), the graph G[X(u)] admits
only deg(u) different injective colourings, up to renaming colours. It follows,
that using dynamic programming on the rooted tree T , one can determine χi(G)
and an optimal injective colouring of G, by computing, for each u ∈ V (T) and
each colouring of G[X(u)], the minimum number of colours needed to injectively
colour the subgraph of G induced on the union of X(u) and the sets X(v) for all
descendants v of u. Using an additional simple argument it can be shown that
the algorithm we just described can be performed in time O(n + m). Hence we
have the following theorem.

Theorem 28. The injective chromatic number χi(G) and an optimal injec-
tive colouring of a perfectly tree-dominated graph G can be computed in time
O(n + m).

530 P. Hell, A. Raspaud, and J. Stacho

The above algorithm turns out to be an instance of a more general approach to
graph colouring problems [18].

Note added in proof

We have just learned of a related result of Král’[15] showing that χ(G2) =
O(Δ(G)3/2) for any chordal G. This is easily seen to allow strengthening Theo-
rem 15 from split to chordal graphs.

References

1. Agnarsson, G., Greenlaw, R., Halldorsson, M.: On Powers of Chordal Graphs and
Their Colorings. Congress Numerantium 100, 41–65 (2000)

2. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for λ-
Coloring of Graphs. The Computer Journal 47, 193–204 (2004)

3. Calamoneri, T.: The L(h, k)-Labelling Problem: A Survey and Annotated Bibliog-
raphy. The Computer Journal 49, 585–608 (2006)

4. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2005)

5. Ekim, T., Hell, P., Stacho, J., de Werra, D.: Polarity of Chordal Graphs. Discrete
Applied Mathematics (to appear)

6. Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathematics 43,
173–189 (1983)

7. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of
chordal graphs. Theoretical Computer Science 349, 52–66 (2005)

8. Feige, U., Killian, J.: Zero Knowledge and the Chromatic Number. Journal of
Computer and System Sciences 57, 187–199 (1998)

9. Fiala, J., Kratochv́ıl, J.: Partial covers of graphs. Discussiones Mathematicae Graph
Theory 22, 89–99 (2002)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM
Journal on Discrete Mathematics 5, 586–595 (1992)

12. Hahn, G., Kratochv́ıl, J., Širáň, J., Sotteau, D.: On the injective chromatic number
of graphs. Discrete Mathematics 256, 179–192 (2002)

13. Hell, P., Klein, S., Nogueira, L.T., Protti, F.: Partitioning chordal graphs into
independent sets and cliques. Discrete Applied Mathematics 141, 185–194 (2004)

14. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience Series in Dis-
crete Mathematics. Wiley, New York (1995)

15. Krá̌l, D.: Coloring Powers of Chordal Graphs. SIAM Journal on Discrete Mathe-
matics 18, 451–461 (2005)

16. Laskar, R., Shier, D.: On powers and centers of chordal graphs. Discrete Applied
Mathematics 6, 139–147 (1983)

17. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring
planar graphs. In: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing (STOC), pp. 571–575.

18. J. Stacho: Ph.D. Thesis, Simon Fraser University (2008)
19. Tarjan, R.: Decomposition by clique separators. Discrete Mathematics 55, 221–232

(1985)
20. West, D.: Introduction to Graph Theory. Prentice Hall, Englewood Cliffs (1996)

Spanning Trees with Many Leaves in Graphs

without Diamonds and Blossoms

Paul Bonsma� and Florian Zickfeld��

Technische Universität Berlin, Fak. II, Str. des 17. Juni 136, 10623 Berlin, Germany
bonsma,zickfeld@math.tu-berlin.de

Abstract. It is known that graphs on n vertices with minimum degree
at least 3 have spanning trees with at least n/4+2 leaves and that this can
be improved to (n + 4)/3 for cubic graphs without the diamond K4 − e
as a subgraph. We generalize the second result by proving that every
graph with minimum degree at least 3, without diamonds and certain
subgraphs called blossoms, has a spanning tree with at least (n + 4)/3
leaves. We show that it is necessary to exclude blossoms in order to
obtain a bound of the form n/3 + c.

We use the new bound to obtain a simple FPT algorithm, which de-
cides in O(m)+O∗(6.75k) time whether a graph of size m has a spanning
tree with at least k leaves. This improves the best known time complexity
for Max-Leaves Spanning Tree.

1 Introduction

This paper is concerned with finding spanning trees with maximum number of
leaves. This is a well-studied problem with many applications. Different types
of algorithms have been proposed for this NP-hard problem. Constant factor
approximation algorithms appear e.g. in [4,9]. In addition constructive methods
exist that guarantee a certain fraction of the vertices to become leaves, when the
graph satisfies certain properties [2,7,8]. Hence these results give lower bounds,
which are extremal in the sense that examples are given which show that they
are tight for their graph classes. Thirdly, FPT algorithms for the related deci-
sion problem have also received much attention, see [1,2,3,5]. These results are
closely related; lower bounds have been used to find good approximations [4]
and fast FPT algorithms [2,3]. Our contribution is a new extremal lower bound
that generalizes and strengthens previous results, and a fast and simple FPT
algorithm based on this bound.

We first introduce the extremal setting and explain our result. We then explain
how this helps to obtain an improved FPT algorithm. Throughout this paper G
is assumed to be a simple and connected graph on n ≥ 2 vertices. Other graphs
may be multi-graphs, disconnected, or a K1. The minimum vertex degree of G
is denoted by δ(G).
� Supported by the Graduate School “Methods for Discrete Structures” in Berlin,

DFG grant GRK 1408.
�� Supported by the Studienstiftung des deutschen Volkes.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 531–543, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

532 P. Bonsma and F. Zickfeld

Linial and Sturtevant first observed that every graph G with δ(G) ≥ 3 has a
spanning tree with at least n/4 + 2 leaves and that this bound is best possible
(unpublished). Kleitman and West give a proof in [8] and also give stronger
bounds for graphs of higher minimum degree.

The examples showing that the bound n/4 + 2 is best possible for graphs of
minimum degree 3 are all obtained from a cycle by replacing every vertex by
a cubic diamond. A diamond is the graph K4 minus one edge, and a diamond
subgraph of a graph G is a cubic diamond if its four vertices all have degree 3
in G, see Figure 1 (a).

(b)(a) (c)

Fig. 1. A cubic diamond (a), a 2-necklace (b), and a 2-blossom (c)

Since these examples are very restricted it is natural to ask if better bounds
can be obtained for graphs without cubic diamonds. This question was answered
by Griggs, Kleitman and Shastri [7] for cubic graphs. They show that a cubic
graph G without diamonds always admits a spanning tree with at least n/3 +
4/3 leaves and that this is best possible. For minimum degree 3 the following
bound is proved in [2]. A graph G with δ(G) ≥ 3, without cubic diamonds,
contains a spanning tree with at least 2n/7+12/7 leaves. Replacing every vertex
of a cycle by the graph from Figure 1 (b) shows that the factor 2/7 cannot
be improved. The following conjecture from [2] therefore seems natural: it was
conjectured that every graph G with δ(G) ≥ 3 and without 2-necklaces contains a
spanning tree with at least n/3+4/3 leaves. Informally speaking, a 2-necklace is a
concatenation of k ≥ 1 diamonds with only two outgoing edges, see Figure 1 (b).
In Definition 1 in the next section a precise definition is given. This statement, if
true, would improve the bound 2n/7+ 12/7 with only a minor extra restriction,
and generalize the n/3 + 4/3 bound for cubic graphs from [7].

In Section 2 we disprove this conjecture by constructing graphs with δ(G) = 3
without 2-necklaces, which do not admit spanning trees with more than 4n/13+
24/13 leaves. On the positive side, we prove that the statement is true after only
excluding one more very specific structure, called a 2-blossom, see Figure 1 (c).
A precise definition is given in Definition 2. We generalize the statement further
by removing any restriction on the minimum degree. This yields Theorem 1,
our main theorem, which is proved in Section 3. Let V≥3(G) denote the set of
vertices in G with degree at least 3 and n≥3(G) its cardinality. Let �(T) be the
number of leaves of a graph T .

Theorem 1. Let G be a simple, connected, non-trivial graph which contains
neither 2-necklaces nor 2-blossoms. Then, G has a spanning tree T with �(T) ≥
n≥3(G)/3 + α, where α = 2 if δ(G) ≤ 2, and α = 4/3 otherwise.

Spanning Trees with Many Leaves 533

The proof is constructive and can be turned into a polynomial time algorithm
for the construction of a spanning tree. The main technical contribution of this
paper is that we prove this generalization of the statement in [7], and improve-
ment of the statement in [2], without a proof as lengthy as the proofs in these two
papers. This is made possible by extending the techniques and proofs from [7].
In Section 3 we argue that the long case study in [7] actually proves a strong
new lemma, which we use as an important step in the proof of Theorem 1. We
share the opinion expressed in [7] that a significantly shorter proof of the bound
for cubic graphs might not exist. Therefore using that result in order to prove
the more general statement seems appropriate.

In Section 4 we explain the consequences of Theorem 1 for FPT algorithms
(short for fixed parameter tractable) for the following decision problem.

Max-Leaves Spanning Tree (MaxLeaf):
INSTANCE: A graph G and integer k.
QUESTION: Does G have a spanning tree T with �(T) ≥ k?

When choosing k as a parameter, an algorithm for MaxLeaf is called an
FPT algorithm if its complexity is bounded by f(k)g(n), where g(n) is a polyno-
mial. See [6] for an introduction to FPT algorithms. f(k) is called the parameter
function of the algorithm. Usually, g(n) will turn out to be a low degree polyno-
mial, thus to assess the speed of the algorithm it is mainly important to consider
the growth rate of f(k). Bodlaender [1] constructed the first FPT algorithm for
MaxLeaf with a parameter function of roughly (17k4)!. Since then, consid-
erable effort has been put in finding faster FPT algorithms for this problem.
The fastest algorithms can be found in [3,5,2], which also give an overview of
older results. These papers also establish a strong connection between extremal
graph-theoretic results and fast FPT algorithms. The n/4 + 2 bound mentioned
above is an essential ingredient in [3]. With the same techniques, the 2n/7+12/7
bound is used in [2] to obtain the so far fastest algorithm with a parameter func-
tion in O∗(

(
3.5k

k

)
) ⊂ O∗(8.12k). Here the O∗ notation ignores polynomial factors.

Similarly Theorem 1 yields a new FPT algorithm for MaxLeaf.

Theorem 2. There exists an FPT algorithm for MaxLeaf with time complex-
ity O(m) + O∗(6.75k), where m denotes the size of the input graph and k the
desired number of leaves.

This algorithm is the new fastest FPT algorithm for MaxLeaf, both optimizing
the dependency on the input size and the parameter function. It simplifies the
ideas introduced by Bonsma, Brueggemann and Woeginger [3] and therefore is
also significantly simpler than the other recent fast FPT algorithms. Hardly any
preprocessing of the input graph is needed, since Theorem 1 is already formulated
for a very broad graph class.

We end in Section 5 with a discussion of further improvements and applica-
tions of our results. Due to space constraints we cannot include complete proofs
of Theorems 1 and 2 in this extended abstract. Instead we refer the reader to
the full version of this paper for more details.

534 P. Bonsma and F. Zickfeld

2 Obstructions for Spanning Trees with Many Leaves

As mentioned in the introduction, 2-necklaces have been identified as an ob-
struction for the existence of spanning trees with n/3 + c leaves in graphs with
minimum degree 3, see [7,8,2]. In this section we show that they are not the only
such obstruction. We start by precisely defining 2-necklaces and 2-blossoms.

The degree of a vertex v in a graph G is denoted by dG(v) and by d(v) if
ambiguities can be excluded. A vertex v of a subgraph H of G with dH(v) <
dG(v) is called a terminal of H .

Definition 1 (2-Necklace). The graph K4 minus one edge is called a diamond
and denoted by N1. The degree 3 vertices are the inner vertices of the diamond.

For k ≥ 2 the diamond necklace Nk is obtained from the graph Nk−1 and a
vertex disjoint N1 by identifying a degree 2 vertex of N1 with a degree 2 vertex
of Nk−1. The two unique degree 2 vertices of Nk are denoted by c1 and c2.

An Nk subgraph of G is a 2-necklace if it only has c1 and c2 as terminals,
which both have degree 3 in G. See Figures 1 (a) and (b). If G contains an N1

this way, this N1 subgraph is also called a cubic diamond of G.

Definition 2 (2-Blossom). The graph B on seven vertices shown in Figure 2 (a)
is the blossom graph. A blossom subgraph B of G is a 2-blossom if c1 and c2 are its
only terminals, and they both have degree 3 in G, see Figure 1 (c).

c1 c2 (c)(b)(a) G7

Fig. 2. A blossom, five flowers in a tree, and G7

The two outgoing edges of 2-necklaces and 2-blossoms may in fact be the same
edge, in that case G is just a 2-necklace or 2-blossom plus an edge.

The building block for the graph family that shows that the bound n/3 + c
cannot be achieved when only necklaces are excluded, is a graph on ten vertices
called a flower. The graphs obtained from ternary trees by replacing inner ver-
tices with triangles, and leaves with flowers, have no spanning tree with more
than 4n/13+24/13 leaves. Figure 2 (b) shows such a graph and it can be checked
that these graphs have no more than four leaves per flower.

An important graph for our proofs, called G7, is shown in Figure 2 (c). This
is a non-cubic graph without 2-necklaces or 2-blossoms that does not admit a
spanning tree with at least n≥3(G)/3+2 leaves; only four leaves can be obtained.
In fact, a more detailed proof of Theorem 1 shows that G7 is the only such graph.
The cubic examples from [7] show that the bound in Theorem 1 is best possible
(ignoring small differences in the constant, see Section 5). These examples can
also be modified to obtain extremal examples that have vertices of degree 1, 2
and 4, thus Theorem 1 is best possible in a strong sense.

Spanning Trees with Many Leaves 535

3 Proof of the Main Theorem

This section is devoted to the proof of Theorem 1. The proof approach is based
on [7]. We first sketch an overview of the proof of [7], then mention how we
extend this method, and later give precise definitions. The two main techniques
of the proof are tree extensions and reduction rules. For certain graphs G, the
following approach can be used to find a tree with the desired number of leaves:
start with a small tree subgraph T of G, which has the proper ratio between the
number of leaves, and the number of vertices of V≥3(G) that it contains. Loosely
speaking, it needs at least one leaf for every three vertices from V≥3(G). This is
expressed more precisely by the value PG(T) defined below, which should remain
above a certain value (usually 0). Then the initial tree T is extended iteratively,
without decreasing PG(T). Proving that this is always possible is done with a
case study, which considers the ‘outside’ of T , i.e. the subgraph of G that is not
yet covered by T . When T becomes spanning, the bound follows easily from the
initial lower bound on PG.

However there are certain substructures that are problematic for this ap-
proach. These structures are handled instead by reduction rules, before building
the spanning tree. Every reduction rule works on a certain graph structure, and
removes it. These reduction rules are applied to the graph G as long as possi-
ble, in arbitrary order. The resulting graph G′ is called irreducible, and may be
disconnected. These rules are chosen such that if a tree with the desired number
of leaves is given for every component of G′, it can be used to construct a tree
with the right number of leaves for G. It follows that the extension procedure
only has to be applied for irreducible graphs.

For our proof, it does not suffice to only consider tree extensions: it may be
necessary to start new tree components, so we will actually extend a forest F .
This is no problem when we demand an extra number of leaves for every new
tree component in F . We continue with these extensions until F is a spanning
forest. We add edges to obtain a spanning tree T , for which the bound will follow
from PG(F) ≥ 0.

We now state the necessary notions and lemmas more precisely, and use these
to prove Theorem 1 formally. The proofs of the lemmas and details of the re-
duction rules are postponed to later sections, or omitted. A vertex with degree
at most 2 will be called a goober. One important convention is that when we
consider a subgraph H of G, goobers in H are always defined with respect to
G, not with respect to H . In our figures, e.g. Figure 3 white vertices indicate
goobers. A high-degree vertex is a vertex of degree at least 4.

In Section 3 the reduction rules are introduced, and it will be shown that all
of them maintain the proper leaf ratio of a spanning tree, when reversed. This
is expressed by the following lemma. Note that F is a maximal forest for G′ if
and only if it consists of a spanning tree for every component of G. A trivial
component is an isolated vertex.

Lemma 1 (Reconstruction Lemma). Let G′ be the result of applying a re-
duction rule to a connected graph G, and let k be the number of non-trivial com-

536 P. Bonsma and F. Zickfeld

ponents of G′, and β ≥ 0. If G′ has a maximal forest with at least n≥3(G′)/3 +
2k − β leaves, then G has a spanning tree with at least n≥3(G)/3 + 2 − β leaves.

This lemma will be used with either β = 0 or β = 2/3. For showing that the graph
G′ in this lemma indeed has a spanning tree with at least n≥3(G′)/3 + 2k − β
leaves, it is important that the reduction rules maintain the conditions stated
in Theorem 1. This is shown by the next lemma, more details about the lemma
are given in Section 3. The multi-graph with two vertices and two parallel edges
is denoted by K2 + e.

Lemma 2. Let G′ be obtained from a simple, connected graph G without 2-
necklaces or 2-blossoms by the application of a reduction rule. Then (i) G′ is
connected, or every component of G′ contains a goober, and (ii) every component
of G′ is either simple or it is a K2 + e, and (iii) G′ contains neither 2-necklaces
nor 2-blossoms, and (iv) if G contains a goober, then G′ contains a goober.

We now state the definitions and lemmas used in proving extendibility of a forest
subgraph. When F and G are graphs, F ⊆ G and F ⊂ G denote the subgraph
resp. proper subgraph relation. Let F ⊆ G. By nG(F) we denote the number of
non-goober vertices of G that are in V (F). By �d(F) we denote the number of
dead leaves of F , that is leaves of F , which have no neighbor in V (G) \ V (F).
Let cc(F) denote the number of connected components of F .

Definition 3 (Leaf-Potential). The leaf-potential of a subgraph F ⊆ G is
PG(F)= 2.5�(F) + 0.5�d(F) − nG(F) − 6cc(F).

We now show that if G has a spanning subgraph F with PG(F) ≥ 0, then a tree
satisfying the desired bound exists. We may assume that F is a forest. Since all
leaves of F are dead, we have 0 ≤ PG(F) = 3�(F) − n≥3(G) − 6cc(F), and thus
�(F) ≥ n≥3(G)/3 + 2cc(F). We can now add cc(F) − 1 edges to F to obtain a
spanning tree T , losing at most 2(cc(F) − 1) leaves, so �(T) ≥ n≥3(G)/3 + 2.

Definition 4 (Extendible). Let F be a subgraph of a graph G. Then F is
called extendible if there exists an F ′ with F ⊂ F ′ ⊆ G and PG(F ′) ≥ PG(F),
and F ′ is called an extension.

Above we already informally mentioned the subgraph of G ‘outside’ a subgraph
F ⊂ G. This graph may formally be defined as an edge induced graph as follows.
Definition 5 (Graph Outside F). Let F be a non-spanning subgraph of G.
The subgraph of G outside of F is FC= G[{uv ∈ E(G) : u �∈ V (F)}].

Note that no edges between two vertices that are both in V (F) are included
in FC . We can now formulate the two lemmas that together show that every
forest subgraph in an irreducible graph without 2-necklaces and 2-blossoms is
extendible. More details are given in Section 3.

Lemma 3 (Start Lemma). Let G �= G7 be an irreducible graph, and let F be
a (possibly empty) subgraph of G such that FC contains at least one high-degree
vertex and contains neither 2-necklaces nor 2-blossoms. Then F is extendible.

Spanning Trees with Many Leaves 537

Lemma 4 (Extension Lemma). Let G be an irreducible graph, and let F be
a non-empty subgraph of G such that FC has maximum degree 3 and contains
no 2-necklaces. Then F is extendible.

The following theorem appears in [7] as Theorem 3 (reformulated slightly for
our purposes).

Theorem 3. Every simple, connected, irreducible graph G of maximum degree
exactly 3 has a spanning tree with at least n≥3(G)/3 + α leaves, where α = 4/3
if G is cubic and α = 2 otherwise.

We now have collected all the necessary tools to prove Theorem 1.

Proof of Theorem 1. We prove, by induction over the number of edges, that every
simple, connected, non-trivial graph G without 2-necklaces or 2-blossoms, has
a spanning tree T with �(T) ≥ n≥3(G)/3 + α, where α = 4/3 if δ(G) ≥ 3, and
α = 2 if δ(G) ≤ 2.

First suppose G is irreducible. If G has maximum degree exactly 3, Theorem 1
follows immediately from Theorem 3. If G has maximum degree at most 2, G
has a spanning tree with at least two leaves (since we assumed that G is not a
K1), which suffices.

If G = G7, then a spanning tree with 4 = n≥3(G)/3 + 5/3 leaves can be
obtained. So we may now assume that G contains at least one high degree
vertex, and is not equal to G7.

We start with an empty subgraph F of G which has PG(F) = 0. The Start
Lemma (Lemma 3) shows that, as long as there is at least one high degree vertex
not in F , we can extend F while maintaining PG(F) ≥ 0. When all high degree
vertices are included in F , the Extension Lemma (Lemma 4) can be applied
iteratively, until a spanning subgraph F ′ is obtained with PG(F ′) ≥ 0. By our
observation following Definition 3, it then follows that G has a spanning tree
with at least n≥3(G)/3 + 2 leaves.

It remains to consider the case that G is reducible (the induction step). We
can apply a reduction rule, such that the resulting graph G′ again contains no
2-necklaces or 2-blossoms, and such that every component is either simple or a
K2+e (Lemma 2). First suppose G′ is connected. By Lemma 2, if δ(G) ≤ 2, then
δ(G′) ≤ 2, and by induction G′ has a spanning tree with at least n≥3(G′)/3 +
2 leaves. Lemma 1 then shows that G admits a spanning tree with at least
n≥3(G)/3+2 leaves. Similarly, if δ(G) ≥ 3 then it follows that G has a spanning
tree with at least n≥3(G)/3+4/3 leaves. Now suppose the reduction rule yields a
disconnected graph G′. Then every resulting component has a goober (Lemma 2).
So by induction, every non-trivial component C of G′ has a spanning tree with
at least n≥3(C)/3 + 2 leaves. Thus Lemma 1 implies that G has a spanning tree
with at least n≥3(G)/3 + 2 leaves. �

Reducible Structures. We now present the reduction rules. We introduce five
reduction rules that will be called the high-degree reduction rules. Each consists
of an operation on a certain subgraph, and conditions for when it may be applied.

538 P. Bonsma and F. Zickfeld

Figure 3 shows the graph operations for the five rules. For each rule, on the
left the subgraph is shown that is reduced by the rule, and on the right the
resulting subgraph, which has the same terminal set. The encircled vertices are
the terminals, which may have further incidences, unlike the other vertices. In
some cases outgoing half edges are added to indicate conditions on minimum
vertex degrees. None of the vertices in the figures may coincide, but there are
no restrictions on outgoing edges sharing end vertices. Goobers are shown as
white vertices, but in the case of (R3), vertex v or w may also become a goober,
depending on the original degree. The numbers above the arrows indicate the
decrease in n≥3.

0(R5) u v vu

w

uv

w

u

tt
5(R4)

v vu u
2(R2)

vu

w

u

w

vv

(R3) 2-3

u v u v(R1) 3

Fig. 3. The high-degree reduction rules

The following restrictions are imposed on applying these operations to a
graph G. First, no reduction rule may be applied if (i) it introduces multi-
edges that are incident with a non-goober, or if (ii) it introduces a 2-necklace or
2-blossom. In addition, the following rule-specific restrictions are imposed: for
(R1), dG(v) ≥ 4 is required. For (R2), dG(u) ≥ 4 and dG(v) ≥ 4 are required.
Rule (R3) may not disconnect a component, and may introduce at most one new
goober. Rule (R4) may only be applied if it does disconnect a component. For
(R5), dG(u) ≥ 4 and dG(v) ≥ 4 are required, and uv may not be a bridge. A
bridge is an edge which upon deletion increases the number of components.

Considering these conditions on the applicability of the rules, it is obvious that
Lemma 2 holds for the high-degree reduction rules. For the proof of Lemma 1,
consider Figure 4. This figure shows the tree reconstructions for the high-degree
reduction rules. If the application of a reduction rule on G gives a graph G′, then
without loss of generality, a spanning tree T ′ of G′ has one of the forms shown
on the left. On the right it is shown how to adapt T ′ to obtain a spanning tree of
G. Dashed edges are present in the resulting tree if and only if they are part of
T ′. For the rules (R1), (R2) and (R3), one more leaf is gained, which is enough
since n≥3(G) − n≥3(G′) ≤ 3 for these rules and G′ is connected, i.e. k = 1. For
rule (R4), no leaves are gained, but (R4) disconnects the graph and k = 2. Thus
the increase of n≥3 by 5 is compensated since each of the two components brings
with it an additive term of 2. For (R5), nothing has to be proved, so Lemma 1
holds for the high-degree reduction rules.

Besides the rules (R1)-(R5) we use the seven reduction rules that are defined
in [7], and we call them the low-degree reduction rules. These rules are shown in

Spanning Trees with Many Leaves 539

u

w

v vu

w
u

w

v vu

w

u

t w

vv

wt

u

vu

vu

v

v

u

u

v

v u v

u vu

u
(R1)

(R2)

(R3)

(R4)

Fig. 4. Spanning tree constructions when reversing the new reduction rules

(1) 6

3

6(5)

(3)

(6) 6

(2) 0

(4)

(7) 15

6

Fig. 5. The seven low-degree reduction rules

Figure 5. Conditions on their applicability are given in [7] which ensure that both
Lemmas 1 and 2 hold for them. A graph to which none of the twelve reductions
can be applied is called irreducible.

Extension Lemmas. We now sketch the proofs of Lemmas 3 and 4, which handle
the construction of an extension F ′ of a subgraph F ⊆ G. Lemma 3 is proved
by considering all possible neighborhoods of a high-degree vertex v of G that is
not yet included in F . For every possibility, we can either give an extension of
the forest that does not decrease PG, or we can identify a reducible structure
around v, which is a contradiction with the irreducibility of G. For details of
this case study we refer to the full version of this paper. We first consider the
cases where v is at distance at most two of a vertex that is already in F . These
cases are easily handled by extending existing trees. However when v is at a
larger distance from F , we instead build a new tree around v, and add it to the
forest F . Note that for instance adding a star consisting of non-goobers around
a vertex of degree 5 increases PG by 2.5 ·5−6−6 = 0.5, which thus gives a valid
extension. Higher degrees and goobers increase PG even further. For degree 4
vertices v, more cases need to be considered, but a valid extension can always
be found unless v is part of two edge-disjoint triangles and all its neighbors have
degree 3. However, most of these cases are reducible, provided v is not the center
of a 2-blossom. In the remaining cases an extension can be found.

We now argue that the long case study in [7] in fact proves the Extension
Lemma (Lemma 4). First of all we remark that in [7], goobers are defined dif-
ferently, namely as vertices of degree at most two resulting from reduction rules.
Considering the reduction rules, it can be seen that this extra condition adds no

540 P. Bonsma and F. Zickfeld

information (for instance about the possible neighborhoods of goobers). Indeed,
no such information is used in the proofs in [7], and thus goobers may simply
be defined as we do. The case study in Section 4 of [7] proves the following
statement, expressed using our notations.

Lemma 5. Let G be a graph with maximum degree exactly 3, without diamonds,
that is irreducible with respect to the low-degree reduction rules. Let F be a non-
empty tree subgraph of G. Then there exists a tree F ′ with F ⊂ F ′ ⊆ G and

2.5(�(F ′) − �(F)) + 0.5(�d(F ′) − �d(F)) − (nG(F ′) − nG(F)) ≥ 0.

The most important observation is that nowhere in the case study that proves
Lemma 5, any information about the current tree F is used; only information
about what we defined as FC is used. In particular, the fact that F is connected
is never used in the proof, and neither are upper bounds on degrees of vertices
already included in F . So it suffices to state the maximum degree 3 condition
for FC , and the condition that F is a tree may be removed. Furthermore, an
irreducible graph with maximum degree 3 that contains no 2-necklaces does
not contain any diamonds as subgraphs. So we may replace the ‘no diamond’
condition by the ‘no 2-necklace’ condition. Our definition of irreducible implies
irreducibility with respect to the low-degree reduction rules, so this change is
also not a problem. Finally, the graph F ′ that is constructed by Lemma 5 has
the same number of components as F , so the expression in Lemma 5 simply
means that PG(F ′) ≥ PG(F). Altogether this yields Lemma 4.

4 A Fast FPT Algorithm for MaxLeaf

In this sectionwepresent a fast and relatively simpleFPTalgorithm forMaxLeaf,
which uses Theorem 1 as an essential ingredient. The other two ingredients are a
short preprocessing step, consisting of two reduction rules, and an enumerative pro-
cedure, which is similar to the one introduced in [3], and also applied in [2].

We start by presenting the two reduction rules that constitute the preprocess-
ing phase. Recall that in 2-necklaces and 2-blossoms both terminals have degree
3 in G. The rules we introduce now also reduce diamonds and blossoms whose
two terminals have arbitrary degree. However the two terminals of the subgraph
must still be the two vertices that have degree 2 in the diamond necklace or blos-
som itself. Such a subgraph of G will be called a 2-terminal diamond respectively
a 2-terminal blossom. Rule (F1) in Figure 6, which resembles rule (R2), reduces
2-terminal diamonds. Since a 2-necklace Nk consists of k 2-terminal diamonds,
those are reduced as well by rule (F1). Rule (F2) in Figure 6 reduces 2-terminal
blossoms.

Lemma 6. Let G′ be the result of applying reduction (F1) or (F2) to G. Then
(G′, k − 1) is a YES-instance for MaxLeaf if and only if (G, k) is a YES-
instance for MaxLeaf.

Throughout this section we will denote the set of leaves of a graph G by L(G).
We now explain how to obtain a graph S(G) from a graph G by suppressing

Spanning Trees with Many Leaves 541

v v(F2) uvuuv(F1) u
k ↓ 1 k ↓ 1

Fig. 6. Two reduction rules for an instance (G, k) of MaxLeaf

vertices. Suppressing a vertex u of degree 2 means deleting u and adding an edge
between the two end vertices of the incident edges. We allow this operation to
introduce parallel edges and loops, so the degrees of non-suppressed vertices are
maintained. If n≥3(G) = 0, that is G is a path or cycle, then S(G) is the empty
graph. If n≥3(G) > 0 then S(G) is obtained from G by suppressing all degree 2
vertices. So V (S) = L(G)∪V≥3(G), and G is a subdivision of S(G). Hence loops
and non-loop edges of S(G) correspond to cycles and paths of G respectively.
Let uv be a non-loop edge of S(G) where the corresponding path Puv in G has
i internal vertices. We define a cost function c on the non-loop edges of S(G)
which assigns cost c(uv)= min{i, 2} to uv. Thus c(uv) is the maximum possible
number of leaves that a spanning tree of G can have among the internal vertices
of Puv. Now we are ready to present the FPT algorithm in Algorithm 1.

Algorithm 1. An FPT algorithm for MaxLeaf

INPUT: a MaxLeaf instance (G, k).

1) while G has a 2-terminal diamond or 2-terminal blossom subgraph do
G :=the result of applying (F1) or (F2) to G
k := k − 1

2) if n≥3(G) ≥ 3k or |L(G)| ≥ k or k ≤ 2 then return(YES)
3) construct S(G) and c
4) for all L ⊆ V≥3(G) with |L| ≤ k do

if G has a spanning tree T with L ⊆ L(T) and |L| + |L(T)\V≥3(G)| ≥ k then
return(YES)

5) return(NO)

The decision in Step 4 can be made in polynomial time in the size of S(G). The
essential step is to solve a minimum weight spanning tree problem on S(G)− L,
using edge costs c. We omit the proof of the following lemma’s, noting that the
algorithm is similar to the ones in [3] and [2].

Lemma 7. Let (G, k) be a MaxLeaf instance for which S(G) and c are non-
empty and known. For any L ⊆ V≥3(G), deciding whether G has a spanning tree
T with L ⊆ L(T) and |L| + |L(T)\V≥3(G)| ≥ k can be done in time polynomial
in the size of S(G).

Lemma 8. Algorithm 1 returns YES if and only if its input (G, k) is a YES-
instance.

542 P. Bonsma and F. Zickfeld

Proof sketch for Theorem 2. It only remains to prove the complexity bound.
The first three steps can be done in linear time by building the proper data
structures. For this it is essential that the degree of non-terminal vertices of 2-
terminal diamonds and blossoms is bounded by a constant. We omit the details.
Since the reductions in Step 1 do not increase the number of vertices or the value
of k, we may assume that n and k are the number of vertices and parameter of
the reduced instance, as it is after Step 1.

Step 4 of the algorithm is only executed when n≥3(G) < 3k and |L(G)| < k.
Furthermore V (S(G)) = L(G)∪V≥3(G), so every iteration of the for-loop of Step
4 takes time polynomial in k (Lemma 7). This for-loop is executed once for every
subset L ⊆ V≥3(G) with |L| ≤ k. Using |V≥3(G)| ≤ 3k, the number of such sets
can be verified to be O(k

(
3k
k

)
). Using Stirling’s approximation x! ≈ xxe−x

√
2πx,

we obtain that the loop is executed O∗(6.75k) times. �

5 Conclusions

We conclude with some remarks about possible improvements and further ap-
plications. Theorem 1 can be strengthened at the cost of lengthier proofs. A
full version of this paper shows that n≥3(G)/3 + c leaves can be obtained where
c = 4/3 when G = Q3, the 3-dimensional cube, c = 5/3 when G = G7 or
G �= Q3 is cubic, and c = 2 otherwise. In addition it can be shown that any
graph G has a spanning tree with at least (n≥3(G) − x − y)/3 + c leaves, where
x is the number of 2-necklaces in G and y is the number of 2-blossoms in G.
This is a strong statement since firstly it holds for all graphs (barring the trivial
conditions that G should be simple, connected and non-trivial), and secondly it
not only generalizes the bound from [7], but also the n/4 + 2 bound for graphs
with minimum degree three, and the 2n/7+12/7 bound from [2] (see Section 1),
when substituting the appropriate upper bounds for x and y. The usefulness of
bounds of this form was recently demonstrated in [4], where a similar bound was
used to obtain an improved approximation algorithm.

Theorem 1 can be used to show that the ‘flower tree’ example from Section 2
is extremal: when only 2-necklaces are forbidden, it is always possible to obtain
at least 4n≥3(G)/13 + 24/13 leaves in non-cubic graphs.

References

1. Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algo-
rithms 14(1), 1–23 (1993)

2. Bonsma, P.S.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD the-
sis, University of Twente, Enschede, the Netherlands (2006), http://purl.
org/utwente/57117

3. Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for
finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS
2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://purl.org/utwente/57117
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://purl.org/utwente/57117

Spanning Trees with Many Leaves 543

4. Correa, J.R., Fernandes, C.G., Matamala, M., Wakabayashi, Y.: A 5/3-
approximation for finding spanning trees with many leaves in cubic graphs. In:
WAOA 2007 (to appear, 2007)

5. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
time extremal structure I. In: ACiD 2005. Texts in algorithmics, vol. 4, pp. 1–41.
King’s College Publications

6. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, Berlin (2006)
7. Griggs, J.R., Kleitman, D.J., Shastri, A.: Spanning trees with many leaves in cubic

graphs. J. Graph Theory 13(6), 669–695 (1989)
8. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete

Math. 4(1), 99–106 (1991)
9. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maxi-

mum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G.
(eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

On 2-Subcolourings of Chordal Graphs

Juraj Stacho

School of Computing Science, Simon Fraser University
8888 University Drive, Burnaby, B.C., Canada V5A 1S6

jstacho@cs.sfu.ca

Abstract. A 2-subcolouring of a graph is a partition of the vertices
into two subsets, each inducing a P3-free graph, i.e., a disjoint union
of cliques. We give the first polynomial time algorithm to test whether
a chordal graph has a 2-subcolouring. This solves (for two colours) an
open problem of Broersma, Fomin, Nešetřil, and Woeginger, who gave an
O(n5) time algorithm for interval graphs. Our algorithm for the larger
class of chordal graphs has complexity only O(n3).

1 Introduction

A k-subcolouring of a graph G is a partition of the vertices of G into k subsets
V (G) = V1 ∪ V2 ∪ . . . ∪ Vk, such that each Vi induces a disjoint union of cliques
(complete graphs) in G, i.e., each Vi induces a P3-free graph. A graph G is called
k-subcolourable if there exists a k-subcolouring of G. The smallest integer k such
that G is k-subcolourable is called the subchromatic number of G, and is denoted
by χs(G).

The k-subcolourings and the subchromatic number were first introduced by Al-
bertson, Jamison, Hedetniemi and Locke in [1]. Initially, the main focus was on
bounds for χs(G). More recently, the complexity of recognizing k-subcolourable
graphs has become a focus of attention. It follows from the result in [2] that for
k ≥ 2 this problem is NP -complete for general graphs. In [3] (and also in [4]) the
authors show that it remains NP -complete for k ≥ 2 even if the graph is triangle-
free and of maximum degree four. On the other hand, there are several natural
classes of graphs for which the problem has a polynomial time solution for any
fixed k, e.g., graphs of bounded treewidth [3]. In another paper [5], the authors
show that the problem is NP -complete for k ≥ 2 when restricted to the class of
comparability graphs, whereas for interval graphs there is an O(n2k+1) time algo-
rithm. In fact, it is easy to check that their algorithm also works for the case of
list k-subcolouring, where each vertex of the input graph G has a list of admissible
colours and the task is to determine whether or not there exists a k-subcolouring
of G that obeys these lists. In this paper, we also deal with list k-subcolourings.

In [5], the authors formulated the following open problem. Determine the
complexity of the k-subcolouring problem for the class of chordal graphs. This
seems interesting, since the class of chordal graphs is strictly between the class of
perfect graphs (for which the problem is NP -complete) and the class of interval

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 544–554, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On 2-Subcolourings of Chordal Graphs 545

graphs (for which the problem is polynomial time solvable), and colouring prob-
lems for chordal graphs often lead to interesting insights [6,7,8]. In this paper,
we develop a novel technique that allows us to extract the essential properties
of a 2-subcolouring, to solve this problem for k = 2.

In the following, we give a polynomial time algorithm for testing list 2-
subcolourability of chordal graphs. In fact, our algorithm is O(n3); that also
improves the complexity of the algorithm from [5] for the smaller class of inter-
val graphs.

Instead of considering a k-subcolouring of G as a partition V (G) = V1 ∪ V2 ∪
. . . ∪ Vk, one can view it as a mapping c : V (G) → {1, 2, . . . , k}, where for every
i ∈ {1, 2, . . . , k}, the vertices of Vi are mapped to i. Therefore we shall employ
the terminology of colourings and refer to c as a colouring of G, and refer to
the elements of {1, 2, . . . , k} as colours. (Note that c is not necessarily a proper
colouring.) For a 2-subcolouring V (G) = Vr ∪ Vb, the associated colouring c is a
mapping c : V (G) → {r, b}, and we refer to the elements of Vr and Vb as red and
blue vertices respectively.

A graph is chordal if it does not contain an induced cycle of length more than
three [8,9]. A clique-tree T of a chordal graph G is a tree with the following
properties [8,9].

(i) Each vertex u in T corresponds to a maximal clique Cu of G
(ii) For every edge ab ∈ E(G), there exists a vertex u ∈ V (T) such that

a, b ∈ Cu

(iii) For every vertex a ∈ V (G), the set of vertices u of V (T) such that a ∈ Cu

induces a connected subgraph of T .

As usual, we denote by n and m the number of vertices and edges of an
input graph G respectively. It is known [9] that recognizing a chordal graph, and
constructing a clique-tree of a (connected) chordal graph, can both be performed
in time O(n + m).

The paper is structured as follows. Before describing our algorithm we inves-
tigate, in sections 2 and 3, the general properties of subcolourings of chordal
graphs. In particular, in section 2, we introduce the key structure, called the
subcolouring digraph, that encodes important properties of a given subcolouring
of a chordal graph G (based on a fixed clique-tree of G). In section 3, we describe
the necessary conditions for a 2-subcolouring c implied by the structure of its
subcolouring digraph. Finally, in section 4, we describe our algorithm, which
uses dynamic programming on the subcolouring digraph, and we discuss the
complexity and efficient implementation of our algorithm.

2 The Subcolouring Digraph

Observe first that G is k-subcolourable if and only if each component of G
is k-subcolourable. Throughout the paper, unless otherwise indicated, we shall
always deal with a connected chordal graph G, a fixed clique-tree T of G, and
with c, a colouring of the vertices of G (not necessarily a subcolouring or a proper
colouring).

546 J. Stacho

Therefore, let G be a connected chordal graph, and let T be a fixed clique-tree
of G. Let Cu for u ∈ V (T) denote the maximal clique of G associated with u,
and let C(X) denote the union of cliques associated with the vertices of a set
X ⊆ V (T), i.e., C(X) =

⋃
u∈X Cu. In this section, we shall not consider T to be

rooted. We shall use parentheses (,) to denote the edges of T , to distinguish them
from the edges of G. The removal of an edge (u, v) splits T into two subtrees; we
shall denote by Tu,v the subtree containing the vertex v, and by Tv,u the subtree
containing the vertex u. We denote Gu,v = C(Tu,v) and Gv,u = C(Tv,u).

Observe that in any k-subcolouring c of G, a vertex a in a clique C of G can
have neighbours of the same colour as a in at most one connected component of
G \C. Based on this, we construct a multidigraph Dc(G) with coloured edges to
capture the properties of the colouring c. We shall refer to Dc(G) as a subcolour-
ing digraph for c. To avoid ambiguity, the edges of Dc(G) shall be referred to
as arcs and denoted using angle brackets 〈, 〉 to distinguish them from the edges
of T and the edges of G. In particular, 〈u, v〉i shall denote an arc from u to v
coloured i, and we shall write 〈u, v〉 for an arc from u to v (of some colour). The
digraph Dc(G) is constructed as follows (cf. Figure 1). The vertices of Dc(G)
are the vertices of T , and for vertices u, v that are adjacent in T , there is an
arc 〈u, v〉i in Dc(G), if there exist vertices a ∈ Cu and b ∈ Gu,v \ Cu such that
ab ∈ E(G) and both a and b have the same colour i in c. Note that we have arcs
in Dc(G) only between vertices that are adjacent in T .

Formally, we define Dc(G) as follows.

(i) V (Dc(G)) = V (T)

(ii) E(Dc(G)) =

⎧
⎨

⎩
〈u, v〉i

∣
∣
∣
∣
∣

∃ a ∈ Cu

∃ b ∈ Gu,v \ Cu

(u, v) ∈ E(T)
ab ∈ E(G)
c(a) = c(b) = i

⎫
⎬

⎭

Fig. 1. Illustrating the case when there is an arc 〈u, v〉 in Dc(G)

We have the following observations about Dc(G).

Proposition 1. Let u, v, w be vertices of Dc(G) and let i be a colour from
{1, 2, . . . , k}. If c is a k-subcolouring then Dc(G)

On 2-Subcolourings of Chordal Graphs 547

(i) cannot contain both the arc 〈u, v〉i and the arc 〈v, u〉i,
(ii) cannot contain both the arc 〈u, v〉i and the arc 〈u, w〉i,
(iii) cannot contain all of the arcs 〈u, v〉1 , 〈u, v〉2 , . . . , 〈u, v〉k.

Proof. Suppose that (i) is false. Let a, b and a′, b′ be the vertices of G that
caused the arcs 〈u, v〉i and 〈v, u〉i respectively to appear in Dc(G). It is not
difficult to see that a, a′ ∈ Cu ∩Cv and bb′ �∈ E(G). Hence the graph induced on
a, b, a′, b′ must contain an induced P3 coloured i, a contradiction. One can easily
repeat this same argument for pairs a, b and a′, b′ that falsify (ii).

Finally, let a1, b1, a2, b2, . . . , ak, bk be the pairs of vertices that falsify (iii).
Since Cu and Cv are two different maximal cliques of G, there exists a vertex
d ∈ Cu \ Cv. Again, it is not difficult to see that ai ∈ Cu ∩ Cv for all i, and d
is not a neighbour of any bi. Now clearly, any colour j assigned to d creates an
induced P3 coloured j on vertices d, aj , bj, yielding a contradiction. �

3 2-Subcolourings

From now on we focus on the case k = 2, i.e., 2-subcolourings. In what follows,
we shall assume that G is a connected 2-subcolourable chordal graph, T a fixed
clique-tree of G, and c is a 2-subcolouring of G. As remarked earlier, for a 2-
subcolouring c of G, we shall refer to the vertices of G as red and blue vertices
and use letters r and b respectively to denote the two colours.

We shall call an edge (u, v) in T a strong edge of T if Dc(G) contains both
〈u, v〉r and 〈v, u〉b, or both 〈u, v〉b and 〈v, u〉r. We shall call an edge (u, v) in T a
weak edge of T if there is at most one arc between u and v in Dc(G). It follows
from Proposition 1 that every edge in T must be either strong or weak.

Let u, v be adjacent vertices in T . Let Iu,v = Cu ∩Cv, and let Nu,v be the set
of all vertices of Gu,v \ Cu which are neighbours of Cu ∩ Cv. Furthermore, let
Lu,v = Gv,u \ Cv and Ru,v = Gu,v \ (Iu,v ∪ Nu,v). (Note that Cv ⊆ Iu,v ∪ Nu,v.)
We have the following observation.

Proposition 2. Let u, v be adjacent vertices in T .

(i) If 〈u, v〉r ∈ E(Dc(G)), or 〈u, v〉b ∈ E(Dc(G)), then the vertices of Cu \ Cv

are all blue, or all red, respectively.
(ii) If 〈u, v〉 �∈ E(Dc(G)) then the vertices of Iu,v and Nu,v are all red and all

blue respectively, or all blue and all red respectively.
(iii) G has no induced P3 having both a vertex of Lu,v and a vertex of Ru,v.

Proof. For (i) suppose that 〈u, v〉r ∈ E(Dc(G)) (the other case is clearly sym-
metric), and let a, b be the red vertices that caused this arc. It is easy to see,
that a ∈ Cu ∩Cv and b is not adjacent to any vertex in Cu \Cv. Hence, no vertex
d of Cu \ Cv can be red, since otherwise d, a, b is an induced red P3.

For (ii) let a ∈ Iu,v and b ∈ Nu,v be adjacent. Then a and b must have dif-
ferent colours, since otherwise we would have an arc 〈u, v〉 ∈ E(Dc(G)). Since
Cu and Cv are different maximal cliques, there exists d ∈ Cv \Cu. Now the claim

548 J. Stacho

follows, because d is adjacent to all vertices of Iu,v, and hence any a′ ∈ Iu,v must
have different colour from d.

Finally, for (iii) let b, a, d be an induced P3 in G with edges ba and ad, that
contains both a vertex of Lu,v and a vertex of Ru,v. Now since Lu,v and Ru,v are
completely non-adjacent, it follows that a �∈ Lu,v ∪ Ru,v. Hence we can assume
that b ∈ Lu,v and d ∈ Ru,v. Now if a ∈ Iu,v then we must have d ∈ Nu,v but
Nu,v ∩ Ru,v = ∅. Hence a ∈ Nu,v and b ∈ Iu,v but Lu,v ∩ Iu,v = ∅. Therefore no
such vertices b, a, d exist in G. �
Note that it follows from the above observation that for an edge (u, v) in T ,
the 2-subcolourings induced by the fixed c on Lu,v and Ru,v, are independent
of each other in the sense that they only depend on the colours assigned to
Iu,v ∪ Nu,v. Furthermore, if (u, v) is a weak edge such that 〈u, v〉 �∈ E(Dc(G)),
then the 2-subcolouring of Iu,v ∪ Nu,v is unique (up to exchanging the colours
red and blue). That allows one to consider independently the subgraphs of T
that no longer contain any weak edges.

For strong edges in T we have the following observations.

Observation 3. Every vertex of T has at most two incident strong edges, i.e.,
the connected components formed by the strong edges of T are paths.

Proof. It is not difficult to see that if a vertex u in T has three adjacent
strong edges, then for at least two of them, say (u, v) and (u, w), we have arcs
〈u, v〉 and 〈u, w〉 of the same colour in Dc(G). By Proposition 1(ii) this is not
possible. �

Proposition 4. Let u be a vertex in T with distinct neighbours v, w, z.

(i) If (v, u) is a strong edge and 〈w, u〉 �∈ E(Dc(G)), then (z, u) is not a strong
edge.

(ii) If (v, u) is a strong edge, 〈w, u〉 �∈ E(Dc(G)), and 〈z, u〉 �∈ E(Dc(G)), then
Iu,w = Iu,z.

(iii) If 〈v, u〉 �∈ E(Dc(G)), 〈w, u〉 �∈ E(Dc(G)), and 〈z, u〉 �∈ E(Dc(G)), then
Iu,v = Iu,w or Iu,w = Iu,z or Iu,z = Iu,v.

Proof. For (i) suppose that the edges (v, u) and (z, u) are strong and that
〈w, u〉 �∈ E(Dc(G)). Since G is connected, there exists a ∈ Iu,w. Without loss of
generality we may assume that 〈u, z〉r ∈ E(Dc(G)). Hence by Proposition 2(i)
we obtain that Cz \ Cv is all red, Cv \ Cz is all blue and Cu ⊆ Cv ∪ Cz . Also
since Cu, Cz and Cv are different maximal cliques we have d ∈ Cz \ Cu and
b ∈ Cv \ Cu. Now clearly, a ∈ Cv ∪ Cz hence if a is red then a ∈ Cz and hence
〈w, u〉r ∈ E(Dc(G)), and if a is blue then a ∈ Cv and hence 〈w, u〉b ∈ E(Dc(G)),
a contradiction.

For (ii) suppose that (v, u) is strong, 〈w, u〉 �∈ E(Dc(G)), and 〈z, u〉 �∈ E(Dc(G))
but Iu,w �= Iu,z . Without loss of generality we may assume that Iu,w �⊆ Iu,z and
that 〈u, v〉r , 〈v, u〉b ∈ E(Dc(G)). Hence there must exist a vertex a ∈ Iu,w \ Iu,z ,
a vertex b ∈ Iu,z (since G is connected), and a vertex d ∈ Cv \ Cu (since the
cliques are maximal). Clearly, c(a) �= c(b) otherwise we have 〈z, u〉 ∈ E(Dc(G)).

On 2-Subcolourings of Chordal Graphs 549

Now since 〈v, u〉b ∈ E(Dc(G)) it follows that the vertex d is red. Similarly, since
〈u, v〉r ∈ E(Dc(G)) we have that Cu \ Cv is all blue, hence if a is red, then a ∈ Iu,v

and hence 〈w, u〉r ∈ E(Dc(G)), and if b is red then b ∈ Iu,v and hence 〈z, u〉r ∈
E(Dc(G)), a contradiction.

Finally, for (iii) suppose that none of 〈v, u〉,〈w, u〉, and 〈z, u〉 is in E(Dc(G)),
but the three sets Iu,v, Iu,w and Iu,z are pairwise different. Without loss of
generality we may assume that Iu,v �⊆ Iu,w �⊆ Iu,z and either Iu,v �⊆ Iu,z or
Iu,v �⊇ Iu,z . If Iu,v �⊆ Iu,z, suppose first that J �= ∅ where J = Iu,v \ (Iu,w ∪ Iu,z).
It follows that we must have a vertex a ∈ J , a vertex b ∈ Iu,w \ Iu,z and a vertex
c ∈ Iu,z . Now at least two of the vertices a, b, c must have the same colour and
that gives us one of the edges 〈v, u〉, 〈w, u〉, 〈z, u〉 in E(Dc(G)), a contradiction.
If J = ∅, we similarly obtain a contradiction for vertices a ∈ (Iu,w ∩ Iu,v) \ Iu,z ,
b ∈ (Iu,z ∩Iu,v)\ Iu,w and c ∈ Cu \Cv. Now if Iu,v �⊇ Iu,z, it follows that we have
a vertex a ∈ Iu,v \ Iu,w, a vertex b ∈ Iu,w \ Iu,z and c ∈ Iu,z \ Iu,v, and again a
contradiction follows. �

Let Pu,v denote the (unique) path from u to v in T . We shall call the path
Pu,v strong if it is formed only by strong edges of T . Note that we also allow
paths of zero length (i.e., paths Pu,v with u = v); all such paths are trivially
strong. A strong path is maximal if it is not properly contained in another
strong path. A vertex z in T adjacent to a vertex u is a special neighbour of u if
〈z, u〉 �∈ E(Dc(G)). The following claim is a direct consequence of Proposition 4.

Lemma 5. For any strong path Pu,v in T (possibly with u = v) there exist sets
Au,v and A′

u,v (both possibly empty) such that for any special neighbour s of
some t ∈ Pu,v we have Is,t = Au,v or Is,t = A′

u,v.

Proof. If u �= v then by Proposition 4(i) only u and v can have special neigh-
bours. Hence, if u has a special neighbour z, we let Au,v = Iz,u and Au,v = ∅
otherwise. If v has a special neighbour w, we let A′

u,v = Iw,v and A′
u,v = ∅

otherwise. Now the claim follows from Proposition 4(ii).
If u = v and u has two special neighbours z and w with Iz,u �= Iw,u, we define

Au,v = Iz,u, A′
u,v = Iw,u. Otherwise, we let Au,v = Iz,u and A′

u,v = ∅ if u has
a special neighbour z but does not satisfy the previous condition. Finally, we
let Au,v = A′

u,v = ∅ if u has no special neighbours. Now the claim follows from
Proposition 4(iii). �

Let Bu,v and B′
u,v denote the sets of neighbours of Au,v and A′

u,v in C(Pu,v)
respectively. We now give a complete characterisation of the structure of the
colouring c on the vertices of C(Pu,v).

Theorem 6. For any strong path Pu,v in T (possibly with u = v) we have

(i) C(Pu,v) = Cu ∪ Cv,
(ii) the vertices of Cu \ Cv and Cv \ Cu are all red and all blue respectively, or

all blue and all red respectively,
(iii) for every weak edge (s, t) incident to Pu,v the vertices of Is,t are all red or

all blue,
(iv) the vertices of Au,v ∪ B′

u,v and A′
u,v ∪ Bu,v are all red and all blue respec-

tively, or all blue and all red respectively, and

550 J. Stacho

(v) if in addition Pu,v is maximal, then any colouring c′ of C(Pu,v) satisfy-
ing (ii) − (iv) is a 2-subcolouring of C(Pu,v) and can be extended to a
2-subcolouring of G.

Proof. We prove (i) and (ii) by induction on the length of the path Pu,v. If u = v
then there is nothing to prove. Hence, let w be the neighbour of v on Pu,v and
assume that C(Pu,w) = Cu ∪ Cw and that the vertices of Cu \ Cw and Cw \ Cu

are all red and all blue respectively. Since (w, v) is a strong edge, by Proposition
2(i) we have that Cv \ Cw is all blue and Cw \ Cv is all red. From this we deduce
Cw \ (Cu ∪ Cv) = ∅ which implies Cw ⊆ Cu ∪ Cv and the claim follows.

Now claims (iii) and (iv) follow directly from Proposition 2(ii) and Lemma
5 since for any special neighbour s of t ∈ Pu,v we have Is,t = Au,v and Ns,t ∩
C(Pu,v) = Bu,v or Is,t = A′

u,v and Ns,t ∩ C(Pu,v) = B′
u,v.

Finally, let c′ be any colouring of C(Pu,v) satisfying (ii) − (iv). Let c′′ be a
colouring of G constructed from the colouring c as follows. First we exchange
the colours red and blue on the vertices of Gt,s for each neighbour s �∈ Pu,v of
t ∈ Pu,v so that the colours of Is,t match the colouring c′. (Note that since Pu,v

is maximal, the edge (s, t) is weak.) Then we replace the colours of C(Pu,v) by
c′. Clearly, c′′ extends c′. We show that c′′ is a 2-subcolouring of G. Suppose
otherwise and let b, a, d be an induced P3 in G with edges ba and ad such that
c′′(b) = c′′(a) = c′′(d). If b, a, d ∈ C(Pu,v) then by (i) and (ii) it follows that the
vertices b, a, d are all in Cu or all in Cv, but that is not possible since bd �∈ E(G).
On the other hand, if a �∈ C(Pu,v) then it follows from the construction of c′′

that c(b) = c(a) = c(d) which is not possible since c is a 2-subcolouring. Hence
for some neighbour s �∈ Pu,v of t ∈ Pu,v we have that a ∈ It,s and b ∈ Nt,s and
d ∈ Ns,t ∩ C(Pu,v). Now if 〈t, s〉 �∈ E(Dc(G)) then by Proposition 2(ii) we have
that c(a) �= c(b) hence c′′(a) �= c′′(b) because a, b ∈ Gt,s. On the other hand,
if 〈t, s〉 ∈ E(Dc(G)), then s must be a special neighbour of t but then by (iv)
we have that a ∈ Au,v and d ∈ Bu,v or a ∈ A′

u,v and d ∈ B′
u,v, and hence

c′′(a) �= c′′(d), a contradiction. �

4 The Algorithm

Now we are ready to describe the algorithm for deciding (list) 2-subcolourability
for chordal graphs. We assume that we are given a chordal graph G and a fixed
clique-tree T of G, and we want to decide whether or not G is 2-subcolourable.
Later, we describe how to obtain a list version of the algorithm.

This time, we consider T rooted at an arbitrary fixed vertex r. Therefore, we
write p[v] to denote the parent of a vertex v in T . For a vertex v in T , we denote
by Tv the subtree of T rooted at v.

We shall say that Tv is (−) colourable if there exists a 2-subcolouring cv of
C(Tv) such that the vertices of Ip[v],v are all red or all blue. Similarly, Tv is (+)
colourable if there exists a 2-subcolouring cv of C(Tv) such that the vertices of
Ip[v],v and Np[v],v are all red and all blue respectively, or all blue and all red
respectively. In the special case of the root r, when p[v] does not exist, we shall
say that Tr is (−) colourable if there exists a 2-subcolouring cr of C(Tr) = G.

On 2-Subcolourings of Chordal Graphs 551

Note that by Lemma 5, for every strong path, we only need to consider up
to two special neighbours z and w. If the path has only one such neighbour (or
none), we use nil as the value of z or w. Therefore, we always view a path Pu,v

having two special neighbours z and w of u and v respectively, but allow one (or
both) of z and w to be nil. We shall say that the path Pu,v is (z, w)-colourable
if there exists a 2-subcolouring cu,v of C(Pu,v) such that for every incident edge
(s, t) of Pu,v in T , the vertices of Is,t are all red or all blue, and such that if z is
not nil (w is not nil) then the vertices of Nz,u (Nw,v respectively) in C(Pu,v) are
all red or all blue.

The algorithm works as follows. It processes the vertices of T in a bottom-up
order and identifies which edges of T could be weak, for some 2-subcolouring
of G. This is done by testing and recording for every vertex v in T , whether
or not the subtree Tv is (+) colourable, and whether or not the subtree Tv is
(−) colourable. (Note that Tv must be either (+) colourable or (−) colourable
if (v, p[v]) is a weak edge in T for some 2-subcolouring of G.)

For a vertex x of T , the test for colourability of Tx is done as follows. First, if
we are testing (−) colourability, we precolour the vertices of Ip[x],x red or blue,
otherwise we precolour the vertices of Ip[x],x and Np[x],x red and blue respectively,
or blue and red respectively. Then we choose a strong path Pu,v in Tx that passes
through x and we choose special neighbours z and w of u and v respectively.
(See the above remark about special neighbours.) Then we test for colourability
of Pu,v with respect to the chosen special neighbours by applying Theorem 6.
Finally, we recursively test, for every special neighbour y of Pu,v, whether or not
the corresponding tree Ty is (−) colourable or (+) colourable, and for all other
neighbours of Pu,v, whether or not their corresponding trees are (+) colourable.
We declare Tx (−) colourable (or (+) colourable, depending on the particular
case) if and only if the above tests succeed for some choice of u, v and some choice
of special neighbours of u and v. Note that since we process the vertices in a
bottom-up order, each recursive call amounts to a constant time table look-up.

If the algorithm succeeds to declare Tr (−) colourable then the graph G is 2-
subcolourable, otherwise G is not 2-subcolourable. The correctness can be shown
to follow from Proposition 2 and Theorem 6. A more precise description of an
efficient implementation of the algorithm can be found on pages 552-553. Below,
we discuss some details of this implementation.

Note that in the procedure for testing colourability of a strong path Pu,v (see
Algorithm 2 on page 553), instead of independently precolouring the sets Is,t

either red or blue, for each incident edge of Pu,v (as follows from Theorem 6),
we construct a collection of sets L containing the unions of the sets Is,t that
intersect. Note that if sets Is,t and Is′,t′ intersect, their union must also be all
red or all blue. After constructing L we can independently decide the colours of
the sets in L, since they no longer intersect. To find L we use an efficient variant
of the Union-Find algorithm which has time and space complexity O(n).

It is not difficult to see that this algorithm can be easily extended to solve
the list 2-subcolouring problem. Recall that this is the problem where each ver-
tex has a list of admissible colours and the task is to decide whether G has a

552 J. Stacho

2-subcolouring that obeys these lists. Whenever in the algorithm a vertex is be-
ing precoloured by some colour, this colour is checked against the list of that
vertex and if it is not in the list, we exit the current procedure with a negative
answer. (Note that this only happens in the procedure for testing strong paths,
see Algorithm 2 on page 553.)

The following theorem summarizes the complexity of the above algorithm and
is followed by its formal description.

Theorem 7. There exists an O(n3) time algorithm deciding, for a given chordal
graph G, whether G admits a (list) 2-subcolouring; the algorithm also constructs
a 2-subcolouring of G if one exists.

Proof. As noted before, one can determine the maximal cliques of G and
construct a clique-tree T of G in time O(n + m). It follows from the remark
above that for any pair of vertices u, v and choice of special neighbours z, w of
u, v respectively, one can determine (z, w)-colourability of the path Pu,v in time
O(n2). In the first part of the algorithm, this test is performed for every pair
of vertices (including the choice of their special neighbours). This step can be
implemented more efficiently by reusing the results for the subpaths, i.e., starting
from some vertex v and computing all paths from v, altogether in time O(n2).
Therefore the total running time for the first part of the algorithm is O(n3). In
the second part, note that during the course of the algorithm (in the procedures
for testing the colourability of a subtree Tx, see Algorithms 3,4 on page 553), we
consider every path (including the choice of special neighbours) in T only once.
Each path is processed in time O(n), so in total we have O(n3) time. Finally, a
2-subcolouring can be easily found by keeping track of which paths were used to
colour the subtrees of T and backtracking from the root r. �

Input: A chordal graph G and a clique tree T of G rooted at r
Output: Decide whether G is 2-subcolourable

for every two vertices u, v in T do1

for every neighbour z and w (including nil) of u and v respectively do2

test and record whether Pu,v is (z,w)-colourable3

initialize S ← ∅ (S is the set of processed vertices)4

while S �= V (T) do5

pick a vertex v �∈ S whose all children are in S6

test and record whether Tv is (−) colourable7

test and record whether Tv is (+) colourable (if v �= r)8

S ← S ∪ {v}9

if Tr is (−) colourable then10

return “G is 2-subcolourable”
else return “G is not 2-subcolourable”11

Algorithm 1. The test for 2-subcolourability of G

On 2-Subcolourings of Chordal Graphs 553

Input: Vertices u, v of T , vertices z, w neighbours of u, v respectively or nil
Output: Decide whether Pu,v is (z,w)-colourable

compute C(Pu,v)1

if C(Pu,v) �= Cu ∪ Cv then return “Pu,v is not (z, w)-colourable”2

precolour the vertices of Cu \ Cv and Cv \ Cu by red and blue respectively3

(or blue and red respectively)
if z �= nil then precolour the vertices of Nz,u red (or blue)4

if w �= nil then precolour the vertices of Nw,v blue (or red)5

initialize the set L ← ∅6

for each edge (s, t) incident to Pu,v do7

compute the set Ls consisting of those sets from L which intersect Is,t8

L ← L \ Ls ∪
�

Is,t ∪
��

L∈Ls
L
��

9

if some L ∈ L contains both a precoloured red and a precoloured blue vertex10

then return “Pu,v is not (z, w)-colourable”
else return “Pu,v is (z, w)-colourable”11

Algorithm 2. The test whether Pu,v is (z, w)-colourable

Input: A vertex x in T
Output: Decide whether Tx is (−) colourable

for each u, v ∈ Tx such that x ∈ Pu,v do1

for every child z and w (including nil) of u and v respectively do2

if Pu,v is (z, w)-colourable3

and for each child s �= w, z of Pu,v the tree Ts is (+) colourable
and either z = nil (resp. w = nil) or Tz (resp. Tw) is (+) or (−)
colourable then return “ Tx is (−) colourable”

return “ Tx is not (−) colourable”4

Algorithm 3. The test whether Tx is (−) colourable

Input: A vertex x in T
Output: Decide whether Tx is (+) colourable

for each u ∈ Tx do1

for every child z (including nil) of u do2

if Pu,x is (z, p[x])-colourable3

and for each child s �= z of Pu,x the tree Ts is (+) colourable
and either z = nil or Tz is (+) or (−) colourable
then return “ Tx is (+) colourable”

return “ Tx is not (+) colourable”4

Algorithm 4. The test whether Tx is (+) colourable

554 J. Stacho

Acknowledgements

The author would like to thank his advisor Pavol Hell for directing this research
and for his help with the preparation of this paper.

Note added in proof

The algorithm presented in this paper answers an open question from [5] for the
case k = 2, while it also extends a result from [5] and improves the complexity for
the larger class of chordal graphs. Recently, we were able to show that for all other
values of k ≥ 3, the problem of k-subcolouring of chordal graphs is NP -complete,
thus completely answering the open question of Broersma et al. [5].

References

1. Albertson, M.O., Jamison, R.E., Hedetniemi, S.T., Locke, S.C.: The subchromatic
number of a graph. Discrete Mathematics 74, 33–49 (1989)

2. Achlioptas, D.: The complexity of G-free colorability. Discrete Mathemat-
ics 165/166, 21–30 (1997)

3. Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcoloring: Complexity and algo-
rithms. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 154–165.
Springer, Heidelberg (2001)

4. Gimbel, J., Hartman, C.: Subcolorings and the subchromatic number of a graph.
Discrete Mathematics 272, 139–154 (2003)

5. Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.J.: More about subcolorings.
Computing 69, 187–203 (2002)

6. Hell, P., Klein, S., Nogueira, L.T., Protti, F.: Partitioning chordal graphs into inde-
pendent sets and cliques. Discrete Applied Mathematics 141, 185–194 (2004)

7. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of
chordal graphs. Theoretical Computer Science 349, 52–66 (2005)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

9. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society
(2003)

Collective Additive Tree Spanners of

Homogeneously Orderable Graphs

[Extended Abstract]

Feodor F. Dragan, Chenyu Yan, and Yang Xiang

Algorithmic Research Laboratory, Department of Computer Science
Kent State University, Kent, OH 44242, USA

dragan@cs.kent.edu, cyan1@kent.edu, yxiang@cs.kent.edu

Abstract. In this paper we investigate the (collective) tree spanners
problem in homogeneously orderable graphs. This class of graphs was in-
troduced by A. Brandstädt et al. to generalize the dually chordal graphs
and the distance-hereditary graphs and to show that the Steiner tree
problem can still be solved in polynomial time on this more general class
of graphs. In this paper, we demonstrate that every n-vertex homoge-
neously orderable graph G admits

– a spanning tree T such that, for any two vertices x, y of G, dT (x, y) ≤
dG(x, y) + 3 (i.e., an additive tree 3-spanner) and

– a system T (G) of at most O(log n) spanning trees such that, for
any two vertices x, y of G, a spanning tree T ∈ T (G) exists with
dT (x, y) ≤ dG(x, y) + 2 (i.e, a system of at most O(log n) collective
additive tree 2-spanners).

These results generalize known results on tree spanners of dually chordal
graphs and of distance-hereditary graphs. The results above are also
complemented with some lower bounds which say that on some n-vertex
homogeneously orderable graphs any system of collective additive tree
1-spanners must have at least Ω(n) spanning trees and there is no system
of collective additive tree 2-spanners with constant number of trees.

1 Introduction

A spanning tree T of a graph G is called a tree spanner of G if T provides a
“good” approximation of the distances in G. More formally, for r ≥ 0, T is called
an additive tree r-spanner of G if for any pair of vertices u and v their distance
in T is at most r plus their distance in G (see [17,19]). A similar definition can
be given for multiplicative tree t-spanners (see [6]); however in this paper we are
only concerned with additive spanners. Tree spanners have many applications in
various areas. They occur in biology and they can be used in message routing and
as models for broadcast operations in communication networks. Tree spanners
are useful also from the algorithmic point of view - many algorithmic problems
are easily solvable on trees. If one needs to solve an NP -hard optimization
problem concerning distances in a graph G and G admits a good tree spanner

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 555–567, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

556 F.F. Dragan, C. Yan, and Y. Xiang

T , then an efficient solution to that problem on T would provide an approximate
solution to the original problem on G.

The problem to decide for a graph G whether G has a multiplicative tree
t–spanner (the multiplicative tree t–spanner problem) is NP–complete for any
fixed t ≥ 4 [6], and it remains NP -complete even on some rather restricted graph
families. Fortunately, there is also a number of special classes of graphs where
additive or multiplicative variants of the tree spanner problem are polynomial
time solvable. Here we will mention only the results on two families of graphs
which are relevant to our paper. Every dually chordal graph admits an additive
tree 3-spanner [2] and every distance-hereditary graph admits an additive tree
2-spanner [19], and such tree spanners can be constructed in linear time.

In [12] we generalized the notion of tree spanners by defining a new notion of
collective tree spanners. We say that a graph G admits a system of μ collective
additive tree r-spanners if there is a system T (G) of at most μ spanning trees of
G such that for any two vertices u, v of G a spanning tree T ∈ T (G) exists such
that the distance in T between u and v is at most r plus their distance in G. We
say that system T (G) collectively r-spans the graph G and r is the (collective)
additive stretch factor. Clearly, if G admits a system of μ collective additive
tree r-spanners, then G admits an additive r-spanner with at most μ × (n − 1)
edges, and if μ = 1 then G admits an additive tree r-spanner. Note that, an
induced cycle of length k provides an example of a graph which does not have
any additive tree (k − 3)-spanner, but admits a system of two collective additive
tree 0-spanners. Furthermore, for any r ≥ 1 there is a chordal graph which
does not have any additive tree r-spanner [19]; on the other hand, any n-vertex
chordal graph admits a system of O(log n) collective additive tree 2-spanners [12].
These two examples demonstrate the power of this new concept of collective tree
spanners. One of the motivations to introduce this new concept stems from the
problem of designing compact and efficient routing schemes in graphs. In [14,20],
a shortest path routing labeling scheme for trees is described that assigns each
vertex of an n-vertex tree a O(log2 n/ log log n)-bit label. Given the label of a
source vertex and the label of a destination, it is possible to compute in constant
time, based solely on these two labels, the neighbor of the source that heads in
the direction of the destination. Clearly, if an n-vertex graph G admits a system
of μ collective additive tree r-spanners, then G admits a routing labeling scheme
of deviation (i.e., additive stretch) r with addresses and routing tables of size
O(μ log2 n/ log log n) bits per vertex. Once computed by the sender in μ time,
headers of messages never change, and the routing decision is made in constant
time per vertex (for details see [11,12]). Other motivations stem from the generic
problems of efficient representation of the distances in ”complicated” graphs
by the tree distances and of algorithmic use of these representations [1,7,13].
Approximating graph distance dG by a simpler distance (in particular, by tree–
distance dT) is useful in many areas such as communication networks, data
analysis, motion planning, image processing, network design, and phylogenetic
analysis.

Collective Additive Tree Spanners of Homogeneously Orderable Graphs 557

Previously, collective tree spanners of particular classes of graphs were con-
sidered in [8,10,11,12,16]. Paper [12] showed that any chordal graph or chordal
bipartite graph admits a system of at most log2 n collective additive tree 2–
spanners. These results were complemented by lower bounds, which say that
any system of collective additive tree 1–spanners must have Ω(

√
n) spanning

trees for some chordal graphs and Ω(n) spanning trees for some chordal bipar-
tite graphs. Furthermore, it was shown that any c-chordal graph admits a system
of at most log2 n collective additive tree (2�c/2�)–spanners and any circular-arc
graph admits a system of two collective additive tree 2–spanners. Paper [11]
showed that any AT-free graph (graph without asteroidal triples) admits a sys-
tem of two collective additive tree 2-spanners and any graph having a dominating
shortest path admits a system of two collective additive tree 3-spanners and a
system of five collective additive tree 2-spanners. In paper [8], it was shown that
no system of constant number of collective additive tree 1-spanners can exist for
unit interval graphs, no system of constant number of collective additive tree
r-spanners can exist for chordal graphs and r ≤ 3, and no system of constant
number of collective additive tree r-spanners can exist for weakly chordal graphs
and any constant r. On the other hand, [8] proved that any interval graph of
diameter D admits an easily constructible system of 2 log(D − 1) + 4 collective
additive tree 1-spanners.

Only papers [10,16] have investigated (so far) collective tree spanners in the
weighted graphs. Paper [10] demonstrated that any weighted graph with tree-
width at most k−1 admits a system of k log2 n collective additive tree 0–spanners,
any weighted graph with clique-width at most k admits a system of k log3/2 n col-
lective additive tree (2w)–spanners, and any weighted graph with size of largest
induced cycle at most c (i.e., a c-chordal graph) admits a system of 4 log2 n
collective additive tree (2(�c/3� + 1)w)–spanners (here, w is the maximum edge
weight in G). The latter result was refined for weighted weakly chordal graphs:
any such graph admits a system of 4 log2 n collective additive tree (2w)-spanners.
In [16], it was shown that any n–vertex planar graph admits a system of O(

√
n)

collective multiplicative tree 1-spanners (equivalently, additive tree 0-spanners)
and a system of at most 2 log3/2 n collective multiplicative tree 3–spanners.

In this paper we study collective additive tree spanners in homogeneously or-
derable graphs. The class of homogeneously orderable graphs was introduced in
[4] to generalize the dually chordal graphs and the distance-hereditary graphs
and to show that the Steiner tree problem can still be solved in polynomial
time on this more general class of graphs. The follow up to [4] paper [9] showed
also that both the connected r-domination problem and the r-dominating clique
problem are polynomial time solvable on homogeneously orderable graphs. Ho-
mogeneously orderable graphs (HOGs) is a large family of graphs which com-
prises a number of well-known graph classes including Dually Chordal graphs,
House-Hole-Domino-Sun-free graphs (HHDS-free graphs), Distance-Hereditary
graphs, Strongly Chordal graphs, Interval graphs and others (see Figure 1). In
Section 3, we show that every homogeneously orderable graph admits an ad-
ditive tree 3-spanner constructible in linear time. In Section 4, we demonstrate

558 F.F. Dragan, C. Yan, and Y. Xiang

HOGs

dually chordal graphs

strongly chordal graphs

directed path graphs ptolemaic graphs

interval graphs trees

distance−hereditary graphs

HHDS−free graphs

doubly chordal graphs

Fig. 1. Hierarchy of Homogeneously Orderable Graphs. For definitions of graph classes
included see [5].

that every homogeneously orderable graph admits a system of O(log n) collective
additive tree 2-spanners constructible in polynomial time. These results gener-
alize known results on tree spanners of dually chordal graphs and of distance-
hereditary graphs (see [2] and [19], respectively). Table 1 summarizes the results
of this paper.

Table 1. Collective additive tree spanners of n-vertex homogeneously orderable graphs

additive stretch upper bound on lower bound on
factor number of trees number of trees

3 1 1
2 log2 n c < μ ≤ log2 n
1 n − 1 Ω(n)
0 n − 1 Ω(n)

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, unweighted,
loopless and without multiple edges. In a graph G = (V, E) (n = |V |, m = |E|)
the length of a path from a vertex v to a vertex u is the number of edges in
the path. The distance dG(u, v) between the vertices u and v is the length of a
shortest path connecting u and v. The i-th neighborhood of a vertex v of G is the
set Ni(v) = {u ∈ V : dG(v, u) = i}. For a vertex v of G, the sets N(v) = N1(v)
and N [v] = N(v) ∪ {v} are called the open neighborhood and the closed neigh-
borhood of v, respectively. For a set S ⊆ V , by N [S] =

⋃
v∈S N [v] we denote

Collective Additive Tree Spanners of Homogeneously Orderable Graphs 559

the closed neighborhood of S and by N(S) = N [S] \ S the open neighborhood of
S. The disk of radius k centered at v is the set of all vertices of distance at most
k to v, i.e., Dk(v) = {u ∈ V : dG(u, v) ≤ k} =

⋃
{Ni(v) : i = 0, . . . , k}.

Denote by D(G) = {Dr(v) : v ∈ V , r a non-negative integer} the family of
all possible disks of G and by L(D(G)) the intersection graph of those disks, i.e.,
the vertices of L(D(G)) are disks from D(G) and two vertices are adjacent if
and only if the corresponding disks share a common vertex. Note that two disks
Dp(x) and Dq(y) intersect if and only if dG(x, y) ≤ p + q. The k–th power Gk of
a graph G = (V, E) is the graph with vertex set V and edges between vertices
u, v with distance dG(u, v) ≤ k. In what follows, a subset U of V is a k–set if U
induces a clique in the power Gk, i.e., for any pair x, y of vertices of U we have
dG(x, y) ≤ k. A graph G is called chordal if it does not have any induced cycle
of length greater than 3.

We say that a graph G = (V, E) admits a system of μ collective additive tree
r-spanners if there is a system T (G) of at most μ spanning trees of G such
that for any two vertices x, y of G a spanning tree T ∈ T (G) exists such that
dT (x, y) ≤ dG(x, y)+ r. If μ = 1, then the tree T such that T (G) = {T } is called
a tree r-spanner of G.

A nonempty set H ⊆ V is homogeneous in G = (V, E) if all vertices of H have
the same neighborhood in V \H , i.e., N(u)∩(V \H) = N(v)∩(V \H) for all u, v ∈
H, (any vertex w ∈ V \ H is adjacent to either all or none of the vertices from
H). A homogeneous set H is proper if |H | < |V |. Trivially for each v ∈ V the
singleton {v} is a proper homogeneous set. Let U1, U2 be disjoint subsets of V .
If every vertex of U1 is adjacent to every vertex of U2 then U1 and U2 form a
join, denoted by U1 �� U2. A set U ⊆ V is join–split if U can be partitioned into
two nonempty sets U1, U2 such that U = U1 �� U2.

Next we recall the definition of homogeneously orderable graphs as given in
[4]. A vertex v of G = (V, E) with |V | > 1 is h–extremal if there is a proper
subset H ⊂ D2(v) which is homogeneous in G and for which D2(v) ⊆ N [H]
holds, i.e., H dominates D2(v). Thus, the sets H and D2(v) \ H form a join.
A sequence σ = (v1, . . . , vn) is an h–extremal ordering of a graph G if for any
i = 1, . . . , n − 1 the vertex vi is h–extremal in Gi := G({vi, . . . , vn}) (induced
subgraph of G formed by vertices of {vi, . . . , vn}). A graph G is homogeneously
orderable if G has an h–extremal ordering.

In [4] it is proved that a graph G is homogeneously orderable if and only if the
square G2 of G is chordal and each maximal two–set of G is join–split. This local
structure of homogeneously orderable graphs implies a simple O(n3) recognition
algorithm of this class, which uses the chordality of the squares (see [4]). Since
the square G2 of a graph G is chordal if and only if the graph L(D(G)) is chordal
[3], we can reformulate that characterization in the following way.

Theorem 1. [4] A graph G is a homogeneously orderable graph if and only if
the graph L(D(G)) of G is chordal and each maximal two-set of G is join-split.

This characterization will be very useful in Section 3 and Section 4. In Section 4,
the following theorem from [9] will also be of use.

560 F.F. Dragan, C. Yan, and Y. Xiang

Theorem 2. [9] For any homogeneously orderable graph G = (V, E) with vertex
function r : V → N and for any subset S of V , we have that S is r-dominated
by some clique C of G (i.e, dG(v, C) ≤ r(v) for every v ∈ S) if and only if
dG(x, y) ≤ r(x) + r(y) + 1 for all x, y ∈ S.

Finally, it is well known that the following lemma for chordal graphs holds.

Lemma 1 (Cycle Lemma for Chordal Graphs). Let C = (v0, . . . , vi−1, vi,
vi+1, . . . , vk−1) be a cycle of a chordal graph G with k ≥ 4. Then, for any vertex
vi of C, vivj ∈ E(G), for j = i − 1, i, i + 1 (mod k), or vi−1vi+1 ∈ E(G).

3 Additive Tree 3-Spanners

In this section, we show that every homogeneously orderable graph G admits
an additive tree 3-spanner. We prove that an algorithm similar to one presented
in [2] for constructing an additive tree 3-spanner of a dually chordal graph con-
structs an additive tree 3-spanner of a homogeneously orderable graph. However,
its correctness proof (Lemma 3 and Lemma 4) for homogeneously orderable
graphs is more involved.

Assume u is an arbitrary vertex of a homogeneously orderable graph G and k ∈
{1, 2, . . . , ecc(u)}, where ecc(u) = max{dG(u, v) : v ∈ V (G)}. Let F k

1 , . . . , F k
pk

be the connected components of the graph obtained from G by removing vertices
of Dk−1(u). Denote Sk

i = F k
i ∩ Nk(u) and Mk−1

i = N(Sk
i) ∩ Nk−1(u). Mk−1

i is
called the projection of Sk

i to layer Nk−1(u). Clearly, any two vertices x, y ∈ Sk
i

are connected by a path outside the disk Dk−1(u). Denote by Hk−1 the graph
with

⋃pk

i=1 Mk−1
i as the vertex set and two vertices x, y are adjacent in Hk−1 if

and only if they belong to a common set Mk−1
i .

Lemma 2. Every connected component A of the graph Hk is a two-set in G.

Proof. Let x, y be two vertices of a connected component A of the graph Hk.
Then, we can find a collection of projections Mk

i1 , M
k
i2 , . . . , M

k
ih

such that x ∈
Mk

i1
, y ∈ Mk

ih
and Mk

ij
∩Mk

ij+1
= ∅ for all j = 1, . . . , h−1. Pick zj ∈ Mk

ij
∩Mk

ij+1
,

j = 1, . . . , h − 1 and let z0 := x and zh := y. Since zj−1, zj ∈ Mk
ij

, j = 1, . . . , h,

we can find two vertices v′j , v
′′
j ∈ Sk+1

ij
adjacent to zj−1 and zj , respectively.

Let Pj be a path of F k+1
ij

connecting the vertices v′j and v′′j . The disk Dk−1(u)
together with D1(x), D1(y) and the disks of the family {D1(z) : z ∈ ∪h

j=1Pj}
forms a cycle in the intersection graph L(D(G)). From chordality of this graph
(see Theorem 1) and since Dk−1(u) ∩ D1(z) = ∅ holds for all z ∈ ∪h

j=1Pj , we
deduce (see the Cycle Lemma for Chordal Graphs) that D1(x) ∩ D1(y) = ∅, i.e.
dG(x, y) ≤ 2. ��

Next, we are going to show that for every connected component A of the graph
Hk there is a vertex z ∈ Nk−1(u) such that A ⊆ N(z). To show that, the
following lemma is needed, proof of which is omitted in this version.

Collective Additive Tree Spanners of Homogeneously Orderable Graphs 561

Lemma 3. If k ≥ 2 and A is a connected component of the graph Hk, then
there is a vertex t ∈ Nk−2(u) such that A ⊆ N2(t).

Now, we are ready to prove the following lemma.

Lemma 4. For every connected component A of the graph Hk there is a vertex
z ∈ Nk−1(u) such that A ⊆ N(z).

Proof. If k = 1, then the lemma clearly holds. Hence, assume k ≥ 2. According
to Lemma 3, there is a vertex t ∈ Nk−2(u) such that A ⊆ N2(t). Hence, A∪{t} is
a two-set of G. Let U be a maximal two-set of G such that A ⊆ U . By Theorem
1, U consists of two subsets U1 and U2 and U1 �� U2. Clearly, A ∪ {t} must be
in either U1 or U2, since dG(x, t) = 2 for each x ∈ A. Without loss of generality,
assume A ∪ {t} is in U1. Then, U2 must contain a vertex z which is adjacent to
all the vertices in A∪ {t}. This vertex z can only be in Nk−1(u). This concludes
our proof. ��

From the above lemmata, one can give the following linear time algorithm to
construct an additive tree 3-spanner for a homogeneously orderable graph G.

PROCEDURE 1. Construct an additive tree 3-spanner for a HOG G

Input: A homogeneously orderable graph G = (V, E).

Output: An additive tree 3-spanner T of G.

Method:
set E′ = ∅;
pick an arbitrary vertex u in G;
set i = ecc(u);
for each vertex x ∈ Ni(u) do

arbitrarily choose a vertex y ∈ Ni−1(u) such that xy ∈ E(G);
add xy into E′;

set i to i − 1;
while i ≥ 1 do

construct the graph Hi and find its connected components;
for each connected component A of Hi do

find a vertex z ∈ Ni−1(u) such that A ⊆ N(z);
for each vertex x ∈ A add xz into E′;

for other vertices x which are in Ni(u) but not in Hi;
arbitrarily choose a vertex y ∈ Ni−1(u) such that xy ∈ E(G);
add xy into E′;

output T = (V, E′).

It is not hard to show that Procedure 1 can be implemented to run in linear
time. The most complex step is the construction of the connected components
of the graphs Hi (i = ecc(u) − 1, . . . , 2, 1). We start from the layer Nk(u),
where k = ecc(u), find its connected components F k

1 , . . . , F k
pk

and contract each
of them into a vertex. Then find the connected components F k−1

1 , . . . , F k−1
pk−1

in the graph induced by Nk−1(u) and the set of contracted vertices. To find
the connected components of the graph Hk−1, we construct a special bipartite

562 F.F. Dragan, C. Yan, and Y. Xiang

graph Bk−1 = (W, K; U). In this graph W = {f1, . . . , fpk
} (a vertex fj repre-

sents component F k
j), and K is the vertex set of Hk−1 (which is

⋃pk

i=1 Mk−1
i =

⋃pk

i=1(N(F k
i) ∩ Nk−1(u)). A vertex fj ∈ W and a vertex v ∈ K are adjacent

in Bk−1 if and only if v ∈ N(F k
j). The graph Bk−1 can be constructed in

O(
∑

v∈Nk(u)∪Nk−1(u) deg(v)) time. Note that a vertex v ∈ Nk−1(u) belongs to
Hk−1 if and only if it has a neighbor in Nk(u). The connected components of
Hk−1 are exactly the intersections of the connected components of Bk−1 with
the set K. After performing for Hk−1 all operations prescribed in the other lines
of Procedure 1, we contract each of F k−1

1 , . . . , F k−1
pk−1

into a vertex and descend
to the lower level. We repeat the above until we come to the vertex u.

Theorem 3. The spanning tree T constructed by Procedure 1 is an additive tree
3-spanner of G.

Proof. Let x, y be two arbitrary vertices of G. Assume x ∈ Nlx(u) and y ∈
Nly(u). Without loss of generality, assume lx ≤ ly. Let P = (x0 = x, x1, · · · , xp =
y) be a shortest path between x and y in G. Let k be the smallest integer such
that P ∩ Nk(u) = ∅. There are two cases to consider.
Case 1: There is exactly one vertex xi in P ∩ Nk(u).
First, consider the subcase when i = 0, i.e., xi = x0 = x. Let PT be the path
between y and u in T . Let y′ be the vertex of PT from Nk(u). Clearly, x and y′

belong to the projection Mk
j of that connected component F k+1

j (of the induced
subgraph of G formed by vertices V \Dk(u)) which contains vertex y. By the way
T was constructed, dT (x, y′) ≤ 2 and dT (y, y′) = ly − lx must hold. This implies
dT (x, y) ≤ dT (x, y′)+dT (y′, y) ≤ 2+ly−lx ≤ 2+dG(x, y) since dG(x, y) ≥ ly−lx.

