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Abstract. Data abstraction is crucial in the construction of modu-
lar programs, since it ensures that internal changes in one module do
not propagate to other modules. In object-oriented programs, classes
typically enforce data abstraction by providing access to their internal
state only through methods. By using method calls in method contracts,
data abstraction can be extended to specifications. In this paper, meth-
ods used for this purpose must be side-effect free, and are called pure
methods.

We present an approach to the automatic verification of object-
oriented programs that use pure methods for data abstraction. The cor-
nerstone of our approach is the solution to the framing problem, i.e. client
code must be able to determine whether state changes affect the return
values of pure methods. More specifically, we extend each method con-
tract with a method footprint, an upper bound on the memory locations
read or written by the corresponding method. Footprints are specified
using dynamic frames, special pure methods that return sets of memory
locations. Thanks to this abstraction, implementations can evolve inde-
pendently from specifications, loosely coupled only by pure functions.

We implemented this approach in a custom build of the Spec# pro-
gram verifier, and used it to automatically verify several challenging pro-
grams, including the iterator and observer patterns. The verifier itself and
the examples shown in this paper can be downloaded from the authors’
homepage [IJ.

1 Introduction

The principle of data abstraction is a central concept in object-oriented program-
ming. That is, a class typically hides its implementation details from clients, and
instead offers methods to access its internal state. Adherence to the principle of
data abstraction ensures that client code remains independent of the implemen-
tation of classes it is using, and as a consequence that changing the implementa-
tion of a class (within the boundaries described by its contract) does not affect
clients. For example, consider the class Cell shown in Figure[ll Each Cell object
holds an integer value which is stored in the private field z. Client code can only
access x through the getter getX and the setter setX. Since clients only depend
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on the getter and setter, changing Cell’s internal representation does not affect
them. In particular, changing the implementation will not affect the correctness
of the client program of Figure

To preserve data abstraction within specifications, specifications must be
written in an implementation-independent manner. In particular, specifications
should not expose the private fields of a class. One way to achieve this indepen-
dence is to use method calls within specifications. In this paper, methods used
for this purpose must be side-effect free, and are called pure methods. Non-pure
methods are called mutators. For example, the behavior of the mutator setX
is specified by describing its effect on the pure method getX. The specification
of Cell never mentions the field x. Using pure methods within specifications

class Cell {
private int z;

Cell()
writes (;
ensures getX () = 0;
ensures footprint().isFresh();

{}
Cell ¢1 := new Cell();
pure int getX () c1.setX (5);
reads footprint();
{ return z; } Cell ¢z := new Cell();

c2.setX (10);
void setX (int value)
writes footprint(); assert ci.getX () = 5;
ensures getX () = value; (b)
ensures footprint().newElemsFresh();
{ z := value; }

pure set footprint()
reads footprint();
{return { &z }; }

}
(a)

Fig.1. A class Cell and a client program

gives rise to a framing problem [2 Challenge 3], i.e. client code must be able
to determine the effect of heap changes on the return values of pure methods.
For instance, to show that ¢;.getX () equals 5 at the end of the code snippet in
Figure[L(b)} we must be able to deduce that creating and modifying ¢z does not
affect the state of ¢;. This deduction should not rely on Cell’s implementation,
since doing so would break information hiding.

Recently, Kassios [3l[4] proposed a promising solution to the framing prob-
lem. More specifically, he proposes using dynamic frames, specification variables
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(similar to pure methods) that return sets of memory locations, to specify the
effect of mutators and the dependencies of specification variables in an abstract
manner. However, his solution is formulated in the context of an idealized,
higher-order logical framework. For example, it does not show how to apply
the approach to Java-like inheritance. Furthermore, the proposed approach is
not applied in the context of an automatic program verifier for first-order logic.

