
A Sound Semantics for OCamllight

Scott Owens

University of Cambridge

Abstract. Few programming languages have a mathematically rigorous defini-
tion or metatheory—in part because they are perceived as too large and complex
to work with. This paper demonstrates the feasibility of such undertakings: we
formalize a substantial portion of the semantics of Objective Caml’s core lan-
guage (which had not previously been given a formal semantics), and we develop
a mechanized type soundness proof in HOL. We also develop an executable ver-
sion of the operational semantics, verify that it coincides with our semantic def-
inition, and use it to test conformance between the semantics and the OCaml
implementation. We intend our semantics to be a suitable substrate for the verifi-
cation of OCaml programs.

1 Mechanizing Metatheory

Researchers in programming languages and program verification routinely develop their
ideas in the context of core calculi and idealized models. The advantage of the core
calculus approach comes from the efficacy of pencil-and-paper mathematics, both for
specification and proof; however, these techniques do not scale well. Usable program-
ming languages contain numerous constructs that are designed for practical utility rather
than mathematical elegance, and their presence makes the proofs too long and tedious
to check reliably by hand. Furthermore, the specifications themselves are subject to er-
rors [1,2]. Formal verification offers a better path: using a proof assistant to formalize
an unambiguous semantics and to mechanize high-assurance proofs.

In this paper, we present a formal verification methodology that successfully scales
to a programming language that includes a large complement of pragmatic constructs.
Although our formal proofs are more detailed than informal pencil-and-paper proofs,
they follow the same structure, use the same mathematical techniques, and the proof
assistant ensures that they are correct. We did not have to invent new specification
or reasoning techniques to succeed, but we did exercise care in the details of our
formalization.

We demonstrate the methodology on a substantial fragment of Objective Caml [3,
Chapter 1] that we call OCamllight (since its feature set is roughly comparable to that
of Caml Light). As a guiding design principle, we try to ensure that OCamllight could
form a substrate for applying program verification techniques to a significant subset of
real OCaml programs.

We design and formalize the OCamllight type system and operational semantics us-
ing Ott [4], a tool for expressing such specifications, and we use the HOL-4 proof
assistant [5] to prove a type soundness theorem.1 We also formalize a deterministic,

1 We verify all of our proofs in HOL-4, but our techniques apply in most systems based on
higher-order logic (HOL), including Isabelle/HOL and Coq.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 S. Owens

executable version of the operational semantics, and prove that the two correspond.
OCaml is not defined formally, so our semantics is a post-hoc attempt to detail the
behavior of the language—both as described in the manual and as observed on the im-
plementation. To build confidence that the semantics corresponds to the implemented
language, we run test programs on both. Testing is a crucial component in the accep-
tance of post hoc semantics—we are not associated with the OCaml developers, and the
test suite provides tangible evidence that our semantics is accurate.

Our development has taken under six man-months from start to finish, and based on
our experience, we believe there is no reason why many well-established programming
languages cannot be formally specified and given mechanized metatheories. To summa-
rize our contribution, we demonstrate the feasibility of mathematical specification and
mechanized reasoning for a useful fragment of a real-world programming language by:

– creating and formally specifying an operational semantics and type system for
OCamllight (Sect. 2). The semantics themselves are a novel contribution; no prior
attempt to give OCaml a formal semantics appears in the literature;

– using HOL to mechanize a type soundness proof for OCamllight (Sect. 3), the first
of this scale in HOL; and

– demonstrating the reliability of our operational semantics with testing, enabled by
the creation and verification of an executable version of the semantics (Sect. 4).

The remainder of this section explains our methodology and related work, and Sect. 5
presents observations and statistics on the mechanization. All of the formalizations,
proofs, and tests are available at http://www.cl.cam.ac.uk/∼so294/ocaml.
The specification is written in Ott source, and is accompanied by HOL-4 and LATEX
versions that are generated automatically by Ott. Ott can also generate Isabelle and Coq
versions.2

Methodology. Our formalization and proofs use standard techniques, all of which are
supported by HOL. The abstract syntax of OCamllight is represented by mutually re-
cursive algebraic datatypes, and the type system (which is purely syntactic and non-
algorithmic) is expressed with inductively defined relations. The operational seman-
tics is small-step, and is expressed as an inductively defined labeled transition relation
over source programs (the labels carry store actions that allow us to avoid explicitly
threading the store through the rules). Value and type identifiers are not treated up to
α-equivalence, because our semantics never reduces under a value variable binder, and
well-typed programs have no free variables. The semantics can reduce under a type vari-
able binding (i.e., the bound expression of a let), requiring α-renaming in our proofs;
we choose to represent type variables using de Bruijn indices. In the proof we make
extensive use of rule induction and structural induction principles. We also rely upon
the ability to create functions using well-founded recursion [6], and upon an automated
first-order prover [7].

