
A Memetic Algorithm for the Team Orienteering
Problem

Hermann Bouly1,2, Duc-Cuong Dang1, and Aziz Moukrim1

1 Université de Technologie de Compiègne
Heudiasyc, CNRS UMR 6599, BP 20529, 60205 Compiègne, France

2 VEOLIA Environnement, Direction de la Recherche
17/19, rue La Pérouse, 75016 Paris, France

{hermann.bouly,duc-cuong.dang,aziz.moukrim}@hds.utc.fr

Abstract. The Team Orienteering Problem (TOP) is a generalization of
the Orienteering Problem (OP). A limited number of vehicles is available
to visit customers from a potential set. Each vehicle has a predefined
running-time limit, and each customer has a fixed associated profit. The
aim of the TOP is to maximize the total collected profit. In this paper we
propose a simple hybrid Genetic Algorithm (GA) using new algorithms
dedicated to the specific scope of the TOP: an Optimal Split procedure
for chromosome evaluation and Local Search techniques for mutation. We
have called this hybrid method a Memetic Algorithm (MA) for the TOP.
Computational experiments conducted on standard benchmark instances
clearly show our method to be highly competitive with existing ones,
yielding new improved solutions in at least 11 instances.

1 Introduction

The Team Orienteering Problem first appeared in Butt and Cavalier [4] under
the name of the Multiple Tour Maximum Collection Problem. The term TOP,
first introduced in Chao, Golden and Wasil [5], comes from a sporting activity:
team orienteering. A team consists of several members who all begin at the same
starting point. Each member tries to collect as many reward points as possible
within a certain time before reaching the finishing point. Available points can be
awarded only once. Chao, Golden and Wasil [5] also created a set of instances,
used nowadays as standard benchmark instances for the TOP.

The TOP is an extension to multiple-vehicle of the Orienteering Problem
(OP), also known as the Selective Traveling Salesman Problem (STSP). The
TOP is also a generalization of Vehicle Routing Problems (VRPs) where only
a subset of customers can be serviced. As an extension of these problems, the
TOP clearly appears to be NP-hard.

The assumption shared by problems of the TSP and VRPs family is that all
customers should be serviced. In many real applications this assumption is not
valid. In practical conditions, it is not always possible to satisfy all customer
orders within a single time period. Shipping of these orders needs to be spread

M. Giacobini et al. (Eds.): EvoWorkshops 2008, LNCS 4974, pp. 649–658, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

650 H. Bouly, D.-C. Dang, and A. Moukrim

over different periods and, in some cases, as a result of uncertainty or dynamic
components, customers may remain unserviced, meaning that the problem has
a selective component which companies need to address.

Recently Feillet, Dejax and Gendreau [6] have reviewed the TOP as an ex-
tension of TSPs with profits. They focus both on travel costs and selection
of customers, given a fixed fleet size. They discuss and show that minimizing
travel costs and maximizing profits are opposite criteria. As far as we know,
the most recent paper dealing with solution methods for the TOP is [7]. Most
of the metaheuristics shown to be effective for the TOP are Tabu Search (TS)
and Variable Neighborhood Search (VNS) [1,12]. The Memetic Algorithm (MA),
first introduced by Moscato [8], is a recent technique that has been shown to be
competitive for VRPs [9]. An MA consists in a combination of an Evolutionary
Algorithm with Local Search (LS) methods. In this paper we propose an MA
that makes use of an Optimal Split procedure developed for the specific case of
the TOP. An Optimal Split is performed using a modified version of the Pro-
gram Evaluation and Review Technique/Critical Path Method (PERT/CPM).
We have also developed a strong heuristic for population initialization that we
have termed Iterative Destruction/Construction Heuristic (IDCH). It is based
on Destruction/Construction principles described in Ruiz and Stützle [10], com-
bined with a priority rule and LS. Computational results are compared with
those of Chao, Golden and Wasil [5], Tang and Miller-Hooks [12] and Archetti,
Hertz and Speranza [1].

The article is organized as follows. Section 1 gives a formal description of the
TOP. Section 2 describes our algorithm with employed heuristics, an adaptation
of the PERT/CPM method yielding an Optimal Split procedure and the MA
design. Numerical results on standard instances are presented in Section 3. At
the end we put forward some conclusions.