In this paper, we propose an approach to the automatic verification of anno-
tated Java-like object-oriented programs that combines pure methods to achieve
data abstraction with Kassios’ solution to the framing problem. More specifically,
to solve the framing problem, we extend each method contract with a method
footprint which specifies an upper bound on the memory locations read or writ-
ten by the corresponding method. A memory location is an (object identifier,
field name) pair. The footprint of a pure method (reads annotation) specifies
an upper bound on the memory locations the pure method depends on, while a
mutator’s footprint (writes annotation) specifies an upper bound on the loca-
tions writable by the method. To prove that a heap change (i.e. a field update
or mutator invocation) does not affect the return value of a pure method, one
simply has to show that the footprint of the state change is disjoint from the
pure method’s footprint.

In our running example, the method footprint of both getX and setX is the
singleton containing the receiver’s field x. However, saying so explicitly in the
method contract would expose the field x to clients and break information hiding.
To specify method footprints in an implementation-independent manner, we
allow developers to define dynamic frames, special pure methods that return a
set of memory locations. These dynamic frames can then be used to abstractly
specify method footprints. The method footprint is an example of a dynamic
frame, and it is used to specify the footprint of all of Cell’s methods.

Given Cell’s specification, we can now prove the assertion at the end of the
code snippet in Figure Informally, the reasoning goes as follows. The speci-
fication of Cell guarantees that the constructor only writes to locations that were
unallocated in the method pre-state, and that the new object’s footprint contains
only such locations. Since footprints of existing objects contain only allocated
locations, the assignment ¢; := new Cell(); creates a new object whose foot-
print is disjoint from any existing object’s footprint. setX’s postcondition ensures
that ¢1.getX () equals 5 after the call statement c¢;.setX (5);. Furthermore, the
mutator’s specification ensures that it only modifies unallocated locations and
locations in receiver’s pre-state footprint, and that it only adds newly allocated
objects to that footprint. The next assignment co := new Cell(); creates a new
footprint for co disjoint from any other footprint. Because of this disjointness,
the following statement cs.setX (10); affects neither ¢1.getX () nor ¢;.footprint().
Tt follows that the assertion ¢;.getX () equals 5 still holds despite the intervening
creation of and update to co.

In summary, the contributions of this paper are the following:

— We propose an approach to the automatic verification of Java-like object-
oriented programs that combines the use of pure methods for data abstraction
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with Kassios” approach to solve the framing problem. In particular, we show
how Kassios’ solution applies to Java-like inheritance [3| Future Work].

— We implemented our approach in a tool [I], and used it to automatically
verify challenging examples, such as the iterator and observer patterns.

The remainder of this paper is structured as follows. In Section 2 we explain
how programs such as the one shown in Figure [l can be verified automatically.
In Section Bl we demonstrate the expressive power of our approach by showing
how it verifies various object-oriented programming and specification patterns.
Section M extends the solution of Section [ with support for inheritance. Finally,
we discuss our experience with the verifier prototype, compare with related work
and conclude in Sections Bl [ and [

2 Solution

SJava. In this paper we restrict our attention to a small Java-like language,
called SJava. SJava does not include features such as exceptions and multi-
threading. However, SJava extends regular Java in three ways:

(1) SJava introduces a new primitive type set. An expression of type set repre-
sents a set of memory locations. A memory location is an (object reference, field
name) pair, and the location corresponding to e.f is denoted by &e.f. The stan-
dard mathematical set operations such as U, N, and € can applied to expressions
of type set. In addition, postconditions can apply isFresh and newElemsFresh
to expressions of type set: s.isFresh() is a two-state predicate expressing that s
contains only fresh locations (i.e. locations corresponding to objects that were
not allocated in the method pre-state), and s.newElemsFresh() is a two-state
predicate denoting that only fresh locations are added to s. universe denotes the
set of all locations. elems(a) denotes the locations corresponding to the elements
of the array a.

(2) A method in an SJava program can be marked with a pure annotation,
indicating that it can be used in specifications. The body of a pure method
consists of a single return statement returning a side-effect free expression. An
expression is side-effect free if it does not contain object or array creations,
simple or compound assignments, increment or decrement operators, and only
calls pure methods. Non-pure methods are called mutators. Pure methods with
return type set are called dynamic frames.

