
Chapter 11
Onset of Flow Instability in a Heated Capillary

The capillary flow with distinct evaporative meniscus is described in the frame of the
quasi-dimensional model. The effect of heat flux and capillary pressure oscillations
on the stability of laminar flow at small and moderate Peclet number is estimated. It
is shown that the stable stationary flow with fixed meniscus position occurs at low
wall heat fluxes (Pe � 1), whereas at high wall heat fluxes Pe ≥ 1, the exponential
increase of small disturbances takes place. The latter leads to the transition from
stable stationary to an unstable regime of flow with oscillating meniscus.

11.1 Introduction

Consider the stability of capillary flow when a liquid is heated and evaporated at
a meniscus. This problem is important in the context of cooling systems of elec-
tronic devices. A growing number of designs in MEMS with high power density re-
quire a thorough insight into the mechanism of complex processes in heated micro-
channels. The latter includes a number of problems related to hydrodynamics of
laminar flow developed under conditions of the inertia, friction, gravity and cap-
illary force interactions, heat transfer, as well as phase change. The studies in the
last decade concern a wide range of problems connected with stable single-phase
flows (Tuckerman and Pease 1984; Tuckerman 1981; Wiesberg et al. 1992; Wang
and Peng 1994; Wu and Little 1984; Bailey et al. 1995; Peng et al. 1994; Peng and
Peterson 1995, 1996; Adams et al. 1998; Incropera 1999), boiling nucleation and
bubble growth in narrow pipes (Peng et al. 1998; Yuan et al. 1999; Ory et al. 2000;
Peng et al. 2001), pressure drop and heat transfer in two-phase flows (Morijama
and Inoue 1992; Peng and Wang 1993; Bowers and Mudawar 1994; Sobhan and
Garimella 2001). At the same time there is a paucity of theoretical studies dealing
with capillary flow with a phase change at an evaporative meniscus, in spite of the
fact that such flows are interesting in connection with their possible implementation
in cooling systems of electronic devices.
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438 11 Onset of Flow Instability in a Heated Capillary

The stationary regimes of capillary flows with a distinct meniscus separating the
regions of liquid and vapor flows have been considered by Khrustalev and Faghri
(1996) and Peles et al. (1998, 2000, 2001). Recently Yarin et al. (2002) investigated
in detail the features of two-phase laminar flow in a heated micro-channel and re-
vealed the effect of the inertia, pressure, gravity and friction forces on major flow
characteristics. It was shown that, in the general case, the system of equations that
describes the capillary flow has three solutions corresponding to stationary regimes
of flow. The analysis of stationary states performed in the quasi-stationary approxi-
mation (an approach similar to the Semenov’s diagram method) showed that two of
these states (“upper” and “lower” corresponding to high and low velocities, respect-
ively) are stable whereas the intermediate one is unstable. The stationary or quasi-
stationary approximations should be considered as limiting for the solutions of the
unsteady problems for infinite time intervals. However, approaches ignoring the dy-
namics of the transient processes leading to steady states should be supplemented
with stability consideration. Indeed, only stable steady states can become attractors
of the transient processes. This makes stability studies of the limiting steady states
extremely important.

The present chapter deals with the study of the stability of a flow in a heated
capillary, with liquid evaporating at a meniscus. The behavior of the vapor–liquid
system, which undergoes small perturbations, is analyzed by linear approximation,
in the frame of the quasi-one-dimensional model of capillary flow with a distinct
interface. The effect of the physical properties of both phases, the wall heat flux and
the capillary sizes on the flow stability is studied. The velocity, pressure and tem-
perature oscillations in a capillary tube with constant wall heat flux or constant wall
temperature are determined. A scenario of a possible process at small and moderate
Peclet numbers corresponding to the flow in capillaries is considered. The bound-
aries of stability, subdividing the domains of stable and unstable flows, are outlined,
and the values of geometrical and operating parameters corresponding to the tran-
sition from stable to unstable flow are estimated. The study consists of the problem
formulation, analysis of the influence of the physical properties of the liquid and
its vapor, and wall heat flux, on velocity, pressure and temperature oscillations in
capillary flows, as well as the stability of the flow at small and large Peclet numbers.

Chapter 11 consists of following: Sect. 11.2 deals with the pattern of capillary
flow in a heated micro-channel with phase change at the meniscus. The perturbed
equations and conditions on the interface are presented in Sect. 11.3. Section 11.4
contains the results of the investigation on the stability of capillary flow at a very
small Peclet number. The effect of capillary pressure and heat flux oscillations on
the stability of the flow is considered in Sect. 11.5. Section 11.6 deals with the study
of capillary flow at a moderate Peclet number.
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11.2 Capillary Flow Pattern

We deal here with the stability of flow in a heated capillary tube when liquid is evap-
orating on the meniscus. The capillary, as shown in Fig. 11.1, is a straight vertical
pipe with diameter d and length �. The wall heat flux is uniform: qw = const. The
thermal conditions on the capillary inlet and outlet are:

1. T L.in = const., the average liquid temperature T L at x = 0

2.
(

dT G
dx

)
x=�

= 0, the average vapor temperature gradient at x = �

Hereafter, the subscripts G and L denote vapor and liquid, respectively, and in and
0 denote inlet and outlet of the capillary tube, respectively.

These conditions correspond to a certain design of cooling system, namely,
a micro-channel with cooling inlet and adiabatic outlet (Yarin et al. 2002).

The wall heat flux is the cause for the liquid evaporation, and perturbation of
equilibrium between the gravity and capillary forces. It leads to the offset of both
phases (heated liquid and its vapor) and interface displacement towards the inlet. In
this case the stationary state of the system corresponds to an equilibrium between
gravity, viscous (liquid and vapor) and capillary forces. Under these conditions the
stationary height of the liquid level is less than that in an adiabatic case

x f < xf.ad =
2σ

rρLg
cosθ (11.1)

where xf and xf,ad are the height of the liquid level in a heated and adiabatic capillary
tube, respectively, σ is the surface tension coefficient, r is the radius, ρL is the liquid
density, g is the acceleration due to gravity, and θ is the static contact angle as
measured from the liquid side of the contact line.

Fig. 11.1 Schematics of
a heated micro-channel (ar-
rows show flow and heat flux
directions). Reprinted from
Hetsroni et al. (2004) with
permission
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Unlike at adiabatic conditions, the height of the liquid level in a heated capillary
tube depends not only on σ , r, ρL and θ , but also on the viscosities and thermal
conductivities of the two phases, the wall heat flux and the heat loss at the inlet. The
latter affects the rate of liquid evaporation and hydraulic resistance of the capillary
tube. The process becomes much more complicated when the flow undergoes small
perturbations triggering unsteady flow of both phases. The rising velocity, pressure
and temperature fluctuations are the cause for oscillations of the position of the
meniscus, its shape and, accordingly, the fluctuations of the capillary pressure. Un-
der constant wall temperature, the velocity and temperature fluctuations promote
oscillations of the wall heat flux.