Our OCamllight formalization follows the formal syntactic specification (BNF) in
the OCaml manual [3, Chapter 6] as closely as is feasible. This close connection with
the source language helps make the semantic rules directly accessible to semanticists

2 Thanks to Tom Ridge and Gilles Peskine for developing the respective translations.

http://www.cl.cam.ac.uk/~so294/ocaml

A Sound Semantics for OCamllight 3

who are familiar with OCaml, and we believe that direct accessibility is particularly
advantageous in the context of program verification, especially by symbolic execution
techniques [8,9,10]. A consequence of this choice is that our soundness proof has to deal
directly with complex source-level constructs (e.g., n-tuples, n-way recursive lets, and
full OCaml-style datatypes and pattern matching) that do not usually appear in lambda
calculi. This complexity adds up to a relatively large language definition, roughly com-
parable, in terms of the number of constructs and semantic rules, to full-scale languages.
Our methodology is relatively unsophisticated, but it handles this scaling. Our language
does not involve the most semantically intricate features that appear in some program-
ming languages, such as Standard ML’s module system, so our methodology remains
untested for these situations.

Related Work. There has been extensive work on formalizing language semantics
(e.g., POPLmark [11] solutions), and Java, C, and Standard ML (SML) have all been
subject to large-scale developments in proof assistants, with varying degrees of suc-
cess [12,13,14,15,16,17,18,19]. Type soundness has been proved for large subsets of
Java [12,15,18], with a similar methodology to ours; however, the formalized versions
of Java are significantly simpler than OCamllight : for example, they lack parametric
polymorphism and pattern matching. Norrish’s formalization of C [16] contains some
metatheoretic results, but none of them approaches the scale of the OCamllight type
soundness proof.

The only prior mechanized type soundness proof for a realistic ML-like language
(for SML) [13] follows a methodology that differs significantly from ours. Instead of
formalizing SML directly, it uses an internal language (IL) into which SML, including
its module system, can be elaborated ([13] proved type soundness only for IL, leaving
a formalized elaboration to future work; this work has now been completed [20]). IL
is essentially a heavily streamlined version of SML designed to yield an elegant and
tractable mechanized soundness proof. In particular, IL does not directly support pat-
tern matching, implicit polymorphism, or n-ary constructs; they are all compiled away
by the elaboration. Unlike the IL soundness proof, we do not formalize a generative
module system, but our system directly handles some features, such as datatypes and
polymorphism, which are handled only by the module system in IL. However, OCaml’s
semantics differs from SML’s in many details, some of which make our job easier (e.g.,
OCaml does not support local type or exception definitions, equality types, or over-
loading). Extending OCamllight to add a full SML-like module system would likely
require direct proof assistant support for reasoning about binding, or some amount of
elaboration, or both.

Another important difference between the SML proof and ours is the setting of the
mechanization; the SML proof was carried out in the Twelf proof assistant [21] which
differs significantly from HOL:

– HOL is a classical, impredicative logic (with a model in ZFC set theory) whereas
Twelf is constructive and predicative.

– Twelf supports higher-order abstract syntax (binding for the programming language
being modeled is represented using the binding of the Twelf logic itself) which
alleviates the burden of binding-related reasoning in proofs. HOL’s logic is not
suited for higher-order abstract syntax representations of programming languages.

4 S. Owens

– Twelf’s proof system only supports ∀∃-theorems (i.e., no universal quantification is
allowed under an existential quantifier). Syntactic soundness theorems fit into this
restriction, but other theorems or program verifications might not (proofs by logical
relations are a standard example). HOL faces no such restriction.

– HOL uses a powerful tactic-based proof system that allows common proof steps
to be automated using SML programs (such as the first-order logic proof search
mentioned above). However, learning to effectively use the system is a non-trivial
task, and reading existing proofs can be difficult. Twelf uses a more accessible
declarative proof style, but lacks this powerful automation.

Prior SML proof efforts tried to closely follow the mathematical specification of The
Definition of Standard ML [22], but failed, in part because of its big-step operational
semantics, in part because of its bugs, and in part because the proof assistant technology
of the time was lacking [1,2,14,17,19]. The Metis [7] and TFL [6] packages, upon which
we rely, did not exist at the time.

2 OCamllight

To a crude approximation, our OCamllight semantics is a core ML, excluding only mod-
ules and objects. In detail, it covers the following features, which form a complete lan-
guage for writing programs without undue burden:

– definitions
• variant data types (e.g., type t = I of int | C of char),
• record types (e.g., type t = { f : int ; g : bool }),
• parametric type constructors (e.g., type ′a t = C of ′a),
• recursive and mutually recursive combinations of the above,
• exceptions,
• values;

– expressions for type annotations, sequencing, and primitive values (functions, lists,
tuples, and records);

– with (record update), if , while, for, assert, try, and raise expressions;
– let-based polymorphism (with an SML-style value restriction);
– mutually-recursive function definitions via let rec;
– pattern matching with nested patterns, as patterns, and “or” (|) patterns;
– mutable references with ref , :=, and !;
– polymorphic equality (the OCaml = operator);
– 31-bit word semantics for ints (using an existing HOL library);
– IEEE-754 semantics for floats (using an existing HOL library).