(3) Each method has a corresponding method contract, consisting of precondi-
tions, a method footprint and postconditions. Preconditions and postconditions
are boolean side-effect free expressions. The former define valid method pre-
states, while the latter define valid method post-states. A method footprint is a
side-effect free expression of type set. The footprint of a pure method (reads an-
notation) specifies the locations that can potentially be be read by the method,
while a mutator’s footprint (writes annotation) specifies the locations that can
be modified by the method. More specifically, a mutator can only modify o.f
if &o.f is in the method’s footprint or if o was unallocated at the start of the
method. Pure methods have no need for writes clauses, since by definition they
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are not allowed to modify any location. Mutators have no need for reads clauses,
and can read any location. Indeed, the effect of heap changes on the return val-
ues of mutators is not relevant in our approach (no axiom is generated to frame
the return value of mutators) as only pure methods can be used in specifica-
tions. Only parameters and the variable this may occur free in preconditions
and footprints. Postconditions can additionally mention the variable result, de-
noting the return value of the method. Furthermore, postconditions may contain
old expressions old(e), denoting the value of the expression e in the method’s
pre-state.

In this section, we consider only SJava without inheritance. Section dl explains
how inheritance can be supported.

Verification. Our verifier takes an SJava program as input and generates, via a
translation into an intermediate verification language, a set of verification condi-
tions. The verification conditions are first-order logical formulas whose validity
implies the correctness of the program. The formulas are analyzed automatically
by satisfiability-modulo-theory (SMT) solvers. Our approach is based on a gen-
eral approach described in [5]. In this subsection, we focus on novel aspects of
our approach: namely the way pure methods and their contracts are modeled in
the verification logic and the way method footprints are enforced.

Notation. Heaps are modeled in the verification logic as maps from object refer-
ences and field names to values. For example, the expression h|o, f] denotes the
value of the field f of object o in heap h. The function wf returns whether a given
heap is well-formed, i.e. whether the fields of allocated objects point to allocated
objects. $Heap denotes the current value of the global heap. Allocatedness of
objects is tracked by means of a special boolean field named $allocated.

[Eh, 1y, denotes the translation of the side-effect free expression E to first-
order logic, where h; denotes the heap, ho denotes the pre-state heap (used in
the translation of old expressions), and r denotes the term to be substituted for
the variable result. We will omit the second and third parameter for single-state
predicates.

Pure Methods. We treat pure methods as follows. For every pure method

pure t m(ty x1,...,t, T,)
requires P; reads R; ensures Q);
{return F; }

defined in a class C, a function symbol #C.m is introduced in the verification
logic that takes a heap, the receiver and the method parameters as its formal
parameters. To define the function symbol’s meaning, three kinds of axioms
are generated: an implementation axiom, a framing axiom, and a postcondition
axiom.

(1) The implementation aziom declares that the result of the function #C.m
is equal to evaluating the method body.

Vheap, 0,1, ..., T, ® wf(heap) A heaplo, $allocated] A [Plheap =
#C.m(heap,0,x1,...,2n) = [Elneap
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The implementation axiom can only be used within the module where C is
defined.

(2) The framing axiom states that the function #C.m only depends on lo-
cations in m’s footprint R. More specifically, a state change does not affect the
return value of m if m’s precondition holds in the pre and post-state and if
locations in m’s footprint have equal values.

Yheapy, heapy, 0,1, ..., T, ® wf (heapy) N wf (heaps)A
heap, [0, $allocated] A heap, o, $allocated] A [Plneap, N [Plheap, /N

(Va, f o (¢, f) € [R]neap, = heapy[q, ] = heap,q, f]) =
#C.m(heapy,0,21,...,2,) = #C.m(heapy, 0,1, ..., T,)

The framing axiom can only be used by modules that use the module where C'
is defined.
(3) The postcondition aziom axiomatizes the pure method’s postcondition.