2 Problem Formulation

The TOP can be modeled with a graph G = (V, E), where V = {1, 2, ..., n} is
the vertex set representing customers, and E = {(i, j) | i, j ∈ V } is the edge
set. Each vertex i is associated with a profit Pi. There is also a departure and
an arrival vertex, denoted respectively d and a. A tour r is represented as an
ordered list of |r| customers from V : r = (r1, . . . , r|r|). Each tour begins at
the departure vertex and ends at the arrival vertex. We denote the total profit
collected from a tour r as P (r) =

∑
i∈r Pi, and the total travel cost or duration

C(r) = Cd,r1 +
∑i=|r|−1

i=1 Cri,ri+1 + Cr|r|,a, where Ci,j denotes the travel cost
between i and j. Travel costs are assumed to satisfy the triangle inequality. A
solution is a set of m (or fewer) feasible tours in which each customer is visited
only once. A tour r is feasible if its length does not exceed a pre-defined limit
L. So a solution is feasible if C(r) ≤ L for any tour r. The goal is to find a
collection of m (or fewer) tours that maximizes the total profit while satisfying
the pre-specified tour length limit L on each tour.

A Memetic Algorithm for the Team Orienteering Problem 651

3 Resolution Methods

Genetic Algorithms (GA) are classified as Evolutionary Algorithms: a population
of solutions evolves through the repetitive combination of its individuals. A GA
encodes each solution into a similar structure called a chromosome. An encoding
is said to be indirect if a decoding procedure is necessary to extract solutions
from chromosomes. In this paper we use a simple indirect encoding that we
denote as a giant tour, and an Optimal Split procedure as the decoding process.
Optimal Split was first introduced by Beasley [2] and Ulusoy [13], respectively for
the node routing and arc routing problems. The splitting procedure we propose
here is specific to the TOP.

To insert a chromosome in the population and to identify improvements, it is
necessary to know the performance of each individual in the population through
an evaluation procedure. In our algorithm, this evaluation involves the splitting
procedure corresponding to chromosome decoding. The combining of two chro-
mosomes to produce a new one is called crossover. A diversification process is
also used to avoid homogeneity in the population. This diversification is obtained
through a mutation operation and through conditions on the insertion of new
chromosomes in the population.

A Memetic Algorithm (MA) is a combination of an Evolutionary Algorithm
and Local Search techniques. This combination has been shown to be effective for
the VRP in Prins [9]. Our MA is a combination of GA and some LS techniques.

3.1 Chromosome Encoding and Evaluation

As mentioned above, we do not directly encode a solution, but an ordered list of
all the customers in V , which we term a giant tour. To evaluate the individual
performance of a chromosome it is necessary to split the giant tour to identify
the multiple-vehicle solution and unrouted customers.

The giant tour is encoded as a sequence, i.e. a permutation of V that we
denote as π. We extract m tours from the giant tour while respecting the order
of the customers in the sequence and the constraint on the length of each tour
(referred to from now on as the L-constraint). We consider only tours whose
customers are adjacent in the sequence, so that a tour can be identified by its
starting point i in the sequence and the number of customers following i in π,
denoted li ≥ 0, to be included in the tour. A tour corresponds to the subsequence
(π[i], . . . , π[i + li]) and is denoted as 〈i, li〉π .

The maximum possible value of li for a feasible tour, given a sequence π,
depends on L. A tour of maximum length is called a saturated tour, meaning that
all customers following i in π are included in the tour as long as the L-constraint
is satisfied, or until the end of the sequence is reached. Customers remaining
unrouted after splitting can only be located between tours in π. We denote as
lmax,π
i the number of customers following i in the sequence starting with π[i]
such that 〈i, lmax,π

i 〉π is saturated, i.e. the tour represented by 〈i, lmax,π
i + 1〉π is

infeasible, or the end of the sequence has been reached.

652 H. Bouly, D.-C. Dang, and A. Moukrim

Fig. 1. A giant tour with 8 customers and two optimal solutions for L = 70

A π-solution Sπ = (〈i1, li1〉π , . . . , 〈ik, lik
〉π) is such that k ≤ m,

〈
ip, lip

〉
π

respects the L-constraint for each p, and iq+1 > iq+lq for each q in 1, . . . , k − 1. A
π-solution is optimal if the sum of the profits from customers in the subsequences,
denoted P (Sπ), is such that there exists no π-solution yielding a greater profit. A
π-solution (〈i1, li1〉π , . . . , 〈ik, lik

〉π) is said to be saturated if each tour
〈
ip, lip

〉
π

in
Sπ is saturated for p < k. Figure 1 describes an instance with 8 customers. Profits
from these customers are respectively 10, 30, 10, 40, 40, 50, 10, 120. We consider
π = (1, 2, 3, 4, 5, 6, 7, 8). Two optimal solutions, one of which is saturated, are
shown in Figure 1.

