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Abstract. This paper describes a real-valued quantum-inspired evolu-
tionary algorithm (QIEA), a new computational approach which bears
similarity with estimation of distribution algorithms (EDAs). The study
assesses the performance of the QIEA on a series of benchmark problems
and compares the results with those from a canonical genetic algorithm.
Furthermore, we apply QIEA to a finance problem, namely non-linear
principal component analysis of implied volatilities. The results from the
algorithm are shown to be robust and they suggest potential for useful
application of the QIEA to high-dimensional optimization problems in
finance.

1 Introduction

A wide-variety of biologically-inspired algorithms have been applied for finan-
cial modelling [1] in recent years. One interesting avenue of this research has
been the hybridisation of quantum-inspired concepts with evolutionary algo-
rithms [11,8,13] producing a family of algorithms known as quantum-inspired
evolutionary algorithms (QIEA). A claimed benefit of these algorithms is that
because they use a quantum representation, they can maintain a good balance
between exploration and exploitation. It is also suggested that they offer com-
putational efficiencies as use of a quantum representation can allow the use of
smaller population sizes than typical evolutionary algorithms. As yet, apart from
[4,5,6], there have been no studies applying these algorithms in the finance do-
main. This paper extends these proof of concept studies in two important ways.
First, it explores the utility of a real-valued QIEA by applying the algorithm to
a series of benchmark problems and comparing the results with those produced
by a canonical GA. Then it applies the methodology to undertake a non-linear
principal component analysis (NLPCA). The NLPCA is used to determine the
non-linear principal components that drive the variations in the implied volatility
smile for financial options.

The next section provides a short introduction to the real-valued QIEA and
outlines the benchmark tests undertaken. This is followed by a description of
the experimental approach adopted in the NLCPA, followed by the results and
finally, the conclusions of this paper.
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2 Quantum-Inspired Evolutionary Algorithm

The real-valued quantum-inspired evolutionary algorithm applied in this paper
is described in [5,6] and readers are referred there for more details. A short
overview of the algorithm is provided below.

Quantum mechanics is an extension of classical mechanics which models be-
haviours of natural systems that are observed particularly at very short time
or distance scales. In the initial literature which introduced the QIEA, a bi-
nary representation was adopted, wherein each quantum chromosome was re-
stricted to consist of a series of 0s and 1s. The methodology was modified to
include real-valued vectors by da Cruz et al., [3]. As with binary-representation
QIEA, real-valued QIEA maintains a distinction between a quantum popula-
tion and an observed population of, in this case, real-valued solution vectors.
However the quantum individuals have a different form to those in binary-
representation QIEA. The quantum population Q(t) is comprised of N quan-
tum individuals (qi : i = 1, 2, 3, . . . , N), where each individual is comprised of
G genes (gij : j = 1, 2, 3, . . . , G). Each of these genes consist of a pair of values
gij = (pij , σij) where pij , σij ∈ � represent the mean and the width of a square
pulse. Representing a gene in this manner has a parallel with the quantum con-
cept of superposition of states as a gene is specified by a range of possible values,
rather than by a single unique value.

The da Cruz et al algorithm does periodically sample from a distribution to
get a “classical” population, which can be regarded as a wave-function (quan-
tum state) collapsing to a classical state upon observation. It is also noted that
this bears similarity to the operation of a number of estimation of distribution
algorithms (EDAs).

Algorithm. The real-valued QIEA algorithm is as follows

Algorithm. Real-valued Quantum-inspired Genetic Algorithm

Set t=0;
Initalise Q(t) (the quantum chromosome);

while t < maxt do
Create the PDFs (and corresponding CDFs) for each gene locus using the quantum
individual;
Create a temporary population, denoted E(T), of K real-valued solution vectors through
a series of ‘observations’ via the CDFs;
if t=0 then

C(t)=E(t);
Note: the population C(t) is maintained between iterations of the algorithm;

else
E(t)=Outcome of crossover between E(t-1) and C(t-1);
Evaluate E(t);
C(t)= K best individuals from E(t) ∪ C(t-1);

end
With the N best individuals from C(t);
Q(t+1)=Output of translate operation on Q(t);
Q(t+1)=Output of resize operation on Q(t+1);
t=t+1;

end
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Initialising the Quantum Population. At the start of the algorithm, each
quantum gene is initialised by randomly selecting a value from within the range
of allowable values for that dimension. For example, if the known allowable values
for dimension j are [−75, 75] then qij (dimension j in quantum chromosome i)
is initially determined by randomly selecting a value from this range (say) -50.
The corresponding width value will be 150. Hence, qij = (−50, 150). The square
pulse need not be entirely within the allowable range for a dimension when it is
initially created as the algorithm will automatically adjust for this as it executes.
The height of the pulse arising from a gene j in chromosome i is calculated using

hij =
1/σij

N
(1)

where N is the number of individuals in the quantum population. This equa-
tion ensures that the probability density functions (PDFs) used to generate the
observed individual solution vectors will have a total area equal to one.

