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Abstract. The complexity of generating investment strategies problems makes
it hard (or even impossible), in most cases, to use traditional techniques and to
find the strict solution. In the paper the evolutionary system for generating invest-
ment strategies is presented. The algorithms used in the system (evolutionary al-
gorithm, co-evolutionary algorithm, and agent-based co-evolutionary algorithm)
are verified and compared on the basis of the results coming from experiments
carried out with the use of real-life stock data.

1 Introduction

Investing on the stock market requires analyzing of the great number of strategies
(which security should be chosen, when it should be bought or sold). Accurate analysis
is important during predicting and choosing the optimal investment strategy. It plays
an important role in a future success. Majority of the investment decisions are based
on present and historical data. The trend anticipation depends on many assumptions,
parameters and conditions. Consideration of so many assumptions, combinations of pa-
rameters and their values leads to the comparison of the great number of graphs. The
evaluation of parameters of many securities is difficult and time consuming for the in-
vestor and the analyst. As a result, the investor or the analyst is able to analyze only the
small subset of the possible strategies, so the optimal investment strategy is usually not
found [9].

The set of the strategies which consists of indicator function is infinite because the
complexity of the strategy can be unlimited. Formulas of the given strategy are func-
tions of hundreds (or thousands) of parameters. Complexity of the problem makes it
impossible to use direct search methods and instead of it a heuristic approach must be
used. For example, it is possible to apply here evolutionary algorithms because there
exist many solutions to the problem and finding optimal solutions is not necessary—
suboptimal solutions are usually sufficient for an investor.

Evolutionary algorithms are optimization and search techniques, which are based on
the Darwinian model of evolutionary processes [2]. One of the branches of evolutionary
algorithms are co-evolutionary algorithms [7]. The general difference between them is
the way in which the fitness of the individual is evaluated. In the case of evolutionary al-
gorithms the fitness of the individual depends only on how “good” is the solution of the
given problem encoded within its genotype. In the case of co-evolutionary algorithms
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the fitness of the individual depends on the values of other individuals’ fitness. The
value of fitness is usually based on the results of tournaments, in which the given in-
dividual and some other individuals from the population are engaged. Co-evolutionary
algorithms are generally applicable in the cases in which it is difficult or even impossible
to formulate explicit fitness function. Co-evolutionary interactions between individuals
have also other positive effects on the population—for example maintaining population
diversity, which is one of the biggest problems in the case of “classical” evolutionary
algorithms.

Agent-based (co-)evolutionary algorithms are the result of research on decentralized
models of evolutionary computations. The basic idea of such approach is the realization
of evolutionary processes in multi-agent system, which leads to very interesting class
of systems: (co-)evolutionary multi-agent systems—(Co)EMAS [3]. Such systems have
some features which radically differ them from “classical” evolutionary algorithms. The
most important of them are the following: synchronization constraints of the computa-
tions are relaxed because the evolutionary processes are decentralized (individuals are
agents), there exist the possibility of constructing hybrid systems using many differ-
ent computational intelligence techniques within single, coherent agent architecture,
there are possibilities of introducing new evolutionary and social mechanisms, which
were hard or even impossible to introduce in the case of classical evolutionary algo-
rithms. (Co)EMAS systems have been already applied to multi-modal optimization and
multi-objective optimization problems. Another area of applications is the modeling
and simulation of social and economical phenomena.

In the paper the component system for generating investment strategies is presented.
In the system three algorithms were implemented: “classical” evolutionary algorithm,
co-evolutionary algorithm, and agent-based co-evolutionary algorithm. These algo-
rithms were compared during the series of experiments, which results conclude the
paper.

2 Previous Research on Evolutionary Algorithms for Generating
Investment Strategies

During last years there can be observed the growing interest in applying biologically
inspired algorithms to economic and financial problems. Below, only selected applica-
tions of evolutionary algorithms in systems supporting investment decision making are
presented.