OCamllight overspecifies evaluation ordering relative to the OCaml manual (which
makes no guarantees), generally going right-to-left in agreement with our observa-
tions of the OCaml bytecode implementation. On the above features it differs from
the OCaml implementation in only the following four minor ways (the first three dis-
crepancies could be repaired with a lightweight source-to-source elaboration):

A Sound Semantics for OCamllight 5

typeconstr , tc ::= typeconstr name | int | exn | list | option | ref | · · ·
typexpr ::= α | | typexpr1 → typexpr2 | typexpr1 ∗ ∗ typexprn | typeconstr

| typexpr typeconstr | (typexpr1 , ... , typexprn) typeconstr | · · ·
constr ::= constr name | Match failure | None | Some | · · ·
constant ::= int literal | constr | true | false | [] | () | · · ·
unary prim ::= raise | ref | not | ! | ∼−
binary prim ::= = | + | − | ∗ | / | :=
pattern ::= value name | constant | {field1 = pattern1 ; ... ; fieldn = patternn }

| | pattern as value name | (pattern1 | pattern2) | · · ·
expr ::= (%prim unary prim) | value name | constant | (expr : typexpr)

| expr1 , , exprn | constr (expr1 , .. , exprn) | expr1 :: expr2
| {field1 = expr1 ; ... ; fieldn = exprn } | expr .field | expr1 expr2
| { expr withfield1 = expr1 ; ... ; fieldn = exprn } | while expr1 do expr2 done
| letpattern = expr in expr | let rec letrec bindings in expr
| try expr with pattern matching | location | · · ·

pattern matching , pat mat ::= pattern1 → expr1 | ... | patternn → exprn
letrec bindings, lrbs ::= letrec binding1 and ... and letrec bindingn

letrec binding ::= value name = function pattern matching
definition ::= let let binding | let rec lrbs | type definition | exception definition

Fig. 1. Grammar (excerpt)

– OCaml’s record expression evaluation ordering is right-to-left in the order of the
labels from the record’s type definition, and in OCamllight the ordering is right-to-
left based on the record expression only;

– the behavior of partially applied, curried functions with non-exhaustive pattern
matches can differ when the pattern matching fails at run time;

– the OCamllight type system rejects programs with duplicate data constructor or
record field name definitions; and

– the OCamllight type system enforces a value restriction on let-based polymorphism,
and rejects programs that require OCaml’s greater permissiveness.

In the future we would like to add support for type abbreviations, pattern matching
guards (when), mutable records, arrays, and modules. We expect only the last of these
to require significant changes to the formalization, and perhaps a lightweight elabora-
tion, because of the more complex type theory underlying OCaml modules.

Although the grammar is too large to show here in its entirety (it has 251 produc-
tions), the (Ott generated) excerpt in Fig. 1 demonstrates its general flavor. In a few
cases, we treat a source-level construct as syntactic sugar; for example fun is locally
translated into function. Ott turns “x1...xn” in grammars and rules into corresponding
list-based HOL code.

2.1 Operational Semantics

The (small-step) operational semantics of OCamllight is phrased as a relation on defini-
tions, programs, and stores; Fig. 2 gives an overview of the main relations and a few of
the 137 rules to illustrate interesting aspects of OCamllight and the formalization (value
and v indicate the Ott-enforced value grammar for expr).

6 S. Owens

L ::= ε | ref value = location | ! location = value | location := value
program ::= definitions | (%primraise) expr

� 〈definitions , program , store〉 −→ 〈definitions ′, program ′, store ′〉 � expr L−→ expr ′

� 〈definitions , program〉 L−→ 〈definitions ′, program ′〉 � store L−→ store ′

� expr matches pattern � {{ substs x }} � expr matches pattern
� v with pattern matching −→ expr

� e1
L−→ e ′

1

� e1 v0
L−→ e ′

1 v0

(1)
� ref v ref v = l−→ l

(2)

� v matches pat � {{ x1 ←v1 , .. , xm ←vm }}
� v with pat → e | pat1 → e1 | ... | patn → en −→ {{ x1 ←v1 , .. , xm ←vm }} e

(3)

� v1 matches pat1 � {{ substs x1 }} � vn matches patn � {{ substs xn }}
� (v1 , , vn)matches (pat1 , , patn) � {{ substs x1 @ @ substs xn }} (4)

¬(v matches pat1)
� v matches pat2 � {{ x1 ←v1 , .. , xn ←vn }}

� v matches pat1 | pat2 � {{ x1 ←v1 , .. , xn ←vn }} (5)
� v matches pat2

� v matches pat1 | pat2
(6)

lrbs = (x1 = function pat mat1 and ... and xn = function pat matn)
recfun (lrbs , pat mat) �
{{ x1 ← let rec lrbs in x1 , ... , xn ← let rec lrbs in xn }} (function pat mat)

(7)

lrbs = (x1 = function pat mat1 and ... and xn = function pat matn)
recfun (lrbs , pat mat1) � e1 ... recfun (lrbs , pat matn) � en

