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Abstract. The facility location problem also known as p-median prob-
lem concerns the positioning of facilities such as bus-stops, broadcasting
stations or supply stations in general. The objective is to minimize the
weighted distance between demand points (or customers) and facilities.
In general there is a trend towards networked and distributed organi-
zations and their systems, complicating the design, construction and
maintenance of distributed facilities as information is scattered among
participants while no global view exists. There is a need to investigate
distributed approaches to the p-median problem. This paper contributes
to research on location problems by proposing an agent oriented decen-
tralized evolutionary computation (EC) approach that exploits the flow
of money or energy in order to realize distributed optimization. Our
approach uses local operators for reproduction like mutation, recombi-
nation and selection finally regulated by market mechanisms. This paper
presents two general outcomes of our model: how adaptation occurs in
the number and strategies of agents leading to an improvement at the
system level. The novelty of this approach lies in the biology-inspired
bottom-up adaptation method for inherent distributed problems. It is
applied to the uncapacitated p-median problem but is also intended to
be general for a wide variety of problems and domains, e.g. wireless sen-
sor networks.

1 Introduction

Today’s IT systems like the internet, global supply chains, sensor networks or
grid applications are large distributed systems with a huge number of elements
working in collaboration in order to fulfill requirements from customers, service
providers, organizations and other systems. These systems cannot be fixed in
their structure, design and behavior in order to cope with a highly dynamic
and unpredictable environment. For this reason effective positioning of facilities
is crucial. Current approaches are not easily adapted to for distributed systems
which have no central coordinator. This is based on two reasons. At first elements

M. Giacobini et al. (Eds.): EvoWorkshops 2008, LNCS 4974, pp. 659–668, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



660 S. Otto and G. Kókai

are limited by how much they can communicate and process [1]. The second rea-
son is information hiding, which means, that not all information can be given to
a central control due to intellectual property or security reasons [2,3,4]. Through-
out this paper the term decentralized system for systems without central control
is used.

From a general point of view, we understand a decentralized system as “dis-
tributed solution” to a distributed problem. The overall solution (system strat-
egy) is scattered amongst participating system elements, each with part of the
solution. In order to adapt distributed systems to distributed problems, both an
on-the-fly system size and strategy adjustment is needed. In [5,6] an approach
is presented to show decentralized coordination in distributed economic agent
systems. The investigation in [7] proposes evolutionary algorithms with on-the-
fly population size adjustment as a rewarding way of parameter regulating. As
in natural environments population sizes of species change and tend to stabilize
around appropriate values according to some factors such as resources provided
by the carrying capacity of the environment. Technically seen, population size
is used as the most flexible parameter in natural systems. As a combination
of these two approaches we present in this paper an artificial life like optimiza-
tion strategy using a decentralized economic-agent based evolutionary algorithm
that offers both properties needed. First results of a prototypic implementation
using the examples of two p-median problems are shown. This paper seeks an
answer to the question whether it is possible and rewarding to solve distributed
problems using a decentralized evolutionary algorithm.

The remainder of this paper is organized as follows. In section 2, we review
previous work related to p-median problem and evolutionary computation and
evolutionary multi-agent systems. In section 3, we present our model of a market-
based agent system. Section 4, illustrates our decentralized optimization method
by combining evolutionary computation and multi-agent systems. Using this
model two emergent effects are specified that occur within such a distributed
system formed by agents: adaptation of the number of agents and adaptation of
agent’s strategies on the p-median problem. We show how the number of agents
is regulated by the flow of money and how resource efficient strategies dominate.
In section 5, we describe our current implementation and present experimental
results. Finally, the conclusion and future plans are mentioned in section 6.

