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Foreword

ETAPS 2008 was the 11th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
22 satellite workshops (ACCAT, AVIS, Bytecode, CMCS, COCV, DCC, FESCA,
FIT, FORMED, GaLoP, GT-VMT, LDTA, MBT, MOMPES, PDMC, QAPL,
RV, SafeCert, SC, SLA++P, WGT, and WRLA), nine tutorials, and seven invited
lectures (excluding those that were specific to the satellite events). The five
main conferences received 571 submissions, 147 of which were accepted, giving
an overall acceptance rate of less than 26%, with each conference below 27%.
Congratulations therefore to all the authors who made it to the final programme!
I hope that most of the other authors will still have found a way of participating
in this exciting event, and that you will all continue submitting to ETAPS and
contributing to make of it the best conference in the area.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2008 was organized by the John von Neumann Computer Society
jointly with the Budapest University of Technology and the Eötvös University,
in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from Microsoft Research and Danubius Hotels.



VI Foreword

The organizing team comprised:

Chair Dániel Varró
Director of

Organization István Alföldi
Main Organizers Andrea Tósoky, Gabriella Aranyos
Publicity Joost-Pieter Katoen
Advisors András Pataricza, Joaõ Saraiva
Satellite Events Zoltán Horváth, Tihamér Levendovszky,

Viktória Zsók
Tutorials László Lengyel
Web Site Ákos Horváth
Registration System Victor Francisco Fonte, Zsolt Berényi,

Róbert Kereskényi, Zoltán Fodor
Computer Support Áron Sisak
Local Arrangements László Gönczy, Gábor Huszerl,

Melinda Magyar, several student volunteers.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig (Berlin),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Kim Larsen (Aalborg), Gerald Luettgen (York) Tiziana Mar-
garia (Göttingen), Ugo Montanari (Pisa), Martin Odersky (Lausanne), Catus-
cia Palamidessi (Paris), Anna Philippou (Cyprus), CR Ramakrishnan (Stony
Brook), Don Sannella (Edinburgh), João Saraiva (Minho), Michael Schwartzbach
(Aarhus), Helmut Seidl (Munich), Perdita Stevens (Edinburgh), and Dániel
Varró (Budapest).

I would like to express my sincere gratitude to all of these people and organi-
zations, the Programme Committee Chairs and members of the ETAPS confer-
ences, the organizers of the satellite events, the speakers themselves, the many
reviewers, and Springer for agreeing to publish the ETAPS proceedings. Finally,
I would like to thank the Organizing Chair of ETAPS 2008, Dániel Varró, for
arranging for us to have ETAPS in the most beautiful city of Budapest

January 2008 Vladimiro Sassone



Preface

It is an honour to be writing the preface of this volume, containing the papers pre-
sented at the 17th European Symposium on Programming (ESOP 2008), which
took place in Budapest, March 31–April 2, 2008. ESOP is an annual conference
devoted to fundamental issues in the specification, analysis, and implementation
of programming languages and systems.

This year, ESOP received 104 full submissions out of 136 preliminary submis-
sions. For each submission, at least 3, and on average 3.6, reviews were written.
After an intensive electronic meeting (minimizing our carbon footprint) over 4
weeks, the programme committee decided to accept 27 papers, 2 of which are
tool presentations.

This volume also contains a summary of the ETAPS invited talk, Verifica-
tion of Higher-Order Computation: A Game-Semantic Approach, given by Luke
Ong, and an abstract of the ESOP invited talk, Constructive Mathematics and
Functional Programming, given by Thierry Coquand.

The papers are listed in the chronological order of their presentation followed
by the index of authors.

Thanks go to the authors of all the submitted papers, and to the external
referees, who helped us with their excellent reviews. Very many thanks go to the
program committee members, for their hard work during the reviewing and the
dedicated debates during the selection process.

I am grateful to the EasyChair team for their tool, which provided robust
support to all administrative sides of my task.

January 2008 Sophia Drossopoulou
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A Sound Semantics for OCamllight

Scott Owens

University of Cambridge

Abstract. Few programming languages have a mathematically rigorous defini-
tion or metatheory—in part because they are perceived as too large and complex
to work with. This paper demonstrates the feasibility of such undertakings: we
formalize a substantial portion of the semantics of Objective Caml’s core lan-
guage (which had not previously been given a formal semantics), and we develop
a mechanized type soundness proof in HOL. We also develop an executable ver-
sion of the operational semantics, verify that it coincides with our semantic def-
inition, and use it to test conformance between the semantics and the OCaml
implementation. We intend our semantics to be a suitable substrate for the verifi-
cation of OCaml programs.

1 Mechanizing Metatheory

Researchers in programming languages and program verification routinely develop their
ideas in the context of core calculi and idealized models. The advantage of the core
calculus approach comes from the efficacy of pencil-and-paper mathematics, both for
specification and proof; however, these techniques do not scale well. Usable program-
ming languages contain numerous constructs that are designed for practical utility rather
than mathematical elegance, and their presence makes the proofs too long and tedious
to check reliably by hand. Furthermore, the specifications themselves are subject to er-
rors [1,2]. Formal verification offers a better path: using a proof assistant to formalize
an unambiguous semantics and to mechanize high-assurance proofs.

In this paper, we present a formal verification methodology that successfully scales
to a programming language that includes a large complement of pragmatic constructs.
Although our formal proofs are more detailed than informal pencil-and-paper proofs,
they follow the same structure, use the same mathematical techniques, and the proof
assistant ensures that they are correct. We did not have to invent new specification
or reasoning techniques to succeed, but we did exercise care in the details of our
formalization.

We demonstrate the methodology on a substantial fragment of Objective Caml [3,
Chapter 1] that we call OCamllight (since its feature set is roughly comparable to that
of Caml Light). As a guiding design principle, we try to ensure that OCamllight could
form a substrate for applying program verification techniques to a significant subset of
real OCaml programs.

We design and formalize the OCamllight type system and operational semantics us-
ing Ott [4], a tool for expressing such specifications, and we use the HOL-4 proof
assistant [5] to prove a type soundness theorem.1 We also formalize a deterministic,

1 We verify all of our proofs in HOL-4, but our techniques apply in most systems based on
higher-order logic (HOL), including Isabelle/HOL and Coq.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Owens

executable version of the operational semantics, and prove that the two correspond.
OCaml is not defined formally, so our semantics is a post-hoc attempt to detail the
behavior of the language—both as described in the manual and as observed on the im-
plementation. To build confidence that the semantics corresponds to the implemented
language, we run test programs on both. Testing is a crucial component in the accep-
tance of post hoc semantics—we are not associated with the OCaml developers, and the
test suite provides tangible evidence that our semantics is accurate.

Our development has taken under six man-months from start to finish, and based on
our experience, we believe there is no reason why many well-established programming
languages cannot be formally specified and given mechanized metatheories. To summa-
rize our contribution, we demonstrate the feasibility of mathematical specification and
mechanized reasoning for a useful fragment of a real-world programming language by:

– creating and formally specifying an operational semantics and type system for
OCamllight (Sect. 2). The semantics themselves are a novel contribution; no prior
attempt to give OCaml a formal semantics appears in the literature;

– using HOL to mechanize a type soundness proof for OCamllight (Sect. 3), the first
of this scale in HOL; and

– demonstrating the reliability of our operational semantics with testing, enabled by
the creation and verification of an executable version of the semantics (Sect. 4).

The remainder of this section explains our methodology and related work, and Sect. 5
presents observations and statistics on the mechanization. All of the formalizations,
proofs, and tests are available at http://www.cl.cam.ac.uk/∼so294/ocaml.
The specification is written in Ott source, and is accompanied by HOL-4 and LATEX
versions that are generated automatically by Ott. Ott can also generate Isabelle and Coq
versions.2

Methodology. Our formalization and proofs use standard techniques, all of which are
supported by HOL. The abstract syntax of OCamllight is represented by mutually re-
cursive algebraic datatypes, and the type system (which is purely syntactic and non-
algorithmic) is expressed with inductively defined relations. The operational seman-
tics is small-step, and is expressed as an inductively defined labeled transition relation
over source programs (the labels carry store actions that allow us to avoid explicitly
threading the store through the rules). Value and type identifiers are not treated up to
α-equivalence, because our semantics never reduces under a value variable binder, and
well-typed programs have no free variables. The semantics can reduce under a type vari-
able binding (i.e., the bound expression of a let), requiring α-renaming in our proofs;
we choose to represent type variables using de Bruijn indices. In the proof we make
extensive use of rule induction and structural induction principles. We also rely upon
the ability to create functions using well-founded recursion [6], and upon an automated
first-order prover [7].

Our OCamllight formalization follows the formal syntactic specification (BNF) in
the OCaml manual [3, Chapter 6] as closely as is feasible. This close connection with
the source language helps make the semantic rules directly accessible to semanticists

2 Thanks to Tom Ridge and Gilles Peskine for developing the respective translations.

http://www.cl.cam.ac.uk/~so294/ocaml
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who are familiar with OCaml, and we believe that direct accessibility is particularly
advantageous in the context of program verification, especially by symbolic execution
techniques [8,9,10]. A consequence of this choice is that our soundness proof has to deal
directly with complex source-level constructs (e.g., n-tuples, n-way recursive lets, and
full OCaml-style datatypes and pattern matching) that do not usually appear in lambda
calculi. This complexity adds up to a relatively large language definition, roughly com-
parable, in terms of the number of constructs and semantic rules, to full-scale languages.
Our methodology is relatively unsophisticated, but it handles this scaling. Our language
does not involve the most semantically intricate features that appear in some program-
ming languages, such as Standard ML’s module system, so our methodology remains
untested for these situations.

Related Work. There has been extensive work on formalizing language semantics
(e.g., POPLmark [11] solutions), and Java, C, and Standard ML (SML) have all been
subject to large-scale developments in proof assistants, with varying degrees of suc-
cess [12,13,14,15,16,17,18,19]. Type soundness has been proved for large subsets of
Java [12,15,18], with a similar methodology to ours; however, the formalized versions
of Java are significantly simpler than OCamllight : for example, they lack parametric
polymorphism and pattern matching. Norrish’s formalization of C [16] contains some
metatheoretic results, but none of them approaches the scale of the OCamllight type
soundness proof.

The only prior mechanized type soundness proof for a realistic ML-like language
(for SML) [13] follows a methodology that differs significantly from ours. Instead of
formalizing SML directly, it uses an internal language (IL) into which SML, including
its module system, can be elaborated ([13] proved type soundness only for IL, leaving
a formalized elaboration to future work; this work has now been completed [20]). IL
is essentially a heavily streamlined version of SML designed to yield an elegant and
tractable mechanized soundness proof. In particular, IL does not directly support pat-
tern matching, implicit polymorphism, or n-ary constructs; they are all compiled away
by the elaboration. Unlike the IL soundness proof, we do not formalize a generative
module system, but our system directly handles some features, such as datatypes and
polymorphism, which are handled only by the module system in IL. However, OCaml’s
semantics differs from SML’s in many details, some of which make our job easier (e.g.,
OCaml does not support local type or exception definitions, equality types, or over-
loading). Extending OCamllight to add a full SML-like module system would likely
require direct proof assistant support for reasoning about binding, or some amount of
elaboration, or both.

Another important difference between the SML proof and ours is the setting of the
mechanization; the SML proof was carried out in the Twelf proof assistant [21] which
differs significantly from HOL:

– HOL is a classical, impredicative logic (with a model in ZFC set theory) whereas
Twelf is constructive and predicative.

– Twelf supports higher-order abstract syntax (binding for the programming language
being modeled is represented using the binding of the Twelf logic itself) which
alleviates the burden of binding-related reasoning in proofs. HOL’s logic is not
suited for higher-order abstract syntax representations of programming languages.
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– Twelf’s proof system only supports ∀∃-theorems (i.e., no universal quantification is
allowed under an existential quantifier). Syntactic soundness theorems fit into this
restriction, but other theorems or program verifications might not (proofs by logical
relations are a standard example). HOL faces no such restriction.

– HOL uses a powerful tactic-based proof system that allows common proof steps
to be automated using SML programs (such as the first-order logic proof search
mentioned above). However, learning to effectively use the system is a non-trivial
task, and reading existing proofs can be difficult. Twelf uses a more accessible
declarative proof style, but lacks this powerful automation.

Prior SML proof efforts tried to closely follow the mathematical specification of The
Definition of Standard ML [22], but failed, in part because of its big-step operational
semantics, in part because of its bugs, and in part because the proof assistant technology
of the time was lacking [1,2,14,17,19]. The Metis [7] and TFL [6] packages, upon which
we rely, did not exist at the time.

2 OCamllight

To a crude approximation, our OCamllight semantics is a core ML, excluding only mod-
ules and objects. In detail, it covers the following features, which form a complete lan-
guage for writing programs without undue burden:

– definitions
• variant data types (e.g., type t = I of int | C of char),
• record types (e.g., type t = { f : int ; g : bool }),
• parametric type constructors (e.g., type ′a t = C of ′a),
• recursive and mutually recursive combinations of the above,
• exceptions,
• values;

– expressions for type annotations, sequencing, and primitive values (functions, lists,
tuples, and records);

– with (record update), if , while, for, assert, try, and raise expressions;
– let-based polymorphism (with an SML-style value restriction);
– mutually-recursive function definitions via let rec;
– pattern matching with nested patterns, as patterns, and “or” (|) patterns;
– mutable references with ref , :=, and !;
– polymorphic equality (the OCaml = operator);
– 31-bit word semantics for ints (using an existing HOL library);
– IEEE-754 semantics for floats (using an existing HOL library).

OCamllight overspecifies evaluation ordering relative to the OCaml manual (which
makes no guarantees), generally going right-to-left in agreement with our observa-
tions of the OCaml bytecode implementation. On the above features it differs from
the OCaml implementation in only the following four minor ways (the first three dis-
crepancies could be repaired with a lightweight source-to-source elaboration):
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typeconstr , tc ::= typeconstr name | int | exn | list | option | ref | · · ·
typexpr ::= α | | typexpr1 → typexpr2 | typexpr1 ∗ .... ∗ typexprn | typeconstr

| typexpr typeconstr | ( typexpr1 , ... , typexprn ) typeconstr | · · ·
constr ::= constr name | Match failure | None | Some | · · ·
constant ::= int literal | constr | true | false | [] | () | · · ·
unary prim ::= raise | ref | not | ! | ∼−
binary prim ::= = | + | − | ∗ | / | :=

pattern ::= value name | constant | {field1 = pattern1 ; ... ; fieldn = patternn }
| | pattern as value name | (pattern1 | pattern2) | · · ·

expr ::= (%prim unary prim ) | value name | constant | ( expr : typexpr )
| expr1 , .... , exprn | constr ( expr1 , .. , exprn ) | expr1 :: expr2
| {field1 = expr1 ; ... ; fieldn = exprn } | expr .field | expr1 expr2
| { expr withfield1 = expr1 ; ... ; fieldn = exprn } | while expr1 do expr2 done
| letpattern = expr in expr | let rec letrec bindings in expr
| try expr with pattern matching | location | · · ·

pattern matching , pat mat ::= pattern1 → expr1 | ... | patternn → exprn
letrec bindings, lrbs ::= letrec binding1 and ... and letrec bindingn

letrec binding ::= value name = function pattern matching
definition ::= let let binding | let rec lrbs | type definition | exception definition

Fig. 1. Grammar (excerpt)

– OCaml’s record expression evaluation ordering is right-to-left in the order of the
labels from the record’s type definition, and in OCamllight the ordering is right-to-
left based on the record expression only;

– the behavior of partially applied, curried functions with non-exhaustive pattern
matches can differ when the pattern matching fails at run time;

– the OCamllight type system rejects programs with duplicate data constructor or
record field name definitions; and

– the OCamllight type system enforces a value restriction on let-based polymorphism,
and rejects programs that require OCaml’s greater permissiveness.

In the future we would like to add support for type abbreviations, pattern matching
guards (when), mutable records, arrays, and modules. We expect only the last of these
to require significant changes to the formalization, and perhaps a lightweight elabora-
tion, because of the more complex type theory underlying OCaml modules.

Although the grammar is too large to show here in its entirety (it has 251 produc-
tions), the (Ott generated) excerpt in Fig. 1 demonstrates its general flavor. In a few
cases, we treat a source-level construct as syntactic sugar; for example fun is locally
translated into function. Ott turns “x1...xn” in grammars and rules into corresponding
list-based HOL code.

2.1 Operational Semantics

The (small-step) operational semantics of OCamllight is phrased as a relation on defini-
tions, programs, and stores; Fig. 2 gives an overview of the main relations and a few of
the 137 rules to illustrate interesting aspects of OCamllight and the formalization (value
and v indicate the Ott-enforced value grammar for expr ).
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L ::= ε | ref value = location | ! location = value | location := value
program ::= definitions | (%primraise) expr

� 〈definitions , program , store〉 −→ 〈definitions ′, program ′, store ′〉 � expr L−→ expr ′

� 〈definitions , program〉 L−→ 〈definitions ′, program ′〉 � store L−→ store ′

� expr matches pattern � {{ substs x }} � expr matches pattern
� v with pattern matching −→ expr

� e1
L−→ e ′

1

� e1 v0
L−→ e ′

1 v0

(1)
� ref v ref v = l−→ l

(2)

� v matches pat � {{ x1 ←v1 , .. , xm ←vm }}
� v with pat → e | pat1 → e1 | ... | patn → en −→ {{ x1 ←v1 , .. , xm ←vm }} e

(3)

� v1 matches pat1 � {{ substs x1 }} .... � vn matches patn � {{ substs xn }}
� ( v1 , .... , vn )matches ( pat1 , .... , patn ) � {{ substs x1 @ .... @ substs xn }} (4)

¬(v matches pat1)
� v matches pat2 � {{ x1 ←v1 , .. , xn ←vn }}

� v matches pat1 | pat2 � {{ x1 ←v1 , .. , xn ←vn }} (5)
� v matches pat2

� v matches pat1 | pat2
(6)

lrbs = (x1 = function pat mat1 and ... and xn = function pat matn)

recfun ( lrbs , pat mat ) �
{{ x1 ← let rec lrbs in x1 , ... , xn ← let rec lrbs in xn }} ( function pat mat )

(7)

lrbs = (x1 = function pat mat1 and ... and xn = function pat matn )
recfun ( lrbs , pat mat1 ) � e1 ... recfun ( lrbs , pat matn ) � en

� let rec lrbs in e −→ {{ x1 ←e1 , ... , xn ←en }} e
(8)

� try (%primraise ) v with pattern matching −→
match v with pattern matching | → ( ( %primraise ) v )

(9)

� store L−→ store ′

� 〈definitions value, program〉 L−→ 〈definitions , program ′〉
� 〈definitions value , program , store〉 −→ 〈definitions , program ′, store ′〉 (10)

Fig. 2. Operational semantics (excerpt)

Contexts. We specify evaluation-in-context with a collection of congruence rules (e.g.,
Rule 1). Alternative evaluation-context based approaches (in which the context informa-
tion is encapsulated into a grammar-with-a-hole and hole filling function) can provide
a more compact formalization, but initial experimentation showed them to be less con-
venient for HOL manipulation. HOL’s automation works well with congruence rules
directly, whereas the process of interpreting the hole filling on a data object (the evalu-
ation context itself) introduced significantly more overhead.