� let rec lrbs in e −→ {{ x1 ←e1 , ... , xn ←en }} e
(8)

� try (%primraise) v with pattern matching −→
match v with pattern matching | → ((%primraise) v)

(9)

� store L−→ store ′

� 〈definitions value, program〉 L−→ 〈definitions , program ′〉
� 〈definitions value , program , store〉 −→ 〈definitions , program ′, store ′〉 (10)

Fig. 2. Operational semantics (excerpt)

Contexts. We specify evaluation-in-context with a collection of congruence rules (e.g.,
Rule 1). Alternative evaluation-context based approaches (in which the context informa-
tion is encapsulated into a grammar-with-a-hole and hole filling function) can provide
a more compact formalization, but initial experimentation showed them to be less con-
venient for HOL manipulation. HOL’s automation works well with congruence rules
directly, whereas the process of interpreting the hole filling on a data object (the evalu-
ation context itself) introduced significantly more overhead.

Rule 1 incorporates right-to-left evaluation ordering for OCamllight . Dropping the
ordering requirement would require only trivial changes to the reduction rules and
soundness proof, but looking ahead to testing, or even program verification via sym-
bolic execution [8,9,10], we believe the benefits of a deterministic semantics outweigh
the drawbacks of slightly over-specifying the language.

A Sound Semantics for OCamllight 7

Store. The reduction rules are annotated with labels (L in Fig 2). Whenever the store
must be consulted or updated (e.g., Rule 2), the label records the relevant information,
both input from and output to the store. Thus, the store does not need to be threaded
through the semantics, a formal version of the informal “state convention” of The Defi-
nition of Standard ML.3 Rule 10 correlates the program’s reduction with a reduction in
the store. We anticipate using the labels to conveniently add other features, including
I/O and concurrency.

Value Binding. All variable binding in OCamllight is expressed through pattern match-
ing, and the pattern matching rules implement binding with (parallel) substitutions
(Rules 3 and 4).4

Rule 5 for matching the right side of an “or” pattern must check that the left pat-
tern does not match. HOL’s rule induction package forbids a recursive call to the pat-
tern matching relation under the requisite negation because such constructions are not
inductive in general. We use a previously defined relation that simply checks pattern
matching without building the substitution. This relation is acceptable to HOL because
it does not need to discriminate between the cases where the first or second pattern
match (Rule 6).

Recursive bindings use a substitution that replaces the bound variables with the entire
recursive binding construct (Rules 7 and 8). This is one place where working directly
on OCaml source complicates the specification and metatheory; the rule for a single
function recursive let would be significantly simpler.

Primitives. We denote primitive operators with a special symbol %prim to avoid
confusing primitives (e.g., (%prim+)), which the semantics must directly interpret,
with variables (e.g., +), which can be rebound in the source program. Furthermore,
it distinguishes partially applied binary primitives (e.g., (%prim+)0), which are val-
ues, from other applications, which are not. Evaluation starts with a substitution that
replaces identifiers in the initial environment with the corresponding %prim values
(e.g., substituting (%prim+) for +).

Exceptions. For each congruence rule, there is a corresponding exception rule that dis-
cards the immediate context. When an exception reaches a try expression it is matched
against the with portion (Rule 9). If it reaches the top level of a program, the rest of
the program is discarded, and no further evaluation occurs.

Curried functions. The semantics of OCamllight differs slightly from OCaml in its
treatment of partial pattern matches in curried functions. We reduce function appli-
cations one-at-a-time whereas the OCaml implementation does not reduce a curried
function until all of its arguments are available. Thus, the following program raises a
pattern matching exception on our semantics, but not in the implementation.

let f = function 1 → function → 0 ; ; let = f 2 ; ;

3 The evaluation context approach can also avoid store threading.
4 We write cons as , and append as @.

8 S. Owens

Specifying the implemented behavior would entail using the same elaborative pre-
pass for detecting multiple-argument functions as the OCaml compiler. We do not be-
lieve this to be worth the effort given that the departure is small, and it is only observable
in the presence of non-exhaustively matched patterns (whose existence the compiler can
detect) which furthermore fail at run time.

2.2 Type System

Figure 3 gives an overview of our type system for OCamllight , along with a few of
its 173 rules. The type system is mostly syntax directed, but non-algorithmic, due to
declarative handling of polymorphism and recursion.

Environments. The E productions describe the environments used by the type sys-
tem. A binding, EB , can be one of the following, in order: a de Bruijn type variable
binding (TV), a value binding; a constant data constructor; a parameterized data con-
structor; a variant type constructor; a record’s field name; a record type constructor; or
a store location. If our type system checked pattern matches for exhaustiveness, variant
type constructors would have to keep a constructor list similar to a record type con-
structor’s field list. Location bindings are introduced only by the top-level store, and
type constructor, field, and value constructor bindings are introduced only by top-level
definitions. Type variable and value bindings are introduced by let expressions, with
unbounded nesting.

