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Abstract. An important goal of human genetics is to identify DNA se-
quence variations that are predictive of susceptibility to common human
diseases. This is a classification problem with data consisting of discrete
attributes and a binary outcome. A variety of different machine learning
methods based on artificial evolution have been developed and applied
to modeling the relationship between genotype and phenotype. While
artificial evolution approaches show promise, they are far from perfect
and are only loosely based on real biological and evolutionary processes.
It has recently been suggested that a new paradigm is needed where “ar-
tificial evolution” is transformed to “computational evolution” (CE) by
incorporating more biological and evolutionary complexity into existing
algorithms. It has been proposed that CE systems will be more likely to
solve problems of interest to biologists and biomedical researchers. The
goal of the present study was to develop and evaluate a prototype CE
system for the analysis of human genetics data. We describe here this
new open-ended CE system and provide initial results from a simulation
study that suggests more complex operators result in better solutions.

1 Introduction

1.1 The Problem Domain: Human Genetics

Human genetics is undergoing an information explosion and an understanding
implosion. This is the result of technical advances that make it feasible and
economical to measure 106 or more DNA sequence variations from across the
human genome. For the purposes of this paper we will focus exclusively on the
single nucleotide polymorphism or SNP which is a single nucleotide or point in
the DNA sequence that differs among people. Most SNPs have two alleles (e.g.
A or G) that combine in the diploid human genome in one of three possible
genotypes (e.g. AA, AG, GG). It is anticipated that at least one SNP occurs
approximately every 100 nucleotides across the 3x109 nucleotide human genome.
An important goal in human genetics is to determine which of the many hundreds
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of thousands of SNPs are useful for predicting who is at risk for common diseases.
Further, it is important to know the nature of the mapping elationship between
genotypes at the important SNPs and the phenotype or clinical endpoint. This
knowledge is useful for identifying those at risk and for informing experimental
studies that can lead to new therapeutic interventions.

The charge for computer science and bioinformatics is to develop algorithms
for the detection and characterization of those SNPs that are predictive of hu-
man health and disease. Success in this genome-wide endeavor will be difficult
due to nonlinearity in the genotype-to-phenotype mapping relationship that is
due, in part, to epistasis or nonadditive gene-gene interactions. Epistasis was
recognized by Bateson [1] nearly 100 years ago as playing an important role in
the mapping between genotype and phenotype. Today, this idea prevails and
epistasis is believed to be a ubiquitous component of the genetic architecture of
common human diseases [2]. As a result, the identification of genes with geno-
types that confer an increased susceptibility to a common disease will require
a research strategy that embraces, rather than ignores, this complexity [2,3,4].
The implication of epistasis from a data mining point of view is that SNPs need
to be considered jointly in learning algorithms rather than individually. Because
the mapping between the attributes and class is nonlinear, the concept difficulty
is high. The challenge of modeling attribute interactions has been previously de-
scribed [5]. The goal of the present study is to develop an evolutionary computing
strategy for detecting and characterizing epistasis.

1.2 A Simple Example of the Concept Difficulty

Epistasis can be defined as biological or statistical [3]. Biological epistasis occurs
at the cellular level when two or more biomolecules physically interact. In con-
trast, statistical epistasis occurs at the population level and is characterized by
deviation from additivity in a linear mathematical model. Consider the follow-
ing simple example of statistical epistasis in the form of a penetrance function.
Penetrance is simply the probability (P) of disease (D) given a particular com-
bination of genotypes (G) that was inherited (i.e. P [D|G]). A single genotype
is determined by one allele (i.e. a specific DNA sequence state) inherited from
the mother and one allele inherited from the father. For most single nucleotide
polymorphisms or SNPs, only two alleles (encoded by A or a) exist in the bi-
ological population. Therefore, because the order of the alleles is unimportant,
a genotype can have one of three values: AA, Aa or aa. The model illustrated
in Table 1 is an extreme example of epistasis. Let’s assume that genotypes AA,
aa, BB, and bb have population frequencies of 0.25 while genotypes Aa and
Bb have frequencies of 0.5 (values in parentheses in Table 1). What makes this
model interesting is that disease risk is dependent on the particular combina-
tion of genotypes inherited. Individuals have a very high risk of disease if they
inherit Aa or Bb but not both (i.e. the exclusive OR function). The penetrance
for each individual genotype in this model is 0.5 and is computed by summing
the products of the genotype frequencies and penetrance values. Thus, in this
model there is no difference in disease risk for each single genotype as specified
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Table 1. Penetrance values for genotypes from two SNPs

AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 1 0

Bb (0.50) 1 0 1

bb (0.25) 0 1 0

by the single-genotype penetrance values. This model was first described by Li
and Reich [6]. Heritability, or the size of the genetic effect, is a function of these
penetrance values. In this model, the heritability is maximal at 1.0 because the
probability of disease is completely determined by the genotypes at these two
DNA sequence variations. As Freitas [5] reviews, this general class of problems
has high concept difficulty.