The splitting problem consists in identifying a π-solution that maximizes the
collected profit. Given these notations, we make the proof (that cannot be placed
here because of space restriction) that an optimal splitting of the giant tour is
obtained through consideration of only the saturated tours.

Proposition 1. Let π be an arbitrary sequence of the vertices of an instance of
the TOP. Then there exists a saturated optimal π-solution.

Therefore, the splitting can be done considering only saturated tours. Conse-
quently, we are only interested in finding saturated π-solutions.

Optimal Evaluation. The splitting problem can be formulated as finding a
path on an acyclic graph H = (X, F), where X = {d, 1, 1′, 2, 2′, ...n, n′, a}. An
arc linking nodes x and x′ represents a saturated tour starting with customer
π[x]. The weight wx,x′ of this arc is set to the value of the collected profit of
the corresponding tour. An arc linking nodes x′ and y with y > x + lx shows
that the tour starting with π[y] can commence after the tour starting with π[x].
These arcs are weighted by wx′ ,y = 0. The graph construction is such that
any path in the graph from departure to arrival nodes is 2q + 1 arcs long and
contains q compatible tours. Figure 2 shows the graph corresponding to the
splitting problem in Figure 1. Values of lmax,π

i for each starting customer i are
0, 2, 1, 1, 2, 1, 1, 0.

The splitting problem is finding the longest path in the new graph H that
does not use more than 2m + 1 arcs (m is the maximum number of vehicles).
This can be done by modifying the well-known PERT/CPM method as follows.

A Memetic Algorithm for the Team Orienteering Problem 653

Fig. 2. Graph representation for the splitting problem

For each node k in H (except the departure node d) we create two arrays μk

and γk of fixed size 2m + 1. Component μk[i] memorizes the maximum profit
collected within a path of i arcs long from d to k and γk[i] memorizes the
predecessor of k matching the corresponding maximum profit. As H does not
have any cycle, the idea is to visit nodes from d to a and to fill the two arrays μk

and γk for each node k. At the end of the procedure, the largest component of
μa represents the maximum profit that can be reached by splitting the sequence.
Next, a backtrack is performed on γk in order to determine the corresponding
tours.

Nodes are visited in the order 1, 1′, 2, 2′, ..., n, n′, a. We denote as Γ−(i) the
set of the predecessors of i in H . We compute μk[i], the component i of the
vector μ at node k, as follows: μk[i] = max

j∈Γ −(k)
{μj [i − 1] + wj,i}. At the end of

the procedure, the greatest value of μa indicates the final node of the longest
path. We can use array γ to rebuild that path, and finally translate non-zero
weighted links into their corresponding tours. The complexity of this modified
PERT/CPM method for Optimal Splitting of the giant tour is O(m · n2).

Fast Evaluation. We may also use a faster evaluation technique, which we call
Quick Split, as a splitting procedure. This simple split uses the assumption that
if the tour p ends with the customer π[x], the next tour begins with customer
π[x + 1]. This assumption that there are no unrouted customers between two
different tours in the sequence and considering only saturated tours enable us to
obtain an approximate evaluation where the first tour begins with i1 = 1. The
complexity of this method is O(n).

3.2 Local Search as Mutation Operator

To complete the memetic algorithm, local search techniques are used as mu-
tation operators with probability pm. We use different neighborhoods during
mutation. The procedure selects these neighborhoods in random order. Once an
improvement is found, the search within the current neighborhood is stopped,

654 H. Bouly, D.-C. Dang, and A. Moukrim

and we restart the procedure choosing a new neighborhood, until no further
improvements are found.

Shift operator. A customer is extracted from the sequence and its insertion in
all other positions is evaluated.

Swap operator. An exchange of customers i and j in the sequence is evaluated.
In TSP problems, each neighbor obtained using the two operators described

above is evaluated before a movement is carried out, leading to O(n2). As the
evaluation using PERT/CPM has a complexity of O(m · n2), and to keep a
complexity of O(n3) for all local search techniques used in mutation, we decided
to use Quick Split in association with these two operators. A compressed version
of the current chromosome is produced at the beginning of these local search
techniques to left-shift tours within the sequence so that solutions produced
by the Shift operator and the Swap operator can be evaluated by the Quick
Split quickly and efficiently. At the end of these local search techniques, when
a better neighbor has been selected, unrouted customers are redistributed along
the chromosome in the same order as in the initial chromosome.

