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Preface

The field of bioinformatics has two main objectives: the creation and mainte-
nance of biological databases, and the discovery of knowledge from life sciences
data in order to unravel the mysteries of biological function, leading to new
drugs and therapies for human disease. Life sciences data come in the form of
biological sequences, structures, pathways, or literature. One major aspect of
discovering biological knowledge is to search, predict, or model specific informa-
tion in a given dataset in order to generate new interesting knowledge. Computer
science methods such as evolutionary computation, machine learning, and data
mining all have a great deal to offer the field of bioinformatics. The goal of
the 6th European Conference on Evolutionary Computation, Machine Learning,
and Data Mining in Bioinformatics (EvoBIO 2008) was to bring together experts
from these fields in order to discuss new and novel methods for tackling complex
biological problems.

The 6th EvoBIO conference was held in Naples, Italy on March 26-28, 2008
at the “Centro Congressi di Ateneo Federico II”. EvoBIO 2008 was held jointly
with the 11th European Conference on Genetic Programming (EuroGP 2008),
the 8th European Conference on Evolutionary Computation in Combinatorial
Optimisation (EvoCOP 2008), and the Evo Workshops. Collectively, the confer-
ences and workshops were organized under the name Evo* (www.evostar.org).

EvoBIO, held annually as a workshop since 2003, became a conference in
2007, and it is now the premiere European event for those interested in the in-
terface between evolutionary computation, machine learning, data mining, bioin-
formatics, and computational biology. All papers in this book were presented at
EvoBIO 2008 in response to a call for papers that included topics of interest such
as biomarker discovery, cell simulation and modeling, ecological modeling, flux-
omics, gene networks, biotechnology, metabolomics, microarray analysis, phylo-
genetics, protein interactions, proteomics, sequence analysis and alignment, and
systems biology. A total of 63 papers were submitted to the conference for peer-
review. Of those, 18 (28.6%) were accepted for publication in these proceedings.

We would first and foremost like to thank all authors who spent time and ef-
fort to produce interesting contributions to this book. We would like to thank the
members of the Program Committee for their expert evaluation of the submitted
papers, Jennifer Willies, for her tremendous administrative help and coordina-
tion, and Ivanoe De Falco, Ernesto Tarantino, and Antonio Della Cioppa for
their exceptional work as local organizers. Moreover, we would like to thank the
following persons and institutes: the Naples City Council for supporting the lo-
cal organization and their patronage of the event, Prof. Guido Trombetti, rector
of the University of Naples “Federico II” and Prof. Giuseppe Trautteur of the
Department of Physical Sciences, for their great support of the local organiza-
tion, the Instituto Tecnologico de Informatica, Valencia, Spain, for hosting the
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Evo* website, Anna Isabel Esparcia-Alcázar for serving as Evo* publicity chair,
and Marc Schoenauer and the MyReview team (http://myreview.lri.fr/) for
providing the conference review management system and efficient assistance.

Finally, we hope that you will consider contributing to EvoBIO 2009.

February 2008 Elena Marchiori
Jason H. Moore
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A Hybrid Random Subspace Classifier Fusion Approach 
for Protein Mass Spectra Classification 

Amin Assareh1, Mohammad Hassan Moradi1, and L. Gwenn Volkert2 

1 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran 
asserah83@googlemail.com, mhmoradi@aut.ac.ir 

2 Department of Computer Science, Kent State University, USA 
volkert@cs.kent.edu 

Abstract. Classifier fusion strategies have shown great potential to enhance the 
performance of pattern recognition systems. There is an agreement among re-
searchers in classifier combination that the major factor for producing better accu-
racy is the diversity in the classifier team. Re-sampling based approaches like 
bagging, boosting and random subspace generate multiple models by training a 
single learning algorithm on multiple random replicates or sub-samples, in either 
feature space or the sample domain. In the present study we proposed a hybrid 
random subspace fusion scheme that simultaneously utilizes both the feature 
space and the sample domain to improve the diversity of the classifier ensemble. 
Experimental results using two protein mass spectra datasets of ovarian cancer 
demonstrate the usefulness of this approach for six learning algorithms (LDA, 
1-NN, Decision Tree, Logistic Regression, Linear SVMs and MLP). The results 
also show that the proposed strategy outperforms three conventional re-sampling 
based ensemble algorithms on these datasets. 

1   Introduction 

Rapid advances in mass spectrometry have led to its use as a prime tool for diagnosis 
and biomarker discovery [1]. The high-dimensionality-small-sample (HDSS) problem 
of cancer proteomic datasets is the main issue that plagues and propels current re-
search on protein mass spectra classification [2]. 

The complexity and subtlety of mass spectra patterns between cancer and normal 
samples may increase the chances of misclassification when a single classifier is used 
because a single classifier tends to cover patterns originating from only part of the sam-
ple space. Therefore, it would be beneficial if multiple classifiers could be trained in 
such a way that each of the classifiers covers a different part of the sample space and 
their classification results were integrated to produce the final classification. Resam-
pling based algorithms such as bagging, boosting, or random forests improve the classi-
fication performance by associating multiple base classifiers to work as a “committee” 
or “ensemble” for decision-making. Any supervised learning algorithm can be used as a 
base classifier. Ensemble algorithms have been shown to not only increase classification 
accuracy, but also reduce the chances of overtraining since the committee avoids a bi-
ased decision by integrating the different predictions from the individual base classifiers 
[3]. In recent years a variety of approaches to classifier combination have been applied 
in the domain of protein mass spectra classification [3-8]. 
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2   Background 

Efforts to improve the performance of classifier combination strategies continue to be 
an active area of research, especially within the field of bioinformatics as the number 
of available datasets continues to rapidly increase. It has been empirically shown that 
the decision made by a set (pool/committee/ensemble/team) of classifiers is generally 
more accurate than any of the individual classifiers. Both theoretical and empirical 
research has demonstrated that a good team is one where the individual classifiers in 
the team are both accurate and make their errors on different parts of the input space. 
In the other words, one of major factors responsible for improving the performance of 
a classifier combination strategy is the diversity in the classifier team. There is a con-
sensus among researchers in classifier combination that this diversity issue supersedes 
the importance of the aggregation method [9]. However, the choice of an appropriate 
aggregation method can further improve the performance of an ensemble of diverse 
classifiers. 

From the architecture prospective, various schemes for combining multiple classi-
fiers can be grouped into three main categories: 1) parallel, 2) cascading (or serial 
combination), and 3) hierarchical (tree-like). In the parallel architecture, all the indi-
vidual classifiers are invoked independently, and their results are then combined by a 
suitable strategy. Most combination schemes in the literature belong to this category. 
In the gated parallel variant, the outputs of individual classifiers arc selected or 
weighted by a gating device before they are combined. In the cascading architecture, 
individual classifiers are invoked in a linear sequence. The number of possible classes 
for a given pattern is gradually reduced as more classifiers in the sequence have been 
invoked. For the sake of efficiency, inaccurate but cheap classifiers (low computa-
tional and measurement demands) are considered first, followed by more accurate and 
expensive classifiers. In the hierarchical architecture, individual classifiers are com-
bined into a structure, which is similar to that of a decision tree classifier. The tree 
nodes, however, may now be associated with complex classifiers demanding a large 
number of features. The advantage of this architecture is the high efficiency and 
flexibility in exploiting the discriminant power of different types of features. Using 
these three basic architectures, even more complicated classifier combination systems 
can be constructed [9]. 

Different combiners expect different types of output from individual classifiers. 
Lei Xu et al. [10] grouped these expectations into three levels: 1) measurement (or 
confidence), 2) rank, and 3) abstract. At the confidence level, a classifier outputs a 
numerical value for each class indicating the belief or probability that the given input 
pattern belongs to that class. At the rank level, a classifier assigns a rank to each class 
with the highest rank being the first choice. Rank value cannot be used in isolation 
because the highest rank does not necessarily mean a high confidence in the classifi-
cation. At the abstract level, a classifier only outputs a unique class label or several 
class labels (in which case, the classes are equally good). The confidence level con-
veys the richest information, while the abstract level contains the least amount of in-
formation about the decision being made. 

Roughly speaking, building an ensemble based classifier system includes selecting 
an ensemble of individual classification algorithms, and choosing a decision function 
for combining the classifier outputs. Therefore, the design of an ensemble classifier 
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system involves two main phases: the design of the classifier ensemble itself and the 
design of the combination function. Although this formulation of the design problem 
leads one to think that effective design should address both phases, until recently most 
design methods described in the literature have only focused on one phase [11].  

2.1   Classifier Ensemble Design 

So far, two main strategies are discussed in the literature on classifier combination: 
classifier selection and classifier fusion. The presumption in classifier selection is that 
each classifier has expertise in some local area of the feature space. When a feature 
vector x is submitted for classification, the classifier responsible for the vicinity of x is 
given the highest authority to label x. Classifier fusion, on the other hand, assumes 
that all classifiers are equally “experienced” in the whole feature space and the deci-
sions of all of them are taken into account for any x. 

Classifier fusion approaches are further divided into resampling-based methods 
and heterogenous methods. The resampling methods generate multiple models by 
training a single learning algorithm on multiple random replicates or sub-samples of a 
given dataset whereas the heterogeneous ensemble methods (also called multi-
strategy methods) train several different learning algorithms on the same dataset. The 
approach we describe in this paper is clearly a resampling-based method but differs 
from the standard resampling-based methods of bagging, boosting, and random forest. 
In general, resampling-based methods take two perspectives: training a learning algo-
rithm utilizing the same subset of features but different subsets of training data (i.e. 
Bagging [12] or Boosting [13, 14] or alternatively utilizing the same subset of training 
data but different subsets of the feature set (i.e. Random Forest or Random Subspace 
algorithms [15, 16]. Our hybrid approach combines these two perspectives by ran-
domly selecting different subsets of training data and randomly selecting different 
features from a feature set.  

2.2   Decision Function Design 

In this work we investigate four decision functions to allow evaluation of the impact 
of different functions on our hybrid approach. The decision functions we investigate 
are the Majority function, the Weighted Majority function, the Mean function and the 
Decision Template approach. The 2001 paper by Kuncheva et al. [17] provides an 
excellent reference on the use of Decision Templates for multiple classifier fusion, 
including a detailed description of the construction of a soft decision profile for use in 
ensemble systems. 

3   Methods 

We have applied our approach to two serum protein mass spectra datasets of ovarian 
cancer, publicly available from the clinical proteomics program of the national cancer 
institute website (http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp). The 
first dataset is “Ovarian 8-7-02” which was produced using the WCX2 protein chip. 
An upgraded PBSII SELDI-TOF mass spectrometer was employed to generate the 
spectra, which includes 91 controls and 162 ovarian cancer samples. The second 
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dataset is “Ovarian 4-3-02” prepared by the same chip, but the samples were proc-
essed by hand and the baseline was subtracted resulting in the negative intensities 
seen for some values. The spectra contain 100 control, 100 ovarian cancer and 16 
benign samples. Each spectrum of these two datasets includes peak amplitude meas-
urements at 15,154 points defined by corresponding m/z values in the range 0–20,000 
Da. Figure 1 illustrates the mean spectrums of each dataset.  
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Fig. 1. The mean spectra of the applied datasets: Ovarian 8-7-02 (upper panel) and Ovarian 
4-3-02 (lower panel) 

Generally, a mass spectrum consists of signals, baseline, and noise. The signals are 
produced by the peptides, proteins, and contaminants present in the sample; the base-
line is the slowly varying trend under the spectrum; and the noise consists of chemical 
background, electronic noise, signal intensity fluctuations, statistical noise, warping of 
the signal shapes (due to overcharging in ion traps), and statistical noise in the iso-
topic clusters (see below). Signals, baseline, and noise can never be totally separated; 
the baseline, for example, can depend on the presence of large and intense signals as 
well as on abundant low-intensity noise. Noise can be quite intense and is sometimes 
impossible to distinguish from real signals. [1]. The goal of preprocessing stage is to 
‘‘clean up’’ the data such that machine learning algorithms will be able to extract key 
information and correctly classify new samples based on a limited set of examples 
[2]. In analyzing mass spectra of blood samples, the preprocessing stage roughly in-
cludes three main tasks: baseline correction, smoothing and normalization.  

Mass spectra exhibit a monotonically decreasing baseline, which can be regarded 
as low frequency noise because the baseline lies over a fairly long mass-to-charge 
ratio range. In this study, we utilized local average within a moving window as a local 
estimator of the baseline and the overall baseline is estimated by sliding the window 
over the mass spectrum. The size of the applied window was 200 M/Z. In addition 
shape preserving piecewise cubic interpolation has been applied to regress the win-
dow estimated points to a soft curve. Mass spectra of blood samples also exhibit an 
additive high frequency noise component. The presence of this noise influences both 
data mining algorithms and human observers in finding meaningful patterns in mass 
spectra. The heuristic high frequency noise reduction approaches employed most 
commonly in studies to date are smoothing filters, the wavelet transform (WT), or the 
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deconvolution filter [2]. We employed a locally weighted linear regression method 
with a span of 10 M/Z to smooth the spectra. Figure 2 illustrates the smoothing effect 
on a section of a typical spectrum. 
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Fig. 2. The effect of the smoothing process on a part of a typical spectrum 

A point in a mass spectrum indicates the relative abundance of a protein, peptide or 
fragment; therefore, the magnitudes of mass spectra cannot be directly compared with 
each other. Normalization methods scale the intensities of mass spectra to make mass 
spectra comparable. We normalized the group of mass spectra using total ion current 
(TIC) method. Figure 3 demonstrates the effect of the preprocessing stages we have 
applied on a typical mass spectrum from the “Ovarian 8-7-02” dataset. 
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Fig. 3. The effect of preprocessing stages on a typical mass spectrum: The original spectrum 
(first panel), the spectrum after baseline correction (second panel), the spectrum after baseline 
correction and smoothing (third panel) and the spectrum after baseline correction, smoothing 
and normalization (last panel) 

3.1   Feature Extraction and Selection 

In the present study we use all m/z points as initial features and select the final fea-
tures set using a t-test with correlation elimination approach. The t-test algorithm with 
correlation elimination can be succinctly described by the following two steps:  
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1) Select the first feature based on t-test score as given in equation (1). 

t =
x1 − x2( )

σ p

1
n1

+ 1
n2

 
(1) 

where 

σ p
2 =

n1 −1( )σ1
2 + n2 −1( )σ 2

2

n1 + n2 − 2
 (2) 

is the pooled standard variance, and xi , for i = 1 or 2 is the mean of the putative vari-
able in class i, and ni, for i = 1 or 2 is the size of class i. 

 
2) For each of the rest of the potential features, calculate the correlation and local in-
formation, w1 and w2 respectively, between the applied variable and all previously 
selected features. 

w1 =1− R 

w2 =1− e
− d

10( )2

 

(3) 

where R is the Pearson correlation given in  Equation (4), 

R x,y( )=
Cov x, y( )

Var x( )⋅ Var y( )
 (4) 

and d is the distance between the candidate feature and all previously selected fea-
tures.  

From these two steps the score for each feature, designated as FS, is then calculated 
as the product of the t-test and the correlation scores as illustrated in Equation (5). 

FS = t × w1 × w2 (5) 

3.2   Base Learning Algorithms 

We test our approach using six well-known base classification algorithms. The fol-
lowing classification algorithms represent a variety of approaches and therefore allow 
us to assess the robustness of our approach across a variety of classification algo-
rithms. The following learning algorithms have each been applied to the two mass-
spectrum data-sets described above as stand alone classifiers using the top 50 features 
and as base classifiers in our hybrid random subspace fusion ensemble approach.  

 
• Decision Trees 
• Linear Discriminant Analysis (LDA) 
• 1-Nearest Neighbor (1-NN) 
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• Logistic Regression 
• Linear Support Vector Machines (with a linear kernel) 
• Multi Layer Perceptron (MLP) with two hidden layers and 10 neurons in each 

layer, all the nonlinear functions are tangent-sigmoid and weights were randomly 
initialized to values in [-1,  1]. The learning function is gradient descent with mo-
mentum and back-propagation training was pursued until a limit of 100 epochs or 
an error of 0 was attained). 

3.3   The Proposed Hybrid Random Subspace Classifier Fusion Ensemble 
Strategy 

The heart of our hybrid approach is to randomly choose a subset of training samples 
and a subset of top features for each of the classifiers that will participate in the en-
semble. This approach is hypothesized to maximize the diversity of the ensemble, 
which has been shown to be an essential feature of effective ensemble approaches. 
The following steps summarize the proposed strategy for the two-class cases (the 
strategy can be extended to more cases, but we leave to another paper): 

 
1. Randomly select m samples from the training set (we set m = 60% of training set 

size) 
2. Randomly select n features from nmax top-ranked features (we set n =10 and nmax = 

50)  
3. Train a classification algorithm with above selected samples and features 
4. Classify the testing samples with the constructed classifier and calculate the corre-

sponding support degree by assigning the Certainty Factor (CF) to the winner 
class and (1-Certinaty Factor) to the loser class. 

5. Iterate above steps for i=1 to Imax (we set and Imax =100), saving the CF for each 
iteration. 

6. Construct a soft decision profile (Imax×2) for each test sample using the saved sup-
port degrees 

7. Inferring the final class from the decision profile using an appropriate decision 
function. We report in this paper on our experience with Majority, Weighted Ma-
jority, Mean, and Decision Template combiners.  

4   Results 

We compare the performance of our ensemble to each of the base learning algorithms 
to establish the need for an ensemble in the first place. We then compare the perform-
ance of our hybrid random subspace fusion approach to three other well-known re-
sampling based ensemble approaches. For each of the six base classifiers, we selected 
the 50 top-ranked feature determined by the t-test with correlation elimination as de-
scribed above. We compared the performance of these base-classifiers to the perform-
ance of our proposed hybrid random subspace method on each of the six base learning 
algorithms for four different decision functions, Majority (MAJ), Weighted Majority 
(WMAJ), Mean and Decision Template. As described earlier, in each of 100 iterations 
we randomly select 10 features from the 50 top-ranked features and also randomly 
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selected 60% of the training set. We inferred a Certainty Factor for each classifier by 
testing it over the entire training set and then applied the classifier to the testing sam-
ples. After the 100 iterations, we built a soft decision profile for each test using the 
inferred certainty factor of each classifier. The final classification decision in then 
determined using one of the four decision templates. This process was repeated 10 
times for each choice of base-classifier and decision template in a full 10-fold-cross-
validation framework (i.e. 100 total runs for each configuration). 

For comparing the classification performance of these different configurations, we 
used the average of sensitivity and specificity as the performance measure. Although 
accuracy is the best known measure of classification performance (the number of cor-
rectly classified examples over the total number of examples in a given dataset), when 
class distribution is imbalanced, accuracy can be misleading because it is dominated by 
performance on the majority class. In two-class problems, accuracy can be replaced by 
sensitivity and/or specificity. Sensitivity or ‘true positive rate’ is the number of correctly 
predicted positive instances over all positive instances. It is the criterion of choice when 
false negatives incur high penalty, as in most medical diagnosis. Specificity or ‘true 
negative rate’ is the number of correctly predicted negative instances over all negative 
instances. It is used when false alarms are costly [1]. Presentation of the results using 
this combined measure of sensitivity and specificity allows us to present the results for a 
large number of different experiments in a relatively small amount of space. Given that 
overall performance of our approach using this measure is always above 98% we feel 
this condensed measure is appropriate for this short paper. 

Table 1. Performance results obtained on the Ovarian 8-7-02 dataset, for each of six learning 
algorithms operating either as individual classifiers (utilizing 10 or 50 top features) or as part of 
the proposed Hybrid Random Subspace strategy utilizing one of four decision functions 

Individual Classifier 
Performance 

Hybrid Random Subspace Fusion Ensemble 
Performance Learning 

Algorithm 
10 Top 

Features 
50 Top 

Features 
Majority Weighted 

Majority 
Mean Decision 

Template 

LDA 99.76 (0.2) 100 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 

1-NN 98.95 (.07) 99.23 (0.7) 100 100 100 100 

Decision 
Tree 

98.36 (0.9) 98.18 (0.5) 99.9 (0.1) 99.9 (0.1) 99.9 (0.1) 99.9 (0.1) 

Logistic 
Regression 

99.77 (0.3) 99.92 (0.2) 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 

Linear 
SVMs 

99.48 (0.4) 99.89 (0.2) 99.98 (0.1) 99.98 (0.1) 98.32 (0.6) 99.98 (0.1) 

MLP 98.46 (2.1) 99.31 (1.8) 100 100 100 100 

The results are presented as the Mean and Standard Dev. over all runs for each of the 
two datasets, Ovarian 8 and Ovarian 4 in Tables 1 and 2 respectively. The results clearly 
show that our propose hybrid random subspace strategy outperforms the performance of 
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each of the six base classifiers tested. For all approaches the Ovarian 8-7-02 data is gen-
erally easier to classify, with all approaches achieving average performance above 93%. 
The second data set, Ovarian 4-3-02, is clearly a more difficult dataset for all of these 
approaches, yet our hybrid random subspace strategy still achieves higher average per-
formance regardless of the combination function utilized. We can note that overall 
higher performance is achieved when using the decision template combination function. 

Table 2. Performance results obtained on the Ovarian 4-03-02 dataset, for each of six learning 
algorithms operating either as individual classifiers (utilizing 10 or 50 top features) and 
operating under the proposed Hybrid Random Subspace strategy utilizing one of four decision 
functions 

Individual Classifier 
Performance 

Hybrid Random Subspace Fusion Ensemble 
Performance Learning 

Algorithm 10 Top 
Features 

50 Top 
Features 

Majority Weighted 
Majority 

Mean Decision 
Template 

LDA 95.86 (1.2) 96.04 (1.8) 98.98 (0.4) 98.99 (0.5) 98.99 (0.5) 98.97 (0.5) 

1-NN 90.25 (2.0 92.82 (1.3) 99.46 (0.4) 99.66 (0.3) 99.5 (0.4) 99.82 (0.2) 

Decision 
Tree 

90.76 (2.3) 90.69 (1.1) 99.64 (0.4) 99.73 (0.4) 99.73 (0.4) 99.83 (0.3) 

Logistic 
Regression 

96.64 (1.3) 96.53 (1.5) 98.88 (0.6) 98.86 (0.6) 98.92 (0.6) 98.69 (0.5) 

Linear 
SVMs 

95.89 (1.1) 95.3 (1.3) 98.39 (0.5) 98.37 (0.6) 98.32 (0.6) 97.53 (0.2) 

MLP 96.06 (1.3) 95.63 (0.8) 99.14 (0.3) 99.36 (0.4) 99.36 (0.4) 99.45 (0.5) 

Table 3. Performance reportred as the Mean and Standard Dev. of the hybrid random subspace 
fusion strategy and other resampling strategies, using four different decision functions 

Performance for Different Decision Functions  
Dataset Fusion Strategy Majority Weighted 

Majority 
Mean Decision 

Template 
Hybrid 99.97 ±0.1 99.97 ±0.1 99.97 ±0.1 99.97 ±0.1 

Bagging 99.15 ±0.5 98.33 ±0.1 99.15 ±0.5 99.12 ±0.5 

Boosting 99.27 ±0.7 98.06 ±0.8 99.10 ±0.6 98.89 ±0.9 

Ovarian 
8-7-02 

Random Forest 99.55 ±0.5 99.90 ±0.2 99.88 ±0.2 99.85 ±0.3 

Hybrid 99.64 ±0.1 99.73 ±0.4 99.73 ±0.4 99.83 ±0.3 

Bagging 95.28 ±1.2 95.27 ±1.3 95.20 ±1.2 95.21 ±1.2 

Boosting 96.87 ±1.7 96.76 ±1.9 96.32 ±1.8 96.93 ±1.8 

Ovarian 
4-3-02 

Random Forest 93.53 ±1.0 95.83 ±0.7 95.70 ±0.9 96.10 ±0.7 

Given that our approach is a resampling strategy, we have also compared the per-
formance with that of three other resampling strategies, including bagging, boosting 
and random forest. In Table 3 we provide the performance results for each of these 
other resampling strategies as obtained for the same four combination functions as 



10 A. Assareh, M.H. Moradi, and L. Gwenn Volkert 

used above together with decision trees as the base classifier strategy. The results 
from the hybrid random subspace strategy as reported for decision trees above are 
also included to facilitate comparisons between these resampling strategies. We note 
that for other choices of base classifiers (e.g. LDA, Logistics Regression, etc) the per-
formance of the other resampling strategies is generally worse and is therefore not 
reported here. 

5   Conclusion 

In this paper, we have described a new hybrid approach for combining sample sub-
space and feature subspaces when constructing an ensemble of classifiers. We dem-
onstrate the usefulness of our approach on two public datasets of serum protein mass 
spectra from ovarian cancer research. Following appropriate preprocessing and di-
mensionality reduction stages, six well-known classification algorithms were utilized 
as the base classifiers. The results showed a clear enhancement in the performance of 
the base classifiers when applying the proposed method. Furthermore the performance 
enhancement was apparent regardless of the decision function used. Future work will 
investigate how robust this approach is by applying it to other datasets and testing the 
use of other base classifiers and combination functions. 
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Abstract. Feature Extraction (FE) and Feature Selection (FS) are the
most important steps in classification systems. One approach in the
feature selection area is employing population-based optimization algo-
rithms such as Particle Swarm Optimization (PSO)-based method and
Ant Colony Optimization (ACO)-based method. This paper presents a
novel feature selection method that is based on Ant Colony Optimiza-
tion (ACO). This approach is easily implemented and because of use of
a simple classifier in that, its computational complexity is very low. The
performance of proposed algorithm is compared to the performance of
standard binary PSO algorithm on the task of feature selection in Post-
synaptic dataset. Simulation results on Postsynaptic dataset show the
superiority of the proposed algorithm.

Keywords: Feature Selection, Ant Colony Optimization (ACO), Parti-
cle Swarm Optimization (PSO), Bioinformatics.

1 Introduction

Several parameters can affect the performance of pattern recognition system
among which feature extraction and representation of patterns can be considered
as some most important ones. Reduction of pattern dimensionality via feature
extraction and selection is one of the most essential steps in data processing [1].

Feature Selection (FS) is extensive and it spreads throughout many fields,
including document classification, data mining, object recognition, biometrics,
remote sensing and computer vision [2]. Given a feature set of size n, the FS
problem is to find a minimal feature subset of size m ( m < n) while retaining
a suitably high accuracy in representing the original features.

The objective of feature selection is to simplify a dataset by reducing its
dimensionality and identifying relevant underlying features without sacrificing
predictive accuracy. By doing that, it also reduces redundancy in the information
provided by the selected features. In real world problems FS is a must due to
the abundance of noisy, irrelevant or misleading features [3].

E. Marchiori and J.H. Moore (Eds.): EvoBIO 2008, LNCS 4973, pp. 12–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Exhaustive search is the simplest way, which finds the best subset of features
by evaluating all the possible subsets. This procedure is quite impractical even for
a moderate size feature set. Because the number of feature subset combinations
with m features from a collection of n features are n!/[m!(n−m)!] where m < n,
m �= 0 and the total number of these combinations is 2n − 2.

For most practical problems, an optimal solution can only be guaranteed if a
monotonic criterion for evaluating features can be found. However, this assump-
tion rarely holds in the real-world [4]. As a result, we must find solutions which
would be computationally feasible and represent a trade-off between solution
quality and time.

Usually FS algorithms involve heuristic or random search strategies in an
attempt to avoid this prohibitive complexity. However, the degree of optimally
of the final feature subset is often reduced [3].

Among too many methods which are proposed for FS, population-based op-
timization algorithms such as Genetic Algorithm (GA)-based method, Parti-
cle Swarm Optimization (PSO)-based method and Ant Colony Optimization
(ACO)-based method have attracted a lot of attention. These methods attempt
to achieve better solutions by application of knowledge from previous iterations.

Particle Swarm Optimization (PSO) comprises a set of search techniques,
inspired by the behavior of natural swarms, for solving optimization problems
[5]. PSO is a global optimization algorithm for dealing with problems in which a
point or surface in an n-dimensional space best represents a solution. Potential
solutions are plotted in this space and seeded with an initial velocity. Particles
move through the solution space and certain fitness criteria evaluate them. After
a while particles accelerate toward those with better fitness values.

Meta-heuristic optimization algorithm based on ant’s behavior (ACO) was rep-
resented in the early 1990s by M. Dorigo and colleagues [6]. ACO is a branch of
newly developed form of artificial intelligence called Swarm Intelligence. Swarm
intelligence is a field which studies “the emergent collective intelligence of groups
of simple agents” [7]. In groups of insects which live in colonies, such as ants and
bees, an individual can only do simple task on its own, while the colony’s cooper-
ative work is the main reason determining the intelligent behavior it shows [8].

ACO algorithm is inspired by ant’s social behavior. Ants have no sight and
are capable of finding the shortest route between a food source and their nest
by chemical materials called pheromone that they leave when moving [7].

ACO algorithm was firstly used for solving Traveling Salesman Problem (TSP)
[9] and then has been successfully applied to a large number of difficult problems
like the Quadratic Assignment Problem (QAP)[10], routing in telecommunica-
tion networks, graph coloring problems, scheduling, etc. This method is partic-
ularly attractive for feature selection as there seems to be no heuristic that can
guide search to the optimal minimal subset every time [3]. On the other hand, if
features are represented as a graph, ants will discover best feature combinations
as they traverse the graph.

In this paper a new modified ACO-Based feature selection algorithm, ASFS,
has been introduced. The classifier performance and the length of selected feature
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subset are adopted as heuristic information for ACO. Thus, proposed algorithm
needs no priori knowledge of features and it is applied to the problem of predict-
ing whether or not a protein has a post-synaptic activity, based on features of
protein’s primary sequence and finally, the classifier performance and the length
of selected feature subset are considered for performance evaluation.

The rest of this paper is organized as follows. Section 2 presents a brief
overview of feature selection methods. Ant Colony Optimization (ACO) is de-
scribed in Sections 3. Section 4 explains the proposed feature selection algorithm.
Section 5 reports computational experiments. It also includes a brief discussion
of the results obtained and finally the conclusion is offered in the last section.

2 An Overview of Feature Selection (FS) Approaches

Feature selection algorithms can be classified into two categories based on their
evaluation procedure [11]. If an algorithm performs FS independent of any learn-
ing algorithm (i.e. it is a completely separate preprocessor), then it is included in
filter approach (open-loop approach) category. This approach is mostly based on
selecting features based on inter-class separability criterion [11]. If the evaluation
procedure is tied to the task (e.g. classification) of the learning algorithm, the
FS algorithm is a sort of wrapper approach (closed-loop approach). This method
searches through the feature subset space using the estimated accuracy from an
induction algorithm as a measure of subset suitability. Although wrappers may
produce better results, they are expensive to run and can break down with very
large numbers of features. This is due to the use of learning algorithms in the
evaluation of subsets, some of which can encounter problems while dealing with
large datasets [3,12].

The two mentioned approaches are also classified into five main methods which
they are Forward Selection, Backward elimination, Forward/Backward Combi-
nation, Random Choice and Instance based method. FS methods may start with
no feature, all features, a selected feature set or some random feature subset.
Those methods that start with an initial subset usually select these features
heuristically beforehand. Features are added (Forward Selection) or removed
(Backward Elimination) iteratively and in the Forward/Backward Combination
method features are either iteratively added or removed or produced randomly
thereafter.

The disadvantage of Forward Selection and Backward Elimination methods is
that the features that were once selected/eliminated cannot be later discarded/
re-selected. To overcome this problem, Pudil et al. [13] proposed a method to
flexibly add and remove features. This method has been called floating search
method.

In the wrapper approach the evaluation function calculates the suitability of
a feature subset produced by the generation procedure and it also compares that
with the previous best candidate, replacing it if found to be better. A stopping
criterion is tested in each iteration to determine whether or not the FS process
should continue.
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Other famous FS approaches are based on the Genetic Algorithm (GA) [14],
Simulated Annealing, Particle Swarm Optimization (PSO) and Ant Colony Op-
timization (ACO) [3,8,15,16,17].

In [15] a hybrid approach has been proposed for speech classification problem.
This method has used combination of mutual information and ACO. The hybrid
of ACO and mutual information has been used for feature selection in the fore-
caster [16]. Furthermore, ACO is used for finding rough set reducts in [3] and
a new Ant-Miner which used a different pheromone updating strategy has been
introduced in [8]. Also, an ACO-Based method has been used in the application
of face recognition systems [17] and some surveys of feature selection algorithms
are given in [1,18,19].

3 Ant Colony Optimization (ACO)

In the early 1990s, ant colony optimization (ACO) was introduced by M. Dorigo
and colleagues as a novel nature-inspired meta-heuristic for the solution of hard
combinatorial optimization (CO) problems. ACO belongs to the class of meta-
heuristics, which includes approximate algorithms used to obtain good enough
solutions to hard CO problems in a reasonable amount of computation time [20].

The Ant System (AS) algorithm is an element of the Ant Colony Optimization
(ACO) family of methods [21]. These algorithms are based on a computational
paradigm inspired by real ant colonies and the way they function. The underlying
idea was to use several constructive computational agents (simulating real ants).
A dynamic memory structure, which incorporates information on the effective-
ness of previous choices based on the obtained results, guides the construction
process of each agent. The behavior of each single agent is therefore inspired by
the behavior of real ants.

The paradigm is based on the observation made by ethologists about the
medium used by ants to communicate information regarding shortest paths to
food by means of pheromone trails. A moving ant lays some pheromone on the
ground, thus making a path by a trail of this substance. While an isolated ant
moves practically at random (exploration), an ant encountering a previously laid
trail can detect it and decide with high probability to follow it and consequently
reinforce the trail with its own pheromone (exploitation). What emerges is a form
of autocatalytic process through which the more the ants follow a trail, the more
attractive that trail becomes to be followed. The process is thus characterized
by a positive feedback loop, during which the probability of choosing a path
increases with the number of ants that previously chose the same path. The
mechanism above is the inspiration for the algorithms of the ACO family [22].

3.1 ACO for Feature Selection

The feature selection task may be reformulated into an ACO-suitable problem.
ACO requires a problem to be represented as a graph. Here nodes represent
features, with the edges between them denoting the choice of the next feature.
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Fig. 1. ACO problem representation for FS

The search for the optimal feature subset is then an ant traversal through the
graph where a minimum number of nodes are visited that satisfies the traversal
stopping criterion. Figure 1 illustrates this setup. The ant is currently at node a
and has a choice of which feature to add next to its path (dotted lines). It chooses
feature b next based on the transition rule, then c and then d. Upon arrival at
d, the current subset {a, b, c, d} is determined to satisfy the traversal stopping
criterion (e.g. suitably high classification accuracy has been achieved with this
subset). The ant terminates its traversal and outputs this feature subset as a can-
didate for data reduction. A suitable heuristic desirability of traversing between
features could be any subset evaluation function for example, an entropy-based
measure [3] or rough set dependency measure [23]. The heuristic desirability of
traversal and edge pheromone levels are combined to form the so-called proba-
bilistic transition rule, denoting the probability of ant k at feature i choosing to
travel to feature j at time t:

P
k
ij(t) =

⎧
⎨

⎩

[τij(t)]
α.[ηij ]

β

�

l∈Jk
i

[τil(t)]α.[ηil]β
j ∈ Jk

i

0 otherwise

(1)

Where, ηij is the heuristic desirability of choosing feature j when at feature i
(ηij is optional but often needed for achieving a high algorithm performance), Jk

i

is the set of neighbor nodes of node i which have not yet been visited by the ant
k. α > 0, β > 0 are two parameters that determine the relative importance of
the pheromone value and heuristic information (the choice of α, β is determined
experimentally) and τij(t) is the amount of virtual pheromone on edge (i,j).

The overall process of ACO feature selection can be seen in figure 2. The
process begins by generating a number of ants, m, which are then placed ran-
domly on the graph i.e. each ant starts with one random feature. Alternatively,
the number of ants to place on the graph may be set equal to the number of
features within the data; each ant starts path construction at a different feature.
From these initial positions, they traverse edges probabilistically until a traver-
sal stopping criterion is satisfied. The resulting subsets are gathered and then
evaluated. If an optimal subset has been found or the algorithm has executed
a certain number of times, then the process halts and outputs the best feature
subset encountered. If none of these conditions hold, then the pheromone is up-
dated, a new set of ants are created and the process iterates once more. The
pheromone on each edge is updated according to the following formula:
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Fig. 2. ACO-based feature selection algorithm

τij(t + 1) = (1− ρ).τij(t) +
m∑

k=1

Δk
ij(t) (2)

where:

Δk
ij(t) =

{
γ′(Sk)/|Sk| if (i, j) ∈ Sk

0 otherwise
(3)

The value 0 ≤ ρ ≤ 1 is decay constant used to simulate the evaporation of the
pheromone, Sk is the feature subset found by ant k. The pheromone is updated
according to both the measure of the “goodness” of the ant’s feature subset
(γ́) and the size of the subset itself. By this definition, all ants can update the
pheromone.

4 Proposed Feature Selection Algorithm

The main steps of proposed algorithm are as follows:

1) Generation of ants and pheromone initialization
• Determine the population of ants (m).
• Set the intensity of pheromone trial associated with any feature.
• Determine the maximum of allowed iterations (T ).
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2) Ant Foraging and Evaluation
• Any ant (ki, i = 1 : m) randomly is assigned to one feature and it

should visit all features and build solutions completely. In this step, the
evaluation criterion is Mean Square Error (MSE) of the classifier. If an
ant is not able to decrease the MSE of the classifier in two successive
steps, it will finish its work and exit.

3) Selection of the best ants
• In this step the importance of the selected subset of each ant is evaluated

through classifier performance. Then the subsets according to their MSE
are sorted and some of them are selected according to ASFS algorithm.

4) Check the stop criterion
• Exit, if the number of iterations is more than the maximum allowed

iteration, otherwise continue.
5) Pheromone updating

• For features which are selected in step 3 pheromone intensity are up-
dated.

6) Generation of new ants
• In this step previous ants are removed and new ants are generated.

7) Go to 2 and continue.

5 Experimental Results

In this section, we report and discuss computational experiments and compare
proposed feature selection algorithm with PSO-based approach. The quality of
a candidate solution (fitness) is computed by the well-known Nearest Neigh-
bour classifier and the obtained MSE is considered for performance of classifier.
Finally, the length of selected feature subset and classifier performance are con-
sidered for evaluating the proposed algorithm. For experimental studies we have
considered Postsynaptic dataset which is described in the next section.

5.1 Postsynaptic Dataset

This section presents the bioinformatics dataset used in the present work for
feature selection. A synapse is a connection between two neurons: presynaptic
and postsynaptic. The first is usually the sender of some signals such as the
release of chemicals, while the second is the receiver. A post-synaptic receptor
is a sensor on the surface of a neuron. It captures messenger molecules from
the nervous system, neurotransmitters, and thereby functions in transmitting
information from one neuron to another [24]. The dataset used in this paper
is called the Postsynaptic dataset. It has been recently created and mined in
[24,25]. The dataset contains 4303 records of proteins. These proteins belong
to either positive or negative classes. Proteins that belong to the positive class
have postsynaptic activity while negative ones don’t show such activity. From
the 4303 proteins on the dataset, 260 belong to the positive class and 4043 to the
negative class. This dataset has many features which makes the feature selection
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task challenging. More precisely, each protein has 443 PROSITE patterns, or
features. PROSITE is a database of protein families and domains. It is based
on the observation that, while there are a huge number of different proteins,
most of them can be grouped, on the basis of similarities in their sequences,
into a limited number of families (a protein consists of a sequence of amino
acids). PROSITE patterns are small regions within a protein that present a
high sequence similarity when compared to other proteins. In our dataset the
absence of a given PROSITE pattern is indicated by a value of 0 for the feature
corresponding to that PROSITE pattern which its presence is indicated by a
value of 1 for that same feature [25].

5.2 Experimental Methodology

The computational experiments involved a ten-fold cross-validation method [26].
First, the 4303 records in the Postsynaptic dataset were divided into 10 almost
equally sized folds. There are three folds containing 431 records each one and
seven folds containing 430 records each one. The folds were randomly generated
but under the following regulation. The proportion of positive and negative
classes in every single fold must be similar to the one found in the original dataset
containing all the 4303 records. This is known as stratified cross-validation. Each
of the 10 folds is used once as test set and the remaining of the dataset is used
as training set. Out of the 9 folds in the training set, one is reserved to be used
as a validation set.

In each of the 10 iterations of the cross-validation procedure, the predictive
accuracy of the classification is assessed by 3 different methods:

1. Using all the 443 original features: all possible features are used by the
Nearest Neighbor classifier.

2. Standard binary PSO algorithm: only the features selected by the best par-
ticle found by the binary PSO algorithm are used by the Nearest Neighbor
classifier.

3. Proposed ASFS algorithm: only the features selected by the best ant found
by the ASFS algorithm are used by the Nearest Neighbor classifier.

As the standard binary PSO and the ASFS algorithms are stochastic algo-
rithms, 20 independent runs for each algorithm were performed for every iter-
ation of the cross-validation procedure. The obtained results, averaged over 20
runs, are reported in Table 1. The average number of features selected by the
feature selection algorithms has always been rounded to the nearest integer. The
population size (m) used for both algorithms is 30 and the maximum number
of iterations (T ) equals 50. The standard binary PSO algorithm uses an inertia
weight value w = 0.8. The choice of the value of this parameter was based on the
work presented in [27]. The acceleration constants were c1 = c2 = 2. For ASFS,
various parameters for leading to better convergence are tested and the best
parameters that are obtained by simulations are α = 1, β = 0.1 and ρ = 0.2.
The initial pheromone intensity of each feature is equal to 1.
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On our experiments we use a measurement for the accuracy rate of a classifi-
cation model which has also been used before in [24]. This measurement is given
by the equation (4).

Predictive accuracy rate = TPR× TNR (4)

Where,

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
(5)

TP, TN, FP and FN are the numbers of true positives, true negatives, false
positives and false negatives, respectively [25].

5.3 Comparison of ASFS and Standard Binary PSO

Table 1 gives the optimal selected features for each method. As discussed earlier
the experiments involved 200 runs of ACO (ASFS) and standard binary PSO,
10 cross-validation folds times 20 runs with different random seeds. Presumably,
those 200 runs selected different subsets of attributes. So, the features which have
been listed in table 1 are the ones most often selected by ASFS and standard
binary PSO across all the 20 runs. Both ACO-Based and PSO-Based meth-
ods significantly reduce the number of original features, however; ACO-Based
method, ASFS, chooses fewer features.

Table 1. Selected Features of standard binary PSO and ASFS algorithms

Also, the results of both algorithms for all of the 10 folds are summarized
in table 2. The classification quality and feature subset length are two criteria
which are considered to assess the performance of algorithms. Comparing these
criteria, we noted that ASFS and standard binary PSO algorithms did very
better than the baseline algorithm (using all features). Furthermore, for all of
the 10 folds the ASFS algorithm selected a smaller subset of features than the
standard binary PSO algorithm.

As we can see in table 2, the average number of selected features for standard
binary PSO algorithm was equal to 15.4 with the average predictive accuracy of
0.77 and the average number of selected features for ASFS algorithm was equal
to 5.1 with the average predictive accuracy of 0.84. Furthermore, in [25] a new
discrete PSO algorithm, called DPSO, has been introduced for feature selection.
DPSO has been applied to Postsynaptic dataset and the average number of
features selected by that was 12.70 with the average predictive accuracy of 0.74.
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Table 2. Comparison of obtained results for proposed algorithm and standard binary
PSO

Fig. 3. (a) Accuracy rate of feature subsets obtained using ASFS and standard binary
PSO. (b) Number selected features.

Comparison of these three algorithms shows that ASFS tends to select a smaller
subset of features than the standard binary PSO algorithm and DPSO. Also, the
average predictive accuracy of ASFS is higher than that of the standard binary
PSO algorithm and DPSO. Predictive accuracy and number of selected features
for ASFS and standard binary PSO algorithm are shown in figure 3.

6 Conclusion

In this paper a novel ACO-Based feature selection algorithm, ASFS, is presented.
In the proposed algorithm, the classifier performance and the length of selected
feature subset are adopted as heuristic information for ASFS. So, we can select
the optimal feature subset without the prior knowledge of features. To show the
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utility of proposed algorithm and to compare it with a PSO-Based approach a
set of experiments was carried out on Postsynaptic dataset. The computational
results indicate that ASFS outperforms standard binary PSO method since it
achieved better performance with the lower number of features.
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Abstract. Whole-genome association (WGA) studies are becoming a common 
tool for the exploration of the genetic components of common disease. The 
analysis of such large scale data presents unique analytical challenges, includ-
ing problems of multiple testing, correlated independent variables, and large 
multivariate model spaces. These issues have prompted the development of 
novel computational approaches. Thorough, extensive simulation studies are a 
necessity for methods development work to evaluate the power and validity of 
novel approaches. Many data simulation packages exist, however, the resulting 
data is often overly simplistic and does not compare to the complexity of real 
data; especially with respect to linkage disequilibrium (LD). To overcome this 
limitation, we have developed genomeSIMLA. GenomeSIMLA is a forward-
time population simulation method that can simulate realistic patterns of LD in 
both family-based and case-control datasets. In this manuscript, we demonstrate 
how LD patterns of the simulated data change under different population 
growth curve parameter initialization settings. These results provide guidelines 
to simulate WGA datasets whose properties resemble the HapMap. 

Keywords: Whole genome association, data simulation, linkage disequilibrium. 

1   Introduction 

The initial success of the human genome project is the nearly complete characterization 
of the consensus human sequence. This has greatly increased our ability to describe the 
structure of genes and the genome and to better design experiments. Perhaps of even 
more importance for disease gene studies is the continuously updated HapMap data [1]. 
This vast pool of characterized common differences between individuals greatly in-
creases our ability to perform targeted or whole genome association (WGA) studies by 
using the measured patterns of linkage disequilibrium (LD) as a foundation for single 
nucleotide polymorphism (SNP) selection and data interpretation. SNPs are single base 
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changes in DNA that vary across individuals in a population at a measurable frequency. 
WGA studies interrogate hundreds of thousands of SNPs throughout the entire human 
genome in an effort to map disease susceptibility or drug response to common genetic 
variation.  

LD is the nonrandom association of alleles at multiple SNPs. This association can 
be quantified by the squared Pearson’s product-moment correlation coefficient (R2). 
Also available is a related measure, D’, which is the proportion of the maximum pos-
sible R2 given a difference in allele frequencies. The R2 value gives an indication of 
the statistical power to detect the effect on disease risk of an ungenotyped SNP, 
whereas D’ is indicative of past recombination events.  

Advances that increase the complexity of data simulations will permit investigators 
to better assess new analytical methods. GenomeSIMLA (an extension of [2]) was 
developed for the simulation of large-scale genomic data in population based case-
control or family-based samples. It is a forward-time population simulation algorithm 
that allows the user to specify many evolutionary parameters to control evolutionary 
processes. GenomeSIMLA simulates patterns of LD representative of observed hu-
man LD patterns through realistic processes of mating and recombination. This tool 
will enable investigators to evaluate the sampling properties of any statistical method 
which is applied to large-scale data in human populations. We describe the algorithm 
and demonstrate its utility for future genetic studies with WGA. 

1.1   Background 

Multiple technologies now allow a WGA design to be implemented by genotyping 
between 500,000 and 1.8 million SNPs with high fidelity and low cost. It is conceiv-
able that technological advances will lead to whole genome sequencing in the not too 
distant future that will involve generating 10-20 million base pair variations per indi-
vidual. In a WGA approach, a dense map of SNPs is genotyped and alleles, geno-
types, or haplotypes are tested directly for association with disease. Estimates suggest 
that with 500,000 SNPs, ~50-75% of the common variation in the genome is captured. 
Recent studies have shown that the precise extent of coverage is dependent on study 
design, population structure, and allele frequency [3]. Regardless, WGA is by far the 
most detailed and complete method of genome interrogation currently possible. WGA 
has successfully detected association with genetic variation in several common dis-
eases including breast cancer [4,5], type II diabetes [6-9], obesity [10], and others [6]. 

1.2   GenomeSIM and SIMLA 

GenomeSIM [2] was developed for the simulation of large-scale genomic data in 
population based case-control samples. It is a forward-time population simulation 
algorithm that allows the user to specify many evolutionary parameters and control 
evolutionary processes. SIMLA (or SIMulation of Linkage and Association) [11,12] 
is a simulation program that allows the user to specify varying levels of both linkage 
and LD among and between markers and disease loci.  

SIMLA was specifically designed for the simultaneous study of linkage and associa-
tion methods in extended pedigrees, but the penetrance specification algorithm can also 
be used to simulate samples of unrelated individuals (e.g., cases and controls). We have 
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combined genomeSIM as a front-end to generate a population of founder chromosomes. 
This population will exhibit the desired patterns of LD that can be used as input for the 
SIMLA simulation of disease models. Particular SNPs may be chosen to represent dis-
ease loci according to desired location, correlation with nearby SNPs, and allele fre-
quency. Using the SIMLA method of disease modeling, up to six loci may be selected 
for main effects and all possible 2 and 3-way interactions as specified in [13] among 
these 6 loci are available to the user as elements of a disease model. Once these loci are 
chosen the user specifies disease prevalence, a mode of inheritance for each locus, and 
relative risks of exposure to the genotypes at each locus. An advantage of the SIMLA 
approach to the logistic function is it can simulate data on markers that are not inde-
pendent, yet yield the correct relative risks and prevalence. Many simulation packages 
using a logistic function for penetrance specification do not have this capability. Model-
ing of purely epistatic interactions with no detectable main effects, as in genomeSIM, is 
also supported separately and can simulate 2-way, 3-way, up to n-way interactions. 
Purely epistatic modeling allows the user to specify a model odds ratio, heritability, and 
prevalence for disease effects. Thus, the marriage of genomeSIM and SIMLA has al-
lowed for the simulation of large scale datasets with realistic patterns of LD and diverse 
realistic disease models in both family-based and case-control data. We describe the 
new software package, genomeSIMLA, in section 2.2. 