Vheap, 0,1, ..., T, ® wf(heap) A heaplo, $allocated] A [Plheap =
[[Q]]heap,heap,#c.m(heap,o,xl,...,xn)

m’s postcondition axiom can only be used by modules that use the module
where C' is defined. For each dynamic frame, a default postcondition axiom
is added stating that the dynamic frame only contains allocated objects. This
axiom holds because of the well-formedness of the heap which implies that only
allocated objects are reachable from allocated objects.

Our verifier prototype determines automatically which modules are being used
within a certain method implementation by looking at the declared type of fields,
parameters and local variables. A module is never considered to use itself.

Footprints. Method footprints are enforced differently for mutators and for pure
methods. For a pure method m with footprint R, we check that every location
(directly or indirectly) read by the method body is an element of R. More specif-
ically, we check at each field access and method invocation within the body that
the set of objects read by the subexpression is a subset of R. For a field access
o.f, the set of read locations equals the singleton {(o, f)}. To determine the set
of locations read by a callee, we rely on the callee’s reads annotation.

The footprint W of a mutator m is checked by means of an additional post-
condition: for each location (o, f), either m does not affect the value of the (o, f),
or o was not allocated in the method pre-state, or the location was an element

of W.
Yo, f e old($ Heaplo, f]) = $Heaplo, f|V

—old($ Heap|o, $allocated])V
(07 f) € [W]]old(ﬁiHeap)

This postcondition is used to enforce the footprint and to verify client code.

Soundness. The soundness of our approach rests on two pillars: (I) the con-
sistency of the verification logic and (II) the property that the value of a pure
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method is preserved by a state change, provided the footprint of the state change
is disjoint from the pure method’s footprint.

To satisfy the former component, we must ensure that the axioms generated
based on user-defined pure methods are consistent. One way to enforce this
consistency is to impose two restrictions: the module usage relation is acyclic
and pure methods only call pure methods in used modules. Enforcing these
restrictions guarantees termination of pure methods, which ensures (1) that im-
plementation axioms are consistent, (2) that postconditions and reads clauses
have to be proven (as there is always a path leading to the post-state), and (3)
that the proof of a postcondition/framing axiom cannot rely on itself.

To show (II) we argue informally as follows. The postcondition of a muta-
tor ensures that the method cannot modify allocated locations outside of its
footprint. Similarly, by checking that every subexpression of the body of a pure
method reads a subset of the method’s footprint, we know that the value of a
pure method depends only on locations within its footprint. Suppose the muta-
tor m writes X, that the pure method p reads Y, and that X and Y are disjoint.
Since method footprints can only contain allocated locations, m cannot modify
locations within Y, since doing so would violate its writes clause. Hence, the
value of p is preserved. Note that p is preserved, even if X and Y are no longer
disjoint in m’s post-state, since m can only write to the pre-state footprint X.

3 Invariants, Aggregates and Peers

In this section, we demonstrate how various object-oriented programming and
specification patterns can be handled using our approach. More specifically, we
focus on object invariants, aggregate objects and peer objects. It is important
to note that supporting these patterns does not require any additional method-
ological machinery. All the examples shown in this paper have been verified au-
tomatically using our verifier prototype. Both the prototype and the examples
can be downloaded from the authors’ homepage [1].

Object Invariants. An object invariant describes what it means for an object
to be in a consistent state. For example, consider class ArrayList in Figure
An ArrayList object o is consistent if o.items points to a non-null array, and if
o.count is a valid index in the array.

Some other approaches such as [6l7] treat object invariants differently from
regular predicates, thereby introducing additional complexity. In our approach
an object invariant is just another pure, boolean method. For instance, in class
ArrayList the method invariant specifies the object invariant. To assume/assert
the object invariant, it suffices to assume/assert that the invariant method re-
turns t{rue.

