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Abstract. The design of computer architectures requires the setting of
multiple parameters on which the final performance depends. The num-
ber of possible combinations make an extremely huge search space. A
way of setting such parameters is simulating all the architecture config-
urations using benchmarks. However, simulation is a slow solution since
evaluating a single point of the search space can take hours. In this work
we propose using artificial neural networks to predict the configurations
performance instead of simulating all them. A prior model proposed by
Ypek et al. [1] uses multilayer perceptron (MLP) and statistical analysis
of the search space to minimize the number of training samples needed.
In this paper we use evolutionary MLP and a random sampling of the
space, which reduces the need to compute the performance of parameter
settings in advance. Results show a high accuracy of the estimations and
a simplification in the method to select the configurations we have to
simulate to optimize the MLP.

1 Introduction

Designing a computer architecture needs a huge number of parameters to be
calibrated. Each parameter can take different values which could impact in the
architecture performance.

Usually, simulation techniques are used to evaluate different settings, search-
ing for either the best combination of values or a promising niche within the
search space. Although the improvement in simulators, search space size makes
simulation times too high [I]. Even small search spaces can be impracticable
when simulating [2[8/4]. That is why using a system that predicts performance
without actually running the simulator would save a lot of time in researching
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new hardware configurations, giving a range or a set of parameters that can then
be simulated for an effective test of performance.

This paper extends Ypek’s work [I], who proposed using artificial neural net-
works (ANN) for architecture performance (instructions per cycle, IPC) pre-
diction. In order to optimize the ANN the training and validation patterns are
sampled using Active learning [5].

In this paper we intend to simplify the sampling method of the parameter
space, using random selection. We propose to focus the effort on the ANN op-
timization using GProp [6U7I89], an evolutionary method for the design and
optimization of neural networks.

The experimentation process consists in randomly selecting 1% of the search
space configurations. Those simulated points are used to train the MLP, and this
is used afterwards to predict the rest of architecture configuration performance.
Since the MLP is a fast method, a big amount of configurations can be evaluated
in a shorter time. Furthermore, once the configurations with best IPC are found,
the designer can focus the study on that zone of the search space.

The rest of this paper is structured as follows: In section [] related work
is analysed. Section [l describes the problem of exploring architectural design
spaces. In section ] the GProp algorithm is introduced. Section [i describes the
experiments and presents the results obtained, followed by a brief conclusion in
section

2 Related Work

There are some recent works tackling the computer architecture design problem,
mainly under two approaches: analytic and simulation methods.

Within the analytic approaches, Karkhanis and Smith [I0] proposed a super-
scalar microprocessor model which yields 87 — 95% of accuracy in estimations.
Yi et al. [TII] studied parameter priority using fractional factorial design. By
focusing on the most important parameters, the number of simulations required
to explore a large design space can be reduced.

Other researchers (Chow and Ding [12] and Cai et al. [I3]) proposed using
principal components analysis to identify the most important parameters and
their correlations for processor design. Eeckhout et al. [14] and Phansalkar et al.
[15] used similar methods for workload and benchmark composition.

Muttreja et al. [16] developed high-level models to estimate performance and
energy consumption. They simulated several embedded benchmarks with 1.3%
error. Lee and Brooks [I7] used regression for predicting performance and power
consumption. However, their approach is not easy to apply and it requires some
statistical knowledge.

The alternative to analytic methods is simulation [4]. Oskin et al. [I§] de-
veloped a hybrid simulator to model instruction and data streams, Rapaca et
al. [T9] used another hybrid simulator and instructions code to infer informa-
tion that is used to estimate statistics for other application code. Other authors,
such as Wunderlich et al. [20] modeled minimal instruction stream to achieve
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results within desired confidence intervals. Haskins and Skadron [2I] sampled
application code to create a cache and branch predictor state.

Ypek et al. [1] developed accurate predictive design-space models simulating
sampled points and using the results to train an ANN. Their methods yielded a
high accuracy but the design space sampling method is rather complex.

In this work, we intend to simplify the sampling method (using a random
selection method that simulates less architecture configurations) and to im-
prove performance approximation results using an evolutionary method for ANN
design.