Destruct and Repair operator. The idea is to remove a small part of the solution
with a view to rebuilding an improved solution (see Destruction/Construction,
[10]). This local search is applied to the solution given by PERT/CPM method
on the current chromosome. A certain number (selected randomly between 1
and n/m) of customers are removed from tours and redeclared as unrouted
customers. The solution is reconstructed using a parallel version of the Best
Insertion algorithm [11]. This constructive method evaluates the insertion cost
(Ci,z + Cz,j − Ci,j)/Pz of any unrouted customer z between any couple of cus-
tomers i and j in a tour r so that j directly follows i in r. The feasible insertion
that minimizes the cost is then processed, and the method loops back to the eval-
uation of the remaining unrouted customers. If more than one possible insertion
minimizes the insertion cost, one of them is chosen at random. This process is
iterated until no further insertions are feasible, either because no tour can ac-
cept additional customers, or because all customers are routed (the solution is
optimal in this case). The complexity is O(n3), since all customer insertions in
all positions have to be evaluated and the process is iterated at most n times to
insert all customers.

3.3 Algorithm Initialization

To create some good solutions for an initial population, we developed an Iterative
Destruction/Construction Heuristic (IDCH) based on the Destruct and Repair
operator and some diversification components. The key idea of this heuristic
is that the more difficult it is to insert an unrouted customer into a solution,
the more this customer will be considered for insertion. Starting with an empty
solution, we use the parallel version of the Best Insertion [11] to build a first
solution. On following iterations a small part of the current solution is destroyed

A Memetic Algorithm for the Team Orienteering Problem 655

by removing a limited random number of customers from tours, and a 2-opt
procedure is used to reduce the travel cost of tours. A reconstruction phase is
then processed using a parallel prioritized version of the Best Insertion. The
destruction and construction phases are iterated, and each time a customer re-
mains unrouted after the construction phase its priority is increased by the value
of its associated profit. At each construction phase the subset of unrouted cus-
tomers with the highest priority is considered for insertion. When no more of
these customers can be inserted, unrouted customers with lower priorities are
considered, and so on. The procedure stops after n2 Destruction/Construction
iterations without improvement. After each n iterations without improvement
we apply the diversification components. This involves destroying a large part of
the solution, applying 2-opt to each tour to optimize the travel cost, and finally
performing the reconstruction phase.

3.4 Memetic Algorithm

The algorithm starts with an initialization in which a small part of the popula-
tion is created with an IDCH heuristic and the remainder is generated randomly.
At each iteration a couple of parents is chosen among the population using the
Binary Tournament, which showed more efficient than random selection and the
Roulette-Wheel procedures. The LOX crossover [9] operator is used to produce
a child chromosome. New chromosomes are evaluated using the Optimal Split-
ting procedure described in the previous section. They are then inserted into
the current population using a simple and fast insertion technique to maintain
a population of constant size, avoiding redundancy between chromosomes. The
population is a list of chromosomes sorted lexicographically with respect to two
criteria: the profit associated with the chromosome and the total travel cost. If a
chromosome with the same profit and the same travel cost exists in the popula-
tion, it is replaced with the new one. Otherwise, the chromosome is inserted and
the worst chromosome of the new population is deleted. A child chromosome
has a probability pm of being mutated, using a set of Local Search techniques
repeatedly while improving. The stop condition of the Memetic Algorithm is a
bound on the number of iterations without improvement of the population, that
is to say the number of iterations where the child chromosome simply replaces
an existing chromosome in the population, or where its evaluation is worse than
the worst chromosome in the current population. At the end of the search the
chromosome at the head of the population is reported as the best solution.

4 Numerical Results

We tested our MA on standard instances for the TOP from Chao, Golden and
Wasil [5]. Instances comprise 7 sets containing different numbers of customers.
Inside each set customer positions are constant, but the number of vehicles m
varies between 2 and 4, and the maximum tour duration L also varies so that the
number of customers that can really be serviced is different for each instance.

