
An Evolutionary Algorithm for Adaptive Online
Services in Dynamic Environment

Alfredo Milani1,2, Clement Ho Cheung Leung1,
Marco Baioletti2, and Silvia Suriani2

1 Hong Kong Baptist University, Department of Computer Science , Hong Kong
milani@unipg.it

2 Universitá degli Studi di Perugia, Dipartimento di Matematica e Informatica,
Via Vanvitelli 1, I-06100 Perugia, Italy

Abstract. An evolutionary adaptive algorithm for solving a class of
online service provider problems in a dynamical web environment is in-
troduced. In the online service provider scenario, a system continuously
generates digital products and service instances by assembling compo-
nents (e.g. headlines of online newspapers, search engine query results,
advertising lists) to fulfill the requirements of a market of anonymous cus-
tomers. The evaluation of a service instance can only be known by the
feedback obtained after delivering it to the customer over the internet or
through telephone networks. In dynamic domains available components
and customer/agents preferences are changing over the time. The pro-
posed algorithm employs typical genetic operators in order to optimize
the service delivered and to adapt it to the environment feedback and
evolution. Differently from classical genetic algorithms the goal of such
systems is to maximize the average fitness instead of determining the
single best optimal service/product. Experimental results for different
classes of services, online newspapers and search engines, confirm the
adaptive behavior of the proposed technique.

1 Introduction

Mass services based on new information technologies represent a challenging do-
main for providing adaptive services to a population of anonymous customers[1].
Purely digital service/products are generated and delivered instantaneously on
demand to thousands of users. For instance, the headlines of an online news-
paper, web banners advertising special offers, voice menu systems proposing
valuable offers to mobile phone customers, list of documents returned after a
search engine query, are all example of products which are submitted to a mass
of individual users, which in a short time decide to browse, to buy, to accept or to
neglect the proposed product. It is worth noticing the dynamical nature of these
purely digital products: the items to compose (e.g. news, available offers,indexed
documents) and the customer preferences rapidly change over time. It is then
required a quick adaptation of the products to the changing conditions of the
market environment.

M. Giacobini et al. (Eds.): EvoWorkshops 2008, LNCS 4974, pp. 626–632, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Evolutionary Algorithm for Adaptive Online Services 627

User modeling approaches [2] are often hard to apply to this scenario for a
number of reasons: short duration and anonymity of internet connection, privacy
reasons, and customers changing preferences do not allow to build a significant
user model. Moreover a model of the many services or products cannot be built
since they are short lived and disappear very quickly. Some works have intro-
duced “real world” issues into the genetic algorithm (GA) loop. For instance [8]
proposes an interactive approach where the user provides the fitness function,
[3,4] also interacts with the external world in order to optimize a behavior. Most
approaches to adaptation based on GA adopt a classical machine learning “of-
fline” approach [5,6,7,9,10]): in a first “training phase”, they evolve the solutions
in a “virtual training environment” eventually returning the best one. The offline
method fails when the domain of services is dynamically evolving over time and
the customer responses can vary as well.

The evolutionary schema we propose is both interactive and adaptive [11], it
extends the GA framework with fitness from the external environment, exploiting
the optimization [4] and adaptive features of GA operators.

2 The Online Service Provider Problem

Let C a domain of components, S the set of services which can be assembled
with elements from C,R a compositional structure R : Cm → S where s =
R(c1, ..., cm) is a service assembled by instantiating the compositional structure
R with m components ci ∈ C, let f : N × S → [0, 1] a dynamic fitness function,
defined over nonnegative integer N and services, where f(t, s) represents the
customers satisfaction for service s at time t, let n the number of service requests
per time instant and St the set of services delivered at time t where |St| = m. The
Online Service Provider(OSP) problem consists in devising a production strategy
which maximizes the overall fitness over a given interval of time [0, tmax]

ftot =
tmax∑

i=0

∑

s∈Si

f(i, s)

where the function f is unknown to the systems, i.e. the evaluation of service
s at time t is made by interacting with the external agents to which the ser-
vices/products are delivered. We assume that all the external agents give the
same product the same evaluation at a given time. Different hypotheses about
availability of components, and constraints on the compositional structure apply
to different classes of online services. In the following we will assume that the
compositional structure is fixed and the components are available in unlimited
number of copies, as usually pure digital products are. Moreover the product
evaluation is assumed to be component additive. The agents evaluate a service
s at time t with a dynamic fitness equal to the sum of satisfaction degrees of the
components ci, i = 1, . . . , m of s.