3 The Problem

Computer architects have to deal with several types of parameters that define a
design: quantitative parameters (i.e. cache size), selections (i.e. cache associativ-
ity), numerical values (i.e. frequency) and logic values (i.e. core configuration).
The encoding and the way these values are used to train and to exploit an ANN
can influence the model accuracy.

In this work, we study the memory system and the CPU design problems.
These are defined by a set of parameters (see [22] for details). We use the bench-
mark suite SPEC CPU 2000 [23] which is composed by a wide range of appli-
cations. Following prior work [I], we use bzip2, crafty, gcc, mcf, vortex, twolf, art,
mgrid, applu, mesa, equake and swim. They cover a wide spectrum of the total
set of benchmarking programs.

Table [l shows parameters in the memory hierarchy study. Core frequency is
4GHz. The L2 bus runs at core frequency and the front-side bus is 64 bits. The
cross product of all parameter values requires 23040 simulations per benchmark.

Table 2 shows parameters in the microprocessor study. We use core frequen-
cies of 2GHz and 4GHz, and calculate cache and SDRAM latencies and branch
misprediction penalties based on these. We use 11- and 20-cycle minimum la-
tencies for branch misprediction penalties in the 2GHz and 4GHz cases, respec-
tively. For register files, we choose two of the four sizes in Table 2 based on
ROB size (e.g., a 96 entry ROB makes little sense with 112 integer/fp registers).
When choosing the number of functional units, we choose two sizes from Ta-
ble ] based on issue width. The number of load, store and branch units is the
same as the number of floating point units. SDRAM latency is 100ns, and we
simulate a 64-bit front-side bus at 800MHz. Taking into account these param-
eters and their values, the microprocessor study requires 20736 simulations per
benchmark.

4 The Method

We propose using GProp, an algorithm that evolves an MLP population. This
method searches for the best network structure and initial weights, while mini-
mizing the error rate. It makes use of the capabilities of two types of algorithms:
the ability of evolutionary algorithms (EA) [24125] to find a solution close to the
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Table 1. Parameter values in memory system study

Variable Parameters Values
L1 DCache Size 8, 16, 32, 64 KB
L1 DCache Block Size 32,64 B
L1 DCache Associativity 1,2, 4, 8 Way
L1 Write Policy WT, WB
L2 Cache Size 256, 512, 1024, 2048 KB
L2 Cache Block Size 64, 128 B
L2 Cache Associativity 1, 2, 4, 8, 16 Way
L2 Bus Width 8, 16, 32 B
Front Side Bus Frequency  0.533, 0.18, 1.4 GHz
Fixed Parameters Value
Frequency 4 GHz
Fetch /Issue/Commit Width 4
LD/ST Units 2/2
ROB Size 128 Entries
Register File 96 Integer / 96 FP
LSQ Entries 48/48
SDRAM 100 ns 64 bit FSB
L1 ICache 32 KB / 2 Cycles
Branch Predictor Tournament (21264)

global optimum, and the ability of the quick-propagation algorithm [26] to tune
it and to reach the nearest local minimum by means of local search from the
solution found by the EA.

The complete description of the method and the results obtained using classi-
fication problems have been presented elsewhere [GI7)8/9]. The designed method
uses an elitist [27] algorithm.

In GProp, an individual is a data structure representing a complete MLP with
two hidden layers, which implies the use of specific operators. Five variation op-
erators are used to change MLPs: mutation, crossover, addition and elimination
of hidden units, and quick-propagation training applied as operator.

The genetic operators act directly upon the ANN object, but only initial
weights and the learning constant are subject to evolution, not the weights ob-
tained after training. In order to compute fitness, a clone of the MLP is created,
and thus, the initial weights remain unchanged in the original MLP.

The fitness function of an individual (MLP) is given by the mean squared
error obtained on the validation process that follows training. In the case of
two individuals showing an identical classification error, the one with the hidden
layer containing the least number of neurons would be considered the best (the
aim being small networks with a high generalization ability).