11.3 Equation Transformation

11.3.1 Perturbed Equations

In this section we present the system of quasi-one-dimensional equations, describing
the unsteady flow in the heated capillary tube. They are valid for flows with weakly
curved meniscus when the ratio of its depth to curvature radius is sufficiently small.
The detailed description of a quasi-one-dimensional model of capillary flow with
distinct meniscus, as well as the estimation conditions of its application for calcula-
tion of thermohydrodynamic characteristics of two-phase flow in a heated capillary
are presented in the works by Peles et al. (2000, 2001) and Yarin et al. (2002). In this
model the set of equations including the mass, momentum and energy balances is:

∂ρi

∂ t
+
∂ρiui

∂x
= 0 (11.2)

ρi
∂ui

∂ t
+ρiui

∂ui

∂x
= −∂Pi

∂x
−ρig− ∂Fi

∂x
(11.3)

ρi
∂hi

∂ t
+ρiui

∂hi

∂x
=

∂
∂x

(
ki
∂Ti

∂x

)
+ q (11.4)

where ρ , u, P, h and T are the density, velocity, pressure, enthalpy and temperature,
respectively, k is the thermal conductivity, q is the specific rate of volumetric heat
absorption, F is the specific friction force, and the subscripts i = G,L correspond to
vapor and liquid, respectively.

The conditions on the interface express the continuity of the mass and heat fluxes
and the equilibrium of all acting forces (Landau and Lifshitz 1959). In the frame of
reference associated with the interface they are:

ρGṼG = ρLṼL (11.5)

PG +ρGṼ 2
G = PL +ρLṼ 2

L + fσ (11.6)

ρGṼGhG − kG
∂T1

∂x
= ρLṼLhL − kL

∂TL

∂x
(11.7)



11.3 Equation Transformation 441

where Vf = dxf/dt is the velocity of the interface, Ṽi = ui−Vf is the velocity relative
to the interface, fσ = 2σ/R is the capillary pressure, and R = r/cosθ is the radius
of the interfacial curvature.

In the case when capillary flow undergoes small perturbations, the governing
parameters Jj can be presented as a sum of their basic values, corresponding to the
stationary flow J j, plus small perturbations J′j

J j = J j + J′j (11.8)

where Jj = ρ , u, P, T , h, xf, fσ and q. The line over any parameters refers to their
average (in time) values. ∂J j/∂ t = 0, J

′
j = 0.

In capillary flow with a distinct meniscus separating the regions of pure liquid
and pure vapor flows, it is possible to neglect the change in densities of the phases
and assume ρG and ρL are constant. For flow of incompressible fluid (ρi = const.,
ρ ′

i = 0, ∂ui/∂x = 0) the substitution of (11.8) in Eqs. (11.1–11.3) leads, in a linear
approximation, to the following system of equations

ρ i
∂ (ui + u′i)

∂x
= 0 (11.9)

ρ i
∂u′i
∂ t

= −∂ (Pi + P′
i )

∂x
−ρ ig−

∂ (Fi + F ′
i )

∂x
(11.10)

ρ i
∂h′i
∂ t

+ρ iui
∂hi

∂x
+ρ iu

′
i
∂hi

∂x
+ρ iui

∂h′i
∂x

=
∂
∂x

(
ki
∂ (T i + T ′

i )
∂x

)
+ q+ q′ . (11.11)

The equations for stationary flow

dui

dx
= 0 (11.12)

dPi

dx
+ρ ig +

dFi

dx
= 0 (11.13)

ρ iuicpi
dT i

dx
=

d
dx

(
ki

dT i

dx

)
+ q . (11.14)

We obtain from (11.9–11.11) the equations for small perturbations of velocity, pres-
sure, temperature and enthalpy, as well as the specific volumetric rate of heat ab-
sorption. Assuming that hi = cpi

Ti we arrive at

∂u′i
∂x

= 0 (11.15)

∂u′i
∂ t

= − 1
ρ i

(
∂P′

i

∂x
+
∂F ′

i

∂x

)
(11.16)

∂T ′
i

∂ t
+ u′i

∂T i

∂x
+ ui

∂T ′
i

∂x
=

∂
∂x

(
αi
∂T ′

i

∂x

)
+ q̃′i (11.17)
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where αi = ki/(ρ icpi
)is the thermal diffusivity, q̃′i = q′/(ρ icpi

). Substitution of
(11.8) in conditions (11.5–11.7) leads (in linear approximations) to the following
system of equations:

ρG

(
uG + u′G − dx′f

dt

)
= ρL

(
uL + u′L−

dx′f
dt

)
(11.18)

PG + P′
G +ρG(u2

G + 2uGu′G) = PL + P′
L +ρL(u2

L + 2uLu′L)+ fσ + f ′σ (11.19)

ρG

(
uGhG + u′GhG + uGh′G −hG

dx′f
dt

)
− kG

∂T G

∂x
− kG

∂T ′
G

∂x

= ρL

(
uLhL + u′LhL + uLh′L −hL

dx′f
dt

)
− kL

∂T L

∂x
− kL

∂T ′
L

∂x
.

(11.20)

Here xf = xf + x′f, xf is the liquid height in the capillary.
For stationary flow

ρGuG = ρLuL (11.21)

PG +ρGu2
G = PL +ρLu2

L + fσ (11.22)

ρGuGhG − kG
∂T G

∂x
= ρLuLhL − kL

∂T L

∂x
(11.23)

and we obtain from (11.18–11.20) equations for the oscillations at the meniscus
surface

(ρGu′G −ρLu′L) = (ρG −ρL)
dx′f
dt

(11.24)

(P′
G −P′

L) = 2ρGuL(u′L −u′G)+ f ′σ (11.25)

ρLuL(h′G −h′L)+ (ρGhGu′G −ρLhLu′L)−

−(ρGhG −ρLhL)
dx′f
dt

= kG
∂T ′

G

∂ t
− kL

∂T ′
L

∂ t

(11.26)

where h = cpT , hx=xf = cpTs, and Ts is the temperature of the interface that is as-
sumed to be constant and equal to the saturation temperature. The small perturba-
tions of pressure practically does not influence Ts because of the weak dependence
of Ts(Ps) (Reid et al. 1987).

The solution of Eqs. (11.15–11.17), subject to the conditions (11.24–11.26), de-
termines the displacement of the interface in time, as well as the evolution of the
velocity, pressure and temperature oscillations.

11.3.2 Perturbed Energy Equation for Small Peclet Number

The dimensionless form of Eq. (11.17) is

St
∂ T̃ ′

i

∂ t̃
+ ũ′i

∂ T̃i

∂ x̃
+ ũ

∂ T̃ ′
i

∂ x̃
= Pe∗

−1

i
∂ 2T̃ ′

i

∂ x̃2 +ϑ ′
i (11.27)
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where St = �∗ψ∗/u∗ and Pe∗i = u∗�∗/αi are the Strouhal and Peclet numbers, re-
spectively, and ϑ ′

i = q′�∗/(ρiu∗cpi
T∗), ũi = ui/u∗, ũ′i = u′i/u∗, T̃i = T i/T ∗ , T̃ ′

i =
T ′

i /T ∗ , x̃ = x/�∗ and t̃ = tψ∗ (ψ∗ = t−1∗ ), �∗, u∗, T ∗ and t∗ are characteristic scales
of the length, velocity, temperature and time.

The first terms on the left and right-hand sides of Eq. (11.27) are on the order of
St and Pe−1, respectively, whereas the second and third terms on left-hand side of
Eq. (11.27) have the order of one. When Pe � 1 and St 
 1 it is possible to omit
the terms accounting for convective heat transfer due to oscillations and present Eq.
(11.17) as follows:

∂T ′
i

∂ t
= αi

∂ 2T ′
i

∂x2 + q̃′i . (11.28)

11.3.3 Perturbed Energy Equation for Moderate Peclet Number

When the temperature Ts of the interface is constant, and wall heat flux is also con-
stant, temperature oscillations are the result of the meniscus displacement along
micro-channel axis. They are expressed as

T ′
i = x′

dTi

dx
= x′

dT i

dx
+ x′

dT ′
i

dx
. (11.29)

Neglecting the term containing product of oscillations, we obtain

T ′
i = x′

dT i

dx
,

dT ′
i

dx
= x′

d2T i

dx2 . (11.30)

The oscillations of the meniscus position x′ can be estimated as follows:

x′ =
u′∗
ψ∗

(11.31)

where u′∗ is the characteristic oscillations velocity (order of liquid oscillation vel-
ocity).