Let now i = 0. Since xi is the only vertex in P ∩Nk(u), xi−1 and xi+1 must be
in Nk+1(u). Let P ′

T be the path between x and u and PT be the path between y
and u in T . Let x′ and y′ be the vertices of P ′

T and PT taken from Nk(u). Clearly,
x′ and xi belong to the projection Mk

jx
of that connected component F k+1

jx
(of

the induced subgraph of G formed by vertices V \ Dk(u)) which contains vertex
x, and y′ and xi belong to the projection Mk

jy
of that connected component

F k+1
jy

which contains vertex y (it is possible that F k+1
jy

= F k+1
jx

). Since these
projections Mk

jy
and Mk

jx
share a common vertex xi, they must belong to the

same connected component of the graph Hk. By the way T was constructed,
dT (x′, y′) ≤ 2 and dT (y, y′) = ly − k, dT (x, x′) = lx − k must hold. This implies
dT (x, y) ≤ dT (x, x′) + dT (x′, y′) + dT (y′, y) ≤ lx − k + 2 + ly − k ≤ dG(x, y) + 2
since dG(x, y) = dG(x, xi) + dG(xi, y) ≥ lx − k + ly − k.
Case 2: There are at least two vertices xi, xj in P ∩ Nk(u).
In this case, dG(x, y) > lx −k+ ly −k (i.e., dG(x, y) ≥ lx + ly −2k+1) must hold.
Again, let P ′

T be the path between x and u and PT be the path between y and u
in T . Let x′ and y′ be the vertices of P ′

T and PT , respectively, taken from Nk(u).
Clearly, x′, y′, xi and xj are in one connected component F k

t of the induced
subgraph of G formed by vertices V \ Dk−1(u). By the way T was constructed,
this implies dT (x′, y′) ≤ 4. Hence, dT (x, y) ≤ dT (x, x′) + dT (y, y′) + dT (x′, y′) ≤

Collective Additive Tree Spanners of Homogeneously Orderable Graphs 563

ly + lx − 2k + 4 ≤ dG(x, y) + 3. This proves the second case and concludes the
proof of the theorem. ��

Note that in [2] an example of a dually chordal graph (and hence of a homo-
geneously orderable graph) is presented which does not have any additive tree
2-spanner. Thus, the additive stretch factor 3 for the tree spanners presented in
Theorem 3 is best possible if one wants to achieve it only with one tree.

4 Collective Additive Tree 2-Spanners

In this section, we show that every homogeneously orderable graph H admits a
system of O(log n) collective additive tree 2-spanners. According to [4], if a graph
H is homogeneously orderable, then G = H2 is a chordal graph. Unfortunately,
the method developed in [12] for constructing collective tree spanners in some
hereditary classes of graphs (so-called (α, r)–decomposable graphs) cannot be
directly applied to the class of homogeneously orderable graphs as this class is not
hereditary (see [4]). We will work first on the square G = H2 of a homogeneously
orderable graph H and then will move down to the original graph H . To the best
of our knowledge this is the first non-trivial result on collective tree spanners of
a non-hereditary family of graphs.

The following theorem is known for chordal graphs.

Theorem 4. [15] Every n-vertex chordal graph G contains a maximal clique S
such that if the vertices in S are deleted from G, every connected component in
the graph induced by any remaining vertices is of size at most n/2.

A linear time algorithm for finding for a chordal graph G a separating clique
S satisfying the condition of the theorem is also given in [15]. We will call S a
balanced separator of G.

Using the above theorem, one can construct for any chordal graph G a (rooted)
balanced decomposition tree BT (G) as follows. If G is a complete graph, then
BT (G) is a one-node tree. Otherwise, find a balanced separator S in G, which
exists according to Theorem 4. Let G1, G2, . . . , Gp be the connected components
of the graph G \ S obtained from G by removing vertices of S. For each graph
Gi (i = 1, . . . , p), which is also a chordal graph, construct a balanced decompo-
sition tree BT (Gi) recursively, and build BT (G) by taking S to be the root and
connecting the root of each tree BT (Gi) as a child of S. Clearly, the nodes of
BT (G) represent a partition of the vertex set V of G into clusters S1, S2, . . . , Sq

which are cliques. For a node X of BT (G), denote by G(↓X) the (connected)
subgraph of G induced by vertices

⋃
{Y : Y is a descendent of X in BT (G)}

(here we assume that X is a descendent of itself).
Consider two arbitrary vertices x and y of a chordal graph G and let S(x)

and S(y) be the nodes of BT (G) containing x and y, respectively. Let also
NCABT (G)(S(x), S(y)) = Xt be the nearest common ancestor and X0, X1, . . . ,
Xt be the sequence of common ancestors of S(x) and S(y) in BT (G) starting
from the root X0 of BT (G). We will need the following lemma from [12].

564 F.F. Dragan, C. Yan, and Y. Xiang

Lemma 5. [12] Any path PG
x,y, connecting vertices x and y in G, contains a

vertex from X0 ∪ · · · ∪ Xt.

Let now H = (V, E) be a homogeneously orderable graph. By Theorem 1, G =
H2 is a chordal graph. We construct a rooted balanced decomposition tree BT (G)
for G as described above. It is also known that any maximal clique of G is a
join-split two–set of H . For any maximal clique C of G, let C = U1 ∪ U2 such
that, in H , U1 � U2. Note that Xi (i = 0, 1, . . . , t) may not be a maximal clique
in G. Let C′

i be a maximal clique of G such that Xi ⊆ C′
i. Assume C′

i = U i
1 ∪U i

2

with U i
1 � U i

2 in H .
There are two cases to consider:

(a) U i
1 ∩ Xi = ∅ and U i

2 ∩ Xi = ∅;
(b) either U i

1 ∩ Xi = ∅ or U i
2 ∩ Xi = ∅ (without loss of generality, we assume

U i
1 ∩ Xi = ∅ in this case).

For each connected graph G(↓Xi), let H(↓Xi) be the induced subgraph of
H which has the same vertex set as G(↓Xi). Note that H(↓Xi) may not be
connected as not all edges of G(↓Xi) are present in H(↓Xi). We construct a tree
Ti for H(↓Xi) in the following way.

If U i
1 ∩ Xi = ∅ and U i

2 ∩ Xi = ∅ holds, then we choose two vertices r1 ∈
Xi ∩U i

1, r2 ∈ Xi ∩U i
2 and add r1r2 into E(Ti). For each x ∈ Xi ∩U i

1, we add xr2

into E(Ti). For each y ∈ Xi ∩ U i
2, we add yr1 into E(Ti). Then we extend the

tree constructed so far by building a breadth-first-search-tree in H(↓Xi) starting
at set Xi and spanning that connected component of H(↓Xi) which contains r1

and r2.
If U i

1 ∩ Xi = ∅ holds, then we choose a vertex r from U i
1 (which may not be

even in H(↓Xi)) and construct a tree Ti as follows. For every vertex x ∈ Xi, we
put xr into E(Ti). Then, we extend the tree constructed so far by building a
breadth-first-search-tree in H(↓Xi) starting at set Xi and spanning the vertices
that can reach r via vertices in H(↓Xi).

Below we will prove that for some vertices x, y ∈ H(↓Xi) the tree Ti will
guarantee dTi(x, y) ≤ dH(x, y) + 2. Let x ∈ V (H(↓Xi)) and x′ ∈ Xi be vertices
such that dTi(x, x′) = dH(↓Xi)(x, Xi). Vertex x′ is called the projection of x in
Ti. We use PTi(x) to denote the shortest path between x′ and x in Ti.

Consider any two vertices x, y ∈ V . Let as before X0, X1, . . . , Xt be the com-
mon ancestors of S(x) and S(y) in BT (G), and let Xi be the common ancestor
with minimum i such that there is a shortest path PH

x,y between x and y in H

with PH
x,y ∩Xi = ∅. It is easy to see that such Xi must exist. Indeed, according to

Lemma 5, any path PG
x,y between x and y in G must intersect X0 ∪ · · · ∪ Xt and

any path PH
x,y is also a path between x and y in G (as G = H2 and therefore the

edge set of H is a subset of the edge set of G). By the choice of Xi, any shortest
path in H connecting x and y must be in H(↓Xi). Let Ti be the tree constructed
as above for H(↓Xi). The following lemma can be proved to be true.

Lemma 6. dTi(x, y) ≤ dH(x, y) + 2 must hold.

Collective Additive Tree Spanners of Homogeneously Orderable Graphs 565

Proof. Let PH
x,y be a shortest path of H connecting x and y. By the choice of

Xi, this path is entirely in H(↓Xi) and intersects Xi. Let zx, zy be vertices of
this path and Xi closest to x and y, respectively.

Let x′, y′ be the projections of x and y in Ti. According to the way Ti was con-
structed, dTi(x′, y′) ≤ 3, dTi(x, x′) = dH(↓Xi)(x, x′) ≤ dH(↓Xi)(x, zx) = dH(x, zx)
and dTi(y, y′) = dH(↓Xi)(y, y′) ≤ dH(↓Xi)(y, zy) = dH(y, zy). If dTi(x

′, y′) ≤ 2 or
zx = zy, then we are done since dTi(x, y) ≤ dTi(x, x′) + dTi(x′, y′) + dTi(y, y′) ≤
dH(x, zx)+dTi (x′, y′)+dH(y, zy) = dH(x, y)−dH(zx, zy)+dTi (x′, y′) ≤ dH(x, y)+
2. Hence, assume that dTi(x′, y′) = 3 and dH(x, y) = dH(x, zx) + dH(y, zy),
i.e., zx = zy. Denote s := zx = zy, dH(x, s) := lx and dH(y, s) := ly. Since
dTi(x′, y′) = 3, by the way Ti was constructed, we have U i

1 ∩ Xi = ∅ and
U i

2 ∩ Xi = ∅. Furthermore, vertices x′ and y′ can not be both in U i
1 ∩ Xi or

both in U i
2 ∩ Xi (otherwise, dTi(x′, y′) ≤ 2). Without loss of generality, assume

x′ ∈ U i
1 ∩ Xi, y′ ∈ U i

2 ∩ Xi and s ∈ U i
1 ∩ Xi. Consider the following radius func-

tion for vertices s, y, y′ in H : r(s) = 0, r(y′) = 0 and r(y) = ly − 1. According to
Theorem 2, there is a clique C in H such that C r-dominates the set {s, y′, y}.
Hence, there must exist a vertex y′′ ∈ (C \ Xi) such that sy′′, y′y′′ ∈ E(H) and
dH(y′′, y) = ly − 2. This implies that y′′ is on a shortest path between x and
y in H and, by the choice of Xi, y′′ is in H(↓Xi). Since sy′′, y′y′′ ∈ E(H), we
have dH(y′′, z) ≤ 2 for any vertex z ∈ U i

1 ∪ U i
2. Therefore, {y′′} ∪ Xi is a clique

in G(↓Xi). The latter contradicts with the fact that Xi was a maximal clique in
G(↓Xi) (see Theorem 4 and paragraph on the construction of BT (G) after that
theorem). Thus, the case that dTi(x′, y′) = 3 and zx = zy is impossible. This
concludes our proof. ��

Let now Bi
1, . . . , B

i
pi

be the nodes on depth i of the tree BT (G). For each sub-
graph Hi

j = H(↓Bi
j) of H (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi), denote

by T i
j the tree constructed for Hi

j as above. Clearly, T i
j can be constructed in

linear time. We call T i
j a local tree of H . Since any two local trees T i

j and T i
j′

share at most one vertex, T i =
⋃

{T i
j , j = 0, . . . , pi} is a forest. T i can be ex-

tended to T ′i to span all the vertices in H . Tree T ′i is called a global spanning
tree of H . By Lemma 6, we immediately get the following result.

Lemma 7. For any two vertices x, y ∈ V , there exists a global spanning tree T ′i

such that dT ′i (x, y) ≤ dH(x, y) + 2.

By the way BT (G) was constructed, the depth of BT (G) is at most log2 n.
Hence, there are at most log2 n global spanning trees of H . Obviously, G = H2

can be obtained in O(nm) time. According to [12], BT (G) can be constructed in
O(n2 log2 n) time (note that G may have O(n2) edges). Each T ′i is constructible
in linear time. Therefore, the following theorem is true.

Theorem 5. Any n-vertex homogeneously orderable graph admits a system of
log2 n collective additive tree 2-spanners which can be constructed in O(nm +
n2 log2 n) time.

566 F.F. Dragan, C. Yan, and Y. Xiang

5 Conclusion

In this paper we studied collective additive tree spanners in homogeneously or-
derable graphs. We showed that every n-vertex homogeneously orderable graph
admits an additive tree 3-spanner constructible in linear time and a system of
O(log n) collective additive tree 2-spanners constructible in polynomial time.
These results generalize known results on tree spanners of dually chordal graphs
and of distance-hereditary graphs. We mentioned also that there are homo-
geneously orderable graphs which do not admit any additive tree 2-spanners.
Hence, it is natural to ask how many spanning trees are necessary to achieve
collective additive stretch factor of 2 in homogeneously orderable graphs. We
know that this number is not a constant (a proof of this is presented in the full
version of the paper) and is not larger than log2 n. One may ask also how many
spanning trees are necessary and how many are sufficient to achieve collective
additive stretch factor of 1 or 0 in homogeneously orderable graphs. The answer
to this question is simple. Any graph G on n vertices admits a system of at
most n − 1 collective additive tree 0-spanners. On the other hand, it is easy
to see that any system of collective additive tree 1–spanners of homogeneously
orderable graphs will need to have at least Ω(n) spanning trees (a proof of this
is presented in the full version).

References

1. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: STOC 1998,
pp. 161–8 (1998)

2. Brandstädt, A., Chepoi, V., Dragan, F.F.: Distance Approximating Trees for
Chordal and Dually Chordal Graphs. J. Algorithms 30, 166–184 (1999)

3. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs.
SIAM J. Discrete Math. 11, 437–455 (1998)

4. Brandstädt, A., Dragan, F.F., Nicolai, F.: Homogeneously orderable graphs. The-
oretical Computer Science 172, 209–232 (1997)

5. Brandstädt, A., Le Bang, V., Spinrad, J.P.: Graph Classes: A Survey, SIAM Mono-
graphs on Discrete Mathematics and Applications. Philadelphia (1999)

6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math. 8, 359–387 (1995)
7. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a Finite

Metric by a Small Number of Tree Metrics. In: FOCS 1998, pp. 379–388 (1998)
8. Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C.: Collective tree 1-spanners for

interval graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 151–162.
Springer, Heidelberg (2005)

9. Dragan, F.F., Nicolai, F.: r-Domination Problems on Homogeneously Orderable
Graphs. Networks 30, 121–131 (1997)

10. Dragan, F.F., Yan, C.: Collective Tree Spanners in Graphs with Bounded Genus,
Chordality, Tree-width, or Clique-width. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 583–592. Springer, Heidelberg (2005)

11. Dragan, F.F., Yan, C., Corneil, D.G.: Collective Tree Spanners and Routing in AT-
free Related Graphs. J. of Graph Algorithms and Applications 10, 97–122 (2006)

12. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J.
Discrete Math. 20, 241–260 (2006)

Collective Additive Tree Spanners of Homogeneously Orderable Graphs 567

13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC 2003, pp. 448–455 (2003)

14. Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001)

15. Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs.
SIAM J. Alg. Discrete Meth. 5, 306–313 (1984)

16. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (or, Routing
Issues in MPLS). SIAM J. Comput. 34, 453–474 (Also in FOCS 2001) (2005)

17. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364
(1993)

18. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Math. Appl. (2000)

19. Prisner, E.: Distance approximating spanning trees. In: Reischuk, R., Morvan, M.
(eds.) STACS 1997. LNCS, vol. 1200, pp. 499–510. Springer, Heidelberg (1997)

20. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1–10 (2001)

The Generalized Median Stable Matchings:

Finding Them Is Not That Easy

Christine T. Cheng

Department of Computer Science
University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA

ccheng@cs.uwm.edu

Abstract. Let I be a stable matching instance with N stable matchings.
For each man m, order his N stable partners from his most preferred to
his least preferred. Denote the ith woman in his sorted list as pi(m).
Let αi consist of the man-woman pairs where each man m is matched
to pi(m). Teo and Sethuraman proved this surprising result: for i = 1 to
N , not only is αi a matching, it is also stable. The αi’s are called the
generalized median stable matchings of I .

In this paper, we present a new characterization of these stable match-
ings that is solely based on I ’s rotation poset. We then prove the follow-
ing: when i = O(log n), where n is the number of men, αi can be found
efficiently; but when i is a constant fraction of N , finding αi is NP-
hard. We also consider what it means to approximate the median stable
matching of I , and present results for this problem.

1 Introduction

In the stable marriage problem (SM), there are n men and n women, each of
whom has a list that ranks all individuals of the opposite sex. A matching is
a set of man-woman pairs where each individual appears in at most one pair.
The objective of the problem is to find a matching μ that has n pairs and has
no blocking pairs – i.e., a man and a woman who prefer each other over their
partners in μ. The rationale behind the stability condition is that if a blocking
pair exists, then the man and the woman will likely leave their partners and
thereby compromise the integrity of the matching μ. A celebrated result by Gale
and Shapley states that every instance of SM has a stable matching that can be
found in O(n2) time [5]. Today, centralized stable matching algorithms match
medical residents to hospitals [14], students to schools [1,2], etc.

To find a stable matching for an arbitrary instance, Gale and Shapley pre-
sented the deferred-acceptance (DA) algorithm, where the men ask and the
women accept or reject offers. The result is the man-optimal/woman-pessimal
stable matching – every man is matched to the woman he prefers the most
among all his partners in a stable matching and every woman is matched to the
man she prefers the least among all her partners in a stable matching. On the
other hand, when the men and women switch roles, the result is the woman-
optimal/man-pessimal stable matching and is defined accordingly. Thus, while

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 568–579, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Generalized Median Stable Matchings 569

the DA algorithm produces a stable matching, one may not want to use the
matching because it is biased towards one side of the matching. This motivates
the problem of finding “fair” stable matchings.

Different notions of fair stable matchings have been considered in the past.
Suppose a person’s happiness in a stable matching is based on his/her partner’s
rank in his/her preference list. Selkow [12] and, later, Gusfield [6] studied the
minimum-regret stable matching, which maximizes the happiness of the unhap-
piest person in the matching. Irving et al. [9], on the other hand, considered
the egalitarian stable matching, which maximizes the sum of the happiness of
all the participants. In both cases, the proposed stable matchings can be found
in polynomial time. However, by using global measures, these types of stable
matchings may sacrifice the happiness of some individuals as they aim for the
greater good. In another direction, Klaus and Klijn [11] suggested designing
probabilistic matching mechanisms that are procedurally fair. That is, a stable
matching is considered fair if the procedure used to arrive at the outcome is
equitable to all the participants. They studied three different random mecha-
nisms and the probability distributions they induce on the stable matchings of
an instance.

Yet another notion of fair stable matchings is due to Teo and Sethuraman [15].
Let I be a stable matching instance, M(I) its set of stable matchings, and
N = |M(I)|. Let pμ(a) denote the partner of a in stable matching μ. For each
man m, sort the multiset of women {pμ(m), μ ∈ M(I)} from m’s most preferred
to least preferred woman. Let pi(m) denote the ith woman in this sorted list for
i = 1, . . . , N . Do the same for each woman w. By applying linear programming
tools, they showed that the following family of stable matchings exists:

Lemma 1. [Teo and Sethuraman] Let αi consist of man-woman pairs where
each man m is matched to pi(m). Similarly, let βi consist of all man-woman
pairs where each woman w is matched to pi(w). For i = 1, . . . , N , αi and βi are
stable matchings; moreover, αi = βN−i+1.

The most remarkable of these stable matchings are the ones in the “middle” –
α(N+1)/2 when N is odd, and αN/2 and α(N+2)/2 when N is even – called the
median stable matching of I.1 It matches every participant to his/her (lower or
upper) median stable partner and, thus, is fair at the individual level in a very
strong sense. The stable matchings αi and βN−i+1 are called the ith generalized
median stable matching of I, for i = 1, . . . , N .

Since Teo et al.’s work [15], two other sets of authors [10,4] have proven the
existence of these matchings using different tools. No one, however, has addressed
the complexity of finding an instance’s median stable matching. Simply using
the definition can be inefficient because there are instances whose number of
stable matchings is exponential in the input size. Our goal is to fill this gap.

To find an instance’s median stable matching, we take a combinatorial ap-
proach and use its rotation poset. Algorithmically, the rotation poset is a very
1 Throughout the paper, we shall refer to an instance’s median stable matching in

singular form even though there can be two such matchings.

570 C.T. Cheng

useful structure because it encodes all the stable matchings of the instance and,
yet, is polynomial in the input size. Our main results are as follows:

– First, we present a new characterization of the generalized median stable
matchings that is solely based on rotation posets. It implies that to find an
instance’s median stable matching, enumerating all of its stable matchings
can be avoided; instead, the task can be accomplished by counting certain
subsets of its rotation poset. Additionally, the characterization also provides
interesting insights into the generalized median stable matchings that are
not evident from their definitions.

– We prove that finding αi and αN−i+1 can be done efficiently when i =
O(log n), but that it is NP-hard when i is a constant fraction of N . Hence,
finding an instance’s median stable matching is NP-hard.

– Finally, we consider what it means to approximate the median stable match-
ing of an instance, and present results for this problem.

The outline for the rest of the paper is as follows: in Section 2, we define
rotation posets and describe their properties. We present the new characteri-
zation for the generalized median stable matchings in Section 3, and prove the
easy cases and the hardness result for finding αi in Section 4. We consider the
problem of approximating the median stable matching in Section 5.

2 Some Background: Distributive Lattices and Rotation
Posets

Let I be a stable matching instance, and μ and μ′ be two of its stable matchings.
An individual a prefers μ to μ′ if a prefers his/her partner in μ over his/her
partner in μ′; otherwise, a prefers μ′ to μ or is indifferent between them if a
has the same partner in both matchings. The stable matching μ dominates μ′,
denoted as μ � μ′, if every man prefers μ to μ′ or is indifferent between them.
It turns out that the dominance relation � induces a nice structure on M(I).

Theorem 1. [12] (M(I), �) is a distributive lattice.

The top and bottom elements of M(I)2 are the man-optimal stable matching
μM and the woman-optimal stable matching μW of I, respectively since μM

dominates every stable matching of I which, in turn, dominates μW .
Associated with the distributive lattice M(I) is the rotation poset of I. Rota-

tions are the incremental changes that need to be made so that a stable matching
μ can be transformed into another stable matching μ′ that it dominates. We de-
fine them formally next; we refer readers to [7] for a thorough discussion of the
subject.

When μ �= μW , there is a man m so that pμ(m) �= pμW (m). For each such
man m, define his successor woman, sμ(m), as the first woman on his preference
2 We sometimes use M(I) to refer to the set as well as the distributive lattice. The

context will indicate which one we are referring to.

The Generalized Median Stable Matchings 571

list that follows pμ(m), and prefers him over her current partner in μ. For ex-
ample, pμW (m) is a possible candidate for sμ(m) but there may be other eligible
women ahead of her in m’s preference list. A rotation ρ exposed in μ is a cyclic
sequence of man-woman pairs ρ = ((m0, w0), (m1, w1), . . . , (mr−1, wr−1)) such
that (mi, wi) ∈ μ and sμ(mi) = wi+1 for all i where the addition in the subscript
is modulo r. To eliminate ρ from μ, each man mi in ρ is matched to wi+1 while
the rest of the pairs not in ρ are kept the same. The result is another stable
matching denoted as μ/ρ which μ dominates.

Let I be an SM instance of size n (i.e., it has n men and n women), and let
R(I) denote the set of all rotations that are exposed in the stable matchings of
I. We note the following properties of rotations. First, a man-woman pair can
be part of at most one rotation of I. Thus, |R(I)| ≤ n2/2 because every rotation
consists of at least two pairs, and the rotations in R(I) together contain at most
n2 pairs. Second, if ρ and ρ′ are two rotations exposed in μ, ρ and ρ′ do not
have any pairs in common. This implies that ρ′ remains exposed in μ/ρ. Third,
whenever μ �= μW , there will always be at least one rotation ρ exposed in μ.
Furthermore, there is no stable matching μ′ such that μ ≺ μ′ ≺ μ/ρ. Thus, in
the Hasse diagram of M(I), every edge between two stable matchings can be
labeled by the rotation whose elimination from the dominant stable matching
results in the dominated stable matching.

A rotation ρ′ precedes rotation ρ, ρ′ ≤ ρ, if in order to obtain a stable matching
in which ρ is exposed, ρ′ must be eliminated first. The pair (R(I), ≤) is called
the rotation poset of I. Gusfield has shown that R(I) can be constructed in
an efficient manner [6]; more precisely, a rotation digraph G(I) whose vertices
correspond to the rotations of R(I) and whose transitive closure contains all the
precedence relations of R(I) can be built in O(n2) time.

A subset S of R(I) is closed if whenever a rotation is in S, all rotations that
precede it are also in S. There is a very nice correspondence between the stable
matchings of I and the closed subsets of its rotation poset:

Theorem 2. [8] There is a one-to-one correspondence between the elements of
M(I) and the closed subsets of R(I). In particular, if μ ∈ M(I) corresponds
to the closed subset S of R(I), then μ can be obtained by starting at μM and
eliminating all the rotations in S.

For example, the empty subset of R(I) corresponds to μM while R(I) itself
corresponds to μW . Given R(I) and one of its closed subsets S, finding the
stable matching that corresponds to S takes O(n2) time since constructing μM

takes O(n2) time, and the total number of pairs in the rotations of S cannot
exceed n2. Conversely, finding the closed subset of R(I) that corresponds to a
stable matching μ of I also takes O(n2) time. This can be done by starting at
μM , and then eliminating rotations until the partner of every man m is pμ(m).
The set containing all the eliminated rotations corresponds to μ.

When P is a poset, let c(P) denote the number of closed subsets of P . Ac-
cording to Theorem 2, c(R(I)) = |M(I)|. Later, we will use the fact that c(P)
is also equal to the number of antichains of P . The correspondence is as follows:
if A is an antichain, let SA be the closed subset that contains A and all the

572 C.T. Cheng

μ
μ

μμ

ρ

ρρ

ρ

ρ

ρ ρ

ρ

ρ
μ
ρ

1

2

3 4

5

1

2 3

4

1

2

2

3

3

4 μ6

Fig. 1. The Hasse diagrams for the lattice of stable matchings and rotation poset of
the example in Section 2

elements that precede a for each a ∈ A; if S is a closed subset, let AS be the
antichain that contains all the bottom elements of S.

Interestingly, the rotation posets of SM instances do not have any special
structure in the following sense – Blair showed that for every poset P , there is
an SM instance I(P) whose rotation poset is isomorphic to P [3]. In [8], Irving
and Leather presented an algorithm that given P will construct I(P) whose size
and construction time is O(|P |2). Moreover, defining the isomorphism between
the elements of P and the rotations of I(P) is straightforward.

Before we end this section, we present an example to illustrate the distributive
lattice and rotation poset of the following SM instance I:

m1: w1 w2 w3 w4 w5 w6

m2: w2 w3 w4 w1 w5 w6

m3: w3 w1 w5 w2 w4 w6

m4: w4 w3 w1 w2 w5 w6

m5: w5 w1 w6 w2 w3 w4

m6: w6 w3 w1 w2 w4 w5

w1: m4 m5 m3 m1 m2 m4

w2: m1 m2 m3 m4 m5 m6

w3: m6 m4 m2 m3 m1 m5

w4: m2 m4 m1 m3 m5 m6

w5: m3 m5 m1 m2 m4 m6

w6: m5 m6 m1 m2 m3 m4

It has six stable matchings, where μ1 is the man-optimal stable matching and
μ6 is the woman-optimal stable matching:

μ1 : {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w5), (m6, w6)}
μ2 : {(m1, w2), (m2, w3), (m3, w1), (m4, w4), (m5, w5), (m6, w6)}
μ3 : {(m1, w2), (m2, w4), (m3, w1), (m4, w3), (m5, w5), (m6, w6)}
μ4 : {(m1, w2), (m2, w3), (m3, w5), (m4, w4), (m5, w1), (m6, w6)}
μ5 : {(m1, w2), (m2, w4), (m3, w5), (m4, w3), (m5, w1), (m6, w6)}
μ6 : {(m1, w2), (m2, w4), (m3, w5), (m4, w1), (m5, w6), (m6, w3)}

It has four rotations: ρ1 : ((m1, w1), (m2, w2), (m3, w3)), ρ2 : ((m2, w3), (m4,
w4)), ρ3 : ((m3, w1), (m5, w5)) ρ4 : ((m4, w3), (m5, w1), (m6, w6)). Figure 1 shows
the Hasse diagrams of (M(I), �) and (R(I), ≤). The correspondence between
the stable matchings of I and the closed subsets of R(I) are: μ1 and ∅, μ2 and
{ρ1}, μ3 and {ρ1, ρ2}, μ4 and {ρ1, ρ3}, μ5 and {ρ1, ρ2, ρ3}, μ6 and {ρ1, ρ2, ρ3, ρ4}.

The Generalized Median Stable Matchings 573

3 A New Characterization

In this section, we present a characterization of the generalized median stable
matchings by describing the closed subsets of R(I) they correspond to. Not only
does the characterization provide an alternate way to compute the matchings, it
also leads to some interesting insights that are not evident from their definitons.

Theorem 3. For each ρ ∈ R(I), let nρ denote the number of closed subsets of
R(I) that do not contain ρ. For i = 1, . . . , N , S(i) = {ρ : nρ < i} is a closed
subset of R(I), and αi is the stable matching obtained by starting at μM and
eliminating all the rotations in S(i).

Proof. By the definition of closed subsets, the function nρ is an increasing func-
tion; i.e., if ρ′ precedes ρ in R(I), nρ′ < nρ. Therefore, if ρ ∈ S(i), every rotation
that precedes ρ also belongs to S(i).

For i = 1 to N , let S(αi) denote the closed subset of R(I) that corresponds to
αi. The second part of the theorem states that S(αi) = S(i). To prove it, we shall
show that each man m satisfies the following condition: the set of rotations in
S(αi) that m appears in is exactly the set of rotations in S(i) that m appears in.
This is sufficent because if S(αi) �= S(i), there is a rotation ρ ∈ (S(αi) − S(i)) ∪
(S(αi) − S(i)), and every man that appears in ρ will not satisfy the condition.

When m does not appear in any rotations in R(I) (i.e., m’s partner in μM is
never replaced in any of the stable matchings of I), the above condition is clearly
satisfied. So suppose m does appear in some rotations in R(I): ρ1, ρ2, . . . , ρk

where m appears with wj in ρj . Additionally, suppose m prefers w1 the most,
followed by w2, then w3, etc. This means that ρ1, ρ2, . . . , ρk form a chain in the
rotation poset because ρi must be eliminated before m can be matched to wi+1

for i = 1, . . . , k − 1. Let xj denote the number of stable matchings that match
m to wj . By applying the definition of αi, m’s partner in αi is wj∗ where j∗ is
the index that satisfies the inequality:

x1 + x2 + . . . + xj∗−1 < i ≤ x1 + x2 + . . . + xj∗−1 + xj∗ . (1)

In order for m to be matched to wj∗ , rotations ρ1, . . . , ρj∗−1 have to be eliminated
but ρj∗ , ρj∗+1, . . . , ρk are not; i.e., of the k rotations that m appears in, the first
j∗ − 1 are the only ones that lie in S(αi).

Next, notice that if a stable matching corresponds to a closed subset of R(I)
that does not contain ρj , m must be matched to one of the following women:
w1, w2, . . . , wj . This implies that nρj = x1 + x2 + . . . + xj . Applying inequal-
ity (1), nρj < i if and only if j < j∗. Thus, ρ1, . . . , ρj∗−1 belong to S(i) but
ρj∗ , ρj∗+1, . . . , ρk do not. We have now shown that, for every man m, the rota-
tions that m appears in in S(αi) are exactly the same ones in S(i). Thus, αi is
the stable matching obtained by eliminating the rotations in S(i). 	

In the example in Section 2, nρ1 = 1, nρ2 = nρ3 = 3, and nρ4 = 5. Since
N = 6, the median stable matching will consist of two stable matchings – the
two that correspond to S(3) = {ρ1} and S(4) = {ρ1, ρ2, ρ3}, which are μ2 and μ5

574 C.T. Cheng

respectively. Next, we note some unexpected observations about the generalized
median stable matchings.

1. Location of the median stable matching. Does an instance’s median stable
matching lie in the “middle” of its lattice of stable matchings or can it be
somewhere else? Consider an instance I whose rotation poset consists of k
rotations which are pairwise incomparable; i.e., R(I) is an antichain of size
k. Every subset of R(I) is a closed subset so I has 2k stable matchings.
Moreover, for each rotation ρ, nρ = 2k−1. Thus, for 1 ≤ i ≤ 2k−1, S(i) =
∅, and for 2k−1 + 1 ≤ i ≤ 2k, S(i) = R(I). In other words, the lower
median stable matching of I is the man-optimal stable matching, which is
the top element of M(I), while the upper median stable matching of I is
the woman-optimal stable matching, which is the bottom element of M(I)
– exactly the two stable matchings we least expected for the median stable
matching! Indeed, it is not difficult to construct examples that show that
the median stable matching can lie “anywhere” in the distributive lattice of
stable matchings.

2. Number of distinct generalized median stable matchings. Teo and Sethura-
man [15] had already observed that an instance’s generalized median stable
matchings need not be all distinct. In our example above, the instance has
2k different stable matchings and, yet, its generalized median stable match-
ings consisted of only two types. In general, how many could there be? By
Theorem 3, it is equal to the number of distinct S(i) sets. But this number
is simply one more than the number of distinct nρ values; the additional one
accounts for the fact that none of the rotations belong to S(1). Thus, if I
has size n, it can have at most n2/2+1 distinct types of generalized median
stable matchings.

3. Instances with isomorphic rotation posets. Finally, Theorem 3 also implies
that an instance’s generalized median stable matchings are completely de-
pendent on the structure of its rotation poset. To see this, consider two
instances I and I ′ whose rotation posets are isomorphic. Let f be an iso-
morphism from R(I) to R(I ′). For each ρ ∈ R(I), nρ = nf(ρ). Thus, if S(i)
is the closed subset of R(I) that corresponds to the ith generalized median
stable matching of I, then f(S(i)) = {f(ρ) : ρ ∈ S(i)} is the closed subset of
R(I ′) that corresponds to the ith generalized median stable matching of I ′.
Interestingly, the median stable matching is the only “fair” stable matching
we know of that has this property.

4 Finding the Generalized Median Stable Matchings

Suppose we find the ith generalized median stable matching of I using its defin-
ition, which we call the direct method. It requires (i) enumerating all the stable
matchings of I to construct the multiset of stable partners for each man, (ii)
sorting each man’s multiset of stable partners from his most preferred to his
least preferred woman, and (iii) matching each man to the ith woman in his

The Generalized Median Stable Matchings 575

sorted multiset of stable partners. Clearly, the bottleneck is in steps (i) and (ii);
these steps take O(n2 + nN) time by using the enumeration algorithm in [6] for
step (i) and bucket sort for step (ii).

Lemma 2. Let I be a stable matching instance of size n with N stable match-
ings. When N is polynomial in n, the direct method for finding αi runs in time
polynomial in n, for i = 1, . . . , N .

Thus, when N is no longer polynomial in n, can αi still be computed efficiently?
We shall show next that there are indeed some easy cases but that, in general,
the the answer is “no” unless P=NP. Theorem 3 will play a key role in the
derivation of our results.

Theorem 4. Let I be an SM instance of size n with N stable matchings. When
i = O(log n), computing αi and αN−i+1 can be done in polynomial time.

Proof. Let ρ ∈ R(I). Let R(I)ρ denote the poset obtained from R(I) by deleting
ρ and every rotation it precedes. Notice that nρ = c(R(I)ρ), the number of
closed subsets of R(I)ρ. Moreover, (i) when R(I)ρ has at least i − 1 elements,
ρ �∈ S(i) because c(R(I)ρ) ≥ i, and (ii) when R(I)ρ has at most i − 2 elements,
we can simply check which subsets of R(I)ρ are closed subsets to determine
the exact value of c(R(I)ρ). Using these observations, it is not difficult to show
that determining S(i) exactly and then eliminating all its rotations from μM to
construct αi can be done in O(i2in4) time. Thus, if i = O(log n), finding αi can
be done in polynomial time. Since αN−i+1 = βi, the same result also holds for
finding αN−i+1. 	

4.1 The Hardness Result

Suppose P and Q are posets on disjoint sets. Their ordinal sum is the poset
P +O Q on the set P ∪ Q such that x ≤ y in P +O Q if (i) x, y ∈ P and x ≤ y,
or (ii) x, y ∈ Q and x ≤ y, or (iii) x ∈ P and y ∈ Q. The following is easy to
establish:

Lemma 3. Let P and Q be posets on disjoint sets and c(·) be a function that
counts the number of closed subsets of a poset. Then c(P +OQ) = c(P)+c(Q)−1.

Here is a technical lemma we need for our hardness result.

Lemma 4. Let M be a positive integer. There is a poset QM so that |QM | =
O(log2 M), the number of edges in its Hasse diagram is O(log3 M), and
c(QM) = M .

Proof. Consider the binary representation of M : b0 · 20 + b1 · 21 + . . . + bk2k. Let
Ai and Ci denote an antichain of size i and a chain of size i, respectively. When
b0 = 0 (i.e., M is even), let QM = Ab1×1 +O Ab2×2 +O . . . +O Abk×k +O Cnz−1

where nz is the number of non-zero bits in the binary representation of M . Thus,
|QM | ≤ 1 + 2 + . . . + k + k = O(k2), which is O(log2 M); the number of edges in

576 C.T. Cheng

QM ’s Hasse diagram is at most 1 × 2 + 2 × 3 + . . . + (k − 1) × k + k + k − 1 =
O(k3), which is O(log3 M). From Lemma 3, it is straightforward to check that
c(Ab1×1 +O Ab2×2 +O . . . +O Abk×k) = M − (nz − 1) and c(Cnz−1) = nz, so
c(QM) = M − (nz − 1) + nz − 1 = M . When b0 = 1 (i.e., M is odd), let
QM = QM−1 +O C1. By applying the same analysis when b0 = 0, QM satisfies
the three properties in the lemma as well. 	

Theorem 5. Let I be an SM instance with N stable matchings. Suppose p and
q are positive integers such that p < q. When i = �pN/q, computing αi and
αN−i+1 is NP-hard.

Proof. Since αN−i+1 = βi, it is sufficient to prove the theorem for αi. Let us
first consider the case when p = 1. Let ComputeMedian-q be an algorithm whose
input is an SM instance I and whose output is I’s �|M(I)|/q-generalized median
stable matching and its corresponding closed subset. Its runtime is f(|I|), where
|I| denotes the size of I. Let P be a poset. Recall that c(P) denotes the number
of closed subsets of P . The main idea behind our proof is that ComputeMedian-q
can be used to answer queries of the form “Is c(P) ≤ m?”. We describe how this
can be done next.

Query(P, m)

1. Construct the poset P0 = qP +O x +O Qq(q−1)m+q−1 where qP denotes the
ordinal sum of q copies of P , x is the singleton poset containing x and Qi is
the poset described in Lemma 4. Note that c(P0) = qc(P) +2+ q(q − 1)m+
q − 1 − (q − 1) − 2 = qc(P) + q(q − 1)m.

2. Construct an SM instance I(P0) whose rotation poset is isomorphic to P0.
Find the rotation ρx in R(I(P0)) that corresponds to x in P0.

3. Use ComputeMedian-q to find I(P0)’s �|M(I(P0))|/q-generalized median
stable matching and its corresponding closed subset S.

4. If ρx ∈ S return “yes”; else, return “no”.

By the construction of P0, nx = qc(P) − (q − 1). Since nρx = nx and S =
S(c(P)+(q −1)m), ρx ∈ S implies that c(P) < m+1 or c(P) ≤ m because c(P)
is an integer. Similarly, when ρx �∈ S, c(P) ≥ m + 1. The correctness of Query
follows. It is straightforward to verify that since q is a constant, the sizes of P0,
I(P0), and R(I(P0)) are all polynomial in |P | and log m. Thus, the runtime of
Query is polynomial in |P |, log m and f(|P | + log m).

Now, c(P) ≤ 2|P |. To determine c(P), we simply do a binary search over
the range [1, 2|P |] using Query as a subroutine. Clearly, O(|P |) queries are suffi-
cient where the value of m in each query is at most 2|P |. If Compute-Median-q
also runs in time polynomial in its input size, the algorithm we have just de-
scribed computes c(P) in time polynomial in |P |. In [13], it was shown, how-
ever, that computing the number of antichains of a poset is #P-complete. Since
there is a one-to-one correspondence between the antichains of a poset and its
closed subsets, computing c(P) is also #P-complete. It follows that finding the
�|M(I)|/q-generalized median stable matching of an instance I is NP-hard.

The Generalized Median Stable Matchings 577

Let us now prove that the theorem is also true when p > 1. Without loss of gen-
erality, assume that p and q are relatively prime. Suppose ComputeMedian-(p, q)
is an algorithm like ComputeMedian-q except that it computes the �p|M(I)|/q-
generalized median stable matching of I and its corresponding closed subset in
g(|I|) time. This time we shall use ComputeMedian-(p, q) to find the �|M(I)|/q-
generalized median stable matching of I.

ConstructMedian-q(I)

1. Construct R(I). Find positive integers k and r so that pk = qr + 1. (Since
p and q are relatively prime, these integers exist. Also, 1 ≤ k ≤ q and
1 ≤ r ≤ p.)

2. Create the poset P0 = R(I)+O x+O R(I)+O x+O R(I)+O . . .+O x+O R(I)
so that there are k copies of R(I) and k − 1 copies of x in P0. For each
ρ ∈ R(I), mark as ρ(j) the element that corresponds to ρ in the jth copy of
R(I). Similarly, mark as x(j) the jth copy of x. Construct an SM instance
I(P0) whose rotation poset is isomorphic to P0.

3. Use ComputeMedian-(p, q) to find the �p|M(I(P0))|/q-generalized median
stable matching of I(P0) and its corresponding closed subset S.

4. Let S′ consist of the rotations in P0 that have corresponding rotations in S.
(Find these rotations using the isomorphism from P0 to the rotation poset
of I(P0).) Let S′′ = {ρ : ρ(r+1) ∈ S′}.

5. Find the man-optimal matching of I, μM . Create the �|M(I)|/q-generalized
median stable matching of I by eliminating S′′ from μM and return the stable
matching.

It is straightforward to verify the following: c(P0) = k × c(R(I)), nx(j) =
j×c(R(I)) for 1 ≤ j ≤ k−1, and nρ(j) = (j−1)c(R(I))+nρ for each ρ ∈ R(I), 1 ≤
j ≤ k−1. By our choice of k and r, we know that pk/q = r+1/q. Thus, in step 3,
�p|M(I(P0))|/q = �pk×c(R(I))/q = r×c(R(I))+�c(R(I))/q. Consequently,
in step 4, S′ = ∪r

j=1{ρ(j) : ρ ∈ R(I)} ∪ {ρ(r+1) : nρ < �c(R(I))/q} ∪ {x(j) :
j ≤ r}. Thus, S′′ = {ρ : nρ < �c(R(I))/q}. Since S′′ is the closed subset that
corresponds to the �|M(I)|/q-generalized stable matching of I, step 5 outputs
the correct stable matching.

Since p and q are constants, |P0| = O(|R(I)|). Also, |I(P0)| = O(|R(I)|2) so
|I(P0)| = O(|I|4). It is easy to verify that steps 1, 2, 4 and 5 can be accom-
plished in time polynomial in |I|. If ComputeMedian-(p, q) runs in time polyno-
mial in its input size, step 4 will also run in time that is polynomial in |I|; i.e.,
ConstructMedian-q is an efficient algorithm. But we just showed that finding
the �|M(I)|/q-generalized stable matching of I is an NP-hard problem. It fol-
lows that computing �p|M(I)|/q-generalized stable matching of I when p > 1
is also NP-hard. 	

5 Approximating the Median Stable Matching

While the median stable matching is arguably the most fair stable matching
that has been proposed in the literature so far, our result in the previous section

578 C.T. Cheng

shows that finding it is computationally hard unless P=NP. A natural direction
to take is to find a stable matching that is “close” to the median stable matching.

When N is an even number, the median stable matching of I consists of αN/2

and α(N+2)/2. Notice though that I may have stable matchings the lie between
αN/2 and α(N+2)/2 in M(I). (Recall our example in Section 3.) These stable
matchings have the property that at least one (but not all) men are matched
to their upper median stable partners and at least one (but not all) women are
matched to their lower median stable partners. If we say that αN/2 and α(N+2)/2

are fair because every individual is matched to his/her median stable partner,
surely stable matchings that lie between these two matchings must also be fair.
By the same reasoning, if we say that αi′ and αi′′ are good approximations of the
median stable matching where i′ < �N/2 < i′′, every stable matching that lies
between the two matchings must also be a good approximation of the median
stable matching. This leads us to the following definition:

Definition 1. Let I be an SM instance with N stable matchings. Let μ be one
of its stable matchings and Sμ be its corresponding closed subset in R(I). We
say that μ is an ε-approximation of the median stable matching of I if μ lies
between α�N/2�−ε and α�N/2�+ε in the lattice of stable matchings of I. That is,
S(�N/2� − ε) ⊆ Sμ ⊆ S(�N/2 + ε).

Since an SM instance of size n can have at most 2n2/2 stable matchings, Theorem
4 implies that finding an (N/2 − O(log log N))-approximation to the median
stable matching of an SM instance can be found efficiently. In the next theorem,
we present a slight improvement over this result.

Theorem 6. Let I be an SM instance of size n with N stable matchings. Finding
a stable matching μ of I such that μ lies between α�log N/2� and αN−�log N/2� can
be done in O(n2) time. That is, finding an (N/2 − O(log N))-approximation to
the median stable matching of an SM instance can be found efficiently.

Proof. Suppose R(I) has m rotations. Let ρ1, ρ2, . . . , ρm be a topological order-
ing of its rotations. Let Jr = {ρ1, ρ2, . . . , ρr−1} for r = 1, . . . , m + 1.

Claim: For r = 1, . . . , m+1, Jr is a closed subset, and S(r) ⊆ Jr ⊆ S(N −m+r).
Proof of Claim: Since the rotations are ordered topologically, when ρ ∈ Jr, every
rotation that precedes ρ also belongs to Jr. That is, Jr is a closed subset.

Suppose ρ does not belong to Jr. Then nρ ≥ r because J1, J2, . . . , Jr are all
closed subsets that do not contain ρ. Hence, ρ �∈ S(r). In other words, S(r) ⊆ Jr.
On the other hand, when ρ ∈ Jr, there are at least m− r +1 closed subsets that
contain ρ: Ji+1 for i = r, . . . , m. Thus, N −nρ ≥ m−r+1 or N −m+r−1 ≥ nρ,
so ρ ∈ S(N − m + r).

When r = �m/2, S(�m/2) ⊆ J�m/2� ⊆ S(N −�m/2�). But because R(I) has
m rotations, m + 1 ≤ N ≤ 2m. Hence, m ≥ log N so S(�log N/2) ⊆ J�m/2� ⊆
S(N −�log N/2�). Thus, the stable matching of I that corresponds to the closed
subset J�m/2� lies between α�log N/2� and αN−�log N/2�.

The Generalized Median Stable Matchings 579

Now, constructing R(I) and its accompanying digraph G(I) takes O(n2) time.
Topologically sorting its rotations also take O(n2) time. Finding μM , and then
eliminating all rotations of J�m/2� from μM also takes O(n2) time. Thus, finding
the stable matching in the theorem takes O(n2) time. 	

In contrast, we have the next result whose proof is like that of Theorem 5.

Theorem 7. Let ε be a constant. Let I be an SM instance with N stable match-
ings. Finding a stable matching μ of I such that μ lies between α�N/2�−ε and
α�N/2�+ε is NP-hard. That is, finding an O(1)-approximation to the median sta-
ble matching of an SM instance is NP-hard.

Interestingly, this leaves us with the following problem:

Open Problem: Is there an efficient algorithm for finding an ε-approximation
to the median stable matching of an SM instance where ε is ω(1) but at most
N/2 − Ω(log N)?

References

1. Abdulkadiroglu, A., Pathak, P., Roth, A.: The New York City high school match.
American Economic Review, Papers and Proceedings 95, 364–367 (2005)

2. Abdulkadiroglu, A., Pathak, P., Roth, A., Sönmez, T.: The Boston public school
match. American Economic Review, Papers and Proceedings 95, 368–371 (2005)

3. Blair, C.: Every finite distributive lattice is a set of stable matchings. Journal of
Combinatorial Theory A 37, 353–356 (1984)

4. Fleiner, T.: A fixed-point approach to stable matchings and some applications.
Mathematics of Operations Research 28, 103–126 (2003)

5. Gale, D., Shapley, L.: College admissions and the stability of marriage. American
Mathematical Monthly 69, 9–15 (1962)

6. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM
Journal on Computing 16, 111–128 (1987)

7. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms.
The MIT Press, Cambridge (1989)

8. Irving, R., Leather, P.: The complexity of counting stable marriages. SIAM Journal
on Computing 15, 655–667 (1986)

9. Irving, R., Leather, P., Gusfield, D.: An efficient algorithm for the optimal stable
marriage. Journal of the ACM 34, 532–544 (1987)

10. Klaus, B., Klijn, F.: Median stable matchings for college admissions. International
Journal of Game Theory 34, 1–11 (2006)

11. Klaus, B., Klijn, F.: Procedurally fair and stable matching. Economic Theory 27,
431–447 (2006)

12. Knuth, D.: Mariages Stables. Les Presses de l’Université de Montréal (1976)
13. Provan, J., Ball, M.: The complexity of counting cuts and of computing the proba-

bility that a graph is connected. SIAM Journal on Computing 12, 777–788 (1983)
14. Roth, A., Peranson, E.: The redesign of the matching market of American physi-

cians: Some engineering aspects of economic design. American Economic Re-
view 89, 748–780 (1999)

15. Teo, C.-P., Sethuraman, J.: The geometry of fractional stable matchings and its
applications. Mathematics of Operations Research 23, 874–891 (1998)

Stateless Near Optimal Flow Control with
Poly-logarithmic Convergence

Baruch Awerbuch1,� and Rohit Khandekar2

1 Johns Hopkins University
baruch@cs.jhu.edu

2 IBM T.J.Watson Research Center
rkhandekar@gmail.com

Abstract. We design completely local, stateless, and self-stabilizing flow control
mechanism to be executed by “greedy” agents associated with individual flow
paths. Our mechanism is very natural and can be described in a single line:

If a path has many “congested” edges, decrease the flow on the path
by a small multiplicative factor, otherwise increase its flow by a small
multiplicative factor.

The mechanism does not require any initialization or coordination between the
agents. We show that starting from an arbitrary feasible flow, the mechanism al-
ways maintains feasibility and reaches, after poly-logarithmic number of rounds,
a 1 + ε approximation of the maximum throughput multicommodity flow. More-
over, the total number of rounds in which the solution is not 1 + ε approximate is
also poly-logarithmic. Previous distributed solutions in our model either required
a state since they used a primal-dual approach or had very slow (polynomial)
convergence.

1 Introduction

The goal of this paper is to optimize resource allocation in a decentralized network
architecture where different applications compete for shared network resources in a
“greedy” manner, without explicit coordination with each other, while being subjected
to some regulatory constraints that limit their behavior.

In this paper, we focus on the Flow Control version of the multi-commodity flow
problem in a distributed environment. The essence of Flow Control is to decide how
much flow of a commodity is admitted (rest is rejected), assuming infinite flow demand
for each commodity, and assuming routing is pre-determined to go over a single path.
Flow control is used by TCP and is considered a classical problem in the theory of
networking, with numerous articles dedicated to this topic.

The flow control problem is a variant of the multicommodity flow problem in a di-
rected capacitated graph, with a collection of commodities, each characterized by the
following: source (where the flow is originated), sink (where the flow ends up), benefit
(the utility of this flow), and a fixed path from source and the sink that must be used

� Partially supported by NSF grants CCF 0515080, ANIR-0240551, CCR-0311795, and CNS-
0617883.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 580–592, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stateless Near Optimal Flow Control 581

by this commodity. The collection of all the flows must satisfy capacity constraints,
namely the total flow on each edge cannot exceed its capacity.

Intuitively, it is clear that the flow control needs to be accomplished by requiring
congested paths to decrease their flows and non-congested paths to increase their flows.
However, there is an inherent instability problem, in this concurrent decision making
environment — some paths may fluctuate between being congested or non-congested.

Stateless algorithms. “Statelessness” is often a desirable feature of an optimization in a
distributed environment [3]. In a stateless and “local” solution, one desires that the flows
make their routing decisions in a cooperative but uncoordinated manner, without having
access to a global clock and without being able to properly initialize and synchronize
their individual executions. The flows only observe the current network congestion,
without being able to pin-point the individual contributions of other commodities, and
without keeping any memory about the past. As pointed out in [3], statelessness implies
a number of other features desirable in networks and distributed systems with unreliable
components. Self-stabilization: it is a classical notion in the theory of robust distrib-
uted systems [8,13,9,6,5] means that the solution can withstand adversarial sequence
of “hard reset” events, namely, crashes accompanied with loss of all memory contents.
Incremental and local adjustment: Even if changes occur in the network topology or
demand pattern, the algorithm does not need to be restarted. Rather, the algorithm ad-
justs the flows in a local and incremental manner, without disrupting the flows that are
not affected. No global clock: Algorithms should not be driven by a global clock; how-
ever we assume that local clocks generate perfectly synchronized (but un-numbered)
rounds, without maintaining a global time.

2 Greedy Stateless Maximum Benefit Flow Framework and Our
Results

Consider a directed capacitated graph G = (V, E, c) where c : E → R+ is the capacity
assignment to edges. We consider the set P of commodities, each associated with a path
p along which it flows and benefit bp per unit of flow. We identify the commodity with
its path p. Let f(p) denote the flow of commodity p. For each edge e, total flow on e is
f(e) =

∑
p:e∈p f(p). Given a flow f , the load of an edge, maximum network load, and

total network benefit (flow value) are respectively

�f(e) =
f(e)
c(e)

, |�f | = max
e∈E

�f(e), and U(f) =
∑

p∈P
bp · f(p).

The objective is to compute a flow assignment f to commodities satisfying the capacity
constraint: |�f | ≤ 1, and maximizing the throughput U(f).

Greedy framework. In this paper, we focus on a specific framework for stateless flow
control, that we call a “greedy” framework. We imagine an “agent” associated with
each commodity p. The agent has benefit bp associated with sending per unit flow. The
restrictions on the agents are as follows:

582 B. Awerbuch and R. Khandekar

– Penalty: The network imposes at all times a cost on an agent p determined by a
“penalty” function cost(p) =

∑
e∈p φ′

e(�f (e)) =
∑

p:e∈p φ′
e(f(p)/c(e)) where

φe(�f) is a certain function of the congestion on edge e, and φ′
e is its derivative.

– Inertia: if cost(p) is within 1 ± α factor of its benefit bp, then the agent p cannot
change its flow f(p),

– Speed limit: the agent p can only modify (increase or decrease) a β fraction of its
flow, namely can change its flow by (1 ± β).

Assuming that the agents act greedily and selfishly and try to maximize their profit,
an agent p will maximally increase the flow if it is significantly profitable, namely
cost(p) < (1 − α)bp, and will maximally decrease the flow if it is significantly un-
profitable, i.e., cost(p) > (1+α)bp. Our flow control mechanism specifies cost function
φ′, the inertia parameter α and speed limit β.

Theorem 1. Our mechanism that is presented in Fig. 2 guarantees that starting from an
arbitrary feasible flow, the flow always remains feasible, and reaches a 1+ε approximate
solution in time upper-bounded by

Õ

(
log k · log7(mCB)

ε6

)

.

Moreover, the total number of rounds in which the solution is not 1 + ε approximate is

also Õ
(

log k·logO(1)(mCB)
εO(1)

)
.

Here k and m denote the number of commodities and edges in the network respectively,
C is the ratio of maximum to minimum edge capacity, and B is the ratio of maximum
to minimum benefit. Õ hides log(ln m

ε) factors. We remark that we have not attempted
to get the best possible powers of log m and ε in the convergence time. The emphasis is
on a stateless distributed solution with poly-logarithmic convergence.

2.1 Previous Work

Stateful algorithms. In centralized or distributed setting, efficient “primal-dual” algo-
rithms in the stateful model have been widely studied for network flows [11,10,18,4,2].
Most of these algorithms share features like exponential dual variables with our algo-
rithms. However, these algorithms crucially depend on maintaining a state, e.g., proper
initialization or some global information about the current solution, and perform glob-
ally optimum updates in each round. Many of these algorithms initialize the flows to
zero. Thus they have to be restarted whenever the instance changes due to change in
the network or commodities; and do not satisfy the incremental and local adjustment
property. The packing/covering LP algorithm of Plotkin-Shmoys-Tardos [17] or the
multi-commodity flow algorithm of Awerbuch and Khandekar [3] fall short of being
stateless since they have to keep track of the maximum violation in a constraint or the
global maximum congestion of the current solution. The algorithm of [3] converges in
time linear in the maximum path-length.

Stateless Near Optimal Flow Control 583

Stateless Distributed Problem [citation] Convergence time

no no packing/covering LP [17,11,10,18,14] m · [log(m)/ε]O(1)

no yes packing/covering LP [16,7,18,15] [log(mn)/ε]O(1)

no yes multi-comm. flow routing [4,3] L · [log(m · C)/ε]O(1)

yes yes multi-comm. flow control [12] B · [log(C)/ε]O(1)

yes yes bipartite load balancing [1] [log(m)/ε]O(1)

yes yes multi-comm. flow control [this paper] [log(m · CB)/ε]O(1)

Fig. 1. A comparison of some combinatorial (1+ε)-approximation algorithms for multicommod-
ity flows. Here n denotes the number of variables and L denotes the maximum-path-length.

Stateless algorithms. Garg and Young [12] presented a stateless flow control algorithm.
While their algorithm resembles ours in the case of flow control, the convergence time
of their algorithm depends linearly on the ratio B of the maximum and minimum ben-
efit of the flows. This linear dependence is inherent to their algorithm due to a severe
limit on how much flow of a commodity can increase in a single round. Their algorithm
is based on the packet drop-rates at various routers/links. Recently, Awerbuch-Azar-
Khandekar [1] presented a stateless algorithm for a special case of load balancing in
bipartite graphs. Their algorithm and techniques, which do not use any exponential du-
als, do not appear to generalize to arbitrary LPs and hence new techniques are required.

3 The Mechanism

By scaling, we assume without loss of generality, that maxp bp = 1, minp bp = 1/B,
mine c(e) = 1, and maxe c(e) = C. The algorithm to be executed by an agent control-
ling the flow on path p is given in Figure 2. The main procedure executed by each agent
is given in Figure 2a. It calls procedures ROUTEMETRIC, CONTROL, FLOWUPDATE

in each round. In the rest of the paper, we use round and time interchangeably.

The ROUTEMETRIC procedure. Procedure ROUTEMETRIC in Figure 2b sets the most
basic parameters. Let f(e) =

∑
p:e∈p f(p) be the current flow and �f (e) = f(e)

c(e) be the

congestion of an edge e. We define Φe(f(e)) = c(e) ·exp[μ(f(e)
c(e) −1)] to be a “penalty”

function where μ = ε−1 ln(mCB) and its derivative Φ′
e(f(e)) = μ · exp[μ(f(e)

c(e) − 1)]
to be the “cost”of edge e. The cost of a path is simply the total cost of the edges on
that path.

The CONTROL procedure. Procedure CONTROL in Fig. 2c sets the relevant parameters
of flow control, namely of the amount of flow that one decreases or increases on a link.

We choose α = 1
4μ . Intuitively, this is the accuracy of our cost comparisons, costs

within 1+α factor will be considered essentially equal. Note that if the flow of a certain
commodity over an edge is small (e.g., zero), the multiplicative increase by factor 1+β
is ineffective. To bootstrap the increase in the flow, we allow an additive increase f̈ in
the flow. The parameters β and f̈(e) are defined so that the cost Φ′(e) of any edge e

584 B. Awerbuch and R. Khandekar

Repeat in each round:

1. Input (read) f(p) and f(e) for each e ∈ p
2. Call ROUTEMETRIC, CONTROL, FLOWUPDATE

(a) Procedure MAIN for commodity p.

Procedure ROUTEMETRIC

1. Let μ ← ε−1 ln(mCB).
2. Define Φe(f(e)) = c(e) · exp[μ(f(e)

c(e) − 1)] for all e ∈ p

3. Define Φ′(p) =
�

e∈p Φ′
e(f(e)) =

�
e∈p μ · exp[μ(f(e)

c(e) − 1)]

(b) Procedure ROUTEMETRIC for commodity p.

Procedure CONTROL

1. Define parameters: α ← 1
4μ

; β ← Θ(α · 1
μ
) and f̈(e) ← 1

μ
· c(e)

k
· ln(1 + α

8)

(c) Procedure CONTROL for commodity p.

Procedure FLOWUPDATE

1. if Φ′(p) < bp · (1 − α), then f(p) ← max{f(p)(1 + β), min
e∈p

f̈(e)}.

2. if Φ′(p) > bp · (1 + α), then f(p) ← f(p)(1 − β).

(d) Procedure FLOWUPDATE for commodity p.

Fig. 2. The maximum benefit flow mechanism

changes by a factor of at most α
4 in any round. Note that the flow f(e) increases in

one round by at most βf(e) + kf̈(e). Here k denotes the number of agents or paths
|P|. Note that in the procedure FLOWUPDATE, the flow on e is increased only when
f(e) < c(e). Thus to ensure that the cost of e does not increase by more than a 1 + α

4

factor, it is enough to make sure that exp[μ(βc(e) + kf̈(e))/c(e)] ≤ 1 + α
4 . We in fact

set β and f̈(e) so that exp[μ ·β] ≤ (1+ α
4)/(1+ α

8) and exp[μ ·(kf̈(e)/c(e))] ≤ 1+ α
8 .

We set β = Θ(α · 1
μ). We set f̈(e) = 1

μ · c(e)
k · ln(1 + α

8). For all k commodities, the

total additive increase in the flow is at most c(e) · 1
μ · ln(1+ α

8) yielding a multiplicative
increase in the cost of at most 1 + α

8 .

The FLOWUPDATE procedure. The crux of our algorithm lies in procedure
FLOWUPDATE (Fig 2d). Each agent p locally compares the cost Φ′(p) under the cur-
rent “routing metric” with its benefit bp. If the cost is significantly lower, i.e., less than
bp · (1 − α), it increases the flow by a factor 1 + β. In case the current flow on p is

Stateless Near Optimal Flow Control 585

very small, the flow is instead increased additively by an amount mine∈p f̈(e). If on
the other hand, the cost is significantly higher, i.e., more than bp · (1 + α), the flow is
decreased by a factor of 1 − β. If neither of the above conditions hold, the flow on p is
kept unchanged.

We note that the initial values of the flows are completely arbitrary, as long as they
satisfy the capacity constraints; there is absolutely no coordination between flows in
terms of how quickly they act, except that there is at most one action of each flow in
each round.

4 Analysis

Notations. Let U =
∑

p∈P fp · bp be the overall flow in the network at any given
point. Let �f (e) = f(e)/c(e) and |�f | = maxe �(e). Let Φ(e) = Φe(f(e)), Φ′(e) =
Φ′

e(f(e)), and Φ′′(e) = Φ′′
e (f(e)). Let Φ(p) =

∑
e∈p Φ(e), Φ′(p) =

∑
e∈p Φ′(e),

Φ =
∑

e∈E Φ(e), and Φ′ =
∑

e∈E Φ′(e). Let g(p) denote the optimum flow on path
p ∈ P , let g(e) denote the optimum flow on edge e ∈ E. Let Γ =

∑
e∈E f(e) ·Φ′(e) =∑

p∈P f(p) · Φ′(p) be the cost of the entire flow f . Let Λ =
∑

e∈E g(e) · Φ′(e) =∑
p∈P g(p) · Φ′(p) be the cost of the optimum flow under the current cost metric. Let

Γ (e) = f(e) · Φ′(e) and Λ(e) = g(e) · Φ′(e). Let Γ ′(e) = f(e) · Φ′′(e) + Φ′(e). For a
path p ∈ P , Λ′(p) =

∑
e∈p Λ′(e) =

∑
e∈p Φ′′(f(e)) · g(e) be the derivative of Λ w.r.t.

the flow f(p) on path p. Similarly let Ψ ′(p) = bp −
∑

e∈p Φ′(e) be the derivative of Ψ
w.r.t. the flow f(p) on path p.

Definition 1. We introduce the auxiliary potential function: Ψ = U − Φ.

Definition 2. We call the network

– unsaturated if Φ′ < 1
B · (1 − α), i.e., the overall cost of the edges is small.

– saturated if Φ′ ≥ 1
B · (1 − α), i.e., the overall cost of the edges is large.

– cheap if Γ < U · (1 − 2α), i.e., the average cost of a path is small.
– reasonable if U · (1 − 2α) ≤ Γ ≤ U · (1 + 2α), i.e., the average cost of a path is

about right.
– expensive if Γ > U · (1 + 2α), i.e., the average cost of a path is large.

4.1 Preliminary Observations

The following lemma states how well a convex function is approximated by its first
order linear approximation.

Lemma 1. For a differentiable convex function Υ : �k → �, for any x, y ∈ �k we
have

Υ ′(x) · (y − x) ≤ Υ (y) − Υ (x) ≤ Υ ′(y) · (y − x)

where Υ ′(·) denotes the gradient evaluated at a given point.

Lemma 2. The potential Ψ does not decrease during the course of the algorithm.

586 B. Awerbuch and R. Khandekar

Proof. The negative potential −Ψ is a differentiable convex function of the flow vector
f = (f(p))p∈P . Let f0 and Ψ0 (resp. f1 and Ψ1) denote the values of f and Ψ in the
beginning (resp. in the end) of a round. Using Lemma 1, we conclude that

Ψ1 − Ψ0 = −Ψ0 − (−Ψ1) ≥ −Ψ ′(f1) · (f0 − f1)

=
∑

p∈P
(f1(p) − f0(p)) · (bp − Φ′

f1
(p)) (1)

where Φ′
f1

(p) denotes the cost of p under flow f1. Since the cost of a path does not
increase by a factor more than 1 + α

4 in a single round, we conclude that Φ′
f1

(p) ≤
(1 + α

4)Φ′
f0

(p). From the algorithm we conclude that f1(p) − f0(p) > 0 implies bp −
Φ′

f1
(p) > bp − Φ′

f0
(p)/(1 − α) > 0 and f1(p) − f0(p) < 0 implies bp − Φ′

f1
(p) <

bp −Φ′
f0

(p)/(1+α) < 0. Combining these observations, we conclude that the potential
Ψ does not decrease. ��

Lemma 3. The flow f always remains feasible, i.e., at all times f(e) ≤ c(e) and
Φ(e) ≤ c(e) for all edges e.

Proof. We prove that Φ(e) ≤ c(e) by induction on the number of rounds. Initially, since
the flow satisfies the capacity constraints, we have f(e) ≤ c(e). Consider any round in
which the flow f(e) (or equivalently Φ′(e)) increases, which is possible only when f(p)
increases for some path p 	 e. Since f(p) is increased only when Φ′(p) < bp(1 − α),
we conclude that Φ′(e) < bp(1−α) in the beginning of this round. Since the cost Φ′(e)
increases by at most a factor of 1 + α

4 in any single round, the cost Φ′(e), whenever

it increases, increases to at most bp ≤ 1. Since Φ(e) = c(e)
μ Φ′(e) < c(e) · Φ′(e),

we conclude that Φ(e) ≤ c(e) after the round. Thus the induction is complete and
Φ(e) ≤ c(e) always holds. From the definition of Φ(e), this implies that f(e) ≤ c(e)
also holds always. ��

Lemma 4. If the network is unsaturated, then in O(τ0) rounds it becomes saturated
where

τ0 = max
e∈E

log1+β

c(e)
f̈(e)

= Õ

(
log(kμ)

β

)

. (2)

Furthermore, once the network becomes saturated, it always remains saturated.

Proof. While the network is unsaturated, the cost of any path p satisfies Φ′(p) ≤ Φ′ <
1
B · (1−α) ≤ bp · (1−α). Thus all the flows increase by a factor of (1+β). Since after
one round, the flow on any edge e is at least f̈(e) and it never exceeds c(e), the network
has to become saturated in O(τ0) rounds.

Now assume that the network becomes unsaturated again. Consider the round during
which the network changes from being saturated to being unsaturated. In this round,
the flow on some path p must decrease. Just before decrease, it must be true that Φ′ ≥
Φ′(p) > bp · (1 + α). However since single round reduces Φ′ by at most α

4 factor, we
have Φ′ > bp · (1 + α)/(1 + α

4) > 1
B after the round. This is a contradiction. Thus we

conclude that the network never becomes unsaturated again. ��

Stateless Near Optimal Flow Control 587

The proofs of following two lemmas are omitted due to lack of space.

Lemma 5. At all times, (1 − 2ε) ·
(
1 − 1

mCB

)
· |�f | · Φ · μ ≤ Γ ≤ |�f | · Φ · μ.

Lemma 6. If the network is saturated, then |�f | ≥ 1 − 2ε.

Theorem 2. Suppose that the network is either cheap or expensive. Then, in these cases
Ψ increases by at least ΔΨ = Ω(αβ) · (U + Γ) in a single round.

Proof. From equation (1), we recall that the increase in Ψ in a single round is

ΔΨ = Ψ1 − Ψ0 ≥
∑

p∈P
(f1(p) − f0(p)) · (bp − Φ′

f1
(p))

where the subscripts 0 and 1 indicate the values in the beginning and at the end of a
round respectively. Denote Px = {p ∈ P | Φ′

f0
(p) ≥ x · bp} and Py = {p ∈ P |

Φ′
f0

(p) ≤ y · bp} in the beginning of a round.

For every cheap path p ∈ P(1−α), we have f1(p) − f0(p) ≥ βf0(p). For every
expensive path p ∈ P(1+α), we have f1(p) − f0(p) ≤ −βf0(p). Therefore

ΔΨ ≥
∑

p∈P(1−α)∪P(1+α)

(f1(p) − f0(p)) · (bp − Φ′
f1

(p))

≥
∑

p∈P(1−α)

βf0(p) ·
(
bp − Φ′

f0
(p) ·

(
1 +

α

4

))

+
∑

p∈P(1+α)

−βf0(p) ·
(
bp − Φ′

f0
(p)/

(
1 +

α

4

))
(3)

≥ 1
1 − α

∑

p∈P(1−α)

βf0(p) · ((1 − α)bp − Φ′
f0

(p))

+
1

1 + α

∑

p∈P(1+α)

−βf0(p) · ((1 + α)bp − Φ′
f0

(p)). (4)

The inequality (3) follows from the fact that the cost of any edge (or path) changes in
one round by at most 1 + α

4 factor. Note that both the terms in (4) are non-negative.

Cheap network: Γ < (1−2α) ·U . From the definition of P(1−α), the 1st term in (4) is
at least 1

1−α

∑
p∈P βf0(p) · ((1−α)bp −Φ′

f0
(p)) = β

1−α ((1−α)U −Γ) ≥ αβ
1−α ·U ≥

Ω(αβ) · Γ .

Expensive network: Γ > (1 + 2α) · U . From the definition of P(1+α), the 2nd term

in (4) is at least 1
1+α

∑
p∈P −βf0(p) · ((1 + α)bp − Φ′

f0
(p)) = −β

1+α ((1 + α)U − Γ) ≥
Ω(αβ) · Γ ≥ Ω(αβ) · U .

Putting things together, the proof is complete. ��

Definition 3 (Reasonable interval). We call an interval T = [t0, t1] of rounds reason-
able if the network is reasonable at each round t ∈ T . Otherwise, we call the interval
unreasonable.

588 B. Awerbuch and R. Khandekar

4.2 Mileage Definitions

We define the offline mileage ∇Λ(e, t), the derivative mileage ∇Φ′
(e, t), and benefit

mileage ∇U (t), as the absolute value of the change, that takes place in round t, in the
offline potential, derivative cost function, and flow on edge e respectively. The second
parameter t indicates that these values are in round t.

∇Λ(e, t) = |Λ(e, t) − Λ(e, t − 1)|, ∇Φ′
(e, t) = |Φ′(e, t) − Φ′(e, t − 1)|.

For an interval T = [t0, t1] of rounds, we define ∇Λ(e, T) =
∑

t∈T ∇Λ(e, t) and

∇Φ′
(P, T) =

∑
e∈P

∑
t∈T ∇Φ′

(e, t). We also define total mileage for the whole net-
work: ∇Λ(t) =

∑
e∈E ∇Λ(e, t) and ∇U (t) = |U(t) − U(t − 1)|. Also ∇Λ(T) =∑

t∈T ∇Λ(t) and ∇U (T) =
∑

t∈T ∇U (t).
Theorem 3 lower bounds the increase ΔΨ in the potential Ψ in an interval of rounds

in terms of mileages of offline potential and flow respectively. This key theorem is
proved in Section 5.

Theorem 3 (Potential Increase). In any interval T = [t0, t1] the increase in potential
is at least ΔΨ > Ω(∇Λ(T) · α

μ) and ΔΨ > Ω(∇U (T) · α).

Definition 4 (Stationary interval). We call an interval of time T = [t0, t1] stationary
if the mileage for offline potential and flow are small as compared to the flow volume
at time t0. Specifically, ∇Λ(T) ≤ α2

64 · U(t0), and ∇U (T) ≤ β
2 · U(t0). Otherwise, we

call the interval unstationary.

The corollary below follows directly from Theorem 3 and Definition 4.

Corollary 1. Once the network is saturated, each unstationary interval T = [t0, t1],
leads to a large increase in the potential, i.e., ΔΨ > Ω(min{α3

μ , α · β}) · U(t0).

4.3 Main Theorems

Let U∗ be the optimal flow value. The following theorem states that any sufficiently long
stationary interval leads to near optimality. This key theorem is proved in Section 6.

Theorem 4 (Optimality). Assume that the network is saturated. Consider a reason-
able and stationary interval T = [t0, t1] of length at least τ0 as in (2). At some round
t ∈ T , we get near optimality: U(t) · (1 + O(β + ε)) ≥ U∗.

Corollary 2 (Main). After O(τ‡ = τ0 · τ†) time, where τ0 is as in (2) and

τ† = O(ε · μ4 · ln(mC)) = O(ε · μ5), (5)

or, after τ‡ = O(ε · μ7 · ln(kμ)) = Õ
(

log k·log7(mCB)
ε6

)
time, the flow becomes near

optimal, namely U · (1 + O(β + ε)) ≥ U∗. Moreover, the total number of rounds in

which the solution is not 1 + O(β + ε) approximate is also Õ
(

log k·logO(1)(mCB)

εO(1)

)
.

The proof of the above corollary follows from Corollary 1, Theorem 4, and the fact that
the potential is bounded above by m · C. The proof is omitted due to lack of space.

Stateless Near Optimal Flow Control 589

5 Potential Increase Proof of Theorem 3

Theorem 5 (Offline mileage). If the offline mileage in an interval T is ∇Λ(T), then
Ψ increases in T by at least Ω(∇Λ(T) · α

μ).

Proof. To simplify the intuition behind the proof, assume that the augmentation or with-
drawal of flows on different paths happens sequentially (see the remark at the end of
the proof).

Consider δ units of flow sent on path p. The offline mileage ∇Λ due to this can be
upper bounded by the increase ΔΨ in the potential due to this as follows.

1
δ

· ∇Λ = Λ′(p) =
∑

e∈p

Λ′(f(e)) =
∑

e∈p

Φ′′
e (f(e)) · g(e) =

∑

e∈p

Φ′
e(f(e)) · μ

c(e)
· g(e)

≤
∑

e∈p

Φ′
e(f(e)) · μ = Φ′(p) · μ ≤ O

(μ

α
· Ψ ′(p)

)
= O

(
1
δ

· μ

α
· ΔΨ

)

.

The first inequality holds since g(e) ≤ c(e). The second inequality above follows from
the fact that Ψ ′(p) = bp −Φ′(p) and that the flow on p is increased only if Φ′(p) < (1−
α) ·bp, which in turn implies that Ψ ′(p) ≥ 1

1−αΦ′(p)−Φ′(p) = Ω(α) ·Φ′(p). A similar
argument holds when δ units of flow is reduced on path p when Φ′(p) > (1 + α) · bp.
The overall offline mileage in a round is at most the sum of such mileage contributions
over all the paths. Since each unit of offline mileage contributes to an increase of Ω(α

μ)
units of Ψ , the proof is complete.

Remark: The proof also works without the assumption of sequential execution, since
the cost Φ′(f(e)) of any edge changes by a factor of at most 1 + α

4 in a single round
and Ψ ′(p) ≥ Ω(α) · Φ′(p) still holds. ��

Theorem 6 (Benefit mileage). If the benefit mileage in an interval T is ∇U (T), then
Ψ increases in T by at least Ω(∇U (T) · α).

Proof. Note that Ψ ′(p) = bp − Φ′(p) denotes the increase in Ψ per unit flow increase
in f(p). Observe that flow f(p) is increased only along paths with Φ′(p) < (1 − α) · bp

and is decreased only along paths p with Φ′(p) > (1+α) ·bp. Thus, the net contribution
of “positive” terms (namely, bp for Δf(p) > 0 and −Φ′(p) for Δf(p) < 0) is at least
1 + Ω(α) factor higher that the net contribution of “negative” terms (namely, −Φ′(p)
for Δf(p) > 0 and bp for Δf(p) < 0). The net effect is at least α fraction of either
change in the positive or negative terms. Thus any unit change in f(p) contributes to
α · bp increase in Ψ . Since the overall benefit mileage is at most the contributions of
mileages of all the paths, the proof is complete. ��

6 Optimality Proof of Theorem 4

Suppose the network is saturated and the interval T = [t0, t1] of length at least τ0 is
both reasonable and stationary.

Lemma 7. For all t ∈ T , we have Γ (t)−U(t)
Γ (t) ≤ 1

2μ .

590 B. Awerbuch and R. Khandekar

Proof. If Γ (t) ≤ U(t), then the above inequality trivially holds. On the other hand,
since the network is not expensive at time t, we have Γ (t) ≤ U(t) · (1+2α). Therefore
Γ (t) − U(t) ≤ 2α · U(t) ≤ 2α · Γ (t). Since α = 1

4μ , the lemma follows. ��

Recall that g denotes the optimum flow that achieves the maximum throughput U∗.
Let h = g · U(t0)

U∗ be the scaled optimum flow that achieves the throughput U(t0), the
throughput of the solution f at time t0. It is easy to see that if |�f | ≤ (1 + O(ε)) · |�h|
at time t0, where |�h| is the maximum edge load under flow h, then we have near
optimality: U(t0) ≥ (1 − O(ε))U∗.

Let Λ̂(t) =
∑

e∈E h(e) · Φ′(e) =
∑

p∈P h(p) · Φ′(p) be the cost of flow h under
the current cost metric. The next theorem shows that if Γ (t) is a good approximation of
Λ̂(t), then we have near optimality.

Theorem 7. If at some time t ∈ T , we have Γ (t)−Λ̂(t)
Γ (t) ≤ 7

8μ , then we have near
optimality: U(t) · (1 + O(β + ε)) ≥ U∗.

Proof. Let Φ(h) =
∑

e∈E c(e) ·exp[μ(h(e)
c(e) −1)] be the potential of h. From Lemma 1,

we know that Φ(f(t)) − Φ(h) ≤ Φ′(f(t)) · (f(t) − h) = Γ (t) − Λ̂(t). Since Γ (t) ≤
Φ(t) · μ, we conclude

Φ(f(t)) − Φ(h)
Φ(f(t))

≤ Γ (t) − Λ̂(t)
Γ (t)/μ

≤ 7
8μ

· μ =
7
8
.

This combined with the definition of Φ in turn implies that we have achieved additive
ε approximation: |�f | ≤ |�h| + ε. Since the network is saturated, which implies |�f | ≥
1 − 2ε, we have multiplicative approximation |�f | ≤ (1 + O(ε)) · |�h|.

Recall that the flow h has throughput U(t0), the throughput at the beginning of the
interval. Since the benefit mileage is small: ∇U (T) ≤ β

2 · U(t0), we have U(t) ≥
(1− β

2) ·U(t0). Putting all things together we have near optimality: U(t) ≥ (1−O(ε+
β)) · U∗. ��

In light of Lemma 7 and Theorem 7, we can assume, without loss of generality, that for

all t ∈ T , Λ̂(t)−U(t)
Γ (t) = Λ̂(t)−Γ (t)

Γ (t) + Γ (t)−U(t)
Γ (t) ≤ −7

8μ + 1
2μ = −3

8μ . Since the network is

reasonable, Γ (t) ≥ (1 − 2α) · U(t). Therefore after simplifying, we get Λ̂(t) ≤ U(t) ·(
1 − 3α

2 + 3α2
)
. Since low benefit mileage implies U(t) ≤ U(t0)·(1+ β

2), we conclude

that the average cost of the flow path in h is small: Λ̂(t)
U(t0) ≤

(
1 − 3α

2 + 3α2
) (

1 + β
2

)
.

Since h = g · U(t0)
U∗ , we have that the mileage of h in the interval T (defined similarly

and denoted by ∇Λ̂(T)) is small: ∇Λ̂(T) ≤ α2

64 · U(t0).

Lemma 8. Consider a probability space (Ω, π : Ω → �+) and two non-negative
random variables χ and ψ with expectations χ̄ and ψ̄ respectively. Then, for every
κ < 1 there exists ω∗ ∈ Ω such that χ(ω∗) ≤ (1 + κ) · χ̄ and ψ(ω∗) ≤ 2

κ · ψ̄.

The above lemma applied to the set of paths P with a probability function π given by
π(p) = h(p) · bp/U(t0), the two random variables given by χ(p) = Φ′(p, t0)/bp and
ψ(p) = ∇Φ′

(p)/bp, and κ = α/4, we get the following theorem.

Stateless Near Optimal Flow Control 591

Theorem 8 (Anchor theorem). There exists a path D ∈ P (referred to as “anchor”
path) such that

Φ′(D, t0)
bD

≤ (1 +
α

4
) · Λ̂(t0)

U(t0)
and

∇Φ′
(D, T)
bD

≤ 8
α

· ∇Λ(T)
U(t0)

.

Using the above theorem, we get Φ′(D,t0)
bD

≤
(
1 + α

4

)
·
(
1 − 3α

2 + 3α2
) (

1 + β
2

)
and

∇Φ′
(D,T)
bD

≤ 8
α · α2

64 = α
8 . Therefore we conclude that the cost Φ′(D) at any time t ∈ T

is at most

Φ′(D, t) ≤ bD · (Φ′(D, t0) + ∇Φ′
(D, T))

≤ bD ·
[(

1 − 5α

4
+ O(α2)

)

· (1 + O(α2)) +
α

8

]

< bD · (1 − α).

This leads to a contradiction as follows. Since the cost of the anchor path D is consis-
tently lower than bD ·(1−α), its flow f(D) is increased by a factor 1+β in every single
round. Thus after τ0 rounds, the flow on some edge in D must exceed its capacity. This
is a contradiction and thus the proof of Theorem 4 is complete. ��

References

1. Awerbuch, B., Azar, Y., Khandekar, R.: Fast load balancing via bounded best response. In:
SODA (2008)

2. Awerbuch, B., Khandekar, R.: Distributed network monitoring and multicommodity
flows:primal-dual approach. In: PODC (2007)

3. Awerbuch, B., Khandekar, R.: Greedy distributed optimization of multi-commodity flows.
In: PODC (2007)

4. Awerbuch, B., Khandekar, R., Rao, S.: Distributed algorithms for multicommodity flow prob-
lems via approximate steepest descent framework. In: SODA (2007)

5. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correc-
tion. In: FOCS (1991)

6. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-
stabilizing distributed protocols. In: FOCS (1991)

7. Bartal, Y., Byers, J.W., Raz, D.: Global optimization using local information with applica-
tions to flow control. In: FOCS (1997)

8. Dijkstra, E.: Self stabilizing systems in spite of distributed control. CACM 17, 643–644
(1974)

9. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only
read/write atomicity. In: PODC (1990)

10. Fleischer, L.: Approximating fractional multicommodity flow independent of the number of
commodities. SIAM Journal on Discrete Mathematics 13, 505–520 (2000)

11. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. In: FOCS (1998)

12. Garg, N., Young, N.E.: On-line, end-to-end congestion control. In: FOCS (2002)
13. Gouda, M.G., Multari, N.J.: Stabilizing communication protocols. Technical Report TR-90-

20, Dept. of Computer Science, University of Texas at Austin (June 1990)

592 B. Awerbuch and R. Khandekar

14. Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing and covering linear
programs. In: FOCS (2007)

15. Kuhn, F.: The price of locality: exploring the complexity of distributed coordination primi-
tives. PhD Thesis, ETH Zurich, Diss. ETH No. 16213, (December 2005)

16. Luby, M., Nisan, N.: A parallel approximation algorithm for positive linear programming.
In: STOC (1993)

17. Plotkin, S., Shmoys, D., Tardos, E.: Fast approximation algorithms for fractional packing
and covering problems. Math of Oper. Research 20(2), 257–301 (1994)

18. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering. In: FOCS
(2001)

The Least-Unpopularity-Factor and

Least-Unpopularity-Margin Criteria for
Matching Problems with One-Sided Preferences

Richard Matthew McCutchen

Department of Computer Science, University of Maryland, College Park, MD 20742
rmccutch@umd.edu

Abstract. We consider the problem of choosing the best matching of
people to positions based on preferences expressed by the people, for which
many different optimality criteria have been proposed. A matching is pop-
ular if no other matching beats it in a majority vote of the people. The
popularity criterion has a manipulation-resistance property, but unfortu-
nately, some sets of preferences admit no popular matching. In this paper,
we introduce the least-unpopularity-factor and least-unpopularity-margin
criteria, two generalizations of popularity that preserve the manipulation-
resistance property but give an optimal matching for every set of prefer-
ences. Under each of these generalizations, we show that the “badness” of
a given matching can be calculated efficiently but it is NP-hard to find an
optimal matching.

Keywords: matching, one-sided preferences, algorithms, NP-hardness,
popular matching, voting.

1 Introduction

One of the most common administrative tasks that many organizations perform
is assigning people to positions of some kind based on preferences expressed by
the people, the positions, or both. For example, the University of Maryland De-
partment of Computer Science assigns teaching assistants to classes according to
the teaching assistants’ preferences. The National Resident Matching Program
(see [10]) assigns residents to hospitals based on the preferences of both resi-
dents and hospitals. Gale and Shapley [4] even suggested that students could be
assigned to colleges by a central organization that observes the preferences of
both sides.

All of these organizations face the problem of choosing a matching of people to
positions that gives fair consideration to everyone’s preferences. In this paper, we
consider the problem in which the people express preferences for the positions,
but not vice versa: the preferences are one-sided. An instance of this problem
consists of a set of people, a set of positions, and a preference list for each person
giving his preference ordering of the subset of the positions that he would be
willing to occupy; these orderings may contain ties. The problem is to find the
matching that is best overall in light of the preferences. In a valid matching, each

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 593–604, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

594 R.M. McCutchen

person p is either matched to a position on her preference list or left without
a position, which we represent by matching her to a last resort position LR(p)
available only to her as her last choice.

What makes this problem interesting is that it is not clear what it means
for a matching to be “best”: since it is almost never possible to give everyone
her first choice simultaneously, any matching will inevitably please some people
at the expense of others. If we can change a matching to make someone better
off without making anyone else worse off (a Pareto improvement), of course we
should do so, but there are still many Pareto efficient matchings that admit
no such improvement. To decide among these, we need an optimality criterion
that, for each instance, designates one or more matchings as optimal. Then, to
apply the criterion in practice, we need an efficient algorithm to compute an
optimal matching for a given instance. Ideally, our criterion should be “fair” in
some sense and should resist attempts by the people to obtain better positions
by lying about their preferences.

Many different optimality criteria have been proposed, studied, and used.
Some are based on minimizing functions of the rank numbers that the people give
to the positions they receive, but such criteria tend to be easy to manipulate. For
example, MIT once assigned incoming students to residence halls by minimizing
the sum of the cubes of the rank numbers, and a student could improve her
chances of being assigned to her true first-choice residence hall by inserting
other highly desirable residence halls near the top of her preference list [9].

One criterion that does not use rank numbers and is therefore less susceptible
to this kind of manipulation is popularity. A matching M is popular if no other
matching N beats it by majority vote, where each person votes for the matching
that gives him the position he likes better or abstains if he likes the two positions
equally well. For example, matching M in Figure 1 is not popular because N
beats it by majority vote (B and C outvote A in favor of N), while N is popular.
(We display an instance as a table that gives the rank number (− if unwilling)
for each person (row) and non-last-resort position (column) and a matching by
parenthesizing the rank numbers of the matched pairs.)

Abraham et al. [2] gave an efficient algorithm to compute a popular match-
ing for a given instance when one exists. Unfortunately, some instances have
no popular matching because of nontransitivity in the voting. For example, no
matching for I2 is popular because we can obtain a matching that beats it by a
vote of 2 to 1 by promoting the occupant of y to x and the occupant of x to w
and demoting the occupant of w to y.

M =

�
�

w x y

A (1) − 2
B 1 (2) −
C − 1 (2)

�
�, N =

�
�

w x y

A 1 − (2)
B (1) 2 −
C − (1) 2

�
�, I2 =

�
�

w x y

A 1 2 3
B 1 2 3
C 1 2 3

�
�

Fig. 1. Example instances and matchings

The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria 595

In general, when no matching meets the standard of popularity, we would
still like to choose a merely “poor” matching over a “terrible” one. To this
end, we will propose two numerical measures of a matching’s “badness”: its
unpopularity factor and its unpopularity margin. The least-unpopularity-factor
and least-unpopularity-margin optimality criteria, respectively, minimize these
two measures. We will show that a given matching’s unpopularity factor and
margin can be calculated efficiently using algorithms based on shortest paths and
minimum-cost flow, respectively. However, surprisingly, it is possible to encode
the structure of a 3-satisfiability instance in the people’s preferences so as to
prove that finding an optimal matching under either criterion is NP-hard; we
will present this rather unusual reduction in detail.