In an ok environment E , all type constructor and type variable references are bound
by a prior EB . Also, E contains no duplicate bindings for a location, type constructor,
value constructor, or field name. The type constructor restriction (which is enforced in
OCaml) is necessary for type soundness; for example, the following program, which
gets stuck, would otherwise typecheck since v has type t which, at the field access site,
is specified to have a field g:

type t = { f : int } ; ; let v = { f = 1 } ; ; type t = { g : bool } ; ; let = v . g

The constructor and field restrictions do not preclude programs that get stuck, but
they are necessary for type preservation (and hence for our soundness proof). In the
following example, once v is substituted, the enclosing binding of C is different, and
C 1 can no longer be typed.

type t = C of int ; ; let v = C 1 ; ; type u = C of bool ; ; let = v

The absence of a similar restriction on value name repetition is also necessary for
type preservation, because we do not treat value names up to α-equivalence. The fol-
lowing example does not start with a repeated, nested binding, but immediately after v
is substituted, x is duplicated in the environment.

let v = function x → x ; ; letx = 1 ; ; letw = v 9

Polymorphism. A let expression with a non-expansive binding introduces a type vari-
able binding into E. The type of the binding can refer to this variable as a well-formed,
but opaque, type. When the binding’s type is added to E to check the let body, it is

A Sound Semantics for OCamllight 9

E ::= empty | E ,EB
EB ::=TV | value name : typescheme | constr name of typeconstr

| constr name of ∀ type params , typexprs : typeconstr | typeconstr name : kind
| field name : ∀ type params , typeconstr name → typexpr
| typeconstr name : kind {field name1 ; ... ; field namen } | location : typexpr

σT ::= {{ α1 ← typexpr1 , .. , αn ← typexprn }}

E � ok E � typexpr : kind
σT &E � pattern : typexpr � E ′ σT & E � expr : typexpr
E � definition : E ′ E � program : E ′

E � store : E ′ E � 〈program , store〉

shift 0 1σT &E ,TV � pat = nexp � x1 : t1 , .. , xn : tn
σT &E @ x1 : ∀ t1 , .. , xn : ∀ tn � e : t

σT &E � letpat = nexp in e : t
(11)

E � value name � value name : ts
E � t ≤ ts

E � value name : t
(12)

E � ∀ t ′ : Type
E � t1 : Type .. E � tn : Type
{{ t1 , .. , tn }} t ′ � t ′′

E � t ′′ ≤ ∀ t ′ (13)

σT &E � e : t
E � t ≤ σT src t

σT &E � (e : src t) : t
(14)

σT & E � e : t
E � field name : t → t ′

σT &E � e .field name : t ′ (15)

E @E ′ � store : E ′

E @E ′ � program : E ′′

E � 〈program , store〉 (16)

E � store : E ′

{{ }} &E � v : t
E � store , l �→ v : E ′, (l : t)

(17)

E � field name � field name : ∀ (α1 , ... , αm) , typeconstr name → t
E � (t ′

1 , ... , t ′
m) typeconstr name → t ′′ ≤

∀ (α1 , ... , αm) , (α1 , ... , αm) typeconstr name → t
E � field name : (t ′

1 , ... , t ′
m) typeconstr name → t ′′ (18)

σT &E ,TV � pat = nexp � (x1 : t ′
1) , .. , (xk : t ′

k)
E � letpat = nexp : (x1 : ∀ t ′

1) , .. , (xk : ∀ t ′
k)

(19)

Fig. 3. Type system (excerpt)

first generalized into a type scheme (Rule 11). Where the body refers to the binding, the
type scheme is instantiated to a type that is valid at the use point (Rules 12 and 13).5

One of the more subtle aspects of OCamllight is the treatment of type variables that
appear in explicit annotations. These are scoped by top level definitions, and stand in
for arbitrary types. Thus, the top-level let definition rule (19) creates a substitution σT

that supplies the types for these variables to Rule 14. Substituting bool for ′a, f in the
following program has type bool → bool, which agrees with OCaml.6

5 Each TV actually introduces an infinite collection of type variables, indexed by numbers,
because a let expression can introduce any number of type variables.

6 The corresponding program in SML is not well typed.

10 S. Owens

let f (x : ′a) : ′a = x&& true

Stores. Since the store can contain cyclic structures, it is type checked in a context that
includes E′, the types of the locations in the store (Rule 16). Values in the store cannot
have type variables in their enclosed type annotations (hence the empty substitution
appears in the Rule 17), because such variables would have escaped their scope at a top-
level definition. Thus, before placing a value into the store, the operational semantics
replaces all of its type variables with the wildcard type variable .

Records and Variants. Rules 15 and 18 show how expressions and patterns consult
the environment for the types of the fields and constructors.

3 Type Soundness

The type soundness theorem (Theorem 1) ensures that a well-typed program does not
get stuck. Our mechanized proof follows the standard methodology of preservation and
progress lemmas. These lemmas are proved at three levels: for expressions, for defini-
tions and for top level definition/program/store tuples. They rely on a typical collection
of other main lemmas: substitution, weakening, strengthening, type substitution, and
validity. The number and size of these lemmas prevents a full presentation here, so we
instead highlight several aspects.