To present the data to the MLP, cardinal and continuous parameters are en-
coded as a real number in the [0,1] range, normalizing with minimax scaling via
minimum and maximum values over the design space. For nominal parameters
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Table 2. Parameter values in the processor study

Variable Parameters Values
Fetch/Commit Width 4, 6, 8 Instructions
Frequency 2, 4 GHz (affects Cache/DRAM/Branch Misprediction Latencies)
Max Branches 8, 32
Branch Predictor 1K, 2K, 4K Entries (21264)
Branch Target Buffer 1K, 2K, Sets (2 way)
ALUs/FPUs 2/1,4/2,3/1, 6/3, 4/2, 8/4 (2 choices per Issue Width)
ROB Size 96, 128, 160
Register File 64, 80, 96, 112 (2 choices per ROB Size)
LD/ST Queue 16/16, 24/24, 32/32
L1 ICache 8, 32 KB
L1 DCache 8, 32 KB
L2 Cache 256, 1024 KB
Fixed Parameters Value
L1 DCache Associativity 1, 2 Way (depends on L1 DCache Size)
L1 DCache Block Size 32B
L1 DCache Write Policy WB
L1 ICache Associativity 1, 2 Way (depends on L1 ICache Size)
L1 ICache Block Size 32 B
L2 Cache Associativity 4, 8 Way (depends on L2 Cache Size)
L2 Cache Block Size 64 B
L2 Cache Write Policy WB
Replacement Policies LRU
L2 Bus 32B/Core Frequency
FSB 64 bits / 800 MHz
SDRAM 100 ns

we allocate an input unit for each parameter setting, making the input cor-
responding to the desired setting 1 and those corresponding to other settings
0. Boolean parameters are represented as single inputs with 0/1 values. Target
value (IPC) for model training is encoded like inputs. Normalized IPC predic-
tions are scaled back to the actual range. Following the method presented in
[1], when reporting error rates, we perform calculations based on not normalized
values.

5 Experiments and Results

The following experiments have been carried out: We have searched and op-
timized an MLP to predict the IPC values for the Memory System and CPU
problems. The MLP is trained using the 1% of the total points (architecture
configurations), and afterwards it predicts the IPC values for the whole design
space. We choose this percentage as proposed in [IJ.
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Then, the best configuration for each one of the benchmarking applications
(either for Memory System and CPU problems) is found and the best MLP is
used to predict the IPC for those architecture settings.

We conducted our experiments on a bi-processor AMD AthlonXP with 1.66GHz
and 1GB RAM. The evolutionary method and the later exploitation of the ob-
tained MLPs consume about nine minutes, while the phase of approaching the
whole design space takes less than a second.

Tables Bl (a) and (b) show the results obtained training an MLP using intelli-
gent sampling [I] and those obtained using GProp with random sampling after
30 independent runs (mean squared error and standard deviation are reported).

Table 3. Mean squared error and standard deviation for the Memory System (a) and
the CPU (b) problems. Only a 1% of the design space has been simulated to train the
MLPs. The table shows the results obtained by Ypek et al. [I] and with the GProp
method.

Application Ypek et al. GProp Application Ypek et al.  GProp

applu  3.11 + 2.74 4.27 + 1.08 applu 1.94 + 1.45 4.83 4+ 0.64

art 6.63 + 5.23 4.11 + 0.45 art 241 + 191 1.09 £ 0.19
bzip2 1.95 + 1.84 1.62 £ 0.08 bzip2 1.30 £ 0.95 2.25 4+ 0.23
crafty 2.16 + 2.10 2.96 + 0.47 crafty  2.65 £+ 2.03 4.21 £ 0.50
equake 2.32 4+ 3.28 2.42 4+ 0.35 equake 1.80 + 1.39 3.03 + 0.42

gee 3.69 +4.02 1.77 + 0.16 gcce 1.88 £ 1.48 2.39 4+ 0.24

mcf 4.61 + 5.60 1.46 £+ 0.10 mcf 1.67 £ 1.38 1.05 £+ 0.17
mesa 2.85 + 4.27 13.75 + 4.22 mesa 2.57 + 1.96 8.38 £ 1.28
mgrid  4.96 + 6.12 4.34 £ 2.47 mgrid 1.39 £ 1.13 3.08 4+ 0.58
swim 0.66 + 0.52 0.83 + 0.11 swim 2.65 + 2.05 1.72 £ 0.28
twolf 4.13 + 6.23 1.52 £ 0.22 twolf 4.85 £ 4.76 1.32 £+ 0.17
vortex  5.53 £+ 4.63 8.91 4+ 0.59 vortex  2.90 £ 2.17 6.01 + 1.36