The inability to find optimal matchings severely limits the immediate practical
applicability of these two criteria. Nevertheless, by ruling them out, this paper
makes a step toward the goal of finding a criterion that has all the desired
properties. Such a criterion would make it possible for organizations to solve
their matching problems easily, fairly, and objectively by computer.

2 Related Work

The notion of popularity was first proposed by Gärdenfors [5] in the context
of two-sided preferences. More recently, Abraham et al. [2] discussed it for one-
sided preferences and gave the first polynomial-time algorithm to find popular
matchings. On an instance with n people and a total of m preference-list entries,
the algorithm runs in O(m

√
n) if there are ties and O(n + m) if not. Abraham

and Kavitha suggested at the end of [3] that, when no popular matching exists, a
matching could be chosen based on the graph induced by the “beats by majority
vote” relation among matchings; in this paper, we take a different approach by
generalizing the “beats” relation itself.

A matching M is rank-maximal if it has the lexicographically maximum tuple
(n1, n2, . . .), where ni is the number of people assigned to positions they respec-
tively ranked ith. Irving et al. [7] found an algorithm to compute a rank-maximal
matching in O(min(n + C, C

√
n)m) time, where C is the worst numerical rank

to which any person is assigned in the result. Unfortunately, just as MIT’s cri-
terion induced people to artificially increase the rank numbers of the positions
they desire, the rank-maximality criterion induces people to decrease the rank
numbers (by omitting positions they are unlikely to receive) because it gives
lower rank numbers priority over higher ones. The least-unpopularity criteria,
which do not consider rank numbers at all, may be fairer.

If each person specifies utilities for the positions instead of ranking them, the
most natural rule, known as weighted matching [8], is to maximize the total
utility of all pairs. The most commonly used criterion for instances with two-
sided preferences (we call the two sides applicants and recruiters) is stability. A
matching is stable unless some currently unpaired applicant and recruiter both
prefer each other to their current partners. Gale and Shapley [4] proved that
every instance has a stable matching and gave an algorithm to find one.

596 R.M. McCutchen

3 The Unpopularity Factor

Definition 3.1. If M and N are two matchings for the same instance, N dom-
inates M by a factor of u/v, where u is the number of people who strictly prefer
N to M and v is the number of people who strictly prefer M to N . The unpop-
ularity factor of a matching M is the maximum factor by which it is dominated
by any other matching (ignoring matchings that give u = v = 0).

Note that a matching N dominates a matching M by a factor of ∞ if and only
if N is a Pareto improvement over M ; thus M has a finite unpopularity factor if
and only if it is Pareto efficient. Furthermore, a matching is popular as defined
by Abraham et al. [2] if and only if its unpopularity factor is at most 1.

The least unpopularity factor of an instance is the minimum unpopularity
factor of all of its matchings, and the matching(s) that achieve this minimum are
considered optimal. Thus, different instances have different numbers of optimal
matchings, but every instance has at least one.

Matching M from the Introduction has unpopularity factor 2 because N dom-
inates it by a factor of 2. However, N has unpopularity factor 1: the only person
who might favor a different matching is A, and to promote A we must demote B,
achieving a dominance factor of 1. In I2, the six matchings that fill all three po-
sitions all have unpopularity factor 2 because the people in x and y can improve
at the expense of the person in w; these six matchings are optimal.

To determine the unpopularity factor of a matching directly from the defini-
tion, we would have to consider all possible alternative matchings and calculate
the factor by which each dominates M , which would take exponential time. For-
tunately, there is an efficient way to calculate the unpopularity factor using the
concept of pressures, which we will develop next.

3.1 Differences Between Matchings: Reassignments, Paths and
Cycles

We can think of an instance as a bipartite graph whose vertex sets are the people
and the positions and whose edges are the preference-list entries. A matching
of the instance is then just a matching of the graph that uses all the people
(because every person has a position, though it might just be her last resort).

In what ways can two matchings M and N differ? Their symmetric difference,
which we will denote M ⊕N , consists of vertex-disjoint paths and/or cycles that
are alternating in the sense that their edges come alternately from M and N .
Furthermore, the alternating paths stop at positions, because if a path stopped at
a person, she would lack a position in one matching, which is not allowed. We can
think of an alternating path as a sequence of reassignments: one person moves
to a different position, ejecting its original occupant; the occupant takes another
position, ejecting its occupant; and so forth until someone takes a previously
unoccupied position. Each reassignment may constitute a promotion or demotion
of the reassigned person according to his preferences. An alternating cycle is
similar.

The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria 597

Conversely, we say that a path or cycle X is applicable to a matching M if
M ⊕ X is a valid matching. If so, applying X to M gives M ⊕ X ; X represents
the change from M to M ⊕ X .

With this background, we can define pressures.

3.2 Pressures

Definition 3.2. Let M be a Pareto efficient matching. The pressure of a filled
position p in M is the largest k for which there exists an alternating path ap-
plicable to M that promotes k people without demoting anyone and then ends
with the demotion of the occupant of p to her last resort. Note that the demotion
by itself constitutes such a path for k = 0. (The term “pressure” comes from the
idea of k people stacked up behind p, wishing that its occupant will leave so they
can all become better off.)

Theorem 3.3. The unpopularity factor of a Pareto efficient matching M is the
greatest pressure of any of its filled positions.

Proof. Recall that the unpopularity factor of M is the greatest pressure by which
any other matching dominates M . To establish that the two maxima are equal,
we’ll show that each is at least as great as the other, i.e., (a) if M has a position
p of pressure k, then there exists a matching N that dominates M by a factor
of at least k and (b) if a matching N dominates M by a factor of f , then M has
a position of pressure at least �f�.

(a): Simply let N be the result of applying to M the path that determines
the pressure of p. The path promotes k people and demotes one person, so N
dominates M by a factor of k.

(b): Let u and v be the total number of people better and worse off in N
than in M , so that f = u/v. First modify N so that everyone who is worse off
in N than in M is demoted all the way to his last resort in N ; this does not
change u or v. Decompose M ⊕ N into a collection of paths and cycles X1, . . . ,
Xc, discarding those that neither promote nor demote anyone. Each Xi must
demote at least one person so that it is not a Pareto improvement over M . That
person is demoted to his last resort, and since there is no one else to leave the
last resort, the demotion must be the last reassignment in Xi; thus Xi is a path
(not a cycle). A path has only one last reassignment, so each Xi demotes exactly
one person to his last resort, and c = v.

For each i, let ui be the number of people promoted by Xi; of course,
∑

i ui =
u. Choose an i such that ui ≥ �u/v� = �f�; by the Pigeonhole Principle, one
must exist. Let p be the position whose occupant is demoted by Xi. Observe
that Xi has exactly the form considered in Definition 3.2 for the pressure of p,
and it makes at least �f� people better off; thus the pressure of p is at least �f�.

Corollary 3.4. The unpopularity factor of a matching, if finite, is an integer.

598 R.M. McCutchen

3.3 Computing the Unpopularity Factor

We can reduce computation of the pressures of a matching to a shortest path
problem. Let n′ and n be the numbers of people and positions, and let m be the
total number of entries in the preference lists.

Algorithm 3.5. In O(m
√

n) time, determines whether a matching M is Pareto
efficient and, if so, finds the pressure of each filled position in M .

Method. Construct a graph G whose vertices are the positions of M . A pair of
vertices (p1, p2) is connected in G by an edge of length −1 if p1 is filled by a
person who strictly prefers p2, an edge of length 0 if p1 is filled by a person
indifferent to p2, or no edge otherwise. Run Goldberg’s shortest-path algorithm
[6] on G, using all positions as sources so that the algorithm finds the shortest
path ending at each position. If Goldberg’s algorithm finds a negative cycle in
G or a negative-length path ending at an unfilled position, conclude that M is
Pareto inefficient. Otherwise, the pressure of each position is the negative of the
length of the shortest path ending at it.

A path or cycle X in G represents a sequence of reassignments that demotes
no one and is applicable to M after the ending position (in the case of a path)
is vacated; furthermore, the length of X in G is the negative of the number of
people it promotes. In light of this, Pareto-improving cycles and paths applicable
to M correspond to negative cycles and negative-length paths ending at unfilled
positions, respectively, in G. Thus, the algorithm correctly determines whether
M is Pareto efficient. If it is, then paths in G ending at a position p represent
paths applicable to M of the form considered in Definition 3.2, with the negative
of a path’s length corresponding to k in that definition. Thus, the negative of
the shortest length of a path ending at p gives the pressure of p, as desired.

Each preference-list entry of the instance accounts for at most one edge of G,
so G has at most m edges. The running time is dominated by that of Goldberg’s
algorithm, which is O(m

√
n) since edge lengths are at least −1.

To find the unpopularity factor of a matching, we use this algorithm to find
the pressures and then simply take the highest pressure. This algorithm can be
seen as a generalization of the algorithm given by Abraham et al. [1] to determine
in O(m) time only whether M is Pareto efficient; both algorithms are based on
the same graph G.

4 The Unpopularity Margin

The unpopularity margin of a matching is defined the same way as the unpopu-
larity factor, except we subtract the numbers of votes instead of dividing them:

Definition 4.1. If M and N are two matchings for the same instance, N dom-
inates M by a margin of u − v, where u is the number of people who strictly
prefer N to M and v is the number of people who strictly prefer M to N . The
unpopularity margin of a matching M is the maximum margin by which it is
dominated by any other matching.

The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria 599

The unpopularity margin of a matching M is an integer; it is 0 if M is popular
(because M dominates itself by a margin of 0) or otherwise positive. We can
reduce calculating the unpopularity margin to a min-cost max-flow problem.
Since we use integer edge capacities, we assume that edge flows are also integers.

Algorithm 4.2. Finds the unpopularity margin u of a matching M in
O((u + 1)m

√
n′ + n) time.

Method. Construct a flow graph G having as vertices a source, a sink, and the
people and positions of M . Add an edge of unit capacity and zero cost from the
source to each person and from each position to the sink. For each preference-list
entry submitted by a person A for a position p, add a unit-capacity edge from
A to p whose cost is −1, 0 or 1 as A likes p better than, the same as, or worse
than her position in M .

A max-flow of G must put one unit of flow through each person, and those
units must reach the sink via different positions, so the max-flows of G cor-
respond exactly to the possible matchings of the instance. Furthermore, the
cost of a max-flow is the negative of the margin by which the corresponding
matching dominates M . Thus, we find the min-cost max-flow by starting from
the max-flow representing M itself and augmenting negative cycles found using
Goldberg’s shortest-path algorithm [6]. The negative of the cost of this flow gives
the unpopularity margin of M .

To find each negative cycle, we run Goldberg’s algorithm on a graph with
n′ + n + 2 vertices and m edges, taking O(m

√
n′ + n) time since edge lengths

are at least −1. Each cycle decreases the cost by at least 1 until we reach cost
−u, so we find at most u cycles and then perform one more failed search for a
cycle. The running time bound follows.

5 NP-Hardness of Finding Least-Unpopularity Matchings

We now use a reduction from 3-satisfiability (3SAT) to prove that it is NP-hard
to find the least unpopularity factor or margin of a given set of preferences; it
happens that the same reduction works for both problems. Abraham et al. [2]
analyze preference sets with no ties separately from the general case of ties. We
have had no reason to make this distinction so far, but the reduction will always
generate preference lists with no ties in order to prove that even the no-ties
versions of the problems are NP-hard.

The reduction converts an instance S of 3SAT to a polynomial-size preference
set P and an ideal unpopularity factor. We will show that any tuple of truth
values that satisfies S can be converted to a matching of P whose unpopularity
factor does not exceed the ideal value, and vice versa; thus, the least unpopularity
factor of P is at most the ideal value if and only if S is satisfiable. Therefore,
computing the least unpopularity factor of P is NP-hard because an algorithm
to do that could be used to determine whether S is satisfiable. This paragraph
applies equally to unpopularity margins, and henceforth “unpopularity” will
refer to either the factor or the margin.

600 R.M. McCutchen

5.1 Overview of the Reduction Design

The reduction, like most, builds P from gadgets that represent pieces of S. Each
gadget will contain some internal people and positions and some linking people;
there will also be linking positions that do not belong to any gadget. An internal
person is willing to occupy only internal positions of her own gadget, but a
linking person is also open to exactly one linking position, which is always her
first choice. Any reassignment of the occupant of a linking position is a demotion,
which (from the perspective of voting) could just as well be to his last resort
as into a gadget; thus, the dominance that can be achieved by replacing him
depends only on the identity and state of the gadget providing the replacement,
not on the states of any other gadgets. In other words, gadgets are isolated from
one another unpopularity-wise; their only interactions are in which gadget gets to
fill each linking position. Thus, we can analyze each gadget’s contribution to the
unpopularity of the matching separately as a function of which linking positions
the gadget gets.

Motivated by this idea, we introduce three types of gadget, each of which is
designed to enforce a certain constraint on which linking positions it must get
by producing a low unpopularity if the constraint is satisfied or a higher one if it
is not. To represent S, we start with a set of key linking positions representing
its variables; the choice of which gadget gets each of these positions represents a
tuple of truth values for the variables. We then add gadgets so that satisfaction of
all of the gadget constraints is equivalent to satisfaction of S, and we let the ideal
unpopularity of P be the low unpopularity that would result if every gadget’s
constraint were satisfied. Note that the unpopularity factor of the matching is
the highest pressure produced by any gadget, while the unpopularity margins of
separate gadgets roughly add.

5.2 The Gadgets

A box consists of four internal positions, three internal people (i1, i2, and i3), and
three linking people (w, n1, and n2). Figure 2(a) shows its structure, including
the linking positions. w is known as the wide person, and n1 and n2 are the
narrow people. A box is satisfied, and produces a pressure of 2 and a margin
of 1, if either the wide person or both narrow people get their linking positions;
however, if both the wide person and at least one narrow person are denied their
linking positions, a pressure of 3 and a margin of 2 result.

A peg (Figure 2(b)) consists of one internal position available to three linking
people, all of whom prefer the same linking position. Its purpose is very simple:
to always produce a pressure of 2 on l and provide a way to replace its occupant
at margin 1.

A pool (Figure 2(c)) consists of two internal positions and three linking people.
If k of the people are denied their linking positions, the pool has one linking
position with a pressure of k and can replace its occupant at a margin of max(k−
1, 0). We want to use the pool to distinguish between two and three people being
denied linking positions. To this end, we attach a peg to each linking position;

The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria 601

then, all positions have pressure 2 and replacement margin 1, except when all
three positions are taken by people from other gadgets, one of them develops a
pressure of 3 and a replacement margin of 2.

�
�������

x y z u lw ln1 ln2

w 2 3 5 4 1 − −
i1 1 2 3 4 − − −
i2 1 2 3 4 − − −
i3 1 2 3 4 − − −
n1 − − − 2 − 1 −
n2 − − − 2 − − 1

�
�������

�
�

x l

f1 2 1
f2 2 1
f3 2 1

�
�

�
�

x y lf1 lf2 lf3

f1 2 3 1 − −
f2 2 3 − 1 −
f3 2 3 − − 1

�
�

(a) (b) (c)

Fig. 2. The three gadgets: (a) box, (b) peg, and (c) pool

5.3 Constructing the Preference Set

A box is a “two-for-one” device: if another gadget takes its wide linking position,
it demands both narrow linking positions. For any k, we can construct a k-for-
one device from k − 1 boxes by identifying the wide position of each box after
the first with a narrow position of the previous box. If we identify the ultimate
wide positions of two such devices, we can get a u-for-v device for any desired u
and v.

For each variable xi of the 3SAT instance S, we generate a many-for-many
device whose two sets of narrow positions represent the references to xi and the
references to ¬xi in the clauses of S, respectively. The device for a variable x
with four ordinary references and four negated ones could be drawn like this:

x
x

x ~x
~x

~x

~xx

(Boxes represent boxes, circles represent linking positions, and lines represent
linking people. Internal people and positions are not shown.) In a matching that
obeys all the gadget constraints, we may assign all the linking people either to
the right, filling the ¬x positions and leaving the x positions open, or to the left,
filling the x positions and leaving the ¬x positions open. These two possibilities
correspond to making x true or false, respectively. Either way, a linking position
is left open if and only if the reference it represents evaluates to true.

Now, we add a pool for each clause of S and identify its three linking positions
with linking positions of the variable devices according to the clause’s three
references. The pool demands that at least one of its linking people receive a
linking position. This is possible if and only if the clause is satisfied, so we can
see that a matching that obeys all the constraints represents a solution to S.

602 R.M. McCutchen

5.4 Correctness of the Reduction

We will now give the details of the argument that S is satisfiable if and only
if P has a matching of the ideal unpopularity factor (margin) and, in doing so,
specify the ideal unpopularities.

Suppose the tuple of truth values (t1, . . . , tv) satisfies S; we construct a match-
ing M as follows. We match the device for each variable xi in a manner that
depends on ti. If ti is true, we match each box on the xi side according to
the first table below, filling its wide linking position, and each box on the ¬xi

side according to the second, filling its two narrow linking positions. In the first
table, we let n1 be a/the person whose linking position is shared with a pool
(rather than a box) so that the pressure of 2 on ln1 from the box is subsumed
by that from the attached peg; we then assign n2 to his last resort. Each table’s
superscripts give the pressures generated by the box shown; other gadgets may
account for higher pressures on some linking positions.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2 y1 z0 u1 l0w l2n1 l1n2

w 2 3 5 4 (1) − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − (2) − 1 −
n2 − − − 2 − − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2 y1 z0 u0 l1w l0n1 l0n2

w 2 3 5 (4) 1 − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − 2 − (1) −
n2 − − − 2 − − (1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Each of the device’s linking positions is filled exactly once except for those rep-
resenting references to xi. If ti is instead false, we use the same construction but
with the two sides of the device switched. Either way, exactly those linking posi-
tions that represent references evaluating to true are left open, and no pressure
exceeds 2.

Now we assign each pool linking person to her linking position if it is available
or otherwise to the best available position in her pool. Since the ti satisfy S, at
least one linking person from each pool will get a linking position, so each pool
only needs to accommodate at most two people. A pool can hold two people
as in the table below (the pressure superscripts consider the attached pegs as
well as the pool itself), and additional people can be moved to linking positions
without increasing the pressures.

⎛

⎝

x1 y0 l2f1 l2f2 l2f3

f1 (2) 3 1 − −
f2 2 (3) − 1 −
f3 2 3 − − (1)

⎞

⎠

Nowhere did M incur a pressure exceeding 2, so it has unpopularity factor
2, which we designate as ideal. To bound its unpopularity margin, we use the
following lemma, whose proof we omit due to space constraints:

Lemma 5.1. The unpopularity margin of a Pareto efficient matching M does
not exceed the number of filled positions in M that have pressure 2 or greater.

The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria 603

M has exactly 6c − 2v positions of pressure 2, namely the 3c positions bearing
pegs and the internal position x of each of the 3c − 2v boxes (one per variable
reference minus 2v at the ends of the variable devices), so M has unpopularity
margin at most 6c − 2v, which we designate as ideal.

For the other direction of the proof, suppose that S is unsatisfiable and let
M be an arbitrary Pareto efficient matching of P ; we will show that M achieves
neither the ideal unpopularity factor nor the ideal unpopularity margin. It should
be clear that M cannot satisfy all the gadget constraints, but we must show that
non-ideal unpopularities result.

A peg may or may not get its linking position in M , but either way, x must
be filled for Pareto efficiency, and at least one person is left at her last resort.
Starting from M , we “cycle” each peg by promoting a last-resort person to x,
promoting the occupant of x to the linking position, and demoting the occupant
of the linking position to his last resort. In each box, the three people i1, i2, and
i3 are all eager to fill the three positions x, y, z, so M must fill those positions
for Pareto efficiency. We cycle the box by promoting z’s occupant (who could
be w rather than an ij) to y and y’s occupant to x, demoting the occupant of
x. Let N be the resulting matching. We have performed two demotions and one
promotion for each of the 3c pegs and 3c − 2v boxes, so N dominates M by the
ideal margin of 6c − 2v.

Now we modify N to exploit the gadget dissatisfaction in M . Suppose M
dissatisfies a box, i.e., both the wide person w and at least one narrow person
(say n1) are denied linking positions. The four people w, i1, i2, and i3 are eager
to fill the four positions x, y, z, and u, so M must fill those positions. Instead of
cycling this box, we do the following. If either w or an ij is at her last resort, we
promote her to z and z’s occupant to y. Otherwise, n1 must be at his last resort;
we promote him to u and u’s occupant (who must be w or an ij) to y. Either
way, we then promote y’s occupant to x and demote the occupant of x. We now
have 3 promotions in the box instead of 2, so N dominates M by a margin of
6c − 2v + 1. Furthermore, the chain of promotions exerts a pressure of 3 on x.

On the other hand, if M dissatisfies a pool (by denying all three of its people
their linking positions), then one of the people must be in x, one must be in y,
and the third (call him p) must be at his last resort. Let lfi be the linking position
of the occupant of x. Instead of cycling the peg attached to lfi, we promote p
to y, y’s occupant to x, and x’s occupant to lfi, demoting the occupant of lfi.
This strategy similarly raises the dominance margin to 6c − 2v + 1 and reveals
a pressure of 3 on lfi.

In either case, the pressure of 3 shows that M fails to achieve the ideal unpop-
ularity factor of 2 and N ’s dominance margin of 6c − 2v + 1 shows that M fails
to achieve the ideal unpopularity margin of 6c − 2v, so the proof is complete.

By means of the reduction, we have proved the following result:

Theorem 5.2. It is NP-hard to calculate the least unpopularity factor or mar-
gin of a given preference set. Thus, it is also NP-hard to compute an optimal
matching.

604 R.M. McCutchen

How well the least unpopularity factor and margin of an instance can be ap-
proximated is an open problem. The above proof shows that it is NP-hard to
approximate the least unpopularity factor within a factor better than 3/2. The
author examined three heuristic algorithms (see the supplementary material)
that often find good matchings but could not prove an approximation bound for
any of them; a search for a simple construction to increase the additive gap in
the least unpopularity factor was also unsuccessful. Of course, a more impor-
tant goal for future work is to find a good manipulation-resistant criterion under
which optimal matchings always exist and can be found efficiently.

Acknowledgments. I would like to thank Samir Khuller, my advisor, for in-
troducing me to previous work on matching with one-sided preferences; Brian
Dean for suggesting the use of Goldberg’s algorithm in Algorithm 3.5; and Dr.
Khuller, Bobby Bhattacharjee, Glenda Torrence, Nancy Zheng, my parents, and
others for suggesting improvements to this paper and its precursors.

Supplementary materials for this work, including Java implementations of
some of the algorithms, are available at http://mattmccutchen.net/lumc/.

References

1. Abraham, D., Cechlárová, K., Manlove, D., Mehlhorn, K.: Pareto Optimality in
House Allocation Problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)

2. Abraham, D., Irving, R., Kavitha, T., Mehlhorn, K.: Popular matchings. In: Pro-
ceedings of SODA 2005: The 16th ACM-SIAM Symposium on Discrete Algorithms,
pp. 424–432 (2005)

3. Abraham, D., Kavitha, T.: Dynamic matching markets and voting paths. In: Arge,
L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 65–76. Springer, Heidel-
berg (2006)

4. Gale, D., Shapley, L.: College admissions and the stability of marriage. American
Mathematical Monthly 16, 9–15 (1962)

5. Gärdenfors, P.: Match Making: assignments based on bilateral preferences. Behav-
ioural Sciences 20, 166–173 (1975)

6. Goldberg, A.: Scaling algorithms for the shortest paths problem. In: Proceedings of
SODA 1993: The 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 222–231
(1993)

7. Irving, R., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. In: Proceedings of SODA 2004: the 15th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 68–75 (2004)

8. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity, ch. 11. In: Weighted Matching. Prentice-Hall, Englewood Cliffs (1982)

9. Price, E.: Personal communication (August 2005)
10. Roth, A.: The evolution of the labor market for medical interns and residents: A

case study in game theory. Journal of Political Economy 92, 991–1016 (1984)

http://mattmccutchen.net/lumc/

Randomized Rendez-Vous with Limited Memory

Evangelos Kranakis1, Danny Krizanc2, and Pat Morin1

1 School of Computer Science, Carleton University
2 Department of Mathematics and Computer Science, Wesleyan University

Abstract. We present a tradeoff between the expected time for two
identical agents to rendez-vous on a synchronous, anonymous, oriented
ring and the memory requirements of the agents. In particular, we show
that there exists a 2t state agent, which can achieve rendez-vous on
an n node ring in expected time O(n2/2t + 2t) and that any t/2 state
agent requires expected time Ω(n2/2t). As a corollary we observe that
Θ(log log n) bits of memory are necessary and sufficient to achieve rendez-
vous in linear time.

1 Introduction

The problem of rendez-vous (the gathering of agents widely dispersed in some
domain at a common place and time) has been studied under many guises and
in many settings [2,15,4,5,7,6,8,10,9,14,12,18,20,21,22]. (See Reference [13] for a
survey of recent results.) In this paper we consider the problem of autonomous
mobile software agents gathering in a distributed network. This is a fundamental
operation useful in such applications as web-crawling, distributed search, meet-
ing scheduling, etc. In particular, we study the problem of two identical agents
attempting to rendez-vous on a synchronous anonymous ring.

We consider the standard model of a synchronous anonymous oriented n-
node ring [19]. The nodes are assumed to have no identities, the computation
proceeds in synchronous steps and the edges of the ring are labelled clockwise
and counterclockwise in a consistent fashion. We model the agents as iden-
tical probabilistic finite automata A = 〈S, δ, s0〉 where S is the set of states
of the automata including s0 the initial state and the special state halt, and
δ : S × C × P → S × M where C = {H, T } represents a random coin flip,
P = {present, notpresent} represents a predicate indicating the presence of
the other agent at a node, and M = {−1, 0, +1} represents the potential moves
the agent may make, +1 representing clockwise, −1 counterclockwise and 0 stay
at the current node. During each synchronous step, depending upon its current
state, the answer to a query for the presence of the other agent, and the value
of an independent random coin flip with probability of heads equal to 1/2, the
agent uses δ in order to change its state and either move across the edge labelled
clockwise, move across the edge labelled counterclockwise or stay at the cur-
rent node. We assume that the agent halts once it detects the presence of the
other agent at a node. Rendezvous occurs when both agents halt on the same
node. The complexity measures we are interested in are the expected time (the

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 605–616, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

606 E. Kranakis, D. Krizanc, and P. Morin

number of synchronous steps) to rendez-vous (where the expectation is taken
over all sequences of coin flips of the two agents) and the size (|S|) or memory
requirement (log2 |S|) of the agents.

A number of researchers have observed that using random walks one can design
O(1) state agents that will rendez-vous in polynomial number steps on any net-
work [3]. For the ring the expected time for two random walks to meet is easily
shown to be O(n2). (See Reference [11] for an example proof of this fact.) This ex-
pected time bound can be improved by considering the following strategy. Repeat
the following until rendez-vous is achieved: flip a fair coin and walk n/2 steps clock-
wise if the result is heads, n/2 steps counterclockwise if the result is tails. If the two
agents choose different directions (which they do with probability 1/2) then they
will rendez-vous (at least in the case where they start at an even distance apart). It
is easy to see that the expected time until rendez-vous in this case is O(n). Alpern
refers to this strategy as Coin Half Tour and studies it in detail [1]. Note that the
agents are required to count up to n/2 and thus require Ω(n) states or Ω(log n)
bits of memory to perform this algorithm. The main result of this paper is that
this memory requirement can be reduced to O(log log n) bits while still achieving
rendez-vous in O(n) expected time, and this is optimal.

Below we show a tradeoff between the size of the agents and the time required
for them to rendez-vous. We prove there exists a 2t state algorithm, which can
achieve rendez-vous on an n node ring in expected time O(n2/2t + 2t) and that
any t/2 state algorithm requires expected time Ω(n2/2t). As a corollary we
observe that Θ(log log n) bits of memory are necessary and sufficient to achieve
rendez-vous in linear time. Section 2 contains some preliminary results, section
3 our upper bound and section 4 the lower bound.

2 Preliminaries

2.1 Martingales, Stopping Times, and Wald’s Equations

In this section, we review some results on stochastic processes that are used sev-
eral times in our proofs. The material in this section is based on the presentation
in Ross’ textbook [17, Chapter 6]. Let X = X1, X2, X3, . . . be a sequence of ran-
dom variables and let Q = Q1, Q2, Q3 . . . be a sequence of random variables in
which Qi is a function of X1, . . . , Xi. Then we say that Q is a martingale with
respect to X if, for all i, E[|Qi|] < ∞ and E[Qi+1 | X1, . . . , Xi] = Qi.

A positive integer-valued random variable T is a stopping time for the sequence
X1, X2, X3, . . . if the event T = i is determined by the values X1, . . . , Xi. In
particular, the event T = i is independent of the values Xi+1, Xi+2, Some of
our results rely on the Martingale Stopping Theorem:

Theorem 1 (Martingale Stopping Theorem). If Q1, Q2, Q3, . . . is a mar-
tingale with respect to X1, X2, X3, . . . and T is a stopping time for X1, X2, X3, . . .
then

E[QT] = E[Q1]

provided that at least one of the following holds:

Randomized Rendez-Vous with Limited Memory 607

1. Qi is uniformly bounded for all i ≤ T ,
2. T is bounded, or
3. E[T] < ∞ and there exists an M < ∞ such that

E [|Qi+1 − Qi| | X1, . . . , Xi] < M .

If X1, X2, X3, . . . is a sequence of i.i.d. random variables with expected value
E[X] < ∞ and variance var(X) < ∞ then by applying Theorem 1 on the
sequence Qi =

∑i
j=1(Xj − E[X]) we obtain Wald’s Equation:

E

[
T∑

i=1

Xi

]

= E[T] · E[X] (1)

whenever T is a stopping time for X1, X2, X3, . . . Similarly, we can derive a
version of Wald’s Equation for the variance by considering the martingale Qi =
(∑i

j=1(Xj − E[X]
)2

− i · var(X) to obtain

var

(
T∑

i=1

Xi

)

= E

⎡

⎣

(
T∑

i=1

(Xi − E[Xi])

)2
⎤

⎦ = E[T] · var(X) . (2)

2.2 A Lemma on Random Walks

Let X1, X2, X3, . . . ∈ {−1, +1} be independent random variables with

Pr{Xi = −1} = Pr{Xi = +1} = 1/2

and let Si =
∑i

j=1 Xj . The sequence S1, S2, S3, . . . is a simple random walk on
the line, where each Xi represents a step to the left (Xi = −1) or a step to the
right (Xi = +1). Define the hitting time hm as

hm = min {i : |Si| = m} ,

which is the number of steps in a simple random walk before it travels a distance
of m from its starting location. The following result is well-known (see, e.g.,
Reference [16]):

Lemma 1. E[hm] = m2.

Applying Markov’s Inequality with Lemma 1 yields the following useful corollary

Corollary 1. Pr{max{|Si| : i ∈ {1, . . . , 2m2}} ≥ m} ≥ 1/2 .

In other words, Corollary 1 says that, at least half the time, at some point during
the first 2m2 steps of a simple random walk, the walk is at distance m from its
starting location.

608 E. Kranakis, D. Krizanc, and P. Morin

Let Y1, . . . , Ym be i.i.d. non-negative random variables with finite expectation
r = E[Yi], independent of X1, . . . , Xm, and with the property that

Pr{Yi ≥ αr} ≥ 1/2

for some constant α > 0. The following lemma considers a modified random walk
in which the ith step is of length Yi:

Lemma 2. Let X1, . . . , Xm and Y1, . . . , Ym be defined as above. Then there ex-
ists constants β, κ > 0 such that

Pr

⎧
⎨

⎩
max

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

m′
∑

i=1

XiYi

∣
∣
∣
∣
∣
∣
: m′ ∈ {1, . . . , m}

⎫
⎬

⎭
≥ βr

√
m

⎫
⎬

⎭
≥ κ .

Proof. We will define 3 events E1, E2, E3 such that Pr{E1 ∩ E2 ∩ E3} ≥ 1/8
and, if E1, E2, and E3 all occur, then there exists a value m′ ∈ {1, . . . , m} such
that

∣
∣
∣
∑m′

i=1 XiYi

∣
∣
∣ ≥ αr

√
m/23/2. This will prove the lemma for κ = 1/8 and

β = α/23/2.
Let E1 be the event that there exists a value m′ ∈ {1, . . . , m} such that

∣
∣
∣
∣
∣
∣

m′
∑

i=1

Xi

∣
∣
∣
∣
∣
∣
≥

√
m/2 .

By Corollary 1, Pr{E1} ≥ 1/2. Assume E1 occurs and, without loss of generality,
assume

∑m′

i=1 Xi > 0.
Let I+ = {i ∈ {1, . . . , m′} : Xi = +1} and I− = {1, . . . , m′} \ I+. We

further partition I+ into two sets I+
1 and I+

2 where I+
1 contains the smallest

|I−| elements of I+ and I+
2 contains the remaining elements. Note that, with

these definitions, |I+
1 | = |I−| and that |I+

2 | =
∑m′

i=1 Xi. Let E2 be the event that
∑

i∈I+
1

XiYi +
∑

i∈I−

XiYi ≥ 0

which is equivalent to
∑

i∈I+
1

Yi ≥
∑

i∈I− Yi and observe that, by symmetry,
Pr{E2|E1} ≥ 1/2.

Finally, let E3 be the event
∑

i∈I+
2

XiYi ≥ αr|I+
2 |/2

To bound Pr{E3|E1 ∩ E2}, let T =
∣
∣{i ∈ I+

2 : Yi ≥ αr}
∣
∣ and observe that T ≥

|I+
2 |/2 implies E3. Now, T is a binomial(|I+

2 |, p) random variable for p ≥ 1/2
so its median value is at least p|I+

2 | ≥ |I+
2 |/2 and therefore Pr{E3|E1 ∩ E2} ≥

Pr{T ≥ |I+
2 |/2} ≥ 1/2.

Randomized Rendez-Vous with Limited Memory 609

We have just shown that Pr{E1 ∩ E2 ∩ E3} ≥ 1/8. To complete the proof we
observe that, if E1, E2 and E3 occur then

m′
∑

i=1

XiYi =
∑

i∈I+
1

XiYi +
∑

i∈I−

XiYi +
∑

i∈I+
2

XiYi

≥
∑

i∈I+
2

XiYi

≥ αr|I+
2 |/2

≥ αr
√

m/23/2 .

��

2.3 An Approximate Counter

In the previous section we have shown that, if we can generate random variables
Yi that are frequently large, then we can speed up the rate at which a random
walk moves away from its starting location. In this section we consider how to
generate these frequently-large random variables. Consider a random variable Y
generated by the following algorithm:

BigRand(t)
1: Y ← C ← 0
2: while C < t do
3: Y ← Y + 1
4: if a coin toss comes up heads then
5: C ← C + 1
6: else
7: C ← 0
8: return Y

Lemma 3. Let Y be the output of Algorithm BigRand(t). Then

1. E[Y] = 2t(2 − 1/2t−1) and
2. Pr{Y ≥ E[Y]/2} ≥ 1/2.

Proof. To compute the expected value of Y we observe that the algorithm begins
by tossing a sequence of i − 1 heads and then either (a) returning to the initial
state if the ith coin toss is a tail or (b) terminating if i = 2t. The first case occurs
with probability 1/2i and the second case occurs with probability 1/2t. In this
way, we obtain the equation

E[Y] =
t∑

i=1

1
2i

(i + E[Y]) +
t

2t
.

Rearranging terms and multiplying by 2t, we obtain

E[Y] = 2t(2 − 1/2t−1) .

610 E. Kranakis, D. Krizanc, and P. Morin

To prove the second part of the lemma, consider the number of times the
counter C is reset to 0 in Line 7 of the algorithm. This number is a geometric
(1/2t) random variable and its expected value is therefore 2t ≥ E[Y]/2. Since
the number of times Line 7 executes is a lower bound on the number of times
the value of Y is incremented (Line 3), this completes the proof. ��

3 The Rendez-Vous Algorithm

Consider the following algorithm used by an agent to make a random walk on a
ring. The agent repeatedly performs the following steps: (1) toss a coin to deter-
mine a direction d ∈ {clockwise, counterclockwise} then (2) run algorithm
BigRand(t) replacing each increment of the variable Y with a step in direction
d. By using t states for a clockwise counter and t states for a counterclockwise
counter this algorithm can be implemented by a 2t state finite automata. (Or us-
ing one bit to remember the direction d and log t bits to keep track of the counter
C in the BigRand algorithm, it can be implemented by an agent having only
1 + log2 t bits of memory.)

We call m iterations of the above algorithm a round. Together, Lemma 2 and
Lemma 3 imply that, during a round, with probability at least κ, an agent will
travel a distance of at least β2t

√
m from its starting location. Set

m =
⌈

n2

β222t

⌉

≤ 1 +
n2

β222t

and consider what happens when two agents A and B both execute this rendez-
vous algorithm. During the first round of A’s execution, with probability at
least κ, agent A will have visited agent B’s starting location. Furthermore, with
probability at least 1/2 agent B will not have moved away from A when this
occurs, so the paths of agents A and B will cross, and a rendez-vous will occur,
with probability at least κ/2.

By Lemma 3, the expected number of steps taken for A to execute the ith
round is at most

E[Mi] ≤ m2t .

The variables M1, M2, · · · are independent and the algorithm terminates when
A and B rendez-vous. If we define T as the round in which agents A and B
rendez-vous then the time to rendez-vous is bounded by

T∑

i=1

Mi .

Note that the event T = j is independent of Mj+1, Mj+2, . . . so T is a stopping
time for the sequence M1, M2, . . . so, by Wald’s Equation

E

[
T∑

i=1

Mi

]

= E[T] · E[M1] ≤ 2
κ

· m2t .

This completes the proof of our first theorem.

Randomized Rendez-Vous with Limited Memory 611

Theorem 2. There exists a rendez-vous algorithm in which each agent has at
most 2t states and whose expected rendez-vous time is O(n2/2t + 2t).

4 The Lower Bound

Next we show that the algorithm in Section 3 is optimal.
The model of computation for the lower bound represents a rendez-vous al-

gorithm A as a probablistic finite automata having t states. Each vertex of the
automata has two outgoing edges representing the two possible results of a coin
toss and each edge e is labelled with a real number �(e) ∈ [−1, +1]. The edge label
of e is represented as a step of length |�(e)| with this step being counterclock-
wise if �(e) < 0 and clockwise if �(e) > 0. As before, both agents use identical
automata and start in the same state. The rendez-vous process is complete once
the distance between the two agents is at most 1. This model is stronger than
the model used for upper bound, since the edge labels are no longer restricted
to be in the discrete set {−1, 0, +1} and the definition of a rendez-vous has been
slightly relaxed.

4.1 Well-Behaved Algorithms and Reset Times

We say that an algorithm is well-behaved if the directed graph of the state
machine has only one strongly connected component that contains all nodes.
We are particularly interested in intervals between consecutive visits to the start
state, which we will call rounds.

Lemma 4. Let R be the number of steps during a round. Then E[R] ≤ 2t and
E[R2] ≤ c22t.

Proof. For each state v of A’s automata fix a shortest path (a sequence of edges)
leading from v to the start state. For an automata that is currently at v we say
that the next step is a success if it traverses the first edge of this path, otherwise
we say that the next step is a failure.

Each round can be further refined into phases, where every phase consists of
0 or more successes followed by either a failure or by reaching the start vertex.
Let Xi denote the length of the ith phase and note that Xi is dominated1 by
a geometric(1/2) random variable X ′

i, so E[Xi] ≤ E[X ′
i] ≤ 2. On the other

hand, if a phase lasts t − 1 steps then the start vertex is reached. Therefore, the
probability of reaching the start vertex during any particular phase is at least
1/2t−1 and the number T of phases is dominated by a geometric(1/2t−1) random
variable T ′, so E[T] ≤ E[T ′] ≤ 2t−1. Therefore, by Wald’s Equation

E[R] = E

[
T∑

i=1

Xi

]

≤ E

⎡

⎣
T ′
∑

i=1

X ′
i

⎤

⎦ = E[T ′] · E[X ′
1] ≤ 2t .

1 A random variable X dominates a random variable Y if Pr{X > x} ≥ Pr{Y > x}
for all x ∈ R.

612 E. Kranakis, D. Krizanc, and P. Morin

For the second part of the lemma, we can apply Wald’s Equation for the variance
(2) to obtain

E[R2] = E

⎡

⎣

(
T∑

i=1

Xi

)2
⎤

⎦

≤ E

⎡

⎢
⎣

⎛

⎝
T ′
∑

i=1

X ′
i

⎞

⎠

2
⎤

⎥
⎦

= var

⎛

⎝
T ′
∑

i=1

X ′
i

⎞

⎠ + (E[T ′] · E[X ′
1])

2

= E[T ′] · var(X1) + (E[T ′] · E[X ′
1])

2

≤ 2t−1 · 4 + (22t−1 · 8)
≤ 5 · 22t

as required. ��

4.2 Unbiasing Algorithms

Note that E[R] can be expressed another way: For an edge e of the state machine,
let f(e) be the expected number of times the edge e is traversed during a round.
The reset time of algorithm A is then defined as

reset(A) =
∑

e

f(e) = E[R] .

The bias of a well-behaved algorithm A is defined as

bias(A) =
∑

e

f(e) · �(e) ,

which is the expected sum of the edge labels encoutered during a round. We say
that A is unbiased if bias(A) = 0, otherwise we say that A is biased.

Biased algorithms are somewhat more difficult to study. However, observe
that, for any algorithm A we can replace every edge label �(e) with the value
�(e) − x for any real number x and obtain an equivalent algorithm in the sense
that, if two agents A and B execute the modified algorithm following the same
sequence of state transitions then A and B will rendez-vous after exactly the
same number of steps. In particular, if we replace each edge label �(e) with the
value

�′(e) = �(e) − bias(A)
reset(A)

then we obtain an algorithm A′ with bias(A′) = 0. Furthermore, since | bias(A)| ≤
reset(A), every edge label �′(e) has−2 ≤ �′(e) ≤ 2.This gives the following relation
between biased and unbiased algorithms:

Randomized Rendez-Vous with Limited Memory 613

Lemma 5. Let A be a well-behaved t-state algorithm with expected rendez-vous
time R. Then there exists a well-behaved unbiased t-state algorithm A′ with ex-
pected rendez-vous time at most 2R.

4.3 The Lower Bound for Well-Behaved Algorithms

We now have all the tools in place to prove the lower bound for the case of
well-behaved algorithms.

Lemma 6. Let A be a well-behaved t-state algorithm. Then the expected rendez-
vous time of A is Ω(n2/22t).

Proof. Suppose the agents are placed at antipodal locations on an n node ring, so
that the distance between them is n/2. We will show that there exists constants
c > 0 and p > 0 such that, after cn2/2t steps, with probability at least p neither
agent will have travelled a distance greater than n/4 from their starting location.
Thus, the expected rendez-vous time is at least pcn2/2t = Ω(n2/2t).

By Lemma 5 we can assume that A is unbiased. Consider the actions of a
single agent starting at location 0. The actions of the agent proceed in rounds
where, during the ith round, the agent takes Ri steps and the sum of edge labels
encountered during these steps is Xi. Note that the random variables X1, X2, . . .
are i.i.d. with expectation E[X] = 0 and variance E[X2]. Since the absolute value
of Xi is bounded from above by Ri, we have the inequalities E[|Xi|] ≤ E[Ri] and
E[X2

i] ≤ E[R2
i].

Let Si =
∣
∣
∣
∑i

j=1 Xj

∣
∣
∣, for i = 0, 1, . . . be the agent’s distance from their starting

location at the end of the ith round. Let Qi = S2
i − iE[X2] and observe that

the sequence Q1, Q2, . . . is a martingale with respect to the sequence X1, X2, . . .
[17, Example 6.1d]. Define

T = min{i : Si ≥ m} ,

and observe that this is equivalent to

T = min{i : Qi ≥ m2 − iE[X2]} .

The random variable T is a stopping time for the martingale Q1, Q2, . . . so, by
the Theorem 1

E[QT] = E[Q1] = E[(X1)2 − E[X2]] = 0 . (3)

However, by definition QT ≥ m2 − T · E[X2], so

E[QT] ≥ E[m2 − T · E[X2]] = m2 − E[T] · E[X2] . (4)

Equating the right hand sides of (3) and (4) gives

E[T] ≥ m2

E[X2]
.

614 E. Kranakis, D. Krizanc, and P. Morin

Furthermore, the expected number of steps taken by the agent during these T
rounds is, by Wald’s Equation,

E

[
T∑

i=1

Ri

]

= E[T] · E[R1] ≥ m2E[R]
E[R2]

≥ m2E[R]
c22t

≥ m2

c22t
,

where the last two inequalities follow from Lemma 4 and the fact that R ≥ 1. ��

4.4 Badly-Behaved Algorithms

Finally, we consider the case where the algorithm A is not well-behaved. In this
case, A’s automata contains a set of terminal components. These are disjoint
sets of vertices of the automata that are strongly connected and that have no
outgoing edges (edges with source in the component and target outside the
component). From each terminal component, select an arbitrary vertex and call
it the terminal start state for that terminal component. An argument similar to
that given in Lemma 4 proves:

Lemma 7. The expected time to reach some terminal start state is at most 2t.

Observe that each terminal component defines a well-behaved algorithm. Let c
be the number of terminal components and let t1, . . . , tc be the sizes of these
terminal components. When two agents execute the same algorithm A, Lemma 7
and Markov’s Inequality imply that the probability that both agents reach the
same terminal component after at most 2t+2 steps is at least 1/2c. By applying
Lemma 6 to each component, we can therefore lower bound the expected rendez-
vous time by

1
2c

Ω(n2/2t−c) ≥ Ω(n2/22t) ,

Substituting t′ = t/2 into the above completes the proof of our second theorem:

Theorem 3. Any t/2-state rendez-vous algorithm has expected rendez-vous time
Ω(n2/2t).

4.5 Linear Time Rendez-vous

We observe that Theorems 2 and 3 immediately imply:

Theorem 4. Θ(log log n) bits of memory are necessary and sufficient to achieve
rendez-vous in linear time on an n node ring.

Note that the tradeoff between the time and the number of states, t, required
for rendez-vous presented in Theorems 2 and 3 is tight to within a factor of 4
for t ≤ 2 logn. For t > 2 log n the upper bound diverges. It would be interesting
to know if there exists a modified version of our algorithm that is optimal for all
t. Also, investigating similar tradeoffs for other networks would be of interest.

Randomized Rendez-Vous with Limited Memory 615

Acknowledgments

Research of the first and third authors was supported in part by NSERC (Natural
Sciences and Engineering Research Council of Canada) and MITACS (Mathe-
matics of Information Technology and Complex Systems) grants.

References

1. Alpern, S.: The rendezvous search problem. SIAM Journal of Control and Opti-
mization 33, 673–683 (1995)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Acad-
emic Publishers, Norwell, Massachusetts (2003)

3. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a
graph. SIAM Journal of Discrete Mathematics 6, 363–374 (1993)

4. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer,
Heidelberg (2003)

5. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

6. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F., Santoro, N., Sawchuk, C.:
Mobile agent rendezvous when tokens fail. In: Kralovic, R., Sýkora, O. (eds.)
SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)

7. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in the ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

8. Gasieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous
of anonymous mobile agents in a uni-directional ring. In: Wiedermann, J., Tel, G.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp.
282–292. Springer, Heidelberg (2006)

9. Kowalski, D., Malinowski, A.: How to meet in an anonymous network. In: Flocchini,
P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer,
Heidelberg (2006)

10. Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs.
In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656.
Springer, Heidelberg (2004)

11. Kranakis, E., Krizanc, D.: An algorithmic theory of mobile agents. In: Symposium
on Trustworthy Global Computing (2006)

12. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006)

13. Kranakis, E., Krizanc, D., Rajasbaum, S.: Mobile agent rendezvous: A survey.
In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9.
Springer, Heidelberg (2006)

14. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous
search problem in the ring. In: Proc. International Conference on Distributed Com-
puting Systems (ICDCS), pp. 592–599 (2003)

15. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vacaro, U.: Asyn-
chronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A.
(eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)

616 E. Kranakis, D. Krizanc, and P. Morin

16. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

17. Ross, S.M.: Probability Models for Computer Science. Harcourt Academic Press,
London (2002)

18. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms,
performance bounds and observations. Autonomous Robots 11, 117–136 (2001)

19. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley, Hoboken (2006)
20. Sawchuk, C.: Mobile Agent Rendezvous in the Ring. PhD thesis, Carleton Univer-

sity, School of Computer Science, Ottawa, Canada (2004)
21. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of

geometric patterns. SIAM Journal of Computing 28, 1347–1363 (1999)
22. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In:

Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

Origami Embedding of Piecewise-Linear

Two-Manifolds

Marshall Bern1 and Barry Hayes2

1 Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto CA 94304, USA
bern@parc.com

2 Google, Inc., 1600 Amphitheatre Parkway, Mountain View CA 94043, USA
bhayes@cs.stanford.edu

Abstract. We show that any compact, orientable, piecewise-linear two-
manifold with Euclidean metric can be realized as a flat origami, meaning
a set of non-crossing polygons in Euclidean 2-space “plus layers”. This
result implies a weak form of a theorem of Burago and Zalgaller: any ori-
entable, piecewise-linear two-manifold can be embedded into Euclidean
3-space “nearly” isometrically. We also correct a mistake in our previ-
ously published construction for cutting any polygon out of a folded sheet
of paper with one straight cut.

1 Introduction

Inspired by various examples (see Figure 1), Erik Demaine [8] asked the following
question: can any polyhedron be “crushed”? In other words, can any polyhedral
surface in Euclidean three-space be realized as a flat folding, that is, as a finite
set of planar faces in the Euclidean plane “plus layers”? This question asks only
for the existence of a flat folding, and not for the existence of a continuous motion
that transforms the polyhedral surface to a flattened state. Indeed if faces are
assumed rigid, with edges as hinges, then there exists no such continuous motion;
certain special polyhedra can flex [6], but none can change volume [7].

In this paper, we answer Demaine’s question affirmatively by adapting a con-
struction of Bern, Demaine, Eppstein, and Hayes [3], that solves the problem
of folding a sheet of paper so that any polygon can be realized by one straight
cut. In fact, we prove a more general result, by showing that a flat folding ex-
ists even for a polyhedral surface without an embedding, that is, an orientable
piecewise-linear (PL) 2-manifold given as a cell complex of Euclidean polygons
glued together at edges. This result extends a theorem of Zalgaller [18]: any PL
2-manifold has an isometric submersion into IE2. (In an isometric submersion
the surface may pass through itself.)

Our result also relates to a theorem of Burago and Zalgaller [5], which states
that any submetric (or “short”) embedding of a PL 2-manifold into Euclidean
3-space IE3 can be approximated by an isometric embedding. (A submetric em-
bedding is one in which the geodesic distances between corresponding points are
non-increasing.) In other words, a submetric embedding (proved to exist in [4])
can be “wrinkled up” so that it remains within any small ε of its original position,

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 617–629, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

618 M. Bern and B. Hayes

Fig. 1. This rectangular parallelopiped can be creased like a paper bag at two ends,
giving the flat folding shown on the right. Dashed lines show valley folds and solid lines
show mountain folds.

yet exactly recovers all geodesic distances of the original PL manifold. This re-
sult is the two-dimensional, piecewise-linear analogue to John Nash’s celebrated
embedding theorems for differentiable manifolds. In fact, it is the analogue for
both the C∞ Nash embedding theorem [16] and the C1 Nash-Kuiper embedding
theorem [13,15], because it preserves curvature as in the C∞ theorem, but em-
beds in the lowest possible dimension as in the C1 theorem. Our result can be
used to give a “nearly isometric” embedding: given any ε > 0, any orientable
PL 2-manifold can be embedded into IE3 such that the distance between pairs
of points changes (increases or decreases) by no more than ε.

The techniques used in this paper also relate to the techniques used by Burago
and Zalgaller. In constructing their isometric embedding into IE3, Burago and
Zalgaller use a very finely subdivided all-acute-angle triangulation of the PL
2-manifold. For our isometric embedding into layered IE2, we use a coarser mix
of triangles and “origami-friendly” quadrangles. If the 2-manifold M is a topo-
logical sphere, and all its faces are triangles of bounded aspect ratio, our con-
struction has complexity O(n), where n is the number of faces of M . In fact, the
construction is simple enough that one can imagine using it to fold inflatable
sculptures.

Recently, Krat, Burago, and Petrunin [12] showed that Zalgaller’s submersion
theorem generalizes to any dimension d. Moreover, Krat et al. removed the self-
crossings for the case of 2-dimensional PL manifolds, and independently obtained
the same origami embedding result as our own. However, the origami embedding
of Krat et al. uses the techniques of Burago and Zalgaller, and hence has much
higher complexity than our construction.

2 Definitions and Main Results

The notion of flat folding has been formalized several times in various ways
[2,9,11]. In the following definition we require a total order on the faces of the
folding; this rules out certain flat foldings such as weavings [2] that might be
perfectly acceptable for real paper.

Origami Embedding of Piecewise-Linear Two-Manifolds 619

Definition 1. A flat folding consists of a set of open polygons P1, P2, . . . , Pn

in the Euclidean plane. The polygons are ordered so that Pi lies “above” Pj if
i < j. Two polygons Pi and Pk, i < k, may be joined at an edge e if (1) e is a
boundary edge of each of them, (2) no Pj with i < j < k intersects e, and (3)
no Pj with i < j < k is joined to a polygon P�, with � ≤ i or � ≥ k at any point
of the relative interior of e.

Definition 2. A metric piecewise-linear (PL) 2-manifold is a finite com-
plex of Euclidean polygons with the topology of a 2-manifold (possibly with bound-
ary). (Thus we disallow three faces meeting at an edge, dangling edges, pinch
points, and so forth.)

Definition 3. A metric PL 2-manifold H has a flat-folded realization if
there is a subdivision of H, with faces subdivided by extra vertices and edges
(“creases”), and a continuous, bijective mapping from H to a flat folding, taking
each subface of H to an isometric copy in the flat folding.

Conditions (2) and (3) of Definition 1 guarantee that the complex of polygons
behaves like paper, meaning that it cannot pass through itself. In our arguments,
we will sometimes use informal terms such as “folds flat” instead of “has a flat-
folded realization”. Our first result is the following.

Theorem 1. Every compact, orientable, metric PL 2-manifold has a flat-folded
realization.

Our second result is a new proof of the existence of “nearly isometric” embed-
dings into IE3. Theorem 2 follows almost immediately from Theorem 1, and
thus we obtain Zalgaller’s submersion theorem and a weak form of the Burago-
Zalgaller theorem with one basic construction.

Theorem 2 (Weak form of Burago-Zalgaller). Let M be a compact, ori-
entable, metric PL 2-manifold. Given any ε > 0, M has a piecewise-linear em-
bedding into IE3, such that the distance between any pair of points increases or
decreases by an additive factor of at most ε.

3 One Straight Cut Revisited

The proof of Theorem 1 reuses the construction we used for the one-straight-cut
problem [3]. As shown in Figure 2, the construction packs non-overlapping disks
into a polygon so that a disk is centered at each vertex of the polygon, each edge of
the polygon is a union of disk radii, and each gap between disks has either three or
four sides. Any gap with more than four sides can be broken into gaps with fewer
sides [1]; but 4-sided gaps give new 4-sided gaps. The number of disks needed to
pack an n-sided polygon P is bounded by a constant times the sum of the aspect
ratios of the triangles in a triangulation of P . The aspect ratio of a triangle can be
defined in various ways; for specificity, let us define the aspect ratio to be the length
of the longest side divided by the radius of the inscribed circle.

620 M. Bern and B. Hayes

a

b

c

a

b
c

Disks define molecules

Spine

Axis

Independently, molecules fold to starfish

in each starfish gives a flat book
Reversing one valley fold

Fig. 2. The construction from our previous paper [3] breaks a polygon (bold pentagon)
into triangles and quadrangles (“molecules”) by packing disks, so that each gap between
disks has either 3 or 4 sides. Each polygon can then be folded into a shape called a
“starfish”. After reversing one valley fold to a mountain fold, starfish form book foldings
that fit together spine to “armpit”.

Connecting the centers of tangent disks by new edges now breaks the polygon
into triangles and quandrangles. The triangles and quandrangles can be folded
independently with known origami patterns [14], called rabbit-ear and gusset
molecules . Perpendicular creases exit the triangle and quadrangle molecules at
the disk tangency points; this property helps provide compatibility between ad-
jacent molecules. Burago and Zalgaller use acute triangles as their basic units,
with folds exiting at edge midpoints [5]. The number of acute triangles can be
much larger than the number of molecules in our construction, because it de-
pends upon uniformly good approximation of a set of real numbers (edge lengths)
by rational numbers with large common denominator [4,5]. In our construction,
the number of molecules depends upon aspect ratios; for example, if we start
with a triangulated topological sphere with n vertices and no small face angles,
then we use only O(n) molecules.

Crucial to our use of the gusset molecule is the specialness of our quadrangles.
Two of the vertices of the gusset, shown by dots in Figure 3(a), are fixed by the re-
quirement that valley folds extend perpendicularly from the points of tangency. We
refer to these vertices as the perpendicular points. The other two vertices of the gus-
set are not completely constrained. They must, however, lie on the angle bisectors
of the quadrangle in order for the boundary of the quadrangle to fold to a common
plane. One way to locate the the unconstrained vertices—p and r in Figure 3(a)—is
to place them at the vertices of an inset quadrangle, a quadrangle inside the overall
quadrangle,with sides parallel and equidistant to the sides of the original quadran-
gle. In Figure 3(a) the original quadrangle is abcd and the inset quadrangle is pqrs.
The gusset folding restricted to pqrs is just two rabbit-ear molecules, as shown in
Figure 3(b). Hence, the perpendicular points must lie at the in-centers of triangles
pqr and prs, and this requirement determines the size of pqrs.

We now argue that all quadrangles induced by 4-sided gaps can be folded with
the gusset molecule. What we must show is that the triangles pqr and prs with

Origami Embedding of Piecewise-Linear Two-Manifolds 621

p

q
b

d

a

c

s

r

p

s

q

r

Fig. 3. (a) Two interior vertices of the gusset molecule, shown as dots, are fixed by
the requirement that valley folds extend perpendicularly from disk-tangency points.
The other two interior vertices, p and q, lie along an inset quadrangle, with the inset
distance determined by the requirement that the dotted points must be the in-centers
of triangles pqr and prs. (b) The inset quadrangle pqrs is folded with two rabbit-ear
molecules, so the boundary of pqrs folds to a single axis, and the boundary of the
original quadrangle abcd does as well. One can think of a gusset as two rabbit-ear
molecules surrounded by a ribbon (the region between abcd and pqrs).

in-centers at the perpendicular points do indeed lie within abcd, in other words,
that the requirements of the gusset are not in conflict with each other.

First assume that the perpendicular points are distinct, and consider the line
L through the perpendicular points. Line L is the line of equal power distance1

from the disks centered at a and c, and hence passes between these disks. The
bisector of the angle between L and the valley fold perpendicular to bc fixes the
point r. Since L passes above the disk at c, r lies above c along the angle bisector
at c. Thus pqrs does indeed lie within abcd. In the extreme case that the disks
at a and c touch each other, pqrs equals abcd and the gusset molecule reduces
to two rabbit-ear molecules.

What if the perpendicular points coincide? For this extreme case, we use
a special property [1] of 4-gaps: the points of tangency of four disks, tangent
in a cycle, are cocircular. This property implies that the angle bisectors of the
quadrangle all meet at a common point o, namely the center of the circle through
the tangencies. So in the extreme case that the perpendicular points coincide,
pqrs shrinks to point o, and the valleys from the points of tangency and the
mountains along the angle bisectors all meet at one flat-foldable vertex.

The molecules fold into shapes we call starfish. By reversing exactly one
tangency-point valley fold into a mountain, a starfish becomes a flat folding
that we call a book folding.

1 The power distance from a point to a circle is the square of the usual distance minus
the radius of the circle squared. For points outside the circle it is the same as the
tangential distance to the circle squared.

622 M. Bern and B. Hayes

(a) Cutting forest (gray)
parentheses around the
molecule tree perimeter

(b) Cut edges nest like
do not cross

(c) Taped pairs of edges
gives a tree of molecules

Root

b

b

cc

a
a

a

a

b

b c

c a

b

ba

Fig. 4. The algorithm for folding a patch (topological disk) of molecules into a book
uses a cutting forest (a), spanning interior molecule corners (red), to define a rooted tree
of adjoining molecules. Tangency-point edges from child to parent (bold line segments)
are reversed from valley to mountain so that each starfish turns into a book folding,
tucked into an “armpit” of its parent starfish. The cutting-forest edges are joined
(“taped”) back together (c) after folding. There is no pair of crossed tapings, because
tapings nest like parentheses in a tour (b) around the boundary of the tree of molecules.

Definition 4. A book folding is a flat folding of a metric PL topological disk.
The boundary edges of the topological disk are embedded on a common line called
the axis, and all share a common endpoint on the axis. All polygons of the
topological disk lie on the same side (half-plane) of the axis. Each polygon has
one edge along another common line called the spine, perpendicular to the axis,
and all polygons lie on the same side of the spine.

Lemma 1 (Bern et al). Any simple polygon can be realized by a book folding.

Proof. As shown in Figure 4(a), we cut along a forest of molecule-boundary
edges, in order to form a tree of molecules. The cutting forest F spans the
molecule corners interior to the polygon, shown red in 4(a). Each connected
component of F must also touch the boundary of the polygon, so that after
cutting along the forest edges, all molecule corners touch the exterior face, and
molecules form a tree. We root the tree arbitrarily and perform a pre-order
traversal. As we traverse the tree, we reverse each tangency-point edge from child
to parent from valley to mountain, so that each starfish closes up to become a
book folding, nested spine to spine within its parent. The blue faces in 4(a) form
the “cover” of the book. Finally the cutting-forest edges are rejoined along the
“bottoms of pages” in post-order traversals of the cutting-forest components. ��

Our previous paper [3] also claimed that any polygon with holes can be realized
by a book folding, but the proof given there only works for the case of simple
polygons. The one-straight-cut problem for a simple polygon strictly interior
to the sheet of paper resembles the book-folding problem for a polygon with
a hole, because we (somewhat unnecessarily) treat the boundary of the paper

Origami Embedding of Piecewise-Linear Two-Manifolds 623

as a connected component of the polygon. We form molecules both interior
and exterior to the polygon, and we must be sure that the tapings of exterior
molecules do not cross the tapings of interior molecules. The previous paper
positioned all the molecule boundaries on the same axis, with interior molecules
pointing down and exterior molecules pointing up; without further restrictions
this construction may force crossed tapings.

To repair the construction, we first require that the tree of molecules respect
the containment relations of boundary components. Thus the molecules interior
to a simple polygon, strictly interior to the sheet of paper, must form a proper
subtree of the tree of molecules. And if the polygon contains a hole within an
island within a hole, then each successive level of molecules must form a proper
subtree within the tree above it. We surround each boundary component with
a ribbon of width ε as in [3] or Figure 5. The deepest molecules then fold to
books as in Figure 4(c). The second-deepest molecules fold to books containing
the deepest molecules as “chapters”, contiguous set of flaps within the larger
books. The ribbons offset the shared axis of the deepest molecules so that it is ε
above (and parallel to) the axis of the second-deepest molecules. We continue in
this manner, building books within books, with each level of containment offset
from the previous one by ε, something like a layered wedding cake.

Now in order to cut all boundary components at once—and nothing else—we
must fold the interiors of the molecules out of the way of the axes. To do this,
we reduce the heights of the molecules so that they are all smaller than ε, using
the technique shown in Figure 6. Now the ribbons determine the height of the
entire folding (which will be about ε for a simple polygon, 2ε for a polygon with
simple-polygon holes, and so forth). Finally, for the one-straight-cut problem,
we can fold the entire book using folds parallel to the axes in order to bring all
the axes to a single cutting line.

This repaired construction also gives a (theoretical) way to perform an origami
salami magic trick. In this trick, the first straight cut produces a hole in the shape
of a silhouette of George Washington, the second straight cut (salami thickness
ε away) produces a small John Adams, the third cut a still smaller Thomas
Jefferson, and so forth, until we reach the tiniest president of all.

4 Extending the Construction

Lemma 1 generalizes almost immediately to the case of metric PL topological
disks. The flat disk-packing disks are replaced by geodesic disks, which in the
case of metric PL manifolds are simply unions of interior-disjoint sectors of
Euclidean disks with common center and radius. A geodesic disk centered at a
vertex of the PL manifold may have nonzero curvature, meaning that the sum
of the sector angles may be more or less than 360◦, but this makes no difference
to the construction, as the angles appear only at the tips of starfish arms.

The case of a metric PL topological sphere is similarly easy. We puncture the
sphere by cutting an edge or path e into a slit, so that the sphere becomes a
topological disk D. We root all components of the cutting forest at e so that

624 M. Bern and B. Hayes

P Q

P

Q

Q

Detail of disk packing
around Q

Fig. 5. A polygon P with a hole Q can be folded so that P forms one axis and Q forms
another, and the interior of P lies between the two axes. The distance between the
axes is the width of the ribbon (gray) around Q. Disk radii can be smaller than the
ribbon width, as shown by the dotted disk on the right.

the two sides of e are outermost (that is, first and last “chapters”) in the book
folding of D. Path e will be spread out over a number of flaps (starfish arms),
as many flaps as there are disks along e in the disk packing. A final sequence
of tapings, as in Figure 4(c), joins the two sides of e and completes the embed-
ding of the topological sphere. The complexity of this construction (that is, the
number of vertices, edges, and faces) is bounded by a constant times the number
of molecules, so in the case of a topological sphere with n triangular faces of
bounded aspect ratio, our flat folding has complexity O(n).

When we move up to a torus, we hit a snag. Cutting the torus into a tree of
molecules requires a cycle of cuts, rather than just a forest of cuts, and no matter
how we cut, the book folding of the resulting molecules always requires a crossed
pair of tapings along the axis in order to recover the topology of the torus. (This
is because any polygonal schema for the torus, including our tree of molecules,
requires a crossed pair around its boundary.) We can, however, easily embed a
flat torus as a flat folding: fold a square of paper in half, tape it into a flat tube,
fold the tube perpendicularly to the first fold, and tape the two inner free edges
together and the two outer free edges together. This simple experiment reveals
the key to solving the general case: we need a new axis in order to form a handle.
(This experiment also reveals what goes wrong with non-orientable manifolds: a
Klein bottle would require crossed tapings, each inner free edge to the opposite
outer free edge.) With this observation, we are now ready to argue our main
result. The following lemma is a restatement of classical results; algorithms were
given by Erickson and Har-Peled [10].

Lemma 2. Any compact, orientable, metric, PL 2-manifold M of genus g ad-
mits a set of g disjoint cycles, such that cutting along these cycles gives a PL
2-manifold with boundary, homeomorphic to a sphere with 2g holes. The holes
form g pairs, each pair consisting of two oppositely-oriented congruent polygons.

Origami Embedding of Piecewise-Linear Two-Manifolds 625

ε

Height ε

spacing between pleats

Fig. 6. The height of a book folding can be made arbitrarily small with pleat folds

The next lemma folds a polygon with holes into a book with two axes. The
complexity of the folding increases to the area of the polygon divided by its
minimum feature size.

Lemma 3. A polygon with holes can be embedded as a book folding so that the
outer boundary embeds to one axis, the hole boundaries all embed to a parallel
axis, and the interior of the polygon embeds between the two parallel axes.

Proof. As shown in Figure 5, we surround each hole with a thin “ribbon” (offset
polygon) of width ε, where ε is smaller than polygon’s minimum feature size
(the minimum distance between non-adjacent edges). In the disk packing step
of the construction, we pack the polygon minus the ribbons, and then project
the tangency-point folds from the molecules perpendicularly across the ribbons.
Thus the interior boundaries of the ribbons fold to the axis, and the boundaries
of the holes fold to a parallel line, a new axis, distance ε from the original axis.
By pleating down all the molecules (Figure 6) to have height less than ε, we can
ensure that the interior of P embeds between the two parallel axes in the book
folding. Alternatively we can use small disks, with radius less than ε/2, to ensure
that all molecules have height less than ε. ��

Proof Sketch for Theorem 1. Let M be a compact, orientable, genus-g, PL 2-
manifold without boundary. If necessary, we finely subdivide the faces of M in
order to enable all subsequent steps. Using Lemma 2, we cut M ’s handles. Then
as in the case of a topological sphere, we open one more path e to serve as the
outer boundary, thereby obtaining a PL manifold M ′ homeomorphic to a disk
with g pairs of holes, one pair for each handle loop. See Figure 7.

We surround each hole by a ribbon of suitable width ε > 0. We use the disk-
packing algorithm to break M ′ into triangle and quadrangle molecules, with
molecules bordering the ribbons sending folds perpendicularly across the ribbons
as in Figure 5. We impose some further requirements on the disk packing. (1)
Each hole must be connected to its paired hole by a path of tiny molecules,
meaning ones that fold to starfish of height less than ε, and these paths of
tiny molecules must be disjoint. (2) We surround each ribbon by a ring of tiny
molecules. This step requires disks smaller than ε. At corners of holes, folds from
such tiny disks meet inside the ribbon at angle bisectors rather than crossing the
ribbon. (See the dotted disk in Figure 5.) (3) Each hole and its paired hole must

626 M. Bern and B. Hayes

Q’Q
εTiny molecules (<)

e

Q

R
R R’

e

Tape Q to Q’ over top

Tape cutting edges underneath

Q’Q

ε width ribbons

Tree of molecules

Fig. 7. A metric PL 2-manifold of genus g can be cut into a PL topological disk with
g pairs of mirror-image holes. In our flat folding algorithm, an initial step surrounds
the holes with ribbons (gray), and then the disk packing step surrounds and connects
paired ribbons with tiny molecules. The cutting forest does not cross the paths of
tiny molecules, except to break the rings around the holes. Thus paired holes appear
adjacent to each other (“successive chapters”) in the book folding of Figure 4(c), and
the taping of the Q, Q′ pair does not block the taping of the R, R′ pair.

have matching disk packings, so that the hole and its paired hole are (mirror-
image) congruent polygons, even after the tangency points of disks are projected
perpendicularly across the ribbons.

We also constrain the cutting forest. The cutting forest does not cut the paths
of tiny molecules, and cuts each ring of tiny molecules only once, so that each
pair of holes appears within its own proper subtree of the tree of molecules. Thus
a tour around the perimeter of the tree of molecules as in Figure 4(b) visits each
hole and its paired hole in successsion, so no pairs cross (or even nest). Lemma 3
now folds M ′ so that cutting-forest edges all appear along one axis, and hole
boundaries all appear along a second parallel axis. The construction is such that
cutting-forest edges can be taped across the bottom of the book folding and
holes can be taped across the top of the book folding, without any crossed pairs
of tapings. Now a final taping closes the puncture path e. ��

5 Warping the Flat Folding into an Embedding

In this section, we show how to transform a flat folding of a PL 2-manifold into
a “nearly isometric” PL embedding of the PL 2-manifold in IE3. As elsewhere
in this paper, we do not give a continuous deformation, but simply show how to
construct the embedding given a flat folding.

Proof Sketch for Theorem 2: We fatten each edge of the flat folding into a narrow
channel, of width less than ε/n, where ε > 0 is the amount of distance stretching
we are allowed, and n is the number of edges in the flat folding. We conceptu-
ally cut out a small disk around each vertex. We bend the channels vertically

Origami Embedding of Piecewise-Linear Two-Manifolds 627

C

(b) Warped Folding(a) Flat Folding

v

u

u

v

v

w

Offset polygons (blue)

u

u

Wide channel reduces breadth

Pleats

v

are parallel in 3D

Cone from v to C

Pleats reduce
height

Fig. 8. To warp the flat folding shown in (a) into an embedding in IE3, we shrink
the faces and fatten the edges so that outside the neighborhood of vertices, faces are
parallel and closely spaced. Pleats within the channels (fattened edges) control the
spacing between parallel faces. The width of channels controls the breadth of faces to
avoid interpenetration. We attach vertices to the parallel faces and channels with a
cone as shown in (b).

(perpendicular to the plane of the flat folding) to separate the faces of the flat
folding. We pleat the channels to control the spacing between parallel faces, tak-
ing care to avoid interpenetration, as shown in Figure 8(b). (See Pak [17] for
a similar construction.) Finally we attach each vertex to the embedding with a
cone of triangular faces (shown green in Figure 8(b)).

There is one more possible interpenetration not shown in Figure 8. A vertex
tucked inside another vertex in the flat folding may try to cross to the outside
in the embedding. We can solve this problem with more pleats, in annular rings
around the inner vertex as in Figure 6, to move the inner vertex back inside.

The embedding just sketched is not isometric, because the attachment of
the vertices to the rest of the embedding warps distances slightly. For example,
vertex u in Figure 8 where the cone joins to rest of the embedding has angle
sum less than 360◦, but it would necessarily have curvature zero in an isometric
embedding. (The edge channels need not warp distances; these can be created
through an isometric deformation as in [17].) ��

6 Discussion

Theorem 1 generalizes in various directions. For example, essentially the same
proof holds for the case of PL 2-manifolds with boundary. Krat et al. gener-
alize the result still further, stating their theorem for the more general case of
“polyhedral spaces”, which allows non-manifold topology, such as three triangles

628 M. Bern and B. Hayes

meeting at an edge. Our proof should also generalize to this case in a straight-
forward way. Another generalization would be to polyhedral knots and links in
IE3. We believe that the techniques given here are sufficient to prove that such
inputs can be isometrically re-embedded as flat foldings, preserving all topology.

We close with some open questions. Can we extend the techniques of Sec-
tion 5 to give isometry at vertices too? This would give an alternate proof of a
simple form of the theorem of Burago and Zalgaller: any PL 2-manifold can be
isometrically embedded in IE3. Assuming we can do this, can we then further
extend our proof to the stronger statement of Burago-Zalgaller, showing isomet-
ric approximation of any submetric embedding? Or to show that any flat folding
can be continuously and isometrically “opened up” into an embedding in IE3?
Or in the reverse direction, and requiring more than an infinitesimal change in
volume, does every polyhedron admit a bending [17,19] that continuously and
isometrically reduces its volume to zero? Finally and most importantly, does the
Burago-Zalgaller theorem generalize to higher dimensions?

References

1. Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of poly-
gons. Disc. Comput. Geom. 14, 411–428 (1995)

2. Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM
Symp. Disc. Algorithms, pp. 175–183 (1996)

3. Bern, M., Demaine, E., Eppstein, D., Hayes, B.: A disk-packing algorithm for an
origami magic trick. In: E. Lodi, L. Pagli, N. Santoro, (eds.) Preliminary version:
Fun with Algorithms, pp. 32–42, Carleton Scientific (1999); Also: Hull, T., Peters,
A.K. (ed.) Origami3, pp. 17–28 (2002)

4. Burago, Y.D., Zalgaller, V.A.: Polyhedral realizations of developments (Russian).
Vestnik Leningrad. Univ. 15, 66–80 (1960)

5. Burago, Y.D., Zalgaller, V.A.: Isometric piecewise linear embedding of two-
dimensional manifolds with a polyhedral metric in IR3. St. Petersburg Math. Jour-
nal 7, 369–385 (1996)

6. Connelly, R.: A flexible sphere. Math. Intelligencer 1, 130–131 (1978)
7. Connelly, R., Sabitov, I., Walz, A.: The bellows conjecture. Contributions to Alge-

bra and Geometry 38, 1–10 (1997)
8. Demaine, E., Demaine, M., Lubiw, A.: Flattening polyhedra. (Manuscript 2001)
9. Demaine, E., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and

Polyhedra. Cambridge University Press, Cambridge (2007)
10. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Symp.

Comp. Geometry (2002)
11. Hull, T.: On the mathematics of flat origamis. Congressus Numerantium 100, 215–

224 (1994)
12. Krat, S., Burago, Y.D., Petrunin, A.: Approximating short maps by PL-isometries

and Arnold’s “Can you make your dollar bigger” problem. In: Fourth International
Meeting of Origami Science, Mathematics, and Education, Pasadena (2006)

13. Kuiper, N.H.: On C1-isometric imbeddings I. Proc. Nederl. Akad. Wetensch. Ser.
A 58, 545–556 (1955)

Origami Embedding of Piecewise-Linear Two-Manifolds 629

14. Lang, R.J.: Origami Design Secrets: Mathematical Methods for an Ancient Art,
A.K. Peters (2003)

15. Nash, J.F.: C1-isometric imbeddings. Annals of Mathematics 60, 383–396 (1954)
16. Nash, J.F.: The imbedding problem for Riemannian manifolds. Annals of Mathe-

matics 63, 20–63 (1956)
17. Pak, I.: Inflating polyhedral surfaces. Department of Mathematics. MIT Press,

Cambridge (2006)
18. Zalgaller, V.A.: Isometric immersions of polyhedra. Dokladi Akademii, Nauk USSR,

123(4) (1958)
19. Zalgaller, V.A.: Some bendings of a long cylinder. J. Math. Soc. 100, 2228–2238

(2000)

Simplifying 3D Polygonal Chains Under the Discrete
Fréchet Distance�

Sergey Bereg1, Minghui Jiang2, Wencheng Wang3, Boting Yang4, and Binhai Zhu5

1 Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA
besp@utdallas.edu

2 Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
mjiang@cc.usu.edu

3 Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
whn@ios.ac.cn

4 Department of Computer Science, University of Regina, Regina,
Saskatchewan, S4S 0A2, Canada
boting@cs.uregina.ca

5 Department of Computer Science, Montana State University, Bozeman, MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. A well-known measure to characterize the similarity of two polygonal
chains is the famous Fréchet distance. In this paper, for the first time, we consider
the problem of simplifying 3D polygonal chains under the discrete Fréchet dis-
tance. We present efficient polynomial time algorithms for simplifying a single
chain, including the first near-linear O(n log n) time exact algorithm for the con-
tinuous min-# fitting problem. Our algorithms generalize to any fixed dimension
d > 3. Motivated by the ridge-based model simplification we also consider sim-
plifying a pair of chains simultaneously and we show that one version of the
general problem is NP-complete.

1 Introduction

Simplifying polygonal chains is a well-studied problem, especially in the plane (and
occasionally in 3D and higher dimensional spaces). In short, the problem is to simplify
a given chain A with n vertices into A′ such that A and A′ are close and |A′| � n. For
instance, in 3D we face the problem of simplifying optic nerves in medical studies and
simplifying river networks in GIS [21]. Most of the previous researches are focused on
simplifying 2D polygonal chains [6,7,10,14,15,16,20,22], with the notable exception
of [10,4]. Readers are referred to [4] for a list of complete references on simplifying
polygonal chains in all dimensions. In this paper, we first follow the traditional work on
simplifying a polygonal chain (a polyline or simply a chain) in 3D, but under a relatively
new measure — the discrete Fréchet distance.

Fréchet distance was first defined by Maurice Fréchet in 1906 [11]. While known
as a famous distance measure in the field of mathematics (more specifically, abstract

� This research is supported by the NSERC grant 261290-03 and grant A13501 at Utah State
University.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 630–641, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simplifying 3D Polygonal Chains 631

spaces), it was Alt and Godau who first applied it in measuring the similarity of polyg-
onal curves in early 1990s [2,3].

In 1994, Eiter and Mannila defined the discrete Fréchet distance between two polyg-
onal chains A and B (in any fixed dimensions) [9]. Recently, Jiang, Xu and Zhu applied
the discrete Fréchet distance in aligning the backbones of proteins (which is called the
protein structure-structure alignment problem) [17]. In fact, in this application the dis-
crete Fréchet distance makes more sense as the backbone of a protein is simply a polyg-
onal chain in 3D, with each vertex being the alpha-carbon atom of a residue. So if the
(continuous) Fréchet distance is realized by an alpha-carbon atom and some other point
which does not represent an atom, it is not meaningful biologically. Jiang, et al. showed
that given two planar polygonal chains the minimum discrete Fréchet distance between
them, under both translation and rotation, can be computed in polynomial time. They
also applied some ideas therein to design an efficient heuristic for the original protein
structure-structure alignment problem in 3D.

Very recently, the discrete Fréchet distance was used to align protein backbones lo-
cally. It was shown that given many proteins finding such a local alignment is NP-
complete, but when a constant number of chains are given then the problem is polyno-
mially solvable [24]. Notice that finding local alignment between two proteins (or 3D
chains) A, B is different from simplifying them. Loosely speaking, a local alignment is
to find a subsequence A′ of A and a subsequence B′ of B such that A′ and B′ are very
close. But A′ and A (hence B′ and B) could have a huge difference.

While one can claim that the discrete Fréchet distance is a special case of the (contin-
uous) Fréchet distance, the use of discrete Fréchet distance, in many situations, makes
more sense. Firstly, the discrete Fréchet distance is more efficient to compute. For in-
stance, Godau used the Fréchet distance to approximate polygonal chains using vertices
of the original curve [12] (i.e., discrete fitting in our terminology). The running time
of his algorithms are O(n3) for min-# fitting and O(n4 log n) for min-ε fitting, while
using the discrete Fréchet distance these bounds are O(n2) and O(n3) respectively.
Secondly, as we just mentioned, in many biological applications (continuous) Fréchet
distance does not make any sense.

Now coming back to the second motivation of our research — ridge-based geomet-
ric model simplification. A ridge is a critical 3D polygonal chain on a surface whose
projection on the XY-plane is a simple (planar) polygonal chain. Ridge simplification
and approximation is an interesting problem in geometric modeling, approximation and
3D geometric compression. We refer to Fig. 1 for an example. We have identified two
ridges P and Q and wish to simplify them into P ′ and Q′ so as to have a simplified
surface between P ′ and Q′. In this case, however, we not only want P and P ′ (Q and
Q′) to be close, but also want that P ′ and Q′ are close. Otherwise, as can be seen from
Fig. 1 (II), the large discrete Fréchet distance between P ′, Q′ induces some long skinny
triangle anchored at the vertex y. On the other hand, when we simplify P into P ′′ such
that P ′′ and Q′ have a smaller discrete Fréchet distance then the long skinny triangle
disappears (Fig. 1 (III) and (IV)).

It turns out that this problem of simultaneously simplifying a pair of chains is much
more difficult than the protein local alignment problem. We show that a special case,
where we measure the similarity between P, P ′ (and between Q, Q′) using the

632 S. Bereg et al.

(I)

(III)

(II)

(IV)

Q Q’

y

y
x

P P’

P" P"

Q’ Q’

Fig. 1. Large discrete Fréchet distance implies long skinny triangles

Hausdroff distance between vertices while measuring the similarity between P ′, Q′ us-
ing the discrete Fréchet distance, is NP-complete. This implies that we should better
add Steiner points in this application, which is a popular way to improve the quality of
a mesh.

2 Preliminaries

Given two polygonal chains A, B with |A| = k and |B| = l respectively, we aim
at aligning the similarity of A and B (sometimes under translation and rotation) such
that their distance is minimized under certain measure. Among the various distance
measures, the Hausdorff distance is known to be better suited for matching two point
sets than for matching two polygonal chains; the (continuous) Fréchet distance is a
superior measure for matching two polygonal chains, but it is not quite easy to compute
especially when translation/rotation are allowed.

Let X be the Euclidean space R3; let d(a, b) denote the Euclidean distance between
two points a, b ∈ X . The (continuous) Fréchet distance between two parametric curves
f : [0, 1] → X and g : [0, 1] → X is

δF(f, g) = inf
α,β

max
s∈[0,1]

d(f(α(s)), g(β(s))),

where α and β range over all continuous non-decreasing real functions with α(0) =
β(0) = 0 and α(1) = β(1) = 1.

Simplifying 3D Polygonal Chains 633

Imagine that a person and a dog walk along two different paths while connected
by a leash; they always move forward, though at different paces. The minimum possi-
ble length of the leash is the Fréchet distance between the two paths. To compute the
Fréchet distance between two polygonal curves A and B (in the Euclidean plane) of |A|
and |B| vertices, respectively, Alt and Godau [2] presented an O(|A||B| log2(|A||B|))
time algorithm. Later this bound was reduced to O(|A||B| log(|A||B|)) time [3].

We now define the discrete Fréchet distance following [9].

Definition 1. Given a polygonal chain (polyline) in 3D P = 〈p1, . . . , pk〉 of k ver-
tices, an m-walk along P partitions the path into m (disjoint) non-empty subchains
{Pi}i=1..m such that Pi = 〈pki−1+1, . . . , pki〉 and 0 = k0 < k1 < · · · < km = k.

Given two 3D polylines A = 〈a1, . . . , ak〉 and B = 〈b1, . . . , bl〉, a paired walk along
A and B is an m-walk {Ai}i=1..m along A and an m-walk {Bi}i=1..m along B for
some m, such that, for 1 ≤ i ≤ m, either |Ai| = 1 or |Bi| = 1 (that is, either Ai or
Bi contains exactly one vertex). The cost of a paired walk W = {(Ai, Bi)} along two
paths A and B is

dW
F (A, B) = max

i
max

(a,b)∈Ai×Bi

d(a, b).

The discrete Fréchet distance between two polylines A and B is

dF (A, B) = min
W

dW
F (A, B).

The paired walk that achieves the discrete Fréchet distance between two paths A and
B is also called the Fréchet alignment of A and B.

Consider the scenario in which the person walks along A and the dog along B. Intu-
itively, the definition of the paired walk is based on three cases:

1. |Bi| > |Ai| = 1: the person stays and the dog moves forward;
2. |Ai| > |Bi| = 1: the person moves forward and the dog stays;
3. |Ai| = |Bi| = 1: both the person and the dog move forward.

1a

b1

a2

o b2

a3 1

a2

a a3

b o b b1 2
(II)(I)

Fig. 2. The relationship between the discrete and continuous Fréchet distances

Eiter and Mannila presented a simple dynamic programming algorithm to compute
dF (A, B) in O(|A||B|) = O(kl) time [9]. The recent result of Jiang, et al. shows
that in 3D the minimum discrete Fréchet distance between A and B under translation
can be computed in O(k4l4 log(k + l)) time, and under both translation and rotation

634 S. Bereg et al.

it can be computed in O(k7l7 log(k + l)) time using the ideas presented in [23,17].
They are significantly faster than the corresponding bounds for the continuous Fréchet
distance. In 3D, Wenk showed that given two chains with sum of length N = k + l, the
minimum Fréchet distance between them can be computed in O(N3f+2 log N) time,
where f is the degree of freedom for moving the chains [23]. So with translation alone
this minimum Fréchet distance can be computed in O(N11 log N) time, and when both
translation and rotation are allowed the corresponding minimum Fréchet distance can
be computed in O(N20 log N) time [23].

We comment that while the discrete Fréchet distance could be arbitrarily larger than
the corresponding continuous Fréchet distance (e.g., in Fig. 2 (I), they are d(a2, b2) and
d(a2, o) respectively), by adding sample points on the polylines, one can easily obtain
a close approximation of the continuous Fréchet distance using the discrete Fréchet
distance (e.g., one can use d(a2, b) in Fig. 2 (II) to approximate d(a2, o)). This fact
was also pointed out in [9]. Moreover, the discrete Fréchet distance is a more natural
measure for matching the geometric shapes of biological sequences such as proteins. As
we mentioned in the introduction, in such applications, the continuous Fréchet distance
does not make much sense to biologists.

3 Min-# Fitting with a Given Error Bound

In this section, we discuss min-# fitting (simplification) with a given error bound;
namely, given a chain A and an error bound δ, we want to simplify A into another
chain C with the minimum number of vertices such that dF (A, C) ≤ δ. This is a tra-
ditional problem on polygonal chain simplification, except that almost all the previous
work are all focused on different measures, for instance, the ε-tolerance zone error mea-
sure [4]. With the (continuous) Fréchet error measure, for the 2D problem, Guibas, et
al. obtained an O(n2 log2 n) time algorithm [13]. We show that in 3D this problem can
be solved in O(n log n) time using the discrete Fréchet error measure.

Let A = A[1..n] be the given chain A of n vertices. Let A[i..j] be the (contiguous)
subchain of A starting from the index i to the index j. We call A[1..i] a prefix of A. Let
A ◦ B be the concatenation of two chains A and B (by connecting the last vertex of A
and the first vertex of B).

Given a discrete Fréchet distance (error) δ, we wish to simplify A = A[1..n] using
a simple chain C such that dF (A, C) ≤ δ and the size of C is minimized. Apparently,
we have two cases; the vertices of C could be arbitrary or could only be the vertices
of A. We call them the continuous and discrete cases respectively. It turns out that the
two cases can be solved differently, with the greedy method and dynamic programming
respectively. We cover the continuous case first.