Theorem 1. If both � 〈ε, program , store〉 −→∗ 〈definitions ′, program ′, store ′〉 and
ε � 〈program , store〉 then either
(program ′ = ε), or (∃value. program′ = (%primraise) value), or
∃definitions ′′ program ′′ store ′′.

� 〈definitions ′, program ′, store ′〉 −→ 〈definitions ′′, program ′′, store ′′〉.

Type Variable Binding. We use a de Bruijn index encoding of type variables. Shift op-
erations appear in the rules of the type system 19 times, 16 of which occur to generalize
a type into a type scheme from a non-polymorphic binder. Since the type variables that
appear in source language type annotations are handled with substitutions (Sect. 2.2),
the de Bruijn encoding does not require changing the source language at all: indices
and shifts exist only in the type rules and the soundness proof (but not the operational
semantics). Thus, the de Bruijn encoding does not substantially complicate OCamllight .

Unlike value variables, type variables must not be repeated in the context. Other-
wise, a type scheme generalization in one let expression might capture a type variable
introduced by a different let expression. The prohibition on repetition is exactly the
reason that α-renaming is required in the soundness proof. In the following example,
the first evaluation step substitutes the middle let underneath the type variable binding
introduced by the rightmost let.

letx = (function → let y = functionw → w in y) in let z = x in z

In the proof, this situation corresponds to the polymorphic let case of the weakening
lemma. Given a let expression and typing derivation in E1 @ E2, we must show that
it has a type in E1 , ′a @ E2. In the given derivation, the let extends the environment

A Sound Semantics for OCamllight 11

with a type variable that might be ′a. If so, a new derivation cannot be formed without
renaming one of the type variables.

We investigated two proof approaches that do not use an α-aware representation for
type variables. The first approach begins by showing an equivariance property: that the
result of consistently renaming the type variables in a typing derivation remains a typ-
ing derivation. Equivariance is then used in the weakening proof to rename the type
variable added by the let. The drawback of this approach is that weakening cannot be
proved with a rule induction because the renamed derivation does not match up with
the induction hypothesis. Instead the induction must be on derivation heights, which
requires a significant amount of additional work to formalize in HOL. The second ap-
proach combines the statements of equivariance and weakening into a single lemma,
which restores the ability to do rule induction.7 Ultimately, we concluded that both
approaches required significantly more work to mechanize than the de Bruijn repre-
sentation, where the equivariance result is intrinsic to the representation. Since the de
Bruijn representation was easy to work with in the proof, we did not consider other
equivariant representations.

Lemma 1 states expression weakening for a single de Bruijn type variable.

Lemma 1. If (σT & E2 @ E1 � expr : typexpr) then
σT ↑1

num tv(E1) & E2,TV @ E1 ↑1
0 � expr : typexpr ↑1

num tv(E1).

Labels. The preservation and progress lemmas are split into pieces according to the
transition labels. Lemma 2 states that a well typed program can take a step with some
label, and Lemma 3 allows the label to be altered so that it works for a given store. The

� store L−→ store ′ relation updates a store according to a label.

Lemma 2. Suppose that E has no value bindings. If σT & E � expr : typexpr then
either expr is a value, or (∃value . expr = (%primraise) value), or

(∃L expr ′. � expr L−→ expr ′).

Lemma 3. Suppose that all of the locations in expr are bound to values in store. If �
expr L−→ expr ′ then ∃L′ expr ′ store ′. � expr L′

−→ expr ′ ∧ � store L′
−→ store ′.

The statement of preservation (Lemma 4) relies on two relations for checking labels.
The first σT & E � L ensures that the parts of L that are input into the expression
reduction (e.g., the value of a location dereference) are well formed and well typed. The
second σT & E � L � E ′ ensures that the output parts of L (e.g., the location being
dereferenced) are well formed and well typed. It also gives the environment bindings
created by the output. Thus, the input relation appears in the preservation statement’s
assumptions and the output in its conclusions.

Lemma 4. Suppose that E has no value bindings.

If � expr L−→ expr ′ and σT & E � expr : typexpr and σT & E � L then
∃E ′. σT & E � L � E ′ ∧ σT & E @ E ′ � expr ′ : typexpr .

7 Thanks to Tom Ridge for this observation.

12 S. Owens

The top level preservation theorem for program/store tuples relies on Lemma 4 (lifted to
definition sequences) and two other lemmas. The first states that updating a well typed
store with a well typed (by the expression output label typing relation) label gives a
well typed store. The second states that if a well typed store is updated with a label then
the label is well typed (by the expression input label). These parts of the proof are not
particularly difficult: the key insight is to split the label checking between two relations.

Store Typing. Not only can the store contain cyclic references as mentioned in
Sect. 2.2, but it can also contain constructed and record values. To ensure preservation,
the store must be typed in an environment that has bindings for any type definitions
that might be needed. Thus, the operational semantics builds a separate record of type
definitions as it encounters them. Intermediate computation steps are type checked by
converting the type definitions into an environment, then checking the store in this envi-
ronment, and finally checking the unevaluated definitions with both the type definitions’
and the store’s environments.

