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Abstract. Worms spread by scanning for vulnerable hosts across the
Internet. In this paper we report a comparative study of three classifica-
tion schemes for automated portscan detection. These schemes include
a simple Fuzzy Inference System (FIS) that uses classical inductive
learning, a Neural Network that uses back propagation algorithm and
an Adaptive Neuro Fuzzy Inference System (ANFIS) that also employs
back propagation algorithm. We carry out an unbiased evaluation of
these schemes using an endpoint based traffic dataset. Our results show
that ANFIS (though more complex) successfully combines the benefits
of the classical FIS and Neural Network to achieve the best classification
accuracy.

Keywords: Adaptive Neuro Fuzzy Inference System (ANFIS), Informa-
tion Theoretic Features, Neural Networks, Portscan Detection.

1 Introduction

The number of vulnerable hosts on the Internet is increasing due to an increas-
ing number of novice users using it [1]. An attacker can hack these vulnerable
machines and use them as a potential army (zombies) for launching a Denial of
Service (DoS) attack on any target host. It is not only the number of machines
that is of concern, but also the time interval in which an attacker can gain access
to the vulnerable machines [1]. Attackers usually accomplish the objective of in-
fecting large number of machines in as little time as possible through portscans.
A portscan is an attempt by the attacker to find out open (possibly vulnerable)
ports on a victim machine. The attacker decides to invade the victim, through
a vulnerable port, on the basis of the response to a portscan. These portscans
are usually very fast and hence an attacker can take control of a major propor-
tion of the vulnerable machines on the Internet in a small amount of time. The
compromised machines can be used to launch DoS attacks. It is to be noted that
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some portscans are stealthy and slow as well. In this study, however, we only
deal with fast (i.e., high-rate) portscans.

In the first phase of a DoS attack, the attacker deploys the DoS tools on the the
victim machines or zombies. Worms provide an effective method to deploy DoS
tools on the vulnerable hosts on the Internet automatically. Worms use random
or semi-random portscans to find out vulnerable hosts across the Internet. In
the second phase of DoS attack, the infected systems are used to launch a DoS
attack at a specific target machine. This attack will be highly distributed due
to the possible geographic spreading pattern of the hosts across the web. As
a result, DoS attack will turn into, a more disruptive and difficult to counter,
Distributed Denial of Service (DDoS) attack. Thus an attacker with the help
of an intelligently written worm can very quickly gain control over millions of
vulnerable systems on the Internet.

Fortunately, many existing solutions can detect and block this serious security
threat. One of the most popular solution is ‘firewall’. The problem with firewalls
and many other similar tools is that they require a manual setting of a number
of security levels (ranging from low and medium to high) which are not compre-
hendible to a novice user. If a user sets high security levels, this often results in
the disruption of a user’s activities by a high frequency of annoying pop-us and
notices. This leads the user to select very low security levels, which practically
makes a firewall ineffective.

The characteristics of the traffic generated by portscans is usually different
from that generated by a normal user activity. This is because state-of-the-art
worms spread on the principle of ‘infecting maximum number of hosts in least
possible time’ [2]. Therefore, using certain characteristics of normal traffic of
a user, we can train a classifier which will distinguish between normal traffic
(due to activities of a normal user) and malicious traffic (due to portscans by a
worm). Such a classifier employs some features extracted from the users’ traffic
to detect malicious activity.

In this paper we use two information theoretic features, namely entropy and
KL-divergence of port usage, to model the network traffic behavior of normal user
applications. We carry out a comparative study of the following three classifiers
for the problem of automated portscan detection: 1) fuzzy rule-based system, 2)
neural network, and 3) adaptive neuro fuzzy system.

Organization of the Paper. In the next section we provide a brief overview of
three classifiers. In Section 3, we present the traffic features used in this paper.
We describe the traffic test bed in Section 4. We will discuss the performance
evaluation parameters in Section 5 and then analyze the results obtained from
the experiments in Section 6.

2 A Review of Classification Schemes

In this section we present a brief overview of three classification algorithms.
First is the classical inductive fuzzy rule learning classifier. Other two are neural
network and ANFIS, which are bio-inspired classification algorithms.
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Fig. 1. Input Membership functions

2.1 Classical Inductive Fuzzy Rule Learning Classifier

In [7], the authors have given a general method to generate fuzzy rules from nu-
merical examples for the Mamdani-type fuzzy system. In this study, 50 examples
were used in the rule generation phase. This method consists of five steps:

1. In the first step, the input and output spaces are divided into fuzzy regions.
This step produces initial membership functions. We divided the input space
in such a manner that we get five membership functions for each input. These
are denoted as S2 (Small 2), S1 (Small 1), CE (Center), B1 (Big 1) and B2
(Big 2). For symmetry, the membership functions are chosen to be isosce-
les triangles. Figure 1 shows the input membership functions. The output of
the fuzzy classifier has only two membership functions, benign and malicious,
because of its Boolean classification nature. So, the design of output member-
ship functions does not follow procedure defined in [7].