Rule 1 incorporates right-to-left evaluation ordering for OCamllight . Dropping the
ordering requirement would require only trivial changes to the reduction rules and
soundness proof, but looking ahead to testing, or even program verification via sym-
bolic execution [8,9,10], we believe the benefits of a deterministic semantics outweigh
the drawbacks of slightly over-specifying the language.
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Store. The reduction rules are annotated with labels (L in Fig 2). Whenever the store
must be consulted or updated (e.g., Rule 2), the label records the relevant information,
both input from and output to the store. Thus, the store does not need to be threaded
through the semantics, a formal version of the informal “state convention” of The Defi-
nition of Standard ML.3 Rule 10 correlates the program’s reduction with a reduction in
the store. We anticipate using the labels to conveniently add other features, including
I/O and concurrency.

Value Binding. All variable binding in OCamllight is expressed through pattern match-
ing, and the pattern matching rules implement binding with (parallel) substitutions
(Rules 3 and 4).4

Rule 5 for matching the right side of an “or” pattern must check that the left pat-
tern does not match. HOL’s rule induction package forbids a recursive call to the pat-
tern matching relation under the requisite negation because such constructions are not
inductive in general. We use a previously defined relation that simply checks pattern
matching without building the substitution. This relation is acceptable to HOL because
it does not need to discriminate between the cases where the first or second pattern
match (Rule 6).

Recursive bindings use a substitution that replaces the bound variables with the entire
recursive binding construct (Rules 7 and 8). This is one place where working directly
on OCaml source complicates the specification and metatheory; the rule for a single
function recursive let would be significantly simpler.

Primitives. We denote primitive operators with a special symbol %prim to avoid
confusing primitives (e.g., (%prim+)), which the semantics must directly interpret,
with variables (e.g., +), which can be rebound in the source program. Furthermore,
it distinguishes partially applied binary primitives (e.g., (%prim+)0), which are val-
ues, from other applications, which are not. Evaluation starts with a substitution that
replaces identifiers in the initial environment with the corresponding %prim values
(e.g., substituting (%prim+) for +).

Exceptions. For each congruence rule, there is a corresponding exception rule that dis-
cards the immediate context. When an exception reaches a try expression it is matched
against the with portion (Rule 9). If it reaches the top level of a program, the rest of
the program is discarded, and no further evaluation occurs.

Curried functions. The semantics of OCamllight differs slightly from OCaml in its
treatment of partial pattern matches in curried functions. We reduce function appli-
cations one-at-a-time whereas the OCaml implementation does not reduce a curried
function until all of its arguments are available. Thus, the following program raises a
pattern matching exception on our semantics, but not in the implementation.

let f = function 1 → function → 0 ; ; let = f 2 ; ;

3 The evaluation context approach can also avoid store threading.
4 We write cons as , and append as @.
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Specifying the implemented behavior would entail using the same elaborative pre-
pass for detecting multiple-argument functions as the OCaml compiler. We do not be-
lieve this to be worth the effort given that the departure is small, and it is only observable
in the presence of non-exhaustively matched patterns (whose existence the compiler can
detect) which furthermore fail at run time.

2.2 Type System

Figure 3 gives an overview of our type system for OCamllight , along with a few of
its 173 rules. The type system is mostly syntax directed, but non-algorithmic, due to
declarative handling of polymorphism and recursion.

Environments. The E productions describe the environments used by the type sys-
tem. A binding, EB , can be one of the following, in order: a de Bruijn type variable
binding (TV), a value binding; a constant data constructor; a parameterized data con-
structor; a variant type constructor; a record’s field name; a record type constructor; or
a store location. If our type system checked pattern matches for exhaustiveness, variant
type constructors would have to keep a constructor list similar to a record type con-
structor’s field list. Location bindings are introduced only by the top-level store, and
type constructor, field, and value constructor bindings are introduced only by top-level
definitions. Type variable and value bindings are introduced by let expressions, with
unbounded nesting.

In an ok environment E , all type constructor and type variable references are bound
by a prior EB . Also, E contains no duplicate bindings for a location, type constructor,
value constructor, or field name. The type constructor restriction (which is enforced in
OCaml) is necessary for type soundness; for example, the following program, which
gets stuck, would otherwise typecheck since v has type t which, at the field access site,
is specified to have a field g:

type t = { f : int } ; ; let v = { f = 1 } ; ; type t = { g : bool } ; ; let = v . g

The constructor and field restrictions do not preclude programs that get stuck, but
they are necessary for type preservation (and hence for our soundness proof). In the
following example, once v is substituted, the enclosing binding of C is different, and
C 1 can no longer be typed.

type t = C of int ; ; let v = C 1 ; ; type u = C of bool ; ; let = v

The absence of a similar restriction on value name repetition is also necessary for
type preservation, because we do not treat value names up to α-equivalence. The fol-
lowing example does not start with a repeated, nested binding, but immediately after v
is substituted, x is duplicated in the environment.

let v = function x → x ; ; letx = 1 ; ; letw = v 9

Polymorphism. A let expression with a non-expansive binding introduces a type vari-
able binding into E. The type of the binding can refer to this variable as a well-formed,
but opaque, type. When the binding’s type is added to E to check the let body, it is
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E ::= empty | E ,EB
EB ::=TV | value name : typescheme | constr name of typeconstr

| constr name of ∀ type params , typexprs : typeconstr | typeconstr name : kind
| field name : ∀ type params , typeconstr name → typexpr
| typeconstr name : kind {field name1 ; ... ; field namen } | location : typexpr

σT ::= {{ α1 ← typexpr1 , .. , αn ← typexprn }}

E � ok E � typexpr : kind
σT &E � pattern : typexpr � E ′ σT & E � expr : typexpr
E � definition : E ′ E � program : E ′

E � store : E ′ E � 〈program , store〉

shift 0 1σT &E ,TV � pat = nexp � x1 : t1 , .. , xn : tn
σT &E @ x1 : ∀ t1 , .. , xn : ∀ tn � e : t

σT &E � letpat = nexp in e : t
(11)

E � value name � value name : ts
E � t ≤ ts

E � value name : t
(12)

E � ∀ t ′ : Type
E � t1 : Type .. E � tn : Type
{{ t1 , .. , tn }} t ′ � t ′′

E � t ′′ ≤ ∀ t ′ (13)

σT &E � e : t
E � t ≤ σT src t

σT &E � ( e : src t ) : t
(14)

σT & E � e : t
E � field name : t → t ′

σT &E � e .field name : t ′ (15)

E @E ′ � store : E ′

E @E ′ � program : E ′′

E � 〈program , store〉 (16)

E � store : E ′

{{ }} &E � v : t
E � store , l �→ v : E ′, ( l : t )

(17)

E � field name � field name : ∀ ( α1 , ... , αm ) , typeconstr name → t
E � ( t ′

1 , ... , t ′
m ) typeconstr name → t ′′ ≤

∀ ( α1 , ... , αm ) , ( α1 , ... , αm ) typeconstr name → t
E � field name : ( t ′

1 , ... , t ′
m ) typeconstr name → t ′′ (18)

σT &E ,TV � pat = nexp � ( x1 : t ′
1 ) , .. , ( xk : t ′

k )

E � letpat = nexp : ( x1 : ∀ t ′
1 ) , .. , ( xk : ∀ t ′

k )
(19)

Fig. 3. Type system (excerpt)

first generalized into a type scheme (Rule 11). Where the body refers to the binding, the
type scheme is instantiated to a type that is valid at the use point (Rules 12 and 13).5

One of the more subtle aspects of OCamllight is the treatment of type variables that
appear in explicit annotations. These are scoped by top level definitions, and stand in
for arbitrary types. Thus, the top-level let definition rule (19) creates a substitution σT

that supplies the types for these variables to Rule 14. Substituting bool for ′a, f in the
following program has type bool → bool, which agrees with OCaml.6

5 Each TV actually introduces an infinite collection of type variables, indexed by numbers,
because a let expression can introduce any number of type variables.

6 The corresponding program in SML is not well typed.
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let f (x : ′a ) : ′a = x&& true

Stores. Since the store can contain cyclic structures, it is type checked in a context that
includes E′, the types of the locations in the store (Rule 16). Values in the store cannot
have type variables in their enclosed type annotations (hence the empty substitution
appears in the Rule 17), because such variables would have escaped their scope at a top-
level definition. Thus, before placing a value into the store, the operational semantics
replaces all of its type variables with the wildcard type variable .

Records and Variants. Rules 15 and 18 show how expressions and patterns consult
the environment for the types of the fields and constructors.

3 Type Soundness

The type soundness theorem (Theorem 1) ensures that a well-typed program does not
get stuck. Our mechanized proof follows the standard methodology of preservation and
progress lemmas. These lemmas are proved at three levels: for expressions, for defini-
tions and for top level definition/program/store tuples. They rely on a typical collection
of other main lemmas: substitution, weakening, strengthening, type substitution, and
validity. The number and size of these lemmas prevents a full presentation here, so we
instead highlight several aspects.

Theorem 1. If both � 〈ε, program , store〉 −→∗ 〈definitions ′, program ′, store ′〉 and
ε � 〈program , store〉 then either
(program ′ = ε), or (∃value. program′ = (%primraise) value), or
∃definitions ′′ program ′′ store ′′.

� 〈definitions ′, program ′, store ′〉 −→ 〈definitions ′′, program ′′, store ′′〉.

Type Variable Binding. We use a de Bruijn index encoding of type variables. Shift op-
erations appear in the rules of the type system 19 times, 16 of which occur to generalize
a type into a type scheme from a non-polymorphic binder. Since the type variables that
appear in source language type annotations are handled with substitutions (Sect. 2.2),
the de Bruijn encoding does not require changing the source language at all: indices
and shifts exist only in the type rules and the soundness proof (but not the operational
semantics). Thus, the de Bruijn encoding does not substantially complicate OCamllight .

Unlike value variables, type variables must not be repeated in the context. Other-
wise, a type scheme generalization in one let expression might capture a type variable
introduced by a different let expression. The prohibition on repetition is exactly the
reason that α-renaming is required in the soundness proof. In the following example,
the first evaluation step substitutes the middle let underneath the type variable binding
introduced by the rightmost let.

letx = ( function → let y = functionw → w in y ) in let z = x in z

In the proof, this situation corresponds to the polymorphic let case of the weakening
lemma. Given a let expression and typing derivation in E1 @ E2, we must show that
it has a type in E1 , ′a @ E2. In the given derivation, the let extends the environment
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with a type variable that might be ′a. If so, a new derivation cannot be formed without
renaming one of the type variables.

We investigated two proof approaches that do not use an α-aware representation for
type variables. The first approach begins by showing an equivariance property: that the
result of consistently renaming the type variables in a typing derivation remains a typ-
ing derivation. Equivariance is then used in the weakening proof to rename the type
variable added by the let. The drawback of this approach is that weakening cannot be
proved with a rule induction because the renamed derivation does not match up with
the induction hypothesis. Instead the induction must be on derivation heights, which
requires a significant amount of additional work to formalize in HOL. The second ap-
proach combines the statements of equivariance and weakening into a single lemma,
which restores the ability to do rule induction.7 Ultimately, we concluded that both
approaches required significantly more work to mechanize than the de Bruijn repre-
sentation, where the equivariance result is intrinsic to the representation. Since the de
Bruijn representation was easy to work with in the proof, we did not consider other
equivariant representations.

Lemma 1 states expression weakening for a single de Bruijn type variable.

Lemma 1. If (σT & E2 @ E1 � expr : typexpr) then
σT ↑1

num tv(E1) & E2,TV @ E1 ↑1
0 � expr : typexpr ↑1

num tv(E1).

Labels. The preservation and progress lemmas are split into pieces according to the
transition labels. Lemma 2 states that a well typed program can take a step with some
label, and Lemma 3 allows the label to be altered so that it works for a given store. The

� store L−→ store ′ relation updates a store according to a label.

Lemma 2. Suppose that E has no value bindings. If σT & E � expr : typexpr then
either expr is a value, or (∃value . expr = (%primraise) value), or

(∃L expr ′. � expr L−→ expr ′).

Lemma 3. Suppose that all of the locations in expr are bound to values in store. If �
expr L−→ expr ′ then ∃L′ expr ′ store ′. � expr L′

−→ expr ′ ∧ � store L′
−→ store ′.

The statement of preservation (Lemma 4) relies on two relations for checking labels.
The first σT & E � L ensures that the parts of L that are input into the expression
reduction (e.g., the value of a location dereference) are well formed and well typed. The
second σT & E � L � E ′ ensures that the output parts of L (e.g., the location being
dereferenced) are well formed and well typed. It also gives the environment bindings
created by the output. Thus, the input relation appears in the preservation statement’s
assumptions and the output in its conclusions.

Lemma 4. Suppose that E has no value bindings.

If � expr L−→ expr ′ and σT & E � expr : typexpr and σT & E � L then
∃E ′. σT & E � L � E ′ ∧ σT & E @ E ′ � expr ′ : typexpr .

7 Thanks to Tom Ridge for this observation.
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The top level preservation theorem for program/store tuples relies on Lemma 4 (lifted to
definition sequences) and two other lemmas. The first states that updating a well typed
store with a well typed (by the expression output label typing relation) label gives a
well typed store. The second states that if a well typed store is updated with a label then
the label is well typed (by the expression input label). These parts of the proof are not
particularly difficult: the key insight is to split the label checking between two relations.

Store Typing. Not only can the store contain cyclic references as mentioned in
Sect. 2.2, but it can also contain constructed and record values. To ensure preservation,
the store must be typed in an environment that has bindings for any type definitions
that might be needed. Thus, the operational semantics builds a separate record of type
definitions as it encounters them. Intermediate computation steps are type checked by
converting the type definitions into an environment, then checking the store in this envi-
ronment, and finally checking the unevaluated definitions with both the type definitions’
and the store’s environments.

4 Testing and Determinism

Because creating a large semantics is an error-prone activity [1,2], we run a test suite
of programs on the semantics to build confidence in its accuracy. Crucially, we can
transfer this confidence to others by showing them the test suite. To our knowledge,
the testing of full-language-scale semantics has been previously carried out only for the
Scheme semantics in the PLT Redex term rewriting system [23] and in ACL2 for a Java
Virtual Machine [9,24] (symbolic execution is part of the standard ACL2 methodology,
and it has often been applied to test full-scale hardware formalizations). Although both
the type system and operational semantics should be tested, our focus here is on the
operational semantics, leaving the type system for future work.

Although a mechanized type soundness proof rules out certain kinds of errors, it falls
far short of ensuring that the semantics accurately models the intended language. In fact,
we discovered an error while preparing the executable semantics, before testing even
began. While proving Lemma 5 we discovered that we had omitted the negated premise
of the “or” pattern matching rule (Sect. 2.1). This mistake allowed the semantics to
non-deterministically return incorrect results in some cases, while remaining perfectly
type sound.

Another class of specification mistakes arises from pattern-matching rules that do not
find a match when they should. These mistakes do not cause type soundness violations
because a Match failure exception is raised when no patterns match. For example,
after finishing the type soundness proof, we realized that the rule for record patterns
was incorrectly requiring the field lists to be in the same order for both the pattern and
value. However, the pattern matcher can be tested for this sort of bug.

Evaluation Function. The first step toward testing the semantics is to create an ex-
ecutable version of it. Although the relational formulation of the semantics could in
principle be executed as a logic program (as Twelf does), we chose to create a func-
tional version for execution. This is in part because HOL-4 does not currently support
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relational execution, but can evaluate functions (and can generate ML code from func-
tions for greater speed). Additionally, since the semantics is deterministic, we would
like to prove that fact. We prove determinacy and support testing with the same tech-
nique: we create a functional version of the semantics and prove it equal to the relational
version.

We use the ability to do functional programming in HOL’s logic to implement the
single-step execution function using common patterns of functional abstraction to re-
duce the amount of redundant code and make the definition tractable for a language the
size of OCamllight . Because HOL is a logic of total functions only, we must prove that
the functions always terminate. The proof is not difficult, but the mutually recursive
helper functions used to abstract out common patterns make it complicated enough that
HOL-4 does not prove termination automatically.

To maintain the correspondence with the labeled transition relation, the store is not
an input to the expression reduction function (red); instead, the result type for red
includes cases for interactions with the store. For example, the result for a store lookup
reduction indicates the location of the reference, and it supplies a function that is applied
to the value in the location to determine the result. Lemma 5 correlates the relational
and functional expression semantics using interp result, which applies the infor-
mation in a label to a reduction result.

Lemma 5. � expr L−→ expr ′ iff interp result(red(expr ),L) = Some expr ′.

Unlike the expression semantics, the top-level semantics is not deterministic: the lo-
cation allocator can use any unallocated location for the new reference. Thus, the
top red function is parameterized over an allocation function that, for a given store,
returns the next location to use.

Theorem 2. Say that alloc is good if alloc(store) never results in a location already
mapped in store.
� 〈definitions , program , store〉 −→ 〈definitions ′, program ′, store ′〉 iff
∃alloc. alloc is good ∧
top red(alloc, (definitions , store , program)) = Some(definitions ′, store ′, program ′).

Test Suite. Our test suite currently contains 145 test cases, each designed to test one or
two language features. A test case comprises a program and its expected result, both in
OCaml syntax. We convert both into abstract syntax trees using the parser and (slightly
modified) AST printer from the OCaml implementation. We use HOL-4’s SML code
generation on the reduction functions and test ASTs to execute the test cases. The test
suite fully covers the reduction function definition.8

5 Discussion

The primary challenge we encountered in our formalization and mechanization was
the scale of OCamllight . The HOL proof techniques we use are typical, and up to the

8 We check coverage using Standard ML of New Jersey’s coverage checking tool. This ensures
that every application point is taken by the test suite.
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task: rewriting with equational theorems, backward and forward chaining with impli-
cational theorems (including induction principles), instantiating existentially quantified
variables, case-splitting, and doing first-order proof search. However, the scale of the lan-
guage provided a constant source of friction. For example, proof cases involving arbitrar-
ily sized constructs, such as tuples and records, often require inductive lemmas whereas
their fixed size counterparts, such as “and” expressions, only involve a case split.

As to the scale, the grammar has 251 productions in 55 non-terminals. Of these,
142 and 36 (respectively) are parts of the source language, and the rest are used in
intermediate results and to support the type system and semantics (e.g., notation for
substitution). The type system comprises 173 rules that define 28 relations, and the op-
erational semantics comprises 137 rules that define 15 relations. These relations rely on
12 helper functions in addition to the substitution and free variable functions generated
by Ott. In total, the specification comprises about 3700 lines of Ott source. The evalu-
ation function is 540 lines of typical functional programming (although in HOL). The
proof contains about 9000 lines of HOL broken into 561 stated lemmas and theorems.
The entire development has taken the author approximately 6 months to create.

We want to be able to extend the OCamllight specification easily. We believe that the
specification achieves this goal thorough the combination of Ott, labeled transitions,
and careful planning ahead. However, the HOL proof scripts are fragile with respect
to specification changes, including changing variable names or rule ordering. We have
taken some initial steps, in conjunction with Ott, to alleviate some of the ordering prob-
lems. However, for proofs over definitions as as large as OCamllight , acceptable flexi-
bility will come only from significant advances in proof assistant technology for proof
maintenance and extension.

