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Abstract. In this paper, we use genetic programming (GP) to evolve a
vision-driven robot controller capable of navigating in a real-world envi-
ronment. To this aim, we extract visual primitives from the video stream
provided by a camera mounted on the robot and let them to be inter-
preted by a GP individual. The response of GP expressions is then used
to control robot’s servos. Thanks to the primitive-based approach, evo-
lutionary process is less constrained in the process of synthesizing image
features. Experiments concerning navigation in indoor environment indi-
cate that the evolved controller performs quite well despite very limited
human intervention in the design phase.

1 Introduction and Related Work

Using genetic programming (GP) to evolve robot controllers, whether for real
or for virtual environments, may be traced back to the very beginning of GP
[8,11]. Typical robotic tasks successfully solved by means of GP include wall
following [7], mapping sensor readings to robot locations [4], and learning an
obstacle avoidance strategy [6], to mention a few representative contributions.
Also, much research has been done on evolving cooperative behaviors of robots,
for instance to control a team of robots playing soccer [1]. An extensive review
on evolving controllers for real robots may be found in [14].

In most of the aforementioned contributions, the evolved GP programs usu-
ally process scalar data coming from distance sensors (or virtual distance sensors
in case of simulation). In this paper, we are particularly interested in evolving a
vision-driven real-world robot controller. Past research within this area includes
several contributions. In [3], Ebner used genetic programming to evolve edge de-
tectors for robotic vision. Graae, Nordin, and Nordahl [5] evolved a stereoscopic
vision system for a humanoid robot using GP. Langdon and Nordin used ma-
chine code GP to evolve hand-eye coordination for a humanoid robot [9]. Seok,
Lee, and Zhang applied a variant of linear GP and FPGA hardware to evolve the
behavior of locating light sources and avoiding obstacles [13]. Wolff and Nording
made use of visual feedback for evolving gait controllers of a bipedal robot [15].
There are also other reports on GP-based robotic vision in an virtual environ-
ment, which is not considered in this paper (e.g., in [2] an OpenGL framework
is used to simulate the visual environment of a physical robot solving the task
of line following).
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Fig. 1. The PPRK robot with the mounted CMUCam2+ camera

This paper demonstrates the possibility of evolutionary learning of a high-level
behavioral pattern directly from low-level visual sensory input. In our approach,
we avoid defining a fixed repertoire of high-level visual features to be used by the
learner. Rather than that, we feed a low-level, though non-raster, visual data into
GP learners. Next, using an appropriately defined fitness function, we entice the
evolving learners to navigate in a real-world indoor environment. As our robot’s
perception is not tuned to the particular task or visual target, the evolutionary
learning has to build up an appropriate and effective higher-level representation
of visual patterns. An experimental evaluation on a real-world robotic platform
in an indoor environment shows the ability of our approach to solve the task of
approaching a visual target.

2 The Hardware Platform

We used Palm Pilot Robot Kit (PPRK) as the hardware platform for our ap-
proach. PPRK is a small, three-wheeled, autonomous robot designed by the
Robotics Institute at the Carnegie Mellon University and produced by Acron-
ame [12]. As its name suggests, it may be controlled by a handheld computer
(Palm Pilot or PocketPC), but it is also equipped with a built-in controller
called BrainStem that is able to store and execute simple behavioral patterns.
BrainStem is based on PIC18C252 processor clocked at 40MHz.

PPRK uses holonomic drive, composed of three equidistant wheels arranged
in a circle and propelled by three independent servos. Each of its ‘omni-wheels’,
thanks to built-in rolls, may move freely in directions that do not lay in its
plane of rotation; this happens, for instance, when the wheel is dragged by the
other wheels. This kind of drive allows for arbitrary rotation and translation, so
that the total number of robot’s degrees of freedom (3) is equal to the number of
controllable degrees of freedom. For instance, applying the same potential v to all
three servos causes the robot to rotate in place. Applying potentials v, −v, and
0 to servos #1, #2, and #3, respectively, makes the robot move perpendicularly
to the section connecting wheels #1 and #2, dragging the wheel #3 behind it.

We mounted a CMUCam2+ board on robot’s chassis (see Fig. 1). The CMU-
Cam2+ card, also provided by Acroname, uses Omnivision’s CMOS OV6620
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camera controlled by SX52 microcontroller. Though it implements some simple
image processing and feature tracking functionalities, they have not been used
in our setup, and the digitized video stream was directly sent to the controlling
computer. The three infrared proximity sensors included in PPRK were also
inactive in our experiments.