4 Testing and Determinism

Because creating a large semantics is an error-prone activity [1,2], we run a test suite
of programs on the semantics to build confidence in its accuracy. Crucially, we can
transfer this confidence to others by showing them the test suite. To our knowledge,
the testing of full-language-scale semantics has been previously carried out only for the
Scheme semantics in the PLT Redex term rewriting system [23] and in ACL2 for a Java
Virtual Machine [9,24] (symbolic execution is part of the standard ACL2 methodology,
and it has often been applied to test full-scale hardware formalizations). Although both
the type system and operational semantics should be tested, our focus here is on the
operational semantics, leaving the type system for future work.

Although a mechanized type soundness proof rules out certain kinds of errors, it falls
far short of ensuring that the semantics accurately models the intended language. In fact,
we discovered an error while preparing the executable semantics, before testing even
began. While proving Lemma 5 we discovered that we had omitted the negated premise
of the “or” pattern matching rule (Sect. 2.1). This mistake allowed the semantics to
non-deterministically return incorrect results in some cases, while remaining perfectly
type sound.

Another class of specification mistakes arises from pattern-matching rules that do not
find a match when they should. These mistakes do not cause type soundness violations
because a Match failure exception is raised when no patterns match. For example,
after finishing the type soundness proof, we realized that the rule for record patterns
was incorrectly requiring the field lists to be in the same order for both the pattern and
value. However, the pattern matcher can be tested for this sort of bug.

Evaluation Function. The first step toward testing the semantics is to create an ex-
ecutable version of it. Although the relational formulation of the semantics could in
principle be executed as a logic program (as Twelf does), we chose to create a func-
tional version for execution. This is in part because HOL-4 does not currently support

A Sound Semantics for OCamllight 13

relational execution, but can evaluate functions (and can generate ML code from func-
tions for greater speed). Additionally, since the semantics is deterministic, we would
like to prove that fact. We prove determinacy and support testing with the same tech-
nique: we create a functional version of the semantics and prove it equal to the relational
version.

We use the ability to do functional programming in HOL’s logic to implement the
single-step execution function using common patterns of functional abstraction to re-
duce the amount of redundant code and make the definition tractable for a language the
size of OCamllight . Because HOL is a logic of total functions only, we must prove that
the functions always terminate. The proof is not difficult, but the mutually recursive
helper functions used to abstract out common patterns make it complicated enough that
HOL-4 does not prove termination automatically.

To maintain the correspondence with the labeled transition relation, the store is not
an input to the expression reduction function (red); instead, the result type for red
includes cases for interactions with the store. For example, the result for a store lookup
reduction indicates the location of the reference, and it supplies a function that is applied
to the value in the location to determine the result. Lemma 5 correlates the relational
and functional expression semantics using interp result, which applies the infor-
mation in a label to a reduction result.

Lemma 5. � expr L−→ expr ′ iff interp result(red(expr),L) = Some expr ′.

Unlike the expression semantics, the top-level semantics is not deterministic: the lo-
cation allocator can use any unallocated location for the new reference. Thus, the
top red function is parameterized over an allocation function that, for a given store,
returns the next location to use.

Theorem 2. Say that alloc is good if alloc(store) never results in a location already
mapped in store.
� 〈definitions , program , store〉 −→ 〈definitions ′, program ′, store ′〉 iff
∃alloc. alloc is good ∧
top red(alloc, (definitions , store , program)) = Some(definitions ′, store ′, program ′).

Test Suite. Our test suite currently contains 145 test cases, each designed to test one or
two language features. A test case comprises a program and its expected result, both in
OCaml syntax. We convert both into abstract syntax trees using the parser and (slightly
modified) AST printer from the OCaml implementation. We use HOL-4’s SML code
generation on the reduction functions and test ASTs to execute the test cases. The test
suite fully covers the reduction function definition.8

5 Discussion

The primary challenge we encountered in our formalization and mechanization was
the scale of OCamllight . The HOL proof techniques we use are typical, and up to the

8 We check coverage using Standard ML of New Jersey’s coverage checking tool. This ensures
that every application point is taken by the test suite.

14 S. Owens

task: rewriting with equational theorems, backward and forward chaining with impli-
cational theorems (including induction principles), instantiating existentially quantified
variables, case-splitting, and doing first-order proof search. However, the scale of the lan-
guage provided a constant source of friction. For example, proof cases involving arbitrar-
ily sized constructs, such as tuples and records, often require inductive lemmas whereas
their fixed size counterparts, such as “and” expressions, only involve a case split.