Some readers may have noticed the peculiar, conditional form of invariant’s
footprint. If o.invariant() returns true, then it is framed by o.footprint(); oth-
erwise, o.invariant() may depend on any location (universe denotes the set of
all locations). It suffices to frame o.invariant() only when it returns true, since
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client code that relies on the reads clause typically only “sees” valid ArrayList
objects. Instead of using a conditional reads clause, one could frame invariant
by footprint(). However, one would also have to remove footprint’s precondition,
and modify footprint’s body to take into account invalid object states, thereby
essentially duplicating the part of the invariant.

Aggregate Objects. Many objects internally use other objects to help repre-
sent their internal state. Such objects are sometimes called aggregate objects.
Typically, the consistency of an aggregate object implies the consistency of all
its helper objects, and an aggregate object’s footprint includes the footprint
of all its helper objects. Consider the class Stack shown in Figure 2l A Stack
object internally uses an ArrayList object to represent its internal state, and
can therefore be considered an aggregate object. A stack’s footprint includes its
arraylist’s footprint, and a Stack object’s invariant implies the invariant of the
internal ArrayList object.

Our approach does not impose any (built-in) aliasing restrictions. In particu-
lar, it does not forbid an aggregate object from leaking references to its internal
helper objects. For example, a Stack is allowed to pass a reference to its inter-
nal ArrayList to client code. However, in that case client code will not be able
to establish disjointness between the aggregate object’s footprint and the helper
object’s footprint. As a consequence, updating the helper object causes the client
to lose all information (given by the return values of its pure methods) about
the aggregate object, and as a result clients cannot falsely assume that the state
of the aggregate object is preserved when one of the helper objects is modified.

The return value of pure methods can change over time. In particular, loca-
tions can be added to or removed from an object’s footprint. For example, the
method Switch (in class Stack) shown below exchanges the internal ArrayList of
the receiver and the parameter other. Again, our approach does not impose spe-
cial methodological rules to ensure this “ownership transfer” takes place safely.

void Switch(Stack other)
requires other # null A other.invariant();
requires invariant() A footprint() N other.footprint() = 0;
writes footprint() U other.footprint();
ensures invariant() A other.invariant();
ensures size() = old(other.size()) A other.size() = old(size());
ensures footprint() N other.footprint() = 0;
ensures (footprint() U other.footprint()).newElemsFresh();
{ ArrayList tmp = contents; contents = other.contents; other.contents = tmp; }

Peer Objects. The examples considered so far can be verified using traditional
ownership-based solutions, since the object graph has an hierarchical, tree-like
structure. However, many object-oriented programming patterns, including the
observer and iterator pattern, do not follow this structure. For example, con-
sider class iterator in Figure Bl No single iterator uniquely “owns” the list, and
similarly the list does not own its iterators.

Modifying a list while iterators are iterating over it can give rise to unex-
pected exceptions. For example, removing elements from a list can cause an
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class ArrayList {
int count;

Object[] items; class Stack {

ArrayList contents;

ArrayList()
writes (;
ensures invariant() A size() = 0; Stadﬂ.()
writes {;

ensures foolprint().isFresh();

{ items = new Object[10]; } ensures invariant() A size() = 0;

ensures footprin().isFresh();

void add(Object o); { contents := new ArrayList(); }

requires invariant();

writes footprint();

ensures invariant();

ensures size() = old(size() + 1);

ensures get(size() — 1) = o;

ensures Vi € (0: size() — 1) o get(i) = old(get(i));
ensures footprint().newElemsfresh();

{..)

void Push(Object o)
requires invariant();
writes footprint();
ensures invariant();
ensures size() = old(size()) + 1;
ensures footprint().newElemsFresh();
{ contents.add(0); }

pure int size()
requires invariant();
reads footprint();

{ return contents.size(); }

pure Object get(int i);
requires invariant() A0 <i < size();
reads footprint();

{ return items[i]; }

pure bool invariant()

pure int size(); reads invariant()?footprint() : universe;

requires invariant();
reads footprint(); {
ensures 0 < result;