Convective heat transfer that is due to oscillations determines the second and the
third terms on the left-hand side of Eq. (11.17). Using Eqs. (11.30) and (11.31), we
estimate the values of these terms. For this, we consider the ratio of the third term
to the second one

∣∣∣∣∣∣∣∣

ui
∂T ′

i

∂x

u′i
∂Ti

∂x

∣∣∣∣∣∣∣∣
=

1
St∗

∣∣∣∣∣∣∣∣∣

(
∂ 2T̃i

∂ x̃2
i

)

(
∂ T̃i

∂ x̃

)

∣∣∣∣∣∣∣∣∣
. (11.32)

The temperature distribution in a heated micro-channel is described by the following
correlation (Peles et al. 2001).

T̃ = C(i)
1 +ϑi(x̃∗ + Pe∗

−1

i )+C(i)
2 exp(Pei ∗ x̃∗) (11.33)
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where the constants C(i)
1 and C(i)

2 are expressed as

C(L)
1 = (1−C(L)

2 )−ϑL/Pe∗L (11.34)

C(L)
2 = [(T̃s −1)−ϑLx̃∗f ]/[exp(Pe∗Lx̃∗f )−1] (11.35)

C(G)
1 = T̃s −ϑG(x̃∗f + Pe∗−1

G )−C(L)
2 exp(Pe∗Lx̃∗f ) (11.36)

C(G)
2 = −ϑG/[PeG exp(Pe∗G)] . (11.37)

Here characteristic length �∗ = � is the length of the capillary tube, T∗ = TL.in is the
inlet liquid temperature.

The temperature distribution in a heated micro-channel is not uniform (Fig. 11.2,
Peles et al. 2000). The liquid entering the channel absorbs heat from the walls and
its temperature increases. As the liquid flows toward the evaporating front it reaches
a maximum temperature and then the temperature begins to decrease up to the sat-
urated temperature. Within the vapor domain, the temperature increases monotoni-
cally from saturation temperature Ts up to outlet temperature TG.0.

The module of ratio of the second-order derivative ∂ 2T̃i/∂ x̃2 to the first-order
derivative ∂ T̃i/∂ x̃ is

∣∣∣∣∣∣∣∣

(
∂ 2T̃i

∂ x̃∗2

)

(
∂ T̃i

∂ x̃∗

)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
C(i)

2 Pe∗2
i exp(Pe∗i x̃∗)

1−C(i)
2 Pe∗i exp(Pe∗i x̃∗)

∣∣∣∣∣ . (11.38)

The value of the ratio χ = (∂ 2T̃i/∂ x̃∗2)/(∂ T̃i/∂ x̃∗) depends on the Peclet number, as
well as on meniscus position in stable state x̃f. The dependence of the meniscus pos-
ition x̃∗f on Pe∗ is shown in Fig. 11.3. It is seen that in the range of moderate Peclet
number x̃∗f � 1. The values of the right-hand side of Eq. (11.32) determines by ratio
χ/St. At moderate values of characteristic frequency w∗ ∼ 10−2 m the Strouchal

number has order of 0.1–1. When the term C(i)
2 Pe∗2

i exp(Pe∗i x̃∗) in Eq. (11.38) is
more than unit, the parameter χ has order of Pe∗i i.e. larger than unit. In this case it
is possible to omit the second term on the left-hand side of Eq. (11.17) and it takes

Fig. 11.2 The scheme of tem-
perature distribution along
a heated micro-channel.
Reprinted from Peles et al.
(2000) with permission



11.4 Flow with Small Peclet Numbers 445

Fig. 11.3 The dependences
of uL(Pe∗L)and x̃∗f (Pe∗L).
Reprinted from Hetsroni et
al. (2004) with permission

the following form:

∂T ′
i

∂ t
+ ui

∂T ′
i

∂x
=

∂
∂x

(
αi
∂T ′

i

∂x

)
. (11.39)

11.4 Flow with Small Peclet Numbers

11.4.1 The Velocity, Pressure and Temperature Oscillations

The estimations enable us to disregard the minor convective effects, and to consider
the problem in the framework of a pure conductive approximation. Neglecting, in

Eq. (11.17), the term u′i
∂T i
∂x and ui

∂T ′
i

∂x we reduce the problem to

∂T ′
i

∂ t
= αi

∂ 2T ′
i

∂x2 + q̃′i . (11.40)

First we restricted ourselves to considering a particular case of flow in a capillary
tube with qw = const. (q′ = 0). We also neglected the change of the capillary pres-
sure through the changes of the contact angle, due to the motion of the meniscus.
Accordingly we assume that f ′σ = 0 in condition (11.25).

To determine the velocity, pressure and temperature oscillations we use Eqs.
(11.15), (11.16) and (11.40). From Eq. (11.15) it follows that

u′ = u′(t) . (11.41)

Thus, the velocity oscillations, in the flow of an incompressible fluid, depend only
on time, i.e., the liquid and vapor columns move in the capillary tube, on the whole,
similar to a solid body. Bearing this in mind, we present the solution of Eq. (11.15)
as follows:

u′i = Ai exp(Ω t) (11.42)
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where A is the amplitude of the velocity oscillations, Ω = ξ + i|ψ | is the complex
frequency, and ξ and ψ are the growth rate and frequency of the velocity oscilla-
tions.

The specific friction force Fi in laminar flow is expressed as (Yarin et al. 2002)

Fi =
32
d2 μiuix (11.43)

where d is the diameter of the tube, and μ is the viscosity.
In accordance with Eq. (11.43), the oscillations of Fi are

F ′
i =

32
d2 μiu

′
ix . (11.44)

Taking into account Eqs. (11.42) and (11.44) we can present the pressure oscil-
lations as follows:

P′
i = Aiρ i fi(x)exp(Ω t)+ ai (11.45)

where fi(x) is some function of x, and the parameter ai = ai(t).
From a dimensional consideration, it is necessary to assume that the derivative

of the function f (x) is constant: f ′i (x) = ki. Substitution of expressions (11.44) and
(11.45) in Eq. (11.16) gives

ki = −
(

32
d2 νi +Ω

)
(11.46)

where ν is the kinematic viscosity.
The parameter ai is determined by using the conditions

x = 0 , P′
L = P′

L.in (11.47)

x = � , P′
G = P′

G.0 . (11.48)

As a result we obtain

a1 = P′
G.0 −ρGAGkG�exp(Ω t) (11.49)

a2 = P′
2.in . (11.50)

The oscillations of the phase temperatures can be presented in the following form

T ′
i = Ai

(
hLG

cpi
uL

)
ϕi(x)exp(Ω t) (11.51)

where hLG is the latent heat of the liquid vaporization, uL = uL.in is the liquid vel-
ocity in the stationary flow regime, and ϕ(x) is some function of x that satisfies the
condition ϕ ′′(x)/ϕ(x) = const.

Assuming that ϕi(x) = exp(nix), we obtain

T ′
i = Ai(

hLG

cpi
uL

)exp(nix∗+Ω t) (11.52)
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where x∗ = x− xf, n = ikx, kx is the longitudinal component of the wave vector k
(kx �= 0, ky = kz = 0).