1.3   Alternative Genetic Data Simulation Packages 

Several genetic data simulation packages are currently available. SIMLINK [14,15], 
SIMULATE, and SLINK [16] will simulate pedigrees from an existing dataset. Coa-
lescent-based methods [17] have been used for population based simulation in genetic 
studies; however, standard approaches which are extremely efficient in simulating 
short sequences, are not successful for long sequences. GENOME is a novel coales-
cent-based whole genome simulator developed to overcome previous limitations [18]. 
HAP-SAMPLE uses the existing Phase I/II HapMap data to resample existing phased 
chromosomes to simulate datasets [19]. In recent years, forward-time population 
simulations have been developed including easyPOP [20], FPG [21], FREGENE [22], 
and simuPOP [23]. All of the existing simulation packages have strengths and weak-
nesses. The motivation for developing genomeSIMLA is to achieve the ability to 
simulate: 1) realistic patterns of LD in human populations, 2) WGA datasets in both 
family and case-control study designs, 3) single or multiple independent main effects, 
and 4) purely epistatic gene-gene interactions in efficient, user friendly software. 
Existing simulation packages can do one or more of these, but few are able to succeed 
in all areas. 

2   Methods 

2.1   GenomeSIMLA 

GenomeSIMLA generates datasets using a forward-time population simulator which 
relies on random mating, genetic drift, recombination, and population growth to allow 
a population to naturally obtain LD features. An initial population (or pool of chro-
mosomes) is generated using allele frequencies and positions for a set of desired SNPs 
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or random allele frequencies for real or synthetic SNP locations. Recombinant gam-
etes are created based on intermarker recombination probabilities calculated using 
Kosambi (accounting for recombination interference) or Haldane (accounting for 
multiple events between polymorphisms) genetic mapping functions. Recombination 
probability between two polymorphisms is determined by the Kosambi or Haldane 
function of the map distance based on a 1 centimorgan per 1 million bases genetic 
map. The number of crossover events for a pair of parental chromosomes to generate 
gametes is a random Poisson variable where the expected number of events is the sum 
of all intermarker recombination probabilities for the chromosome. The two resulting 
gametes, one from each parent, are then combined to create a new individual. The 
mapping approximation of 1 million bases per centimorgan is applied here; however, 
other values could be applied to simulate population-specific genetic maps or recom-
bination hotspots. The random mating and recombination process continues on the 
pool of chromosomes for a set number of generations to generate realistic patterns of 
LD and produce sufficient numbers of chromosomes for drawing datasets. After the 
pool of chromosomes has developed suitable LD and grown to a useful size, datasets 
can be drawn by randomly sampling chromosomes with replacement to create nonre-
dundant individuals. Disease-susceptibility effects of multiple genetic variables can 
be modeled using either the SIMLA logistic function [11,12] or a purely epistatic 
multi-locus penetrance function [24] found using a genetic algorithm. These individu-
als are either mated to yield pedigrees, for family-based datasets, or are evaluated by a 
logistic function or a purely epistatic penetrance function of their genotypic exposures 
to determine disease status for case-control datasets.  

Figure 1 illustrates the general steps involved in producing a simulated dataset. As a 
first step, genomeSIMLA establishes the size of the genome based on the user specified 
parameters. The total number of SNPs is unlimited except by hardware considerations. 
We are currently able to simulate at least 500K SNPs. The simulator generates the num-
ber of SNPs, recombination fraction, and allele frequencies within user specified mar-
gins or boundaries. GenomeSIMLA then generates an initial population (or pool of 
chromosomes) based on the genome established in the previous step. For each SNP in 
the genome, the simulator randomly assigns an allele to each chromosome based on the 
allele frequencies of the SNP. A dual-chromosome representation is used for creating 
individuals to allow for an efficient representation of the genome and for crossover 
between chromosomes during the mating process. The genotype at any SNP can be 
determined simply by adding the values of the two chromosomes at that position. As a 
result, the genotypes range from 0 to 2 at any SNP.  

The initial population forms the basis for the second generation in the simulation. 
For each cross, four chromosomes are randomly selected with replacement to create 
two individuals to be the parents for a member of the new generation. Each parent 
contributes one haploid genome to the child. GenomeSIMLA creates the gametic 
genotype by recombining the parent’s chromosomes. The total number of chromo-
somes in the pool can be constant or follow a population growth model (linear, expo-
nential, or logistic). This will determine the number of mating/crossover events that 
occur. GenomeSIMLA continues through a specified number of generations depend-
ing on the desired LD patterns.  
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Fig. 1. Simulator Overview. This figure demonstrates the steps of the genomeSIMLA algorithm 
for simulating data as described in the text. In summary, the process of simulating data is as 
follows: 

1. Develop the chromosome pool using either artificial intermarker distances and recombina-
tion or positions from real data. Set the parameters of the population growth to fit the de-
sired LD properties. 

2. Select loci to be the disease susceptibility loci in the simulation. Loci can be searched for 
using built-in search tools allowing the user to screen loci based on allele frequency, block 
size, and position. 

3. Specify the disease model. Either multiple loci with main effects and interactions among 
them or purely epistatic effects can be modeled 

4. Simulate data by either drawing individuals for case-control data or founders for family 
data. 
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To create datasets, chromosomes are sampled from the pool with replacement and af-
fection status is assigned based on the user-specified penetrance table or logistic func-
tion. Samples are drawn until the desired number of cases and controls are accumulated. 
In family-based simulation, founders are drawn and offspring are created using the same 
methods as applied in the pool generation steps. The penetrance function is applied to 
the parents and offspring to determine status and the resulting pedigrees are retained in a 
dataset if the study ascertainment criteria are met. Otherwise the pedigrees are discarded 
and the founder chromosomes are allowed to be drawn again. 

2.2   GenomeSIMLA: Implementation 

Performance on desktop grade hardware and interpretable results reporting were main 
goals of software development. Users can simulate data on modern desktop hardware 
and have their datasets within 24-48 hours for many parameter settings; though the 
exact time will be dependent upon the particular growth curve used and the desired 
chromosome pool size. To achieve these goals we focused on memory requirements, 
threading, and LD plotting. 

C++ allows us to utilize memory with minimal overhead; however, retaining 100,000 
chromosomes of 500,000 SNPs each is not a trivial task. To maintain this within the 
limits of a modern desktop machine, we represent each chromosome as a binary string. 
Also, unless otherwise specified, genomeSIMLA will only have a single chromosome 
pool in memory. One drawback of using the binary string for a chromosome is that we 
are limiting genomeSIMLA to biallelic data. By retaining a single pool in memory, our 
memory requirements fall reasonably under 2 gigabytes of RAM. 

We have implemented two different threading mechanisms to allow users to take 
full advantage of the hardware available to them. When using genomeSIMLA in 32bit 
environments, there are at most 4 Gigabytes of memory available to the system. To 
accommodate users with multiple processors running 32bit operating systems, we 
allow specification of the number of threads per chromosome. This incurs a minimal 
memory increase but can speed the calculations up considerably. However, when 
running genomeSIMLA under 64bit, we allow for configurations to specify any num-
ber of chromosomes be managed simultaneously. This is limited by available hard-
ware and process time scales almost linearly with the number of processors available. 

In order to address our reporting needs, we implemented our own LD plotter. Exist-
ing LD plotting software could not accommodate whole chromosome data. As a result, 
genomeSIMLA is capable of generating whole chromosome LD plots similar to those 
generated by other software packages. Calculating whole-genome LD statistics on large 
chromosomal pools is a computationally intensive process. To reduce computation time, 
LD statistics can be optionally calculated on a sample of the entire pool.  

2.3   Growth Curve Parameter Sweep 

To develop an understanding of the consequences of different population growth curve 
parameter settings, we have designed a series of experiments. The hypothesis is that 
some combination of population growth parameters will emulate the average profile of 
correlation by distance observed in the HapMap data. We used a generalized logistic 
curve, or Richards curve, to model realistic population growth [25] Equation 1. The 
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Richards growth curve consists of five parameters: A -- the initial population size or 
lower asymptote, C -- the carrying capacity of the population or the upper asymptote, M 
-- the generation of maximal growth, B – the growth rate, and T – a parameter that de-
termines if the point of maximal growth occurs near the lower or upper asymptote.  
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This function provides a parameterized theoretical basis for population growth, 
though real population growth likely has more stochastic variability. To allow vari-
ability in population growth, we implemented a jitter parameter that draws a random 
number from a uniform distribution over a range specified by the user and adds or 
subtracts that percentage from the population size predicted by the growth curve. For 
the purposes of the parameter exploration in this study, however, the jitter parameter 
was set to zero.  

We scanned through a wide range of parameters to find population growth profiles 
providing suitable correlation among genetic variables for data simulation. Since there 
were 5 parameters to vary and many possible values for each, we were still limited to a 
small subset of the possible sets of growth parameters available. Prior to this study, we 
performed a number of parameter sweeps to evaluate ranges that were likely to yield 
interesting and realistic LD patterns (results not shown) in a population of 100,000 
chromosomes. For this study, we split the parameter sweep into three scans. In total, 
726 combinations of parameter settings were examined for average LD over distance.  

Table 1. Parameter sweep of population growth parameters for the logistic function: settings 
for three scans 

Parameters Scan 1 Scan 2 Scan 3 

A - Lower asymptote 500, 750, 1000 
100, 150, 200, 250, 

300 
750, 1000, 1250, 

1500 

C - Upper asymptote 120k, 500k, 900k 110k, 120k 120k 

M - Maximum growth time 
305, 315, 325, 335, 

345, 355 
350, 400, 450 

500, 1000, 1500, 
2000, 2500, 3000 

B - Growth rate 0.005, 0.0075, 0.01 
0.018, 0.02, 0.022, 

0.025 
0.02, 0.025, 0.03, 

0.035, 0.04 
T - Maximum growth 

position 
0.1. 0.2, 0.3 0.1 0.1 

Total parameters 486 120 120 

We predict that a common usage of genomeSIMLA software will be to simulate 
case-control and family-based whole-genome association datasets containing 300,000-
500,000 biallelic markers across the genome. These data could be used to evaluate the 
sampling properties of new or established association methods or techniques to char-
acterize the genetic structure of populations. While genomeSIMLA can simulate data 
of this magnitude, for this study, we wanted to focus on a single chromosome. Thus, 
we simulated the 6031 chromosome 22 markers used on the popular Affymetrix 500K 
SNP Chip.  
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To visualize the results of each parameter combination, average R2 by distance in 
kilobases was graphed for the simulated data and for the CEPH (Caucasian), Yoruba 
(African), and Chinese/Japanese HapMap populations. This representation captures 
global estimates of correlation by distance across the entire chromosome. 

3   Results 

Parameter settings in Scan 1 did not yield LD which was comparable to HapMap sam-
ples. A trend was observed among the better fitting models that the parameters C and T 
always functioned best when set to 120k and 0.1, respectively. Scan 2 examined very 
small initial populations and more rapid growth to strengthen LD profiles through rapid 
genetic drift. These unfortunately also resulted in fixing many alleles. Scan 3 focused on 
larger initial populations, late maximum growth, and rapid growth. These simulations 
were the most successful and resulted in several curves which approximated LD in 
HapMap samples well. One such example is presented in Figure 2.  

 

Fig. 2. Average R2 by distance (kb) for simulated, CEPH (Caucasian), YRI (Yoruba African), 
and CHB/JPT (Chinese/Japanese) samples 

    While not a perfect fit to any population, the curve represents a good approxima-
tion of the correlation observed in the data. Of note is the fit in the shorter ranges, 
since short range LD is more related to the power to detect associations with disease 
susceptibility loci [26]. A sample of the actual LD observed among the markers is 
presented in Figure 3. The goal of this study was to obtain data which on average is 
similar to HapMap data. Since we initialized the chromosomes with random minor 
allele frequency and the measure R2 is sensitive to this parameter, it is not expected that 
each intermarker correlation will be identical to the value calculated from the HapMap 
data. However, it can be seen here that the major features and regions of high and low 
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Fig. 3. Sample of LD from the simulation detailed in Figure 2 of R2 plots from HapMap CEPH 
samples (above) and simulated data 

Table 2. Time to completion for pool advancement to 100,000 chromosomes and graphical LD 
calculation and representation for up to 500,000 SNPs  

Simulation Processors LD 
Calculation 

Time 

Chr1 1 Sampled 13m 41s 

Chr1 1 Complete 88m 45s 

Chr1 4 Sampled 5m 41s 

Chr1 4 Complete 33m 4s 

Chr22 1 Sampled 2m 15s 

Chr22 1 Complete 12m 27s 

Chr22 4 Sampled 1m 33s 

Chr22 4 Complete 4m 30s 

500k 4 Sampled 74m 52s 

500k 4 Complete 367m 54s 

500k 8 Sampled 29m 22s 

500k 8 Complete 123m 21s 

correlation are captured. The growth curve in Figure 2 and the LD shown in Figure 3 
were generated with the following parameters: A=1500, C=120000, M=500, B=0.02, 
T=0.1. D’, an alternate measure of LD, was more difficult to fit than R2. The curves 
for the simulated data generally were stronger than those observed for the real data in 
the short ranges but weaker at long ranges. The reasons for this are unknown but are a 
topic of further study for genomeSIMLA. 

We also measured the time to completion for various size simulations. We exam-
ined the markers for the Affymetrix 500K in chromosomes 1 and 22 and the full chip 
(Table 2) for the growth parameters in Figures 2 and 3. In order to reduce the time 



Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA 33 

required to scan a growth curve for ideal LD patterns, genomeSIMLA utilizes both 
sampled and complete LD. When generating sampled LD plots, genomeSIMLA 
draws LD plots for a small region (1000 SNPs) of each chromosome and limits the 
participants to a relatively small number (1500). 

4   Discussion 

We found that tuning the parameters to emulate the average pattern of correlation in 
real human populations was difficult. However, some settings we used provided good 
qualitative fit to the observed real data. Statistical evaluation of these distributions 
was difficult, since tests on distributions are extremely sensitive and strong ceiling 
effects were observed. We initialized our chromosome pools with random allele fre-
quency independent data, and only allowed the recombination probabilities to directly 
mimic those expected from the Kosambi function for the HapMap physical distances. 
This procedure was a proof of principle that it is neither necessary to directly resample 
HapMap chromosomes or use computationally inefficient coalescent models to effec-
tively simulate the properties of unobserved samples from real human populations.  
    One potential reason for the deviations of our simulated data from those observed 
in the HapMap populations was that genomeSIMLA simulates phased chromosomes 
with no heterozygote ambiguity. As a result, genomeSIMLA does not employ an 
Expectation Maximization (EM) algorithm [27] to phase genotype data. The phased 
data available from the HapMap is processed from raw genotypes using PHASE[28], 
which is a notably different means of LD calculation. The effects of EM algorithms 
on the observed average LD by distance when the true LD is known has not been 
investigated, but will be a topic of further study. 

The results we observed here show that genomeSIMLA is an effective platform for 
simulating large-scale genetic data. Each individual pool was expanded to 100,000 
chromosomes before termination, which typically took less than 10 minutes including 
LD calculation. Additionally, methods other than purely stochastic independent ini-
tialization for pools of chromosomes could be used, which could lead to superior data 
properties and less generations of population growth. 
    The speed and scale of the genomeSIMLA software is sufficient to provide timely 
results to investigators conducting power studies for various methods. The software 
architecture ensures that the user can access all available computational power to do 
very large whole-genome size studies. The time to completion for various size simula-
tions for single and multiple processors are presented in Table 2. Those times include 
the time required to calculate and provide an interactive graphical interface of LD 
pictures for locus selection. These times are very fast given the computational task 
and represent the advanced implementation which is presented here. Demonstrations, 
manuals, and genomeSIMLA software for Mac, PC, and Linux are available for 
download at http://chgr.mc.vanderbilt.edu/genomeSIMLA. With this capability, re-
searchers who develop novel methods to analyze genetic data can quickly and accu-
rately estimate the performance and sampling properties of those methods. 
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Abstract. Lexical variance in biomedical texts poses a challenge to au-
tomatic protein relation mining. We therefore propose a new approach
that relies only on more general language structures such as parsing and
dependency information for the construction of feature vectors that can
be used by standard machine learning algorithms in deciding whether a
sentence describes a protein interaction or not. As our approach is not
dependent on the use of specific interaction keywords, it is applicable
to heterogeneous corpora. Evaluation on benchmark datasets shows that
our method is competitive with existing state-of-the-art algorithms for
the extraction of protein interactions.

1 Introduction

Studying the interactions of proteins is an essential task in biomedical research,
so it comes as no surprise that a lot of effort is being devoted to the construc-
tion of protein interaction knowledge bases. More and more relevant information
is becoming available on the web, in particular in literature databases such as
MEDLINE1, in ontological resources such as the Gene Ontology2, and in spe-
cialized structured databases such as IntAct3. The unstructured information in
scientific publications poses the biggest challenge to biologists who are interested
in specific gene or protein interactions, as they are forced to spend a tremen-
dous amount of time reviewing articles looking for the information they need.
Structured knowledge bases are easier to query, but again require a great deal
of knowledge and labour intensive maintenance to stay synchronized with the
latest research findings in molecular biology. Automation tools can facilitate this
task, which is why machine learning techniques for information extraction (IE)
in the biomedical domain have gained a lot of attention over the last years.
1 http://www.ncbi.nlm.nih.gov/
2 http://www.geneontology.org/
3 http://www.ebi.ac.uk/intact/site/index.jsf

E. Marchiori and J.H. Moore (Eds.): EvoBIO 2008, LNCS 4973, pp. 36–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ncbi.nlm.nih.gov/
http://www.geneontology.org/
http://www.ebi.ac.uk/intact/site/index.jsf


DEEPER: A Full Parsing Based Approach to Protein Relation Extraction 37

Relation extraction from texts is one of the most difficult tasks of IE. In natu-
ral language, relations can be expressed in different ways, hence no universal set
of rules or patterns for mining them can be constructed. Traditional algorithms
for relation learning from texts can perform reasonably well (see e.g. [1,2,5,12]),
but they typically rely explicitly or implicitly on specific interaction keywords,
which limits their applicability to heterogeneous data. The biggest obstacle with
heterogeneous datasets is that they describe protein interactions using different
lexicons. However, entirely different surface representations for interactions can
still exhibit the same syntactic pattern. We therefore propose to abstract from
pure lexical data and to concentrate only on more general language structures
such as parsing and dependency information. This coarser grained approach al-
lows to cope better with the lexical variance in the data. Indeed, taking the fact
into account that lexically different expressions of protein interactions might still
bear some resemblance on the syntactic level provides welcome hints for machine
learning techniques that commonly thrive on similarities in the data.

The resulting system is a mining tool that facilitates information extraction
and knowledge base maintenance by presenting to the user protein interactions
identified in scientific texts. The tool aims at supporting biologists in finding
relevant information, rather than to exclude them entirely from the data pro-
cessing flow. After reviewing related approaches in Section 2, we give a detailed
description of the proposed method in Section 3. Abstracting from pure lexical
data and only relying on syntactic patterns instead bears the risk of overgeneral-
izing, in the sense that sentences that do not describe protein interactions might
exhibit a syntactic structure similar to those that do, and hence they might get
incorrectly identified as protein interactions. To verify the reliability of our ap-
proach we therefore evaluated it on two benchmark datasets. The experimental
results and a comparison with existing algorithms are described in Section 4.
Concluding remarks and future work are presented in Section 5.

2 Related Work

The extraction of protein relations has attracted a lot of attention during the last
years, resulting in a range of different approaches. The first step is the recognition
of the protein names themselves (see e.g. [3,6,15]). As the focus of this paper
is on the mining of interactions, we assume that protein name recognition has
already taken place. The recognition of protein interactions is typically treated as
a classification problem: the classifier gets as input information about a sentence
containing two protein names and decides whether the sentence describes an
actual interaction between those proteins or not. The classifier itself is built
manually or, alternatively, it is constructed automatically using an annotated
corpus as training data. The different approaches can be distinguished based
on the information they feed to the classifier: some methods use only shallow
parsing information on the sentence while others exploit full parsing information.

Shallow parsing information includes part-of-speech (POS) tags and lexical
information such as lemmas (the base form of words occuring in the sentence)



38 T. Fayruzov et al.

and orthographic features (capitalization, punctuation, numerals etc.). In [2], a
support vector machine (SVM) model is used to discover protein interactions. In
this approach each sentence is split into three parts — before the first protein,
between the two proteins and after the second protein. The kernel function
between two sentences is computed based on common sequences of words and
POS tags. In another approach [5], this kernel function is modified to treat the
same parts of the sentence as bags-of-words and called a global context kernel.
It is combined with another kernel function called a local context kernel, that
represents a window of limited size around the protein names and considers POS,
lemmas, and orthographic features as well as the order of words. The resulting
kernel function in this case is a linear combination of the global context kernel,
and the local context kernel.

A completely different approach is presented in [12], where very high recall
and precision rates are obtained by means of hand-crafted rules for sentence
splitting and protein relation detection. The rules are based on POS and keyword
information, and they were built and evaluated specifically for Escherichia coli
and yeast domains. It is questionable, however, whether comparable results could
be achieved in different biological domains and how much effort would be needed
to adapt the approach to a new domain. In another approach reported on in [8], a
system was built specifically for the LLL challenge (see Section 4). First, training
set patterns are built by means of pairwise sentence alignment using POS tags.
Next, a genetic algorithm is applied to build several finite state automata (FSA)
that capture the relational information from the training set.

Besides the methods described above, approaches have been proposed that
augment shallow parsing information with full parsing information, i.e. syntactic
information such as full parse and dependency trees. In [4] for instance, for
every sentence containing two protein names a feature vector is built containing
terms that occur in the path between the proteins in the dependency tree of
the sentence. These feature vectors are used to train an SVM based classifier
with a linear kernel. More complex feature vectors are used in [10], where the
local contexts of the protein names, the root verbs of the sentence, and the
parent of the protein nodes in the dependency tree are taken into account by a
BayesNet classifier. In [7], syntactic information preprocessing, hand-made rules,
and a domain vocabulary are used to extract gene interactions. The approach
in [17] uses predicate-argument structures (PAS) built from dependency trees.
As surface variations may exhibit the same PAS, the approach aims at tackling
lexical variance in the data. It is tailored towards the AImed dataset (see Section
4) for which 5 classes of relation expression templates are predefined manually.
The classes are automatically populated with examples of PAS patterns and
protein interactions are identified by matching them against these patterns.

To the best of our knowledge, all existing work either uses only shallow parsing
information (including lexical information) or a combination of shallow and full
parsing information. Furthermore, approaches of the latter kind typically use
dependency trees only as a means to e.g. detect chunks or to extract relevant
keywords. The goal of this paper is to investigate what can be achieved using
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only full parsing information. In other words, the full parsing information is
not used as a means to select which further (lexical) information to feed to the
classifier, but it is used as a direct input itself to the classifier. The fact that such
an approach is independent of the use of a specific lexicon makes it worthwhile
to investigate.

3 DEEPER: A Dependency and Parse Tree Based
Relation Extractor

There is an abundance of ways in English to express that proteins stimulate or
inhibit one another, and the available annotated corpora on protein interactions
cover only a small part of them. In other words, when the interaction mining tool
is confronted with a previously unseen text, it is likely for this text to contain
protein interactions described in ways for which there is no exact matching
example in the training data. However, different surface representations can still
exhibit a similar syntactic pattern, as the following example illustrates.

Example 1. Consider the following sentences about the interaction between sig-
ma F and sigma E in one case and between GerE and cotB in the other case:

Sigma F activity regulates the processing of sigma E within the mother
cell compartment.

A low GerE concentration, which was observed during the experiment,
activated the transcription of cotB by final sigmaK RNA polymerase,
whereas a higher concentration was needed to activate transcription of
cotX or cotC.

Although the surface representations are very different, the underlying syntactic
pattern, which represents part of a dependency tree, is the same in both cases:

protein
nn← noun

nsubj← verb
dobj→ noun

prep of→ protein

We exploit this deeper similarity between training instances by using dependency
and parsing information to build abstract representations of interactions. Such
representations have less variance than the initial lexical data, hence sensible
results can be obtained from smaller training datasets. The approach is fully
automatical and consists of three stages: after a text preprocessing stage, for
every sentence containing two tagged protein names, we construct a feature
vector summarizing relevant information on the parse tree and the dependency
tree. In the third stage a classifier is trained to recognize whether the sentence
describes an actual interaction between the proteins. The novelty of the approach
w.r.t. existing work is that we do not use dependency data to detect keywords,
but we consider dependencies as features themselves. In the next section we show
that using only this kind of syntactic information without any lexical data allows
to obtain reasonably good results.
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Text Preprocessing. This step is intended to simplify the sentence structure and
hence increase the parser reliability. It includes sentence splitting as well as the
detection and the substitution of complex utterances (e.g. chemical formulas
or constructions with many parentheses) with artificial strings, which in some
cases can otherwise significantly reduce the quality of parsing. Furthermore, we
expand repeating structures, turning e.g. ‘sigA- and sigB-proteins’ or ‘sigA/
sigB-proteins’ into ‘sigA-proteins and sigB-proteins’. All substitutions are done
automatically by means of regular expressions; hence the same kind of prepro-
cessing can be applied to an arbitrary text. Moreover, tagged protein names in
the text may include more than one word; in order to treat them as a single entity
in further processing stages, we replace them in the same manner as formulas.
Finally, we take all possible pairwise combinations of proteins in each sentence
and create one sentence for each combination where only this combination is
tagged. Part of this process is shown in Example 2.

Example 2. Below is the result after text preprocessing for the second sentence
from Example 1:

A low GerE concentration, which was observed during the experiment,
activated the transcription of cotB by final sigmaK RNA polymerase,
whereas a higher concentration was needed to activate transcription of
cotX or cotC.
. . .
A low GerE concentration, which was observed during the experiment,
activated the transcription of cotB by final sigmaK RNA polymerase,
whereas a higher concentration was needed to activate transcription of
cotX or cotC.

Feature Vector Construction. After the text preprocessing stage, for each sen-
tence we build a feature vector that summarizes important syntactic information
on the parse tree and the typed dependency tree, which are both ways of repre-
senting sentence structure. A parse tree is a tree (in terms of graph theory) that
represents the syntactical structure of a sentence. Words from the sentence are
leaves of the parse tree and syntactical roles are intermediate nodes, so a parse
tree represents the nesting structure of multi-word constituents. A dependency
tree on the other hand represents interconnections between individual words of
the sentence. Hence, all nodes of the dependency tree are words of the sentence,
and edges between nodes represent syntactic dependencies. In typed dependency
trees, edges are labeled with syntactic functions (e.g., subj, obj). Figure 1 depicts
the typed dependency tree and parse tree for the first sentence of Example 1.

During the feature extraction phase we parse each sentence with the Stanford
Parser4. For each tagged pair of proteins (recall that each sentence has only
one such pair), we extract a linked chain [14] from the dependency tree. The
dependency tree is unordered w.r.t. the order of the words in the sentence; hence
to produce patterns uniformly, we order the branches in the linked chain based
4 http://nlp.stanford.edu/downloads/lex-parser.shtml

http://nlp.stanford.edu/downloads/lex-parser.shtml
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Fig. 1. Dependency and parse trees and linked chain for the first sentence of Ex. 1

on the position of the words in the initial sentence. Thus the left branch contains
the word that occurs earlier in the sentence and the right branch the word that
occurs later. The absolute majority of the branches in the linked chains from the
datasets we examined contain no more than 6 edges, and those which contain
more are negative instances, so we choose feature vectors with 6 features for each
branch to cover all positive examples from the training set. Therefore, we use
the first 6 dependencies from the left branch as the first 6 features in the feature
vector. Likewise, the first 6 dependencies from the right branch correspond to
features 7 through 12. Moreover, to better describe the structure of the relation
we incorporate information from the parse tree as well, namely the length of the
path from the root of the parse tree to each protein as the 13th and the 14th
feature, and the number of nested subsentences in these paths as the 15th and
the 16th feature.

Example 3. Below is the feature vector of the first sentence from Example 1:

nsubj nn dobj prep of 4 7 0 0

We extract a linked chain between the two proteins, as shown in Figure 1. It is
already ordered, i.e. Sigma F precedes Sigma E in the sentence, so we do not
need to swap these branches. We take the left branch and fill the first 6 features
of the feature vector. As the branch contains only 2 dependencies — nsubj and
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nn, 4 slots in the vector remain empty. Features 7-12 for the right branch are
filled in the same manner. Sigma F is at depth 4 in the parse tree while Sigma E
is at depth 7, and the parse tree in Figure 1 does not contain subsentences. All
this information is reflected in the last 4 features of the vector. Note that the
resulting feature vector contains several empty fields; only the most complicated
sentences will have a value for each feature in the vector.

Training a Classifier. By the above process, we obtain a set of feature vectors for
sentences which can be divided into two classes — those that describe real protein
interactions and those that do not. Therefore, we can use a standard classification
algorithm to distinguish between these two classes. To build the classifier, we use
a decision tree algorithm (C4.5 implementation [13]) and the BayesNet classifier
[9]. These two algorithms represent classical instances of two branches of machine
learning — rule induction and statistical learning — which employ different
approaches to data processing. Decision trees consist of internal nodes which
represent conditions on feature values, and leaves which represent classification
decisions that conform to the feature values in nodes on the way to this leaf.
The BayesNet classifier is represented as a directed graph with a probability
distribution for each feature in the nodes and with the edges denoting conditional
dependencies between different features. When we use the BayesNet classifier we
apply a conditional independence assumption, which means that probabilities of
node values depend only on probabilities of values of their immediate parents,
and do not depend on higher ancestors. This corresponds to the reasonable
assumption that the syntactic role of a node in the linked chain depends on the
syntactic role of its parent only.

To overcome the problem of missing values (which occur frequently in the
feature vectors), in the BayesNet classifier we simply change them by a default
value. With C4.5, to classify an instance that have a missing value for a given
node, the instance is weighted proportionally to the number of instances that
go down to each branch, and recursively processed on each child node w.r.t. to
assigned weight. This process is described in more detail in [16].

4 Experimental Evaluation

To verify the reliability of our approach, we evaluated it on two datasets. The
first dataset [11] originates from the Learning Language in Logic (LLL) relation
mining challenge on Genic Interaction Extraction5. This dataset contains anno-
tated protein/gene interactions concerned with Basilicus subtilis transcription.
The sentences in the dataset do not make up a full text, but they are individual
sentences taken from several abstracts retrieved from Medline. The proteins in-
volved in the interactions are annotated with agent and target roles; because our
current approach is not aimed at mining the direction of interactions, we ignore
this annotated information and treat the interactions as symmetrical relations.

5 http://genome.jouy.inra.fr/texte/LLLchallenge/

http://genome.jouy.inra.fr/texte/LLLchallenge/
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Table 1. Datasets used in the experiments

Dataset # sentences # positive instances # negative instances

AImed 1978 816 3204
LLL’05 77 152 233

The AImed dataset [1] is compiled from 197 abstracts extracted from the
Database of Interacting Proteins (DIP) and 28 abstracts which contain protein
names but do not contain interactions. Since we are interested in retrieving
protein interactions, in this paper we use only the former set of abstracts. The
connection between a full name of a protein and its abbreviation, e.g. tumor
necrosis factor (TNF), is annotated as an interaction in the AImed dataset.
Since such an annotation is not concerned with an actual interaction between
different proteins, we omit this kind of data from our experiments. Furthermore
we removed nested protein annotations, which wrap around another protein or
interaction annotation. Finally, TI- and AD- sections as well as PG- prefixes,
which are Medline artifacts, were removed.

More information about the datasets is listed in Table 1. From this table,
it is clear that the AImed dataset is highly imbalanced, as there is a strong
bias to negative examples. To the best of our knowledge, these are the only
two publicly available datasets containing annotations of protein interactions
and hence suitable to evaluate our approach. In the evaluation we used 10-fold
cross validation for both the AImed and the LLL05 dataset; furthermore we ran
experiments with AImed as training set and LLL05 as test set. We used Weka
[16] for the implementation of the machine learning methods.

The difference in the datasets requires different parameters to achieve optimal
performance. As we have mentioned above, the AImed dataset is imbalanced
and using it for training tends to lead to a bias towards classifying examples as
negative (independently of the training scheme). For this reason, we use cost-
sensitive learning [16] to decrease the bias when AImed is used as a training set.
Moreover, in the C4.5 implementation for the AImed dataset, we build a binary
decision tree, i.e. at each node the algorithm tests only one value of one feature.
Otherwise, the algorithm would decide that the empty tree classifies the dataset
in the best way, and all examples would be classified as negative (again, because
of the biased dataset).

The results below are described in terms of the sentences that are (in)correctly
identified by the system as describing a protein interaction, as these are exactly
the instances that the system will present to the biologist. The relevant instances
are the sentences that should have been identified as describing protein interac-
tions; this includes the true positives, i.e. the positive instances that are correctly
identified by the system, but also the false negatives, i.e. the positive instances
that are overlooked by the system. The retrieved instances are the sentences
that are identified by the system as describing protein reactions. This includes
the true positives but may also include false positives, i.e. sentences incorrectly
identified by the system as describing a protein interaction. Using TP, FN, and
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FP to denote the number of true positives, false negatives, and false positives
respectively, recall and precision are defined as

recall =
TP

TP + FN
precision =

TP
TP + FP

Recall (also referred to as coverage) indicates how many of the relevant instances
are retrieved. Precision (also referred to as accuracy) indicates how many of the
retrieved instances are relevant.

To study the trade-off between recall and precision we use a confidence thresh-
old p between 0 and 1 such that an instance is retrieved iff the classifier has a
confidence of at least p that the instance describes a real protein interaction. The
BayesNet classifier provides such a confidence value naturally, because its output
is a class distribution probability for each instance. Decision trees can also be
easily adapted to produce a probabilistic output by counting training examples
at the leaf nodes. If a sentence that is being classified ends up at a leaf node,
the confidence of the classifier that it is a positive instance, is the proportion of
positive training examples to all training examples at that leaf node. When p is
set to 1, a sentence is only retrieved if the classifier has absolute confidence that
it describes a protein interaction. In this case typically the precision is high while
the recall is low. Decreasing the threshold p allows to increase the recall at the
cost of a drop in the precision. Figure 2 shows recall-precision curves obtained
by varying p from 1 to 0.

As the first picture depicts, both classifiers allow to obtain similarly nice re-
sults for the LLL05 dataset, which is a first indication that we can make reason-
able predictions about the occurrence of protein interactions in sentences based
solely on full parsing information. Several authors present results of their protein
relation extraction methods on the LLL05 dataset. However, since our current
approach is not aimed at identifying agent and target roles in the interactions,
we can only compare our results with those methods that treat the interactions
as symmetrical relations. The first picture in Figure 2 shows a result from [7]
depicted by a ∗ and corresponding to a recall of 85% and a precision of 79%.
One should keep in mind that the method from [7] uses hand-made rules and a
domain vocabulary, while our approach does not employ any prespecified knowl-
edge. However, results show that our approach with a C4.5 classifier achieves
results which are very close to the ones obtained by RelEx.

Whereas the LLL05 dataset contains only selected sentences from Medline
abstracts, the AImed dataset contains full abstracts, posing a bigger challenge
to our approach. The second picture in Figure 2 shows that C4.5 and BayesNet
allow to obtain comparable results in terms of recall and precision. They both
outperform the PAS-approach for which a recall of 33.1% for a precision of 33.7%
is reported in [17].

Finally, we performed a cross dataset experiment using the AImed dataset
for training the classifier and the LLL05 dataset for testing. The corresponding
recall-precision curves for C4.5 and the BayesNet classifier are shown in the third
picture in Figure 2. While both datasets are independent (built for different bi-
ological subdomains and by different people), our approach shows good results.
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Fig. 2. Recall-precision charts
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This indicates that the current approach is applicable to different domains with-
out alterations, although further investigation is needed to back up this claim.
The third picture also shows the recall-precision curve for the subsequence ker-
nel method from [2] which is a state-of-the-art shallow parsing based approach
for relation extraction. Since the approach was evaluated on a different dataset
in [2], we used the implementation provided by the authors6 and our datasets
to perform the experiment. The training is done with LibSVM7 on the AImed
dataset and testing is done on the LLL05 dataset. The results show that the
three methods are comparable, with a slight preference for our approach with
the BayesNet classifier, as it can keep up a very high precision of 84% for a recall
of up to 60%.

5 Conclusions and Future Work

Whereas existing approaches for protein interaction detection typically rely on
shallow parsing information, sometimes augmented with full parsing information,
we presented an approach based solely on full parsing information. More in
particular, we proposed a clean and generally applicable approach in which for
each sentence a feature vector is constructed that contains 12 features with
information on the dependency tree and 4 features with information on the
parse tree of the sentence. Next we fed these feature vectors as inputs to a C4.5
and a BayesNet classifier, as representatives of a rule induction and a statistical
learning algorithm. Using these standard data mining algorithms and no shallow
parsing or lexical information whatsoever, we were able to obtain results which
are comparable with state-of-the-art approaches for protein relation mining. This
result is promising since a method that uses only full parsing information does
not depend on specific interaction keywords and is less affected by the size and/or
the heterogenity of the training corpus.

As this paper presents work in progress, quite some ground remains to be
covered, including a more complete comparison with existing methods. Among
other things, it would be interesting to build an SVM model with our feature
vectors and compare the results with those of shallow and combined parsing
based approaches that rely on kernel methods as well. Furthermore, we intend
to look into detecting the agents and the targets of interactions, which would
allow us to do an independent evaluation on the LLL05 dataset as intended by
the LLL challenge. A final intriguing question is whether an augmentation with
shallow parsing information could increase the performance of our approach.
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Abstract. In this paper we propose a new method to improve the performance 
of hierarchical classification. We use a swarm intelligence algorithm to select 
the type of classification algorithm to be used at each “classifier node” in a 
classifier tree. These classifier nodes are used in a top-down divide and conquer 
fashion to classify the examples from hierarchical data sets. In this paper we 
propose a swarm intelligence based approach which attempts to mitigate a ma-
jor drawback with a recently proposed local search-based, greedy algorithm. 
Our swarm intelligence based approach is able to take into account classifier in-
teractions whereas the greedy algorithm is not. We evaluate our proposed 
method against the greedy method in four challenging bioinformatics data sets 
and find that, overall, there is a significant increase in performance. 

Keywords: Particle Swarm Optimisation, Ant Colony Optimisation, Data Min-
ing, Hierarchical Classification, Protein Function Prediction. 

1   Introduction 

Hierarchical classification is a challenging area of data mining. In hierarchical classi-
fication the classes are arranged in a hierarchical structure, typically a tree or a DAG 
(Directed Acyclic Graph). In this paper we consider classes arranged in a tree struc-
ture where each node (class) has only one parent – with the exception of the root of 
the tree, which does not have any parent and does not correspond to any class. Hierar-
chical class datasets present two main new challenges when compared to flat class 
datasets. Firstly, many (depending on the class depth) more classes must be assigned 
to the examples. Secondly, the prediction of a class becomes increasingly difficult as 
deeper class levels are considered, due to the smaller number of examples per class. 

In this paper we address the problem of hierarchical protein function prediction, a 
very active research topic in bioinformatics. The prediction of protein function is one 
of the most important challenges faced by biologists in the current “post-genome” era. 
The challenge lies in the fact that the number of proteins discovered each year is 
growing at a near exponential rate [1] (with the vast majority of them having un-
known function) and advances in the understanding of protein function are critical for 
more effective diagnosis and treatment of disease, also helping in the design of more 
effective medical drugs etc. 
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In this paper we propose a new method to increase the accuracy of classification 
when using the top-down divide and conquer (TDDC) approach for hierarchical 
 classification (as described in section 2). The new method is based on a swarm intel-
ligence algorithm, more precisely a hybrid particle swarm optimisation/ant colony 
optimisation (PSO/ACO) algorithm. 

The remainder of this paper is organised as follows: Section 2 introduces hierarchi-
cal classification. Section 3 describes an approach proposed by Secker at al. [3] for 
improving hierarchical classification accuracy and critiques it. Section 4 describes the 
proposed novel method for hierarchical classification using a swarm intelligence 
(PSO/ACO) algorithm. Section 5 describes experimental set-up. Section 6 describes 
the experimental data from four challenging “real-world” biological data sets and sec-
tion 7 draws conclusions based on the results of the experiments and suggests future 
research directions. 

2   A Brief Review of Hierarchical Classification 

This paper focuses on hierarchical classification problems where the classes to be pre-
dicted are organized in the form of a tree, hereafter referred to as a class tree populated 
by class nodes. An example of a hierarchical classification problem might be the predic-
tion of what species and then breed a pet is. In the first case we wish to known whether 
the given animal is of the class node (species) dog or cat, and in the second case if the 
animal is of the class node (breed) Burmese, British Blue, Jack Russell or Golden Re-
triever. In this paper the species would be considered the first class level and the breed 
the second class level. The TDDC approach is based on the principle that only sibling 
class nodes need be considered at any point in the hierarchical tree. So at the first set of 
sibling class nodes (cat or dog) if we decide cat, then at the second set of class nodes we 
must only decide between the sibling class nodes Burmese or British Blue. Notice that 
this has a major drawback, which is that if the pet is in fact a dog we are guaranteed to 
guess the breed wrong if we predict cat at the first class level. 

 

Fig. 1. A Hierarchical classification problem using the TDDC approach 

This top-down approach has the important advantage of using information associ-
ated with higher-level classes in order to guide the prediction of lower-level classes. 
This has shown to increase accuracy over other basic approaches [4]. For instance, 
(from Figure 1), if class 1.X (where X denotes any digit) is predicted at the first level 
and that class node only has the child nodes 1.1 and 1.2, only these two class nodes 
should be considered and not the children belonging to node 2.X, 2.1 and 2.2. In 
Figure 1 the classifier nodes are shown by the grey boxes. There would be classifiers 
to distinguish between classes 1.X and 2.X, 1.1 and 1.2 etc. It is important to distin-
guish between two conceptually distinct – though clearly related – trees, namely a 
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class tree and a classification tree. In the class tree every node represents a class (to be 
predicted by a classifier). By contrast, in the TDDC tree each node represents a classi-
fier that discriminates between sibling classes. The nodes of a classifier tree are here-
after referred to as classifier nodes. The terms classifier tree and TDDC tree are used 
interchangeably in this paper. 

3   The Greedy Selective Top Down Divide and Conquer Approach 

In the conventional top-down approach for hierarchical classification, in general, the 
same classification algorithm is used for each classifier node. Intuitively, this is a 
suboptimal approach because each classifier node is associated with a different classi-
fication problem – more precisely, a different training set, associated with a different 
set of classes to be predicted. This suggests that the predictive accuracy of the classi-
fier tree can be improved by selecting, at each classifier node, the classification algo-
rithm with best performance in the classification problem associated with each node, 
out of a predefined list of candidate classification algorithms. Indeed it was found in 
[3] by Secker et al. that by varying the classification algorithm at each classifier node 
in the Top-Down Divide and Conquer (TDDC) tree, classification accuracy could, in 
general, be somewhat improved.  

In Secker’s work the training set at each classifier node is divided into two non 
overlapping sub sets, a building set – used to train the classification algorithms – and 
a separate validation set – which is used to assess the predictive accuracy of the mod-
els constructed by the classification algorithms. At every classifier node in the TDDC 
tree, multiple classifiers are built using the building set, each using a different classi-
fication algorithm. The classification accuracy of each of these classifiers is measured 
using the validation set at each classifier node, and then the best classifier (according 
to classification accuracy in the validation set) is chosen. This process is repeated at 
each classifier node to select a set of classifiers to populate the TDDC classification 
tree, which is then used to classify the test instances (unseen during training). A sim-
ple example of a classification tree constructed by this method, showing a different 
classifier chosen at each node, is shown in Figure 2. 

 

Fig. 2. A TDDC tree using classification algorithm selection 

In this way Secker’s work uses a greedy selective approach to try and maximise 
classification accuracy. It is described as greedy because, when it selects a classifier at 
each classifier node, it maximises accuracy only in the current classifier node, using 
local data. Therefore, the greedy selective approach ignores the effect of this local 
selection of a classifier on the entire classifier tree. In other words, this procedure is 
“short sighted”, and so it does not consider the interaction between classifiers at dif-
ferent classifier nodes.  
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Fig. 3. Classifier interaction scenario where 
|B∩C| > |A∩C| 

Fig. 4. Classifier interaction scenario where 
|B∩C| < |A∩C| 

Figures 3 and 4 show two possible scenarios demonstrating interactions between 
classifiers at different classifier nodes during classifier evaluation. A and B are the 
two possible parent classifiers trying to discriminate between classes 1 and 2. C is the 
child classifier that attempts to discriminate between classes 1.1 and 1.2 – as shown in 
Figure 5. Figures 3 and 4 show the sets of correctly classified examples for each clas-
sifier in the TDDC tree. Notice that BAC ∪⊆  for the three classifiers A, B and C. 
This is due to the fact that in the standard TDDC tree once a misclassification has 
been made, by classifiers A or B at the first classifier node, it cannot be rectified by C 
at the child classifier node. 

 

Fig. 5. A class tree used to illustrate the discussion on classifier interaction 

 

As mentioned earlier, the greedy approach chooses the best classifier at each node 
according to the classification accuracy, in the validation set, at that node. In the sce-
narios shown in both Figures 3 and 4 classifier A would be chosen to discriminate 
between classes 1 and 2, as it is more accurate when compared to classifier B, i.e. its 
circle has a bigger area, denoting a greater number of correctly classified examples. 
Let us now discuss how appropriate the choice of classifier A (made by the greedy 
approach) is in each of the different scenarios shown in Figures 3 and 4, taking into 
account the interactions between classifiers A and C, and between B and C, in the 
context of the class tree shown in Figure 5. 

Recall that in the TDDC approach an example is correctly assigned to class 1.1 or 
1.2 if and only if the two following events occur: the example is correctly classified 
by the root classifier (A or B); and the example is correctly classified by classifier C. 
Therefore, the individual accuracy of each classifier is not necessarily the most impor-
tant factor when selecting a candidate classifier; rather it is the number of examples 
correctly classified by both the parent and child classifiers (the intersection between 
their sets of correctly classified examples). In the case of Figure 5, in order to maxi-
mise the classification accuracy at the leaf class nodes 1.1 and 1.2, if |A∩C| > |B∩C| 
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then classifier A should be chosen; if it is not, B should be chosen. For this reason, the 
greedy approach produces a good selection in the case of Figure 4, where |A∩C| > 
|B∩C|. However, the greedy approach would not produce an optimal selection in the 
case of Figure 3. This is due to the fact that although A has a greater area (higher ac-
curacy) in Figure 3, |B∩C| > |A∩C|. 

4   Global Search-Based Classifier Selection with a Particle Swarm 
Optimisation/Ant Colony Optimisation Algorithm 

Given the discussion in the previous section it is quite clear that there is a potential to 
improve the classification accuracy of the entire classifier tree by using a more “intel-
ligent” classifier selector – a classifier selector that (unlike the greedy one) takes into 
account interaction among classifiers at different classifier nodes. As there is an obvi-
ous objective function to be optimised – the classification accuracy of the entire 
TDDC tree on the validation set – and also a collection of elements whose optimal 
combination has to be found – the type of classifier at each classifier node, it seems 
appropriate to use a combinatorial optimisation algorithm.  

We propose to optimise the selection of a classifier at each classifier node with a 
PSO/ACO algorithm, adapted from the PSO/ACO algorithm described in [4] [5]. The 
choice of this algorithm was motivated by the following factors. Firstly PSO/ACO has 
been shown to be an effective classification-rule discovery algorithm [4] [5] across a 
wide variety of data sets involving mainly nominal attributes. Secondly, the 
PSO/ACO algorithm can be naturally adapted to be used as a classifier selector, 
where instead of finding a good combination of attribute-values for a rule, it finds 
good combinations of classifiers for all the nodes of the classifier tree. This is because 
a combination of classifiers is specified by a set of nominal values (types of classifi-
cation algorithms). Due to size restrictions this section assumes the reader is familiar 
with standard PSO [6] and ACO algorithms [7]. 

A hybrid (PSO/ACO) method was developed to discover classification rules from 
categorical (nominal) data [4] [5]. In essence, this algorithm works with a population of 
particles. Each containing multiple pheromone vectors – each pheromone vector is used 
to probabilistically decide which value of a nominal attribute is best in each dimension 
of the problem’s search space. In the original PSO/ACO for discovering classification 
rules these dimensions correspond to predictor attributes of the data being mined, so 
there is one pheromone vector for each nominal attribute. The entries in each individual 
pheromone vector correspond to possible values the attribute can take, and each phero-
mone value denotes the “desirability” of including the corresponding attribute value in a 
rule condition. We now describe in detail how this algorithm was adapted to act as a 
classifier selector, rather than discovering classification rules. 

To optimise the classifier selection at each classifier node the problem must be re-
duced to a set of dimensions and possible values in each dimension. Hence, in the 
proposed PSO/ACO for classifier selection each decoded particle (candidate solution) 
consists of a vector with n components (dimensions), as follows: 

Decoded Particle = w1,w2,…,wn 

Where wd (d=1,..,n) is the classifier selected at the dth classifier node in the TDDC 
tree and n is the number of classifier nodes in the tree. Each wd can take one of the 
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nominal (classifier ids) values c1,..ck where k is the number of different candidate 
classifiers at each node. 

It must also be possible to assess how good an individual solution created from an 
individual particle is. To do this the validation set is classified by the TDDC tree 
composed of the classifiers specified by the particle, and that tree's average classifica-
tion accuracy (the mean of the accuracy from each class level) on the validation set is 
taken. The mean classification accuracy across all the class levels is used as the “fit-
ness” (evaluation) function for evaluating each particle’s quality. 

Note that the only increase in computational time for this approach (over the 
greedy selective approach) is in the time spent classifying examples at each fitness 
evaluation. The classifiers are trained using the same data at each fitness evaluation 
and so can be cached and reused without the need for retraining. 