S. K. Kassicieh, T. L. Paez and G. Vora used the genetic algorithm for supporting the
investment decisions making [5]. Their algorithm operated on historical stock data. The
tasks of the algorithm included selecting company to invest in. The time series of the
considered companies were given. In their system some logical operations were carried
out on the data. The genetic algorithm was used to determine, which logical operators
should be applied in a given situation.

O. V. Pictet, M. M. Dacorogna, R. D. Dave, B. Chopard, R. Schirru and M. Tomassini
([6]) presented the genetic algorithm for the automatic generation of trade models repre-
sented by financial indicators. Three algorithms were implemented: genetic algorithm
(it converged to local minima and had the poor capability of generalization), genetic
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algorithm with fitness sharing technique developed by X. Yin and N. Germay [10] (it
explored the search space more effectively and had more ability to find diverse optima),
and genetic algorithm with fitness sharing technique developed by authors themselves
in order to prevent the concentration of the individuals around “peaks” of fitness func-
tion (it had the best capability of generalization). The proposed algorithms selected
parameters for indicators and combined them to create new, more complex ones.

F. Allen and R. Karjalainen ([1]) used genetic algorithm for finding trading rules for
S&P 500 index. Their algorithm could select the structures and parameters for rules.
Each rule was composed of a function organized into a tree and a returned value (signal),
which indicated whether stocks should be bought or sold at a given price. Components
of the rules were the following: functions which operated on historical data, numerical
or logical constants, logical functions which allowed for combining individual blocks
in order to build more complicated rules. Function in the root always returned logical
value, which ensured the correctness of the strategy. Fitness measure was based on
excess return from the buy-and-hold strategy, however the return did not excess the
transaction cost.

3 Evolutionary System for Generating Investment Strategies

In this section the architecture of the component system for generating investment
strategies is presented. Also, the three algorithms (evolutionary algorithm, co-evolutio-
nary algorithm, and agent-based co-evolutionary algorithm) used as computational
components are described.

3.1 The Architecture of the System

Fig. 1 shows the system’s architecture model. The system has the following basic com-
ponents:

– DataSource—supplies the data to the strategy generator. Historical sessions’ stock
data are used.

Fig. 1. The architecture of the system used in experiments
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– Functions—contains all classes, which are necessary for creating formulas of
strategies. It allows to carry out basic operations on formulas such as: initializa-
tion, exchange of single functions, adding new functions or removing existing ones.
Formulas can be tested on data and, in such a case, the results will be returned.

– SystemTester—allows to test strategies. It can prepare reports concerning the trans-
actions and containing the information about the gained profit. It is used by the
generation algorithms to estimate the fitness.

– GenerationAlgorithms—contains implementation of three algorithms which gen-
erate strategies: evolutionary (EA), co-evolutionary (CCEA) and co-evolutionary
multi-agent (CoEMAS). This component includes the mutation and recombination
operators and also the fitness estimation mechanisms.

– Presentation—contains the definitions of GUI forms, which are used to monitor the
generation algorithms and present the results.

3.2 The Algorithms

In all three algorithms the strategy is a pair of formulas. First formula indicates when
one should enter the market and the second indicates when one should exit the market.
Each formula, which is a part of strategy can by represented as a tree, which leaves and
nodes are functions performing some operations. Such tree has a root and any quantity
of child nodes. The function placed in the root always returns logical value. Fig. 2
shows the tree of the formula, which can be symbolically written in the following way:
S T E(WillR(20),30)> 10.0.

Formula tree is represented in memory as a tree. The root node is an object which
contains the references to the functions and the references to parameters. These para-
meters are also the same objects as the root. The leaves of the tree are the objects which
do not contain parameters. When formula is executed recursive calls occur. In the be-
ginning, the root requires values of all parameters needed to invoke its function. Then
the control flows to objects of the parameters. The parameters objects behave in the
same way as the root object. Leaves do not contain parameters, so they can return the
value required by the parent node.