6 Conclusion

We have formally specified a type system and operational semantics for a substantial
fragment of OCaml. We validated them by proving their type soundness in HOL, and
by testing the semantics on a thorough test suite. Throughout the process we have main-
tained a close connection between our formalization and OCaml source code. Our effort
is the first of its complexity with this goal—a goal motivated by our view that the mech-
anized specification and proofs are not only a final product, but also a starting point for
the verification of OCaml programs.
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Abstract. We show how to extend System F’s parametricity guarantee to a
Matthews-Findler-style multi-language system that combines System F with an
untyped language by use of dynamic sealing. While the use of sealing for this
purpose has been suggested before, it has never been proven to preserve para-
metricity. In this paper we prove that it does using step-indexed logical relations.
Using this result we show a scheme for implementing parametric higher-order
contracts in an untyped setting which corresponds to a translation given by Sumii
and Pierce. These contracts satisfy rich enough guarantees that we can extract
analogues to Wadler’s free theorems that rely on run-time enforcement of dy-
namic seals.

1 Introduction

There have been two major strategies for hiding the implementation details of one part
of a program from its other parts: the static approach and the dynamic approach.

The static approach can be summarized by the slogan “information hiding = paramet-
ric polymorphism.” In it, the language’s type system is equipped with a facility such as
existential types so that it can reject programs in which one module makes unwarranted
assumptions about the internal details of another, even if those assumptions happen to
be true. This approach rests on Reynolds’ notion of abstraction [1], later redubbed the
“parametricity” theorem by Wadler [2].

The dynamic approach, which goes back to Morris [3], can be summarized by the
alternate slogan “information hiding = local scope + generativity.” Rather than statically
rejecting programs that make unwarranted assumptions, the dynamic approach simply
takes away programs’ ability to see if those assumptions are correct. It allows a pro-
grammer to dynamically seal values by creating unique keys (create-seal : → key) and
using those keys with locking and unlocking operations (seal : v × key → opaque and
unseal : opaque×key → v respectively). A value locked with a particular key is opaque
to third parties: nothing can be done but unlock it with the same key. Here is a simple
implementation written in Scheme, where gensym is a function that generates a new,
completely unique symbol every time it is called:

(define (create-seal) (gensym))
(define (seal v s1) (λ (s2) (if (eq? s1 s2) v (error))))
(define (unseal sealed-v s) (sealed-v s))

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 16–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Using this facility a module can hand out a particular value while hiding its rep-
resentation by creating a fresh seal in its private lexical scope, sealing the value and
hand the result to clients, and then unsealing it again whenever it returns. This is the
primary information-hiding mechanism in many untyped languages. For instance PLT
Scheme [4] uses generative structs, essentially a (much) more sophisticated ver-
sion of seals, to build abstractions for a great variety of programming constructs such
as an object system. Furthermore, the idea has seen some use recently even in lan-
guages whose primary information-hiding mechanism is static, as recounted by Sumii
and Pierce [5].

Both of these strategies seem to match an intuitive understanding of what information-
hiding ought to entail. So it is surprising that a fundamental question — what is the
relationship between the guarantee provided by the static approach and the dynamic
approach? — has not been answered in the literature.

In this paper we take a new perspective on the problem, posing it as a question
of parametricity in a multi-language system [6]. After reviewing our previous work
on multi-language systems and giving a multi-language system that combines Sys-
tem F (henceforth “ML”) and an untyped call-by-value lambda calculus (henceforth
“Scheme”) (section 2), we use this vantage point to show two results. First, in section 3
we show that dynamic sealing preserves ML’s parametricity guarantee even when inter-
operating with Scheme. For the proof, we define two step-indexed logical relations [7],
one for ML (indexed by both types as well as, intuitively, the number of steps avail-
able for future evaluation) and one for Scheme (indexed only by steps since Scheme
is untyped). The stratification provided by step-indexing is essential for modeling un-
bounded computation, available in Scheme due to the presence of what amounts to a
recursive type, and available in ML via interaction with Scheme. Then we show the
fundamental theorems of each relation. The novelty of this proof is its use of what we
call the “bridge lemma,” which states that if two terms are related in one language,
then wrapping those terms in boundaries results in terms that are related in the other.
The proof is otherwise essentially standard. Second, in section 4 we restrict our atten-
tion to Scheme programs that use boundaries with ML only to implement a contract
system [8]. Appealing to the first parametricity result, we give a more useful, contract-
indexed relation for dealing with these terms and prove that it relates contracted terms to
themselves. In section 4.1 we show that our notion of contracts corresponds to Findler
and Felleisen’s, and to a translation given by Sumii and Pierce [5, section 8].

We have elided most proofs here. They can be found in this paper’s companion tech-
nical report [9].

2 A Brief Introduction to Multi-language Systems

To make the present work self-contained, in this section we summarize some relevant
material from earlier work [6].

The natural embedding. The natural embedding multi-language system, presented in
figure 1 is a method of modeling the semantics of a minimal “ML” (simply-typed, call-
by-value lambda calculus) with a minimal “Scheme” (untyped, call-by-value lambda
calculus) such that both languages have natural access to foreign values. They receive
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e = x | v | (e e) | (op e e) | (if0 e e e)
| (cons e e) | (τMS e)

v = λx : τ.e | n | nil | (cons v1 v2) | fst | rst
op = + | −
τ = Nat | τ → τ | τ∗

x = ML variables
E = [ ]M | (E e) | (v E) | (op E e) | (op v E)

| (if0 E e e) | (cons E e) | (cons v E) | (τMS E)

Γ ,x : τ �M x : τ
Γ ,x : τ1 �M e : τ2

Γ �M λx : τ1. e : τ1 → τ2

Γ �M e1 : τ1 → τ2 Γ �M e2 : τ1
Γ �M (e1 e2) : τ2

Γ �M nil : τ∗
Γ �M e1 : τ Γ �M e2 : τ∗

Γ �M (cons e1 e2) : τ∗

Γ �M rst : τ∗ → τ∗ Γ �M fst : τ∗ → τ

Γ �M n : Nat
Γ �M e1 : Nat Γ �M e2 : Nat

Γ �M (op e1 e2) : Nat
Γ �M e1 : Nat Γ �M e2 : τ Γ �M e3 : τ

Γ �M (if0 e1 e2 e3) : τ
Γ �S e : TST

Γ �M (τMS e) : τ

E [((λx : τ. e) v)]M �→ E [e[v/x]]
E [(+ n1 n2)]M �→ E [n1 +n2]
E [(− n1 n2)]M �→ E [max(n1 −n2,0)]
E [(if0 0 e1 e2)]M �→ E [e1]
E [(if0 n e1 e2)]M �→ E [e2] where n �= 0
E [(fst (cons v1 v2))]M �→ E [v1]
E [(fst nil)]M �→ Error: nil
E [(rst (cons v1 v2))]M �→ E [v2]
E [(rst nil)]M �→ Error: nil

E [(NatMSn)]M �→ E [n]
E [(NatMSv)]M �→ Error: Non-num

where v �= n for any n
E [(τ1 �→τ2MS(λx.e))]M �→

E [(λx : τ1.(τ2MS ((λx.e)(SMτ1 x))))]

E [(τ1 �→τ2MS v)]M �→ Error: non-proc
where v �= λx.e for any x, e

E [(τ∗
MS nil)]M �→ E [nil]

E [(τ∗
MS (cons v1 v2))]M �→

E [(cons (τMS v1) (τ∗
MS v2))]

E [(τ∗
MS v)]M �→ Error: Non-list

where v is not a pair or nil

e = v | (e e) | x | (op e e) | (if0 e e e)
| (pd e) | (cons e e) | (SMτ e)

v = (λx.e) | n | nil | (cons v1 v2) | fst | rst
op = + | −
pd = proc? | nat? | nil? | pair?
x = Scheme variables
E = [ ]S | (E e) | (v E) | (op E e) | (op v E)

| (if0 E e e) | (pred E) | (cons E e)
| (cons v E) | (SMτ E)

Γ ,x : TST �S e : TST
Γ �S λx. e : TST
Γ �M e : τ

Γ �S (SMτ e) : TST · · ·

E [((λx. e) v)]S �→ E [e[v/x]]
E [(v1 v2)]S �→ Error: non-proc

v1 �= λx.e
E [(+ n1 n2)]S �→ E [n1 +n2]
E [(− n1 n2)]S �→ E [max(n1 −n2,0)]
E [(op v1 v2)]S �→ Error: non-num

v1 �= n or v2 �= n
E [(if0 0 e1 e2)]S �→ E [e1]
E [(if0 v e1e2)]S �→ E [e2] v �= 0
E [(proc? (λx. e))]S �→ E [0]
E [(proc? v)]S �→ E [1]

v �= (λx.e) for any x, e
E [(nat? n)]S �→ E [0]
E [(nat? v)]S �→ E [1]

v �= n for any n
E [(nil? nil)]S �→ E [0]
E [(nil? v)]S �→ E [1] v �= nil
E [(pair? (cons v1 v2))]S �→ E [0]
E [(pair? v)]S �→ E [1]

v �= (cons v1 v2) for any v1, v2
E [(fst (cons v1 v2))]S �→ E [v1]
E [(fst v)]S �→ Error: non-pair

v �= (cons v1 v2) for any v1, v2
E [(rst (cons v1 v2))]S �→ E [v2]
E [(rst v)]S �→ Error: non-pair

v �= (cons v1 v2) for any v1, v2
E [(SMNat n)]S �→ E [n]
E [(SMτ1 �→τ2 v)]S �→

E [(λx.(SMτ2(v(τ1MSx))))]

E [(SMτ∗
nil)]S �→ E [nil]

E [(SMτ∗
(cons v1 v2))]S �→

E [(cons (SMτ v1) (SMτ∗
v2))]

Fig. 1. Natural embedding of ML (left) and Scheme (right)
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foreign numbers as native numbers, and they can call foreign functions as native func-
tions. Note that throughout this paper we have typeset the nonterminals of our ML
language using a bold font with serifs, and those of our Scheme language with a light
sans-serif font. These font differences are semantically meaningful.

To the core languages we add new syntax, evaluation contexts, and reduction rules
that define syntactic boundaries, written τMS and SMτ , to allow cross-language com-
munication. (For this paper we have chosen arbitrarily to make top-level programs be
ML programs that optionally call into Scheme, and so we choose E = E; to make it the
other way around we would let E = E instead.) We assume we can translate numbers
from one language to the other, and give reduction rules for boundary-crossing numbers
based on that assumption:

E [(SMNat n)]S �→ E [n] E [(NatMS n)]M �→ E [n]

To convert procedures across languages, we use native proxy procedures. We rep-
resent a Scheme procedure in ML at type τ1 → τ2 by a new procedure that takes an
argument of type τ1, converts it to a Scheme equivalent, runs the original Scheme pro-
cedure on that value, and then converts the result back to ML at type τ2. For example,
(τ1→τ2MS λx.e) becomes (λ x : τ1.

τ2MS ((λx.e)(SMτ1 x))) and vice versa for Scheme to
ML. Note that the boundary that converts the argument is an SMτ1 boundary, not an τ1MS
boundary—i.e., the direction of conversion reverses for function arguments. Whenever
a Scheme value is converted to ML, we also check that value’s first order properties: we
check to see if a Scheme value is a number before converting it to an ML value of type
Nat and that it is a procedure value before converting it to an ML value of arrow type
(and signal an error if either check fails).

Theorem 1 (Natural embedding type safety [6]). If �M e : τ , then either e �→∗ v,
e �→∗ Error: str, or e diverges.

We showed in prior work that the dynamic checks in this system naturally give rise to
higher-order contracts [8,10]; in section 4 of this work we show another way of arriving
at the same conclusion, this time equating a contract enforcing that an untyped term e
behave as a (closed) type specification τ (which we write eτ ) by converting it to and
from ML at that type: to a first approximation, eτ = (SMτ (τMS e)).

2.1 Polymorphism, Attempt One

An omission from the “ML” side of the natural embedding to this point is that it contains
no polymorphism. We now extend it to support polymorphism by replacing the simply-
typed lambda calculus with System F. When we do so, we immediately hit the question
of how to properly handle boundaries. In this subsection, we make what we consider the
most straightforward decision of how to handle boundaries and show that it results in a
system that does not preserve System F’s parametricity property; in the next subsection
we refine our strategy using dynamic sealing techniques.

Figure 2 shows the extensions we need to make to figure 1 to support non-parametric
polymorphism. To ML’s syntax we add type abstractions (Λα. e) and type application
(e〈τ〉); to its types we add ∀α. τ and α . Our embedding converts Scheme functions that
work polymorphically into polymorphic ML values, and converts ML type abstractions
directly into plain Scheme functions that behave polymorphically. For example, ML
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e = · · · | Λα.e | e〈τ〉
v = · · · | Λα.e | (LMS v)
τ = · · · | ∀α.τ | α | L
Δ = • | Δ ,τ
E = · · · | E〈τ〉

Δ ,α;Γ �M e : τ
Δ ;Γ �M (Λα.e) : ∀α.τ

Δ ;Γ �M e : ∀α.τ ′ Δ � τ
Δ ;Γ �M e〈τ〉 : τ ′[τ/α]

E [(Λα.e)〈τ〉]M �→ E [e[τ/α]]
E [(∀α .τMS v)]M �→ E [(Λα.(τMS v))]
E [(SM∀α .τ v)]S �→ E [(SMτ [L/α ] v〈L〉)]

E [(SML (LMS v))]S �→ E [v]

Fig. 2. Extensions to figure 1 for non-parametric polymorphism

might receive the Scheme function (λx.x) from a boundary with type ∀α.α → α and
use it successfully as an identity function, and Scheme might receive the ML type ab-
straction (Λα.λ x : α.x) as a regular function that behaves as the identity function for
any value Scheme gives it.

To support this behavior, the model must create a type abstraction from a regular
Scheme value when converting from Scheme to ML, and must drop a type abstraction
when converting from ML to Scheme. The former is straightforward: we reduce a redex
of the form (∀α .τMS v) by dropping the ∀ quantifier on the type in the boundary and
binding the now-free type variable in τ by wrapping the entire expression in a Λ form,
yielding (Λα. (τMS v)).

This works for ML, but making a dual of it in Scheme would be somewhat silly, since
every Scheme value inhabits the same type so type abstraction and application forms
would be useless. Instead, we would like to allow Scheme to use an ML value of type,
say, ∀α.α → α directly as a function. To make boundaries with universally-quantified
types behave that way, when we convert a polymorphic ML value to a Scheme value we
need to remove its initial type-abstraction by applying it to some type and then convert
the resulting value according to the resulting type. As for which type to apply it to,
we need a type to which we can reliably convert any Scheme value, though it must
not expose any of those values’ properties. In prior work, we used the “lump” type to
represent arbitrary, opaque Scheme values in ML; we reuse it here as the argument to
the ML type abstraction. More specifically, we add L as a new base type in ML and we
add the cancellation rule for lumps to the set of reductions: these changes, along with
all the other additions required to support polymorphism, are summarized in figure 2.

2.2 Polymorphism, Attempt Two

Although this embedding is type safe, the polymorphism is not parametric in the sense
of Reynolds [1]. We can see this with an example: it is well-known that in System F,
for which parametricity holds, the only value with type ∀α.α → α is the polymorphic
identity function. In the system we have built so far, though, the term

(∀α .α→αMS(λx.(if0 (nat? x) (+ x 1) x)))

has type ∀α.α → α but when applied to the type Nat evaluates to
(λy.(NatMS((λx.(if0 (nat? x) (+ x 1) x)(SMNaty)))))

Since the argument to this function is always a number, this is equivalent to
(λy.(NatMS((λx.(+ x 1))(SMNaty))))

which is well-typed but is not the identity function.
The problem with the misbehaving ∀α.α → α function above is that while the type

system rules out ML fragments that try to treat values of type α non-generically, it still
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e = · · · | Λα.e | e〈τ〉 | (κMS e)
e = · · · | (SMκ e)
v = · · · | Λα.e | (LMS v)
v = · · · | (SM〈β ;τ〉 v)
τ = · · · | ∀α.τ | α | L
κ = Nat | κ1 → κ2 | κ∗ | ∀α.κ | α | L | 〈α;τ〉

Δ ,α;Γ �M e : τ
Δ ;Γ �M (Λα.e) : ∀α.τ

Δ ;Γ �M e : ∀α.τ ′ Δ � τ
Δ ;Γ �M e〈τ〉 : τ ′[τ/α]

Δ ;Γ �S e : TST Δ � �κ�
Δ ;Γ �M (κMS e) : �κ�

Δ ;Γ �M e : �κ� Δ � �κ�
Δ ;Γ �S (SMκ e) : TST

E [(SM∀α.τ v)]S �→ E [(SMτ[L/α] v〈L〉)]
E [(SML (LMS v))]S �→ E [v]

E [(Λα.e)〈τ〉]M �→ E [e[τ/α]]
E [(∀α.κMS v)]M �→ E [(Λα.(κMS v))]

E [(〈α;τ〉MS (SM〈α;τ〉 v))]M �→ E [v]
E [(〈α;τ〉MS v)]M �→ Error: bad value

(v �= SM〈α;τ〉 v for any v)

� � : κ → τ
�Nat� = Nat

�κ1 → κ2� = �κ1� → �κ2�
�κ∗� = �κ�∗

�∀α.κ� = ∀α.�κ�
�α� = α
�L� = L

�〈α;τ〉� = τ

Fig. 3. Extensions to figure 1 to support parametric polymorphism

allows Scheme programs to observe the concrete choice made for α and act accordingly.
To restore parametricity, we use dynamic seals to protect ML values whose implemen-
tation should not be observed. When ML provides Scheme with a value whose original
type was α , Scheme gets a sealed value; when Scheme returns a value to ML at a type
that was originally α , ML unseals it or signals an error if it is not a sealed value with
the appropriate key.

This means that we can no longer directly substitute types for free type variables on
boundary annotations. Instead we introduce seals as type-like annotations of the form
〈α;τ〉 that indicate on a boundary’s type annotation that a particular type is the instan-
tiation of what was originally a type variable, and conversion schemes (indicated with
metavariable κ) as types that may also contain seals; conversion schemes only appear
as the annotations on boundaries. From a technical standpoint, seals are introduced into
a reduction sequence by the type substitution in the type application rule. For a pre-
cise definition, a type substitution η is a partial function from type variables to closed
types. We extend type substitutions to apply to types, conversion schemes, and terms as
follows (we show the interesting cases, the rest are merely structural recursion):

η(α) def=
{

τ if ∃η ′. η = η ′,α : τ
α otherwise

η(κMS e) def= sl(η ,κ)MS η(e)

η(SMκ e) def= SMsl(η ,κ) η(e)

The boundary cases (which use the seal metafunction sl(·, ·) defined below) are different
from the regular type cases. When we close a type with respect to a type substitution
η , we simply replace all occurrences of free variables with their mappings in η , but
when we close a conversion scheme with respect to a type substitution we replace free
variables with “sealed” instances of the types in η . The effect of this is that even when
we have performed a type substitution, we can distinguish between a type that was
concrete in the original program and a type that was abstract in the original program but
has been substituted with a concrete type. The sl(·, ·) metafunction maps a type τ (or
more generally a conversion scheme κ) to an isomorphic conversion scheme κ where
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each instance of each type variable that occurs free in τ is replaced by an appropriate
sealing declaration, if the type variable is in the domain of η .