656 H. Bouly, D.-C. Dang, and A. Moukrim

We set parameter values for our algorithm from a large number of experi-
ments on these benchmark instances. The population size is fixed to 40 individ-
uals. When the population is initialized, five individuals are generated by IDCH.
Other individuals are generated randomly. The mutation rate pm of the MA is
calculated as: pm = 1 − iterineffective

itermax
. The algorithm stops when iterineffective,

the number of elapsed consecutive iterations without improvement of the popu-
lation, reaches itermax = k · n/m with k = 5.

For each instance, results are compared to results reported by Chao, Golden
and Wasil [5], Tang and Miller-Hooks [12] and by Archetti, Hertz and Sper-
anza [1]. These results, as well as benchmark instances, are available at the
following url: http://www-c.eco.unibs.it/~archetti/TOP.zip.

Archetti, Hertz and Speranza [1] proposed different methods: two TS and
two VNS. For each method, they reported, for each instance, the worst profit
zmin and the best profit zmax obtained from three executions. The difference
Δz = zmax − zmin is presented as an indicator of the stability of each method.
Other results (Chao, Golden and Wasil [5] and Tang and Miller-Hooks[12]) are
given for a single execution. In order that our method may be measured against
the algorithms presented by Archetti, Hertz and Speranza [1], all of which have
been shown to be very efficient, we report results of the MA the same way: we
consider zmin and zmax for three executions of the MA.

Because of space limitations we only report the sum of the differences between
the best known value of the profit and zmax (resp. zmin) for each instance:
Δzmax

Best = Best − zmax (resp. Δzmin

Best). The Best value we consider is the best
known profit of an instance, including our results. More detailed results are
available at: http://www.hds.utc.fr/~boulyher/TOP/top.html.

Table 1 reports ΔZmax =
∑

Δzmax

Best and ΔZmin =
∑

Δzmin

Best for each method.
The difference ΔZ = ΔZmax − ΔZmin between these two values is also given as
an indicator of the stability of each method.

Column headers are as follows: TSPenalty, TSFeasible, V NSFast and V NSSlow

are the four methods proposed by Archetti, Hertz and Speranza [1], TMH de-
notes the Tabu Search of Tang and Miller-Hooks [12] and column CGW denotes
the heuristic of Chao, Golden and Wasil [5]. The column UB corresponds to the
upper bound of the profit obtained with an exact algorithm, if known. As far
as we know, the only existing upper bound for the TOP is that described by
Boussier, Feillet and Gendreau [3].

Our Memetic Algorithm produced solutions that improve on the best known
solutions from the literature for 11 instances of the benchmark set. Profits 965,
1242, 1267, 1292, 1304, 1252, 1124, 1216, 1645, 646 and 1120 have respectively
been reached for instances p4.2.j, p4.2.p, p4.2.q, p4.2.r, p4.2.s, p4.3.q, p4.4.p,
p4.4.r, p5.2.y, p7.2.j and p7.3.t.

A comparison of profits with the upper bound of Boussier, Feillet and Gen-
dreau [3] shows that profits reached by TSPenalty, V NSSlow and CGW exceed
the upper bound on a subset of seven instances. It seems abnormal, and these in-
stances are consequently not included in the results of Table 1, and details about

A Memetic Algorithm for the Team Orienteering Problem 657

Table 1. Overall performance of each algorithm

TSPenalty TSF easible V NSF ast V NSSlow TMH CGW MA

ΔZmin 2370 1178 1430 421 2398 4334 428
ΔZmax 975 393 346 78 N/A N/A 74
ΔZ 1395 785 1084 343 N/A N/A 354

Table 2. Results for instances for which some profits exceed the upper bound

TSPenalty TSF easible V NSF ast V NSSlow TMH CGW MA Best UB

file zmin zmax zmin zmax zmin zmax zmin zmax zmin zmax

p1.3.h 70 70 70 70 70 70 70 70 70 75 70 70 70 70
p1.3.o 205 205 205 205 205 205 205 205 205 215 205 205 205 205
p2.3.h 165 170 165 165 165 165 165 165 165 165 165 165 165 165
p3.4.k 350 350 350 350 350 350 350 370 350 350 350 350 350 350
p5.3.e 95 95 95 95 95 95 95 95 95 110 95 95 95 95
p6.4.j 366 366 366 366 366 366 366 390 366 366 366 366 366 366
p6.4.k 528 528 528 528 528 528 528 528 522 546 528 528 528 528

Table 3. Average and maximal CPU times for the different instance sets

TMH CGW TSPenalty TSF easible V NSF ast V NSSlow MA
cpu cpu avg max avg max avg max avg max avg max