2. The second step involves the initial generation of the fuzzy rules from given
data pairs. Given the ith numerical example data (Xi1, Xi2, Xij , ... , Yi), the
degree of membership for each input is calculated. It is possible that the input
parameter has non-zero degree of membership (DOM) for two membership
functions. In this case the membership function with a maximum DOM
(DOMmax) is chosen. A rule is formulated as:
IF X1 is ‘a’ AND X2 is ‘b’ AND ... then y is ‘c’,
where a,b and c are the respective membership functions for each input.

3. A degree is assigned to each rule. For rule i, degree is defined as,
degree(i) = DOMmax(1) x DOMmax(2) x DOMmax(i) x ... x DOMmax(y)

4. After performing the third step, we will get a populated rule base. It is
possible that more than one rule, with similar inputs, may have different
outputs. This situation represents the conflict amongst the rules. In order to
resolve this conflict, the rule with a maximum degree will be chosen.

5. We use centroid defuzzification technique to get a crisp output. This defuzzi-
fication technique was chosen because the output produced by it includes the
balanced effect of all the inputs. The formula for calculating the centroid is
given by:

F−1
Center Of Gravity(Ā) =

∫
x
μĀ(x)xdx

∫
x

μĀ(x)dx
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2.2 Neural Network Classifier with Back Propagation Learning
Algorithm

Neural networks are bio-inspired paradigm which map concepts from the biolog-
ical nervous systems. They consist of a network of neurons which are boolean
in nature. The connections and the weight between these connections are cru-
cial to the performance of the network. The neural network used in this study
consisted of two neurons in its output layer to identify the traffic behavior as
either benign or malicious. The network is a two-layer log-sigmoid/log-sigmoid
network. The log-sigmoid transfer function was selected because its output range
is suitable for learning to output Boolean values. The first hidden layer had 10
neurons. This number was chosen after pilot studies using different number of
neurons. The standard back propagation learning algorithm was utilized by a
batch training scheme in which weights are updated after a complete batch of
training examples. 50 training examples were used in the training phase. More
details can be found in [8].

2.3 Adaptive Neuro Fuzzy Inference System (ANFIS)

Adaptive Neuro Fuzzy Inference System (ANFIS) is a fuzzy rule based classifier
in which the rules are learnt from examples that use a standard back propagation
algorithm. Note that this algorithm is also used in neural network training.
However, ANFIS is far more complex than the simple Mamdani-type fuzzy rule
based system as explained in Section 2.1. ANFIS uses Sugeno-type fuzzy system.
The subtractive clustering was used to divide the rule space. Five triangular
membership functions were chosen for all inputs and output similar to the fuzzy
system in Section 2.1. 50 training examples were chosen in the training phase.
An interested reader can find the details of ANFIS in [9].

3 Traffic Feature Modeling Using Information Theoretic
Measures

We employ information theoretic measures [6] to compare the probability dis-
tributions of a pre-sampled benign traffic profile and run-time traffic profile. It
is assumed that the malicious traffic is not present while sampling the benign
traffic profile. We have chosen entropy and Kullback-Leibler (KL) divergence [6]
of port usage as tools to compare the benign traffic profile (collected prior to
classification) with a run-time traffic profile. These measures have been used
previously for network anomaly detection [3,4].

We are interested in outgoing unicast traffic to detect the malware residing on
the system, which tries to propagate through portscan. We have calculated the
entropy and KL using both source and destination port information. The source
and destination port information is collected at a session level, where a session is
defined as the bidirectional communication (mostly involving multiple packets)
between two IP addresses. Entropy and KL are calculated in a time window of



56 M.Z. Shafiq, M. Farooq, and S.A. Khayam

15 seconds in our study. However, qualitatively similar results are obtained for
other sizes of time window.

Entropy gives the spread of a probably distribution. In order to calculate
entropy in a time window, let pi be the number of times source port i was used
and qi be the number of times destination port i was used in a time window. Let
pn be the aggregate frequencies of source ports used in a particular time window
n. Similarly, let qn be the aggregate frequencies of destination ports used in a
particular time window n. Mathematically, pn =

∑65,535
i=0 pi and qn =

∑65,535
i=0 qi.