Observing the Quantum Chromosomes. In order to generate a population
of real-valued solution vectors, a series of observations must be undertaken using
the population of quantum chromosomes (individuals). A pseudo-interference
process between the quantum individuals is simulated by summing up the square
pulses for each individual gene across all members of the quantum population.
This generates a separate PDF (just the sum of the square pulses) for each gene
and eq. 1 ensures that the area under this PDF is one. Hence, the PDF for gene
j on iteration t is

PDFj(t) =
j�
i

gij (2)

where gij is the squared pulse of the jth gene of the ith quantum individual (of
N). To use this information to obtain an observation, the PDF is first converted
into its corresponding Cumulative Distribution Function (CDF)

CDFj(x) =
� Uj

Lj

PDFj(x)dx (3)

where Uj and Lj are the upper and lower limits of the probability distribution.
By generating a random number r from (0,1) following a specific distribution,
the CDF can be used to obtain an observation of a real number x, where x =
CDF−1(r). Once these have been calculated, the observation process is iterated
to create a temporary population with K members, denoted by E(t).

Updating the Quantum Chromosomes. In this study we adjust the quan-
tum probability amplitude with specified operators by comparing each successive
generation’s best fitness function so that the quantum chromosome can produce
more promising individuals with higher probability in the next generation, i.e.
if the best fitness function has improved (disimproved) we shrink (enlarge) the
width in order to improve the local (global) search.
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Table 1. Benchmark functions

f Function Mathematical representation Range f(x∗
i ) x∗

i

f1 DeJong(Sphere) f(x) =
�p

i=1 xi
2 −5 ≤ xi ≤ 5 0 0

f2 Rosenbrock f(x) =
�p−1

i=1 100(xi+1 − xi
2)2 + (1 − xi)2 −50 ≤ xi ≤ 50 0 1

f3 Rastrigin f(x) = 10p +
�p

i=1(xi
2 − 10cos(2πxi)) −100 ≤ xi ≤ 100 0 0

f4 Griewangk f(x) =
�p

i=1
xi

2

4000 −�p
i=1 cos

�
xi√

i

�
+ 1 −600 ≤ xi ≤ 600 0 0

Table 2. Parameters setting in QIEA and GA

QIEA Population=50 Observation=200 Shrinkage=0.005 Enlargement=30
GA Population=50 Generations=200 Mutation=0.005 Crossover=0.75

3 Benchmark Test

Four major static benchmark functions are chosen to test the ability of QIEA
to find a global minimum. The results are compared to those of a canonical GA.
Details of the benchmark functions are shown in Table 1.

In order to make a fair comparison between QIEA and GA, we call the evalu-
ation function 10000 times for both algorithms. The parameters used for QIEA
and GA, selected from sensitivity test, are shown in Table 2.

Table 3. DeJong results

[-5,5] Best Mean S.D. Time(s)
Dimension : 5
QIEA 0.0021 0.0012 0.0007 27.96
GA 0.0001 0.0000 0.0002 23.58
Dimension : 10
QIEA 0.0378 0.0090 0.0216 28.28
GA 0.0002 0.0000 0.0002 39.74
Dimension : 50
QIEA 3.427 0.289 2.562 29.21
GA 3.511 0.787 2.304 103.00
Dimension : 100
QIEA 24.953 2.077 21.434 31.86
GA 54.778 6.809 39.564 190.63

Table 4. Rosenbrock results

[-50,50] Best Mean S.D. Time(s)
Dimension : 5
QIEA 68.9335 44.1549 14.1392 29.36
GA 578.2585 1141.90 4.2406 24.34
Dimension : 10
QIEA 786.7354 362.0550 80.5617 30.66
GA 939.3839 1334.200 10.8133 45.14
Dimension : 50
QIEA 8.751e+5 2.245e+5 3.901e+5 31.04
GA 2.089e+6 7.242e+5 9.400e+5 125.34
Dimension : 100
QIEA 3.50e+7 8.47e+6 1.88e+7 35.87
GA 1.56e+8 2.86e+7 1.07e+8 228.07