628 A. Milani et al.

3 An Algorithm for Online Service Providers

The algorithm we have designed for OSP problem is based on a standard evo-
lutionary scheme driven by selection, crossover and mutation operators. The
service provider assembles components and grows up a population of n services,
moreover it alternates an evolution phase, in which the service provider gener-
ates the next population of n service instances by means of genetic operators,
with an interactive fitness evaluation phase. Note that the system can evaluates
a service only by the satisfaction degrees expressed by the external agents. In
general the system cannot compute the satisfaction degree of a product which
is not delivered, or the satisfaction degree of the single components.

3.1 Classes of Online Service Providers

The two classes of OSPs which have been analyzed are search engine and online
newspaper . Despite of the apparent differences their structures are quite similar:
they both verify the hypothesis of fixed compositional structure with a fixed size
(newspaper have usual a fixed structure and search engines return a fixed number
of links per page, they can be easily represented by vectors). In both cases the
fitness model is mainly additive: the more relevant the news, the more relevant
is the newspaper front page; the more relevant the objects are to query q, the
more relevant is the search engine answer list.

Search Engine. Components domain: in the case of the search engine it consists
of the set of available documents/objects which can be potentially returned as
an answer to a query term q. Compositional structure R is the list of m objects
returned as answer. Constraints on R: all the objects links in an answer list must
be distinct. Population: is the set of n answer lists returned to the users which
have submitted query q during the time instant.Representation: each individual
answer list is easily represented by an ordered vector of m entries, where each
entry represent a link to an object relevant to the query. The feedback reflects
the relevance of the answer list with respect to the user query. The feedback
acquisition phase can be realized to monitor the numbers of clicks received by
the answer list, the user session duration, user activity patterns, the amount of
data exchanged.

Online Newspaper. Components domain: it consists of the set of available news,
and for each single news the set of possible candidate titles and/or pictures. The
compositional structure R is a set of m news, distributed in the front page, the
constraints on R require that: all news in a front page must be distinct; news are
grouped in categories (i.e. sports, politics, internal affair etc.); news can appear
only in a category to which they belong, news categories can overlap (e.g.the
same news can potentially appear under different categories). Population: is a
set of n front pages most recently distributed to the customers. Representation:
each individual newspaper is represented by an ordered vector of m entries, where
each entry contains news is, title/headline and picture. A technique of feedback
acquisition similar to the previous one can be used. The feedback reflects the
interest of the reader on the delivered front page.

An Evolutionary Algorithm for Adaptive Online Services 629

3.2 Representation and Algorithm Structure

An instance of the dynamical OSP problem is characterized by a tuple (C, R, n)
where C is the set of components, R is the compositional structure which defines
the constraint of the consistent services, n is the amount of service requests per
time instant. The algorithm is also parametrized by the classical pair (pc, pm),i.e.
probabilities of crossover and mutation, note that n also represents the popula-
tion size.

The representation of components and services is straightforward. The com-
ponents (i.e. the domain set for genes) are represented by unique identifiers
in {1, . . . , N}. The services (i.e. query answer lists, or newspaper front pages)
are represented by sequences of m component identifiers, with no replications,
services correspond to chromosomes of the population.

Fig. 1. The Online Service Provider Scenario

The evaluation phase is realized by a procedure, external to the system, which
returns for each service si in the population at time t, the values of f(t, si). These
values are used as the fitness of the chromosome.

The evolution phase uses a selection procedure to select the chromosomes
for the crossover phase, a standard roulette–wheel method is applied, where the
fittest individuals are more likely to be selected.

3.3 Crossover and Mutation

The crossover operator used in our algorithm is a one–point crossover. The
gene sequence of the two chromosome parents are cut in two subsequences of r
and m − r elements each, where r is a random number between 1 and m − 1.
Each of the two chromosome outbreeding is created by taking the union of two
subsets coming from different parents. A repairing phase can be necessary after
crossover in order to guarantee distinct components in the outbreeding services: if
a child has one or more duplicated genes, the replacing components are randonly
selected from the parents, or by mutation operators when not possible.

Three different mutation operators are used. Explorative mutation operator
replaces a component with a randomly chosen component which does not appear
in any other chromosome. Full randomized mutation operator replaces a com-
ponent with a randomly chosen component among all the available components.

630 A. Milani et al.

Exploitative mutation operator try to use the knowledge acquired in the evalu-
ation phase in order to prefer the components which are likely to give a higher
contribution to the chromosome fitness. Since this information is not available
to the system, a rough estimate of a quantity proportional to fc(t, ci), for each
component ci, is computed by averaging the degree of all the chromosomes in
which ci appears. In the case of online newspaper the mutation operator also
takes into account that components are triple and they are organized into topics
or categories, i.e. the domain of mutation is the category, and triple elements,
like pictures and titles, can also mutate independently.