Definition 1 (sealing). The metafunction sl(η ,κ) is defined as follows:

sl(·, ·) : η ×κ → κ

sl(η,α) def=
{

〈α;η(α)〉 if η(α) is defined
α otherwise

sl(η,〈α;τ〉) def= 〈α;τ〉
sl(η,L) def= L

sl(η,Nat) def= Nat

sl(η,κ1 → κ2)
def= sl(η,κ1) → sl(η,κ2)

sl(η,∀α.κ1)
def= ∀α.sl(η,κ1)

sl(η,κ∗) def= sl(η,κ)∗

We use the seal erasure metafunction � � to project conversion schemes to types. Fig-
ure 3 defines these changes precisely. One final subtlety not written in figure 3 is that
we treat a seal 〈α;τ〉 as a free occurrence of α for the purposes of capture-avoiding sub-
stitution, and we treat boundaries that include ∀α.τ types as though they were binding
instances of α . In fact, the production of fresh names by capture-avoiding substitution
corresponds exactly to the production of fresh seals for information hiding, and the
system would be neither parametric nor even type-sound were we to omit this detail.

3 Parametricity

In this section we establish that the language of figure 3 is parametric, in the sense that
all terms in the language map related environments to related results, using a syntactic
logical relation. Our parametricity property does not establish the exact same equiva-
lences that would hold for terms in plain System F, but only because the embedding we
are considering gives terms the power to diverge and to signal errors. So, for example,
we cannot show that any ML value of type ∀α.α → α must be the identity function,
but we can show that it must be either the identity function, the function that always
diverges, or the function that always signals an error.

Our proof amounts to defining two logical relations, one for ML and one for Scheme
(see figure 4) and proving that the ML (Scheme) relation relates each ML (Scheme) term
to itself regardless of the interpretation of free type variables. Though logical relations
in the literature are usually defined by induction on types, we cannot use a type-indexed
relation for Scheme since Scheme has only one type. This means in particular that
the arguments to function values have types that are as large as the type of the function
values themselves; thus any relation that defines two functions to be related if the results
are related for any pair of related arguments would not be well-founded. Instead we use
a minor adaptation of the step-indexed logical relation for recursive types given by
Ahmed [7]: our Scheme logical relation is indexed by the number of steps k available
for computation. Intuitively, any two values are related for k steps if they cannot be
distinguished by any computation running for no more than k steps.

Since we are interested in proving properties of ML terms that may contain Scheme
subterms, the ML relation must also be step-indexed — if the Scheme subterms are
only related for (say) 50 steps, then the ML terms cannot always be related for arbitrarily
many steps. Thus, the ML relation is indexed by both types and steps (as in Ahmed [7]).

The definitions are largely independent (though we do make a few concessions
on this front, in particular at the definition of the ML relation at type L), but the
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Relτ1,τ2 = {R | ∀(k,v1,v2) ∈ R. ∀ j ≤ k. ( j,v1,v2) ∈ R and ; � v1 : τ1 and ; � v2 : τ2 }

Δ � δ def= Δ ⊆ dom(δ ) and ∀α ∈ Δ . δR(α) ∈ Relδ1(α),δ2(α)

δ � γM≤kγ ′
M : ΓM

def= ∀(x : τ) ∈ ΓM . γM(x) = v1, γ ′
M(x) = v2 and δ � v1�k

M v2 : τ

δ � γS≤kγ ′
S : ΓS

def= ∀(x : TST) ∈ ΓS. γS(x) = v1, γ ′
S(x) = v2 and δ � v1�k

S v2 : TST

δ � γ≤kγ ′ : Γ def= Γ = ΓM ∪ΓS, γ = γM ∪ γS, γ ′ = γ ′
M ∪ γ ′

S and
δ � γM≤kγ ′

M : ΓM and δ � γS≤kγ ′
S : ΓS

Δ ;Γ � e1 �M e2 : τ def= ∀k ≥ 0. ∀δ ,γ1,γ2. Δ � δ and δ � γ1≤kγ2 : Γ ⇒
δ � δ1(γ1(e1))�k

M δ2(γ2(e2)) : τ
δ � e1�k

M e2 : τ def= ∀ j < k. (e1 ↪→ j Error: s ⇒ e2 ↪→∗ Error: s) and
(∀v1. e1 ↪→ j v1 ⇒ ∃v2. e2 ↪→∗ v2 and δ � v1�k− j

M v2 : τ )

δ � v1�k
M v2 : α def= (k,v1,v2) ∈ δR(α)

δ � LMS v1�k
M

LMS v2 : L def= ∀ j < k. δ � v1� j
S v2 : TST

δ � n�k
M n : Nat (unconditionally)

δ � λx : τ1.e1�k
M λx : τ1.e2 : τ1 → τ2

def= ∀ j < k. ∀v1,v2. δ � v1� j
M v2 : τ1 ⇒

δ � e1[v1/x]� j
M e2[v2/x] : τ2

δ � Λα.e1�k
M Λα.e2 : ∀α.τ def= ∀ j < k. ∀ closed τ1,τ2. ∀R ∈ Relτ1,τ2 .

δ ,α : (τ1,τ2,R) � e1[τ1/α]� j
M e2[τ2/α] : τ

δ � [v1, · · · ,vn]�k
M [v′

1, · · · ,v′
n] : τ∗ def= ∀ j < k. ∀i ∈ 1 . . .n. δ � vi� j

M v′
i : τ

Δ ;Γ � e1 �S e2 : TST def= ∀k ≥ 0. ∀δ ,γ1,γ2. Δ � δ and δ � γ1≤kγ2 : Γ ⇒
δ � δ1(γ1(e1))�k

S δ2(γ2(e2)) : TST
δ � e1�k

S e2 : TST def= ∀ j < k. (e1 ↪→ j Error: s ⇒ e2 ↪→∗ Error: s) and
(∀v1. e1 ↪→ j v1 ⇒ ∃v2. e2 ↪→∗ v2 and δ � v1�k− j

S v2 : TST)

δ � n�k
S n : TST (unconditionally)

δ � (SM〈α;τ1〉 v1)�k
S (SM〈α;τ2〉 v2) : TST def= (k,v1,v2) ∈ δR(α) and δ1(α) = τ1 and δ2(α) = τ2

δ � λx.e1�k
S λx.e2 : TST def= ∀ j < k.∀v1,v2. δ � v1� j

S v2 : TST ⇒
δ � e1[v1/x]� j

S e2[v2/x] : TST
δ � nil�k

S nil : TST (unconditionally)

δ � (cons v1 v2)�k
S (cons v′

1 v′
2) : TST def= ∀ j < k. δ � v1� j

S v′
1 : TST and δ � v2� j

S v′
2 : TST

Fig. 4. Logical approximation for ML terms (middle) and Scheme terms (bottom)
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proofs cannot be, since an ML term can have an embedded Scheme subexpression and
vice versa. Instead, we prove the two claims by simultaneous induction and rely on a
critical “bridge lemma” (lemma 1, see below) that lets us carry relatedness between
languages.

Preliminaries. A type relation δ is a partial function from type variables to triples
(τ1,τ2,R), where τ1 and τ2 are closed types and R is a set of triples of the form (k,v1,v2)
(which intuitively means that v1 and v2 are related for k steps). We use the following
notations: If δ (α) = (τ1,τ2,R) then δ1(α) = τ1, δ2(α) = τ2, and δR(α) = R. We also
treat δ1 and δ2 as type substitutions. In the definition of the logical relation we only
allow downward closed relations as choices for R; i.e. relations that relate two values
for k steps must also relate them for all j < k steps. We make this restriction because
downward closure is a critical property that would not otherwise hold.

A Scheme (ML) substitution γS (γM) is a partial map from Scheme (ML) variables
to closed Scheme (ML) values, and a substitution γ = γS ∪ γM for some γS, γM . We say
that e ↪→ v (or Error: s) if in all evaluation contexts E [e] �→ E [v] (or Error: s).

Lemma 1 (bridge lemma). For all k ≥ 0, type environments Δ , type relations δ such
that Δ � δ , types τ such that Δ � τ , both of the following hold:

1. For all e1 and e2, if δ � e1�k
S e2 : TST then δ � (sl(δ1,τ)MS e1)�k

M (sl(δ2,τ)MS e2) :
τ .

2. For all e1 and e2, if δ � e1�k
M e2 : τ , then δ � (SMsl(δ1,τ) e1)�k

S (SMsl(δ2,τ) e2) : TST.

Proof. By induction on τ . All cases are straightforward given the induction hypotheses.

With the bridge lemma established, the fundamental theorem (and hence the fact that
logical approximation implies contextual approximation) is essentially standard. We
restrict the parametricity theorem to seal-free terms; otherwise we would have to show
that any sealed value is related to itself at type α which is false. (A conversion strategy is
seal-free if it contains no instances of 〈α;τ〉 for any α . A term is seal-free if it contains
no conversion strategies with seals.) This restriction is purely technical, since the claim
applies to open terms where seals may be introduced by closing environments.

Theorem 2 (parametricity / fundamental theorem). For all seal-free terms e and e:

1. If Δ ;Γ �M e : τ , then Δ ;Γ � e�M e : τ .
2. If Δ ;Γ �S e : TST, then Δ ;Γ � e�S e : TST.

Proof. By simultaneous induction on the derivations Δ ;Γ �M e : τ and Δ ;Γ �S e : TST.
The boundary cases both follow from lemma 1.

4 From Multi-language to Single-Language Sealing

Suppose that instead of reasoning about multi-language programs, we want to reason
about Scheme terms but also to use a closed ML type τ as a behavioral specification for
a Scheme term — Nat means the term must evaluate to a number, Nat → Nat means the
term must evaluate to a function that returns a number under the promise that the context
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Rel = {R | ∀(k,v1,v2) ∈ R. ∀ j ≤ k. ( j,v1,v2) ∈ R}

σ � e1 ≤k e2 : τ def= ∀ j < k. (e1 ↪→ j Error: s ⇒ e2 ↪→∗ Error: s) and
(∀v1. e1 ↪→ j v1 ⇒

∃v2. e2 ↪→∗ v2 and σ � v1 �k− j v2 : τ )

σ � v1 �k v2 : α def= (k,v1,v2) ∈ σ(α)
σ � n�k n : Nat (unconditionally)

σ � λx.e1 �k λx.e2 : τ1 → τ2
def= ∀ j < k. ∀v1,v2. σ � v1 � j v2 : τ1 ⇒

σ � e1[v1/x] ≤ j e2[v2/x] : τ2

σ � [v1, · · · ,vn]�k [v′
1, · · · ,v′

n] : τ∗ def= ∀ j < k. ∀i ∈ 1 . . .n. σ � vi � j v′
i : τ

σ � v1 �k v2 : ∀α.τ def= ∀ j < k. ∀R ∈ Rel. σ ,α : R � v1 � j v2 : τ

Fig. 5. Behavioral specification for polymorphic contracts

will always provide it a number, and so on. We can implement this using boundaries
with the program fragment eτ = SMτ (τMS e).

It is easy to check that such terms are always well-typed as long as e itself is well-
typed. Therefore, since we have defined a contract as just a particular usage pattern for
boundaries, we have by virtue of theorem 2 that every contracted term corresponds to it-
self, so intuitively every contracted term of polymorphic type should behave parametri-
cally. However, the logical relation we defined in the previous section is not particularly
convenient for proving facts about contracted Scheme terms, so instead we give another
relation in figure 5 that we think of as the “contracted-Scheme-terms” relation, which
gives criteria for two Scheme terms being related at an ML type (which we now inter-
pret as a behavioral contract). Here σ is an untyped mapping from type variables α to
downward-closed relations R on Scheme values: that is, σ = (α1 �→ R1, · · · ,αn �→ Rn)
where each Ri ∈ Rel (see figure 5).

Our goal is to prove that closed, contracted terms are related to themselves under
this relation. Proving this directly is intractable, but we can prove it by showing that
boundaries “reflect their relations”; i.e. that if δ � e1�k

M e2 : τ then for some appropriate
σ we have that σ � (SMτ e1) ≤k (SMτ e2) : τ and vice versa; this is the claim we show
in lemma 2 (bridge lemma 2) below, and the result we want is an easy corollary when
combined with theorem 2. Before we can precisely state the claim, though, we need
some machinery for specifying what relationship between δ and σ we want to hold.

Definition 2 (hybrid environments). An hybrid environment φ is a partial map from
type variables to tuples of the form (S,R) or (M,τ1,τ2,R).

The intuition is that a hybrid environment is a tagged union of a Scheme environment
σ (each element of which is tagged with S) and an ML environment δ (each element
of which is tagged with M). Given such a hybrid environment, one can mechanically
derive both a Scheme and an ML representation of it by keeping native elements as-is
and wrapping foreign elements in the appropriate boundary:

Definition 3 (Scheme and ML projections of hybrid environments). For a hybrid
environment φ , if φ(α) = (S,R), then:
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σφ (α) def= R

δφ (α) def= (L, L, {(k, (LMS v1), (LMS v2)) | (k,v1,v2) ∈ R})

If φ(α) = (M,τ1,τ2,R), then:

σφ (α) def= {(k, (SM〈α ;τ1〉 v1), (SM〈α ;τ2〉 v2)) | (k,v1,v2) ∈ R}
δφ (α) def= (τ1, τ2, R)

We say that Δ � φ if for all α ∈ Δ , φ(α) is defined, and if φ(α) = (S,R) then R ∈ Rel,
and if φ(α) = (M,τ1,τ2,R) then R ∈ Relτ1,τ2 . We also define operations c1(·, ·) and
c2(·, ·) (analogous to sl(·, ·) defined earlier) from hybrid environments φ and types τ to
conversion schemes κ :

Definition 4 (closing with respect to a hybrid environment). For i ∈ {1,2}:

ci(φ ,α) def=

⎧⎨
⎩

L if φ(α) = (S,R)
〈α;τi〉 if φ(α) = (M,τ1,τ2,R)
α otherwise

ci(φ ,Nat) def= Nat

ci(φ ,L) def= L

ci(φ ,τ1 → τ2)
def= ci(φ ,τ1) → ci(φ ,τ2)

ci(φ ,∀α.τ ′) def= ∀α.ci(φ ,τ ′)

ci(φ ,τ∗) def= ci(φ ,τ)∗

The interesting part of the definition is its action on type variables. Variables that φ maps
to Scheme relations are converted to type L, since when Scheme uses a polymorphic
value in ML its free type variables are instantiated as L. Similarly, variables that φ
maps to ML relations are instantiated as seals because when ML uses a Scheme value
as though it were polymorphic it uses dynamic seals to protect parametricity.

Now we can show that contracts respect the relation in figure 5 via a bridge lemma.

Lemma 2 (bridge lemma 2). For all k ≥ 0, type environments Δ , hybrid environments
φ such that Δ � φ , τ such that Δ � τ , and for all terms e1, e2, e1, e2:

1. If δφ � e1�k
M e2 : τ then σφ � (SMc1(φ ,τ) e1) ≤k (SMc2(φ ,τ) e2) : τ .

2. If σφ � e1 ≤k e2 : τ then δφ � c1(φ ,τ)MS e1�k
M (c2(φ ,τ)MS e2) : τ .

Proof. Induction on τ . All cases are easy applications of the induction hypotheses.

Theorem 3. For any seal-free term e such that �S e : TST and for any closed type τ ,
we have that for all k ≥ 0, � eτ ≤k eτ : τ .

Proof. By theorem 2, for all k ≥ 0, � (τMS e)�k
M (τMS e) : τ . Thus, by lemma 2, we

have that for all k ≥ 0, � (SMτ (τMS e)) ≤k (SMτ (τMS e)) : τ .

Definition 5 (relational equality). We write σ � e1 = e2 : τ if for all k ≥ 0, σ � e1 ≤k

e2 : τ and σ � e2 ≤k e1 : τ .
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Corollary 1. For any seal-free term e such that �S e : TST and for any closed type τ ,
we have that � eτ = eτ : τ .

4.1 Dynamic Sealing Replaces Boundaries

The contract system of the previous section is a multi-language system, but just barely,
since the only part of ML we make any use of is its boundary form to get back into
Scheme. In this section we restrict our attention to Scheme plus boundaries used only
for the purpose of implementing contracts, and we show an alternate implementation
of contracts that uses dynamic sealing. Rather than the concrete implementation of dy-
namic seals we gave in the introduction, we opt to use (a slight restriction of) the more
abstract constructs taken from Sumii and Pierce’s λseal language [5]. Specifically, we
use the following extension to our Scheme model:

e = · · · | νsx. e | {e}se | (let {x}se = e in e)
v = · · · | {v}sv
se = sx | sv
sx = [variables distinct from x]
sv = [unspecified, unique brands]
E = · · · | {E}sv | (let {x}sv = E in e)

E [νsx. e]S �→ E [e[sv/sx]]
where sv fresh

E [(let {x}sv1 = {v}sv1 in e)]S �→ E [e1[v/x]]
E [(let {x}sv1 = v in e)]S �→ Error: bad value

where v �= {v′}sv1 for any v′

We introduce a new set of seal variables sx that stand for seals (elements of sv) that will
be computed at runtime. They are bound by νsx. e, which evaluates its body (e) with
sx bound to a freshly-generated sv. Two operations make use of these seals. The first,
{e}se, evaluates e to a value and then itself becomes an opaque value sealed with the
key to which se evaluates. The second, (let {x}se = e1 in e2), evaluates e1 to a value;
if that value is an opaque value sealed with the seal to which se evaluates, then the
entire unsealing expression evaluates to e2 with x bound to the value that was sealed,
otherwise the expression signals an error.1

Using these additional constructs we can demonstrate that a translation essentially
the same as the one given by Sumii and Pierce [5, figure 4] does in fact generate
parametrically polymorphic type abstractions. Their translation essentially attaches a
higher-order contract [8] τ to an expression of type τ (though they do not point this out).
It extends Findler and Felleisen’s notion of contracts, which does not include polymor-
phic types, by adding an environment ρ that maps a type variable to a tuple consisting
of a seal and a symbol indicating the party (either + or − in Sumii and Pierce) that has
the power to instantiate that type variable, and translating uses of type variable α in a
contract to an appropriate seal or unseal based on the value of ρ(α). We define it as
follows: when p and q are each parties (+ or −) and p �= q,

1 This presentation is a simplification of λseal in two ways. First, in λseal the key position
for a sealed value or for an unseal statement may be an arbitrary expression, whereas here
we syntactically restrict expressions that appear in those positions to be either seal variables or
seal values. Second, in λseal an unseal expression has an “else” clause that allows the program
to continue even if an unsealing operation fails; we do not allow those clauses.
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E p,q
Nat(ρ,e) = (+ e 0)

E p,q
τ∗ (ρ,e) = (let ((v e)) (if0 (nil? v)

nil
(if0 (pair? v)

(cons E p,q
τ (ρ,(fst v)) E p,q

τ∗ (ρ,(rst v)))
(wrong "Non-list"))))

E p,q
τ1→τ2(ρ,e) = (let ((v e)) (if0 (proc? v)

(λ x. E p,q
τ2

(ρ,(v Eq,p
τ1

(ρ,x))))
(wrong "Non-proc")))

E p,q
∀α .τ ′(ρ,e) = νsx. E p,q

e (ρ,α �→ (sx,q),e)
E p,q

α (ρ,α �→ (sx, p),e) = {e}sx

E p,q
α (ρ,α �→ (sx,q),e) = (let {x}sx = e in x)

The differences between our translation and Sumii and Pierce’s are as follows. First, we
have mapped everything into our notation and adapted to our types (we omit booleans,
tuples, and existential types and add numbers and lists). Second, our translations apply
to arbitrary expressions rather than just variables. Third, because we are concerned with
the expression violating parametricity as well as the context, we have to seal values pro-
vided by the context as well as by the expression, and our decision of whether to seal or
unseal at a type variable is based on whether the party that instantiated the type variable
is providing a value with that contract or expecting one. Fourth, we modify the result
of ∀α.τ so that it does not require application to a dummy value. (The reason we do
this bears explanation. There are two components to a type abstraction in System F —
abstracting over an interpretation of a variable and suspending a computation. Sumii
and Pierce’s system achieves the former by generating a fresh seal, and the latter by
wrapping the computation in a lambda abstraction. In our variant, ∀α.τ contracts still
abstract over a free contract variable’s interpretation, but they do not suspend computa-
tion; for that reason we retain fresh seal generation but eliminate the wrapper function.)