Table 5. Rastrigin results

[-100,100] Best Mean S.D. Time(s)
Dimension : 5
QIEA 18.687 4.579 7.285 30.61
GA 15.777 6.016 9.186 21.21
Dimension : 10
QIEA 47.485 10.104 25.542 30.97
GA 32.161 5.858 19.622 37.52
Dimension : 50
QIEA 1479.3 190.5 866.9 37.84
GA 1763.8 276.6 1286.4 107.18
Dimension : 100
QIEA 10599.0 858.7 8244.5 38.13
GA 22845.0 2594.9 18547.0 194.28

Table 6. Griewangk results

[-600,600] Best Mean S.D. Time(s)
Dimension : 5
QIEA 0.398 0.092 0.182 44.64
GA 0.355 0.167 0.105 25.95
Dimension : 10
QIEA 0.803 0.078 0.638 45.18
GA 0.397 0.107 0.214 25.95
Dimension : 50
QIEA 10.06 1.35 5.65 47.92
GA 12.57 2.21 7.34 127.72
Dimension : 100
QIEA 173.36 21.76 131.43 55.13
GA 204.37 24.80 163.53 232.33
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The results of benchmark tests are shown in Tables 3 to 6, where both QIEA
and GA are run 30 times. The first column lists the minimal (overall best)
objective value found during the 30 runs. The second and third column lists the
mean and standard deviation for the best value found in each of the 30 runs.
The T ime column shows the total processing time taken for 30 runs.

The results indicate that QIEA performs better (relative to GA) as the search
space becomes more complex and the dimensionality of the search space becomes
larger. It is also notable that the algorithm’s efficiency vs the GA increases as
the problem becomes larger. These results suggest the interesting potential of
QIEA as an optimising algorithm in hard, high-dimensional problems.

4 Experimental Approach

In this section we explain the importance of the implied volatility smile in op-
tion trading and how QIEA will be applied for non-linear principal component
analysis.

4.1 Implied Volatility Smile

Implied volatilities are frequently used in the financial markets to quote the
prices of options. Option traders and brokers monitor movements in volatility
smiles closely. As option prices change over time the implied volatility smile (for
various maturities) also changes.

If we stack the implied volatility smile (for one particular maturity) accord-
ing to the time the IVS data was recorded, a time series of panel data, with
highly correlated entries, results. Implied volatilities at different strike prices are
highly correlated because as the volatility of the asset rises all implied volatil-
ities rise, yet some may rise more than others. However the economic forces of
no-arbitrage (no free-lunch) ensures that the implied volatilities cannot get too
detached from one another because if they did this represents a riskless trading
opportunity for savvy investors, who sell the more expensive option (with the
higher implied volatility) and hedge it with cheaper options (with lower implied
volatilities).

4.2 Non-linear Principal Component Analysis

Suppose X ∈ Mm,n is a panel data set that contains correlated data points
along the columns, evaluated at different points in time along the rows. Given
that X consists of correlated data points, the variation in X can be decomposed
into a small number r of orthogonal principal components with r < n, resulting
in a reduction of the dimension of the problem with only a small loss in infor-
mation. The principal components from standard PCA are linear combinations
(along the rows) of the original data set. If it is suspected that the data set
contains non-linearities, a common procedure is to “linearise” the data set using
suitable transformations prior to analysis. This approach has the advantage that
it retains the simplicity of the underlying principal component analysis (PCA)
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Table 7. Mapping functions employed for non-linear principal component analysis

g1(X) g2(X) g3(X) g4(X) g5(X) g6(X) g7(X) g8(X) g9(X) g10(X)
4X(1-X) 1-1.4X2

t +0.3Xt−1 0.25Xt−1+ε exp(X) sin(X) cos(X) Xt−1 Xt−2 Xt-Xt−1 Xt-Xt−2

whilst gaining the ability to cope with non-linear data. To do this we construct
a modified data set XNL from the original data set X :

XNL = G(X), (4)

where G is a function consisting of n individual mapping functions from linear
to non-linear space:

G = w1g1(X) + w2g2(X) + · · · + wngn(X), (5)

and where gi(X) is an individual non-linear mapping function of X and wi is
the weight on the function gi. There are an infinite number of mapping functions
gi(X) to choose from and in this paper we consider a small number of mapping
functions we think are important given the domain knowledge of the problem
under consideration. There are a total of ten functions chosen in this study,
including time-series models, and they are given in Table 7.