Fig. 2. Component based encoding and single point crossover for online newspaper

4 Experiments

Experiments have focused on the search engine and online newspaper OSP prob-
lems. A special module has been designed to simulate the evaluation given by
the external agents and the dynamical changes of the domain by a random uni-
form distribution of hidden values. The rate of domain evolution over the time is
directed by two parameters: probability of change,pd, and percentage of change,
pa, which have been then varied systematically.

For both classes of experiments have been used the same general parameters:
a component domain size of |C| = 200 components, each service made of m = 10
components (chromosome length), the service provider receives/delivers n = 20
service requests per time instant (population size), and optimizes on a time
interval tmax = 2000 (number of generations).

After an initial phase of parameters tuning the probability of crossover and
probability of mutation parameters has been fixed to pc = 0.15 and pm = 0.09.
The results obtained from the simulations are encouraging and do not signifi-
cantly differ for both OSP classes. The graph in Figure 3 shows the performances
of the system when pa = 0.05. The values of the parameter pd are shown in cor-
respondence of the line depicting the mean fitness values we obtained. The line
for pd = 0 represents the static case, while the line for pd = 1 represents the
opposite case when the 5% of fitness is changed at each generation. It is worth
to noticing that also in this case the algorithm is still performant. The mean
value for the fitness is 0.67 with respect the initial mean value equal to 0.6,
with an improvement of more than 10%. An interesting result obtained in the
experiments is that the overall fitness obtained by the algorithm appears to be

An Evolutionary Algorithm for Adaptive Online Services 631

Fig. 3. Results for the online newspaper dynamic OSP problem

invariant with respect to the product pd ·pa, i.e. when the probability of a change
in a single component is constant. A possible explanation of these phenomenon
is that since pd is directly related with the time rate of dynamical change, a low
value of pd gives the algorithm more time to adapt to the changes.

5 Conclusions

A general interactive and adaptive evolutionary scheme has been introduced,
for two classes of dynamic Online Service Provider problems characterized by
component additive fitness: search engine and online newspaper. The goal of OSP
is to maximize the average user fitness while producing and adapting services in a
dynamical environment. Experimental results show that the technique converges
and adapts to changes for both OSP classes. An interesting properties of the
adaptive behavior of the scheme is the ability to recover a given amount of
changes despite of their distribution over the time, while preserving the average
fitness. Future work will regard different classes of interactive OSP problems
where the external fitness is not additive with respect to the components or it
is context dependent.

References

1. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks
with hidden variables. Machine Learning 29(2–3), 213–244 (1997)

2. Kobsa, A., Wahlster, W.: User models in dialog systems. Springer, London (1989)
3. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan

Press (1975)
4. Whitley, D.: An overview of evolutionary algorithms: practical issues and common

pitfalls. Information and Software Technology 43(14), 817–831 (2001)
5. Masui, T.: Graphic object layout with interactive genetic algorithms. In: Proc. of

IEEE Workshop on Visual Languages, pp. 74–87 (1992)
6. Peñalver, J., Guervós, J.: Optimizing web page layout using an annealed genetic

algorithm. In: Proc. Parallel Problem Solving from Nature V, pp. 1018–1027 (1998)

632 A. Milani et al.

7. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of ec
optimization and human evaluation. Proceedings of the IEEE 89, 1275–1296 (2001)

8. Dorigo, M., Schnepf, U.: Genetics–based Machine Learning and Behaviour Based
Robotics: A New Synthesis. IEEE Transactions on Systems, Man and Cybernet-
ics 23(1), 141–154 (1993)

9. Becker, A., Seshadri, M.: Gp-evolved technical trading rules can outperform buy
and hold. In: Proc. of the 3rd Int.Workshop on Computational Intelligence in
Economics and Finance (2003)

10. Kay, J., Kummerfeld, R., Lauder, P.: Managing private user models and. In:
Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702,
Springer, Heidelberg (2003)

11. Milani, A., Marcugini, S.: An architecture for evolutionary adaptive web systems.
In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 444–454. Springer,
Heidelberg (2005)

	An Evolutionary Algorithm for Adaptive Online Services in Dynamic Environment
	Introduction
	The Online Service Provider Problem
	An Algorithm for Online Service Providers
	Classes of Online Service Providers
	Representation and Algorithm Structure
	Crossover and Mutation

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