The substitution of expression (11.52) into Eq. (11.40) gives

ni = ±
(
Ω
αi

)1/2

(11.53)

Assuming that the temperature oscillations that are due to the displacement of the
interface decrease far from xf, the sign in front of Eq. (11.53) is positive for phase L
and negative for phase G.

The oscillations of the meniscus position x′f depend only on the time and are
expressed as follows:

x′f = C exp(Ω t) (11.54)

where C is the amplitude.

11.4.2 Dispersion Equation

Using expressions (11.42), (11.45), (11.51) and (11.54) for the velocity, pressure,
temperature and meniscus position oscillations, as well as Eqs. (11.46) and (11.53)
for ki and ni, we arrive at the system of algebraic equations for unknown amplitudes
AG, AL and C.

AGα̃11 + ALα̃1.2 +Cα̃13 = 0

AGα̃21 + ALα̃22 = 0 (11.55)

AGα̃31 + ALα̃32 +Cα̃33 = 0

where

α̃11 = ρG , α̃12 = −ρL , α̃13 = −Ω(ρG −ρL)
α̃21 = (kGρGxf + 2ρLuL) , α̃22 = −(kLρLxf + 2ρLuL)

α̃31 =
(

uL +ρG.L
hG

hLG
−αGρG.LnG

)
, α̃32 =

(
uL +

hL

hLG
−αLnL

)

α̃33 =ΩuL

(
ρG.L

hG

hLG
− hL

hLG

)
, ρG.L = ρG/ρL .

Note that the system (11.55) is valid for small deviations of the interface from xf

when nix′f � 1 and exp(nix′f) � 1. Estimations show that the term Cα̃33 in the ther-
mal balance equation on the interface is small in comparison with the term AGα̃31

and ALα̃32. Moreover, since ρG.L(hG/hLG) � 1 and (hL/hLG) � 1, it is possible to
neglect the second term in the expressions for coefficients α̃31 and α̃32 and assume
that α̃31 = (uL −αGρG.LnG), α̃32 = (uL −αLnL). Then the non-trivial solution of
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the relations in Eq. (11.55) correspond to the following condition:
∣∣∣∣∣∣
α̃11 α̃12 α̃13

α̃21 α̃22 0
α̃31 α̃32 0

∣∣∣∣∣∣
= 0 . (11.56)

From (11.93) it follows that

α̃13(α̃21α̃32 − α̃22α̃31) = 0 . (11.57)

The case α̃13 = 0 corresponds to the condition Ω = 0 (stationary regime), and we
obtain the following dispersion equation for Ω �= 0

α̃21α̃32 − α̃22α̃31 = 0 . (11.58)

The specific form of the dependence of the complex frequency Ω on parameters
of the problem found by Eq. (11.58), is presented as follows:

a∗Ω 3/2 + b∗Ω + c∗Ω 1/2 + d∗ = 0 (11.59)

where

a∗ =
(

1 +α1/2
G.L

)
α−1/2

L ,

b∗ = − uL

αL
(1−ρL.G) ,

c∗ = −
{
−32

d2 νG

(
1−νL.Gα

1/2
G.L

)
+ 2ρL.G

uL

xf

(
1−ρG.Lα

1/2
L.G

)} 1√
αL

,

d∗ = −32
d2 νG

uL

αL
(1−νL.GρL.G)

and the ratio of characteristic parameters, corresponding to liquid and gaseous
phases, is expressed as α j.i = α j/αi, ρ j.i = ρ j/ρi, ν j.i = ν j/νi.

Introducing the new variable

y =Ω 1/2 +
b∗

3a∗
(11.60)

we reduce Eq. (11.59) to the form

y3 + 3P∗y + 2q∗ = 0 (11.61)

where

2q∗ =
2b3∗

27a3∗
− b∗c∗

3a2∗
+

d∗
a∗

, (11.62)

3P∗ =
3a∗c∗ −b2∗

3a2∗
. (11.63)
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11.4.3 Solution of the Dispersion Equation

Equation (11.61) has three roots: three real, or one real and two complex, depending
on the value of determinant D = q2∗ +P3∗ (Korn and Korn 1968). Since our aim is to
determine the complex frequency Ω , we will consider the complex solution of Eq.
(11.61) only.

In the case when q2∗ + P3∗ > 0 and P∗ < 0, the complex roots of Eq. (11.61) are

Ω 1/2
I =

(
r∗ Cosh

ϕ
3

+ i
√

3r∗ Sinh
ϕ
3

)
− b∗

3a∗
(11.64)

Ω 1/2
II =

(
r∗ Cosh

ϕ
3
− i

√
3r∗ Sinh

ϕ
3

)
− b∗

3a∗
(11.65)

where Coshϕ = q∗/r3∗ , r∗ = ±√ |P∗ |, and the sign of r∗ is the same as sign of q∗.
In the case when P∗ > 0 the complex roots of Eq. (11.61) are

Ω 1/2
I =

(
r∗ Sinh

ϕ
3

+ i
√

3r∗ Cosh
ϕ
3

)
− b∗

3a∗
(11.66)

Ω 1/2
II =

(
r∗ Sinh

ϕ
3
− i

√
3r∗ Cosh

ϕ
3

)
− b∗

3a∗
(11.67)

where Sinhϕ = q∗/r3∗ .
Since Ω = ξ + i|ψ | and

Ω 1/2 =

{√√
ξ 2 + |ψ |2 + ξ + i

√√
ξ 2 + |ψ |2 − ξ

}
(11.68)

we split Eqs. (11.64), (11.65), (11.66), and (11.67) into the real and imaginary parts.
As a result we obtain expressions for the growth rate and frequency of oscillations

ξ =
(

r∗ Cosh
ϕ
3
− b∗

3a∗

)2

−3r2
∗ Sinh 2ϕ

3
(11.69)

|ϕ | =
∣∣∣∣4
(

r∗ Cosh
ϕ
3
− b∗

3a∗

)√
3r∗ Sinh

ϕ
3

∣∣∣∣ (11.70)

for the case q2∗ + P3∗ > 0, P∗ < 0, and

ξ =
(

r∗ Sinh
ϕ
3
− b∗

3a∗

)2

−3r2
∗ Cosh 2ϕ

3
(11.71)

|ϕ | =
∣∣∣∣4
(

r∗ Sinh
ϕ
3
− b∗

3a∗

)√
3r∗ Cosh

ϕ
3

∣∣∣∣ (11.72)

for the case P∗ > 0.
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11.4.4 Analysis of the Solution

First we estimate the values of the coefficients a∗, b∗, c∗ and d∗ for realistic physical
values of the characteristic parameters (Table 11.1).

Taking into account the data in Table 11.1 it is possible to simplify significantly
the expressions for the coefficients a∗ , b∗ , c∗ and d∗.

a∗ � α1/2
G α−1

L (11.73)

b∗ � ρL.G
uL

αL
(11.74)

c∗ � −
{
−32

d2 νG + 2ρL.GαL.G
uL

xf

}
1√
αL

(11.75)

d∗ � 32
d2 νL

uL

αL
ρL.G . (11.76)

For the study of flow stability in a heated capillary tube it is expedient to present the
parameters P∗ and q∗ as a function of the Peclet number defined as Pe = (uLd)/αL.
We notice that the Peclet number in capillary flow, which results from liquid evapor-
ation, is an unknown parameter, and is determined by solving the stationary problem
(Yarin et al. 2002). Employing the Peclet number as a generalized parameter of the
problem allows one to estimate the effect of physical properties of phases, micro-
channel geometry, as well as wall heat flux, on the characteristics of the flow, in
particular, its stability.