1 N/A 15.41 4.67 10.00 1.63 5.00 0.13 1.00 7.78 22.00 1.31 4.11
2 N/A 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.00 0.13 0.53
3 N/A 15.37 6.03 10.00 1.59 9.00 0.15 1.00 10.19 19.00 1.56 3.96
4 796.7 934.8 105.29 612.00 282.92 324.00 22.52 121.00 457.89 1118.00 125.26 357.05
5 71.3 193.7 69.45 147.00 26.55 105.00 34.17 30.00 158.93 394.00 23.96 80.19
6 45.7 150.1 66.29 96.00 20.19 48.00 8.74 20.00 147.88 310.00 15.53 64.29
7 432.6 841.4 158.97 582.00 256.76 514.00 10.34 90.00 309.87 911.00 90.30 268.01

these instances are given in Table 2. Bold values identify profits that exceed the
upper bound of Boussier, Feillet and Gendreau [3].

Table 3 finally reports CPU time for each method and for each instance set
from 1 to 7. We denote cpu the CPU time if a single execution was performed
and avg and max respectively the average and the maximal CPU time if three
executions were performed. Computers used for experiments are as follows:

– CGW : run on a SUN 4/730 Workstation,
– TMH : run on a DEC Alpha XP1000 computer,
– TSPenalty,TSFeasible,V NSFast and V NSSlow: run on an Intel Pentium 4

personal computer with 2.8 GHz and 1048 MB RAM,
– MA: run on a Intel Core 2 Duo E6750 - 2.67 GHz (no parallelization of the

program) with 2 GB RAM.

These results clearly show our Memetic Algorithm compares very well with
state of the art methods. MA outperforms the VNS Slow algorithm of Archetti,

658 H. Bouly, D.-C. Dang, and A. Moukrim

Hertz and Speranza in term of efficiency and is quite equivalent in term of
stability. A comparison of computational times using similar computers shows,
however, that MA outperforms VNS Slow on this point.

5 Conclusion

We propose a new resolution method for the TOP using the recent Memetic
Algorithm approach. It is the first time that an Evolutionary Algorithm has
been used for this problem. We also propose an Optimal Split procedure as a key
feature of this method especially intended for the TOP. Our method proved very
efficient and fast compared with the best existing methods, and even produced
improved solutions for some instances of the standard benchmark for the TOP.

These results show, first, that population-based algorithms can efficiently be
applied to the Team Orienteering Problem. Secondly, the use of the Optimal
Splitting procedure shows that further research into specialized methods is a
promising direction in addressing the Team Orienteering Problem.

References

1. Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering
problem. Journal of Heuristics 13(1), 49–76 (2006)

2. Beasley, J.E.: Route-first cluster-second methods for vehicle routing. Omega 11,
403–408 (1983)

3. Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for the team orienteering
problems. 4OR 5, 211–230 (2007)

4. Butt, S., Cavalier, T.: A heuristic for the multiple tour maximum collection prob-
lem. Computers & Operations Research 21, 101–111 (1994)

5. Chao, I.-M., Golden, B., Wasil, E.A.: The team orienteering problem. European
Journal of Operational Research 88, 464–474 (1996)

6. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits.
Transportation Science 39(2), 188–205 (2005)

7. Khemakhem, M., Chabchoub, H., Semet, F.: Heuristique basée sur la mémoire
adaptative pour le problème de tournées de véhicules sélectives. In: Logistique &
Transport, Sousse, Tunisie, pp. 31–37 (November 2007)

8. Moscato, P.: New Ideas in Optimization, chapter Memetic Algorithms: a short
introduction, pp. 219–234 (1999)

9. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Computer & Operations Research 31(12), 1985–2002 (2004)

10. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. EJOR 177, 2033–2049 (2007)

11. Solomon, M.: Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research 35, 254–265 (1987)

12. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering prob-
lem. Computer & Operations Research 32, 1379–1407 (2005)

13. Ulusoy, G.: The fleet size and mixed problem for capacitated arc routing. European
Journal of Operational Research 22, 329–337 (1985)

	A Memetic Algorithm for the Team Orienteering Problem
	Introduction
	Problem Formulation
	Resolution Methods
	Chromosome Encoding and Evaluation
	Local Search as Mutation Operator
	Algorithm Initialization
	Memetic Algorithm

	Numerical Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