1.3 Towards Computational Evolution for the Analysis of
Gene-Gene Interactions

Numerous machine learning and data mining methods have been developed and
applied to the detection of gene-gene interactions. These include, for example,
traditional methods such as neural networks [7] and novel methods such as mul-
tifactor dimensionality reduction [8]. Evolutionary computing methods such as
genetic programming (GP) have been applied to both attribute selection and
model discovery in the domain of human genetics. For example, Ritchie et al. [8]
used GP to optimize both the weights and the architecture of a neural network
for modeling gene-gene interactions. More recently, GP has been successfully
used for both attribute selection [9,10] and genetic model discovery [11].

Genetic programming is an automated computational discovery tool that is
inspired by Darwinian evolution and natural selection [12,13,14,15,16,17,18]. The
goal of GP is evolve computer programs to solve problems. This is accomplished
by first generating random computer programs that are composed of the build-
ing blocks needed to solve or approximate a solution to a problem. Each ran-
domly generated program is evaluated and the good programs are selected and
recombined to form new computer programs. This process of selection and re-
combination is repeated until a best program is identified.

Genetic programming has been applied successfully to a wide range of dif-
ferent problems including data mining and knowledge discovery [e.g. [19]] and
bioinformatics [e.g. [20]]. Despite the many successes, there are a large number
of challenges that GP practitioners and theorists must address before this gen-
eral computational discovery tool becomes one of several tools that a modern
problem solver calls upon [21]. Banzhaf et al. [22] propose that overly simplistic
and abstracted artificial evolution (AE) methods such as GP need to be trans-
formed into computational evolution (CE) systems that more closely resemble
the complexity of real biological and evolutionary systems. Evolution by nat-
ural selection solves problems by building complexity. As such, computational
systems inspired by evolution should do the same. The working hypothesis ad-
dressed in the present study is that a GP-based genetic analysis system will find
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better solutions faster if it is implemented as a CE system that can evolve a
variety of complex operators that in turn generate variability in solutions. This
is in contrast to an AE system that uses a fixed set of operators.

1.4 Research Questions Addressed and Overview

The goal of the present study was to develop and evaluate an open-ended
CE system for the detection and characterization of epistasis. We developed
a hierarchically-organized and spatially-extended GP approach that is capable
of evolving its own operators of any arbitrary size and complexity. The primary
question addressed in this study is whether the ability to evolve complex opera-
tors improves the ability of the system to discover a classifier that is capable of
predicting disease in the presence of nonlinear gene-gene interactions.

2 A Prototype Computational Evolution System

Our primary goal was to develop a prototype CE system that is capable of
open-ended evolution for bioinformatics problem-solving in the domain of human
genetics. Figure 1 gives a graphical overview of our hierarchically-organized and
spatially-extended GP system that is capable of open-ended CE. At the bottom
layer of this hierarchy is a grid of solutions. Details of the solutions and their
representation are given in Section 2.1. At the second layer of the hierarchy is
a grid of operators of any size and complexity that are capable of modifying
the solutions. The operators are described in Section 2.2. At the third layer in
the hierarchy is a grid of mutation operators that are capable of modifying the
solution operators. The mutation operators are described in Section 2.3. At the
highest level of the hierarchy is the mutation frequency that determines the rate
at which operators are mutated. This is described in Section 2.4. Details of how
the system was implemented are described in Section 2.5. The details of the
experimental design used to evaluate this system are described in Section 3.

2.1 Problem Solutions: Their Representation, Fitness Evaluation
and Reproduction

The goal of a classifier is to accept as input two or more discrete attributes
(i.e. SNPs) and produce a discrete output that can be used to assign class (i.e.
healthy or sick). Here, we used symbolic discriminant analysis or SDA as our
classifier. The SDA method [23] has been described previously for this problem
domain [11]. Briefly, SDA models consist of a set of attributes and constants as
input and a set of mathematical functions that produce for each instance in the
dataset a score called a symbolic discriminant score. The goal of SDA is to find
a linear or nonlinear combination of attributes such that the difference between
the distributions of symbolic discriminant scores for each class is maximized.
Here, our SDA function set was {+,−, ∗, /, %, <, <=, >, >=, ==, �=} where the
% operator is a mod operation and / is a protected division. The SDA models
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are represented as postfix expressions here instead of as expression trees as has
been used in the past [23,11] to facilitate stack-based evaluation of the classifiers
and to facilitate representation in text files.