2 Related Work

Consider a set of locations L = {1 . . . l} for customers and a set of potential
locations for facilities P = {1 . . . p} ⊆ L and l × l matrix Dij of transportations
costs for satisfying the demands wi of the customers from the facilities. The
weighted distance matrix is Wij = wiDij . The p-median problem is to locate
the p facilities at locations of L in order to minimize the total transportation
cost for satisfying the demand of the customers. Each customer is supplied from
the cheapest open facility according to W . The uncapacitated p-median problem
can be expressed as follows:
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minimize

l∑

j=1

p∑

i=1

wij (1)

The p-median problem has attracted a great deal of interest over the last decades
in evolutionary research. Based on our search, Hosage and Goodchild [8] pub-
lished the first research, followed by [9,10] and many others. However, they use
the classical evolutionary approach with a central optimization loop and central
operators. Classical generation-based evolutionary algorithms with a nonover-
lapping population model where the entire population is replaced at each gen-
eration is not generally desirable in adaptive applications, where a high level
of on-line performance is needed [11]. Also the central control of traditional
evolutionary algorithms is inappropriate for distributed problems. A decentral-
ized EC-enabled multi-agent-system (MAS) framework is presented in [12] where
only local selection occurs. Based on [12] Smith and Eymann [6,5] investigate
negotiation strategies in a supply chain for the production of cabinets but con-
centrate merely on self-organizing coordination effects. Explicit optimization is
not investigated which is not suitable to the given problem.

To the best of our knowledge, there is no approach that applies a distributed
evolutionary agent model to the p-median problem. The flow of money is used to
direct evolutionary search. This paper describes a scalable multi-agent approach
without central control providing distributed optimization.

3 Model

This section describes the model and generic outcomes used throughout the
paper. In order to model and study generic decentralized systems, the term
multi-agent system is used and defined as follows.

3.1 Multi-Agent System

Definition 1 (Multi-Agent System (MAS)). A multi-agent system MAS =
(A, E) consists of a finite set of agents A = {a1, ..., az} embedded in an environ-
ment E.

An agent is defined as follows:

Definition 2 (Agent). An agent a = (I, O, m, s, c) consists of a finite set of
sensory inputs I = {i1, . . . , ir}, a finite set of effector outputs O = {o1, . . . , oq},
a function m : I → O which maps sensory inputs to effector outputs, the strat-
egy vector s = (s1, s2, . . . , sr) determining or parameterizing m, and the agents
current funds c ∈ �.

As a basic element of a decentralized system, an agent a is an autonomous
sensor effector entity with function ma. The strategy vector sa represents a
set of parameters that are assigned to a. We consider the agent’s function ma

to be determined by sa and thus, the strategy sa of agent a determines the
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behavior. Access to a particular element in the strategy vector is given by the
following convenience notation: sa(parameter) denotes parameter. Note that
the dimension of s may vary between different agents.

3.2 Distributed Optimization Problem

The task of optimizing can be formulated as follows:

Definition 3 (Distributed Optimization Problem (DOP)). A distributed
optimization problem is given by:

minimize f(sA),
subject to γ(sA) (2)

where sA = (sa1
1 , sa1

2 , . . . , sa1
t , . . . , saz

1 , saz
2 , . . . , saz

u ) ∈ S∗
A is the strategy vector of

MAS and S∗
A is the search space. The objective function is f and there are v

constraints γi(sA), i = 1, . . . , v imposed on sA.

The strategy vector sA is distributed among A and the objective function f
is unknown to A and therefore cannot be calculated by any single agent. The
set γ(sA) contains constraints of the DOP distributed over A. The combination
of local strategy vectors of all agents sA forms the strategy vector and is also
the distributed solution of the DOP. If constraints vary over time t, the DOP
becomes even harder. The dimensions of sA are not fixed, rather they may vary
over time, as agents enter or leave the system.