Initialize population 
REPEAT for MaxInterations 

FOR every particle P 
/* Classifier Selection */ 
FOR every dimension w

d
 in P 

Use fitness proportional selection on pheromone vector 
corresponding to w

d
 to choose which state (classifier 

id) c
1
,..c

k 
should be chosen for this w

d 

END FOR 
Construct a classifier tree by using the classifiers se-
lected from the particle's pheromone vectors 
Calculate fitness F of this set of classifiers w

1
,..w

n 

/* Set the past best position */ 
IF F > P’s best past combination’s (P

b
) fitness F

b 

F
b
= F 

P
b
 = the current combination of classifiers w

1
,..w

n 

END IF 
END FOR 
FOR every particle P 

Find P’s best Neighbour Particle N according to each 
neighbour’s best fitness (F

b
)
 

FOR every dimension w
d
 in P 

/* Pheromone updating procedure */ 
f = N's best fitness F

b 

y = N's best state P
b 
in dimension d 

/* Add an amount of pheromone proportional to f to the 
pheromone entry for particle P corresponding to y (the 
best position held by P's best Neighbour) */ 
τpdy= τpdy + (f  × á) 
Normalize τpd 

END FOR 
END FOR 

END REPEAT 

Pseudocode 1. The Hybrid PSO/ACO Algorithm for Classifier Selection 

Pseudocode 1 shows the hybrid PSO/ACO algorithm for classifier selection. At 
each iteration each pheromone vector for each particle produces a state in a probabil-
istic manner. That is, the probability of choosing a given classifier (c1,..ck) for a given 
classifier node (w1,..wn) is proportional to the amount of pheromone (a number be-
tween 0 and 1) in the corresponding entry in the corresponding pheromone vector 
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(τpd is the pheromone vector corresponding to particle P and classifier node d), see 
Figure 6. More precisely, the selection of a classifier at each classifier node is imple-
mented by a fitness proportional (roulette-wheel) selection mechanism [8]. 

 

Fig. 6. An encoded particle with n dimensions, each with k classifier ids 

Figure 6 shows an encoded particle P. Each section labelled c1,c2,..ck (in each di-
mension w1,w2,..,wn) represents an amount of pheromone. The probability of choosing 
each classifier ci (i=1,..,k) in each dimension wd (d=1,..,n) is proportional to the 
amount of pheromone (τ) in the corresponding pheromone entry τpdi. 

The “decoded” state is then evaluated, and if it is better than the previous personal 
best state (Pb), it is set as the personal best state for the particle. A particle finds its 
best neighbour (N) according to the fitness of each neighbour's best state (Pb). In this 
paper the particles are arranged in a Von-Neumann topology [6], so that each particle 
has four neighbours. 

A slightly different pheromone updating approach is taken with the PSO/ACO al-
gorithm for classifier selection when compared to the PSO/ACO algorithm for rule 
discovery. As detailed in the pheromone updating procedure in Pseudocode 1, the 
approach simply consists of adding an amount of pheromone proportional to f to the 
pheromone entry corresponding to τpdy. Where f is the fitness of the best neighbour's 
best state, y is the best neighbour’s best state (c1,..ck) in the particular dimension d 
(w1,..wn) and P is the current particle. Although not used in this paper the amount of 
pheromone added can be modified to slow down (or speed up) convergence, this is 
achieved using the constant á. The closer this constant is set to 0 the slower the con-
vergence achieved. The pheromone vectors are normalised after pheromone has been 
added, so that the pheromone entries of each pheromone vector add up to 1. 

5   Experimental Setup 

5.1   Bioinformatics Data Sets 

The hierarchical classification methods discussed above were evaluated in four chal-
lenging datasets involving the prediction of protein function. The protein functional 
classes to be predicted in these data sets are the functional classes of GPCRs 
(G-Protein-Coupled Receptors). GPCRs  [9] are proteins involved in signalling. They 
span cell walls so that they influence the chemistry inside the cell by sensing the 
chemistry outside the cell. More specifically, when a ligand (a substance that binds to 
a protein) is received by the part of the GPCR on the outside of the cell, it (usually) 
causes an attached G-protein to activate and detach. GPCRs are very important for 
medical applications because 40%-50% of current drugs target GPCR activity [9]. 



 Improving the Performance of Hierarchical Classification with Swarm Intelligence 55 

Predicting GPCR function is particularly difficult because the types of function GPCRs 
facilitate are extremely varied, from detecting light to managing brain chemistry. 

The GPCR functional classes are given unique hierarchical indexes by [10]. The 
GPCRs, examples (proteins) have up to 5 class levels, but only 4 levels are used in the 
datasets created in this work, as the data in the 5th level is too sparse for training – 
i.e., in general there are too few examples of each class at the 5th level. In any case, it 
should be noted that predicting all the first four levels of GPCR’s classes is already a 
challenging task. Indeed, most works on the classification of GPCRs limit the predic-
tions to just one or two of the topmost class [11], [12], [13], [14]. 

The data sets used in our experiments were constructed from data in UniProt [15] 
and GPCRDB [10]. UniProt is a well known biological database, containing sequence 
data and a rich annotation about a large number of proteins. It also has cross-
references for other major biological databases. It was extensively used in this work 
as a source of data for creating our data sets. Only the UniProtKB/Swiss-Prot was 
used as a data source, as it contains a higher quality, manually annotated set of pro-
teins. Unlike Uniprot, GPCRDB is a database specialised on GPCR proteins. 

We performed experiments with four different kinds of predictor attributes, each of 
them representing a kind of “protein signature”, or “motif”, namely: FingerPrints 
from the Prints [17] database, Prosite patterns [16], Pfam [18] and Interpro entries 
[19]. The four GPCR data sets each use predictor attributes from one of either the 
Prints, Prosite, Interpro or Pfam databases. They also contain two additional attrib-
utes, namely the protein's molecular weight and sequence length. 

Any duplicate examples (proteins) in a data set are removed in a pre-processing 
step, i.e., before the hierarchical classification algorithm is run, to avoid redundancy. 
If there are fewer than 10 examples in any given class in the class tree that class is 
merged with its parent class. If the parent class is the root node, the entire small class 
is removed from the data set. This process ensures there is enough training and test 
data per class to carry out the experiments. (If a class had less than 10 examples, dur-
ing the 10-fold cross-validation procedure there would be at least one iteration where 
there would be no example of that class in the test set). 

After data pre-processing, the final datasets used in the experiments have the num-
bers of attributes, examples (proteins) and classes per level (expressed as level 1/ 
level 2/level 3/level 4) indicated in Table 1.  

Table 1. Main characteristics of the datasets used in the experiments 

 GPCR/Prints GPCR/Prosite GPCR/Interpro GPCR/Pfam 

#Attributes 283 129 450 77 

#Examples 5422 6261 7461 7077 

#Classes 8/46/76/49 9/50/79/49 12/54/82/50 12/52/79/49 

5.2   Data Set Partitioning and Algorithmic Details 

The data sets were split into two main subsets at each iteration of the 10-fold cross valida-
tion process, one test set and one training set. The test set is used to assess the performance 
of the approach in question; therefore the true class of each test example remains unseen 
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during the training process, only to be revealed to measure the predictive accuracy of the 
approach. The training set is split into a further two subsets. Firstly 75% of the training set 
was used as the building set; this building set is used to train the classifiers. Secondly the 
validation set, which consists of the remaining 25% of the training examples. The valida-
tion set is used to compute the quality of the classifiers, and so particle fitness in the 
PSO/ACO algorithm. After the best solution (according to accuracy in the validation set) 
has been found in a single PSO/ACO run, the classifiers at every classifier node specified 
in that best particle are trained using the entire training set. This procedure attempts to 
maximise the individual classifier’s accuracy and so the final accuracy in the test set. 

As a baseline it is important to evaluate the proposed method by comparing its pre-
dictive accuracy with the predictive accuracy of the greedy selective top-down ap-
proach. The baseline should also include each of the individual classification algorithms 
used in the greedy selective top-down approach. Therefore the first experiments are to 
build standard TDDC trees using one type of classification algorithm throughout.  

The classification algorithms used in the experiments presented in this paper were 
implementations from the WEKA [20] package. These algorithms were chosen to 
include a diverse set of paradigms, while having high computational efficiency: 

• HyperPipes is a very simple algorithm that constructs a “hyperpipe” for every class 
in the data set; each hyperpipe contains each attribute-value found in the examples 
from the class it was built to cover. An example is classified by finding which hy-
perpipe covers it the best. 

• NaiveBayes uses Bayes' theorem to predict which class an example most likely 
belongs to, it is naïve because it assumes attribute independence. 

• J48 is a decision tree algorithm, being WEKA's modified version of the very well 
known C4.5 algorithm.  

• ConjunctiveRule is another very simple algorithm that only produces two rules to 
classify the entire data set. A “default” rule is produced that predicts the class with 
the greatest numbers of records in the training set. The other rule is constructed us-
ing information gain to select attribute-values for the antecedent. 

• BayesNet uses a Bayesian network to classify examples and can theoretically com-
pletely take into account attribute dependency.  

Although some of these algorithms are clearly more advanced than the others, all 
were selected for some classifier nodes by the classifier selection method (greedy 
approach or PSO/ACO) during training, confirming that all of them perform best in 
certain circumstances. All experiments were performed using 10-fold cross validation 
[20] with á set to 1 for the PSO/ACO algorithm. 

6   Computational Results 

The predictive accuracy for each method (the five baseline clasifiers used thoughout the 
TDDC tree, the greedy and PSO/AOCO methods for classifier selection) are shown in 
Tables 2 through 5 for each dataset. The values after the “±” symbol are standard devia-
tions (calculated using the WEKA statistics classes). Tables 2 through 5 are shown for 
the sake of completeness, but, to simplify the analysis (and due to paper size restric-
tions) we focus mainly on a summary of the results (Table 6). Table 6 shows the 
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summary of the number of cases where there is a statistically significant difference in 
the predictive accuracy of the 2 methods according to the WEKA corrected two-tailed 
student t-test (with a significance level 1%). Each cell shows the number of times the 
labelled approach (Greedy or PSO/ACO) significantly beats the baseline classification 
algorithm (HP – HyperPipes, NB – NaiveBayes, CR – ConjunctiveRule, BN – Bayes-
Net), in each data across all four class levels. Totals across all data sets are shown at the 
bottom of the table. 

Table 2. Percentage accuracy for each approach in the Prints data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 90.76±0.34 76.79±0.55 49.99±1.1 75.42±2.11 
NaiveBayes 87.74±0.71 72.72±1.11 41.3±0.99 63.85±1.89 
J48 91.68±0.51 83.35±1.0 58.34±1.26 85.14±1.8 
ConjunctiveRule 80.16±0.31 49.63±0.46 17.03±0.84 24.8±0.87 
BayesNet 88.34±1.39 77.41±1.25 48.0±0.93 74.53±2.94 
Greedy 91.68±0.51 83.06±0.88 58.21±1.23 84.66±2.09 
PSO/ACO 91.59±0.52 82.67±1.13 57.99±1.52 84.8±2.34 

 

Table 3. Percentage accuracy for each approach in the Interpro data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 83.74±1.14 73.77±1.01 48.21±0.95 82.62±2.5 
NaiveBayes 87.88±0.59 74.78±0.78 38.59±1.07 51.25±1.85 
J48 90.36±0.34 80.68±0.66 51.06±0.93 79.86±2.68 
ConjunctiveRule 73.68±0.18 47.73±0.48 17.76±0.47 24.84±0.68 
BayesNet 89.18±0.67 78.99±0.83 46.4±0.94 67.3±2.62 
Greedy 90.36±0.34 80.41±0.81 54.36±1.33 83.58±2.46 
PSO/ACO 90.36±0.34 80.4±0.78 54.43±1.27 84.24±2.27 

 

Table 4. Percentage accuracy for each approach in the Pfam data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 92.02±0.44 25.4±0.75 9.8±0.82 4.58±1.22 
NaiveBayes 89.59±0.72 59.23±1.41 19.6±1.43 16.27±2.39 
J48 92.98±0.48 70.77±1.39 37.03±1.07 48.97±3.98 
ConjunctiveRule 75.55±0.13 51.4±0.53 13.49±2.0 6.97±4.63 
BayesNet 90.35±1.1 62.7±1.45 23.25±1.46 23.43±2.42 
Greedy 92.98±0.48 70.54±1.29 36.97±1.2 48.24±3.55 
PSO/ACO 92.98±0.48 70.5±1.35 36.97±1.21 48.5±3.58 
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Table 5. Percentage accuracy for each approach in the Prosite data set 

Percentage accuracy at each level in the class hierarchy 
TDDC Type 

1st  2nd   3rd  4th 
HyperPipes 82.14±0.71 46.03±1.28 23.1±1.62 32.16±2.82 
NaiveBayes 85.34±1.14 60.63±1.25 24.86±1.3 23.94±2.11 
J48 84.71±0.57 61.02±1.12 29.31±1.63 39.58±3.35 
ConjunctiveRule 78.68±0.15 41.38±0.25 14.79±0.45 10.0±0.89 
BayesNet 85.93±0.88 62.17±1.06 26.68±1.35 31.14±2.47 
Greedy 85.93±0.88 62.54±0.91 31.46±1.25 40.73±4.21 
PSO/ACO 85.93±0.88 62.8±1.33 32.18±1.48 43.11±3.71 

Table 6. Summation of the number of statistically significant resutlts 

Classification Algorithm 
Dataset  

Classif. Selection 
Approach HP NB J48 CR BN 

Greedy Selective 4 4 0 4 4 
GPCR/Prints 

PSO/ACO 4 4 0 4 4 

Greedy Selective 3 4 1 4 4 
GPCR/InterPro 

PSO/ACO 3 4 2 4 4 

Greedy Selective 4 4 0 4 4 
GPCR/Pfam 

PSO/ACO 4 4 0 4 4 

Greedy Selective 4 2 1 4 2 
GPCR/Prosite 

PSO/ACO 4 3 3 4 2 

Greedy Selective 15 14 2 16 14 
Totals  

PSO/ACO 15 15 5 16 14 
 

Both the greedy and PSO/ACO approach for classifier selection were very success-
ful in improving predictive accuracy with respect to four of the base classification 
algorithms (HP, NB, CR, BN), as shown by the totals in Table 6. These two ap-
proaches were less successful in improving accuracy with respect to J48, but even in 
this case the classifier selection approaches improved upon J48’s accuracy several 
times, whilst never decreasing upon J48’s accuracy. 

The PSO/ACO classifier selection approach significantly improves upon the per-
formance of the greedy approach in four cases overall. PSO/ACO improves on the 
performance of J48 in five cases, three more than the greedy approach. These im-
provements are in the third and fourth level of the Prosite dataset and there is also an 
improvement in the InterPro dataset at the fourth level. As J48 is the hardest classifi-
cation algorithm to beat, these results show the most difference. However, the 
PSO/ACO algorithm also scores better against NaiveBayes when compared to the 
greedy approach in one case – in the Prosite dataset at the second class level. 

The results imply that both the PSO/ACO algorithm and greedy approaches benefit 
more from more “difficult” data sets. The data set in which the base classification 
algorithms perform worst is the Prosite data set. This data set also yields the biggest 
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improvement in accuracies when using the greedy (1 significant win over J48), and 
more so the PSO/ACO (3 significant wins over J48) approach. Indeed for either of 
these approaches to increase predictive accuracy above that of a base classifier, the 
base classifier must make an error that is not made by another base classifier. The 
more mistakes made by a certain classification algorithm (due to a more difficult data 
set) the higher the probability of another classification algorithm not making the same 
set of mistakes. Furthermore, it was observed that overfitting is sometimes a limiting 
factor with the PSO/ACO approach, since increases in validation set accuracy (over 
the baseline classification algorithms) did not always result in a similar increase in 
test set accuracy. 

7   Conclusions and Future Research 

Our experiments show that both the greedy and PSO/ACO approaches for classifier 
selection significantly improve predictive accuracy over the use of a single fixed algo-
rithm throughout the classifier tree, in the majority of cases involving our data sets. 
Overall, the PSO/ACO approach was somewhat more successful (significantly better 
in four cases) than the greedy approach. We believe that the use of a more advanced 
approach (as discussed in this paper) is more appropriate in more difficult data sets, 
where classification algorithms are more likely to make mistakes. Estimating a priori 
how likely a classification algorithm is to make a mistake is an open problem and this 
topic is left for future research. In this work the proposed PSO/ACO was compared 
only with Secker et al’s greedy selective approach, so one direction for future re-
search is to compare the PSO/ACO with another population-based meta-heuristics for 
optimisation, e.g. evolutionary algorithms. 
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Abstract. Many processes in the cell involve interaction among the
proteins and determination of the networks of such interactions is of im-
mense importance towards the complete understanding of cellular func-
tions. As the experimental techniques for this purpose are expensive
and potentially erroneous, there are many computational methods being
put forward for prediction of protein-protein interactions. These meth-
ods use different genomic features for indirect inference of protein- pro-
tein interactions. As the interaction among two proteins is facilitated
by domains, there are many methods being put forward for inference
of such interactions using the specificity of assignment of domains to
proteins. We present here an heuristic optimization method, particle
swarm optimization, which predicts protein-protein interaction by using
the domain assignments information. Results are compared with another
known method which predicts domain interactions by casting the prob-
lem of interactions inference as a maximum satisfiability (MAX-SAT)
problem.

1 Introduction

Computational inference of protein-protein interactions is an interesting and
challenging area of research in modern biology. Computational methods infer
potential interactions using one or more genomic features related to the protein
pairs as predictor attributes. Many genomic experiments have produced some
high quality information regarding genes/proteins which is not directly related
to their interaction but could potentially be used for such a purpose.

Many computational methods use a single type of genomic data to predict pro-
tein interactions,e.g, using similarity in phylogenetic profiles, gene fusion meth-
ods, or the hypothesis involving co-expression or co-localization of interacting
partners. Other methods integrate different genomic features using a variety of
machine learning methods to infer new protein-protein interactions. In [1,2,3],
one can find a few recent reviews regarding experimental and computational
methods for protein-protein interaction prediction.

An important area under focus in many research projects is to infer protein
interactions by looking at their domain compositions. Domains are evolution-
arily conserved sequence units which are believed to be the responsible for the
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interactions among the proteins to which they belong. There are many different
methods which infer protein interactions using information on their domain com-
position. A protein pair is thought to be physically interacting if at least one of
their constituent domain pair interacts. Most of the proteins in organisms like S.
Cerevisiae are assigned one or more domains and information about the domains
pairs in high confidence experimentally determined protein interaction data sets
can be used to infer domain-domain and hence, protein-protein interaction. As
there are no specific domain interaction data available, many methods have been
developed for finding potential domain interaction from available experimentally
determined high confidence protein-protein interaction datasets and then that
information is used to predict back the novel protein-protein interactions as well
[4,5,6,7]. In other words, these methods infer domain-domain interactions from
protein protein interactions and use these inferred domain interactions to pre-
dict new protein-protein interactions, given the composition of domains in those
proteins.

In a recent work [8,9], a combinatorial approach is proposed for the inference
of protein interactions using domain information. In the framework they use, this
inference problem is presented as a satisfiability (more precisely MAX-SAT) prob-
lem, as explained in detail in Section 2, which is then solved using linear program-
ming method by relaxing some of constraints of the original MAX-SAT problem.

In this work we propose the use of particle swarm optimization to solve this
maximum satisfiability problem, using the problem formulation based on the
one originally proposed in [8] and we also implement the technique employed by
them to compare the results. Particle swarm optimization (PSO) is a population
based heuristic optimization technique [10,11], inspired by the social behavior of
bird flocking or fish schooling [13]. It has been successfully used for optimizing
high dimensional complex functions, mostly in continuous application domains.
A good recent review about the different developments and applications on PSO
can be found in [14].

This paper is organized as following. Section 2 details the formulation of the
protein interaction problem into a MAX-SAT problem, as it is done originally
in [8]. Section 3 proposes the use of a Particle Swarm Optimization algorithm
(PSO) for this problem and discusses the related design issues for the use of PSO.
In section 4, data sets about the domain assignments and protein interactions
used in the experiments are described, and computational results are reported.
Finally, Section 5 concludes the paper.

2 Protein Interaction Inference as MAXSAT Problem

We follow the problem formulation as is done in [8,9], based on the hypothesis
that a protein pair is interacting if and only if at least one pair of their domains
(one from each protein) interact and non-interacting otherwise. We denote P =
{p1, p2, ..., pM} as a set of proteins, D = {d1, d2, ..., dN} as a set of domains and
Ωij as the set of unique domain pairs contained in a protein pair (pi, pj). Let us
consider two variables defining protein-protein and domain-domain interactions
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Pij =
{

1 if proteins pi and pj interact
0 Otherwise

Dnm =
{

1 if domains dn and dm interact
0 Otherwise

Given the domain-domain interactions, we can predict the protein pairs inter-
acting or non-interacting depending upon their corresponding domain pairs as:

P ′
ij =

∨

dnm∈Ωij

Dnm (1)

Where the true outcome of this logical operation means the corresponding pro-
tein pair is interacting (i.e, 1) and false means non-interacting (i.e., 0). Using this
relationship one needs to find the best assignment of 1’s and 0’s to the domain
variables which best represents the data, i.e., a SAT (satisfiability) assignment
satisfying all interacting and non-interacting protein pairs. As we know there are
many false positives and false negatives in experimental data, such an assign-
ment is not possible to find, so we will look for an assignment which satisfies the
maximum number of relationships (clauses), which is known as the MAX-SAT
problem. These problems are very difficult to solve in general and their exact
solutions are not possible in general. This problem is solved in [8] using lin-
ear programming by relaxing some of the constraints as described in equations
2 and 3. The following linear program was formulated by relaxing the binary
constraints on the variables.

Minimize
∑

ij

|Pij − P ′
ij |

Subject To:
∑

dnm∈Ωij

Dnm ≥ Pij ∀(i, j) (2)

0 ≤ P ′
ij ≤ 1 ∀(i, j)

0 ≤ Dnm ≤ 1 ∀(n, m)

Pij is 1 or 0 if the two proteins pi and pj interact or not respectively, according
to experimental data. Equation 2 can also be expressed in the following form.

Minimize
∑

Pij=0

P ′
ij −

∑

Pij=1

P ′
ij

Subject To:
∑

dnm∈Ωij

Dnm ≥ Pij ∀(i, j) (3)

0 ≤ P ′
ij ≤ 1 ∀(i, j)

0 ≤ Dnm ≤ 1 ∀(n, m)

The real values obtained for variables P ′
ij and Dnm after optimization represent

the probabilities of they taking the integer value 1, and a threshold can be used
to convert them back to binary.
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3 Binary Particle Swarm Optimization Algorithm for
Inference of Protein Interactions

Particle swarm optimization (PSO) is a population-based stochastic optimization
technique developed by Eberhart and Kennedy in 1995 [10,11,12], inspired by
the social behaviour of bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such
as Genetic Algorithms (GA). The system is initialized with a population of ran-
dom solutions (particles) and searches for optima of the given objective function
by iteratively updating the positions of those particles. However, unlike GA,
PSO has no genetic operators such as crossover and mutation. In PSO, the
potential solutions, called particles, fly through the problem space as they are
attracted by the other particle positions in the neighbourhood representing good
quality candidate solutions. An individual’s neighbourhood may be defined in
several ways,configuring somehow the “social network” of the individual. Several
neighbourhood topologies exist (full, ring, star, etc.) depending on whether an
individual interacts with all, some, or only one of the rest of the population.

PSO has shown promising results on many applications, especially contin-
uous function optimisation. A good recent review of relevant research in this
area can found in [14]. The basic idea of the proposed work here is to extend
the application of PSO to a more challenging real world problem, namely the
inference of protein interactions, which can be framed as an optimization prob-
lem (as discussed in section 2) given the assignment of domains to the proteins,
where the goal is to find the network of interactions that best explains the given
experimental dataset.

In the Binary version of PSO individual components of a candidate solution
(particle) are not real valued, rather 1 or 0, and velocity is interpreted as pro-
portional likelihood, which is used in the logistic function to generate a particle’s
binary positions, i.e.

vt+1
id = w ∗ vt

id + c1 ∗ φ1 ∗ (pt
id − xt

id) + c2 ∗ φ2 ∗ (pt
gd − xt

id) (4)

xt+1
id = 1 if φ3 <

1

1 + e−k∗vt+1
id

else 0 (5)

Where xid ∈ {0, 1} is the value for the dth dimention of particle i and vid is the
velocity, which is clamped between to a maximum value, |Vmax|. pid and pgd are
the best positions in the dth dimenstion of particle i and its neighbourhood’s
best particle g respectively. t is the iteration index, and w is the inertia weight,
determining how much of the previous velocity of the particle is preserved. This
plays the role of balancing the global and local search ability of PSO [15]. Pa-
rameter k in the logistic function is a positive constant which controls the shape
of the curve. c1, c2 are two positive acceleration constants while φ1, φ2 and φ3 are
three uniform random numbers sampled from U(0, 1). For the velocity update
equation, in terms of social psychology as a metaphor, the second part of the
right hand side of the velocity update equation represents the private thinking by
itself; the third part is the social part, which represents the cooperation among
the individuals.
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3.1 Solution Representation and Objective function

Each particle represents a candidate solution to the inference problem. The po-
sition vector of particle m is Xm = {dij} where index ij runs over all unique
domains pairs in the data, i.e, a particle consists of a binary string where each
bit refers to a distinct unique domain pair in the training data. These are the
bits which the particle will try to optimise during the course of evolution by
updating its velocity and position according to equations 4 and 5, by interacting
with its neighbourhood. The gbest version of binary PSO is used for these exper-
iments. Each protein pair expressed in terms of its constituent domain pairs is a
clause from the point of view of logic. The objective is to maximize the number
of satisfied clauses or equivalently minimize the number of unsatisfied clauses.
Let us define a variable P ′

ij for each protein pair (pi, pj) to indicate whether
it is predicted interacting or not according to the given assignment of domain
pairs by some particle (solution). The objective function can be expressed as a
minimization problem.

Min f =
∑

ij

| Pij − P ′
ij |

Such that P ′
ij =

∨

dnm∈Ωij

Dnm (6)

4 Experimental Design and Results

4.1 Protein-Protein Interaction and Domain Assignment Data

We obtained domain assignments from SUPERFAMILY data base [16,17]. Su-
perfamily database is a library of Hidden Markov Models that represents all
proteins of known structure. These models are used to annotate the sequence of
over 50 genomes. For S. Cerevisiae organism there exists 3346 sequences with
at least one domain assignment, which is about 50% of the total sequences. In
total 4681 domains are assigned, and there are 685 superfamily domains with at
least one assignment.

We obtained the sS. Cerevisiae interaction data set from DIP (Data base
of Interacting Proteins [18]). We obtained nearly 5000 high confidence positive
interaction in DIP which is a subset of experimentally determined interaction
in DIP, called CORE. Negative interactions are hard to find. As used by many
researchers in this field (e.g. [20],[21]), we use protein pairs being defined as non-
interacting if they are not in same cellular compartment. This gives us many
hundreds of thousand of protein pairs which are not co-localized. This is a huge
data set compared with the number of positives, so we randomly sample some
negatives from this pool of possible negatives, in order to obtain a more bal-
anced class distribution for the classification algorithm. Then we only want to
keep those positive or negative pairs which have at least one domain assignment
for each protein in the pair in the superfamily database, as there are some pro-
teins which do not have any significant domain assignment. This process reduces
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our data set of positive interactions to 3070 pairs. We also created two sets of
negative examples, one with the same number of negative examples (protein
pairs) as the number of positive examples, i.e., 3070, while the other with 4000
negatives. In our experiments, we will call the first dataset containing 3070 pos-
itive interactions and 3070 negative interactions as data1, while the other data
set contraining 3070 positive interactions and 4000 negative interactions will be
called as data2.

4.2 PSO Parameters

We rely on the standard PSO parameters settings [13]. The two constants c1

and c2 are set to 2.0, while parameter k in the logistic function is set to 5.0.
Maximum velocity (Vmax) is set to 4.0 and individual particle’s velocities in each
dimension are initialized uniformly between −Vmax and +Vmax. An important
issue regarding the initialization of swarm is analyzed in detail.

PSO Initialization: A Data-Driven Approach. We have to decide a start-
ing configuration for PSO, e.g., the probability of a particle taking the value 1
(or 0) in each dimension, for all particles in the swarm. Usually the population
in PSO is initialized completely randomly, but PSO has dependance on initial
conditions (in this case, how many 1’s or 0’s we put into the system at the start).
Hence, one needs to find an objective and consistent way to decide the initial
configuration,i.e., initial number of 1’s (or zeros for that matter) in the system.

In our case, one solution to this issue is to use the domain assignment in-
formation apriori to calculate the initialization probability (of being 1 or 0) for
each domain separately, and use that to probabilistically assign 1 or 0 value to
all the domain pair variables, that is, for every domain pair ij, we calculate the
counts of being in interacting protein pairs and non-interacting protein pairs,
denoted Cij

p and Cij
n respectively. We have the probability of being in state 1

given by Eq. 7.

Fij =
Cij

p

(Cij
p + Cij

n )
(7)

Now for each domain pair ij, we generate a random number r from a uniform
probability distribution U(0, 1). If this number is less than Fij , we assign 1 to
that domain else 0. We use this scheme for all the experiments done using PSO.

4.3 Cross-Validation: Predicting Domain-Domain Interactions

In order to solve the linear program formulated in equation 4, as originally done
in [8], we used GNU Linear Programming Kit [19](version 4.7). We used the
interior point method which is a polynomial time linear programming algorithm
within GNU Linear Programming Kit. The P ′

ij values for protein pair i, j are
calculated by summing over all domain pair variables Dnm ∈ Ωij and dividing
by the number of domain pairs each protein pair contains in order to keep it
within the bounds set in the linear program in equation 3. Since the variables
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Dnm are not binary now, we used a threshold of 0.6 to convert them back to
binary form, in accordance with the original work.

An important observation about our data sets is that many of the domain
pairs occur either in positive protein pairs or negatives protein pairs only. This
probably has something to do with our composition of the negative data. So, in
the case of PSO, we in fact exclude those domain pairs from the PSO update
process, i.e., they are fixed as either zero or one, depending upon which class
of protein pairs they occur, but indeed they are included while evaluating the
objective function in equation 6. This does not affect the prediction accuracy,
but it greatly improves the running time of the algorithm, since the algorithm
has fewer unknown variables to optimize.

For both data sets, we do a 10-fold cross validation procedure. For each ex-
periment, we divide the data (for both positive and negative classes separately)
randomly in ten equal folds. Each time we use nine out of ten folds as training
and the remaining one fold as a test. This process is repeated ten times each
time using a different fold as the test set. For data1 in the Tables 1 and 2, we
used 100 particles and PSO was allowed to run for 500 iterations, while in the
case of data2, the number of iterations was increased to 1000.

For each of the 10 iterations of cross-validation procedure, we infer the domain
pair interactions from the training set and use those interactions to predict
protein pair interactions in the test set by using the relationship in equation 1,
which can also be expressed in the following algebraic form.

P ′
ij = 1−

∏

dnm∈Ωij

(1−Dnm) (8)

Tables 1 and 2 report the average results over all 10 cross-validation folds
with corresponding standard deviations, for both datasets corresponding to the
particle swarm optimization algorithm as well as the linear programming method
(referred as LP in tables) respectively. TPR in the tables is defined as true
positives over total number of positives and FPR is defined as false positives
over total number of negatives in the data. Sensitivity is the same as TPR while

Table 1. Results for prediction of protein-protein interactions on test data, data1

Method No. of 1’s Accuracy TPR FPR Sensitivity*Specifity

PSO 1875 ± 11.06 0.826 ± 0.02 0.889 ± 0.015 0.289 ± 0.038 0.63±0.039

LP 1985 ± 9.68 0.81 ± 0.016 0.95 ± 0.01 0.45 ± 0.04 0.52±0.039

Table 2. Results for prediction of protein-protein interactions on test data, data2

Method No. of 1’s Accuracy TPR FPR Sensitivity*Specifity

PSO 1823 ± 13.32 0.81 ± 0.012 0.859 ± 0.017 0.253 ± 0.017 0.64±0.18

LP 1956 ± 13.42 0.78 ± 0.013 0.938 ± 0.014 0.437 ± 0.015 0.53±0.02
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Fig. 1. Ratio of true positive rate and false positive rate for different folds of data1

Specificity is defined as 1−FPR. The performance of both methods is reported
in terms of accuracy of prediction on test data, their corresponding true and
false positive rates as well as the number of domain pairs predicted interacting
(column “No. of 1’s” in the tables). Protein pairs in test data which do not
contain any domain pair from the training data were removed.

We can see from the Tables 1 and 2 that PSO produced better and more
balanced results with a much lower rate of false positives. Results with two data
sets, i.e., when we increase the proportion of negative examples from data1 to
data2, are not much different in the case of PSO, while they are significantly
different in the case of the linear programming method. A statistical significance
test (more precisely, a two-tailed student’s t-test) was performed using the accu-
racy of both methods, and we obtained P-values for the paired t-test as 0.00073
and 0.0000026 at 95% confidence level corresponding to data1 and data2 respec-
tively. The most probable explanation for these differences lies in the definition
of the linear program in equation 3, which relaxes the constraint which eventu-
ally favours the positive interactions, hence much more false positive predictions.
Fig. 1 shows the comparison between the two methods according to the true pos-
itive rate over false positive rate (TPR/FPR) for different folds (for data1). A
qualitatively similar situation occurs for data2, and those results are not shown
here for the sake of simplicity.
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5 Conclusions

In this work, we have addressed an important bioinformatics problem, namely,
the prediction of protein-protein interactions using information on their domain
assignments. Particle swarm optimization is a relatively recent but very sucessful
method in different optimization problems, but so far it has never been evaluated
in the type of bionformatics problem addressed here. The problem has been cast
as a combinatorial optimization problem, which allowed us to propose a novel
use for a binary PSO algorithm. We have compared results with a known method
which solve the same problem using linear programming techniques. Compara-
tive results in terms of predictive accuracy on test data (unseen during training)
show that PSO is a competitive optimizer in an application domain involving
binary variables as well. We show that PSO not just achieves significantly better
predictive accuracy overall but also reduces the false positive predictions.

As far as the prediction of protein-protein interaction in general is concerned,
domain information might not be enough to determine completely the protein
interactions, due to other possible factors. As a future research direction, it will
be worth integrating this information with other features like RNA co-expression,
etc., and to use data mining techniques for finding some associations between
them which can be helpful in further understanding the mechanisms of protein
and domain interactions.
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Abstract. Advances in modern technologies for measuring protein-
protein interaction (PPI) has boosted research in PPI networks anal-
ysis and comparison. One of the challenging problems in comparative
analysis of PPI networks is the comparison of networks across species for
discovering conserved modules. Approaches for this task generally merge
the considered networks into one new weighted graph, called alignment
graph, which describes how interaction between each pair of proteins is
preserved in different networks. The problem of finding conserved pro-
tein complexes across species is then transformed into the problem of
searching the alignment graph for subnetworks whose weights satisfy
a given constraint. Because the latter problem is computationally in-
tractable, generally greedy techniques are used. In this paper we pro-
pose an alternative approach for this task. First, we use a technique we
recently introduced for dividing PPI networks into small subnets which
are likely to contain conserved modules. Next, we perform network align-
ment on pairs of resulting subnets from different species, and apply an
exact search algorithm iteratively on each alignment graph, each time
changing the constraint based on the weight of the solution found in the
previous iteration. Results of experiments show that this method discov-
ers multiple accurate conserved modules, and can be used for refining
state-of-the-art algorithms for comparative network analysis.

Keywords: Biological networks alignment, optimization.

1 Introduction

With the recent advances in modern technologies for measuring protein-protein
interaction, an exponential increase of data on protein-protein interactions has
been generated. Data on thousands of interactions in human and most model
species have become available (e.g. [1,2]). Graph-representation of PPI interac-
tion of proteins provides a powerful tool for analyzing and understanding mod-
ular organization of cells, for predicting biological functions and for providing
insight into a variety of biochemical processes. Recent studies consider a compar-
ative approach for the analysis of PPI networks from different species in order
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to discover common protein groups which are likely to share relevant functions
[3,4,5]. In particular, this problem is called pairwise network alignment when two
PPI networks are considered. Algorithms for this problem generally construct
a merged weighted graph representation of the two networks, called alignment
(or orthology) graph, which describes how interaction between each pair of pro-
teins is preserved in different networks. The problem of finding conserved protein
complexes across species is then transformed into the problem of searching the
alignment graph for subnetworks whose weights satisfy a given constraint. Due
to the computational intractability of such problem, greedy algorithms are com-
monly used [6,7]. Conserved modules, discovered by computational techniques
such as [6], have in general small size compared to the size of the PPI network
they belong to. Moreover, as indicated by recent studies, hubs whose removal
disconnects the PPI network (articulation hubs) are likely to appear in conserved
interaction patterns [8,9]. Based on these motivation, in [10] we introduced an
algorithm, called DivA for dividing a pair of PPI networks into small subnets
which are expected to cover conserved modules, with the goal of performing
modular network alignment. We used this algorithm for performing network al-
ginment in a modular way, by merging pairs of resulting subnets from different
species, and then applying an exact optimization algorithm for finding the heav-
iest subgraph of a weighted graph. Application of this algorithm generates one
solution for each alignment subnet. In this paper we propose an extension of this
search algorithm which allows to detect an higher number of conserved modules
of biological interest. Specifically, the idea is to modify the exact search algo-
rithm for finding the heaviest subgraph of an alignment network, by introducing
an upper bound on the maximum weight of the subgraph to be found. Iterated
runs of this constrained algorithm are performed, with different values of the
upper bound generated at each iteration using the weight of the solution found
in the previous iteration. We call this search approach full-search. In this way
multiple subnets of the alignment network are discovered. The resulting method,
called DivAfull, divides each PPI network into subnets using DivA, aligns pairs
of subnets from different species, and performs full-search on each aligning pair.
We use the state-of-the-art evolution-based alignment graph model introduced
in [6] to construct an alignment graph. Results of experiments show effectiveness
of the proposed approach, which is capable of detecting an high number of accu-
rate conserved complexes. This number is considerably greater than the number
of results identified only by using DivA whereas DivAfull’s results contain all
DivA’s results. Furthermore, we show that improved performance is achieved by
merging solutions discovered by DivAfull with those identified by Koyuturk
et al.’s algorithm [6].

Recent overviews of approaches and issues in comparative biological networks
analysis are presented in [4,5]. Based on the general formulation of network
alignment proposed in [3], a number of techniques for (local and global) net-
work alignment have been introduced ([6,7,11,12]). Techniques for local network
alignment commonly construct an orthology graph, which provides a merged
representation of the given PPI networks, and search for conserved subnets
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using greedy techniques ([6],[7],[11]). In particular, in [11], d-clusters are defined
for searching efficiently between a pair of networks, where a d-cluster consists of
d proteins that are close together in the network, and d is a user-given parame-
ter. Another parameter is used for identifying pairs of d-clusters, one from each
network, called seeds, which provide starting regions of the alignment graph
to be expanded. The algorithm searches for modules conserved across species
by expanding these seeds using a greedy technique similar that used in [6],[7].
While the above algorithms focus on network alignment, we focus on ’modu-
lar’ network alignment. Many papers have investigated the importance of hubs
in PPI networks and functional groups [9,13,14,15,16,17]. In particular, it has
been shown that hubs with a central role in the network architecture are three
times more likely to be essential than proteins with only a small number of
links to other proteins [15]. Moreover, if we take functional groups in PPI net-
works, then, amongst all functional groups, cellular organization proteins have
the largest presence in hubs whose removal disconnects the network [9]. Compu-
tational techniques for identifying functional modules in PPI networks generally
search for clusters of proteins forming dense components [18,19]. The scale-free
topology of PPI networks makes difficult to isolate modules hidden inside the
central core [20]. In [21] several multi-level graph partitioning algorithms are de-
scribed addressing the difficulty of partitioning scale-free graphs. The approach
we propose differs from the above mentioned works because it does not address
(directly) the problem of identifying functional modules in a PPI network, but
combines graph-theory, biology and heuristic search for discovering conserved
protein complexes in a modular fashion.

2 Divide Align and Full-Search

Given a graph G = (V, E), nodes joined by an edge are called adjacent. A
neighbor of a node u is a node adjacent to u. The degree of u is the number of
elements in E containing the vertex u.

Let G(V, E) be a connected undirected graph. A vertex v ∈ V is called artic-
ulation if the graph resulting by removing this vertex from G and all its edges,
is not connected.

The Divide algorithm divides orthologous proteins of the PPI network into
subsets. It consists of the following steps:

1. Detect orthologous articulations of the PPI network.
2. Reduce their number by constructing centers using preferential attachment

property .
3. In parallel, incrementally expand from each center only alongside orthologous

neighbors.
4. Stop when expanding sets are starting to overlap and if they do not have

any orthologous neighbor which is not yet added to one of the actual sets.
5. If some orthologous nodes are not in any of the generated set, then join

together neighboring ones.
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The preferential attachment in the step 2 is a general property of scale-free
networks. It means that if a new node is introduced into the network, it will more
likely attach to a node of the network with very high degree than to a node
with very low degree. Hence, based on this motivation, we construct centers
by joining one orthologous articulation hub with its orthologous articulation
neighbors, which will more likely to have low degree. The whole algorithm with
all technical issues is described in [10].

After dividing, each set of orthologs proteins generates a subnetwork of the
PPI network. Pairs of such subnetworks from distinct species can be merged into
orthology graphs, which are mined for discovering alignments corresponding to
protein complexes conserved across species.

To this aim we use a common approach, based on the construction of a
weighted metagraph between two PPI networks of different species. In this meta-
graph each node corresponds to an homologous pair of proteins, one from each
of the two PPI networks. The metagraph is called alignment or orthology graph.
Weights are assigned either to edges, like in [6], or to nodes, like in [7], of the
alignment graph using a scoring function. The function transforms conservation
and eventually also evolution information to one real value for each edge or node.
Induced subgraphs with total weight greater than a given threshold are consid-
ered to be relevant alignments. In this way one gets two subsets of proteins from
each discovered subgraph from the two species, and each such subset provides a
conserved complex of proteins.

The problem of finding induced subgraphs with weight greater than a given
threshold is reduced in these methods to the problem of finding a maximal in-
duced subgraph. Then an approximation greedy algorithm based on local search
is used because the maximum induced subgraph problem is NP-complete (cf. [6]).

In our approach, we align only pairs of subnets from different species having
more than one orthologous pair, yielding orthology graphs with more than one
node. Because of the small size of the resulting subnets, we use exact optimization
[22] for searching in each of such graphs, instead of greedy techniques employed
in common approaches.

Specifically, the exact optimization algorithm [22] for finding the maximum
weighted induced subgraph is first applied. Then the process is iterated by adding
at each iteration the constraint which bounds the weight of the induced subgraph
by the weight of the solution found in the previous iteration.

Formally, let f be a function which computes the weight of a subgraph in an
input graph and C be a set of constraints which defines an induced subgraph of
the input graph. Then we want to maximize the function f on the set defined
by constrains C, that is, to solve the following optimization problem:

opt = max
C

f (OptP )

Algorithm 1 illustrates the resulting full-search procedure which uses the
above constrained optimization problem at each iteration with different bound
on the maximum allowed weight.
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Algorithm 1. Full Search Algorithm
Input: G: alignment subnetwork, ε ≥ 0
Output: List of heavy induced subgraphs of G with weight > ε
1: Formulate the problem of MaxInducedSubGraph for G as (OptP )
2: maxweight = ∞
3: C = C + {opt < maxweight}
4: while maxweight > ε do
5: solve (OptP ) by an exact method
6: if opt > ε then
7: record discovered solution
8: end if
9: maxweight = opt

10: end while

We call the resulting algorithm DivAfull. Finally, redundant alignments are
filtered out as done in, e.g., [6]. A subgraph G1 is said to be redundant if there
exists another subgraph G2 which contains r% of its nodes, where r is a threshold
value that determines the extent of allowed overlap between discovered protein
complexes. In such a case we say that G1 is redundant for G2.

3 Evaluation Criteria

In order to assess the performance of our approach, we use the state-of-the-art
framework for comparative network analysis proposed in [23], where we change
the proposed aligning procedure and searching algorithm to MaWish ([8]).

In order to filter out solutions that may also be found when a randomized
protein-protein interaction relation between nodes is considered, we apply the
following statistical procedure.

1. A collection of 10000 radomized networks are generated by shuffling the
edges of the PPI networks while preserving vertex degrees, as well as by
shuffling the pairs of homologous proteins while preserving the number of
homologous partners per protein.

2. MaWish is used for finding solutions on each of the randomized networks.
3. The results are clustered into groups of solutions with equal size (that is,

number of subnetwork’s nodes). For each size and for each run, the best
result (the one with highest score) is recorded. If there is no solution for a
given size, we build an artificial cluster consisting of one zero weight solution.

4. For each size, the score at the 95%-percentile, of the corresponding cluster of
random solutions, is chosen as treshold for removing ’insignificant’ solutions.

We use known yeast complexes catalogued in the MIPS database. Category
550, which was obtained from high throughput experiments, is excluded and we
retained only manually annotated complexes up to depth 3 in the MIPS tree
category structure as standard of truth for quality assessment.
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In order to measure statistically significant matches between a solution and
a true complex we use the hypergeometric (HG) overlap score. The significance
level of a solution is described by means of a function maximizing − log(HG)
through the whole set of true complexes which intersect with the yeast PPI
network at least in one protein. Solutions having no annotated protein in the
MIPS catalogue are discarded.

We generate again a set of several (10000) radomized networks using the
procedure described in the previous section. In each of such networks we find the
most significant solution (which maximizes− log(HG)) for each of the considered
sizes, by modifying the algorithm MaWish in such a way that it outputs a solution
of a given size (number of nodes). Specifically, in the incremental procedure
MaWish at each cycle more than one node can be added in order to generate
a subgraph with high weight. In the modified version of MaWish we use, if the
size of subgraph has reached the given size, we stop. If the size of subgraph has
exceeded the given size, we iteratively remove nodes with smallest gain for the
actual subgraph, until a subgraph of the given size is obtained.

We compare significance levels of true solutions with those obtained from ran-
dom networks. In this way we obtain empirical p-values for each of the solutions.
These p-values are further corrected for multiple testing using the false discovery
rate (FDR) procedure introduced in [24].

The following notions of specificity, sensitivity and purity are used to assess
the quality of the results.

– Let C be the set of solutions with at least one annotated protein in MIPS
catalogue and let C∗ ⊆ C be the subset of solutions with a significant match
(p < 0.05). The specificity of the solution is defined as |C∗|/|C|.

– Let M be the set of true complexes that intersect with the yeast PPI network
and let M∗ ⊆ M be the subset of complexes with a significant match by a
solution. The sensitivity of the solution is defined as |M∗|/|M |.

– A solution is called pure if there exists a true complex whose intersection
with the solution covers at least 75% of MIPS annotated proteins in the
solution. Let D be the set of all solutions with at least 3 MIPS annotated
proteins and let D∗ ⊆ D be the subset of pure solutions. The purity of the
solutions is defined as |D∗|/|D|.

4 Results

The two following PPI networks, already compared in [8], are considered:
Saccharomyces cerevisiae and Caenorhabditis elegans, which were obtained from
BIND [1] and DIP [2] molecular interaction databases. The corresponding net-
works consist of 5157 proteins and 18192 interactions, and 3345 proteins and
5988 interactions, respectively. All these data are available at the webpage of
MaWish1. Moreover, the data already contain the list of potential orthologous

1 www.cs.purdue.edu/homes/koyuturk/mawish/
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and paralogous pairs, which are derived using BLAST E-values (for more de-
tails see [8]). We get 2746 potential orthologous pairs created by 792 proteins in
S. cerevisiae and 633 proteins in C. elegans are identified.

We obtain 266 true complexes from the MIPS catalogue whose intersection
with the yeast (Saccharomyces cerevisiae) PPI network consist of 876 proteins.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, and 83
centers are identified. After expansion of these centers we covered 639 orthologs.
The algorithm assigns the remaining 153 orthologous proteins to 152 new sets.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, are com-
puted, and 112 centers are constructed from them. Expansion of these centers
covers 339 orthologs. The algorithm assigns the remaining orthologous 294 pro-
teins to 288 new sets.

We observe that the last remaining orthologs assigned to new sets without
expanding from centers are ’isolated’ nodes, in the sense that they are rather
distant from each other and not reachable from ortholog paths stemming from
centers.

The dividing procedure generates 235 subnets of Saccharomyces cerevisiae
and 400 subnets of Caenorhabditis elegans.

We perform network alignment with MaWish using the same parameter values
as those reported in [8]. By constructing alignment graphs between each two
subnets from different species containing more than one ortholog pair, we obtain
884 alignment graphs, where the biggest one consists of only 31 nodes.

We apply Algorithm 1 to each of the resulting alignment graphs. Zero weight
threshold (ε = 0) is used for considering an induced subgraph as a heavy sub-
graph or a legal alignment. Redundant graphs are filtered using r = 80% as the
treshold for redundancy.

In this way DivAfull discovers 151 solutions (alignments). By filtering out
insignificant results we get 41 solutions.

Using only DivA we get 72 nonredundant alignments against 151 discovered
by DivAfull. Because DivA takes only the first best possible solution from
each alignment graph, all these solutions are also discovered by DivAfull. This
happens in the first iteration of the latter algorithm. In the following iterations,
DivAfull discovers other solutions, which have less weight than those discovered
in the first iteration. Therefore the best solution can never be filtered out as
redundant one. Hence after filtering, DivAfull’s results always contain all DivA’s
solutions and a large number of other, potentially interesting, results identified
by applying full search (Algorithm 1).

MaWish yields 83 solutions, and after filtering out insignificant results we get
34 solutions.

For both algorithms, we measure specificity, sensitivity and purity of all so-
lutions and only of significant ones, in order to see whether results consider
’insignificant’ are true noise in the data.