The source and destination port entropies are defined as:

Hsource = −
65,535∑

i=0

pi

pn
log2

pi

pn
(1)

Hdestination = −
65,535∑

i=0

qi

qn
log2

qi

qn
(2)

KL divergence gives the distance between two probability distributions. In
this case, it will give the difference between distributions of traffic in a particular
session window and benign traffic. For source and destination port KL, let p

′

i be
the frequency of source port i in the benign traffic profile and q

′

i be the frequency
of destination port i in the benign traffic profile. Moreover, p and q represent
the aggregate frequency of source and destination ports in the benign profiles.
Mathematically, p =

∑65,535
i=0 p

′

i and q =
∑65,535

i=0 q
′

i. The source and destination
port KL are defined as:

Dsource =
65,535∑

i=0

pi

pn
log2

pi/pn

p
′
i/p

(3)

Ddestination =
65,535∑

i=0

qi

qn
log2

qi/qn

q
′
i/q

(4)

Since we are focusing on fast portscans, we invoke classifier only if the
number of sessions per time window exceeds the SessionThreshold. The
SessionThreshold in this study was set to 15 sessions per time window.
This corresponds to and average rate of one session per second. The worms
with the session rates lower than SessionThreshold are ignored. The value
of SessionThreshold is justified since the motive of a worm is to infect large
number of machines in as little time as possible.

In order to produce suitable inputs for the classification systems, the means of
respective information theoretic measures are used in Equations (1), (2), (3) and
(4) that are calculated from the benign traffic profile. These parameters are la-
beled as Hbenign source, Hbenign destination, Dbenign source and Dbenign destination.
The differences between the parameters, calculated from run-time traffic profile,
and means of respective parameters calculated from benign traffic profile were
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(a) Blaster Worm (b) SoBig.E Worm (c) Zobtob.G Worm

Fig. 2. Source Port Entropy for different worms

(a) Dloader-NY Worm (b) Code Red v2 Worm (c) Zobtob.G Worm

Fig. 3. Destination Port Entropy for different worms

(a) Rbot-CCC Worm (b) Sobig-E Worm (c) Forbot-FU Worm

Fig. 4. Source Port KL for different worms

used as inputs to the classifiers. For simplicity absolute value of the difference is
considered. Mathematically we can represent this as:

x1 = |Hsource − μHbenign source|
x2 = |Hdestination − μHbenign destination|
x3 = |Dsource − μDbenign source|
x4 = |Ddestination − μDbenign destination|
Figures 2, 3, 4 and 5 show a plot of these parameters for different worms.

Note that the circle represents the middle of the infection period.
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(a) Blaster Worm (b) SoBig.E Worm (c) Zobtob.G Worm

Fig. 5. Destination Port KL for different worms

4 Testbed Formation

In this section, we present the details of the traffic sets that were used for the
comparison of the classifiers mentioned in Section 2.

4.1 Benign Traffic Set

The benign traffic data-sets were collected over the period of 12 months on a
diverse set of 5 endpoints1. These endpoints machines were installed with Win-
dows 2000/XP that served a variety of different types of users. Some endpoints
were also shared by multiple users. Characteristics of the benign traffic set are
tabulated in Table 1. Traffic data-sets were collected using argus, which runs
as a background process storing network activity in a log file. As stated earlier,
each entry in the log file corresponds to a session, where a session is defined as
the bidirectional communication between two IP addresses. The entries of the
log files are in the following format:

<session id, direction, protocol, src port, dst port, timestamp>

Direction is a one byte flag showing if the packets in a session are outgoing
unicast, incoming unicast, outgoing broadcast, or incoming broadcast packets.
We are only interested in outgoing unicast traffic. Since, the traffic sets were
stored for offline analysis, every session had an associated timestamp.

4.2 Worm Set

Malicious traffic sets were collected by infecting virtual machines with different
self-propagating malicious codes. Note that CodeRedv2 and Witty were simu-
lated. The traffic sets were collected using the same method as explained before
in Section 4.1. These malicious traffic sets were embedded into benign traffic sets
to form a test for evaluation of the designed system. The details of the malware
used in this study are given in Table 2.

1 “An endpoint is an individual computer system or device that acts as a network
client and serves as a workstation or personal computing device.”[5]
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Table 1. Statistics of Bengin set used in this Study

Endpoint ID Endpoint Type Mean Session Rate (/sec)
1 Office 0.22
2 Home 1.92
3 Univ 0.19
4 Univ 0.28
5 Univ 0.52

Table 2. Statistics of Worm set used in this Study

Worm Name Release Date Ports Used
Blaster Aug 2003 TCP 135,4444, UDP 69

Dloader-NY Jul 2005 TCP 135,139
Forbot-FU Sep 2005 TCP 445
Rbot.CCC Aug 2005 TCP 139,445
CodeRedv2 Jul 2004 TCP 80