For the continuous case, we can see that following the definition of the discrete
Fréchet distance, the paired walk between A and C, Ai and Ci, must satisfy the property
that |Ai| ≥ |Ci| = 1 for all i (otherwise, we can simply delete some vertices in C to
obtain a better simplification). Then, if |Ai| ≥ |Ci| = 1 for all i but Ai is not maximal,
we can merge Ai with a prefix y of Ai+1 which is at most distance δ away from Ci to
obtain a new A′

i = Ai ◦ y, without affecting the size of C.

Simplifying 3D Polygonal Chains 635

So we can use a greedy method to find the first breakpoint (the largest index j) such
that (all the vertices on) A[1..j] can be covered by a ball centered at a point bj with
radius δ, B(bj, δ), but A[1..j + 1] cannot be covered by any ball of radius δ. Given
A[1..j], we can decide whether it can be covered by B(bj, δ) in O(n) time. In fact,
one can simply compute the smallest enclosing ball for the vertices of A[1..j] to locate
the point bj in linear time [19]. So bj will be the first vertex on the simplified chain
C. Repeating this greedy process at most m∗ = O(n) times, where m∗ is the optimal
solution value for the problem, we can obtain a chain C with m∗ vertices. Because
we are in 3D, a simple perturbation on the vertices of A can easily eliminate any self-
intersection in C. It is easy to see that this greedy method solves the continuous min-#
fitting problem in O(n2) time.

We can use binary search to repeatedly find the breakpoints, so the problem can in
fact be solved in O(m∗n log n) time (which seems tough to beat at the first sight). How-
ever, we present the following Algorithm CMN(A[1..n], δ) which solves the problem
in O(n log n) time. We use the doubling search method, which has been used before in
[18,5,1].

Algorithm. CMN(A[1..n], δ)
(1) Search with t = 1, 2, 3, ... the first t such that A[1..2t−1] can be covered by a ball

with radius δ but A[1..2t] cannot. Then find the first breakpoint k1 in A[2t−1..2t] using
binary search.

(2) Repeat the above process on A[k1+1..n] to compute all of the m∗−1 breakpoints.

Theorem 1. The CMN procedure solves the continuous min-# fitting problem for a 3D
polyline under the discrete Fréchet distance in O(n log n) time and O(n) space.

Proof. Clearly k1 can be found in O(k1 log k1) time. This is due to that when k1 is in
A[2t−1..2t], then 2t is at most 2k1. Let n1, n2, ..., nm∗ be the sizes of the subchains
determined by the m∗ − 1 breakpoints (note that n1 = k1). The overall running time of
CMN is

O(n1 log n1) + O(n2 log n2) + · · · + O(nm∗ log nm∗),

which is O(n log n), due to n1 + n2 + · · · + nm∗ = n.
�

We remark that the greedy method in Theorem 1 is similar to that in [4,1]. In [1],
Agarwal, et al. considered the similar discrete problem of min-# fitting (simplification)
with a given continuous Fréchet error. An approximation algorithm, which returns at
most twice the size of an optimal simplified curve within half of the error, was presented
in [1]. An open question on a better near-linear time approximation was also raised in
[1]. The above theorem shows that, using the discrete Fréchet distance, the continuous
version of the problem can be solved exactly with a near-linear time algorithm. For the
same discrete problem, we will use the discrete Fréchet measure and present an O(n2)
time solution to solve it exactly.

Regarding the discrete min-# fitting problem under the discrete Fréchet distance, i.e.,
when the vertices of the simplified chain, C′, must come from A, it turns out that there is
a dramatic difference compared with the continuous case. We refer to Fig. 3, in which
we have a chain A with five vertices, and when δ = 1 the optimal simplified chain

636 S. Bereg et al.

a

1

a

a

12

3

a4

a5

Fig. 3. Given a chain A, when δ = 1, the optimal simplified chain is 〈a4, a5〉

is C′ = 〈a4, a5〉. In other words, A[1..2] is not covered by a vertex on the subchain
A[1..2]. This is also completely different from the situation in [4].

Due to the unfavorable non-local property of the discrete problem, we solve the
problem using a dynamic programming method. Without loss of generality, we only
show how to compute the optimal size of C′. The actual chain C′ can be constructed
easily by modifying the algorithm.

Define T [i, s] as the maximum index j, j ≥ i, such that the ball with radius δ and
centered at A[s] covers A[i..j]. T [i, s] = i−1 if d(A[i], A[s]) > δ; otherwise, T [i, s] =
T [i + 1, s]. For each s, T [−, s] can be computed in O(n) time. So T [−, −] can be
computed in O(n2) time.

Define N [i, s] as the minimum number of balls with radius δ and centered at A[s..n]
that cover A[i..n]. We have

N [i, s] = min{N [i, s + 1], N [j + 1, s + 1] + 1},

where j = T [i, s]. The boundary cases when i = n or s = n can be handled easily. So
N [−, −] can be computed in O(n2) time and space.

Theorem 2. The discrete min-# fitting problem for a 3D polyline under the discrete
Fréchet distance can be solved in O(n2) time and O(n2) space.

We remark that using the continuous Fréchet distance the discrete min-# fitting problem
can be solved in O(n3) time [12]. In [1] whether this bound can be reduced was listed
as an open problem. Our above theorem shows again that using the discrete Fréchet
distance the problem can be solved more efficiently, in fact, in quadratic time.

4 Min-ε Fitting with m-chains

The min-ε fitting with m-chains problem is defined as follows. Given a 3D chain A =
〈a1, a2, . . . , an〉 and a positive integer m, we wish to simplify A into a polyline B =
〈b1, b2, . . . , bm〉 such that dF (A, B) is minimized. Again, we have two cases: the con-
tinuous case (when the vertices of B are arbitrary ones) and the discrete case (when the

Simplifying 3D Polygonal Chains 637

vertices of B must come from A). We first show how to solve the continuous version of
the problem using CMN as a subroutine.

Be reminded that in the continuous case, the vertices of B do not have to come from
A. We first design a procedure CME(A[i..j], m) which covers A[i..j] with m balls of
the smallest radius. Let δ(i, j) be the radius of the smallest ball covering A[i..j].

Algorithm. CME(A[i..j], m)
(1) If i ≥ j then return 0.
(2) If m = 1 then return δ(i, j).
(3) Find k such that CMN(A[i..j], δ(i, k)) > m ≥ CMN(A[i..j], δ(i, k + 1))

and return min{δ(i, k + 1), CME(A[k + 1..j], m − 1)}.

Apparently CME is a recursive procedure and we call CME(A[1..n], m) the first
time. We have the following theorem.

Theorem 3. The continuous min-ε fitting problem under the discrete Fréchet distance
can be solved in O(mn log n log(n/m)) time.

Proof. We first sketch the correctness proof of CME. Recall that δ(i, j) is the radius
of the smallest enclosing ball of A[i, j]. Denote by δ(i, j, k) the minimum radius of k
uniform balls covering A[i, j]. The following properties are not difficult to prove.

Let x be the smallest index such that A[x + 1, n] can be covered by m − 1 balls of
radius δ(1, x); that is, δ(x, n, m − 1) > δ(1, x − 1) and δ(x + 1, n, m − 1) ≤ δ(1, x).
Then we have the recursion

δ(1, n, m) = min{δ(1, x), δ(x, n, m − 1)}.

This corresponds to two cases in CMN: (1) Cover A[1, x] with a ball of radius δ(1, x)
and A[x + 1, n] with m − 1 balls of radius at most δ(1, x); and (2) cover A[1, x − 1]
with a ball of radius δ(1, x − 1) and A[x, n] with m − 1 balls of radius δ(x, n, m − 1).

Note that as we use CMN, which takes O(n log n) time, as a subroutine and we
have to recurse CME m times, the crucial question is how to find k quickly at each
recursion. A naive binary search would find each k in O(log n) time hence giving us
a total running time of m × O(log n) × O(n log n) = O(nm log2 n) time. However,
we can use the same doubling search idea in Theorem 1 so that at the i-th recursion the
corresponding ki can be found in O(log ni ×n logn) time, for i = 1, 2, ..., m, where ni

is the size of the subchain covered by the i-th vertex of B (with optimal radius/error).
So the running time of the algorithm is

∑

1≤i≤m

O(log ni × n log n),

which is O(mn log n log(n/m)), due to that
∑

1≤i≤m ni = n.
�

We now consider the discrete case, i.e., the vertices of B must come from A. In this
problem, following Fig. 3 (when m = 2) we can again see that in the optimal solution
A[1..i] is not necessarily covered by a ball centered at a vertex on A[1..i]. Similar to the
discrete min-# fitting problem, we again follow the dynamic programming method.

638 S. Bereg et al.

Define R[i, j, s] as the minimum radius of a ball centered at A[s] that covers A[i..j].
We have R[i, j, s] = max{d(A[i], A[s]), R[i + 1, j, s]}. So R[−, j, s] can be computed
in O(n) time and the whole table R[−, −, −] can be computed in O(n3) time.

Define E[i, s, z] as the minimum radius of z uniform balls centered at A[s..n] that
cover A[i..n]. Define J [i, s, z] as the minimum index j ≥ i such that R[i, j, s] ≥ E[j +
1, s + 1, z − 1]. E[i, s, z] can be updated in two cases: (1) s is used as a center for a
uniform ball, and (2) s is not used as a center for a uniform ball. Therefore,

E[i, s, z] = min{E[i, s + 1, z], R[i, j, s], E[j, s + 1, z − 1]},

where j = J [i, s, z]. Again, the boundary cases when i = n or s = n or z = 0 can be
handled easily.

E[−, −, −] can be computed in O(mn2) time given J [−, −, −]. Note that
E[−, −, z] depends on J [−, −, z], and that J [−, −, z] depends on E[−, −, z − 1].
Therefore, for each z from 1 to m, we need to compute J [−, −, z] before E[−, −, z].

To compute J [i − 1, s, z], compare d(A[i − 1], A[s]) with R[i, j, s], where j =
J [i, s, z]. If d(A[i − 1], A[s]) < R[i, j, s], then set J [i − 1, s, z] to j. Otherwise, use a
sequential search to find the minimum j′ ≤ j such that R[i − 1, j′, s] ≥ E[j′ + 1, s +
1, z−1], then set J [i−1, s, z] to j′. The time is O(j−j′+1) for filling each J [i−1, s, z],
which adds up to O(n) for J [−, s, z]. So J [−, −, −] can be computed in O(mn2) time.
The total running time for constructing E[−, −, −] is O(n3) + O(mn2) = O(n3).

Theorem 4. The discrete min-ε fitting problem under the discrete Fréchet distance can
be solved in O(n3) time and O(n3) space.

We comment that the running times in Theorem 1, Theorem 2 (when m = o(n)), The-
orem 3 are all much faster than the corresponding ones for the ε-tolerance zone metric
[4]. This might due to the strong ‘ordering’ property of the discrete Fréchet distance.
However, we show in the next section that when we have to simplify a pair of chains
simultaneously under the discrete Fréchet distance, one version of the general problem
is even NP-complete. No such negative result is known, on any distance measure, in the
previous research on chain simplification.

5 Simplifying a Pair of Chains Under the Discrete Fréchet
Distance

As we have discussed in the introduction, in this section we investigate the problem of
simplifying a pair of chains A, B into A′, B′ such that the vertices of A′, B′ must come
from A, B respectively, d′(A, A′), d′(B, B′), dF (A′, B′) are all bounded. We will show
that when d′(−, −) is the Hausdorff distance between the vertices of two chains (de-
noted as dH(−, −) henceforth) then the problem for general 3D chains is NP-complete.
This indicates that for ridge-based model simplification, we should use Steiner points
to ensure the quality of the simplified surface.

Formally, the Chain Pair Simplification (CPS) problem is defined as follows.

Instance: Given a pair of 3D chains A and B in 3D, each with length O(n), an integer
K , and three real numbers δ1, δ2, δ3.

Simplifying 3D Polygonal Chains 639

Problem: Does there exist a pair of chains A′, B′ each of at most K vertices such that
the vertices of A′, B′ are from A, B respectively, and d1(A, A′) ≤ δ1, d2(B, B′) ≤
δ2, dF (A′, B′) ≤ δ3?

When d1 = d2 = dH , we call the corresponding problem CPS-2H and when d1 =
d2 = dF , we call the corresponding problem CPS-3F. We have the following theorem.

Theorem 5. The CPS-2H problem is NP-complete.

Proof. It is easy to see that CPS-2H belongs to NP. We now reduce 3SAT to the CPS-2H
problem. The idea of this reduction is from [8], even though over here we are handling
a geometric problem.

Let φ = F1

∧
F2

∧
· · ·

∧
Fm be a conjunctive normal form, where each sub-formula

Fi is a 3-disjunctive clause like (x2

∨
x5

∨
¬x7). Assume that x1, x2, · · · , xn are the

boolean variables in the formula φ and each Fi cannot contain both xk and ¬xk (other-
wise Fi is already true and can be discarded). We construct a triple of points for each Fi

as pi1 = (i, i2, 0), pi2 = (i, i2, ε), pi3 = (i, i2, 2ε), for some 0 < ε < 0.1. We then con-
struct two chains A and B each with 4n−1 vertices such that φ is satisfiable iff A and B
can be simplified into A′, B′ each with K = 2n−1 vertices such that dH(A, A′) ≤ 2ε,
dH(B, B′) ≤ 2ε and dF (A′, B′) = 0 (i.e., δ3 = 0 in our construction).

First we construct n − 1 points qj = (j, 0, 0), 1 ≤ j ≤ n − 1. For each variable
xi in φ, we construct two sequences Si and S∗

i . Let Fi1 , · · · , Fiu be the clauses in φ
that contain xi, and let Fj1 , · · · , Fjv be the clauses of φ that contain ¬xi. Let Si =
Fi1 · · · FiuFj1 · · · Fjv and S∗

i = Fj1 · · ·Fjv Fi1 · · · Fiu . We next convert Si (S∗
i) into a

sequence of 3D points Ti (T ∗
i), where each occurrence of Fk(1 ≤ k ≤ m) in Si or S∗

i

corresponds to a unique point in {pkj |j ≤ 3}. Note that since Fk contains 3 literals, it
appears in all Si and S∗

i exactly three times. So from now on we assume that the three
occurrences of pkj’s are always in the order pk1, pk2 and pk3 and with this in mind we
will use pk to simplify the presentation.

Let A = 〈T1, q1, T2, q2, · · · , qn−1, Tn〉 and B = 〈T ∗
1 , q1, T

∗
2 , q2, · · · , qn−1, T

∗
n〉.

Assume that x1 = b1, · · · , xn = bn are assignments that make φ true. If bi = 1,
simplify both Ti and T ∗

i to T ′
i = pi1 , · · · , piu and T ∗′

i = pi1 , · · · , piu , respectively.
If bi = 0, simplify both Ti and T ∗

i to T ′
i = pj1 , · · · , pjv and T ∗′

i = pj1 , · · · , pjv ,
respectively. It is easy to see that A′ = 〈T ′

1, q1, T
′
2, · · · , T ′

n−1, qn−1, T
′
n〉 is the same

as B′ = 〈T ∗′

1 , q1, T
∗′

2 , · · · , T ∗′

n−1, qn−1, T
∗′

n 〉 except that some pj in T ′
i are at most 2ε

distance away. It is easy to see that dH(A, A′) ≤ 2ε, dH(B, B′) ≤ 2ε and dF (A′, B′) =
0; moreover, K = 2n − 1.

Assume that A is simplified into A′′ and B is simplified into B′′ via removing some
points in {pij |1 ≤ i ≤ n, 1 ≤ j ≤ 3} such that dH(A, A′′) ≤ 2ε, dH(B, B′′) ≤ 2ε,
and dF (A′′, B′′) = 0. Notice that the distance between pij and pkl and the distance
between qi and qk are at least one, as long as i �= k. The condition that dH(A, A′′) ≤ 2ε,
dH(B, B′′) ≤ 2ε implies that we can only remove points in {pij |1 ≤ i ≤ n, 1 ≤ j ≤
3} and we must leave at least one point in A′′, B′′ for each pij , 1 ≤ j ≤ 3. As Fi

cannot contain both xk and ¬xk, on the subchain between qr and qr+1 on A or B there
is exactly one point pz , for some z. Finally, as K = 2n−1, to make dF (A′′, B′′) ≤ 2ε,
we must leave all qs’s and leave exactly one point in A′′, B′′ for each pij , 1 ≤ j ≤ 3.

640 S. Bereg et al.

Let T
′′

i and T ∗′′

i be the subchains in A′′ and B′′ which are obtained from simplifying
Ti and T ∗

i in A and B respectively. If T
′′

i is empty then we can assign a value to xi

arbitrarily. Now we focus on the case when T
′′

i is not empty, which implies that T
′′

i

and T ∗′′

i have the same size and dF (T
′′

i , T ∗′′

i) ≤ 2ε. If T
′′

i is not empty and it is a
subsequence of pi1 , · · · , piu then we assign xi = 1. If T

′′

i is not empty and it is a
subsequence of pj1 , · · · , pjv then we assign xi = 0. It is easy to see that φ is true by
the assignments to those variables x1, · · · , xn.

To conclude the proof of this theorem, notice that the reduction takes linear (in the
length of φ) time.
�

We comment that for several optimization versions of the problem the proof still holds.
For instance, when all the other conditions hold and we try to minimize K , then the
problem is still NP-complete. Moreover, as in the above proof deciding whether
dF (A′, B′) = 0 is NP-complete, when all other conditions hold, there is no polyno-
mial time algorithm for approximating dF (A′, B′) unless P=NP. The above theorem
certainly implies that it is better to add Steiner points when we simplify a pair of (adja-
cent) ridges in ridge-based geometric model simplification.

6 Concluding Remarks

In this paper, for the first time, we study the problem of simplifying/approximating
polylines in 3D under the discrete Fréchet distance. There are many open questions. (1)
Our algorithms also work for any fixed dimension d > 3. However, when applied on
2D chains our algorithms might return self-intersecting approximating chains. This is
also a problem for previous chain simplification algorithms using (continuous) Fréchet
distance. In fact, this was listed as an open problem in [1]. How can we handle this
problem? (2) In Theorem 4, the running time of the algorithm is dominated by the com-
putation of the smallest enclosing balls in table R[−, −, −]. Is there a way to improve
the O(n3) bound? Also, regardless of the running time it might be possible to reduce the
space complexity in Theorem 4 (and Theorem 2). (3) The proof of the NP-completeness
of CPS-2H uses general 3D polylines, not really ridges. Can we use ridges to finish the
proof? (4) What is the complexity of the CPS-3F problem? We conjecture that it is also
NP-complete.

References

1. Agarwal, P., Har-Peled, S., Mustafa, N., Wang, Y.: Near-linear time approximation algo-
rithms for curve simplification. Algorithmica 42, 203–219 (2005)

2. Alt, H., Godau, M.: Measuring the resemblance of polygonal curves. In: Proceedings of the
8th Annual Symposium on Computational Geometry (SoCG 1992), pp. 102–109 (1992)

3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Intl. J.
Computational Geometry and Applications 5, 75–91 (1995)

4. Barequet, G., Chen, D.Z., Daescu, O., Goodrich, M., Snoeyink, J.: Efficiently approximating
polygonal paths in three and higher dimensions. Algorithmica 33, 150–167 (2002)

5. Chan, T.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Dis-
crete and Computational Geometry 16, 361–368 (1996)

Simplifying 3D Polygonal Chains 641

6. Chan, S., Chin, F.: Approximation of polygonal curves with minimum number of line seg-
ments or minimum error. Intl. J. Computational Geometry and Applications 6, 59–77 (1996)

7. Chen, D.Z., Daescu, O.: Space-efficient algorithms for approximating polygonal curves in
two-dimensional space. Intl. J. Computational Geometry and Applications 13, 95–111 (2003)

8. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem.
In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer,
Heidelberg (2006)

9. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. Report CD-TR 94/64,
Information Systems Department, Technical University of Vienna (1994)

10. Eu, D., Toussaint, G.: On approximating polygonal curves in two and three dimensions.
CVGIP: Graphical Models and Image Processing 56, 231–246 (1994)

11. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico
di Palermo 22, 1–74 (1906)

12. Godau, M.: A natural metric for curves — computing the distance for polygonal chains and
approximation algorithms. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480,
pp. 127–136. Springer, Heidelberg (1991)

13. Guibas, L., Hershberger, J., Mitchell, J., Snoeyink, J.: Approximating polygons and sub-
divisions with minimum-link paths. Intl. J. Computational Geometry and Applications 3,
383–415 (1993)

14. Imai, H., Iri, M.: Computational-geometric methods for polygonal approximation.
CVGIP 36, 31–41 (1986)

15. Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. of
Information Processing 9, 159–162 (1986)

16. Imai, H., Iri, M.: Polygonal approximation of a curve — formulations and algorithms. In:
Toussaint, G. (ed.) Computational Morphology, pp. 71–86 (1988)

17. Jiang, M., Xu, Y., Zhu, B.: Protein structure-structure alignment with discrete Fréchet dis-
tance. In: Proceedings of the 5th Asia-Pacific Bioinformatics Conf (APBC’07), pp. 131–141
(2007)

18. Kenyon-Mathieu, C., King, V.: Verifying partial orders. In: Proceedings of the 21st Annual
Symposium on Theory of Computing (STOC’89), pp. 367–374 (1989)

19. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1),
114–127 (1984)

20. Melkman, A., O’Rourke, I.: On polygonal chain approximation. In: Toussaint, G. (ed.) Com-
putational Morphology, pp. 87–95 (1988)

21. McAllister, M., Snoeyink, J.: Medial axis generalisation of hydrology networks. In: Au-
toCarto 13: ACSM/ASPRS Ann. Convention Technical Papers, Seattle, WA, pp. 164–173.
(1997)

22. Varadarajan, K.: Approximating monotone polygonal curves using the uniform metric. In:
Proceedings of the 12th Annual Symposium on Computational Geometry (SoCG 1996), pp.
311–318 (1996)

23. Wenk, C.: Shape Matching in Higher Dimensions. PhD thesis, Freie Universitaet Berlin
(2002)

24. Zhu, B.: Protein local structure alignment under the discrete Fréchet distance. J. Computa-
tional Biology 14(10), 1343–1351 (2007)

Weighted Rectilinear Approximation of Points

in the Plane

Mario A. Lopez1 and Yan Mayster2

1 University of Denver, Department of Mathematics, 2360 S. Gaylord St.,
Denver, CO 80208, USA

mlopez@du.edu
2 University of Denver, Department of Computer Science, 2360 S. Gaylord St.,

Denver, CO 80208, USA
ymayster@cs.du.edu

Abstract. We consider the problem of weighted rectilinear approxima-
tion on the plane and offer both exact algorithms and heuristics with
provable performance bounds. Let S = {(pi, wi)} be a set of n points
pi in the plane, with associated distance-modifying weights wi > 0. We
present algorithms for finding the best fit to S among x-monotone recti-
linear polylines R with a given number k < n of horizontal segments. We
measure the quality of the fit by the greatest weighted vertical distance,
i.e., the approximation error is max1≤i≤n widv(pi, R), where dv(pi, R) is
the vertical distance from pi to R. We can solve for arbitrary k opti-
mally in O(n2) or approximately in O(n log2 n) time. We also describe a
randomized algorithm with an O(n log2 n) expected running time for the
unweighted case and describe how to modify it to handle the weighted
case in O(n log3 n) expected time. All algorithms require O(n) space.

1 Introduction

The approximation of points in the plane using piecewise linear functions has
drawn much interest from researchers in computational geometry and other
fields. Many variants exist as a result of different constraints on the nature of the
approximating curve, its complexity, error metric or the quality of the approxi-
mation. For a sample of recent results as well as references to other relevant work
see [1,4,5,6,9,12]. For these variants, two subclasses of problems can be consid-
ered. The first, min -#, calls for a solution curve with the least number of line
segments (in the rectilinear case, only horizontal segments are counted) given
a target error ε. The second, min -ε, specifies a number k and asks for a curve
with no more than k segments that achieves least possible error ε. Finally, we
can also add an additional restriction in the form of weights attached to individ-
ual points, which modify the distances from the points to the approximating line
(usually, as multiplicative constants). This restriction creates many new versions
of the problem (see [8,16]). This paper addresses the weighted min -ε problem of
approximating a set of points by a rectilinear curve using the min-max vertical
distance metric.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 642–653, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Weighted Rectilinear Approximation of Points in the Plane 643

In defining the problem we use much of the same notation as in [3], which was
the first to tackle the unweighted case. Let S = {pi = (xi, yi), i = 1, . . . , n}, x1 <
x2 < . . . < xn, be a set of n points in the plane. For 1 ≤ i ≤ j ≤ n, define
Sij := {pi, pi+1, . . . , pj}. A curve R is rectilinear if it consists only of alternating
horizontal and vertical segments and is x-monotone if the x-domains of any two
consecutive horizontal segments meet in a single value. From now on, when we
speak of approximation curves they are both rectilinear and x-monotone.

We now define vertical distance, the error function used in our method. If a
horizontal segment s has y-coordinate ys and x-range [xs, x

′
s], then the weighted

vertical distance from s to a point pi with associated weight wi is

dW
v (pi, s) =

{
wi|yi − ys| if xi ∈ [xs, x

′
s],

∞ otherwise.

Then, the weighted vertical distance between a point pi and a curve R is defined
as

dW
v (pi, R) = min

s∈R
dW

v (pi, s).

In the spirit of [3], the eccentricity of R with respect to S is the maximum
vertical error between the points of S and R, i.e.,

e(S, R) = max
1≤i≤n

dW
v (pi, R).

A point pi of S is said to be “covered” by a horizontal segment s of R if xi is in
the x-domain of s. We can see that every point of S is covered by some horizontal
segment of R and the set of all points covered by s is some Sij (which, as in
[3], we call the allocation set of s). All allocation sets can be assumed nonempty
as, otherwise, we unnecessarily increase the complexity of R. Furthermore, the
boundaries between adjacent horizontal segments can be fixed arbitrarily in the
intervals between adjacent allocation sets.

Dı́az-Báñez and Mesa [3] provide an O(n2 log n) algorithm to solve the un-
weighted min -ε problem using their O(n) solution for the min -# problem. They
solve the min -# problem by sweeping the points from left to right and extend-
ing the current segment while the y-span of the points it covers is at most twice
the allowed eccentricity. Thereafter, they solve min -ε by reducing it to a binary
search on the “candidate” eccentricities (which number O(n2), one for each pos-
sible pair of points pi, pj , i ≤ j). Later, Wang [15] reduces the time for min -ε
to O(n2) by carefully generating a set of at most 2n − 2 candidate errors which
includes the optimal one and running the linear min -# algorithm on each of
these errors.

Mayster and Lopez [10] improve over Wang with a min -ε algorithm that
runs in O(min{n2, nk log n}) time. Their algorithm uses Wang’s O(n) candidate
eccentricities coupled with an auxiliary tree structure that cuts the time for
each min -# instance down to O(k log n). The second result of [10] is a greedy
heuristic (GCSA) that runs in O(n log n) time. It can generate curves with 2k−1
segments with eccentricity no worse than that for an optimal curve consisting of

644 M.A. Lopez and Y. Mayster

k segments as well as produce curves with k segments with eccentricity within
a factor of 3 from k-optimal.

The rest of the paper is organized as follows. In the next section we introduce
the dual perspective to modelling weighted distances from points to an approxi-
mating segment. In Section 3, we describe an exact algorithm that runs in O(n2)
time. In Section 4 we discuss a modified GCSA heuristic that utilizes the dual
perspective to maintain the costs efficiently. It runs in O(n log2 n) time and has
the same error bounds with proofs carrying over from [10]. Finally, in Section 5
we describe a randomized algorithm that solves the unweighted (resp. weighted)
version of the problem in O(n log2 n) (resp. O(n log3 n)) expected time.

2 Preliminaries

First, we consider the optimal placement of a horizontal segment with respect to
its (fixed) allocation set. In the unweighted case the error is minimized when the
segment is centered with respect to the y-range of the points. Thus, the optimal
location of the horizontal segment is unique and can be determined from two
points in the allocation set. This is still true in the weighted scenario, but the
optimal location may not correspond to the midpoint of the y-range. However,
it must still be equidistant (under weighted distance) from the furthest points
above and below it, as otherwise a small shift in its position would decrease the
error.

There cannot be two different locations for the optimal segment because of
the semi-monotonicity of the distance function. If two distinct segments s and
s′ were both optimal, then the distance from s′ to one of the two points that
define s would be greater than the distance from s to that point, in violation of
the optimality of s′. If the two points that define the y-coordinate ys of the best
approximating segment s have coordinates (xi, yi), (xj , yj) and corresponding
weights wi, wj , then ys is given by

(yi − ys)wi = (ys − yj)wj ⇒ ys =
yiwi + yjwj

wi + wj
.

Therefore, the solution to the problem is the intersection of two lines c = −wiy+
yiwi and c = wjy − yjwj , where c stands for the cost of approximating the point
by a segment located at y. This leads us to consider a “cost-location” space
composed of such lines, each point in S giving rise to one upward and one
downward sloping line with the absolute values of the slopes equal to the weight
of the point. Let us suppose that all points in S are located in the first quadrant,
i.e. xi, yi > 0 ∀1 ≤ i ≤ n. We map each point pi with the corresponding weight wi

to the pair of lines in the “cost-location” plane �i0 = wiyi−wiy and �i1 = −wiyi+
wiy and restrict their domain to the first quadrant. Thus, for each point we have
a linear transformation �i of the absolute value metric function restricted to the
nonnegative domain. Each such wedge shaped function �i computes the distance
from pi to the approximating segment as we hypothetically sweep it upward
starting from y = 0 and consists of a finite down-sloping segment (recording the

Weighted Rectilinear Approximation of Points in the Plane 645

x

y

yo

y1

c4

p1

c5

c1

yyo y5

p5

p3
p2

�4

�3

�5

c

c2

c3

co

�2

�1

p4

Fig. 1. (a) A set of points pi = (xi, yi), numbered by increasing y-coordinate, having
respective weights wi such that w2 > w4 > w1 > w3 > w2, and the best fit segment. (b)
The corresponding lines in the cost-location plane with the slopes wi and the vertical
axis intercepts ci. The lowest point of the envelope is identified with the cost and
y-coordinate of the best fit segment.

cost for y < yi) and an infinite up-sloping ray (for the cost when y > yi). Which
portion of this arrangement of 2n cost lines keeps track of the greatest distance
(i.e., the furthest point) to the approximating segment for any segment position
y? The answer is quite obvious - the upper envelope of the arrangement is made
up of the segments of the cost lines of those points that at some y are furthest
from the approximating segment. The optimal location is given by the lowest
point, which is also the lowest vertex, of the upper envelope.

We observe that in the case when S is known and fixed the above-mentioned
problem of finding the lowest vertex of the upper envelope has been tackled
successfully before, as it is nothing other than finding the optimal solution to a
linear program in 2D. The best known deterministic algorithm for this has been
developed by [11] and runs in O(n) time. In addition, a very simple randomized
algorithm [14] exists that has O(n) expected running time. In our optimal algo-
rithm we shall need to solve this problem repeatedly for each new subset of S,
which differs in a single point from the previous subset, in order to compute the
eccentricities of candidate curves and, therefore, using the O(n) algorithm as a
subroutine is an overkill.

However, there are more efficient algorithms to dynamically maintain common
intersections of half-planes. In particular, a clever dynamization technique by
Overmars and van Leeuwen [13] can be exploited to maintain the upper envelope
in O(log2 n) time per update (insertion or deletion of a line) and enables us to
query for the lowest point on the boundary in just O(log n) time. The essence of
their approach is to store the “left” half-planes (i.e., those that contain the left
ray of any horizontal line) and the “right” half-planes in two separate augmented
binary search trees. The lines bounding the half-planes are stored at the leaves
and ordered by slope. In our case, since each point contributes an entire wedge
with both bounding lines having the same (in absolute value) slope, it makes

646 M.A. Lopez and Y. Mayster

sense to have just one tree and store the points themselves at the leaves sorted by
weight. Then, the bounding lines of the left half-planes are sorted in descending
order and the bounding lines of the right half-planes are sorted in ascending
order (without explicitly storing these lines). As per [13], each internal node
is augmented with a pointer to the parent and the largest slope value (largest
point weight) of the lines in its left subtree (needed for concatenation). Most
importantly, the portion of the upper envelope of the left half-plane lines in its
subtree that does not contribute to the upper envelope of the left half-planes of
its parent is stored in a concatenable queue along with the number of lines on
its envelope that belong to the upper “left” envelope of the parent. The “right”
upper envelope is handled similarly, so each internal node has two concatenated
queues associated with it.

Then, the overall “left” upper envelope is stored at the root of the “left” tree
(and, similarly, the “right” upper envelope is stored at the root of the “right”
tree). Using the procedures DOWN and UP described in [13] one can insert and
delete lines and maintain the queue structures as well as the balance of the tree.
Then, the intersection of the left and right envelopes can be found efficiently in
O(log n) time as is also proven in the original paper.

Finally, we note that there are other dynamic half-plane intersection algo-
rithms that outperform the above-mentioned algorithm by Overmars and Le-
euwen and run in O(n log n) amortized time, such as [7] and [2].

3 An Exact Algorithm

As observed in the previous section, the error of each approximating segment in
its best position is determined by two points and, therefore, so is the eccentricity
of the curve. It is still valid to use Wang’s choice of candidate eccentricities and
then it remains to describe how to compute these and the candidate curves
that they give rise to. In Wang’s algorithm, when one of the two pointers (called
sweep lines in the original paper) is advanced, the error of the best approximating
segment for the set of points between the two pointers is computed. This error
computation in the weighted distance case corresponds to finding the lowest
point on the upper envelope of the wedge lines in the cost-location plane as
these lines are added or deleted one at a time. As mentioned in the previous
section, computing the candidate eccentricities can be done using the O(log2 n)
dynamic half-plane intersection algorithm of [13].

We now turn to the question of how to compute a candidate curve itself once
the target eccentricity ε has been found. This can be done with a slightly modified
min -# algorithm of [3]. In this new version, each point (xi, yi) with the weight
wi is represented by a vertical line segment vi = (xi, yi − ε

wi
)(xi, yi + ε

wi
). Then,

the algorithm proceeds in essentially the same way as described in [3]. We build
horizontal segments of the curve by piercing consecutive vertical segments vi. At
first, we initialize the allocation set of the first horizontal segment to the single
point (x1, y1) and define its corridor to be (ymin = y1 − ε

w1
, ymax = y1 + ε

w1
).

Then, adding each additional point pi to the allocation set causes the segment’s

Weighted Rectilinear Approximation of Points in the Plane 647

corridor to be updated to y′
min = max{ymin, yi − ε

wi
}, y′

max = min{ymax, yi +
ε

wi
}. We keep extending the current horizontal segment of the curve for as long

as adding new points does not cause the corridor to become empty, i.e. until
further expansion of the allocation set would make y′

min > y′
max. Therefore,

computing both the candidate eccentricity and curve takes O(n) time leading to
the following result.

Theorem 1. The weighted rectilinear approximation problem can be solved in
O(n2) time.

This time bound becomes considerably reduced if the number of distance weights
associated with the points of S is equal to a constant. In this case, the line
wedges in the cost-location plane only have a constant number of distinct slopes.
It is easy to see that for any given slope only one line wedge with that slope
may contribute to the downward (and, similarly, upward) portion of the upper
envelope. Furthermore, in our case, it is obvious that only the line wedge that
contributes the first segment to the downward portion may also contribute a
segment to the upward portion (due to the fact that all other line wedges that
are part of the downward portion have smaller slope and a further x-intercept
than the first one). All other line wedges may contribute only to one of the two
portions. This means that the upper envelope consists of no more than n + 1
segments. In the case of a constant number of slopes c, we have no more than
c+1 segments on the envelope and, therefore, the above algorithm runs in linear
time. This is summarized in the next theorem.

Theorem 2. The weighted rectilinear approximation problem with a constant
number c of distance-modifying weights can be solved in O(cn) time.

4 A Heuristic with Provable Bounds

In [10], the authors describe a simple yet in practice quite accurate GCSA ap-
proximation algorithm for the problem of rectilinear curve fitting. The algorithm
begins by building a curve consisting of n singleton segments and computes the
costs that would result from merging the allocation sets of each adjacent pair of
such segments. These costs are prioritized by storing them in a min-heap and,
subsequently, at each iteration the minimum cost is extracted and the pair of
associated segments is merged. The algorithm then updates the structure and
the costs that involve the newly created enlarged segment and its neighbors.

We now modify this algorithm to be able to solve the weighted version of
the same problem. While the overall structure of the algorithm shall remain
unchanged, we have to supply new details for the merge step and analyze how
these affect the overall running time. Now merging two allocation sets can no
longer be accomplished in constant time as the points responsible for the error
of the new larger segment are not necessarily a subset of the points defining the
placement of the old segments. Recall that the y-coordinate of the new longer
segment s is determined by a pair of points whose so-called cost lines in the
cost-location plane define the lowermost point of the upper envelope of all such

648 M.A. Lopez and Y. Mayster

cost lines coming from the points in the allocation set of s. Clearly, the cost lines
that define this point come from the upper envelopes of the old segments’ cost
lines. Hence, the placement of the new longer segment can be determined by
any two points whose cost lines were on the upper envelopes of their respective
segments. We, therefore, have to keep track of the points defining these upper
envelopes for each allocation set (upper envelope points).

Each of these points contributes at most two edges to the upper envelope
and no two edges on the same envelope have overlapping x-ranges except at the
boundaries. We can, therefore, store these in a binary tree ordered by x-range
with pointers going to the original points. We also note that ordering the edges
by x-range also has the effect of sorting them by slope as well as inducing a semi-
sorted order on their y-ranges, since these decrease until the lowest point on the
envelope and then monotonically increase. Furthermore, all upper envelopes are
necessarily concave down, an important property that will be of use later.

When “merging” the allocation sets of two curve segments, their upper en-
velopes S (for small) and B (for big) need to be “merged” to produce the upper
envelope of the new segment. Suppose that |B| = n, |S| = m and n > m (where
the cardinality of an envelope is equal to the number of lines contributing seg-
ments to it). When we merge S and B, we always traverse S sequentially and
B sometimes sequentially (when B is below S) and sometimes logarithmically
(when B is above S). Clearly, the segments that survive (either partially or in
their entirety) are on the upper envelope of S ∪ B. Therefore, we need to find
all points of intersection between S and B (for this is where they switch roles,
one going below the other) and stitch together those portions that contribute
to the overall upper envelope. Hence, when B is below S, we remove segments
from B one by one (in O(log n) time per segment) and replace them by segments
from S. Once removed, these lines (i.e., points in the allocation set) will never
contribute to the upper envelope. When B is above S, that portion of B needs to
be preserved and traversing it sequentially in order to find the next intersection
between S and B would lead to a linear amortized time per merge and, thus, to
the total quadratic time for the entire algorithm (consisting of O(n) merges).

(a) (b) (c) (d)

pl

pl

bl
pl

br
s

s pr

br
pr

bl

s

pr

pl s

bl

br

bl

br

pr

Fig. 2. (a) Case I: both endpoints of s are above the bigger envelope B. (b) Case II:
pl is below a segment bl of B while pr is above B (same as pl above B and pr below).
(c) Case III: both endpoints of s are below B and an intersection exists. (d) Case IV:
endpoints of s are as in Case III but there is no intersection.

Weighted Rectilinear Approximation of Points in the Plane 649

We begin with the leftmost segments of S and B. As we move along S, for
each of its segments s with endpoints pl, pr we locate (via a binary search)
the segments bl, br (potentially, bl = br) in B whose x-ranges contain the x-
coordinates xl, xr of those endpoints. In the case of ties, when the endpoints of
two segments of B have x-coordinate xl or xr, we always pick the segment of B
that begins at xl and ends at xr. We then test if pl is above or below bl and,
similarly, whether pr is above or below br. If pl or pr coincide with the endpoints
of bl or br, we test whether s itself is below or above bl or br. If both pl and pr

(or s itself in the case of coinciding endpoints) are above the segments of B, then
because of the concavity of upper envelopes we know that s is completely above
B (Figure 2a) and, therefore, it must be added to the upper envelope of S ∪ B
and all segments of B from bl to br (except, perhaps, br itself if its x-range is
not completely covered by the x-range of s) can be removed from consideration.
As a way to simplify and speed up the process, we create the upper envelope of
S ∪ B completely inside of the data structure for B. Therefore, all deletions of
segments of B and insertions of the segments of S are carried out straight on
the binary tree containing B with the result that after the merge is complete B
contains the final “merged” envelope.

If one of the endpoints of s (again, in the case of endpoints coinciding, s itself)
is above B and the other is below B, then an intersection exists (Figure 2b) and
can be found in logarithmic time by simply doing a binary search on the segments
of B and testing them as being above or below s, or simply walking along B
starting from the segment which is below s and deleting segments from B until
we arrive at the intersection at which point we link up with s. Thus, all segments
of B below s are removed (again, except perhaps for br even if it is below s)
and a portion of s is added to B (starting or ending at the intersection point,
depending on which part of s is above B).

Finally, we come to the case when both endpoints of s are below B, which
leads to the two possibilities illustrated in Figures 2c and 2d. In this case, there
may or may not be an intersection and some extra work needs to be done to
determine this. Namely, we certainly do not have an intersection when s belongs
to the downsloping part of S and pl is below the upsloping part of B or vice
versa, when s has an upward slope and pr is below the downsloping part of B.
However, this is not sufficient to decide whether there is an intersection between
s and B. These cases, then, are subsumed by the following simple check. First,
we determine whether the slope of s is between the slope of bl and that of br

(remember, that slopes uniformly increase from bl to br). Only if it is, there
may be an intersection. We then find, via a binary search on the slopes of lines
between bl and br, the line b of B that has slope closest to that of s. If this
line is not above s (Figure 2c), then we have two intersections which can be
found by walking from b in opposite directions, while deleting segments from B.
Otherwise, there is still no intersection (Figure 2d). To see that this is indeed a
correct strategy, we remember that if s were to pierce B it must either intersect
or “obscure” the line with the closest slope since in the resulting envelope lines
must appear in the order from smallest to largest slope.

650 M.A. Lopez and Y. Mayster

To complete the description of the modified GCSA heuristic, we need to ad-
dress one more problem and that is the computation of the merge cost, i.e.
the eccentricity of the resulting curve if the two allocation sets were merged.
This, however, can be achieved with the same algorithm as above except that
no changes should be made to B (i.e., we “simulate” a merge) and we can stop
once the lowest point on the envelope has been found (note that this technique
cannot be used for the exact algorithm in the previous section for it only handles
envelopes obtained by merges and does not handle those obtained by deleting
lines).

Let’s analyze now the running time of this new GCSA algorithm. We first look
at the operation of a single merge step involving the smaller allocation set S with
|S| = nS and the bigger allocation set B with |B| = nB. How many times can
a segment of S’s envelope intersect B’s envelope? The answer is at most twice,
since envelopes have parabolic shape. Therefore, only one part of a segment of
S or that segment in its entirety can be inserted into B’s envelope and since the
number of segments in the envelope is at most one more than the size of the
allocation set, no more than nS +1 insertions take place. Therefore, the total cost
of insertions per merge step is O(nS log nB). It remains to sum the cardinalities
of all such smaller allocation sets S participating in merge steps. This question
can be approached from the point of view of how many times, at the most, the
same point can belong to the smaller set over the course of all merge steps. This
is very similar to the analysis of the disjoint data set union operation and we
know that the same point can be merged from a smaller set at most log n times,
for the sizes of the smaller sets it is part of will in the worst case increase as
the sequence 1, 2, 4, 8, . . . So, the number of insertions over all merge steps is
at most O(n log n) and with each insertion taking O(log n) time, the total time
is O(n log2 n). We still need to remember to account for the deletions taking
place during merging, but this is easy for once a line has been removed from an
envelope, the point responsible for it will no longer be considered. Hence, the
total cost of deletions is only O(n log n). Also, “simulating” a merge to compute
the prospective eccentricity has the same cost as an ordinary merge and we
know that only at most two such simulations are needed for every real merge
step. Thus, we can perform all O(n) merges in O(n log2 n) time. This gives us
the following result.

Theorem 3. The modified GCSA algorithm runs in O(n log2 n) time and guar-
antees the error bounds proven for the original GCSA. Namely that for n ≥ 2k,
the GCSA algorithm with m = 2k−1 produces a curve C with eccentricity ε ≤ ε∗

and with m = k segments achieves eccentricity at most 3ε∗.

The above claims regarding the error bounds follow directly from the proofs
given in [10], as they carry over verbatim to this modified version of GCSA.

5 A Randomized Algorithm

The main idea of this algorithm is to perform an efficient search on the set
of O(n2) possible eccentricities but, unlike [3], the entire set of eccentricities

Weighted Rectilinear Approximation of Points in the Plane 651

is not generated explicitly. Instead, only those for which a candidate curve is
constructed are computed. This results in O(log n) candidates on average and
O(n log2 n) expected running time. We begin by describing the unweighted ver-
sion of the algorithm and then show how to extend it to handle weights.

The algorithm starts by picking a random pair of points pi and pj and com-
puting the eccentricity of the allocation set Sij . This can be done in O(n) time
(e.g., using the linear programming algorithm in [11]). Then, using the min -#
algorithm of [3], the first candidate curve Rij of size kij is constructed and com-
pared against the target k. The result of this comparison is to be used to decide
about the bounds on the achievable eccentricity. The algorithm, therefore, keeps
track of the feasible eccentricity window Ef = [εmin, εmax], which is updated
after investigating each candidate curve. This window is initialized to [0, ∞).
Now, if kij ≤ k, we update the window to [0, εij]. While, in the opposite case of
kij > k, we know that the eccentricity has to be increased, and so the feasible
window becomes [εij , ∞).

Now, to discard all allocation sets whose errors are outside of the feasible
eccentricity window, we create a data structure that records for each point pi

of S the number of allocation sets that start at pi and end at some pj with
errors still in the current feasible window as well as the smallest index li and
the largest index ri such that i ≤ li ≤ j ≤ ri. For each pi and a given feasible
eccentricity window Ef , we thus have the set S

Ef

i of possible values of j. In this
set, j = li specifies the index of the closest (in x-direction) point to pi such that
the error of the allocation set {pi, . . . , pli} is at least εmin and, similarly, j = ri

gives the furthest point from pi with the error of the allocation set {pi, . . . , pri}
at most εmax. To see that pj runs across a contiguous subset of S, we note that
the eccentricity of an allocation set Sij is monotonically non-decreasing as i is
kept fixed and j is advanced.

Let us now explain how to compute for each pi the cardinality and bounds
li, ri of S

Ef

i as well as how to maintain this information as Ef changes. After the
first candidate curve is generated and Ef is initialized, we compute |SEf

1 | and
l1, r1 by scanning S. We then note that li ≤ lk, ri ≤ rk whenever i ≤ k. This
holds because the y-range of the set {pk, . . . , pli} (possibly empty if k > li) is
subsumed by the y-range of the set {pi, . . . , pli} forcing lk to be no less than
li and, similarly, for rk and ri. Therefore, it seems that l2 and r2 can be found
by simply moving ahead the pointers from l1 and r1, respectively, if needed.
Unfortunately, in order to know when to stop for l2 and r2 we need to know
the error of the allocation sets that begin at p2 rather than p1 for it could be
that p1, which is now removed from consideration, was one of the two points
determining the error of L1 = {p1, . . . , pl1} or the two points determining the
error of R1 = {p1, . . . , pr1}. This necessitates the creation of two priority queues,
such as min-max heaps, to keep track of the lowest and highest points in the
two allocation sets Li, Ri as they are being determined for each pi. Then, in the
case of p2, we set L2 = L1, R2 = R1 and then remove p1 from the heaps for each
of the sets. Then, we start adding points to L2 beginning with pl1+1 and stop
after having added the first point that had caused the error of L2 to exceed or

652 M.A. Lopez and Y. Mayster

become equal to εmin. Similarly, we add points to R2 until adding the next point
would make the error of R2 become greater than εmax. We remember the index
of the last point added to L2 as l2 and that of the last point added to R2 as r2.
All subsequent bounds for S

Ef

i , 2 ≤ i ≤ n, can be found by advancing these two
pointers, each making at most one full pass through S. Finally, computing the
size of S

Ef

i is trivial as it is just |ri − li +1|. We note that every point is added to
each of the two queues exactly once and is removed at most once as we compute
all values of il, ir for a given eccentricity window Ef .

Thus, every time Ef changes, recomputing the bounds and cardinality infor-
mation takes only O(n log n) time since it only involves O(n) heap operations.
Hence, the key to good performance becomes reducing the (expected) number of
changes to the feasible eccentricity window that are necessary to process before
the optimal eccentricity is found. This goal we achieve through randomization
as we shall describe next.

After the initial step has determined Ef and the bounds and cardinalities of
each of the sets S

Ef

i have been computed, we pick a pair of points that enclose an
allocation set with error in the feasible eccentricity window at random from the
set of all such possible pairs. In order to do this, and have a uniform distribution
of probabilities, for each 2 ≤ i ≤ n we sum up the cardinalities of the sets S

Ef

k

for all k ≤ i and store this number for pi, i.e. we have

Ki =
i∑

k=1

∣
∣
∣S

Ef

k

∣
∣
∣ .

Clearly, these can be computed in one scan of the array since Ki is just the sum
of Ki−1 and the cardinality of S

Ef

i . Then, we can generate a pseudo-random
number x between 1 and Kn and identify the unique pair (pi, pj) corresponding
to this index (we just search for x in the array of Ki’s, find the smallest i0 such
that Ki0 ≥ x, and then find the unique j from S

Ef

i0
.

This way we make sure that each pair is selected with the same probability
but only from the set of those pairs that already fulfill the criteria for the error
of its allocation set. Thus, we can expect that on average picking a new pair will
reduce the number of pairs in the feasible eccentricity window roughly in half
and so, our search has an expected logarithmic number of steps in the size of
the set of possible eccentricities, that is, O(log(n2)) = O(log n). Since after each
pair is picked an O(n log n) time is spent updating the auxiliary arrays described
above and constructing a candidate curve, the total expected running time of
this randomized algorithm is O(n log2 n).

Now, notice that even though the discussion so far focused on the unweighted
case only, our algorithm can be easily adapted to the weighted case. First, we
observe that it is still true in the presence of weights that li ≤ lk, ri ≤ rk for
any two points pi, pk such that i ≤ k. Clearly, not just the y-range but the
weighted error range of the set {pk, . . . , pli} is subsumed by the weighted error
range of {pi, . . . , pli} because the lowest point on the upper envelope of a set
of cost lines can be no lower than the lowest point on the upper envelope of its

Weighted Rectilinear Approximation of Points in the Plane 653

subset. Consequently, instead of min-max heaps to keep track of the errors of
Li and Ri we would have to maintain upper envelopes and we can do so again
using the algorithm from [13]. Each individual update of that structure takes
O(log2 n) and so one full pass through the array to update the pointers li, ri

for all i takes O(n log2 n). Hence, the total time is O(n log3 n) as there are still
O(log n) candidate curves to construct.

References

1. Aronov, B., Asano, T., Katoh, N., Mehlhorn, K., Tokuyama, T.: Polyline fitting
of planar points under min-sum criteria. International Journal of Computational
Geometry and Applications 16, 97–116 (2006)

2. Brodal, G., Jacob, R.: Dynamic planar convex hull. In: Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science, pp. 617–626 (2002)

3. Dı́az-Báñez, J.M., Mesa, J.A.: Fitting rectilinear polygonal curves to a set of points
in the plane. European Journal of Operations Research 130, 214–222 (2001)

4. Eu, D., Toussaint, G.: On approximating polygonal curves in two and three dimen-
sions. CVGIP: Graphical Models and Image Processing 56(3), 231–246 (1994)

5. Goodrich, M.: Efficient piecewise-linear function approximation using the uniform
metric. Discrete and Computational Geometry 14, 445–462 (1995)

6. Hakimi, S.L., Schmeichel, E.F.: Fitting polygonal functions to a set of points in
the plane. CVGIP: Graphical Models and Image Processing 53(2), 132–136 (1991)

7. Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. Journal of
Algorithms 21, 453–475 (1996)

8. Houle, M., Imai, H., Imai, K., Robert, J.-M., Yamamoto, P.: Orthogonal weighted
linear L1 and L∞ approximation and applications. Discrete Applied Mathemat-
ics 43(3), 217–232 (1993)

9. Imai, H., Iri, M.: Computational-geometric methods for polygonal approximations
of a curve. Computer Vision, Graphics and Image Processing 36(1), 31–41 (1986)

10. Mayster, Y., Lopez, M.A.: Rectilinear approximation of a set of points in the
plane. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 715–726. Springer, Heidelberg (2006)

11. Megiddo, N.: Linear programming in linear time when the dimension is fixed.
Journal of ACM 31(1), 114–127 (1984)

12. Melkman, A., O’Rourke, J.: On polygonal chain approximation. In: Toussaint, G.T.
(ed.) Computational Morphology, pp. 87–95, North-Holland, Amsterdam, Nether-
lands (1988)

13. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane.
Journal of Computer and System Sciences 23(2), 166–204 (1981)

14. Seidel, R.: Linear programming and convex hulls made easy. In: SCG 1990: Pro-
ceedings of the Sixth Annual Symposium on Computational Geometry, pp. 211–215
(1990)

15. Wang, D.P.: A new algorithms for fitting a rectilinear x-monotone curve to a set
of points in the plane. Pattern Recognition Letters 23, 329–334 (2002)

16. Yamamoto, P., Kato, K., Imai, K., Imai, H.: Algorithms for vertical and orthogonal
L1 linear approximation of points. In: Proceedings of the 4th Annual Symposium
on Computational Geometry, pp. 352–361 (1988)

Paths with no Small Angles

Imre Bárány1,2, Attila Pór3, and Pavel Valtr3

1 Rényi Institute of Mathematics, Hungarian Academy of Sciences, POBox 127, 1364
Budapest, Hungary

2 Department of Mathematics, University College London, Gower Street, London
WC1E 6BT, England

3 Department of Applied Mathematics, Charles University, Malostranské nám. 25,
118 00 Praha 1, Czech Republic

Abstract. Giving a partial solution to a problem of S. Fekete and
G.J. Woeginger [3,4] we show that given a finite set X of points in the
plane, it is possible to arrange them on a polygonal path (with the vertex
set X) so that every angle on the polygonal path is at least π/9. Accord-
ing to a conjecture of Fekete and Woeginger, π/9 can be replaced by π/6.
Previously, the result has not been known with any positive constant.

1 Introduction and Results

The aim of this paper is to answer a beautiful and inspiring question which
appeared first in 1992 in S. Fekete’s thesis [3], and later in the paper by Fekete
and Woeginger [3,4] in 1997. The question is this. Given a finite set X of points
in the plane, is it possible to arrange them on a polygonal path (with the vertex
set X) so that every angle on the path is at least α, for some universal constant
α > 0? The answer is, as we shall see soon, yes. This might be a step towards
proving a conjecture of S. Fekete and G.J. Woeginger [3,4] that this result holds
with α = π/6. We prove the result with the constant α = π/9. First we introduce
notation and terminology.

Let A0, . . . , An be n + 1 distinct points in the plane. We denote the path
consisting of the segments A0A1, A1A2, . . ., An−1An by A0A1 . . . An. This is a
polygonal path with vertices A0, A1, . . . , An. The angle of this path at Ai is the
angle of the triangle Ai−1AiAi+1 at vertex Ai, 1 ≤ i < n.

Definition. Let α > 0. We call the path A0A1 . . . An α-good if the angle at Ai

is at least α for every 1 ≤ i < n. A path is called good, if it is π/9-good.
The main result of this paper is the following

Theorem 1. For every finite set of points X in the plane there exists a π/9-good
path on the points of X (containing each point of X exactly once).

We mention that π/9 in the theorem cannot be replaced by anything larger
than π/6. This is shown when X consists of the center and the three vertices of
a regular triangle (see Figure 1).

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 654–663, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Paths with no Small Angles 655

Fig. 1. A 4-point configuration and its two paths

Another example, depicted in Figure 2, shows that Theorem 1 cannot be
strengthened to paths with no self-intersections. It also shows that paths min-
imizing various quantities (such as total length, total turning angle) may have
an arbitrarily small angle.

Fig. 2. Every good path on this point set is self–intersecting (the set consists of points
on a huge circle and one extra point inside the circle)

For the rest of the paper we fix α as π/9. We will prove a slightly stronger
statement which is more convenient for the induction argument. We will need
two additional definitions.
Definition. We call the (oriented) directions of the vectors A1A0 and An−1An

the two end directions of the path A0 . . . An. We identify the (oriented) directions
with points of the unit circle S1.
Definition. We call a subset R of the unit circle a restriction if it is the disjoint
union of two intervals R1, R2 ⊂ S1 such that both have length 4α(= 4π/9) and
their distance from each other (along the unit circle) is larger than 2α(= 2π/9).
We call the path A0 . . . An R-avoiding if the two end directions are not in the
same Ri (i = 1, 2) and the path is good (see Figure 3).

The following theorem is a strengthening of Theorem 1.

Theorem 2. Let X be a finite set of points in the plane. For every restriction
R there is an R-avoiding path on all the points of X.

The proof of this theorem goes by induction on |X | which gives a quadratic
algorithm for finding a π/9-good path.

656 I. Bárány, A. Pór, and P. Valtr

4α
4α

> 2α

> 2α

R1

R2

S1

Fig. 3. A restriction R = R1 ∪ R2 and two (good) paths that are not R-restricted

Theorem 3. A π/9-good path on a set of n points in the plane can be found in
time O(n2).

We prove this theorem in the last section.

2 Further Questions and Extensions

The natural question is what happens in higher dimensions. In the journal version
[2] of this paper we prove the following result.

Theorem 4. For every d ≥ 2 there is a positive αd such that for every finite
set of points X in d-dimensional space there exists a αd-good path on X.

Actually, the proof method of Theorem 2 works but some extra difficulties have
to be overcome.

Another problem that we encountered while working on this paper seems
interesting and nontrivial. Call a finite set X in the d-dimensional space α-flat
if every triangle with vertices from X has an angle smaller than α. One example
of an α-flat set is a finite set X0 of collinear points. Each point of X0 can be
moved freely in a small enough neighbourhood so that the resulting set X1 is
still α-flat. Next, each point of X1 can be replaced by a very small but otherwise
arbitrary α-flat set, and the resulting set is still α-flat if the replacements are
small enough. Perhaps all α-flat sets can be obtained this way.

Next, call the set X β-separable if it can be partitioned as X = U ∪ V with
U, V disjoint and nonempty so that the angle between the line through u1, v1

and the line through u2, v2 is smaller than β for every u1, u2 ∈ U and every
v1, v2 ∈ V .
Conjecture. For every d ≥ 2 and for every positive β there is a positive αd(β)
such that for every α-flat finite set X in d-dimensional space is β-separable.

We have a proof of this conjecture for d = 2.
We remark that the authors of the recent paper [1] investigate straight-line

drawings of graphs with restricted sizes of angles spanned by pairs of incident
edges.

Paths with no Small Angles 657

3 Proof of Theorem 2

We prove the theorem by induction on the number of points in X .
If |X | = 2 then the two end directions are the opposite to each other. Since

the length of Ri, 4α = 4π/9, is smaller than π the two end directions cannot be
in the same Ri interval.

Assume |X | > 2. Let K be the convex hull of X and let V be the vertex set
of K. Of course V ⊆ X . Next let R = R1 ∪ R2 be a restriction. We distinguish
two cases depending on the smallest angle of the polygon K.

< 2α
conv(XA)

Q1

Q2 = Rx

I

Q2
Q1I

A

Fig. 4. Case 1

Case 1: The smallest angle of K is smaller than 2α. Let A be the vertex
where that smallest angle occurs and let XA = X \ {A}. See Figure 4. Without
loss of generality we can assume that for each point B ∈ XA the direction BA
is in the interval I = (π − α, π + α) ⊂ S1. Since the length of I is 2α it can only
intersect one of the two intervals R1 and R2. Let Q1 = [−2α, 2α] ⊂ S1. If one
of the sets R1 or R2 intersects I, then let Q2 be equal to the one that intersects
I. Otherwise set Q2 = [π − 2α, π + 2α]. It is easy to see that Q = Q1 ∪ Q2 is a
restriction; this is the point where α = 200 = π

9 is being used. By induction on
|XA| we find a Q-avoiding path p = A0 . . . An on XA. If the end direction A1A0

is not in Q1, then we can extend this path to the good path Ap = AA0 . . . An on
X . Analogously, if the end direction An−1An is not in Q1, then we can extend
this path to the good path pA = A0 . . . AnA on X . (We only have to take care
of the angle A1A0A or An−1AnA.)

So at least one of the extended paths pA, Ap is α-good. The end direction at
A is always in I. Therefore, if both end directions of Ap or of pA are in R1 (or
R2), then both have to be in Q2. In this case we can extend p at both ends. But
only one of the end directions of p is in Q2. So we extend p at the end which is
in Q2 and we get an R-avoiding path on X .
Case 2: Every angle of K is at least 2α. See Figure 5. Without loss of
generality we can assume that R1 and R2 are symmetric to the horizontal line.

658 I. Bárány, A. Pór, and P. Valtr

A

B

K = conv(X)

R1

R2

Fig. 5. Case 2

Let A and B be the vertices of K with the largest and smallest y-coordinate,
respectively. We will distinguish three subcases depending on the size of Y =
X \ V .
Case 2a: The set Y is empty. As a first attempt we try to find an R-avoiding
path that contains only edges of K. Such a path can be identified by the missing
edge of K. All these paths are clearly (α-)good. If there is an edge on the
perimeter of K with a direction not in R1 or R2, then the path missing the next
edge will have that direction as end direction. In this case we have found an
R-avoiding path.

Now we assume that each edge of K is in R1 in one direction and in R2 in
the other direction. If |X | > 4, then there is a path along the perimeter of K
between A and B of length at least three. Take the path that misses an interior
edge that is, an edge disjoint from A and B — see Figure 6 (left). One of the
end directions will be in the interval [0, π] (upwards) and the other one will be
in [π, 2π] (downwards). Therefore this path is R-avoiding since R1 ⊂ (0, π) and
R2 ⊂ (π, 2π).

A

B

A

B

C

D

Fig. 6. Case 2a

If |X | = 3 then the path missing edge AB from K is R-avoiding since it has
one upward and one downward end direction.

If |X | = 4 and AB is an edge of the convex hull, then the path missing this
edge is R-avoiding. If A and B are opposite vertices of K (which is a quadrilateral

Paths with no Small Angles 659

now), then we connect the four vertices from top to bottom starting with A and
ending with B. Let this path be ACDB — see Figure 6 (right). We have CA in
R1 and CD is pointing downwards. That is CA ∈ [α, π − α] and CD ∈ [π, 2π]
and therefore the angle at C is at least α. Similarly the angle at D is at least α
as well which shows that this path is good. The end directions are again upward
and downward therefore the path ACDB is an R-avoiding path.
Case 2b. The set Y consists of one point: Y = {F}, say. Take a path that con-
tains all edges of K except one and the segment from F to one of the endpoints
of the missing edge. If the angle at the vertex which is connected to F is at least
α we have a good path.

In this way every segment from F to a vertex of K can be extended to a good
path since each angle of K is at least 2α and therefore the angle towards one of
the neighbours along the perimeter of K has to be at least α.

Consider the extended path starting with FB — see Figure 7 (left). The end
direction BF is upwards. If BF or the other end direction is not in R1 we have
an R-avoiding path.

A

B

A

B

F F

Fig. 7. Case 2b

If the other end direction is in R1, then it directs upwards which can only
occur if AB is an edge of the convex hull and the path extended from FB ends
at A.

Similarly the path extended from FA will end in B so we found an α-good
Hamiltonian cycle — see Figure 7 (right). If X has at least five elements, then
there is an edge of K which is disjoint from A and B and we can use a previous
argument. If X has four elements, then we take the path going from top to
bottom starting at A and ending at B. In both cases the arguments are identical
to the ones in Case 2a.
Case 2c. The set Y has at least two elements. We use induction on |Y | and find
an R-avoiding path p = A0 . . . An on Y . We will extend this path as follows. Let
F ∈ V , that is, F a vertex of K. Connect A0 (resp. An) to F and then connect F
to one of its neighbours, G say, on the convex hull. Continue the path along the
convex hull, we get a new path p∗. This path can be written as p∗ = ..GFp or
pFG.., where the two dots represent the unique continuation of the path along

660 I. Bárány, A. Pór, and P. Valtr

F

A0

A1

w0

G An

p

Fig. 8. The wedge wo

the perimeter of K. The path p∗ will be good if the angles at A0 (resp. An) and
at F are at least α.

Consider first the angle at A0 and An. Let w0 be the set of all points W for
which the angle A1A0W is smaller then α — see Figure 8. Similarly let wn be the
set of all points W for which the angle An−1AnW is smaller then α. Both sets w0

and wn are wedges with an angle of 2α. The angle of p∗ at A0 (resp. An) is at least
α if and only if F is not in the wedge w0 (or wn). Observe that V is not contained
in w0 as otherwise A0 would be a vertex of K. Thus we can choose F ∈ V so that
the angle at A0 is at least α — see Figure 8. Similarly, V is not contained in wn,
and we can choose F so that the angle at An is at least α.

Consider now the angle at F . To continue the path from F we have two choices
for G to go along the perimeter of K. Since the angle at each vertex of K is at
least 2α, one of the choices certainly yields a path whose angle at F is at least
α. Consequently there is at least one good path p∗ of the form ..GFp and one
of the form pFG...

One end of such a p∗ is an edge of K and the other one is A1A0 or An−1An.
If A1A0 or An−1An is not in R, then we keep the end which is not in R and
extend the path through the other end to get a good path on X which will be
R-avoiding.

Thus we can assume that A1A0 is in R1 and An−1An is in R2, say. This has
the beneficial consequence that A is not in w0 as the wedge w0 lies completely
below the horizontal line trough A, further denoted by l — see Figure 9 (left).
Thus A can be taken for F and there is a good path of the form p∗ = ..GAp.
Similarly, B /∈ wn and there is a good path p∗ = pBG...

Notice now that p∗ = ..GAp is R-avoiding unless both of its end directions
are in R2. This can only happen if AB is an edge of K and the angle A0AB
is smaller than α. Similarly, p∗ = pBG.. is R-avoiding unless both of its end
directions are in R1. This can only happen if AB is an edge of K and the angle
AnBA is smaller than α.

Now let A, C1 . . . , Ck, B, A be the vertices of K in this order. It follows that
all angles along the Hamiltonian cycle

A, C1, . . . , Ck, B, An, An−1 . . . , A0, A

Paths with no Small Angles 661

A

B

A0

A1

w0
An

� A

B

A0

A1

An

�

C1

C2

Ck

Fig. 9. Case 2c

are at least α. See Figure 9 (right). As we have seen in Case 2b, such a cycle
produces an R-avoiding path unless k = 1.

The only remaining case is when k = 1, then K is the triangle ABC where
we set C = C1. Observe now that |V ∩ w0| ≤ 1, since the angle at A of K is at
least 2α and so w0 cannot contain both B and C. Similarly, |V ∩ wn| ≤ 1.

We assume next that the angle A1A0C is at least α, that is C /∈ w0. If the angle
A0CB is at least α, then the path An . . . A0CBA is R-avoiding — see Figure 10
(left). Otherwise the angle A0CA is at least α and the path BAn . . . A0CA is
R-avoiding. From now on we can assume that C ∈ w0.

Similarly we can find an R-avoiding path if the angle An−1AnC is at least α.
From now on we can assume that C ∈ wn.

This implies V ∩w0 = V ∩wn = {C}. Thus p can be extended to a good path
p∗ at both ends through both A and B.

The angle AnAC has to be smaller than α as otherwise A0 . . . AnACB is an R-
avoiding path. Similarly the angle A0BC is smaller than α. Wew have seen above
that

� A0AB < α and � AnBA < α.

A

B

C
A0

A1

An

A0

An

B

C

A

fA

fB

h

Fig. 10. Case 2c when the convex hull is a triangle

662 I. Bárány, A. Pór, and P. Valtr

Now let fA resp. fB be lines through A and B halving the angle BAC and
ABC. See Figure 10 (right). Let h be the horizontal line through the intersection
of fA and fB. What we established so far implies that A0 (resp. An) is in the
triangle delimited by fA, fB, BC and by fA, fB, AC.

It follows then that A0 is below and An is above h. Now w0 lies entirely below
h and wn lies entirely above h, contradicting C ∈ w0 ∩ wn.

4 Algorithm

Here we describe a quadratic algorithm for finding a good path on a given point
set. Just as in the case of Theorem 1, we prove a stronger result.

Theorem 5. Given a restriction R and a point set X in the plane with |X | = n,
an R-avoiding path on X can be found in time O(n2).

Proof. This is based on the proof of Theorem 2 so we only give a sketch. We
are going to use the same notation. We assume by induction that there is an
algorithm for the problem with |X | = m < n that works in time at most cm2.
We assume now that X consists of n points.

It is not hard to see that the smallest angle of the convex polygon K (which
is the convex hull of X) occurs at a vertex of K which has maximal or minimal
x or y component among all points of X . There are at most 8 such vertices of K,
and they can be found in time 4n. Deciding whether the angle at such a vertex
is smaller than 2α can be done in time n. Using this one can decide, in time 12n,
whether Case 1 or Case 2 occurs.

Assume first that Case 1 occurs. Then the new restriction Q can be deter-
mined with 8 comparisons, the Q-avoiding path p on XA can be found in time
c(n − 1)2. Now either pA or Ap is an R-avoiding path, and a single compari-
son decides which one is. So we are finished with Case 1 if c ≥ 7 since then
cn2 ≥ 12n + 9 + c(n − 1)2.

Assume next that Case 2 occurs. The convex hull algorithm of Kirkpatrick
and Seidel [5] finds K in time O(n log k) where k is the number of vertices of
K. It is easy to see that in Case 2a and Case 2b we find an R-avoiding path
in O(n log n) time. In Case 2c, we find an R-avoiding path p on Y = X \ K in
time c(n − k)2 by induction (since |Y | = n − k). If neither ..GAp nor pBG.. is
R-avoiding (which can be decided by checking their end directions), then AB is
an edge of K and the Hamiltonian cycle AC1, . . . , Ck−2B, An, . . . , A0, A gives an
R-avoiding path unless k = 3. When k > 3 this path can be found immediately.
So altogether this takes time 12n + O(n log k) + c(n − k)2. This is smaller than
cn2 if c is large enough depending on the constant in the O(n log k) convex hull
algorithm, as one can check easily.

Finally, the analysis of the case k = 3 shows that one of the paths pCBA,
ACpB, pACB, or CBpA is R-avoiding. Deciding which one takes four compar-
isons at most. In this case the algorithm takes time 12n+O(n log 3)+c(n−3)2+4
which is, again, smaller than cn2.

Paths with no Small Angles 663

Acknowledgments. We thank Adrian Dumitrescu and Géza Tóth for bringing
this problem to our attention and for stimulating discussions. We thank Ferran
Hurtado for pointing out the reference [4] to us. Partial support for the first
and second author from Hungarian National Foundation Grants No. 060427 and
062321 is also acknowledged. Research by the third author was partially sup-
ported by project 1M0545 of The Ministry of Education of the Czech Republic.

References

1. Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Pór, A., Santos, F., Speck-
mann, B., Vogtenhuber, B.: Maximizing Maximal Angles for Plane Straight-Line
Graphs. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
pp. 458–469. Springer, Heidelberg (2007)

2. Bárány, I., Pór, A., Valtr, P.: Paths with no small angles (manuscript in preparation,
2007)

3. Fekete, S.: Geometry and the Travelling Salesman Problem, Ph.D. thesis, University
of Waterloo (1992)

4. Fekete, S., Woeginger, G.J.: Angle-restricted tours in the plane. Comput. Geom.:
Theory and Appl. 8, 195–218 (1997)

5. Kirkpatrick, Seidel, R.: The ultimate planar convex hull algorithm. SIAM J. Com-
puting 15, 286–297 (1986)

Simpler Constant-Seed Condensers

Domingos Dellamonica�

Emory University – Department of Mathematics
ddellam@mathcs.emory.edu

Abstract. Condensers are functions which receive two inputs—a ran-
dom string of bits chosen according to some unknown distribution and
an independent uniform (short) seed—and output a string of bits which
somehow preserves the randomness of the input. The parameters of in-
terest here are the seed length, output length and how much randomness
is preserved.

Here we present explicit algorithms for condensers which have con-
stant seed size. Our constructions improve on previous constant-seed
condensers of Barak et al (2005). When the input distribution has high
min-entropy, we provide a condenser having optimal rate and seed chosen
from {1, 2, 3}. The analysis of this construction is considerably simpler
than those of previous constructions. For the low min-entropy regime,
we provide a different construction which can be viewed as a pseudoran-
dom coloring of hypergraphs. The analysis of this condenser involves a
generalization of the celebrated Balog–Szemerédi–Gowers Theorem. As
an example of the simplicity of the ideas behind this generalization, we
improve Bourgain–Katz–Tao sum-product estimates in just a few lines.

1 Introduction

A condenser is a function that takes an input according to some unknown prob-
ability distribution, which may be far from uniform (a weak source), and outputs
according to a distribution having a greater randomness rate. In the next sec-
tion we shall formalize the notion of weak sources and explain how the concept
of min-entropy is used to measure the amount of randomness of distributions.
Informally, the min-entropy indicates how large is the probability of the most
likely outcome in the underlying probability space.

This notion is particularly useful, for instance, if we want to use some dis-
tribution of random bits in a randomized algorithm. A randomized algorithm
may be viewed as a deterministic algorithm that receives two inputs: one is an
encoding of an instance and the other is a sequence of random bits, the seed,
which is used by the algorithm for its internal decisions. An algorithm might
give the wrong answers for a given instance when some particular seed is given;
if that bad seed is sampled with high probability then the algorithm will fail (for
that instance) with high probability.

� Supported by a CAPES/Fulbright scholarship.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 664–675, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simpler Constant-Seed Condensers 665

There is a particularly strong interest in obtaining explicit condensers that can
be computed in polynomial time (e.g., [1], [2], [3], [4], [5], [6], [7]). In this note we
present two different constructions of constant-seed condensers. These constant-
seed condensers have applications in randomness extraction, in particular, they
may be composed with themselves recursively in order to convert a source with
a small fraction of min-entropy into a (small) collection of blocks such that at
least one of those blocks has high min-entropy. Our constructions, having greater
condensing factor, may then be used to reduce the number of output blocks at
the end of the recursion.

Our main contributions are: (1) an explicit construction of a condenser that
achieves optimal condensing factor (and has only three output blocks); (2) a
general upper bound on the condensing factor of condensers; (3) a condenser for
any constant min-entropy rate that may be derived using only density results
(generalizations of Gowers’ Lemma on partial sum-sets); (4) sum-product esti-
mates, that improve on Bourgain–Katz–Tao [8] with explicit bounds (although
these bounds are only better than the current best bounds obtained by recent
works [9], [10] for some range of the parameters). We remark that previous
constructions rely on sum-product estimates (even if indirectly, as in Raz’s con-
denser) and have condensing factor depending on some very small (and implicit)
constant.

In (1), not only we obtain an explicit construction having optimal condensing
factor, but the analysis is based on a new, quite simple, two-source extractor
(Theorem 1). In (3), we dispense the use of much of the machinery used in
previous constructions. Although at first the hypergraph lemmas we use for
the analysis of the low-entropy condenser might seem overwhelming, the ideas
behind the proof are simple tricks that nicely complement the celebrated Balog–
Szemerédi–Gowers–Theorem. It also seems much easier to derive explicit bounds
on the condensing factor using this method.

These hypergraph density theorems may be interesting on their own right and
could find applications on proving sum-product estimates for more complicated
arithmetic expressions (the celebrated sum-product theorem involves sum-sets
like A + A and product-sets like A · A).

1.1 Organization of the Note

We formally state some definitions and introduce the (mostly standard) nota-
tion in Section 2. Some additive combinatorics results are stated in Section 3.
Theorem 1 in that section may be of independent interest. These results are used
to obtain our first construction, the acond asymmetric condenser, in Section 4.

Our low min-entropy condenser is obtained in Section 5. In Subsection 5.1 we
show how some ideas used in the proof of the hypergraph density results can be
applied to the problem of obtaining sum-product estimates for finite fields. In
Section 6, we give upper bounds for the performance of any condenser (which
may have slightly super-constant seed length).

666 D. Dellamonica

2 Preliminaries

The objects we construct in this note are called condensers. A condenser is a
function defined over a pair consisting of a binary string of some length n and
a (usually) small seed. The output of the condenser is (usually) a smaller string
and the aim is to get as much randomness from the string and seed as possible.

Here, we shall measure randomness using min-entropy, which became stan-
dard since Zuckerman [11] showed that several previous models of weak random
distributions are special cases of distributions having some min-entropy lower
bound.

Definition 1. A source is a probability distribution on binary strings of some
fixed length. Let X be a source over {0, 1}n. The min-entropy of X is defined
as1

H∞(X) = − log
(

max
a∈{0,1}n

P[X = a]
)
.

Here, and throughout this note, logarithms have base 2. We shall say that X
is a δ-source if its min-entropy rate r(X) = H∞(X)/n is at least δ. The sup-
port of a distribution, denoted by supp(X) is the set of elements having positive
probability.

Definition 2. Let α1, . . . , αr be non-negative reals such that
∑r

i=1 αi = 1. The
convex combination X of sources X1, . . . , Xr ⊆ Λ = {0, 1}n having weights
α1, . . . , αr is defined to be the distribution having P[X = x] =

∑r
i=1 αiP[Xi = x]

for all x ∈ Λ.

Definition 3. A source having uniform probability over its support is called a
flat source.

A very useful property of δ-sources is that they may be expressed as a convex
combination of flat δ-sources. It is quite simple to show that if our constructions
work for any flat source then they also work with any source having the same
min-entropy. For this reason, we may safely assume that the sources are flat
when convenient.

Definition 4. The statistical difference between two sources X, Y ⊆ Λ = {0, 1}n,
is defined as2

1
2
‖X − Y ‖1 =

1
2

∑

a∈Λ

∣
∣P

[
X = a

]
− P

[
Y = a

]∣
∣.

We say that X is α-close to Y if the statistical distance between X and Y is at
most α.
1 For simplicity, we denote by the same symbol a distribution and a random variable

having that same distribution assigned.
2 The 1/2 factor is just to keep the statistical distance in the range [0, 1].

Simpler Constant-Seed Condensers 667

We shall also make use of a concept that is directly linked to the min-entropy
of distributions.

Definition 5. Given a distribution D. The collision probability of D is defined as

cp(D) =
∑

x∈supp(D)

D(x)2,

where D(x) denotes the probability of x in the distribution.

When an element x is picked randomly from some source X , we write x ∈R X .
If A is some set, we abuse the notation and write x ∈R A when x is chosen
uniformly from A.

3 Some Additive Combinatorics

In this section we shall prove a result, Corollary 2, bearing resemblance to [12,
Lemma 3.1]. We remark that our results in this section are self-contained. In
contrast, the analysis of the condensers of [3], [2] require deep results due to
Plünnecke-Ruzsa (cf. [13], [14]), Gowers (cf. [15], [16]) and sum-product estimates
for finite fields [8], [17].

Theorem 1. Let X be a flat δ-source of length 2n. Divide X into two blocks
having n bits each, say X = (A, B). Map3 the elements of {0, 1}n into elements of
the finite field F = GF(2n). Let ζ ∈ F be an arbitrary element. Denote by ζ ·A+B
the distribution induced by taking (a, b) ∈R (A, B) = X and calculating ζa + b ∈
F. We have

μ = Eζ∈RF

[
cp(ζ · A + B)

]
≤ 2−n + 2−2δn. (1)

Furthermore, for every β > 1,

Pζ

[
cp(ζ · A + B) > βμ

]
≤ 1

β − 1
2−n |1−2δ|. (2)

Proof. Let N = 2n = |F|. Observe that Nμ =
∑

ζ∈F
cp(ζ · A + B). Let S =

supp(X) and M = |S|. For an arbitrary ζ, we have

M2 cp(ζ · A + B) = #
{
(a1, b1, a2, b2) ∈ S2 | ζa1 + b1 = ζa2 + b2

}

= M + #
{

(a1, b1, a2, b2) ∈ S2 | a1 �= a2, ζ =
b2 − b1

a1 − a2

}
. (3)

Denote by Sζ the set considered on the last row of equation (3). Since the sets
in {Sζ}ζ∈F are pairwise disjoint, it follows that

∑

ζ

|Sζ | =
∣
∣
∣
⋃

ζ

Sζ

∣
∣
∣ ≤ |S2| = M2,

3 This map may be explicitly defined as follows. Find an irreducible polynomial p(X) ∈
GF(2)[X] of degree n (this can be done in time poly(n)). Each n-bit binary
string b0b1 . . . bn−1 is mapped to b0 + b1X + . . . bn−1X

n−1 ∈ GF(2)[X]/〈p(X)〉 ∼= F.

668 D. Dellamonica

hence,

Nμ = M−2
∑

ζ

(
M + |Sζ |

)

≤ M−2
(
NM + M2

)
= 1 + N/M.

(4)

Since X is a δ-source, we must have M ≥ 22δn, and (1) follows directly from (4).
Let T ⊆ F be the set of elements ζ such that cp(ζ · A + B) ≥ βμ. Define α =

|T |/N . Observe that any distribution over F has collision probability at least 2−n,
with equality holding if and only if the distribution is uniform. Therefore, we
have

μ ≥ αβμ + (1 − α) 2−n.

We shall prove the case δ ≥ 1/2; the other case is similar, but instead of using
the 2−n lower bound for the collision probability, we use the fact that cp(ζ · A+
B) ≥ 2−2δn. It follows that μ(1 − αβ) ≥ (1 − α) 2−n. By the upper bound (1)
for μ, we get

(N−1 + 2−2δn)(1 − αβ) ≥ (1 − α) 2−n.

Hence,

1 + α(β − 1) ≤ 1 − α

1 − αβ
≤ N(N−1 + 2−2δn) = 1 + 2n(1−2δ),

proving that α(β − 1) ≤ 2n(1−2δ) and that (2) holds.

From Theorem 1 we may get the following Corollary.

Corollary 1. Let X1 be a δ1-source of n bits and let X2 be an independent
flat δ2-source of 2n bits, with δ2 > 1/2. Assume 1 � β = β(n) > 2n(1−2δ2).
Then, interpreting X2 as two n-bit blocks X1

2 and X2
2 , we conclude that the

distribution X1 ·X1
2 +X2

2 is β−12n(2−2δ2−δ1)-close to having collision probability
at most (1 + 4β)2−n. 	

Collision probability and min-entropy are tightly linked by Theorem 2. Hence,
we may translate our previous results into min-entropy analogues effortlessly.
Note that since min-entropy is a constrain over all elements in the support of
the distribution it cannot be exactly equivalent to collision probability, which
averages the effect of elements having high probability, hence they are equivalent
under a small statistical distance.

Theorem 2. Suppose X is a distribution over {0, 1}n having cp(X) ≤ (1 +
β)2−n. Then X is

√
β-close to uniform. 	

From the above Theorem, we get the following corollary.4

4 The differences between our result and that of [12, Lemma 3.1] are essentially:
(a) their result requires three independent sources and, if one wishes for an ab-
solute condensing factor, a translation of elements in {0, 1}n into elements of a
field GF(p) for some prime p must be explicitly known; (b) their conclusion is in
terms of min-entropy rather than uniformity; (c) our result presupposes rather strong
lower bounds on the min-entropy rates.

Simpler Constant-Seed Condensers 669

Corollary 2. Let X1 be a δ1-source of n bits, X2 be an independent δ2-source
of 2n bits, with δ2 > 1/2, and β as in Corollary 1. Then X1 · X1

2 + X2
2 is

(2β−12n(2−2δ2−δ1) + 2
√

β)-close to uniform. 	

4 An Asymmetric Condenser

Our definition of condensers is a generalization of usual condensers since we
allow possibly different output lengths. Formally, this is stated below.

Definition 6 ((Asymmetric) Condenser). Let r ∈ N, ε > 0 and ρ > 1.
Assume fi : {0, 1}n → {0, 1}ni, i ∈ [r], are such that, for every δ-source X,
there are sources X1, . . . , Xr such that X is ε-close to being a convex combi-
nation of {Xi}r

i=1 and, for each Xj, we have r(fj(Xj)) ≥ ρδ. Then f(X) =(
f1(X), . . . , fr(X)

)
is an r-block (asymmetric) condenser with condensing fac-

tor ρ and error ε.

Now we introduce our construction. Let n, n1, n2 ∈ N be such that n = n1 + n2

and n1 ≤ n2 ≤ 2n1. Given an n2-bit string x = x1x2 . . . xn2 , define A(x) =
x1x2 . . . xn1 as the n1 first bits of x and, similarly, define B(x) = xn2−n1+1 . . . xn2

as the n1 last bits of x. The function acond : {0, 1}n → {0, 1}n1 × {0, 1}n2 ×
{0, 1}n1 is defined as

acond(X1, X2) =
(
X1, X2, X1 · A(X2) + B(X2)

)
,

where X1 is an n1-bit string and X2 is a n2-bit string. The arithmetic in the
third block is done in GF(2n1).

The acond condenser bears similarity to the condenser in [3]. Indeed, the
latter divides the input into three equal parts (X1, X2, X3) and outputs four
blocks (X1, X2, X3, X1 ·X2 +X3). We also remark that Zuckerman [4] described
a condenser with only two output blocks which relies on the Line–Point Inci-
dences Theorem. However, the condensing factor of such construction is propor-
tional to some small constant associated with the Incidences Theorem. Raz’s
condenser [2], although having a neat and straightforward analysis, also uses a
lot of additive number theory machinery, but this is hidden on the use of the
extractor constructed by Barak, Impagliazzo and Wigderson [12], which also
imposes a rather small condensing factor.

The formal statement of our construction is given in Theorem 3.

Theorem 3. Let 5/9 < δ ≤ 1, α ∈ (0, 1) and γ ∈ [1, 2] be constants such that

δ >
3 + γ

(γ + 1)2
, and α >

1 + γ

2 + γ
. (5)

Let n1 = n/(1 + γ) and n2 = n − n1 = γn1.5 There exists a polynomial time
algorithm

acond : {0, 1}n → {0, 1}n1 × {0, 1}n2 × {0, 1}n1

5 For simplicity we are assuming n1 and n2 are integers.

670 D. Dellamonica

and ε = 2−nΩ(1)
such that acond(X) is ε-close to being a convex combination of

sources having min-entropy rate α · δ + (1 − α) · 1 in some block whenever X is
a δ-source with n bits.

4.1 Proof Strategy

The proof of the above theorem is quite similar to the analysis in [3]. First, let
us restrict our attention to flat sources. Suppose that X = (X1, X2) is a flat
source. We show that, if there is a high probability that no output block has
min-entropy rate as desired, there is a large number of elements in supp(X) that
are mapped (in the third block X1 · A(X2) + B(X2)) into a small set. By the
definition of the third block, this contradicts Corollary 2. The main subtlety here
is that the blocks X1 and X2 are dependent and some care must be taken before
applying Corollary 2.

Remark 1. If the asymmetry in the block sizes of acond is undesirable, the con-
denser can be composed with Raz’s merger [2], [18] (a slight modification of that
merger is needed to deal with different block sizes). This will slightly decrease
the min-entropy and multiply the number of blocks by some constant but, at
the same time, it will make the length of all output blocks the same and almost
all of them will have high min-entropy.

5 Condensers for Low Min-Entropy

Since the simple analysis given in Section 4 does not apply for low min-entropies,
we shall develop a different strategy for this setting. Our analysis for these con-
densers involve some hypergraph versions of the Balog–Szemerédi–Gowers theo-
rem, which can be thought as density results of the following kind: suppose that
we have some expression f(x1, . . . , xl) such that, if H is some dense l-uniform
hypergraph in which the cardinality |f(H)| is small, then there are relatively
large sets A1, . . . , Al contained in the vertex-set of H such that |f(A1, . . . , Al)|
is also small.

In contrast, we shall show that some expressions f always produce large sets.
Hence, a contradiction is derived if some dense H is supposed to have a small
image under f . The first lower bound of this type is a slight modification of a
bound for |(A − A)/(A − A)| (which is given, for instance, in [12, Claim A4])
that employs Rusza’s triangle inequality (cf. [19, p. 60]):

|X/Y | ≤ |X/Z| |Z/Y |
|Z| . (6)

Inequality (6) admits a one-line proof: just consider the representations of x/y ∈
X/Y as x/y = (x/z)(z/y) ∈ (X/Z) · (Z/Y). Notice that each different z ∈ Z
produces a different pair (x/z, z/y) ∈ X/Z × Z/Y .

Lemma 1. Let A and B be subsets of a finite field F with |F| = N and |A|, |B| >
N1/k for some integer k ≥ 2. Then |(A − A)/(B − B)| ≥ N1/(k−1).

Simpler Constant-Seed Condensers 671

Using Rusza’s triangle inequality (6) and Lemma 1 we obtain an analogous result
for different sets.

Lemma 2. Let A, B, C, D be subsets of a finite field F with |F| = N and |A|,
|B|, |C|, |D| > N1/k for some integer k ≥ 2. Then

∣
∣
∣
∣
A − B

C − D

∣
∣
∣
∣ ≥ N

2k−1
2k(k−1) .