3.3 Integrating an Economic Perspective

In our model we assume a discrete timeline, where all actions take place at
consecutive steps. Further, agents have to pay a tax Ta(t) to the environment E
at every time t for their actions and according to their strategy parameters sa.
Given the tax, we can calculate the profit πa an agent a receives at time t by

πa(t) = Ra(t) − Pa(t) − Ta(t) (3)

where Pa(t) denotes the payment a has to pay to other agents or the environment
in order to follow its strategy sa, Ta(t) denotes tax turned over to the environ-
ment and finally a may have receipts Ra(t) from previously executed actions.
Based on the profit πa(t), an agent accumulates funds ca over time expressed
by:

ca(t + 1) = ca(t) + πa(t) (4)

where ca(t+1) denotes the funds of agent a at time (t+1), ca(t) denotes a’s funds
at time t and πa(t) is the profit of a at time t. Money cannot be ’created’ by the
agent, rather it is provided by the environment E representing the demand D
of the market since it provides a specific amount of funds in return to services
offered by the set of agents A.
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4 Evolutionary Computation as Decentralized
Adaptation Method

The aim of this paper is to show an decentralized optimization approach for
distributed problems lined out in section 3.2. Our assumptions on a system that
applies this method are 1) Agents have the ability to communicate and to sense
their environment at least locally 2) There is no central manager, instead the
DOP and its solution is distributed among A 3) There is a limited amount of
money (D) that will be provided by the environment E.

The previous section has shown a market-based multi-agent system that con-
sists of economic agents who have to solve a distributed problem DOP collabo-
ratively and fulfill previous prerequisites. In this section we re-use evolutionary
algorithm theories of Holland [11,13] concurrently with a decentralized economic
agent perspective given in [5] as well as our economic market perspective as we
believe that a decentralized market mechanism can be a profound approach
to replace the central fitness calculation in evolutionary algorithms. There are
a variety of evolutionary computational models that have been proposed and
studied that we will refer to as evolutionary algorithms [11,13]. In our agent
based approach we turn the typical evolutionary algorithm software design on
its head by breaking up any central instance and move the genetic representation
as well as the operators to the agents respective individuals itself as proposed
in [12].

Local reproduction by an agent includes all steps and operations necessary to
produce new offspring, such as local search, recombination and mutation. We in-
troduce an agent specific variable θ that serves as a threshold and enables agents
to reproduce. Whenever the funds of an agent exceed this threshold (ca ≥ θ)
it will reproduce. Advantages of local versus global reproduction are discussed
in [14] in detail. As we want to focus on emerging global effects of local repro-
duction, based on [15] an agents algorithm motivated by modeling ecologies of
organisms adapting in environments is formulated as follows:

Algorithm 1. Main loop, every agent executes asynchronously
Require: s and c from parent
1: initialize m
2: loop
3: get sensory inputs I
4: execute m
5: set effector outputs O
6: calculate c using equation (4)
7: if c ≥ θ then
8: reproduce and split c with child
9: else if c < 0 then

10: die
11: end if
12: end loop
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An agent a is set up with its strategy sa and funds c from its parent. The initial
population is created by assigning a random strategy and an initial reservoir
of funds to every agent. Once started, an agent will continuously follow his
strategy by executing m. Whenever c reaches θ the agent will reproduce (line
7-8) and create a new agent. In the opposite case, if an agent dies, his funds drop
below zero (c < 0, line 9), construed to signify the bankruptcy of an inefficient
agent. Therefore the notion of ’generation number’ does not exist and instead a
perpetual reproduction and replacement of agents takes place. This mechanism
makes survivor selection unnecessary and population size an observable. This can
be regarded as a combination of biological and economical ideas [5], because no
rational economic agent would create its own competition. However, in biology,
it is the case.

Given the model in chapter 3 and algorithm 1 it is clear that the distribution
of money within the system differs among the agents. Any agent selfishly tries
to exploit the limited money based on its own strategy; however we assume an
agent has no particular intelligence about how this strategy relates to its own
success. In the following sections a short description of the two basic properties
of our model is given: adaptation in the number of agents and their strategy. A
more extensive investigation is given in [16].

4.1 Adaptation of the Number of Agents

Following the statement in [7] in natural environments the population size tend
to stabilize around the carrying capacity of the ecosystem we define the car-
rying capacity as demand D. As outlined in [11] the system can only be sta-
ble for bounded input when D does not grow in magnitude of its own
accord.