Classification of instances into one of the two classes requires a decision rule
that is based on the symbolic discriminant score. Thus, for any given symbolic
discriminant score (Sij) in the ith class and for the jth instance, a decision rule
can be formed such that if Sij > So then assign the instance to one class and
if Sij <= So then assign the observation to the other class. When the prior
probability that an instance belongs to one class is equal to the probability that
it belongs to the other class, So can be defined as the arithmetic mean of the
median symbolic discriminant scores from each of the two classes. This is the
classification rule we used in the present study and is consistent with previous
work in this domain [11]. Using this decision rule, the classification accuracy
for a particular discriminant function can be estimated from the observed data.
Here, accuracy is defined as (TP +TN)/(TP + TN + FP + FN) where TP are
true positives (TP), TN are true negatives, FP are false positives, and FN are

Fig. 1. Visual overview of our prototype CE system. The hierarchical structure is shown
on the left while some specific examples at each level are shown on the right. The top
two levels of the hierarchy (A and B) exist to generate variability in the operators
that modify the solutions. Shown in C is an example set of operators that will perform
recombination on the two solutions shown in D. As illustrated in B, there is a 0.50
probability that a mutation to the recombination operator in C will add an operator
thus making this particular operator more complex. This system allows operators of any
arbitrary complexity to modify solutions. Note that we used a 24x24 grid of solutions
in the present study. A 12x12 grid is shown as an illustrative example.
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false negatives. We used accuracy as the fitness measure for SDA solutions as
has been described previously [11].

All SDA solutions in a population are organized on a toroidal grid with specific
X and Y coordinates (see example in Figure 1). As such, they resemble previous
work on cellular genetic programming [24]. In the present study we used a 24x24
grid for a total population size of 576. Reproduction of solutions in the population
is handled in a spatial manner. Each solution is considered for reproduction in
the context of its Moore neighborhood using an elitist strategy. That is, each
solution in question will compete with its eight neighbors and be replaced in
the next generation by the neighbor with the highest fitness of all solutions.
This combines ideas of tournament selection that is common in GP with a set
of solutions on a grid. Variability in solutions is generated using hierarchically
organized operators. This is described below.

2.2 Operators for Computational Evolution: Generating Solution
Variability

Traditional AE approaches such as GP use a fixed set of operators that include
mutation and recombination, for example. The goal of developing a prototype
CE system was to provide operators and building blocks for operators that could
be combined to create new operators of any arbitrary complexity. We started
with the following six operators and operator building blocks. The first opera-
tor, DeleteRangeOperation, deletes all functions in an SDA postfix expression
within a certain range. The second operator, CopyRangeOperator, copies all
functions in an SDA postfix expression within a certain range to another SDA
postfix expression at a particular position. The third operator, PermuteRange-
Operator, randomizes the order of a set of SDA functions within a given range.
The fourth operator, AddOperator, adds a randomly selected function onto the
end of a set of SDA functions. The fifth operator, PointMutationOperator, re-
places a function and its arguments (e.g. attributes) at a given position with
a randomly selected function and arguments. The final operator, PointMuta-
tionExpertKnowledgeOperator, replaces a function and its arguments (e.g. at-
tributes) at a given position with a randomly selected function and arguments
selected using a source of expert knowledge. Greene et al. [25] have shown that
using ReliefF measures of attribute quality to guide point mutation for genetic
analysis using GP is beneficial for ensuring good building blocks are utilized.
This is consistent with Goldberg’s ideas about exploiting good building blocks
in competent genetic algorithms [26]. Thus, we have provided to the CE system
a set of operators and operator building blocks that can be put together in any
arbitrary length and complexity. For example, a standard recombination oper-
ator can be formed by combining two CopyRangeOperator operators and two
DeleteRangeOperation operators with the appropriate arguments that specify
the correct positions in two SDA solutions for copying and deleting appropriate
model pieces. An example recombination operator is shown in Figure 1. These
operators can be combined in more interesting ways to form even more complex
operators.
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As with the solutions, each operator is organized on a toroidal grid with a
specific X and Y coordinate. Rather than generate one operator for each solution
we assigned each operator to a set of solutions. This makes evaluation of the
fitness of an operator easier since its positive or negative effect on the solutions
can be averaged over multiple solutions. In this study, we assigned each operator
to a 6x6 grid of 36 solutions. Thus, the population of operators is organized in
a 4x4 grid for a total of 16 operators (See Figure 1) that each maps onto 36 of
the 576 solutions.