If N = |F| = pr with p prime and r not a multiple of k then N1/k cannot
be an integer and the conclusion of Lemma 1 holds with strict inequality for
sets of cardinality larger than N1/(k+1). Hence, when k ≥ 2, one may compose
Lemmas 1 and 2 to prove that whenever |X1|, |X2|, . . . , |X8| > N1/(k+1), it holds
that ∣

∣
∣
∣

X1−X1
X2−X2

− X3−X3
X4−X4

X5−X5
X6−X6

− X7−X7
X8−X8

∣
∣
∣
∣ ≥ N

2k−1
2k(k−1) . (7)

Notice that (2k − 1)/{2k(k − 1)} > 1/k. This implies that an expression given
by (7) always provides us with a large image relative to the lower bound known
for the Xi’s. In contrast, using Lemma 1 alone does not provide a good bound
for the cardinality of (A − A)/(B − B) when |A| = |B| = N1/k�.

In what follows, we shall use the following notation. Given some number M ∈
N and some K = K(M), we say that A � B if there exists absolute con-
stants c1 �= 0 and c2 ∈ R such that A ≤ c1K

c2B. If both A � B and B � A we
denote A ≈ B. Observe that if we have a chain A1 � A2 � A3 � · · · � Al, and l
is an absolute constant, then A1 � Al. If A � C and B � D then A · B � C · D
(and, of course, this generalizes for any constant number of factors).

We are now ready to state a few analogs of the Balog–Szemerédi–Gowers
Theorem that we use in our construction.

Lemma 3. Let X1, X2, X3 be sets of cardinality M . Suppose that H ⊆ X1 ×
X2 × X3 is such that |H| ≈ M3 and |f1(H)|, |f2(H)| � M , where we de-
fine f1(x1, x2, x3) = x1 − x2 and f2(x1, x2, x3) = (x1 − x2)x3. Then, there are
subsets X ′

i ⊆ Xi with |X ′
i| ≈ M such that

|f1(X ′
1, X

′
2, X

′
3)|, |f2(X ′

1, X
′
2, X

′
3)| � M

and, furthermore, |H ∩ X ′
1 × X ′

2 × X ′
3| � M3.

Lemma 3 together with the Hypergraph Balog–Szemerédi–Gowers Theorem of
[16] are used to prove a density result closer to our objective.

Lemma 4. Let A1, . . . , A10 be subsets of a finite field having |Ai| ≈ M . Sup-
pose H ⊆

∏10
i=1 Ai is such that |H| � M10 and that |f(H)| � M , |fi(H)| � M ,

for all i ∈ [4], |g(H)| � M and |h(H)| � M , where f(a) =
∏4

i=1 fi(a), with
fi(a) = a2i−1 − a2i, g(a) = {f(a) − a9}/a10 and h(a) = f(a)/a10. Then, for
all i ∈ [10], there exists A′

i ⊆ Ai, with |A′
i| ≈ M , such that

∣
∣
{
(A′

1 − A′
1)(A

′
3 − A′

3)(A
′
5 − A′

5)(A
′
7 − A′

7) − A′
9

}
/A′

10

∣
∣ � M. (8)

Furthermore,
∣
∣H ∩

∏10
i=1 A′

i

∣
∣ � M10.

672 D. Dellamonica

Finally, we use Lemma 4 to obtain the density result that will be used directly
in the analysis of the condenser construction (Theorem 4).

Lemma 5. Let H ⊆ A1 ×· · ·×A18, with |Ai| ≈ M and H � M18. Suppose that

|fi(H)|, |gj(H)|, |hk(H)|, |ql(H)| � M,

where

fi(a) = a2i−1 − a2i, for i ∈ [8],
g1 = f1f4f6f8, g2 = f2f3f6f8, g3 = f2f4f5f8, g4 = f2f4f6f7,

hk(a) = (gk(a) − a17)/a18, for k ∈ [4],
ql(a) = gl(a)/a18, for l ∈ [4].

Then there exists sets A′
2i−1 ⊆ A2i, for i ∈ [8], with |A′

2i−1| ≈ M , such that,
letting Yi = A′

2i−1 − A′
2i−1, we have

∣
∣
∣
∣
Y1/Y2 − Y3/Y4

Y5/Y6 − Y7/Y8

∣
∣
∣
∣ ≤

∣
∣
∣
∣
Y1Y4Y6Y8 − Y2Y3Y6Y8

Y2Y4Y5Y8 − Y2Y4Y6Y7

∣
∣
∣
∣ � M. (9)

Using Lemma 5 we obtain our condenser for low min-entropy rates.

Theorem 4. Let 0 < δ < 2/3 be fixed. There is n0 = n0(δ) and γ = Ω(δ), such
that for all n ≥ n0, and ε = ε(n) = Ω(2−γδn), we have an explicit polynomial
time algorithm

cond : (n) × [38] → (m),

with m ≥ n/18, such that for any δ-source X, there exists subsources Xi ⊆ X

with densities αi, having ‖X −
∑38

i=1 αiXi‖1 ≤ ε and H∞(cond(Xi, i)) ≥ (1 +
γ)δm.

Proof (outline). We shall interpret strings of the input as being edges in a hy-
pergraph with classes Ai = {0, 1}m, i = 1, . . . , 18. In particular, if x is an n-bit
string in the support of some flat source and πi is the projection onto the coor-
dinates [(i − 1)m + 1, im], we map x to the edge (π1(x), . . . , π18(x)).

The proof of the theorem follows by contradiction using ideas borrowed from
the condenser construction in [2]. We define the functions {cond(·, i)}38

i=1 to be

{π1, . . . , π18} ∪ {fi}8
i=1 ∪ {gj}4

j=1 ∪ {hk}4
k=1 ∪ {ql}4

l=1,

where the functions above are those of Lemma 5.
Suppose that the condenser fails for some X . Then, there exists a subsource

Z = X −
∑38

i=1 αiXi of density > ε such that | supp(cond(Z, i))| < 2(1+γ)δm for
all i. Moreover, we may assume that Z is flat. We may now conveniently represent

Simpler Constant-Seed Condensers 673

the support of Z as a hypergraph over
∏18

i=1 πi(Z) and apply Lemma 5. This
yields sets satisfying equation (9) and hence, contradicting inequality (7).

5.1 Explicit Sum-Product Estimates for Finite Fields

One may use simple techniques as the ones described in the construction of
our condenser to prove explicit sum-product estimates over finite fields. There
has been many interesting improvements over the sum-product estimates of
Bourgain–Katz–Tao [8], for instance, see [20], [21], for estimates dealing with
small subsets of finite fields (where small means up to square root of the field
size). For larger sets, explicit estimates have appeared recently in [9], [10].
Here, we provide a simple and explicit estimate, Theorem 5, for subsets larger
than

√
|F|. Our result beats recent estimates only for sets of size close to

√
|F|,

but has the advantage of being much simpler and shorter.

Theorem 5. Let F be some finite field. Suppose that A ⊆ F is such that |F| = N
and M = |A| = 2Nα for some α ≥ 1/2. Then max

{
|A ·A|, |A+A|

}
= Ω

(
M1+c

)

where c = 1−α
12α .

Proof. Let

S =
{

x ∈ F : #
{
(a1, a2) ∈ A2 : a1 + a2 = x

}
≥ M2

100 |A + A|

}
.

Consider the graph G′ =
(
A,

{
{a1, a2} ∈

(
A
2

)
: a1 + a2 ∈ S

})
. Clearly, e(G′) ≥

0.98
(
M
2

)
. Roughly, the number of vertices having degree smaller than 0.8M is at

most 0.1M . Hence, removing those vertices, we obtain a graph G with minimum
degree at least 0.7M over a set A′ ⊆ A with |A′| ≥ 0.9M .

Given any element (a1−a2)a3 ∈ (A′−A′)·A, we can represent it in Ω
(
M5/|A+

A|2
)

ways as a sum of four elements in ±A ·A: (1) pick an arbitrary a ∈ ΓG(a1)∩
ΓG(a2); (2) pick one of the M4/(104 |A+ A|2) quadruples b1, b2, b3, b4 ∈ A satis-
fying a1+a = b1+b2 and a2+a = b3+b4; (3) let (a1−a2)a3 = b1a3+b2a3−b3a3−
b4a3 ∈ 2A · A − 2A · A. It follows that |(A′ − A′) · A| = O

(
|A · A|4|A + A|2M−5

)
.

By Lemma 1 we have Ã = A′−A′

A′−A′ = F. On the other hand, every (a1−a2)/(a3−
a4) ∈ Ã admits at least Ω(M) representations as xy−1 with x, y ∈ (A′ − A′) · A:
just take an arbitrary 0 �= a ∈ A and set x = (a1 − a2)a and y = (a3 − a4)a. It
follows that N = |Ã| = O

(
|A · A|8|A + A|4M−11

)
.

6 Upper Bound for the Performance of Condensers

We now state a general upper bound on the condensing factor of condensers. This
upper bound shows that the asymmetric condenser acond achieves essentially
optimal condensing factor.

Theorem 6. Let r ∈ N, δ = δ(n) ∈ (0, 1) and δi = δi(n) ∈ (0, 1) for i ∈ [r].
Let fi : {0, 1}n → {0, 1}ni, with i ∈ [r], be arbitrary functions. Set u =

∑
i δini

674 D. Dellamonica

and m =
∑

i ni. Suppose that we have m−u < (1−δ)n−r and δini ≥ c log n for
some absolute constant c > 0. Then, there exists a subset S ⊆ {0, 1}n with |S| ≥
2δn such that the flat δ-source X over S satisfies

∣
∣supp

(
fi(X)

)∣
∣ <

2
3
2δini (10)

for all i.
In particular, f = (f1, f2, . . . , fr) cannot be a condenser with error smaller

than 1/3.

Let us consider the following class of convex combination of sources.

Definition 7. Assume δ1, . . . , δr ∈ (0, 1) and n1, . . . , nr ∈ N are given. Let Z ⊆
{0, 1}n1+···+nr be a source such that, for some i, the ith block of Z has min-
entropy δini. We say that i is a good block of Z. A convex combination of
sources {Zi}r

i=1 such that i is a good block of Zi is called a good combination.

A corollary of equation (10) is that the output f(X) =
(
f1(X), . . . , fr(X)

)
is

not even 1
3 -close to a good combination. Indeed, for any Z = (Z1, . . . , Zr) such

that Zi is a δi-source, we have

P
[
Z ∈ supp

(
f(X)

)]
≤ P[Zi ∈ supp

(
fi(X)

)
]

≤
∣
∣supp

(
fi(X)

)∣
∣ 2−δini <

2
3
.

(11)

This implies that, in any good combination, the probability mass associated to
the set supp

(
f(X)

)
is less than 2/3. Hence, the statistical distance from f(X)

to any good combination is greater than 1/3.
In view of Theorem 6, we conclude that the condenser acond of Theorem 3

achieves asymptotically optimal condensing factor. Indeed, take r = 3 and δ1 =
δ2 = δ3 = αδ + 1 − α with α and γ as in Theorem 3. Since 1 − δi = α(1 − δ), it
follows that

3∑

i=1

(1 − δi)ni = α
2 + γ

1 + γ
(1 − δ)n,

which is slightly greater than (1−δ)n−3, a necessary condition, given the result
of Theorem 6.

Remark 2. The bound obtained in this section is essentially best possible for
general condensers. A probabilistic condenser that asymptotically attains this
upper bound can be shown to exist.

Acknowledgments. I would like to thank my Master’s adviser, Prof. Yoshi
Kohayakawa, for his support and for introducing me to the field of randomness
extraction.

Simpler Constant-Seed Condensers 675

References

1. Ta-Shma, A., Umans, C., Zuckerman, D.: Loss-less condensers, unbalanced ex-
panders, and extractors. In: STOC: ACM Symposium on Theory of Computing
(STOC) (2001)

2. Raz, R.: Extractors with weak random seeds. In: Electronic Colloquium on Com-
putational Complexity (ECCC), vol. 4(099) (2004)

3. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating inde-
pendence: new constructions of condensers, Ramsey graphs, dispersers, and extrac-
tors. In: STOC 2005: Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pp. 1–10. ACM Press, New York (2005)

4. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Electronic Colloquium on Computational Complexity
(ECCC) (2005)

5. Reingold, O., Shaltiel, R., Wigderson, A.: Extracting randomness via repeated
condensing. SIAM J. Comput. 35(5), 1185–1209 (2006)

6. Ta-Shma, A., Umans, C.: Better lossless condensers through derandomized curve
samplers (2006)

7. Guruswami, V., Umans, C., Vadhan, S.: Extractors and condensers from univariate
polynomials. In: Electronic Colloquium on Computational Complexity (ECCC),
vol. 6(134) (2006)

8. Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and appli-
cations. Geometric And Functional Analysis 14, 27–57 (2004)

9. Hart, D., Iosevich, A., Solymosi, J.: Sum-product estimates in finite fields (2006)
10. Vu, V.: Sum-product estimates via directed expanders (2007)
11. Zuckerman: General weak random sources. In: FOCS: IEEE Symposium on Foun-

dations of Computer Science (FOCS) (1990)
12. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few in-

dependent sources. In: FOCS, pp. 384–393 (2004)
13. Ruzsa, I.: An analog of Freiman’s theorem in groups, Structure theory of set adi-

tion. Astérisque 258, 323–326 (1999)
14. Nathanson, M.B.: Additive Number Theory: Inverse Problems and the Geometry

of Sumsets. Graduate Texts in Mathematics, vol. 165. Springer, New York (1996)
15. Gowers, W.T.: A new proof of Szemerédi’s theorem for arithmetic progressions of

length four. Geom. Funct. Anal. 8(3), 529–551 (1998)
16. Sudakov, B., Szemerédi, E., Vu, V.H.: On a question of Erdős and Moser. Duke

Math. J. 129, 129–155 (2005)
17. Konyagin, S.V.: A sum-product estimate in fields of prime order (2003)
18. Dvir, Z., Raz, R.: Analyzing linear mergers. In: Electronic Colloquium on Compu-

tational Complexity (ECCC) (2005)
19. Tao, T., Vu, V.H.: Additive Combinatorics. In: Cambridge Studies in Advanced

Mathematics (2006)
20. Garaev, M.Z.: An explicit sum-product estimate in Fp. In: ArXiv Mathematics

e-prints (February 2007)
21. Hawk Katz, N., Shen, C.Y.: Garaev’s Inequality in finite fields not of prime order.

In: ArXiv Mathematics e-prints (March 2007)

Parallel Repetition of the Odd Cycle Game

Kooshiar Azimian and Mario Szegedy�

Department of Computer Science, Rutgers, the State University of NJ
110 Frelinghuysen Road, Piscataway, NJ, USA 08854-8019
kooshiar@cs.rutgers.edu, szegedy@cs.rutgers.edu

Abstract. Higher powers of the Odd Cycle Game has been the focus
of recent investigations [3,4]. In [4] it was shown that if we repeat the
game d times in parallel, the winning probability is upper bounded by

1 − Ω(
√

d
n

√
log d

), when d ≤ n2 log n. We

1. Determine the exact value of the square of the game;

2. Show that if Alice and Bob are allowed to communicate a few bits
they have a strategy with greatly increased winning probability;

3. Develop a new metric conjectured to give the precise value of the
game up-to second order precision in 1/n for constant d.

4. Show an 1 − Ω(d/n log n) upper bound for d ≤ n log n if one player
uses a “symmetric” strategy.

Keywords: parallel repetition, two prover games, CHSH.

1 Introduction

It is well known due to the famous parallel repetition theorem of Ran Raz, that
higher powers of any two-prover game have exponentially decreasing values:

Theorem 1 (Parallel Repetition Theorem [10]). For every fixed answer
size c and for every ε > 0 there is a δ > 0 such that if v(G) < 1 − ε then
v(Gd) < (1 − δ)d for every d ≥ 1. Moreover, for fixed c we have δ ∈ Ω(ε32).

A simplification by Hollenstein improves on the dependence between ε and δ:

Theorem 2 (Hollenstein [7]). In Theorem 1 δ ∈ Ω(ε3) for fixed c.

We will focus on the Odd Cycle Game, which is a special XOR game. XOR
games are two-prover games for which the answers, a of Alice and b of Bob are
binary, and to every question pair there is a rel ∈ {=, �=} such that the answers
are good iff a rel b. For the n-cycle game, Gn (n is odd), v(Gn) = 1 − 1/2n.
Since this value tends to 1, when n → ∞, the game is a candidate for a counter-
example to:

Conjecture 1 (Strong parallel repetition conjecture [4]). δ ∈ Ω(ε).

� Supported by NSF grant EMT-0523866.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 676–686, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parallel Repetition of the Odd Cycle Game 677

The conjecture, among others, would imply that to prove the famous Unique
Game Conjecture it would be sufficient to prove the NP-hardness of the gap
problem MAXLIN2(1 − ε, 1 −

√
ε) [4]. Feige and Lovász [5], and later Cleve

et.al. proved that δ ∈ Ω(ε2) for XOR games [3]. Both proofs are based on the
duality theorem for semidefinite programming and a clever product theorem.

Uri Feige, Guy Kindler and Ryan O’Donnell have recently shown that v(Gd
n) =

1−Ω(
√

d
n
√

log d
) (for d ≤ n2 log n) by a novel geometric intuition [4], thus improving

on [5,3] for the odd cycle games for d < n2−c (c > 0). They also showed that
improving their bound requires improving lower bounds on the surface area of
high-dimensional foams. In other words if someone wants to improve on the
upper bound for the odd cycle games (in particular, if one wants to prove the
Strong parallel repetition conjecture), she also needs to improve on the best
lower bound to the following hard question: What is the least surface area of a
cell that tiles Rd by the lattice Zd? We need to note that the version of odd cycle
game they discussed is sightly (but not essentially) different from our version.
We list some further differences compared to [4]:

1. We have found tight bounds for the two rounds repetition of our version.
2. In [4] the connection between geometry and the odd cycle games is one-

directional, while in our case, for d = 2 it is two-directional.
3. In Section 3, we give a meaning to the ”2-cycle game,” which turns out to

be identical to the so-called CHSH game (Section 4). The connection might
provide a hint to the exact general formula for v(Gn)d, when d is small:
Strategies for small powers of the CHSH game can be searched with com-
puter. Conversely, for powers of the CHSH game the geometrical approach
presented in this paper and in [4] may turn out to be the right approach.

We develop a topological machinery for our version of the odd cycle game and
invent a new, interesting metric. Our approach, although does not represent an
essential departure from [4], may provide additional insight. In particular, we
believe, the connection between the topology and the game is more transparent
in our discussion. More importantly, due to our precise metric, we are potentially
able to obtain the exact constants for small powers of the game up to the second
order term in n.

In the second half of the paper we extend our investigation to the case when
the two players can communicate, and achieve winning probability 1 or close to
1 for linear number of repeats. We also show that if either Alice or Bob plays
a symmetric strategy, then the value of the strategy almost meets the strong
parallel repetition bound.

2 A Syntactic Aside

To avoid the nightmare of “onion-ized” expressions when dealing with iterated
moduli of the type ((expr (mod a)) (mod b)), we introduce the following conven-
tion: +̃ is the operator that adds two integers mod n and returns an integer in
{−	n−1

2
, . . . , �n−1
2 �}; ⊕ is the mod 2 addition. It takes two integers and returns

678 K. Azimian and M. Szegedy

their sum mod 2. The result is an integer in {0, 1}. If the left hand side of an
equation is mod addition, the reader needs to reduce the the right hand side with
the same modulus. Sometimes we need to forcefully reduce both sides of an equa-
tion by the mod 2 operator. We extend all operators to vectors, coordinate-wise.
The =, ≥ and other relations hold to vectors if they hold for all coordinates.

3 The Odd Cycle Game and Its Powers

Let n be an odd number. The n-cycle game, Gn, starts with Alice and Bob
picking a pair of colorings of the n-cycle, SA, SB : [n] → {0, 1}, called strategies.
The verifier then selects 0 ≤ x < n and a type t ∈ {0, 1}, both randomly and
accepts iff SA(x) ⊕ SB(x+̃t) = t. The best strategy T = (SA, SB) is where
SA(x) = SB(x) = x mod 2. v(Gn) = v(T) = 1 − 1/2n.

Remark 1. In [4] t ∈ {0, 1, −1} randomly, and the test is the same.

The verifier of the dth power of the n-cycle game selects a tuple x from [n]d

randomly and a type t from [2]d randomly. The strategies of Alice and Bob are:
SA, SB : [n]d → [2]d. The verifier then evaluates the following predicate:

SA(x) ⊕ SB(x+̃t) ?= t. (1)

By definition, the equality of the two sides means that the acceptance criterion
has to hold for all coordinates.

4 Even Cycle Games

The so-called CHSH game has received considerable attention in quantum physics
due to the Einstein, Podolsky, Rosen paradox. To single bit questions x and y the
single bit answers SA(x), SB(y) are accepted, iff

SA(x) ⊕ SB(y) = xy.

The value of this game is 0.75. The paradox arises in the quantum world, where
Alice and Bob can win the game with probability 0.85 by communicating through
a pair of entangled electrons. The communication is instant even when Alice and
Bob are light years apart, and the evidence that communication has happened
is the increased value of the game. This met Einstein’s disapproval. Let us gen-
eralize the acceptance criterion of the n-cycle game, (n is odd) as:

SA(x) ⊕ SB(x+̃t) ?= t ⊕ δ(x, t),

where δ : [n] ×{0, 1} → {0, 1} is any function with
∑

n,t δ(n, t) = 0 mod 2. The
transformation preserves all properties of the game, including its and its powers’
values. To extend the notion to even ns we just replace the condition on δ with

∑

n,t

δ(n, t) = n + 1 mod 2. (2)

Parallel Repetition of the Odd Cycle Game 679

Regardless of the parity of n, the value of the n cycle game is 1 − 1
2n . Although

for simplicity we discuss only odd cycle games, all our arguments carry over to
even cycle games. The CHSH game arises from δ(x, t) = xt − x − t mod 2 (one
can check that (2) holds). The value of CHSH2 is 5/8 (this also follows from
our results). By exhaustively searching all strategies, Aaronson and Toner [3]
independently have found that v(CHSH3) = 31/64, while any strategy, where
the first two rounds are independent of the third have value at most 5/8 ∗ 3/4 =
30/64. This shows that something interesting is happening for the third power
too.

5 Local Consistency and Pearls

For fixed SA let Bob optimize over his strategies: v(SA) = maxSB v(SA, SB).
Bob now has to optimize only locally: For every y ∈ [n]d Bob needs to set
SB(y) such that the number of ts for which SA(y−̃t)⊕SB(y) = t is maximized.
Putting it differently, Bob needs to pick the plurality value of SA(y−̃t) ⊕ t on
the cube Qy = {y−̃t | t ∈ {0, 1}d}. We say that x, x′ ∈ Qy are consistent iff
there exists an answer B for Bob to y, which is consistent with both SA(x) and
SA(x′). This is the case if and only if: SA(x) − SA(x′) = x−̃x′ mod 2. Notice
that consistency is independent of y!!

Definition 1 (consistency of a region). A region R ⊆ [n]d is consistent
(w.r.t. SA) if for every x, x′ ∈ R it holds that SA(x) − SA(x′) = x−̃x′ mod 2.

Whether or not two points of [n]d are consistent, from the point of view of
computing v(SA) is interesting only locally. Define Ry as the maximal consistent
sub-region of Qy (if there are more than one, break the tie arbitrarily). Then:

v(SA) =
1
nd

∑

y∈[n]d

|Ry|
2d

. (3)

What prevents Ry = Qy for all y ∈ [n]d? We give a completely topological
explanation. We call a sequence x0, . . . , xk ∈ [n]d cycle if xk = x0.

Definition 2. Let n be odd. A cycle C = x0, . . . , xk ∈ [n]d; xk = x0 is

topologically non-trivial iff
k−1∑

i=0

xi+1−̃xi �= 0.

topologically odd iff
k−1∑

i=0

xi+1−̃xi �= 0 mod 2

Definition 3 (Pearl, Consistent Pearl). A pearl ℘ is a collection {Ry|y ∈
[n]d} such that Ry ⊆ Qy for all y ∈ [n]d. A pearl ℘ is consistent (with respect
to SA) if all regions Ry are consistent (with respect to SA).

680 K. Azimian and M. Szegedy

The value of the n-cycle game is the maximum of 1
nd2d

∑
y∈[n]d |Ry|, where

{Ry}y is some consistent pearl for some SA. To translate the maximization
problem to a purely combinatorial problem we characterize these pearls.

Definition 4. A cycle x0, . . . , xk ∈ [n]d; x0 = xk is contained in ℘ = {Ry}y,
if there are R0, . . . , Rk−1 ∈ ℘ such that xi, xi+1 ∈ Ri for 0 ≤ i ≤ k − 1.

Lemma 1. For fixed SA let C = x0, . . . , xk (xk = x0) be such that xi and xi+1

are consistent w.r.t. SA for 0 ≤ i ≤ k − 1. Then C is a topologically even cycle.

Lemma 2 (Main Lemma). ℘ = {Ry}y is a consistent pearl with respect to
some SA, or shortly a consistent pearl, if and only if it does not contain a
topologically odd cycle.

6 The Topological Approach

Let Td = (0, 1]n ⊆ Rn be the d dimensional unit torus and n × Td = (0, n]n.
Consider a cycle C = x0, . . . , xk (xk = x0) in [n]d (n is odd) . We can naturally
embed [n]d into n × Td. If we connect each xi with xi+1 via the geodesics Γi in
n × Td, we get a closed curve, Γ = Γ (C) = ∪iΓi. We can then study the group
element g(Γ) of the homotopy group π1(Td), associated with Γ . It is well known
that π1(Td) = Zd, where the ith coordinate of g ∈ π1(Td) tells how many times
a curve wraps around the cycle in the ith coordinate direction. The following
lemma, which justifies the terms “topologically trivial” and “odd,” is easy to
prove:

Lemma 3. Let C be a cycle in [n]d (n is odd). Then C is topologically trivial
(even) if and only if g(Γ (C)) = 0 (g(Γ (C)) ∈ (2Z)d).

Corollary 1. A pearl ℘ is consistent if and only if whenever C is a cycle of ℘,
g(Γ (C)) ∈ (2Z)d.

7 Blockers

Blockers are subsets of Td that intersect with all cycles that are not in the
homotopy class of 0. Blockers are called foams in [4]. Odd blockers are subsets of
Td that intersect with all cycles whose homotopy class is not in (2Z)d. We can
construct blockers and odd blockers from d − 1 skeletons of cell complexes. For
an intuition the reader can skip to Section 9, that discusses the case of d = 2.
℘n(B) (Odd blockers → consistent pearls): Let B be an odd blocker of Td such
that (n×B)∩ [n]d = ∅. For any y ∈ n×Td we define the solid cube Q∗

y = y−̂Q∗,
where Q∗ is [0, 1)n and −̂ is the wrap-around subtraction inside n × Td. We
then define an equivalence relation between the elements of Qy: x, x′ ∈ Qy are
equivalent if they can be connected inside Q∗

y without intersecting n × B. Let
Ry(B) be a maximum size equivalence class (we break ties in some arbitrary
systematic manner). We define the pearl ℘n(B) = {Ry(B)}y.

Parallel Repetition of the Odd Cycle Game 681

B

A B

A
y

��
��
��
��

��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

�
�
�
�
�
�

�
�
�
�
�
�

B

Ry

(a) (b)

Fig. 1. (a) Even, but non-trivial cycle (b) Part of a pearl created by blocker B

Lemma 4. Let n ≥ 3, odd, B be an odd blocker in Td, Then pearl ℘n(B) is
consistent.

Proof. Let C = x0, . . . , xk (xk = x0) be a cycle in ℘n(B). We need to prove
that C is not topologically odd. Since C is in ℘n(B), there exist yi ∈ [n]d such
that xi, xi+1 ∈ Qyi

(Definition 4). By the definition of ℘n(B) we can construct
a curve Γ ′

i that connects xi and xi+1, runs inside Q∗
yi

, and which is not blocked
by B. Since Γ ′ = ∪iΓ

′
i is not blocked by B, we have that g(Γ ′) ∈ (2Z)d. For

Corollary 1, however, we need g(Γ (C)) ∈ (2Z)d.

Definition 5. For curves Γ and Γ ′ define |Γ, Γ ′|∞ as infφ |x, φ(x)|∞, where φ
is a one-one continuous map between Γ and Γ ′.

Since |Γ ′, Γ (C)|∞ ≤ 1, we can apply the following lemma:

Lemma 5. if Γ, Γ ′ are curves in n × Td and |Γ, Γ ′|∞ < n
2 , then g(Γ) = g(Γ ′).

8 A New Metric

Let S be a piece of a smooth d − 1 dimensional surface (or a union of these) in
Td such that (n×S)∩ [n]d = ∅ for every n ≥ 1. Create the pearl ℘n(S) = {Ry}y

in the same way as in Section 7 when S was an odd blocker. Although now
℘n(S) is not (necessarily) consistent, we can still associate the value vn(S) =

1
2dnd

∑
y∈[n]d |Ry| to it. It turns out that the measure

lim
n→∞n(1 − vn(S)) = λ(S)

exists, and it is additive in the sense that if S is a disjoint union of pieces
S1, . . . , Sm then λ(S) =

∑m
i=1 λ(Si). What is this measure? If S is a piece of a

d − 1 dimensional hyper-plane with normal vector S = (s1, . . . , sd) (where si is
the projection size of S on the ith coordinate plane), then

λ(S) =
1
2
E

(

|
d∑

i=1

siχi|
)

, (4)

where χi are independent {1, −1}-valued uniform random variables.

682 K. Azimian and M. Szegedy

Definition 6 (Diamond norm). For vector A = (a1, . . . , an) define its dia-
mond norm as |A|♦ = E(|

∑d
i=1 aiχi|), where χi are independent {1, −1}-valued

uniform random variables.

Lemma 6. |A|♦ = |A|∞, when d = 2, and |A|♦ ≥ |A|∞ otherwise. |A|2√
2

≤
|A|♦ ≤ |A|2.

Only the |A|2√
2

≤ |A|♦ relation is hard to show, which comes from the Khintchine
inequality. Notice that the diamond norm is the same as the L2 norm within a
constant factor, which explains [4]. The additivity of λ and (4) gives:

Theorem 3. Let odd blocker B be the d − 1-skeleton, of a smooth cell complex.
Assume that (∀n > 0) (n × B) ∩ [n]d = ∅. Then for every ε > 0 there exists an
nε such that the strategy associated with ℘n(B) (n ≥ nε) has value at least

1 − 1 + ε

2n

∫∫

B

|dB|♦.

It is unclear to us if there is any strategy with greater value than the one
that arises from the best odd blocker or even from the best blocker. In [4]
it is conjectured that blockers give the best strategies. They also show that
v(Gd

n) = 1 − Ω(
√

d
n
√

log d
) for d ≤ n2 log n.

9 The Case of d = 2

Two dimensional cell complexes on the torus are simply graphs drawn on the
torus. A graph drawn on the torus is torical (i.e. “takes the full use of the torus”)
if its edges block all non-trivial cycles.

Theorem 4. Every topologically non-trivial simple cycle in the two dimensional
torus is also topologically odd.

Corollary 2. A graph on T2 is torical iff its edges block all the odd cycles.

If a torical graph creates more than one facets we can delete at least one of its
edges and remain torical. For a torical graph the Euler’s theorem gives:

−f + e − v = 0,

3F1 F2 F

a

b

a

P
P

R

a
b

c

c

b

b

(a) (b)

Fig. 2. (a) shows the three combinatorially possible graphs (b) shows the two of the
three that are torical

Parallel Repetition of the Odd Cycle Game 683

where f is the number of faces, e is the number of edges and v is the number
of vertices. We can assume that all vertices have degree at least 3. This gives
e ≥ 3

2v. Thus if f = 1, the possible parameter combinations are v = 1, e = 2 and
v = 2, e = 3. This gives us three graphs, F1, F2, and F3 (see Figure 2). Only F1

and F3 have torical representations. Furthermore, F1 can be viewed as a special
case of F3, where one of the edges is shrunk to a point.

Lemma 7. The minimum total edge-length of any torical representation of F3

on the unit torus is at least 1.5. Above all lengths are measured in the L∞ norm
(hence in the Diamond norm).

Proof. As in Figure 2 b we denote the two nodes of F3 by P and R. Let the
length of the shorter horizontal projection of PR be x ≤ 0.5 and the length of the
shorter vertical projection be y ≤ 0.5. Without loss of generality we can assume
that the L∞ length of one of the three edges is at most 0.5. This edge has lengths
at least max{x, y} and then the other two have length at least max{x, 1 − y}
and max{1 − x, y}, respectively. Assume x ≥ y. For the total L∞ length of the
graph we now get x + (1 − x) + (1 − y) ≥ 1.5.

1/2

1

total length = 3/2

0

1

1 1

1 1

1

1 1

1 1

1 1

1

1 1

1

1

2

2

0

0 0

0 0

0 0 0 0

0 0 0 0 0

0

0

0

000

0 0

0

00

00

00

(a) (b)

Fig. 3. (a) An optimal blocker in the two-dimensional unit torus with respect to the
L∞ norm. (b) An optimal strategy for n = 7 arising from the blocker on the left. The
torus is scaled up by a factor of n. Losses are shown in each square.

Figure 3 a shows that 1.5, is achievable and Figure 3 b shows how this gives rise
to a strategy S2 with value exactly 1 − 3

4n . The number in each square denotes
the “loss” 4 − |Ry|. One can easily see that the total loss is precisely 3n.

Theorem 5. v(S2) = 1 − 3
4n .

We also give a matching upper bound relying on Lemma 7.

Theorem 6. v(G2
n) = 1 − 3

4n .

Proof. We need to prove the upper bound. Consider a strategy SA of Alice and
associate a torical graph, G, with it. We define “portions” of G in each square
Q∗

y, using the consistency classes created by SA. Instead of a detailed explanation
we refer the reader to Figure 4. In each Q∗

x the total L∞ length of the portion

684 K. Azimian and M. Szegedy

of G is 1
2 (4 − |Rx|) thus

∑
e∈E(G) |e|∞ = 2n2(1 − v(SA)) by (3) (|e|∞ is the L∞

length of e).
Consider an arbitrary simple (i.e. not self-intersecting) cycle Γ ′ in T2 that

does not intersect G. We show that g(Γ ′) = 0. Pick an orientation for Γ ′,
and a staring point P in it. We define a cycle C = x0, . . . , xk (xk = x0) by
the following algorithm. We start with the empty sequence, and walk along Γ ′

from P . Whenever we leave the current Q∗
y, we look for the grid point that is

closest (in L∞ norm) to the point we exit Q∗
y, and we add this grid point to the

sequence. We continue until we get back to P , and pass a little further until we
add xk, which is x0. The main observation is that xi and xi+1 are consistent
for 0 ≤ i ≤ k − 1. This comes from reviewing Figure 4 (a). By Lemma 1 this
implies that C is topologically even. Now |Γ ′, Γ (C)| < 1 together with Lemmas
3, 5 and Corollary 2 imply that G is torical, which in turn, by Lemma 7 gives
that

∑
e∈E(G) |e|∞ ≥ 1.5n. Hence 1.5n ≤ 2n2(1 − v(SA)), as needed.

FOUR TYPES MEET

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

TWO ERRORS

CONSISTENT ONE ERROR

TWO ERRORS

THREE TYPES MEET I

THREE TYPES MEET II

��
��
��
������
����
����

����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

(a) (b)

Fig. 4. (a) Turning a strategy into lines (b) Part of the emerging graph

10 Gap Commitment Problem

The starting point of this research was the following question of Gavinsky: Is it
true that v(Gd

n) = 1−Ω(1) for d = n? When d ≈ n, non-topological type strate-
gies could be promising. In the rest of the article we discuss such a “different”
type of strategy.

Let us think of the question vectors x and y to Alice and Bob as d-element
multi-sets of Zn. Let x = {xi}d

i=1, y = {yi}d
i=1 be their supporting sets. When

d = n, there are typically points and short intervals missing from x (and from
y). We call such a interval gap. Since the provers receive different questions, they
see different gaps in their multi-set, but since their questions correlate, so will
the gaps. We say that α ∈ Zn is in a gap of size l for a verifier’s question x to
Alice, if the interval {α, α ± 1, . . . , α ± l} is disjoint from x.

The main idea is that if Alice and Bob can agree with probability 1 − ε over
the verifier’s question pair (x, y) in some α ∈ Zn such that α is in some gap
with respect to both x and y, then they can win the game with probability
1 − ε. Indeed, to every xi Alice can answer with xi−̂α mod 2 (Bob with yi−̂α

Parallel Repetition of the Odd Cycle Game 685

mod 2), where −̂ returns the mod n value of the difference in the non-negative
representation. A refinement of this idea is that it is sufficient if Alice and Bob
find gaps with respect to their inputs with non-empty intersection. Such agree-
ment actually seems easy at first: both players just pick their largest gap. The
catch is that their largest gaps will be totally different with constant probability.
In the above algorithm Alice (Bob too) plays a symmetric strategy: Her answers
depend only on the mlti-set of x. For symmetric strategies we have found a
bottleneck:

Theorem 7. Assume that Alice plays a symmetric strategy and d = Ω(n log n).
Then regardless of Bob’s strategy the winning probability is at most 1 − Ω(1).

The above strategy works, however, if we allow a small amount of communica-
tion. Gap Commitment Problem (GCP): The input to both Alice and Bob
are multi-sets from Zn of size d. How many bits of communication is required
to find an x, which is in a gap for both Alice and Bob? We denote this problem
by GCP d

n . It seems that GCP is an interesting problem on its own right.
Let D denote the deterministic one-round communication complexity and

let Dε denote the one round (Distributional) communication complexity (by a
deterministic protocol) which is allowed to fail on ε fraction of all inputs (see
[8]), where the distribution of (x, y) is the same as in the odd cycle game.

Theorem 8. Let d < n/10, t ≥ 1. Then:

D(GPCd
n) ∈ O(log n),

D 1
t
(GPCd

n) ∈ O(log log t).

Proof. In the first case, Alice can send the location of a point in a gap with size
at least 2 to Bob. Since d < n/10, such a point exists. This point is in a gap
with size at least 1 for Bob.

In the second case Alice looks at {1, . . . , �5 log t�} and selects a gap in this
set with size of at least 2 with center g, if exists. She just needs O(log log t) bits
(one-round) communication to report the location of g to Bob.

Remark 2. Although the above strategies are simple, they demonstrate that no
strong direct sum theorems hold for the communication version of the odd cycle
game: D(Gn) = 2 � 10

n D(Gn/10
n) ∈ O(log n

n). Different amortized measures were
studied by I. Parnafes, R. Raz, and A. Wigderson [9], and also, by T. Feder, E.
Kushilevitz, M. Naor, and N. Nisan [6] and by Ambainis et. al. [1].

References

1. Ambainis, A., Buhrman, H., Gasarch, W., Kalyanasundaram, B., Torenvliet, L.:
The Communication Complexity of Enumeration, Elimination, and Selection. Jour-
nal of Computer and System Science 63(2), 148–185 (2001)

2. Clauser, J., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969)

686 K. Azimian and M. Szegedy

3. Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Perfect Parallel Repetition The-
orem for Quantum XOR Proof Systems. In: IEEE Conference on Computational
Complexity, pp. 109–114 (2007)

4. Feige, U., Kindler, G., O’Donnell, R.: Understanding parallel repetition requires
understanding foams. In: IEEE Conference on Computational Complexity, pp. 179–
192 (2007)

5. Feige, U.: Lovász: Two-prover one-round proof systems: their power and their
problems. In: Proc. 24th ACM Symp. on Theory of Computing, pp. 733–744 (1992)

6. Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized communication com-
plexity. SIAM Journal of Computing, 239–248 (1995)

7. Holenstein, T.: Parallel repetition: simplifications and the no-signaling case. In:
Proc. of 39th STOC (to appear, 2007)

8. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

9. Parnafes, I., Raz, I., Wigderson, A.: Direct Product Results and the GCD Problem,
in Old and New Communication Models. In: Proc. of the 29th STOC, pp. 363–372
(1997)

10. Raz, R.: A Parallel Repetition Theorem. Siam Journal of Computing 27(3), 763–
803 (1998)

I/O-Efficient Point Location in a Set of

Rectangles

Yakov Nekrich

Dept. of Computer Science, University of Bonn
yasha@cs.uni-bonn.de

Abstract. In this paper we present an external memory data struc-
ture for point location queries in a set of d-dimensional rectangles. Our
data structure uses O(N/B) blocks of space and supports point location
queries in O(logd−1

B N) I/Os, where N is the number of rectangles and
B is the block size.

We also present a O((N/B) logB N) space data structure that supports
point location queries in a two-dimensional rectangular subdivision of a
U×U grid in O(log2 logB U+(log2 logB N)2) I/Os and a O((N/B) log2

B N)
space data structure that supports point location queries in a three-
dimensional rectangular subdivision in O(logB N) I/Os. As an applica-
tion of our result, we describe a data structure for three-dimensional or-
thogonal range reporting queries on a grid of size U with O(log2 logB U +
(log2 logB N)2 + T/B) I/O operations per query, where T is the number
of points in the answer.

1 Introduction

In the point location problem a set of disjoint geometric objects is stored in a
data structure, so that for an arbitrary point p an object that contains p can
be found efficiently. In this paper we consider the special case when the objects
stored in the data structure are rectangles and describe efficient external memory
data structures for several variants of this problem.

A survey of results for the general point location problem in the RAM model
is well beyond the scope of this paper. Instead we refer the reader to [21] and
confine ourselves to point location queries for rectangles. The internal memory
data structure of Edelsbrunner, Haring and Hilbert [12] supports point location
queries in the set of N disjoint d-dimensional rectangles for d ≥ 2 in O(logd

2 N)
time. Smid [20] improved this result and presented a dynamic data structure
that supports queries in O(logd−1

2 N log2 log2 N) time and updates in O(log2
2 N)

time. A rectangular subdivision of a d-dimensional space X is a set of disjoint
rectangles R1, . . . , RN whose union covers X . An internal memory data struc-
ture for point location queries in a rectangular subdivision of two- and three-
dimensional grid is described by de Berg, van Kreveld, and Snoeyink [9]. If all
coordinates are integers bounded by a parameter U , the data structure of [9] sup-
ports queries in a two- and three-dimensional subdivision in O((log2 log2 U)2)
and O((log2 log2 U)3) time respectively. Observe that the problems of searching

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 687–698, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

688 Y. Nekrich

in an arbitrary set of d-dimensional rectangles and searching in a rectangular
subdivision of the d-dimensional space are not equivalent for d ≥ 3: for instance,
a set of N 3-dimensional rectangles can partition the 3-dimensional space into
Θ(N3/2) rectangles.

In the external memory model the data is stored in disk blocks of size B, a block
can be read into internal memory from disk (resp. written from internal memory
into disk) with one I/O operation, and computation can only be performed
on data stored in the internal memory. The space usage is measured in the
number of blocks, and the time of computation is measured in the number of
I/O operations. A more detailed description of the external memory model can
be found in e.g. [24] or [3].

The data structure of Goodrich et.al [16] supports two-dimensional point lo-
cation queries in O(logB N) I/Os. There are also dynamic data structures for
two-dimensional point location in a monotonous [1] and general [7] subdivision.
Data structures for processing a batch of point location queries are described in
e.g. [5], [6], [11]. There are no external memory data structures for general d-
dimensional point location queries when d ≥ 3. The stabbing-max data structure
of Agarwal, Arge, and Yi [2] can be used to answer point location queries in a set
of d-dimensional rectangles in O(logd

B N) I/Os and O((N/B) logd−1
B N) space. In

the case when the only allowed operation is element comparison, Ω(logB N) is a
natural lower bound for many data structure problems including point location.
However, when other operations besides comparisons are allowed and all ele-
ments are bounded by an appropriate parameter U , there are external memory
data structures for predecessor searching [19] and orthogonal range reporting in
two dimensions [18] that support queries in o(logB N) I/O operations.

In this paper we present external memory data structures for point loca-
tion in a set of rectangles. We present a O(N/B) space data structure that
supports point location queries in a set of d-dimensional rectangles, d ≥ 2,
in O(logd−1

B N) I/O operations. For the case of a two-dimensional rectangu-
lar subdivision of the grid of size U we present a data structure that uses
O((N/B) logB N) space and supports queries in O(log2 logB U +(log2 logB N)2)
I/O operations. An application of this result is a data structure that supports
three-dimensional orthogonal range reporting queries on a U × U × U grid in
O(log2 logB U + (log2 logB N)2 + T/B) I/Os and uses O((N/B) log4

2 N) blocks
of space. Thus we demonstrate that two-dimensional point location queries
and three-dimensional range reporting queries can be supported with o(logB N)
I/O operations when the size of the universe is bounded by an appropriate
parameter U . We also obtain a O((N/B) log2

B N) space data structure for a
three-dimensional rectangular subdivision that supports point location queries
in O(logB N) I/Os.

In section 2 we describe data structures that support rectangular point loca-
tion queries in a special case when all point coordinates but the first one are
from the interval [1, B1/d]. In section 3 we describe a data structure for point
location in a set of rectangles. Data structures for point location in two- and
three-dimensional rectangular subdivisions are given in section 4.

I/O-Efficient Point Location in a Set of Rectangles 689

2 Point Location on the (1, d) Grid

In this section we consider a special case of the point location problem in a
set of d-dimensional rectangles. A d-dimensional (r, d) grid is defined as a set
of d-dimensional points P , if the last d − r coordinates of all points belong to
the interval [1, B1/d]. If the first r coordinates of points on an (r, d) grid are
bounded by a parameter U , we denote it a (U, r, d) grid. In this section we
consider two data structures for the case r = 1. In the next section we will
extend our construction to an arbitrary integer constant r and thus obtain a
data structure for the point location in a set of r-dimensional rectangles.

Lemma 1. There exists a O(N/B) space data structure that answers point loca-
tion queries for a set of N d-dimensional rectangles on a (1, d) grid in O(logB N)
I/Os.

Proof. For convenience, we denote the first coordinate the x-coordinate through-
out this paper. For a rectangle R = [a1, b1] × [a2, b2] × . . . × [ad, bd], a1 and b1

are called respectively the opening x-bound and the closing x-bound of R. We
construct a B-tree T1 with node degree ρ = B1/d on the set of x-bounds of
rectangles in R. In each leaf of T1, B different x-bounds are stored. We say that
rectangle R contains a (d−1)-dimensional point p′, if the projection of R on the
last d − 1 coordinates contains p′. Consider an arbitrary node v of T1. For every
point p′ in the (d − 1)-dimensional rectangle [1, B1/d]d−1, li(p′) (si(p′)) denotes
the largest (smallest) x-bound stored in a descendant of the i-th child of v, such
that li(p′) (si(p′)) is the x-bound of a rectangle R that contains p′. All li(p′) and
si(p′) for all possible p′ ∈ [1, B1/d]d−1 are stored in the node v. For convenience,
we assume that s0(p′) = l0(p′) = −∞ and sρ+1(p′) = lρ+1(p′) = +∞ for all
possible p′.

The search for the rectangle R that contains the query point p starts at the
root r of T1 and visits all nodes v on the path from r to a leaf of T1. Let π(p) be
the projection of p on the last d−1 coordinates, and let xp be the first coordinate
of p. Let i denote the largest index, such that si(π(p)) ≤ xp and j denote the
smallest index, such that lj(π(p)) ≥ xp. If i = j and 0 < i < ρ+1, then x-bounds
of the rectangle that contains p can be stored only in descendants of the i-th
child of v. If i = j = 0 (i = j = ρ+1), then the x-bounds of all rectangles stored
in the descendants of v are smaller (greater) than xp. It remains to consider the
case i < j. In this case sj(π(p)) > xp and li(π(p)) < xp. If li(π(p)) is the opening
x-bound of some rectangle R, then the closing x-bound of R is greater than xp:
Suppose that c′p, the closing x-bound of R is smaller than or equal to xp. Then,
c′p is stored in the k-th child of v for some k > i, and sk(π(p)) ≤ xp. This
contradicts to our choice of index i. Hence, if li(π(p)) is the opening x-bound
of some rectangle R, then R contains p. If li(π(p)) is the closing x-bound, then
si+1(π(p)) > xp and no rectangle R contains p.

Therefore the search procedure works as follows: In every visited internal node
v we identify the largest index i such that si(π(p)) ≤ xp and the smallest index
j, such that lj(π(p)) ≥ xp. If i = j = 0 or i = j = ρ+1, then there is no rectangle
R that contains p. If i = j and 0 < i < ρ + 1, then the search continues in the

690 Y. Nekrich

i-th child of v. If i < j and li(π(p)) is the opening x-bound of some rectangle R,
then p belongs to the rectangle R. If i < j and li(π(p)) is the closing x-bound,
then there is no rectangle that contains p. If the search reaches a leaf l of T1,
then all rectangles stored in l can be examined in O(1) I/Os. Since the search
procedure spends O(1) I/Os in every visited node, the query is answered with
O(logB N) I/Os.

If the x-bounds of all rectangles belong to interval [1, N], the result of Lemma 1
can be further improved.

Lemma 2. There exists a O(N/B) space data structure that answers point lo-
cation queries for a set of N d-dimensional rectangles on (N, 1, d) grid in O(1)
I/Os.

Proof. We say that a rectangle R is long if the length of its projection on the x-
axis is greater than B, otherwise R is short. For every p′ ∈ [1, B1/d]d−1 x-bounds
of all long rectangles that contain p′ are stored in a data structure D(p′). D(p′) is
organized as an array with N/B elements: for every interval Is = [(s− 1)B, sB],
s = 1, . . . , N/B, the entry D(p′)[s] contains pointers to long rectangles R, such
that the projection of R on the x-axis intersects with Is. An interval Is of length
B can intersect with projections of at most two long rectangles. Hence, the total
number of rectangles in each D(p′) is O(N/B), and all data structures D(p′)
can be stored in O(N/B) blocks of space. For every interval Is, s = 1, . . . , N/B,
all short rectangles R whose x-projections intersect with Is are stored in a data
structure Ds. Since the x-bound of a short rectangle can intersect with at most
two intervals, the total number of elements in all data structures Ds is O(N).
We implement Ds using Lemma 1; hence, all data structures Ds can be packed
into O(N/B) blocks of space. Observe that the maximum number of rectangles
that can be stored in a data structure Ds is O(B2): if R is stored in Ds, then
at least one point of R belongs to a rectangle Is × [1, B1/d]d−1 that consists of
O(B2) points.

If the query point p belongs to a long rectangle R, then the x-bounds of R are
stored in D(π(p)). Let s = �px/B� where px is the x-coordinate of p. The entry
D(π(p))[s] contains pointers to at most two rectangles. We can check whether one
of those rectangles contains p in constant time. If p belongs to a short rectangle
R′, then R′ is stored in Ds. According to the result of Lemma 1, we can check
whether p belongs to a rectangle stored in Ds in O(logB B2) = O(1) I/Os.

3 Point Location in a Set of Rectangles

In this section we describe data structures for point location in a set of r-
dimensional rectangles:

Theorem 1. There exists a O(N/B) space data structure that answers point
location queries for a set of N d-dimensional rectangles on an (r, d) grid, r ≥ 2,
in O(logr

B N) I/Os.

I/O-Efficient Point Location in a Set of Rectangles 691

Clearly, if d = r we obtain the data structure for point location in a set of
r-dimensional rectangles.

Proof. Using the method of [9], a query on an (r, d) grid can be transformed
into a query on (N, r, d) grid. For an element x and a set S, the predecessor
of x in S is defined as pred(x, S) = max{y ∈ S|y ≤ x}. The rank of x in S is
defined as rank(x, S) = |{y|y ≤ x}|. If a ∈ S and b ∈ S, then a ≤ x ≤ b ⇔
rank(a, S) ≤ rank(x, S) ≤ rank(b, S). Let Pi be the set that contains the upper
and lower bounds of projections of all rectangles in R on the i-th coordinate.
The reduction of a query on an (r, d) grid to a query on an (N, r, d) grid works
as follows. Every rectangle R = [a1, b1] × . . . × [ar, br] × . . . × [ad, bd] is replaced
by R′ = [a′

1, b
′
1] × . . . × [a′

r, b
′
r] × . . . × [ad, bd], where a′

i = rank(ai, Pi) and
b′i = rank(bi, Pi) for i = 1, . . . , r. A point p = (p1, p2, . . . pr, pr+1 . . . , pd) belongs
to a rectangle R if and only if p′ = (rank(p1, P1), . . . , rank(pr, Pr), pr+1 . . . , pd)
belongs to the corresponding rectangle R′. The point p′ can be computed from
p in O(r logB N) I/Os using the standard B-trees. Below we assume that the
values of the first r coordinates of all points belong to the interval [1, N] and
construct the data structure for point location queries on (N, r, d) grid.

Our data structure uses the approach similar to the k-dimensional skewer
trees of [12] modified for the external memory. The data structure for r = 1
was described in Lemma 2. If there exists a data structure that supports point
location queries on the (N, r − 1, d) grid in O(logr−1

B N) I/Os, then the data
structure for the (N, r, d) grid can be constructed as follows. We construct a trie
Tx on the set of possible x-coordinates. All nodes of Tx have degree B1/d.We
associate B consecutive values from the interval [0, N − 1] with each leaf of Tx.
The range of an internal node v is an interval rng(v) = [vmin, vmax], where vmin

and vmax are minimal and maximal values associated with leaf descendants of
v. The x-interval of a rectangle R is the projection of R on the x-coordinate.
A node v covers rectangle R with x-interval [a, b], if [a, b] ⊂ rng(v), but for
any child vi of v, [a, b]
⊂ rng(vi), where [a, b] is the x-interval of R. We denote
by π(R) (π(p)) the projection of the rectangle R (point p) on the last d − 1
coordinates (i.e., all coordinates except of the x-coordinate).

In every internal node v of Tx, there is a data structure Dv: for each rectangle
R covered by v, such that the ranges of children vi, vi+1 . . . , vj of v belong to
the x-interval of R, but rng(vi−1)
⊂ [a, b] and rng(vj+1)
⊂ [a, b], Dv contains
the rectangle R′ = [i, j] × π(R), i.e, the x-interval of R is replaced by [i, j]
in R′. A query to a data structure Dv can be transformed into a query on the
(N, r−1, d) grid by changing the order of coordinates. Hence, Dv supports point
location queries in O(logr−1

B N) I/Os.
The search for the rectangle that contains the query points p visits all nodes

on the path Πx from the root of Tx to the leaf that contains the x-coordinate px

of p. Suppose that a node v ∈ Πx is visited and the child vi of v also belongs to
Πx. We use data structure Dv to answer three queries (i, π(p)), (i−1, π(p)), and
(i + 1, π(p)). Each of those queries can be answered in O(logr−1

B N) I/Os. For
every rectangle R′ that contains (i, π(p)), (i − 1, π(p)), or (i + 1, π(p)), we check

692 Y. Nekrich

whether the corresponding rectangle R contains p. If some rectangle R contains
p, the search is completed, otherwise the search continues in the child vi of v. If
the search achieves a leaf l of Tx, all B rectangles stored in l can be examined in
O(1) I/Os. The total number of queries on the (r − 1, d) grid answered during
the search is O(logB N); hence, a query is answered in O(logr

B N) I/Os. Suppose
that a rectangle R stored in a node v contains the point p and the child vi of v
belongs to Πx. Then, the x-interval of R contains rng(vj) for at least one child
vj of v. Since R contains p, the x-interval of R contains either rng(vi−1), or
rng(vi), or rng(vi+1). Hence, one of the three queries asked at the node v would
return the rectangle R′ that corresponds to R. This proves the correctness of
the search procedure.

By a combination of the approach of Theorem 1 with the fractional cascading
technique [10], we can obtain a two-dimensional data structure with O(logB N)
query time.

Lemma 3. There exists a O(N/B) space data structure that answers point lo-
cation queries for a set of N rectangles on a (2, d) grid in O(logB N) I/O oper-
ations.

Proof. The tree Tx and data structures Dv in the nodes of Tx are defined in the
same way as in the proof of Theorem 1. Each Dv supports queries on (N, 1, d)
grid. The search algorithm is also the same as in Theorem 1: To find the rectangle
R that contains the query point p, we visit all nodes on the path Πx from the
root of Tx to the leaf that contains the x-coordinate px of p. In each visited node
v queries (i, π(p)), (i−1, π(p)), and (i+1, π(p)), where i is the index of the child
of v that belongs to Πx, are answered by the data structure Dv. Using a variant
of the fractional cascading technique, we can support queries in a data structure
Dv for all v ∈ Πx except of the root in O(1) I/Os.

Suppose that data structure Dv contains L rectangles. Let Yv denote the set
of y-bounds of all rectangles stored in Dv. For a rectangle R stored in Dv, we
denote by R′ the rectangle obtained from R by replacing the y-bounds of R with
their ranks in Yv. Data structure D′

v contains all such rectangles R′. That is,
in a data structure D′

v the y-bounds of rectangles are replaced by their ranks
in Yv. All rectangles in D′

v belong to the (L, 1, d) grid. Hence, by Lemma 2 D′
v

uses O(L/B) blocks and supports point location queries in O(1) I/Os. The point
p(v) is obtained from p by replacing the y-coordinate py of p with rank(py, Yv).
A point p belongs to a rectangle R stored in Dv if and only if p(v) belongs to
the corresponding rectangle R′ stored in D′

v. Therefore, if rank(py, Yv) is known,
then the point location query for Dv can be answered in constant time. For every
element y ∈ Yv we store rank(y, Yv). Since rank(e, Yv) = rank(pred(e, Yv), Yv),
it suffices to find predecessors pred(py , Yv) for all nodes v ∈ Πx. Using the
fractional cascading technique [10] [6], predecessors of the same py in all sets Yv

can be found in O(logB N) I/Os. This completes the proof of the Lemma.

Theorem 2. There exists a O(N/B) space data structure that answers point
location queries for a set of N d-dimensional rectangles on an (r, d) grid, r ≥ 2,
in O(logr−1

B N) I/Os.

I/O-Efficient Point Location in a Set of Rectangles 693

Proof. As shown in the proof of Theorem 1, given a data structure that an-
swers point location queries on (N, r, d) grid in q(N) I/Os, we can construct
a data structure that answers point location queries on (N, r + 1, d) grid in
O(q(N) logB N) I/Os. Applying this construction r − 2 times to the result of
Lemma 3, we obtain a O(N/B) space data structure that supports queries in
O(logr−1

B N) I/Os.

4 Point Location in Two- and Three-dimensional
Rectangular Subdivisions

In this section we present a data structure for point location in two-dimensional
and three-dimensional rectangular subdivisions. We will need the following Pro-
position [19]:

Proposition 1. Given a set S ⊂ [1, U], there exists a O(N/B) space data struc-
ture for S that supports predecessor and successor queries in O(log2 logB U)
I/Os.

The proof of Proposition 1 can be found in [19].

Theorem 3. There exists a O((N/B) logB N) space data structure that supports
point location queries in a two-dimensional rectangular sub-division of a U × U
grid in O(log2 logB U + (log2 logB N)2) I/Os.

Proof. As follows from the description in section 3 and Proposition 1, a query
on a U × U grid can be turned into a query on an N × N grid, so that the
number of I/O operations increases by an additive factor O(log2 logB U). Hence,
it suffices to show that point location queries on N × N grid can be answered
in O((log2 logB N)2) time. Our data structure adapts the ideas of [9] for the
external memory model. We will also use the data structure for point location
on the (N, 1, d) grid from section 2.

We construct a trie Tx on the set of possible x-coordinates. All internal nodes
of Tx have degree Bc for some constant c < 1/3. We associate B consecutive
values from the interval [0, N − 1] with each leaf of Tx. We say that a rectangle
R with x-interval [a, b] x-cuts the node v, such that rng(v) = [x1, x2], if [a, b]
contains either x1 or x2 but [x1, x2]
⊂ [a, b]. Rectangle R x-cuts v from the left
(from the right), if [a, b] contains x1 but [x1, x2]
⊂ [a, b] ([a, b] contains x2 but
[x1, x2]
⊂ [a, b]).

A d-parent of a node v is a node w, such that w is an ancestor of v, and
the path from v to w consists of d edges. In every node v of Tx there are data
structures X l

v and Xr
v that contain information about all rectangles R that x-

cut the node v from the left and from the right respectively. The projections
of all rectangles R stored in X l

v (Xr
v) on the y-axis induce a one-dimensional

subdivision Π l
v (Πr

v) of size O(M), where M is the number of rectangles that
x-cut v from the left (from the right). X l

v (Xr
v) supports one-dimensional point

location queries for Π l
v (Πr

v). By Proposition 1, X l
v and Xr

v use O(M/B) blocks
of space and answer queries in O(log2 logB N) time. In every node v there is

694 Y. Nekrich

also a data structure Dv similar to the data structure of Theorem 1: if the x-
interval of some rectangle R is covered by v but is not covered by any child of
v, then Dv contains the rectangle R′ = [i, j] × π(R), where i and j are chosen
so that the x-interval [a, b] of R contains rng(vi), rng(vi+1), . . . , rng(vj), but
rng(vi−1)
⊂ [a, b] and rng(vj+1)
⊂ [a, b].

The search procedure consists of two stages. At the end of the first stage we
either find the rectangle R that contains the query point p or identify the node
v such that p is contained in some rectangle R that is stored in Dv.

The first stage consists of a number (at most log2 logB N) iterations, and
during the first stage we examine nodes on the path πx from the root rx of Tx to
the leaf lx that contains the x-coordinate of the query point p. It would cost too
much time to examine all nodes on the path πx, therefore we perform a binary
search on the nodes of πx. During the i-th iteration of the first stage we inspect
the part of πx between nodes ui and li. At the beginning of the first stage, u1

is initialized to rx, l1 is initialized to lx, and d1 is set to logB N/2. At the i-th
iteration the di-parent mi of li is examined, i.e we examine the node mi that
lies “in the middle” of the path from li to ui. The result of this examination
is one of the following: 1.one of the rectangles that x-cuts the examined node
contains p and the search is completed. 2. rectangle that contains p x-cuts some
ancestor of the examined node mi (resp. is covered by an ancestor of mi). In
this case, if di > 1, we set li+1 = mi, di+1 = di/2, and proceed to the (i + 1)-st
iteration. If di = 1, the first stage of the search is completed and the rectangle
R that contains p is covered by ui but is not covered by a child of ui. Hence, the
search continues in the data structure Dui 3. rectangle that contains p x-cuts
some descendant of the examined node mi (resp. is covered by a descendant of
mi). In this case, we set ui+1 = mi, di+1 = di/2, and proceed to the (i + 1)-st
iteration. If di = 1, the first stage of the search is completed and the rectangle
R that contains p is covered by mi but is not covered by a child of mi. Hence,
the search continues in the data structure Dmi . Clearly, the total number of
iterations is O(log2 logB N).

Now we will show how each iteration can be implemented in O(log2 logB N)
I/Os by answering two one-dimensional point location queries. In every visited
node v a query yp is asked to the data structures X l

v and Xr
v . Suppose that yp

belongs to one-dimensional rectangles P l ∈ Π l
v and P r

v ∈ Πr
v ; P l

v (P r
v) may be

the projection of some two-dimensional rectangle Rl
v (Rr

v) that x-cuts v from the
left (from the right). Observe that if yp belongs to a projection of some rectangle
that x-cuts v from the left, then yp also belongs to a projection of some rectangle
that x-cuts v from the right. When the queries to X l

v and Xr
v are answered, the

search proceeds as follows. 1. If p is contained in Rl
v or Rr

v, then the query is
answered. 2. If both P l

v nor P r
v are projections of rectangles Rl

v and Rr
v that

x-cut v, but neither Rl
v nor Rr

v contain p, i.e. if the x-intervals of Rr
v and Rl

v do
not contain xp, then p is belongs to a rectangle that x-cuts some descendant u
of v. 3. If neither P l

v nor P r
v are projections of rectangles that x-cut v, then p is

contained in a rectangle R, such that rng(v) is contained in x-interval of R and

I/O-Efficient Point Location in a Set of Rectangles 695

R x-cuts some ancestor w of v. If the rectangle that contains p is not found, we
proceed with the next iteration as described in the previous paragraph.

At the end of the first stage, we either find the rectangle R that contains p, or
identify the node v, such that R is covered by v but R is not covered by a child of
v. In the latter case, we identify the rectangle R′ that contains the point (i, π(p))
in O(log2 logB N) I/Os using Proposition 1 and Lemma 2. Clearly, a rectangle
R′ contains a point p′ if and only if the corresponding rectangle R contains the
point p. Thus the second stage is completed in O(log2 logB N).time.

Theorem 4. There exists a O((N/B) log2
B N) space data structure that sup-

ports point location queries in a three-dimensional rectangular sub-division in
O(logB N) time.

Proof. The proof is quite similar to the proof of Theorem 3. We construct a trie
Tx on the set of possible x-coordinates. Information about all rectangles that
x-cut a node v from the left (from the right) is stored in the data structure X l

v

(Xr
v). X l

v (Xr
v) contains projections of rectangles on the (y, z)-plane; hence, by

Theorem 3 two-dimensional point location queries in X l
v and Xr

v are supported
in O((log2 logB N)2) time. Data structures Dv are defined in the same way as in
Theorem 3. By Lemma 3, Dv support point location queries in O(logB N) time.

The first stage of the search for the rectangle that contains the point p is the
same as in the proof of Theorem 3. At the end of the first stage we either find
the rectangle R containing p or identify the node v, such that R is covered by v
but R is not covered by a child of v. Using the data structure Dv, we can find
the rectangle R′ that corresponds to R in O(logB N) time.

4.1 Three-Dimensional Orthogonal Range Reporting

A data structure that three-dimensional dominance range reporting queries with
sub-logarithmic number of I/Os can be constructed by combining the data struc-
ture of Vengroff and Vitter [23] with the result of Theorem 3.

Theorem 5. There exists a O((N/B) log4
2 N) space data structure that supports

three-dimensional orthogonal range reporting queries on a N × N × N grid in
O((log2 logB N)2 + T/B) time, where T is the number of points in the answer.

A sketch of the proof of Theorem 5 is given in the Appendix. Finally, we can
apply the reduction to rank space technique [15] and Proposition 1 and obtain

Corollary 1. There exists a O((N/B) log4
2 N) space data structure that supports

three-dimensional orthogonal range reporting queries on a U × U × U grid in
O(log2 logB U + (log2 logB N)2 + T/B) time, where T is the number of points in
the answer.

5 Conclusion

In this paper we present a data structure that supports d-dimensional point lo-
cation queries in O(logd−1

B N) I/Os and uses O(N/B) blocks of space. We also

696 Y. Nekrich

show that there are external memory data structures that answer point loca-
tion queries in a two-dimensional rectangular subdivision and three-dimensional
orthogonal range reporting queries in o(logB n) I/Os provided that all point
coordinates are bounded by an appropriate parameter U .

Existence of data structures that support rectangular point location queries in
d dimensions for d ≥ 3 in the cache-oblivious model [14] remains an interesting
and important open question. The cache-oblivious data structure of Bender,
Cole, and Raman [8] supports general planar point location queries in O(logB N)
I/Os, but even for the case of rectangular subdivisions no d-dimensional data
structures for d ≥ 3 are known. Observe that the approach used to answer point
location queries in this paper cannot be extended to the cache-oblivious model:
data structures described in this paper are based on B-trees and rely on the fact
that the block size B is known.

References

1. Agarwal, P.K., Arge, L., Brodal, G.S., Vitter, J.S.: I/O-Efficient Dynamic Point
Location in Monotone Planar Subdivisions. In: Proc. SODA, pp. 11–20 (1999)

2. Agarwal, P.K., Arge, L., Yi, K.: An Optimal Dynamic Interval Stabbing-Max Data
Structure? In: Proc. SODA, pp. 803–812 (2005)

3. Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM 31(9), 1116–1127 (1988)

4. Arge, L.: External Memory Data Structures. In: Meyer auf der Heide, F. (ed.) ESA
2001. LNCS, vol. 2161, pp. 1–29. Springer, Heidelberg (2001)

5. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Theory and Prac-
tice of I/O-Efficient Algorithms for Multidimensional Batched Searching Problems
(Extended Abstract). In: Proc. SODA, pp. 685–694 (1998)

6. Arge, L., Vengroff, D.E., Vitter, J.S.: External-Memory Algorithms for Process-
ing Line Segments in Geographic Information Systems. Algorithmica 47(1), 1–25
(2007)

7. Arge, L., Vahrenhold, J.: I/O-Efficient Dynamic Planar Point Location. Computa-
tional Geometry 29(2), 147–162 (2004)

8. Bender, M.A., Cole, R., Raman, R.: Exponential Structures for Efficient Cache-
Oblivious Algorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M.,
Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207.
Springer, Heidelberg (2002)

9. de Berg, M., van Kreveld, M.J., Snoeyink, J.: Two- and Three-Dimensional Point
Location in Rectangular Subdivisions. J. Algorithms 18(2), 256–277 (1995)

10. Chazelle, B., Guibas, L.J.: Fractional Cascading: I. A Data Structuring Technique.
Algorithmica 1, 133–162 (1986)

11. Crauser, A., Ferragina, P., Mehlhorn, K., Meyer, U., Ramos, E.A.: Randomized
External-Memory Algorithms for Line Segment Intersection and Other Geometric
Problems. Int. J. Comput. Geometry Appl. 11(3), 305–337 (2001)

12. Edelsbrunner, H., Haring, G., Hilbert, D.: Rectangular point location in d dimen-
sions with applications. Computer J 29, 76–82 (1986)

13. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and Implementation of an Effi-
cient Priority Queue. Mathematical Systems Theory 10, 99–127 (1977)

I/O-Efficient Point Location in a Set of Rectangles 697

14. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-Oblivious Algo-
rithms. In: Proc. FOCS 1999, pp. 285–298 (1999)

15. Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry
problems. In: Proc. STOC 1984, pp. 135–143 (1984)

16. Goodrich, M.T., Tsay, J.-J., Vengroff, D.E., Vitter, J.S.: External-Memory Com-
putational Geometry (Preliminary Version). In: Proc. FOCS 1993, pp. 714–723
(1993)

17. Nekrich, Y.: A Data Structure for Multi-Dimensional Range Reporting. In: Proc.
SoCG 2007, pp. 344–353 (2007)

18. Nekrich, Y.: External Memory Range Reporting on a Grid. In: Tokuyama, T. (ed.)
ISAAC 2007. LNCS, vol. 4835, Springer, Heidelberg (2007)

19. Pǎtraşcu, M., Thorup, M.: Time-space Trade-offs for Predecessor Search. In: Proc.
STOC 2006, pp. 232–240 (2006)

20. Smid, M.: Dynamic rectangular point location, with an application to the closest
pair problem. Information and Computation 116, 1–9 (1995)

21. Snoeyink, J.: Point Location. In: Handbook of Discrete and Computational Geom-
etry, CRC Press, Inc., Boca Raton (1997)

22. Subramanian, S., Ramaswamy, S.: The P-range Tree: A New Data Structure for
Range Searching in Secondary Memory. In: Proc. SODA 1995, pp. 378–387 (1995)

23. Vengroff, D.E., Vitter, J.S.: Efficient 3-D Range Searching in External Memory.
In: Proc. STOC 1996, pp. 192–201 (1996)

24. Vitter, J.S.: External Memory Algorithms and Data Structures: Dealing with Mas-
sive Data. ACM Computing Surveys 33(2), 209–271 (2001)

Appendix. Proof of Theorem 5

In this Appendix we give a sketch of the data structure for three-dimensional
range reporting on a grid of size N .

The result of [23] is based on a very interesting concept of a t-approximate
boundary: A t-approximate boundary M for the set of points P partitions the
set of points P into P+ and P−, so that every point of M is dominated by at
least t and at most 3t points of P . Let I be the minimal layer of maxima of M ,
i.e. every point of M dominates at least one point of I, and every point of I
does not dominate any other point of M . Thus every point p is either dominated
by some point of M or dominates a point of I. The problem of finding for an
arbitrary point q a point p ∈ I that is dominated by q or reporting that no
such p ∈ I exists can be reduced to the two-dimensional point location problem
in the rectangular subdivision of the (x, y)-plane; see [23] and [17] for details.
Recall that using the data structure of Theorem 3 the point location query for
a rectangular subdivision of N × N grid can be answered in O((log2 logB N)2)
I/Os using a O((N/B)) space data structure. Using a variant of the method
described in [17], it is possible to report in O(t/B) I/Os all points that dominate
an arbitrary point q ∈ I with help of a O((N/B)) space data structure.

The data structure for three-dimensional dominance reporting consists of ap-
proximate boundaries M1, M2, . . . , Mlog2 N/2, where Mj is a 22j-approximate
boundary. Let Ij be the minimal layer of maxima of Mj . Let t = log2 log2 logB

N +log2 B/2. If q dominates some point ct that belongs to the minimal set It of

698 Y. Nekrich

Mt, then q is dominated by O(B(log2 logB N)2) points. All points that dominate
ct can be examined in O((log2 logB N)2) I/Os and all points that dominate q
can be found in O((log2 logB N)2) time. If q dominates no point of Mt, we test
Mt+1, Mt+2, . . . Mt+j until we find the 22t+2j-approximate boundary Mt+j, such
that at least one point ct+j of Mt+j is dominated by q. The number of I/O oper-
ations necessary to check Mt+1, Mt+2, . . . , Mt+j is O(j(log2 logB N)2), but the
number of points that dominate q is Ω(22j+2t) = Ω(22jB log2 logB N). Hence, all
points that dominate q can be reported in O(j(log2 logB N)2 +T/B) = O(T/B)
time. Therefore dominance reporting queries can be answered in O((log2 logB

N)2 + T/B) time.
An s(N) space data structure for dominance reporting queries with q(N) I/Os

per query can be transformed into a O(s(N) log3
2 N) data structure for three-

dimensional orthogonal range reporting queries with O(q(N)) I/Os per query;
see e.g. [22], [23] or [17] for details.

Finding Heavy Hitters over the Sliding Window

of a Weighted Data Stream

Regant Y.S. Hung and H.F. Ting�

Department of Computer Science,
The University of Hong Kong, Pokfulam, Hong Kong

{yshung,hfting}@cs.hku.hk

Abstract. We study the problem of identifying items with heavy weights
in the sliding window of a weighted data stream. We give a deterministic
algorithm that solves the problem within error bound ε, uses O(R

ε
) space

and supports O(R
ε
) query and update times. Here, R is the maximum item

weight. We also show that the space can be reduced substantially in prac-
tice by showing for any c > 0, we can construct an O(c log R

ε2
)-space algo-

rithm, which returns correct answers provided that the ratio between the
total weights of any two adjacent sliding windows is not greater than c.
We also give a randomized algorithm that solves the problem with suc-
cess probability 1 − δ using O(1

ε2
log R log D log log D

δε
) space where D is

the number of distinct items in the data stream.

1 Introduction

This paper studies the problem of identifying heavy hitters over the sliding win-
dow of a weighted data stream. There are four parameters in our study, namely, R
the maximum item weight, N the sliding window size, ε the error bound and θ the
threshold. The input of the problem is a weighted data stream σ, which is a se-
quence of tuples (a1, w1), (a2, w2), . . . , (ai, wi), . . . where ai is an item name and
the integer wi ∈ [1, R] is the weight of the tuple. The sliding window covers the N
most recently arrived tuples of σ, i.e., {(ap−N+1, wp−N+1), (ap−N+2, wp−N+2),
. . . , (ap, wp)} where (ap, wp) is the most recently arrived tuple. For any item a,
we define the window frequency, or simply frequency of a to be

fa =
∑

{wk | (ak, wk) is among the N most recently arrived items and ak = a},

the total weight of the tuples with name a that are covered by the sliding window.
We are interested in designing data structures that allow us to answer at any
time the following query efficiently:

Let S be the total weight of all items in the sliding window. Return a set Π
of items such that (i) every item in Π has frequency no less than (θ − ε)S
and (ii) all items with frequencies no less than θS must be in Π .

� This research was supported in part by Hong Kong RGC Grant HKU-7163/07E.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 699–710, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

700 R.Y.S. Hung and H.F. Ting

We call Π a set of heavy hitters. As common to all data stream applications,
any solution must be one-pass, use o(N) space, and support o(N) update and
query times. Heavy hitters identification problem has been studied extensively
for the special case of unweighted data streams, in which all weights are equal to
1 and the frequency of an item is just the number of occurrences of the item in
the sliding window. However, we observe that the weighted data stream model is
more suitable in practical applications such as the monitoring of network traffic
and the usage-based charging scheme in a telecommunication system. Note that
it is much more difficult to identify heavy hitters in a weighted data stream. In
an unweighted data stream, every item has weight 1 and for an item a to change
from a non-heavy hitter to an heavy one, there must be many new arrivals of a.
Therefore, a few item arrivals will not change the set of heavy hitters much and
a small data structure can keep enough information about the distribution of
items in the sliding window for maintaining the heavy-hitters set. However, for
a weighted data stream a few arrivals of items may change drastically the set of
heavy hitters because these items may have very heavy weight. It is not obvious
how a small data structure can still maintain the heavy-hitters set correctly.
Previous work. There are many interesting algorithms for finding heavy hitters
for the whole data stream (not over the sliding window). Manku and Motwani
[12] gave two algorithms, namely, the sticky counting and lossy counting al-
gorithms for finding heavy hitters in an unweighted data stream. The sticky
counting algorithm finds the heavy hitters using O(1

ε log 1
θδ) space with suc-

cess probability 1 − δ while lossy counting algorithm finds the heavy hitters us-
ing O(1

ε log εN) space deterministically. Misra and Gries [13], Demaine et al. [4]
and Karp et al. [8] independently solved the problem using O(1

ε)-space. Demaine
et al. [4] also proposed randomized algorithms with substantially smaller space
for a restricted model: the items may have different frequency in the stream
but every item must be uniformly distributed throughout the whole stream.
For weighted data streams, Cormode and Muthukrishnan [2] gave a data struc-
ture called CM sketch for estimating the frequency of an item in the whole
data stream. Using CM sketch, we can find the set of heavy hitters using
O(1

ε log D log log D
δθ) space where D is the number of distinct items in the data

stream. Ganguly and Majumder [5] proposed a deterministic algorithm for find-
ing heavy hitters using O(1

ε2 log D log εD) space.
There are streaming algorithms for finding quantiles [11,14] and counting bits

[3,9,6] over sliding windows. For example, Datar et al. [3] studied the following
problem: Given a stream of bits, estimate the number of 1-bits in the sliding win-
dow with relative error at most ε. They solved the problem using O(log εN

ε) space.
Gibbons and Tirthapura [6] proposed another algorithm for this problem that
achieves the same space complexity, but with faster update time. Datar et al. [3]
also considered the problem of finding the sum of the last N items of a stream of
integers within the range [0, R]; they showed that the problem can be solved in
O(log RN

ε) space. Gibbons et al. [6] solved the same problem with the same space
complexity, but with faster update time. For finding heavy hitters over sliding
windows of an unweighted data stream, Golab et al. [7] proposed an algorithm

Finding Heavy Hitters over the Sliding Window of a Weighted Data Stream 701

that solves the problem with some assumption on the items distribution. Arasu
and Manku [1] gave an O(1

ε log2 1
ε)-space algorithm for solving the problem with-

out any assumption. Lee and Ting [10] gave an improved algorithm that reduces
the space to O(1

ε). To the best of our knowledge, there is no algorithm designed
for finding heavy hitters in the sliding window of a weighted data stream.

Our Results. We propose a deterministic algorithm for finding the set of heavy
hitters in the sliding window of a weighted data stream; our algorithm uses O(R

ε)
space and supports O(R

ε) update and query times. Then, we show that the space
complexity can be reduced significantly provided that the total weight of the
items in the sliding window will not change drastically. More precisely, we show
that for any value c > 0, we can construct an O(c log R

ε2)-space algorithm which
is correct provided that c is an upper bound on the ratio between the total item
weights of any two disjoint adjacent sliding windows. Note that c ≤ R because
the minimum and maximum total weight of items in the sliding window are
respectively N and RN . Furthermore, it can be verified that when c = o(εR

log R),
the new algorithm uses o(R

ε) space. We argue that it is reasonable to assume
that c = o(εR

log R). To violate the assumption, most items must have very small
weights in one window and have weights near to the maximum in the adjacent
window. Such dramatic change in the weights signals abnormal situations and
human intervention is usually needed. For instance, in network applications, a
sudden increase of network traffic may be due to some attacks or improper use
of the networks by some users.

Our O(c log R
ε2)-space algorithm is based on a data structure for solving the

Integer-Sum problem, which is defined as follows: given a stream of integers in
[1, R], estimate the sum of the last N integers with relative error at most ε. We
give a data structure solving this problem using O(log R

ε) space (or more pre-
cisely, O((log R

ε) log RN) bits), O(log R
ε) update time and constant query time.

We also give a lower bound of Ω(log2 R
ε) bits on the space complexity for solv-

ing this problem when R ≤ εN . Note that the algorithms of Datar et al. [3] and
Gibbons et al. [6] can also solve the problem; the algorithm of Datar et al. solves
the problem using O(1

ε log RN(logN +log log RN)) bits, O(log RN) update time
and constant query time while the algorithm of Gibbons et al. solves the problem
using O(1

ε log2 RN) bits and constant update and query times. The space com-
plexity of their algorithms depend heavily on N , the sliding window size, which
can be in magnitude of hundreds of millions [3]. We aim at finding algorithm
whose complexity depends more on R, the maximum weight of an item. Note
that our algorithm uses much less space when log R = o(log N). For example,
when R = log N , our algorithm uses O(log N log log N

ε) bits while both algorithms
proposed by Datar et al. and Gibbons et al. use O(log2 N

ε) bits.
We also study how randomization helps in finding the heavy hitters. We show

that by using our data structure for the Integer-Sum problem together with an
adaptation of the CM sketch [2] (which was originally designed for estimating
the frequency of an item in the whole data stream, not over the sliding window),
we can find with success probability 1 − δ the set of heavy hitters in the sliding

702 R.Y.S. Hung and H.F. Ting

window of a weighted data stream using O(1
ε2 log R log D log log D

δθ) space where
D is the number of distinct items appearing in the data stream.

2 A Useful Lemma

The lemma below simplifies our analysis in the whole paper by reducing the
problem for finding heavy hitters to the problem for estimating the frequency of
every item.

Lemma 1. Let G(ε, R) be a function of ε and R. If an algorithm A that uses
O(G(ε, R)) space can (1) give an estimate Ŝ of the total weight S of all the items
in any sliding window with guarantee S ≤ Ŝ ≤ (1+ε)S, and (2) give an estimate
f̂a of the frequency fa of any item a with guarantee fa − εS ≤ f̂a ≤ fa + εS, then
A can solve the heavy hitters identification problem over the sliding window of a
weighted data stream using O(G(ε

3 , R)) space.

Proof. Based on the guarantees of A as stated in the lemma, A can be able to
estimate the frequency of any item a with guarantee

fa − 1
3εS ≤ f̂a ≤ fa + 1

3εS, (1)

and estimate the total weight of all items in the sliding window with guarantee

S ≤ Ŝ ≤ (1 + ε
3)S (2)

using O(G(ε/3, R)) space. When there is a query, A will return all the items
whose estimated frequency no less than (θ − 2ε

3)Ŝ. For any item a returned by
A, we have f̂a ≥ (θ − 2ε

3)Ŝ. Together with the facts that (1) fa ≥ f̂a − 1
3εS

by Inequality 1, and (2) Ŝ ≥ S by Inequality 2, we have fa ≥ f̂a − 1
3εS ≥

(θ − 2ε
3)Ŝ − 1

3εS ≥ (θ − 2ε
3)S − 1

3εS = (θ − ε)S. Thus, we only return items with
frequency no less than (θ − ε)S.

Consider any item e whose frequency is no less than θS. A guarantees that
f̂e ≥ fe− 1

3εS and S ≥ Ŝ/(1+ ε
3). Together with the fact that Ŝ/(1+ ε

3) ≥ (1− ε
3)Ŝ,

we have f̂e ≥ fe − 1
3εS ≥ θS − 1

3εS = (θ − 1
3ε)S ≥ θ− ε

3
1+ ε

3
Ŝ ≥ (θ − ε

3)(1 − ε
3)Ŝ ≥

(θ − 2ε
3)Ŝ. Thus, the estimated frequency of e is no less than (θ − 2ε

3)Ŝ. Since A

will return any item whose estimated frequency is no less than (θ − 2ε
3)Ŝ, A will

return any item whose frequency is no less than θS. Thus, A solves the problem
using O(G(ε/3, R)) space. ��

By Lemma 1, an algorithm can solve heavy hitters identification problem if it
has the two guarantees as stated in the lemma. In the rest of our paper, we will
only prove that our algorithms are able to have the two guarantees all the time.

3 A Deterministic Algorithm for Finding Heavy Hitters

The core of our algorithm is a data structure called window counters; we keep
at most 3R

ε + 1 window counters during the execution of our algorithm. Each

Finding Heavy Hitters over the Sliding Window of a Weighted Data Stream 703

window counter estimates the frequency of an item in the sliding window based
on the sampling technique proposed in [10]. To implement a window counter
C, we maintain a deque Q of entries and a variable �. Each entry in the deque
Q contains two variables: pos and value. Let (pos1, value1) and (pos2, value2)
denote the two consecutive entries in Q where (pos1, value1) is created before
(pos2, value2) is created. Then, the entry (pos2, value2) samples the total weight
of the items in Wpos1+1,pos2 , where Wp,q denotes the sliding window covering
the items from p-th item to q-th item in the data stream for some p ≤ q. More
precisely, value2 equals the total weight of the items in Wpos1+1,pos2 .

Initially, Q is empty and � equals zero. The value v(C) of C is defined as the
sum of the values of all the entries in Q plus � in the window counter. On the
other hand, we have to maintain an additional window counter Ctotal that esti-
mates the total weight in the sliding window. Whenever an item (ai, wi) arrives
in the stream, we do the following steps:

Update every window counter: First, each window counter removes the
expired entry, i.e. the entry that samples only the counts outside the sliding
window. For the counter Cai that estimates the count of ai (if this counter does
not exist, we will create one for it), increment its count by wi. This can be done
by adding wi to the variable � of Cai . If the sum of wi and � exceeds εN

3 , we will
create one entry (p − 1, �) and insert it at the back of Q, and then set � as wi.
Note that if wi > εN

3 , then � > εN
3 . For this case, we create one more entry (p, �)

and insert it at the back of Q immediately, and then set � to zero. Therefore, this
entry samples the frequency of the item in Wp,p, i.e. only samples the frequency
of the item at the single time unit p. The invariant below can be verified easily:

Invariant (*): At any time, an entry in Q either samples the value of at
most εN

3 , or samples the item at a single time unit.
Batch decrement (if necessary): Note that we may create one window
counter when an item arrives. If there exist more than 3R

ε window counters
(excluding Ctotal), we carry out a batch decrement such that, every counter (ex-
cept Ctotal) is deducted by the minimum of the values of all the window counters.
The window counter with value of zero after batch decrement will be removed.

Update Ctotal: We increment Ctotal, which estimates the total weight of all the
items in the sliding window, by wi and remove the expired entry (if any) in
Ctotal.

Recall that the value v(C) of a window counter C is the sum of the values
of all the entries in Q plus �. If we keep a window counter Ca for an item a,
the estimated frequency of a, f̂a, is defined as the value of Ca, i.e. v(Ca). If no
counter is kept for a, f̂a = 0. The estimate Ŝ of the total weight S in the sliding
window is equal to v(Ctotal). We prove that our algorithm solves the problem
using O(R

ε) space as follows.

Lemma 2. Consider any window Wp−N+1,p. Our algorithm can (1) estimate
the frequency of any item a in the window with guarantee fa−εS ≤ f̂a ≤ fa+εS,
and (2) estimate the total weight of all the items in the window with guarantee
S ≤ Ŝ ≤ (1 + ε)S.

704 R.Y.S. Hung and H.F. Ting

Proof. Note that the count of an item will decrease only when there is a batch
decrement. Let da denote the total count deducted for an item a due to batch
decrements made during Wp−N+1,p, more precisely, during the arrival of the
items in Wp−N+1,p. Before proving that da ≤ εN for any item a, we first prove
that the sum of the values of all the 3R/ε window counters is at most 2RN
when the (p − N)-th item arrives. For any sliding window W , the total weight
of all the items in W is no larger than RN since each item has weight of at
most R and there are exactly N items in W . Note that the entry at the front
of Q is the only entry that may sample the count outside the sliding window.
Let (pf , vf) denote this entry. If (pf , vf) samples for one single time unit only,
then Ca will not sample any count outside the sliding window since the pf -
th item in the stream must be within the sliding window (otherwise, we will
remove this entry). Otherwise, by Invariant (*), vf must be no larger than εN

3 .
Since each of the 3R

ε window counters samples at most εN
3 counts outside the

sliding window, the sum of the values of all the 3R/ε window counters is at most
RN +3R/ε× εN/3 = 2RN when the (p−N)-th item arrives. As we have argued
that the total weight of all the items in any sliding window is no larger than
RN , the value of all the window counters will increase by at most RN when the
items in Wp−N+1,p arrive. Note that there will not be too many counts deducted
due to batch decrements since every window counter has value no less than zero.
Therefore, (3R/ε + 1) × da ≤ 3RN , that gives da < εN .