(a) Memory system study (b) CPU study

Although GProp trains the MLP with a random 1% from the whole possible
configurations, results are comparable and even better than those obtained using
Active Learning for pattern sampling. Furthermore, GProp shows its robustness
with the low standard deviations reported versus those reported in [I] (Ypek
column in the table).

Tables M (a) and (b) show the best simulated configuration IPC and the pre-
diction obtained using GProp for that configuration. The MLP yields a good
prediction concerning the IPC value for the best setting (obtained by simula-
tion). Furthermore, we observe from experimentation that MLP predicts the best
settings within the same niche in the design space. In this experiment, Ypek et
al. [I] only report the value for the Memory system problem in the bzip2 appli-
cation. The best setting yields an ITPC of 1.09, very close to the optimum and to
the value obtained using GProp.
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Table 4. Best simulated configuration and the prediction obtained using GProp for the
Memory System (a) and the CPU (b) problems. First column show the benchmarking
applications, the second one the IPC of the best configuration after simulating the
whole search space. The third column shows the prediction obtained using GProp for
that configuration (mean squared error and standard deviation).

IPC Best IPC GProp IPC Best IPC GProp
Application Simulated Predicted Application Simulated Predicted
Configuration Configuration Configuration Configuration
applu 1.79 1.74 4+ 0.01 applu 2.25 2.15 £+ 0.03
art 1.56 1.48 + 0.01 art 0.53 0.502 £ 0.001
bzip2 1.10 1.077 + 0.002 bzip2 1.48 1.40 £+ 0.03
crafty 1.33 1.29 4+ 0.01 crafty 1.76 1.65 4+ 0.02
equake 1.17 1.15 £ 0.01 equake 1.66 1.56 £+ 0.01
gcce 1.05 1.036 + 0.003 gcce 1.29 1.20 £+ 0.01
mcf 0.47 0.444 + 0.004 mcf 0.58 0.54 £+ 0.01
mesa 1.82 1.81 £ 0.01 mesa 3.04 2.88 £+ 0.08
mgrid 1.55 1.52 £+ 0.02 mgrid 1.73 1.68 £+ 0.02
swim 0.77 0.755 £ 0.002 swim 0.95 0.917 £ 0.004
twolf 0.90 0.889 £ 0.001 twolf 1.01 0.97 4+ 0.01
vortex 1.71 1.67 £ 0.01 vortex 2.48 2.29 £+ 0.07
(a) Memory system study (b) CPU study

6 Conclusions and Future Work

This work tackles the computer architecture design using the benchmark prob-
lems proposed in [I]. We have shown how an ANN can shape a wide search space
from the knowledge of a small and random portion. Thus, the experiments just
use a randomly chosen 1% of all the possible design settings; this implies that by
randomly choosing 1% of possible parameter settings to simulate, we can obtain
a good representation of the architecture performance function.

We propose using GProp, a method that evolves an MLP population to obtain
amodel that predicts the IPC value. The designed MLP predicts any architecture
parameter configuration performance with a small error rate.

Furthermore, the proposed method uses a simple random pattern sampling
mechanism for the training set. Results obtained are comparable to those pre-
sented by other authors, with a low standard deviation (algorithm robustness)
as an improvement over them.

We have demonstrated that randomly selecting a small configurations set, it is
possible to make accurate predictions. Moreover, our proposal is able to explore
a wide search space far from the current simulation methods capabilities.

As future work, we plan the automatic exploitation of the promising settings
that the MLP has discovered within the search space applying evolutionary
techniques.
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