Functions (which formulas are composed of) were divided into four categories:

– Functions returning stock data, e.g. Close (returns close prices), Open (returns
opening prices), Volume (returns volumes). There are 6 such functions.

Fig. 2. Tree of exemplary formula
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– Mathematical functions, e.g. Sin (sine function), Add (the addition), Pow (the
power function). There are 40 such functions.

– Tool functions, e.g. Cross (finds a cross point of two functions), STE (calculates
standard error), Outside (finds outside days). There are 33 of them.

– Indicator functions, e.g. AD (calculates the Accumulation/Distribution indicator),
MOV (calculates diverse moving averages), WillR (calculates Williams’ %R indi-
cator). There are 14 of them.

There are 93 functions altogether. These functions accept the following types of pa-
rameters: constants (integer, float or enum), array of constant float values, and values
returned by other function (array of logical values or array of float values). Logical
constant does not exist because it was not needed for formula building.

Evolutionary Algorithm (EA). In the evolutionary algorithm genetic programming
was used. The genotype of individuals simultaneously contains formula for entering
and exiting the market. Estimation of the fitness of the strategies is carried out on the
loaded historical data. Two tables of logical values are created as a result of execution of
the formulas. The first one relates to the purchase action (entering the market) and the
second one relates to the sale action (exiting the market). Profit computing algorithm
processes tables and determines when a purchase and a sale occur. Entering the market
occurs when a system is outside the market and there is the value of “true” in the enter
table. Exiting the market occurs when the system is on the market and there is value
of “false” in the exit table. In the other cases no operation is performed. The profit/loss
from the given transaction is estimated when exiting the market and it is accumulated.
The cost of each transaction is included—the commission is calculated by subtracting
a certain constant from the transaction value.

Apart from the profit/loss there are also other criteria, which are included in the
fitness estimation. The first one is the formula complexity—too complex formulas can
slow down the computations and increase the memory usage. The complexity of the
formulas is determined through the summing up of all component functions. The second
criteria is the length of the transaction—it depends on the preference of the investor.

Three kinds of recombination operator are used: returned value recombination,
arguments recombination, and function recombination. Returned value recombination
is performed when there are two functions with different arguments but the same re-
turned values within the formula tree. These functions are exchanged between individu-
als (functions are moved with their arguments). Arguments recombination occurs when
there are two functions with the same arguments within the parents. These arguments are
exchanged between individuals during the recombination. Function recombination can
take place when two functions have the same arguments and the same returned values.

Two types of mutation were used: function arguments mutation and function muta-
tion. In function argument mutation the argument of the function must be a constant.
This constant is exchanged for the other one coming from the allowed range. There are
three variants of the function mutation:

1. Traverse on functions. If a given function should be mutated, a list of the functions
which take the same argument is found. If such functions exist, the exchange is
performed. If there are no such functions, mutation is not carried out.
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2. A given function can be exchanged for the other, completely new one, regardless
of arguments—only returned types must match. Arguments of such function are
created in the random manner.

3. Similarly as in (2), but, if it is possible, parameters of the replaced function are
copied to a new one.

The tournament reproduction ([2]) was used in the EA algorithm. After creating the
offspring, it was added to the population of parents (the reinsertion mechanism). From
such enlarged population the new base population was chosen also with the use of the
tournament mechanism.

Co-Evolutionary Algorithm (CCEA). While developing the co-evolutionary al-
gorithm for generating investment strategies, co-operative approach proposed by
M. A. Potter and K. A. De Jong ([8]) was used. There are two species in the imple-
mented algorithm: individuals representing entering the market strategies and individu-
als representing exiting the market strategies. Interaction between these species relies on
co-operation. During the fitness estimation process individuals are selected into pairs,
which form the complete solution. In the first generation, for each evaluated individ-
ual from the first species a partner for co-operation from the second species is chosen
randomly. For the complete solution created in this way, the fitness is computed and
assigned to the individual that is being evaluated. In the next generations, the best in-
dividual from the opposite species is chosen for the evaluated individual. The pairs of
individuals gaining the best profit are the result of the algorithm.

