HOL-OCL:
A Formal Proof Environment for UML/OCL

Achim D. Brucker! and Burkhart Wolff2

1 sAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com
2 Information Security, ETH Zurich, 8092 Zurich, Switzerland
bwolff@inf.ethz.ch

Abstract. We present the theorem proving environment HOLOCL that
is integrated in a Model-driven Engineering (MDE) framework. HOLOCL
allows to reason over UML class models annotated with OCL specifications.
Thus, HOLOCL strengthens a crucial part of the UML to an object-oriented
formal method. HOLOCL provides several derived proof calculi that allow
for formal derivations establishing the validity of UML/ocL formulae.
These formulae arise naturally when checking the consistency of class
models, when formally refining abstract models to more concrete ones or
when discharging side-conditions from model-transformations.

Keywords: HOLOCL, UML, OCL, Formal Method, Theorem Proving.

1 Introduction

The HOLOCL system (http://www.brucker.ch/projects/hol-ocl/) is an in-
teractive proof environment for UML ﬁ] and OCL [4] specifications that we devel-
oped as a conservative, shallow embedding into Isabelle/HOL. This construction
ensures the consistency of the underlying formal semantics as well as the correct-
ness of the derived calculi. Together with several automated proof-procedures,
we provide an effective logical framework supporting object-oriented modeling
and reasoning with a particularly clean semantic foundation.

2 The Architecture and Its Components

2.1 Overview

HOLOCL EL ﬁ] is integrated into a framework [B] supporting a formal, model-driven
software engineering process (see [Figure I]). Technically, HOLOCL is based on a
repository for UML/OCL models, called sudsml, and on Isabelle/HOL; both are
written in SML. HOLOCL is based on the SML interface of Isabelle/HOL. Moreover,
HOLOCL also reuses and extends the existing Isabelle front-end called Proof Gen-
eral well as the Isabelle documentation generator. gives an overview of
the main system components of HOLOCL, namely:

J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, pp. 97-[L00] 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://www.brucker.ch/projects/hol-ocl/

98 A.D. Brucker and B. Wolff

Proof

Obligations

; Validation
Model —(andveriicalion > |Harmess

Transformation (HOL-OCL) c#
ArgoUML +O0L

SecureUML/OCL Test Data AC
it | Config

UML/OCL
(XMI) Model \/\
Repository Code
(sudsml) Generator

Fig. 1. A Toolchain Supporting a Formal Model-driven Engineering Process

HOL-OCL
HOL-OCL User Interface (based on Proof General)

Datatype Package «—— HOL-OCL Library «—s Theory Morpher

]% ! | !

sudsml Isabelle/HOL

Fig. 2. Overview of the HOLOCL architecture

Proof
Document
Theory Files

import

UML/OCL

Specification SML (Standard ML)

the data repository, called sudsml, providing XMI import facilities,

the datatype package, or encoder, which encodes UML/OCL models into HOL;
from a user’s perspective, it yields a semantic interface to the model,

the HOLOCL library which provides the core theorems needed for verification
and also a formal semantics for the OCL built-in operators, and

— a suite of automated proof procedures based on rewriting and tableaux
techniques.

2.2 The Model Repository: sudsml

The model repository sujsml |3] provides a data base for syntactic elements of
UML core, namely class models and statemachines as well as OCL expressions.

HOL-OCL: A Formal Proof Environment for uML/0CL 99

Moreover, sudsml provides an import mechanism based on the XMI, which is
a standardized XML file format for UML models. Most CASE tools for UML can
export models in XMI.

For class models, sudsml resembles the tree structure given by the containment
hierarchy. For example, a class contains attributes, operations, or statemachines.
OCL expressions naturally translate into an abstract SML datatype in SML. This
abstract datatype is modeled closely following the standard OCL 2.0 metamodel.
In addition to these datatype definitions, the repository structure defines a cou-
ple of normalization functions, for example for converting association ends into
attributes with corresponding type, together with an invariant expressing the
cardinality constraint.

2.3 The Encoder: An Object-Oriented Datatype Package

Encoding object-oriented data structures in HOL is a tedious and error-prone
activity if done manually. We therefore provided a datatype package automating
this task. In the theorem prover community, a datatype package is a module
that allows one to introduce new datatypes and automatically derive certain
properties over them.

