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Abstract. Cumulative step length adaptation is a mutation strength control mech-
anism commonly employed with evolution strategies. When using weighted
recombination with negative weights it can be observed to be prone to failure,
often leading to divergent behaviour in low-dimensional search spaces. This pa-
per traces the reasons for this breakdown of step length control. It then proposes
a novel variant of the algorithm that reliably results in convergent behaviour for
the test functions considered. The influence of the dimensionality as well as of the
degree of ill-conditioning on optimisation performance are evaluated in computer
experiments. Implications for the use of weighted recombination with negative
weights are discussed.

1 Introduction

Evolution strategies [6, 13] are nature inspired, iterative algorithms most commonly
used for solving numerical optimisation problems. Such problems typically require that
the mutation strength, which controls the step length of the strategies, be adapted in the
course of the search. Several adaptation mechanisms have been proposed. Among them
are the 1/5th success rule [11], mutative self-adaptation [11, 13], and cumulative step
length adaptation [10]. The latter algorithm is particularly significant as it is the step
length adaptation mechanism used in covariance matrix adaptation evolution strategies
(CMA-ES) [7, 9].

In the basic form of evolution strategies, all of the selected candidate solutions are
weighted equally. Weighted recombination, i.e., having candidate solutions enter re-
combination with different weights that are based on their ranks in the set of all off-
spring, has been known for some time to be an effective means for speeding up local
convergence. Rudolph [12] discovered that assigning negative weights to especially un-
favourable candidate solutions can result in a further speed-up. Underlying the use of
negative weights is the assumption that the opposite of an unfavourable step is likely
to be favourable. More recently, it has been seen that for the idealised environments of
the quadratic sphere and the parabolic ridge, if the search space dimensionality is high,
weighted recombination with optimally chosen weights (half of which are negative)
can speed up convergence by a factor of up to 2.5 compared to unweighted recombina-
tion [2, 3, 4]. Moreover, optimal weights agree for both of those cases.

However, cumulative step length adaptation is not without problems when used in
connection with negative weights. It can be observed that if the dimensionality of the
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optimisation problem at hand is low, cumulative step length adaptation may fail to gen-
erate useful step lengths and result in divergent behaviour for objective functions as
simple as the sphere model. Moreover, for some problems the use of negative weights
in combination with cumulative step length adaptation results in significantly reduced
performance even if the search space dimensionality is high. Presumably, these prob-
lems are the reason that CMA-ES refrain from using negative weights altogether [7, 9].

In this paper, we propose a modification to the cumulative step length adaptation
mechanism that enables evolution strategies employing negative weights to converge
reliably in low-dimensional search spaces. Its remainder is organised as follows. Sec-
tion 2 describes multirecombination evolution strategies with cumulative step length
adaptation. In Section 3, the reason for the breakdown of cumulative step length control
when using negative recombination weights in low-dimensional search spaces is dis-
cussed, and a modification to the mechanism is proposed. In Section 4, we evaluate the
performance of the novel algorithm using several test functions. Section 5 concludes
with a brief discussion.

2 Strategy

For an N -dimensional optimisation problem with objective function f : R
N → R, the

state of a weighted multirecombination evolution strategy with cumulative step length
adaptation as proposed in [10] is described by search point x ∈ R

N , search path s ∈ R
N

(initialised to the zero vector), and mutation strength σ ∈ R. The strategy repeatedly
updates those quantities using the following five steps (where ← denotes the assignment
operator):

1. Generate λ offspring candidate solutions y(i) = x + σz(i), i = 1, . . . , λ. The z(i)

are vectors consisting of N independent, standard normally distributed components
and are referred to as mutation vectors. The nonnegative mutation strength σ deter-
mines the step length of the strategy.

2. Determine the objective function values f(y(i)) of the offspring candidate solutions
and order the y(i) according to those values.

3. Compute the progress vector

z(avg) =
λ∑

k=1

wk,λz(k;λ) (1)

where index k; λ refers to the kth best of the λ offspring. The wk,λ are used to
weight the mutation vectors and depend on the rank of the corresponding candidate
solution in the set of all offspring.