{ return count; }

return contents % nullA
contents.invariant )
&contents ¢ contents.footprint();

}

pure bool invariant()
reads invariant()?footprint() : universe;

{ return items # null A 0 < count < items.length; } pure sc?t fogtprm?()
requires invariant();
, reads footprint();
Pt:’;l i‘;ﬁefs"‘Zf’Zﬂito. { return {&contents} U contents.footprint(); }
reads footprint(); }

{ return {&count, &items} U elems(items); }

Fig.2. A class ArrayList and a class Stack. Stack objects internally use ArrayList
objects.
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ArrayOutOfBoundsFEzxception in a corresponding iterator’s next method. How-
ever, since the reads clause of an iterator’s invariant includes the footprint of
the corresponding list, any modification to the list immediately invalidates its
corresponding iterators, making it impossible to use an iterator which is “out of

sync” with its list.

class Iterator {
ArrayList list;
int index;

Iterator(ArrayList 1)
requires | # null A l.invariant();
writes ();
ensures invariant();
ensures list() = [;
ensures footprint().isFresh();
{ list :=1; }

Object next()
requires invariant() A hasNext();
writes footprint();
ensures invariant() A list() = old(list());
ensures footprint().newElemsFresh();

{ return list.items[index + +]; }

pure bool hasNezt()

pure ArrayList list()
requires invariant();
reads footprint();

{ return list; }

pure bool invariant()
reads invariant()?
(footprint() U list().footprint()) : universe;
{ return list # null A list.invariant()A
0 < index < list.count/\
&list & list.footprint()A
&index & list.footprint(); }

pure set footprint()
requires invariant();
reads footprint();

{ return {&list, &index}; } }

requires invariant();
reads footprint() U list().footprint();
{ return index < list.count; }

Fig. 3. The iterator pattern

4 Inheritance

Adding inheritance to SJava complicates the handling of pure methods, since
inheritance allows binding method calls statically and dynamically, depending
on the method itself and on the calling context. More specifically, an abstract
method is always dynamically bound, while a private or final method is always
statically bound. Non-abstract, non-private methods can either be statically or
dynamically bound: a super call to such a method is statically bound, but any
other call is dynamically bound.

To model the fact that a call to a pure method m in a class C' can be both
statically and dynamically bound, we introduce two function symbols for every
pure method in the verification logic (instead of only one): #C.m and #C.mp
(similar to [78]). The former function symbol represents statically bound calls
to m, and is axiomatized as described in Section 21 The latter function symbol
represents dynamically bound calls is axiomatized by relating it to the former
symbol using the following axiom.
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Vheap, 0,21, . ..,T, ® typeof (0) = C =
#C.mp(heap,0,21,...,2,) = #C.m(heap,0,x1, ..., x,)

That is, given that the dynamic type of some object o (denoted by typeof (0)) is
C, one may assume that dynamically bound calls to the object equal statically
bound calls to C’s method m. In addition, whenever a method D.m overrides a
method A.m, the following axiom is added: two dynamically bound calls of m
yield the same result whenever the receiver’s dynamic type is a subtype (denoted
by <:) of D.

Vheap, 0,21, . ..,T, ® typeof (0) <: D =
#A.mp(heap,0,21,...,x,) = #D.mp(heap, 0,1, ..., x,)

Calls on the receiver object in method contracts are treated differently from such
calls in code. If a method call is dynamically bound, then calls on the receiver
object in the method contract are treated as dynamically bound; otherwise calls
in the contract on the receiver are treated as statically bound. Methods them-
selves are verified assuming they are called statically, i.e. calls in the contract
on the receiver are bound statically. Doing so is sound, provided every subclass
overrides each method. Indeed, if a method is called statically, then the caller
and callee agree on the method contract. If a method is called dynamically, then
the dynamic type of the receiver equals the static type, and therefore the static
contract equals the dynamic one.