The camera board acquires video data at resolution of 87×143 pixels and is
able to perform some elementary image analysis at 25-50 frames per second.
Unfortunately, it communicates with other modules (including the BrainStem)
via standard serial interface, which limits the maximum data transfer rate to
115200 bits per second. This seriously reduces the number of frames that can
be sent to the image analysis module in real time. This is why, in the following
experiments the actual number of frames processed per seconds amounts to
approximately 1, though the evolved GP expressions could easily handle two
orders of magnitude higher frame rates.

In contrast to most of related research, we do not extract any predefined
high-level image features to help evolution to learn the desired robot’s behavior.
Rather than that, we rely on GP-based processing of low-level visual primitives,
an approach described in the following section.

3 Using GP Trees to Process Visual Primitives

Our GP-based approach to visual processing, originally proposed in [16] and
later extended in [17], has the following rationale. The volume of raw raster data
is usually too large to make it direct subject to evolutionary learning. To reduce
these data, one commonly uses a predefined set of visual features extracted from
the training images; the evolutionary process works then with such features only.
There is, however, a significant risk that the features pre-selected by the human
are not the best ones to cope with the particular visual task. Also, the sole
process of defining and implementing such features may be time-consuming and
difficult.

To keep the amount of visual training data within reasonable limits on one
hand and avoid arbitrary pre-selection of visual features on the other, our ap-
proach relies on visual primitives (VP). We define the visual primitive as a local
salient feature extracted from an image location characterized by a prominent
gradient. In the beginning of processing, each VP is described by three scalars
called hereafter attributes ; these include two spatial coordinates (x and y) and
orientation of the local gradient vector. The complete set P of VPs is usually
much more compact than the original image s in terms of information content,
yet it well preserves the overall sketch of the visual input.

The right-hand part of Figure 2 presents the VPs extracted from an exemplary
frame of the video sequence used in the following experiment, with each primitive
depicted as a short section. Note, however, that the individuals described in the
following learn from training examples that are technically sets of VPs, each of
them described by a triple of numbers. In other words, learners do not explicitly
‘perceive’ the image as a two-dimensional raster.
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Fig. 2. An exemplary input image (left) and the corresponding visual primitives (right)

Each learner L is a GP expression written in a form of a tree, with nodes
representing functions that process sets of VPs. The feed of image data for the
tree has been implemented by introducing a special terminal function (named
ImageNode) that fetches the set of primitives P derived from the input image s.
The consecutive internal nodes process the primitives, all the way up to the
root node. We use strongly-typed GP, so child node’s output type must match
parent node’s input type. The list of types includes numerical scalars, sets of
VPs, attribute labels, binary arithmetic relations, and aggregators.

The functions, presented in Table 1, may be divided into (a) selectors, which
select some VPs based on their attributes, (b) iterators, which process VPs one
by one, (c) grouping operators, which group VPs based on their attributes and
features, e.g., spatial proximity, and (d) scalar arithmetic functions. In addi-
tion,there is a group of functions that compute simple set operations in the
domain of VPs, like set union (SetUnion), set difference (SetMinus), or sym-
metric difference (SetMinusSym). Implementation of most functions is straight-
forward. For instance, the SelectorMin function applied to a set of primitives S
and attribute label py selects from S the VP (or VPs) with the minimal value of
attribute (coordinate) y. The ForEach function iterates over the set of elements
returned by its left child node, and passes each of them through the subtree
rooted in its right child node, finally grouping the results into one set. The
semantics of the remaining functions may be decoded from their mnemonics.

It is worth emphasizing that in this process, VPs and sets of VPs are used
interchangeably. Technically, a set may contain both VPs and other nested sets
of VPs. Therefore, the processing carried out by an individual-learner L applied
to the input image s boils down to building a hierarchy of VP sets derived from s.
Each invoked tree node creates a new set of VPs built upon the elements (VPs or
sets of VPs) provided by its child node(s). When needed, we recursively compute
an attribute value of a VP set as an average of its elements.