4. Update the search point and search path according to

x ← x + σz(avg) (2)

s ← (1 − c)s +
√

μeff c(2 − c)z(avg) (3)

where c ∈ (0, 1) is a cumulation parameter and where μeff = 1/
∑λ

k=1 w2
k,λ de-

notes the “variance effective selection mass” [7].
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5. Update the mutation strength according to

σ ← σ exp
(

c
‖s‖ − χN

χNd

)
(4)

where d > 0 is a damping constant and where χN =
√

2 Γ((N + 1)/2)/Γ(N/2)
denotes the expected value of a χN -distributed random variable.

Using mutative self-adaptation as a starting point, Hansen and Ostermeier [9] describe
the development of cumulative step length adaptation as a sequence of steps aimed at
derandomising the former mechanism. While mutative self-adaptation adapts the muta-
tion strength based solely on differences in the length of mutation steps, cumulative step
length adaptation attempts to measure correlations between the directions of successive
progress vectors. The search path s as updated in Eq. (3) implements an exponentially
fading record of steps taken by the strategy. The cumulation parameter c determines
how quickly the memory of the strategy expires, with larger values resulting in a more
rapid decay of the information present in s. Higher-dimensional problems require a
longer memory, and c is often chosen to be asymptotically inversely proportional to N .
The coefficient in Eq. (3) which the progress vector is multiplied with is chosen such
that under random selection (i.e., on a flat fitness landscape), after initialisation effects
have faded the search path has independent, normally distributed components with zero
mean and unit variance.

Cumulative step length adaptation relies on the assertion that ideally, consecutive
steps of the strategy should be uncorrelated. Uncorrelated random steps lead to the
search path having expected length χN . According to Eq. (4), a search path of that
length results in the mutation strength remaining unchanged. If the most recently taken
steps are positively correlated, they tend to point in similar directions and efficiency
could be gained by making fewer but longer steps. In that case, the length of the search
path exceeds χN and Eq. (4) acts to increase the mutation strength. Similarly, negative
correlations between successive steps (i.e., the strategy stepping back and forth) lead to
the mutation strength being reduced. Larger values of the damping constant d in Eq. (4)
act to moderate the magnitude of the changes in mutation strength. Lower-dimensional
problems in particular may require significant damping. On the other hand, too large a
damping constant can negatively impact the performance of the strategy as it prevents
rapid adaptation of the mutation strength and therefore rapid convergence for “simple”
problems. Typically, d is chosen to be asymptotically independent of N .

Several settings for the weights wk,λ occurring in Eq. (1) can be found in the litera-
ture:

– The most common choice is to use unweighted recombination in connection with
truncation selection. The corresponding weights are

wk,λ =

{
1/μ if k ≤ μ

0 otherwise
(5)

for some μ ∈ {1, . . . , λ−1}. Typically, μ ≈ λ/4. The resulting strategy is referred
to as (μ/μ, λ)-ES [6].
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– Hansen and Kern [7] set μ = 	λ/2
 and use weighted recombination with weights

wk,λ =

{
ln(μ+1)−ln(k)

μ ln(μ+1)−�μ
i=1 ln(i) if k ≤ μ

0 otherwise
. (6)

They note that strategies employing this choice of weights “only slightly outper-
form [(μ/μ, λ)-style recombination with] μ ≈ λ/4” when used in the context of
the CMA-ES.

– In [2], setting

wk,λ =
Ek,λ

κ
(7)

for some κ > 0 is proposed, where

Ek,λ =
1√
2π

λ!
(λ − k)!(k − 1)!

∫ ∞

−∞
xe−

1
2 x2

[Φ(x)]λ−k [1 − Φ(x)]k−1dx

denotes the expected value of the (λ + 1 − k)th order statistic of a sample of λ
independent, standard normally distributed random variables and Φ denotes the cu-
mulative distribution function of the standard normal distribution. In [2, 3, 4], this
setting has been seen to be the optimal choice of weights for both the quadratic
sphere and parabolic ridge models in the limit of very high search space dimen-
sionality. The resulting strategy is referred to as (λ)opt-ES and in both of those
environments outperforms the (μ/μ, λ)-ES with optimally chosen μ by a factor of
up to 2.5 in the limit N → ∞. The scalar quantity κ in Eq. (7) is referred to as
the rescaling factor and can be used to control the length of the progress vectors
relative to that of the mutation vectors.