Co-Evolutionary Multi-Agent System (CoEMAS). Co-evolutionary multi-agent sys-
tem used in the experiments is the agent-based realization of the co-evolutionary algo-
rithm. Its general principles of functioning are in accordance with the general model of
co-evolution in multi-agent system [3]. The CoEMAS system is composed of the en-
vironment (which include computational nodes—islands—connected with paths) and
agents, which can migrate within the environment. The selection mechanisms is based
on the resources, which are defined in the system. The general rule is such, that in
the each time step the environment gives more resources to “better” agents and less
resources to “worse” agents. The agents use the resources for every activity, like migra-
tion, reproduction, and so on. Each time step, individuals lose some constant amount
of the possessed resources (the agents can live more than one generation), which is
given back to the environment. The agents make all their decisions independently—
especially those concerning reproduction and migration. They can also communicate
with each other and observe the environment.

In the CoEMAS algorithm realized in the system for generating investment strategies
each co-evolutionary algorithm (CCEA) is an agent which is located on one of the
islands and independently carries out the computations. The population of each co-
evolutionary algorithm also consists of the agents (there are two species of agents within
each population, like in the case of CCEA).

The method of the reinsertion is different than the one used in the previous algo-
rithms, and now works on the basis of resources. The agent which has the greater
amount of resource wins the tournament. Also, on the basis of the amount of the pos-
sessed resource each individual decides whether it is ready for the reproduction. During
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the recombination parents give the offspring certain quantity of their resources. The pos-
sibility of migration of the agent-individual from one population to another was added
as well.

4 The Experiments

In order to examine the generalization capabilities of the system and compare the pro-
posed algorithms, strategies which earn the largest profit per year for random stocks
were sought. An attempt was made to determine, which algorithm generalizes in a best
way and what quantity of stocks should be used for strategies generation so that the sys-
tem would not overfit. It is also interesting which algorithm generates the best strategies
and has the smallest convergence.

4.1 Plan of the Experiments

The presented results of the experiments comparing the quality of the generated strate-
gies and convergence properties of the considered algorithms are average values from
30 runs of the algorithms. Each algorithm was run for 500 generations on the data of
10 randomly chosen stocks. The session stock data came from the WIG index ([4]) and
the period of 5 years was chosen (from 2001-09-29 to 2006-09-29). The size of the
population in all the algorithms was equal to about 40 individuals (CoEMAS approach
uses variable-size populations).

All experiments were made with the use of optimal values of the parameters. These
values were found during consecutive experiments. The algorithms were run 10 times
for each parameter value coming from the established range and average results were
computed—on this basis the set of best parameters’ values was chosen.

While examining the generalization capabilities, each algorithm generated the solu-
tion for n random stocks (stage 1). Next, different n stocks were chosen ten times at
random and the profit was calculated using the best strategy obtained in the stage 1.
Then, the average of these profits was counted. These calculations were carried out four
times for n = 2,5,7,10.

Like in the first type of experiments (when the quality of the solutions and the conver-
gence properties were compared), populations had similar sizes in the case of all three
algorithms. All experiments were carried out on the machine with one AMD Sempron
2600+ processor.

4.2 Results

Fig. 3 shows the average fitness (from 30 experiments) of the best individuals for each
generation. Presented results show that the evolutionary algorithm achieved the best
results. The co-evolutionary algorithm achieved a little bit worse results. The quality of
the solution generated by the CoEMAS was close to that of the CCEA.

Fig. 4 presents the plot of the convergence. The convergence is the phenomenon of
losing by the evolutionary algorithm the ability to search the solution spaces before
finding a solution which would be a global optimum. It is manifested by the occurrence
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Fig. 3. Fitness of the best individuals (average values from 30 experiments)
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Fig. 4. Convergence values for three compared algorithms (average from 30 experiments)

of the pairs composed of identical individuals in the population. In the case of con-
vergence the evolutionary algorithm had the worst results. Large convergence occurred
already at the beginning and from 200 generation it was in the range from 50% to 60%.
The co-evolutionary algorithm appeared to be much better. CoEMAS had the smallest
convergence. For the last two algorithms convergence grew slowly from the beginning,
but even in the end of the experiment it did not rise much.