Using Eqs. (11.73–11.76) and (11.62) and (11.63), we obtain

P∗ = A∗Pe2
L + B∗PeL +C∗ (11.77)

q∗ = A∗∗Pe3
L + B∗∗Pe2

L +C∗∗PeL (11.78)

where

A∗ = −1
9
ρ2

L.G
αL

d2 αL.G ,

B∗ = −2
3
ρL.Gα

1/2
L.G

αL

d2

1
x̃f

,

Table 11.1 Characteristics of phases (saturated state T = 100 ◦C) (Vargaftic et al. 1996)

Phase Parameter
ρ
(kg/m3)

μ
(kg/ms)

k
(J/s m K)

cp
(J/kg K)

ν
(m2/s)

α
(m2/s)

Pr

Water 958.4 282.5
×10−6

0.679 4.2
×103

0.295
×10−6

16.8
×10−8

1.75

Vapor 0.598 12.28
×10−6

2.5
×10−2

2.135
×103

20.53
×10−6

19.58
×10−6

1.05
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C∗ =
1
3

32
αL

d2 α
1/2
G.L Pr G ,

A∗∗ =
1
27

1
d3ρ

3
L.Gα

3/2
L.Gα

3/2
L ,

B∗∗ = −1
3
ρ2

L.GαL.Gα
3/2
L

1
d3x̃f

,

C∗∗ =
16
d3 ρL.Gα2

L.Gα
3/2
G Pr L

(
1− 1

3
νG.Lα

1/2
L.G

)
,

x̃f =
xf

d
.

The form of the solution of the dispersion equation (11.61) depends on the sign of
the determinant D = q2∗ + P3∗ , i.e., on the values of the characteristic parameters q∗
and P∗. The latter are determined by the physical properties of the liquid and its
vapor, as well as the values of the Peclet number. This allows us to use q∗ and P∗ as
some general characteristics of the problem considered here.

The dependence of P∗(PeL) and q∗(PeL) is shown in Fig. 11.4. The parameter
P∗(PeL) is a parabola with an axis of symmetry left of the line PeL = 0. Since the
Peclet number is positive, for any value of the operating parameters, the physical
meaning is that only for the right branch of this parabola, which intersects the axis
of the abscissa at some critical value of Peclet number, PeL = Pecr. The vertical line
PeL = Pecr subdivides the parametrical plane P∗ − PeL into two domains, corres-
ponding to positive (PeL < Pecr) or negative (PeL > Pecr) values of the parameter P∗.
The critical Peclet number is

Pecr = 3α1/2
G.L

⎛
⎝− 1

x̃f
±
√(

1
x̃f

)2

+
32
3
α1/2

G.L Pr G

⎞
⎠ (11.79)

Taking into account that Pecr > 0, we should choose the positive value for the rad-
ical in Eq. (11.79). For very small and large x̃f the following estimates for the

Fig. 11.4 The dependence
of P∗ (PeL) and q∗ (PeL).
The dotted line shows PeL =
Pecr: I domain PeL < Pecr, II
domain PeL > Pecr, 1 critical
point, 2 q∗ = 0. Reprinted
from Hetsroni et al. (2004)
with permission
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critical Peclet number are valid: Pecr � 16(αG.L/ρL.G)PrG x̃f, x̃f ≤ 4×10−3 and

Pecr =
(√

96/ρG.L
)

Pr1/2
G α3/4

G.L, x̃f ≥ 4 (x̃f is the dimensionless liquid height in the
stable state). In both cases the errors in the calculation Pecr do not exceed 5%.
The dependence of the critical Peclet number on the dimensionless meniscus pos-
ition x̃f is plotted in Fig. 11.5. An increase of the wall heat flux, which is ac-
companied by a shift of the interface towards the capillary tube inlet, leads to de-
creasing Pecr. At small enough qw (large x̃f) Pecr approaches its asymptotic value

(Pecr)lim =
√

96α3/4
G.LPr1/2

G .
The curve q∗(PeL) is a cubic parabola, which passes through the point O(0,0).

Since, the Peclet number is positive, the physical meaning has the falling and rising
branches of q∗(PeL), which are located on the right part of the parameter plane
q∗ −PeL.

Bearing in mind the characteristics of the dependences of P∗(PeL) and q∗(PeL)
we estimate the growth rate of the oscillations in the vicinity of the two characteristic
points: PeL = 0 and PeL = Pecr.

1. PeL = 0. In the vicinity of this point P∗ is close to C∗ > 0 and q∗ is close to
zero. Then Sinhϕ = q∗/ |Px|3/2 ∼ 0, ϕ ∼ 0, Sinhϕ/3 ∼ 0, Coshϕ/3 ∼ 1. Since
b∗/3a∗ = 0 at PeL = 0, we obtain

ξ = −3P∗ = −32
αL

d2 α
1/2
G.L Pr G . (11.80)

Thus at small PeL the growth rate of the oscillations is negative and the capillary
flow is stable. The absolute value of ξ sharply increases with a decrease of the
capillary tube diameter. It also depends on the thermal diffusivity of the liquid
and the vapor, as well as on the value of the Prandtl number.

2. PeL = Pecr. In the vicinity of this point the parameters P∗ and q∗ are: P∗ ∼ 0,
q∗ �= 0. Bearing in mind that the sign of the parameter q∗ is the same as that of
the parameter r∗ we find that ratio q∗/r3∗ 
 1 and ϕ 
 1 in the vicinity of the
point PeL = Pecr. In accordance with that, at large ϕ

Sinh
ϕ
3

= Cosh
ϕ
3

=
1

22/3
(Sinhϕ)1/3 =

1

22/3

(
q∗
r3∗

)1/3

. (11.81)

Fig. 11.5 The dependence
of Pecr(x̃f). Reprinted from
Hetsroni et al. (2004) with
permission
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Substitution of (11.81) in Eq. (11.71) leads to the following expression for the
growth rate of the oscillations:

ξ =
q2/3
∗

24/3

⎡
⎣
(

1− b∗
3a∗

22/3

q1/3
∗

)2

−3

⎤
⎦ . (11.82)

Since q2/3
∗ > 0, the sign of the growth rate is determined by the difference of the

terms in the bracket of Eq. (11.82): (1) (1−N)2 > 3, ξ > 0, (2) (1−N)2 = 3, ξ = 0,

(3) (1−N)2 < 3, ξ < 0, where N = (b∗/3a∗)
(

22/3/q1/3
∗
)

.

The behavior of the growth rate and the frequency of oscillations of flow par-
ameters in the vicinity of the critical point is illustrated in Fig. 11.6, where the

dependencies ξ (2/q∗)2/3 = f (x̃f) and (1/2)
(
|ψ |/q2/3

∗
)

= ϕ(x̃f) are plotted. It is

seen that there are three ranges of changing meniscus position, which correspond
to stable and unstable regimes of the flow. At small enough wall heat fluxes, when

x̃f > x̃(1)
f , the growth rate is negative and the flow in the capillary is stable. An

increase of the wall heat flux is accompanied by a displacement of the meniscus to-
wards the inlet (x̃f ∼ 1/qw), and a decrease of the absolute value of ξ . In the vicinity

of the point x̃(1)
f , sharp growth of ξ is observed. The latter leads to a change of the

sign of the growth rate and to the transition from stable to unstable regimes. At large
heat fluxes when the meniscus reaches the inlet, the growth rate sharply decreases

and becomes negative. The flow stabilization at x̃f < x̃(2)
f is due to intense heat trans-

fer to the cooling inlet, when the meniscus position and rate of evaporation weakly
depend on qw (Yarin et al. 2002).