Moreover, we compare pairs of redundant alignments as well as new different
results. A paired redundant alignment is a pair (G1, G2) of alignments, with G1

discovered by DivAfull and G2 discovered by MaWish, such that either G1 is



78 P. Jancura, J. Heringa, and E. Marchiori

10
0

10
1

10
0

10
1

DivAfull weight

M
aW

is
h 

w
ei

gh
t

                                 DivAfull vs MaWish 
 redundant alignments between S. cerevisiae and C. elegans

 

 
refined by MaWish
refined by DivAfull
identical results

(0.0, 0.5] (0.5, 1.0] (1.0, 1.5] (1.5, 2.0] 2.0 <
0

5

10

15

20

25

30

35

weight

nu
m

be
r 

of
 a

lig
nm

en
ts

                                   DivAfull vs MaWish 
 nonredundant alignments between S. cerevisiae and C. elegans

 

 
MaWish results
DivAfull results

Fig. 1. Analysis all alignments discovered by MaWish and DivAfull. Left figure: Dis-
tribution of pairs of weights of paired redundant alignments, one obtained from MaWish

and one from DivAfull. Weights of alignments found by DivAfull are on the x-axis,
those found by MaWish on the y-axis. ’+’ is a paired redundant alignment. Right figure:
Interval weight distributions of non-redundant alignments discovered by MaWish and
DivAfull. The x-axis shows weight intervals, the y-axis the number of alignments in
each interval.

redundant for G2 or vice versa. For a paired redundant alignment (G1, G2) we
say that G1 refines G2 if the weight of G1 is bigger than the weight of G2.

Results of our experiments are summarized as follows.
Of the 83 solutions of MaWish 56 (67.5%) have at least one MIPS anno-

tated protein and 15 (18.1%) have at least 3 annotated proteins. From the
151 DivAfull results, 103 (68.2%) have at least one annotated protein and
35 (23.2%) have at least 3 annotated proteins.

There are 70 redundant alignments, whose pair of weights are plotted on the
left part of Fig. 1. Among these, 48 (31.8% of DivAfull results) are equal (red
crosses in the diagonal) and 22(14.6%) different. 8(5.3%) (green crosses below the
diagonal) with better DivAfull alignment weight, and 13 (8.6%) (blue crosses
above the diagonal) with better MaWish alignment weight (for 1 (0.7%) pair it
is undecidable because of rounding errors during computation).

DivAfull finds 81 (53.6%) new alignments, that is, not discovered by MaWish.
The right plot of Fig. 1 shows the binned distribution of weights of these align-
ments, together with the new 17 ones discovered by MaWish but not by DivAfull.
There is no significant difference between the overall weight average of the
DivAfull (0.8) and the the MaWish (0.86) results.

By considering the union of all alignments discovered by MaWish and
DivAfull and by filtering out the redundant ones, 164 alignments are obtained,
from which 54.3% consist of refined or new DivAfull ones, and 29.3% consist of
alignments discovered by both methods. Of all these alignments 111 have at least
one annotated protein and 40 at least with 3 annotated proteins. This results
indicate a significant improvement (54.3%) of the performance of MaWish when
augmented with DivAfull.

Statistical evaluation of all solution for DivAfull and MaWish, is reported in
Table 1. One can observe that DivAfull outperforms MaWish and the number of
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Table 1. Specificity, sensitivity and purity for all alignments discovered by DivAfull

and MaWish. The first row of table shows results for combined solutions of both algo-
rithms.

Algorithm No. of alignments Specificity (%) Sensitivity (%) Purity (%)

DivAfull & MaWish 164 44 6.8 92
DivAfull 151 46 6 91
MaWish 83 43 6 87
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Fig. 2. Analysis significant alignments discovered by MaWish and DivAfull. Left figure:
Distribution of pairs of weights of paired redundant alignments, one obtained from
MaWish and one from DivAfull. Weights of alignments found by DivAfull are on the
x-axis, those found by MaWish on the y-axis. ’+’ is a paired redundant alignment. Right
figure: Interval weight distributions of non-redundant alignments discovered by MaWish

and DivAfull. The x-axis shows weight intervals, the y-axis the number of alignments
in each interval.

DivAfull solutions is almost double of the number of MaWish ones. Combining
results obtained by both algorithms generally increases sensitivity and purity,
while specificity is increased only w.r.t MaWish solutions. The latter phenomenon
can be justified by the effect of nonredundant MaWish results, since more of
them do not have a significant match (p < 0.05) and therefore decrease overall
specificity when combined with DivAfull solutions.

If the same analysis is performed only on the significant alignments then the
following results are obtained.

From the significant 34 MaWish results, 25 (73.5%) have at least one annotated
protein and 4 (11.8%) have at least 3 annotated proteins. From the significant 41
DivAfull results, 34 (83%) have at least one annotated protein and 10 (24.4%)
have at least 3 annotated proteins.

DivAfull finds 18 new alignments not detected by MaWish. There are 23
redundant alignments. Among these, 22 (53.7% of DivAfull results) are equal
and 1 (2.4%) different with better MaWish alignment weight.

The right plot of Fig. 2 shows the binned distribution of weights of the 18
(43.9%) found by DivAfull but not MaWish, and 11 found by MaWish and not
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Table 2. Specificity, sensitivity and purity for significant alignments discovered by
DivAfull and MaWish. The first row of table shows results for combined significant
solutions of both algorithms.

Algorithm No. of alignments Specificity (%) Sensitivity (%) Purity (%)

DivAfull & MaWish 52 51 4.5 70
DivAfull 41 50 3.4 70
MaWish 34 48 3.8 75

by DivAfull. The overall weight average of the DivAfull ones (1.609) is greater
than the overall average of the MaWish ones (0.8536).

By considering the union of all significant alignments of MaWish and DivAfull
and by filtering out the redundant ones, we get together 52 alignments, from
which 34.6% results are added as new ones by the DivAfull method and 42.3%
are equal results discovered by both methods. This shows that performance of
the MaWish model is improved by 34.6% when the algorithm is augmented with
the DivAfull method. From all alignments, 41 have at least one annotated
protein and 10 at least with 3 annotated proteins.

Table 2 report statistical evaluation of results of MaWish, DivAfull, and their
union. DivAfull solutions have better specificity than MaWish solutions and
similar sensitivity. Concerning purity, DivAfull has 7 pure solutions from 10
considered, while MaWish has 3 pure solutions from 4. Because of the small
number of the considered alignments, the purity measure in this case does not
provide sufficient information for comparing the two algorithms. Considering the
union of MaWish and DivAfull generally increases sensitivity and specificity.
Moreover, the new solutions added by DivAfull increase the number of pure
alignments.

In summary, these results show that DivAfull can be successfully applied to
discover conserved protein complexes and to ’refine’ state-of-the-art algorithms
for network alignment.

5 Conclusion

This paper introduced a heuristic algorithm, DivAfull, for discovering conserved
protein complexes, which is an extension of a previously proposed algorithm,
DivA. Results of the comparative experimental analysis indicated that DivAfull
improves the search procedure of DivA. Moreover, comparison between MaWish
and DivAfull indicated that DivAfull is able to discover new alignments which
significantly increase the number of discovered complexes. DivAfull solutions
showed also improved match with well-know yeast complexes measured by speci-
ficity, sensitivity and purity. Combination of solutions discovered by both MaWish
and DivAfull, yielded new and refined alignments.

Although using an exact search in DivAfull requires higher computational
time than the greedy searching of MaWish (in our experiment it took more than 4
hours on a desktop machine (AMD Athlon 64 Processor 3500+, 2 GB RAM)), the
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advantage of a modular approach relies also in possible parallelization of parts of
the method. For instance, the full search algorithm can be run independently on
each alignment graph. Moreover, ad-hoc internal parallelization can be applied
to improve efficiency. We are actually working on such optimized implementation
of DivAfull.

Results show that the filtering procedure used for removing ’insignificant’
results seems to be rather strict, because it appears to discard a substantial
number of solutions which seem to be biologically meaningful. A more thorough
analysis of real biological functions of some of the new discovered results is still
needed.

Finally, we intend to analyze instances of our approach based on other meth-
ods, such as [7].
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Abstract. Many efforts have been involved in association study of quan-
titative phenotypes and expressed genes. The key issue is how to effi-
ciently identify phenotype-associated genes using appropriate methods.
The limitations for the existing approaches are discussed. We propose a
hierarchical mixture model in which the relationship between gene ex-
pressions and phenotypic values is described using orthogonal polynomi-
als. Gene specific coefficient, which reflects the strength of association, is
assumed to be sampled from a mixture of two normal distributions. The
association status for a gene is determined based on which distribution
the gene specific coefficient is sampled from. The statistical inferences are
made via the posterior mean drawn from a Markov Chain Monte Carlo
sample. The new method outperforms the existing methods in simulated
study as well as the analysis of a mice data generated for obesity research.

Keywords: Gibbs sampler, Microarray.

1 Introduction

Microarray technology allows us to measure the expression levels of many thou-
sands of genes simultaneously. The objective of microarray experiments is to
closely examine the changes of gene expression under different experimental con-
ditions. These conditions may simply be control and various treatments [1], or
may represent different time slots after a certain treatment is applied to the ex-
perimental subjects [2], or may refer to measurements of quantitative phenotype
for different subjects [3]. Many statistical methodologies have been proposed to
analyze data generated from microarray experiments. Fundamental microarray
data analyses aim to identify a list of genes as being differentially expressed
across experimental conditions [4,5,6]. Recent methods, such as various cluster
analyses, have been devised not to find individual genes but to search for groups
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of genes that are functionally related [7,8,9,10]. However, many existing cluster
analyses only use expression data, which requires extra steps to infer the func-
tions of genes that form a cluster. Incorporating biological information [11] or
phenotypic information [12] into cluster analyses seems to be more efficient and
reasonable.

Efforts have been provided to uncover genes that affect the phenotype of in-
terest. For example, [3] conducted an experiment to study the relationship of
gene expression and Alzheimer’s disease. The Pearson’s correlation was calcu-
lated for each gene with the phenotypic values separately. Genes were declared to
be disease-associated if their correlation coefficients are statistically significant.
Similarly, [13] used the Pearson’s correlation analysis to study the relationship
of gene expression and mouse weight. First, the highly correlated genes were
clustered into the same group which was called “module”. Next, they assessed
the physiological relevance of each module by examining the overall correlation
of the module genes with the phenotype. The genes within a significant module
were claimed to be associated with the phenotype.

As suggested by [12], the Pearson’s correlation analysis may not be optimal
for two reasons: (1) Genes are not jointly analyzed leading to a poor informa-
tion sharing across genes. (2) A significant correlation is not always biologically
meaningful unless the regression is also high. They proposed a mixed model in
which the gene expression levels are linearly regressed on the phenotypic values.
The regression coefficients, which reflect the affiliation of the genes with the phe-
notype, are used to cluster genes into a number of functional groups. A cluster
is claimed to be significant if the regression coefficient of the mean expression
profile is not equal to zero; otherwise, the cluster is claimed as neutral. Genes
that have been assigned into non-neutral clusters are target genes. Because the
mixed model of [12] is solely built upon the assumption of linear association, it is
limited to pick up genes that are associated with the phenotype in a non-linear
manner. In order to solve this problem, [14] developed a mixed model to clus-
ter genes based on the non-linear association using orthogonal polynomials. For
these two model-based analyses, the optimal number of clusters is not known and
needs to be determined by comparing the BIC [15] values for different models.
To our experience, this often requires credible evaluations for at least 10 models
with distinct dimensionality of parameters which is defined by the number of
clusters. It would be more computationally intensive if non-linear association is
considered due to the complex nature of microarray data.

In current study, we developed a Bayesian hierarchical model to cluster genes
with fixed number of clusters. The non-linear relationship between gene and the
phenotype is also described using orthogonal polynomials. The orthogonal poly-
nomials can be constructed as described by [16]. For each gene, the coefficient
of each polynomial is assumed to be sampled from a two-components mixture
Normal distribution. Both Normal components have mean zero but different
variances, i.e., one has a very small variance while the other has a larger vari-
ance. If the corresponding coefficient is sampled from the component with small
variance, the coefficient is enforced to be zero; otherwise, the coefficient is non-
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trivial and its magnitude should be estimated from data. That is to say each gene
may be assigned into one of two clusters based on whether it is associated with
the polynomial. Suppose that there are p polynomials in the expression model.
Therefore, there are a total of 2p patterns or clusters to illustrate genes under
study. Once p is chosen, the number of clusters is immediately determined, which
circumvents the model evaluations required by the aforementioned methods.

2 Methods

2.1 Hierarchical Linear Model

Let m and N be the number of genes and the number of subjects under study,
respectively. Let Z be the measurements of a quantitative phenotype collected
from N subjects. The expression levels of gene i across N subjects can be de-
scribed in the following model:

Yi(Z) = αi + βi(Z) + εi, (1)

where i = 1, . . . , m. In the model 1, Yi(Z) is a N × 1 matrix, αi represents
the gene specific intercept, βi(Z) is an arbitrary function chosen to describe the
relationship between the gene expressions and the phenotypic values, and εi is
used to model the random error with assumed N(0, Iσ2) distribution.

There are different ways to choose function βi(Z). In current study, we only
consider the orthogonal polynomials [16], such that, βi(Z) can be expressed as:

βi(Z) = Xβi =
p∑

j=1

Xjβij ,

where p is the degree of orthogonal polynomials after transformation, Z is
transformed into a N × p matrix which is denoted by X = (X1, . . . , Xp), and
βi = (βi1, . . . , βip) represents the corresponding coefficients for gene i. Then,
model 1 can be rewritten as:

Yi = αi +
p∑

j=1

Xjβij + εi. (2)

Using a linear contrasting scheme (see [14]), model 2 can be further written as

yi =
p∑

j=1

xjβij + εi, (3)

where
∑N

k=1 yik = 0 and
∑N

k=1 xjk = 0. In fact, we do not have N pieces of
independent information for each gene after linear contrasting. Therefore, the
last element of vector yi should be removed and yi becomes an n× 1 vector for
n = N − 1. Accordingly, xj becomes an n × 1 vector, and εi is now N(0, Rσ2)
distributed with a known n× n positive definite matrix R (see [14]).
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For the sake of convenience for presentation, we use the following notation to
express different probability densities throughout current study:

p(variable|parameter list) = DensityName(variable; parameter list).

For example, the probability of yi given all the βij variables and σ2 is described as

p

⎛

⎝yi

∣
∣
∣
∣
∣
∣

p∑

j=1

xjβij , Rσ2

⎞

⎠ = Normal

⎛

⎝yi;
p∑

j=1

xjβij , Rσ2

⎞

⎠ . (4)

The model 3 is the lowest level in the hierarchical structure, which is governed by
higher parameters, such as regression coefficients (βij) and the residual variance
(σ2). These parameters themselves are controlled by assumed higher distribu-
tions. In this study, we assign a mixture distribution to βij as originally suggested
by [17],

p(βij |ηij , σ
2
j ) = (1 − ηij)Normal(βij ; 0, δ) + ηijNormal(βij ; 0, σ2

j ) (5)

where δ = 10−4 (a small positive number) and σ2
j is an unknown variance as-

signed to the jth polynomial. Variable ηij = {0, 1} is used to indicate whether
βij is sampled from a N(0, δ) or a N(0, σ2

j ) distribution. If it comes from the first
normal distribution, βij is virtually fixed at zero; otherwise, βij has a non-trivial
value and should be estimated from the data. Therefore, ηij = 1 means that
βij �= 0 and gene i is associated with the jth polynomial. The hierarchical level
of density 5 is regulated by ηij and σ2

j . We further describe ηij by a Bernoulii
distribution with probability ρj , denoted by

p(ηij |ρj) = Bernoulii(ηij ; ρj). (6)

The parameter ρj will control the proportion of the genes that are associated
with the jth polynomial. Because of the hierarchical nature, we may further de-
scribe ρj by a Dirichlet distribution, denoted by Dirichlet(ρj ; 1, 1). The variance
components of the hierarchical model are assigned scaled inverse chi-square dis-
tributions, denoted by Inv − χ2(σ2

j ; d0, ω0). We choose d0 = 5 and ω0 = 50 for
σ2

j , and choose d0 = 0 and ω0 = 0 for σ2.

2.2 Markov Chain Monte Carlo

The typical technique for inferring the posterior distributions of the parameters
is to use MCMC sampling since the posterior distributions are intractable. We
draw a posterior sample from which empirical posterior means of interested pa-
rameters can be found. First, we choose initial values for parameter θ, where
θ = (σ2, σ2

1 , . . . , σ2
p, ρ). We then derive the distribution of one parameter condi-

tional on the data and values of all other variables, i.e., p(θk|data, θ−k), where θk

is current parameter of interest and θ−k is the list of remaining variables. This
distribution usually has a simple form from which a value for θk can be sampled.
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The parameter θk is then updated using the realized value, and it will be used
as known parameter to update all other parameters in the same manner. The
detailed sampling scheme for each variable is described as follows.

(1) Variable ηij is simulated from Bernoulli(ηij ; πij), where

πij =
ρjN(γij ; 0, σ2

j )
ρjN(γij ; 0, σ2

j ) + (1− ρj)N(γij ; 0, δ)
(7)

(2) Variable βij is simulated from N(βij ; μβ, σ2
β), where

μβ =

[

xT
j R−1xj +

σ2

ηijσ2
j + (1 − ηij)δ

]−1

xT
j R−1�yi, (8)

σ2
β =

[

xT
j R−1xj +

σ2

ηijσ2
j + (1− ηij)δ

]−1

σ2 (9)

and

�yi = yi −
p∑

j′ �=j

xj′βij′ (10)

which is called the offset of yi adjusted for the jth polynomial effect.
(3) Sample σ2

j from

Inv− χ2

(

σ2
j ;

m∑

i=1

ηij + 5,
m∑

i=1

ηijβ
2
ij + 50

)

.

(4) Sample σ2 from

Inv− χ2

⎛

⎝σ2; mn,

m∑

i=1

(yi −
p∑

j=1

xjβij)T R−1(yi −
p∑

j=1

xjβij)

⎞

⎠ .

(5) Simulate ρj from

Dirichlet

(

ρj ;
m∑

i=1

ηij + 1, m−
m∑

i=1

ηij + 1

)

.

So far, every variable has been updated. Once every variable is updated,
we complete one iteration or sweep. The sampling process continues until the
Markov chain reaches its stationary distribution. The length of the chain re-
quired for convergence can be determined by the R package “coda” [18]. We
discard a number of iterations from the beginning of the chain, which is so-called
burn-in period. For the remaining portion of the chain, we save one observation
in every 10 sweeps to form a posterior sample until the sample is sufficiently
large to allow an accurate estimate of the posterior mean for each variable. Let
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η̄ij = N−1
p

∑Np

l=1 η
(l)
ij be the posterior mean of variable ηij , where Np is the pos-

terior sample size. Gene i is said to be associated with the jth polynomial if
η̄ij is greater than some pre-specified threshold. We use 0.8 as such cutoff point
throughout the current study since [19] showed that 0.8 was quite sufficient
to achieve the false discovery rate (FDR) control at ≤ 1% level in the similar
analysis.

3 Implementation

3.1 Simulation Study

In the simulation study, a total of 20 datasets were simulated independently.
For each dataset, expression levels of 1000 genes were simulated for 50 subjects.
The phenotypic value for each subject was randomly selected from U(0, 10). The
50×1 phenotype matrix was then transformed into 50×3 orthogonal polynomi-
als matrix with degree 3. The corresponding 3× 1 regression coefficient matrix
for each gene was generated as follows. For genes 1 to 5 and genes 21 to 35, the
coefficients for the polynomial of the first order were simulated from N(0, 32).
For genes 6 to 10, genes 16 to 25, and genes 31 to 35, the coefficients for the
polynomial of the second order were simulated from N(0, 12). For genes 11 to 20
and genes 26 to 35, the coefficients for the polynomial of the third order were
simulated from N(0, 0.52). In current study, we define a gene-polynomial associ-
ation as a linkage. Thus, a total of 60 linkages were generated in the simulation
study. Such set up made the 1000 genes fall into 23 = 8 binary-based categories,
which were represented by (0 0 0), (1 0 0), (0 1 0), (0 0 1), (0 1 1), (1 1 0), (1 0 1)
and (1 1 1), respectively. For example, gene 1 can be regarded as a member of
the cluster (1 0 0) since it was only associated with the polynomial of the first
order; while gene 35 belonged to the cluster (1 1 1) because the coefficients for
all three polynomials are non-trivial. Only the first 35 genes were associated
with phenotype while the majority of the genes were placed in the neutral clus-
ter represented by (0 0 0). The residual error for each gene was sampled from
N(0, 0.42). The aim of our analysis is to detect genes represented by significant
linkages with the phenotypic polynomials.

We used the new method to analyze the 20 simulated datasets separately. The
results summarized from 20 analyses are presented in Table 1. The estimated
parameters agreed with the true values very well. Due to the small sample size

Table 1. True and estimated values by the new method for the parameters used in
simulation study

Parameter
ρ1 ρ2 ρ3 σ2

1 σ2
1 σ2

1 σ2

True 0.020 0.020 0.020 9.00 1.00 0.25 0.160
Estimate 0.021 0.019 0.017 10.72 3.18 2.93 0.160
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Fig. 1. Plots of the typical genes selected from each of 8 clusters for the analysis of
one simulated dataset

Table 2. Comparison between two methods based on the percentages of true genes
identified by each of them. Dataset one is the one simulated in current study and
dataset two is that simulated in [14]. Method I is the proposed method and method II
is the method of [14].

Dataset
Method One Two

I 88.57% 100.0%
II 62.86% 98.38%

(≤ 30) for each polynomial, the estimated σ2
j showed some deviations from the

true values. Figure 1 gives the plots of the typical genes selected from each of 8
clusters for the analysis of one simulated dataset. The expression pattern of each
gene across phenotypic values is satisfactorily depicted with a regression curve
approximated by the new method. We also used the method of [14] to analyze
the same dataset. The optimal BIC occurred when the number of clusters was
set to 7. Because two methods use different criterions to cluster genes, that is
the method of [14] classifies genes based on their mean expression pattern across
the phenotypic polynomials; while the proposed method clusters genes based on
whether they are significantly associated with the phenotypic polynomials. Thus,
we compared two methods by checking the proportions of true associated genes
that have been successfully identified by each of them. Note that the numbers
of falsely identified genes were zero for both methods. The results are listed in
Table 2, from where we can see that the new method identified more true genes
than the method of [14]. We examined all 7 true linkages missed by our analysis.
The average of the absolute effects for these 7 linkages was 0.08, which is too
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small to be detectable with reasonable analysis methods. We understand that
the better performance of the new method may result from simulation scheme
which could be biased to the new method. To eliminate this nuisance factor, we
also analyzed the dataset simulated in [14] using two methods. From Table 2,
we can see that the new method outperformed the method of [14] again.

3.2 Analysis of Mice Data

To demonstrate the new method, we analyzed a mice data collected for obesity
study by [20]. The data are publicly available at gene expression omnibus (GEO)
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Fig. 2. (a) Plots of the typical transcripts selected from each of the 8 clusters for the
analysis of glucose-expression associations for mice data. (b) Scatter plots of selected
transcripts identified by one method by missed by the other method for the analysis
of glucose-expression associations for mice data. Four transcripts on the left panel are
those only detected by the proposed method; while the other four on the right panel
are transcripts solely detected by the method of [14].

Fig. 3. Transcripts detected by the two methods for the analysis of glucose-expression
associations for mice data. Method I is the proposed method and method II is the
method of [14].
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with accession no. GSE3330. In their experiment, a total of 60 ob/ob mice were
examined. For each mouse, the expression levels of over 40,000 transcripts and
25 obesity related phenotypes were measured. Since the expression levels of most
transcripts are constant across 60 mice and they do not provide any information,
we eliminated those non-variant transcripts prior to the analysis to lessen the
computation burden. We sorted all transcripts by their variances across 60 in-
dividuals and deleted the transcripts with variances less than 0.05, leaving 5185
most varying transcripts for further analysis. Similar pre-screening scheme has
been used for array data analyses [13,19]. In current study, we only investigated
the association between gene expression and plasma glucose level (mg/dl). The
phenotypic data were collected at eight weeks of age. A total of 126 transcripts
were detected to be associated with the glucose level. The typical transcripts
selected from each of the 8 clusters are presented in Figure 2(a). We also used
the method of [14] to analyze the expression-glucose data. The optimal BIC
occurred when the number of clusters was 2, which might not be sound. More
distinct clusters were expected due to the complexity of array data. The BIC
value kept going down as the number of clusters increased, though the differ-
ences of analytic results from different models were trivial. In this case we chose
the number of clusters as 8 to achieve the parallel between two methods. A total
of 125 transcripts were identified. From Figure 3, we can see that both methods
detected 114 common transcripts. We checked all the transcripts that have been
detected by one method but missed by the other one. The left four transcripts
in Figure 2(b) were detected by the new method but missed by the method of
[14]. These four transcripts had slight slopes which should be accounted. The
four transcripts on the right panel were only detected by the method of [14]. We
could not see any regressions between the expression levels and the phenotypic
values. It seemed that the new method had more power than the method of [14];
on the other hand, the new method was subject to lower type I error than the
method of [14].

4 Discussion

The purpose of current study is to introduce a more sensitive and convenient ap-
proach for association study on gene expressions and quantitative traits. Similar
to the existing method of [14], the new method is also based on the non-linear
relationship assumption and is realized via orthogonal polynomial transforma-
tion. The differences are: (1) the method of [14] organize genes based on their
mean expression patterns across phenotypic values; while the new method clus-
ters genes by examine their associations with the polynomials of phenotype.
(2) in method of [14], extra model evaluations are needed to find the optimal
number of clusters; however, this is not necessary for new method, where the
number of clusters is always fixed. In the analysis of [14], the significant tests
are performed on the coefficients of the mean expressions for genes. In such the
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case, the coefficients for all polynomials are jointly considered, which sometimes
leads to loss of power. Suppose that, for a gene, the coefficients for the second
and the third order are trivial, while the coefficient for the first order is some-
what significant. This gene may not be detected when the overall significance is
considered. In the new method, this would not happen since we test the associ-
ation of gene expression with each polynomial individually. We can sharpen the
prior (δ) to make the analysis sensitive to a satisfactory extent. A gene that is
significantly linked to any of the polynomials will be picked up. We also noticed
that all the missed significant genes by the method of [14] are all linearly asso-
ciated with the phenotype, which means that the genes linked with phenotype
with higher orders are relatively easier to be seen. That makes senses because
the high-order association tends to show a more obvious pattern than the linear
association does. This explains why the genes with slight first order regressions
have been overlooked by the method of [14]. For the analysis of [14], we need
to compare the BIC values for different models to find the optimal number of
clusters, which requires considerable extra effort. Such evaluation failed proba-
bly due to the complexity of the array data. We consider this extra computation
can be avoided by fixing the number of clusters through a meaningful way. In
current study, we classify genes into one of two clusters for each polynomial, that
is, cluster contains non-associated genes and cluster contains associated genes.
Thus, the association of a gene with the phenotype may be describe by one of
2p patterns, which makes the new method more efficient in implementation.

As aforementioned in Methods section, different functions can be adopted for
βi(Z), which is used to describe the relationship between the gene expression
and the phenotype in current study. For example, we may use B-spline transfor-
mation instead. Simulation studies indicated that B-spline version is equivalent
to orthogonal polynomials version (data not shown). B-spline is a alternative
way of constructing a basis for piecewise polynomial; however, it is not a nat-
ural method of describing spline. Thus, we prefer using orthogonal polynomials
version in current study since the behavior of regression of gene expressions on
phenotype can be easily interpreted.

The association study of gene expressions and phenotypes provides with a
pilot research for gene network study. For example, we may first identify tran-
scripts that are associated with the phenotypes of the disease. The common
genes that have been discovered to be associated with multiple phenotypes may
play key roles in disease development. Experiments may be carried out to verify
their biological significance. We may treat the validated genes as seed genes and
further search for other non-annotated genes that may be functionally connected
with these genes. New genes may be identified by checking if their expression
levels significantly correlate with that of the seed genes. Or, given the informa-
tion on the genomic markers, we may map the seed genes as well as the genes
with unknown functions jointly using so called eQTL mapping scheme, such as
[21,19]. The genes that have been mapped to the same genomic loci with the
seed genes are likely to be functionally related to the seed genes and contribute
to the disease.
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Abstract. In this paper we propose an innovative method of represent-
ing common knowledge in leaf-labelled trees as a set of frequent subsplits,
together with its interpretation. Our technique is suitable for trees built
on the same leafset as well as for trees where the leafset varies. The
proposed solution has a very good interpretation, as it returns different,
maximal sets of taxa that are connected with the same relations in the
input trees. In contrast to other methods known in literature it does not
necessarily result in one tree, but may result in a profile of trees, which
are usually more resolved than the consensus trees.

Keywords: Leaf-labelled trees, phylogenetic trees, frequent subsplits.

1 Introduction

Various data from different fields of science are represented as structured or
semi-structured data, for example trees. Therefore, tree mining techniques are
worth studying. Among others, we can distinguish leaf-labelled trees as a sepa-
rate type of trees. Leaf-labelled trees play an important role in bioinformatics,
as they represent phylogenetic and tandem duplication trees. One of the key
issues in leaf-labelled trees analysis is common information representation [1,2].
The existing techniques have several disadvantages, among others they are not
applicable to trees where the leafset varies (we will call it trees on free leafset).
This results from the fact that the traditional split-representation limits the pos-
sibility of extending those methods. This work has two major goals. The first
one is to provide an alternative representation of common knowledge in phylo-
genetic trees as a representative set of subsplits. The second one is to provide
an intuitive interpretation of a representative set, which would be convenient
for researchers, specifically - for biologists. In order to complete the task, we
adopt the frequent sets approach, well-known in the data-mining domain [3] for
application in trees, but here we are considering issues specific for splits algebra.
We define the frequent subsplit representation, and provide its interpretation as
a profile of trees. The results prove that the proposed notions are reasonable.
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2 Common Knowledge Representation

2.1 Basic Notions

Leaf-labelled trees are very often represented as a set of splits [1] . Split (or
Bipartition) A|B (of a tree T with leafset L), corresponding to an edge e is a pair
of leafsets A and B, which originated in splitting tree T into two disconnected
trees whilst removing an edge e from a tree T ,A ∪B = L. In this paper we will
refer to the leafset of a given split s as L(s).

For example tree T 1 from Fig. 1, is built of the following splits:
cd|abefghi, bcd|aefghi, abcd|efghi, hi|abcdefg, ghi|abcdef, fghi|abcde,
a|bcdefghi, b|acdefghi, c|abdefghi, d|abcefghi, e|abcdfghi, f |abcdeghi,
g|abcedfhi, h|abcdefgi, i|abcdefgh

There have been many approaches aiming at constructing a tree that contains
common knowledge of a particular group of trees. Among others: the maximum
agreement subtree (MAST)[4], maximum compatible tree (MCT) [5] and a dozen
of consensus trees [1,2]. The slightly different approach was using spectral anal-
ysis [6] to pick the best tree from input trees.

A strict consensus tree for example, is built out of splits that occur in all of
the input trees. A Majority-rule consensus tree is built out of splits that occur
in the majority of the input trees.

The proposed trees were not generally applicable but suitable for particular
applications. For instance, consensus trees, the simplest and best known meth-
ods, were suitable only for trees with the same leafset. The other trees like MAST
or MCT can theoretically be used for trees with a free leafset, however, they have
other drawbacks. In a consensus tree one can choose, for example, a majority-
rule consensus tree to avoid the situation in which one noisy tree will spoil the
consensus result. In trees like MAST or MCT there is no such a simple solution.
Additionally, MAST and MCT are in general NP-hard problems.

In [7] we have proposed the simplest possible approach to adapt consensus
methods to trees with a free leafset, which, however, had the disadvantage of
discarding some information apriori. In this paper we present a completely differ-
ent and innovative approach to representing common knowledge in leaf-labelled
trees. Our technique has all the advantages of consensus approaches: it allows
choosing an arbitrary threshold of trees that are obliged to have the common
knowledge; on the other hand, it is suitable also for trees with a free leafset and
does not require discarding any data. In contrast to other methods known in
literature, it does not necessarily result in one tree. The result of a method is a
set of splits, which however, can easily be interpreted as a profile of trees, if the
threshold is at least 50%.

2.2 Representative Splitset

Here we provide an alternative representation of common knowledge in trees.

Definition 1 (Restricted Split). Split s1 is a restricted version of split s2 on
the leafset z, if it is built with removing leaves not in z from s2. sz

2 = s1.
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Definition 2 (Restricted Split Equality(z-equality)). Splits s1 and s2 are
restrictedly equal on the leafset z, if those two splits after removing leaves not in
z are equal.

s1 =z s2 ⇐⇒ sz
1 = sz

2.[7] (1)

Definition 3 (Subsplit and supersplit). Split s1 is a subsplit of s2, and s2 is
a supersplit of s1, iff s1 is restrictedly equal to s2 on the leafset of s1, and leafset of
s1 is a subset of the leafset of s2.

s2 ⊆ s1 ⇐⇒ (s1 =z s2) ∧ z = L(s1) ∧ (L(s1) ⊆ L(s2)) (2)

it can also be presented alternatively:

s2(A|B) ⊆ s1(C|D) ⇐⇒ (A ⊆ D ∧B ⊆ C) ∨ (A ⊆ C ∧B ⊆ D) (3)

Definition 4 (Frequent subsplit). Frequent subsplit s with support minsup
in a profile of trees is a split that is a subsplit of at least one split in at least
minsup of trees. The minsup parameter is called minimal support. It may be an
absolute value which denotes the minimal number of trees, the split is supposed
to be found in (as a subsplit). It can also be given as the relative value, given as
a minimal percentage of tree, the split is supposed to be found in.

Fig. 1. Two leaf-labelled trees on different leafset

Consider the trees shown in the Fig. 1 , which are represented as follows:
T 1 : cd|abefghi, bcd|aefghi, abcd|efghi, hi|abcdefg, ghi|abcdef, fghi|abcde,
a|bcdefghi, b|acdefghi, c|abdefghi, d|abcefghi, e|abcdfghi, f |abcdeghi,
g|abcedfhi, h|abcdefgi, i|abcdefgh
T 2 : bc|adefghj, abc|defghj, abcd|efghj, hj|abcdefg, ghj|abcdef, fghj|abcde,
a|bcdefghj, b|acdefghj, c|abdefghj, d|abcefghj, e|abcdfghj, f |abcdeghj,
g|abcedfhj, h|abcdefgj, j|abcdefgh

In our approach we count the number of trees in which the split occurs (as a
subsplit of any split), rather then counting the number of splits, of which it is
a subsplit. For example, from Fig.1: abcd|efgh has the support 2/2 (100%), be-
cause it occurs in both trees: in the first one as a subsplit of abcd|efghi, and in the
second one as a subsplit of abcd|efghj. The argument for counting trees, rather
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than splits is that there might be some subsplits that occur frequently as subsplits
of many splits, but only in one tree. Such trees are considered uninteresting.

Definition 5 (Representative splitset). Representative splitset - a set that
contains maximal frequent subsplits s, i.e. such that there is no other frequent
subsplit s2 that is also a supersplit of s.

We may distinguish a strict representative splitset, that contains subsplits of all
trees(minsup=100%), or a majority-rule representative splitset which contains
subsplits of some splits in at least 50% of trees(minsup=50%).

For example from Fig.1 a strict splitset would be as follows:
abcd|efgh, gh|abcdef, fgh|abcde, bc|aefgh, h|abcdefg,
a|bcdefgh, b|acdefgh, c|abdefgh, d|abcefgh, e|abcdfgh, f |abcdegh, g|abcedfh.

The consensus methods for those trees would result in an empty splitset (be-
cause of a different leafset). The consensus tree built of z-restricted splits (see
Def. 1) on a common leafset (abcdefgh) will contain the three nontrivial splits
abcd|efgh, gh|abcdef, fgh|abcde plus the trivial split corresponding to each leaf
from a common leafset.

For frequent splitset generation we do not use the classic approaches of gen-
erating all possible subsets of a given size, as it is done by means of frequent
itemsets generation algorithms [3] .We generate the candidate subsplits from the
input profile of trees, which is far more efficient, as the number of trees is rela-
tively small (usually not more than a few hundreds). The generation procedure
on Celeron M 1.6 Ghz with 512Mb of RAM memory for 100 trees with leafset
of size 52 took 34 seconds, for 400 trees with leafset of size 52 - 136 seconds, for
100 trees with leafset of size 129 - 433 seconds. The procedure for the generation
of frequent subsplits is as follows:

GENERATE_FS(TREE[] input, minsup)
WHILE (C NOT EMPTY)

C = whole, unique splits form input profile
C=remove_infrequent_leaves(C)
Divide C into frequent set F

and infrequent set IF according to minsup param
F=REMOVE_NOT_MAXIMAL(F,RES)
RES=sum(RES,F)
C= GEN_CANDIDATES( IF );

END WHILE

GEN_CANDIDATES( IF )
FOR EACH PAIR OF SPLITS(A|B,C|D) FROM "IF",

THAT COME FROM DIFFERENT TREES
X1=intersection(A,C), Y1=intersection(B,D),
X2=intersection(A,D), Y2=intersection(B,C)
CAND=sum(CAND, X1|Y1, X2|Y2)

END FOR
return CAND
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Where REMOVE NOT MAXIMAL(F,RES), removes splits from F, that have
a supersplits in the so-far result RES.

3 Frequent Splitset Interpretation

Here we focus on the representative splitset interpretation. For example from
section one, we had the following representative splitset: abcd|efgh, gh|abcdef,
fgh|abcde, bc|aefgh, h|abcdefg, a|bcdefgh, b|acdefgh, c|abdefgh, d|abcefgh,
e|abcdfgh, f |abcdegh, g|abcedfh. It is clear that from the given splits we can-
not directly construct one tree because split bc|aefg has a different leafset than
other splits (d is missing). In order to provide an interpretation and visualization,
below we list some properties of leaf-labelled trees.

Definition 6 (Split compatibility). [8] Two splits A1|A1 and A2|A2 are com-
patible if

1. at least one of the intersections A1 ∩A2, A1 ∩A2, A1 ∩A2 A1 ∩A2 is empty
2. Ai = L−Ai and L is a set of all the possible leaves (the same for these two

splits).

Definition 7 (Compatible system). A set of splits is compatible if every pair
of splits is compatible [8]. Such a set is called a compatible system [9]. Every tree
gives a compatible set of splits and every compatible set of splits gives a tree. (a
known fact).

Theorem 1. If two splits s1 and s2 are compatible, then their subsplits meet
the first condition of compatibility (their subsplits are semi-compatible).

Proof. Let A1 and A2 be one side of the splits from s1 and s2, respectively.
A1 ∩A2 = ∅ ⇒ ∀x,y(A1 ∩ x) ∩ (A2 ∩ y) = ∅.
Theorem 2. If two splits s1 and s2 are compatible then their z-restricted ver-
sions (z ⊆ L(s1) ∩ L(s2)) are also compatible.

Proof. The first condition of compatibility is met thanks to Theorem 1, z-restrict-
ion imposes the same leafset, and thus the second condition is also met.

Theorem 3. Any two splits from a frequent splitset with a support greater than
50% are semi-compatible, i.e. one of the intersections A1∩A2, A1∩A2, A1∩A2

A1 ∩A2 is empty.

Proof. If any two splits have a support of at least 50% then there must be a tree
in the profile that contains supersplits (r1, r2) of both of them.
∀r1,r2∈SR∃i,s1∈Si,s2∈Si(r1 ⊆ s1∧r2 ⊆ s2) And because r1 and r2 are compatible

then s1 and s2 are also compatible (Theorem 1).

Theorem 4. Any z-restricted subset of frequent splitset with the minimum sup-
port greater then 50% is a compatible set if z ⊆ ⋂

L(si)

Proof. Emerges from Theorem 2 and 3.
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From the above theorems we can derive the following conclusions:

Conclusion 1. For each distinct leafset z from frequent splitset (FS) with a
support greater then 50% a tree can be built. The tree is built on those splits
from FS having a leafset as a superset of z. Therefore the frequent splitset
(minsup>50%) can be represented as a set of trees. In particular, it affects the
strict and majority-rule frequent set.

Conclusion 2. Each split from the frequent splitset discussed above will occur
in at least one tree, in a restricted form.

Conclusion 3. Conclusions 1 and 2 are also true for a tree based on the inter-
section of all the distinct leafsets from frequent split-set.

Conclusion 4. The set of trees resulting from the frequent splitset will contain
also a consensus tree, provided that the input dataset of trees were built on the
same leafset.

For a reconstruction of those trees, the procedure is as follows:

BUILD_TREES(FS)
FOR EACH distinct leafset z

S=set of splits that are built on z
X= set of z-restricted splits that are built on superset of L
T=tree(sum(S,X))

END FOR

As, for example, the strict-frequent splitset of trees from Fig.1 contains splits
built on two distinct leafsets: abcdefg, and abcefg, intersection of those leafsets
is equal to the second leafset. Therefore, this strict-frequent splitset set will be
illustrated by two trees.

Strict-frequent-set: abcd|efgh, gh|abcdef, fgh|abcde, bc|aefgh, h|abcdefg,
a|bcdefgh, b|acdefgh, c|abdefgh, d|abcefgh, e|abcdfgh, f |abcdegh, g|abcedfh,

Tree 1 z = {abcdefgh}:
Splits from Strict-frequent-set that are built on z (there are no splits built on
superset): abcd|efgh, gh|abcdef, fgh|abcde, h|abcdefg,
a|bcdefgh, b|acdefgh, c|abdefgh,
d|abcefgh, e|abcdfgh, f |abcdegh, g|abcedfh,

Tree 2 z = {abcefgh}:
Splits from Strict-frequent-set that are built on z: bc|aefgh,
Splits from Strict-frequent-set that are built on superset of z:
abcd|efgh, gh|abcdef, fgh|abcde, h|abcdefg, a|bcdefgh, b|acdefgh,
c|abdefgh, d|abcefgh, e|abcdfgh, f |abcdegh, g|abcedfh,
And its z-restricted versions on {abcefgh}:
abc|efgh, gh|abcef, fgh|abce, h|abcefg, a|bcefgh, b|acefgh, c|abefgh, e|abcfgh,
f |abcegh, g|abcefh,
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Fig. 2. Two trees built from strict frequent splitset of trees from Fig.2

Therefore T2 is built of: bc|aefgh, abc|efgh, gh|abcef, fgh|abce, h|abcefg,
a|bcefgh, b|acefgh, c|abefgh, e|abcfgh, f |abcegh, g|abcefh,
For a more difficult example, let us look at trees T1 and T2 from Fig.3
T1: cd|abefgh, bcd|aefgh, abcd|efgh, gh|abcdef, fgh|abcde
T2: bc|adefgh, abc|defgh, abce|dfgh, fg|abcdeh, fgd|abceh
Plus the trivial splits in both trees: a|bcdefgh, b|acdefgh, c|abdefgh,
d|abcefgh, e|abcdfgh, f |abcdegh, g|abcdefh, h|abcdefg
The strict-frequent representative set: a|bcdefgh, b|acdefgh, c|abdefgh,
d|abcefgh, e|abcdfgh, f |abcdegh, g|abcdefh, h|abcdefg, bc|aefgh, abc|efgh,

fgh|abce, fg|abcde

Here we have three distinct leafsets: {abcdefgh} {abcefgh} {abcdefg} and
the intersection: {abcefg} Therefore as a visualization we present four trees on
these leafsets, as shown on Fig.4.

Such an approach yields a very good interpretation. Instead of choosing one
strict consensus tree, which often gives a star (like tree 1), or MAST - which
may significantly reduce the number of leaves and is inefficient for counting
(like tree 4), this method provides alternative interpretations based only on
the frequency of splits. Therefore it allows a full insight into the data without
using many different methods. For a large set of trees replacing 30 or more trees
with 4 different trees, representing a different perspective on the input data, is
far more informative than replacing it with, for example, one consensus tree.
Moreover, the consensus methods are useless for free-leafset data. The approach
is somehow similar to the Loose Consensus Tree described in literature [10] that
consists of splits that are compatible with at least one split in each tree. Such a
tree, however, had a disadvantage, since some splits from this tree may occur in
only one of the input trees. Our approach is better, as our splits, even when they
occur in complete form in only few trees still have to be direct subsplits of at
least a minsup of trees. For the sake of convenience, let’s look at a majority-rule
frequent set(M-R-FS) for trees T1,T2,T3 from Fig. 3.

T1: cd|abefgh, bcd|aefgh, abcd|efgh, gh|abcdef, fgh|abcde
T2: bc|adefgh, abc|defgh, abce|dfgh, fg|abcdeh, fgd|abceh
T3: ab|cdefgh, abc|defgh, abcd|efgh, gh|abcdef, fgh|abcde
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Fig. 3. Three leaf labelled trees on the same leafset

Fig. 4. Trees built from strict frequent splitset of trees T1 and T2 from Fig.3

Fig. 5. Trees built from majority-rule frequent splitset of trees 2 from Fig.3

Plus trivial splits
M-R-FS=abc|defgh, fgh|abcde, gh|abcdef, abcd|efgh, bc|aefgh, ab|dfgh,

ab|cd plus trivial splits, which gives 3 leafsets {abcdefgh} {abcefgh} {abcd},
which gives us 3 trees.

4 Results

Here we present the results of counting strict and majority-rule frequent set.
We have chosen the phylogenetic trees datasets: Camp(216 trees), Caesal(450
trees), pevcca1(168 trees), kindly provided by Lee-San Wang, which contain
leaf-labelled trees on the same leafset. The first experiment (shown in table 1
and table 2) presents information about the trees obtained from frequent splitset,
as compared to consensus trees. The following information is provided: number
of leaves in a tree / the informativity of the trees (i.e. the number of non-trivial
splits) / how much the tree is resolved (i.e. the percentage of non-trivial splits in
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Table 1. Trees on Strict Frequent Subsplit, for trees on the same leafset

k Camp Caesal Pevcca1

Strict FS Strict CT Strict FS Strict CT Strict FS Strict CT

10 13/6/82%
11/6/89%

13/6/82% 51/44/95%
50/45/97%

51/44/95% 129/120/97%
127/121/98%
114/111/100%
7/3/90%

129/120/97%

20 13/6/82%
8/4/92%

13/6/82% 51/41/92%
50/42/94%

51/41/92% 129/118/96%
127/119/98%
114/109/99%
7/3/90%

129/118/96%

50 13/6/82%
8/4/92%

13/6/82% 51/39/90%
50/40/92%
40/31/92%

51/39/90% 129/116/96%
128/117/96%
128/117/96%
7/3/90%

129/116/96%

100 13/6/82% 13/6/82% 51/39/90%
50/34/92%
40/31/92%

51/39/90% 129/108/92%
128/109/93%
128/109/93%
119/104/94%
10/7/100%
7/3/90%

129/108/92%

Table 2. Trees on Majority-Rule Frequent Subsplit, for trees on the same leafset

k Camp Caesal Pevcca1

MR FS MR CT MR FS MR CT MR FS MR CT

10 13/9/95% 13/9/95% 51/46/97% 51/46/97% 129/126/100% 129/126/100%

20 13/8/91% 13/8/91% 51/46/97%
50/46/98%

51/46/97% 129/126/100% 129/126/100%

50 13/7/86%
12/8/95%
12/7/90%
11/7/94%
10/6/94%

13/7/86% 51/46/97%
50/46/98%
49/45/98%
35/32/100%

51/46/97% 129/126/100% 129/126/100%

100 13/6/82%
11/6/89%
10/6/94%
9/5/93%
6/3/100%

13/6/82% 51/46/97% 51/46/97% 129/124/99%
7/4/100%

129/124/99%

given tree with respect to the number of non-trivial splits that the binary tree,
built on this leafset would have). We provide these parameters, as the quality
measure, because of the major drawback of consensus tree, which often produces
star-tree (informativity 0, resolved in 0%) even though the trees are similar(see
Fig. 4,tree T1). Our technique tends not to have this disadvantage (other trees
from Fig. 4). For the experiments we have used samples of different size (k). So,
for example, for 10 trees from Camp dataset, table 1 contains the following result:
13/6/82% , 11/6/89% . This means that two different trees were constructed from
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Table 3. Trees on Frequent Subsplit, for trees on free leafset, Camp dataset

k 10 20 50 100

Strict FS 12/5/80%
10/5/88%

12/5/80%
8/4/92%

12/5/80%
8/4/92%

12/5/80%

Strict CT 0/0/0 0/0/0 0/0/0 0/0/0

MR FS 12/8/95% 12/7/90% 12/6/85%,
11/7/94%
11/6/89%,
10/6/94%
10/6/94%

12/5/80%,
10/5/88%
9/5/93%,
9/5/93%
6/3/100%

MR CT 0/0/0 0/0/0 0/0/0 0/0/0

strict-frequent splitset. The first was built on 13 leaves, contained 6 non-trivial
splits and was resolved in 82%, the other was built on 11 leaves, contained 6
non-trivial splits and was resolved in 89%. The results of the first experiment
show that our method provides better common knowledge representation than
consensus trees. The method used for the presented dataset produced from 1 to 6
trees from each sample, which gives a new and very interesting view on the input
data. The single tree from the resulting trees was up to 12% more resolved than
the consensus tree (sometimes fully resolved), and there was often more than one
resulting tree. The results of the second experiment, which addresses the trees not
built on the same leafset, are presented in table 3. For this experiment, we have
used the same dataset as in the previous experiment, though slightly modified.
For the strict frequent subsplit analysis, we have modified the label of one leaf
in one tree. We have applied the label that does not occur in the input profile.
For the majority-rule frequent subsplit analysis we have modified the same label
of one leaf in all the input trees in such a way that it has become different in
each tree(for example a is changed to a1, a2 . . . ). For lack of space, we provide
only the results for Camp dataset. The results of the second experiment show
that for very similar trees, albeit not built on the same leafset, the consensus
methods completely fail, whilst our frequent subsplits representation provides
very informative trees with almost the same quality as for trees with the same
leafset.