Moreover, when we estimate the count of an item, we will also include the
front entry ef = (pf , vf) in Q that may sample some of the counts that are in
Wp−N+1,p and some that are not. More precisely, the front entry will sample
the counts in Wp′

f
,pf

where p′f ≤ p − N + 1 ≤ pf . If vf ≤ εN/3, then v(Ca)
overestimates the count of a by at most εN/3 for this. By Invariant (*), if
vf > εN/3, ef will sample only a single time unit, i.e. the counts in Wpf ,pf

. Note
that ef is at the front of Q and thus, pf = p−N +1 (otherwise, there must exists
one more entry (p′, v′) where p−N+1 ≤ p′ < pf). For this case, v(Ca) will sample
the counts of a exactly in Wp−N+1,p. Recall that da denotes the total amount
deducted for Ca due to batch decrement. We have fa − da ≤ v(Ca) ≤ fa + 1

3εN .
Since 0 ≤ da ≤ εN and f̂a = v(Ca), we have fa−εN ≤ f̂a ≤ fa+ 1

3εN ≤ fa+εN .
Since N ≤ S, we have fa − εS ≤ f̂a ≤ fa + εS.

Similarly, v(Ctotal) overestimates the total counts in the sliding window by at
most εN/3 ≤ εS and never underestimates S. Thus, S ≤ Ŝ ≤ (1 + ε)S. ��

Theorem 1. Our algorithm solves the heavy hitters identification problem using
O(R

ε) space and O(R
ε) time for update and query.

Proof. We first estimate the space used by our algorithm. Note that we have
at most 3R

ε + 1 window counters any time. This means that we need Θ(3R
ε)

space for keeping the auxiliary information of the window counters. With the
observation that the values of counters decremented due to batch decrements
will not increase the usage of memory of a counter, we assume that there is no
batch decrement in our analysis. Since we create one entry or two entries only
when the weight of new item plus � exceeds εN/3, the sum of counts of any two

Finding Heavy Hitters over the Sliding Window of a Weighted Data Stream 705

consecutive entries must exceed εN/3 if there is no batch decrement. From the
proof of Lemma 2, the total value of all the window counters is at most 2RN at
any moment. Therefore, we have at most (2RN/ εN

3) × 2 = 12R/ε entries. Each
entry stores two integers and thus, the total space for storing all the window
counters (excluding Ctotal) is O(R/ε). We have the similar space complexity
analysis for Ctotal. The total weight in any sliding window is at most RN and
we will keep at most one entry sampling the counts not in the sliding window.
Hence we have at most (RN)/ εN

3 × 2 + 1 = 6R/ε + 1 entries in Ctotal. It follows
that the total space required is O(R

ε).
The correctness of the algorithm follows from Lemma 1 and Lemma 2. The

bounds on the update and query times follows from the fact that we access the
whole data structure in constant number of times for every update or query. ��

4 Estimating the Sum in Sliding Window

In this section, we study the Integer-Sum problem: Given a stream of data items
which are positive integers in the range [1, R], return an estimate Ŝ of the sum S
of the last N items with the guarantee (1 − ε′)S ≤ Ŝ ≤ (1 + ε′)S. We give a lower
boundon the space complexity of the problemanddescribe an algorithm for solving
it. The algorithm given in this section will be useful in the following sections.

Theorem 2. Any deterministic algorithm with relative error less than ε′ re-
quires at least Ω(log2 R

ε′) bits of memory when R ≤ ε′N .

The proof will be given in the full paper. Before describing the algorithm, we
give the following definitions.

Definition 1. We say that an integer i falls in band α, or i ∈ bandα if (1+ ε′)α

N ≤ i < (1+ ε′)α+1N for any α ≥ 0. The integer i falls in band -1 if 0 < i < N .

Our algorithm will sample the items in order to save the space. However, instead
of having fixed sampling rate, we will sample the item at varying rate: the older
items will be sampled less frequently compared with the one that arrived more
recently. The details of the algorithm is given as follows.

Initialization: We will maintain a linked list L and a variable γ. Initially, L is
empty and γ = 0. We will use γ to count the sum of integers coming from the
data stream.

Update: When the i-th item of some value v arrives for any i > 0, we will:
(i) Increment the counter: If the value of γ does not exceed ε′N after adding
v to γ, we will increment γ by v. Otherwise, we will first insert a newly created
node at the head of L. Let Wp,q denote the window containing the set of items
from the p-th item to the q-th item in the data stream where p ≤ q. The new
node contains the entry (i − 1, γ) where γ represents the sum of the integers in
Wp′+1,i−1 and (p′, s′) is originally at the head of L. (If (i−1, γ) is the only entry
in L, γ will represent the sum of integers in Wp′,i−1 for some p′ ≤ i−N+1.) Then
we set the counter γ to v. If γ > ε′N (note that it occurs only when v > ε′N),

706 R.Y.S. Hung and H.F. Ting

we will create one more entry (i, γ) and insert it at the head of L immediately,
and then set γ to zero. Therefore, this entry samples the weight of the item in
Wi,i, i.e. only samples the frequency of the item for the single time unit, p.
(ii) Delete the expired entry: Delete the node at the tail of L that contains
(p, s) if the p-th item is no longer within the sliding window, i.e., p < i − N + 1.
(iii) Trim the linked list L: Suppose we have m entries. Without loss of
generality, we label the entries in order: e1 = (p1, s1), . . . , em = (pm, sm) such
that e1 is at the head of L, e2 is next to e1, . . . , and em is at the tail of L.
We trim L by traversing L from the head. Define ti =

∑i−1
j=1 sj + γ. Suppose

that ei is an entry such that ti ∈ band0 and ti−1 ∈ band−1. Let band(ti) de-
note the band of ti. Check the succeeding entries to find an integer ι such that∑ι

j=i sj ≤ (1 + ε′)band(ti)ε′N <
∑ι+1

j=i sj . If ι ≤ i, we will repeat this proce-
dure again at the entry ei+1. Otherwise, set si =

∑ι
j=i sj and delete the entries

ei+1, ei+2, . . . , eι so that si represents the sum of integers in Wpι+1+1,pi . Repeat
this procedure again at the entry eι+1.

Answer query: Give an estimate Ŝ of the sum S of the integers by returning
the total of the si in the entries (pi, si) of L plus γ. The following invariant can
be verified easily:

Invariant (**): At any time, every entry ei = (pi, si) either samples the
value of at most (1 + ε′)band(ti)ε′N if band(ti) ≥ 0 and at most ε′N if
band(ti) < 0, or samples for a single time unit.

Lemma 3. The algorithm guarantees that S ≤ Ŝ ≤ S + ε′ max(S, N) where S
and N denote the total sum of integers in the sliding window and the size of the
sliding window, respectively.

Proof. Suppose we have m entries in L. Let us define e, s and t as the same way
in the description of the algorithm. Recall that we will return the sum of the
values of all the entries of L plus γ when there is a query. Thus, we will return∑m

i=1 si + γ = tm + sm.
Since we trim L whenever an item arrives, em will not be an expired item (i.e.

the pm-th item should be in sliding window). Thus, sm is equal to the sum of
the weight of the items of which some are in the sliding window while some may
not. This implies

tm < S ≤ tm + sm = Ŝ. (3)

Thus, our algorithm will never underestimate the total weight of the items in
the sliding window (i.e. Ŝ ≥ S). Note that if em only samples for a single time
unit, this implies em will sample the time unit that is exactly at the boundary
of the sliding window. Thus, the sum of the values of all the entries in L plus γ
is exactly the sum of the values of all items in the whole sliding window. If em

does not sample for a single time unit, we consider the following two cases:
band(tm) ≥ 0: By Invariant (**), we have sm ≤ (1+ε′)band(tm)ε′N . By definition,
tm ≥ (1 + ε′)band(tm)N . So we have sm ≤ ε′tm. Together with the facts that
Ŝ = tm + sm and tm < S (by Inequality 3), we have Ŝ = tm + sm ≤ S + ε′S.
band(tm) = −1: By Invariant (**), we have sm ≤ ε′N . Together with tm < S
and Ŝ = tm + sm (by Inequality 3 again), we have Ŝ = tm + sm < S + ε′N . ��

Finding Heavy Hitters over the Sliding Window of a Weighted Data Stream 707

Lemma 4. After the step “Trim the linked list L”, there exist at most two
entries, ei and ei+1, such that ti =

∑i−1
�=1 s� + γ and ti+1 =

∑i
�=1 s� + γ fall in

the same band (i.e. band(ti) = band(ti+1)) except band -1. There are at most
2/ε′ + 1 entries eu with tu fall in band -1.

Proof. Recall that some entries are deleted during the step “Trim the linked
list L” such that (1 + ε′)band(ti)ε′N < si + si+1. Together with the fact that
ti ≥ (1 + ε′)band(ti)N by Definition 1, we have ti+2 =

∑i+1
�=1 s� + γ = ti + (si +

si+1) > (1 + ε′)band(ti)N + (1 + ε′)band(ti)ε′N = (1 + ε′)band(ti)+1N . Thus, the
value ti+2 of ei+2 must not fall in band(ti). Therefore, there exist at most two
entries ei and ei+1 such that ti and ti+1 fall in the same band.

Consider any entry eu = (pu, su) where tu =
∑u−1

�=1 s� + γ is in band -1.
Recall that su is the sum of the integers in Wpu+1+1,pu , and we create eu since
the value of γ will exceed ε′N when we add the value of (pu + 1)-th item to
γ. It follows that su + su+1 must exceed ε′N . Therefore, we can have at most
N/(ε′N) × 2 + 1 = 2/ε′ + 1 entries since band -1 covers the values from 1 to
N − 1. ��
Lemma 5. Our algorithm stores at most O(log R

ε′) entries.

Proof. Suppose we have m entries in L. Recall that the total weight of the
sliding window is at most RN . Thus, tm ≤ S ≤ RN(Inequality 3). Let α be the
largest possible band number in [1, RN] such that (1+ ε′)αN ≤ RN . Solving the
above inequality and we have α ≤ ln R

ln(1+ε′) . By the fact that ln(1 + ε′) > ε′

1+ε′ ,
α ≤ 1

ε′ (1 + ε′) ln R. It follows that band(tm) ≤ 1
ε′ (1 + ε′) ln R. Since there are at

most two entries for every band b ≥ 0 and we have at most 2/ε′ + 1 entries in
band -1 by Lemma 4, our algorithm stores at most O(log R

ε′) entries. ��
Theorem 3. Our algorithm solves the Integer-Sum problem with O(log R

ε′) space.
It takes O(log R

ε′) time for update and constant time for answering query.

Proof. By Lemma 3, we have S ≤ Ŝ ≤ S + ε′ max(S, N) where S and N denote
the total sum of integers in the sliding window and the size of the sliding window,
respectively. Note that S ≥ N because there are N items in the sliding window
and each of them has value of no less than one. Thus, S ≤ Ŝ ≤ S + ε′S and thus,
our algorithm solves the Integer-Sum problem.

By Lemma 5 and the fact that each entry in L uses constant space, it follows
that our algorithm solves the Integer-Sum problem using O(log R

ε′) space. For
update, we need to access the linked list a constant number of times, which
takes O(log R

ε′) time. For query, we can keep a counter that maintains the sum of
the si of all the entries ei = (pi, si) in L. When some entry expires, the counter
will be updated accordingly. When there is a query, we return the value of the
counter plus γ. Thus, answering a query takes constant time. ��
Therefore, we can estimate the total weight S of all the items in the sliding
window using O(log R

ε′) space with the guarantee that S ≤ Ŝ ≤ (1 + ε′)S. This is
useful for Section 5 since we no longer need to prove that we have this guarantee
again when we show how our algorithm solves the heavy hitters identification
problem.

708 R.Y.S. Hung and H.F. Ting

5 An Improved Algorithm

We improve our algorithm proposed in Section 3 by keeping 3c
ε counters pro-

posed in Section 4 instead of 3R
ε window counters (c will be defined soon). This

algorithm solves the problem with the assumption that the total weights of all
the items in any disjoint adjacent sliding windows will not differ too much. We
choose c such that it is an upper bound on the ratio between the total weights
of the two adjacent disjoint sliding windows. More precisely, we assume that
Sp+1,p+N ≥ Sp−N+1,p/c for any integer p ≥ N where Sp,q denotes the total
weight of all the items Wp,q. We will show that our algorithm uses O(c log R

ε2)
space for finding heavy hitters.

First of all, we need the following simple modifications to the structure of the
counter introduced in the Section 4 before using them directly: (1) We set ε′ as
ε/4; (2) Note that our counter originally can handle the increment of the count
only, but not the decrement of the count. If we decrement the counter by v ≤ γ,
then this can be done by reducing count of the counter γ by v. If we decrement
the counter by v > γ, we will remove the entry (pm, sm) at the tail of L and set
γ to γ + sm − v. If γ + sm < v, we will remove more entries until the sum of the
values is no less than v.

We will have nearly the same algorithm as in Section 3 except that (i) we keep
our counters proposed in Section 4 instead of window counters; and (ii) we carry
out batch decrement when there are more than 3c/ε counters. By Lemma 1 and
the following theorem, our algorithm finds the heavy hitters over sliding windows
using O(c log R

ε2) space.

Theorem 4. Let Wp,q denote the window covering the items from p-th item to
q-th item in the data stream for some p ≤ q. Consider any window Wp+1,p+N .
We can estimate the frequency f for any item in Wp+1,p+N with the guarantee
f − εSp+1,p+N ≤ f̂ ≤ f + εSp+1,p+N using O(c log R

ε2) space. Our algorithm
supports O(c log R

ε2) update time and O(c
ε) query time.

Proof. Let fa denote the frequency of a in Wp+1,p+N for any item a. Suppose
there is a counter that maintains the estimated frequency of an item a. If we are
keeping a counter for estimating the frequency of a, then the estimated frequency
of a, i.e. f̂a, is defined as the sum of all the entries of L plus γ in that counter.
If no counter is kept for a, f̂a = 0. Let dmax denote the largest possible value
deducted accumulatively for any counter during Wp+1,p+N . Recall that ε′ = ε/4.
By Lemma 3, we have

fa − dmax ≤ f̂a ≤ fa + ε
4Sp+1,p+N . (4)

We first estimate dmax. Let σ denote the sum of the values of all the 3c
ε counters

when the p-th item arrives. By Lemma 3, the value of the counter for any item
a must be no greater than fa + max(1

4 εN, 1
4εfa) where fa denotes the frequency

of a in Wp−N+1,p. It can be verified that σ ≤ (1 + ε/4)Sp−N+1,p + εN/4 ×
(3c/ε) ≤ (1 + ε/4)Sp−N+1,p + 3cN/4. When the items in Wp+1,p+N arrive, the
sum of the values of all counters will be increased by Sp+1,p+N . Note that it is

Finding Heavy Hitters over the Sliding Window of a Weighted Data Stream 709

impossible to have negative count in our counters. Therefore, (3c/ε+1)×dmax ≤
σ + Sp+1,p+N ≤ (1 + ε/4)Sp−N+1,p + 3cN/4 + Sp+1,p+N , and we have dmax ≤
ε(1+ε/4)

3c Sp−N+1,p+εN/4+ ε
3cSp+1,p+N ≤ εSp+1,p+N since (1) Sp+1,p+N ≥ N , (2)

Sp−N+1,p/c ≤ Sp+1,p+N by assumption, (3) c ≥ 1, and (4) ε < 1. Together with
the Inequality 4, we have fa − εSp+1,p+N ≤ f̂ ≤ fa + εSp+1,p+N

4 ≤ fa + εSp+1,p+N

for any item a.
We use at most O(c log R

ε2) space as each counter uses O(log R
ε) space and we

keep at most 3c/ε counters. We can see that we will access the whole data
structure once for the worst case when an item arrives. When there is a query,
we need to check every counter to estimate frequency of the corresponding item.
This can be done in constant time for each counter by maintaining a variable
storing the value of the counter. ��

6 A Randomized Algorithm for Finding Heavy Hitters

We first give a randomized algorithm that modifies CM sketch [2] by using our
counter proposed in Section 4. Let e denote the base of the natural logarithm.
The algorithm works as follows:

Initialization. We maintain a two-dimensional array of our counters with
the width of w = � 2e

ε � and depth of d = �ln 1
δ �: count[1, 1], . . . , count[d, w].

We set ε′ = ε/2 when we set up our counters. And each counter has value of
zero initially. Consider any window Wp−N+1,p for p ≥ N . Let f [i, j] denote the
cumulative counts added to count[i, j] during Wp−N+1,p. Our counter count[i, j]
is used to estimate f [i, j] for any 1 ≤ i ≤ d and 1 ≤ j ≤ w. We also maintain
d pairwise-independent hash functions h1 · · · hd : {1 · · ·D} → {1 · · ·w} where
there are D possible distinct items.

Update. When an item (ai, wi) arrives, we increase the value of counters
count[j, hj(ai)] by wi, for any 1 ≤ j ≤ d, and we will update every counter
so that the expired entries will be removed.

Query. When there is a query for the frequency of aj , we will return f̂(aj) =
mini f̂ [i, hi(aj)] where f̂ [i, hi(aj)] is the estimation of f [i, hi(aj)] by count
[i, hi(aj)].

Lemma 6. In our modified CM sketch, the value f̂ = mini count[i, hi(a)] for
any item a has the following guarantees: f ≤ f̂ ; and f̂ ≤ f + 1

2εS′ with probability
of 1 − δ, where S′ is the total weight in the data stream.

Proof. Similar to the proof of Theorem 1 in [2]. ��

Theorem 5. Our algorithm guarantees that: f̂(a) ≤ f(a)+εS with probability of
1−δ; and f̂(a) ≥ f(a), where S denotes the total weight of all items in the sliding
window. Our algorithm uses O(1

ε2 log 1
δ log R) space, updates in O(1

ε2 log 1
δ log R)

time and estimates the frequency of any item in O(log 1
δ) time.

710 R.Y.S. Hung and H.F. Ting

The proof will be given in full paper. For finding heavy hitters, we keep a counter
proposed in Section 4 to estimate the total weight S in sliding window and use
the group testing technique as described in [2]: we have to keep log D different
sketches, each for different dyadic range, where D is the number of distinct items
in the stream. See [2] for the details. We can prove that

Theorem 6. We find heavy hitters using O(1
ε2 log R log D log log D

δθ) space, up-
date and query times with success probability 1 − δ.

References

1. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.
In: Symposium on Principles of Database Systems (PODS), pp. 286–296 (2004)

2. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. Journal of Algorithms 55(1), 58–75 (2005)

3. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 635–644 (2002)

4. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: European Symposium on Algorithms (ESA),
pp. 348–360 (2002)

5. Ganguly, S., Majumder, A.: CR-precis: A deterministic summary structure for
update data streams. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007.
LNCS, vol. 4614, pp. 48–59. Springer, Heidelberg (2007)

6. Gibbons, P.B., Tirthapura, S.: Distributed streams algorithms for sliding windows.
In: ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 63–72
(2002)

7. Golab, L., DeHaan, D., López-Ortiz, A., Demaine, E.D.: Finding frequent items in
sliding windows with multinomially-distributed item frequencies. In: International
Conference on Scientific and Statistical Database Management (SSDBM), pp. 425–
426 (2004)

8. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Transactions on Database Systems
(TODS) 28(1), 51–55 (2003)

9. Lee, L.K., Ting, H.F.: Maintaining significant stream statistics over sliding win-
dows. In: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA), pp. 724–732 (2006)

10. Lee, L.K., Ting, H.F.: A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In: Symposium on Principles of Database
Systems (PODS), pp. 290–297 (2006)

11. Lin, X., Lu, H., Xu, J., Yu, J.X.: Continuously maintaining quantile summaries of
the most recent N elements over a data stream. In: International Conference on
Data Engineering (ICDE), pp. 362–374 (2004)

12. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Very Large Data Bases (VLDB) Conference, pp. 346–357 (2002)

13. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Program-
ming 2, 143–152 (1982)

14. Xu, J., Lin, X., Zhou, X.: Space Efficient Quantile Summary for Constrained Sliding
Windows on a Data Stream. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004.
LNCS, vol. 3129, pp. 34–44. Springer, Heidelberg (2004)

Fixed-Parameter Algorithms for

Cluster Vertex Deletion

Falk Hüffner�, Christian Komusiewicz��, Hannes Moser���,
and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{hueffner,ckomus,moser,niedermr}@minet.uni-jena.de

Abstract. We initiate the first systematic study of the NP-hard Clus-

ter Vertex Deletion (CVD) problem (unweighted and weighted)
in terms of fixed-parameter algorithmics. In the unweighted case, one
searches for a minimum number of vertex deletions to transform a graph
into a collection of disjoint cliques. The parameter is the number of ver-
tex deletions. We present efficient fixed-parameter algorithms for CVD.
Our iterative compression algorithm for CVD seems to be the first non-
trivial application of this fairly new technique to a problem that is
not a feedback set problem. Moreover, we study the variant of CVD
where the number of cliques to be generated is specified. Here, we de-
tect connections to fixed-parameter algorithms for (weighted) Vertex

Cover.

1 Introduction

Graph modification problems form a core topic in algorithmic graph theory
with many applications. In particular, cluster graph modification problems [21]
have recently received considerable interest. Here, the basic problem is, given
an undirected graph G, to find a minimum number of editing operations that
transform G into a collection of disjoint complete subgraphs, a cluster graph.
Herein, the three standard editing operations are adding edges, deleting edges,
and deleting vertices. For instance, Cluster Editing asks whether a graph
can be transformed into a cluster graph by altogether at most k edge additions
and edge deletions. Cluster Editing is NP-complete; it recently has shown
particularly useful for clustering biological data [6, 19]. Whereas also a factor-
2.5 polynomial-time approximation for Cluster Editing is known [3, 23], in
practical applications fixed-parameter algorithms (combined with some heuris-
tics) providing optimal solutions seem to dominate [4, 6, 19]. Parameterized

� Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

�� Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.
��� Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-

pression for solving hard network problems), NI 369/5.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 711–722, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

712 F. Hüffner et al.

complexity studies for Cluster Editing were initiated by Gramm et al. [11]
and have been further pursued in a series of papers [4, 6, 7, 10, 12, 18, 19].
A previously shown bound of O(1.92k + n3) for an n-vertex graph [10] can be
improved by combining a linear-time problem kernel [7] with the currently best
claimed running time of O(1.83k + n3) [4] to get an algorithm with running
time O(1.83k + n + m), where m is the number of edges in the graph. Moreover,
problem kernels, based on efficient data reduction rules, with only O(k) vertices
are known [7, 12], the best upper bound currently being 4k [12].

Whereas Cluster Editing has been subject to intensive research, its “sis-
ter problem” Cluster Vertex Deletion so far has been widely neglected.
Here, we aim at finding a minimum number of vertices such that their deletion
transforms a given graph into a cluster graph.1

Weighted Cluster Vertex Deletion

Instance: An undirected graph G = (V, E), a vertex weight function ω :
V → [1, ∞), and a nonnegative number k.
Question: Is there a subset X ⊆ V with

∑
v∈X ω(v) ≤ k such that

deleting all vertices in X from G results in a cluster graph (i. e., a graph
where every connected component forms a complete graph)?

The unweighted version asks whether there exists a subset X ⊆ V such that
|X | ≤ k (in other words, all vertices have weight exactly one).

Motivation. As Cluster Editing, Cluster Vertex Deletion may find ap-
plications in graph-modeled data clustering: Assume that we have a number of
samples, some of which are equivalent (e. g., DNA samples, some of which are
from the same species) and a method to test two samples for equivalence. A
graph is formed where each vertex corresponds to a sample and an edge between
two vertices is added when their samples are tested as equivalent. In the absence
of errors, the resulting graph is a cluster graph, where each connected component
corresponds to an equivalence class (e. g., a species). However, an unknown sub-
set of samples may be contaminated and can produce unpredictable comparisons
to other samples. An optimal solution for unweighted Cluster Vertex Dele-

tion, that is, a minimum-cardinality set of vertices whose deletion produces a
cluster graph, then provides the most parsimonious explanation for the data un-
der this model. This clearly extends to the weighted case. Finally, in comparison
to Cluster Editing, a small parameter value k (that is, the number of editing
operations) appears even more likely for Cluster Vertex Deletion, making
a parameterized approach particularly meaningful here.

Known results. By general results for vertex deletion problems for hereditary
graph properties, it follows that already unweighted Cluster Vertex Dele-

tion is NP-complete [15]. Only few specific results for (unweighted) Cluster

1 Parameterized problems (as follows) usually are formulated as decision problems—
all our algorithms will also solve the corresponding optimization problem within
the same time bounds.

Fixed-Parameter Algorithms for Cluster Vertex Deletion 713

Vertex Deletion are known.2 These are based on the simple observation that
a graph is a cluster graph if and only if it does not contain an induced P3, a path
of three vertices.3 Gramm et al. [10] used an elaborate case distinction found
with computer help to derive a search tree algorithm running in O(2.26km) time
for an m-edge graph. This can be improved to O(2.08k + n3), n denoting the
number of vertices, by using a straightforward reduction of unweighted Clus-

ter Vertex Deletion to the 3-Hitting Set problem (transforming each
induced P3 into a three-element set) and employing a sophisticated algorithm
for 3-Hitting Set [22]. Moreover, kernelization results for 3-Hitting Set [1]
also imply an O(k2)-vertex problem kernel for unweighted Cluster Vertex

Deletion, which can be found in O(n3) time. A weighted Cluster Vertex

Deletion instance can be easily transformed into a weighted 3-Hitting Set

instance. With this transformation, an O(k3)-vertex problem kernel result for
weighted 3-Hitting Set [2] can be adapted to weighted Cluster Vertex

Deletion. Moreover, weighted 3-Hitting Set possesses an elaborate search
tree algorithm based on case distinction [8], implying an O(2.25k + n3) running
time for weighted Cluster Vertex Deletion.

New results. One of our main results is an elegant iterative compression algo-
rithm for weighted Cluster Vertex Deletion using matching techniques,
running in O(2kk9 + n3) time. Notably, this seems to be the first nontrivial ap-
plication of the technique of iterative compression (described by Reed et al. [20];
see also [16, Chapter 11]) to a non-feedback set problem. We extend our studies
to the (also NP-hard) case where the number of clusters to be generated is given
by a second parameter d. Such studies have also been undertaken for Cluster

Editing [9, 12, 21], but note that for Cluster Editing clearly d ≤ 2k. By way
of contrast, since vertex deletion is a “stronger” operation than edge deletion, in
the case of Cluster Vertex Deletion also d > 2k is possible. Observe that
d = 1 yields the Clique problem, leading to the NP-hardness of so-called d-
Cluster Vertex Deletion also for d > 1. Since d-Cluster Vertex Dele-

tion is already NP-hard for d = 1, a parameterization only with respect to the
parameter d is meaningless. Considering the combined parameter (d, k), however,
we can provide further fixed-parameter tractability results. First, we nontrivially
extend the kernelization result for weighted Cluster Vertex Deletion to a
problem kernel for weighted d-Cluster Vertex Deletion, again achieving an
O(k3)-vertex problem kernel. Based on this, we develop three fixed-parameter
algorithms for weighted d-Cluster Vertex Deletion with the following run-
ning times: O(3k +n3), O(1.40kk3d+n3), and O(1.84k+d+n3). Depending on the
value of d, each of these algorithms may be preferable in certain constellations.

2 Jansen et al. [14] studied the closely related problem of finding d pairwise disjoint
cliques with maximum overall number of vertices, motivated by applications in
scheduling. Note that, other than in Cluster Vertex Deletion, they allowed
to have edges between cliques. Jansen et al. gave polynomial-time algorithms for
special graph classes, contrasting the NP-complete general case.

3 In the remainder of this work, when simply writing of containment of a P3 in a
graph we actually always refer to an induced P3.

714 F. Hüffner et al.

CompressCVD(G,X)
1 X ′ ← X
2 for each S ⊆ X:
3 if G[S] is a cluster graph:
4 G′ ← G \ (X \ S); R ← V (G′ \ S)
5 G′ ←ReduceRule1(G′)
6 G′ ←ReduceRule2(G′)
7 G′ ←ReduceRule3(G′)
8 Classify each vertex u in R according to N(u) ∩ S
9 H ← auxiliary graph
10 M ← maximum weight matching in H
11 Delete all vertices not in a class corresponding to an edge in M
12 D ← vertices deleted in lines 4–7 and 11
13 if ω(D) < ω(X ′):
14 X ′ ← D
15 return X ′

Fig. 1. Pseudo-code for CompressCVD, where ω(A) :=
�

v∈A ω(v) for A ⊆ V

In the latter two algorithms, fixed-parameter algorithms for weighted Vertex

Cover play a decisive role.
Due to the lack of space, most details are deferred to the full version of this

paper.

2 Iterative Compression for Cluster Vertex Deletion

We now describe a novel iterative compression algorithm for weighted Clus-

ter Vertex Deletion. General considerations about iterative compression
algorithms can be found in [13] and [16, Chapter 11]. We first describe how to
employ a compression routine, and then the compression routine itself. We call
a set of vertices whose deletion produces a cluster graph a CVD set.

The general idea behind our iterative compression is as follows. We start
with V ′ = ∅ and X = ∅; clearly, X is a CVD set for G[V ′]. Iterating over all
graph vertices, step by step we add one vertex v /∈ V ′ from V to both V ′ and X .
Then X is still a CVD set for G[V ′], although possibly not a minimum one.
We can, however, obtain a minimum one by applying the compression routine
CompressCVD. It takes a graph G and a CVD set X for G, and returns a
minimum CVD set for G. Therefore, it is a loop invariant that X is a minimum-
size CVD set for G[V ′]. Since eventually V ′ = V , we obtain an optimal solution
for G once the algorithm returns X .

In the rest of this section, we describe the compression routine Compress-

CVD following the pseudo-code in Fig. 1. For this, consider a smaller CVD
set X ′ as a modification of the larger CVD set X . This modification retains
some vertices Y � X , while the other vertices S := X \ Y are replaced by new
vertices from V \X . The idea is to try by brute force all 2|X| −1 partitions of X
into such sets Y and S (line 2). For each such partition, the vertices from Y are

Fixed-Parameter Algorithms for Cluster Vertex Deletion 715

immediately deleted, since we already decided to take them into the CVD set.
In the resulting instance G′ = (V ′, E′) := G \ Y , it remains to find an optimal
CVD set that is disjoint from S. This is a much easier task than finding a CVD
set in general; in fact, it can be done in polynomial time using data reduction
and maximum matching.

First, we discard partitions where S does not induce a cluster graph (line 3);
these cannot lead to a solution, since we determined that none of the vertices in S
would be deleted. Further, R := V ′ \ S also induces a cluster graph, since R =
V \ X and X is a CVD set. Therefore, the following problem remains:

CVD Compression

Instance: An undirected graph G = (V, E), a vertex weight function
ω : V → [1, ∞), and a subset S ⊆ V such that G[S] and G\S are cluster
graphs.
Task: Find a set X ′ ⊆ V \ S such that G \ X ′ is a cluster graph and∑

v∈X′ ω(x) is minimum.

The instance can now be simplified by a series of data reduction rules. We
call a connected component in a cluster graph a cluster.
Reduction Rule 1. Delete all vertices in R := V \S that are adjacent to more
than one cluster in G[S].

Reduction Rule 2. Delete all vertices in R that are adjacent to some, but not
all vertices of a cluster in G[S].

Reduction Rule 3. Remove connected components that are complete graphs.

After Rules 1–3 have been applied, the instance is much simplified. In each
cluster in G[R], we can divide the vertices into equivalence classes according to
their neighborhood in S; each class then contains either vertices adjacent to all
vertices of a particular cluster in G[S], or the vertices adjacent to no vertex in S
(see Fig. 2a). This classification is useful because of the following lemma.

Lemma 1. In an optimal CVD compression solution, for each cluster in
G[R], either the vertices of exactly one class are present, or the whole cluster is
deleted.

Because of Lemma 1, the remaining task is an assignment of each cluster in G[R]
to one of its classes (corresponding to the preservation of this class, and the
deletion of all other classes within the cluster) or to nothing (corresponding to
the complete deletion of the cluster). However, we cannot do this independently
for each cluster; we must not choose two classes from different clusters in G[R]
which are connected to the same cluster in G[S], since that would create a P3.
This can be modelled as a weighted bipartite matching problem in an auxiliary
graph H , where each edge corresponds to a possible choice. The graph H is
constructed as follows (see Fig. 2b):

– Add a vertex for every cluster in G[R] (white vertices).
– Add a vertex for every cluster in G[S] (black vertices in S).

716 F. Hüffner et al.

S

(a) Classification

S

1

1

2

2

2
2

(b) The assignment problem

S

(c) Final resulting cluster graph

Fig. 2. Assignment problem in the iterative compression, unweighted case

– For a cluster CS in G[S] and a cluster CR in G[R], add an edge between
the vertex for CS and the vertex for CR if there is a class in CR connected
to CS . This edge corresponds to choosing this class for CR and is weighted
with the total weight of the vertices in this class.

– Add a vertex for each class in a cluster CR that is not connected to a cluster
in G[S] (black vertices outside S), and connect it to the vertex represent-
ing CR. Again, this edge corresponds to choosing this class for CR and is
weighted with the total weight of the vertices in this class.

Since we only added edges between a black and a white vertex, H is bipartite.
The task is now to find a maximum-weight bipartite matching, that is, a set of
edges of maximum weight where no two edges have an endpoint in common.
This allows any choice for a cluster, as long as no two clusters share edges to the
same cluster in G[S]. The following lemma shows that this is a valid approach:

Lemma 2. A maximum-weight bipartite matching in H provides an optimal
CVD compression solution.

Fig. 2c shows the resulting cluster graph for our example after deleting the ver-
tex sets corresponding to edges that are not selected by the maximum-weight
matching shown in Fig. 2b by bold edges. Note that the size of the solution can
be upper-bounded by k + 1, since ∀v ∈ V : ω(v) ≥ 1. Altogether, we obtain

Proposition 1. Weighted Cluster Vertex Deletion can be solved in O(2k ·
n2(m + n logn)) time.

For the unweighted case, we can get better running times, since unweighted
matchings can be found faster than weighted ones.

Fixed-Parameter Algorithms for Cluster Vertex Deletion 717

Theorem 1. Unweighted Cluster Vertex Deletion can be solved in O(2k ·
km

√
n log n) time.

Problem kernelization leads to the following.

Theorem 2. Unweighted Cluster Vertex Deletion can be solved in O(2k ·
k6 log k + n3) time.

Curiously, we can use this unweighted algorithm as a subroutine to speed up
the weighted case: if we have a solution for an unweighted instance, we can get
an optimal weighted solution by executing the compression routine once. This
works because the compression does only require that the set X to compress is
a CVD set, and does not make any assumptions about its weight.

Theorem 3. Weighted Cluster Vertex Deletion can be solved in O(2k ·
k9 + n3) time.

In fact, we even have a stronger parameterization in Theorem 3 when compared
to Proposition 1: as parameter k, we can use the number of vertices in an optimal
unweighted solution, which is less than or equal to the number of vertices in an
optimal weighted solution, which in turn is less than or equal to the minimum
weight of a weighted solution.

Since the matching subproblem is the bottleneck of the algorithm, it would
be nice to replace it with something simpler. However, we can show that the
assignment problem in the last step of the compression routine is as hard as
the task of finding a maximum weight matching in a bipartite graph, even after
applying Reduction Rules 1–3. This indicates that the bottleneck of computing
the maximum weight matching might actually be very difficult to overcome with
our approach.

3 Cluster Vertex Deletion with a Fixed Number of
Clusters

In clustering applications, the number of desired clusters is often known. The
deletion of vertices should then produce a d-cluster graph, that is, a graph com-
prising exactly d clusters.

Weighted d-Cluster Vertex Deletion

Instance: An undirected graph G = (V, E), a vertex weight function
ω : V → [1, ∞), and a nonnegative number k.
Question: Is there a subset X ⊆ V with

∑
v∈X ω(v) ≤ k such that

deleting all vertices in X from G results in a d-cluster graph?

1-Cluster Vertex Deletion is equivalent to Clique, since a 1-cluster graph
is a complete graph. Hence, 1-Cluster Vertex Deletion is NP-complete.
More generally, we have the following.

Proposition 2. d-Cluster Vertex Deletion is NP-complete for any con-
stant integer d.

718 F. Hüffner et al.

3.1 An O(3k + n3) Time Algorithm

We start with describing a simple search tree algorithm for weighted d-Cluster

Vertex Deletion parameterized by the weight k of a solution set. In the
search tree, we branch on induced P3’s until the graph is a cluster graph, and
then remove surplus clusters in case the graph contains more than d clusters.
Before starting the search tree procedure, we perform data reduction. The subse-
quent problem kernel result makes use of the corresponding result for 3-Hitting

Set [2].

Theorem 4. Weighted d-Cluster Vertex Deletion admits a problem ker-
nel containing O(k3) vertices, and it can be found in O(n3) time.

After kernelization, we perform a search tree procedure. We branch into three
cases to destroy a P3 by vertex deletion, deleting a different vertex in each
branch. Since the minimum vertex weight is 1, the parameter is reduced by at
least 1 in each search tree branch. Let k′ be the sum of the weights of the vertices
that may still be removed at a given search tree node. Branching is performed
as long as the graph contains a P3 and k′ ≥ 1. If k′ < 1, and the graph still
contains a P3, then we have not found a d-CVD set of weight at most k and
we cannot remove further vertices. If otherwise the graph contains no P3, then
it is a cluster graph. Let S be the set of vertices that were removed so far. We
distinguish four cases.

1. k′ < 0. The weight of S exceeds k. Therefore, no solution was found.
2. G\S comprises less than d clusters. We can discard S, since S is not a d-CVD

set and no superset of S is a d-CVD set.
3. G \ S comprises more than d clusters. We compute the sum of the vertex
weights for all remaining clusters, and remove a cluster with minimum weight
until either G\S is a d-cluster graph (then Case 4 applies) or k′ < 1 (no solution
set was found in this search tree branch).
4. G \ S is a d-cluster graph. In this case, S is a d-CVD set of weight at most k.
Clearly, this search tree procedure finds a d-CVD set of minimum weight, since it
explores all possibilities to destroy the P3’s of the graph and afterwards optimally
removes surplus clusters (in Case 3). Below, we bound the running time of the
described algorithm.

Theorem 5. Weighted d-Cluster Vertex Deletion can be solved in run-
ning time O(3k + n3).

3.2 An O(1.40k · k3d + n3) Time Algorithm

Now we present an algorithm that solves weighted d-Cluster Vertex Dele-

tion via the computation of minimum weight vertex covers.4

The idea is to try all independent sets of size d and to solve weighted d-
Cluster Vertex Deletion for the case that these vertices are not removed

4 A vertex cover of a graph is a set C of graph vertices such that every graph edge
has at least one endpoint in C.

Fixed-Parameter Algorithms for Cluster Vertex Deletion 719

(a) The original
graph G with two non-
adjacent permanent
vertices.

(b) After Rule 4.

(c) The graph G′ with a
vertex cover X (marked
with circles).

(d) The 2-cluster graph
after the removal of X.

Fig. 3. Example of the algorithm for Weighted 2-Cluster Vertex Deletion when
a size-2 independent set of vertices that cannot be deleted is given. Black vertices are
permanent.

from the graph. Since in a d-cluster graph any set of d vertices from d different
clusters forms an independent set, at least one of the independent sets of size d
must be a set of vertices that remain in the graph.

Suppose that such an independent set D of size d is given. We call the vertices
in D permanent. In the following, we describe how to compute the minimum
weight d-CVD set of such a graph; an example is shown in Fig. 3. First, we
perform the following reduction rule.

Reduction Rule 4. Delete all vertices from the graph that are not adjacent to
any vertex in D and all vertices that are adjacent to more than one vertex in D.

The correctness of Rule 4 is obvious; an example of its application is given
in Fig. 3b. For each deleted vertex v, we decrease k by ω(v). Let G be a graph
with a size-d independent set of permanent vertices after application of Rule 4.
All non-permanent vertices of G are adjacent to exactly one permanent vertex.
To produce a cluster graph, we also have to ensure that all neighbors of a per-
manent vertex are adjacent, and neighbors of different permanent vertices are
non-adjacent. These two attributes can be encoded into a graph G′ such that a
vertex cover of G′ is a vertex set whose removal establishes the attributes in G.
We construct the graph G′ from G as follows: For any pair u, v of non-permanent
vertices that is adjacent to the same permanent vertex we do the following: if u
and v are adjacent, then remove the edge {u, v}; otherwise, insert the edge {u, v}.
Furthermore, remove all permanent vertices. After this, we have obtained G′ (for
an example of this construction see Fig. 3c).

In the following lemma, we show that a vertex cover of G′ is a d-CVD set
of G; an example of this equivalence is shown in Figures 3c and 3d.

720 F. Hüffner et al.

Lemma 3. Let G be a graph with a size-d independent set of permanent vertices
that is reduced with respect to Rule 4 and G′ a graph constructed as described
above. Then, a vertex set X is a vertex cover of G′ iff X is a d-CVD set of G.

We now bound the running time of computing a d-CVD set of a graph, once a
size-d independent set that may not be deleted is given. It fundamentally relies
on a fixed-parameter algorithm for weighted Vertex Cover [17].

Lemma 4. Let G = (V, E) be a graph and D ⊆ V an independent set of size d.
A minimum weight d-CVD set of G of weight at most k that does not delete any
vertex v ∈ D can be computed in O(1.40k + n2) time.

Combining this approach with the kernelization algorithm from Theorem 4, we
achieve the following running time.

Theorem 6. Weighted d-Cluster Vertex Deletion can be solved in run-
ning time O(1.40k · k3d + n3).

For the unweighted case, we can apply the current fastest algorithm for un-
weighted Vertex Cover by Chen et al. [5], yielding an improved running time.

Theorem 7. Unweighted d-Cluster Vertex Deletion can be solved in run-
ning time O(1.28k · k3d + n3).

3.3 An O(1.84k+d + n3) Time Algorithm

First, we apply the kernelization algorithm from Theorem 4 that produces a
problem kernel consisting of O(k3) vertices. Next, we perform a search tree
algorithm that branches on forbidden subgraphs. For a vertex in a forbidden
subgraph, we have two choices: either we have to delete this vertex, or this vertex
is one of the remaining vertices in the d-cluster graph. Whenever a vertex v is
deleted, the combined parameter k + d decreases by ω(v) ≥ 1. Furthermore,
explicitly not deleting a vertex means that we assign a cluster to this vertex.
Again, we call such a vertex permanent. If the permanent vertex does not have
any neighbors that are marked as permanent, then we have assigned a new
cluster. Hence, k + d also decreases by 1.

Let k′ be the sum of the weights of the vertices that may still be removed at a
given search tree node and d′ the number of clusters that may still be assigned.
Before branching, we perform the following data reduction rule.

Reduction Rule 5. If G contains a P3 with two permanent vertices u, v and
one non-permanent vertex w, then remove w from G and set k′ := k′ − ω(w).

Clearly, if k′ < 1, then we cannot remove any vertices and either the graph is
already a d-cluster graph or this particular branch of the search tree is a dead
end. Furthermore, if d′ = 0, then we have assigned all clusters. This means that
there is an independent set of d permanent vertices. By Lemma 4, we can find
a d-CVD set of such a graph in O(1.40k +k6) = O(1.40k) time. In the following,
we sketch the branching rules in case k′ ≥ 1 and d′ > 0. After application
of Reduction Rule 5, every P3 contains at most one permanent vertex.

Fixed-Parameter Algorithms for Cluster Vertex Deletion 721

First, we branch on P3’s that consist of vertices that are not adjacent to
permanent vertices. If such a P3 does not exist, then we branch on P3’s that
contain a permanent vertex u that is not the middle vertex of the P3. Next,
we branch on isolated clusters that do not contain permanent vertices. Finally,
we show that if none of the other cases applies, then we can find a minimum
weight d-CVD set of the graph by computing a minimum weight vertex cover.

Theorem 8. Weighted d-Cluster Vertex Deletion can be solved in run-
ning time O(1.84k+d + n3).

4 Outlook

Are there any nontrivial polynomial-time approximation algorithms for Clus-

ter Vertex Deletion (weighted and unweighted)? Moreover, the exponential
upper bounds for our search-tree based algorithms should be improvable. More
importantly, for the unweighted case of Cluster Editing, O(k)-vertex prob-
lem kernels are known [7, 12], whereas correspondingly for Cluster Vertex

Deletion only an O(k2)-vertex kernel is known. Also, improving the O(k3)-
vertex problem kernel for the weighted case would be desirable. Finally, all our
results are worst-case estimates. Practical tests based on algorithm engineering
seem promising.

Acknowledgments. We thank the anonymous LATIN referees for pointing out
some inconsistencies in the submitted manuscript and for other comments that
have improved the presentation of this paper.

References

[1] Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne,
F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer,
Heidelberg (2007)

[2] Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275.
Springer, Heidelberg (2006)

[3] Ailon, N., Charikar, M., Newman, A.: Proofs of conjectures in Aggregating in-
consistent information: Ranking and clustering. Technical Report TR-719-05, De-
partment of Computer Science, Princeton University (2005)

[4] Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: PEACE: Parameterized and
exact algorithms for cluster editing. Manuscript, Lehrstuhl für Bioinformatik,
Friedrich-Schiller-Universität Jena (September 2007)

[5] Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

[6] Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The clus-
ter editing problem: Implementations and experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Hei-
delberg (2006)

722 F. Hüffner et al.

[7] Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameter-
ized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT
2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

[8] Fernau, H.: Parameterized algorithms for hitting set: The weighted case. In: Cala-
moneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp.
332–343. Springer, Heidelberg (2006)

[9] Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters.
Theory of Computing 2, 249–266 (2006)

[10] Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–
347 (2004)

[11] Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–
392 (2005)

[12] Guo, J.: A more effective linear kernelization for cluster editing. In: Chen, B., Pa-
terson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer,
Heidelberg (2007)

[13] Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-
parameter algorithms. The Computer Journal 51(1) (2008)

[14] Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO
Recherche Opérationnelle 31(1), 45–66 (1997)

[15] Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)

[16] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford
(2006)

[17] Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for
weighted vertex cover. Journal of Algorithms 47(2), 320–331 (2003)

[18] Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to
parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IW-
PEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006)

[19] Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truß, A., Böcker, S.: Exact
and heuristic algorithms for weighted cluster editing. In: Proc. 6th CSB. Com-
putational Systems Bioinformatics, vol. 6, pp. 391–401. Imperial College Press
(2007)

[20] Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Re-
search Letters 32(4), 299–301 (2004)

[21] Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(1-2), 173–182 (2004)

[22] Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and
Related Problems. PhD thesis, Department of Computer and Information Science,
Linköpings universitet (2007)

[23] van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation

and other ranking and clustering problems. In: Proc. 5th WAOA, LNCS. Springer,

Heidelberg (to appear, 2007)

Paths and Trails in Edge-Colored Graphs

A. Abouelaoualim1, K. Ch. Das1, L. Faria2,
Y. Manoussakis1, C. Martinhon3, and R. Saad4

1 University of Paris-XI, LRI, Bât. 490, 91405 Orsay Cedex, France�

abouela@lri.fr, kinkar@mailcity.com, yannis@lri.fr
2 Estadual Univ. of Rio de Janeiro, Dept. of Math., São Gonçalo, RJ, Brazil

luerbio@cos.ufrj.br
3 Fluminense. Fed. Univ., Instit. of Comput., Niterói, RJ, 24210-240, Brazil��

mart@dcc.ic.uff.br
4 114/40 rue Charles Albanel, Gatineau (QC) J8Z 1R2, Canada

rachid−saad2003@yahoo.com

Abstract. This paper deals with the existence and search of Properly
Edge-Colored paths/trails between two, not necessarily distinct, vertices
s and t in an edge-colored graph from an algorithmic perspective. First
we show that several versions of the s − t path/trail problem have poly-
nomial solutions including the shortest path/trail case. We give polyno-
mial algorithms for finding a longest Properly Edge-Colored path/trail
between s and t for some particular graphs and characterize edge-colored
graphs without Properly Edge-Colored closed trails. Next, we prove that
deciding whether there exist k pairwise vertex/edge disjoint Properly
Edge-Colored s − t paths/trails in a c-edge-colored graph Gc is NP-
complete even for k = 2 and c = Ω(n2), where n denotes the num-
ber of vertices in Gc. Moreover, we prove that these problems remain
NP-complete for c-colored graphs containing no Properly Edge-Colored
cycles and c = Ω(n). We obtain some approximation results for those
maximization problems together with polynomial results for some par-
ticulars classes of edge-colored graphs.

Keywords: Edge colored graphs, connectivity, properly edge-colored
paths, trails and cycles.

1 Introduction, Notation and Terminology

In the last few years a great number of problems have been dealt with in terms
of edge-colored graphs for modeling purposes as well as for theoretical investiga-
tion [3,6,7,19]. Previous work on the subject has focused on the determination of
particular Properly Edge-Colored subgraphs, such as Hamiltonian or Eulerian
configurations, colored in a specified pattern [2,4,5,8,18,21,23], that is, subgraphs
such that adjacent edges have different colors. Our first aim in that respect was to
extend the graph-theoretic concept of connectivity to colored graphs with a view
� Sponsored by French Ministry of Education.

�� Sponsored by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico-CNPq.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 723–735, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

724 A. Abouelaoualim et al.

to gaining some insight into our problem from Menger’s Theorem in particular.
In other words, we intended to define some sort of local alternating connectivity
for edge-colored graphs. Local connectivity is a local parameter. For two given
vertices x and y, it is the maximum number of (edge-disjoint or vertex-disjoint)
paths between them. By contrast, connectivity is a global parameter defined
to be the minimum number over all x, y of their local connectivity’s. Difficulties
arose, however, from local connectivity being not polynomially characterizable in
edge-colored graphs, as can easily be seen. Thus, there can be no counterpart to
Menger’s Theorem as such, and even the notion of a connected component as an
equivalence class does not carry over to edge-colored graphs since the concatena-
tion of two properly edge-colored paths is not necessarily properly edge-colored.
We settled then for some practical and theoretical results, herein presented,
which deal with the existence of vertex-disjoint paths/trails between given ver-
tices in c-edge-colored graphs. Most of those path/trail problems happen to be
NP-complete, which thwarts all attempts at systematization.

Formally, let Ic = {1, 2, . . . , c} be a set of given colors, c ≥ 2. Throughout
the paper, Gc will denote an edge-colored simple graph such that each edge is in
some color i ∈ Ic and no parallel edges linking the same pair of vertices occur.
The vertex and edge-sets of Gc are denoted by V (Gc) and E(Gc), respectively.
The order of Gc is the number n of its vertices. The size of Gc is the number m of
its edges. For a given color i, Ei(Gc) denotes the set of edges of Gc colored i. For
edge-colored complete graphs, we write Kc

n instead of Gc. If Hc is a subgraph of
Gc, then N i

Hc(x) denotes the set of vertices of Hc, linked to x by an edge colored
i. The colored i − degree of x in Hc, denoted by di

Hc(x), is |N i
Hc(x)|, i.e., the

cardinality of N i
Hc(x). An edge between two vertices x and y is denoted by xy,

its color by c(xy) and its cost (if any) by cost(xy). The cost of a subgraph is the
sum of its edge costs. A subgraph of Gc containing at least two edges is said to
be Properly Edge-Colored if any two adjacent edges in this subgraph differ in
color. A Properly Edge-Colored path does not allow vertex repetitions and any
two successive edges on this path differ in color. A Properly Edge-Colored trail
does not allow edge repetitions and any two successive edges on this trail differ
in color. However, note that the edges on this trail need not form a properly
edge-colored subgraph since we can have adjacent and not successive edges with
the same color. The length of a path/trail is the number of its edges. Given two
vertices s and t in Gc, we define a Properly Edge-Colored s − t path/trail (or
just, s − t path/trail for short) to be a path/trail with end-vertices s and t.
Sometimes s will be called the source, and t the destination of the path/trail. A
Properly Edge-Colored path/trail is said to be closed if its endpoints coincide,
and its first and last edges differ in color. A closed Properly Edge-Colored path
(trail) is usually called a Properly Edge-Colored cycle (closed trail).

Given a digraph D(V, A), we denote by �uv an arc of A, where u, v ∈ V . In
addition, we define N+

D (x) = {y ∈ V : �xy ∈ A} the out-neighborhood of x in D,
and by N−

D (x) = {y ∈ V : �yx ∈ A} the in-neighborhood of x in D. Finally, we
represent by ND(x) = N+

D (x) ∪ N−
D (x) the in-out-neighborhood of x ∈ V (D) (or

just neighborhood for short). Also, given an induced subgraph Q of a non colored

Paths and Trails in Edge-Colored Graphs 725

graph G, a contraction of Q in G consists of replacing Q by a new vertex, say
zQ, so that each vertex x in G − Q is connected to zQ by an edge, if and only if,
there exists an edge xy in G for some vertex y in Q.

This paper is concerned with algorithmic issues regarding various trail/path
problems between two given vertices s and t in Gc. First, we consider the s − t
path/trail version problem whose objective is to determine the existence or
not of an arbitrary Properly Edge-Colored s − t path/trail in Gc. Polynomial
algorithms are established for such problems as the Shortest Properly Edge-
Colored path/trail, the Shortest Properly Edge-Colored cycles/closed trails and
the Longest Properly Edge-Colored path/trail for a particular class of instances.
Actually, we show that all these results may be derived from the Szeider’s Algo-
rithm for the properly edge-colored s−t paths. We also characterize edge-colored
graphs without Properly Edge-Colored closed trails. Next, we deal with the Max-
imum Properly Vertex Disjoint Path and Maximum Properly Edge Disjoint Trail
problems (respectively, mpvdp and mpedt for short), whose objective is to find
the maximum number of Properly Edge-Colored vertex-disjoint paths (respec-
tively, edge-disjoint trails) between s and t. Although these problems can be
solved in polynomial time in general non-colored graphs, most of their instances
are proved to be NP-complete in the case of edge-colored graphs. In particular
we prove that, given an integer k ≥ 2, deciding whether there exist k Prop-
erly Edge-Colored vertex/edge disjoint s − t paths/trails in Gc is NP-complete
even for k = 2 and c = Ω(n2). Moreover, for an arbitrary k we prove that
these problems remain NP-complete for c-colored graphs containing no Properly
Edge-Colored cycles/closed trails and c = Ω(n). We show a greedy procedure for
these maximization problems, through the successive construction of Properly
Edge-Colored shortest s − t paths/trails. This is a straightforward generaliza-
tion of the greedy procedure to maximize the number of edge or vertex disjoint
paths between k pair of vertices in non-colored graphs (see [17,15] for details).
Similarly, we obtain an approximation performance ratio. We finish the paper
exhibiting a polynomially solvable class of instances for the related maximization
problems.

The following two results will be used in this paper. The first result, ini-
tially proved by Grossman and Häggkvist [14] for 2-edge-colored graphs and
generalized by Yeo [23], characterizes c-edge-colored graphs without Properly
Edge-Colored cycles.

Theorem 1. (Yeo) Let Gc be a c-edge-colored graph, c ≥ 2, such that every
vertex of Gc is incident with at least two edges colored differently. Then either
Gc has a Properly Edge-Colored cycle or for some vertex v, no component of
Gc − v is joined to v by at least two edges in different colors.

In terms of edge-colored graphs, Szeider’s main result [20] on graphs with pre-
scribed general transition systems may be formulated as follows:

Theorem 2. (Szeider) Let s and t be two vertices in a c-edge-colored graph Gc,
c ≥ 2. Then, either we can find a Properly Edge-Colored s− t path or else decide
that such a path does not exist in Gc in linear time on the size of the graph.

726 A. Abouelaoualim et al.

Given Gc, the main idea of the proof is based on earlier work by Edmonds (see for
instance Lemma 1.1 in [18]) and amounts to reducing the Properly Edge-Colored
path problem in Gc to a perfect matching problem in a non-colored graph de-
fined appropriately. The latter graph will be called henceforth the Edmonds-
Szeider graph and is defined as follows. Given two vertices s and t in Gc, set
W = V (Gc) \ {s, t}. Now, for each x ∈ W , we first define a subgraph Gx with
vertex- and edge-sets, respectively:

V (Gx) =
⋃

i∈Ic
{xi, x

′
i|N i

Gc(x) �= ∅} ∪ {x′′
a , x′′

b } and

E(Gx) = {x′′
ax′′

b } ∪
(⋃

{i∈Ic|x′
i∈V (Gx)}({xix

′
i} ∪ (

⋃
j=a,b{x′

ix
′′
j }))

)
.

Now, the Edmonds-Szeider non-colored graph G(V, E) is constructed as fol-
lows:G(V) = {s, t} ∪ (

⋃
x∈W V (Gx)), and

G(E) =
⋃

i∈Ic

(
{sxi|sx ∈ Ei(Gc)} ∪ {xit|xt ∈ Ei(Gc)} ∪ {xiyi|xy ∈ Ei(Gc)}

)
∪

(⋃
x∈W E(Gx)

)
.

The interesting point in the construction is that, given a particular (trivial)
perfect matching M in G \ {s, t}, a Properly Edge-Colored s − t path exists in
Gc if and only if there exists an augmenting path P relative to M between s
and t in G. Recall that a path P is augmenting with respect to a given matching
M if, for any pair of adjacent edges in P , exactly one of them is in M , with
the further condition that the first and last edges of P are not in M . Since
augmenting paths in G can be found in O(|E(G)|) linear time (see [22], p.122),
the same execution time holds for finding Properly Edge-Colored paths in Gc as
well, since O(|E(G)|) = O(|E(Gc)|).

2 The s − t Path/Trail Problem

Given two, not necessarily distinct, vertices s and t in Gc, the main question
of this section is to give polynomial algorithms for finding (if any) a Properly
Edge-Colored s − t path or trail in Gc. The Properly Edge-Colored s − t path
problem was first solved by Edmonds for two colors (see Lemma 1.1 in [18]) and
then extended by Szeider [20] to include any number of colors. Here we deal with
variations of the Properly Edge-Colored trail/path problem, i.e., the problem of
finding s − t trails, closed trails, the shortest s − t path/trail and the longest
s− t path (trail) in graphs with no Properly Edge-Colored cycles (closed trails).

2.1 Finding a Properly Edge-Colored Trail Between Two Vertices

This section is devoted to the Properly Edge-Colored s− t trail problem. Among
other results, we prove that the s − t trail problem reduces to the s − t path
problem over a new c-edge-colored graph. As the latter problem has been proved
polynomial [20], it follows that our problem is polynomial as well.

Therefore, given Gc and an integer p ≥ 2, let us consider an edge-colored
graph denoted by p − Hc (henceforth called the trail-path graph) obtained from
Gc as follows. Replace each vertex x of Gc by p new vertices x1, x2, . . . , xp.

Paths and Trails in Edge-Colored Graphs 727

Furthermore for any edge xy of Gc colored, say j, add two new vertices vxy and
uxy, add the edges xivxy, uxyyi for i = 1, 2, . . . , p all of them colored j, and finally
add the edge vxyuxy with color j′ ∈ Ic and j′ �= j. For convenience of notation,
the edge-colored subgraph of p − Hc induced by the vertices xi, vxy, uxy, yi and
associated with the edge xy of Gc will be denoted throughout by Hc

xy. Moreover
for p = 2, we write Hc instead of p − Hc.

Therefore, we have the following relation between Gc and trail-path graph Hc:

Lemma 1. (Fundamental Lemma) Consider two vertices s and t in Gc and its
associated trail-path graph p − Hc for p = �(n − 1)/2�. Then, there exists a
Properly Edge-Colored s − t trail in Gc, if and only if, there exists a Properly
Edge-Colored s1 − t1 path in p − Hc.

Proof: Assume first that there exists a Properly Edge-Colored trail, say, T =
e1e2 · · · ek between s and t in Gc, where ei are the edges of T and s is the left
endpoint of e1 while t is the right endpoint of ek. Note that, no vertices may be
visited more than p times in Gc. To see that, consider a Properly Edge-Colored
s − t trail T passing by x in Gc with the maximum possible number of cycles
through x of length 3.

Thus, to construct a Properly Edge-Colored path P between s1 and t1 in
p − Hc we consider all edges ew = xy of T and their associated subgraphs Hc

ew

in p − Hc. Now, to avoid vertex repetitions in P , we conveniently replace each
edge ew by one of the segments xivxy, vxyuxy, uxyyj (for i, j ∈ {1, . . . , p}) in Hc

ew
.

Conversely, any Properly Edge-Colored s1 − t1 path in p − Hc uses precisely
one of the sub-paths xivxy, vxyuxy, uxyyj (for some pair i, j ∈ {1, . . . , p}) in each
subgraph Hc

xy of p − Hc. Change one of these sub-paths by xy in Gc. Now it is
easy to see that a Properly Edge-Colored s1 − t1 path in p − Hc will correspond
to a Properly Edge-Colored s− t trail T in Gc where no vertices are visited more
than p times on T .

The following result is a straightforward consequence of the fundamental lemma
and its proof il left to the reader.

Theorem 3. Consider two distinct vertices s and t in a c-edge-colored graph
Gc. Then we can either find a Properly Edge-Colored s − t trail or else decide
correctly that such a trail does not exist in Gc in linear time on the size of Gc.

We conclude the section with some results on closed trails in edge-colored graphs.
In particular, we intend to characterize edge-colored graphs without Properly
Edge-Colored closed trails. Recall that the problem of checking whether Gc con-
tains no Properly Edge-Colored cycle was solved by Yeo [23] for an arbitrary
number of colors (see Theorem 1 above). The author uses the concept of a cut-
vertex separating colors, i.e., a vertex x such that all the edges between each
component of Gc − x and x are colored alike. Analogously, let e be a bridge of
Gc. We say that e separates colors, if no component of Gc −e is joined to e by at
least two edges of different colors. Thus, by introducing the concept of bridges
separating colors and using the Fundamental Lemma, we obtain the following:

728 A. Abouelaoualim et al.

Theorem 4. Let Gc be c-edge-colored graph, such that every vertex of Gc is
incident with at least two edges colored differently. Then either Gc has a bridge
separating colors or Gc has a Properly Edge-Colored closed trail.

As for the algorithmic aspects of this problem, it suffices to delete all bridges
separating colors (if any) and all vertices adjacent to edges of the same color in
Gc to test for the existence of a Properly Edge-Colored closed trail in polynomial
time. Notice that all such edges and vertices may be deleted without any Properly
Edge-Colored closed trail being destroyed. Thus, if the resulting graph is non-
empty, it will contain a Properly Edge-Colored closed trail.

2.2 Shortest Properly Edge-Colored Paths/Trails

In this section we consider shortest Properly Edge-Colored s−t paths and trails.
By associating appropriate costs with the edges of the Edmonds-Szeider non-
colored graph G(V, E), we first show how to find, if any, a shortest Properly
Edge-Colored path between (not necessarily distinct) s and t in Gc. As a con-
sequence, this procedure may be used to find a shortest Properly Edge-Colored
trail between s and t in Gc. For the shortest Properly Edge-Colored path prob-
lem, let us consider the following algorithm:
Algorithm 1: Shortest Properly Edge-Colored path

Input: A c-edge-colored graph Gc, vertices s, t ∈ V (Gc).
Output: If any, a shortest Properly Edge-Colored s − t path P in Gc.
Begin

1. Define: W = V (Gc) \ {s, t};
2. For every x ∈ W , construct Gx as defined in Section 1;
3. Construct the Edmonds-Szeider graph G associated with Gc;
4. Define: E′ = ∪x∈W E(Gx);
5. For every pq ∈ E(G) \ E′ do cost(pq) ← 1;
6. For every pq ∈ E′ do cost(pq) ← 0;
7. Find a minimum weighted perfect matching M in G (if any);
8. Use M to build a path P in Gc and return P , or say that P does not exist;

End.
Henceforth, we define the weighted graph G above as the weighted Edmonds-

Szeider graph. Intuitively, the idea in Algorithm 1 is to penalize all edges of G
associated with edges in the original graph Gc. To obtain P from M in Step 8,
we contract all subgraphs Gx of G to a single vertex x. The remaining edges
of M in this resulting non-colored graph, say G′, will define a s − t path in G′

which is associated to a Properly Edge-Colored s − t path in Gc. Notice that
all the vertices not in this s − t path in Gc are isolated, i.e., we cannot have
Properly Edge-Colored cycles containing these vertices (otherwise, M would not
be a minimum weighted perfect matching in G).

In addition, observe that the overall complexity of Algorithm 1 is dominated
by the complexity of a minimum weighted perfect matching (Step 8). Several
matching algorithms exist in the literature. See Gerards [13] for a good reference
on general matchings. Formally, we have established the following result:

Paths and Trails in Edge-Colored Graphs 729

Theorem 5. Algorithm 1 always find, if any, a shortest Properly Edge-Colored
s − t path in Gc.

Now, to solve the shortest trail problem, it suffices to use the above algorithm
as follows: Given s and t in Gc, construct the trail-path graph Hc associated
with Gc. Notice, in this case, that no vertices are visited more than twice in a
shortest Properly Edge-Colored s − t. Next, we find a shortest Properly Edge-
Colored s1 − t1 path P in Hc by Algorithm 1. Then, by using path P of Hc,
come back and construct a shortest Properly Edge-Colored s − t trail T in Gc.
Remember that each subgraph Hc

xy of Hc is associated with some edge xy of Gc.
Furthermore, observe that a Properly Edge-Colored path between xi and yj in
Hc

xy contains exactly 3 edges. Thus, in order to obtain T in Gc from P in Hc, it
suffices to replace each xi −xj path of P in Hc

xy with the corresponding edge xy
in Gc. Therefore, we obtain a shortest s − t trail with cost(T) = cost(P)/3. The
correctness of this algorithm is guaranteed by the Lemma 1 and Theorem 5.

As a final comment, we can easily adapt these ideas to find a shortest Properly
Edge-Colored cycle (closed trail) in Gc, provided that one exists. See [1] for
further details.

2.3 The Longest Properly Edge-Colored s − t Path/Trail Problem

The problem of finding the longest Properly Edge-Colored s−t path in arbitrary
c-edge-colored graphs is obviously NP-complete since it generalizes the Hamil-
tonian Path problem in non-directed graphs. Based on the maximum weighted
perfect matching problem (see [10,12] for details), we propose a polynomial time
procedure for finding the longest Properly Edge-Colored s − t path (trail) in
graphs with no Properly Edge-Colored cycles (closed trails).

Theorem 6. Assume that Gc has no Properly Edge-Colored cycles. Then, we
can always find in polynomial time a longest Properly Edge-Colored s − t path
or else decide that such a path does not exist in Gc.

Proof: Construct the weighted Edmonds-Szeder graph G and compute the max-
imum weighted perfect matching M in G (if any), otherwise, we would not have
a Properly Edge-Colored path between s and t. Now, to determine the associated
s − t path P in Gc, we construct a new non-colored graph G′ by just contract-
ing subgraphs Gx to a single vertex x. It is easy to see that G′ will contains a
(non-colored) s − t path, cycles and isolated vertices, associated respectively to
a Properly Edge-Colored s − t path, Properly Edge-Colored cycles and isolated
vertices in Gc . However, by hypothesis Gc does not contains Properly Edge-
Colored cycles. Therefore, all edges with unitary costs in M will be associated
with edges of P and vice-versa. Then, since M is a maximum weighted perfect
matching in G, the associated path P will define a longest Properly Edge-Colored
s − t path in Gc.

Observe in the longest s − t path problem above that every vertex is visited at
most once and we do not have Properly Edge-Colored cycles in Gc. However, to

730 A. Abouelaoualim et al.

find a longest Properly Edge-Colored s−t trail we do not know how many times a
given vertex x ∈ V (Gc)\{s, t} will be visited. Nonetheless, we can construct the
trail-path graph p−Hc for p = �(n−1)/2� (associated to Gc) and then compute
the longest Properly Edge-Colored s1 − t1 trail in p − Hc. Formally, we have:

Theorem 7. Let Gc be a c-edge-colored graph with no Properly Edge-Colored
closed trails and two vertices s, t ∈ V (Gc). Then, we can always find in polyno-
mial time, a longest Properly Edge-Colored s − t trail in Gc, provided that one
exists.

Notice in the Theorem 7 that, since Gc does not contain Properly Edge-Colored
closed trails, the associated trail-path graph p − Hc will not contains Properly
Edge-Colored closed cycles and the Theorem 6 may be applied after changing
Gc by p − Hc. The details are left to the reader.

3 The k-Path/Trail Problem

Let k-pvdp and k-pedt be the decision versions associated respectively with
Maximum Properly Vertex Disjoint Path (mpvdp) and the Maximum Properly
Edge Disjoint Trail (mpedt) problems, i.e., given a c-edge-colored graph Gc, two
vertices s, t ∈ V (Gc) and an integer k ≥ 2, we want to determine if Gc contains at
least k Properly Edge-Colored vertex disjoint paths (respectively, edge disjoint
trails) between s and t. We can show that both k-pvdp and k-pedt are NP-
complete even for k = 2 and c = Ω(n2). In particular, in graphs with no properly
colored cycles (respectively, closed trails) and c = Ω(n) colors, we can prove that
k-pvdp (respectively, k-pedt) is NP-complete for an arbitrary k ≥ 2. Next, at
the end of the section, we establish some approximation results and polynomial
algorithms for special cases of both mpvdp and mpedt problems.

3.1 NP-Complete Results for General Graphs and Graphs with no
Properly Edge-Colored Cycles (Closed Trails)

The Theorem 8 stated below guarantees that both 2-pvdp and 2-pedt are NP-
complete for 2-edge-colored graphs. In view of that theorem, let us first describe
two auxiliary results concerning directed cycles and closed trails in (non-colored)
digraphs. Let u and v be two fixed vertices in a digraph D. Deciding if D contains
or not a directed cycle containing both u and v (represented here by dc, for short)
is known to be NP-complete [9]. We can prove that deciding if D contains or
not a directed closed trail containing both u and v is also NP-complete (see [1]
for details). We denote this last problem by Directed Closed Trail (dct). Now,
using both dc and dct problems we prove the following result:

Theorem 8. Both the 2-pvdp and 2-pedt problems are NP-Complete for 2-
edge-colored graphs.

Proof: We can easily check in polynomial time that both 2-pvdp and 2-pedt

problems are in NP. To show they are NP-hard, we propose polynomial time

Paths and Trails in Edge-Colored Graphs 731

reductions from the dc and dct problems, respectively. Consider two vertices
u and v in a digraph D . We show how to construct in polynomial time, a 2-
edge-colored graph Gc and a pair of vertices a, b ∈ V (Gc), such that there is
a direct cycle (closed trail) containing u and v in D, if and only if, there are
2 vertex-disjoint a − b paths (2-edge-disjoint a − b trails) in Gc. Let us first
define from D another digraph D′ by replacing u by two new vertices s1, s2 with
N−

D′(s2) = N−
D (u), N+

D′(s1) = N+
D(u). Similarly replace t1, t2 and N−

D′(t2) =
N−

D (v), N+
D′(t1) = N+

D (v). Finally, add the arcs (s2, s1) and (t2, t1) in D′. Now
in order to define Gc replace each arc �xy of D′ by a colored segment xzy where z
is a new vertex and edges xz, zy are on colors red and blue, respectively. Finally,
we define z = a for z between s1 and s2, and z = b for z between t1 and t2.
Observe now that there is a directed cycle (directed closed trail) containing u
and v in D, if and only if, there are two vertex-disjoint Properly Edge-Colored
a − b paths (Properly Edge-Colored edge-disjoint a − b trails) in Gc.

Intuitively speaking, note that both 2-pvdp and 2-pedt problems became easier
when 3 colors or more are considered (an extreme case is when all edges of Gc

have different colors). As a consequence of that, an interesting question is to
study the NP-completeness of these problems for graphs with many colors. Thus,
we have established the following result (proved in [1]):

Theorem 9. Both 2-pvdp and 2-pedt problems remain NP-complete even for
arbitrary graphs with Ω(n2) colors.

In addition, we can prove that k-pvdp (respectively, k-pedt) for k ≥ 2, remains
NP-complete even for 2-edge-colored graphs with no Properly Edge-Colored cy-
cles (respectively, closed trails). Recall that, as discussed in previous sections, the
existence or not of Properly Edge-Colored cycles or closed trails in edge-colored
graphs may be checked in polynomial time. The next result was initially based
on some ideas similar to those used by Karp [16] for the Discrete Multicommod-
ity Flow problem for non-oriented (and non-colored) graphs (usually known in
the literature as the Vertex Disjoint Path problem).

Theorem 10. Let Gc be a 2-edge-colored graph without Properly Edge-Colored
cycles (respectively, closed trails). Given two vertices s, t of V (Gc) and an integer
k ≥ 0, to decide if there exist k Properly Edge-Colored vertex-disjoint s− t paths
(respectively, edge-disjoint s − t trails) in Gc is NP-complete.

Similarly to Theorem 9, we can prove that both k-pvdp and k-pedt problems re-
main NP-complete even for c-edge-colored graph without Properly Edge-Colored
cycles (respectively, closed trails) and Ω(n) colors (see [1] for details).

3.2 Some Approximation and Polynomial Results

In this section, we describe greedy procedures for both mpedt and mpvdp,
based in the determination of shortest Properly Edge-Colored s − t trails (re-
spectively s−t paths). Their performance ratio are based on the same arguments

732 A. Abouelaoualim et al.

used for the Edge/Vertex Disjoint Path problem between k pairs of vertices
in non-directed graphs [15,17] and are omitted here. We conclude this section
by presenting some polynomial results for some particular instances of both
problems.

At each steep of the greedy procedure for the mpedt problem, we find a
shortest properly edge-colored s − t trail T in Gc . We then delete all edges in
this trail and repeat the process until no s − t trails are found. We denote this
procedure by Greedy-ED, for short.

Now consider the following definitions: we say that a trail T1 hits a trail T2,
or equivalently, that T2 is hitted by T1, if and only if T1 and T2 share a common
edge. If Γ denotes the set of all Properly Edge-Colored s − t trails, we define
I ⊆ Γ as the subset of trails obtained by the greedy procedure and J ⊆ Γ the
subset of trails associated to an optimal solution. Then, we have the following:

Theorem 11. Algorithm Greedy-ED has performance ratio equal to O(1√
m

).

In order to give some idea about the determination of the value
√

m above,
suppose that a trail T1 hits k trails of J \ I1 at the first step of the Greedy-ED.
Note that, one edge of T1 can hit at most one other trail of J and therefore T1

has length at least k. Since T1 is a shortest s − t trail, all other trails in J \ I1

also have at least k edges. Therefore, k2 ≤ m, so k =
√

m. This idea may be
inductively applied for the remaining steps of the greedy procedure.

Note that we can easily modify the Greedy-ED to solve the mpvdp. In this
case, after the determination of a shortest s−t path P in Gc, it suffices to remove
all vertices belonging to P \{s, t}. We repeat this process until no Properly Edge-
Colored s − t paths are found. We call this new procedure Greedy-VD. Using
the same ideas as described in Theorem 11, we can prove that Greedy-VD has
performance ratio equal to O(1/

√
n) for the mpvdp problem.

We end this section with some polynomial results for some specific families
of graphs. To begin with, we introduce the following definition: given an edge-
colored graph Gc, we say that a cycle Cx = xa1 · · ·ajx with x �= ai for i = 1, . . . , j
is an almost properly colored cycle (closed trail) through x in Gc, if and only if
c(xa1) = c(xaj) and both paths (respectively trails) x−a1 and x−aj are properly
colored. If c(xa1) �= c(xaj), then Cx define a properly edge-colored cycle (closed
trail) through x. In the sequel, we show how to solve the mpvdp (respectively,
mpedt) problem in polynomial time for graphs containing no properly or almost
properly colored cycles (respectively, closed trails) through s or t. Notice that
to check if an edge-colored graph Gc contains or not a properly or an almost
properly cycle (closed trail) through x, it suffices to define an auxiliary graph
Gc

x obtained from Gc by replacing x with two new vertices xa and xb and setting
NGc

x
(xa) = NGc(x) and NGc

x
(xb) = NGc(x). Now, using Theorem 2 (respectively,

Theorem 3) we compute, if any, a Properly Edge-Colored xa − xb path (trail)
in Gc

x. Clearly if no such xa − xb path (trail) exists in Gc
x, then there exists no

properly or almost properly edge-colored cycle (closed trail) through x in Gc.
Initially, given an integer k ≥ 1, we consider the k-pvdp (decision version

associated with the mpvdp) restricted to graphs with no (almost) Properly Edge-
Colored cycles through s or t.

Paths and Trails in Edge-Colored Graphs 733

Theorem 12. Consider an integer k ≥ 1 and a c-edge-colored graph Gc with no
(almost) Properly Edge-Colored cycles through s or t. Then, the k-pvdp problem
may be solved in polynomial time.

Proof: Suppose, w.l.o.g., that we do not have (almost) properly colored cycles
through vertex s in Gc. Notice for instance, that (almost) properly colored closed
trails through s with vertex repetitions are allowed.

If k = 1, the problem is polynomially solved by Edmonds-Szeider’s Algorithm.
For k ≥ 2, we construct an auxiliary non-colored graph G′ in the following way.
As discussed in Section 1, we first define W = V (Gc) \ {s, t}, and non-colored
graphs Gx for every x ∈ W (see the first part in the definition of the Edmonds-
Szeider’s graph). Now, define Sk = {s1, . . . , sk}, Tk = {t1, . . . , tk} and proceed
as follows:
V (G′) = Sk ∪ Tk ∪ (

⋃
x∈W V (Gx)), and

E(G′) =
⋃

j=1,...,k

(⋃
i∈Ic

(
{sjxi|sx ∈ Ei(Gc)} ∪ {xitj |xt ∈ Ei(Gc)}

))
∪

(⋃
i∈Ic

{xiyi|xy ∈ Ei(Gc)}
)

∪
(⋃

x∈W E(Gx)
)
.

Now, find a perfect matching M (if any) in G′ and contract each subgraph
Gx into a single vertex x. Let G′′ this new graph. Observe that all paths in G′′

are defined by edges belonging to M ∩ E(G′′). In addition, we cannot have a
path between si and sj in G′′ (otherwise, we would have a (an almost) properly
cycle though s in Gc). In this way, all paths in G′′ begins at vertex si ∈ Sk and
finish at some vertex tj ∈ Tk. Finally, we construct a non-colored graph G′′′ by
contracting Sk and Tk respectively to vertices s and t. In this way, note that
non-colored s − t paths in G′′′ are associated to Properly Edge-Colored s − t
paths in Gc and vice-versa. Therefore, if the construction of a perfect matching
M in G′ is possible (what is done in polynomial time), we obtain k properly
edge-colored s − t paths in Gc.

Since the perfect matching problem is solved in polynomial time, we can easily
construct a polynomial time procedure for the mpvdp in graphs with no (almost)
properly colored cycles through s or t. To do that, it suffices to repeat all the
steps described in Theorem 12 for k = 1, . . . , n−2 until some non-colored graph
G′ containing no perfect matchings is found.

Similarly, using the Fundamental Lemma and Theorem 12, we can apply the
same ideas to solve the mpedt in graphs with no (almost) properly colored
closed trails through s or t. The details are left to the reader.

4 Conclusions and an Open Problem

In this work, we have considered path and trail problems in edge-colored graphs.
We generalized some previous results concerning Properly Edge-Colored paths
and cycles in colored graphs, which allowed us to devise efficient algorithms for
finding them. On the negative side, we proved that finding k properly vertex/edge
disjoint s − t paths/trails is NP-complete even for k = 2 and c = Ω(n2). In ad-
dition, we showed that both problems remain NP-complete for arbitrary k ≥ 2
in graphs with no Properly Edge-Colored cycles (closed trails) and c = Ω(n),

734 A. Abouelaoualim et al.

which led us to investigate approximation. Finally, we showed that both mpvdp

(mpedt) are solved in polynomial time when restricted to graphs with no (al-
most) Properly Edge-Colored cycles (closed trails) through s or t. However, the
following question is left open. Is the problem below NP-complete?

Input: Given a 2-edge-colored graph Gc(V, E) with no Properly Edge-Colored
cycles, two vertices s, t ∈ V and a fixed constant k ≥ 2.
Question: Does G contains k Properly Edge-Colored vertex/edge disjoint paths
between s and t?

As a future direction, another important question is to consider the approxima-
tion performance ratio (as well as inapproximability results) for both mpvdp and
mpedt for general colored graphs or for graphs with no Properly Edge-Colored
cycles (closed trails).

References

1. Abouelaoualim, A., Das, C.K., Faria, L., Manoussakis, Y., Martinhon, C., Saad, R.:
Paths and trail in edge-colored graphs (Extended Version) Technical Report, RT-
3/07 (2007), http://www.ic.uff.br/PosGraduacao/lista relatoriosTecnicos.
php?ano=2007

2. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multi-
graphs: a survey. Discrete Mathematics 165/166, 39–60 (1997)

3. Bang-Jensen, J., Gutin, G.: Digraphs: theory, algorithms and applications.
Springer, Heidelberg (2002)

4. Benkouar, A., Manoussakis, Y., Paschos, V.T., Saad, R.: On the complexity of
some hamiltonian and eurelian problems in edge-colored complete graphs. RAIRO
- Operations Research 30, 417–438 (1996)

5. Benkouar, A., Manoussakis, Y., Saad, R.: The number of 2-edge-colored com-
plete graphs with unique hamiltonian properly edge-colored cycle. Disc. Mathe-
matics 263(1-3), 1–10 (2003)

6. Dorniger, D.: On permutations of chromosomes. Contributions of General Alge-
bra 5, 95–103 (1987)

7. Dorniger, D.: Hamiltonian circuits determining the order of chromosomes. Disc.
Appl. Math 50, 159–168 (1994)

8. Feng, J., Giesen, H.-E., Guo, Y., Gutin, G., Jensen, T., Rafiey, A.: Characterization
of edge-colored complete graphs with properly colored Hamilton paths. Journal of
Graph Theory 53(4), 333–346 (2006)

9. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoretical Computer Science 10, 111–121 (1980)

10. Gabow, H.N.: Data structures for weighted matching and nearest common ances-
tors with linking. In: Proc. SODA 1990, pp. 434–443 (1990)

11. Gabow, H.N., Maheshwari, S.N., Osterweil, L.: On two problems in the generation
of program test paths. IEEE Transactions on Software Engineering 2(3) (1976)

12. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching
problems. Journal of ACM 38, 815–853 (1991)

13. Gerards, A.M.H.: Matching, Network Models. In: Ball, M.O., Magnanti, T.L.,
Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and
Management Science, vol. 7, North Holland, Amsterdam (1995)

http://www.ic.uff.br/PosGraduacao/lista_relatoriosTecnicos.
php?ano=2007

Paths and Trails in Edge-Colored Graphs 735

14. Grossman, J., Häggkvist, R.: Properly edge-colored cycles in edge-partioned
graphs. Journal of Combinatorial Theory, Series B 34, 77–81 (1983)

15. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and
related problems. In: Proc. of the 31st Annual ACM Symposium on Theory of
Computing, pp. 19–28 (1999)

16. Karp, R.M.: On the Computational Complexity of Combinatorial Problems. Net-
works 5, 45–68 (1975)

17. Kleinberg, J.M.: Approximation algorithms for disjoint path problems, PhD. The-
sis, MIT (1996)

18. Manoussakis, Y.: Properly edge-colored paths in edge-colored complete graphs.
Discrete Applied Mathematics 56, 297–309 (1995)

19. Pevzner, P.A.: Computational molecular biology: an algorithmic approach. MIT
Press, Cambridge (2000)

20. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Ap-
plied Mathematics 126(2-3), 239–251 (2003)

21. Saad, R.: Finding a longest properly edge-colered hamiltonian cycle in an edge
colored complete graph is not hard. Combinatorics, Probability and Computing 5,
297–306 (1996)

22. Tarjan, R.E.: Data structures and network algorithms, p. 44. SIAM - Philadelphia
(1983)

23. Yeo, A.: A note on alternating cycles in edge-coloured Graphs. Journal of Combi-
natorial Theory, Series B 69, 222–225 (1997)

Efficient Approximation Algorithms for Shortest

Cycles in Undirected Graphs

Andrzej Lingas and Eva-Marta Lundell

Department of Computer Science, Lund University, 221 00 Lund, Sweden
{Andrzej.Lingas, Eva-Marta.Lundell}@cs.lth.se

Abstract. We describe a simple combinatorial approximation algorithm
for finding a shortest (simple) cycle in an undirected graph. For an undi-
rected graph G of unknown girth k, our algorithm returns with high
probability a cycle of length at most 2k for even k and 2k + 2 for odd

k, in time O(n
3
2
√

log n). Thus, in general, it yields a 2 2
3 approximation.

We study also the problem of finding a simple cycle of minimum to-
tal weight in an undirected graph with nonnegative edge weights. We
present a simple combinatorial 2-approximation algorithm for a min-
imum weight (simple) cycle in an undirected graph with nonnegative
integer edge weights in the range {1, 2, ..., M}. This algorithm runs in
time O(n2 log n log M).

1 Introduction

The girth of an undirected graph G is defined as the length of a shortest cycle in
G, or infinity if G is acyclic. The notion of girth is closely connected with other,
important characteristics of a graph, such as chromatic number, connectivity,
genus, and many more (cf. [13,14]).

The problems of determining the girth and finding a shortest simple cycle
in an undirected graph, or more generally, a minimum weight simple cycle in
an undirected graph with non-negative edge weights belong to the basic algo-
rithmic graph problems [2,3,9,12,17,26,27,28,29]. For instance, they occur in the
construction of minimum cycle bases of graphs [19,20] and the maximum cycle
packing problems [8,21,22].

In a seminal paper from 1978, Itai and Rodeh [17] showed in particular that a
shortest cycle in an undirected graph can be found in the same asymptotic time
as Boolean matrix multiplication. They also observed that the direct algorithm
for a shortest cycle consisting in running breadth first search from each vertex
has an O(nm) time behavior, where n and m are the number of vertices and
edges in the input graph respectively (see p. 413 and 415 in [17]).

Observe that by the upper bounds on the number of edges of a graph G in
terms of the girth of G established by Bollobas in [7] 1, the aforementioned direct
algorithm detects a shortest (simple) cycle of G in time O(n2+ 1

�(g−1)/2�), where

1 If a graph G on n vertices has girth ≥ 2k + 1 then it has at most n1+ 1
k edges.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 736–746, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Approximation Algorithms for Shortest Cycles 737

g is the girth of G. Already for graphs of girth greater than four this simple
combinatorial method is substantially sub-cubic and for graphs of girth greater
than six it is faster than the aforementioned algorithm for a shortest cycle due to
Itai and Rodeh based on fast matrix multiplication and running in time O(nω),
where ω < 2.376 is the exponent of square matrix multiplication.

Itai and Rodeh also modified the direct algorithm to provide a simple
quadratic-time heuristic which outputs a cycle whose length is within the mini-
mum plus one in [17].

Surprisingly enough, in spite of large number of deep and interesting papers on
related cycle problems in undirected, unweighted graphs [2,3,18,28,14,23,28,29],
the aforementioned upper time bounds from 1978 could not be subsumed. Even
more surprisingly, no substantially sub-quadratic-time constant-approximation
heuristics for a shortest cycle in an undirected graph seems to be known in the
literature.

For non-negatively edge weighted graphs on n vertices, the problem of finding
a simple cycle of minimum total edge weight is closely related to the all-pairs
shortest path problem, where the length of a path means its total edge weight
[11] Since the fastest known algorithm for the all-pairs shortest path problem
for edge weighted graphs has time complexity O(n3 log3 log n/ log2 n) [9], the
aforementioned relationship does not lead to a substantially sub-cubic algorithm
for finding a shortest cycle at present.

The situation changes if one can accept a reasonable approximation of a min-
imum weight cycle. There are several known approximation algorithms for the
all-pairs problem [31]. For instance, Kavitha et al. use the following ones to ap-
proximate a shortest cycle in order to construct an approximation of minimum
cycle basis of a graph with nonnegative edge weights in [19,20]:

- the all-pairs 2-stretch algorithm of Cohen et al. running in time 2 Õ(n3/2m1/2)
[10], where m is the number of edges, or

- the all-pairs (1 + ε)-stretch algorithm of Zwick running in time
Õ(mnω/ε log(W/ε)) [30], where W is the largest edge weight, or

- the structure of Thorup et al. for (2k−1)-approximate shortest path queries
constructible in expected time Õ(kmn1/k) [25].

Unfortunately, each of the approaches requires either substantially super-
-quadratic time or yields an approximation factor substantially larger than 2.
Almost quadratic time is known to be sufficient to achieve solely stretch 3 [10],
or more recently, stretch between 3 and 2 [4,5]. For the vast literature on the
very related problem of all-pairs shortest paths in graphs with edge weights and
their approximation the reader is referred to the excellent survey by Zwick [31],
and especially for the more recent developments to the introduction sections of
the recent papers by T. Chan (see e.g. [9]).