It will be noted that applying the present approximation for the analysis of the sta-

bility of capillary flow at high heat fluxes corresponding to the domain 0 < x̃f < x̃(L)
f

is purely symbolic, since the general assumption that PeL � 1 is not valid at

Fig. 11.6 The dependence of the increment (solid line) and frequencies (dotted line) of oscillations
on x̃f in the vicinity of the critical point. Reprinted from Hetsroni et al. (2004) with permission
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Fig. 11.7 The dependence ξ (PeL): 1 domain of stationary steady regimes of flow, 2 domain of
unsteady states. PeL = PeLtr point of transition from the stable to unstable flow regime. Reprinted
from Hetsroni et al. (2004) with permission

large qw. Thus, in the case considered here, only stable stationary (x̃f > x̃(G)
f ) or

unsteady (x̃f < x̃(G)
f ) flow occur in capillary tube. The above is also related to the

frequency of oscillations. At physically realistic x̃f(x̃f > 1) only the low-frequency
oscillations occur (as estimations show the order of these oscillations does not ex-
ceed 10 GHz). The dependence of the growth rate on the Peclet number (moder-
ate qw) is shown in Fig. 11.7. It is seen that at small PeL (small enough qw) the flow
is stable. An increase of the wall heat flux leads to an increase of the rate of evap-
oration, growth of the Peclet number, development of flow instability and transition
(at PeL = PeL,tr) from stable to unstable flow.

11.5 Effect of Capillary Pressure and Heat Flux Oscillations

In this section the influence of the pressure in the capillary and the heat flux fluc-
tuations on the stability of laminar flow in a heated capillary tube is analyzed. All
the estimations performed in the framework of the general approach and developed
in the previous section are kept also in the present cases. Below we will assume
that the single cause for capillary pressure oscillations is fluctuations of the contact
angle due to motion of the meniscus, whereas heat flux oscillations are the result of
fluid temperature fluctuations only.

11.5.1 Capillary Pressure Oscillations

The present analysis is based on the assumption that the interfacial temperature Ts

is constant and the capillary pressure is determined by the following expression
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fσ =
2σ
r

cosθd (11.83)

where θd is the dynamic contact angle.
Assuming that the dynamic contact angle θd is a sum of its basic value corres-

ponding to stationary flow θst and small perturbation θ ′ we arrive at the following
relation for the fluctuation of capillary pressure

f ′σ =
2σ
r

(cosθst cosθ ′ − sinθst sinθ ′) . (11.84)

For a system in which the contact angle is close to 90◦ (for example, the water–steel
system: 70◦ < θst < 90◦ (Grigoriev and Zorin 1982)) it is possible to assume that
cosθst ∼ 0, sinθst ∼ 1 and sinθ ′ ∼ θ ′. Then Eq. (11.84) takes the following form:

f ′σ = −2σ
r
θ ′ . (11.85)

There is a number of theoretical and experimental relations determining the de-
pendence of the dynamic contact angle on flow velocity (Dussan 1979; Ngan and
Dussan 1982; Cox 1986; Blake 1994; Kistler 1993). Hoffman (1975) expressed the
dynamic contact angle as a function solely of dimensionless parameters: capillary
number Ca

θd = f (Ca) (11.86)

where Ca = μu/σ .
We estimate the effect of the velocity fluctuations on the capillary pressure, using

the Hoffman–Voinov–Tanner law which is valid at θd ≤ 135◦ and Ca ≤ 0 (0.1)

θ 3
d = CT −Ca . (11.87)

where CT
∼= 93, θd is in radians.

From Eq. (11.86), we obtain

θ ′ = −1
3
μLu′L
σ

(
CT − μLuL

σ

)−2/3
. (11.88)

Taking into account that uL = uL + u′L and u′L � uL, we arrive at the following
relation for capillary pressure oscillations:

f ′σ =
2
3
μLu′L

r

(
CT − μLuL

σ

)−2/3

. (11.89)

From (11.42), (11.45) and (11.87) we transform Eq. (11.25) to the following form:

AGα̃21 + ALα∗
22 = 0 (11.90)

where α̃∗
22 = −(kLρLxf + 2ρLuL + ε), ε = (2μL)/(3r)(CT − (μLuL)/σ)−2/3, α̃21

is the same as α̃21 in Eq. (11.55).
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Then the dispersion equation for the problem considered here takes the following
form:

α̃21α̃32 − α̃∗
22α̃31 = 0 (11.91)

where coefficients α̃31, α̃32 are the same as in Eq. (11.55).
The equation can be presented as follows:

a∗Ω 3/2 + b∗Ω + c̃∗Ω 1/2 + d̃∗ = 0 (11.92)

where the coefficients a∗ and b∗ are the same as in Eq. (11.59) and the coefficients
c̃∗ and d̃∗ are

c̃∗ = −
{
−32

d2 νG

(
1−νL.Gα

1/2
G.L

)
+ 2ρL.G

uL

xf

(
1−ρG.Lα

1/2
L.G − ε

ρG.Lα
1/2
L.G

2ρLuL

)}
1√
αL

(11.93)

d̃∗ = −
{
−32

d2 νG
uL

αL
(1−νL.G)−ρL.G

u2
L

αL

ε
ρLuL

1
xf

.

}
(11.94)

Approximate expressions for the parameters c̃∗ and d̃∗ corresponding to realistic
values of operating parameters are

c̃∗ � −
{
−32

d2 νG + 2ρL.G
uL

xf

(
1− ε

ρG.Lα
1/2
G.L

2ρLuL

)}
1√
αL

(11.95)

d̃∗ � 32
d2 νL

uL

αL
ρL.G −ρL.G

u2
L

αL

ε
ρLuL

1
xf

. (11.96)

Using Eqs. (11.62) and (11.63) as well as expressions (11.73), (11.74), (11.95)
and (11.96), it is possible to transform the dependencies P∗(PeL) and q∗(PeL) to the
canonical form similar to Eqs. (11.77) and (11.78) with coefficients A∗, B∗, C∗ and
A∗∗, B∗∗, C∗∗.

A∗ = −1
9
ρ2

L.GαL.G , B∗ = −2
3
ρL.Gα2

L.G
1
x̃f

(
1− ε

ρG.Lα
1/2
G.L

ρLuL

)
,

C∗ =
32
3
αL

d2 α
1/2
G.LρL.G

A∗∗ =
1

27
1
d3 ρ

3
L.Gα

3/2
L.Gα

3/2
L , B∗∗ = 3ρG.L

1
d3x̃f

αL.Gα
3/2
L

(
ρL.G − 5

2
α1/2

G.L
ε

ρLuL

)

C∗∗ =
32
d3 ρL.GPrLα

1/2
L.Gα

3/2
L

(
1− 1

3
PrG.Lα

1/2
L.G

)
.

In the domain of a very small Peclet number the growth rate of flow oscillations
is negative at any values of flow parameters. In the vicinity of the critical point
(PeL = Pecr, P∗ � 0) the sign ξ is determined by Eq. (11.82). An increase in ε (other
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parameters are fixed) leads to an increase of the critical value of the Peclet number
and expansion of domain of stable flows.