Definition 6 (boundary replacement). R[e] is defined as follows:

R[eτ ] = E+,−
τ (•,R[e]) R[(e1 e2)] = (R[e1] R[e2]) . . .

Theorem 4 (boundary replacement preserves termination). If ; �S e : TST, then
e �→∗ v1 ⇔ R[e] �→∗ v2, where v1 = n ⇔ v2 = n.

This claim is a special case of a more general theorem that requires us to consider
open contracts. The term v∀α .α→α where v is a procedure value reduces as follows:

v∀α .α→α = (SM∀α .α→α(∀α .α→αMS v))
�→3 (SML→L(〈α ;L〉→〈α ;L〉MS v))
�→2 λx.(SML ((λy : L. (〈α ;L〉MS (v (SM〈α ;L〉 y)))) (LMS x)))
= λx.(SML (〈α ;L〉MS (v (SM〈α ;L〉 (LMS x)))))

Notice that the two closed occurrences ofα in the original contracts become two different
configurations of boundaries when they appear open in the final procedure. These corre-
spond to the fact that negative and positive occurrences of a type variable with respect to
its binder behave differently. Negative occurrences, of the form (SM〈α ;L〉 (LMS . . .)), act
as dynamic seals on their bodies. Positive occurrences, of the form (SML (〈α ;L〉MS . . .)),
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dynamically unseal the values their bodies produce. So, we write open contract variables
as α− (for negative occurrences) and α+ (for positive occurrences).

Now we are prepared to define another logical relation, this time between contracted
Scheme terms and λseal terms. We define it as follows, where p owns the given expres-
sions, q is the other party, and ρ maps type variables to seals and owners:

p;q;ρ � e1 =k
seal e2

def= ∀ j < k. (e1 �→ j Error: s ⇒ e2 �→∗ Error: s) and

(∀v1. e1 �→ j v1 ⇒ ∃v2. e2 �→∗ v2 and p;q;ρ � v1 =k− j
seal v2 )

∀ j < k. (e2 �→ j Error: s ⇒ e1 �→∗ Error: s) and

(∀v1. e2 �→ j v2 ⇒ ∃v2. e1 �→∗ v1 and p;q;ρ � v1 =k− j
seal v2 )

p;q;ρ � v1
α− =k

seal {v2}sv
def= ρ(α) = (sx,q) and ∀ j < k. p;q;ρ � v1 = j

seal v2...

p;q;ρ � (λx.e1) =k
seal (λx.e2)

def= ∀ j < k,v1,v2. q; p;ρ � v1 = j
seal v2 ⇒

p;q;ρ � e1[v1/x] = j
seal e2[v2/x]

The rest of the cases are defined as in the Scheme relation of figure 4. An important
subtlety above is that two sealed terms are related only if they are locked with a seal
owned by the other party, and that the arguments to functions are owned by the party
that does not own the function. The former point allows us to establish this lemma, after
which we can build a new bridge lemma and then prove the theorem of interest:

Lemma 3. If p;q;ρ ,α : (sx, p) � e1 =k
seal e2 (and α not free in e1), then p;q;ρ �

e1 =k
seal e2. Similarly if p;q;ρ � e1 =k

seal e2, then p;q;ρ ,α : (sx, p) � e1 =k
seal e2.

Proof. We prove both claims simultaneously by induction on k.

Lemma 4. For any two terms e1 and e2 such that e1’s open type variables (and their
ownership information) occur in ρ , and so do the open type variables in τ , then if
(∀k.p;q;ρ � e1 =k

seal e2) then (∀k.p;q;ρ � e1
τ =k

seal E p,q
τ (ρ ,e2).

Proof. By induction on τ . The ∀α.τ case requires the preceding lemma.

Theorem 5. If ρ � γ1 =seal γ2 : Γ , e’s open type variables occur in ρ , Δ ;Γ �S e : TST,
and e only uses boundaries as contracts, then ∀k.p;q;ρ � γ1(e) =k

seal γ2(R[e]).
Proof. Induction on the derivation Δ ;Γ �S e : TST. Contract cases appeal to lemma 4.

This theorem has two consequences: first, contracts as we have defined them in this
paper can be implemented by a variant on Sumii and Pierce’s translation, and thus due
to our earlier development their translation preserves parametricity; and second, since
Sumii and Pierce’s translation is itself a variant on Findler-and-Felleisen-style contracts,
our boundary-based contracts are actually contracts in that sense.

Finally, notice that if we choose E = E then there is no trace of ML left in the lan-
guage we are considering; it is pure Scheme with contracts. But, strangely, the contract
system’s parametricity theorem relies on the fact that parametricity holds in ML.

5 Related Work and Conclusions

We have mentioned Sumii and Pierce’s investigation of dynamic sealing [11, 5] many
times in this paper. Sumii and Pierce also investigate logical relations for encryption
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[12], which is probably the most technically similar paper in their line of research to
the present work. In that work, they develop a logical relation that tracks secret keys
as a proof technique for establishing the equivalence of programs that use encryption
to hide information. One can think of our development as a refinement of their relation
that allows Turing-complete “attackers” (which in particular may not terminate) and
that clarifies the fundamental connection between parametricity and dynamic sealing.

Zdancewic, Grossman, and Morrisett’s notion of principals [13, 14] and their as-
sociated proof technique are also related. Compared to their work, the present proof
technique establishes a much stronger property, but it is comparatively more difficult to
scale to more sophisticated programming language features such as state or advanced
control features. Rossberg [15,16] discusses the idea of preserving abstraction safety by
the use of dynamically-generated types that are very similar to our 〈α;τ〉 sealed conver-
sion schemes. The property we have proven here is much stronger than the abstraction
properties established by Rossberg; however, his analysis considers a more complicated
type system than we do. It is certainly worth investigating how well the multi-language
technique presented here maps into Rossberg’s setting, but we have not done so yet.

The thrust of this paper has been to demonstrate that the parametricity property of
System F is preserved under a multi-language embedding with Scheme, provided we
protect all values that arise from terms that had quantified types in the original program
using dynamic seals. We think this fact is in itself interesting, and has the interesting
consequence that polymorphic contracts are also parametric in a meaningful sense, in
fact strong enough that we can derive “free theorems” about contracted Scheme terms
(see the technical report [9] for examples). But it also suggests something broader.
Rather than just knowing that parametricity continues to hold in System F after the
extension, we would like the stronger property that the extension does not weaken Sys-
tem F’s contextual equivalence relation at all; in other words to design an embedding
such that e1 �ctxt e2 when considering only contexts without boundaries implies that
e1 �ctxt e2 in contexts with boundaries. This may be a useful way to approach the full-
abstraction question raised by Sumii and Pierce.
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Regular Expression Subtyping for XML Query and
Update Languages
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Abstract. XML database query languages such as XQuery employ regular ex-
pression types with structural subtyping. Subtyping systems typically have two
presentations, which should be equivalent: a declarative version in which the
subsumption rule may be used anywhere, and an algorithmic version in which
the use of subsumption is limited in order to make typechecking syntax-directed
and decidable. However, the XQuery standard type system circumvents this issue
by using imprecise typing rules for iteration constructs and defining only algo-
rithmic typechecking, and another extant proposal provides more precise types
for iteration constructs but ignores subtyping. In this paper, we consider a core
XQuery-like language with a subsumption rule and prove the completeness of
algorithmic typechecking; this is straightforward for XQuery proper but requires
some care in the presence of more precise iteration typing disciplines. We extend
this result to an XML update language we have introduced in earlier work.

1 Introduction

The Extensible Markup Language (XML) is a World Wide Web Consortium (W3C)
standard for tree-structured data. Regular expression types for XML [14] have been
studied extensively in XML processing languages such as XDuce [13] and CDuce [1],
as well as projects to extend general-purpose programming languages with XML fea-
tures such as Xtatic [10] and OCamlDuce [9]. Moreover, subtyping (based on regular
tree language inclusion) plays an important role in all of these systems.

XQuery is a W3C standard XML database query language [6]. Static typechecking is
important in XML database applications because type information is useful for optimiz-
ing queries and avoiding expensive run-time checks and revalidation. XQuery provides
for static typing using regular expression types and subtyping. However, XQuery’s type
system is imprecise in some situations involving iteration (for-loops). In particular, if
the variable $x has type1 a[b[]∗, c[]?], then the query

for $y in $x/* return $y

is assigned type (b[]|c[])∗ in XQuery, but in fact the result will always match the regular
expression type b[]∗, c[]?. The reason for this inaccuracy is that XQuery’s type system

1 We use the compact notation for regular expression types introduced by Hosoya, Vouillon and
Pierce [14] in preference to the more verbose XQuery or XML Schema syntaxes.
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typechecks a for loop by converting the type of the body of the expression (here, $x/a
with type b[]∗, c[]?) to the “factored” form (α1| . . . |αn)q , where q is a quantifier such
as ?, +, or ∗ and each αi is an atomic type (i.e. a data type such as string or single
element type a[τ ]).

More precise type systems have been contemplated for XQuery-like languages, in-
cluding a precursor to XQuery designed by Fernandez, Siméon, and Wadler [8]. Most
recently, Colazzo et al. [5] have introduced a core XQuery language called μXQ, with
a regular expression-based type system that performs “path correctness” analysis and
provides more precise types for iterations using techniques similar to those in [8], but
does not support subtyping. In μXQ, the above expression is assigned the more accurate
type b[]∗, c[]?; however, the example cannot be assigned the less precise type (b[]|c[])∗
since subtyping was not incorporated into the original formulation of μXQ.

Combining subtyping with accurate typing for iteration constructs is especially im-
portant for XML updates. We are developing a statically-typed update language called
FLUX 2 in which ideas from μXQ are essential for typechecking updates involving it-
eration. Using XQuery-style factoring for iteration in FLUX would make it impossible
to typecheck updates that modify data without modifying the overall schema of the
database—a very common case. For example, using XQuery-style factoring for itera-
tion in FLUX, we would not be able to verify statically that given a database of type
a[b[string]∗, c[]?], the result of an update that modifies some b elements and deletes
some c elements still has type a[b[string]∗, c[]?], rather than a[(b[string]|c[])∗].

One question left unresolved in previous work on both μXQ and FLUX is the rela-
tionship between declarative and algorithmic presentations of the type system (in the
terminology of [16, Ch. 15–16]). Declarative derivations permit arbitrary uses of the
subsumption rule:

Γ � e : τ τ <: τ ′

Γ � e : τ ′

whereas algorithmic derivations limit the use of this rule in order to ensure that type-
checking is syntax-directed and decidable. The declarative and algorithmic presenta-
tions of a system should agree. If they agree, then declarative typechecking is decidable
algorithmically; if they disagree, then the algorithmic system is incomplete, that is, it
rejects programs that should typecheck according to the declarative rules.

The XQuery standard avoided this issue by defining typechecking algorithmically,
that is, building subsumption into several rules and omitting a general subsumption rule.
Subtyping was omitted from μXQ, because it interferes with μXQ’s “path correctness”
component [5, Sec. 4.4] . Subtyping was considered in our initial work on FLUX [3],
but we were initially unable to establish that typechecking was decidable.

In this paper we develop the foundations of subtyping for XML query and update
languages. Our main contributions relative to previous work [5,3] are definitions and
proofs of completeness of algorithmic typechecking (and hence decidability of declar-
ative typechecking) for μXQ and FLUX, extended with subtyping and type, query, and
update recursion. We follow the standard technique of proving that declarative deriva-
tions can always be normalized to algorithmic derivations [16, Ch. 16]. However, for
μXQ’s more precise iteration type discipline, completeness of algorithmic typechecking

2 “FunctionaL Updates for XML”; earlier called LUX (“Lightweight Updates for XML”) in [3].
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does not follow directly by the obvious structural induction. Instead, we must establish
a stronger property based on the semantics of regular expression types.

The structure of the rest of the paper is as follows. Section 2 reviews regular ex-
pression types and subtyping. Section 3 introduces the core language μXQ, discusses
examples highlighting the difficulties involving subtyping in μXQ, and proves decid-
ability of declarative typechecking. We also review the FLUX core update language in
Section 4, discuss examples, and extend the proof of decidability of declarative type-
checking to FLUX. Sections 5–6 sketch related and future work and conclude. Space
limitations preclude a satisfying self-contained exposition of the μXQ and FLUX lan-
guages; the reader is encouraged to consult the earlier papers for further details [5,3].

2 Regular Expression Types and Subtyping

For the purposes of this paper, XML values are trees built up out of booleans b ∈ Bool =
{true, false}, strings w ∈ Σ∗ over some alphabet Σ, and labels l, m, n ∈ Lab,
according to the following syntax:

v̄ ::= b | w | n[v] v ::= v̄, v | ()

Values include tree values v̄ ∈ Tree and forest values v ∈ Val . We write v, v′ for the
result of appending two forest values. This operation is associative with unit ().

We consider a regular expression type system with structural subtyping, similar to
those considered in several transformation and query languages for XML [14,5,8]. The
syntax of types and type environments is as follows.

Atomic types α ::= bool | string | n[τ ]
Sequence types τ ::= α | () | τ |τ ′ | τ, τ ′ | τ∗ | X
Type definitions τ0 ::= α | () | τ0|τ ′0 | τ0, τ

′
0 | τ∗0

Type signatures E ::= · | E, type X = τ0

We call types of the form α ∈ Atom atomic types (or sometimes tree or singular types),
and types τ ∈ Type of all other forms sequence types (or sometimes forest or plural
types). It should be obvious that a value of singular type must always be a sequence
of length one (that is, a tree); plural types may have values of any length. There exist
plural types with only values of length one, but which are not syntactically singular
(for example int|bool). As usual, the + and ? quantifiers can be defined as follows:
τ+ = τ, τ∗ and τ? = τ |(). We abbreviate n[()] as n[].

Our type language differs slightly from the standard approaches to regular expres-
sion types [14,5]. In [14], it was shown that Kleene star can be translated away by
introducing type variables and definitions, modulo a syntactic restriction on top-level
occurrences of type variables in type definitions. We include Kleene star as a prim-
itive, and permit (mutually) recursive type declarations, but forbid any top-level oc-
currences type variables in definitions τ0. Therefore Kleene star is not definable in
terms of the other operations here; this is why we include it as a primitive. For ex-
ample, type X = nil[]|cons[a, X ] and type Y = leaf []|node[Y, Y ] are allowed but
type X ′ = ()|a[], X ′ and type Y ′ = b[]|Y ′, Y ′ are not. The equation for X ′ defines
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the regular tree language a[]∗, and would be permitted in XDuce, while that for Y ′

defines a context-free tree language that is not regular and is forbidden in XDuce.
An environment E is well-formed if all type variables appearing in definitions are

themselves declared in E. Given a well-formed environment E, we write E(X) for the
definition of X . A type τ denotes the set of values [[τ ]]E , defined as follows.

[[string]]E = Σ∗ [[bool]]E = Bool [[()]]E = {()}
[[n[τ ]]]E = {n[v] | v ∈ [[τ ]]E} [[X ]]E = [[E(X)]] [[τ |τ ′]]E = [[τ ]]E ∪ [[τ ′]]E

[[τ, τ ′]]E = {v, v′ | v ∈ [[τ ]]E , v′ ∈ [[τ ′]]E}
[[τ∗]]E = {()} ∪ {v1, . . . , vn | v1 ∈ [[τ ]]E , . . . , vn ∈ [[τ ]]E}

Formally, [[τ ]]E is defined by a least fixed point construction which we gloss over.
Henceforth, we treat E as fixed and define [[τ ]] � [[τ ]]E . This semantics validates stan-
dard identities such as associativity of ’,’ ([[(τ1, τ2), τ3]] = [[τ1, (τ2, τ3)]]), unit laws
([[τ,()]] = [[τ ]] = [[(), τ ]]), and idempotence of ’*’ ([[(τ∗)∗]] = [[τ∗]]).

In addition, we define a binary subtyping relation on types. A type τ1 is a subtype
of τ2 (τ1 <: τ2), by definition, if [[τ1]] ⊆ [[τ2]]. Our types can be translated to XDuce
types, so subtyping reduces to XDuce subtyping; although this problem is EXPTIME-
complete in general, the algorithm of [14] is well-behaved in practice. Therefore, we
shall not give explicit inference rules for checking or deciding subtyping, but treat it as
a “black box”.

3 Query Language

We review an XQuery-like core language based on μXQ [5]. In μXQ, we distinguish
between tree variables x̄ ∈ TVar , introduced by for, and forest variables, x ∈ Var ,
introduced by let. We write x̂ ∈ Var ∪ TVar for an arbitrary variable. The other
syntactic classes of our variant of μXQ include booleans, strings, and labels introduced
above, function names F ∈ FSym, expressions e ∈ Expr , and programs p ∈ Prog ; the
abstract syntax of expressions and programs is defined as follows:

e ::= () | e, e′ | n[e] | w | x | let x = e in e′ | F (e1, . . . , en)
| b | if c then e else e′ | x̄ | x̄/child | e :: n | for x̄ ∈ e return e′

p ::= query e : τ | declare function F (x1:τ1, . . . , xn:τn) : τ {e}; p

The distinguished variables x in let x = e in e′(x) and x̄ in for x̄ ∈ e return e′(x̄)
are bound in e′(x) and e′(x̄) respectively. Here and elsewhere, we employ common
conventions such as identifying expressions modulo α-renaming.