5 Discussion

In this paper we have presented a new method of representing common knowl-
edge in leaf-labelled trees as a set of frequent subsplits, together with its in-
terpretation. Our technique has many advantages, which we have listed in this
paper. The proposed solution has a very good interpretation, as it returns dif-
ferent, maximal sets of taxa that are connected with the same relations in the
input trees. Such an approach often provides more interesting results than the
tree containing whole taxa. The trees obtained from the frequent subsplit set
contain at least one tree (which is a consensus tree if the trees are built on the
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same leafset). The rest of the resulting trees are more resolved than the trees
obtained from the consensus methods. For trees that are not built on the same
leafset, the method also provides very informative trees, whilst the consensus
methods fail entirely. The algorithm for finding frequent leafset provides the re-
sult within reasonable time, which makes it useful in phylogenetic analysis. The
proposed representation seems to be a very promising basis for the clustering of
leaf-labelled trees, not necessarily built on the same leafset, which will be the
part of our future work. The more efficient frequent subsplit generation methods
will also be addressed.
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Abstract. High-throughput techniques investigating for example
protein-protein or protein-ligand interactions produce vast quantity of
data, which can conveniently be represented in form of matrices and can
as a whole be regarded as knowledge networks. Such large networks can
inherently contain more information on the system under study than is
explicit from the data itself. Two different algorithms have previously
been developed for economical and social problems to extract such hid-
den information. Based on three different examples from the field of
proteomics and genetic networks, we demonstrate the great potential of
applying these algorithms to a variety of biological problems.

1 Introduction

Current high-throughput techniques produce large amounts of biological data
that can usually be represented in the form of large matrices. For example,
experimental results from DNA or protein (protein-protein, protein-ligand or
enzyme-substrate) microarray assays are assembled in a matrix, where the genes/
proteins/ligands constitute the rows and the different experimental conditions
under which they were probed the columns, see for example [10].

Two papers have recently proposed algorithms to extract meaningful relation-
ships from matrix data describing large networks [7,1]. [7] have demonstrated
that it is for example possible for an advisor service to recommend new books
to their customers, based on their incomplete knowledge about the overlap of
customers’ preferences. However, in many practical cases, the data needed by
the previous algorithm are unaccessible. For instance, it is very hard to obtain
data about preferences, while it is possible to know customers’ opinions about
already read books. [1] have shown that it should be in principle possible to
extract information about quantities hidden in such opinion networks. Suppose
we have data on a large network of proteins either interacting with each other
or binding to many different ligands. Such information can in principle be in-
terpreted as data on different proteins’ “opinion” on other proteins or different
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proteins’ “opinion” on different ligands (or vice versa). Thus it should theoreti-
cally be possible to anticipate or “predict” unknown interactions, which were not
yet probed for, and which could then be verified experimentally. Moreover, this
method should also be useful either for the interpolation of missing values or the
estimation of the consistency of the entries in a data matrix with some model
hypothesis. Since many analysis methods, such as principal components analysis
or singular value decomposition, require complete matrices, different imputation
methods were developed and tested by [10] for use with DNA microarray data.

In this work, we first introduce the two knowledge networks algorithms we
used to tackle important problems in the field of proteomics. We then demon-
strate the power and potential of this approach on three specific examples on
which those algorithms have successfully been applied: the prediction of amino
acid contacts of a protein structure, inference of substrate-enzyme relationships
for a novel enzyme given a set of enzymes and their substrates and inference
on cellular interactions mediated by cytokines based on a network, manually
compiled from literature [3].

2 System and Methods

2.1 Maslov-Zhang’s (MZ) Algorithm

Demonstration. We first checked the prediction potential of the MZ-algorithm
[7] devising three very simple networks of 6 circularly or partly connected nodes
(Fig. 1A.). Apart from the explicitly defined direct connections between imme-
diately adjacent nodes, depending on their network architecture, these example
networks also contain several implicit indirect connections between non-adjacent
nodes. They actually only differ in the way node D can be reached from the other
nodes: Whereas in the first network I node D is separated from either node C
or node E by only a distance of one step, node D can only be indirectly reached
from node C in the second network II, passing by nodes B, A, F, and E, such
that the two nodes are separated by a distance of five steps. On the contrary,
the architecture of the third network III is such that node D lies isolated and
can’t be reached from any of the other nodes, which is defined by a distance of
zero steps.

These three networks were each represented by a symmetrical connection ma-
trix, where directly connected nodes are assigned a connection value of one
and all other potential indirect connections obtain the initial value of zero.
MZ-algorithm was then applied to each matrix as following: at every round,
we kept the values of the known direct connections, but updated all the val-
ues of the “unknown” indirect links. To probe the power of the algorithm, we
used different numbers of positive eigenvalues (1 to 4), thus exploiting differ-
ent amounts of “knowledge” about the networks. As an example, results for the
case, where only the two largest eigenvalues were used, are shown for the net-
work II and III (Fig. 1B. and C). In all cases, i.e. all three networks and all
numbers of eigenvalues tested (except for network III, when using the largest
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Fig. 1. MZ-algorithm applied to very simple networks. The three different networks
tested (I,II,III) are schematically shown in a single drawing (A.). All direct links be-
tween adjacent nodes are initially assigned connection values: e.g. 110 means that
network I and II have a value of 1 and network III a value of 0 associated with that
link. The tables correspond to networks II (B.) and III (C.). Columns 1 and 2 define
the two nodes whose connection was predicted; column 3 contains estimated connection
values; number of positive eigenvalues used = 2.

eigenvalue only), the algorithm correctly detected any indirect connections be-
tween non-adjacent nodes via other nodes and assigned to them values, which
slightly decrease with the increasing distance. This effect is more pronounced
for networks II and III, as not all indirect connections are possible in those
cases. Most important, no links are detected between those nodes that can’t be
connected by any indirect way (compare tables B. and C. in Fig. 1).

Application to Contact Maps. The contact maps were constructed using
Shanahan’s program (http://www.biochem.ucl.ac.uk/˜shanahan) that was run
at several maximal distance thresholds between 2 and 8Å. The lowest threshold,
at which an interaction between two amino acids was found, was used as the
approximate distance of that contact in Å. We then assigned values to the dif-
ferent amino acid interactions applying the following rule: value = 8 - (distance
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in Å - 2). This somewhat arbitrary rule attributes higher weight to interactions
at short range, allowing a finer “rating” of the interactions. The following algo-
rithm adapted from [7] was then applied to each position of the contact matrix
representing a specific protein domain: (1) To simulate unknown values, con-
struct the initial CM matrix by deliberately setting the values of one specific
position and its corresponding symmetric position to zero. (2) Normalise the
thus slightly changed CM matrix per row, giving matrix N CM . (3) Diagonalise
matrix N CM , and construct the N CM

′
by keeping only the M largest (posi-

tive) eigenvalues and eigenvectors of the old matrix, while setting the remaining
eigenvalues to zero. (4) Construct a new refined approximate N CM matrix by
copying the unknown elements from N CM

′
, while resetting the rest to their

exactly known values. (5) Go to the step (3). Repeat until either the values
being predicted do not change considerably or a limit number of rounds of the
algorithm is reached. As a rule, the number M of positive eigenvalues was var-
ied. Meff, the effective number of eigenvalues was estimated using the formula
Meff ≈ K/N , where K is the number of known contacts and N is the size of the
CM matrix, i.e. the total number of amino acids in the protein domain under
investigation [7].

Application to Cytokine Networks. We translated the cytokine network
connections, described in Fig. 4 of [3], into a square data matrix assigning to
all mutual connections a value of 2 and to all one-way connections a value of
1. MZ-algorithm was applied as described in the previous section with a slight
modification of step (3): Decompose the connection matrix N CM into its singu-
lar values and vectors, and construct the N CM

′
by keeping only the M largest

singular values of the old matrix. All other steps remain unchanged. The number
M of singular values used was varied from 1− 29.

2.2 De Gustibus Algorithm

In each calculation, a specific enzyme-ligand entry in the matrix containing the
binding energies calculated by [6] was set to zero and the thus resulting new
matrix was normalized as follows: The matrix average was subtracted from all
values, which were then made positive by subtracting from each of them the
largest negative value found in the whole matrix. Finally, all matrix entries
were divided by the largest one of all. Each time, a correlation matrix was then
calculated applying the equation 1 from [1]:

Ci,j =
∑N

n=1(si,n − si) (sj,n − sj)
√

∑N
n=1(si,n − si)2

∑N
n=1(sj,n − sj)2

(1)

where Ci,j denotes the Pearson correlation coefficient between enzyme i and j;
N is the number of different ligands in the interaction matrix; si,n and sj,n cor-
respond to the binding energies of ligand n to the enzymes i and j, respectively;
and si and sj denote the binding energies for either enzyme i or j, averaged over
all ligands. We did not include on purpose any binding energy values involving
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the ligand in question into the correlation calculations, in order not to skew the
coefficients by the “missing” value. In our original attempt, the binding energy
of the given enzyme-ligand interaction was “predicted” using the equation 3
from [1]:

s̃∗m,n =
1
M

M∑

i=1

Cm,i si,n (2)

where s̃∗m,n denotes the estimated value of binding energy of ligand n to enzyme
m; M is the total number of different enzymes in the interaction matrix; Cm,i

stands for correlation coefficient between enzyme m and enzyme i; and si,n

represents binding energy of ligand n to enzyme i. We omitted the zero value
from the calculation, again not to influence it by the “non-existing” value. This
was repeated for each enzyme-ligand pair of the matrix. In our final approach,
the relative weight wk for each of the K enzymes contributing to the estimation
of a value for enzyme A is calculated as follows. An ordered list of all the other
enzymes, which are positively correlated to enzyme A, is assembled according to
their correlation coefficients. wk is then calculated for the K enzymes with the
highest coefficients:

wk =
Ck,i

∑K
k=1 Ck,i

(3)

where k designates the index of the first K enzymes in the ordered list; i is the
index of enzyme A; and Ck,i denotes the correlation coefficient of the kth enzyme
to the enzyme i. A “normalised value” is calculated using the following formula:

s̃
′
m,n =

K∑

k=1

wk s
′
k,n (4)

where s̃
′
m,n is the estimated “normalised value” of the binding energy of enzyme

m to ligand n; and s
′
k,n denotes the “normalised value” of the interaction between

ligand n and the kth enzyme in the ordered list. The thus “predicted” values
were then re-transformed to the final binding energy according to the normalising
factors used and then compared to the original ones.

Statistical Assessment. To assess statistical relevance of the results produced
by the De Gustibus method, we performed 1000 randomisation-predic-tion ex-
periments and compared them to the original results: At each round, the matrix
containing the enzyme-substrate binding energies was randomised anew, i.e. the
values of the matrix were randomly redistributed. The “predictions” were then
performed exactly as described above. The results of each such experiment were
grouped into different error categories depending on the extent of the abso-
lute difference between the “estimated” and the original value for the respective
enzyme-substrate pair. For each category, the mean value and the standard de-
viation was calculated from all the randomisation experiments. Those can be
compared to the values of the corresponding categories compiled from the orig-
inal estimations.



Inference on Missing Values in Genetic Networks 111

3 Results and Discussion

3.1 Contact Maps of Compact Proteins

Encouraged by the results of our prior tests of the MZ-method on simple artificial
networks (see System and Methods), we then tackled our first example problem.
The 3D-structure of a protein can be represented as a contact map (CM). In
case of globular proteins, Porto and collaborators have shown that the principal
eigenvector of a contact map is equivalent to the CM itself, and therefore basi-
cally contains all the information about the 3D-structure of a protein. Thus it
seems reasonable to view contact maps as 3D-structure knowledge networks and
use their eigenvalues to reconstruct unknown or uncertain entries of the contact
matrix. Moreover, CMs are symmetric square matrices by definition. For these
reasons, MZ-algorithm is ideal to “predict” or validate the internal contacts be-
tween different amino acids of a globular polypeptide chain, based on the known
contacts.

We used two well studied proteins: the globular human protein haemoglobin
(PDB ID: 2HHB) [2] and the protein HisA from Thermotoga maritima (PDB
ID: 1QO2), which was shown to be folded as a compact β/α barrel [4]. We con-
structed the CMs with the help of Shanahan’s program (http://www.biochem.
ucl.ac.uk/ ˜ shanahan), assigning values to the different contacts depending on
the estimated distance between the individual amino acids: the shorter the dis-
tance in Å, the higher the value assigned. Shanahan’s program was ideal for our
purpose since it exclusively uses the data in the PDB file without any further
interpretation or any evaluation of the 3D-structure of the protein. Taking one
position after the other of the CM, we tested whether all the known contacts and
their respective values could be reconstructed using the information contained
within the rest of the CM. As was theoretically shown by [7], the density of
the known interactions in the CM must be higher than a certain threshold p2,
so that all the unknown contacts are completely determined by the information
contained in the known ones. Below p2, the algorithm performs rather poorly.
However, this threshold can’t be estimated for real problems, since the number of
relevant components determining the actual contacts is unknown. For the same
reason, the number of positive eigenvalues required for the calculations thus can-
not be determined precisely. That’s why, as a first approximation, we employed
Maslov and Zhang’s conjecture to estimate the effective number of eigenvalues
Meff to be used. As the CM for the whole protein is usually quite sparse, only
certain “domains” of the CM matrix could be used for predictions: as a rule
of thumb, domains with ≥ 50% of known contacts were analysed. For obvious
reasons, we used symmetrical domain-CMs, i.e. the amino acids involved were
the same in both directions of the matrix. Usually domains of 20–25 amino acids
were suitable for analysis. For each position (i.e. each putative contact between
two amino acids) of such a domain-CM, the contact value was “predicted” by
MZ-algorithm, keeping about Meff of the positive eigenvalues (see System and
Methods). This procedure was repeated for all positions in the domain-CM and
the so estimated values were compared to the original ones (see Table 1). We
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Table 1. Contact predictions for two different protein domains (Remark: Values less
than 2 indicate a distance between the amino acids greater than 8Å; values greater
than 2 indicate a distance less than 8Å)

Protein HisA (PDB ID: 1QO2) Domain aa53 - aa73 Estimated Meff ≈ 5.6

For cases where original value �= 0 Meff = 5 Meff = 6
Percent of cells with predicted value ≤ 10% of the original one 36.3 37.6
Percent of cells with predicted value ≤ 20% of the original one 67.5 62.9
Percent of cells with predicted value ≤ 50% of the original one 91.1 91.1
Total number of cells 237 237
For cases where original value = 0 Meff = 5 Meff = 6
Percent of cells with predicted value < 1 80.4 84.3
Percent of cells with predicted value > 1 AND < 2 16.7 11.8
Percent of cells predicted with value > 2 2.9 3.9
Total number of cells 204 204

Protein Haemoglobin (PDB ID: 2HHB) Domain aa15 - aa40 Estimated Meff ≈ 6.5

For cases where original value �= 0 Meff = 6 Meff = 7
Percent of cells with predicted value ≤ 10% of the original one 32.8 35.8
Percent of cells with predicted value ≤ 20% of the original one 60.7 66.6
Percent of cells with predicted value ≤ 50% of the original one 95.9 95.9
Total number of cells 338 338
For cases where original value = 0 Meff = 6 Meff = 7
Percent of cells with predicted value < 1 81.7 82.8
Percent of cells with predicted value > 1 AND < 2 16.6 15.4
Percent of cells predicted with value > 2 1.8 1.8
Total number of cells 338 338

demonstrated for several such domains of the proteins, haemoglobin and HisA,
that 80–90% of the “predicted” values deviate by less than 50% from the original
value. Summary of the results for two of the different protein domains are shown
in Table 1.

3.2 Cytokine Networks

As a further example of application, we used the cytokine network from [3] which
consists of cells as nodes (29 in total) and cytokine connections as edges (418
in total), disregarding as yet which particular cytokines are actually involved.
We assigned to mutual and one-way connections different values (2 and 1, re-
spectively). For each position of the matrix we tested whether all the known
connections and their respective values could be reconstructed. Since the data
matrix representing the current knowledge is not completely symmetrical, we
had to modify slightly the “prediction” algorithm: we decomposed each matrix

Table 2. Predictions for cellular interactions mediated by cytokines

nb of singular values = 1

Percent of cells with predicted value ≤ 5% of the original one 9.1
Percent of cells with predicted value ≤ 10% of the original one 17.5
Percent of cells with predicted value ≤ 20% of the original one 33.5
Percent of cells with predicted value ≤ 50% of the original one 78.7
Percent of cells with predicted value ≤ 100% of the original one 100.0
Total number of cells 418
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into its singular values and corresponding vectors, as by definition this always
results in real positive singular values. We tested different numbers of singular
values for the matrix reconstructions (1− 29), but interestingly only one or two
singular values gave reasonable results. As the number of singular values was in-
creased, the results quickly deteriorated (data not shown), probably due to the
inclusion of the noise contained in the vectors corresponding to small singular
values. Assuming that the mutual and one-way connections in the matrix are
reliable, whereas absence of any connections may at present be due to the fact
that for whatever reason it has yet not been discovered, we based our reliability
estimation of the results exclusively on the known connections. Table 2 shows
that using one singular value about 80% of the “predicted” connection values
deviate by less than 50% from their original value.

3.3 Correlation Matrices

Bagnoli and collaborators extended the MZ-approach to knowledge networks
where direct interactions between different nodes are unknown, but can be de-
duced by constructing a similarity correlation matrix between them. We applied
their algorithm to the data generated by [6], where they studied the selectiv-
ity of recognition between E. coli enzymes and their cognate substrates using
standard docking calculations. The data set we chose comprises binding ener-
gies calculated for 27 enzymes to 119 different ligands (including the 27 cognate
substrates of the enzymes). It actually constitutes a subset of the raw results
described by [6]. Our data set is particularly suitable for demonstrating the pre-
diction or validation potential of the correlation matrices, since it represents a
completely filled matrix. The data may be regarded as “opinion of the 27 dif-
ferent enzymes on the 119 different ligands”, and a correlation matrix between
the 27 enzymes’ opinions can easily be constructed. To test the predictive power
of the De Gustibus method, we calculated one by one the binding energy for
every enzyme-ligand pair, based on the other binding energies (except the one
for the pair in question) and on the corresponding correlation matrix between all
the enzymes of the data set. This approach allowed us to address the question,
whether the data set, which originates from pure calculations indeed, shows inter-
nal consistency. This was particularly interesting since surprisingly, the docking
results [6] indicated that the cognate enzyme-ligand complex does rarely have
the lowest binding energy from all the complexes involving manifold alternative
substrates. Our first approach, applying the Eq. (2) as such, did not yield very
good results, since about 36% of the “predicted” values differed by more than
30% from the originally calculated binding energy (data not shown). We rea-
soned that this might be due to the fact that in that equation the prediction for
the ligand in question is based on the values for all the other enzymes, regardless
of whether those enzymes are tightly correlated or not to the one in question. We
thus adopted a strategy similar to the one employed by [10] to estimate missing
values in DNA microarray studies. Suppose an enzyme A that has one missing
value for the interaction with ligand 1. Based on the correlation coefficients,
a weighted average of the values involving enzymes most similar to enzyme A
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Fig. 2. Accuracy of “predicted” enzymes-ligands binding energies. Comparison of the
results from the original predictions (black bars) and those compiled from the 1000
randomisation experiments (white bars). In the former case, the 3213 predictions were
simply grouped into different error categories, whereas in the latter, the mean values
and corresponding standard deviations were calculated for the different categories and
are shown (white bars and respective black bars). Percentage of estimations belonging
to the different categories (Y-axis). Categories (X-axis): absolute difference between
the estimated and original value comprises < 5% of the original value (1), difference
is ≥ 5% but < 10% (2), difference is ≥ 10% but < 20% (3), difference is ≥ 20% but
< 30% (4), difference is ≥ 30% but < 40% (5), difference is ≥ 40% but < 50% (6), and
difference is ≥ 50% (7).

is used for “prediction”. Actually, only the K enzymes, exhibiting the highest
positive correlation coefficient to enzyme A, are included in the estimation. A
relative weight wk is designated to each of those enzymes. The contribution of
each of the K enzyme-ligand interaction data is thus weighted by the value of
the correlation coefficient between the enzyme A and the enzyme in question.
Results of our final approach using K = 10 are shown in Fig. 2. In this special
case, where we deal with a full “opinion” matrix of 3213 interactions and are
estimating one of them at a time, about 91% of the individual “predicted” values
did not deviate by more than 30% (and about 98% did not differ by more than
50%) from the originally calculated binding energy. Compare these results to
those compiled from 1000 randomisation experiments, described in System and
Methods (Fig. 2).

3.4 Comparison and Work in Progress

There is a tremendous lack of algorithms for inferring missing values in data
produced by high-throughput techniques. Moreover, some types of data may
require specialised algorithms. We compared our general algorithm with the
KNNimpute program of [10] that has been developed and tested for imputation
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of missing values in gene microarray data. Applying the De Gustibus and the
KNNimpute method on the same data sets (from [9]) as [10], we obtained very
similar results (e.g. 95–96% of the imputed values differed by less than 50% from
the original values). The availability of huge amount of data in form of replicated
data sets allows to simultaneously approach the problems of dimensionality of
biological data, i.e. the number of variables may in some cases exceed the number
of responses by a factor of tens, and the problem of their dependencies (see
also [5]). We aim at implementing statistical techniques such as Markov chain
Monte Carlo and Bayesian inference to identify which values from the available
data should be used for optimal inference on the missing ones. These methods,
which are beyond the scope of this paper, are just beginning to have a significant
impact in high-throughput data statistics.

4 Conclusions

We have investigated the possibilities and the potential of applying the MZ and
De Gustibus algorithm to several types of problems which arise in proteomics. We
have demonstrated that indeed both algorithms are useful. The MZ-algorithm
was successfully applied not only on our toy example but also on the problem
of validating uncertain amino acid contacts of a protein tertiary structure. We
further showed that, in principle, it is possible to suggest yet unknown connec-
tions in a network, such as the cytokine one, based on the present knowledge
contained within. The De Gustibus algorithm was tested on results from in sil-
ico docking experiments of several E. coli enzymes to a multitude of different
ligands. Surprisingly, the enzymes appeared to be quite promiscuous since many
ligands “bound” at least as well if not better than their cognate substrates. Since
docking calculations have their limitations and imperfections, it was particularly
interesting to assess the reliability of those results. Indeed, our study strengthens
the conclusions by [6] in that it demonstrates that their docking results consti-
tute a set of binding energy values overall internally consistent with each other.
The limitations of the two algorithms lie clearly in the fact that the matrices
may not be too sparse in order to allow reliable predictions. However, with the
ever growing amount of biological data, we are confident that they will be useful
for an increasing number of applications.
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Abstract. Many clustering algorithms have been used to identify co-expressed 
genes in gene expression data. Since proteins typically interact with different 
groups of proteins in order to serve different biological roles, when responding to 
different external stimulants, the genes that produce these proteins are expected to 
co-express with more than one group of genes and therefore belong to more than 
one cluster. This poses a challenge to existing clustering algorithms as there is a 
need for overlapping clusters to be discovered in a noisy environment. For this 
reason, we propose an effective clustering approach, which consists of an initial 
clustering phase and a second re-clustering phase, in this paper. The proposed ap-
proach has several desirable features as follows. It makes use of both local and 
global information inherent in gene expression data to discover overlapping 
clusters by computing both a local pairwise similarity measure between gene ex-
pression profiles and a global probabilistic measure of interestingness of hidden 
patterns. When performing re-clustering, the proposed approach is able to distin-
guish between relevant and irrelevant expression data. In addition, it is able to 
make explicit the patterns discovered in each cluster for easy interpretation. For 
performance evaluation, the proposed approach has been tested with both simu-
lated and real expression data sets. Experimental results show that it is able to ef-
fectively uncover interesting patterns in noisy gene expression data so that, based 
on these patterns, overlapping clusters can be discovered and also the expression 
levels at which each cluster of genes co-expresses under different conditions can 
be better understood.  

Keywords: Data Mining, clustering, bioinformatics, gene expression data 
analysis. 

1   Introduction 

Given a database of records each characterized by a set of attributes, the clustering 
problem is concerned with the discovery of interesting record groupings based on 
attribute values [1]. To deal with the increasing amount of gene expression data pro-
duced by the DNA microarray technology [2], [3] existing clustering algorithms [4], 
[5], [6] have been used to the identification of co-expressed genes [7], [8], [9]. Since 
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co-expressed genes have similar transcriptional response to external stress, they ex-
hibit similar expression patterns and could have similar or related biological func-
tions. Effective clustering of gene expression data can therefore allow these patterns 
to be more easily discovered.  

While many clustering algorithms have been used successfully with gene expres-
sion data, it should be noted that most of them (e.g., the k-means algorithms) usually 
perform their tasks under the assumption that each gene belongs only to one cluster. 
Such an assumption can sometimes be an over-simplification of the great biological 
complexity underlying the gene expression process. As many proteins have multiple 
functional roles in a cell, they have to interact with different groups of proteins to 
fulfill them. The genes that produce these proteins are therefore expected to co-
express with different groups of genes in order to meet the varying demands of a cell. 
In other words, depending on which experimental conditions being investigated, each 
gene may have similar expression patterns with different groups of genes in other 
clusters and they can, therefore, belong to more than one cluster. This poses a chal-
lenge to existing clustering algorithms as they need to tackle two difficult problems: 
(i) they need to handle overlapping clusters, and (ii) they need to discover overlapping 
clusters in the presence of various forms of data inaccuracies and variations arising 
not only from genetic variations and impurity of tissue samples but also from such 
processes as the production of the DNA array, the preparation of the samples, the 
hybridization of experiments, and the extraction of the hybridization results [10], etc. 
In light of these problems, some recent attempts have been made to use the fuzzy 
k-means algorithms [11], [12] and the biclustering algorithms [13], [14] to discover 
overlapping clusters in gene expression data with limited success. In addition, many 
existing clustering algorithms do not make explicit the patterns discovered in a data 
set during the clustering process. To better understand and interpret the clustering 
results, a separate technique is usually required for patterns underlying each discov-
ered cluster to be uncovered explicitly. 

To discover overlapping clusters in noisy gene expression data effectively, we pro-
pose a clustering approach, which consists of an initial clustering phase and a second 
re-clustering phase, in this paper. The proposed approach makes use of both local and 
global information hidden in gene expression data when deciding which genes to be 
grouped together. In the first phase, local information is extracted by computing a 
pairwise similarity measure between gene expression profiles so as to detect for un-
derlying clustering structures (the initial clusters). In the second phase, global infor-
mation is obtained through discovering interesting patterns in the initial clusters. 
These patterns are identified by differentiating between expression data that are rele-
vant for the clustering process from those that are not relevant. In doing so, a 
probabilistic interestingness measure is used. If an expression level is relevant in 
determining whether or not a gene should belong to a particular cluster, it is reflected 
by the interestingness measure. Since this measure is probabilistic, it can work effec-
tively even when the data being dealt with contains incomplete, missing, or erroneous 
values. Once the relevant expression data are identified, the discovered patterns can 
be made explicit for easy interpretation. Based on the discovered patterns, the cluster 
memberships of genes in each initial cluster are re-evaluated to determine if they 
should remain in the same cluster or be assigned to more than one. With the proposed 
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approach, overlapping clusters can then be effectively discovered in noisy gene ex-
pression data. 

The rest of this paper is organized as follows. In Section 2, the proposed clustering 
approach is described in details. The effectiveness of this approach has been evaluated 
through the experiments with both simulated and real expression data sets. The ex-
perimental set-up, together with the results, is discussed in Section 3. In Section 4, we 
give a summary of the paper. 

2   The Proposed Clustering Approach 

To describe the proposed clustering approach, let us assume that we are given a set of 
gene expression data, G, consisting of the data collected from N genes in M experi-
ments carried out under different sets of experimental conditions. Let us represent the 

data set as a set of N genes, },,,,{ Ni ggg KK1G = , with each gene, ig , Ni ,...,1= , 

characterized by M attributes, Mj EEE ,,,,1 KK  whose values, iMiji eee ,,,,1 KK , 

where )(domain jij Ee ∈  represents the expression value of the thi gene under the 

jth experimental condition. 

Phase 1: An Initial Clustering Phase  
To find the initial clusters, any traditional (crisp) clustering algorithms such as the k-
means algorithm can be used. As mentioned before, these algorithms have been used 
successfully with gene expression data, we therefore make use of the strengths of 
existing algorithms in this phase. In addition, researchers can easily extend their clus-
tering algorithms to discover overlapping clusters by only integrating the proposed re-
clustering technique as presented in Phase 2 below. Here, we used the popular 
k-means clustering algorithm [5] as it has been used successfully on a variety of gene 
expression data sets [8], [10]. Given the number of clusters to be discovered, the 
k-means algorithm randomly selects k genes as initial cluster centroids. Depending on 
how far away a gene is to each centroid (using the distance/similarity measure such as 
the Euclidean distance [1]), it is assigned to the cluster that it is nearest to. The cen-
troid of each cluster is then re-calculated as the mean of all genes belonging to the 
cluster. This process of assigning genes to the nearest clusters and re-calculating the 
positions of the centroids is then performed iteratively until the positions of the cen-
troids remain unchanged. 

Phase 2: A Re-clustering Phase  
In this phase, genes that have already been assigned to the initial clusters (in Phase 1) 
are re-evaluated to determine if they should remain in the same cluster or be assigned 
to more than one. This phase consists of two steps as follows.  

Step 1 - Discovering interesting patterns in the initial clusters 
To minimize the effect of noise in this re-clustering phase, rather than the actual expres-
sion values, they are partitioned up into intervals/levels instead. The partitioning, which 
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is also called discretization, is based on the popular method described in [15] as this 
method has been shown to be able to minimize the loss of information during the data 
partitioning process. After discretization, interesting patterns are discovered in each 
initial cluster by first detecting for associations between the expression levels of genes 

that belong to a particular cluster and the cluster label itself. To do so, we let pkobs  be 

the observed total number of genes, li ggg ,...,,...,1 , in the data that belong to a given 

cluster, pC , and are characterized by the expression values that are within the range of 

)(k
je , where Nl ≤ , Pp ,...,1=  and P  is the total number of initial clusters dis-

covered, 
)(k

je  represents a particular level so that the expression values, 

ljijj eee ,...,,...,1 , are within the range of 
)(k

je , Kk ,...,1=  and K  is the total 

number of distinct levels observed under jE . We also let 
'

exp
N

obsobs kp
pk

++=  be 

the expected total under the assumption that being a member of pC  is independent of 

whether or not a gene has the characteristic 
)(k

je , where ∑ =+ = K

k pkp obsobs
1

, 

∑ =+ = P

p pkk obsobs
1

 and ∑=
kp pkobsN

,

' N≤ due to possible missing values in 

the data. Given pkobs  and pkexp , we are interested in determining whether pkobs  is 

significantly different from pkexp . To determine if this is the case, the standardized 

residual [16], [17] is used to scale the difference as below: 

pk

pkpk
pk

obs
z

exp

exp−
= . (1) 

As the above statistic approximates the standard normal distribution only when the 

asymptotic variance of pkz  is close to one. Therefore, it is, in practice, adjusted by its 

variance for a more precise analysis. The new test statistic, which is called the ad-
justed residual, can be expressed as follows: 

pk

pk

pk
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−
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where the maximum likelihood estimate of its asymptotic variance [17], pkv , is de-

fined by 
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This statistic, Eq. (2), has an approximate standard normal distribution [18], [19], 

[20] and we can determine whether the expression level, 
)(k

je , under jE  is associated 

with pC , at a 95% confidence level. If it is the case, 
)(k

je  is useful for determining if a 

gene should be grouped into pC  and the association between 
)(k

je  and pC  is statisti-

cally significant and such association is referred to as an interesting pattern.  

Step 2 – Discovering overlapping clusters by the re-assignment of genes 

As mentioned in Step one, we can determine whether 
)(k

je  is significantly associated 

with pC  using Eq. (2). If it is the case, then it can be utilized to construct characteris-

tic description of pC . Since such an association is not completely deterministic and 

the uncertainty associated with it is therefore quantified using a measure defined so 

that if the expression value of a gene under jE  is within the range of  
)(k

je , then it is 

with certainty )|/( )(k
jpp eCClusterCClusterW ≠=  that the gene belongs to 

pC , where W , the weight of evidence measure [16], is defined in terms of the mu-

tual information ):( )(k
jp eCI  as follows: 

)|/( )(k
jpp eCClusterCClusterW ≠=

 
):():( )()( k

jp
k

jp eCIeCI ≠−=
, 

(4) 

where 

)(

)|(
log):(

)(
)(

p

k
jpk

jp CP

eCP
eCI = .  

):( )(k
jp eCI  intuitively measures the decrease (if positive) or increase (if negative) 

in uncertainty about the assignment of a gene to pC  given that the expression value 

of this gene is within the range of 
)(k

je . Similarly, ):( )(k
jp eCI ≠  measures the 

decrease (if positive) or increase (if negative) in uncertainty about the assignment of a 

gene to other cluster, which is not pC , given that the expression value of this gene is 

within the range of 
)(k

je . Based on the mutual information, the weight of evidence, 

W , can be interpreted as a measure of the different in the gain in information. The 

weight of evidence is positive if 
)(k

je  provides positive evidence supporting the 

assignment of a gene to pC ; otherwise, it is negative.  
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To re-evaluate the cluster membership of a gene, ig , characterized by 

Mj EEE ,...,,...,1 , its description can be matched against the discovered patterns. If 

the expression value, ije , of ig  satisfies the antecedent of a discovered pattern (e.g., 

the expression value, ije , is within the range of 
)(k

je ) that implies pC , then we can 

conclude that the description of ig  partially matches that of pC . By repeating the 

above procedure, that is, by matching each expression value, ije , Mj ,...,1= , of ig  

against the discovered patterns, the total weight of evidence of assigning ig  to pC  can 

be determined. Suppose that of the M  characteristics that describe ig , only 'M , 

MM ≤' , of them are found to match with one or more discovered patterns. Then, the 

total weight of evidence (TW) supporting the assignment of ig  to pC  is defined as 

follows: 

)......|/( )()()(
1 '

k

M

k
j

k
pp eeeCClusterCClusterTW ≠=
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≠== M

j

k
jpp eCClusterCClusterW
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(5) 

Based on Eq. (5), the total weight of evidence supporting a gene belongs to each 

cluster, pC , can be calculated. This measure facilitates the discovery of overlapping 

clusters by assigning a gene to more than one cluster only if there is a positive total 
weight of evidence (TW) of this gene to the given cluster. Moreover, it can also facili-
tate the identification of groups of genes (with large total weight of evidence) that 
have a strong association to the cluster for further biological analysis, for example, 
functional annotations [21]. Since, the re-clustering technique described above allows 
for probabilistic patterns to be detected. It performs its task by distinguishing between 
relevant and irrelevant expression data and by doing so, it takes into consideration 
global information contained in a specific cluster arrangement by evaluating the im-
portance of different expression levels in determining cluster membership. This fea-
ture makes the proposed approach more robust to noisy data when compared to those 
existing algorithms that only rely on local pairwise similarity measures. In addition, 
during the re-clustering process, a set of interesting patterns is discovered, and each 
pattern can be made explicit for easy interpretation. 

3   Experimental Results 

3.1   Data Sets 

For experimentation, we used a set of simulated data (SD1) consisting of 300 records 
each characterized by 50 different attributes that takes on values from [0.0, 1.0]. 
These records were first grouped into 3 clusters based on embedding the patterns 
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unique to each cluster. To do so, for each cluster, we randomly selected 20% of the 
attributes. For each selected attribute, its values in 40% of the records in this cluster 

were generated randomly from within the range [ cL , cU ], where cL  and cU  were 

also generated randomly so that 0.0 ≤ cL < cU ≤1.0. To ensure that overlapping of 

clusters, three sets of overlapping patterns were embedded into the data as follows. 
Firstly, for each set of overlapping patterns, 10% of the attributes and 20% of the 
records were randomly selected from the whole data set. The value of a selected at-
tribute in each selected record was then generated randomly only from within the 

same range [ fL , fU ], where fL  and fU  were also randomly generated and 

0.0≤ fL < fU ≤ 1.0. In addition to simulated data, we have also tested the proposed 

approach using two sets of gene expression data. The first set (ED1) contains the data of 
517 genes whose expression levels vary in response to serum concentration in human 
fibroblasts [22]. The second data set (ED2) contains the expression profiles of a subset 
of 384 genes which were obtained under different experimental conditions [23]. 

Since the total numbers of clusters in the real expression data sets are not known in 
advance, we therefore adopted the popular algorithm called CLICK [24] that com-
bines graph-theoretic and statistical techniques to estimate the number of clusters, and 
has been widely used in gene expression data analysis. As reported by CLICK, the 
total number of clusters discovered in each data set is as follows: 3 clusters for SD1, 4 
clusters for ED1, and 6 clusters for ED2.  

The performance of the proposed approach was evaluated using the well-known 
silhouette measure [25]. The silhouette measure calculates the silhouette value of a 

record, ig , which reflects the likelihood of ig  belonging to a cluster pC . It does so 

by first estimating two scalars )( iga  and )( igb . )( iga  is the average distance 

between ig  and all other genes in pC , and )( igb  is the smallest of ),( qi Cgd , 

where ),( qi Cgd  is defined to be the average distance of ig  to all genes in qC , 

where qp CC ≠ . The silhouette )( igs  of ig  is then defined to be the ratio, 

)}(),(max{

)()(

ii

ii

gbga

gagb −
. The silhouette value lies between –1 to 1. When its value is 

less than zero, the corresponding gene is poorly classified. The overall silhouette 

value of a cluster is the average of )( igs  of all the genes in the cluster.          

3.2   The Results 

A. Simulated Data Set 
For performance evaluation, we compared the performance of the proposed approach 
with the hierarchical agglomerative clustering algorithm [7], the k-means algorithm [8], 
SOM [9] and the fuzzy k-means algorithm [12]. It should be noted that since there is no 
standard measure that can be used to compare the performances between the traditional 
clustering algorithms and the biclustering algorithms [14], we therefore did not perform 
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this comparison in our study. In our experiments with the fuzzy k-means algorithm, the 
fuzziness parameter, m, used in our experiment was set to different values ranging from 
1.1 to 2 [11] and the m that gave us the best clustering result was selected. In the simu-
lated data, when m was set to 1.1, it gave us the best result in terms of the silhouette 
measure. Table 1 shows the results we obtained using the simulated data. In order to 
demonstrate the effectiveness of the proposed re-clustering phase in discovering over-
lapping clusters, we have also applied it to the hierarchical agglomerative clustering 
algorithm and SOM by using them separately, instead of the k-means algorithm, in the 
first initialization phase (note: it was not applied to the fuzzy k-means algorithms as it is 
able to discover overlapping clusters). By repeating the same experiments with the same 
set of data, the performances of these re-clustered algorithms are given in Table 2. Ac-
cording to the experimental results, we found that the proposed approach is rather robust 
in the presence of a very noisy environment. It is able to perform better than other popu-
lar clustering algorithms. When applying the proposed re-clustering phase to different 
clustering algorithms, it can also improve their performances.  

Table 1. Comparison of the average silhouette value (SD1 data set) 

Algorithm Avg. Silhouette Value 
Proposed 0.67 

Hierarchical 0.45 
k-means 0.48 

SOM 0.5 
Fuzzy k-means 0.59 

Table 2. Comparison of the average silhouette value of the proposed approach using different 
clustering algorithms in the cluster initialization phase (SD1 data set) 

Algorithm Avg. Silhouette Value 
Re-clustered 
Hierarchical 

0.58 

Re-clustered 
SOM 

0.61 

B. Gene Expression Data Sets 
Based on the initial clusters discovered in Phase 1, the second re-clustering phase was 
performed. As described before, the re-clustering phase consists of two steps in turn. 
In Step one, interesting patterns were discovered in each initial cluster. Table 3 below 
shows some of the patterns discovered from each real expression data set that can be 
made explicit for easy interpretation. The patterns are expressed in rules of the form 

“If xE  = [L, U], then pC  [0.95]” where it should be understood as “If the expres-

sion value of a gene under xE  is within the interval from L to U, then there is a 

probability of 0.95 that it belongs to cluster pC .”. 
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Table 3. Some interesting patterns discovered from gene expression data sets (ED1 and ED2) 

ED1 

If 3E  = [1.72, 2.86] then 1C  [0.82] If 6E  = [-1.98, -0.32] then 2C  [0.71] 

If 9E  = [-3.06, -1.27] then 1C  [0.79] If 11E  = [1.05, 3.28] then 4C  [0.86] 

ED2 

If 1E  = [0.78, 2.93] then 4C  [0.8] If 7E  = [-0.91, 1.18] then 6C  [0.9] 

If 13E  = [-1.45, -0.12] then 2C  [0.88] If 16E  = [1.23, 2.81] then 3C  [0.72] 

Table 4. Comparison of the average silhouette value (ED1 data set) 

Algorithm Avg. Silhouette Value 
Proposed 0.46 

Hierarchical 0.35 
k-means 0.38 

SOM 0.38 
Fuzzy k-means 0.42 

Table 5. Comparison of the average silhouette value (ED2 data set) 

Algorithm Avg. Silhouette Value 
Proposed 0.43 

Hierarchical 0.31 
k-means 0.36 

SOM 0.34 
Fuzzy k-means 0.4 

Table 6. Comparison of the average silhouette value of the proposed approach using different 
clustering algorithms in the cluster initialization phase (ED1 data set) 

Algorithm Avg. Silhouette Value 
Re-clustered 
Hierarchical 

0.4 

Re-clustered 
SOM 

0.43 

 

Table 7. Comparison of the average silhouette value of the proposed approach using different 
clustering algorithms in the cluster initialization phase (ED2 data set) 

Algorithm Avg. Silhouette Value 
Re-clustered 
Hierarchical 

0.38 

Re-clustered 
SOM 

0.4 
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Based on the patterns discovered, the cluster membership of each gene in each ini-
tial cluster was re-evaluated to determine if it should remain in the same cluster or be 
assigned to more than one. For comparison, we also compared the proposed clustering 
approach with other clustering algorithms as performed before. For the fuzzy k-means 
algorithm, the fuzziness parameter (m) was set to 1.3 for ED1 and 1.2 for ED2. As 
shown in Tables 4 and 5, the proposed approach still performs better than other clus-
tering algorithms. Similar as before, we have applied the proposed re-clustering phase 
to the hierarchical agglomerative clustering algorithm and SOM by using them sepa-
rately, instead of the k-means algorithm, in the first initialization phase. The results 
obtained are shown in Tables 6 and 7 below.  

Since genes that have similar expression patterns may have similar or related bio-
logical functions [26], [27] and it was shown that significant enrichment of genes 
belonging to given functional categories can be revealed in the clusters discovered 
through clustering [8], therefore we also evaluated the results according to the bio-
logical functions of genes that can be discovered in each cluster. For example, when 
comparing the clusters discovered from the gene expression data set (ED2) after 
Phase 1 with those discovered after Phase 2 based on the MIPS functional catalogue 
database [28], we found that in each overlapping cluster, the percentage of genes in 
each functional category is greater than that obtained in the corresponding initial 
cluster (Table 8). Also, the p-value associated with each functional category discov-
ered in the overlapping cluster is smaller than that obtained in the corresponding 
 

Table 8. Comparison of the enrichment of genes in each functional category between the initial 
clusters (after Phase 1) and overlapping clusters (after Phase 2) (ED2 data set) 

 
MIPS Functional Category 

Phase 1 
(%) 

Phase 1  
(p-value) 

Phase 2 
(%) 

Phase 2  
(p-value) 

1C  Cell growth / morphogenesis 4.36 0.496 6.28 0.397 

 Cellular sensing and response 2.51 0.403 4.79 0.28 

2C  Transported compounds 5.87 0.52 8.26 0.362 

 Stress response 2.12 0.318 4.39 0.104 

3C  Cytoskeleton 10.8 0.69 19.24 0.488 

 RNA synthesis 9.85 0.421 12.67 0.293 

4C  
Lipid, fatty acid and isoprenoid 

metabolism 
1.98 0.203 2.52 0.116 

 Mitochondrion 13.29 0.4 25.68 0.101 

5C  Eukaryotic plasma membrane / 
membrane attached 

3.73 0.47 6.45 0.29 

 
C-compound and carbohydrate 

metabolism 
3.6 0.318 7.92 0.175 

6C  Bud / growth tip 4.83 0.58 10.19 0.43 

 
Fungal / microorganismic cell type 

differentiation 
5.08 0.307 7.23 0.106 
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initial cluster (the p-value is calculated to obtain the chance probability of observing 
a set of genes from a particular MIPS functional category within each cluster [28], 
thus low p-value indicates high significance). According to the above results, we 
found that the proposed approach not only can improve the performances of existing 
algorithms and also can discover overlapping clusters in noisy gene expression data. 

4   Conclusions 

In this paper, we have presented an effective clustering approach, which consists of an 
initial clustering phase and a second re-clustering phase, to discover overlapping 
clusters in noisy gene expression data. In the initial clustering phase, local informa-
tion is extracted by computing a pairwise similarity measure between gene expression 
profiles so as to detect for underlying clustering structures. In the second re-clustering 
phase, global information is obtained through discovering interesting patterns in the 
initial clusters. These patterns are identified by differentiating between the expression 
data that are relevant for the clustering process from those that are not relevant. In 
doing so, a probabilistic interestingness measure is used. If an expression level is 
relevant in determining whether or not a gene should belong to a particular cluster, it 
is reflected by the interestingness measure. Once the relevant expression data are 
identified, the discovered patterns are explicitly represented as a set of easy-to-
understand if-then rules for further biological analysis. Experimental results show that 
the proposed approach is effective for discovering overlapping clusters in a noisy 
environment and also it outperforms other existing clustering algorithms. In addition, 
the discovered patterns, which specify the ranges of expression levels under a particu-
lar set of experimental conditions the genes should have in each cluster, may lead to 
further understanding of the mechanism of gene expression.   
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Abstract. An important goal of human genetics is to identify DNA se-
quence variations that are predictive of susceptibility to common human
diseases. This is a classification problem with data consisting of discrete
attributes and a binary outcome. A variety of different machine learning
methods based on artificial evolution have been developed and applied
to modeling the relationship between genotype and phenotype. While
artificial evolution approaches show promise, they are far from perfect
and are only loosely based on real biological and evolutionary processes.
It has recently been suggested that a new paradigm is needed where “ar-
tificial evolution” is transformed to “computational evolution” (CE) by
incorporating more biological and evolutionary complexity into existing
algorithms. It has been proposed that CE systems will be more likely to
solve problems of interest to biologists and biomedical researchers. The
goal of the present study was to develop and evaluate a prototype CE
system for the analysis of human genetics data. We describe here this
new open-ended CE system and provide initial results from a simulation
study that suggests more complex operators result in better solutions.

1 Introduction

1.1 The Problem Domain: Human Genetics

Human genetics is undergoing an information explosion and an understanding
implosion. This is the result of technical advances that make it feasible and
economical to measure 106 or more DNA sequence variations from across the
human genome. For the purposes of this paper we will focus exclusively on the
single nucleotide polymorphism or SNP which is a single nucleotide or point in
the DNA sequence that differs among people. Most SNPs have two alleles (e.g.
A or G) that combine in the diploid human genome in one of three possible
genotypes (e.g. AA, AG, GG). It is anticipated that at least one SNP occurs
approximately every 100 nucleotides across the 3x109 nucleotide human genome.
An important goal in human genetics is to determine which of the many hundreds
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of thousands of SNPs are useful for predicting who is at risk for common diseases.
Further, it is important to know the nature of the mapping elationship between
genotypes at the important SNPs and the phenotype or clinical endpoint. This
knowledge is useful for identifying those at risk and for informing experimental
studies that can lead to new therapeutic interventions.

The charge for computer science and bioinformatics is to develop algorithms
for the detection and characterization of those SNPs that are predictive of hu-
man health and disease. Success in this genome-wide endeavor will be difficult
due to nonlinearity in the genotype-to-phenotype mapping relationship that is
due, in part, to epistasis or nonadditive gene-gene interactions. Epistasis was
recognized by Bateson [1] nearly 100 years ago as playing an important role in
the mapping between genotype and phenotype. Today, this idea prevails and
epistasis is believed to be a ubiquitous component of the genetic architecture of
common human diseases [2]. As a result, the identification of genes with geno-
types that confer an increased susceptibility to a common disease will require
a research strategy that embraces, rather than ignores, this complexity [2,3,4].
The implication of epistasis from a data mining point of view is that SNPs need
to be considered jointly in learning algorithms rather than individually. Because
the mapping between the attributes and class is nonlinear, the concept difficulty
is high. The challenge of modeling attribute interactions has been previously de-
scribed [5]. The goal of the present study is to develop an evolutionary computing
strategy for detecting and characterizing epistasis.

1.2 A Simple Example of the Concept Difficulty

Epistasis can be defined as biological or statistical [3]. Biological epistasis occurs
at the cellular level when two or more biomolecules physically interact. In con-
trast, statistical epistasis occurs at the population level and is characterized by
deviation from additivity in a linear mathematical model. Consider the follow-
ing simple example of statistical epistasis in the form of a penetrance function.
Penetrance is simply the probability (P) of disease (D) given a particular com-
bination of genotypes (G) that was inherited (i.e. P [D|G]). A single genotype
is determined by one allele (i.e. a specific DNA sequence state) inherited from
the mother and one allele inherited from the father. For most single nucleotide
polymorphisms or SNPs, only two alleles (encoded by A or a) exist in the bi-
ological population. Therefore, because the order of the alleles is unimportant,
a genotype can have one of three values: AA, Aa or aa. The model illustrated
in Table 1 is an extreme example of epistasis. Let’s assume that genotypes AA,
aa, BB, and bb have population frequencies of 0.25 while genotypes Aa and
Bb have frequencies of 0.5 (values in parentheses in Table 1). What makes this
model interesting is that disease risk is dependent on the particular combina-
tion of genotypes inherited. Individuals have a very high risk of disease if they
inherit Aa or Bb but not both (i.e. the exclusive OR function). The penetrance
for each individual genotype in this model is 0.5 and is computed by summing
the products of the genotype frequencies and penetrance values. Thus, in this
model there is no difference in disease risk for each single genotype as specified
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Table 1. Penetrance values for genotypes from two SNPs

AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 1 0

Bb (0.50) 1 0 1

bb (0.25) 0 1 0

by the single-genotype penetrance values. This model was first described by Li
and Reich [6]. Heritability, or the size of the genetic effect, is a function of these
penetrance values. In this model, the heritability is maximal at 1.0 because the
probability of disease is completely determined by the genotypes at these two
DNA sequence variations. As Freitas [5] reviews, this general class of problems
has high concept difficulty.