11.5.2 Heat Flux Oscillations

There are two causes for oscillations of the heat flux, with Tw = const.: (1) fluctua-
tions of the heat transfer coefficient due to velocity fluctuations, and (2) fluctuations
of the fluid temperature. At small enough Reynolds numbers the heat transfer coeffi-
cient is constant (Bejan 1993), whereas at moderate Re (Re ∼ 102) it is a weak func-
tion of velocity (Peng and Peterson 1995; Incropera 1999; Sobhan and Garimella
2001). Bearing this in mind, it is possible to neglect the influence of velocity fluc-
tuations on the heat transfer coefficient and assume that heat flux fluctuations are
expressed as follows:

q′wi
= −hiT

′
i (11.97)

where hi is heat transfer coefficient for stationary flow of the ith phase.
Using Eq. (11.40), as well as Eqs. (11.52) and (11.97) we obtain

ni =

√
Ω +Ω0i

αi
(11.98)

where Ω0i = 4hi
ρicpi d

.

Using expressions (11.46) and (11.98) we transform Eq. (11.59). Bearing in mind

that hi = ki
Nu
d and

Ω0i
αi

= 4 Nu
d2 we arrive at the equation

−
(

32
d2 νG +Ω

)√
Ω
αL

+ 4
Nu
d2 ·N1 +

√
Ω
αL

+ 4
Nu
d2 ·N2 −

(
32
d2 νG +Ω

)
·N3 + N4 =

+
(

32
d2 νL +Ω

)√
Ω
αL

+ 4
Nu
d2 ·M1 +

√
Ω
αG

+ 4
Nu
d2 ·M2 −

(
32
d2 νL +Ω

)
·M3 + M4

(11.99)

where Nu is the Nusselt number

N1 = ρGxfαL , N2 = 2ρLuLαL , N3 = −ρGxfuL , N4 = −2ρLu2
L ,

M1 = ρLxfαGρG.L , M2 = 2ρLuLαGρG.L , M3 = −ρLxfuL , M4 = −2ρLu2
L .

Equation (11.99) shows that the effect of heat flux oscillations is not significant in
micro-channels with large diameter when the term 4Nu/d2 is small enough.

Presenting the complex frequency as

Ω = ξ + i|ψ | (11.100)
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we arrive at two equations that determine the increment and frequency of oscilla-
tions

− fGFLN1 + |ψ |φLN1 + FLN2 − fGN3 + N4

− fLFGM1 + |ψ |φGM1 −FGM2 + fLM3 −M4 = 0
(11.101)

−|ψ |FLN1 − fGφLN1 +φLN2 −|ψ |N3 + N4

−|ψ |FGM1 − fLφGM1 −φGM2 −|ψ |M3 −M4 = 0
(11.102)

where

Fi =
1√
2

√√
a2

i + b2
i + ai ,

φi =
1√
2

√√
a2

i + b2
i −ai ,

fi =
32
d2 νi + ξ ,

ai =
ξ
αi

+ 4
Nu
d2 ,

bi =
|ψ |
αi

.

Consider the particular case as corresponding to low frequency. Assuming b ∼ 0,

φ ∼ 0 and Fi ∼ a1/2
i , we arrive at the following equation for increment of oscillations

at ψ → 0

− fGa1/2
L N1 + a1/2

L N2 − fGN3 + N4 − fLa1/2
L M1 −a1/2

L M2 + fLM3 −M4 = 0 .
(11.103)

Transforming Eq. (11.103) we obtain

ξ = − νL

d2Nu1/2(1 +αG.L)

{
32Nu1/2(νG.L +αG.L)

−PeL

[
Nu1/2αL.G(ρL.G −2)

x̃f PrL
+ 32Pr

L
(νG.L −1)

]}
.

(11.104)

At small PeL (PeL → 0), the growth rate is negative and the flow is stable whereas
at relatively large PeL the flow is unstable: ξ > 0. Assuming in Eq. (11.104) ξ = 0
and taking into account that ρL.G 
 1, νL.G 
 1 we find the value of Peclet number
corresponding to the transition from stable to unstable flow

PeL,tr ∼= Nu1/2PrL(νG.L +αG.L)
Nu1/2

x̃f
αL.GρL.G +νG.LPr2

. (11.105)
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It is seen that the Peclet number corresponding to transition from stable to unstable
flow decreases with increasing wall heat flux (decreasing x̃f). The increase of the
Nusselt number leads to increasing PeL,tr.

11.6 Moderate Peclet Number

The perturbed energy equation for moderate Peclet number has (at q′ = 0) the fol-
lowing form:

∂T ′
i

∂ t
+ ui

∂T ′
i

∂x
=

∂
∂x

(
αi
∂T ′

i

∂x

)
. (11.106)

Assuming, as earlier, that u′, P′ and T ′ are determined by Eqs. (11.42), (11.45),
(11.51) we find ki and ni

ki = −(
32
d2 νi +Ω) (11.107)

ni =
1
2

⎛
⎝ ui

αi
±
√(

ui

αi

)2

+ 4
Ω
αi

⎞
⎠ . (11.108)

Substituting expressions (11.107), and (11.108) in Eq. (11.91) leads to the disper-
sion equation

−
(

32
d2 νG +Ω

)
1
2

⎛
⎝ uL

αL
+

√(
uL

αL

)2

+ 4
Ω
αL

⎞
⎠N1

+
1
2

⎛
⎝ uL

αL
+

√(
uL

αL

)2

+ 4
Ω
αL

⎞
⎠N2 −

(
32
d2 νG +Ω

)
N3 + N4

= −
(

32
d2 νL +Ω

)
1
2

⎛
⎝ uG

αG
−
√(

uG

αG

)2

+ 4
Ω
αG

⎞
⎠M1

+
1
2

⎛
⎝ uG

αG
−
√(

uG

αG

)2

+ 4
Ω
αG

⎞
⎠M2 −

(
32
d2 νL +Ω

)
M3 + M4 .

(11.109)

Transforming this equation we obtain

A◦ + B•Ω ◦ +C•F1(Ω ◦)+ D•F2(Ω ◦)+ E•Ω •[FL(Ω ◦)+ρ2.1F1(Ω ◦)] = 0
(11.110)

where

A◦ = (1− μL.G)PeL + 2
N3

N1
α(1−ρL.GνL.G)

B• = PeL(1−ρL.G)
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C• = −νG.LρL.GPeL

(
1 +

d2

32νG

N2

N1

)

D• = −PeL

(
1 +

d2

32νG

N2

N1

)

E• = PeL

FG(Ω ◦) =
√

1 +β1Ω ◦

FL(Ω ◦) =
√

1 +β2Ω ◦

β1 = 128
PrG

Pe2
L
α2

G.LρL.G; β2 = 128αG.L
PrG

Pe2
L

.