For the related problems of finding minimum weight (simple) cycles composed
of k edges (for a fixed k) in a graph with nonnegative edge weights and those

2 The notation �O(f(n)) stands for O(f(n) logc n) for some positive constant c.

738 A. Lingas and E.-M. Lundell

of finding minimum weight (simple) cycles in undirected graphs with vertex
weights or Euclidean edge weights, which both can be regarded as a subclass of
edge weighted undirected graphs, the reader is referred to [9,12,26,27].
Our contributions: Our main result is a simple combinatorial approximation
algorithm for finding a shortest (simple) cycle in an undirected graph (Section 2).
It combines the idea of “halting BFS” from the simple heuristic of Itai and
Rodeh with the idea of small dominating sets for large degree vertices used in
the algorithms for shortest paths with additive approximation factors from [1,15].
For an undirected graph G of unknown girth k, our algorithm returns with high
probability a cycle of length at most 2k for even k and 2k + 2 for odd k, in time
O(n

3
2
√

log n). Thus, in general, it yields a 2 2
3 approximation.

Our approximation algorithm for a shortest cycle leads also to more time-
efficient implementations of the best heuristics for maximum packing of edge
disjoint cycles as well as vertex disjoint cycles in an undirected graph, due to
Krivelevich et al. [21] and Salavatipour et al. [22], respectively.

We also study the problem of finding a shortest (simple) cycle, i.e., a sim-
ple cycle of minimum total weight, in an undirected graph with nonnegative
integer edge weights (Section 3). We apply a a similar “halting” approach to a
specially derived variant of Dijkstra’s single-source shortest paths algorithm [11]
in order to derive a 2-approximation algorithm for this problem. For an undi-
rected graph with nonnegative integer edge weights in the range {1, 2, ..., M},
our 2-approximation algorithm runs in time O(n2 log n log M).

2 The Unweighted Case

For an undirected graph G, we shall denote its girth, i.e., the minimum number
of edges in a simple cycle in G, by girth(G).

Our approximation algorithm for finding a short cycle in an unweighted graph
G combines the idea of the algorithm of Itai and Rodeh that returns a cycle of
length at most girth(G)+1 [17] with the ideas behind the algorithms for shortest
paths problems with additive approximation factors from [1].

The algorithm of Itai and Rodeh is very simple. It conducts a breadth-first
search from each vertex v of G and halts when the first non-tree edge is detected
(we shall term such a partial BFS as halting BFS). It follows that the running
time is at most quadratic. If the first non-tree edge induces a simple cycle of even
length passing through v , then this cycle is easily seen to be a shortest even
cycle passing through v in G. Therefore, if girth(G) is even, the algorithm of
Itai and Rodeh detects a shortest cycle. Also, if the first non-tree edge induces a
simple cycle of odd length passing through v then the cycle has to be the shortest
one passing through v in G. Thus, the algorithm of Itai and Rodeh may fail to
detect a shortest cycle only in the case when girth(G) is odd and it repetitively
detects shortest even cycles passing through start vertices belonging to shortest
cycles (as seen in Fig. 1).

Our approximation algorithm in part relies on the following lemma.

Efficient Approximation Algorithms for Shortest Cycles 739

b)

k/2

l

v

u

k/2

a)

−1k/2 k/2 −1

l

v

u

Fig. 1. The detection of a cycle can result in either an even cycle as in (a), or in an
odd cycle as in (b)

Lemma 1. If v is at distance l from u, and there is a simple cycle C of length k
going through v then the halting BFS from u will report a simple cycle of length
less or equal to k + 2l if k is even, and k + 2l + 1 if k is odd.

Proof. Suppose first that k is even. At most at the (l + k/2 − 1)-th level of the
BFS tree rooted at u, we are guaranteed to find a cycle. It will be either the
cycle C, or another one found while relaxing some vertex w at this level. The
distance from u to w is at most (l + k/2 − 1), so the length of the cycle reported
can be at most 2(l + k/2 − 1) + 2, i.e, at most k + 2l.

If k is odd, we will find a cycle while relaxing a vertex at the l + �k/2�-th
level, and the cycle reported will be of length at most 2(l + �k/2�) + 2, i.e., at
most 2l + k + 1. ��

A deterministic version of the following simple combinatorial fact (Remark 2.8
in [1]) lies behind the algorithms for shortest paths with additive approximation
factors from [1,15]. For our purposes, we shall use the original randomized version
in order to minimize time complexity.
Fact 1. Let H be the set of all vertices with a degree greater or equal to s, and
let β ≥ 2. A set of βs−1n ln n vertices of G chosen uniformly at random is a
dominating set for H with probability at least 1 − 1/(nβ−1).

Our algorithm ApproxUnweightedCycle is depicted in Fig. 2.

Lemma 2. For an unweighted undirected graph G of girth k and β ≥ 2, the pro-
cedure ApproxUnweightedCycle(G) outputs with probability at least 1− 1/nβ−1

a cycle of length at most 2k if k even, and of length at most 2k + 2 if k is odd.

Proof. To begin with, recall that the k-th power of a graph G = (V, E) is a
graph Gk = (V, Ek) such that (u, v) ∈ Ek if and only if there is a path of length
at most k connecting u with v in G.

Let v be a vertex belonging to a cycle of length k in G.
Suppose first that k is even. Then the halting BFS from v either will detect a

cycle of length at most k while relaxing a vertex at the k/2 − 1 level of the BFS
tree rooted at v or it will stop because of visiting nε vertices on levels 1 through
k/2. In the latter case, the vertex v has at least nε neighbors in the power graph

740 A. Lingas and E.-M. Lundell

Algorithm ApproxUnweightedCycle(G)
Input: an undirected unweighted graph G = (V, E), and a positive real ε.
Output: if G contains a cycle then a simple cycle C.

1. Perform the halting BFS from each vertex v, running at most nε

steps. If a cycle F is detected and C is either unspecified or it is a
cycle longer than F then set C to F.

2. Set D to a set of βn1−ε ln n vertices of G chosen uniformly at random.
3. For each vertex v in D, perform the halting BFS. If a cycle F is

detected and C is either unspecified or it is a cycle longer than F
then set C to F.

4. Output C.

Fig. 2. The procedure ApproxUnweightedCycle

Gk/2. It follows by Fact 1 that v is dominated by a vertex u in D in Gk/2 with
high probability. Hence, by Lemma 1, the halting BFS from u will detect a cycle
of length at most k + 2k/2, i.e., at most 2k.

The proof when k is odd is analogous. The halting BFS from v will either
detect a cycle of length at most k+1 while relaxing a vertex at the (k−1)/2 level
of the BFS tree rooted at v, or it will stop because of having visiting nε vertices
on levels 1 through (k − 1)/2+1. In the latter case v is dominated by a vertex u
in D in G(k−1)/2+1 with high probability. Hence, analogously by Lemma 1, the
halting BFS from u will detect a cycle of length at most k +2((k −1)/2+1)+1,
i.e., at most 2k + 2. ��

Lemma 3. For an unweighted undirected graph G on n vertices, Approx −
UnweightedCycle(G) runs in time O(max{n2−ε log n, n1+ε}).

Proof. The first step takes O(n1+ε) time whereas the second one can be imple-
mented in time O(n). Finally, since the set D is of size O(n1−ε log n), the third
step requires O(n2−ε log n) time. ��

By Lemmata 2 and 3, and by setting ε = (1 + log log n
log n)/2, we obtain:

Theorem 1. For β ≥ 2 and an unweighted undirected graph G on n vertices,
the procedure ApproxUnweightedCycle(G) detects with probability at least 1 −
1/nβ−1 a cycle of length at most 2girth(G) if girth(G) even, and of length at
most 2girth(G) + 2 if girth(G) is odd in time O(n

3
2
√

log n).

Corollary 1. For an unweighted undirected graph G on n vertices and β ≥
2, the procedure ApproxUnweightedCycle(G) detects with probability at least
1 − 1/nβ−1 a cycle of length at most 2 2

3girth(G).

The NP-hard problem of packing a maximum number of edge disjoint cycles in
an undirected (or directed) graph is fundamental in algorithmic graph theory

Efficient Approximation Algorithms for Shortest Cycles 741

[8,21]. Krivelevich et al. provided the best known polynomial-time approximation
heuristics for this cycle packing problem both in the undirected and directed case
[21]. For an undirected graph on n vertices, their heuristic yields an O(

√
log n)

approximation factor. Their heuristic is a combination of an earlier modified
greedy heuristic due to Caprara et al. [8] with the ordinary greedy algorithm
repetitively detecting a shortest cycle in the current graph and removing the
edges of the cycle. In all the three aforementioned heuristics the most time-
consuming step is repetitively detecting a shortest cycle in the current graph.
Caprara et al. and Krivelevich et al. do not discuss the time complexity of their
heuristics, totally concentrating on the derivation of bounds on their approxi-
mation factor in [8,21].

Interestingly, their derivation of the O(
√

log n) upper bound on the approxi-
mation factor in [21] can be trivially adapted to the situation when a constant-
approximation heuristic for a shortest cycle is used instead of an exact algorithm.
Hence, since one can pack at most m/3 edge-disjoint cycles in a graph on m
edges, we obtain the following theorem by using our approximation algorithm
for a shortest cycle in an undirected graph (Corollary 1) instead of an exact
algorithm for a shortest cycle.

Theorem 2. For α ≥ 1, with probability at least 1−1/nα, one can approximate
the problem of maximum packing of edge disjoint cycles in an undirected graph
on n vertices and m edges within a factor of O(

√
log n) in time O(mn

3
2
√

log n).

Similarly, the problem of packing a maximum number of vertex disjoint cycles
in an undirected graph is a fundamental NP-hard problem in algorithmic graph
theory [22]. Salavatipour et al. showed that this problem admits an O(log n) ap-
proximation in polynomial time [22]. Their heuristic is also based on repetitively
detecting a shortest cycle in the current graph resulting from consecutive con-
tractions (see p. 55 in [22]). Hence, our approximation algorithm for a shortest
cycle leads to a more efficient implementation of the best heuristic for maximum
packing of vertex disjoint cycles in an undirected graph too.

3 The Weighted Case

In this section, we assume that the input graph G = (V, E) has non-negative
real edge weights weight(e), e ∈ E, and the task is to find a shortest cycle in G,
i.e., a simple cycle of minimum total weight in G.

Given the close connection between the problem of finding shortest paths and
the problem of finding a shortest cycle, it is a natural question to ask whether
one could similarly halt Dijkstra’s algorithm as one can halt breadth-first search
in the unweighted case in order to obtain much faster close approximation of a
shortest (simple) cycle.

To elaborate on this question, we have to recall the key concept of edge re-
laxation from the standard Dijkstra’s algorithm [11]. For v ∈ V, let d(v) be the
current estimation of the distance from the source vertex in Dijkstra’s algorithm

742 A. Lingas and E.-M. Lundell

and let π(v) stand for the predecessor of v on a currently shortest path from the
source vertex. Then, for (u, v) ∈ E, the relaxation of (u, v) is defined as follows.

Relax (u,v)
if d(v) > d(u) + weight(u, v) then
d(v) ← d(u) + weight(u, v)
π(v) ← u

In the standard Dijkstra’s algorithm, when a new vertex u is inserted in the set
S of vertices for which the shortest distance to the source vertex s is already
determined, all edges incident to u are relaxed. Some of them can close cycles
(in the shortest-path tree spanning S) whose total weight might be much larger
than that of a shortest cycle in G.

To deal with this difficulty, we shall consider a variant of Dijkstra’s algorithm
where only a lightest among edges incident to u with the other endpoint outside
S is relaxed. To extract such an edge, we shall use a priority queue Qu for edges
incident to u. We use a standard heap implementation of our priority queue
[11]. Also, when a new vertex u is inserted into S, then a new, currently lightest
edge incident to its predecessor π(u) in S with the other endpoint outside S is
extracted from the priority queue Qπ(u). We shall term this variant of Dijkstra’s
algorithm as Priority Dijkstra, see Fig. 3.

procedure Priority Dijkstra(G, s)
Input: a graph G = (V, E) given by priority queues Qu, u ∈ V, of edges (u, v)
incident to u ordered by their weight, and a distinguished start vertex s ∈ V.
Output: for each vertex v ∈ V, its distance d(v) from s, and the predecessor π(v)
on a shortest path from s to v.

1. for v ∈ V do
(a) d(v) ← ∞;
(b) π(v) ← NIL;

2. d(s) ← 0
3. S ← ∅;
4. Q ← a priority queue of vertices ordered by d(v);
5. while Q �= ∅ do

(a) Extract a vertex u of G of minimum d(u) from Q;
(b) S ← S ∪ {u};
(c) Extract an edge (u, v) satisfying v /∈ S of minimum weight(u, v) from Qu;
(d) if (u, v) is defined then Relax(u, v);
(e) Extract an edge (π(u), v′) satisfying v′ /∈ S of minimum weight(π(u), v′)

from Qπ(u);
(f) if (π(u), v′) is defined then Relax(π(u), v′);

Fig. 3. The procedure PriorityDijkstra

Efficient Approximation Algorithms for Shortest Cycles 743

By the definition of Priority Dijkstra, the following holds:
For each u ∈ S, an edge (u, v) incident to u, where v /∈ S, of minimum weight (if
any) is relaxed, i.e., d(v) ← min{d(v), d(u)+weight(u, v)}, before the choice of
a new vertex for insertion into S.

It follows by induction on the cardinality of S that when the next vertex v is
inserted into S, it has the same value d(v), as the one inserted by the standard
Dijkstra’s algorithm, and hence, we may assume without loss of generality that
it is the same vertex as the one inserted by the standard Dijkstra’s algorithm.
Hence, analogously as for the Dijkstra algorithm, we can obtain the following
lemma.

Lemma 4. If we run Priority Dijkstra procedure on an edge weighted directed
(or, undirected) graph G = (V, E) with nonnegative weight function w and source
s then for each vertex u ∈ V after its insertion in S, d(u) is equal to the distance
from s to u, and d(v) ≤ d(u) for all v inserted into S prior to u.

Of course, the preprocessing in the form of the priority queue already requires
super-quadratic time, however as we show later it can be reused for the runs for
all starting vertices.

As for halting Priority Dijkstra(G, s) when an edge closing a cycle in the
shortest-path tree of the current S is encountered, we still face the problem that
the weight of such an edge can be much larger than that of a shortest cycle in
G passing through s.

To tackle with the latter problem, we introduce a t-bounded variant of Priority
Dijkstra, Bounded Priority Dijkstra (BPD for short), where t is a positive real.
BPD(G, s, t) simply disregards steps 5(c,d) if the currently lightest edge in Qu

has weight exceeding t−d(u). Similarly, it disregards steps 5(e,f) if the currently
lightest edge in Qπ(u) has weight exceeding t − d(π(u)).

It is easy to observe that BPD(G, s, t) computes correct distances for all
vertices u of G whose distance from s is at most t.

Now, let us modify BPD further so it halts whenever it detects an edge (u, v)
satisfying d(u) + weight(u, v) ≤ t and v ∈ S in step 5(c), or an edge (π(u), v′)
satisfying d(π(u))+weight(π(u), v′) ≤ t and v′ ∈ S in step 5(e), and reports the
simple cycle closed respectively by (u, v) or (π(u), v′) in the shortest-path tree
spanning the current S. Let HBPD denote the so modified procedure.

Lemma 5. HBPD(G, s, t) runs in time O(n log n).

Proof. Each iteration of the block under the while instruction which does not
detect a cycle takes O(log n) time (including updating Q after the relaxation of
(u, v) or (π(u), v′)). Reporting the detected cycle takes O(n) time by using the
pointer function π. ��
Lemma 6. If HBPD(G, s, t) detects a cycle then the weight of the cycle is at
most 2t.

Proof. Let (u, v) be an edge that closes the detected cycle. Then, the weight of
the cycle is at most d(u) + weight(u, v) + d(v). By the t-boundedness, we have
d(u) + weight(u, v) ≤ t. Since v already belongs to S, we have also d(v) ≤ t. ��

744 A. Lingas and E.-M. Lundell

Lemma 7. If the input graph G has a cycle of weight not exceeding t then there
is a vertex s in G such that HBPD(G, s, t) detects a cycle.

Proof. Let C be a cycle in G of weight not greater than t. By Theorem 4 in [16],
there is a vertex s and an edge (u, v) in C such that C consists of shortest, i.e.,
minimum weight, paths from s to u and v, respectively, and the edge (u, v). Run
HBPD(G, s, t). We may assume without loss of generality that HBPD(G, s, t)
never detects a cycle, thus, all vertices of G are in the final S. We may also
assume without loss of generality that v is inserted before u into S. The queue
Qu cannot be discarded before the edge (u, v) is considered and relaxed since
d(u) + weight(u, v) ≤ t. We obtain a contradiction, since when (u, v) is relaxed
the cycle C should be detected. ��
By running HBPD with all possible start vertices, we obtain the following the-
orem by Lemmata 6, 7.

Theorem 3. If G is known to contain a cycle of weight at most t, then one can
detect a cycle of weight at most 2t in G in time O(n2 log n).

Proof. By combining Lemmata 6, 7, we conclude that HBPD(G, s, t) detects a
cycle of weight at most 2t if s belongs to a cycle of weight at most t.

To recover the priority queues Qn, we can store the elements extracted from
them on corresponding separate lists and then use the lists to reinsert the el-
ements back into the queues. This modification does not alter the asymptotic
time complexity of HBPD. ��
By combining Theorem 3 with a binary search, we obtain our second main result.

Theorem 4. Let G be an undirected graph with nonnegative integer edge weights
in the range {1, 2, ..., M}. A 2-approximation to a minimum weight (simple) cycle
in G can be determined in time O(n2 log n log M).

4 Final Remarks

It is an interesting open problem whether or not there is a substantially sub-
quadratic-time c-approximation algorithm for a shortest cycle in an unweighted
undirected graph for c ≤ 2.

It is also an interesting openproblemwhether or not there is a roughly quadratic-
time c-approximationalgorithmfor aminimumweight cycle in anundirectedgraph
with nonnegative integer edge weights of polynomial size for c < 2.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast Estimation of Diameter
and Shortest Paths (Without Matrix Multiplication). SIAM J. Comput. 28(4),
1167–1181 (1999)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

Efficient Approximation Algorithms for Shortest Cycles 745

3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

4. Baswana, S., Goyal, V., Sen, S.: All-Pairs Nearly 2-Approximate Shortest-Paths
in O(n2polylog n) Time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 666–679. Springer, Heidelberg (2005)

5. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: Proc. FOCS 2006, pp. 591–602. IEEE, Los Alami-
tos (2006)

6. Berman, P., Kasiviswanathan, S.P.: Faster approximation of distances in graphs.
In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 541–
552. Springer, Heidelberg (2007)

7. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)
8. Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Al-

gorithms 48, 239–256 (2003)
9. Chan, T.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proc.

STOC 2007, pp. 590–598 (2007)
10. Cohen, E., Zwick, U.: All-pairs small-stretch paths. Journal of Algorithms 38(2),

335–353 (2001)
11. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT

Press, Cambridge (1990)
12. Czumaj, A., Lingas, A.: Finding a heaviest triangle is not harder than matrix

multiplication. In: Proc. SODA 2007, pp. 986–994 (2007)
13. Diestel, R.: Graph Theory. Springer, Heidelberg (2000)
14. Djidjev, H.: Computing the Girth of a Planar Graph. In: Welzl, E., Montanari,

U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 821–831. Springer,
Heidelberg (2000)

15. Dor, D., Halperin, S., Zwick, U.: All Pairs Almost Shortest Paths. SIAM J. Com-
puting 29, 1740–1759 (2000)

16. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal on Computing 16(2), 358–366 (1987)

17. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on
Computing 7(4), 413–423 (1978)

18. Karger, D.R., Koller, D., Phillips, S.J.: Finding the Hidden Path: Time Bounds for
All-Pairs Shortest Paths. In: Proc. FOCS 1991, pp. 560–568 (1991)

19. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A faster algorithm for Minimum
Cycle Basis of graphs. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)

20. Kavitha, T., Mehlhorn, K., Michail, D.: New Approximation Algorithms for Mini-
mum Cycle Bases of Graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, pp. 512–523. Springer, Heidelberg (2007)

21. Krivelevich, M., Nutov, Z., Yuster, R.: Approximation Algorithms for Cycle Pack-
ing Problems. In: Proc. SODA 2005, pp. 556–561 (2005)

22. Salavatipour, M.R., Verstraete, J.: Disjoint Cycles: Integrality Gap, Hardness, and
Approximation. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp.
51–65. Springer, Heidelberg (2005)

23. Schank, T., Wagner, D.: Finding, Counting and Listing all Triangles in Large
Graphs, An Experimental Study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS,
vol. 3503, pp. 606–609. Springer, Heidelberg (2005)

24. Takaoka, T.: A Faster Algorithm for the All-Pairs Shortest Path Problem and
Its Application. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS,
vol. 3106, pp. 278–289. Springer, Heidelberg (2004)

746 A. Lingas and E.-M. Lundell

25. Thorup, M., Zwick, U.: Approximate distance oracles. In: Proc. STOC 2001, pp.
183–192 (2001)

26. Vassilevska, V., Williams, R., Yuster, R.: Finding the smallest H-subgraph in real
weighted graphs and related problems. In: Proc. ICALP 2006, pp. 262–273 (2006)

27. Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n3−δ time,
with applications. In: Proc. STOC 2006, pp. 225–231 (2006)

28. Yuster, R., Zwick, U.: Finding Even Cycles Even Faster. In: Shamir, E., Abiteboul,
S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 532–543. Springer, Heidelberg (1994)

29. Yuster, R., Zwick, U.: Detecting short directed cycles using rectangular matrix mul-
tiplication and dynamic programming. In: Proc. SODA 2004, pp. 254–260 (2004)

30. Zwick, U.: All pairs shortest paths using bridging rectangular matrix multiplica-
tion. Journal of the ACM 49(3), 289–317 (2002)

31. Zwick, U.: Exact and Approximate Distances in Graphs - A survey. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

Domination in Geometric Intersection Graphs

Thomas Erlebach1 and Erik Jan van Leeuwen2,�

1 Department of Computer Science, University of Leicester,
University Road, Leicester LE1 7RH, UK

T.Erlebach@mcs.le.ac.uk
2 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

E.J.van.Leeuwen@cwi.nl

Abstract. For intersection graphs of disks and other fat objects, polynomial-time
approximation schemes are known for the independent set and vertex cover prob-
lems, but the existing techniques were not able to deal with the dominating set
problem except in the special case of unit-size objects. We present approximation
algorithms and inapproximability results that shed new light on the approxima-
bility of the dominating set problem in geometric intersection graphs. On the one
hand, we show that for intersection graphs of arbitrary fat objects, the dominat-
ing set problem is as hard to approximate as for general graphs. For intersec-
tion graphs of arbitrary rectangles, we prove APX-hardness. On the other hand,
we present a new general technique for deriving approximation algorithms for
various geometric intersection graphs, yielding constant-factor approximation al-
gorithms for r-regular polygons, where r is an arbitrary constant, for pairwise
homothetic triangles, and for rectangles with bounded aspect ratio. For arbitrary
fat objects with bounded ply, we get a (3 + ε)-approximation algorithm.

1 Introduction

We study the approximability of the minimum dominating set problem in geometric in-
tersection graphs. Given an undirected graph G = (V, E), a set D ⊆ V is a dominating
set if every v ∈ V is in D or has a neighbor in D. The aim of Minimum Dominating
Set (MDS) is to compute for a given graph a dominating set of minimum cardinality.
Although for general graphs the approximability of MDS has been settled [15,8], the
problem is open for numerous graph classes, such as geometric intersection graphs.

Geometric intersection graphs are graphs in which the vertices represent geometric
objects and two vertices are adjacent if the corresponding objects intersect. Studying
approximation algorithms for fundamental graph optimization problems on such graphs
has led to several new techniques, in particular the geometric shifting technique [17],
which can be used to obtain polynomial-time approximation schemes (PTASs) for a
number of problems, such as Maximum Independent Set and Minimum Vertex Cover
in unit disk graphs [18] and in general disk graphs [13,6,26]. These algorithms extend
to any constant number of dimensions and arbitrary fat objects (including e.g. squares
or other regular polygons in the two-dimensional case).

Interestingly, as pointed out in [13], these techniques do not seem sufficient for
handling MDS in intersection graphs of objects of different sizes. To the best of our

� Partially supported by the Dutch BSIK/BRICKS project.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 747–758, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

748 T. Erlebach and E.J. van Leeuwen

knowledge, there are no results for intersection graphs of disks, squares, etc. beyond
the (1 + lnn)-approximation ratio that can be achieved by the greedy algorithm. In
particular, we know of no constant-factor approximation algorithm or approximation
hardness results. In this paper, we address this open problem by studying the minimum
dominating set problem for intersection graphs of different types of fat objects and pro-
viding new insights into its approximability.

In Sect. 3 we present a new general approach to deriving approximation algorithms
for MDS on geometric intersection graphs. We apply it to obtain the first constant-
factor approximation algorithms for MDS on intersection graphs of r-regular polygons,
of pairwise homothetic triangles, and of rectangles of bounded aspect-ratio.

We also obtain a constant-factor approximation algorithm for MDS on disk graphs
of constant ply (see Sect. 4). A surprising corollary of this is a constant integrality gap
for MDS on planar graphs. For disk graphs of bounded ply, this result can be improved
to a (3 + ε)-approximation algorithm by using a new variant of the shifting technique.
This algorithm extends to intersection graphs of arbitrary fat objects of bounded ply.

The type of fat objects considered impacts the approximability of MDS: We prove
that for n arbitrary fat objects, approximation ratio (1 − ε) ln n is not achievable for
any ε > 0, unless NP ⊂ DTIME(nO(log log n)). We also solve an open problem of
Chlebı́k and Chlebı́ková [9], who asked whether their APX-hardness results for inter-
section graphs of d-dimensional axis-parallel boxes extend to the case d = 2. We affirm
this by showing that MDS is APX-hard for rectangle intersection graphs.

1.1 Known Results

MDS in general graphs is essentially equivalent to Minimum Set Cover. For n-vertex
graphs, approximation ratio 1+lnn is achievable by a greedy algorithm, and one cannot
get ratio (1 − ε) ln n for any ε > 0, unless NP ⊂ DTIME(nO(log log n)) [15,8].

Even though geometric intersection graphs have properties exploitable to approxi-
mate several problems [13,6,26], only few approximation algorithm are known for MDS
in such graphs. For unit disk graphs, Marathe et al. [22] gave a constant-factor approx-
imation algorithm, before a PTAS was presented by Hunt et al. [18] and Nieberg et al.
[25]. MDS in unit disk graphs seems harder in the weighted than in the unweighted
case, but has a constant-factor approximation algorithm by Ambühl et al. [2].

On the negative side, MDS cannot have an FPTAS (unless P=NP), as it is NP-hard
for geometric intersection graphs (even for simple classes such as unit disk graphs [10]).
Chlebı́k and Chlebı́ková [9] have shown that for any d ≥ 3, Minimum Dominating Set
and several other problems are APX-hard on intersection graphs of d-dimensional axis-
parallel boxes. It follows from Marx [23] that Minimum Dominating Set cannot have
an EPTAS (Efficient PTAS) for unit square/disk graphs (unless FPT=W[1]).

Some of our algorithms use ε-nets, which were used to approximate geometric opti-
mization problems before, e.g. geometric hitting set [5,14], geometric set cover [11].

2 Preliminaries

A ρ-approximation algorithm for a minimization problem is an algorithm that runs
in polynomial time and always produces a solution whose value is at most ρ · OPT ,

Domination in Geometric Intersection Graphs 749

where OPT is the optimal objective value. The value ρ is also referred to as the ap-
proximation ratio. An algorithm that achieves approximation ratio 1 + ε, for arbitrary
ε > 0, and whose running-time is polynomial in the size of the input for any fixed ε,
is called a polynomial-time approximation scheme or PTAS. If its running-time is poly-
nomial also in 1

ε , it is called a fully polynomial-time approximation scheme or FPTAS.
A c-asymptotic fully polynomial-time approximation algorithm or c-FPTAAω is an al-
gorithm giving for any ε > 0 a feasible solution in time polynomial in 1

ε and the size
of the input, such that the objective value of the solution is at most (c + ε)OPT if the
size of the input is at least cε, where cε is a constant depending only on ε. If c = 1, it is
called an asymptotic fully polynomial-time approximation scheme or FPTASω.

2.1 ε-Nets

Our main algorithmic results rely on the availability of small ε-nets. Given a universe
U and a family S of n subsets of U (called objects), we say R ⊆ S is an ε-net for S
if any element u ∈ U covered by more than ε |S| sets in S is also covered by R (i.e.,
covered by

⋃
R). The size of the net is equal to the cardinality of R. Suppose that

for objects of a certain type (e.g. disks in the plane), we have a decomposition bound
function f(n) bounding the number of simple regions in a canonical decomposition of
the complement of the union of n such objects. Then Clarkson and Varadarajan have
proved the following result.

Theorem 1 ([11]). For any 0 < ε ≤ 1, there is an ε-net for S of size O(f(1/ε) + 1/ε).

Such a net can be found by a randomized algorithm with polynomial expected running
time. For details and a formal definition of f , we refer to [11]. By derandomizing the
algorithm using the method of conditional expectations, we obtain the following result.

Theorem 2. For any 0 < ε ≤ 1, we can find an ε-net for S of size O(f(1/ε) + 1/ε) in
time polynomial in |S|, 1/ε, and f(1/ε).

Pseudo-disks (subsets of the plane bounded by simple closed Jordan curves where each
pair of curves intersects at most twice) have a linear decomposition bound function
[19,11], giving a linear sized net.

3 Domination in Geometric Intersection Graphs

We introduce the novel notion of �-dominating sets, which we use with ε-nets to ap-
proximate geometric dominating set. Let � be a binary reflexive relation on the vertices
of a graph G = (V, E). An example, say for geometric intersection graphs, is that u � v
if the object representing u is at most as large as the object representing v. We call v ∈ V
�-larger than u ∈ V if u � v. Denote by N�(u) = {v ∈ V | (u, v) ∈ E, u � v}
the set of �-larger neighbors of u and u’s closed �-larger neighborhood by N�[u] =
N�(u) ∪ {u}.

Call a set D ⊆ V a �-dominating set if for any u ∈ V , u ∈ D or there is a �-larger
neighbor of u in D, i.e. D ∩ N�[u]
= ∅. In light of the following theorem, we will be
interested in binary reflexive relations � where the �-factor (the size of a minimum �-
dominating set divided by the size of a minimum dominating set) is at most a constant.

750 T. Erlebach and E.J. van Leeuwen

Theorem 3 (Main Theorem). Let G be the intersection graph of a set S = {su ⊆
R

d | u ∈ V (G)} of closed topological balls with decomposition bound function f . Let
� be a binary reflexive relation on the vertices of G with �-factor c1 such that for any
vertex u there exist c2 points in su jointly hitting all objects sv with v ∈ N�(u). If
the size of a minimum dominating set of G is k, then we can find in polynomial time a
dominating set of size O(f(2c1c2k) + c1c2k).

Proof. Solve the LP-relaxation of the �-dominating set problem. The integer LP is

z∗I = min
∑

u∈V xu

s.t.
∑

v∈N�[u] xv ≥ 1 (∀u ∈ V)
xu ∈ {0, 1} (∀u ∈ V).

Observe that z∗I ≤ c1k. In the relaxation, the last constraint is replaced by xu ≥ 0 (∀u ∈
V). Let x∗ be a vector attaining the optimum fractional value z∗. Since for any vertex
u all objects sv with v ∈ N�(u) can be hit by c2 points in su, each su contains a point
p such that

∑
v:p∈sv

x∗
v ≥ 1/c2.

Now construct a set S′ from S by taking x∗
u · |S|/z∗� copies of each object su.

Following the previous observation, this means that for any object s ∈ S there is a
point p in s such that at least |S|/(c2z

∗) objects of S′ contain p. Furthermore,

|S′| =
∑

u∈V x∗
u · |S|/z∗� <

∑
u∈V (1 + x∗

u · |S|/z∗) = |S| + |S|
z∗

∑
u∈V x∗

u = 2|S|.

Applying Theorem 2, we find a set R′ ⊆ S′ of size O(f(2c2z
∗)+2c2z

∗) such that any
point covered by more than |S′|/(2c2z

∗) objects of S′, and thus also any point covered
by at least |S|/(c2z

∗) objects of S′, is covered by R′. Then R′ intersects each object of
S and thus R′ is a dominating set of G. It has size

O(f(2c2z
∗) + 2c2z

∗) ≤ O(f(2c2z
∗
I) + c2z

∗
I) ≤ O(f(2c1c2k) + c1c2k).

Following Theorem 2, R′ can be found in polynomial time. ��

Hence the integrality gap1of the LP relaxation of �-MDS is O(c1f(2c2z
∗)/z∗ + c1c2).

In the remainder, we do not distinguish between a vertex v ∈ V and the geometric
object sv it represents, i.e., v can refer both to the vertex and to the geometric object.

Before we can apply Theorem 3, we need more concrete relations �. Consider the
intersection graph of a set S of closed topological balls in R

d. Define a relation �Leb

such that u �Leb v if and only if the Lebesgue measure of u is at most the Lebesgue
measure of v. Clearly, �Leb is a (total) preorder (i.e. �Leb is reflexive and transitive).
The following two easy lemmas are sufficient to show that the �Leb -factor is a constant
for many intersection graph classes. We use N(u) to denote the set {v | (u, v) ∈ E}.

Lemma 1. Let � be a binary reflexive relation on the vertices of G such that for any
vertex u a minimum �-dominating set for Uu = {v | v
� u, v ∈ N(u)} has size at
most c. Then the �-factor is at most c + 1.

The observation here is that if D is a dominating set of G and Du is a minimum �-
dominating set for Uu, then D ∪

⋃
u∈D Du is a �-dominating set. In fact, a bound on

the size of a minimum �-dominating set for Uu is only needed for vertices u appearing
in a particular minimum dominating set.

Domination in Geometric Intersection Graphs 751

Lemma 2. Let � be a total preorder on the vertices of G s.t. for any vertex u the size
of any independent set of N�(u) is bounded by c. Then the �-factor is at most c + 1.

These lemmas also hold for the fractional �-factor (the ratio of the value of the opti-
mum fractional �-dominating set and fractional dominating set). By Thm. 3, the inte-
grality gap1 of MDS is O(f(2c2c3z

∗)/z∗+c2c3) if the fractional �-factor is at most c3.

3.1 Regular Polygons

We apply Theorem 3 to give constant-factor approximation algorithms for Minimum
Dominating Set on intersection graphs of regular polygons. We assume the polygons
are pairwise homothetic: one polygon can be obtained from another by scaling and
translating (i.e. rotations are not allowed). Applying results of Kim, Kostochka, and
Nakprasit [20] (bounding sizes of independent sets in neighborhoods of larger objects)
and Lemma 2, we can show that the �Leb -factor is at most 5 for intersection graphs of
homothetic parallelograms and at most 6 for intersection graphs of homothetic copies
of any other planar convex object (including disks and regular polygons).

For even regular polygons (i.e. 2r-regular polygons), 2r points suffice to hit all �Leb -
larger neighbors of a vertex (take the corners2 of the polygon). As pairwise homothetic
regular polygons are pseudo-disks, we can apply Theorem 3 with a linear decomposi-
tion bound to yield the following.

Theorem 4. Let r > 0 be an integer. There is a polynomial-time O(r)-approximation
algorithm for Minimum Dominating Set on intersection graphs of pairwise homothetic
2r-regular polygons.

Corollary 1. Minimum Dominating Set on square intersection graphs is in APX.

Although Theorem 4 also works for intersection graphs of 2-regular polygons (i.e. in-
terval graphs), a linear-time exact algorithm exists in this case [7].

The �Leb relation does not seem sufficient to give a constant-factor approximation
algorithm for odd regular polygons, as it is not possible to hit all �Leb -larger neighbors
of a vertex by a constant number of points inside the object, even though a constant
number of points outside the object would suffice. The algorithm of Theorem 3 does
not seem to extend to this case. However, we can introduce a more restrictive relation
� such that u � v if in addition to u �Leb v, v also covers a constant fraction of
the boundary of u or covers a corner of u. For this relation, a constant number of points
inside an object suffices to hit all �-larger neighbors. We can also show it has a constant
�-factor for odd regular polygons. Detailed analysis reveals the restriction that u �Leb

v is not necessary. So for two vertices u, v ∈ V , define u �1/3 v if and only if v contains
a corner of u or v covers at least one third of a side of u. We first consider triangles.

Theorem 5. There is a polynomial-time O(1)-approximation algorithm for Minimum
Dominating Set on intersection graphs of pairwise homothetic equilateral triangles.

1 The integrality gap is the ratio of the optimum integral and optimum fractional value of an LP.
2 To disambiguate between vertices of a graph and vertices of a polygon, vertices of a polygon

will be referred to as corners.

752 T. Erlebach and E.J. van Leeuwen

w

u

vr

vt

Fig. 1. Triangles u, vt, vr , and
w of the proof of Theorem 5.
The two dots represent p and
the barycenter of w.

du

dj

Fig. 2. A cut-off disk dj

and the disks du for el-
ements u ∈ U of Theo-
rem 13

Rv
2

Rh
1

Rh
2

Rh
n

Rv
n

Pn

Rv
1

P2

P1

...
. . .

. . .

Fig. 3. The intersection graph of The-
orem 15. If (v1, v2) ∈ E, then the
shaded rectangle S1,2 is in G′.

Proof. All �1/3 -larger neighbors of a vertex can be hit by 9 points inside the triangle
(its three corners and two points equidistantly on each side). To apply the �1/3 relation
with Theorem 3, we show that the �1/3 -factor is at most 7. Let S be a set of equilateral
triangles with base parallel to the x-axis. Consider a triangle u that is not fully contained
in any other triangle of S and let U = {v | v
�1/3 u, v ∈ N(u)}. For any v ∈ U , u
does not contain a corner of v. Hence all v ∈ U must contain a corner of u. Look at
one particular corner of u, say the left corner, and let Ul ⊆ U be the set of triangles
intersecting it. Now let vt be a vertex in Ul such that the top corner of vt has the largest
distance to the altitude3 of the left corner of u. Similarly, let vr ∈ Ul be a vertex such
that the right corner of vr has the largest distance to this altitude (see Fig. 1). We claim
vt, vr, and u form a �1/3 -dominating set for Ul.

Let w be a vertex in Ul. We may assume w has no corner in vt, vr, or u. Then w
contains a corner of vt, vr, and u. Furthermore, by the choice of vt and vr, w cannot
fully contain either vt or vr, as the top (right) corner of w would be further from the
altitude than the top (right) corner of vt (vr). Triangles vt, vr, and u share a common
point p inside w (the leftmost corner of u). There must be a side of w such that p is at
least as far from this side as the barycenter4 of w. Suppose w.l.o.g. that vr protrudes this
side. Then the corner of vr in w is at least as far from this side as p, and thus at least
as far from the side as the barycenter of w. An easy calculation shows that vr covers at
least one third of the side of w.

Similarly, two triangles can be chosen for the other two corners of u. This gives a
�1/3 -dominating set for U of size at most 7. There is a minimum dominating set D
such that no triangle in D is strictly contained inside another triangle of S. As we can
find a �1/3 -dominating set for U of size at most 7 for any u not fully contained in some
other triangle of S, it follows similar to Lemma 1 that the �1/3 -factor is at most 7. ��

3 An altitude of a triangle τ is the line through a corner of τ , perpendicular to the side opposite
the corner.

4 The barycenter or centroid of a triangle is the intersection point of the three straight lines
going through a corner of the triangle and the midpoint of the opposite side.

Domination in Geometric Intersection Graphs 753

For odd regular polygons with a larger number of sides, a similar proof as in Theo-
rem 5 bounds the �1/3 -factor. However, we can do better. Define a relation �1/2 such
that u �1/2 v if and only if v contains a corner of u or v covers at least half of a side
of u. Using the �1/2 relation yields the following result.

Theorem 6. For any r ∈ Z>1, there is a polynomial-time O(r2)-approximation algo-
rithm for MDS on intersection graphs of pairwise homothetic (2r+1)-regular polygons.

Our results imply O(1)-approximation algorithms for Minimum Connected/Total Dom-
inating Set on intersection graphs of r-regular polygons, for constant r. Also the results
imply a constant bound on the integrality gap of the LP relaxation for these problems,
as the bounds on the integral �Leb -, �1/3 -, and �1/2 -factors extend easily to their frac-
tional variants by the fractional versions of Lemma 1 and 2.

3.2 More General Objects

The proof of Theorem 5 also goes through for pairwise homothetic triangles in general.
Alternatively, one can use an affine transformation to map pairwise homothetic triangles
into an equivalent set of pairwise homothetic equilateral triangles (i.e. two mapped
triangles intersect if and only if they do so in the original set) and then apply Theorem 5.

Theorem 7. There is a polynomial-time O(1)-approximation algorithm for Minimum
Dominating Set on intersection graphs of pairwise homothetic triangles.

We also consider intersection graphs of axis-parallel rectangles whose aspect-ratio (the
ratio of the length of the longer side over that of the shorter side) is bounded by an
integer constant c. It is easy to see that any rectangle with aspect-ratio at most c can
be represented as the union of at most c squares. Hence the union of n axis-parallel
rectangles of aspect-ratio at most c is also the union of cn axis-parallel squares. This
implies that the decomposition bound function is O(cn) (as squares are pseudo-disks).
Furthermore, a �Leb -larger rectangle intersecting a rectangle u must contain a corner
of u or a 1

c -fraction of a side of u. Hence O(c) points in u suffice to hit all �Leb -larger
rectangles intersecting u and the �Leb -factor is O(c). Now apply Theorem 3.

Theorem 8. For any c > 1, there is a polynomial-time O(c3)-approximation algorithm
for MDS on intersection graphs of axis-parallel rectangles with aspect-ratio at most c.

These methods do not seem to extend to intersection graphs in higher dimensions.

4 Disk Graphs of Bounded Ply

We do not know how to use the above approach to obtain a constant-factor approxima-
tion algorithm for Minimum Dominating Set in general disk graphs, even though the
�Leb -factor is 6. However, this low �Leb -factor can be used to give an approximation
algorithm if the ply of the set of disks is bounded. The ply of a set of objects is the
maximum over all points p of the number of objects strictly containing p [24].

Using Theorem 3, we can give an O(γ)-approximation algorithm for MDS on disk
intersection graphs of ply γ. Different techniques however can improve the hidden con-
stant of this result and make it explicit.

754 T. Erlebach and E.J. van Leeuwen

Theorem 9. The integrality gap of the LP relaxation of Minimum Dominating Set on
disk intersection graphs of ply γ is at most 54 · γ. If the ply is 1, the gap is at most 42.
Hence the gap of the LP relaxation of MDS on planar graphs is at most 42.

Proof (Sketch). We transform the minimum �Leb -dominating set problem on the input
graph to a Minimum Set Cover (MSC) instance in which the element frequency is at
most maxu∈V |N�Leb

[u]|. Following a result of Hochbaum [16], the integrality gap of
the MSC instance is at most the element frequency. But then the integrality gap of the
original problem is at most the fractional �Leb -factor times maxu∈V |N�Leb

[u]|. Using
an area bound, one can show that the closed �Leb -larger neighborhood of a disk in a
set of disks of ply γ has size at most 9 · γ [24]. If the ply is 1, the size is at most 7. The
theorem then follows from the fact that the fractional �Leb -factor for disk graphs is 6.

The bound for planar graphs follows immediately from the above and the fact that
planar graphs are disk graphs of ply 1 [21,24]. ��
A PTAS for MDS on planar graphs is known [3], but we are not aware of any previous
results on the integrality gap of the LP relaxation for this class of graphs.

By using Bar-Yehuda and Even’s approximation algorithm for MSC instances of
bounded element frequency [4], we can give a linear-time (54 · γ)-approximation algo-
rithm for Minimum Dominating Set on disk intersection graphs of ply γ.

We can improve on the O(γ) ratio given above by using the shifting technique. One
way is to approximate Minimum �Leb -Dominating Set.

Theorem 10. Minimum �Leb -Dominating Set on disk graphs of bounded ply, i.e. of ply
γ = γ(n) = o(log n), has an FPTASω. Hence Minimum Dominating Set on disk graphs
of bounded ply has a 6-FPTAAω.

The proof of Theorem 10 is omitted. Instead we use similar ideas to give a simpler
algorithm for Minimum Dominating Set with better approximation ratio. The algorithm
uses a new variant of the classic geometric shifting technique [17,26]. Assume the disks
in a set D are scaled such that the smallest disk has radius 1

2 . Partition the disks into
levels. A disk with radius r has level j (j ∈ Z≥0) if 2j−1 ≤ r < 2j . The level of the
largest disk is denoted by l. Define D=j as the set of disks in D having level j. Similarly,
D≥j denotes the set of disks having level at least j, and so on.

For each level j, define a grid by lines y = hk2j and x = vk2j (h, v ∈ Z) for
some k ≥ 9 (an odd multiple of 3), whose value we determine later. The grid partitions
the plane into squares of size k2j × k2j , called j-squares. A j-square is contained in
precisely one (j + 1)-square and each (j + 1)-square contains exactly four j-squares.
Let DS denote the set of disks intersecting a j-square S and Db(S) the set of disks
intersecting the boundary of S. Similarly, Di(S) = DS − Db(S) is the set of disks fully
inside S. Combinations such as Db(S)

=j should be self-explanatory. The level of a square

S is denoted j(S). Let Db =
⋃

S Db(S)
=j(S) be the set of disks intersecting the boundary

of a j-square at their level.

Theorem 11. Let D be a set of n disks of ply γ, k ≥ 9 an odd multiple of 3, and
OPT a minimum dominating set. Then in time O(k2n2 332kγ/π216kγ/π416(k+1)γ/π),
we can find a set DS ⊆ D dominating D − Db =

⋃
S Di(S)

=j(S) such that |DS | ≤
∑

S |OPTS
=j(S)|, where the union and the sum is over all squares S.

Domination in Geometric Intersection Graphs 755

The proof of this theorem is quite involved and is omitted due to space limitations.
The shifting technique is applied in the following novel way. For an integer a (0 ≤

a ≤ k − 1), a line of level j is active if it has the form y = (hk + a2l−j)2j or
x = (vk + a2l−j)2j (h, v ∈ Z). The active lines partition the plane into j-squares as
before, but are shifted w.r.t. a. However, we can still use the algorithm of Theorem 11.

Let DSa denote the set returned by the algorithm for the j-squares induced by a and
let Db

a be the set Db for these j-squares (0 ≤ a ≤ k − 1). We join three such sets to
ensure we dominate the entire graph. So let DS3

i = DS i ∪ DS i+k/3 ∪ DS i+2k/3 for
each i = 0, . . . , k/3 − 1. This is properly defined, as k is a multiple of 3. Denote the
smallest DS3

i by DS3
min.

Theorem 12. There is a 3-FPTAAω for Minimum Dominating Set on disk graphs of
bounded ply, i.e. of ply γ = γ(n) = o(log n). If γ = O(1), there is a (3 + ε)-
approximation algorithm for any fixed ε > 0.

Proof. We first show DS3
i is a dominating set of D, for any i ∈ {0, . . . , k/3 − 1}.

A level j disk is in Db
a if and only if it intersects an active line of level j for a. We

know ([26], Lemma 9) that any disk intersects an active horizontal line for at most
two (consecutive) values of a and an active vertical line for at most two (consecutive)
values of a. As k ≥ 9 is an odd multiple of 3, k/3 > 1, and thus i, i + k/3, i + 2k/3
are non-consecutive integers (modulo k). Hence any disk is in at most two of the sets
Db

i , Db
i+k/3, Db

i+2k/3. Theorem 11 shows that DSa is a dominating set for D − Db
a.

Given the previous argument, (D − Db
i) ∪ (D − Db

i+k/3) ∪ (D − Db
i+2k/3) = D. Then

DS3
i is a dominating set of D.

We now prove
∣
∣DS3

min

∣
∣ ≤ (3 + 36

k) |OPT |. A level j disk is in Db
a for at most 4

values of a ([26], Lemma 9). Therefore
∑k−1

a=0

∣
∣Db

a

∣
∣ ≤ 4 |D| and

∑k−1
a=0

∣
∣OPT ∩ Db

a

∣
∣ ≤

4 |OPT |.
Also, for fixed a, any level j disk intersects at most 4 j-squares. Hence |DSa| ≤

∑
S

∣
∣
∣OPTS

=j(S)

∣
∣
∣ ≤ |OPT | + 3

∣
∣OPT ∩ Db

a

∣
∣ and thus

1
3k

∣
∣DS 3

min

∣
∣ ≤

k/3−1∑

i=0

∣
∣DS3

i

∣
∣ ≤

k−1∑

a=0

(
|OPT | + 3

∣
∣OPT ∩ Db

a

∣
∣
)

≤ (k +12) |OPT | .

Then DS3
min ≤ (3 + 36

k) |OPT |. Choose k as the smallest odd multiple of 3 greater
than 9 and 36

ε and apply Theorem 11 to get the (3 + ε)-approximation for constant ply
and fixed ε. The 3-FPTAAω is obtained along similar lines using methods of [26]. ��

Analogously, we can obtain 3-FPTAAω’s for arbitrary fat objects of bounded ply. The
algorithms of this section extend to d-dimensional fat objects for any constant d. We
do not know if the shifting technique can be used to give a constant approximation (or
even a PTAS) for MDS on disk graphs of arbitrary ply, because (1) there is no upper
bound on the number of ‘large’ disks intersecting a j-square in the dominating set, and
(2) we cannot track which j-square is ‘responsible’ for dominating a disk intersecting
more than one j-square on its level. We avoided (1) by assuming bounded ply and (2)
by considering �Leb -dominating sets (Thm. 10), or by disregarding the domination of
disks intersecting a boundary on their level and combining three result sets (Thm. 12).

756 T. Erlebach and E.J. van Leeuwen

5 Hardness Results

The approximation schemes [6,13,26] for Maximum Independent Set and Minimum
Vertex Cover on disk intersection graphs extend easily to fat object intersection graphs.
It is unlikely that an approximation algorithm for MDS would extend this way, as on
intersection graphs of fat objects that are almost disks, MDS becomes hard to approxi-
mate. A convex subset s of R

2 is α-fat for some α ≥ 1 if the ratio between the radii of
the smallest disk circumscribing s and the largest disk inscribed in s is at most α [12].

Theorem 13. For any α > 1 and any ε > 0, MDS on α-fat object intersection graphs
is not approximable within (1 − ε) ln n, unless NP ⊂ DTIME(nO(log log n)).

Proof. Reduce from Minimum Set Cover (MSC). For instance x of MSC with universe
U and collection F = {S1, . . . , Sm} of subsets of U, construct instance y of MDS on
α-fat object intersection graphs as in Fig. 2. Each u ∈ U corresponds to a ‘small’ disk
du. Each Sj corresponds to a disk dj with the top replaced by a polyhedral structure
such that dj intersects du if and only if u ∈ Sj . Packing the du close together makes
the fatness of the construction arbitrarily close to 1. As any object dominated by a du is
also dominated by a dj for which u ∈ Sj , we have |OPTx| = |OPTy|. Constructing y
takes time polynomial in |U| and m. The theorem follows from Feige [15,8]. ��
An object has constant description complexity if it is a semialgebraic set defined by a
constant number of polynomial (in)equalities of constant maximum degree [12]. The
objects modeling the Sj are the intersection of a disk with a polyhedron (each dj can
be described by one quadratic inequality and |Sj | + 1 linear inequalities) and might not
have constant description complexity. So for constant description complexity objects,
better approximation ratios than ln n could be attained. However, we can prove APX-
hardness by reducing from Minimum k-Set Cover, the variant of MSC where |Sj | ≤ k
for any Sj ∈ F . This problem is APX-hard for k = 3 (follows e.g. from [1]). Using the
same gadget as before, the objects of Theorem 13 have constant description complexity.

Theorem 14. For any α > 1, MDS on α-fat, constant description complexity object
intersection graphs is APX-hard. Hence it has no PTAS (unless P=NP).

These results say something about intersection graphs of fat objects in general, and
of fat almost disks in particular. But we can easily prove similar results for almost
squares, almost bounded aspect ratio rectangles, almost triangles, etc. Basically, if we
slightly relax the shape constraints for a given object, Minimum Dominating Set on the
intersection graphs of such relaxed objects is hard to approximate.

The above reductions can also be used to prove the hardness of other problems,
including Minimum Connected Dominating Set and Minimum Total Dominating Set.
Furthermore, by replacing each disk du in the reductions by a point, we obtain theorems
equivalent to Theorem 13 and 14 for the ln n-hardness of Geometric Set Cover on
general α-fat objects and α-fat almost disks, almost squares, etc. and APX-hardness if
these objects have constant description complexity.

Finally, we solve an open problem of Chlebı́k and Chlebı́ková [9] by proving that
Minimum Dominating Set is APX-hard for intersection graphs of 2-dimensional boxes.
The reduction can be extended to Minimum Connected/Total Dominating Set, to ellipse
intersection graphs, and to Geometric Set Cover on rectangles and ellipses.

Domination in Geometric Intersection Graphs 757

Theorem 15. MDS on rectangle intersection graphs (MDSr) is APX-hard.

Proof. We give an L-reduction from the APX-hard [1] problem Minimum Vertex Cover
on graphs G = ({v1, . . . , vn}, E) of degree three (MVC3) to MDS in a rectangle in-
tersection graph G′. Rectangles Rh

i and Rv
i represent vertex vi, and are connected by

three plates, the largest of which is the big plate Pi (see Fig. 3). Edge (vi, vj) ∈ E for
i < j corresponds to rectangle Si,j in the intersection of rectangles Rv

i and Rh
j .

Let C be a minimum vertex cover of G and let k = |C|. Construct a set D from C
by adding Rh

i and Rv
i to D for each vi ∈ C and adding Pi for each vi
∈ C. By the

construction of D, all Rh
i , Rv

i , and all plates are dominated. As C is a vertex cover,
D dominates each Si,j . Since the graph has degree three, |C| ≥ n/4, and thus |D| ≤
2 |C| + (n − |C|) = n + k ≤ 5k.

Let D be a dominating set of G′. We can assume that D contains only rectangles
of type Rh

i , Rv
i and Pi. Construct a set C from D by adding vi to D if Rh

i or Rv
i

is in D. Because D dominates all Si,j , C is a vertex cover. Let R2[D] be the set of
rectangles for vi for which both Rh

i and Rv
i occur in D, R1[D] the set for vi for which

only one of Rh
i and Rv

i occurs in D, and P [D] the set of big plates in D. To dominate
all small plates, |P [D]|+

∣
∣R2[D]

∣
∣ /2 ≥ n. Then |D| ≥ |P [D]|+

∣
∣R1[D]

∣
∣+

∣
∣R2[D]

∣
∣ ≥

n +
∣
∣R1[D]

∣
∣ +

∣
∣R2[D]

∣
∣ /2 ≥ n + k. Hence OPTMDSr(G′) = n + k. Suppose |D| =

OPTMDSr(G′) + c, for a certain c ≥ 0. Then |D| = n + k + c and thus
∣
∣R1[D]

∣
∣ +∣

∣R2[D]
∣
∣ /2 + n ≤ n + k + c, implying |C| − OPTMV C3(G) ≤ c. ��

6 Conclusion

The immediate open question is whether Minimum Dominating Set admits a constant-
factor approximation algorithm or even a PTAS for disk graphs of arbitrary ply. The
hardness results of Sect. 5 show that for objects whose boundaries can intersect an
arbitrary number of times, MDS is very hard to approximate. On the contrary, if object
boundaries intersect at most twice (i.e. the objects are pseudo-disks), the decomposition
bound is linear and at least for cases such as r-regular polygons with constant r or
rectangles with bounded aspect-ratio, we get constant-factor approximation algorithms.
An intriguing question is whether MDS on disk graphs is harder to approximate than
for other intersection graph classes such as intersection graphs of squares, or whether
the algorithmic ideas can be extended to disks or maybe even to arbitrary pseudo-disks
(the decomposition bound starts to fail ‘naturally’ beyond pseudo-disks).

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput.
Sci. 237(1-2), 123–134 (2000)

2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for
Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs. In: Dı́az, J., Jansen,
K., Rolim, J.D., Zwick, U. (eds.) Proc. APPROX-RANDOM 2006. LNCS, vol. 4110, pp.
3–14. Springer-Verlag, Berlin/Heidelberg (2006)

3. Baker, B.S.: Approximation Algorithms for NP-Complete Problems on Planar Graphs.
J. ACM 41(1), 153–180 (1994)

758 T. Erlebach and E.J. van Leeuwen

4. Bar-Yehuda, R., Even, S.: A Linear-Time Approximation Algorithm for the Weighted Vertex
Cover Problem. J. Algorithms 2(2), 198–203 (1981)

5. Brönnimann, H., Goodrich, M.T.: Almost Optimal Set Covers in Finite VC-Dimension. Dis-
crete Comput. Geometry 14(4), 463–479 (1995)

6. Chan, T.M.: Polynomial-time Approximation Schemes for Packing and Piercing Fat Objects.
J. Algorithms 46(2), 178–189 (2003)

7. Chang, M.-S.: Efficient Algorithms for the Domination Problems on Interval and Circular-
Arc Graphs. SIAM J. Comput. 27(6), 1671–1694 (1998)

8. Chlebı́k, M., Chlebı́ková, J.: Approximation Hardness of Dominating Set Problems. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 192–203. Springer-Verlag,
Berlin/Heidelberg (2004)

9. Chlebı́k, M., Chlebı́ková, J.: The Complexity of Combinatorial Optimization Problems on
d-Dimensional Boxes. SIAM J. Discrete Math. 21(1), 158–169 (2007)

10. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit Disk Graphs. Discrete Math. 86(1–3), 165–
177 (1990)

11. Clarkson, K.L., Varadarajan, K.R.: Improved Approximation Algorithms for Geometric Set
Cover. Discrete Comput. Geometry 37(1), 43–58 (2007)

12. Efrat, A., Sharir, M.: The Complexity of the Union of Fat Objects in the Plane. Discrete
Comput. Geometry 23(2), 171–189 (2000)

13. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time Approximation Schemes for Geometric
Intersection Graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

14. Even, G., Rawitz, D., Sharar, S.: Hitting Sets when the VC-Dimension is Small. Inform.
Process. Lett. 95(2), 358–362 (2005)

15. Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM 45(4), 634–652 (1998)
16. Hochbaum, D.S.: Approximation Algorithms for the Set Covering and Vertex Cover Prob-

lems. SIAM J. Comput. 11(3), 555–556 (1982)
17. Hochbaum, D.S., Maass, W.: Approximation Schemes for Covering and Packing Problems

in Image Processing and VLSI. J. ACM 32(1), 130–136 (1985)
18. Hunt III, D.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns,

R.E.: NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric
Graphs. J. Algorithms 26(2), 238–274 (1998)

19. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the Union of Jordan Regions and Collision-
Free Translational Motion Amidst Polygonal Obstacles. Discrete Comput. Geometry 1, 59–
70 (1986)

20. Kim, S.-J., Kostochka, A., Nakprasit, K.: On the Chromatic Number of Intersection Graphs
of Convex Sets in the Plane. Electr. J. Combinatorics 11, #R52 (2004)

21. Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Ver. Sächs. Ak. Wiss. Leipzig,
Math.-Phys. Kl. 88, 141–164 (1936)

22. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple Heuristics for
Unit Disk Graphs. Networks 25, 59–68 (1995)

23. Marx, D.: Parameterized Complexity of Independence and Domination on Geometric
Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
154–165. Springer-Verlag, Berlin/Heidelberg (2006)

24. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Separators for Sphere-Packings and
Nearest Neighbor Graphs. J. ACM 44(1), 1–29 (1997)

25. Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating Set Problem in Unit Disk
Graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 296–306.
Springer-Verlag, Berlin/Heidelberg (2006)

26. van Leeuwen, E.J.: Better Approximation Schemes for Disk Graphs. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 316–327. Springer-Verlag, Berlin/Heidelberg
(2006)

An Efficient Quantum Algorithm for the Hidden

Subgroup Problem in Nil-2 Groups�

Gábor Ivanyos1, Luc Sanselme2, and Miklos Santha3

1 SZTAKI, Hungarian Academy of Sciences, H-1111 Budapest, Hungary
2 LRI, UMR 8623, Université Paris-Sud, Orsay, France, F-91405

3 CNRS–LRI, Université Paris–Sud, 91405 Orsay, France and Centre for Quantum
Technologies, National University of Singapore

Abstract. In this paper we extend the algorithm for extraspecial groups
in [12], and show that the hidden subgroup problem in nil-2 groups, that
is in groups of nilpotency class at most 2, can be solved efficiently by
a quantum procedure. The algorithm presented here has several addi-
tional features. It contains a powerful classical reduction for the hidden
subgroup problem in nilpotent groups of constant nilpotency class to the
specific case where the group is a p-group of exponent p and the sub-
group is either trivial or cyclic. This reduction might also be useful for
dealing with groups of higher nilpotency class. The quantum part of the
algorithm uses well chosen group actions based on some automorphisms
of nil-2 groups. The right choice of the actions requires the solution of
a system of quadratic and linear equations. The existence of a solution
is guaranteed by the Chevalley-Warning theorem, and we prove that it
can also be found efficiently.

1 Introduction

Efficient solutions to some cases of the hidden subgroup problem (HSP), a par-
adigmatic group theoretical problem, constitute probably the most notable suc-
cess of quantum computing. The problem consists in finding a subgroup H in a
finite group G hidden by some function which is constant on each coset of H and
is distinct in different cosets. The hiding function can be accessed by an oracle,
and in the overall complexity of an algorithm, a query counts as a single com-
putational step. To be efficient, an algorithm has to be polylogarithmic in the
order of G. While classically not even query efficient algorithms are known for
the HSP, it can be solved efficiently in abelian groups by a quantum algorithm. A
detailed description of the so called standard algorithm can be found for example
in [19]. The main quantum tool of this algorithm is Fourier sampling, based on
the efficiently implementable Fourier transform in abelian groups. Factorization
and discrete logarithm [23] are special cases of this solution.

� Research supported by the European Commission IST Integrated Project Qubit Ap-
plications (QAP) 015848, the OTKA grants T42559 and T46234, the NWO visitor’s
grant Algebraic Aspects of Quantum Computing, and the ANR Blanc AlgoQP grant
of the French Research Ministry.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 759–771, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

760 G. Ivanyos, L. Sanselme, and M. Santha

After the settling of the abelian case, substantial research was devoted to the
HSP in some finite non-abelian groups. Beside being the natural generalization of
the abelian case, the interest of this problem is enhanced by the fact, that impor-
tant algorithmic problems, such as graph isomorphism, can be cast in this frame-
work. The standard algorithm has been extended to some non-abelian groups
by Rötteler and Beth [21], Hallgren, Russell and Ta-Shma [8], Grigni, Schulman,
Vazirani and Vazirani [6] and Moore, Rockmore, Russell and Schulman [17]. For
the Heisenberg group, Bacon, Childs and van Dam [1] used the pretty good mea-
surement to reduce the HSP to some matrix sum problem that they could solve
classically. Ivanyos, Magniez and Santha [11] and Friedl, Ivanyos, Magniez, San-
tha and Sen [5] have efficiently reduced the HSP in some non-abelian groups to
HSP instances in abelian groups using classical and quantum group theoretical
tools, but not the non-abelian Fourier transform. This latter approach was used
recently by Ivanyos, Sanselme and Santha [12] for extraspecial groups.

The so far unknown complexity of two special cases of the HSP would be of
particular interest. The first one is the hidden subgroup problem in the symmet-
ric group because it contains as special instance the graph isomorphims problem.
Recently Moore, Russell and Sniady [18] have shown that no algorithm based
one a particular approach can solve the graph isomorhism problem efficiently.
The other one is the hidden subgroup problem in the dihedral group because of
its relation to certain lattice problems investigated by Regev [20].

In this work we extend the class of groups where the HSP is efficiently solv-
able by a quantum algorithm to nilpotent groups of nilpotency class at most 2
(shortly nil-2 groups). These are groups whose lower (and upper) central series
are of length at most 2. Equivalently, a group is nil-2 group if the derived group
is a subgroup of the center. Nilpotent groups form a rich subclass of solvable
groups, they contain for example all (finite) p-groups. Extraspecial groups are,
in particular, in nil-2 groups. Our main result is:

Theorem 1. Let G be a nil-2 group.Let us given an oracle f which hides the
subgroup H of G. Then there is an efficient quantum procedure which finds H.

The overall structure of the algorithm presented here is closely related to the
algorithm in [12] for extraspecial groups, but has also several additional features.
The quantum part of the algorithm is restricted to specific nil-2 groups, which
are also p-groups and are of exponent p. It consists essentially in the creation
of a quantum hiding procedure (a natural quantum generalization of a hiding
function) for the subgroup HG′ of G. The procedure uses certain automorphisms
of the groups to define some appropriate group actions, and is analogous to what
have been done in [12] for extraspecial p-groups of exponent p.

While dealing with extraspecial p-groups of exponent p basically solves the
HSP for all extraspecial groups (the case of remaining groups, of exponent p2,
easily reduces to groups of exponent p), this is far from being true for nil-2 groups.
Indeed, one of the main new features of the current algorithm is a classical
reduction of the HSP in nil-2 groups to the HSP in nil-2 p-groups of exponent
p, where moreover the hidden subgroup is either trivial or of cardinality p. In
fact, our result is much more general: we prove an analogous reduction in nil-k

An Efficient Quantum Algorithm for the Hidden Subgroup Problem 761

groups for any constant k. We believe that this general reduction might be
useful for designing efficient quantum algorithms for the HSP in groups of higher
nilpotency class.

Our second main novel feature concerns the quantum hiding procedure. While
in extraspecial groups it was reduced to the efficient solvability of a single
quadratic and a single linear equation modulo p, here we look for a nontriv-
ial solution of a homogeneous system of d quadratic and d linear equations,
where d can be any integer. The reason for this is that while in extraspecial
groups the derived subgroup is one dimensional, in nil-2 groups we have no a
priori bound on its dimension. If the number of variables is superior to the global
degree of the system then the solvability itself is an immediate consequence of
the Chevalley-Warning theorem [3,24]. In fact, we are in presence of a typical
example of Papdimitriou’s complexity class of total functions [16]: the number
of solutions is divisible by p and therefore there is always a nontrivial one. Our
result is that if the number of variables is sufficiently large, more precisely is of
O(d3), then we can also find a nontrivial solution in polynomial time.

The structure of the paper is the following. In Section 2 we shortly describe
the extension of the standard algorithm for quantum hiding procedures, and then
we discuss some basic properties of nilpotent groups, in particular nil-2 p-groups
of exponent p. Section 3 contains the description of the classical reduction of
the HSP in groups of constant nilpotency class to instances where the group
is also p-group of exponent p, and the subgroup is either trivial or cyclic of
order p (Theorem 2). Section 4 gives the description of the quantum algorithm
in nil-2 p-groups of exponent p: Theorem 3 briefly describes the reduction to
the design of an efficient hiding procedure for HG′, and Theorem 4 proves the
existence of such a procedure. Finally Section 5 gives the proof of Theorem 5, the
efficient solvability of the system of quadratic and linear equations. The proof
of Theorem 1 follows from Corollary 1 and Theorems 3 and 4.

Even if the hidden subgroup problem is hard for the symmetric group and
also for general solvable groups, it may happen that there is an efficient solution
in nilpotent groups. The works [1,12] and this paper can be considered as the
first steps in investigating the complexity of the HSP in that group family.

2 Preliminaries

2.1 Extension of the Standard Algorithm for the Abelian HSP

We will use standard notions of quantum computing for which one can consult
for example [15]. For a set X , let |X〉 = 1√

|X|
∑

x∈X |x〉. We denote by supp(|Ψ〉)
the support of |Ψ〉, that is the set of basis elements with non-zero amplitude.

The standard algorithm for the abelian HSP repeats polynomially many times
the Fourier sampling involving the same hiding function, to obtain in each iter-
ation a random element from the subgroup orthogonal to the hidden subgroup.
In fact, for the repeated Fourier samplings, the existence of a common hiding
function can be relaxed in several ways. Firstly, in different iterations different

762 G. Ivanyos, L. Sanselme, and M. Santha

hiding functions can be used, and secondly, classical hiding functions can be re-
placed by quantum hiding functions. This was formalized in [12], and we recall
here the precise definition. A set of vectors {|Ψg〉 : g ∈ G} from some Hilbert
space H is a hiding set for the subgroup H of G if:

• |Ψg〉 is a unit vector for every g ∈ G,
• if g and g′ are in the same left coset of H then |Ψg〉 = |Ψg′〉,
• if g and g′ are in different left cosets of H then |Ψg〉 and |Ψg′ 〉 are orthogonal.

A quantum procedure is hiding the subgroup H of G if for every g1, . . . , gN ∈ G,
on input |g1〉 . . . |gN〉|0〉 it outputs |g1〉 . . . |gN〉|Ψ1

g1〉 . . . |ΨN
gN

〉, where {|Ψ i
g〉 : g ∈ G} is a

hiding set for H for all 1 ≤ i ≤ N .
The following fact whose proof is immediate from Lemma 1 in [11] recasts the

existence of the standard algorithm for the abelian HSP in the context of hiding sets.
Fact 1. Let G be a finite abelian group. If there exists an efficient quantum procedure
which hides the subgroup H of G then there is an efficient quantum algorithm for finding
H.

2.2 Nilpotent Groups

Let G be a finite group. For two elements g1 and g2 of G, we usually denote their
product by g1g2. If we conceive group multiplication from the right as a group action
of G on itself, we will use the notation g1 · g2 for g1g2. We write H ≤ G when H is
a subgroup of G, and H < G when it is a proper subgroup. Normal subgroups and
proper normal subgroups will be denoted respectively by H � G and H � G. For a
subset X of G, let 〈X〉 be the subgroup generated by X. The normalizer of X in G
is NG(X) = {g ∈ G : gX = Xg}. For an integer n, we denote by Zn the group of
integers modulo n, and for a prime number p, we denote by Z

∗
p the multiplicative group

of integers relatively prime with p.
The commutator [x, y] of elements x and y is x−1y−1xy. For two subgroups X and

Y of G, let [X, Y] be 〈{[x, y] : x ∈ X, y ∈ Y }〉. The derived subgroup G′ of G is
defined as [G, G], and its center Z(G) as {z ∈ G : gz = zg for all g ∈ G}. The
lower central series of G is the series of subgroups G = A1 � A2 � A3 . . . , where
Ai+1 = [Ai, G] for every i > 1. The upper central series of G is the series of subgroups
{1} = Z0 � Z1 � Z2 . . . , where Zi+1 = {x ∈ G : [x, g] ∈ Zi for all g ∈ G} for every
i > 0. Clearly A2 = G′ and Z1 = Z(G). The group G is nilpotent if there is a natural
number n such that An+1 = {1}. If n is the smallest integer such that An+1 = {1}
then G is nilpotent of class n. It is a well known fact that G is nilpotent of class n if
and only if Zn = G in the upper central series. Nilpotent groups of class 1 are simply
the nontrivial abelian groups. A nilpotent group of class at most n is called a nil-n
group.

A detailed treatment of nilpotent groups can be found for example in Hall [7]. Let us
just recall here that nilpotent groups are solvable, and that every p-group is nilpotent,
where a p-group is a finite group whose order is a power of some prime number p.

2.3 Nil-2 p-Groups of Exponent p

It is clear from the definition of nilpotent groups that G is a nil-2 group exactly when
G′ ≤ Z(G). It is easy to see that this property implies that the commutator is a bilinear
function in the following sense: for every g1, g2, g3, g4 in G, we have [g1g2, g3g4] =
[g1, g2][g1, g3][g2, g3][g2, g4].

An Efficient Quantum Algorithm for the Hidden Subgroup Problem 763

The quantum part of our algorithm will deal only with special nilpotent groups of
class 2, which are also p-groups of exponent p. The structure of these special groups is
well known, and is expressed in the following simple fact.

Fact 2. Let G be a p-group of exponent p and of nilpotency class 2. Then there exist
positive integers m and d, group elements x1, . . . , xm ∈ G and z1, . . . , zd ∈ G′ such that:
(1) G/G′ ∼= Z

m
p and G′ ∼= Z

d
p,

(2) ∀g ∈ G, ∃!(e1, . . . , em, f1, . . . fd) ∈ Z
m+d
p such that g = xe1

1 . . . xem
m zf1

1 . . . z
fd
d ,

(3) G = 〈x1, . . . , xm〉 and G′ = 〈z1, . . . , zd〉.
We will say that a nil-2 p-group G of exponent p has parameters (m, d) if G/G′ ∼= Z

m
p

and G′ ∼= Z
d
p. In those groups we will indentify G′ and Z

d
p. Thus, for two elements z and

z′ of G′, the product zz′ is just z ⊕ z′ where ⊕ denotes the coordinate-wise addition
modulo p. If G is a such a group then |G| = pm+d. The elements of G can be encoded
by binary strings of length O((m + d) log p), and an efficient algorithm on input G has
to be polynomial in m,d and log p.

For j = 1, . . . , p − 1, we consider on generators the maps xi to xj
i . It turns out that

these maps extend to automorphisms φj of G. We also define the map φ0 by letting
φ0(g) = 1, for every g ∈ G.

Proposition 1. Let G be a p-group of exponent p and of nilpotency class 2. Then the
mappings φj have the following properties:

(1) ∀j ∈ Zp, ∀z ∈ G′, φj(z) = zj2 ,

(2) ∀g ∈ G, ∃zg ∈ G′, ∀j ∈ Zp, φj(g) = gjzj−j2

g .

3 Groups of Constant Nilpotency Class: Classical
Reductions

In order to present the reduction methods in a sufficiently general way, in this section
we assume that our groups are presented in terms of so-called refined polycyclic pre-
sentations (RPP) [9]. Such a presentation of a finite solvable group G is based on a
sequence G = G1 � . . . � Gs+1 = {1}, where for each 1 ≤ i ≤ s the subgroup Gi+1 is
a normal subgroup of Gi and the factor group Gi/Gi+1 is cyclic of prime order ri. For
each i ≤ s we choose gi ∈ Gi \ Gi+1. Then gri

i ∈ Gi+1. Every element g of G can be
uniquely represented as a product of the form ge1

1 · · · ges
s , called the normal word for g,

where 0 ≤ ei < ri.
In the abstract presentation the generators are g1, . . . , gs, and for each index 1 ≤

i ≤ s, the following relations are included:

• gri
i = ui, where ui = g

ai,i+1
i+1 · · · gai,s

s is the normal word (n.w.) for gri ∈ Gi+1,

• g−1
i gjgi = wij for j > i, where wij = g

bi,j,i+1
i+1 · · · gbi,j,s

s is the n.w. for g−1
i gjgi ∈ Gi+1.

Using a quantum implementation [11] of an algorithm of Beals and Babai [2], RPP
for a solvable black box group can be computed in polynomial time. We assume that
elements of G are encoded by normal words and there is a polynomial time algorithm in
log |G|, the so called collection procedure, which computes normal words representing
products. This is the case for nilpotent groups of constant class [10]. If there is an
efficient collection procedure then RPP for subgroups and factor groups can be obtained
in polynomial time [9]. Also, the major notable subgroups including Sylow subgroups,
the center and the commutator can be computed efficiently. Furthermore, in p-groups
with RPP, normalizers of subgroups can be computed in polynomial time using the
technique of [4], combined with the subspace stabilizer algorithm of [14].

764 G. Ivanyos, L. Sanselme, and M. Santha

Our first theorem is a classical reduction for the HSP in groups of constant nilpotency
class. The proof is given by the subsequent three lemmas.

Theorem 2. Let C be a class of groups of constant nilpotency class that is closed under
taking subgroups and factor groups. Then the hidden subgroup problem in members of
C can be reduced to the case where the group is a p-group of exponent p, and the the
subgroup is either trivial or of cardinality p.

Corollary 1. The hidden subgroup problem in nil-2 groups can be reduced to the case
where the group is a p-group of exponent p, and the the subgroup is either trivial or of
cardinality p.

Lemma 1. Let C be a class of groups of constant nilpotency class that is closed under
taking subgroups and factor groups. Then the HSP in C can be reduced to the HSP of
p-groups belonging to C.

Lemma 2. Let C be a class of p-groups of constant nilpotency class that is closed under
taking subgroups and factor groups. Then the hidden subgroup problem in members of
C can be reduced to the case where the subgroup is either trivial or of cardinality p.

Proof. Assume that we have a procedure P which finds hidden subgroups in C under
the promise that the hidden subgroup is trivial or is of order p. Let G be a group in
C and let f be a function on G hiding the subgroup H of G. We describe an iterative
procedure which uses P as a subroutine and finds H in G. The basic idea is to compute
a refined polycyclic sequence G = G1 � . . . � Gs � 1 for G and to proceed calling P
on the subgroups in the sequence starting with Gs. When P finds for the first time
a nontrivial subgroup generated by h, then we would like to restart the process in
G/〈h〉, and at the end, collect all the generators. Since 〈h〉 is not necessarily a normal
subgroup of G we will actually restart the process instead in NG(〈h〉). More formally,

if f hides H in G, and �H be some subgroup of H . Then f hides NG(�H)∩H in NG(�H),

and therefore (NG(�H) ∩ H)/ �H in NG(�H)/ �H . We consider the following algorithm:

Algorithm 1.

success:= TRUE, �H = {1}.
WHILE success=TRUE DO
IF G �= �H THEN compute NG(�H)/ �H = G1 � . . . � Gs � 1 a RPP, i := s,

WHILE i > 0 DO call P on Gi,
IF P → 〈h〉 THEN �H := 〈 �H ∪ {h}〉, i := 0
ELSE i := i − 1

IF i = 0 THEN success := FALSE
ELSE success:=FALSE

Algorithm 1 stops when the subgroup �H is such that (NG(�H)∩H)/ �H = {1}, that is

when NG(�H) ∩ H = �H. We claim that this implies �H = H . Indeed, suppose that �H is
a proper subgroup of H . Since in nilpotent groups a proper subgroup is also a proper
subgroup of its normalizer, �H is also a proper subgroup of NH(�H) = NG(�H) ∩ H .

Finally observe that the whole process makes O(log2
p |G|) calls to P . ��

Lemma 3. Let C be a class of p-groups of constant nilpotency class that is closed under
taking subgroups and factor groups. Then the instances of the hidden subgroup problem
in members of C, when the subgroup is either trivial or of cardinality p, can be reduced
to groups in C of exponent p.

An Efficient Quantum Algorithm for the Hidden Subgroup Problem 765

Proof. If p is not larger than the class of G, the algorithm of [5] is applicable. Otherwise
the elements of order p or 1 form a subgroup G∗, see Chapter 12 of [7]. The hidden
subgroup H is also a subgroup of G∗ since |H | ≤ p. The function hiding H in G also
hides it in G∗, therefore the reduction will consist in determining G∗.

We design an algorithm that finds G∗ by induction on the length of RPP. If |G| = p
then G∗ = G. Otherwise, let G = G1 � G2 � . . . � Gs � {1} be a RPP with s ≥ 2. It is
easy to construct a presentation where Gs is a subgroup of the center of G, which we
suppose from now on. For the ease of notation we set M = G2 and N = Gs.

We first describe the inductive step in a simplified case, with the additional hypoth-
esis (G/N)∗ = G/N . Observe that the hypothesis is equivalent to saying that the map
φ : x �→ xp sends every element of G into N . From this it is also clear that the hypoth-
esis carries over to M , that is (M/N)∗ = M/N . We further claim that either G∗ = G
or G∗ is a subgroup of G of index p. In fact this follows Theorem 12.4.4 of [7] which
states that the map φ is constant on cosets of G∗ and distinct on different cosets. From
a polycyclic presentation of G it can be read off whether or not G = G∗. If G∗ = G we
are done. Otherwise we compute inductively M∗. If M∗ = M then G∗ = M . If M∗ is a
proper subgroup of M then M∗ has index p2 in G. Pick an arbitrary u ∈ M \ M∗ and

y ∈ G\M . By the assumptions, up = gju
s for some integer 0 < ju < p, and yp = g

jy
s for

some integer 0 ≤ jy < p. Recall that in the polycyclic presentation model, computing
normal words for up and yp – using fast exponentiation – amounts to computing ju

and jy . Set x = ujyj−1
u . For this x we have xp = yp, and therefore xy−1 ∈ G∗. Since

xy−1 ∈ G∗ \ M∗, we have G∗ = 〈M∗, xy−1〉.
In the general case first (G/N)∗ is computed inductively. If (G/N)∗ = G/N then

one proceeds as in the simplified case. Otherwise we set K = (G/N)∗N . We claim that
G∗ = K∗. For this we will show that. G∗ ⊆ K. To see this, let x be an element of G∗.
Then x = yz where y ∈ G/N and z ∈ N . We show that y is in (G/N)∗ which implies
that x ∈ K. Indeed, yp = ypzp = (yz)p = 1, where the first equality follows from
|N | = p, the second from N ≤ Z(G) and the third from x ∈ G∗. Finally observe that
(K/N)∗ = K/N since K/N = (G/N)∗. Therefore one can determine K∗ inductively
as in the simplified case.

Let c(s) denote the number of recursive calls when the length of a presentation is
s. In the simplified case the number of calls is s − 1. Therefore in the general case we
have c(s) = c(s − 1) + s − 2, whose solution is c(s) = O(s2). ��

4 The Quantum Algorithm

The quantum part of our algorithm, up to technicalities, follows the same lines as the
algorithm given in [12] for extraspecial groups. Some proofs in this section are emitted,
they are analogous to the ones given there.

Theorem 3. Let G be a nil-2 p-group of exponent p, and let us given an oracle f
which hides a subgroup H of G whose cardinality is either 1 or p. If we have an efficient
quantum procedure (using f) which hides HG′ in G then H can be found efficiently.

Proof. First observe that finding H is efficiently reducible to finding HG′. Indeed, HG′

is an abelian subgroup of G since H is abelian. The restriction of the hiding function f
to HG′ of G hides H . Therefore the standard algorithm for solving the HSP in abelian
groups applied to HG′ with oracle f yields H .

Let us now suppose that G has parameters (m,d). We will show that finding HG′

can be efficiently reduced to the hidden subgroup problem in an abelian group. Let us

766 G. Ivanyos, L. Sanselme, and M. Santha

denote for every element g = xe1
1 . . . xem

m zf1
1 . . . zfd

d of G, by g the element xe1
1 . . . xem

m .
We define the group G whose base set is {g : g ∈ G}. Observe that this set of elements
does not form a subgroup in G. To make G a group, its law is defined by g1 ∗g2 = g1g2

for all g1 and g2 in G. It is easy to check that ∗ is well defined, and is indeed a group
multiplication. In fact, the group G is isomorphic to G/G′ and therefore is isomorphic
to Z

m
p . For our purposes a nice way to think about G as a representation of G/G′ with

unique encoding. Observe also that HG′ ∩ G is a subgroup of (G, ∗) because HG′/G′

is a subgroup of G/G′. Since HG′ = (HG′ ∩ G)G′, finding HG′ is efficiently reducible
to finding HG′ ∩ G in G.

To finish the proof, let us remark that the procedure which hides HG′ in G hides
also HG′ ∩ G in G. Since G is abelian, Fact 1 implies that we can find efficiently
HG′ ∩ G. ��

Theorem 4. Let G be a nil-2 p-group of exponent p, and let us given an oracle f
which hides a subgroup H of G. Then there is an efficient quantum procedure which
hides HG′ in G.

Proof. The basic idea of the quantum procedure is the following. Suppose that we could
create, for some a ∈ G, the coset state |aHG′〉. Then the group action g → |aHG′ ·g〉 is
a hiding procedure. Unfortunately, |aHG′〉 can only be created efficiently when p and d
are constant. In general, we can create efficiently |aHG′

u〉 for random a ∈ G and u ∈ G′,
where by definition |G′

u〉 = 1√
|G′|

�
z∈Zd

p
ω−<u,z>|z〉. Then |aHG′

u · h〉 = |aHG′
u〉 for

every h ∈ H , and |G′
u · z〉 = ω<u,z>|G′

u〉. To cancel the disturbing phase we will use
more sophisticated group action via the group automorphisms φj on several copies of
the states |aHG′

u〉.

Lemma 4. There is an efficient quantum procedure which creates
1√
pd

�
u∈Zd

p
|u〉|aHG′

u〉 where a is a random element from G.

Now we claim that due to Proposition 1, the states |aHG′
u〉 are eigenvectors of the

group action of multiplication from the right by φj(g), whenever g is from HG′.

Lemma 5. We have
(1) ∀z ∈ Z

d
p, ∀a ∈ G, ∀u ∈ Z

d
p, ∀j ∈ Zp, |aHG′

u · φj(z)〉 = ω<u,z>j2 |aHG′
u〉,

(2) ∀h ∈ H, ∀a ∈ G, ∀u ∈ Z
d
p, ∀j ∈ Zp, |aHG′

u · φj(h)〉 = ω<u,zh>(j−j2)|aHG′
u〉.

The principal idea now is to take several copies of the states |aiHG′
ui

〉 and choose the
ji so that the product of the corresponding eigenvalues becomes the unity. Therefore
the combined actions φji(g), when g is from HG′, will not modify the combined state.
It turns out that we can achieve this with a sufficiently big enough number of copies.
Let n = n(d) some function of d to be determined later.

For a = (a1, . . . , an) ∈ Gn, u = (u1, . . . , un) ∈ (Zd
p)

n, j = (j1, . . . , jn) ∈ (Zp)
n\{0n}

and g ∈ G, we define the quantum state |Ψa,u,j
g 〉 in C

Gn

by |Ψa,u,j
g 〉 =

�n
i=1|aiHG′

ui
·

φji(g)〉.
Our purpose is to find an efficient procedure to generate triples (a, u, j) such that

for every g in HG′, |Ψa,u,j
g 〉 =

�n
i=1|aiHG′

ui
〉. We call such triples appropriate. The

reason to look for appropriate triples is that they lead to hiding sets for HG′ in G as
stated in the next lemma.

Lemma 6. If (a, u, j) is an appropriate triple then {|Ψa,u,j
g 〉 : g ∈ G} is hiding for

HG′ in G.

An Efficient Quantum Algorithm for the Hidden Subgroup Problem 767

Let us now address the question of existence of appropriate triples and efficient ways
to generate them. Let (a, u, j) be an arbitrary element of Gn × (Zd

p)
n × (Zp)

n \ {0n},
and let g be an element of HG′. Then g = hz for some h ∈ H and z ∈ Z

d
p, and

φji(g) = φji(h)φji(z) for i = 1, . . . , n. By Lemma 5, we have |aiHG′
ui

· φji(z)〉 =

ω<ui,z>j2i |aiHG′
ui

〉, and |aiHG′
ui

· φji(h)〉 = ω<ui,zh>(ji−j2i)|aiHG′
ui

〉, and therefore

|Ψa,u,j
g 〉 = ω

�n
i=1<ui,zh>(ji−j2i)+<ui,z>j2i

�n
i=1|aiHG′

ui
〉.

For a given u, we consider the following system of quadratic equations, written in
vectorial form: ��n

i=1 ui(ji − j2
i) = 0d�n

i=1 uij
2
i = 0d.

It should be clear that when this system has a nontrivial solution j (that is j �=
0d) then (a, u, j) is an appropriate triple, for every a. In fact, the Chevalley-Warning
theorem [3,24] implies that the following equivalent system of vectorial equations has
a nontrivial solution for every u, whenever n > 3d.��n

i=1 uij
2
i = 0d�n

i=1 uiji = 0d.
(1)

Moreover, if we take a substantially larger number of variables, we can find a solution
in polynomial time.

Theorem 5. If n = (d + 1)2(d + 2)/2 then we can find a nontrivial solution for the
system (1) in polynomial time.

The proof of Theorem 5 will be given in the next section. To finish the proof of Theo-
rem 4 we describe the efficient hiding procedure. On input |g〉, it computes, for some
a ∈ Gn, the superposition 1

pd

�n
i=1

�
ui∈Zp

|ui〉|aiHG′
ui

〉, which by Lemma 4 can be
done efficiently, and then it measures the registers for the ui. Then, by Theorem 5 it
finds efficiently a nontrivial solution j for system (1). Such a triple (a, u, j) is appro-

priate, and therefore by Lemma 6 {|Ψa,u,j
g 〉 : g ∈ G} is hiding for HG′ in G. Using the

additional input |g〉, the procedure finally computes |Ψa,u,j
g 〉. ��

5 Solving the System of Equations

This section is fully dedicated to the proof of Theorem 5. If p = 2 then the d quadratic
and the d linear equations coincide, and the (linear) system can easily be solved in
polynomial time. Therefore, from now on, we suppose that p > 2. Let us detail sys-
tem (1), where we set ui = (u1,i, u2,i, . . . , ud,i). We have the following system of d
homogenous quadratic and d homogenous linear one equations with n variables:�

∀� ∈ [|1, d|],
�n

i=1 u�,ij
2
i = 0

∀� ∈ [|1, d|],
�n

i=1 u�,iji = 0.
(2)

We start by considering only the quadratic part of the (2), that is for some integer n′:�
∀� ∈ [|1, d|],

�n′

i=1 u�,ij
2
i = 0. (3)

Claim. If n′ = (d + 1)(d + 2)/2 then we can find a nontrivial solution for (3) in
polynomial time.