3 Direction Based Cumulative Step Length Adaptation

While for sufficiently high search space dimensionality the (λ)opt-ES often converges
faster than evolution strategies that use nonnegative recombination weights, it may fail
to converge altogether even for simple test functions if N is small. Figure 1 contrasts
the performance of the (λ)opt-ES with λ = 10 with that of a positively weighted strat-
egy when optimising the quadratic sphere model (see Table 1 for a definition). For
that model, evolution strategies converge linearly provided that the mutation strength
is adapted successfully. The normalised quality gain Δ∗ as defined for example in [1,
Chapter 6] is a measure for the speed of convergence1. The positively weighted strategy
employs weights wk,λ = max(0, Ek,λ/κ) (i.e., the weights are as prescribed by Eq. (7)
for ranks k ≤ λ/2, and they are zero for the remaining candidate solutions). The rescal-
ing factor κ is set to 3.68 as for λ = 10, that setting leads to approximately the same
value of μeff as Eq. (6) does. The resulting choice of weights is nearly identical to that
proposed by Hansen and Kern [9], and the strategy is referred to as (λ)pos-ES. The
(λ)opt-ES differs from the (λ)pos-ES only in that it uses negative weights as prescribed
by Eq. (7) for candidate solutions with ranks k > λ/2. The solid lines in Fig. 1 show

1 For the sphere model, this definition agrees with the definition of the log-progress rate in [5].
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Fig. 1. Normalised quality gain Δ∗ for the sphere model of (10)pos-ES and (10)opt-ES plotted
against search space dimensionality N . Shown are both the quality gain achieved with optimal
step lengths and the quality gain achieved with cumulative step length adaptation.

the maximal quality gain that can be achieved if at every step the mutation strength is
set optimally. The data points have been obtained by numerically optimising the nor-
malised mutation strength of the strategy (which, of course, does not constitute a viable
step length control algorithm in general as it assumes knowledge of the distance of the
search point from the location of the optimum). It can be seen that the (λ)opt-ES is ca-
pable of nearly twice the normalised quality gain of the (λ)pos-ES if the search space
dimensionality is high. For smaller values of N the potential advantage of the nega-
tively weighted strategy is smaller, but it is present for N as small as two. The dashed
lines in Fig. 1 show the normalised quality gain of the strategies when using cumulative
step length adaptation. In accordance with [9], the cumulation parameter c that appears
in Eq. (3) is set to 4/(N +4). The damping constant d has been optimised numerically.
It can be seen that for large N the performance of the adaptive strategies appears to
approach optimal behaviour for both (λ)pos-ES and (λ)opt-ES. However, while for low
search space dimensionalities cumulative step length adaptation results in convergence
for the (λ)pos-ES, the (λ)opt-ES fails to generate positive quality gain.

It is not immediately clear why cumulative step length adaptation enables the (λ)pos-
ES to converge for the sphere model while the (λ)opt-ES does not when N is small. It
is certainly true that the opposite of a bad mutation is not always a good mutation, and
the use of negative weights may contribute to bad steps being made. However, Fig. 1
clearly illustrates that the negatively weighted strategy is capable of convergence even
for small N , and that the observed failure to converge is due to imperfect step length
adaptation rather than to the use of negative weights per se. Interestingly, not shown,
the (λ)pos-ES employing cumulative step length adaptation is capable of convergence
on the one-dimensional sphere even if the cumulation parameter c is set to 1. As for
c = 1 no cumulation takes place, it cannot be correlations between consecutive steps
that enable the (λ)pos-ES to converge. Instead, the strategy is able to use information
with regard to the length of the selected mutation vectors. If successful mutation vectors
are short, then so is the search path and Eq. (4) acts to reduce the mutation strength. If
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it is the longer than average steps that are successful, then the mutation strength will
be increased. The (λ)opt-ES on the other hand utilises not only good mutation vectors
but also bad ones. Unsuccessful mutation vectors enter the averaging in Eq. (1) with
a negative sign, eliminating the correlation between the length of successful mutation
vectors and the length of the search path and thus preventing successful adaptation of
the mutation strength.