Assuming Ω ◦ = ξ ◦ + i |ψ◦|, where ξ ◦ = ξ
(
d2/32νG

)
, ψ◦ = ψ

(
d2/32νG

)
we ob-

tain from Eq. (11.110) two equations for dimensionless frequency and increment of
oscillations:

A◦ + B•ξ ◦ +
C•
√

2

√√
a◦2

1 + b◦2

1 + a◦1 +
D•
√

2

√√
a◦2

2 + b◦2

2 −a◦1

+
E•ξ ◦
√

2

{√√
a◦2

2 + b◦2

2 + a◦2 +ρL.G

√√
a◦2

1 + b◦2

1 −a◦1

}

−E• |ψ◦ |√
2

{√√
a◦2

2 + b◦2

2 −a◦2 −ρL.G

√√
a◦2

1 + b◦2

1 −a◦1

}
= 0

(11.111)

and

B• |ψ◦ |+ C•
√

2

√√
a◦2

1 + b◦2

1 −a◦1 +
D•
√

2

√√
a◦2

2 + b◦2

2 −a◦1

+
E• |ψ◦ |√

2

{√√
a◦2

2 + b◦2

2 −a◦2 +ρL.G

√√
a◦2

1 + b◦2

1 −a◦1

}

+
E• |ψ◦ |√

2

{√√
a◦2

2 + b◦2

2 + a◦2 +ρL.G

√√
a◦2

1 + b◦2

1 + a◦1

}
= 0

(11.112)

where a◦1 = 1 +β1ξ ◦, a◦2 = 1 +β2ξ ◦, b◦1 = β1 |ψ◦| , b◦2 = β2 |ψ◦|.
Using Eq. (11.112) we estimate the increment of oscillations for low frequencies

(|ψ◦| → 0). Assuming in Eq. (11.112) b1 → 0 we arrive at the equation

A◦ + B•ξ ◦ +C•a◦
1/2

1 + B•ξ ◦(a◦
1/2

1 +ρL.Ga◦
1/2

1 ) = 0 . (11.113)

To find the solution of Eq. (11.113) we use an approximate expression for the coef-
ficients A◦, B•, C• and E•. Characteristic values of the operating parameters are:
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A◦ ∼= μL.GPeL > 0 , B• ∼= −ρL.GPeL < 0 ,

C• ∼= −νG.LρL.GPeL(1 +ρL.GαL.G
PeL

PrG

1
x̃f

) < 0 , E• = PeL > 0 .

Consider three particular cases corresponding to very small and large values of ξ ◦:
(1) ξ ◦ ≤ 10−6, (2) ξ ◦ ≤ 10−5, (3) ξ ◦ ≥ 102. In the first case a◦1

1/2 ∼ 1, a◦2
1/2 ∼ 1

and solution to Eq. (11.113) is

ξ ◦ = − A◦ +C•

B• + E•(1 +ρL.G)
. (11.114)

Since νG.LρL.G > μL.G and (1 + ρL.GαL.G (PeL/PrG) (1/x̃f)) > 1 the sum A◦ +
C• < 0. The sum B• + E•(1 +ρL.G) = E• > 0. Accordingly, the ratio (A◦ +C•)/
(B• + E•(1 +ρL.G)) is negative and the growth rate is positive ξ ◦ > 0. Thus, in this
case the flow in heated micro-channel is unstable at any values of the Peclet number.

In the second case, the growth rate is expressed as

ξ ◦ =
1
2

{
β−1

2 +
√
β−2

2 −8β−1
2 (A◦ +C•)

}
. (11.115)

Since β2 > 0 and A◦ +C• < 0, the growth rate is positive and the flow is also unsta-
ble.

In the third case Eq. (11.113) is transformed to a form similar to Eq. (11.92)

aξ ◦3/2
+ bξ ◦+ cξ ◦1/2

+ d = 0 (11.116)

with the coefficients a, b, c and d expressed as a = E◦(β 1/2
2 + ρL.Gβ

1/2
1 ), b = B•,

c = β 1/2
1 C•, d = A◦. Estimations show that the determinant

D = q2
∗ + P3

∗ (11.117)

which is defined by correlations (11.62) and (11.63) and coefficients a, b, c and d
are negative. That means that Eq. (11.116) has three real roots, which are:

ξ ◦1/2

I = −2r∗ cos
4
3
− b

3a

ξ ◦1/2

II = 2r∗ cos

(
60− 4

3

)
− b

3a

ξ ◦1/2

III = −2r∗ cos

(
60 +

4
3

)
− b

3a

(11.118)

where cosϕ = q/r3∗; r∗ =
√|P∗|, sign r∗ is the same as sign q∗ .

At realistic flow conditions cosϕ ∼ 0 and ϕ is close to π/2. Under these condi-
tions, in any case, one of the roots of (11.118) is positive. This shows that capillary
flow in a capillary tube is unstable at large ξ ◦.
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Summary

The system of quasi-one-dimensional non-stationary equations derived by transfor-
mation of the Navier–Stokes equations can be successfully used for studying the
dynamics of two-phase flow in a heated capillary with distinct interface.

The following results have been obtained:

1. The quasi-one-dimensional model allows analyzing the behavior of the vapor–
liquid system, which undergoes small perturbations. In the frame of the linear
approximation the effect of physical properties of both phases, the wall heat flux
and the capillary sizes, on the flow instability is studied, and a scenario of the
development of a possible processes at small and moderate Peclet number is
considered.

2. The boundaries of the stability, subdividing the domains of stable and unsta-
ble flows, are outlined, and the values of geometrical and operating parameters
corresponding to the transition from stable to unstable flow are estimated.

3. The performed calculations show that flow instability in a heated capillary tube,
develops under conditions of high wall heat fluxes, which are the main factor in
determining the flow regimes. The evolution of capillary flow is due to changes
of heat flux on the wall that may be presented as follows. At relatively small qw,
when the rate of liquid evaporation is small and the height of the rising liquid
is close to the adiabatic one, a stable laminar flow takes place. In this case the
equilibrium of the two-phase system is determined by the equality of gravity
and capillary forces, whereas the influence of the friction forces and heat losses
to cooling inlet is negligible. On the contrary, at high wall heat fluxes the fric-
tion and capillary forces, as well as losses to the inlet play the dominant role.
Under these conditions, a small deviation from equilibrium leads to progressive
(exponential) growth of disturbances, i.e., development of flow instability. The
latter is displayed in oscillations of the velocity and temperature of both phases,
as well as oscillations of the position of the meniscus.

4. It is shown that the stability of the flow, with evaporating meniscus, depends
(other conditions being equal) on the wall heat flux. The latter determines the
rate of liquid evaporation, equilibrium acting forces, meniscus position, as well
as the heat losses to the cooling inlet. The stable stationary flow with fixed
meniscus position corresponds to low wall heat fluxes (Pe � 1). In contrast,
at high wall heat fluxes (Pe 
 1) an exponential increase of small disturbances
takes place. That leads to the transition from stable stationary to unstable flow
with oscillating meniscus.
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Nomenclature

A Amplitude of velocity oscillations
Ca Capillary number
cp Specific heat
d Diameter of the pipe
fσ Capillary pressure
F Specific friction force
h Enthalpy
g Acceleration due to gravity
k Thermal conductivity
� Length of pipe
P Pressure
q Specific rate of volumetric heat absorption
qw Heat flux on the wall
R Radius of interface curvature
r Radius of the pipe
T Temperature
u Longitudinal component of the velocity
vf Velocity of interface
Ṽ Velocity relative to the interface
xf Height of the liquid level in a heated capillary
xf,ad Height of the liquid level in adiabatic capillary

Nu =
αd
k

Nusselt number

Pe =
ud
α

Peclet number
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Pr =
ν
α

Prandtl number

Re =
ud
ν

Reynolds number

St =
�ψ
u

Strouhal number

Greek symbols

α Thermal diffusivity
θ Static contact angle
θd Dynamic contact angle
μ Viscosity
ν Kinematic viscosity
ξ Growth rate of velocity oscillations
ρ Density
σ Surface tension
ψ Frequency of velocity oscillations
Ω Complex frequency

Superscripts

()′ Corresponds to perturbed parameter

Subscripts

ad Adiabatic
G Vapor
in Inlet
f Interface
L Liquid
cr Critical
tr Transition
w Wall
0 Outlet