To control robot’s actuators (servos), our trees must compute real-valued
responses at the root node. To this aim, we employ an advanced feature of our
approach, namely its ability to create new attributes, apart from the pre-defined
ones (x, y, and orientation). The new attribute may be computed from and
attached to VPs or VP sets. Technically, this is implemented by the AddAttribute



188 P. Gajda and K. Krawiec

Table 1. The GP operators

Type Operator

� ERC – Ephemeral Random Constant
Ω Input() – the VP representation P of the input image s

A px, py, po,
R Equals, Equals5Percent , Equals10Percent , Equals20Percent , LessThan,

GreaterThan
G Sum, Mean, Product, Median, Min, Max , Range
� +(�,�), –(�,�), *(�,�), /(�,�), sin(�), cos(�), abs(�), sqrt(�), sgn(�),

ln(�), AttributeValue(Ω,A)
Ω SetIntersection(Ω,Ω), SetUnion(Ω,Ω), SetMinus(Ω,Ω), SetMinusSym(Ω,Ω),

SelectorMax(Ω,A), SelectorMin(Ω,A), SelectorCompare(Ω,A,R,�),
SelectorCompareAggreg(Ω,A,R,G), CreatePair(Ω,Ω), ForEach(Ω,Ω),
ForEachCreatePair(Ω,Ω,Ω), Ungroup(Ω), GroupHierarchyCount(Ω,�),
GroupHierarchyDistance(Ω, �), GroupProximity(Ω, �),
GroupOrientationMulti(Ω, �), AddAttribute(Ω,�),
AddAttributeToEach(Ω,�)

and AddAttributeToEach functions (see Table 1). For instance, the AddAttribute
function takes the VP set S returned by its left child node and passes it through
its right child subtree. Due to syntactic constraints imposed by strong typing,
the right child subtree is forced to return a scalar value computed using ERCs,
scalar functions (e.g., +, -, *, /, abs), and the values of existing attributes fetched
from S using, among others, the AttributeValue function. The computed value
is attached as a new attribute to S, which is subsequently returned by the
AddAttribute function (the VP hierarchy in S remains therefore unchanged).
The AddAttributeToEach function operates similarly, however, it repeats the
steps listed here recursively for each element of S.

Given this functionality, we expect evolution to elaborate individuals that
define a new attribute, different from px, py, and po, which should be attached
to the set of VPs returned by the root node as the final response of the tree.
The returned value (essentially a very specific image feature) is subsequently
evaluated by the fitness function which compares it to the desired value.

4 The Experiment

4.1 The Task

Our task consists in navigating the robot in a small (3.2×3.2m) indoor environ-
ment, in varying lighting conditions. More specifically, the robot has to find and
approach a 15×15cm diamond-shaped marker placed close to the floor on one of
the room’s walls. To make the task non-trivial, we placed some other objects in
the environment; these included a chair and a cupboard. Other artifacts often
visible in robot’s field of view include power outlets and floor-wall boundaries.
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4.2 The Training Procedure

From an evolutionary perspective, the most desirable approach to evolve our con-
trollers would be to directly bind the evolutionary process to the real-world and
estimate the fitness of each controller (individual) by downloading it to the phys-
ical robot and letting it navigate in our environment. Such an procedure would
be obviously implausible. An alternative approach of evaluating individuals in a
virtual simulator has been often criticized as being far from perfect in terms of
fidelity to the real-world. Because our objective was to evolve a controller that
operates in real-world, we took another way.

To devise a computationally feasible experimental setup without abandoning
the real-world data, we came up with the following teacher-driven approach.
The training data has been collected by guiding the robot by a human operator,
starting from random initial locations and ending close to the target marker. For
each such experiment, we recorded the sequence of video frames together with
the synchronized values of potentials applied to the servos. Specifically, servo
values have been recorded at one second delay with respect to the video stream
to compensate for operator’s reaction time.

When preparing to data acquisition, we found out that direct controlling of
the holonomic drive is cumbersome and non-intuitive for humans. Therefore,
we designed a more handy set of controls, composed of 4 buttons: Forwards,
Backwards, Left, and Right. A single click on a button increases the intensity of
particular action; e.g., each click on the Forwards button increases the speed of
forward movement; after that, a couple of clicks on the Backwards button are
needed to stop the robot.

The buttons determine the values of two intermediate variables: linear speed
and angular speed. The values of these variables are subsequently mapped to
voltages to be applied to particular servos. Therefore, each video frame is ac-
companied by three desired effector values.