2.3 Mutation of Operators for Computational Evolution:
Generating Operator Variability

An important goal for the prototype CE system is the ability to generate vari-
ability in the operators that modify solutions. To accomplish this goal we devel-
oped an additional level in the hierarchy (Figure 1B) with mutation operators
that specifically alter the operators described above. We defined four different
fixed mutation operators that are each assigned to a 2x2 grid of solution op-
erators. Solution operators can be modified in the following four ways. First,
an operator can have a specific operator building block deleted (DeleteOper-
ator). Second, an operator can have a specific operator building block added
(AddOperator). Third, an operator can have a specific operator building block
changed (ChangeOperator). Finally, an operator can have its arguments changed
(ChangeOperatorArguments). This latter function allows, for example, the range
that a DeleteRangeOperation would use. For our prototype, we fixed the prob-
abilities with which each of these types of mutations can change the operators.
Here, we used all four types of mutation and defined four different probabil-
ity distributions for their use. For the first distribution we set the probabilities
for DeleteOperator, AddOperator, ChangeOperator and ChangeOperatorArgu-
ments to 0.5, 0.167, 0.167 and 0.167 respectively. For the second distribution
we set the probabilities to 0.167, 0.5, 0.167 and 0.167. For the third we set the
probabilities to 0.167, 0.167, 0.5 and 0.167 and for the fourth we set the probabil-
ities to 0.167, 0.167, 0.167 and 0.5. This preliminary assignment of probabilities
allows us to explore the usefulness of each type of mutation. In future versions
the type of mutation and their probabilities will also evolve. These four sets of
mutations that alter solution operators exist in a 2x2 grid. Each mutates four
sets of operators at the next level down in the hierarchy (see Figure 1).

2.4 Mutation Frequency

The top level of the CE system hierarchy (see Figure 1) is the mutation frequency
that controls the probability that one of the four mutation sets in the next level
down will mutate a given solution operator two levels down. In the present
study we fixed this to 0.1. In future version this will be an evolvable parameter.
Note that this frequency does not control the frequency with which an operator
modifies a solution in the lowest level. This is controlled by the operator itself
when it specifies which solution(s) it will modify.
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2.5 Implementation

The CE system was programmed in C++. A single run of the system with a pop-
ulation of 576 solutions on a 24x24 grid for 100 generations took approximately
three minutes on an 2.2 GHz AMD Opteron processor.

3 Experimental Design

Our goal was to provide an initial evaluation of the prototype CE system de-
scribed above. The central question addressed in this study is whether the abil-
ity to evolve operators of any arbitrary complexity improves quality of the SDA
models. To address this question, we first ran, as a baseline, the CE system that
utilized only a simple mutation operator. Next, we ran the CE system with all
available operators. Each run was completed with a population size of 576 (24x24
solutions) for 100 generations and 1000 generations. The best model from each
run was saved along with the accuracy of the symbolic discriminant function.
Each method was run 100 times with different random seeds on data that was
simulated using the penetrance function in Table 2 below. The data consisted
of 1600 instances and two functional SNPs that are associated with class only
through the type of nonlinear interaction described in Section 1.2. The heritabil-
ity of this model is 0.4. Each dataset also consisted of 98 randomly generated
SNPs that represent potential false-positives or noise in the data. The challenge
for the CE system is to search for the right combination of two SNPs and identify
a nonlinear function that approximates the pattern generated by the penetrance
model in Table 2. It is important to note that target classification accuracy for
the correct model is approximately 0.8.

Table 2. Penetrance values for genotypes from two SNPs used to simulate data

AA (0.04) Aa (0.32) aa (0.64)

BB (0.04) 0.486 0.960 0.538

Bb (0.32) 0.947 0.004 0.811

bb (0.64) 0.640 0.606 0.908

The distribution of accuracies obtained from running the CE system with
just a simple mutation operator versus running the system with the capability
of generating more complex operators were statistically compared using a two-
sample t-test. The two systems were considered statistically significant at a type
I error rate of 0.05.