As seen in Fig. 1, the use of negative weights has significant potential benefits. It
is thus desirable to have a step length control mechanism that is capable of generating
useful mutation strengths in low-dimensional search spaces even if length information
about successful mutation vectors cannot be utilised. Such a mechanism can be devised
by making mutation strength updates more explicitly dependent on directions of recent
progress vectors, using another level of indirection in order to be able to cope with the
noisy signal. Specifically, we propose to introduce a mutation strength modifier h ∈ R,
and to replace steps 4 and 5 of the algorithm described in Section 2 with:

4’. Update the search point, mutation strength modifier, and search path according to

x ← x + σz(avg)

h ← (1 − ch)h + chs · z(avg) (8)

s ← (1 − c)s +
√

μeff c(2 − c)z(avg)

where c ∈ (0, 1) and ch ∈ (0, 1) are cumulation parameters.
5’. Update the mutation strength according to

σ ← σ exp
(

h

Nd

)
(9)

where d > 0 is a damping constant.

The inner product s · z(avg) in Eq. (8) is greater than zero if the progress vector points
in the predominant direction of the previous steps accumulated in the search path. It is
negative if the direction of z(avg) is opposite to that of s. Rather than immediately using
the inner product to update the mutation strength, s · z(avg) contributes to the mutation
strength modifier h. This additional level of indirection is reminiscent of the use of a
momentum term and acts as a low pass filter. It is useful as it reduces fluctuations of the
mutation strength in low-dimensional search spaces, and it is without relevance if N is
large. We have found setting ch = 0.1 useful in all of our experiments.

4 Experimental Evaluation

In order to evaluate the usefulness of the step length control mechanism proposed in
Section 3, we conduct computer experiments involving a subset of the test functions
employed in [9]. The functions used are listed in Table 1. The first four are convex
quadratic and have a unique optimum at (0, 0, . . . , 0). For each of them, the search
point of the evolution strategies is initialised to x = (1, 1, . . . , 1). While the eigen-
vectors of the Hessians of fcigar, fdiscus, and fellipsoid are aligned with the coordinate
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Table 1. Test functions

sphere fsphere(x)=
�N

i=1 x2
i

cigar fcigar(x)= x2
1 +

�N
i=2 (axi)2

discus fdiscus(x)= (ax1)2 +
�N

i=2 x2
i

ellipsoid fellipsoid(x)=
�N

i=1

�
a

i−1
N−1 xi

�2

Rosenbrock fRosen(x)=
�N−1

i=1

�
100

�
x2

i − xi+1
�2 + (xi − 1)2

�

axes, none of the strategies considered here make use of the separability of those func-
tions, and the same results would be observed if an arbitrary rotation were applied to
the coordinate system. The parameter a controls the degree of ill-conditioning of the
functions. For a = 1 all of them are identical to the sphere function. Rosenbrock’s
function is characterised by a long, bent valley that needs to be followed in order to ar-
rive at the global optimum at location (1, 1, . . . , 1). For fRosen, the initial search point is
x = (0, 0, . . . , 0). For all of the functions, the optimal objective function value is zero.
The initial mutation strength is σ = 1 for all functions but Rosenbrock’s, for which
it is σ = 0.1 as this setting effectively prevents convergence to the local optimum the
existence of which is noted in [9]. Optimisation proceeds until an objective function
value f(x) ≤ 10−10 is reached.

Throughout this section, the strategies with step length adaptation as described in
Section 2 are referred to as (λ)opt-CSA-ES and (λ)pos-CSA-ES, depending on whether
negative weights are used or not. The negatively weighted strategy with direction based
cumulative step length adaptation as described in Section 3 is referred to as (λ)opt-
dCSA-ES. In all runs, λ = 10 and κ = 3.68. Setting the cumulation parameter to
c = 4/(N + 4) has proven useful for all strategy variants. The damping constant is
set to d = 1 + c for the (λ)pos-CSA-ES according to a recommendation in [9]. For the
(λ)opt-CSA-ES and the (λ)opt-dCSA-ES, parameter settings of d = 0.25 + 4/N and
d = 1+7/N , respectively, have been employed after some numerical experimentation.

We first conduct a series of experiments with the goal of comparing the performance
of the step length adaptation mechanisms for mildly ill-conditioned problems. This is
motivated by the CMA-ES striving to learn covariance matrices that locally transform
arbitrary objective functions into the sphere model [9]. If covariance matrix adaptation
is successful, it can be hoped that objective functions can locally be approximated by
convex quadratic functions with low condition numbers of their Hessians. Figure 2
compares the optimisation performance of the three strategy variants for the four convex
quadratic test functions, where a = 4 for the cigar, discus, and ellipsoid functions. It can
be seen that the strategies employing negative weights are significantly superior to the
(λ)pos-CSA-ES if the search space dimensionality is high, outperforming the latter by
a factor between 1.9 and 2.8. Moreover, while the (λ)opt-CSA-ES fails to converge for
small values of N for three of the four test functions, direction based cumulative step
length adaptation is successful in that the (λ)opt-dCSA-ES consistently either matches
or outperforms the (λ)pos-CSA-ES even in low-dimensional search spaces.
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Fig. 2. Number of time steps required to reach an objective function value of f(x) = 10−10

plotted against the dimensionality N of the search space for a = 4. Results are averaged over
100 independent runs, with error bars indicating the standard deviation of the measurements.