For further analysis we approximate the creation of agents from discrete by a
continuous adaptation in population growth. For a particular agent a the ratio
πa(t)

θ is an expression of the estimated creation of new agents at time t. In fact,
the number of agents increase/decrease stepwise and not continuously, depending
on the distribution of Π(t) =

∑
a∈A πa(t) and the funds in A.

Dividing the overall profit Π(t) by θ we get the average number of new/dying
agents at time t + 1 (again, averaged for sufficient long runs) in equation 5

|A(t + 1)| = |A(t)| +
Π(t)

θ
(5)

Thus |A(t+1)| vary by factor Π
θ compared to |A(t)|, where |A(t)| is the number

of agents in A at time t. If Π
θ is positive (negative), the number of agents will

increase (decrease) depending on Π . This emergent behavior can be observed
in real scenarios [2] where actors enter and leave the market. The rate at which
agents enter or leave the market is directly correlated with the overall profit (see
equation 5) and the market supply S and demand D in such a scenario. Even
without any central control this effect can be observed.



Decentralized Evolutionary Optimization Approach 665

4.2 Distributed Problem Optimization by Spread of Successful
Strategies

Since in our model there is no central instance that can rank and compare
the agents funds, no central selection based on fitness can be calculated and
performed. Therefore the system must evolve fitter strategies in an emergent
self-organizing way.

For the following discussion we assume that strategies were reproduced in a
pure way without disturbance of mutation or recombination. The proportion
of strategy sa in A(t) is pa(t) = 1

|A(t)| , where |A(t)| denotes the number of
agents. Based on evolutionary pressure the agent population profit Π reaches
zero after a sufficient amount of time and for long running simulation we can
set limt→∞ Π(t) = 0. According to equation 5 the number of agents in the next
time step can be rewritten by |A(t + 1)| = |A(t)| and the expected proportion
of sa at time step t + 1 is as follows:

pa(t + 1) =
1 + πa(t)

θ

|A(t)| (6)

where 1 + πa(t)
θ is the original strategy plus the estimated additional quantity of

sa that together forms the number of samples of strategy Sa in A(t+1). It follows,
that based on the proportion pa(t + 1) > pa(t) for a positive profit the part of
sa in A grows. In words, the proportion of a particular strategy sa grows as the
ratio of the average profit πa of agent a. Strategies causing a positive/negative
profit will receive an increasing/decreasing number of replications in the next
time step.

It follows that strategies inducing a positive profit on the one hand may have
to pay less tax compared to below zero profit strategies due to the usage of less
resources or more efficient resource utilization. Both are needed to streamline
logistic networks while simultaneously improving service to the customer. Based
on equation 3 one can see that tax T is that part of an agents profit determining
variable which is not explicitly related to the flow of goods. With tax the models
basic conditions can be set respective controlled and the agent population will
adapt to it, if tax is not too high. Therefore, an intrinsic property of systems
using our model is the constant search for better resource utilization.

5 Case Study: The p-Median Problem

We include a case study that illustrates the successful application of decentralized
EC-enabled economic agents. It consists in positioning facilities on a discrete
map by using two p-median sample problem sets presented in [9,10]. The set of
locations L is given by the problem set and facilities are represented by agents.
The agents strategy vector consists two values: the location sa(location) ∈ L
and the profit factor sa(profit) ∈ �. An agent a offers service to customer at
location j ∈ L according to costaj = wsa(location)j ∗sa(profit). Customers choose
always the agent with lowest cost and the selection is expressed as
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σaj(t) =
{