Figure 3 shows the typical training frames selected from one of the record-
ing sessions. After a couple of such sessions that a few hours in total (during
which the lighting conditions changed significantly), the total number of col-
lected frames amounted to 734. As using such a number of frames for evolution-
ary learning would be prohibitive from the viewpoint of computational burden
(even when using visual primitives instead of raw raster data), we included only
30 representative frames in the final training set. These 30 frames were subject
to extraction of visual primitives (see Section 3). In this process, we created VPs
only for image locations for which the response of the gradient exceeded 150 (on
the scale 0..255), and enforced a lower limit on their mutual distance (5 pixels).
The number of primitives extracted from one image (i.e., |P |) was not allowed
to exceed 300. To speed up calculation, this procedure has been carried out only
once, prior to the evolutionary run, and the resulting VPs have been cached in
the memory.

As the complete controller of our robot has to provide three output (effector)
values, one for each wheel, we carried out three separate evolutionary runs. The
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Fig. 3. Selected frames from the training set

final controller has been built by combining the best-of-run individuals from
these runs.

In each of those runs, a tree is expected to return a set of visual primitives with
a new attribute attached to it (cf. end of Section 3). The value of that attribute,
r(t), computed by the individual for the frame #t, is subsequently interpreted
as the voltage to be applied to the corresponding servo. In the training phase,
these values were compared to the desired values d(t) provided by the human
controller using fitness function that aggregates the SSDs of the individual’s
responses r(t) with respect to the desired values d(t) over the entire set of 30
training frames:

30∑

t=1

(r(t) − d(t))2.

In each of the evolutionary runs, the following parameter values have been
used: population size: 5000, number of generations: 100, tournament selection
with tournament size 3, probability of crossover: 0.8, probability of mutation:
0.2, maximal tree depth: 6. The remaining parameters were set to their default
values as provided in the ECJ software package [10]. Evolving controller for each
servo took about 10 hours on a Pentium PC computer with 1GHz processor.

4.3 Testing the Evolved Controller

The best evolved controller, shown partially in Figure 4 (left-wheel tree only),
has been subsequently used for real-time control of the robot in the testing phase.
Thirty testing sessions have been carried out. Among them, 14 ended successfully,
with the robot reaching the marker. Figure 5 presents a typical correct trajectory
traversed by the robot. In the remaining cases, at some stage of approaching the
marker the robot usually executed an extensive turn, probably distracted by
spurious visual primitives resulting from image noise. Having lost the marker
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Fig. 4. The best controller evolved for the left wheel

Fig. 5. A typical correct trajectory of the robot

from its field of view, it then started to move randomly. In some cases, it was
able to redirect its camera towards the marker and continue the journey. Though
this deficiency in robot’s behavior could be circumvented, e.g., by introducing
an extra heuristic, such intervention was beyond the subject of this study.

In the presence of other objects, like power sockets or chairs, the robot was
usually able to navigate correctly towards the marker. However, in about 40%
of trials, it erroneously targeted at the distracting objects. On the other hand,
we have observed many times that a navigation error caused by one of the trees
was corrected by the others. In other words, the controllers of particular servos
seemed to cooperate well, despite the fact that their training was carried out
independently.
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5 Conclusions

Though the performance of our evolved controller is far from perfect, we think
that the proposed approach is a step in the right direction. By operating in
the domain of visual primitives, our learners are less constrained when defining
visual features and may come up with vision-driven procedures that a human
would never think of. The entire process of evolving the complete path from
stimulus to action is therefore much less prone to the potential subjectivity of
human designer than it is the case in more conventional approaches. By making
visual learning largely independent from the particular task, we hope to make it
applicable also to other behaviors like tracking or avoiding obstacles.

From the technical viewpoint, the experiment reported here is a proof-of-
concept, demonstrating that well-established EC/GP software libraries like ECJ
may be quite easily integrated with a real-world robotic systems. Although, as
explained earlier, the learning process does not take place on-line here, an ex-
tension of our experimental setup to on-line learning is straightforward and will
be most likely the subject of subsequent study. On the other hand, we have also
learned hard lessons concerning robot hardware. In spite of our expectations, it
turned out to be nearly impossible to implement many of the required function-
alities on the robotic platform (e.g., BrainStem or PocketPC), due to technical
difficulties (e.g., lack of the API for PocketPC built-in camera). Thus, in the
end, the robot is a kind of mobile ‘thin client’ in our setup, merely carrying the
camera and executing simple commands. All the actual robot’s intelligence is
hosted by a nearby laptop computer. On the other hand, we appreciated such
setup as less constraining for the evolutionary part of the system.
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