To simplify the presentation, we split μXQ’s projection operation x̄/child :: l into
two expressions: child projection (x̄/child) which returns the children of x̄, and node
name filtering (e :: n) which evaluates e to an arbitrary sequence and selects the nodes
labeled n. Thus, the ordinary child axis expression x̄/child :: n is syntactic sugar for
(x̄/child) :: n and the “wildcard” child axis is definable as x̄/child :: ∗ = x̄/child.
Built-in operations such as string equality may be provided as additional functions F .
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Γ � e : τ

x̄:α ∈ Γ
Γ � x̄ : α

x:τ ∈ Γ
Γ � x : τ

w ∈ Σ∗

Γ � w : string
b ∈ Bool

Γ � b : bool

Γ � () : ()
Γ � e : τ

Γ � n[e] : n[τ ]

Γ � e : τ Γ � e′ : τ ′

Γ � e, e′ : τ, τ ′
Γ � e1 : τ1 Γ, x:τ1 � e2 : τ2

Γ � let x = e1 in e2 : τ2

Γ � c : bool Γ � e1 : τ1 Γ � e2 : τ2

Γ � if c then e1 else e2 : τ1|τ2

x̄:n[τ ] ∈ Γ

Γ � x̄/child : τ

Γ � e : τ τ :: n ⇒ τ ′

Γ � e :: n : τ ′

Γ � e1 : τ1 Γ � x̄ in τ1 → e2 : τ2

Γ � for x̄ ∈ e1 return e2 : τ2

F (τ) : τ0 ∈ Δ Γ � ei : τi

Γ � F (e) : τ0

Γ � e : τ τ <: τ ′

Γ � e : τ ′

Γ � p prog

Γ � e : τ
Γ � query e : τ prog

F not declared in p F (τ) : τ0 ∈ Δ Γ, x : τ � e : τ0 Γ � p prog

Γ � declare function F (τ) : τ0 {e}; p prog

Fig. 1. Query and program well-formedness rules

τ :: n ⇒ τ ′

n[τ ] :: n ⇒ n[τ ]

E(X) :: n ⇒ τ

X :: n ⇒ τ

α �= n[τ ]

α :: n ⇒ ()

() :: n ⇒ ()

τ1 :: n ⇒ τ2

τ∗
1 :: n ⇒ τ∗

2

τ1 :: n ⇒ τ ′
1 τ2 :: n ⇒ τ ′

2

τ1, τ2 :: n ⇒ τ ′
1, τ

′
2

τ1 :: n ⇒ τ ′
1 τ2 :: n ⇒ τ ′

2

τ1|τ2 :: n ⇒ τ ′
1|τ ′

2

Γ � x̄ in τ → e : τ ′

Γ � x̄ in () → e : ()

Γ � x̄ in E(X) → e : τ

Γ � x̄ in X → e : τ

Γ, x̄:α � e : τ

Γ � x̄ in α → e : τ

Γ � x̄ in τ1 → e : τ2

Γ � x̄ in τ∗
1 → e : τ∗

2

Γ � x̄ in τ1 → e : τ ′
1 Γ � x̄ in τ2 → e : τ ′

2

Γ � x̄ in τ1, τ2 → e : τ ′
1, τ

′
2

Γ � x̄ in τ1 → e : τ ′
1 Γ � x̄ in τ2 → e : τ ′

2

Γ � x̄ in τ1|τ2 → e : τ ′
1|τ ′

2

Fig. 2. Auxiliary judgments

Colazzo et al. [5] provided a denotational semantics of μXQ queries with the descen-
dant axis but without recursive functions. This semantics is sound with respect to the
typing rules in the next section and can be extended to handle recursive functions using
operational techniques (as in the XQuery standard). However, we omit the semantics
since it is not needed in the rest of the paper.

3.1 Type System

Our type system for queries is essentially that introduced for μXQ by [5], excluding the
path correctness component. We consider typing environments Γ and global declaration
environments Δ, defined as follows:

Γ ::= · | Γ, x:τ | Γ, x̄:α Δ ::= · | Δ, F (τ ) : τ0
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Note that in Γ , tree variables may only be bound to atomic types. As usual, we assume
that variables in type environments are distinct; this convention implicitly constrains
all inference rules. We also write Γ <: Γ ′ to indicate that dom(Γ ) = dom(Γ ′) and
Γ ′(x̂) <: Γ (x̂) for all x̂ ∈ dom(Γ ).

The main typing judgment for queries is Γ � e : τ ; we also define a program well-
formedness judgment Γ � p prog which typechecks the bodies of functions. Following
[5], there are two auxiliary judgments, Γ � x̄ in τ → s : τ ′, used for typechecking
for-expressions, and τ :: n ⇒ τ ′, used for typechecking label matching expressions
e :: n. The rules for these judgments are shown in Figures 1 and 2.

We consider the typing rules to be implicitly parameterized by a fixed global dec-
laration environment Δ. Functions in XQuery have global scope so we assume that
the declarations for all the functions declared in the program have already been added
to Δ by a preprocessing pass. Additional declarations for built-in functions might be
included in Δ as well.

The rules involving type variables in Figure 2 look up the variable’s definition in E.
These judgments only inspect the top-level of a type; they do not inspect the contents
of element types n[τ ]. Since type definitions τ0 have no top-level type variables, both
judgments are terminating. (This was argued in detail by Colazzo et al. [5, Lem. 4.6].)

3.2 Examples

We first revisit the example in the introduction in order to illustrate the operation of the
rules. Recall that x̄/∗ is translated to x̄/child in our core language.

Γ � x̄/child : b[]∗, c[]?
D

Γ � ȳ in b[]∗, c[]? → ȳ : b[]∗, c[]?

Γ � for ȳ ∈ x̄/child return ȳ : b[]∗, c[]?

where we define Γ = x̄:a[b[]∗, c[]?] and subderivation D is

D =

Γ, ȳ:b[] � ȳ : b[]

Γ � ȳ in b[] → ȳ : b[]

Γ � ȳ in b[]∗ → ȳ : b[]∗

x̄:a[b[]∗, c[]], ȳ:c[] � ȳ : c[]

Γ � ȳ in c[] → ȳ : c[]

Γ � ȳ in c[]? → ȳ : c[]?

Γ � ȳ in b[]∗, c[]? → ȳ : b[]∗, c[]?

Note that this derivation does not use subsumption anywhere. Suppose we wished
to show that the expression has type b[]∗, (c[]?|d[]∗), a supertype of the above type.
There are several ways to do this. We could simply use subsumption at the end of the
derivation. Alternatively, we could have used subsumption in one of the subderivations
such as Γ, ȳ:c[]? � ȳ : c[]?, to conclude, for example, that Γ, ȳ:c[]? � ȳ : c[]?|d[]∗. This
is valid since c[]? <: c[]?|d[]∗.

Suppose, instead, that we actually wanted to show that the above expression has type
(b[d[]∗]|c[]?)∗, also a supertype of the derived type. There are again several ways of
doing this. Besides using subsumption at the end of the derivation, we could use it on
Γ � x̄/child : b[]∗, c[]? to obtain Γ � x̄/child : (b[d[]∗]|c[]?)∗. To complete the
derivation, we would then need to replace derivation D with D′:
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D′ =
Γ, ȳ:b[d[]∗] � ȳ : b[d[]∗]

Γ � ȳ in b[d[]∗] → ȳ : b[d[]∗]

Γ, ȳ:c[] � ȳ : c[]

Γ � ȳ in c[] → ȳ : c[]

Γ � ȳ in c[]? → ȳ : c[]?

Γ � ȳ in b[d[]∗]|c[]? → ȳ : b[d[]∗]|c[]?

Γ � ȳ in (b[d[]∗]|c[]?)∗ → ȳ : (b[d[]∗]|c[]?)∗

Not only does D′ have different structure than D, but it also requires subderivations
that were not syntactically present in D.

The above example illustrates why eliminating uses of subsumption is tricky. If sub-
sumption is used to weaken the type of the first argument of a for-expression according
to τ ′1 <: τ1, then we need to know that we can transform the corresponding derivation
D of Γ � x̄ in τ1 → e : τ2 to a derivation of D′ of Γ � x̄ in τ ′1 → e : τ ′2 for some
τ ′2 <: τ2. But the derivations D and D′ may bear little resemblance to one another.

Now we consider a typechecking a recursive query. Suppose we have3 type Tree =
tree[leaf [string]|node[Tree∗]] and function definition

declare function leaves(x : Tree) : leaf [string]∗ {
x/leaf , for z̄ ∈ x/node/tree return leaves(z̄)

};
This uses a construct e/n that is not in core μXQ, but we can expand e/n to for ȳ ∈

e return ȳ/child :: n; thus, we can derive a rule

Γ � e : l[τ ] τ :: n ⇒ τ ′

Γ � e/n : τ ′ ⇐⇒
Γ � e : l[τ ]

Γ, ȳ:l[τ ] � ȳ/child : τ τ :: n ⇒ τ ′

Γ, ȳ:l[τ ] � ȳ/child :: n : τ ′

Γ � ȳ in l[τ ] → ȳ/child :: n : τ ′

Γ � for ȳ ∈ e return ȳ/child :: n : τ ′

Using this derived rule and the fact that x : Tree and the definition of Tree, we can
see that x/leaf : leaf [string] and x/node : node[Tree∗], and so x/node/tree :
tree[leaf [string]|node[Tree∗]]∗. So the body of the for-loop can be typechecked
with z̄ : tree[leaf [string]|node[Tree∗]]. To check the function call leaves(z̄), we
need subsumption to see that tree[leaf [string]|node[Tree∗]] <: Tree. It follows that
leaves(z̄) : leaf [string]∗, so the for-loop has type (leaf [string]∗)∗. Again using
subsumption, we can conclude that

x/leaf , leaves(x/node/tree) : leaf [string], (leaf [string]∗)∗ <: leaf [string]∗ .

Notice that although we could have used subsumption in several more places, we really
needed it in only two places: when typechecking a function call, and when checking the
result of a function against its declared type.

3.3 Algorithmic Completeness and Decidability

The standard approach (see e.g. Pierce [16, Ch. 16]) to deciding declarative typecheck-
ing is to define algorithmic judgments that are syntax-directed and decidable, and then
show that the algorithmic system is complete relative to the declarative system.

3 We use a somewhat artificial definition of Tree here to simplify the example.
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Definition 1 (Algorithmic derivations). The algorithmic typechecking judgments Γ ��
e : τ and Γ �� x̄ in τ0 → e : τ are defined by taking the rules of Figures 1 and 2,
removing the subsumption rule, and replacing the function application rule with

F (τ ) : τ ∈ Γ Γ �� ei : τ ′i τ ′i <: τi

Γ �� F (e) : τ

It is straightforward to show that algorithmic derivability is decidable and sound with
respect to the declarative system:

Lemma 1 (Decidability). For any x̄, e, n, there exist computable partial functions fn,
ge, hx̄,y such that for any Γ, τ0, we have:

1. fn(τ0) is the unique τ such that τ0 :: n ⇒ τ .
2. gx(Γ ) is the unique τ such that Γ �� e : τ , when it exists.
3. hx̄,e(Γ, τ0) is the unique τ such that Γ �� x̄ in τ0 → e : τ , when it exists.

Theorem 1 (Algorithmic Soundness). (1) If Γ �� e : τ is derivable then Γ � e : τ
is derivable. (2) If Γ �� x̄ in τ0 → e : τ is derivable then Γ � x̄ in τ0 → e : τ is
derivable.

The main result of this section is the corresponding completeness property (Theorem 2
below). A typical proof of completeness involves showing by induction that occurrences
of the subsumption rule can be “permuted” downwards in the proof past other rules, ex-
cept for function applications where subtyping checks are performed. Completeness for
μXQ requires strengthening this induction hypothesis. To see why, consider the rules:

∗
Γ � e1 : τ1 Γ, x:τ1 � e2 : τ2

Γ � let x = e1 in e2 : τ2

∗
Γ � e1 : τ1 Γ � x̄ in τ1 → e2 : τ2

Γ � for x̄ ∈ e1 return e2 : τ2

∗
Γ � e : τ τ :: n ⇒ τ ′

Γ � e :: n : τ ′

If the subderivation labeled ∗ in the above rules follows by subsumption, however, we
cannot do anything to get rid of the subsumption rule using the induction hypotheses
provided by Theorem 2. Instead we need an additional lemma that ensures that the
judgments are all downward monotonic. Downward monotonicity means, informally,
that if we replace the “input” types (including those in Γ ) in a derivable judgment with
subtypes, then the judgment remains derivable with a smaller “output” type.

The downward monotonicity property (Lemma 3 below) is almost easy to prove
by direct structural induction (simultaneously on all judgments). The cases involving
expression-directed typechecking rules are all straightforward inductive steps; however,
for the cases involving type-directed judgments, the induction steps do not go through.
The difficulty is illustrated by the following cases. For derivations of the form

τ1 :: n ⇒ τ2

τ∗1 :: n ⇒ τ∗2

Γ � x̄ in τ1 → e : τ2

Γ � x̄ in τ∗1 → e : τ∗2

we are stuck: knowing that τ ′1 <: τ∗1 does not necessarily tell us anything about a
subtyping relationship between τ ′1 and τ1. For example, if τ ′1 = aa and τ1 = a, then
we have aa <: a∗ but not aa <: a. Instead, we need to proceed by an analysis of the
semantics of regular expression types and subtyping.
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We briefly sketch the argument, which involves an excursion into the theory of regu-
lar languages over partially ordered alphabets. Here, the “alphabet” is the set of atomic
types and the regular sets are the sets of sequences of atomic types that are subtypes of a
type τ . The homomorphic extension of a (possibly partial) function h : Atom ⇀ Type
on atomic types is defined as

ĥ(()) = () ĥ(α) = h(α) ĥ(τ∗) = ĥ(τ)∗

ĥ(τ1, τ2) = ĥ(τ1), ĥ(τ2) ĥ(τ1|τ2) = ĥ(τ1)|ĥ(τ2) ĥ(X) = ĥ(E(X))

(Note again that this definition is well-founded, since top-level type variables cannot be
expanded indefinitely.) If h is partial, then ĥ is defined only on types whose atoms are
in dom(h). We can then show the following general property of partial homomorphic
extensions. Detailed proofs are in a companion technical report [4].

Lemma 2. If h : Atom ⇀ Type is downward monotonic, then its homomorphic exten-
sion ĥ : Type ⇀ Type is downward monotonic.

Lemma 3 (Downward monotonicity). (1) If τ1 :: n ⇒ τ2 and τ ′1 <: τ1 then τ ′1 :: n ⇒
τ ′2 for some τ ′2 <: τ2. (2) If Γ �� e : τ and Γ ′ <: Γ then Γ ′ �� e : τ ′ for some τ ′ <: τ .
(3) If Γ �� x̄ in τ1 → e : τ2 and Γ ′ <: Γ and τ ′1 <: τ1 then Γ ′ �� x̄ in τ ′1 → e : τ ′2 for
some τ ′2 <: τ2.

Proof (Sketch). We work in terms of the partial functions fn, ge, and hx̄,e from Theo-
rem 1. The lemma follows from the downward monotonicity of fn, ge, and hx̄,e in their
type and context arguments. For (1), we show that fn = F̂n where Fn(α) = n[τ ] if
α = n[τ ], Fn(α) = () otherwise; observe that Fn is total and monotone. For parts (2)
and (3), we strengthen the induction hypothesis by showing that ge is downward mono-
tonic and that hx̄,e(Γ, −) = ĝe(Γ, x:(−)) by simultaneous induction on the structure of
algorithmic derivations. The downward monotonicity of hx̄,e(Γ, −) (which is needed
in part (2)) follows again from Lemma 3.

Theorem 2 (Algorithmic Completeness). (1) If Γ � e : τ then there exists τ ′ <: τ
such that Γ �� e : τ ′. (2) If Γ � x̄ in τ1 → e : τ2 then there exists τ ′2 <: τ2 such that
Γ �� x̄ in τ1 → e : τ ′2.

Proof. Induction on the structure of derivations, appealing to Lemma 3 as necessary.

4 Update Language

We now introduce the core FLUX update language, which extends the syntax of queries
with statements s ∈ Stmt , procedure names P ∈ PSym, tests φ ∈ Test , directions
d ∈ Dir , and two new cases for programs:

s ::= skip | s; s′ | if e then s else s′ | let x = e in s | P (e)
| insert e | delete | rename n | snapshot x in s | φ?s | d[s]

φ ::= n | ∗ | bool | string d ::= left | right | children | iter
p ::= · · · | update s : τ ⇒ τ ′ | declare procedure P (x : τ ) : τ ⇒ τ ′ {s}; p
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σ; v � s ⇒U v′

σ � e ⇒ v

σ;() � insert e ⇒U v

σ[x := v]; v � s ⇒U v′

σ; v � snapshot x in s ⇒U v′
σ; v � s ⇒U v′

σ; n[v] � children[s] ⇒U n[v′]

σ;() � s ⇒U v′

σ; v � left[s] ⇒U v′, v

σ; t1 � S ⇒U v′
1 σ; v2 � iter[s] ⇒U v′

2

σ; t1, v2 � iter[s] ⇒U v′
1, v

′
2 σ;() � iter[s] ⇒U ()

Fig. 3. Operational semantics of selected updates

FLUX is based on a novel functional, local approach to updates which carefully con-
trols side-effects; it is based on ideas from a database update language called CPL+
introduced by Liefke and Davidson [15]. Each update statement operates on a part of
the mutable store (or database) that is “in focus”. This locality helps ensure that updates
are deterministic and relatively easy to typecheck.

Updates include standard constructs such as the no-op skip, sequential composition,
conditionals, and let-binding. Atomic updates directly modify the focused part of the
tree. The atomic update operations include insertion insert e, which inserts a value
into an empty input; deletion delete, which deletes the focused input; and rename n,
which renames the focused input provided it is a single tree.

Tests are operations φ?s that perform s if the type of the input focus matches the
type test φ, otherwise do nothing. The node label test n matches tree type n[τ ]; the
wildcard test ∗ matches tree types m[τ ] for any m; and tests bool and string match
the respective base types. The ? operator binds tightly; for example, φ?s; s′ = (φ?s); s′.

The navigation updates d[s] move the focus to another (smaller) part of the tree, and
perform s on the new focus. The left and right directions focus on the empty se-
quence “before” or “after” the current focus, which may be a sequence. The children
direction focuses on the child sequence of a tree. The iter direction focuses on each
singular value in a sequence.

The snapshot operation snapshot x in s binds x to the input focus value and then
applies an update s. Note that snapshot is the only way to read from the mutable store,
and that the value of x is immutable, so no aliasing ensues.

We lack space to formalize the full semantics of updates. Figure 3 shows some il-
lustrative operational semantics rules, defining the judgment σ; v � s ⇒U v′ whose
informal meaning is “given immutable environment σ, s updates mutable store v to
v′”. Here, σ is an environment mapping (tree) variables to (tree) values. The remaining
rules, along with additional explanation and examples, may be found in [3].