To ensure Liskov’s substitution principle, we impose the restriction that over-
riding methods must inherit the contract of overridden methods as is. The only
exception to this rule are postconditions. More specifically, an overriding method
may extend the contract of the overridden method with additional postcondi-
tions. More flexible approaches to ensure proper subtyping exist (e.g. [9]), and
combining them with our approach is part of future work.

5 Discussion

Defaults. The examples shown in this paper contain on about 2 lines of spec-
ification for every line of code, where we consider the invariant and footprint
methods to be part of the specification. To reduce this annotation overhead,
we propose using defaults for common programming and specification patterns.
More specifically, we propose generating footprint and invariant methods based
on field modifiers, and adding default contracts to methods. Using these defaults
reduces the number of annotation in class Stack of Figure 2l from 17 to 3.

The scheme is as follows. The footprint and invariant methods in a class C'
are generated based on C’s fields. That is, the footprint method includes loca-
tions corresponding to C’s fields. Moreover, fields may be marked with a rep
modifier. The footprint of an object referenced from one of C’s rep fields is also
included in the footprint. Finally, C’s footprint method includes the footprint
of the superclass. C’s invariant method states that rep fields are non-null, that
the footprints of rep objects and of the superclass do not contain locations cor-
responding to fields of C, and that those footprints are mutually disjoint. The
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footprint method requires the invariant and reads itself. The invariant method
reads the footprint, provided it returns true.

Each method is given a default method contract. Pure methods require the
invariant and read the footprint. Constructors write the new object’s footprint,
ensure the invariant, and ensure that the footprint contains only fresh locations.
Other mutators require and ensure the invariant, write the pre-state footprint,
and ensure that the footprint is only extended with fresh locations.

Experience. Table[lists the time taken to discharge the verification conditions
generated for each program. The experiments have been carried out on a regular
desktop pc with a Pentium 4 3.00 Ghz CPU and 512 Mb of RAM.

The verifier prototype is a custom build of the Spec# program verifier [10],
and uses 2 theorem provers: Z3 and Simplify. The latter prover is only used if the
former fails to verify a verification condition. Z3 is typically faster than Simplify,
but is sometimes unable to prove the constructor’s postcondition stating that
elements in the new object’s footprint are fresh.

Table 1. Table showing the time taken (in seconds) to verify the examples. Examples
not shown in this paper can be downloaded from [].

cell fraction list, stack & iterator observer masterclock
# lines 20 52 138 85 74
time taken 0.6 1.6 25.2 15.1 11.4

6 Related Work

The approach presented in this paper was inspired by the work of Kassios [3I/4].
Kassios uses specification variables, similar to our pure methods, to achieve data
abstraction. To solve the framing problem, he proposes using dynamic frames
to abstractly specify the footprint of specification variables and the effect of
mutator methods. Dynamic frames are specification variables that hold sets of
memory locations. However, Kassios’ solution is presented in the context of an
idealized, higher-order logical framework. We show how Kassios’ ideas can be
incorporated in a program verifier for a Java-like language based on first-order
logic, and demonstrate that many interesting examples can be verified automat-
ically. Moreover, we extend his solution to deal with Java-like inheritance.

In the basic Boogie methodology [6], data abstraction is limited to object
invariants. More specifically, each object has a ghost field inv, and the method-
ology ensures that the invariant of an object o holds whenever o.inv is true. To
ensure the soundness of the approach, the Boogie methodology imposes several
restrictions: inv can only be updated using special operations called pack and
unpack, updating a field o.f requires o.inv to be false, and finally the invariant
itself can only mention fields within the object’s ownership cone. The dynamic
frames approach can be considered to be conceptually simpler than the Boogie
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methodology (and its extensions), since it does not impose any methodological
restrictions.

In [II] and [12], the authors extend the basic Boogie methodology to deal
with non-hierarchical object structures. In particular, they allow invariants to
mention fields outside of the object’s ownership cone provided certain visibility
requirements are met. More specifically, if the invariant of class C' mentions a
field f of a non-owned object, then C' must be visible in the the class declaring
f- No such restriction is present in our approach.