1.3 Towards Computational Evolution for the Analysis of
Gene-Gene Interactions

Numerous machine learning and data mining methods have been developed and
applied to the detection of gene-gene interactions. These include, for example,
traditional methods such as neural networks [7] and novel methods such as mul-
tifactor dimensionality reduction [8]. Evolutionary computing methods such as
genetic programming (GP) have been applied to both attribute selection and
model discovery in the domain of human genetics. For example, Ritchie et al. [8]
used GP to optimize both the weights and the architecture of a neural network
for modeling gene-gene interactions. More recently, GP has been successfully
used for both attribute selection [9,10] and genetic model discovery [11].

Genetic programming is an automated computational discovery tool that is
inspired by Darwinian evolution and natural selection [12,13,14,15,16,17,18]. The
goal of GP is evolve computer programs to solve problems. This is accomplished
by first generating random computer programs that are composed of the build-
ing blocks needed to solve or approximate a solution to a problem. Each ran-
domly generated program is evaluated and the good programs are selected and
recombined to form new computer programs. This process of selection and re-
combination is repeated until a best program is identified.

Genetic programming has been applied successfully to a wide range of dif-
ferent problems including data mining and knowledge discovery [e.g. [19]] and
bioinformatics [e.g. [20]]. Despite the many successes, there are a large number
of challenges that GP practitioners and theorists must address before this gen-
eral computational discovery tool becomes one of several tools that a modern
problem solver calls upon [21]. Banzhaf et al. [22] propose that overly simplistic
and abstracted artificial evolution (AE) methods such as GP need to be trans-
formed into computational evolution (CE) systems that more closely resemble
the complexity of real biological and evolutionary systems. Evolution by nat-
ural selection solves problems by building complexity. As such, computational
systems inspired by evolution should do the same. The working hypothesis ad-
dressed in the present study is that a GP-based genetic analysis system will find
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better solutions faster if it is implemented as a CE system that can evolve a
variety of complex operators that in turn generate variability in solutions. This
is in contrast to an AE system that uses a fixed set of operators.

1.4 Research Questions Addressed and Overview

The goal of the present study was to develop and evaluate an open-ended
CE system for the detection and characterization of epistasis. We developed
a hierarchically-organized and spatially-extended GP approach that is capable
of evolving its own operators of any arbitrary size and complexity. The primary
question addressed in this study is whether the ability to evolve complex opera-
tors improves the ability of the system to discover a classifier that is capable of
predicting disease in the presence of nonlinear gene-gene interactions.

2 A Prototype Computational Evolution System

Our primary goal was to develop a prototype CE system that is capable of
open-ended evolution for bioinformatics problem-solving in the domain of human
genetics. Figure 1 gives a graphical overview of our hierarchically-organized and
spatially-extended GP system that is capable of open-ended CE. At the bottom
layer of this hierarchy is a grid of solutions. Details of the solutions and their
representation are given in Section 2.1. At the second layer of the hierarchy is
a grid of operators of any size and complexity that are capable of modifying
the solutions. The operators are described in Section 2.2. At the third layer in
the hierarchy is a grid of mutation operators that are capable of modifying the
solution operators. The mutation operators are described in Section 2.3. At the
highest level of the hierarchy is the mutation frequency that determines the rate
at which operators are mutated. This is described in Section 2.4. Details of how
the system was implemented are described in Section 2.5. The details of the
experimental design used to evaluate this system are described in Section 3.

2.1 Problem Solutions: Their Representation, Fitness Evaluation
and Reproduction

The goal of a classifier is to accept as input two or more discrete attributes
(i.e. SNPs) and produce a discrete output that can be used to assign class (i.e.
healthy or sick). Here, we used symbolic discriminant analysis or SDA as our
classifier. The SDA method [23] has been described previously for this problem
domain [11]. Briefly, SDA models consist of a set of attributes and constants as
input and a set of mathematical functions that produce for each instance in the
dataset a score called a symbolic discriminant score. The goal of SDA is to find
a linear or nonlinear combination of attributes such that the difference between
the distributions of symbolic discriminant scores for each class is maximized.
Here, our SDA function set was {+,−, ∗, /, %, <, <=, >, >=, ==, �=} where the
% operator is a mod operation and / is a protected division. The SDA models



Development and Evaluation of an Open-Ended CE System 133

are represented as postfix expressions here instead of as expression trees as has
been used in the past [23,11] to facilitate stack-based evaluation of the classifiers
and to facilitate representation in text files.

Classification of instances into one of the two classes requires a decision rule
that is based on the symbolic discriminant score. Thus, for any given symbolic
discriminant score (Sij) in the ith class and for the jth instance, a decision rule
can be formed such that if Sij > So then assign the instance to one class and
if Sij <= So then assign the observation to the other class. When the prior
probability that an instance belongs to one class is equal to the probability that
it belongs to the other class, So can be defined as the arithmetic mean of the
median symbolic discriminant scores from each of the two classes. This is the
classification rule we used in the present study and is consistent with previous
work in this domain [11]. Using this decision rule, the classification accuracy
for a particular discriminant function can be estimated from the observed data.
Here, accuracy is defined as (TP +TN)/(TP + TN + FP + FN) where TP are
true positives (TP), TN are true negatives, FP are false positives, and FN are

Fig. 1. Visual overview of our prototype CE system. The hierarchical structure is shown
on the left while some specific examples at each level are shown on the right. The top
two levels of the hierarchy (A and B) exist to generate variability in the operators
that modify the solutions. Shown in C is an example set of operators that will perform
recombination on the two solutions shown in D. As illustrated in B, there is a 0.50
probability that a mutation to the recombination operator in C will add an operator
thus making this particular operator more complex. This system allows operators of any
arbitrary complexity to modify solutions. Note that we used a 24x24 grid of solutions
in the present study. A 12x12 grid is shown as an illustrative example.
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false negatives. We used accuracy as the fitness measure for SDA solutions as
has been described previously [11].

All SDA solutions in a population are organized on a toroidal grid with specific
X and Y coordinates (see example in Figure 1). As such, they resemble previous
work on cellular genetic programming [24]. In the present study we used a 24x24
grid for a total population size of 576. Reproduction of solutions in the population
is handled in a spatial manner. Each solution is considered for reproduction in
the context of its Moore neighborhood using an elitist strategy. That is, each
solution in question will compete with its eight neighbors and be replaced in
the next generation by the neighbor with the highest fitness of all solutions.
This combines ideas of tournament selection that is common in GP with a set
of solutions on a grid. Variability in solutions is generated using hierarchically
organized operators. This is described below.

2.2 Operators for Computational Evolution: Generating Solution
Variability

Traditional AE approaches such as GP use a fixed set of operators that include
mutation and recombination, for example. The goal of developing a prototype
CE system was to provide operators and building blocks for operators that could
be combined to create new operators of any arbitrary complexity. We started
with the following six operators and operator building blocks. The first opera-
tor, DeleteRangeOperation, deletes all functions in an SDA postfix expression
within a certain range. The second operator, CopyRangeOperator, copies all
functions in an SDA postfix expression within a certain range to another SDA
postfix expression at a particular position. The third operator, PermuteRange-
Operator, randomizes the order of a set of SDA functions within a given range.
The fourth operator, AddOperator, adds a randomly selected function onto the
end of a set of SDA functions. The fifth operator, PointMutationOperator, re-
places a function and its arguments (e.g. attributes) at a given position with
a randomly selected function and arguments. The final operator, PointMuta-
tionExpertKnowledgeOperator, replaces a function and its arguments (e.g. at-
tributes) at a given position with a randomly selected function and arguments
selected using a source of expert knowledge. Greene et al. [25] have shown that
using ReliefF measures of attribute quality to guide point mutation for genetic
analysis using GP is beneficial for ensuring good building blocks are utilized.
This is consistent with Goldberg’s ideas about exploiting good building blocks
in competent genetic algorithms [26]. Thus, we have provided to the CE system
a set of operators and operator building blocks that can be put together in any
arbitrary length and complexity. For example, a standard recombination oper-
ator can be formed by combining two CopyRangeOperator operators and two
DeleteRangeOperation operators with the appropriate arguments that specify
the correct positions in two SDA solutions for copying and deleting appropriate
model pieces. An example recombination operator is shown in Figure 1. These
operators can be combined in more interesting ways to form even more complex
operators.
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As with the solutions, each operator is organized on a toroidal grid with a
specific X and Y coordinate. Rather than generate one operator for each solution
we assigned each operator to a set of solutions. This makes evaluation of the
fitness of an operator easier since its positive or negative effect on the solutions
can be averaged over multiple solutions. In this study, we assigned each operator
to a 6x6 grid of 36 solutions. Thus, the population of operators is organized in
a 4x4 grid for a total of 16 operators (See Figure 1) that each maps onto 36 of
the 576 solutions.

2.3 Mutation of Operators for Computational Evolution:
Generating Operator Variability

An important goal for the prototype CE system is the ability to generate vari-
ability in the operators that modify solutions. To accomplish this goal we devel-
oped an additional level in the hierarchy (Figure 1B) with mutation operators
that specifically alter the operators described above. We defined four different
fixed mutation operators that are each assigned to a 2x2 grid of solution op-
erators. Solution operators can be modified in the following four ways. First,
an operator can have a specific operator building block deleted (DeleteOper-
ator). Second, an operator can have a specific operator building block added
(AddOperator). Third, an operator can have a specific operator building block
changed (ChangeOperator). Finally, an operator can have its arguments changed
(ChangeOperatorArguments). This latter function allows, for example, the range
that a DeleteRangeOperation would use. For our prototype, we fixed the prob-
abilities with which each of these types of mutations can change the operators.
Here, we used all four types of mutation and defined four different probabil-
ity distributions for their use. For the first distribution we set the probabilities
for DeleteOperator, AddOperator, ChangeOperator and ChangeOperatorArgu-
ments to 0.5, 0.167, 0.167 and 0.167 respectively. For the second distribution
we set the probabilities to 0.167, 0.5, 0.167 and 0.167. For the third we set the
probabilities to 0.167, 0.167, 0.5 and 0.167 and for the fourth we set the probabil-
ities to 0.167, 0.167, 0.167 and 0.5. This preliminary assignment of probabilities
allows us to explore the usefulness of each type of mutation. In future versions
the type of mutation and their probabilities will also evolve. These four sets of
mutations that alter solution operators exist in a 2x2 grid. Each mutates four
sets of operators at the next level down in the hierarchy (see Figure 1).

2.4 Mutation Frequency

The top level of the CE system hierarchy (see Figure 1) is the mutation frequency
that controls the probability that one of the four mutation sets in the next level
down will mutate a given solution operator two levels down. In the present
study we fixed this to 0.1. In future version this will be an evolvable parameter.
Note that this frequency does not control the frequency with which an operator
modifies a solution in the lowest level. This is controlled by the operator itself
when it specifies which solution(s) it will modify.
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2.5 Implementation

The CE system was programmed in C++. A single run of the system with a pop-
ulation of 576 solutions on a 24x24 grid for 100 generations took approximately
three minutes on an 2.2 GHz AMD Opteron processor.

3 Experimental Design

Our goal was to provide an initial evaluation of the prototype CE system de-
scribed above. The central question addressed in this study is whether the abil-
ity to evolve operators of any arbitrary complexity improves quality of the SDA
models. To address this question, we first ran, as a baseline, the CE system that
utilized only a simple mutation operator. Next, we ran the CE system with all
available operators. Each run was completed with a population size of 576 (24x24
solutions) for 100 generations and 1000 generations. The best model from each
run was saved along with the accuracy of the symbolic discriminant function.
Each method was run 100 times with different random seeds on data that was
simulated using the penetrance function in Table 2 below. The data consisted
of 1600 instances and two functional SNPs that are associated with class only
through the type of nonlinear interaction described in Section 1.2. The heritabil-
ity of this model is 0.4. Each dataset also consisted of 98 randomly generated
SNPs that represent potential false-positives or noise in the data. The challenge
for the CE system is to search for the right combination of two SNPs and identify
a nonlinear function that approximates the pattern generated by the penetrance
model in Table 2. It is important to note that target classification accuracy for
the correct model is approximately 0.8.

Table 2. Penetrance values for genotypes from two SNPs used to simulate data

AA (0.04) Aa (0.32) aa (0.64)

BB (0.04) 0.486 0.960 0.538

Bb (0.32) 0.947 0.004 0.811

bb (0.64) 0.640 0.606 0.908

The distribution of accuracies obtained from running the CE system with
just a simple mutation operator versus running the system with the capability
of generating more complex operators were statistically compared using a two-
sample t-test. The two systems were considered statistically significant at a type
I error rate of 0.05.

4 Results

Figure 2 below summarizes the distribution of accuracies obtained from running
the CE system 100 times on the simulated data with evolved operators (All)
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Fig. 2. Boxplots summarizing the distribution of accuracies obtained from running the
CE system 100 times on the simulated data with evolved operators (All) or with just
a mutation perator (Mutation) for 100 generations and 1000 generations

or with just a mutation operator (Mutation) for 100 generations and 1000 gen-
erations. The line in the middle of each box is the median of the distribution
while the upper and lower limits of the box itself represent the 25th and 75th
percentiles. The dashed lines extending from each box represent the approxi-
mate range of values with circles representing extreme values. Note that at 1000
generations, mutation alone only approximated the correct answer once out of
100 runs while the full CE system approximated the correct answer more than
50% of the time. In both cases, the mean accuracy was significantly higher for
the full system (P < 0.05).

These preliminary results indicate that, for this specific domain, a CE system
with the ability to evolve operators of any size and complexity does indeed iden-
tify better solutions than a baseline system that uses a fixed mutation operator.
An important question is whether more complex operators were actually used
to generate the best models discovered by the CE system. We evaluated the op-
erators discovered during each run that were associated with a best model and
found that all six operators and operator building blocks defined in Section 2.2
were used at least once in each of the 100 runs. This demonstrates that complex
operators were discovered and used to generate better solutions than a simple
mutation operator was able to generate.

5 Discussion and Conclusions

Banzhaf et al. [22] have suggested that traditional artificial evolution methods
such as genetic programming (GP) will greatly benefit from our current under-
standing of the complexity of biological and evolutionary systems. They propose
a new research agenda in which CE systems that mimic the complexity of bio-
logical systems will replace the overly simplified artificial evolution systems that
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have been inspired by biology, but largely ignore the complexity of biological
processes. The goal of the present study was to specifically address whether a
computational evolution system capable of evolving more complex operators will
find better solutions than an artificial evolution system in the domain of human
genetics. To accomplish this goal we developed a prototype CE system that is
both spatially and hierarchically organized and is capable of evolving operators
of any arbitrary size and complexity from a set of basic operator building blocks.
Our preliminary experimental results demonstrate that the ability to evolve more
complex operators does indeed improve the ability of the system to identify good
models. These results support our working hypothesis and are consistent with
the research agenda proposed by Banzhaf et al. [22].

It is important to note that the system presented here is a prototype and, as
such, there are many extensions and modifications that can be made that would
be consistent with CE. We first discuss several features implemented in the pro-
totype that add complexity to the system and then propose some additional
features inspired by the complexity of biological systems. There were two pri-
mary sources of complexity. First, the system is capable of evolving a diversity of
different operators that modify solutions in the spatially-organized population.
This is similar to real biological systems that evolve more complex genomic pro-
cesses. For example, microRNAs that participate in post-translational regulation
have evolved, in part, to help determine developmental processes such as body
plan specification. Sempere et al. [27] showed that the number of microRNAs an
animal group has correlates strongly with the hierarchy of metazoan relation-
ships. The ability of species to evolve new biological processes plays an important
role in increasing their complexity. As a second feature, we have included in the
set of operator building blocks a mutation function that responds to the environ-
ment (i.e. the expert knowledge). We know that expert knowledge in the form
of other data mining results or biological information about gene function is
critical for success in this domain [9,10,11]. Here, we gave the CE operators the
ability to use expert knowledge (i.e. information from the environment) in the
form of pre-processed ReliefF scores to preferentially choose good attributes as
arguments for a new function. The ability of an organism to respond to its envi-
ronment plays an important role in fitness. The important role of environmental
sensing has been discussed [22].

Our future goal is to improve the prototype CE system by adding additional
features that are inspired by the complexity of real biological systems. As a first
step, we will make the mutation operators (see Section 2.3, Figure 1B) more
complex by giving them the ability to evolve. That is, the probability distri-
bution that controls how operators are modified through mutation will evolve
with feedback from how the system is doing. We also make the overall mutation
frequency at the highest level an evolvable parameter. The evolvability of the
entire system will make it attractive to implement this system in parallel as an
island model thus providing a virtual ecosystem with feedback between popula-
tions. As a second step, we will add additional feedback loops in the system. For
example, the solutions could contribute information back to the environment
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that is then used by a complex operator to generate variability in solutions.
This takes the environmental sensing idea discussed above a step further. We
anticipate the addition of these types of feedback loops will significantly increase
the complexity of the system. Whether these additional features con tinues to
improve the ability of this machine learning method to solve complex problems
in human genetics still needs to be addressed.
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Abstract. The growing availability of biological measurements at the
molecular level has recently enhanced the role of machine learning meth-
ods for effective early cancer diagnosis, prognosis and treatment. These
measurements are represented by the expression levels of thousands of
genes in normal and tumor sample tissues. In this paper we present a
two-phase algorithm for gene expression data classification. In the first
phase, a novel gene selection method based on mixed-integer optimiza-
tion is applied with the aim of selecting a small subset of cancer marker
genes. In the second phase, a binary polyhedral classifier is used in order
to label gene expression data. Computational experiments performed on
three benchmark datasets indicate the usefulness of the proposed frame-
work which is capable of competitive performances with respect to the
best classification accuracy so far achieved for each dataset. Moreover,
the classification rules generated are based on very few genes which, in
our computations, can be credited as the most influential genes for tumor
differentiation.

Keywords: Gene selection, microarray data classification, mixed-integer
optimization, discrete support vector machines.

1 Introduction

Cancer is a family of diseases originated from genetic abnormalities which may
be inherited, due to errors in the DNA replication or caused by the prolonged
exposure to promoting agents, such as tobacco smoke, chemicals and radiation.
The classification of a cancer is essential for administering the most effective
treatment, and has been traditionally based on the analysis of its morphologi-
cal appearance. However, tumors sharing similar histopathological features, and
thereby assigned to the same diagnostic category, may follow different clinical
courses and respond differently to the therapy assigned. Furthermore, the genet-
ical nature of cancer alterations calls for the development of new classification
methods based on detailed gene expression data, in order to fully exploit cancer
molecular characteristics (Cuperlovic-Culf et al., 2005).

The advances in microarray technology and the growing availability of bio-
logical measurements performed at the molecular level have intensified the role
of machine learning methods for effective cancer classification and diagnosis.
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These measurements are represented by the expression levels of thousands of
genes exhibited in tumor and normal tissues under the same experimental con-
ditions. The collection of gene expression data usually results in high dimensional
datasets, composed by a huge number of features (genes) and a relative few num-
ber of sample tissues. As a consequence, the established paradigm for microarray
data classification consists of a two-phase procedure in which gene selection is
performed as a separate processing step in order to avoid the curse of dimen-
sionality which is likely to be encountered by the majority of classification meth-
ods (Bishop, 1995). In particular, in the first phase the most informative features,
that is genes whose expression profiles characterize a particular state, are identi-
fied. Then, the classification of gene expression patterns is performed using the
features selected in the first phase (Wang et al., 2007; Shah and Kusiak, 2007;
Wong and Hsu, 2008).

Several gene selection methods have been proposed in order to improve the
efficiency of microarray data classification, and possibly increase its accuracy.
Most of these methods are univariate in nature, since they provide a ranking of
the genes considered individually, disregarding their correlations. Different rank-
ings may be obtained according to alternative evaluation criteria, ranging from
signal-to-noise ratio (Golub et al., 1999), to information gain (Yang et al., 2003)
and gene regulation probabilities (Wang et al., 2007). Other approaches rely
on multivariate analysis, with the aim of studying the relevance of multiple
genes simultaneously and capturing their correlations. The reader may refer
to (Lai et al., 2006) for a comprehensive comparison of gene selection methods
for cancer classification. A wide variety of machine learning algorithms have
been proposed also for microarray data classification, such as k -nearest neigh-
bor (Bagui et al., 2003), Bayesian classifiers (Mallick et al., 2005), neural net-
works (Cho and Won, 2007) and support vector machines (Furey et al., 2000).

In this paper we propose a novel two-phase technique for cancer microarray
data classification. In the first phase, a new gene selection method based on
mixed-integer optimization is applied with the aim of identifying a small sub-
set of genes which may be useful for discriminating between normal and tumor
tissues. More specifically, the optimization problem attempts to isolate a prede-
fined number of genes whose expression levels are similar for tissues in the same
class and differ for tissues of opposite classes. In the second phase, a binary poly-
hedral classifier, recently proposed in (Orsenigo and Vercellis, 2007), is used in
order to label gene expression profiles, and derive classification rules for predict-
ing the state of future tissues. This classifier, which is able to perform linear and
non-linear separations, has proven to perform quite efficiently on small datasets,
and thereby appears to be adequate for the classification of cancer microarray
datasets, which are usually composed by a low number of sample tissues.

The usefulness of the proposed approach has been evaluated on an empiri-
cal basis by means of computational tests performed on three publicly available
datasets. The classification performances exhibited by our method are competi-
tive with respect to the best results so far provided in the literature. Moreover,
the classification rules generated by the polyhedral classifier are rather simple,
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since they are based on small subsets of genes. In our computations, these genes
can be credited as the most influential features for tumor differentiation.

2 Gene Selection by Mixed-Integer Optimization

In cancer microarray data classification we are provided with an expression ma-
trix Sm×n in which rows correspond to sample tissues of patients, and columns
represent the genes whose expression has been measured under the same experi-
mental conditions. The value of S at row i and column j is therefore provided by
the expression level of gene j observed for patient i. Let xi ∈ R

n be the vector
of expression values corresponding to row i in the matrix S. For each example
xi, i ∈ M = {1, 2, . . . , m} , it is known the value yi of a categorical variable in-
dicating the class associated to xi. In what follows, we will confine the attention
to binary classification problems in which the class of each example xi can take
only two different values. In particular, without loss of generality we will set
yi = −1 or yi = 1 if example xi represents a normal or a tumor sample tissue,
respectively (Fig. 1).
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Fig. 1. Gene expression matrix and class values

Under these assumptions, solving a cancer microarray data classification prob-
lem requires to find a function f(x) : R

n �→ {−1, 1} which optimally describes
the relationship between the sample tissues and their class values, in order to
predict the diagnostic category of future examples.

To the end of identifying the most relevant genes for the classification of S we
present a novel gene selection method based on the solution of a linear mixed-
integer optimization problem. The proposed method attempts to isolate genes
whose profiles characterize a particular state, that is genes whose expression
levels are similar for patients in the same class and differ for patients of oppo-
site classes. For this reason, the mixed-integer optimization model represents a
classification method itself, searching for the best relationship between the gene
expression patterns and the class values of the sample tissues.

The selection procedure starts by organizing the gene expression profiles in the
form required by the optimization problem. In particular, the original expression
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Fig. 2. First step of the gene selection procedure

matrix S is divided into two disjoint datasets, each containing examples in the
same diagnostic category (Fig. 2-a). These datasets are then transposed in order
to derive two new matrices, S− and S+, of size (n× s−) and (n× s+), where
s− and s+ indicate the number of normal and tumor examples in S. Notice that
in S− and S+ the rows represent the genes whereas the columns correspond to
the patients (Fig. 2-b). In this way, S− and S+ collect the expression profile of
each individual gene in normal and tumor tissues, respectively.

If S− and S+ are of different size (s− �= s+), from each of the two matrices
only s = min (s−, s+) columns are randomly retained. This allows to combine
the columns in S− and S+ so as to obtain a final matrix G of size (n× 2s),
taking the form described in Fig. 2-c. Finally, to reduce the computational ef-
fort required by the subsequent steps, the rows in G are randomly partitioned
into r disjoint subsets G1, G2, . . . , Gr of approximately equal size. Each dataset
Gt, t = 1, 2, . . . , r, is obtained by means of an ad-hoc sampling procedure so that
it contains for each gene the expression patterns for both the normal and the
tumor sample tissues (Fig. 2-d). In order to simplify the notation, hereafter the
analysis will be referred to the generic dataset Gt.

For feature selection, the optimization problem attempts to classify the genes
in Gt by means of a discriminant function taking the form of a separating
hyperplane. More specifically, it is based on the idea of identifying genes whose
expression patterns differ significantly according to the state of the sample
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tissues. Let F = {1, 2, . . . , f} denote the set of the indices of the different genes
in Gt, and g−

i and g+
i , i ∈ F , the vectors of the expression levels of gene i for

normal and tumor tissues, respectively. For each gene i ∈ F , define two binary
variables

z−i =
{

0 if the profile g−
i properly identifies normal tissues

1 otherwise , (1)

z+
i =

{
0 if the profile g+

i properly identifies tumor tissues
1 otherwise , (2)

indicating if the expression profiles of i correctly characterize the state specified
by the class value of the corresponding tissues. If the genes discriminant function
takes the form w′g− b = 0, where w defines the orientation of the hyperplane
in the s-dimensional space R

s and b its offset from the origin, the following
mixed-integer optimization problem can be formulated

min
f∑

i=1

(
z−i + z+

i

)
(GS)

s. t. w′g+
i − b ≥ −Qz+

i i ∈ F , (3)

w′g−
i − b < Qz−i i ∈ F , (4)

z−, z+ binaries, w, b free,

where Q is a sufficiently large constant scalar, and constraints (3) and (4) set
the values of the binary variables z+

i and z−i , i ∈ F .
From the solution of problem (GS), obtained by a truncated branch-and-

bound procedure, it is possible to find a set of genes useful for discriminating
between normal and tumor tissues. In particular, for each gene i ∈ F the follow-
ing measure, termed classification score, is computed

CSi = δ−i + δ+
i , (5)

where δ−i and δ+
i represent the Euclidean distances of patterns g−

i and g+
i from

the separating hyperplane. Since high classification scores correspond to genes
whose expression profiles appear to be significantly different for sample tissues
of opposite classes (Fig. 3), a ranking of the genes is generated by sorting them
in descending order with respect to their classification score. In this way, the Δ
most informative genes are situated in the first Δ positions from the top of the
ranking, where Δ is a parameter regulating the number of features to be selected.
By joining the sets of top-ranked genes for the datasets Gt, t = 1, 2, . . . , r, the
final set of features to use for cancer classification is derived. Clearly, different
sets may be obtained by varying the value of the parameter Δ.

Notice that the use of optimization allows to perform a multivariate feature
selection analysis since, within each dataset Gt, the contributions of the genes
are considered simultaneously. Furthermore, the non-zero components of the
separating hyperplanes identify the sample tissues responsible for the optimal
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classification of the gene expression profiles. Thus, the solution of model (GS)
for each dataset Gt provides information about the patients who, playing an
active role in the gene selection, may deserve particular attention for cancer
classification.

Below is provided a synthetic description of the proposed gene selection
method.

Gene selection method :
1. Set the iteration counter t = 1, and let G1, G2, . . . , Gr be the transposed datasets

obtained by the gene expression matrix.
2. While t < r + 1, do the following:

(a) classify the dataset Gt by solving problem (GS);
(b) for each gene i in Gt compute the classification score CSi;
(c) sort the genes in Gt in descending order with respect to the classification score,

and select the first Δ genes from the top of the ranking. Let Bt be the set of
top-ranked genes for Gt, and set t = t + 1.

3. Build the set of most relevant genes by joining the sets Bt, t = 1, 2, . . . , r.

3 A Polyhedral Classifier for Microarray Data
Classification

Once a set of informative genes has been selected, to perform microarray data
classification any supervised learning method can be in principle applied. In
this paper, we propose to use a polyhedral classifier recently introduced in
(Orsenigo and Vercellis, 2007), which represents an extension of discrete support
vector machines (Orsenigo and Vercellis, 2003; 2004) for solving binary classifi-
cation problems. This choice is motivated by two main reasons. First, the poly-
hedral method is able to classify non-linearly separable datasets by means of
a set of linear hyperplanes, without resorting to projections into a higher di-
mensional feature space, as in traditional support vector machines. This helps
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Fig. 4. Polyhedral classification of normal and tumor tissues

preserving the interpretability of the classification rules generated. Furthermore,
the polyhedral classifier has proven to learn quite precisely from just a few train-
ing examples. Thus, it may be suitable for cancer microarray data classification
in which a small number of normal and tumor tissues are usually available.

The polyhedral method generates a classification region E defined by the
intersection of the upper half-spaces supported by a set of optimal separating
hyperplanes Hk : w′

kx − bk = 0, k ∈ L = {1, 2, . . . , L} (Fig. 4). Here L repre-
sents an upper bound on the number of hyperplanes the polyhedral method is
allowed to generate for the classification of the tissues xi in the matrix S. Let
N = {1, 2, . . . , n} be the set of indices of the genes in S. The polyhedral classifier
is formulated as the following mixed-integer optimization problem

min
α

m

m∑

i=1

cipi + β
L∑

k=1

n∑

j=1

ukj + γ
n∑

j=1

hjqj (PCP)

s. t. w′
kxi − bk ≥ −Qdki i ∈M, k ∈ L (6)

w′
kxi − bk ≤ (1− dki)Q− ε i ∈M, k ∈ L (7)

ei ≤
m∑

i=1

dki i ∈M, k ∈ L (8)

Lei ≥
m∑

i=1

dki i ∈M, k ∈ L (9)

2v − 1− yi(1− 2ei) ≤ 2pi i ∈ M (10)
2v − 1− yi(1− 2ei) ≥ −2pi i ∈ M (11)

Lqj ≥
L∑

k=1

fkj j ∈ N (12)

ukj ≤ Rfkj k ∈ L, j ∈ N (13)
wkj ≤ ukj , wkj ≥ −ukj k ∈ L, j ∈ N (14)
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ukj ≤ 1 k ∈ L, j ∈ N (15)
u ≥ 0,wk,b k ∈ L
p,q, e,d, f , v binaries.

The objective function of problem (PCP) is composed by the weighted sum
of three terms, expressing a trade-off between accuracy and potential of gen-
eralization. The first term evaluates the accuracy on S by means of the mis-
classification rate, defined as the proportion of misclassified sample tissues. This
rate is computed by means of the binary variables pi, i ∈ M, which take the
value 1 if the corresponding tissues are misclassified, and whose values are set
by constraints (10) and (11). The second term in the objective function repre-
sents the linearized version of the regularization term used in the support vector
machines framework (Vapnik, 1995). It is given by the sum of the continuous
variables ukj , k ∈ L, j ∈ N , which play a bounding role on the coefficients of
wk by means of constraints (14) and (15), and allow to formulate a linear opti-
mization problem. Finally, the third term supports the generalization capability
of the classifier by minimizing the number of features (genes) defining the clas-
sification region E. This number is evaluated by means of two groups of binary
variables, fkj and qj , k ∈ L, j ∈ N . In particular, constraints (13) set the value
of fkj to 1 if gene j is active in the definition of wk, that is if wkj �= 0; con-
straints (12) force qj to 1 if gene j is active in the definition of at least one
hyperplane, and thereby of the classification region E. The remaining families of
binary variables in problem (PCP) are introduced in order to properly count the
number of misclassified tissues. In particular, the variables dki, k ∈ L, i ∈ M,
indicate to which half-space supported by Hk the tissues belong, ei, i ∈ M, iden-
tify the tissues lying inside the classification region E, and v indicates the class
value assigned by the model to the tissues lying inside E. Further details on the
(PCP) formulation are provided in (Orsenigo and Vercellis, 2007).

Instances of (PCP) of limited size can be solved to optimality by a branch-and-
bound procedure. To solve larger instances within reasonable computing times,
one may resort to an approximate sequential algorithm by extending to problem
(PCP) the heuristic procedure described in (Orsenigo and Vercellis, 2003).

4 Computational Settings and Tests

The usefulness of the proposed method has been evaluated by means of computa-
tional tests concerning the classification of three cancer microarray datasets, on
which several gene selection and machine learning algorithms have been applied.
These datasets, indicated in the sequel as Ovarian, Prostate and Colon, are avail-
able at the Kent Ridge Biomedical Data Set Repository (Li and Liu, 2003), and
were selected since they are representative of a wide variety of learning tasks.
In particular, the Ovarian and the Colon datasets are interesting for testing the
effectiveness of the feature selection procedure, since they contain a huge and
a relative low number of genes, respectively. The Prostate dataset, instead, is
suitable for evaluating the prediction capability of the classification method with
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Table 1. Description of the datasets and published classification results in terms of
accuracy on the test set (Test acc.) and corresponding number of misclassified sample
tissues (Errors)

Dataset

Summary Ovarian Prostate Colon

Classes [Normal(-1),Cancer(1)][Normal(-1),Tumor(1)][Negative(-1),Positive(1)]

Training set [50(-1), 50(1)] [50(-1), 52(1)] [15(-1), 26(1)]

Test set [66(-1), 50(1)] [9(-1), 25(1)] [7(-1), 14(1)]

No. of genes 15154 12600 2000

Test acc. (%) 81.0 − 97.4(1) 67.6 − 97.1(2) 71.4 − 95.2(3)(∗)

Errors (No.) 22 − 3 11 − 1 6 − 1

(1) (Shah and Kusiak, 2007), (2) (Wang et al., 2007), (3) (Li et al., 2001)
(∗) The best result 95.2% is obtained on a different test set.

respect to the tumor class, since the training is performed on a balanced dataset
and the accuracy is computed on a test set containing a predominant number
of tumor tissues. Furthermore, the Prostate test set is hard to classify since the
sample tissues it contains are obtained from different sources, and appear signif-
icantly different with respect to the training set examples. For all the datasets
considered the problem is to discriminate between normal and tumor sample tis-
sues. Table 1 provides a summary of the characteristics of the datasets together
with the minimum and maximum accuracy values obtained on the corresponding
test sets by the methods so far applied.

The first phase of the proposed framework is represented by the selection
of the most relevant genes, which was performed according to the procedure
described in section 2. In particular, the matrix G obtained for each dataset
was randomly partitioned into 10 disjoint subsets G1, G2, . . . , G10, so that the
generic dataset Gt contained about 3000, 2500 and 400 genes for the Ovarian,
the Prostate and the Colon dataset, respectively. Moreover, from each dataset Gt

three different sets of top-ranked genes were extracted by letting the parameter
Δ varying in the interval [1, 3]. In this way, for each classification task three
overlapping feature sets were derived, containing the best 10, 20 and 30 genes,
respectively.

In order to perform a fair comparison with most of the published results, the
accuracy of the polyhedral classifier was assessed by means of holdout estima-
tion (Kohavi, 1995), using the same training and test sets available at the Kent
Repository. According to the set of genes used in the training phase, table 2
shows the performances obtained on the test sets by the proposed approach in
terms of overall accuracy and sensitivity, defined as the percentage of tumor tis-
sues correctly classified. In particular, the values in square brackets in columns
2 and 3 correspond to the total number of misclassified sample tissues and to
the number of misclassified tumor examples, respectively. Table 2 includes also
two columns which indicate the number of genes used for the classification and
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Table 2. Classification results and number of genes

Classification results

Overall accuracy Sensitivity
Dataset Δ % [No. of errors] % [No. of errors] No. of genes L∗

1 91.4 [10] 90.0 [5] 6 3

Ovarian 2 94.8 [6] 96.0 [2] 7 3

3 94.8 [6] 96.0 [2] 7 2

1 88.2 [4] 92.0 [2] 4 3

Prostate 2 94.1 [2] 96.0 [1] 6 2

3 94.1 [2] 96.0 [1] 7 2

1 76.2 [5] 85.7 [2] 4 2

Colon 2 85.7 [3] 100 [0] 7 3

3 80.9 [4] 92.8 [1] 8 3

the number L∗ of hyperplanes generated by the polyhedral method for deriving
the optimal classification region.

From the results presented in table 2 some empirical conclusions can be drawn.
The overall accuracy of the proposed method is competitive to the best perfor-
mances achieved, being close to the right extreme of the interval of accuracy
values provided by competing methods. Notice that, due to the limited size of
the test sets, the misclassification of one more tissue leads to a significant drop
in the overall accuracy. In particular, the best results are obtained when the
classification is performed using the set composed by the 20 top-ranked genes.
For Ovarian and Prostate the largest feature sets provide the highest classifica-
tion accuracy as well. On the contrary, for the Colon dataset the use of the 30
top-ranked genes causes a worsening in the overall performances, probably due
to the noise introduced in the classification process by the additional 10 genes
included in the feature set.

For what concerns the sensitivity, the results achieved by the proposed ap-
proach appear promising. Indeed, the polyhedral classifier is able to perfectly
predict the class of most of the tumor tissues in the test sets, at the expense of
the misclassification of a low number of normal examples. In the context of can-
cer classification, the evaluation of sensitivity is fundamental, since the cost of
the errors of the first type, represented by the misclassification of tumor tissues,
is much greater than the cost associated to second type errors.

Finally, the classification of the datasets is consistently based on a very small
number of genes, compared with the original number of features describing the
sample tissues. In our computations, these genes can be regarded as the most
influential features for tumor differentiation, and lead to simple classification
rules which lend themselves to an easier investigation and a less expensive ap-
plication. From one side, an accurate discrimination between normal and tumor
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tissues may be achieved by measuring and evaluating the expression profiles of
a very small number of marker genes. From the other side, biologists and re-
searchers in bioinformatics may focus their attention on the selected genes in
order to study their role in cancer development and evolution.

5 Conclusions and Future Works

We have proposed a novel two-phase framework for gene selection and cancer
microarray data classification based on mixed-integer optimization. In the first
phase, optimization is used in order to identify small subsets of predictive fea-
tures, that is genes whose expression profiles are significantly different for normal
and tumor sample tissues. In the second phase, tissues of opposite classes are
classified by means of a polyhedral method which generates classification re-
gions based on the expression values of the genes selected in the first phase.
Computational experiments performed on benchmark datasets indicate that the
proposed method exhibits classification results competitive to the best accuracy
values so far achieved in the literature, across all the datasets considered. The
performances appear promising also in terms of sensitivity. Furthermore, the
classification rules generated are consistently based on a very small number of
genes and consequently lend themselves to an easier analysis by the domain
experts.

Future extensions of this research will concern the development of an approxi-
mate algorithm for solving model (GS), alternative to the truncated branch-and-
bound procedure, and the investigation of the biological relevance of the genes
selected for each cancer classification problem.
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Abstract. Protein complexes, identified as functional modules in pro-
tein interaction networks, are cellular entities that perform certain bi-
ological functions. Revealing these modular structures is significant in
understanding how cells function. Protein interaction networks can be
constructed by representing nodes as proteins and edges as interactions
between proteins. In this paper, we use a graph based distance measure,
n-clubs, to detect protein complexes in these interaction networks. The
quality of clustering protein interaction networks using n-clubs is com-
parable to that obtained by best known clustering algorithms applied
to various protein networks. Moreover, n-clubs approach is driven by a
single parameter n in contrast to other clustering algorithms which have
numerous parameters to tune for best results.

1 Introduction

Many complex systems in nature and society can be represented as an intricate
web of connections among the units they are made of. These networks when
expressed as a graph can reveal significant information not only about the sys-
tem as a whole, but also allows to identify functionally important parts of the
system. Finding structural sub-units (communities) associated with highly in-
terconnected parts is crucial to understand the structural and functional proper-
ties of networks. Recently, there has been a growing interest on applying graph
theoretical concepts for finding such structural sub-units in biological, social,
financial, consumer and co-citation networks [20,3,5]. This work is motivated
by current surge in the protein interaction (PPI) data available for different
organisms as a result of many high-throughput experimental techniques (e.g.
yeast-two-hybrid (Y2H) system and mass spectrometry (MS)). Currently, most
proteomics data is available for the model organism Saccharomyces cerevisiae, by
virtue of the availability of a defined and relatively stable proteome, full genome
clone libraries, established molecular biology experimental techniques and an
assortment of well designed genomics databases [6,17]. Much larger data sets
than this will eventually be available for other well studied model organisms as
well as for the human proteome. These complex data sets present a formidable
challenge for computational biology to develop automated data mining analysis
for knowledge discovery.
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One of the important challenges related to proteomics is to understand the re-
lationship between the organization of a network and its function. In particular,
it is essential to extract functional modules such as protein complexes or regula-
tory pathways from global interaction networks. Protein complexes, formed by
molecular aggregation of proteins assembled from multiple stable protein interac-
tions, play crucial role in many cellular processes. Identifying protein complexes
in the interaction networks can be useful to understand the functions and prop-
erties of individual proteins [21]. Predicting molecular complexes from protein
interaction data is important also because it provides another level of functional
annotation above other guilt-by-association methods. Since sub-units of a molec-
ular complex generally function towards the same biological goal, prediction of
an unknown protein as part of a complex also allows increased confidence in the
annotation of that protein.

In this paper we present a new graph clustering algorithm based on n-clubs to
predict protein complexes from protein-protein interaction graphs. An induced
subgraph S is referred to a n-club if the maximum distance between any pair
of nodes in S is n. The algorithm starts with a deterministic seed node and
builds a subgraph considering all nodes at a distance of n from seed node. In
the next step, the nodes with least weight (defined in next section) are removed
one after another from the subgraph till we reach a n-club. This process is
repeated till all the nodes in the graph are covered. The main characteristics
of the proposed algorithm is that it is governed by a single parameter n, finds
locally dense subgraphs, and is computationally efficient. The quality of protein
complex prediction using n-clubs, is comparable with that obtained by any of
the best known clustering algorithm till date.

The n-club algorithm is presented in detail in Section 2. In Section 3, var-
ious algorithms used for comparison with n-club algorithm are described. The
comparison results with different clustering algorithms is given in Section 4. The
papers conclusion and different matching statistics used to evalute predicted
clusters is presented in Sections 5 and 6.

2 The Proposed Algorithm

The network of interactions between proteins is generally represented as an in-
teraction graph, where nodes represent proteins and edges represent pairwise
interactions. It is suggested that protein complexes correspond dense regions
(clusters) in protein interaction networks [8]. The density of a cluster is com-
monly defined as the ratio of intra-cluster edges to the total possible edges, which
is given by 2m/(n(n− 1)), where n is the number of proteins in the cluster and
m is the number of interactions between them [22].

The density of a connected component can also be viewed in terms of dis-
tance between the nodes, i.e., the minimum number of hops taken to reach from
one node to another. In such a case, we define the densest component of the
graph as the one in which the distance between any two nodes is one. As the
minimum distance between the nodes increases, the density decreases. Thus we
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can say that density of the component is inversely proportional to the minimum
distance between the nodes. Based upon this relation between density and min-
imum distance between the nodes, we propose an algorithm to detect functional
modules in protein interaction networks.

The concept of grouping the nodes into a cluster based on the distance between
nodes is appealing due to certain peculiar features of the protein interaction
networks. Firstly, the protein networks are sparsely connected, incomplete and
noisy. The average density of all the subgraphs of each functional category in
MIPS database is averaged about 0.0023. Moreover, the average diameter of
the subgraphs of all functional categories in MIPS database is approximately
4 [18]. Hence the nodes which are part of protein complexes, though not strongly
connected with each other are at smaller distances from each other. In this paper,
we explore how effective can be a clustering approach which groups proteins
based on the distance between them.

Before defining n-clubs, we introduce some basic graph terminology as follows:

– A graph G = (V , E) denotes an arbitrary undirected graph, where V =
{1, 2, . . . , n} is the set of vertices of G, and E ⊆ (V × V − 1)/2 is the set of
edges of G.

– A subgraph G′ of a graph G is said to be induced if, for any pair of vertices
x and y of G′, (x, y) is an edge of G′ if and only if (x, y) is an edge of G.

– The distance dG(u, v) between two vertices u and v in graph G is the number
of edges in a shortest path connecting them.

– The diameter diam(G) of a graph G is the greatest distance between any
pair of vertices in G.

Hence, we define n-clubs as follows:

Definition 1. An induced subgraph G′ of a graph G is said to form an n-club
if the diam(G′) is n or less (diam(G′ ≤ n)).

The algorithm to find clusters based on n-clubs is shown in Figure 1. The input
to the algorithm is an undirected simple graph G and the value of diameter n in
n-clubs to be found. The three main steps of the algorithm are selection of seed
node, formation of cluster (n-club) and check for termination.

Seed Selection
Each cluster starts at a deterministic single node which we call the seed node. The
highest weighted node in graph G is considered as the seed node (line 4). In case
the highest node-weight is zero, the highest degree node is considered as the seed
node. The weight of each node is calculated based on the following definition:

Definition 2. The weight wu(G) of a node u is given by the number of edges
between its neighbors in graph G.

Cluster Formation
Once the seed node is determined, we construct a subgraph G′ from graph G
using the method buildSubgraph(G, s, n), where s is the seed node and n is the
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N(G) set of nodes in graph G
diam(G) diameter of graph G
s seed node
n diameter in n-club
wu(G) weight of node u in graph G

1. function n-clubs (G, n)
2. do
3. while (N(G) �= ∅)
4. s ← arg max{w0(G), w1(G), . . . , wN(G)(G)}
5. G′ ← buildSubgraph (G, s, n)
6. diam(G′) ← calcDiameter (G′, n)
7. while(diam(G′) > n)
8. s′ ← arg min{w0(G

′), w1(G
′), . . . , wN(G′)(G

′)}
9. G′ ← G′ − s′

10. diam(G′) ← calcDiameter (G′, n)
11. print G′

12. G ← G − G′

13. return;

Fig. 1. Clustering Algorithm based on n-clubs

maximum distance between any two nodes of n-club (line 5). The subgraph G′

from G is constructed starting from the seed node s and including every node in
graph G which is at a distance of n or less. This effectively includes every possible
node into G′ which can be part of the n-club formed with seed node as the refer-
ence node. The resulting subgraph G′ from the method buildSubgraph (G, s, n) is
then pruned to form an n-club by removing the least weighted nodes one by one
till its diameter is less than or equal to n (lines 6 – 10). This ensures that the final
n-club we discover from subgraph G′ is composed of highly-connected nodes.

After every node removal, the diameter of the subgraph G′ is calculated using
the method, calcDiameter(G′, n). It starts by representing the subgraph G′ as a
tree, considering the least weighted node of the subgraph G′ as root vertex. The
neighbors of root vertex in G′ become the nodes at level one of the tree, i.e.,
children of root vertex. The neighbors of all the nodes at level one which are not
already part of the tree will be the nodes at level two and so on. The diameter
of subgraph G′ is equivalent to the number of levels in the constructed tree. The
time-complexity to build the entire tree is given by O(|V | + |E|), where |V | is
the set of nodes and |E| is the set of edges in subgraph G′.

In our algorithm we only need to check whether diameter of G′ is greater
than n (line 6) and hence do not always need to build the complete tree. As the
number of levels in the tree is equivalent to its diameter, checking for diameter
greater than n is equivalent to building the tree till we reach the level equal to
n+1 or till there are no nodes to be added, whichever is first. If the set of nodes
from G′ to be added to the tree become empty before reaching the level n+1 of
the tree, then the diameter of G′ is less than or equal to n, otherwise greater
than n.



Detection of Protein Complexes in PPI Networks Using n-Clubs 157

The choice of root vertex also plays a role in the computation of the algorithm.
If we choose a highly weighted node in subgraph G′ as root vertex, we need to
traverse many nodes to reach the level n+1. Hence, the best choice is to start
building the tree with least weighted node as the root vertex. This node also
happens to be least connected in subgraph G′. Neverthless, it is important to
note that if the graph has more than one least weighted node, then all those
nodes should be tried as root vertex before determining the diameter of the
graph. The maximum value of diameter thus obtained is the actual diameter of
the graph.

Termination and Output
Once a cluster is identified with diameter less than n, it is removed from the
graph G and printed out. The next cluster is then formed in the remaining graph
by identifying a new seed node and the process is repeated until no node is left
in the graph G.

3 Clustering Algorithms Used for Comparison

We compare our n-club algorithm with a varied set of clustering algorithms
used for finding protein complexes. A brief description of each of the algorithm
is presented below.

The Markov Cluster algorithm (MCL) [7] simulates a flow on the graph by cal-
culating successive powers of the associated adjacency matrix. At each iteration,
an inflation step is applied to enhance the contrast between regions of strong or
weak flow in the graph. The process then converges towards a partition of the
graph, with a set of high-flow regions (clusters) separated by boundaries with
no flow. The value of the inflation parameter strongly influences the number of
clusters.

Molecular Complex Detection (MCODE) [1], detects densely connected re-
gions. First it assigns a weight to each vertex, corresponding to its local neigh-
borhood density. Then, starting from the top weighted vertex (seed vertex), it
recursively moves outward, including in the cluster vertices whose weight is above
a given threshold. This threshold corresponds to a user-defined percentage of the
weight of the seed vertex. However, since the highly weighted vertices may not
be highly connected to each other, the algorithm does not guarantee that the
discovered regions are dense.

Restricted Neighborhood Search Clustering (RNSC) [19] , is a cost-based lo-
cal search algorithm that explores the solution space to minimize a cost function
which is calculated according to the number of intra cluster and inter-cluster
edges. Starting from an initial random solution, RNSC iteratively moves a ver-
tex from one cluster to another if this move reduces the general cost. When a
(user-specified) number of moves has been reached without decreasing the cost
function, the algorithm terminates. However, the algorithm results are highly
dependent on the quality of initial clustering which is random or user-defined
and moreover the algorithm is governed by a number of parameters whose tuning
is an overhead to the user.
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Super Paramagnetic Clustering (SPC) [2] uses an analogy to the physical
properties of an inhomogeneous ferromagnetic model to find tightly connected
clusters in a large graph. At first, SPC associates a spin with each node of
the graph. Spins belonging to highly connected region fluctuate in a correlated
fashion and nodes with correlated spins are placed in same cluster. When the
temperature increases, the system becomes less stable and the clusters become
smaller. The SPC method is best at detecting high density clusters with relatively
few links with the outside world, but is not very effective for sparsely connected
graphs such as those formed from high-throughput data sets.