We distinguish between singular (unary) updates which apply only when the context
is a tree value and plural (multi-ary) updates which apply to a sequence. Tests φ?s are
always singular. The children operator applies a plural update to all of the children
of a single node; the iter operator applies a singular update to all of the elements of
a sequence. Other updates can be either singular or plural in different situations. Our
type system tracks multiplicity as well as input and output types in order to ensure that
updates are well-behaved.
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Γ �a {τ} s {τ ′}

Γ �a {τ} skip {τ}
Γ �a {τ} s {τ ′} Γ �a {τ ′} s′ {τ ′′}

Γ �a {τ} s; s′ {τ ′′}
Γ � e : τ Γ, x:τ �a {τ1} s {τ2}
Γ �a {τ1} let x = e in s {τ2}

Γ � e : bool Γ �a {τ} s {τ1} Γ �a {τ} s′ {τ2}
Γ �a {τ} if e then s else s′ {τ1|τ2}

Γ, x:τ �a {τ} s {τ ′}
Γ �a {τ} snapshot x in s {τ ′}

Γ � e : τ
Γ �∗ {()} insert e {τ} Γ �a {τ} delete {()} Γ �1 {n′[τ ]} rename n {n[τ ]}
α <: φ Γ �1 {α} s {τ}

Γ �1 {α} φ?s {τ}
α �<: φ

Γ �1 {α} φ?s {α}
Γ �∗ {τ} s {τ ′}

Γ �1 {n[τ ]} children[s] {n[τ ′]}
Γ �∗ {()} s {τ ′}

Γ �a {τ} left[s] {τ ′, τ}
Γ �∗ {()} s {τ ′}

Γ �a {τ} right[s] {τ, τ ′}
Γ �iter {τ} s {τ ′}

Γ �∗ {τ} iter[s] {τ ′}
Γ �a {τ1} s {τ ′

2} τ ′
2 <: τ2

Γ �a {τ1} s {τ2}
P (τ) : σ ⇒ σ2 ∈ Δ σ1 <: σ Γ � e : τ

Γ �a {σ1} P (e) {σ2}

Γ �iter {τ} s {τ ′}

Γ �iter {()} s {()}
Γ �1 {α} s {τ}

Γ �iter {α} s {τ}
Γ �iter {E(X)} s {τ}

Γ �iter {X} s {τ}
Γ �iter {τ1} s {τ2}
Γ �iter {τ∗

1 } s {τ∗
2 }

Γ �iter {τ1} s {τ ′
1} Γ �iter {τ2} s {τ ′

2}
Γ �iter {τ1, τ2} s {τ ′

1, τ
′
2}

Γ �iter {τ1} s {τ ′
1} Γ �iter {τ2} s {τ ′

2}
Γ �iter {τ1|τ2} s {τ ′

1|τ ′
2}

Γ � p prog

Γ �∗ {τ1} s {τ2}
Γ � update s : τ1 ⇒ τ2 prog

P not declared in p
P (τ) : σ1 ⇒ σ2 ∈ Δ Γ, x:τ �∗ {σ1} s {σ2} Γ � p prog

Γ � declare procedure P (x : τ) : τ1 ⇒ τ2 {s}; p prog

Fig. 4. Update and additional program well-formedness rules

4.1 Type System

In typechecking updates, we extend the global declaration context Δ with procedure
declarations:

Δ ::= · · · | Δ, P (τ) : τ1 ⇒ τ2

There are two typing judgments for updates: singular well-formedness Γ �1 {α} s {τ ′}
(that is, in type environment Γ , update s maps tree type α to type τ ′), and plural well-
formedness Γ �∗ {τ} s {τ ′} (that is, in type environment Γ , update s maps type τ to
type τ ′). Several of the rules are parameterized by a multiplicity a ∈ {1, ∗}. In addition,
there is an auxiliary judgment Γ �iter {τ} s {τ ′} for typechecking iterations. The rules
for update well-formedness are shown in Figure 4. We also need an auxiliary subtyping
relation involving atomic types and tests: we say that α <: φ if [[α]] ⊆ [[φ]]. This is
characterized by the rules:

bool <: bool string <: string n[τ ] <: n n[τ ] <: ∗
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...
�iter {a[b[]∗, c[]]} a?children[s] {a[(b[], c[])∗, c[]]} �iter {d[]} a?children[s] {d[]}

�iter {a[b[]∗, c[]], d[]} a?children[s] {a[(b[], c[])∗, c[]], d[]}
�∗ {a[b[]∗, c[]], d[]} iter [a?children[s]] {a[(b[], c[])∗, c[]], d[]}

Fig. 5. Example partial update derivation, where s = iter [b?right insert c[]]

Remark 1. In most other XML update proposals (including XQuery! [12] and the draft
XQuery Update Facility [2]), side-effecting update operations are treated as expressions
that return (). Thus, we could perhaps typecheck such updates as expressions of type
(). This would work fine as long as the values reachable from the free variables in Γ
never change; however, the updates available in these languages can and do change the
values of variables. Thus, to make this approach sound Γ may need to be updated to
take these changes into account, perhaps using a judgment Γ � e : () | Γ ′, where
Γ ′ is the updated type environment reflecting the types of the variables after evaluating
side-effects in e. This approach quickly becomes difficult to manage, especially if it
is possible for different variables to “alias”, or refer to overlapping parts of the data
accessible from Γ , and adding side-effecting functions further complicates matters.

This is not the approach to update typechecking that is taken in FLUX. Updates are
syntactically distinct from queries, and a FLUX update typechecking judgment such as
Γ �a {τ} s {τ ′} assigns an update much richer type information that describes the
type of part of the database before and after running s. The values of variables bound
in Γ are immutable in the variable’s scope, so their types do not need to be updated.
Similarly, procedures must be annotated with expected input and output types. We do
not believe that these annotations are burdensome in a database setting since a typical
update procedure would be expected to preserve the (usually fixed) type of the database.

4.2 Examples

The interesting typing rules are those involvingiter, tests, andchildren,left/right,
and insert/rename/delete. The following example should help illustrate how the
rules work for these constructs. Consider the high-level update:

insert after a/b value c[]

which can be translated to the following core FLUX statement:

iter [a?children [iter [b? right insert c[]]]]

Intuitively, this update inserts a c after every b under a top-level a. Now consider the
input type a[b[]∗, c[]], d[]. Clearly, the output type should be a[(b[], c[])∗, c[]], d[]. To see
how FLUX can assign this type to the update, consider the derivation shown in Figure 5.

As a second example, consider the procedure declaration

declare procedure leafupd(x:string) : Tree ⇒ Tree {
iter[children[iter[leaf ?children[delete; insert x];

node?children[iter[leafupd(x)]]]]]
};
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leafupd(string) : Tree ⇒ Tree ∈ Δ tree [...] <: Tree x:string � x : string

x:string �1 {tree [leaf [string]|node [Tree∗]]} leafupd(x) {Tree}
x:string �iter {tree [leaf [string]|node [Tree∗]]} leafupd(x) {Tree}

x:string �iter {Tree} leafupd(x) {Tree}
x:string �iter {Tree∗} leafupd(x) {Tree∗}

x:string �∗ {Tree∗} iter[leafupd(x)] {Tree∗}
x:string �1 {node [Tree∗]} children[iter[leafupd(x)]] {node [Tree∗]}

x:string �1 {node [Tree∗]} node?children[iter[leafupd(x)]] {node [Tree∗]}

Fig. 6. Partial derivation for body of leafupd

This procedure updates all leaves of a tree to x. As with the recursive query discussed in
Section 3.2, this procedure requires subtyping to typecheck the recursive call. We also
need subtyping to check that the return type of the expression matches the declaration.
A partial typing derivation for part of the body of the procedure involving a recursive
call is shown in Figure 6.

4.3 Algorithmic Completeness and Decidability

To prove update typechecking decidable, we must again carefully control the use of
subsumption. The appropriate algorithmic typechecking judgment is defined as follows:

Definition 2 (Algorithmic derivations for updates). The algorithmic typechecking
judgments Γ ��a {τ} s {τ ′} and Γ ��iter {τ} s {τ ′} are obtained by taking the rules in
Figure 4, removing the subsumption rule, and replacing the procedure call rule with

P (σ) : σ ⇒ σ′ ∈ Δ τ <: σ Γ �� e : τ τ <: σ

Γ ��a {τ} P (e) {σ′}

Moreover, all subderivations of expression judgments in an algorithmic derivation of
an update judgment must be algorithmic.

The proof of completeness of algorithmic update typechecking has the same structure
as that for queries. Again, proof details are in the technical report [4].

Lemma 4 (Decidability for updates). Let a, s be given. Then there exist computable
functions ja,s and ks such that:

1. ja,s(Γ, τ1) is the unique τ2 such that Γ ��a {τ1} s {τ2}, if it exists.
2. ks(Γ, τ1) is the unique τ2 such that Γ ��iter {τ1} s {τ2}, if it exists.

Theorem 3 (Algorithmic soundness for updates). (1) If Γ ��∗ {τ} s {τ ′} is derivable
then Γ �∗ {τ} s {τ ′} is derivable. (2) If Γ ��iter {τ} e {τ ′} is derivable then Γ �iter
{τ} e {τ ′} is derivable.

Lemma 5 (Downward monotonicity for updates). (1) If Γ ��a {τ1} s {τ2} and Γ ′ <:
Γ and τ ′1 <: τ1 then Γ ′ ��a {τ ′1} s {τ ′2} for some τ ′2 <: τ2. (2) If Γ ��iter {τ1} s {τ2}
and Γ ′ <: Γ and τ ′1 <: τ1 then Γ ′ ��iter {τ ′1} s {τ ′2} for some τ ′2 <: τ2.
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Theorem 4 (Algorithmic completeness for updates). (1) If Γ �a {τ1} s {τ2} then
there exists τ ′2 <: τ2 such that Γ ��a {τ1} s {τ ′2}. (2) If Γ �iter {τ1} s {τ2} then there
exists τ ′2 <: τ2 such that Γ ��iter {τ1} s {τ ′2}.

5 Related and Future Work

This work is directly motivated by our interest in using regular expression types for
XML updates, using richer typing rules for iteration as found in μXQ [5]. Fernandez,
Siméon and Wadler [8] earlier considered an XML query language with more precise
typechecking for iteration, but this proposal required additional type annotations; we
only require annotations on function or procedure declarations.

For brevity, the core languages in this paper omitted many features of full XQuery,
such as the descendant, attribute, parent and sibling axes. The attribute axis is straight-
forward since attributes always have text content. In μXQ, the descendant axis was sup-
ported by assigning x̄/descendant-or-self the type formed by taking the union
of all (finitely many) tree types that are reachable from the type of x̄. XQuery handles
other axes by discarding type information. Our algorithmic completeness proof still
appears to work if these axes are added with XQuery- or μXQ-style typing rules.

FLUX’s functional, local approach to updates draws on ideas first explored in the
CPL+ database update language by Liefke and Davidson [15] (unfortunately this work
is not well-known even in the database community). This approach is fundamentally
different from the other XML update language proposals of which we are aware (such
as XQuery! [11] and the draft W3C XQuery Update Facility [2]). Most such proposals
contemplate adding unrestricted side-effecting update operations as additional XQuery
expressions, which would undermine many of XQuery’s advantages as a purely func-
tional language, such as clear semantics and equational optimization laws. Moreover,
to the best of our knowledge, static typechecking and subtyping have not even been
considered for these languages and seem likely to encounter difficulties for reasons we
outlined in Section 4.1 and discussed in more depth in [3].

On the other hand, XQuery! and related proposals are clearly more expressive than
FLUX, and have been incorporated into mature XQuery implementations such as Galax
[7]. Although we currently have a prototype that implements the core typechecking
algorithm described here as well as the operational semantics described in [3], further
work is needed to develop a robust implementation inside an XML database system and
evaluate scalability, optimization, and high-level update language design issues.

6 Conclusions

Static typechecking is important in a database setting because type (or “schema”) in-
formation is useful for optimizing queries and avoiding expensive run-time checks or
re-validation. The XQuery standard, like other XML programming languages, employs
regular expression types and subtyping. However, its approach to typechecking iteration
constructs is imprecise, due to the use of “factoring” which discards information about
the order of elements in the result of an iteration operation such as a for-loop. While
this imprecision may not be harmful for typical queries, it is disastrous for typechecking
updates that are supposed to preserve the type of the database.
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In this paper we have considered more precise typing disciplines for XQuery-style
iterative queries and updates in the core languages μXQ and FLUX respectively. In order
to ensure that these type systems are well-behaved and that typechecking is decidable, it
is important to prove the completeness of an algorithmic presentation of typechecking
in which the use of subtyping rules is limited so that typechecking remains syntax-
directed. We have shown how to do so for the core μXQ and FLUX languages, and be-
lieve the proof technique will extend to handle other features not included in the paper.
These results provide a solid foundation for subtyping in XML queries and updates.

Acknowledgments. Thanks to Peter Buneman and Stijn Vansummeren for many dis-
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Abstract. Hygienic macro systems, such as Scheme’s, automatically re-
name variables to prevent unintentional variable capture—in short, they
“just work.” Yet hygiene has never been formally presented as a specifi-
cation rather than an algorithm. According to folklore, the definition of
hygienic macro expansion hinges on the preservation of alpha-equivalence.
But the only known notion of alpha-equivalence for programs with macros
depends on the results of macro expansion! We break this circularity by
introducing explicit binding specifications into the syntax of macro defini-
tions, permitting a definition of alpha-equivalence independent of expan-
sion. We define a semantics for a first-order subset of Scheme-like macros
and prove hygiene as a consequence of confluence.

The subject of macro hygiene is not at all decided, and more research
is needed to precisely state what hygiene formally means and [precisely
which] assurances it provides.

—Oleg Kiselyov [1]

1 What Are Hygienic Macros?

Programming languages with hygienic macros automatically rename variables to
prevent subtle but common bugs arising from unintentional variable capture—
the experience of the practical programmer is that hygienic macros “just work.”
Numerous macro expansion algorithms for Scheme have been developed over
many years [2,3,4,5,6], and the Scheme standard has included hygienic macros
since R4RS [7].

Yet to date, a formal specification for hygiene has been an elusive goal. In-
tuitively, macro researchers have always understood hygiene to mean preserving
α-equivalence. In particular, performing an α-conversion of a bound variable
should not result in a macro expansion that accidentally captures the renamed
variable. But this idea has never been made precise.

Why should such a simple idea be so hard to formalize? The problem is this:
since the only known binding forms in Scheme are the core forms, the binding
structure of a Scheme expression does not become apparent until after it has
been fully expanded to core Scheme. Thus α-equivalence is only well-defined for
Scheme programs that have been fully expanded, with no remaining instances of

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 48–62, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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macros. So if the conventional wisdom is correct, the definition of hygienic macro
expansion relies on α-equivalence, but the definition of α-equivalence relies on
the results of macro expansion! This circularity is clearly paradoxical, and the
definition of hygiene has consequently remained a mystery.

But in practice, well-behaved macros follow regular binding disciplines con-
sistently, independent of their particular expansion. For example, Scheme’s let
construct can be macro-defined using lambda, yet programmers rely on knowing
the binding structure of let without actually thinking about its expansion. If the
semantics of macros only had access to this binding structure in such a way that
we could reason formally about the scope of Scheme programs without resorting
to operational reasoning about their expansion, we could cut the Gordian knot
and specify both α-equivalence and hygiene in an intuitive and precise way.

To put it more succinctly, we argue that the binding structure of a macro
is a part of its interface. In this paper, we make that interface explicit as a
type annotation. Our type system is novel but incorporates ideas both from the
shape types of Culpepper and Felleisen [8] and nominal datatypes of Gabbay
and Pitts [9]. With the aid of these type annotations, we define a notion of α-
equivalence for Scheme programs with first-order macros, i.e., macros that do not
expand into subsequent macro definitions, and prove hygiene as a consequence
of confluence. We discuss higher-order macros as future work in Section 9.

The organization of this paper is as follows. The next section introduces λm ,
a Scheme-like language with typed macros. Section 3 defines the α-equivalence
relation for λm , and Section 4 introduces the macro type system. Section 5
defines the macro expansion semantics. The next two sections present the key
correctness theorems: type soundness in Section 6 and hygiene in Section 7. In
Section 8 we present a front end for parsing S-expressions as λm expressions.
Section 9 concludes with a discussion of related and future work.

2 λm : An Intermediate Language for Modeling Macros

In Scheme, macro expansion transforms S-expressions into a small, fixed set of
core forms which the underlying compiler or interpreter is designed to recognize.
Expansion eliminates uses of macros by translating them according to their
definitions, repeating this process recursively until there are no derived forms
left to translate. Thus macro expansion consumes programs in surface syntax:

(let ((x (sqrt 2)))
(let ((y (exp x)))
(lambda (f)
(f y))))

and produces programs with only the internal forms recognized by the compiler:

((λx. ((λy. λf. f y) (exp x))) (sqrt 2))

We use a distinct syntax for core forms to highlight the fact that they indicate
the completion of macro expansion. We use S-expressions not simply to describe
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Scheme, but as a simple and general model of tree-structured syntax. Because
macro expansion operates on partially expanded programs, which may contain
both core forms and S-expressions yet to be expanded, a model for macros must
incorporate both syntactic elements.

To that end, we define an intermediate language for modeling macro expan-
sion, called λm . The core forms are based on the λ-calculus, but with additional
forms for local binding of macro definitions and macro application.1

e ::= v | λv. e | e e | let syntax x = m in e end | op�s�σ

v ::= x | ?a
op ::= v | m
m ::= macro p : σ ⇒ e
p ::= ?a | ((p))
s ::= e | op | ((s))

Unlike the surface syntax of Scheme, the syntax of λm consists not just of S-
expressions but also expressions e, whose syntactic structure is fixed and man-
ifest. Of course, macros admit arbitrary syntactic extension in the form of S-
expressions, so S-expressions s appear in the grammar as the arguments to macro
applications. Here too, though, the syntactic structure is made apparent via a
shape type annotation σ. We return in detail to shape types in Section 2.2. Vari-
ables v come in two sorts: program variables x, which are standard, and pattern
variables ?a, which are bound in macro argument patterns and used in their
definitions. Thus, for example, λx. x is a traditional λ-abstraction, but λ?a. ?a
might appear in the body of a macro as a λ-abstraction whose bound variable
will be provided from one of the macro’s inputs. Macro operators op are either
variable references or macro expressions. Macros m contain a pattern p, a type
annotation σ, and a template expression e. A pattern p is a tree of pattern vari-
ables (assumed not to contain duplicates). Finally, an S-expression s is a tree
of expressions or macro operators. The latter form is used to pass macros as
arguments to other macros.

The syntax of λm may seem unfamiliar compared to the simple S-expressions
of Scheme. After all, Scheme applications ((s)) look different from λm applica-
tions op�s�σ and in Scheme, pattern variables are indistinguishable from program
variables. However, given shape-annotated macro definitions, we can easily parse
surface S-expression syntax into λm . We describe this process in Section 8.

2.1 Tree Locations

In order to address context-sensitive properties of terms, we use the mechanism
of tree locations [10] to identify subterms by their position. Tree structures in
our language take the general form t ::= L | ((t)) for some non-terminal of leaves
L. For any such tree structure, we can select a subtree as a path from the root
of the tree to the node containing the subtree. A tree location � is an element of
N
∗. Given a tree t, the subtree t.� is defined by t.ε = t and ((t)).i � = ti.�.

1 Throughout this paper we use an overbar notation (x) to represent sequences.
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2.2 Binding Specifications

Macro definitions and applications in λm are explicitly annotated with shape
types. The purpose of these annotations is to fix the structure of macros, includ-
ing their scoping structure. For example, the following macro m matches four
pattern variables, ?a, ?b, ?e1, and ?e2:

macro ((?a ?b ?e1 ?e2)) : ((〈0〉 〈1〉 expr0 expr0,1))
⇒ λ?a. ((λ?b. ?e2) ?e1)

The shape type σ = ((〈0〉 〈1〉 expr0 expr0,1)) tells us that pattern variables
?a and ?b are placed in binding positions in the macro template, pattern vari-
able ?e1 is used in the scope of ?a alone, and ?e1 appears inside the scope of
both ?a and ?b. Maintaining the bindings in order—?a is bound outside, ?b
inside—makes it possible to resolve references unambiguously even if both ?a
and ?b are instantiated with the same variable. For example, this tells us that
m�((x x x x))�σ =α m�((x y x y))�σ �=α m�((x y y x))�σ.

Shape types are defined by the following grammar:

τ ::= expr | σ → expr
β ::= 〈�〉 | expr�,�

σ ::= τ | β | ((σ))

The base types τ include the type of expressions and the types of macros, which
receive S-expressions as arguments and produce expressions. Binding types β
express the scope of S-expressions. A binder type 〈�〉 corresponds to a variable in
binding position. The location � represents the position in the macro S-expression
where the binder occurs. A body type expr�,� corresponds to an expression inside
the scope of one or more binders; the locations � indicate the positions in the
macro S-expression of each of the binders that are in scope, in the order in which
they are bound, outermost first.