As to the scale, the grammar has 251 productions in 55 non-terminals. Of these,
142 and 36 (respectively) are parts of the source language, and the rest are used in
intermediate results and to support the type system and semantics (e.g., notation for
substitution). The type system comprises 173 rules that define 28 relations, and the op-
erational semantics comprises 137 rules that define 15 relations. These relations rely on
12 helper functions in addition to the substitution and free variable functions generated
by Ott. In total, the specification comprises about 3700 lines of Ott source. The evalu-
ation function is 540 lines of typical functional programming (although in HOL). The
proof contains about 9000 lines of HOL broken into 561 stated lemmas and theorems.
The entire development has taken the author approximately 6 months to create.

We want to be able to extend the OCamllight specification easily. We believe that the
specification achieves this goal thorough the combination of Ott, labeled transitions,
and careful planning ahead. However, the HOL proof scripts are fragile with respect
to specification changes, including changing variable names or rule ordering. We have
taken some initial steps, in conjunction with Ott, to alleviate some of the ordering prob-
lems. However, for proofs over definitions as as large as OCamllight , acceptable flexi-
bility will come only from significant advances in proof assistant technology for proof
maintenance and extension.

6 Conclusion

We have formally specified a type system and operational semantics for a substantial
fragment of OCaml. We validated them by proving their type soundness in HOL, and
by testing the semantics on a thorough test suite. Throughout the process we have main-
tained a close connection between our formalization and OCaml source code. Our effort
is the first of its complexity with this goal—a goal motivated by our view that the mech-
anized specification and proofs are not only a final product, but also a starting point for
the verification of OCaml programs.

Acknowledgments. We thank Gilles Peskine for his collaboration on parts of the formalization
and for sharing his expertise in the OCaml language, and Peter Sewell and Francesco Zappa
Nardelli for their work on the initial formalization. We acknowledge the support of EPSRC grants
GR/T11715/01 and EP/C510712/1.

References

1. Kahrs, S.: Mistakes and ambiguities in the definition of Standard ML. Technical Report ECS-
LFCS-93-257, University of Edinburgh (April 1993)

2. Rossberg, A.: Defects in the revised definition of Standard ML. Technical report, Saarland
University, Saarbrücken, Germany (October 2001), Updated 2007/01/22

A Sound Semantics for OCamllight 15

3. Leroy, X.: The Objective Caml System. 3.10 edn. (2007)
http://caml.inria.fr/pub/docs/manual-ocaml/index.html.

4. Sewell, P., Zappa Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strniša, R.: Ott:
Effective tool support for the working semanticist. In: Proc. ICFP (2007)

5. Norrish, M., Slind, K.: HOL-4, http://hol.sourceforge.net/
6. Slind, K.: Reasoning about Terminating Functional Programs. PhD thesis, Institut für Infor-

matik, Technische Universität München (1999)
7. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Proc. Design and

Application of Strategies/Tactics in Higher Order Logics (2003)
8. Compton, M.: Stenning’s protocol implemented in UDP and verified in Isabelle. In: Proc.

Australasian Symposium on Theory of Computing (2005)
9. Liu, H., Moore, J.S.: Java program verification via a JVM deep embedding in ACL2.

In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223,
Springer, Heidelberg (2004)

10. Ridge, T.: Operational reasoning for concurrent Caml programs and weak memory models.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, Springer, Heidelberg
(2007)

11. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis,
D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The
POPLmark Challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
Springer, Heidelberg (2005)

12. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine
and compiler. Trans. on Prog. Lang. and Systems 28(4), 619–695 (2006)

13. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of Standard ML. In:
Proc. Principles of Programming Languages (2007)

14. Maharaj, S., Gunter, E.L.: Studying the ML module system in HOL. In: Melham, T.F., Camil-
leri, J. (eds.) HUG 1994. LNCS, vol. 859, Springer, Heidelberg (1994)

15. Nipkow, T., van Oheimb, D.: Javalight is type-safe — definitely. In: POPL (1998)
16. Norrish, M.: C Formalised in HOL. PhD thesis, University of Cambridge (1998)
17. Syme, D.: Reasoning with the formal definition of Standard ML in HOL. In: Joyce, J.J.,

Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, Springer, Heidelberg (1994)
18. Syme, D.: Proving Java type soundness. In: Formal Syntax and Semantics of Java, pp. 83–

118. Springer, Heidelberg (1999)
19. VanInwegen, M.: The Machine-Assisted Proof of Programming Language Properties. PhD

thesis, University of Pennsylvania (1996)
20. Harper, R.: personal correspondence (2007)
21. Harper, R., Licata, D.: Mechanizing metatheory in a logical framework. Journal of Functional

Programming 17(4–5), 613–673 (2007)
22. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised).

MIT Press, Cambridge (1997)
23. Matthews, J., Findler, R.B.: An operational semantics for Scheme. Journal of Functional

Programming (to appear)
24. Moore, J.S.: Symbolic simulation: An ACL2 approach. In: Gopalakrishnan, G.C., Windley,

P. (eds.) FMCAD 1998. LNCS, vol. 1522, Springer, Heidelberg (1998)

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://hol.sourceforge.net/

	A Sound Semantics for OCaml_$light$
	Mechanizing Metatheory
	OCaml_$light$
	Operational Semantics
	Type System

	Type Soundness
	Testing and Determinism
	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