In the table 1 the results of experiments, which goal was to investigate the capability
of generalization of all compared algorithms are presented. The results show that while
generating a strategy, at least 7 stocks should be used, so that the strategy could be used
on any stock and earn profits in any situation (see tab. 1). If there are more stocks used
during the strategy generation, the profit will be greater in the case of random stocks.
For random stocks, when there was 3 or 5 of them in the group, the profits are varied
and unstable. For this reason it is difficult to compare implemented algorithms with buy
and hold strategy. It is not so, when the number of stocks in the group is 7 or 10. In the
case of the random stocks, buy and hold strategy was always better (on average 2.67
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Table 1. Generalization capabilities of the algorithms

Algorithm No. of
stocks in
the group

Profit (%) per
year (stocks
from the group)

Profit (%) per year for
buy & hold strategy
(stocks from the group)

Profit (%) per
year (random
stocks)

Profit (%) per year
for buy & hold strat-
egy (random stocks)

EA

3 133.24 86.24 8.79 34.81
5 89.15 28.85 1.8 33.62
7 68.32 21.43 13.74 23.72
10 87.57 24.29 20.81 26.07

CCEA

3 115.63 46.12 3.29 21.07
5 64.82 8.83 7.39 31.36
7 85.75 45.24 14.69 24.64
10 69.06 26.37 20.75 25.14

CoEMAS

3 87.39 12.64 3.97 30.28
5 66.97 7.64 -1.93 20.72
7 86.93 39.48 19.01 34.47
10 46.67 18.67 24.6 24.98

times) than the strategies generated by all three evolutionary algorithms, but for the
stocks from the learning set generated strategies were always better (on average 1.45
times) than buy and hold strategy.

5 Summary and Conclusions

Generating investment strategies is generally very hard problem because there exist
many assumptions, parameters, conditions and objectives which should be taken into
consideration. In the case of such problems finding the strict solution is impossible in
most cases and sub-optimal solution is usually quite sufficient for the decision maker.
In such cases some (meta-)heuristic algorithms like biologically inspired techniques
and methods can be used. In this paper the system for generating investment strate-
gies, which uses three types of evolutionary algorithms was presented. The system can
generate strategies with the use of “classical” evolutionary algorithm, co-evolutionary
algorithm, and agent-based co-evolutionary algorithm. These algorithms were verified
and compared with the use of real-life data coming from the WIG index.

The presented results show that evolutionary algorithm generated the individual
(strategy) with the best fitness, the second was agent-based co-evolutionary algo-
rithm, and the third co-evolutionary algorithm. When the population diversity (con-
vergence) is taken into consideration, the results are quite opposite: the best was Co-
EMAS, the second CCEA, and the worst results were reported in the case of EA. Such
observations generally confirm that co-evolutionary and agent-based co-evolutionary
algorithms maintain population diversity much better than “classical” evolutionary al-
gorithms. This can lead to stronger abilities of the population to “escape” from the local
minima in the case of highly multi-modal problems.

When we consider the generalization capabilities (profit gained from 7 and 10 ran-
dom stocks during one year) of the strategies generated with the use of each evolution-
ary algorithm, the best results were obtained by CoEMAS (21.8% profit on the average),
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the second was CCEA (on the average 17.7%), and the worst results were obtained in
the case of EA (17.3% on the average). Implemented algorithms provide better results
than buy and hold strategy for stocks from the learning set and worse results in the case
of the random stocks.

The future research could concentrate on additional verification of the proposed algo-
rithms, and on the implementation and testing of other co-evolutionary mechanisms—
especially in the case of the most promising technique (CoEMAS).
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