The previous evidence for PCA applied to implied volatility smiles ([10,12,7])
suggests that changes in the implied volatility smile are driven predominantly
by three factors. The first factor is a level factor which controls the overall
height of the implied volatility smile. The second and third factors are slope and
curvature factors across the strike price axis. However options and the implied
volatilities associated with options are multi-dimensional non-linear instruments
and standard PCA may neglect some of non-linear subleties inherent in option
implied volatilities. This is the reason NLPCA is applied to the IVS in this
paper.

5 Results

5.1 Data

The data used in this study are option implied volatilities across 11 different
strikes and a number of different maturities on the FTSE 100 index. The data
consists of end-of-day settlement option implied volatilities from the 26th of
March 2004 till the 17th of March 2006 consisting of 500 trading days. FTSE
100 index options are European style options and the underlying asset is the
FTSE 100 performance index. To price options on this index one must adjust the
index by extracting the present value of future cash dividend payments before
each options expiration date. The annualised dividend yield of the FTSE 100
index was downloaded from Datastream. The one-month LIBOR rate was used
as the risk-free rate where the LIBOR rate was converted into a continuously
compounded rate. The forward price used in the option calculations is then
simply Ft = S0e

(r−q)t where S0 is the current index price level, Ft is the price
for the forward contract maturing at time t, r is the continuously compounded
risk-free rate and q is the continuously compounded dividend yield.
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Fig. 1. Implied Volatility Smiles on two different dates

We have interpolated implied volatilities on a fixed grid of moneyness and
maturity for all the days in the data sample. For each day t in the sample we
define the implied volatility smile at a fixed moneyness nm and maturity τj by

IV S(t) = {It(1, τj), . . . , It(nm, τj)} .

We then stack these implied volatility smiles over time to form the data ma-
trix X = {IV S(1), . . . , IV S(500)}′. Non-linear principal component analysis
(NLPCA) is conducted on the implied volatility smile matrix for maturities
ranging from 2 to 6 months.

5.2 Result Analysis

The first three principal components from linear PCA explain up to approxi-
mately 96% of the variation in the level of the implied volatility smile, depending
on the maturity of the IVS considered. As 96% in PCA analysis may be over-
fitting, we would rather target the first principal component than the first three
components and this why the objective function in the NLPCA was chosen to
be proportion of variation explained by the first principal component.

The analysis of the eigenfactors from standard PCA for the implied volatility
smiles of each maturity shows that the first factor has a positive effect on all
implied volatilities. This eigenfactor can be interpreted as a level or a volatility
factor. An increase in this factor causes the whole IVS to increase and causes
all options to become more expensive since options are increasing functions of
volatility. The second factor has a negative effect for implied volatilities with
K < S, e.g. out-of-the-money puts, and a positive effect for implied volatilities
with K > S, e.g. out-of-the-money calls. This factor can be interpreted as a
skew factor and increase in this factor causes out-of-the money calls to become
more expensive relative to out-of-the-money puts. The third factor has a positive
effect for implied volatilities with K < S and K > S e.g. out-of-the-money calls
and puts, and a negative effect for implied volatilities that are close to the money
with K ≈ S. This factor can be interpreted as a curvature factor an an increase
in this factor causes out-of-the money calls and puts to become more expensive
relative to near-the-money calls and puts.
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Table 8. Results of non-linear PCA. The proportion explained by the first principal
component (PC) from the last generation are averaged over 30 runs and compared with
the parameter values from 30 runs of a Matlab optimiser.

Maturity Linear PCA(%) Non-linear PCA-QIEA(%) Non-linear PCA-GA(%)
2 months 64.15 82.19 81.35
3 months 69.57 82.67 82.01
4 months 72.90 83.94 83.21
5 months 77.01 84.01 83.93
6 months 80.27 83.23 82.39