4 Experimental Results

The most commonly used high throughput analysis methods for detecting pro-
tein interactions are Yeast two-Hybrid (Y2H) system and Mass Spectrome-
try(MS). Protein interaction network can be constructed by representing nodes
as proteins and edges as interaction between proteins. In this work we use six
data high-throughput data sets collected from BIO-GRID [9,4]. The data sets
represent the network of protein interactions in the yeast Saccharomyces cere-
visiae. Two of these data sets consists of pairs of interacting protein detected
by the two-hybrid technique published respectively by Uetz et al. [16] and Ito
et al. [15]. The four other data sets contain protein complexes characterized by
mass spectrometry, published respectively by Gavin et al. [10,11], Ho et al. [13],
and Krogan et al. [14]. The data sets are named after the first authors who
discovered these data sets and in some cases, the name is superseded by year if
there is more than one data set discovered by single author.

The quality of clustering results is evaluated using the statistics, Sensitivity
(Sn), Positive Predicted Value (PPV ) and Accuracy (Acc). These are calcu-
lated by comparing the clusters with every annotated complex. To assess our
predictions, we use the curated protein complexes in MIPS [12]. The complex-
wise sensitivity (Sn) represents the coverage of a complex by its best-matching
cluster, given by the maximal fraction of proteins in the complex found in a
common cluster. Reciprocally, the cluster-wise Positive Predicted Value (PPV )
measures how well a given cluster predicts its best matching complex.

To estimate the overall correspondence between a clustering result (a set of
clusters) and the collection of annotated complexes, we compute the weighted
means of all PPV values (averaged over all clusters) and Sn values (averaged
over all complexes). The accuracy (Acc) of the algorithm prediction is given by
the geometric mean of the averaged Sn and PPV values (see section Methods
for a detailed description of the matching statistics).

We ran the n-club algorithm on the six data sets collected for different val-
ues of n ranging from 1 to 20. The clusters obtained from these high-throughput
networks were compared with the complexes annotated in the MIPS database to
compute Sensitivity (Sn), Positive predicted value (PPV ) and Accuracy (Acc).
It is not straight forward to interpret the results of these measures, in particular
“positive predictive value”. The reference set of MIPS complexes filtered to dis-
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card any high-throughput result, is by no means exhaustive since the complexes
detected by previous studies represent only a fraction of all existing complexes.
High-throughput methods are thus expected to yield many complexes that have
not previously been characterized by other methods.Thus, interactions detected
by high-throughput methods that are not annotated in MIPS cannot be consid-
ered “false positives”. Hence, PPV values should be interpreted as an indication
of the fraction of high-throughput results which are also detected by other meth-
ods and have been annotated in the MIPS so far. In contrast, the sensitivity is
likely to yield more direct relevant information, by indicating the fraction of
annotated complexes recovered in the clusters obtained from high-throughput
data.

Figure 2 shows the variation of Sn, PPV and Acc with respect to diameter
n in n-clubs. These plots present an overview of the behavior of the n-club
clustering algorithm for different values of n in n-clubs an also help us to find
the optimal value of n to detect high quality complexes in protein interaction
networks.

The variation of Sensitivity (Sn) and PPV with respect to diameter n in
n-club is shown in Figures 2(a) - 2(b). These measures provide complementary
and somewhat contradictory information: when the number of clusters decreases,
the Sn increases and, in the trivial case where all proteins are grouped in a single
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Fig. 2. Different statistical measures for n-club based clustering
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cluster, the calculated Sn reaches 1. Reciprocally, the PPV increases with the
number of clusters, reaching 1 in the trivial case where each protein is assigned
to one separate cluster.

The number of clusters found using n-clubs decreases with increase in diame-
ter, as larger n makes large number of nodes to be grouped into few clusters. The
maximum number of clusters is found with value of n equal to one, which also
happen to be the densest component of the network. Thus, Sn is the minimum
and PPV is the maximum for n equal to one. The statistics Sn and PPV reflect
popularly known “precision-recall” measures. With increase in n, Sn increases
and PPV decreases, as the number of clusters found decreases. For values of n
greater than 10, maximum number of nodes of the network are grouped into few
clusters, thus making Sn reach its maximum and PPV reach its minimum.

Figure 2(c) shows the variation of Accuracy(Acc) with diameter n in n-clubs.
Accuracy is given by the geometric mean of Sn and PPV . The graph shows
that high accuracy values are obtained for a diameter of either 2 or 3, which is a
reasonable relaxation of clique definition. The accuracy decreases with increase
in the value of n due to the higher decrease in PPV compared to increase in
Sn. The accuracy for Uetz data set remains stable as it has the smallest density
(0.018) of all the networks and hence the increase in n has little effect on Sn
and PPV .

Figure 2(d) is a typical “precision-recall” plot, where Sensitivity (Sn) reflects
the recall and PPV reflects precision. The figure shows the typical behavior of a
precision-recall plot with PPV (precision) inversely proportional to Sn (recall).
The values of Sn and PPV are obtained for different values of n in n-clubs over
all the data sets. The precision-recall plots help in identifying the parameter
values for best performance of the clustering algorithm. Ideally, the performance
of an algorithm is optimal when both, Sn and PPV , are high and this point is
given by the break-even point in the precision-recall plot. Break-even point is
defined as the point where precision equals recall. Some precision recall graphs
do not have a break-even point as defined above. An alternative definition for
break-even point can be the point with the smallest difference between precision
and recall among all those that have larger precision than recall. This refers to
the points close to the intersection of straight line drawn onto the precision-recall
plot passing through origin with a slope equal to one. It has been found from
our analysis that for all the protein data sets, the break-even point is obtained
for values of n equal to either 2 or 3.

The results thus obtained by fixing the diameter of n-clubs at 2, are compared
with four different clustering algorithms discussed in Section 3. The performance
statistics (Sn, PPV and Acc) for MCL, MCODE, RNSC and SPC algorithms
are taken from Sylvian [4], who did experiments on high-throughput data sets
by optimizing the parameters for best performance of each of the algorithm. The
comparison results along with number of nodes and edges for each data set are
given in Table 1. The values of Sn, PPV and Acc are converted to a percentage
(x 100), for better readability.
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Table 1. Statistical comparison of different clustering algorithms on high-throughput
data sets

Dataset No. of Nodes No. of Edges Statistics N-clubs MCL MCODE RNSC SPC

Sn 54.65 57.3 84.3 49.4 65.5

Uetz 926 865 PPV 57.26 53.8 25.5 59.6 38.0

Acc 55.94 55.52 46.36 54.26 49.88

Sn 32.15 34.9 66.9 31.4 73.2

Ito 2937 4038 PPV 59.0 42.7 8.2 63.6 24.3

Acc 43.55 38.6 23.42 44.68 42.17

Sn 44.69 50.6 81.2 37.0 90.1

Ho 1564 3600 PPV 55.3 47.1 12.9 61.5 10.4

Acc 49.71 48.81 32.36 47.7 30.61

Sn 57.36 74.1 67.0 52.1 91.8

Gavin2002 1352 3210 PPV 57.71 57.0 20.4 62.0 18.1

Acc 57.53 65.0 37.0 56.83 40.76

Sn 64.26 75.7 58.3 60.8 79.8

Gavin2006 1430 6531 PPV 57.85 54.3 20.6 63.3 37.0

Acc 60.97 64.11 34.65 62.03 54.33

Sn 54.82 62.8 56.3 53.1 82.6

Krogan 2675 7088 PPV 57.58 56.2 21.9 63.3 25.4

Acc 56.18 59.4 35.11 58.0 45.8

The results show that n-club approach achieves high accuracy for the data
sets Utez and Ho and is second best for the data sets Ito and Gavin2002. The
difference between Sn and PPV obtained by n-club approach is small compared
to other algorithms, suggesting that n-club algorithm achieves a good balance
between the two quality measures.

We also observe that the quality measures obtained by n-club algorithm are
approximately close to that obtained by RNSC algorithm, however n-clubs al-
gorithm gains over RNSC with respect to the number of governing parameters.
The number of parameters in n-clubs algorithm is one as compared to five in
RNSC algorithm [4,19].

5 Conclusions

This work presents a new graph clustering algorithm based on n-clubs to detect
functional modules in protein interaction networks. Since protein complexes in
interaction networks, on an average, have less diameter and are sparsely con-
nected [18], we find that proteins which are at a smaller distance from each
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other usually cluster together representing molecular biological functional units.
Therefore, it is advantageous to group proteins into clusters based on distance
between them, i.e., using n-clubs, to accurately predict protein complexes. The
effectiveness of n-club algorithm is shown by comparsion results with four dis-
tinct clustering algorithms. Besides yielding high accuracy of protein complex
predicition, n-club algorithm also achieves good trade-off between the contrast-
ing quality measures Sn and PPV , compared to other clustering algorithms.
Moreover, the proposed algorithm depends on a single parameter n.

A better comparison of different clustering algorithms can be done by plotting
Sn-PPV (precision−recall) curve for each of them. This requires the algorithms
to be tested on all the combination of their parameters. RNSC algorithm is
guided by more than five parameters and MCODE has four distinct governing
parameters [4], thus leading huge permutation of parameters. The on-going work
involves comparing the performance of different clustering algorithms over all the
parameter combinations to find the robustness of each of them.

6 Methods

Sensitivity, Positive Predicted Value and Accuracy are classically used to mea-
sure the correspondence between the result of a classification and a reference.
However, these concepts can be adapted for measuring the match between a set
of protein complexes and a clustering result.

Sensitivity
Considering the annotated complexes from MIPS database [12] as our reference
classification, we define sensitivity as the fraction of proteins of complex i which
are found in cluster j.

Sni,j = Ti,j/Ni (1)

where Ni is the number of proteins in complex i and Ti,j is the number of proteins
of cluster j which are part of complex i. The complex-wise sensitivity Sncoi is
calculated as the maximal fraction of proteins of complex i assigned to the same
cluster. Sncoi reflects the coverage of complex i by its best-matching cluster.

Sncoi = maxm
j=1Sni,j (2)

To characterize the general sensitivity of a clustering result, we compute a
clustering-wise sensitivity as the weighted average of Sncoi over all complexes.

Sn =
∑n

i=1 NiSncoi∑n
i=1 Ni

(3)

In simple terms, sensitivity as a whole can be referred as “recall”, used most
often in retrieval systems.

Positive Predictive Value
The positive predicted value is the proportion of members of cluster j which
belong to complex i, relative to the total number of members of this cluster
assigned to all complexes
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PPV i, j = Ti,j/

n∑

i=1

Ti,j (4)

The summation in the denominator, given by Tj , is the total number of proteins
belonging to all possible complexes. A protein is counted more than one if it
is part of more than one complex. Hence, in some cases it may differ from the
cluster size, because some proteins can belong to several complexes.

The cluster-wise positive predicted value, PPVclj , is calculated as the maximal
fraction of proteins of cluster j found in the same annotated complex. PPVclj

reflects the reliability with which cluster j predicts that a protein belongs to its
best-matching complex.

PPVclj = maxn
i=1PPVi,j (5)

To characterize the general PPV of a clustering result as a whole, we compute
a clustering-wise PPV as the weighted average of PPVclj over all clusters.

PPV =

∑m
j=1 TjPPVclj
∑m

j=1 Tj
(6)

PPV can be seen equivalent to “precision” used most often in retrieval systems.

Accuracy
The geometric accuracy (Acc) indicates the tradeoff between sensitivity and
predicted value. It is obtained by computing the geometrical mean of the Sn
and the PPV .

Acc =
√

Sn.PPV (7)

The advantage of taking the geometric rather than arithmetic mean is that it
yields a low score when either the Sn or the PPV metric is low. High accuracy
values thus require a high performance for both criteria.
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Abstract. In many cases what matters is not whether a false discovery
is made or not but the expected proportion of false discoveries among
all the discoveries made, i.e. the so-called false discovery rate (FDR).
We present an algorithm aiming at controlling the FDR of edges when
learning Gaussian graphical models (GGMs). The algorithm is partic-
ularly suitable when dealing with more nodes than samples, e.g. when
learning GGMs of gene networks from gene expression data. We illustrate
this on the Rosetta compendium [8].

1 Introduction

Some models that have received increasing attention from the bioinformatics
community as a means to gain insight into gene networks are Gaussian graphical
models (GGMs) and variations thereof [4,6,9,14,25,26,29,31,32]. The GGM of a
gene network represents the network as a Gaussian distribution over a set of
random variables, each of them representing (the expression level of) a gene in
the network. Learning the GGM reduces to learning the independence structure
of the Gaussian distribution. This structure is represented as an undirected graph
such that if two sets of nodes are separated by a third set of nodes in the graph,
then (the expression level of) the corresponding sets of genes are independent
given (the expression level of) the third set of genes in the gene network. Gene
dependencies can also be read off a GGM [18]. A further advantage of GGMs
is that there already exists a wealth of algorithms for learning GGMs from
data. However, not all of them are applicable when the database contains fewer
samples than nodes (i.e. n < q),1 which is the case in most gene expression
databases. Of the algorithms that are applicable when n < q, only the one
proposed in [25] aims at controlling the false discovery rate (FDR), i.e. the
expected proportion of falsely discovered edges among all the edges discovered.
However, the correctness of this algorithm is neither proven nor fully supported
by the experiments reported, e.g. see the results for sample size 50 in Figure 6
in [25].

In this paper, we present a modification of the incremental association Markov
boundary (IAMB) algorithm [19,28] aiming at controlling the FDR. Although
1 We denote the number of nodes (i.e. genes) by q though it is customary to use p for

this purpose. We reserve p to denote a probability distribution.
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c© Springer-Verlag Berlin Heidelberg 2008



166 J.M. Peña

we have not yet succeeded in proving that the new algorithm controls the FDR,
the experiments reported in this paper support this conjecture. Furthermore,
the new algorithm is particulary suitable for those domains where n < q, which
makes it attractive for learning GGMs of gene networks from gene expression
data. We show that the new algorithm is indeed able to provide biologically
insightful models by running it on the Rosetta compendium [8].

2 Preliminaries

The definitions and results in the following two paragraphs are taken from
[11,15,27,30]. We use the juxtaposition XY to denote X ∪Y, and X to denote
the singleton {X}. Let U denote a set of q random variables. Unless otherwise
stated, all the probability distributions and graphs in this paper are defined
over U. Let X, Y, Z and W denote four mutually disjoint subsets of U. We
represent that X is independent of Y given Z in a probability distribution p
by X⊥Y|Z, whereas we represent that X is dependent of Y given Z in p by
X �⊥ Y|Z. Any probability distribution satisfies the following four properties:
Symmetry X⊥Y|Z ⇒ Y⊥X|Z, decomposition X⊥YW|Z ⇒ X⊥Y|Z, weak
union X⊥YW|Z ⇒ X⊥Y|ZW, and contraction X⊥Y|ZW ∧X⊥W|Z ⇒
X⊥YW|Z. Any strictly positive probability distribution also satisfies intersec-
tion X⊥Y|ZW ∧X⊥W|ZY ⇒ X⊥YW|Z. Any Gaussian distribution also
satisfies composition X⊥Y|Z ∧X⊥W|Z⇒ X⊥YW|Z.

Let sep(X,Y|Z) denote that X is separated from Y given Z in an undirected
graph (UG) G, i.e. every path in G between X and Y contains some Z ∈ Z. G is
an undirected independence map of a probability distribution p when X⊥Y|Z
if sep(X,Y|Z). G is a minimal undirected independence (MUI) map of p when
removing any edge from G makes it cease to be an independence map of p. MUI
maps are also called Markov networks. Furthermore, p is faithful to G when
X ⊥ Y|Z iff sep(X,Y|Z). A Markov boundary of X ∈ U in p is any subset
MB(X) of U \X such that (i) X⊥U \MB(X) \X |MB(X), and (ii) no proper
subset of MB(X) satisfies (i). If p satisfies the intersection property, then (i)
MB(X) is unique for each X ∈ U, (ii) the MUI map G of p is unique, and
(iii) two nodes X and Y are adjacent in G iff X ∈ MB(Y ) iff Y ∈ MB(X) iff
X �⊥Y |U\(XY ). The MUI map of a Gaussian distribution p is usually called the
Gaussian graphical model (GGM) of p. GGMs are also called covariance selection
models. In a Gaussian distribution Normal(μ, Σ), X ⊥ Y |Z iff ρXY |Z = 0,

where ρXY |Z = −((ΣXY Z)−1)XY√
((ΣXY Z)−1)XX ((ΣXY Z)−1)Y Y

is the population partial correlation

between X and Y given Z.
Assume that a sample of size n from a Gaussian distribution Normal(μ, Σ)

is available. Let rXY |Z denote the sample partial correlation between X and Y
given Z, which is calculated as ρXY |Z but replacing ΣXY Z by its maximum like-
lihood estimate based on the sample. Under the null hypothesis that ρXY |Z = 0,
the test statistic 1

2 log 1+rXY |Z
1−rXY |Z

has an asymptotic Normal(0, 1√
n−3−|Z|) distri-

bution [2]. Moreover, this hypothesis test is consistent [10]. We call this test
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Fisher’s z-test. Under the null hypothesis that ρXY |Z = 0, the test statistic√
n−2−|Z|·rXY |Z�

1−r2
XY |Z

has an exact Student’s t distribution with n − 2 − |Z| degrees

of freedom [2]. We call this test Fisher’s t-test. Note that Fisher’s z-test and
t-test are applicable only when n > |XY Z|: These tests require rXY |Z which
in turn requires the maximum likelihood estimate of ΣXY Z, and this exists iff
n > |XY Z| [11].

In many problems what matters is not whether a false discovery is made or not
but the expected proportion of false discoveries among all the discoveries made.
False discovery rate (FDR) control aims at controlling this proportion. Moreover,
FDR control tends to have more power than familywise error rate control, which
aims at controlling the probability of making some false discovery [3]. Consider
testing m null hypotheses H1

0 , . . . , Hm
0 . The FDR is formally defined as the

expected proportion of true null hypotheses among the null hypotheses rejected,
i.e. FDR = E[|F |/|D|] where |D| is the number of null hypotheses rejected
(i.e. discoveries) and |F | is the number of true null hypotheses rejected (i.e.
false discoveries). Let p1, . . . , pm denote p-values corresponding to H1

0 , . . . , Hm
0 .

Moreover, let p(i) denote the i-th smallest p-value and H
(i)
0 its corresponding

hypothesis. The following procedure controls the FDR at level α (i.e. FDR ≤ α)
[3]: Reject H

(1)
0 , . . . , H

(j)
0 where j is the largest i for which p(i) · m

i ·
∑m

k=1
1
k ≤ α.

We call this procedure BY.

3 Learning GGMs

In this section, we present three algorithms for learning GGMs from data. The
third one is the main contribution of this paper, as it aims at learning GGMs
with FDR control when n < q. Hereinafter, we assume that the GGM to learn is
sparse, i.e. it contains only a small fraction of all the q(q − 1)/2 possible edges.
This assumption is widely accepted in bioinformatics for the GGM of a gene
network.

3.1 EE Algorithm

One of the simplest algorithms for learning the GGM G of a Gaussian distri-
bution p consists in making use of the fact that an edge X − Y is in G iff
X �⊥Y |U \ (XY ). We call this algorithm edge exclusion (EE), as the algorithm
can be seen as starting from the complete graph and, then, excluding from it all
the edges X −Y for which X⊥Y |U \ (XY ). Since EE performs a finite number
of hypothesis tests, EE is consistent when the hypothesis tests are so. Recall
from Section 2 that consistent hypothesis tests exist. Note that EE with Fisher’s
z-test or t-test is applicable only when n > q, since these tests are applicable
only in this case (recall Section 2).

Since EE can be seen as performing simultaneous hypothesis tests, BY can
be embedded in EE to control the FDR. Note that Fisher’s z-test relies on the
asymptotic probability distribution of the test statistic and, thus, may not return
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Table 1. IAMB(X) and IAMBFDR(X)

IAMB(X)

1 MB = ∅
2 for i in 1..q − 1 do
3 pi = pvalue(X ⊥Yi|MB \ Yi)
4 for i in q − 1..1 do
5 if Y(i) ∈ MB then
6 if p(i) > α then
7 MB = MB \ Y(i)
8 go to line 2
9 for i in 1..q − 1 do

10 if Y(i) /∈ MB then
11 if p(i) ≤ α then
12 MB = MB ∪ Y(i)
13 go to line 2
14 return MB

IAMBFDR(X)

1 MB = ∅
2 for i in 1..q − 1 do
3 pi = pvalue(X ⊥Yi|MB \ Yi)
4 for i in q − 1..1 do
5 if Y(i) ∈ MB then

6 if p(i) · q−1
i ·�q−1

k=1
1
k > α then

7 MB = MB \ Y(i)
8 go to line 2
9 for i in 1..q − 1 do

10 if Y(i) /∈ MB then

11 if p(i) · q−1
i ·�q−1

k=1
1
k ≤ α then

12 MB = MB ∪ Y(i)
13 go to line 2
14 return MB

p-values but approximate p-values. This may cause that the FDR is controlled
only approximately. Fisher’s t-test, on the other hand, returns p-values and,
thus, should be preferred in practice.

3.2 IAMB Algorithm

EE is based on the characterization of the GGM of a Gaussian distribution p as
the UG G where an edge X − Y is in G iff X �⊥Y |U \ (XY ). As a consequence,
we have seen above that EE is applicable only when n > q. We now describe an
algorithm that can be applied when n < q under the sparsity assumption. The
algorithm is based on the characterization in which an edge X − Y is in G iff
Y ∈MB(X). Therefore, we first introduce in Table 1 an algorithm for learning
MBs that we call IAMB(X), because it is a modification of the incremental
association Markov boundary algorithm studied in [19,28]. IAMB(X) receives
the target node X as input and returns an estimate of MB(X) in MB as output.
IAMB(X) first computes p-values for the null hypotheses X⊥Yi|MB \ Yi with
Yi ∈ U \ X . In the table, p(i) denotes the i-th smallest p-value and Y(i) the
corresponding node. Then, IAMB(X) iterates two steps. The first step aims at
removing false discoveries from MB by removing the node with the largest p-
value if this is larger than α. The second step is run when the first step cannot
remove any node from MB, and it aims at adding true discoveries to MB by
adding the node with the smallest p-value if this is smaller than α. Note that
after each node removal or addition, the p-values are recomputed. The original
IAMB(X) executes step 2 while possible and only then executes step 1. This
delay in removing nodes from MB may harm performance as the larger MB gets
the less reliable the hypothesis tests tend to be. The modified version proposed
here avoids this problem by keeping MB as small as possible at all times. We
prove in [19] that the original IAMB(X) is consistent, i.e. its output converges in
probability to a MB of X , if the hypothesis tests are consistent. The proof also
applies to the modified version presented here. The proof relies on the fact that
any Gaussian distribution satisfies the composition property. It is this property
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what allows IAMB(X) to run forward, i.e. starting with MB = ∅. Recall from
Section 2 that consistent hypothesis tests exist.

IAMB(X) immediately leads to an algorithm for learning the GGM G of p,
which we just call IAMB: Run IAMB(X) for each X ∈ U and, then, link X and
Y in G iff X is in the output of IAMB(Y ) or Y is in the output of IAMB(X).
Note that, in theory, X is in the output of IAMB(Y ) iff Y is in the output of
IAMB(X). However, in practice, this may not always be true, particulary when
working in high-dimensional domains. That is why IAMB only requires one of
the two statements to be true for linking X and Y in G. Obviously, IAMB is
consistent under the same assumptions as IAMB(X), namely that the hypothesis
tests are consistent.

The advantage of IAMB over EE is that it can be applied when n < q,
because the largest dimension of the covariance matrix for which the maximum
likelihood estimate is computed is not q × q but s× s, where s− 2 is the size of
the largest MB at line 3 of IAMB(X). We expect that s� q under the sparsity
assumption. It goes without saying that there are cases when n < q where IAMB
is not applicable either, namely those where n < s.

3.3 IAMBFDR Algorithm

Unfortunately, IAMB(X) cannot be seen as performing simultaneous hypothesis
tests and, thus, BY cannot be embedded in IAMB(X) to control the FDR. In this
section, we present a modification of IAMB(X) aiming at controlling the FDR.
The modification is based on redefining MB(X) as the set of nodes such that Y ∈
MB(X) iff X �⊥Y |MB(X) \ Y . We now prove that his redefinition is equivalent
to the original definition given in Section 2. If Y ∈MB(X), then let us assume to
the contrary X⊥Y |MB(X)\Y . This together with X⊥U\MB(X)\X |MB(X)
implies X⊥ (U \MB(X) \X)Y |MB(X) \ Y by contraction, which contradicts
the minimality property of MB(X). On the other hand, if Y /∈ MB(X) then
X⊥U \MB(X) \X |MB(X) implies X⊥Y |MB(X) \ Y by decomposition.

Specifically, we modify IAMB(X) so that the nodes in the output MB are
exactly those whose corresponding null hypotheses are rejected when running
BY at level α with respect to the null hypotheses X ⊥ Y |MB \ Y . In other
words, Y ∈ MB iff X ⊥ Y |MB \ Y according to BY at level α. To implement
this modification, we modify the lines 6 and 11 of IAMB(X) as indicated in
Table 1. Therefore, the two steps the modified IAMB(X), which we hereinafter
call IAMBFDR(X), iterates are as follows. The first step removes from MB the
node with the largest p-value if its corresponding null hypothesis is not rejected
by BY at level α. The second step is run when the null hypotheses corresponding
to all the nodes in MB are rejected by BY at level α, and it adds to MB the node
with the smallest p-value among the nodes whose corresponding null hypotheses
are rejected by BY at level α.

Finally, we can replace IAMB(X) by IAMBFDR(X) in IAMB and so obtain
an algorithm for learning the GGM G of p. We call this algorithm IAMBFDR.
It is easy to see that the proof of consistency of IAMB(X) also applies to
IAMBFDR(X) and, thus, IAMBFDR is consistent under the same assumptions
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as IAMB, namely that the hypothesis tests are consistent. Unfortunately,
IAMBFDR does not control the FDR: If the true GGM is the empty graph,
then the FDR gets arbitrarily close to 1 as q increases, as any edge discovered
by IAMBFDR is a false discovery and the probability that IAMBFDR discovers
some edge increases with q. However, if we redefine the FDR of IAMBFDR as
the expected FDR of IAMBFDR(X) for X ∈ U, then IAMBFDR does control
the FDR if IAMBFDR(X) controls the FDR: If FDRX denotes the FDR of
IAMBFDR(X), then E[FDRX ] =

∑
X∈U

1
q FDRX ≤ q

q · α. Although we have
not yet succeeded in proving that IAMBFDR(X) controls the FDR, the ex-
periments reported in the next section support the conjecture that IAMBFDR
controls the FDR in the latter sense.

4 Evaluation

In this section, we evaluate the performance of EE, IAMB and IAMBFDR on
both simulated and gene expression data.

4.1 Simulated Data

We consider databases sampled from random GGMs. Specifically, we consider
100 databases with 50, 100, 500 and 1000 instances sampled from random GGMs
with 300 nodes. To produce each of these 400 databases, we do not really sam-
ple a random GGM but a random Gaussian network (GN) [7]. The probability
distribution so sampled is with probability one faithful to a GGM whose UG
is the moral graph of the GN sampled [13]. So, this is a valid procedure for
sampling random GGMs. Each GN sampled contains only 1 % of all the pos-
sible edges in order to model sparsity. The edges link uniformly drawn pairs of
nodes. Each node follows a Gaussian distribution whose mean depends linearly
on the value of its parents. For each node, the unconditional mean, the parental
linear coefficients and the conditional standard deviation are uniformly drawn
from [-3, 3], [-3, 3] and [1, 3], respectively. We do not claim that the databases
sampled resemble gene expression databases, apart from some sample sizes and
the sparsity of the models sampled. However, they make it possible to compute
performance measures such as the power and FDR. This will provide us with
some insight into the performance of the algorithms in the evaluation before we
turn our attention to gene expression data in the next section.

Table 2 summarizes the results of our experiments with Fisher’s t-test and α =
0.01, 0.05. Each entry in the table is the average of 100 databases sampled from
100 GGMs randomly generated as indicated above. We do not report standard
deviation values because they are very small. For EE, power is the fraction of
edges in the GGM sampled that are in G, whereas FDR is the fraction of edges in
G that are not in the GGM sampled. For IAMB(X) and IAMBFDR(X), powerX

is the fraction of nodes in MB(X) that are in the output MB of IAMB(X) or
IAMBFDR(X), FDRX,1 is the fraction of nodes in MB that are not in MB(X),
and FDRX,2 is the fraction of nodes Y in MB such that X ⊥Y |MB \ Y . For
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Table 2. Performance of the algorithms on simulated data

α = 0.01 α = 0.05

n algorithm sec. power FDR power FDR1 FDR2 sec. power FDR power FDR1 FDR2
50 IAMB 4 0.49 – 0.45 0.53 0.19 4 – – – – –

IAMBFDR 1 0.36 – 0.35 0.05 0.00 1 0.39 – 0.37 0.05 0.00
100 IAMB 4 0.59 – 0.52 0.46 0.19 42 0.65 – 0.57 0.82 0.37

IAMBFDR 2 0.47 – 0.43 0.04 0.00 2 0.49 – 0.44 0.04 0.00
500 EE 0 0.46 0.00 0.52 – – 0 0.49 0.00 0.55 – –

IAMB 9 0.78 – 0.68 0.37 0.22 24 0.83 – 0.73 0.70 0.44
IAMBFDR 6 0.68 – 0.59 0.02 0.00 7 0.70 – 0.60 0.02 0.00

1000 EE 0 0.68 0.00 0.70 – – 0 0.70 0.00 0.73 – –
IAMB 14 0.84 – 0.74 0.35 0.23 27 0.88 – 0.78 0.68 0.46
IAMBFDR 10 0.76 – 0.66 0.02 0.00 11 0.77 – 0.67 0.02 0.00

IAMB and IAMBFDR, we report power, FDR1 and FDR2 which denote the
average of powerX , FDRX,1 and FDRX,2 over all X ∈ U. As discussed in
Section 3, EE controls FDR, whereas IAMBFDR aims at controlling FDR2.
We also report EE’s power for IAMB and IAMBFDR as well as power for EE,
in order to assess the relative performance of the algorithms. Finally, we also
report the runtimes of the algorithms in seconds (sec.). The runtimes correspond
to C++ implementations of the algorithms run on a Pentium 2.0 GHz, 1 GB
RAM and Windows XP.2 We draw the following conclusions from the results in
the table:

– As discussed above, EE is applicable only when n > q which, as we will see
in the next section, renders EE useless for learning GGMs of gene networks
from most gene expression databases.

– In the cases where EE is applicable, EE controls FDR. This was expected
as BY has been proven to control the FDR [3].

– IAMBFDR controls FDR2, though we currently lack a proof for this fact.
IAMBFDR does not control FDR1, though it keeps it pretty low. The rea-
son why IAMBFDR does not control FDR1 is in its iterative nature: If
IAMBFDR fails to discover a node in MB(X), then a node Y /∈MB(X) may
appear in the output MB of IAMB(X) or IAMBFDR(X). We think that
this is a positive feature, as Y is informative about X because X �⊥Y |MB\Y
for Y to be included in MB. The average fraction of nodes in MB such that
Y /∈MB(X) but X �⊥Y |MB \ Y is FDR1 − FDR2.

– IAMB controls neither FDR1 nor FDR2. As a matter of fact, the number
of false discoveries made by IAMB(X) may get so large that the size of MB
at line 3 exceeds n− 3, which implies that the hypothesis tests at that line
cannot be run since the maximum likelihood estimates of the correspond-
ing covariance matrices do not exist (recall Section 2). When this problem
occurred, we aborted IAMB(X) and IAMB. With α = 0.05, this problem
occurred in the 100 databases with 50 samples, and in 26 databases with
100 samples. This problem also occurred when we applied IAMB to learn a
GGM of a gene network from gene expression data (see next section), which
compromises the use of IAMB for such a task.

2 These implementations are available at www.ifm.liu.se/∼jmp.
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– IAMBFDR outperforms EE in terms of power whereas there is no clear
winner in terms of power. That IAMB outperforms the other two algo-
rithms in terms of power and power is rather irrelevant, as it controls neither
FDR1 nor FDR2. IAMBFDR is actually more powerful than what power
and power indicate, as none of these measures takes into account the nodes
Y ∈ MB such that Y /∈ MB(X) but X �⊥ Y |MB \ Y which, as discussed,
above are informative about X .

In the light of the observations above, we conclude that IAMBFDR should
be preferred to EE and IAMB: IAMBFDR offers FDR control while IAMB
does not, moreover EE can only be run when n > q in which case IAMBFDR
is more powerful. Furthermore, the runtimes reported in Table 2 suggest that
IAMBFDR scales to high-dimensional databases such as, for instance, gene ex-
pression databases. The next section confirms it. This is due to the fact that
IAMBFDR exploits the composition property of Gaussian distributions to run
forward, i.e. starting from the empty graph.

Finally, it is worth mentioning that we repeated all the experiments above
with the unconditional means and the parental linear coefficients being uniformly
drawn from [-1, 1], and the conditional standard deviations being equal to 1. The
results obtained led us to the same conclusions as those above. As a sanity check,
we also repeated all the experiments above with the sampled GGMs containing
no edge. The results obtained confirmed that EE and IAMBFDR control the
FDR even in such an extreme scenario whereas IAMB does not.

4.2 Rosetta Compendium

The Rosetta compendium [8] consists of 300 expression profiles of the yeast Sac-
charomyces cerevisiae, each containing expression levels for 6316 genes. Since for
this database n < q, EE could not be run. Furthermore, the run of IAMB had to
be aborted, since the problem discussed in the previous section occurred. There-
fore, IAMBFDR was the only algorithm among those studied in this paper that
could be run on the Rosetta compendium. Running IAMBFDR with Fisher’s
t-test and α = 0.01 took 7.4 hours on a Pentium 2.4 GHz, 512 MB RAM and
Windows 2000 (C++ implementation). The output contains 32641 edges, that
is 0.16 % of all the possible edges.

In order to illustrate that the GGM learnt by IAMBFDR provides biological
insight into the yeast gene network, we focus on the iron homeostasis path-
way. Iron is an essential nutrient for virtually every organism, but it is also
potentially toxic to cells. The iron homeostasis pathway regulates the uptake,
storage, and utilization of iron so as to keep it at a non-toxic level. According to
[12,20,21,23,24], yeast can use two different high-affinity mechanisms, reductive
and non-reductive, to take up iron from the extracellular medium. The former
mechanism is composed of the genes in the FRE family, responsible for iron
reduction, and the iron transporters FTR1 and FET3, while the latter mech-
anisms consist of the iron transporters ARN1, ARN2, ARN3 and ARN4. The
iron homeostasis pathway in yeast has been previously used in [16,17] to evaluate
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Fig. 1. Subgraph of GGM learnt by IAMBFDR that is induced by the genes that are
adjacent to the four genes (square-shaped) involved in the non-reductive mechanism
for iron uptake. Double-lined genes are related to iron homeostasis.

different algorithms for learning gene network models from gene expression data.
These two papers conclude that their algorithms provide biologically plausible
models of the iron homeostasis pathway after finding that many genes from that
pathway are connected to ARN1 through a path of length one or two. We here
take a similar approach to validate the GGM learnt.

Figure 1 depicts the subgraph of the GGM learnt that is induced by the
genes that are adjacent to the four genes in the non-reductive mechanism for
iron uptake, i.e. ARN1, ARN2, ARN3 and ARN4. These four genes are square-
shaped in the figure. In addition to these, the figure contains many other genes
related to iron homeostasis. These genes are double-lined in the figure. We now
elaborate on these genes. As discussed above, FRE1, FRE2, FRE3, FRE6, FTR1
and FET3 are involved in the reductive mechanism for iron uptake. According
to the Gene Ontology search engine AmiGO [1], FET5, MRS4 and SMF3 are
iron transporters, FIT2 and FIT3 facilitate iron transport, PCA1 is involved in
iron homeostasis, and ATX1 and CCC2 are involved in copper transport and
are required by FET3, which is part of the reductive mechanism. According to
[24], BIO2 is involved in biotin synthesis which is regulated by iron, GLT1 and
ODC1 are involved in glutamate synthesis which is regulated by iron too, LIP5
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is involved in lipoic acid synthesis and regulated by iron, and HEM15 is involved
in heme synthesis and regulated by iron too. Also according to [24], TIS11 and
the biotin transporter VHT1 are regulated by AFT1, the major iron-dependant
transcription factor in yeast. Though AFT1 is not depicted in the subgraph in
Figure 1, it is noteworthy that it is a neighbor of FET3 in the GGM learnt. The
relation of the zinc transporter ZRT3 to iron homeostasis is documented in [23].
Finally, [5] provides statistical evidence that the following genes are related to
iron homeostasis: LEU1, AKR1, HCR1, CTT1, ERG3 and YER156C. Besides,
the paper confirms the relation of the first two genes through miniarray and
quantitative PCR.

In summary, we have found evidence supporting the relation to iron home-
ostasis of 32 of the 64 genes in Figure 1. This means that, of the 60 genes
that IAMBFDR linked to the four genes that we decided to study, 28 are re-
lated to iron homeostasis, which is a substantial fraction. Further evidence of
the accuracy of the GGM learnt comes from the fact that these 60 genes are,
according to the annotation tool g:Profiler [22], significantly enriched for sev-
eral Gene Ontology terms that are related to iron homeostasis: GO:0055072 iron
ion homeostasis (p-value < 10−5), GO:0006825 copper ion transport (p-value
< 10−7), GO:0015891 siderophore transport (p-value < 10−4), GO:0006826 iron
ion transport (p-value < 10−14), GO:0005506 iron ion binding (p-value < 10−19),
GO:0005507 copper ion binding (p-value < 10−6), GO:0000293 ferric-chelate re-
ductase activity (p-value < 10−6), GO:0005375 copper ion transmembrane trans-
porter activity (p-value < 10−4), GO:0005381 iron ion transmembrane trans-
porter activity (p-value < 10−5), and GO:0043682 copper-transporting ATPase
activity (p-value = 10−4).

We think that the conclusions drawn in this section, together with those
drawn in the previous section, prove that IAMBFDR is scalable and reliable for
inferring GGMs of gene networks when n < q. Moreover, recall that neither EE
nor IAMB could be run on the database used in this section.

5 Discussion

In this paper, we have proposed IAMBFDR, an algorithm for controlling the
FDR when learning GGMs and n < q. We have shown that the algorithm works
well in practice and scales to high-dimensional domains. In particulary, we have
shown that IAMBFDR is able to provide biological insight in domains with thou-
sands of genes but many fewer samples. Other works that propose algorithms
for controlling the FDR when learning GGMs and n < q are [25,26]. However,
the correctness of the algorithm proposed in the first paper is neither proven
nor fully supported by the experiments reported (e.g. see the results for sample
size 50 in Figure 6 in [25]), whereas the algorithm in the second paper does not
really aim at controlling the FDR but the closely related local FDR. IAMBFDR
resembles the algorithms proposed in [6,14] in the sense that they all learn
the GGM of a gene network by learning the MB of each node. Specifically, [6]
takes a Bayesian approach that combines elements from regression and graphical
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models whereas [14] uses the lasso method. However, the main difference between
our algorithm and theirs is that the latter do not aim at controlling the FDR.
For the algorithm proposed in [14], this can clearly be seen in the experimental
results reported in Table 1 in that work and in Figure 3 in [26].
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Abstract. A fundamental problem of modelling in Systems Biology is
to precisely characterise quantitative parameters, which are hard to mea-
sure experimentally. For this reason, it is common practise to estimate
these parameter values, using evolutionary and other techniques, by fit-
ting the model behaviour to given data. In this contribution, we exten-
sively investigate the influence of exponentially scaled search steps on the
performance of two evolutionary and one deterministic technique; namely
CMA-Evolution Strategy, Differential Evolution, and the Hooke-Jeeves
algorithm, respectively. We find that in most test cases, exponential scal-
ing of search steps significantly improves the search performance for all
three methods.

1 Introduction

At the beginning of the 21st century, the area of Systems Biology has a major
and still widening impact on the future of biological and medical research [15,16].
Computational models in Systems Biology often have numerous parameters,
such as kinetic parameters (e.g. reaction rates), saturation constants and dif-
fusion constants. Directly measuring unknown biochemical parameters in vivo
is difficult, and collectively fitting them to other experimental data often yields
large parameter uncertainties. As a result, methods for the estimation of these
parameters are central and of great importance to this field of research.

For this task, evolutionary approaches (e.g. [12]) as well as deterministic al-
gorithms (e.g. Hooke-Jeeves [8]) have been applied to infer parameters in bio-
chemical models. Although these approaches are among the most successful in
their class, it is very difficult to estimate the parameters when there are many
interactions in the system under consideration, having many local optima. They
consume enormous computational time because they require iterative numerical
integrations for non-linear differential equations. When the target model is stiff,
the computational time for reaching a solution increases further. Moreover, the
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difficulty of the problem increases not only with the number of parameters, but
also with the width of the search interval for each parameter.

Recent biological problems, from yeast to human systems, contain many free
parameters to fit (see for example [17,24]), and the parameter space varies widely
[13,21,28]. Optimisation techniques often do not work efficiently and accurately
without extrinsic mathematical hints from the user, like parameter space scaling.

In the work presented here, we demonstrate that parameter estimation can be
efficiently and more accurately performed using scaled search steps, in analogy to
the “log-normal rule” of adapting the mutational variance in evolution strategies
[1]. This idea is supported by testing different networks taken from the BioModels
database [25], using three different optimisation techniques. Two of them are
evolutionary approaches; Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) [5], and Differential Evolution (DE) [27]. The third one represents a
deterministic optimisation, the method of Hooke and Jeeves (HJ) [8].

2 Selected Optimisation Algorithms

Evolution Strategies (ES) [6,7] are stochastic search algorithms which try to
minimize a given objective function. The search steps are realized by stochastic
variation, often called mutations due to the comparable biological events. After
starting with a random set of search points (often called individuals) these points
are evaluated under usage of a given objective function. A small set of good
performing search points is chosen and varied by stochastic combination and
variation, representing the next step of the algorithm. Now the set of search
points is evaluated and some are selected to be the origin of the new set. This
approach guarantees a movement in the search space to an (local) optimum.

Usually, no detailed knowledge of adequate settings of the mutation-
parameters is available, which is crucial to the algorithm’s performance on a
given problem. Covariance Matrix Adaptation1 uses information collected dur-
ing the search process to select a suitable set of mutation-rates for the problem
at hand. It is a second-level derandomized self-adaptation scheme and directly
implements the Mutative Strategy Parameter Control [7].

Differential Evolution2 (DE) [26,27] represents a second evolutionary approach
and thereby a stochastic search algorithm. It is often mentioned in the con-
text of Genetic Algorithms and Evolution Strategies, but it has some distinct
properties. The procedure also uses populations consisting of vectors, which are
potential solutions to the optimisation problem. Like Evolutionary Algorithms
the first population is drawn randomly. DE generates new vectors by adding
the weighted difference between two vectors to a third vector, which is called
mutation. It also mixes this resulting vector and a previously determined other,
1 Implementation taken from bionik.tu-berlin.de/user/niko/cmaes inmatlab.html,

parameter settings: insigma=0.3(upper bound-lower bound), PopSize=3+floor
(3log(D)), Restarts=0.

2 Implementation taken from icsi.berkeley.edu/∼storn/code.html#matl parameter
settings: NP = 10D, itermax=5.
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so-called target vector, together, which results in a trial-vector in a new trial-
population. Each vector has to serve once as a target vector and thereby fills the
new trial-population. The selection scheme also differs from Evolutionary Algo-
rithms (EA): each vector of the trial-population is compared with its counterpart
in the current generation, and the better one survives into the next generation.
This means that each individual of the new generation is the same or better than
the corresponding individual from the old population. Therefore, the difference
to typical EA selection schemes is that a trial-vector does only have to compete
against its predecessor, not against all other vectors.

On some problems, DE outperforms several deterministic and stochastic ap-
proaches in convergence speed and finding the global optimum, including some
Evolutionary Algorithms [27]. The speed can be topped only by some determin-
istic approaches, but they are only applicable to some special problems.

As a representative for a deterministic search procedure, the algorithm3 pro-
posed by Hooke and Jeeves (HJ) [8,14] is often referred to as a “direct search”
method. The algorithm starts with a single point, called base point, sometimes
randomly drawn. Then a second search point, a trial-point, is chosen and com-
pared to the base point. If the new point represents a better solution, it is taken
as the second base point, otherwise it is neglected and the old point remains
the base. The process of choosing and comparing continues until a stop criterion
is reached. The strategy for selecting new trial-points is based on two moves:
exploratory and pattern moves.

Exploratory moves are usually simple, like changing only one dimension of
the search point, which are repeated to investigate the surrounding landscape.
They are calculated by changing each coordinate separately by a certain step-size
and investigating the failure or success. For a success the change will be kept,
otherwise restored. The last move of one step will then be the pattern move. It
thereby combines the gathered information into a directed move in a probably
good direction of the search space and generates a new base vector. If there is
no better trial-point discovered after a certain amount of failed pattern moves
the step size will be reduced to be able to converge more slowly to the optimum.
Termination finally happens when the step size is small enough, assuming that
the movement to a minimum has been successful. The approach allows to take
into account more previous base points, to determine a global success despite
local failure in the search direction, which can improve the search process. In
practical cases direct search is successful in locating minima in “sharp valleys”,
because each (exploratory) step is only a minor step in the search space.

3 Networks

In the presented experiments, 12 different networks were considered, of which
all but one are available in the BioModels Database [25]: Fisher et al. [2] model
NFAT and NFκ-B activation in T lymphocytes. Fung et al. [4] describe a
3 Implementation taken from mathworks.com/matlabcentral/fileexchange/load

F ile.do?objectId = 15070 parameter settings: tol=10−4, mxit=problem dimension.
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synthetic gene-metabolic oscillator. Hornberg et al. [9] describe ERK phospho-
rylation and kinase/phosphatase control. Huang and Ferrell [10] show the ultra-
sensitivity in the mitogen-acitivated protein kinase cascade. Kofahl and Klipp
[17] model the dynamics of the yeast pheromone pathway. Kongas and van Beek
[18] delineate the energy metabolic signaling in muscles through creatine kinase,
and Martins and van Boekel [20] model the Amadori degradation pathway. Mar-
wan [21] discusses the sporulation control network in Physarum polycephalum.
Nielsen et al. [24] study sustained oscillations in glycolysis and its complex pe-
riodic behaviour. In a widely recognized study, Tyson [28] analysed the cell
division cycle, and Yildirim and Mackey [30] examined a feedback regulation in
the lactose operon. The last network is an artificial one that can calculate the
third root of a positive number, i.e. the concentration of the output-species is
the third root of the concentration of the one input-species [19]. Thus, using all
three optimisation algorithms for all 12 networks, a set of 36 parameter fitting
test-cases has been investigated. Table 2 contains the network names together
with the network properties.

The networks, represented in SBML (Systems Biology Markup Language [11]),
were converted into ordinary differential equation (ODE) systems and stored as
MATLAB m-files [22] using CellDesigner [3]. The integration of the ODEs was
done by the built-in MATLAB-function ode15s. Additionally, COPASI [23] has
been used to integrate and visualize the behaviour of all species in each network.
Subsequently, a small number of species of each network has been chosen, which
showed an interesting behaviour, like oscillations and peaks. These time-series
were then defined as the “optimal” behaviour of a network, such that the algo-
rithms start with random parameter sets and have to optimise the parameters of
the network, to produce the same output as the original parameterized network.
As an objective function, the quadratic distance between the output of the orig-
inal and the candidate-network was used. Therefore, a parameter set is good if
the behaviour of the network is similiar to the original network, which usually is
the case for parameters similiar to the original ones (as well as for other param-
eter sets, since parameter fitting is commomly an underdetermined problem).
Accordingly, a parameter set is bad if the species show different behaviour.

The networks were allowed to have parameters in the range between 10−5 and
105, containing most of the desired parameters of each network. The implemen-
tation by Hooke and Jeeves and Differential Evolution didn’t support constraint
parameters, so the implementations had to be extended: each time a new pa-
rameter set is generated, each parameter is checked for a bound violation and
set back to the bound if it exceeds it.

4 Scaling of Parameters

The task of the work presented here is to investigate a possible improvement of
the optimisation procedures by scaled search steps. The optimisation algorithms
in the unscaled case allow parameters pi in the range between 10−5 to 105, the
scaled case considers parameters pi between 0 to 1. In the unscaled case, the
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Fig. 1. The network proposed by Tyson [28], visualised with CellDesigner [3]

unchanged parameters pi were inserted into the ODEs and evaluated by integra-
tion and measuring the distance between the derived and the original behaviour.
In the scaled case, the changed parameters p̄i were inserted and evaluated. The
relationship between pi and p̄i is

p̄i = a · 10b+c·pi,

where a = 1, b = −5 and c = 10 resulting in 10−5 ≤ p̄i ≤ 105. As a result of
this scaling, search steps are larger for high parameter values and smaller for
low values, independent of the optimisation procedure. This allows a searching
procedure to investigate small parameter values with high resolution and large
parameter values with low resolution without having to internally adapt the
search step-size.

A good example is the cell division cycle model proposed by Tyson [28],
which is shown in Figure 1. It consists of 6 species and 9 reactions, resulting in
6 ordinary differential equations with the parameters

– R1 k6 = 1.0
– R2 k8notP = 1000000.0
– R3 k9 = 1000.0
– R4 k3 = 200.0
– R5 k5notP = 0.0
– R6 k1aa = 0.015
– R7 k2 = 0.0
– R8 k7 = 0.6
– R9 k4 = 180.0
– R9 k4prime = 0.018

It can clearly be seen that the second parameters’ magnitude is larger than all
other parameters. To show the advantage of the scaled approach, let us assume
that the step-size s during the search for each parameter is small in the search
space, e.g.

s = 10−4 · (upperbound − lowerbound).
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This results in a step-size of sunscaled = 10 and sscaled = 10−4, respectively. Now
assume that during the search

R2 k8notP = 90000 ≈ 104.5424

and
R6 k1aa = 0.5 ≈ 10−0.30103.