[713] and [I4] both extend the basic Boogie methodology with support for
data abstraction using pure methods. Similarly to our approach, they model pure
methods as functions in the verification logic. Both approaches essentially solve
the framing problem by encoding in the verification logic that these functions
depend only on a number of ownership cones instead of on the entire heap.
To ensure the consistency of the verification logic (regardless of the addition of
axioms generated based on pure methods), [7] and [14] enforce the termination
of pure methods. The former approach does so by checking the acyclicity of the
call-graph at load-time. The latter approach relies on a heuristic for finding a
well-founded order. One of the major differences between their approach and
ours is that we allow pure methods to depend on any location, as long as the
location is an element of the method’s footprint (which can be any expression of
type set), and it is up to client code to track disjointness of method footprints,
while they only allow pure methods to depend on objects in a limited number
of ownership cones (indicated by means of rep modifiers on fields).

Leino and Miller [I5] extend the basic Boogie methodology with model fields
to achieve data abstraction. A model field declaration consists of a type, a name,
and a constraint. A model field cannot be assigned to within the program text;
instead the model field is assigned a random value satisfying the constraint
whenever the object is being packed. To prevent unsound reasoning arising from
unsatisfiable constraints, Leino and Miiller require the theorem prover to come
up with a witness before assuming the constraint holds. However, experience
shows that theorem provers (in particular Simplify) are unable to find witnesses
even in simple cases, and as such it is unlikely that their approach is suitable for
use within an automatic program verifier.

Parkinson and Bierman [I6/I7] extend separation logic to the Java program-
ming language, introducing abstract predicates to attain data abstraction. Their
solution has not been implemented in an automatic program verifier, and the fea-
sibility of automatic verification has not been shown. Furthermore, Parkinson’s
abstract predicates are not part of the programming language itself, while pure
methods are. This might make it easier for programmers to use pure methods.

In [I§], the authors propose using data groups to specify side-effects. A data
group represents a set of variables (similarly to our footprint methods), and mu-
tator methods can abstractly specify their footprint using a modifies clause in
terms of these data groups (similarly to our writes clauses which use footprint
methods). However, to ensure the soundness, their approach imposes
two methodological restrictions: the pivot uniqueness and owner exclusion
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restriction. Our approach requires no such restrictions, and as a consequence
it can handle programs that [I8] cannot. For example, the former restriction
rules out sharing of representation objects, as is the case in the iterator example
shown in Figure

Banerjee, Naumann and Rosenberg [19] propose using regions, state-dependent
expressions similar to our method footprints, to specify the effect of mutators.
They develop a Hoare-style calculus and proof its soundness. However, the logic
is not implemented and, in effect, there are some challenges to do so when one
would target SMT solvers, e.g. they use ghost state and “recursion” to express
reachability, and they use frame subsumption, which should only be applied on
demand.

Miiller [8]’s thesis combines model fields with an ownership type system called
Universes. Model fields are similar to pure methods that have no parameters.
Model fields may depend on the fields of owned objects and the fields of peer
objects, i.e. objects with the same owner as the receiver. However, model fields
can only depend on peers if a model field is visible within the peer. For example,
if the pure method hasNezt from Figure flwere a model field, then hasNext would
have to be visible to the class ArrayList. Our approach has no such restriction.

7 Conclusion

In summary, this paper proposed an approach to the automatic verification of
Java-like programs that combines the use of pure methods to achieve data ab-
straction with Kassios’ solution to the framing problem [3/4]. More specifically,
we solve the framing problem by extending each method contract with a method
footprint, an upper bound on the set of memory locations read or written by
the corresponding method. Thanks to the use of dynamic frames, pure methods
that return a set of memory locations, these method footprints can be specified
without breaking information hiding. The approach has been implemented in a
prototype [I], which has been used to automatically verify several challenging
programs, including the iterator and observer pattern. We plan to extend our
approach to concurrent programs, and apply our approach in a larger case-study.
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