In our NLPCA-QIEA analysis, the weights on the mapping functions are
optimised by using a quantum-inspired evolutionary algorithm to maximise the
objective function which is the proportion of variation in the data explained
by the first principal component. The weights are also optimised using the GA
Matlab toolbox developed by Andrew Chipperfield. Fig. 2 depicts the evolution
of the objective function versus the generation number. The parameter settings
in the QIEA are given in Table 2. NLPCA is more efficient than linear PCA
especially for the options with shorter times-to-maturity. For example, for the
2 month IVS the 1st principal component from NLPCA explains approximately
82% of the variation of the data versus only 64% for standard PCA. However the
outperformance of NLPCA is to be expected given the extra degrees of freedom
involved since it uses four non-linear functions that first operate on the data
before PCA is applied. It is interesting to note that for the two month IVS the
first component from NLPCA with ten non-linear functions explains 82% of the
variation whilst the first three components from linear PCA explain up to 96%
of the variation in the data. Although 96% is a higher level of explanatory power
this is more than likely overfitting historical data at the expense of poor out-of-
sample performance. If we forecast the evolution of the IVS out-of-sample using
the techniques in this paper, a parsimonious procedure would be to include a
more general set of time series models in the set of non-linear functions and use
these to forecast the first factor from NLPCA and reconstruct future IVS’s from
the weights derived from historical analysis. This would be more parsimonious
than fitting a separate time series model to three linear principal components
and then reconstructing the future IVS as would have to be done in linear PCA.
Thus, at least for shorter term options, the NLPCA method can explain 82% of
the variation in the data with one linear combination of non-linear functions of
the data versus approximately 64% for linear PCA. Thus rather than increasing
the number of principal components in the analysis we have shown that another
route is to use non-linear principal components to achieve a statistical significant
increase in explanatory power.

It is interesting to note the weights on various functions that were derived in
the NLPCA. The f2 (Hénon function) captures a curvature effect (mentioned
earlier) due to the squaring of the data, and a time series effect due to the
dependence on past values. The weight on this function is close to one implying
that the function depending on the curvature of the current IVS and the past
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Table 9. Weights on mapping functions. These weights on mapping functions from
the last generation are averaged over 30 runs.

Maturity f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

2 months 0.124 0.925 0.328 0.024 0.036 0.897 0.106 0.152 0.194 0.375
3 months 0.121 0.901 0.371 0.016 0.047 0.923 0.097 0.133 0.189 0.342
4 months 0.151 0.917 0.368 0.020 0.068 0.925 0.072 0.067 0.169 0.274
5 months 0.141 0.917 0.324 0.016 0.059 0.918 0.095 0.102 0.185 0.293
6 months 0.137 0.882 0.363 0.019 0.066 0.903 0.074 0.073 0.168 0.247

level of the IVS is very important for explaining the variation in the IVS over
time. The f3 (auto regressive function) is capturing serial correlation in the
daily movements of the IVS (something that cannot be done under linear PCA).
Thus there is positive serial correlation in the data and this represents a possible
trading strategy.

The weight on cos(X) is approximately 0.9, which means this function con-
tribute much during the mapping process. Also, both QIEA and GA can find
the global optima. As they are sensitive to the parameters, i.e. crossover and
mutation rate in GA, enlargement, shrinkage, and resize factor in QIEA, further
analysis would need to be conducted for sensitivity test, other transformation
functions and methods, such as Fourier transformation.

6 Conclusions

The results of benchmark tests suggest the potential of QIEA for application
to high-dimensional problems. This is particularly interesting for financial ap-
plications which often require optimization in complex and high-dimensional
environments.
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A non-linear principal component analysis was conducted on the implied
volatility smile derived from FTSE 100 stock index options. The weights on
these non-linear functions were optimised using a QIEA. It has potential to be
a highly non-linear non-convex optimisation problem due to the fact that the
options data analysed are highly non-linear and method used to describe the
variation in the options data is a non-linear method. Thus it was thought that
this was a reasonable problem to test out the QIEA. It was shown, at least for
shorter term options, that the NLPCA method can explain 82% of the variation
in the data with one non-linear principal component versus approximately 64%
for one linear principal component in linear PCA. Thus the non-linear functions
used in the NLPCA captured some of the higher order non-linear factors that
affect the data and increased the explanatory power of the method.

Future work will consist of follow-up benchmark studies on the QIEA to ex-
amine both its scalability and its potential utility for optimization in dynamic
environments. In the context of the examination of the implied volatility smile,
future work consists of expanding the number of non-linear functions being con-
sidered with a focus on including a larger number of time series models. This
would be very useful in predicting the IVS out-of-sample and in constructing op-
tions trading strategies. Future work could also look at multi-objective NLPCA
where the proportion of variation explained by the first factor is maximised fol-
lowed by the proportion of variation explained by the second factor, etc. Also
it would be useful to relax the restriction on the parameters of the non-linear
functions used in NLPCA and allow the QIEA to find optimal values for these
parameters. All of these extensions will result in very high-dimensional optimi-
sation problems where the use of evolutionary algorithms such as the QIEA may
be essential.
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