Witty Mar 2004 UDP 4000
SoBig.E Jun 2003 TCP 135, UDP 53
Zobtob.G Jun 2003 TCP 135, 445, UDP 137

4.3 Formation of Infected Traffic Sets

Due to the university policies and the user reservations, we were not able to
infect operational endpoints with worms. Therefore, we resorted to the following
offline traffic mixing approach. We inserted T minutes of malicious traffic data
of each worm in the benign profile of each endpoint at a random time instance.
Specifically, for a given endpoint’s benign profile, we first generated a random
infection time tI (with millisecond accuracy) between the endpoint’s first and
last session times. Given n worm sessions starting at times t1, ..., tn, where tn ≤
T , we created a special infected profile of each host with these sessions appearing
at times tI + t1, ..., tI + tn. Thus in most of the cases once a worms traffic was
completely inserted into a benign profile, the resultant profile contained inter-
leaved benign and worm sessions starting at tI and ending at tI + tn. For all
worms except Witty, we used T = 15 minutes and to simulate the worstcase be-
havior of Witty, we inserted only 20, 000 scan packets (approximately 1 minute)
in the infected profiles.

5 Receiver Operating Characteristic (ROC) Performance
Parameters

In ROC analysis, the 2x2 confusion matrix for performance evaluation of boolean
classifiers gives four possible outcomes [10]. These outcomes are True Positive
(TP), False Positive (FP), True Negative (TN) and False Negative (FN). The
metrics considered for the evaluation of our fuzzy based classifier are False Pos-
itive Rate (fprate), and True Positive Rate (tprate). These metrics are defined
as, fprate = FP

FP+TN and tprate = TP
TP+FN .
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Table 3. Results on the Infected dataset

Inductive FIS [7] Neural Network [8] ANFIS [9]
Endpoint ID - 1

tp rate 0.888 0.735 0.885
fp rate 0.037 0.062 0.043

Endpoint ID - 2
tp rate 0.857 0.728 0.861
fp rate 0.163 0.191 0.155

Endpoint ID - 3
tp rate 0.900 0.774 0.893
fp rate 0.100 0.116 0.121

Endpoint ID - 4
tp rate 0.865 0.731 0.829
fp rate 0.096 0.104 0.088

Endpoint ID - 5
tp rate 0.954 0.790 0.968
fp rate 0.160 0.211 0.114

6 Classification Results

The ROC performance evaluation parameters for all the endpoints used in this
study are tabulated in Table 3. It is interesting to note that the worst results for
all the classifiers were reported for the endpoint 2. Endpoint 2 was a home based
endpoint with a relatively high session rate because of several multimedia and
video streaming applications that were running on this endpoint. High fprate
is because of the high volume and the bursty nature of multimedia traffic which
resembles the traffic produced by the portscan activities of worms. Note that
the results of endpoint deployed at the university and office are very similar.

It is clear from the results tabulated in Table 3 that ANFIS outperforms
rest of the classifiers. The results of Inductive FRBS are better than those of
Neural network which shows the promise of fuzzy based schemes for modeling
and representation of network traffic features. Neural network is unable to cater
for the inherent fuzziness in the users’ traffic patterns. ANFIS combines the
advantages of the back propagation learning algorithm with the fuzzy based
classifier, and as a result, we get the best detection accuracy.

7 Conclusion and Future Research

Our findings from this study are that the users’ behaviors are not very crisp
because of the pseudo-random nature of the users’ network traffic. To cater for
the inherent fuzziness in modeling of the user’s network traffic trends, a fuzzy
rule based system is a better approach. But the generation of fuzzy rules and
membership functions is a problem. One solution is to use classical inductive
fuzzy rule learning for fixed membership functions which is an empirical yet an
effective way to generate fuzzy rules. Another solution is to use a neural network
with a more sophisticated back propagation learning algorithm which is suitable
for use with numerical data pairs for training. But a neural network based so-
lution is unable to cater for the inherent fuzziness in the users’ traffic patterns.
This leads us to the following question: Is a combined approach i.e. ANFIS,
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which uses fuzzy rule based system along with the sophisticated back propaga-
tion learning algorithm, more effective than both of the standalone approaches?.
The answer to this question is positive as per our experimental study. ANFIS is
able to effectively combine the benefits from both approaches. The experimental
results, for portscan detection, of ANFIS are better than both classical inductive
fuzzy rule base system and neural network based classifier using the standard
back propagation algorithm.

In future we wish to run the experiments on a more diverse and extensive
traffic set consisting of more diverse endpoints. We also wish to extend our
malware traffic repository. Further, we also plan to evaluate the performance of
various machine learning algorithms such as support vector machines (SVMs)
and other bio-inspired schemes such as Artificial Immune Systems (AIS).
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