1 customer j is served by agent a at time t
0 otherwise

Multiple agents can offer their service at the same location l and the ’cheapest’
agent with lowest cost at location l is defined as ȧl. The set of cheapest agents is
defined as Ȧ ⊆ A with sȧi(location) �= sȧj (location), ȧi, ȧj ∈ Ȧ and considered
as the set of facilities P that form the solution to the p-median problem given in
equation 1. For simplicity reasons the set of Ȧ is denoted with A, if not stated
otherwise. The p-median problem specific DOP is given as

minimize f(sA) =
l∑

j=1

A∑

a=1

wsa(location)j (7)

subject to πa(t) = Ra(t) − Pa(t) − Ta(t)

Ra(t) =
l∑

j=1

A∑

a=1

costaj(t) ∗ σaj(t) (8)

Pa(t) = 0 (9)

Ta(t) = 10 +
l∑

j=1

A∑

a=1

waj ∗ σaj(t) (10)

According to equations 8 and 10 the profit πa(t) is basically dependent on
sa(profit). The fixed tax of 10 currency units is necessary to slowly remove
agents with no income, e.g. for a /∈ Ȧ, otherwise they would remain in the sys-
tem for ever and consuming resources. As the fixed tax is negligible, a profit
factor sa(profit) > 1 is important and induces an evolutionary pressure on
agents to evolve a strategy with sa(profit) slightly over 1. Otherwise an agent
will be removed based on a negative profit as well as turning inactive (a � Ȧ).
There is no direct ressource transfer among the agents (eq. 9) in this particular
application but money is transferred between customers and agents. Splitting
threshold θ is dynamic calculated as the average income over the last two time
steps since a fixed θ would need to be adjusted for every problem.

The initial setting is a population size of 20 agents, a mutation rate of 0.03,
10000 time steps and a profit factor of 2. It is important to set the initial profit
factor high enough compared to expected payments in order to get a running
system. During the simulation an asymptotic convergence of the profit factor to
1 is expected. The agents strategy is represented as an integer/float vector that
can be evolved using the common variable-length binary valued crossover and
mutation operators [11]. We use uniform crossover and an implementation of the
Breeder Genetic Algorithm [17] for mutation throughout all runs. Selection is
disabled and results are obtained by averaging 50 simulation runs.

In figure 1 the results of two different problem sets are shown and costs for
different p values are compared to optimal values and random search. At the
end of each independent run all pareto-optimal values explored during the run
are averaged (The averaged values are not necessary pareto optimal). During
simulation the agent population explores different values of p as the population
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Fig. 1. Distributed agents approach compared with random search and optimal values
for multiple p on two problem sets (Galvao: 100 nodes, Alberta: 316 nodes)

size is changing. The graphs show clear differences between distributed agents
approach and random search. There are, however, significant differences in search
space exploitation for different p values in the distributed agents approach that
needs further investigations in different tax and starting conditions.

6 Conclusion and Further Directions

This paper has addressed the potentials of distributed evolutionary systems
whereas a market-based multi-agent approach is used. All necessary steps of
the evolutionary algorithm have been moved to the agents itself which allows
a fully decentralized approach. We have shown with our approach, that even
in a decentralized system without central control an adaptation occur, caused
by two basic properties. First the number of agents |A| adapt according to the
demand provided from environment E and second, successful strategies spread
in the population of agents which form together a distributed and optimized
solution. The optimization is based on funds provided by E that spread within
the system and allows local selection and reproduction by the agents. The two
effects indicate that an agent population and their resource utilization adapt to
a pre-defined demand and will constantly continue to adapt thereby satisfying
the demand with lower resource utilization. We have applied our method on the
p-median problem. Then, it was compared to random search. The results show,
that the distributed approach is clearly outperforming random search and is also
a very promising perspective for distributed problems.

Further research in this line will pursue the development of a generalized
model of complex adaptive systems using an economics-enabled market-based
evolutionary approach. One aspect that we have not addressed in this paper is
the comparison of the results against classical and multi objective evolutionary
algorithms. Next, we will look for relations to bi-level or multi-level optimiza-
tion/adaptation. We also hope to address other useful application fields for this
method, e.g. in the context of grid computing and agent systems, artificial im-
mune systems, life-cycle management and other logistics problems.
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