768 G. Ivanyos, L. Sanselme, and M. Santha

Proof. For the ease of notation we are going to represent this system by the d × n′

matrix M = (u�,i)1≤�≤d,1≤i≤n′ .
We will present a recursive algorithm whose complexity will be polynomial in d

and in log p. When d = 1, the unique quadratic equation is of the form u1,1j
2
1 +

u1,2j
2
2 + u1,3j

2
3 = 0. According to a special case of the main result in the thesis of

van de Woestijne (Theorem A3 of [25]), a nontrivial solution for this can be found in
polynomial time in log p.

Let us suppose now that we have d equations in n′ = (d + 1)(d + 2)/2 variables. We
can make elementary operations on M (adding two lines and multiplying a line with
a nonzero constant) without changing the solutions of the system. Our purpose is to
reduce it with such operations to d − 1 equations in at least d(d + 1)/2 variables. If
the system is of rank less than d, then we can erase an equation and get an equivalent
system with only d − 1 equations in the same number of variables. Otherwise, we
perform Gaussian elimination resulting in the matrix

M1 =

���������

1 0 0 . . . 0 u
(1)
1,d+1 . . . u

(1)
1,n′

0 1 0 . . . 0 u
(1)
2,d+1 . . . u

(1)
2,n′

...
. . .

...
...

...

0 . . . 0 1 0 u
(1)
d−1,d+1 . . . u

(1)
d−1,n′

0 . . . 0 0 1 u
(1)
d,d+1 . . . u

(1)
d,n′

	

�
.

Since checking quadratic residuosity is simple, and for odd p, half of the elements
of Z

∗
p are squares, we can easily compute a quadratic non-residue λ in probabilistic

polynomial time. Then every quadratic non-residue is the product of a square and λ.
We will look at column d + 1 of M1. If the column is everywhere 0 then jd+1 = 1 and
ji = 0 for i �= d + 1 is a nontrivial solution of the whole system. Otherwise, without
loss of generality, we can suppose that for some (k1, k2) �= (0, 0) the first k1 elements
are squares, the following k2 elements are the product of λ and a square, and the
last d − k1 − k2 elements are zero. Thus there exist v1, . . . , vk1+k2 different from 0,

such that u
(1)
i,d+1 = v2

i for 1 ≤ i ≤ k1, and u
(1)
i,d+1 = λv2

i for k1 + 1 ≤ i ≤ k1 + k2.
Once we have a quadratic non-residue, the square roots v1, . . . , vk1+k2 can be found
in deterministic polynomial time in log p by the Shanks–Tonelli algorithm [22]. We set
the variables jk1+k2+1, . . . , jd to 0, and eliminate columns k1 + k2 + 1, . . . , d from M1.
Then for i = 1, . . . , k1 + k2, we divide the line i by v2

i . Introducing the new variables
j′
i = jiv

−1
i for 1 ≤ i ≤ k1 +k2, the matrix of the system in the n′ −d+k1 +k2 variables

j′
1, . . . , j

′
k1+k2 , jd+1, . . . jn′ is

M2 =

�����������������������

1 0 . . . 0 1 u
(2)
1,d+2 . . . u

(2)
1,n′

0
. . .

...
...

...

1
. . .

... 1 u
(2)
k1,d+2 . . . u

(2)
k1,n′

...
. . . 1 λ u

(2)
k1+1,d+2 . . . u

(2)
k1+1,n′

. . . 0
...

...
...

0 . . . 0 1 λ u
(2)
k1+k2,d+2 . . . u

(2)
k1+k2,n′

0 . . . 0 u
(2)
k1+k2+1,d+2 . . . u

(2)
k1+k2+1,n′

...
...

...
...

...

0 . . . 0 u
(2)
d,d+2 . . . u

(2)
d,n′

	

�

.

An Efficient Quantum Algorithm for the Hidden Subgroup Problem 769

In M2 we subtract the first line from lines 2, . . . , k and line k1 + 1 from lines k1 +
2, . . . , k1+k2. Then we set the variables j′

2, . . . , j
′
k1 to j′

1, and variables j′
k1+2, . . . , j

′
k1+k2

to j′
k1+1. The corresponding changes in the matrix are eliminating columns 2, . . . k1 and

k1 + 2, . . . k1 + k2 and putting in columns 1 and k1 + 1 everywhere 0 but respectively
in line 1 and line k1 +1. Finally, by exchanging line 2 and line k1 +1, we get the matrix

M3 =

���������

1 0 1 u
(3)
1,d+2 . . . u

(3)
1,n′

0 1 λ u
(3)
2,d+2 . . . u

(3)
2,n′

0 0 0 u
(3)
3,d+2 . . . u

(3)
3,n′

...
...

...
...

...

0 0 0 u
(3)
d,d+2 . . . u

(3)
d,n′

	

�
in variables j′

1, j
′
k1+1, jd+1, . . . , jn′ .

To finish the reduction, we will distinguish two cases, depending on the congruency
class of p modulo 4. When p ≡ 1, the element −1 is a square, and in polynomial time
in log p we can find s such that s2 = −1. We set j1 = sjd+1, eliminate column 1 from
matrix M3, put 0 in line 1 column d + 1, and exchange line 1 and line 2. When p ≡ 3
modulo 4, the element −1 is not a square, and therefore we can choose λ = −1. We
set j2 = jd+1, eliminate column 2, and put 0 in line 2 column d + 1. In both cases we
end up with a matrix of the form

M4 =

������
1 α u

(3)
1,d+2 . . . u

(3)
1,n′

0 0 u
(3)
2,d+2 . . . u

(3)
2,n′

...
...

...
...

0 0 u
(3)
d,d+2 . . . u

(3)
d,n′

	

�
in the variables j′, jd+1, . . . , jn′ where α = λ and j′ = j′

k1+1 when p ≡ 1, and α = 1
and j′ = j′

1 otherwise. Without the first line it represents a system of d − 1 equations
in n′ − (d + 1) = d(d + 1)/2 variables for which we can find a nontrivial solution by

induction. Let jd+2, . . . , jn′ such a solution, and set b =
�n′

k=d+2 u
(3)
1,kjk. To give values

to the remaining two variables we have to solve the equation j′2 + αj2
d+1 + b = 0. It

is easy to see that the equation is always solvable, and then by Theorem A3 of [25] a
solution can be found deterministically in polynomial time.

Gaussian elimination on M can be done in time O(d4). Finding a nontrivial solu-
tion for a quadratic homogeneous equation in 3 variables takes time q1(log p), solving
a quadratic equation in two variables takes time q2(log p), and finding a square roots
modulo p takes time q3(log p) where q1, q2 and q3 are polynomials. Therefore the com-
plexity of solving system (1) is O(d5 + d2q3(log p) + dq2(log p) + q1(log p)). ��

We now turn to the system (2). Let n′ = n/(d + 1), and for 0 ≤ k ≤ d, consider the
the system of d quadratic equations in n′ variables:�

∀� ∈ [|1, d|],
�(k+1)n′

i=kn′+1 u�,ij
2
i = 0.

By Claim 5, each of these systems has a nontrivial solution that we can find in poly-
nomial time. For each k, let (jkn′+1, . . . , j(k+1)n′) such a solution of the kth quadratic
system. Then the set

{(λ0j1, . . . , λ0jn′ , . . . , λdjdn′+1, . . . , λdj(d+1)n′) : (λ0, . . . , λd) ∈ Z
d+1
p }

is a d+1 dimensional subspace of of Z
n
p whose elements are solutions of the d quadratic

equations in (2). Since in (2) there are d linear equations, we can find a a nontrivial

770 G. Ivanyos, L. Sanselme, and M. Santha

(λ0, . . . , λd) ∈ Z
d+1
p such that (λ0j1, . . . , λ0jn′ , . . . , λdjdn′+1, . . . , λdj(d+1)n′) is a (non-

trivial) solution of the linear part of (2), and therefore of the whole system. ��
Observe that the only probabilistic part of the algorithm is the generation of a quadratic
non-residue modulo p

References

1. Bacon, D., Childs, A., van Dam, W.: From optimal measurement to efficient quan-
tum algorithms for the hidden subgroup problem over semidirect product groups.
In: Proc. 46th IEEE FOCS, pp. 469–478 (2005)

2. Beals, R., Babai, L.: Las Vegas algorithms for matrix groups. In: Proc. 34th IEEE
FOCS, pp. 427–436 (1993)

3. Chevalley, C.: Démonstration d’une hypothèse de M. Artin. Abhand. Math. Sem.
Univ. Hamburg 11, 73–75 (1936)

4. Eick, B.: Orbit-stabilizer problems and computing normalizers for polycyclic
groups. J. Symbolic Comput. 34, 1–19 (2002)

5. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and
orbit coset in quantum computing. In: Proc. 35th ACM STOC, pp. 1–9 (2003)

6. Grigni, M., Schulman, L., Vazirani, M., Vazirani, U.: Quantum mechanical algo-
rithms for the nonabelian Hidden Subgroup Problem. In: Proc. 33rd ACM STOC,
pp. 68–74 (2001)

7. Hall, M.: Theory of groups. AMS Chelsea Publishing (1999)
8. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quan-

tum computation using group representations. SIAM J. Comp. 32(4), 916–934
(2003)

9. Holt, D.F., Eick, B., O’Brien, E.: Handbook of computational group theory. Chap-
man & Hall/CRC Press (2005)

10. Hoefling. Efficient multiplication algorithms for finite polycyclic groups (preprint,
2004)

11. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some in-
stances of the non-Abelian hidden subgroup problem. Int. J. of Foundations of
Computer Science 14(5), 723–739 (2003)

12. Ivanyos, G., Sanselme, L., Santha, M.: An efficient quantum algorithm for the
hidden subgroup problem in extraspecial groups. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 586–597. Springer, Heidelberg (2007)

13. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Prob-
lem. Technical report, Quantum Physics e-Print archive (1995),
http://xxx.lanl.gov/abs/quant-ph/9511026

14. Luks, E.M.: Computing in solvable matrix groups. In: Proc. 33rd IEEE FOCS, pp.
111–120 (1992)

15. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

16. Meggido, N., Papadimitriou, C.: On total functions, existence theorems, and com-
putational complexity. Theor. Comp. Sci. 81, 317–324 (1991)

17. Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis selection
in Fourier sampling: Hidden subgroup problems in affine groups. In: Proc. 15th
ACM-SIAM SODA, pp. 1106–1115 (2004)

18. Moore, C., Russell, A., Sniady, P.: On the impossibility of a quantum sieve algo-
rithm for graph isomorphism. In: Proc. 39th ACM STOC, pp. 536–545 (2007)

http://xxx.lanl.gov/abs/quant-ph/9511026

An Efficient Quantum Algorithm for the Hidden Subgroup Problem 771

19. Mosca, M.: Quantum Computer Algorithms. PhD Thesis, University of Oxford
(1999)

20. Regev, O.: Quantum Computation and Lattice Problems. SIAM J. Comp. 33(3),
738–760 (2004)

21. Rötteler, M., Beth, T.: Polynomial-time solution to the Hidden Subgroup Prob-
lem for a class of non-abelian groups. Technical report, Quantum Physics e-Print
archive (1998), http://xxx.lanl.gov/abs/quant-ph/9812070

22. Shanks, D.: Five number-theoretic algorithms. In: Proc. 2nd Manitoba Conference
on Numerical Mathematics, pp. 51–70 (1972)

23. Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring.
SIAM J. Comp. 26(5), 1484–1509 (1997)

24. Warning, E.: Bemerkung zur vorstehenden Arbeit von Herr Chevalley. Abhand.
Math. Sem. Univ. Hamburg 11, 76–83 (1936)

25. van de Woestijne, C.: Deterministic equation solving over finite fields. PhD thesis,
Universiteit Leiden (2006)

http://xxx.lanl.gov/abs/quant-ph/9812070

Quantum Property Testing of Group Solvability

Yoshifumi Inui1,2 and François Le Gall2

1 Department of Computer Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2 ERATO-SORST Quantum Computation and Information Project, JST
Hongo White Building, 5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

legall@qci.jst.jp

Abstract. Testing efficiently whether a finite set Γ with a binary opera-
tion · over it, given as an oracle, is a group is a well-known open problem
in the field of property testing. Recently, Friedl, Ivanyos and Santha have
made a significant step in the direction of solving this problem by show-
ing that it it possible to test efficiently whether the input (Γ, ·) is an
Abelian group or is far, with respect to some distance, from any Abelian
group. In this paper, we make a step further and construct an efficient
quantum algorithm that tests whether (Γ, ·) is a solvable group, or is far
from any solvable group. More precisely, the number of queries used by
our algorithm is polylogarithmic in the size of the set Γ .

1 Introduction

In property testing, the problem considered is to decide whether an object given
as an oracle has some expected property or is far from any object having that
property. This is a very active research area and many properties including alge-
braic function properties, graph properties, computational geometry properties
and regular languages were proved to be testable. We refer to, for example,
[13,17] for surveys on classical property testing. Quantum testers have also been
studied [6,9,14], and they are known to be strictly more powerful than classical
testers in some cases [6,14].

In this paper, we focus on testing group-theoretical properties. A famous
example is testing whether a function f : G → H , where H and G are groups,
is a homomorphism. It is well known that such a test can be done efficiently
[4,5,18]. Another kind of of problems deals with the case where the input is
a finite set Γ and an oracle of a binary operation · : Γ × Γ → Γ over it. A
classical algorithm testing associativity of the oracle · using O(|Γ |2) queries to
the oracle has been constructed by Rajagopalan and Schulman [16], and Ergün et
al. [7] have proposed an algorithm, using a number of queries polynomial in |Γ |,
testing if f corresponds to the multiplication of a group. But notice that, since
each element in Γ needs Θ(log |Γ |) bits to be encoded, the query complexities of
these algorithms can be considered as exponential in the input length when not
Γ , but only |Γ | is given (e.g., Γ is supposed to be the set of binary strings of
length �log2 |Γ |�). Designing an algorithm deciding whether (Γ, ·) is a group that

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 772–783, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantum Property Testing of Group Solvability 773

uses a number of queries to · polynomial in log |Γ | is indeed a well-known open
problem. Recently, Friedl et al. [8] have made a significant step in the direction
of solving this problem by constructing a classical algorithm with query and time
complexities polynomial in log |Γ | that tests whether (Γ, ·) is an Abelian group
or is far from any Abelian group.

In this work, we make a step further and construct an efficient quantum
algorithm that tests whether (Γ, ·) is a solvable group or the distance between
(Γ, ·) and any solvable group is at least ε|Γ |2. More precisely, our algorithm uses
a number of queries polynomial in log |Γ | and ε−1, and its time complexity is
polynomial exp((log log |Γ |)2) and ε−1, i.e. subexponential in log |Γ |. Notice that
the class of solvable groups is far much larger than the class of Abelian groups
and includes a vast class of non-Abelian groups. To deal with those groups,
we introduce new ideas relying on the ability of quantum computation to solve
fundamental group-theoretical problems, such as finding orders of elements or
working with superpositions of all the elements of a subgroup.

Besides the theoretical interest of this result, our algorithm can be used when
studying group-theoretical problems where the input is a black-box solvable
group (i.e., given as a set a generators and an oracle performing group opera-
tions). In these problems, the input is usually promised to be a solvable group.
By applying our algorithm, in the quantum setting, we can relax this promise,
obtaining the new promise that the input corresponds to a solvable group or is
far from any solvable group. We thus obtain robust versions of the quantum algo-
rithms already known for solvable black-box groups [11,12,20]. We also hope that
this will be useful to design new quantum property testers or group-theoretical
quantum algorithms. In particular, our tester may be useful when considering
quantum versions of classical algorithms solving problems over black-box solv-
able groups [1,2,3] as well.

Finally, we believe that our quantum algorithm may also be a first step in
the direction of designing efficient classical testers for solvable groups. Indeed,
the efficient classical tester for Abelian groups proposed by Friedl et al. [8] was
inspired by a quantum algorithm solving the same problem. In this case, they
were able to “dequantumize” the algorithm. A similar approach may be possible
for our algorithm too.

2 Definitions

2.1 Distances Between Sets

Let Γ be a set and · : Γ × Γ → X a binary operation over it, where X is some
set. We say that such couple (Γ, ·) is a pseudo-magma. If X ⊆ Γ , we say that
(Γ, ·) is a magma. When there is no ambiguity we will denote a pseudo-magma
or a magma (Γ, ·) simply by Γ . We now define a distance between two pseudo-
magmas. In this paper we adopt the so-called edit distance. This is the same
distance as the one used by Friedl et al. [8].

774 Y. Inui and F. Le Gall

Define a table of size k as a k × k matrix of dimensions k × k. We consider
three operations to transform a table to another. An exchange operation replaces
elements in a table by arbitrary elements and its cost is the number of replaced
elements. An insert operation at index i inserts a row and a column of index i.
Its cost is 2k + 1 if the original table is of size k. A delete operation at index i
deletes both the row of index i and the column of index i, giving a table of size
(k − 1) × (k − 1). Its cost is (2k − 1).

Let (Γ, ·) be a pseudo-magma, with · : Γ × Γ → X . A multiplication table
for Γ is a table of size |Γ | with entries in X for which both rows and columns
are in one-to-one correspondence with elements in Γ , i.e. there exists a bijection
σ : {1, · · · , |Γ |} → Γ such that the element in the i-th row and the j-th column
is equivalent to σ(i) · σ(j). The distance between two pseudo-magmas is defined
as follows.

Definition 1. The edit distance between two tables T and T ′ is the minimum
cost needed to transform T to T ′. The edit distance between two pseudo-magmas
Γ and Γ ′, denoted d(Γ, Γ ′), is the minimum edit distance between T and T ′

where T (resp. T ′) runs over all tables corresponding to a multiplication table of
Γ (resp. Γ ′). For δ ≥ 0, we say that a pseudo-magma Γ is δ-close to another
pseudo-magma Γ ′ if d(Γ, Γ ′) ≤ δ. Otherwise we say that Γ and Γ ′ are δ-far.

Notice that if the sizes of Γ and Γ ′ are the same, then the edit distance becomes
the minimal Hamming distance of the corresponding tables.

2.2 Property Testing of Group Solvability

In this paper we assume that the reader is familiar with the standard notions of
group theory. We refer to any standard textbook for details. For completeness,
we only recall the definition of solvable groups.

Definition 2. A group G is solvable if there exists a collection of normal sub-
groups G0, . . . , Gk such that {e} = G0 ⊆ · · · ⊆ Gk = G and Gi/Gi−1 is Abelian
for 0 < i ≤ k.

We now give our definition of a quantum property tester of group solvability.
We define such a tester as a quantum algorithm A receiving as input a magma
(Γ, ·). More precisely, the actual input of the algorithm is the value |Γ |, and two
oracles are available: an oracle that generates random elements in Γ (the details
of the implementation of this oracle are not essential because this oracle will only
be used in a classical subprocedure), and a quantum oracle that performs the
binary operation ·. Since the elements of Γ can be encoded by binary strings of
length k = �log2 |Γ |�, we identify the elements with their encoding and suppose
that this quantum oracle performs the map |g〉|h〉|c〉 	→ |g〉|h〉|c ⊕ g · h〉, where
g and h are elements in Γ and c is a string in {0, 1}k. We denote by A (Γ) the
behavior of the algorithm A on an input (Γ, ·) given in this way. A more formal
definition of a quantum property tester can be given but the following definition
will be sufficient for our purpose.

Quantum Property Testing of Group Solvability 775

Definition 3. Let d be the distance defined in Subsection 2.1. A quantum ε-
tester of group solvability is a quantum algorithm A such that, for any magma
(Γ, ·), the following holds:

{
Pr[A (Γ) accepts] > 2/3 if d(Γ, S) = 0
Pr[A (Γ) rejects] > 2/3 if d(Γ, S) > ε|Γ |2.

Here we use d(Γ, S) to represent infG∈S d(Γ, G), where S denotes the set of
finite solvable groups.

Notice that, a priori, requiring that the oracle is quantum may seem to give a
problem different than in the classical setting, where the oracle is classical. But
this is not really the case: if a classical procedure that computes the product g ·h
from g and h is available, such a quantum oracle can be effectively constructed
for standard techniques of quantum computation [15].

The main result of this paper in the following theorem.

Theorem 1. There exists a quantum ε-tester of group solvability that uses a
number of queries polynomial in log |Γ | and ε−1. The running time of this algo-
rithm is polynomial in exp((log log |Γ |)2) and ε−1.

2.3 Quantum Algorithms for Solvable Groups

As stated in the following theorem, efficient quantum algorithms for studying
the structure of solvable groups have been constructed by Watrous [20]. Our
algorithm deeply relies on these algorithms.

Theorem 2. ([20]) Let G be a solvable group given as a black-box group. Then
there exists a quantum algorithm running in time polynomial in log |G| that
outputs, with probability at least 3/4, t elements h1, . . . , ht of G and t integers
m1, . . . , mt such that, if we denote Hi = 〈h1, . . . , hi〉 for 1 ≤ i ≤ t, the following
holds.

(a) {e} = H0 � H1 � · · · � Ht−1 � Ht = G;
(b) Hi/Hi−1 is cyclic, for 1 ≤ i ≤ t, with |Hi|/|Hi−1| = mi.

Moreover, given any 0 ≤ i ≤ t, and any element h in Hi, there exists a quantum
algorithm running in time polynomial in log |G| that outputs, with probability at
least 3/4, the (unique) factorization of g over Hi, i.e. integers a1, . . . , ai with
each ak ∈ Zmk

, such that h = hai

i h
ai−1
i−1 · · · ha1

1 .

In the algorithm of Theorem 2, the group is supposed to be input as a black-box
group. A black-box group is a representation of a group G where elements are
represented by strings (of the same length, say k = �log G�). The input is a set
of strings representing a set of generators of the group and an oracle performing
the group product is available. The oracle necessary for Watrous’s algorithm [20]
is the map : |g〉|h〉|c〉 	→ |g〉|h〉|c⊕g ·h〉, for any elements g, h ∈ G and any string
c in {0, 1}k. Notice that this is the same oracle as the one given to a quantum
tester of group solvability as defined in Subsection 2.2.

776 Y. Inui and F. Le Gall

3 Our Quantum Algorithm

In this section we describe our quantum algorithm. We first give an overview of
the algorithm in Subsection 3.1. Then, in Subsection 3.2, we explain the details.
Finally, we analyse its correctness and complexity in Subsection 3.3.

3.1 Outline of Our Algorithm

Our algorithm consists in four parts.

Decomposition of Γ
We first construct, using Theorem 2, t = O(log2(|Γ |)) elements h1, . . . , ht of Γ
that satisfy, if Γ is a solvable group, the relations {e} = H0 � H1 = 〈h1〉 � · · · �
Hi = 〈h1, · · · , hi〉 � · · · � Ht = 〈h1, · · · , ht〉 = Γ, where each Hi is a subgroup
of Γ , normal in Hi+1, such that Hi/Hi−1 is cyclic. If Γ is a solvable group,
this decomposition gives a so-called power-conjugate presentation of Γ . If Γ is
not a solvable group, these elements h1, . . . , ht still define some sets H0, . . . , Ht,
although in general these sets satisfy no group-theoretical property.

Test of embedding
Then, we take sufficiently many elements of Γ and check that they are all in
Ht. Success of this test implies that |Γ\Ht| is small enough. Of course, if Γ is a
solvable group, then Γ = Ht with high probability and this test always succeed.
Assume that Γ is far from any solvable group H̃t. If the test succeed, since the
inequality d(Γ, H̃t) ≤ d(Γ, Ht) + d(Ht, H̃t) holds for any solvable group H̃t, this
will imply that Ht is far from any solvable group H̃t too (because the value of
d(Γ, Ht) is basically a function of |Γ\Ht|, and thus small).

Construction of the group Gt

We construct, using the information about the structure of Γ obtained at the first
part of the algorithm, t solvable groups G1, . . . , Gt and a function ψ : Gt → Ht

in a way such that, if Γ is a solvable group, then ψ is a group isomorphism from
Gt to Ht.

Test of homomorphism
Finally, the algorithm will test whether ψ is “almost” an homomorphism. We
will show that this test is robust: is ψ is close to an homomorphism, then Ht is
close to the solvable group Gt. If Ht is far from any solvable group, then this
cannot hold and the homomorphism test must fail with high probability.

Again, the similar idea of constructing a group G, a function ψ : G → Γ
and use homomorphism tests was at the heart of the property tester for Abelian
groups proposed by Friedl et al. [8] and inspired this work (notice that the Friedl
et al. first constructed a quantum property tester for Abelian groups, and then
were able to remove the quantum part in their algorithm). However there are new
difficulties that arise when considering property testers for solvable groups. The
first one is that analyzing the decomposition the Hi’s is more difficult and the
power of quantum computation seems necessary to perform this task efficiently.

Quantum Property Testing of Group Solvability 777

The second complication is that, now, the group Gi’s we are considering are
solvable, i.e. in general not commutative. In this case, we have to be very careful
in the definition of Gi’s and additional tests have to be done to ensure that the
Gi’s we define are really groups.

3.2 Algorithm

Our algorithm appears in Figure 1 and each of the four parts are explained in
details in Subsections 3.2.1 to 3.2.4. If all the tests performed succeed, we decide
that Γ is a solvable group. Otherwise we decide that Γ is (ε|Γ |2)-far from any
solvable group.

PART I: Decomposition of Γ
1. Take O(log |Γ |) elements of Γ .
2. Use the first algorithm of Theorem 2 on them and obtain the set {h1, . . . , ht} and

integers m1, ..., mt.
3. Compute the decompositions of all hmi

i and h−1
i ·(hk ·hi) over Hi−1, for i ∈ {1, . . . , t}

and k ∈ {1, . . . , i − 1}, and check the obtained decompositions.

PART II: Test of embedding
4. Check that |Γ | = m1 × · · · × mt and |Γ\Ht|/|Γ | < ε/4.

PART III: Construction of the group Gt

5. For j from 2 to t check that conditions (a), (b) and (c) of Proposition 1 hold.

PART IV: Test of homomorphism
6. Check that Prx,y∈Gt [ψ(x ◦ y) = ψ(x) · ψ(y)] > 1 − η with η = ε/422.

Fig. 1. Quantum ε-tester of group solvability

3.2.1 Decomposition of Γ
The first step in our algorithm finds a power-conjugate representation of Γ when
Γ is a solvable group. We will prove that when Γ is far from any solvable group,
then the output of this step cannot be a power-conjugate representation of a
group close to Γ and that this can be detected by our algorithm at part II, III
or IV.

First, we pick s = Θ(log |Γ |) random elements α1, · · · , αs from the ground
set Γ . For simplicity, suppose first that Γ is a solvable group. Denote Γ ′ =
〈α1, · · · , αs〉. Then, with high probability, Γ = Γ ′. Here we rely on the stan-
dard fact in computational group theory that Θ(log |Γ |) random elements of Γ
constitute, with high probability, a generating set of Γ . We now run the first
algorithm of Theorem 2 with input Γ ′ presented as a black-box group as follows:
α1, · · · , αs is the set of generators and the operation · is the oracle performing
group multiplication. The output of the algorithm is then, with high probability,
a set of t elements h1, . . . , ht of Γ and t integers m1, . . . , mt such that, if we
denote Hi = 〈h1, . . . , hi〉 for 1 ≤ i ≤ t, the following holds:

778 Y. Inui and F. Le Gall

(a) {e} = H0 � H1 � · · · � Ht−1 � Ht = Γ ′; and
(b) Hi/Hi−1 is cyclic for 1 ≤ i ≤ t and satisfies |Hi|/|Hi−1| = mi.

Moreover, we further analyse the structure of Γ ′ and use the second algorithm
of Theorem 2 to decompose the elements hmi

i and hmi−1
i · (hk · hi) over Hi−1,

for each i ∈ {2, . . . , t} and each k ∈ {1, . . . , i − 1}. Notice that, indeed, each hmi

i

and hmi−1
i · (hk · hi) = h−1

i · hk · hi are in Hi−1 when Γ is a solvable group. We
denote the decompositions obtained by

hmi

i = h
r
(i)
i−1

i−1 ·
(

· · · ·
(

h
r
(i)
3

3 ·
(

h
r
(i)
2

2 · h
r
(i)
1

1

)))

for 2 ≤ i ≤ t, (1)

hmi−1
i ·(hk·hi) = h

s
(i)
k,i−1

i−1 ·
(

· · · ·
(

h
s
(i)
k,3

3 ·
(

h
s
(i)
k,2

2 · hs
(i)
k,1

1

)))

for 1 ≤ k < i ≤ t, (2)

where each r
(i)
� and each s

(i)
k,� are in Zm�

.
In general, we do not know whether Γ is a solvable group or not but we do

exactly the same as above: we first run the first algorithm of Theorem 2 on
the set {α1, · · · , αs} with the oracle ·. If this algorithm errs or outputs some-
thing different from a set of elements h1, . . . , ht and a set of integers m1, . . . , mt,
we conclude that Γ is not a solvable group (this decision is correct with high
probability because, if Γ is a group, then the algorithm of Theorem 2 succeeds
with high probability). Now suppose that we have obtained elements h1, . . . , ht

and a set of integers m1, . . . , mt. We define the following sets by recurrence:
H1 = {ha

1 |a ∈ Zm1}, and, for 2 ≤ j ≤ t, Hj = {ha
j · h|a ∈ Zmj , h ∈ Hj−1}.

Here, and in many other places in this paper, we use the notation hr, for h ∈ Γ
and r ≥ 1, to denote the product h · (· · · · (h · (h · h))), since · is not in general
associative. Moreover we use the convention h0 = hm1

1 for any h ∈ Γ .
Notice that, in general, the Hi’s have no group-theoretical structure at all.

Then we run the second algorithm of Theorem 2 to decompose the elements hmi

i

and hmi−1
i ·(hk ·hi) over Hi−1, for each 2 ∈ {1, . . . , t} and each k ∈ {1, . . . , i−1}.

If the algorithm errs or outputs something irrelevant, we conclude that Γ is not
a solvable group. Suppose that the algorithm succeeds and outputs decomposi-
tions. We use the notations of equations (1) and (2) to denote the decompositions
obtained. We check whether these decompositions are correct, i.e. we compute
the right sides of equations (1) and (2) and check that they match the left sides.
If they are correct, we move to the next step (Subsection 3.2.2). Else, we conclude
that Γ is not a solvable group.

3.2.2 Test of Embedding
In the second part of our algorithm, we first check that |Γ | = m1 × · · · × mt.
Then, we want to check whether |Γ\Ht| is small enough. Otherwise we conclude
that Γ is not a solvable group. Indeed, if Γ is a group, then with high probability
(on the choice of α1, . . . , αs and on the randomness of the algorithm of Theorem 2)
Γ = Γ ′ = Ht.

More precisely we check whether |Γ\Ht|/|Γ | < ε/4 holds. In order to perform
this test, we simply take c1 elements of Γ and check whether they are all in

Quantum Property Testing of Group Solvability 779

Ht (by using the second algorithm of Theorem 2 and checking the obtained
decompositions). It is easy to show that, when taking c1 = Θ(ε−1), we can
detect whether |Γ\Ht|/|Γ | > ε/4 with constant probability.

3.2.3 Construction of the Group Gt

We now construct the abstract group Gt defined by the power-conjugate presen-
tation found in Part I of our algorithm (relations (1) and (2)) when such a group
exists, i.e. when the presentation is consistent with the definition of a group.

We first define by recurrence the family of magmas {Gj}1≤j≤t, where each Gj

is equal (as a set) to Zmj ×· · ·×Zm1 . G1 is defined as the cyclic group (Zm1 , +),
where + is the addition modulo m1. For any i ∈ {2, . . . , t}, denote by ui the
element (r(i)

i−1, . . . , r
(i)
1) of Gi−1 and, for any i ∈ {2, . . . , t} and k ∈ {1, . . . , i−1},

denote by vi,k the element (s(i)
k,i−1, . . . , s

(i)
k,1) of Gi−1.

Definition 4. Define G1 = (Zm1 , +) and, for 2 ≤ j ≤ t, let Gj be the magma
(Zmj × Gj−1, ◦j) with

(a, x) ◦j (b, y) =

⎧
⎨

⎩

(
a + b, φ

(b)
j (x) ◦j−1 y

)
if a + b < mj

(
a + b − mj , uj ◦j−1 φ

(b)
j (x) ◦j−1 y

)
if a + b ≥ mj

where φj : Gj−1 → Gj−1 maps any element (aj−1, · · · , a1) of Gj−1 to the element
φj((aj−1, · · · , a1)) = v

aj−1
j,j−1 ◦j−1

(
· · · ◦j−1

(
va2

j,2 ◦j−1 va1
j,1

))
.

We will usually denote ◦j or ◦j−1 simply by ◦ when there is no ambiguity.
In order to illustrate this definition, let us consider the case where all the

Hj ’s are solvable groups. In this case, each Hj = {h
aj

j · · · · · ha1
1 | aj ∈ Zmj }

is in bijection with Zmj × · · · × Zm1 . Fix a j and consider Hj . Each element
h

aj

j · · ·ha1
1 is associated with the element (aj , . . . , a1) of Gj . Now the element

φj(aj−1, · · · , a1) corresponds to the element

h−1
j · (haj−1

j−1 · · · ha1
1) · hj =

(

h
s
(j)
j−1,j−1

j−1 · · · hs
(j)
j−1,1

1

)aj−1

· · ·
(

h
s
(j)
1,j−1

j−1 · · · hs
(j)
1,1

1

)a1

.

In other words, the map φj in Gj−1 corresponds to the inner automorphism
h 	→ h−1

j hhj of Hj . For any two elements g and g′ in Hj−1, since ha
j · g · hb

j · g′ =
ha+b

j · (h−b
j · g · hb

j) · g′ we see that the the Gj ’s are defined to be isomorphic to
the Hj ’s in the case where the Hj ’s are solvable groups.

If the Hj ’s are not groups, then the Gj ’s constructed in Definition 4 are not
necessarily groups. But we now show that when some additional conditions are
satisfied, the Gj ’s become groups. In the next proposition, we denote by xj,k,
for 1 ≤ k ≤ j ≤ t, the element of Gj with one 1 at the index k (from the right)
and zeros at all the other indexes.

Proposition 1. Let 1 < j < t. Suppose that Gj−1 is a solvable group. Assume
that the following three conditions holds.

780 Y. Inui and F. Le Gall

(a) φj(xj−1,k) ◦ φj(xj−1,i) = φj(xj−1,i) ◦ φj(vk,i) for all 1 ≤ k < i ≤ j − 1; and
(b) φj(uj) = uj; and
(c) φ

(mj)
j (xj−1,i) = u−1

j ◦ xj−1,i ◦ uj for all 1 ≤ i ≤ j − 1.

Then Gj is a solvable group.

Proof. If φj is an automorphism of Gj−1, then conditions (b) and (c) imply that
Gj is a cyclic extension of Gj−1 and thus a solvable group (see [19, Section 9.8]).
It is easy to check that condition (a) implies that φj is a homomorphism. Since
φ

(mj)
j is an automorphism from condition (c), φj is thus an automorphism too.

��

Notice that the three conditions of Proposition 1 obviously hold when (Γ, ·) is
a group: conditions (b) and (c) come from the fact that uj in Gj−1 corresponds
to the element h

mj

j and condition (a) follows from equations (2) and from the
fact that φj is a homomorphism when (Γ, ·) is a group.

For each j ∈ {2, . . . , t}, testing that conditions (a) and (b) hold can be
done using a number of multiplications in the group Gj−1 polynomial in log |Γ |.
The best known classical algorithm for computing products in a solvable group
given as a power-conjugate presentation is an algorithm by Höfling [10] with
time complexity O(exp((log log |Gj−1|)2)) = O(exp((log log |Γ |)2)). Notice that
if condition (a) holds then φj is a homomorphism. Then each term φ

(mj)
j (xj−1,i)

in condition (c) can be computed using a polynomial number of group prod-
ucts by computing, step by step for increasing 	 from 0 to �log mj�, the values

φ
(2�)
j (xj−1,k) for all 1 ≤ k ≤ j − 1. The total time complexity of checking that

all the Gi’s are solvable groups is thus O(exp((log log |Γ |)2)). No query to the
oracle · is needed.

3.2.4 Test of Homomorphism
We now suppose that the Gi’s have passed all the tests of Proposition 1 and
thus Gt is a solvable group. Let ψ be the function from Gt to H defined as

ψ(at, at−1, · · · , a1) = hat
t · (hat−1

t−1 · (· · · · (ha2
2 · ha1

1)).

We will test whether ψ is a homomorphism from Gt to Ht. If (Γ, ·) is a solvable
group, then ψ is an homomorphism by construction. We now show that this test
is robust.

Proposition 2. Suppose that η < 1/120. Assume that |Ht| > 3|Gt|/4. Suppose
that

Prx,y∈Gt[ψ(x ◦ y) = ψ(x) · ψ(y)] > 1 − η. (3)

Then there exists a solvable group H̃t that is (211η|Γ |2)-close to Ht.

Proof. From condition (3), Theorem 2 of [8] implies that there exists a group
(H̃t, ∗) with |H̃t| ≤ |Gt|, and a homomorphism ψ̃ : Gt → H̃t such that:

(a) |H̃t\Ht| ≤ 30η|H̃t|;

Quantum Property Testing of Group Solvability 781

(b) Prh,h′∈H̃t
[h ∗ h′ �= h · h′] ≤ 91η; and

(c) Prx∈Gt[ψ̃(x) �= ψ(x)] ≤ 30η.

Notice that, strictly speaking, Theorem 2 of [8] can be used only if Ht is a
magma, i.e. closed under ·. This is not the case here because Ht may not be a
magma, but only a pseudo-magma. However, careful inspection of the proof of
Theorem 2 of [8] shows that the same result holds for pseudo-magmas too. The
distance between H̃t and Ht is determined by the number of elements being a
member of either set and the number of pairs of two elements for which the result
of the multiplication differ. In particular, this distance has for upper bound the
cost of the following transform: starting from the table of H̃j , we first delete
rows and columns corresponding to elements in H̃t\Ht, insert rows and columns
corresponding to elements in Ht\H̃t, and then exchange multiplication entries
which differ between two tables. It follows from (a) and (b) that the number of
elements in H̃t\Ht is less than 30η|H̃t| and the number of pairs (h, h′) ∈ H̃t ×H̃t

such that h ∗ h′ �= h · h′ is less than 91η|H̃t|2. It remains to show that Ht\H̃t is
small enough too and that H̃t is a solvable group.

Suppose towards a contradiction that |ψ̃(Gt)| < |Gt|. Then |ψ̃(Gt)| ≤ |Gt|/2.
From condition (c), we obtain |ψ(Gt)| ≤ |Gt|/2 + 30η|Gt| ≤ 3|Gt|/4. This gives
a contradiction. Thus |ψ̃(Gt)| = |H̃t| = |Gt| and ψ̃ is an isomorphism from Gt

to H̃t. Since Gt is a solvable group, H̃t is solvable too. Since |Ht| ≤ |Gt|, it also
follows that |Ht| ≤ |H̃t| and thus |Ht\H̃t| ≤ |H̃t\Ht| ≤ 30η|H̃t|.

Deleting |H̃t\Ht| rows and column from the table of H̃t costs

2|H̃t||H̃t\Ht| − |H̃t\Ht|2 ≤ 60η|H̃t|2.

Then inserting |Ht\H̃t| rows and columns similarly costs at most 60η|H̃t|2 too.
Thus the distance between Ht and the solvable group H̃t and is at most [(60 +
60 + 91)η|H̃t|2] ≤ 211η|Γ |2. ��

More precisely, we perform the following test. We want to test which of
Prx,y∈G[ψ(x ◦ y) = ψ(x) · ψ(y)] = 1 and Prx,y∈Gt[ψ(x ◦ y) = ψ(x) · ψ(y)] ≤ 1 − η
with η = ε/422 holds. We take c2 pairs (x, y) of elements of Gt and test whether
they all satisfy ψ(x ◦ y) = ψ(x) · ψ(y). It is easy to show that, when taking
c2 = Θ(η−1) = Θ(ε−1), we can decide which case holds with constant probability.

3.3 Correctness and Complexity

We now evaluate the performance of our algorithm. This gives the result of
Theorem 1.

First, suppose that the magma (Γ, ·) is a solvable group. With high probability
the set of elements taken at step 1 is a generating set of Γ and the first algorithm
of Theorem 2 succeeds on this set. In this case, each of the tests realized at steps 3
and 4 succeeds with high probability (since the success probability of the second
algorithm of Theorem 2 can be amplified), and then all the tests at steps 5 and
6 succeed with probability 1. Thus the global error probability is constant.

782 Y. Inui and F. Le Gall

Now, we would like to show that any magma Γ that is (ε|Γ |2)-far from any
solvable group is rejected with high probability. Take such a magma Γ . Then Ht

is (ε
2 |Γ |2)-far from any solvable group H̃t or |Γ\Ht|/|Γ | > ε

4 . This assertion holds
because for any solvable group H̃t, the inequalities ε|Γ |2 < d(Γ, H̃t) ≤ d(Γ, Ht)+
d(Ht, H̃t) hold and d(Γ, Ht) = 2|Γ\Ht||Γ |− |Γ\Ht|2 ≤ 2|Γ\Ht||Γ | since Ht ⊆ Γ
and the operation is the same. If the latter holds, it should be rejected with
high probability at test 4. Now suppose that the former holds and that all the
steps 1–5 succeed. Then with high probability |Ht| ≥ 3|Γ |/4 = 3|Gt|/4. From
Proposition 2 this implies that Prx,y∈G[ψ(x◦y) = ψ(x) ·ψ(y)] ≤ 1− ε/422. This
is detected with high probability at step 6.

The algorithm queries the oracle Γ a number of times polynomial in log |Γ |
at each steps 1, 2 and 3, and a number of times polynomial in log |Γ | and ε−1 at
steps 4 and 6. Additional computational work is needed at steps 5 and 6 to com-
pute a polynomial number of products in the groups Gi’s. Since each product can
be done (without queries) using O(exp((log log |Gi|)2)) = O(exp((log log |Γ |)2))
time using the algorithm by Höfling [10], the total time complexity of the algo-
rithm is polynomial in exp((log log |Γ |)2) and ε−1.

Acknowledgments

The authors thank an anonymous reviewer for helpful comments and suggestions.

References

1. Arvind, V., Vinodchandran, N.V.: Solvable black-box group problems are low for
PP. Theoretical Computer Science 180(1-2), 17–45 (1997)

2. Babai, L., Cooperman, G., Finkelstein, L., Luks, E., Seress, Á.: Fast Monte
Carlo algorithms for permutation groups. Journal of Computer and System Sci-
ences 50(2), 296–307 (1995)

3. Babai, L., Szemerédi, E.: On the complexity of matrix group problems. In: Proceed-
ings of the 25th Annual IEEE Symposium on Foundations of Computer Science,
pp. 229–240 (1984)

4. Ben-Or, M., Coppersmith, D., Luby, M., Rubinfeld, R.: Non-Abelian homomor-
phism testing, and distributions close to their self-convolutions. In: Proceedings of
the 8th International Workshop on Randomization and Computation, pp. 273–285
(2004)

5. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. In: Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, pp. 73–83 (1990)

6. Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In:
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 873–882 (2001)

7. Ergün, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers.
Journal of Computer and System Sciences 60(3), 717–751 (2000)

8. Friedl, K., Ivanyos, G., Santha, M.: Efficient testing of groups. In: Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, pp. 157–166 (2005)

Quantum Property Testing of Group Solvability 783

9. Friedl, K., Magniez, F., Santha, M., Sen, P.: Quantum testers for hidden group
properties. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 419–
428. Springer, Heidelberg (2003)

10. Höfling, B.: Efficient multiplication algorithms for finite polycyclic groups
(preprint, 2004), http://www-public.tu-bs.de:8080/∼bhoeflin/

11. Inui, Y., Le Gall, F.: Efficient algorithms for the hidden subgroup problem
over a class of semi-direct product groups. Quantum Information and Compu-
tation 7(5&6), 559–570 (2007)

12. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some in-
stances of the non-Abelian hidden subgroup problem. International Journal of
Foundations of Computer Science 14(5), 723–740 (2003)

13. Kiwi, M., Magniez, F., Santha, M.: Exact and approximate testing/correcting of
algebraic functions: a survey. In: Theoretical Aspects of Computer Science 2000.
LNCS, vol. 2292, pp. 30–83. Springer, Heidelberg (2002)

14. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1312–1324. Springer, Heidelberg (2005)

15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

16. Rajagopalan, S., Schulman, L.: Verification of identities. In: Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science, pp. 612–616
(1996)

17. Ron, D.: Property testing. In: Handbook of Randomized Computing, pp. 597–649.
Kluwer Academic Publishers, Dordrecht (2001)

18. Shpilka, A., Wigderson, A.: Derandomizing homomorphism testing in general
groups. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, pp. 427–435 (2004)

19. Sims, C.: Computation with Finitely Presented Groups. Cambridge University
Press, Cambridge (1994)

20. Watrous, J.: Quantum algorithms for solvable groups. In: Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing, pp. 60–67 (2001)

http://www-public.tu-bs.de:8080/~bhoeflin/

Solving NP-Complete Problems with Quantum

Search

Martin Fürer�

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
furer@cse.psu.edu

http://cse.psu.edu/~furer

Abstract. In his seminal paper, Grover points out the prospect of faster
solutions for an NP-complete problem like SAT. If there are n variables,
then an obvious classical deterministic algorithm checks out all 2n truth
assignments in about 2n steps, while his quantum search algorithm can
find a satisfying truth assignment in about 2n/2 steps.

For several NP-complete problems, many sophisticated classical algo-
rithms have been designed. They are still exponential, but much faster
than the brute force algorithms. The question arises whether their run-
ning time can still be decreased from T (n) to Õ(

�
T (n)) by using a quan-

tum computer. Isolated positive examples are known, and some speed-up
has been obtained for wider classes. Here, we present a simple method to
obtain the full T (n) to Õ(

�
T (n)) speed-up for most of the many non-

trivial exponential time algorithms for NP-hard problems. The method
works whenever the widely used technique of recursive decomposition is
employed.

This included all currently known algorithms for which such a speed-
up has not yet been known.

1 Introduction

Grover’s [1,2] quantum algorithm for searching a database to ”find a needle in a
haystack” has an obvious application for solving many hard combinatorial prob-
lems. In the example of SAT (Satisfiability of boolean formulas), the quantum
computer goes into a uniformly weighted superposition of 2n states representing
all possible truth assignments to the n variables, each represented by a binary
string of length n.

For a given formula and a given truth assignment the trivial satisfiability test
runs in polynomial time. The quantum algorithm uses the same kind of test,
but runs it simultaneously for all the 2n truth assignments. Every one of the
2n superpositioned computations stores the result in the same boolean variable.
Then all auxiliary results are erased by an operation sometimes referred to as
� Research supported in part by NSF Grant CCR-0209099 and CCF-0728921.

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 784–792, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Solving NP-Complete Problems with Quantum Search 785

“uncomputing.” If there are successful truth assignments, then their values are
Grover’s needles in the haystack. With constant probability, one of them is found
in time Õ(2n/2)1.

This example seems to suggest that Grover’s method can only be applied to
a class of very simply structured brute force search algorithms. It is certainly
unrealistic to believe that a method could be designed that could speed up every
thinkable satisfiability test by the use of quantum computers.

Nevertheless, Angelsmark, Dahllöf, and Jonsson [3] have shown that for some
nontrivial nicely structured classical algorithms, a significant speed-up by using
quantum computers is indeed possible. They present a quantum algorithm for
constraint satisfaction problems and a special version for 3-coloring running in
time Õ(1.2185n). This is in drastic contrast to our approach. Our goal is to
provide a quadratic speed-up for every known deterministic test. This is pos-
sible, because all such non-trivial tests are based on recursive decomposition.
We can take any state of the art classical algorithm based on recursive decom-
position, like Eppstein’s [4] 3-coloring algorithm with a provable running time
of Õ(1.3289n). We immediately obtain a quantum algorithm running in time
Õ(1.3289n/2) = Õ(1.1527n). Our method applies as well to all the known deter-
ministic algorithms for other NP-complete decision problems.

Our method does not provide a mechanical transformation from classical de-
cision algorithms to quantum algorithms. To build the quantum algorithm, we
have to take the time analysis of the classical algorithm too, and build it into
the quantum algorithm.

A different approach has been taken by Cerf et al. [5]. For well structured
classical solutions, they propose to speed up the search by doing many nested
quantum searches, applied to subtrees of a given search tree. Our method is
much simpler, more widely applicable, and provides a higher speed-up.

Cerf et al. [5] cut a search tree at a small number of levels. Useless subtrees
rooted at a cut level can be omitted. The others have still to be fully searched
down to the next level. They obtain a quadratic speed-up compared to a classical
algorithm that also searches these complete subtrees. But naturally, a classical
algorithm has no need to fully search these sutrees and could often stop ear-
lier. Therefore, instead of speeding up from T (n) to Õ(

√
T (n)), their quadratic

speed-up is from the running time of an artificially slow classical algorithm. As
an example, the authors point out that while the currently best classical algo-
rithm for 3-SAT runs in time Õ(20.446n), their quantum algorithm runs in time
Õ(20.34n). As this is a significant improvement, they consider it a success for
their algorithm, even though the exponent is far from being divided by 2.

A more widely applicable method has been proposed by Brassard, Høyer,
Mosca and Tapp [6]. They show how any randomized classical algorithm with
one-sided error can be transformed into a faster quantum algorithm. The idea
is to run a superposition of the computations with all possible strings produced
by coin tossing. The needles in the haystack are then the accepting computation
paths.

1 Here, Õ refers to upper bounds up to polynomial factors.

786 M. Fürer

In their expository articles, Ambainis [7] as well as Dantsin et al. [8] point out
in particular that Schöning’s classical algorithm [9], as well as its later improve-
ments can easily be modified for a quantum computation with a quadratic speed
up. The reason is that these algorithms do many runs of the same procedure from
different starting points. Where these algorithms use sequential repetitions, a
quantum algorithm just uses quantum amplitude amplification instead, in effect
doing many searches from different starting points in parallel.

If a classical randomized algorithm with one-sided error succeeds with proba-
bility c−n in polynomial time T (n), then the directly corresponding quantum al-
gorithm running these superpositions also has a success probability of order c−n.

In the classical setting the algorithm can be repeated cn times to obtain con-
stant success probability and running time O(T (n)cn). The quantum algorithm
instead can use amplitude amplification [6], which is a generalization of Grover’s
searching algorithm. Using amplitude amplification, a constant success proba-
bility can already be obtained by a quantum computation with running time
O(T (n)c

n
2). This is a quadratic improvement, because T (n) is a polynomial.

The resulting running time is much better than the time obtained by a direct
application of Grover’s method to a trivial algorithm. The classical randomized
algorithm running in time T (n) does not have to be the brute force search
algorithm that tosses a coin for every boolean variable and checks whether it
defines a satisfying assignment. Instead, the classical algorithm can already be
a sophisticated search algorithm. Hence, this is a significant generalization of
Grover’s algorithm.

In the current paper we do something similar, corresponding to (sophisticated)
deterministic exponential time algorithms. We focus on the wide middle ground
between simplistic brute force approaches or other well structured algorithms
on one hand, and unstructured or arbitrarily structured methods on the other
hand. There might be some mere heuristics, but in all algorithms published with
a complexity analysis, there is just enough regularity to allow the full quantum
search speed-up. We are considering the broad class of algorithms using recursive
decomposition based on self reducibility known as the Davis-Putnam [10,11] pro-
cedure. Thus our method applies to all the classical and recent exponential time
algorithms for NP-hard problems based on recursive decomposition, including
dynamic programming and search tree pruning techniques. For a recent survey
see Woeginger [12].

For our method to work, we have to assume that the recursive decomposition
does not happen completely irregularly. It can be quite complicated, but it has
to be so predictable as to allow the proof of a rigorous complexity bound for the
classical algorithm. Thus all the many algorithms based on recursive decomposi-
tion qualify, if they have been published together with a provable time analysis
(upper bound). The presentation of such an efficient exponential time algorithm
always comes in two quite distinct parts, the definition of the algorithm and the
analysis of its running time. Here, we use both, a classical algorithm and also its
time analysis as building blocks for a quantum algorithm. Thus to be precise,
our algorithm does not produce a quadratic speed-up form an unknown running

Solving NP-Complete Problems with Quantum Search 787

time of an arbitrary classical algorithm, but from the currently provable upper
bound on the classical running time of such an algorithm.

Our quantum algorithm directly applies to all deterministic exponential time
algorithms for NP-hard search problems, that have been published with rigorous
time bounds. Our method is not directly applicable to the few randomized algo-
rithms in this area, like the one based on the approach pioneered by Schöning
[9]. His method is based on local search starting from random points.

As mentioned before, a quadratic speed-up is possible for Schöning’s algorithm
due to its regularity. Our algorithm can easily handle the derandomized version
of his algorithm [13]. The important point is that this derandomized version
is based on a computation tree with strict bounds on the sizes of its subtrees
rooted at any internal node.

Alternatively, we can easily extend our method using the ideas of Brassard et
al. [6]. Every coin toss is expanded to a branching where both paths are followed.
It does not matter that the resulting deterministic algorithm would be too slow.
When many paths are accepting, then the amplitude amplification is less costly.

In this way we could also handle algorithms that might be composed of ran-
domized parts and parts based on recursive decomposition. For example, one
could imagine an algorithm for SAT based on a random selection of sub-clauses
followed by a sophisticated deterministic satisfiability test of the resulting for-
mula by recursive decomposition.

2 The Classical Analysis of Algorithms Based on
Recursive Decomposition

Typical recursive decomposition algorithms for SAT branch on a variable x oc-
curring in the boolean formula with n variables. Two branches are created by
setting x true and false respectively, and simplifying the resulting formulas. A
bound on the branching depth of n and a bound on the number of leaves of
2n follows immediately. Many more efficient exponential time algorithms have a
computation tree with only Õ(cn) leaves for some c < 2.

Typical efficient exponential algorithms for this and other problems can be
quite complicated and involve many cases. This implies a little more program-
ming, but is not an obstacle for obtaining a fast quantum algorithm based on
our general design.

Just to illustrate the principle, let us consider a simple but still much improved
algorithm for 3SAT. Instead of branching on an arbitrary variable, it branches on
a variable occurring in a shortest clause. Naturally, clauses of size 1 just simplify
without any branching. If we are always lucky and find a clause with 2 variables,
then on one branch the occurring literal is set to false and the other literal is
forced to be true for free. This would result in a computation tree with at most
L(n) leaves, where L(n) satisfies the following recurrence.

L(n) ≤ L(n − 1) + L(n − 2)

788 M. Fürer

The resulting running time is also L(n) up to a polynomial factor. Clearly in
the worst case we would not always be so lucky. Sometimes, we have to branch
on variables from 3 literal clauses. Still on one branch we have then produced a
2 literal clause, resulting in

L(n) ≤ L(n − 1) + L(n − 2) + L(n − 3)

Using the terminology of Kullmann [14,15], we say that in the first case, the
corresponding node ν in the tree has 2 branches labeled 1 and 2. The branching
tuple for ν is (1, 2). In the second case, the corresponding node ν′ in the tree
has 3 branches and a branching tuple of (1, 2, 3), representing the decreases of
the number of variables in each branch.

When a node has a branching tuple (t1, . . . , td), then its branching number is
the unique positive real solution of the equation

d∑

j=1

x−tj = 1

It is important to notice that the branching number is not at all an upper
bound on the degree of the computation tree, even though for a trivial brute-
force algorithm, the branching number is just 2. In general the branching number
is a tool to measure the progress in one recursive step even when the tree is very
unbalanced and not nicely structured.

If x is the largest branching number in a tree, then xn is an upper bound on
the number of leaves (and thus an upper bound on the corresponding running
time up to a polynomial factor).

For various NP-complete problems, many nontrivial (but still exponential
time) algorithms have been designed based on this principle. Sometimes, such
algorithms need an elaborate case analysis. Nevertheless, they are immediately
amenable to our solution.

3 The Quantum Algorithm Based on Recursive
Decomposition

We consider a problem in NP for which we know a classical exponential time
algorithm based on recursive decomposition. This means that the problem is self
reducible, and a computation consists of repeated reductions of a current instance
to a finite number of smaller instances. The size of an instance is measured by
a real parameter value p. Often the parameter is actually restricted to be a
non-negative integer, like p = n, the number of variables in our 3SAT example.

We represent the algorithm by a computation tree. The children of a node
can be viewed as the recursive calls made form that node. Hence, a sequential
algorithm traverses the whole computation tree. On a parallel machine with an
unbounded number of processors, one could handle all nodes of the same depth
simultaneously, resulting in a parallel running time given by the height of the
computation tree.

Solving NP-Complete Problems with Quantum Search 789

This is not how our quantum algorithm works. Its running time is the square
root of the upper bound on the number of leaves (up to a polynomial factor), as
long as the height is polynomial. For the sequential algorithm, this upper bound
on the number of leaves (based on using the worst case branching number in
each vertex) is the proved upper bound on the running time (up to a polyno-
mial factor). The corresponding quantum algorithm runs a superposition of the
computations corresponding to all paths from the root to any leaf.

The root of the computation tree represents the input instance. Every node in
the tree represents an instance and its children represent the smaller instances
to which the parent instance is reduced. Every node has a branching number,
based on the decreases of the parameter value from the parent to its children,
as defined in the previous section. We know an upper bound on all branching
numbers in the tree. Typically, we have a small fixed number of possible types
of nodes (2 in our simple 3SAT example) and thus a small number of different
branching numbers.

If x is an upper bound on the branching numbers of a computation tree, then
it is easy to see that every subtree of a node with size parameter p has at most
xp leaves. Imposing an arbitrary fixed order on the children of every node, it
is very easy to compute an estimate of the number of leaves to the left of the
subtree of a currently visited node, inductively assuming that such an estimate
is available for the parent node, and that the type of branching in the parent
node is known.

As x is just a real algebraic number, there might well be some rounding
problems involved, because we want our estimate not just to be an approximate
value, but an exact upper bound. On the other hand, the bound does not have to
be tight. By just doubling the estimate and rounding, we are safe. Every partial
result 2xp is rounded to any one of the two adjacent integers. (If we cannot
easily figure out what the 2 integers are, then we are actually very close to one
of them, and we obviously choose that one.)

What we have done in effect is enumerating the leaves from left to right, but
with using at most half the numbers in the appropriate range. The gaps between
any two numbers assigned to adjacent leaves fluctuate due to the rounding errors,
with additional gaps introduced by overestimation of some branching numbers by
the maximal branching number. But in any case, the leaves are enumerated from
left to right, and no two leaves are assigned the same number. The differences
between adjacent numbers assigned to leaves are at least 1 (and in the average
at least 2).

We assume now that our problem instance has just one solution. Then the
quantum algorithm proceeds as follows.

Algorithm A:
Let x be the maximal branching number and p the size parameter value for the
input.
Let k = �log2(2xp)� = �p log2 x + 1�.
Start with the input and the string 0k

Apply a Fourier transform to obtain a superposition of all non-negative integers less

790 M. Fürer

than 2k, represented by all 0-1-strings s of length k, each with amplitude 2−k/2.
In parallel for each s in the superposition execute the one branch of the exponential
size classical computation tree that leads to the leaf numbered s (if it exists). (This
takes polynomial time.)
Produce a result bit b of 1, if the searched branch of the computation has found a
solution. The result bit is 0, if no solution has been found. The latter includes the
case where s does not occur as the name of any leaf (because there is a gap at this
point).
Undo the computation, erasing auxiliary partial results, just keeping the result bit b
(together with s and the input).
Run Grover’s algorithm to search for b = 1.

This algorithm is of the 1-sided Monte Carlo type. If solutions exist, then one
of them is found with high probability, but no proof of nonexistence of solutions
is accomplished.

As the running time is dominated by Grover’s search algorithm, we obtain
the following result.

Theorem 1. Let P be a problem in NP that has a classical solution by recursive
decomposition. Assume the maximal branching number is x with respect to a
parameter with initial value p. Further assume, the input is an instance with a
unique solution. Then with constant probability, the quantum Algorithm A finds
the solution in time Õ(

√
xp).

If the problem instance possibly has multiple solutions, then we employ the
generalization of Grover’s algorithm to multiobject search by Boyer, Brassard,
Høyer and Tapp [16]. The algorithm A′ obtained by this replacement gives us
the following result.

Theorem 2. Let P be a problem in NP that has a classical solution by recur-
sive decomposition. Assume the maximal branching number is x with respect to
a parameter with initial value p. Then with constant probability, the quantum
Algorithm A′ finds the solution in time Õ(

√
xp).

One could also use any one of a newer class of search algorithms by Grover
[17,18]. These algorithms have been extended to multiobject search by Chen
and Sun [19].

Repeating A′ polynomially often immediately produces the following result.

Corollary 1. Let P be a problem in NP that has a classical solution by recursive
decomposition. Assume the maximal branching number is x with respect to a
parameter with initial value p. Then there is a polynomial time algorithm solving
P with exponentially small error probability by making a polynomial number of
calls to an Õ(

√
xp) time quantum algorithm.

Note that under the conditions of the Corollary, the corresponding classical
algorithm takes time Õ(xp).

Solving NP-Complete Problems with Quantum Search 791

4 Applications

There are plenty of applications. After a slow start, many sophisticated and
efficient exponential time deterministic algorithms have appeared over the last
dacade, e.g., [20,14,21,4,22,23,24]. All of these algorithms for NP-hard problems
fit into the scheme of recursive decomposition. This includes algorithms for Sat-
isfiability, Maximum Independent Set, Graph Coloring, and other Constraint
Satisfaction Problems. The method works fine for optimization problems too.
One just applies binary search for the optimal value. Thus, for example, to find
a maximum independent set, one would run the quantum algorithm with a log-
arithmic number of choices for the size of such a set.

References

1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters 79(2), 325–328 (1997)

2. Grover, L.K.: A framework for fast quantum mechanical algorithms. In: Proceed-
ings of the 30th Annual ACM Symposium on Theory of Computing (STOC 1998),
pp. 53–62. ACM Press, New York (1998)

3. Angelsmark, O., Dahllöf, V., Jonsson, P.: Finite domain constraint satisfaction
using quantum computation. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS,
vol. 2420, pp. 93–103. Springer, Heidelberg (2002)

4. Eppstein, D.: Improved algorithms for 3-Coloring, 3-Edge-Coloring, and constraint
satisfaction. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2001), pp. 329–337. ACM Press, New York (2001)

5. Cerf, N., Grover, L., Williams, C.: Nested quantum search and structured problems.
Phys. Rev. A 61(3) (2000) 14 032303.

6. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. In: Lomonaco Jr., S.J., Brandt, H.E. (eds.) Quantum Computation
and Information, AMS Contemporary Mathematics, vol. 305, pp. 53–74 (2002),
http://arxiv.org/abs/quant-ph/0005055

7. Ambainis, A.: Quantum search algorithms. ACM SIGACT News 35(2), 22–35
(2004)

8. Dantsin, E., Kreinovich, V., Wolpert, A.: On quantum versions of record-breaking
algorithms for sat. ACM SIGACT News 36(4), 103–108 (2005)

9. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science (FOCS
1999), Washington - Brussels - Tokyo, pp. 410–414. IEEE, Los Alamitos (1999)

10. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of Association Computer Machinery 7, 201–215 (1960)

11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

12. Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

13. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou,
C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

http://arxiv.org/abs/quant-ph/0005055

792 M. Fürer

14. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoret-
ical Computer Science 223, 1–72 (1999)

15. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT
formulae. Theoretical Computer Science 332(1-3), 265–291 (2005)

16. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortsch. Phys. 46, 493–506 (1998)

17. Grover, L.K.: Quantum computers can search rapidly by using almost any trans-
formation. Physical Review Letters 80, 4329–4332 (1998)

18. Grover, L.K.: Rapid sampling through quantum computing. In: Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing (STOC 2000), pp.
618–626 (2000)

19. Chen, G., Sun, S.: Generalization of Grover’s algorithm to multiobject search in
quantum computing, Part II: general unitary transformations. In: Brylinski, R.,
Chen, G. (eds.) Mathematics of Quantum Computation. Computational Mathe-
matics, pp. 161–168. Chapman & Hall/CRC, Boca Raton, London, New York,
Washington, D.C (2002)

20. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J.
Comput. 6(3), 537–546 (1977)

21. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In:
SODA 1999. Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics, pp. 856–857 (1999)

22. Dantsin, E., Hirsch, E.A., Ivanov, S., Vsemirnov, M.: Algorithms for SAT and upper
bounds on their complexity. Technical Report TR01-012, Electronic Colloquium on
Computational Complexity (ECCC) (2001)

23. Fürer, M.: A faster algorithm for finding maximum independent sets in sparse
graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 491–501. Springer, Heidelberg (2006)

24. Fürer, M., Kasiviswanathan, S.P.: Exact Max 2-SAT: Easier and faster. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 272–283. Springer, Heidelberg (2007)

Author Index

Abouelaoualim, A. 723
Afonin, Sergey 121
Akhavi, Ali 293
Aloupis, Greg 146
Angelopoulos, Spyros 399
Angelov, Stanislav 48
Awerbuch, Baruch 580
Azimian, Kooshiar 676

Bansal, Mukul S. 72
Bansal, Nikhil 240
Bárány, Imre 654
Bereg, Sergey 630
Bern, Marshall 617
Bienkowski, Marcin 252
Blondel, Vincent D. 84
Bonsma, Paul 531
Bose, Prosenjit 170
Brandstädt, Andreas 479
Bui-Xuan, B.-M. 492
Bunde, David P. 240

Cardinal, Jean 146
Carmi, Paz 170
Chan, Ho-Leung 240
Cheng, Christine T. 568
Chung, Christine 228
Collette, Sébastien 146
Cornuéjols, Gérard 317
Couture, Mathieu 170
Czyzowicz, J. 158

Das, K.Ch. 723
Daudé, Hervé 12
Dean, Brian C. 449
Dellamonica, Domingos 664
Deshpande, Amol 436
Dobrev, S. 158
Dong, Jianrong 72
Dorrigiv, Reza 399
Dragan, Feodor F. 555
Dudek, Andrzej 473

Epstein, Leah 264
Erlebach, Thomas 747

Faria, L. 723
Fernández-Baca, David 72
Fernandes, Cristina G. 329
Ferreira, Carlos E. 329
Fevens, T. 158
Fomin, Fedor V. 194
Fürer, Martin 784

González, Rodrigo 374
González-Aguilar, H. 158
Griffis, Adam 449
Gupta, Anupam 36
Gupta, Arvind 182

Habib, M. 492
Hayes, Barry 617
Hazan, Elad 306
Heggernes, Pinar 216
Hell, Pavol 182, 520
Hoefer, Martin 339
Hong, Seok-Hee 461
Hüffner, Falk 711
Hundt, Christian 479
Hung, Regant Y.S. 699
Hwang, H.-K. 1

Ibarra, Oscar H. 94
Inui, Yoshifumi 772
Ivanyos, Gábor 759

Jiang, Minghui 630
Jungers, Raphaël M. 84

Karakostas, George 350
Karhumäki, Juhani 94
Karimi, Mehdi 182
Khandekar, Rohit 580
Khuller, Samir 436
Komusiewicz, Christian 711
Kortsarz, Guy 423
Kranakis, Evangelos 158, 605
Kratochv́ıl, Jan 194
Kratsch, Dieter 216
Krizanc, Danny 605
Kunal, Keshav 48

794 Author Index

Langerman, Stefan 146
Le Gall, François 772
Li, Zhentao 206
Lingas, Andrzej 736
Lokshtanov, Daniel 194
Lopez, Mario A. 642
López-Ortiz, Alejandro 399
Lundell, Eva-Marta 736

M ↪adry, Aleksander 252
Maheshwari, Anil 170
Malekian, Azarakhsh 436
Maletti, Andreas 106
Mancini, Federico 194
Manoussakis, Y. 723
Margot, François 317
Markou, Euripides 350
Mart́ınez, Conrado 504
Martinhon, C. 723
Mayster, Yan 642
McCutchen, Richard Matthew 593
McGregor, Andrew 48
Meister, Daniel 216
Mirrokni, Vahab S. 423
Morin, Pat 170, 605
Moser, Hannes 711
Moura, Lucia 504

Nagamochi, Hiroshi 461
Navarro, Gonzalo 362, 374
Nekrich, Yakov 687
Nicodème, P. 1
Niedermeier, Rolf 711
Nutov, Zeev 411, 423

Okhotin, Alexander 94
Oliveira, Arlindo L. 362
Opatrny, J. 158

Panario, Daniel 504
Panigrahy, Rina 387
Park, G. 1
Pór, Attila 654
Protasov, Vladimir Yu. 84
Pruhs, Kirk 228, 240

Rafiey, Arash 182
Rapaport, I. 24
Raspaud, André 520

Ravelomanana, Vlady 12
Reed, Bruce 206
Rödl, Vojtěch 473
Russo, Lúıs M.S. 362

Saad, R. 723
Sanselme, Luc 759
Santha, Miklos 759
Scheder, Dominik 60
Shparlinski, Igor E. 276, 284
Silveira, Rodrigo I. 133
Smid, Michiel 170
Smorodinsky, Shakhar 146
Stacho, Juraj 520, 544
Stehlé, Damien 293
Stevens, Brett 504
Suchan, K. 24
Szegedy, Mario 676
Szpankowski, W. 1

Talwar, Kunal 36
Telle, Jan Arne 194
Ting, H.F. 699
Tjandraatmadja, Christian 329
Todinca, I. 24
Toossi, Mohammed 436
Tsanko, Elena 423

Urrutia, J. 158
Uthaisombut, Patchrawat 228

Valtr, Pavel 654
van Kreveld, Marc 133
van Leeuwen, Erik Jan 747
van Stee, Rob 264
Verstraete, J. 24
von zur Gathen, Joachim 276

Wakabayashi, Yoshiko 329
Wang, Wencheng 630
Whitley, Adam 449

Xiang, Yang 555

Yan, Chenyu 555
Yang, Boting 630

Zhu, Binhai 630
Zickfeld, Florian 531

	Title Page
	Preface
	Organization
	Table of Contents
	Profile of Tries
	Introduction
	Summary of Main Results

	Random 2-XORSAT at the Satisfiability Threshold
	Introduction
	Context
	Main Result and Outline of Proof
	Organization of the Paper and Further Results as || is Large

	Exact Enumeration
	Generating Functions
	Differential Recurrence for EGFs
	Inequalities for EGFs

	Proof of Theorem 1
	Proof of Fact (i)
	Sketch of the Proof of Fact (ii)

	Conclusion

	On Dissemination Thresholds in Regular and Irregular Graph Classes
	Introduction
	Regular Graphs
	Cubic Graphs
	Random Cubic Graphs
	$p_c({\cal G}_3) \geq \frac{1}{2}$

	Wheels and Toroidal Grids

	How to Complete a Doubling Metric
	Introduction
	Our Results
	Related Work

	Preliminaries and Notation
	A Structure Theorem
	Convex Completions for Graphs
	The Spanner Construction
	Bounding the Dimension of the Convex Closure

	Convex Completions for Trees
	The Construction for Trees
	Bounding the Dimension of the Convex Closure: The Tree Case

	Sorting and Selection with Random Costs
	Introduction
	A Motivation from Game Theory
	Our Results

	Preliminaries
	Uniform Comparison Costs
	Boolean Comparison Costs
	Unit and Infinite Comparison Costs
	Conclusions and Open Questions

	Guided Search and a Faster DeterministicAlgorithm for 3-SAT
	Introduction
	The Local Search Algorithm k-SAT
	Branching Rules
	Simple Branching Rules

	Partial Exact Assignments and Guided Search
	Conclusions

	Comparing and Aggregating Partially Resolved Trees
	Introduction
	Preliminaries
	Distance Measures for Phylogenies
	Properties of Parametric Distance
	Relationships Among the Metrics
	Computing Parametric Distance
	Computing the Parametric Triplet Distance
	An Approximation Algorithm for Parametric Quartet Distance

	Computing the Growth of the Number ofOverlap-Free Words with Spectra of Matrices
	Introduction
	The Minimal and Maximal Rates of Growth of the Overlap-Free Words
	The Average Rate of Growth: The Lyapunov Exponent
	Conclusions

	On Stateless Multihead Automata:Hierarchies and the Emptiness Problem
	Introduction
	Stateless Multihead Two-Way Automata
	Stateless Multihead One-way Automata
	The Emptiness Problem

	Myhill-Nerode Theorem forRecognizable Tree Series Revisited
	Introduction
	Preliminaries
	Recognizable Yields Finite Index
	Finite Index Yields Recognizable
	Minimization of Deterministic All-Accepting wta
	A Myhill-Nerode Congruence for Cancellative Semirings
	A Myhill-Nerode Theorem for All-Accepting wta

	The View Selection Problemfor Regular Path Queries
	Introduction
	Regular Path Query Rewritings
	Viewsets of Minimal Cardinality and p-Containment
	Maximal Factors of Regular Languages
	Algorithm
	Arbitrary Rewritings and p-Containment of Viewsets

	Viewsets of Minimal Size
	Conclusion

	Optimal Higher Order Delaunay Triangulations of Polygons
	Introduction
	Higher Order Delaunay Triangulations
	Triangulating Polygons
	Triangulating Polygons with Points Inside
	Some Other Measures
	Application to Point Sets
	Discussion

	Coloring Geometric Range Spaces
	Introduction
	Halfplanes
	Lower Halfspaces in R3
	Disks and Pseudo-disks

	Local Algorithms for Dominating and ConnectedDominating Sets of Unit Disk Graphs withLocation Aware Nodes
	Introduction
	Related Work
	Preliminaries and Results of the Paper

	Local Algorithm for Dominating Set of a UDG
	Construction of the Dominating Set

	Local Algorithm for Connected Dominating Set of a UDG
	Conclusion

	Spanners of Complete k-PartiteGeometric Graphs
	Introduction
	The Well-Separated Pair Decomposition
	A First Algorithm
	Analysis of Algorithm 1
	An Improved Algorithm
	Improving the Stretch Factor

	Minimum Cost Homomorphisms to ReflexiveDigraphs
	Introduction and Terminology
	Structure and Forbidden Subgraphs
	Complexity

	On the Complexity of Reconstructing H-freeGraphs from Their Star Systems
	Introduction
	Preliminaries
	Forbidding Short Paths and Cycles
	Forbidding Short Paths
	Forbidding C3 and C4

	Forbidding Long Paths and Cycles
	Closing Remarks

	Optimization and Recognition for K5-minor FreeGraphs in Linear Time
	Results and Related Work
	The Structure of K5-minor Free Graphs
	Cutset Structure
	Cutset Structure Relative to a Reduction

	The Algorithm
	Running Time
	Applications
	Finding a Separator
	k-Realizations
	Further Applications

	More Details

	Bandwidth of Bipartite Permutation Graphs inPolynomial Time
	Introduction
	Preliminaries
	Bandwidth of Bipartite Permutation Graphs
	Deciding the Existence of Desired Layouts
	A Polynomial-Time Algorithm for Computing the Bandwidth of Bipartite Permutation Graphs

	The Online Transportation Problem: On theExponential Boost of One Extra Server
	Introduction
	Previous Results
	Our Results

	Online Transportation on a Star
	The General Lower Bound
	BODS on the Star

	Generalization to HSTs
	Generalization to Any Metric Space
	Conclusions

	Average Rate Speed Scaling
	Introduction
	Other Related Results
	Formal Problem Statement
	The Lower Bound
	An Elementary Proof that AVR is 2-1-competitive
	Conclusion

	Geometric Aspects of Online Packet Buffering:An Optimal Randomized Algorithm for TwoBuffers
	Introduction
	Preliminaries
	Algorithm PBF
	Outline of the Proof
	Worst-Case Sequences
	Performance Ratio on Regular Sequences

	Randomization

	Maximizing the Minimum Load for SelfishAgents
	Introduction
	Unsuccessful Directions
	PTAS for Constant m
	FPTAS for Constant m
	An FPTAS Which is Not Monotone

	Approximation Algorithm SNC for Arbitrary Values of m
	Algorithms for Small Numbers of Machines

	Approximate Polynomial gcd:Small Degree and Small Height Perturbations
	Introduction
	Gcd of Large Degree
	Gcd of Large Height

	Pseudorandom Graphs from Elliptic Curves
	Introduction
	Motivation
	Our Results
	Outline of the Paper and Notation

	Preparation
	Background on Elliptic Curves
	Exponential Sums

	Main Results
	Construction
	Estimates

	Remarks

	Speeding-Up Lattice Reduction with RandomProjections
	Introduction
	Some Reminders on Lattices
	Probabilistic Reduction of Rectangular Lattices
	High-Level Description of the Algorithm
	Complexity Analysis

	Probabilistic Correctness in Two Continuous Models
	Probabilistic Correctness in the Gaussian Model
	Probabilistic Correctness in the Unit Ball Model

	Experimental Data

	Sparse Approximate Solutions to SemidefinitePrograms
	Introduction
	Existence of Sparse Solutions

	Preliminaries
	A Sparse Approximate SDP Solver
	Using Approximate Eigenvector Computations

	Solving General SDPs
	QST in Linear Time

	On the Facets of Mixed Integer Programswith Two Integer Variables and Two Constraints
	Introduction
	Facets of Rf and Facets of Rf(r1, �, rk)�
	Split Inequalities
	Nondegenerate Case
	Degenerate Case

	Triangle and Quadrilateral Inequalities
	Triangle Inequalities
	Quadrilateral Inequalities

	Degenerate Triangle and Quadrilateral Inequalities

	A Polyhedral Investigation of the LCS Problemand a Repetition-Free Variant
	Introduction
	A Polyhedral Study of the LCS Polytope
	The Separation Problem for the Star Inequalities
	The Integrality of the LCS Polytope

	Formulation for the RFLCS
	The Separation Problem for the Extended Star Inequalities

	Computational Results
	Conclusion

	Competitive Cost Sharing withEconomies of Scale
	Introduction
	Model and Basic Properties
	Covering and Facility Location

	Cost and Complexity of Nash Equilibria
	Approximate Nash Equilibria
	Single Element Players

	Emergency Connectivity in Ad-Hoc Networkswith Selfish Nodes
	Introduction
	Model and Terminology
	Characterization of Nash Equilibria
	Connected Equilibria
	NP-hardness of Existence of a Connected Nash Equilibrium
	Conclusion

	Fully-Compressed Suffix Trees
	Introduction and Related Work
	Basic Concepts
	Using Compressed Suffix Arrays
	The Sampled Suffix Tree
	Computing LSA for Leaves

	The Kernel Operations
	Two Fundamental Observations
	Entangled Operations
	Breaking the Cycle

	Further Operations
	Conclusions and Future Work

	Improved Dynamic Rank-Select Entropy-BoundStructures
	Introduction and Related Work
	Collection of Searchable Partial Sums with Indels
	Uncompressed Dynamic Rank-Select Structures for a Small Alphabet
	Compressed Dynamic Rank-Select Structures
	Conclusions

	An Improved Algorithm Finding NearestNeighbor Using Kd-trees
	Introduction
	Preliminaries
	Problem Statement
	Kd-trees

	An Improved Search Algorithm on Kd-trees
	Traditional Kd-tree Algorithms Fails with High Probability
	Modified Algorithm has a Higher Probability of Success
	Experiments

	List Update with Locality of Reference
	Introduction
	Bijective Analysis
	List Update with Locality of Reference
	Experimental Results and Analysis
	Conclusions

	Approximating Steiner Networks with NodeWeights
	Introduction
	Motivation, Problem Definition, and Previous Work
	Our Results

	Decomposition of Covers of Uncrossable Families
	Spider-Covers and Decompositions
	Cores and Laminar Families
	Proof of Theorem 5

	Covering Uncrossable Families (Proof of Theorem 4)
	Algorithm for NWSN (Proof of Theorem 1)

	Approximating Minimum-Power Degree andConnectivity Problems
	Introduction
	Motivation and Problems Considered
	Related Work
	Our Results
	Techniques
	Power Optimization vs. Cost Optimization: A Comparison

	Approximating MPEMC (Proof of Theorem 2)
	Reduction to Bipartite Graphs
	Am O(logn)-approximation for Bipartite MPEMC
	Proof of Lemma 3

	Approximating 0,1-MPEMC (Proof of Theorem 4)

	Energy Efficient Monitoring in Sensor Networks
	Introduction
	Prior Work
	Max k-cut Approach
	Analysis for d=2
	Analysis for General d

	SDP-Based Formulation
	Set (k,)-Cover Problem
	Sensors with Capacity Constraints
	NP-Completeness
	General Capacity
	Unit Capacity

	Approximation Algorithms for k-HurdleProblems
	Introduction
	Literature Review

	k-Hurdle Multiway Cut
	Sacrificing One Hurdle
	A 2(1 - 1/r)-Approximation Algorithm Via Simplex Embeddings

	k-Hurdle Multicut
	A 2-Approximation for Trees

	Concluding Remarks and Open Problems

	Approximating Crossing Minimization inRadial Layouts
	Introduction
	Preliminaries
	Horizontal Layouts
	Radial Layouts

	Radial Drawings with Crossing-Free Edges
	Reduction from Radial Drawings to Horizontal Drawings
	Conclusion

	New Upper Bound on Vertex Folkman Numbers
	Introduction
	Generalized Quadrangles
	Proof of Theorem 1
	Concluding Remarks

	Ptolemaic Graphs and Interval GraphsAre Leaf Powers
	Introduction
	Notations and Basic Facts
	Ptolemaic Graphs Are Leaf Powers
	Ptolemaic Graphs Have Unbounded Leaf Rank
	Interval Graphs Are Leaf Powers
	Discussion and Outlook

	A Representation Theorem for Union-DifferenceFamilies and Application
	Introduction
	Representation Theorem
	Simply-Linked Quotients
	Other Quotients

	Application to Graphs: Sesquimodular Decomposition
	Polynomial Time Algorithm for Sesquimodular Decomposition
	Computing a Factoring Permutation
	Computing the Decomposition Tree

	Conclusion and Perspectives

	Algorithms to Locate Errors Using CoveringArrays
	Introduction
	Definitions and Preliminaries
	Existence of ELAs and Logarithmic Growth
	Algorithm for Locating Graphs with Safe Values
	Algorithm for Locating Graphs with g=2
	Conclusion and Further Work

	On Injective Colourings of Chordal Graphs
	Introduction
	Preliminaries
	Basic Properties
	Hardness and Approximation Results
	Exact Algorithmic Results
	Injective Structure
	Computing i(G) in Chordal Graphs
	Bridgeless Chordal Graphs
	Perfectly Tree-Dominated Graphs

	Spanning Trees with Many Leaves in Graphswithout Diamonds and Blossoms
	Introduction
	Obstructions for Spanning Trees with Many Leaves
	Proof of the Main Theorem
	A Fast FPT Algorithm for MaxLeaf
	Conclusions

	On 2-Subcolourings of Chordal Graphs
	Introduction
	The Subcolouring Digraph
	2-Subcolourings
	The Algorithm

	Collective Additive Tree Spanners ofHomogeneously Orderable Graphs
	Introduction
	Preliminaries
	Additive Tree 3-Spanners
	Collective Additive Tree 2-Spanners
	Conclusion

	The Generalized Median Stable Matchings:Finding Them Is Not That Easy
	Introduction
	Some Background: Distributive Lattices and Rotation Posets
	A New Characterization
	Finding the Generalized Median Stable Matchings
	The Hardness Result

	Approximating the Median Stable Matching

	Stateless Near Optimal Flow Control withPoly-logarithmic Convergence
	Introduction
	Greedy Stateless Maximum Benefit Flow Framework and Our Results
	Previous Work

	The Mechanism
	Analysis
	Preliminary Observations
	Mileage Definitions
	Main Theorems

	Potential Increase Proof of Theorem 3
	Optimality Proof of Theorem 4

	The Least-Unpopularity-Factor andLeast-Unpopularity-Margin Criteria forMatching Problems with One-Sided Preferences
	Introduction
	Related Work
	The Unpopularity Factor
	Differences Between Matchings: Reassignments, Paths and Cycles
	Pressures
	Computing the Unpopularity Factor

	The Unpopularity Margin
	NP-Hardness of Finding Least-Unpopularity Matchings
	Overview of the Reduction Design
	The Gadgets
	Constructing the Preference Set
	Correctness of the Reduction

	Randomized Rendez-Vous with Limited Memory
	Introduction
	Preliminaries
	Martingales, Stopping Times, and Wald's Equations
	A Lemma on Random Walks
	An Approximate Counter

	The Rendez-Vous Algorithm
	The Lower Bound
	Well-Behaved Algorithms and Reset Times
	Unbiasing Algorithms
	The Lower Bound for Well-Behaved Algorithms
	Badly-Behaved Algorithms
	Linear Time Rendez-vous

	Origami Embedding of Piecewise-LinearTwo-Manifolds
	Introduction
	Definitions and Main Results
	One Straight Cut Revisited
	Extending the Construction
	Warping the Flat Folding into an Embedding
	Discussion

	Simplifying 3D Polygonal Chains Under the DiscreteFr´echet Distance
	Introduction
	Preliminaries
	Min-# Fitting with a Given Error Bound
	Min- Fitting with m-chains
	Simplifying a Pair of Chains Under the Discrete Fréchet Distance
	Concluding Remarks

	Weighted Rectilinear Approximation of Pointsin the Plane
	Introduction
	Preliminaries
	An Exact Algorithm
	A Heuristic with Provable Bounds
	A Randomized Algorithm

	Paths with no Small Angles
	Introduction and Results
	Further Questions and Extensions
	Proof of Theorem 2
	Algorithm

	Simpler Constant-Seed Condensers
	Introduction
	Organization of the Note

	Preliminaries
	Some Additive Combinatorics
	An Asymmetric Condenser
	Proof Strategy

	Condensers for Low Min-Entropy
	Explicit Sum-Product Estimates for Finite Fields

	Upper Bound for the Performance of Condensers
	References

	Parallel Repetition of the Odd Cycle Game
	Introduction
	A Syntactic Aside
	The Odd Cycle Game and Its Powers
	Even Cycle Games
	Local Consistency and Pearls
	The Topological Approach
	Blockers
	A New Metric
	The Case of d=2
	Gap Commitment Problem

	I/O-Efficient Point Location in a Set ofRectangles
	Introduction
	Point Location on the (1,d) Grid
	Point Location in a Set of Rectangles
	Point Location in Two- and Three-dimensional Rectangular Subdivisions
	Three-Dimensional Orthogonal Range Reporting

	Conclusion

	Finding Heavy Hitters over the Sliding Windowof a Weighted Data Stream
	Introduction
	A Useful Lemma
	A Deterministic Algorithm for Finding Heavy Hitters
	Estimating the Sum in Sliding Window
	An Improved Algorithm
	A Randomized Algorithm for Finding Heavy Hitters

	Fixed-Parameter Algorithms forCluster Vertex Deletion
	Introduction
	Iterative Compression for Cluster Vertex Deletion
	Cluster Vertex Deletion with a Fixed Number of Clusters
	An O(3k+n3) Time Algorithm
	An O(1.40kk3d+n3) Time Algorithm
	An O(1.84k+d + n3) Time Algorithm

	Outlook

	Paths and Trails in Edge-Colored Graphs
	Introduction, Notation and Terminology
	The s-t Path/Trail Problem
	Finding a Properly Edge-Colored Trail Between Two Vertices
	Shortest Properly Edge-Colored Paths/Trails
	The Longest Properly Edge-Colored s-t Path/Trail Problem

	The k-Path/Trail Problem
	NP-Complete Results for General Graphs and Graphs with no Properly Edge-Colored Cycles (Closed Trails)
	Some Approximation and Polynomial Results

	Conclusions and an Open Problem

	Efficient Approximation Algorithms for ShortestCycles in Undirected Graphs
	Introduction
	The Unweighted Case
	The Weighted Case
	Final Remarks

	Domination in Geometric Intersection Graphs
	Introduction
	Known Results

	Preliminaries
	-Nets

	Domination in Geometric Intersection Graphs
	Regular Polygons
	More General Objects

	Disk Graphs of Bounded Ply
	Hardness Results
	Conclusion

	An Efficient Quantum Algorithm for the HiddenSubgroup Problem in Nil-2 Groups
	Introduction
	Preliminaries
	Extension of the Standard Algorithm for the Abelian HSP
	Nilpotent Groups
	Nil-2 p-Groups of Exponent p

	Groups of Constant Nilpotency Class: Classical Reductions
	The Quantum Algorithm
	Solving the System of Equations

	Quantum Property Testing of Group Solvability
	Introduction
	Definitions
	Distances Between Sets
	Property Testing of Group Solvability
	Quantum Algorithms for Solvable Groups

	Our Quantum Algorithm
	Outline of Our Algorithm
	Algorithm
	Correctness and Complexity

	Solving NP-Complete Problems with QuantumSearch
	Introduction
	The Classical Analysis of Algorithms Based on Recursive Decomposition
	The Quantum Algorithm Based on Recursive Decomposition
	Applications

	Author Index