Our datatype packages extends the given theory by a HOLOCL-representation
of the given UML/0OCL model. This is done in an extensible way, i. e., classes can
be added to an existing theory while preserving all proven properties. The theory
extension comprises the following activities:

1. declaration of HOL types for the classifiers of the model,

2. encoding of type-casts, attribute accessors, and dynamic type and kind tests
implicitly declared in the imported data model, and

3. encode the OCL specification (including invariants and operation specifica-
tions) and combine it with the core data model.

Overall, the datatype package encodes conservatively the user supplied model
and derives the usual algebraic properties on object-oriented structures (up casts
followed by down casts are idempotent, casts do not change the dynamic type,
etc.; ﬂ, E] describe the details). The package also provides automatically proofs
that the generated HOL model is a faithful representation of object-orientation;
for example, inheritance is expressed as inclusion of the sets of objects along
the subclass hierarchy of the model. This strategy, i.e., deriving properties of
the UML/0OCL model from generated conservative definitions in HOL, ensures two
very important properties:

1. our encoding fulfills the required properties, otherwise the proofs fail, and
2. doing all definitions conservatively ensures the consistency of our model.

The time spent for all these proof activities during the import is typically below
a minute; the approach is therefore feasible in a proof environment.

100 A.D. Brucker and B. Wolff

2.4 The Library

An important part of HOLOCL is a collection of Isabelle theories describing the
built-in operations of UML/OCL. This comprises over 10000 definitions and the-
orems such as properties of basic types like Integer, Real, and String as well
as collection types such as Bag, Sequence and Set, and also the common super-
class OclAny. Besides the model-specific part covered by the datatype package
described in [Section 2.3 the library with its body of derived rules represents the
generic part of data-structure related reasoning in OCL. Moreover, these theories
also contain new proof tactics written in SML.

2.5 Automated Proof Procedures

The operations of OCL have a certain representational distance to the operations
of HOL: for example, the logical connectives and, or, forAll, exists are based
on a three-valued logic (i.e., a strong Kleene logic) with an additional element
OclUndefined (L) and properties such as OclUndefined and false = false.
Moreover, all operations are implicitly parametrized over the pre-sate and the
post-state; OCL expressions are assertions and not only logical formulae.

The major Isabelle proof procedures, e. g., simp and auto, cannot handle this
logic directly, except for a fairly trivial fragments. We therefore implemented
our own versions of a context-rewriter and a tableaux-prover. These language
specific variants offer a reasonably high degree of proof automation for OCL.

3 Conclusion

We provide a proof-environment for an object-oriented specification method
based on UML class models annotated with OCL constraints. On this bases, we
can formally reason over such UML/OCL models. For example, we can prove the
satisfyability of class invariants, that postconditions do not contradict with class
invariants, or proof-obligations arising from stating that one class-model is a
refinements from another.this The system has been used in several smaller and
medium-sized case studies [1, 2.

References

[1] Brucker, A.D.: An Interactive Proof Environment for Object-oriented Specifica-
tions. Ph.d. thesis, ETH Zurich (March 2007), ETH Dissertation No. 17097,
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007

[2] Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH
Zurich (2006), http://www.brucker.ch/bibliography/abstract/brucker.ea-hol
-ocl-book-2006

[3] Brucker, A.D., Doser, J., Wolff, B.: An MDA framework supporting OCL. Elec-
tronic Communications of the EASST, 5 (2006), ISSN 1863-2122,
http://www.brucker.ch/bibliography/abstract/brucker.ea-mda-2006-b

[4] Object Management Group. UML 2.0 OCL specification (October 2003),
OMGdocumentptc/03-10-14

[5] Object Management Group. Unified modeling language specification (version 1.5)
(March 2003), OMGdocument , formal/03-03-01

http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-mda-2006-b
OMG document ptc/03-10-14
OMG document, formal/03-03-01

	HOL-OCL: A Formal Proof Environment for uml/ocl
	Introduction
	The Architecture and Its Components
	Overview
	The Model Repository: su4sml
	The Encoder: An Object-Oriented Datatype Package
	The Library
	Automated Proof Procedures

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