Next, we investigate the effect of the degree of ill-conditioning on optimisation per-
formance. Figure 3 contrasts the performance of (λ)pos-CSA-ES and (λ)opt-dCSA-ES
for the anisotropic convex quadratic objective functions. It can be seen that the ad-
vantage afforded by the use of negative weights that is present for small values of a
generally decreases or even turns into a disadvantage as the degree of ill-conditioning
increases. While the use of negative weights generally seems to do no harm for the cigar
function, refraining from weighting mutation vectors negatively results in significantly
better performance for the discus and ellipsoid functions unless a is sufficiently small
or N is sufficiently large.

Finally, we are interested in the potential of the use of negative recombination
weights for “less artificial” objective functions. While the degree of ill-conditioning of
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Fig. 3. Number of time steps required to reach an objective function value of f(x) = 10−10

plotted against the conditioning parameter a for N = 4 and N = 40. Results are averaged over
100 independent runs, with error bars indicating the standard deviation of the measurements.
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Fig. 4. Number of time steps required to reach an objective function value of f(x) = 10−10 plot-
ted against the search space dimensionality N for Rosenbrock’s function. Results are averaged
over 100 independent runs, with error bars indicating the standard deviation of the measurements.

fcigar, fdiscus, and fellipsoid can be increased indefinitely, it is unclear how relevant such
large condition numbers are for real-world optimisation. As noted above, a covariance
matrix adaptation algorithm may lead to the strategies “seeing” only moderately ill-
conditioned problems, which the experiments above suggest negative weights may be
beneficial for. We have thus equipped the evolution strategies with the covariance matrix
adaptation algorithm described in [9]. The settings of the cumulation parameters of the
(λ)pos-ES are as described in that reference. For the (λ)opt-ES, the parameter ccov that
governs the rate at which the covariance matrix is updated is reduced from 2/(N+

√
2)2

to 2/(N + 8)2 in order to achieve reliable convergence for small values of N .
Figure 4 contrasts the performance of the (λ)opt-dCSA-ES with that of the (λ)pos-

CSA-ES, both with and without covariance matrix adaptation, for Rosenbrock’s
function. It can be seen that the use of negative weights when optimising fRosen is gen-
erally beneficial if the search space dimensionality is high. Without covariance matrix
adaptation, the (λ)opt-dCSA-ES outperforms the (λ)pos-CSA-ES for N > 4. With co-
variance matrix adaptation, the slower adaptation of that matrix in the (λ)opt-dCSA-ES
that results from the different setting of ccov leads to the (λ)pos-CSA-ES enjoying a
performance advantage up to N = 16.

5 Conclusions

To summarise, in low-dimensional search spaces the existing approach to cumulative
step length adaptation implicitly combines information with regard to the length of se-
lected mutation vectors with directional information about consecutive steps. For evo-
lution strategies using negative recombination weights, the progress vector does not
contain useful length information and cumulative step length adaptation is prone to
failure. This paper has introduced a novel variant of cumulative step length adaptation
that more explicitly relies on directional information, and that introduces an additional
level of indirection in order to improve robustness in low-dimensional search spaces.
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Computer experiments have confirmed that the novel algorithm reliably results in con-
vergent behaviour and outperforms strategies that do not use negative weights for mod-
erately ill-conditioned problems. For higher degrees of ill-conditioning, the use of
negative weights can deteriorate performance unless the search space dimensionality
is high.

In future work we will study the effect of the number of offspring on the findings
made here. Using the improved covariance matrix update for large populations pro-
posed in [8] may affect the rate at which adaptation can occur for negatively weighted
strategies in low-dimensional search spaces. A further goal will be to devise a mecha-
nism that can be used to adaptively scale the negative recombination weights with the
goal of maximising the convergence rate for various degrees of ill-conditioning.
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