4 Results

Figure 2 below summarizes the distribution of accuracies obtained from running
the CE system 100 times on the simulated data with evolved operators (All)
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Fig. 2. Boxplots summarizing the distribution of accuracies obtained from running the
CE system 100 times on the simulated data with evolved operators (All) or with just
a mutation perator (Mutation) for 100 generations and 1000 generations

or with just a mutation operator (Mutation) for 100 generations and 1000 gen-
erations. The line in the middle of each box is the median of the distribution
while the upper and lower limits of the box itself represent the 25th and 75th
percentiles. The dashed lines extending from each box represent the approxi-
mate range of values with circles representing extreme values. Note that at 1000
generations, mutation alone only approximated the correct answer once out of
100 runs while the full CE system approximated the correct answer more than
50% of the time. In both cases, the mean accuracy was significantly higher for
the full system (P < 0.05).

These preliminary results indicate that, for this specific domain, a CE system
with the ability to evolve operators of any size and complexity does indeed iden-
tify better solutions than a baseline system that uses a fixed mutation operator.
An important question is whether more complex operators were actually used
to generate the best models discovered by the CE system. We evaluated the op-
erators discovered during each run that were associated with a best model and
found that all six operators and operator building blocks defined in Section 2.2
were used at least once in each of the 100 runs. This demonstrates that complex
operators were discovered and used to generate better solutions than a simple
mutation operator was able to generate.

5 Discussion and Conclusions

Banzhaf et al. [22] have suggested that traditional artificial evolution methods
such as genetic programming (GP) will greatly benefit from our current under-
standing of the complexity of biological and evolutionary systems. They propose
a new research agenda in which CE systems that mimic the complexity of bio-
logical systems will replace the overly simplified artificial evolution systems that
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have been inspired by biology, but largely ignore the complexity of biological
processes. The goal of the present study was to specifically address whether a
computational evolution system capable of evolving more complex operators will
find better solutions than an artificial evolution system in the domain of human
genetics. To accomplish this goal we developed a prototype CE system that is
both spatially and hierarchically organized and is capable of evolving operators
of any arbitrary size and complexity from a set of basic operator building blocks.
Our preliminary experimental results demonstrate that the ability to evolve more
complex operators does indeed improve the ability of the system to identify good
models. These results support our working hypothesis and are consistent with
the research agenda proposed by Banzhaf et al. [22].

It is important to note that the system presented here is a prototype and, as
such, there are many extensions and modifications that can be made that would
be consistent with CE. We first discuss several features implemented in the pro-
totype that add complexity to the system and then propose some additional
features inspired by the complexity of biological systems. There were two pri-
mary sources of complexity. First, the system is capable of evolving a diversity of
different operators that modify solutions in the spatially-organized population.
This is similar to real biological systems that evolve more complex genomic pro-
cesses. For example, microRNAs that participate in post-translational regulation
have evolved, in part, to help determine developmental processes such as body
plan specification. Sempere et al. [27] showed that the number of microRNAs an
animal group has correlates strongly with the hierarchy of metazoan relation-
ships. The ability of species to evolve new biological processes plays an important
role in increasing their complexity. As a second feature, we have included in the
set of operator building blocks a mutation function that responds to the environ-
ment (i.e. the expert knowledge). We know that expert knowledge in the form
of other data mining results or biological information about gene function is
critical for success in this domain [9,10,11]. Here, we gave the CE operators the
ability to use expert knowledge (i.e. information from the environment) in the
form of pre-processed ReliefF scores to preferentially choose good attributes as
arguments for a new function. The ability of an organism to respond to its envi-
ronment plays an important role in fitness. The important role of environmental
sensing has been discussed [22].

Our future goal is to improve the prototype CE system by adding additional
features that are inspired by the complexity of real biological systems. As a first
step, we will make the mutation operators (see Section 2.3, Figure 1B) more
complex by giving them the ability to evolve. That is, the probability distri-
bution that controls how operators are modified through mutation will evolve
with feedback from how the system is doing. We also make the overall mutation
frequency at the highest level an evolvable parameter. The evolvability of the
entire system will make it attractive to implement this system in parallel as an
island model thus providing a virtual ecosystem with feedback between popula-
tions. As a second step, we will add additional feedback loops in the system. For
example, the solutions could contribute information back to the environment
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that is then used by a complex operator to generate variability in solutions.
This takes the environmental sensing idea discussed above a step further. We
anticipate the addition of these types of feedback loops will significantly increase
the complexity of the system. Whether these additional features con tinues to
improve the ability of this machine learning method to solve complex problems
in human genetics still needs to be addressed.
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