The next optimisation step would generate new unscaled parameters

R2 k8notP = 90000 + 10 = 90010

and
R6 k1aa = 0.5 − 10 = −9.5

(which would also violate the bounds). The change is the same for both parame-
ter regions, but has a higher impact on the sixth parameter than on the second.
With the scaled approach, new parameters

R2 k8notP = 104.954254+10−4
= 90023.10745

and
R6 k1aa = 10−0.301−10−4

= 0.49992

are obtained, which is a more intelligent way to search the landscape for bio-
logical networks. The biological background is that the parameters of a network
model usually have different meanings. They can be grow constants or saturation
constants, which have different units: grow constants are rates (per molecule or
similar) and thereby have low orders of magnitude. Saturation constants have
the unit molecule number (or concentration), which is in higher orders of magni-
tude. Since the optimisation procedures are desired to be as general as possible,
the scale of each parameter is not known a priori. The scaled mutations proposed
here amend this situation.

5 Results

For each network, each optimisation algorithm was run 50 times, and the quality
of the solution together with the speed of reaching it was recorded. We define
the quality as the value of the objective function at the end of the run, while we
take the average value of the objective function over the whole run (except for
the initial phase which depends on the starting points) as a measure of speed.
Figure 2 contains six example runs. Table 1 shows a compact overview of the
results, and Table 2 gives more detailed information including the measured
values for quality and speed.

In Table 1, the first column gives the name of the main author of the net-
work. Second and third column indicate the better (plus) or worse performance
(minus) of the scaled approach compared to the unscaled for the final reached ob-
jective function value (“better”) and the mean value over all function evaluations
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Hornberg Nielsen

Differential Evolution

CMA-Evolution Strategy

Hooke & Jeeves algorithm

Fig. 2. Typical runs of six exemplary fitting cases of the networks by Hornberg and
Nielsen, optimised by all three algorithms; the dashed lines indicate the unscaled ap-
proach, solid lines show the scaled one

(“faster”), achieved by Differential Evolution. Brackets mark non-significant re-
sults according to the Mann-Whitney-Wilcoxon-Test [29], with P-values larger
than 10−3. The next four columns show the same for the CMA-Evolution Strat-
egy and the Hooke and Jeeves algorithm.

Table 1 clearly points out that the scaled approach outperforms the unscaled
one in most cases, as expected. Some test-cases show only a small difference
(Fisher, Fung, third root) and a few give worse results (Hornberg, Huang). All
other test-cases show an improvement in speed and/or solution quality for the
optimisation procedure. The reason for the pronounced difference in the effect
of scaled search steps still remains to be examined. One likely point is that the
behaviour of these networks might be quite sensitive to changes in the large
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Table 1. Advantage (plus) or disadvantage (minus) of the scaled approach, brackets
indicate a non-significant result at the 10−3 level. Based on 50 indepedent runs for each
test-case.

—DE— —ES— —HJ—
author better faster better faster better faster

Fisher [2] - - (-) (-) (+) +
Fung [4] - + (+) (+) + +
Hornberg [9] - - - - - -
Huang [10] - - - - - -
Kofahl [17] + + + + + +
Kongas [18] (+) + + + + +
Martins [20] + + + + + (+)
Marwan [21] + + + + + +
Nielsen [24] + + + + + +
third root [19] - (-) - (-) (-) (-)
Tyson [28] + + + + - (+)
Yildirm [30] + + + + + +

parameters, in which case the scaling may prevent adequate fine-tuning of these
parameters. However, it also has to be noted that in cases where performance
is worse, this effect is not too pronounced, giving more weight to the partially
drastic performance increase in most other cases.

6 Conclusions

Evidently, the performance of parameter fitting algorithms depends on the way
in which the search steps are carried out. In this paper, we propose an exponen-
tial scaling of these steps, which leads to larger changes for larger parameters
and smaller ones for smaller parameters. To evaluate the effect of the proposed
scaling technique on fitting performance, we downloaded 12 models from the
BioModels database and seeded them with random parameters. The fitting al-
gorithms were then used to re-create the original network’s behaviour. To show
that the advantage of exponentially scaled search steps is independent of the
search algorithm used, we employed three different optimisation techniques in
this study.

The experimental results (Table 2) clearly confirm an advantage of using
scaled search steps, in particular when the search interval for the parameters is
large. When the interval to be searched is not too large anyway, our results show
that exponential scaling at least does not deteriorate performance in most cases.
Thus, when fitting parameters of today’s system biological models, scaling the
search steps exponentially can be recommended as a default approach.
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Abstract. Wrapper methods look for the selection of a subset of features or 
variables in a data set, in such a way that these features are the most relevant for 
predicting a target value. In chemoinformatics context, the determination of the 
most significant set of descriptors is of great importance due to their contribu-
tion for improving ADMET prediction models. In this paper, a comprehensive 
analysis of descriptor selection aimed to physicochemical property prediction is 
presented. In addition, we propose an evolutionary approach where different 
fitness functions are compared. The comparison consists in establishing which 
method selects the subset of descriptors that best predicts a given property, as 
well as maintaining the cardinality of the subset to a minimum. The perform-
ance of the proposal was assessed for predicting hydrophobicity, using an en-
semble of neural networks for the prediction task. The results showed that the 
evolutionary approach using a non linear fitness function constitutes a novel 
and a promising technique for this bioinformatic application. 

Keywords: Feature Selection, Genetic Algorithms, QSAR, hydrophobicity. 

1   Motivation 

In the pharmaceutical industry, when a new medicine has to be developed, a ‘serial’ 
process starts where drug potency (activity) and selectivity are examined first [1]. 
Many of the candidate compounds fail at later stages due to ADMET (absorption, 
distribution, metabolism, excretion and toxicity) behavior in the body. ADMET prop-
erties are related to the way that a drug interacts with a large number of macromole-
cules and they correspond to the principal cause of failure in drug development [1]. In 
this way, a compound can be promising at first based on its molecular structure, but 
other factors such as aggregation, limited solubility or limited uptake in the human 
organism turn it useless as a drug. 

Nowadays, the failure rate of a potential drug before reaching the market is still 
high. The main problem is that most of the rules that govern ADMET behavior in the 
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human body are unknown. For these reasons, interest in Quantitative Structure-
Activity Relationships (QSAR) and Quantitative Structure-Property Relationships 
(QSPR) given by the scientific and industrial community has grown considerably in 
the last decades. Both of these approaches comprise the methods by which chemical 
structure parameters (known as descriptors) are quantitatively correlated with a well 
defined process, such as biological activity or any other experiment. QSAR has 
evolved over a period of 30 years from simple regression models to different compu-
tational intelligence models that are now applied to a wide range of problems [2], [3]. 
Nevertheless, the accuracy of the ADMET property estimations remains as a chal-
lenging problem [4]. 

In this context, hydrophobicity is one of the most extensively modeled physico-
chemical properties since the difficulty of experimentally determine its value, and 
also because it is directly related to ADMET properties [2], [5]. This property is tradi-
tionally expressed in terms of the logarithm of the octanol-water partition coefficient 
(logP). 

QSAR methods developed by computer means are commonly named as in silico 
methods. These in silico methods, clearly cheaper than in vitro experiments, allow to 
examine thousands of molecules in shorter time and without the necessity of intensive 
laboratory work. Although in silico methods are not pretended to replace high-quality 
experiments at least in the short term, some computer methods have demonstrated to 
obtain as good accuracy as well-established experimental methods [6]. Moreover, one 
of the most important features of this approach is that a candidate drug (or a whole 
library) can be tested before being synthesized. Due to the gains in saved labour time, 
in silico predictions considerably help to reduce the large percentage of leads that fail 
in later stages of their development, and to avoid the amount of time and money in-
vested in compounds that will not be successful. 

In this context, machine learning methods are most preferred given the great 
amount of existing data and the little understanding of the pharmacokinetic rules of 
xenobiotics in the human body. Jónsdottir et al. [3] detail an extensive review of the 
many machine learning methods applied to bio- and chemoinformatics. 

The major dilemma when logP is intended to be modeled by QSAR is that, thou-
sands of descriptors could be measured for a single compound and also there is no 
general agreement on which descriptors are relevant or influence the hydrophobic 
behavior of a compound. This is an important fact, because overfitting and chance 
correlation could occur as a result of using more descriptors than necessary [7], [8]. 
On the other hand, poor models come as a result, when less descriptors than necessary 
are used. From an Artificial Intelligence (AI) perspective, this topic constitutes a 
particular case of the feature selection (FS) problem. 

In this way, this work presents a sound approach for inferring the subset of the 
most influential descriptors for physicochemical properties. The righteousness of the 
selection is assessed by the construction of a prediction model. Our technique is based 
in the application of a genetic algorithm (GA) where: different fitness functions, a 
different number of descriptors selected by GA and a different number of descriptors 
considered by the prediction method are compared. This work is organized as follows: 
next section discusses related issues of feature selection in AI and in chemoinformat-
ics in particular. Section 3 expands the aforementioned idea by introducing the ge-
netic algorithm proposed for descriptor selection. In Section 4, applied data and 
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methods are presented, followed by the obtained results. Finally, in Section 5, main 
conclusions and future work are discussed. 

2   Introduction to Feature Selection 

Feature selection is the common name used to comprise all the methods that select 
from or reduce the set of variables or features used to describe any situation or activ-
ity in a dataset. Some authors differentiate variables from features, assuming that 
variables are the raw entry data, whereas features correspond to processed variables. 
However, variables, features or descriptors will be used here without distinction.  

Nowadays, FS is a current research area, given that applications with datasets of 
many (even hundreds or thousands) variables have become frequent. Most usual cases 
where this technique is applied are gene selection from microarray data [9], [10], [11] 
and text categorization [12], [13], [14]. Confronting dimensionality carries some rec-
ognized advantages like: reducing the measurement and storage requirements, facili-
tating visualization and understanding of data, diminishing training and predicting 
times and also improving prediction performance. 

Special care has to be taken with the distinction between relevant or useful and re-
dundant. As it can be elucidated, selecting most relevant variables may be suboptimal 
for a predictor, especially when relevant variables are redundant. On the other hand, a 
subset of useful variables for a predictor may exclude redundant, but relevant, vari-
ables [15], [16], [17]. Therefore, in FS it is important to know whether developing a 
predictor is a final objective or not. 

FS methods may be applied in two main ways, in terms of whether variables are 
individually or globally evaluated. That is, the first of them, works ranking each vari-
able in an isolated way, i.e. these methods rank variables according to their individual 
predictive power. However, a variable that is useless by itself could be useful in con-
sideration with others variables [17]. In this way, more powerful learning models are 
obtained, when the FS model selects subsets of variables that jointly have good pre-
dictive capacity.  

A refined division of FS methods, especially applied to the latter defined group, is 
commonly used. They are often divided into filters, wrappers and embedded methods. 
When variables are selected according to data characteristics (e.g. low variance or 
correlated variables) they correspond to filter-type FS methods. Wrappers utilize a 
learning machine technique of interest as a black box, as a pre-processing step, to 
score subsets of variables in terms of their predictive ability. Finally, embedded meth-
ods carry out FS in the process of the training of a learning method and are usually 
tailored to the applied learning method [17], [18].  

A wrapper-based FS method generally consists of two parts: the objective function, 
which may be a learning (regression or classification) method and a searching func-
tion that selects variables to be evaluated by the objective function. The results of the 
learning method are used to guide the searching procedure in the selection of descrip-
tors. Consequently, the selection procedure is closely tied to the learning algorithm 
used, whether in quality of selection or execution time. For instance, we may get very 
different behaviors whether we are using linear models or nonlinear techniques [18]. 
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2.1   Feature Selection Applied to QSAR 

Many several papers successfully applied the FS strategy in bioinformatics related 
areas, like: drug discovery, QSAR and gene expression patterns analysis. We decided 
to apply descriptor selection in our work in order to detect which and how many de-
scriptors are the most useful ones for the prediction of logP. We agreed on the use of 
GAs as the searching function, given that they offer a parallel search of solutions, 
potentially avoiding local minima. Moreover, with a correct design of a fitness func-
tion, GA inherently guides the different generations of individuals to a good if not 
optimal solution. In this context, the objective function corresponds to the function 
used for the fitness of GA. 

In this way, and as a result of the review about the related work in the area, we 
found some inspiring papers. In ref. [9], [18], [19], [20], [21], [22] different fitness 
functions are tested within a GA to determine a subset reduction. In [18], [23], [24] 
FS is applied using a neural network (NN) for the fitness function. However, we find 
that this proposal has the drawback of the great amount of time required by the NN 
for training and thus the execution time becomes prohibitive when the number of 
combination of feasible selections is large.  

3   Wrapper Method 

We implemented a GA for searching the space of the multiple feasible selections. We 
propose three appropriate fitness functions for guiding the search of GA, namely: 
decision trees, k-nearest neighbors (KNN) and a polynomic non linear function. Ac-
cording to the previous classification, our proposed FS method belongs to a wrapper 
method because statistical or machine learning methods are used in the fitness func-
tion for assessing the prediction capability of the selected subset. 

3.1   Main Characteristics of GA 

Binary strings are used to represent the individuals. Each string of length m stands for 
a feasible descriptor selection, where m is the number of considered descriptors. A 
nonzero value in the ith bit position means that the ith descriptor is selected. We have 
constrained to a model where p bits are active for each individual. In other words, 

each chromosome encodes its choice of the p selected descriptors. 

The initial population is randomly generated by imposing the described restriction 
of exactly p active descriptors on each individual. A one-point crossover is used for 

the recombination [25]. Non feasible individuals could take place after crossover, 
because the number of nonzero bits may be different than p . This problem is solved 

by randomly setting or resetting bit locations as needed to be up to p active bits. Since 

the crossover scheme inherently incorporates bit-flip mutation, we abstained to use an 
additional scheme of mutation.  

We did different experiments and we concluded that tournament method is appro-
priate for the selection of parents. Furthermore, this method is preferred than others 
because it is particularly easy to implement and its time complexity is O(n) [25]. We 
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also included elitism, which protects the fittest individuals in any given generation, by 
moving them to the next generation.  

3.2   Fitness Function 

Taking into account that the GA objective is to determine the most relevant set of 
p descriptors for predicting a physicochemical property, the fitness function should 

estimate the accuracy of a prediction method when only the p descriptors are used. In 

particular, the general form of the fitness function employed is presented in the equa-
tion 1. This formula computes the mean square error of prediction (MSE): 
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Where: 

 Z is a matrix that represents a compound dataset, where each row and column 
corresponds to a compound and a descriptor respectively. The last column of Z 
stores the experimental target values for each compound. This column vector is 
denoted as y.    

 ZP is a statistical method trained with the dataset Z. In the same way, )(xZP is 

the output for the ZP method when the case x is presented. 

 Z1 and Z2 are compound databases used as learning and validation sets respec-
tively with corresponding sizes n1 ×m and n2 ×m. 

 Zj,k is a filtered dataset in accordance with the descriptor selection encoded by 
the kth individual. In other words, Zj,k only contains those variables of Zj whose 
values in the corresponding locations  of the kth individual’s chromosome are 1. 

 ix  is a vector that represents the values of the descriptors for the ith compound 

of a given dataset.  
 yi is the target value for the ith compound of a given dataset.  

 
The first argument of the fitness function is the statistical method applied to a 

given learning set, while the second argument corresponds to a validation set, from 
where fitness value is calculated. In this work, three different predictor techniques 
were tested. The first one corresponds to decision trees (DT) (as regression trees) 
using Gini's diversity index for the splitting criteria and without using any kind of 
pruning [26]. The second is KNN regression as used in ref [9]. Both methods are local 
and usually applied for prediction or for FS purposes [27]. 

A non linear regression model was also applied in this paper as the first argument 
of the fitness function. A nonlinear expression is established where their coefficients 

( ji ,β ) are adjusted with a nonlinear least-squares fitting by the Gauss-Newton 

method [28]. The corresponding and nonlinear regression model formula is presented 

in Equation 2, where ix  corresponds to the value of the ith descriptor for any given 

compound. Non linear models are not generally applied given that they need the con-
struction of a mathematical formula. Nevertheless, we propose it as an alternative for 
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NN, so that non linear regressions could be carried out. It is worth mentioning that 
this approach circumvent the necessity of a manual tuning of the architecture and 
training parameters as is the case with NN. 
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4   Methodology and Analysis of Results 

Our proposal consists in the search of a selection of descriptors that minimizes the 
prediction error when they are used as input of a predictor method. This selection is 
fulfilled with the GA previously described. Moreover, a fair comparison is intended to 
be established in order to determine which fitness function works best with GA. It is 
worth mentioning that, as well as minimizing error, it is important to obtain relevant 
descriptors in a subset of minimal size. 

4.1   Data Sets 

Our FS method was applied to a data set of 440 organic compounds compiled from 
the literature [29] where their logP values at 25ºC conform the modeled target vari-
able. The choice of the data set was supported by the possibility of comparison with 
the previous work and also for the heterogeneous compounds that it comprises (e.g. 
hydrocarbons, halogens, sulfides, anilines, alcohols, carboxylic acids amongst others).  

Each compound was characterized by 73 molecular descriptors commonly used for 
logP [30], [31], [32]. Dragon 5.4 [33] was used for calculating descriptors of the: 
constitutional (41), functional groups (16), properties (2) and empiricals (3) families 
and we completed with 11 descriptors from [29] (Table 3). Previous to the use of the 
data, all descriptors were normalized, so each descriptor has a standard deviation of 1. 

4.2   Genetic Algorithm Parameters 

In order to assess the stability of the GA in the selection and to explore the sensitivity 
of the choice of p in the prediction, 45 independent runs were carried out for each 

choice of p , where p was set to 10, 20 and 30. This same procedure was made for 

the three considered fitness functions, making a total of 405 runs for the GA. 
The chromosome size m is 73 according to the number of calculated descriptors. 

For the GA runs we used typical parameter values: population size=45; crossover 
probability=0.8; tournament size=3, elite members=2. A phenotypic stopping crite-
rion is used; the GA stops when the highest fitness of the population does not improve 
during 15 generations or when the improvement of the average fitness of the popula-
tion is less than a given tolerance value.  

4.3   Prediction Method 

NNs are probably one of the most widely used methods for QSAR modelling [2], [6], 
[34]. In order to evaluate the suitability of the selection, we used a neural network 
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ensemble (NNE) as an independent prediction method, i.e. it measures the accuracy of 
prediction for each proposed wrapper method. The number of descriptors ( d ) used as 
input for this independent prediction method is not necessarily the same as 
the p genes selected by the GA. With the intention of establishing a suitable (minimal 

cardinality and error) subset of descriptors this value was settled to 10 different val-
ues: 11, 12, 15, 20, 25, 30, 40, 50, 60 and 73. The d descriptors used for the predictor 
are selected from a ranking of the most selected descriptors obtained in the 45 re-runs 
of the GA. Each ensemble consists of three NNs, and all of them are of type feed-
forward back-propagation. The specific architecture of each NN, was established 
according to the number picked for d . Principal Component Analysis (PCA) is ap-
plied prior to the training of the NNE, so the descriptors that contribute less than a 
0.2% of the total variance are discarded and considered as redundant. 

4.4   Results  

With the purpose of evaluating the performance in the prediction achieved by the afore-
mentioned fitness functions, we trained NNEs for each presented configuration of the 
GA and we obtained error prediction for different choices of d (Table 1, Fig. 1).  

It is worth mentioning that it is not straightforward to obtain logP related works 
from the bibliography that allows a reproducibility or benchmarking of the results of 
the work, as it is the case of ref [29]. So, to enable a direct comparison with this work, 
the data set was identically divided into training, validation and test set, also using the 
same compounds in each set.  

Our results were obtained after several different NN configurations and replicas, 
and the tendency was rather similar. Each reported error is an average over 5 replicas 
(15 NNs) applied to the test set.  

In comparison with the backpropagation NN proposed in ref. [29], which obtains a 
0.23 MAE and where similar conditions apply, our model of NNE with the assistance 
of the FS method has improved the accuracy of logP prediction, even when using one 
less descriptor (NL, p =10 fitness function). 

Decision trees as fitness function have a better behavior in their variant 
with 20=p descriptors, but with few descriptors for d , the performance is quite far 

from optimal. In the case of KNN, it looks like few descriptors for p is not appropri-

ate at least when less than 20 descriptors are used for the NNE. For NL, the behavior 
is quite good when 10=p . As expected, in all models similar results are obtained 

when more than 25 descriptors are considered for d . 
Considering the best alternative of p for each fitness function (Fig. 1 (d)) we high-

light the performance of NL. It has a roughly equal behavior along all d values and 
takes a minimal prediction error when 25=d . KNN’s behavior is similar to NL, 
except for the lowest values of d . In the case of the DT-based predictions, although 

they have a better performance than the previous two cases for large d , the bad per-
formance with small d values, makes it not so valuable as an FS technique, at least for 
the present example. 
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Table 1. Prediction errors in terms of MAE, MSE and variance on 5 runs 

 

 

Fig. 1. NNE prediction error in terms of mean absolute error (MAE) considering different 
number of descriptors as input, and also for different GA-based selection methods: (a) decision 
trees, (b) k-nearest neighbors and (c) non linear (d) best fitness functions 

Table 2. Two-way ANOVA for MAE of prediction of the three best methods and when few 
descriptors are used (d = 11, d = 12 and d = 15) 

Source of Var. Sum of Squares D.F. M.S. F p
BETWEEN 0,015629 8 0,0019536 14,7950419 2,622E-09
d factor 0,000056 2 0,0000279 0,21117041 0,8106
wrapper factor 0,015003 2 0,0075014 56,8094222 7,306E-12
Interaction 0,000570 4 0,0001426 1,0797875 0,3809
WITHIN 0,004754 36 0,0001320
TOTAL 0,020383 44  

In order to formally support preceding facts, we analyze whether significant discrep-
ancies exist among the different models by using a two-way ANOVA test (Table 2). 
The two involved factors are the FS method and the choice of d . Our comparison is 
focused on finding significant differences on the methods when using few descriptors  
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Fig. 2. NNE prediction error in terms of mean absolute error (MAE) considering different 
number of descriptors as input, and also for different random-based selections  

Table 3. List of ranked descriptors according to wrapper method NL, 10=p . Descriptors 
with * are scaled on carbon atoms. 

 

for the NNE ( 12,11 == dd and 15=d ). Given that there is not strong evidence of 

an interaction factor, we can separately analyze both factors. The ANOVA test shows 
that there is no evidence of differences on using 11, 12 or 15 descriptors for one same 
wrapper method ( d factor near 1), and also that significant differences are found for the 
choice of the method for feature selection (p-value of wrapper factor ≈ 0). Finally, we 
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also apply Bonferroni multiple comparison procedure to determine which method dif-
fers from which. With a global level of error 03.0=α  we found that all methods 
differ from each other (data not shown). 

Besides, in order to evidence the advantages and the differences of the application 
of a FS technique, we analyzed the performance when a random selection is carried 
out (Fig. 2). As expected, the prediction error decreases when more descriptors are 
considered for the NNE. On the other hand, with large d values, error is not so bad 
given that all descriptors are related with the target property. 

Our last analysis of results is about which descriptors were selected by GA, and 
their frequency of selection. Table 3 shows the list of descriptors, ranked according to 
NL – 10=p criteria, with the percentage of the times selected in the 45 runs of the 

GA. From a chemical perspective, it is interesting to note that the first three top-
ranked descriptors are considered as reasonably influential for logP [32]. 

5   Conclusions 

The present work proposes a methodology to detect which descriptors are the most 
influential to the prediction of the molecule hydrophobicity. This detection of relevant 
features allows a decrease in the prediction error and also a better understanding of the 
structure-property relationships. The key contributions of our work are the proposal of a 
non linear function adjusted with least squares in the fitness function and the rigorous 
comparison carried out by the different combinations of the wrapper variants.  

Despite the unknown of the general form of the function that governs the structure-
property relationship, the fourth-order polynomial function works well for the 
wrapper, since it captures the nonlinearity of the model, as well as it maintains an 
acceptable execution time performance. Besides, the GA’s behavior is quite stable 
given the low variance of the prediction errors and the high frequency associated with 
the top-ranked descriptors. 

According to the authors’ knowledge, we did not find previous works with a 
ranked list of relevant features for predicting hydrophobicity. It is worth noting that in 
the FS step, relevant but redundant variables can be selected. However, since PCA is 
applied before the training of the NNE, any redundant feature is thus discarded.  

Our proposal is not restricted to logP, because this method could also be applied to any 
physicochemical property. It would be interesting to experiment this proposal with the 
aggregation of other descriptor families. In this context, we are evaluating other descrip-
tors that express interactions between functional groups in molecules. Moreover, the GA 
could also be developed to directly detect the most adequate number of descriptors in a 
multi-objective way, instead of fixing to a specific number. At this moment, we are also 
planning to extend the comparison with other combinations of AI methods. 
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Abstract. Many algorithms that attempt to predict proteins’ native
structure from sequence need to generate a large set of hypotheses in or-
der to ensure that nearly correct structures are included, leading to the
problem of assessing the quality of alternative 3D conformations. This
problem has been mostly approached by focusing on the final 3D con-
formation, with machine learning techniques playing a leading role. We
argue in this paper that additional information for recognising native-
like structures can be obtained by regarding the final conformation as
the result of a generative process reminiscent of the folding process that
generates structures in nature. We introduce a coarse representation
of protein pseudo-folding based on binary trees and introduce a kernel
function for assessing their similarity. Kernel-based analysis techniques
empirically demonstrate a significant correlation between information
contained into pseudo-folding trees and features of native folds in a large
and non-redundant set of proteins.

1 Introduction

Accurate protein structure prediction is still an open and challenging problem
for a vast subset of the protein universe. Experiments of blind prediction such
as the CASP series [14] demonstrate that the goal is far from being achieved,
especially for those proteins whose sequence does not resemble that of any pro-
tein of known structure (nearly half of the total) - the field known as ab initio.
Difficulties in this case are well known: the choice of a reduced protein repre-
sentation and the corresponding empirical potential function may allow for an
efficient search of the conformational space, but generally the methods are not
sensitive enough to differentiate correct native structures from conformations
that are structurally close to the native state. On the other hand, techniques
such as Comparative Modelling and Fold Recognition can be very successful
at predicting accurate models, but success strongly depends on the quality of
the alignment and the ability to reliably detect homologues. Moreover, models
with severely unrealistic geometry can be produced, especially when using fully
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automated prediction pipelines. As past and recent findings suggest, a practi-
cal way to obtain improvements in protein structure prediction consists of the
integration of alternative techniques and sources of information. For instance,
empirical elements (e.g. secondary structure predictions) are routinely used to
constrain the space of allowed conformations, to correct and refine an alignment
or to improve the sensitivity of remote homologue detection. Model quality as-
sessment programs (MQAPs) are becoming increasingly important for filtering
out wrong predictions [17]. A common theme between computational predic-
tion techniques and most refinement methods is that they more or less directly
depend on knowledge mined from existing protein structures and, to a smaller
extent, on the available theory and principles of protein structure. In spite of
the continuous increase in the amount of available structural data, progresses
in protein structure prediction and model quality assessment have been slow.
This may indicate that the goal of reaching reliable protein structure prediction
requires new, alternative sources of information.

This paper is an attempt to investigate in this direction. We believe that novel
algorithmic ideas may come from looking at the dynamics of protein folding
simulations, instead of focussing solely on their final product. We assume that
any plausible abstraction of the folding process may contain potentially valuable
information about the final fold. Indeed, specific folding patterns are intimately
related with the native structure. If deviations from these pathways occur, often
this will yield incorrect (i.e. non native-like) contacts between residues that are
more stable than the correct ones, resulting in structural deviations from the
native fold [8]. Folding may then be viewed as the dynamical fingerprint of the
resulting structure.

Modelling or understanding protein folding at the conceptual level remains
beyond the scope of the present paper. Theoretical modelling of the dynam-
ics of protein folding faces several difficulties: there is a much smaller body of
experimental data than the PDB, which is typically at low resolution, and car-
rying out computations over long time scales requires either very large amounts
of computer time or the use of highly approximate models [10]. Rather, we
take the more pragmatic perspective of finding manageable representations of
protein pseudo-folding simulations and evaluating their potential impact on pro-
tein structure prediction. In this study, we derive a representation called binary
pseudo-folding tree (BPFT), borrowing ideas from other recent works [11,22]. A
BPFT expresses a hierarchy of timestamped pairing events involving secondary
structure elements (SSEs) and is computed by inspecting the execution trace
of a stochastic optimisation algorithm for structure reconstruction that explores
a protein conformational space driven by spatial proximity restraints. Similar
algorithms are common for example in the NMR structure determination liter-
ature and can be applied to recover protein structure from contact maps [18].
We empirically investigate the existence of a relationship between information
provided by BPFTs and features of native folds for a large and non-redundant
set of proteins. We first introduce a kernel function for measuring similarity be-
tween BPFTs, and compare its ability to detect similarities with respect to the
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TM-score [23]. We then apply the kernel to cluster sets of optimisation traces
associated with alternative reconstructions from contact maps.

2 Binary Pseudo-folding Trees

Although the fine mechanisms that regulate protein folding are in principle ex-
tremely complex, hence nearly impossible to simulate and predict on current
computational hardware, there is evidence that the essential elements of the pro-
cess are much simpler and coarse-grained [2,15]. In nature, the folding process
appears to follow “pathways”, involving hierarchical assemblies and intermedi-
ate states requiring doing and undoing of structures [9]. Rather than static, and
driven by properties identifiable in the final fold, the folding process appears to be
dynamic and driven by interactions whose nature and relative importance change
during the process itself. Multiple pathways, with different transition states also
appear to be possible [21]. The combination of experimental and computational
techniques has revealed other properties of the folding process [7]. For instance,
it appears that in some cases interactions among key elements in the protein
form a core or nucleus that essentially constrains the protein topology to its fold
[19]. Also, there is much evidence that folding is hierarchical; for some proteins
it involves stable intermediates, called foldons, that consist of SSEs [12]. Folding
routes can then be thought of as having an underlying tree structure [11] and
clusters of interacting SSEs may form the tree labels [22].

Our aim is to derive representations of protein folding simulations which have
to be simple yet informative, i.e. tractable by machine learning techniques. We
borrow ideas from the work of other authors [11,22], although with different
premises and details. Neither we assume that the three-dimensional (3D) struc-
ture of a protein is known nor we want to identify real folding pathways for the
protein under study. Rather we argue that regarding a predicted protein con-
formation as the result of a generative process may yield additional information
about this conformation. Structures are generated by an algorithm that explores
the conformational space of the protein. A labelled binary tree is built in an in-
cremental fashion by observing notable intermediate events happening along the
trajectory that is being followed. Since we are not dealing with the real process,
we call the trajectory a pseudo-folding pathway and the resulting tree a binary
pseudo-folding tree.

2.1 Pseudo-folding Pathways

Protein folding simulations are carried out with an algorithm that models protein
structures by exploring a protein’s conformational space starting from an initial
(random) configuration. Usually, this kind of algorithms are guided by some form
of energy encoding structural principles or a pseudo-energy (statistical potential
function) or a combination of the two. In this work, we employ 3Distill [3], a
machine learning based system for the prediction of alpha carbon (Cα) traces.
For a given input sequence, first a set of 1D features is predicted, e.g. secondary
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structure and solvent accessibility. These features are then used as an input
to infer the shape of 2D features like the contact map (binary or multi-class).
In the last stage, protein structures are coarsely described with their backbone
Cα atoms and are predicted by means of a stochastic optimisation algorithm
using as pseudo-energy a function of the geometric constraints inferred from the
underlying set of 1D and 2D predictions. The stochastic optimisation algorithm
explores the configurational space starting from a random conformation, and
refining this by global optimisation of the pseudo-potential function using local
moves and a simulated annealing protocol. For more and complete details on the
form of the cost function and the annealing protocol see [4].

2.2 Notation

Let s1 . . . sm be the sequence of m secondary structure segments of the protein,
where si is the i-th segment in the sequence, either a α-helix or a β-strand. Let
S1 . . . ST be the time ordered sequence of structures observed at discrete time
steps during a simulation. Using this notation, S1 is the initial configuration
and ST is the predicted model structure. We introduce a simple and synthetic
representation of an execution trace based on binary trees.

A Binary Pseudo-Folding Tree (BPFT) is a rooted, unordered, leaf-labelled
binary tree. Suppose we are given the pseudo-folding pathway P = S1 . . . ST . The
corresponding BPFT, called T , expresses a hierarchy of timestamped pairing
events involving sets of α-helices and β-strands1. Each leaf node has a label that
represents the type and position of a SSE (e.g. β2 means the second strand of
the sequence, α1 the first helix and so on). An internal node n ∈ T corresponds
to a pairing event occurred at time 1 < t < T and that involved two SSEs
belonging to different clusters of interacting SSEs. Each of the two clusters is a
child node of n, which in turn represents a larger set of SSEs that eventually
joins another cluster in its parent. The recursive structure of T is inspired to
other binary tree representations of folding pathways [22], but with a number of
differences. In [22], a tree (the predicted folding pathway) is built by recursively
applying a polynomial-time mincut algorithm to a weighted graph, this graph
representing sets of interacting SSEs of the known experimental structure. Here,
we do not assume to know the real 3D structure of a protein, unless we run
the 3Distill reconstruction algorithm with experimental 1D and 2D restraints.
Moreover, folding information is obtained by using a pseudo-folding trajectory,
i.e. simulated dynamical data. For a given time step t of the simulation there is a
node n ∈ T such that the subtree Tn rooted at n corresponds to the assembling
history (from t = 1 . . . t) of a cluster of interacting SSEs in St, where the segments
involved are given by the leaves dominated by n. Let chl[n] (resp. chr[n]) be the
assigned left (resp. right) child of n and let Leaves(·) be a function returning the
set of leaf labels of a subtree of T . The cluster of node n is formed because one
or more segments in Leaves(Tchl[n]) interact with segments in Leaves(Tchr [n]),

1 Random coil fragments are not usually involved in major structure stabilisation
events and are not considered here.
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Fig. 1. BPFT for a protein (PDB code 1WITA) as a result of the application of Alg.1
to the trajectory followed by the reconstruction algorithm described in section 2.1

thus forming a larger cluster of pairwise interacting segments in n. An example
BPFT can be seen in Fig. 1. For convenience, each internal node in the figure
has a numerical index. The internal node 3 represents a cluster of interactions
between the segments α1β2β6 in an intermediate fold St (1 < t < T ). The
cluster has formed because the first helix (α1) started to interact with the β-
sheet made by the second and sixth strands (node 1). Other portions of the tree
can be similarly interpreted. The simulation ends in the predicted fold which is
symbolically represented by the root node; its children indicate that the final
structure was predicted by joining the first strand (β1, left child) with one or
more of the segments (i.e. leaves) dominated by node 7.

2.3 BPFT Construction Algorithm

The pseudo codes of Algorithms 1 and 2 describe the procedure that we apply
to build BPFTs. Parameters of GenerateBPFT are the set of indexed SSEs
of the protein and the ordered sequence of structures found along the whole
simulation trajectory, from t = 1 . . . T . The BPFT T is built bottom-up, from
the leaves to the root node. The structure returned by Algorithm 1 describes the
assembling history of ST as a hierarchical set of SSEs pairing events. Steps 1 to
6 initialise the partial tree with m leaf nodes, each one representing an isolated
SSE not interacting with the others. This corresponds to the initial structural
configuration before the configurational search starts. New nodes are then added
whenever, moving from step t to t + 1 of the trajectory, we find that new SSEs
interactions have been formed. If we add a new node (a new potentially larger
cluster), its children (subclusters) are not necessarily searched among the last
added nodes, because these might not longer represents clusters in St+1 (i.e. at
time t+1, SSEs links in St may have been broken as well). For these reasons, T
maintains a reference to a subset of its nodes, the ‘frontier’, each node pointing
to a cluster of SSE interactions that are present in the fold at the current time
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Algorithm 1. GenerateBPFT({s1 . . . sm}, {S1 . . . ST })
1: T ← ∅
2: for i ← 1 . . . m do
3: v ← CreateNode({si})
4: AddNode(T , v, ∅)
5: T .frontier ← T .frontier ∪ {v}
6: end for
7: CT ← contact map of ST

8: NC ← ∅ {Contacts of ST formed so far}
9: for t ← 1 . . . T do

10: (Ct, CCt) ← (residue, coarse) contact maps of St

11: NCt ← Ct ∩ CT {Contacts of ST in current fold}
12: if NCt \ NC �= ∅ then
13: UpdateTree(T , CCt) {Update tree if there are new native contacts}
14: end if
15: NC ← NCt {Update the set of temporarily formed native contacts}
16: end for

step. Whenever we add a new node, its cluster must describe pairings between
smaller subclusters of the current fold, so that the children are always searched
among the frontier nodes. At time step 0, the structure is assumed to contain
only isolated segments (not forming any interaction), so that the frontier is
made with only leaf nodes (Step 5). In order to build and complete the tree, the
trajectory is monitored searching for events that involve SSEs interactions. This
is accomplished by looking, at each step, at the formation of contacts among
residues in different SSEs, with the constraint that these contacts exist in the
final predicted fold ST . We motivate this choice from the assumption that the
topology of the protein, here represented by the contact map CT of ST in Step 7,
has an influence on the corresponding pathway [1]. In Step 8, NC keeps trace of
the set of contacts of ST formed until a given time step of the simulation. From
Step 9 to 16, the algorithm analyses the structure St of each time step t of the
trajectory: NCt is assigned to the set of contacts of ST formed in St (Step 11)
and if new contacts are formed with respect to those formed in steps 1 . . . t − 1
(step 12), the tree is updated by a call to UpdateTree (Step 13) passing as
parameter the coarse contact map of St

2. Alg. 2 first updates T ’s frontier such
that its nodes correctly represent clusters of SSE interactions of the last visited
structure (steps 1-6). For each frontier node n, segments in Leaves(Tn) form the
vertexes of a graph with edges between interacting SSEs in the last coarse contact
map. The nodes are partitioned into subsets of pairwise interacting SSEs3 (Step
2). If there is only one component, the segments of n represent a portion of the
interactions in the last fold. Hence the node is still in the frontier and will be

2 A coarse contact map represents SSEs interactions and is defined similarly to a
residue contact map: SSEs are used instead of residues, see e.g. [16].

3 Partition(·) is implemented by computing the connected components of the graph
using a simple depth first search.
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Algorithm 2. UpdateTree(T , CC)
1: for n ∈ T .frontier do
2: C ← Partition(Leaves(Tn), CC)
3: if |C| > 1 then
4: T .frontier ← UpdateFrontier(T , n, C)
5: end if
6: end for
7: for (si, sj) ∈ CC do
8: v ← {x ∈ T .frontier | si ∈ leaves(Tx)}
9: w ← {x ∈ T .frontier | sj ∈ leaves(Tx)}

10: if v �≡ w then
11: n ← CreateNode()
12: AddNode(T , n, {v, w}) {Leaves(Tn) = Leaves(Tv)∪ Leaves(Tw)}
13: T .frontier ← T .frontier ∪ {n} \ {v, w}
14: end if
15: end for

searched for the next pairing operations. If this is not the case, the frontier is
updated by a call to UpdateFrontier (not shown) where Tn is visited and n
is replaced by its first descendants that contain the clusters in C. In steps 7-14,
we search for SSE interactions in the current fold (given by CC) that are not
represented by the partial tree built so far. The frontier nodes are searched for
those containing two interacting SSEs (steps 8-9). If the corresponding nodes
are distinct, it means that no node in T encodes the interaction so that a new
node is formed as a parent of the two nodes; the frontier is updated accordingly.

2.4 Mining Frequent Pseudo-folding Patterns

We briefly discuss an efficient procedure used to capture simple descriptions of
the dominant features of pseudo-folding simulations, as represented by BPFTs,
and then compare these descriptions with known experimental folding facts of
a set of proteins considered in previous studies [22]. In this way, we test the
protocol for its ability to mimic the real folding process.

We wish to discover patterns in pseudo-folding pathways represented by
BPFTs. Since the simulator is stochastic, given the same set of restraints, any
two runs could output different BPFTs varying both in shape and size. To
tackle this, we represent a pseudo-folding landscape by the distribution of la-
belled subtrees in pseudo-folding pathways represented as BPFTs. Patterns can
be naturally thought of as being the common subtrees of a set of BPFTs. We
search for these patterns by mining the most frequent subtrees [5]. We have ap-
plied the methodology described to the set of proteins considered in [22]. For
each protein, the reconstruction algorithm ran 200 times with the restraints de-
fined by the native contact map, thus obtaining a sample of possible trajectories,
hence BPFTs, leading to the correct native structure. From these trees we mined
the most frequent subtrees and compared the events they describe with known
facts about the folding of the protein under study. We have found significant
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Table 1. Top 5 most frequent sub BPFTs mined from a sample of reconstruction traces
(chain 1O6XA). Each subtree’s support is the normalised frequency wrt to sample size.

Rank Support SubBPFT

1 0.85 β1β2

2 0.70 (α2(β1β2))
3 0.69 (β3(α2(β1β2)))
4 0.63 (α1(α3(α2(β1β2))))
5 0.14 (β2(β3(β1β2)))

correspondences between our artificial samples and the experimental evidence.
Most of the events described in the literature appear as encoded in one or more
of the most frequent subtrees. For instance, Table 1 shows the top five frequent
subtrees for one of the chains under study (PDB code 1O6XA). It is known that
the folding nucleus of 1O6X is made by packing of the second helix with the
β-sheet formed by β2β1 [22]. Indeed, we found the second most frequent subtree
(α2(β1β2)) as perfectly describing this event, where the most frequent subtree
indicates the formation of the β-sheet β2β1.

3 Kernels on BPFT

We develop kernels (i.e. similarity measures) between BPTFs to investigate the
informative content of the proposed features by learning techniques. For effi-
ciency issues, we turn BPFTs into ordered trees, by imposing a total order on
the leaves according to the relative position of the SSEs in the protein sequence.
We focus only on complete subtrees, that is subtrees that contain all descen-
dants of the subtree root up to the leaves of the original tree. We can now apply
a set kernel on complete subtrees by decomposing each BPFT into the set of
its complete subtrees, and comparing two BPFTs by summing up all pairwise
comparisons between elements of the two sets:

K(T , T ′) =
∑

n∈T

∑

m∈T ′
k(Tn, T ′

m) (1)

To keep things simple, we compare subtrees by the delta function k(Tn, T ′
m) =

δ(Tn, T ′
m). The overall kernel computes the similarity between two BPFTs by

counting the number of complete subtrees (i.e. partial pseudo-folding represen-
tations) they have in common. In the following, we refer to this kernel as cluster-
node kernel. Note that by imposing a canonical ordering to BPFTs and having
no timestamps in the internal nodes, we only care of the hierarchy of interac-
tions between SSE clusters, ignoring differences due to the relative timestamp
of events involving non-overlapping clusters. Such invariance aims at modelling
cases in which separate portions of a chain fold independently, a situation which
is known to take place in nature. Comparison of complete subtrees of size one
(i.e. leaves) provides an informative contribution whenever two simulations rely
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on different SSE predictions. Note that the cluster-node kernel does not retain
information of temporary interactions which form during the process but are
not preserved in the final structure. Moreover, the kernel compares SSE clus-
ters, but it does not consider the specific SSE pairs responsible for the formation
of a cluster, apart from those formed by exactly two SSEs.

By this, we also consider a variant where the description of internal BFPT
nodes is enriched with three different sets of SSE pairs: those which began inter-
acting when the cluster formed; those which preserved their interaction; those
whose interaction was lost when the cluster formed. A new subtree kernel ac-
counting for such information is defined as follows:

k(Tn, T ′
m) = δ(Tn, T ′

m) +
∑

i∈F (n)
j∈F (m)

δ(i, j) +
∑

i∈P (n)
j∈P (m)

δ(i, j) +
∑

i∈L(n)
j∈L(m)

δ(i, j) (2)

where F (n), P (n), L(n) represent the sets of pairwise SSE interactions which are
respectively formed, preserved and lost in the cluster corresponding to node n.
This kernel is dubbed pairwise-interaction kernel in the following. Note that the
kernels described in this section are conceived for measuring similarities between
BPFTs originating from simulations on the same protein sequence, even if with
possibly different restraints. The extension to inter-protein similarities is subject
of ongoing investigation.

4 Experiments and Discussion

Given a predicted structure and its pseudo-folding pathway, we first test whether
the corresponding BFPT retains some information about the distance between
the predicted and native (unknown) fold. We thus generated a data set of pseudo-
folding simulations for 250 non-redundant PDB chains (maximum 25% mutual
sequence similarity for any two chains) considered in [4] by running 3Distill (see
Sec. 2.1) using restraints obtained from four increasingly noisy contact maps:
the native one, contact maps obtained from PDB templates with a max se-
quence identity threshold at 95% and 50% respectively, and an ab initio pre-
dicted map. For each of these maps, 200 simulations were run, resulting in 800
structures for each protein. The TM-score function [23] was used to measure
the distance between the predicted and native fold. BPFTs were generated from
the pseudo-folding processes using Alg. 1, and the two kernels defined in Sec-
tion 3 were employed to measure pairwise BPFT similarities. The kernels were
normalised as suggested in [6], i.e. the input vectors are normalised in feature
space and centered by shifting the origin to their center of gravity. Figures 2(a)
and 2(b) show the kernel matrices obtained averaging over structures with simi-
lar quality, for the cluster-node and pairwise-interaction kernel respectively. Each
([i, i + 1], [j, j + 1]) bin in the maps represents the average kernel value between
two structures whose TM-score to the native is in the [i, i + 1] and [j, j + 1]
interval respectively. The kernel values increase with the TM-score to the native
in both cases. Interestingly, the kernels discriminate pseudo-folding simulations
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Fig. 2. Kernel matrix obtained averaging over structures with similar quality measured
as TM-score with the native: (a) cluster-node kernel (b) pairwise-interaction kernel

when TM-score ∈ [0.3, 0.4], a range of thresholds that separates poorly predicted
and native-like folds [23]. This depends on the distribution of the scores, which
presents a separation of the instances on the previous interval (data not shown).
The kernels are clearly modelling some aspects of the given distribution.

In a binary classification setting, the relatedness of a certain kernel function to
the target can be measured by the Kernel Target Alignment (KTA) [6], defined
as the normalised Frobenius product between the kernel matrix and the matrix
representing pairwise target products. In our setting, a binary target can be
obtained using a threshold on the TM-score with respect to the native structure
(we chose 0.4, see above). Figure 3 (left) reports an histogram of KTA values
for our two kernels. About half of the proteins show an alignment greater than
0.15. As expected, the more informed pairwise-interaction kernel has an overall
better alignment.

As a final test for the discriminative power of our two kernels, we clustered
protein structures and their simulations using spectral techniques [20]. Given a
matrix S of pairwise similarities between examples, they compute the principal
eigenvectors of a Laplacian matrix derived from S, and apply a simple clustering
algorithm, like k-means or recursive bi-partitioning, on the rows of the eigen-
vector matrix. As suggested in [20], we employed the multicut algorithm [13],
combined with a k-means with 5 runs initialized with orthogonal centers and 20
runs initialized with random centers. Since we are mainly focussing on separa-
tion between decoys and native-like structures, the number of searched clusters
was set to two. We then measured the quality of clustering using the correlation
between (1) a binary value that indicates the cluster assigned to the BPFT (2)
the TM-score to the native of the corresponding predicted structure. Figure 3
(right) shows histograms of the correlations obtained by clustering with the two
kernels. Albeit simple, the cluster-node kernel shows a significant correlation for
a large fraction of tested proteins. For 80% of the proteins, the correlation is
greater than 0.15. The average correlation per protein is 0.4, and goes up to 0.47
using the more informed pairwise-interaction kernel. With this kernel we see a
consistent increase of the number of cases where the correlation is more than
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Fig. 3. Histogram of: (left) KTA values, binary targets obtained with TM-Score thresh-
old with the native set to 0.4; (right) correlation between cluster assignment and TM-
score with native structure. Results are for cluster-node and pairwise interaction kernel.

0.5. Noticeably, the ability of clustering the predicted models increases by using
additional dynamical information, i.e. pairwise intermediate SSE interactions.
Finally, the correlation between clustering quality and KTA value is about 0.6
for both cluster-node and pairwise-interaction kernel, thus showing a certain de-
gree of match between the two analyses. An in-depth look at the results showed
that high correlation is obtained when structures generated using the same re-
straints are assigned (with possibly few exceptions) to the same cluster. For
the simple kernel, 42 proteins have correlation higher than 0.7. In 23 of these
cases, structures generated from the native contact map are separated from all
other structures, in 17 cases structures from native and 95% identity template
maps are clustered together. In 1 case ab initio generated structures are clus-
tered together with those from native maps, and all template-based structures
are assigned to the other cluster. The last case (chain A of PDB entry 1OJH),
is an interesting exception as indeed ab initio generated structures had a better
TM-score with the native than all template-based ones.

5 Conclusions and Future Work

This study was motivated by the idea that reasonable computational abstrac-
tions of the protein folding process may contain useful information about the
final protein structures. We focused on a specific pseudo-folding algorithm based
on stochastic reconstruction from contact maps and empirically found that the
information extracted from the pseudo-folding process does indeed allow us to
define a discriminant measure of similarity (expressed by a kernel function) be-
tween the corresponding final protein structures. In particular, we found that (1)
the folding abstraction used here agrees with availalble experimental evidence
about the folding of some proteins, and that (2) our kernels are able to separate
good and poor reconstructions of the same protein.

These findings pave the way towards the use of pseudo-folding features in the
analysis and discrimination of protein structures. Attaining such a goal from a
machine learning perspective requires a generalisation of the current kernel to
compare pseudo-folding trees associated with different proteins.
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