2.3 From S-Expressions to the Lambda Calculus

Once a λm program has been fully expanded, it consists only of core forms, which
in our simple model corresponds to the untyped λ-calculus. We say a program
is in expansion-normal form (ENF) if it obeys the familiar grammar:

e ::= x | λx. e | e e

If ENF is the internal language of the compiler or evaluator, then S-expressions
are the surface language used by the programmer. The syntax of the surface
language is a restricted subset of λm S-expressions:

s ::= x | ((s))

Thus we can envision an idealized pipeline for the evaluation of programs with
macros as shown in Figure 1.
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S-expression
Parser

expression
Expander

ENF
Evaluator

value

Fig. 1. Pipeline for an idealized evaluator with macro expansion

In real Scheme implementations, parsing is interleaved with macro expansion
as the syntactic roles of expressions gradually become apparent. This is different
from our idealized pipeline, which completely separates parsing from expansion.
This is due to the fact that complete type information makes it possible to parse
an S-expression before macro expansion. We return to the front end in Section 8.

3 Alpha-Equivalence

We follow Gabbay and Pitts [9] in using variable swapping to define α-equivalence.
Swapping is defined by:

(v1 v2) · v1 = v2
(v1 v2) · v2 = v1
(v1 v2) · v = v if v �∈ {v1, v2}
(v1 v2) · λv. e = λ((v1 v2) · v). ((v1 v2) · e)
(v1 v2) · ((s)) = (((v1 v2) · s))
etc.

The support of a term is the set of variables it contains:

supp(v) = {v}
supp(λv. e) = {v} ∪ supp(e)
supp(((s))) =

⋃
i supp(si)

etc.

A variable v is fresh with respect to a finite set of terms S, written v # S, if
for all terms s ∈ S, v �∈ supp(s). We write v # s1, . . . , sn where n ≥ 1 to mean
v # {s1, . . . , sn}.

We also define the notion of simultaneously introducing multiple, distinct
fresh variables by overloading the freshness relation for variable mappings. If S
is a set of terms and Z is a mapping {� 
→ z} then we write Z # S to mean

∀� ∈ dom(Z) . Z(�) # S and ∀�, �′ ∈ dom(Z) . Z(�) = Z(�′) ⇒ � = �′

We identify the binders of a form by collecting the set of binding positions
identified in the form’s shape type. The function bp(σ) produces the set of bind-
ing positions of a shape type, and the function pp(p) identifies the positions of
pattern variables in a macro pattern.

bp(((σ))) =
⋃

i{i � | � ∈ bp(σi)} pp(((p))) =
⋃

i{i � | � ∈ pp(pi)}
bp(〈�〉) = {ε} pp(?a) = {ε}
bp(expr�) = bp(τ) = ∅
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We can use bp to compute the set of binders of a macro application binders(σ, s)
as a mapping from binding positions � to their actual binders s.�:

binders(σ, s) = {� 
→ s.� | � ∈ bp(σ)}

3.1 Shape-Directed Conversion

Consider the following Scheme expression, with all occurrences of the variable x
labelled for the sake of explanation.

(let ((x1 x2))
(x3 (lambda (x4) x5)))

In order to α-convert x1 to a fresh name z, we must be careful to rename only the
occurrences of x bound by x1, which in this example includes only x3. Because
macros may have arbitrary shape, a structural induction on the S-expression
would be insufficient to recognize which instances of x were which. Instead,
we define a notion of shape-directed conversion (Z X)σ · s, which follows the
structure of a form’s binding specification rather than its syntax.

(Z X)τ · s = s

(Z X)〈�〉 · x = z if z = Z(�)
(Z X)〈�〉 · v = v if � �∈ dom(Z)

(Z X)expr
�,�′

· e = (z x) · (Z X)expr
�′

· e if z = Z(�) and x = X(�)

(Z X)expr
�,�′

· e = (Z X)expr
�′

· e if � �∈ dom(Z)
(Z X)((σ)) · ((s)) = (((Z X)σi · si))
(Z X)((σ)) · ?a = ?a

The key to the definition of shape-directed conversion is the fourth rule, which
swaps a bound variable with its corresponding fresh name in an expression within
its scope. Because body types order their bound variables from the outside in,
occurrences of the variable x are renamed to z only after performing all inner
renamings, in case x is shadowed by an inner binding.

3.2 Alpha-Equivalence

The definition of α-equivalence appears in Figure 2. The first four rules parallel
the rules of α-equivalence for the λ-calculus, but note that we do not convert
pattern variables ?a used in binding positions. The rule for macro bindings con-
verts the macro name and proceeds inductively. The next rule is key: to compare
two macro applications, their operators must be equivalent, and their arguments
must be equivalent once we α-convert their bound variables. Checking these in-
volves several conditions. First, the two expressions must bind exactly the same
pattern variables, if any; we ensure this by requiring that at any binding po-
sition �, s.� binds an ordinary program variable x if and only if s′.� binds an
ordinary program variable x′. We collect the binder mappings X and X ′ for the
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v =α v

e =α e′

λ?a. e =α λ?a. e′

z # e, e′

(z x) · e =α (z x′) · e′

λx. e =α λx′. e′

e1 =α e′
1

e2 =α e′
2

e1 e2 =α e′
1 e′

2

z # e, m, e′, m′

m =α m′ (z x) · e =α (z x′) · e′

let syntax x = m in e end =α let syntax x′ = m′ in e′ end

op =α op′

∀� ∈ bp(σ) . ∃x = s.� ⇔ ∃x′ = s′.�
X = binders(σ, s) X ′ = binders(σ, s′)

Z = {� �→ z | � ∈ bp(σ), ∃x = s.�} Z # s, s′

(Z X)σ · s =α (Z X ′)σ · s′

op�s�σ =α op′�s′�σ

∀� ∈ pp(p) . p.� = ?a� and p′.� = ?a′
� and ?z� # e, e′

∀�, �′ ∈ pp(p) . ?z� = ?z�′ ⇒ � = �′

(?z� ?a�) · p = (?z� ?a′
�) · p′

(?z� ?a�) · e =α (?z� ?a′
�) · e′

(macro p : σ ⇒ e) =α (macro p′ : σ ⇒ e′)

∀i . si =α s′
i

((s)) =α ((s′))

Fig. 2. Alpha-equivalence of λm programs

two respective forms, and we choose a mapping of fresh binders Z, being careful
not to α-convert at locations that bind pattern variables. Finally, we compare
the α-converted arguments s and s′. The rule for comparing macros is somewhat
simpler. We choose fresh pattern variables ?z� to replace the pattern variables in
either macro, and compare both their patterns and templates. Finally, compound
S-expressions are compared inductively.

3.3 Instantiation

Identifying binders in a shape type positionally is convenient for the theory,
since it results in one canonical representation for each distinct type. However,
for some operations it is necessary to identify binders by name. We present an
alternate form of shape types σ̂ which use variables rather than locations to
represent their binding structure:

β̂ ::= 〈v〉 | exprv,v

σ̂ ::= τ | β̂ | ((σ̂))

We write σ̂ = σ[X ] to denote the instantiation of a nameless shape type σ with
the concrete variable names of a variable mapping X .

The free and bound variables of an expression are computed via shape-directed
generalizations of the standard operations FV (s, σ̂) and BV (s, σ̂) (omitted for
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space). The following theorem ensures that we can always replace an S-expression
with an α-equivalent S-expression with fresh binders.

Theorem 1 (Freshness). Let s be an S-expression and S be a finite set of S-
expressions. Then there exists an S-expression s′ =α s such that BV (s′, σ̂) # S.

Proof. Induction on the structure of s. For each binding in s, choose fresh binders
that are not in supp(S).

It easy to show that if e and e′ are in ENF, then e =α e′ if and only if the two
expressions are α-equivalent as λ-terms.

4 Type Checking

The job of the type checker is to confirm that each macro definition conforms to
its specification and that each use of a macro conforms to its interface. Excerpts
of the type checking algorithm are presented in Figure 3. The type system uses
two environments to track the two dimensions of binding in λm . The program
environment Γ ::= • | Γ [v := τ ] tracks the scope of variables from binding
forms such as λ and let syntax. The pattern environment Φ ∈ {•} ∪ PVar →
Shape tracks the binding of pattern variables for the current macro (if any). This
environment is constructed by pairing the structure of a macro pattern p with
an instantiation of the macro’s type annotation:

penv(((p)), ((σ̂))) =
⋃

i penv(pi, σ̂i)
penv(?a, σ̂) = {?a 
→ σ̂}

The type rule [T-MacDef] permits only non-nested macro definitions by re-
quiring an empty pattern environment. Rule [T-MacApp] checks macro argu-
ments with their annotated type instantiated with the actual binders. Rule
[T-PBody] checks a pattern variable reference with a body type, ensuring that
all the necessary pattern variables have been bound in the proper order. Rule
[T-PAbs] checks abstractions with pattern variable binders. We discuss [T-PRef]

in the next section. Rule [T-Body] binds a variable from a body type in the pro-
gram environment. Rule [T-Macro] forms a pattern environment Φ and checks
the template against its annotated type (subject to well-formedness constraints),
filtering out any pattern variables from the program environment; the first-order
macros of λm cannot refer to pattern variables outside their own scope.

4.1 The Aliasing Problem

The design of our type system led us to discover a peculiarity of Scheme macros.
Consider the following macro:

(define-syntax K
(syntax-rules ()
((K a b)
(lambda (a)
(lambda (b) a)))))
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(Γ, Φ) 	 e : expr

[T-MacDef]

(Γ, •) 	 m : σ → expr
(Γ [m := σ → expr], •) 	 e : expr

(Γ, •) 	 let syntax x = m in e end : expr

[T-MacApp]

(Γ, Φ) 	 op : σ → expr
(Γ, Φ) 	 s : σ[binders(σ, s)]

(Γ, Φ) 	 op�s�σ : expr

[T-PBody]

Φ(?a) = expr?b

Γ |pvar = [?b := expr]

(Γ, Φ) 	 ?a : expr

[T-PAbs]

Φ(?a) = 〈?a〉
(Γ [?a := expr], Φ) 	 e : expr

(Γ, Φ) 	 λ?a. e : expr

[T-PRef]

Φ(?a) = 〈?a〉
Γ |pvar = Γ ′[?a := expr]

(Γ, Φ) 	 ?a : expr

(Γ, Φ) 	 e : β̂ (Γ, Φ) 	 op : σ → expr

[T-Body]

(Γ [v := expr], Φ) 	 e : exprv′

(Γ, Φ) 	 e : exprv,v′

[T-Macro]

wf (σ)
(Γ |var , penv(p, σ[pvars(p)])) 	 e : expr

(Γ, Φ) 	 (macro p : σ ⇒ e) : σ → expr

Fig. 3. Excerpts from the λm type system

One might expect that any application of K would produce an expression equiva-
lent to λx. λy. x. But consider the application (K x x): even in a hygienic macro
system, this would expand into λx. λx. x! The binding structure of K is thus de-
pendent on its actual arguments. We call this dependency the aliasing problem.

To resolve this ambiguity, we propose a simple rule we call the shadow restric-
tion, enforced by the type rule [T-PRef]. A pattern binder ?a (i.e., of type 〈?a〉)
may only occur in an expression position if no other intervening pattern binders
are in scope. For example, λ?a. (λ?b. ?b) is legal but λ?a. (λ?b. ?a) is ill-typed. In
particular, this prohibits the definition of the K macro above. This restriction
might seem draconian, but in fact K can easily be rewritten:

(define-syntax K′

(syntax-rules ()
((K′ a b)
(lambda (a)
(let ((tmp a))
(lambda (b) tmp))))))

Note that even with standard, untyped Scheme macros, this new definition al-
ways exhibits the intended behavior, in that even (K′ x x) expands into an
expression equivalent to λx. λy. x.
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4.2 Alpha-Equivalence Preserves Type

Theorem 2 gives us the freedom to use α-equivalent S-expressions without af-
fecting the types.

Lemma 1. (Γ, Φ)  s : σ[X ] ⇔ (Γ, Φ)  (Z X)σ · s : σ[Z]

Theorem 2 (Alpha-equivalence preserves type). If (Γ, Φ)  s : σ̂ and
s =α s′ then (Γ, Φ)  s′ : σ̂.

5 Macro Expansion

In this section, we specify our macro expansion semantics. We begin with a
notion of compatibility, defined via expansion contexts.

5.1 Expansion Contexts

An expansion context Cσ is an S-expression with a hole [ ], which produces an
S-expression of shape σ when filled with an expression e. When the shape of a
context is clear or irrelevant, we omit it for brevity.

Cexpr�

::= [ ] | λv. Cexpr | Cexpr e | e Cexpr

| let syntax x = Cσ→expr in e end
| let syntax x = m in Cexpr end
| Cσ→expr(s) | op�Cσ�σ

C((σ)) ::= ((s1..i−1 Cσi si+1..|σ|)) i ∈ 1..|σ|
Cσ→expr ::= macro p : σ ⇒ Cexpr

5.2 Variable Conventions

The heart of hygienic macro expansion is the management of bindings to prevent
accidental capture. Different expansion algorithms achieve this in different ways.
For the specification of hygienic macro expansion, we simply specify the necessary
conditions on variables under which expansion can proceed.

Analogous to the Barendregt variable convention [11], the transparent pred-
icate allows a macro definition to be substituted into an application only if no
intervening bindings can capture free variable references in the macro template.
This condition is sometimes referred to as referential transparency.

transparent(s, σ̂, s′, σ̂′) ⇔ BV (s, σ̂) ∩ FV (s′, σ̂′) = ∅

This condition alone is not enough to prevent unintended capture. The predicate
hygienic requires a macro template’s bindings to be fresh before performing an
application. This prevents the bindings in the template from capturing references
in the macro’s arguments.

hygienic(s, σ̂, s′) ⇔ BV (s, σ̂) # s′
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5.3 Expansion Semantics

The semantics of macro expansion involves two rules. The first rule connects
macro applications to their definitions via the substitution operation s[x := m]σ̂,
which uses the shape type σ̂ to traverse the structure of s.

v[x := m]expr = v (v �= x)
(λx. e)[x := m]expr = λx. e
(λv. e)[x := m]expr = λv. (e[x := m]expr) (v �= x)
x[x := m]σ→expr = m
v[x := m]σ→expr = v (v �= x)
e[x := m]expr

x,v

= e

e[x := m]expr
v,v′

= e[x := m]expr
v′

(v �= x)
etc.

A macro substitution step is defined by the rule:

let syntax x = m in e end 
−→subst e[x := m]expr

if transparent(e, expr, m, type(m))

Note that the variable convention must be fulfilled to prevent the context of the
macro application from capturing free variable references in the macro template.

The second rule of macro expansion performs a macro transcription step,
expanding an individual macro application. This rule is carried out in two parts.
The first part, pattern matching, matches the macro pattern against the actual
sub-expressions, producing a substitution ρ:

match(((p)), ((s))) =
⋃

i match(pi, si)
match(?a, s) = {?a 
→ s}

Next, transcription instantiates all pattern variables in the template with the
substitution function ρ:

transcribe(x, ρ) = x
transcribe(?a, ρ) = ρ(?a)
transcribe(λv. e, ρ) = λ(transcribe(v, ρ)). (transcribe(e, ρ))
transcribe(e1 e2, ρ) = (transcribe(e1, ρ)) (transcribe(e2, ρ))
transcribe(op�s�σ , ρ) = (transcribe(op, ρ))�transcribe(s, ρ)�σ

transcribe(m, ρ) = m

transcribe(((s)), ρ) = (((transcribe(s, ρ))))

The macro transcription step is defined as the rule:

(macro p : σ ⇒ e)�s�σ 
−→trans transcribe(e,match(p, s))
if transparent(s, σ̂, e, expr) and hygienic(e, expr, s)
where σ̂ = σ[binders(σ, s)]

The first variable convention also applies to this rule, since binders introduced in
the actual arguments of the macro application should not capture free references
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from the template. The second convention prevents binders introduced from the
body of the template from capturing references in the actual arguments.

We define the binary relation 
−→ε to be the compatible closure of the com-
bined rules 
−→subst ∪ 
−→trans on S-expressions up to α-equivalence, i.e., the least
relation such that s1 
−→ε s2 if there exist S-expressions s′1, s

′
2, a context C, and

expressions e1, e2 such that s1 =α s′1, s2 =α s′2, s′1 = C[e1], s′2 = C[e2], and
either e1 
−→subst e2 or e1 
−→trans e2.

The binary relation 
−→−→ε is the reflexive, transitive closure of 
−→ε.

6 Type Soundness

The type soundness proof is in the style of Wright and Felleisen [12]. The Preser-
vation Lemma is proved for any S-expression s; it is reused in this more general
form for the proof of confluence.

Lemma 2 (Preservation). If (Γ, Φ)  s : σ̂ and s 
−→ε s′ then (Γ, Φ)  s′ : σ̂.

Proof. The proof depends on three lemmas that guarantee that macro substitu-
tion, pattern matching, and transcription respectively preserve type, as well as
a decomposition lemma. Theorem 2 ensures that choosing α-equivalent terms to
satisfy the variable conventions is also type-preserving.

Lemma 3 (Progress). If  e : expr then either e is in ENF or there exists an
e′ such that e 
−→ε e′.

Proof. Macro substitution is defined for all well-typed S-expressions, as is match.
Theorem 1 allows us to choose α-equivalent terms that satisfy the variable con-
ventions for the expansion rules.

Theorem 3 (Type soundness). If  e : expr and e 
−→−→ε e′ and e′ �
−→ε, then
e′ is in ENF and  e′ : expr.

7 Hygiene

Theorem 4 (Confluence). Let s be an S-expression such that (Γ, Φ)  s : σ̂.
s

s1

<<
ε

s′1

ε
>>

s2

<<

εε >>

Proof. In the style of Barendregt [11], Chapter 11, §1. The proof involves marking
a redex and tracking the marked redex and any copies or expansions of that
marked term through multiple expansion steps. The central lemma shows that
both macro substitution and transcription commute with expansion of marked
redexes.
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At last, the final Hygiene Theorem follows immediately from confluence.

Theorem 5 (Hygiene). Let e0 be an expression such that  e0 : expr. If
e0 =α e′0, e0 
−→−→ε e, and e′0 
−→−→ε e′ such that e and e′ are in ENF, then
e =α e′.

This theorem provides the crucial guarantee of hygienic macros, namely that
α-conversion of λm programs is semantics-preserving.

8 Front End

The parsing algorithm uses the same environments as the type system in or-
der to distinguish the sorts of variables as well as annotate macro applications
with types. Excerpts of this parsing algorithm are presented in Figure 4. Be-
cause function application in Scheme is denoted by parenthesization rather than
invoking a special application macro, the rule for parsing function applications
inserts an explicit reference to a built-in macro @. This is similar to the technique
used in PLT Scheme [13], in which implicit function applications are rewritten
to explicit applications of #%app.

Scheme implementations generally provide a standard library of macros. The
primitive forms lambda and @ can be implemented as built-in macros in the
initial context of a Scheme program:

C0 = let syntax
lambda = (macro ((((?a)) ?e)) : ((((〈00〉)) expr00)) ⇒ λ?a. ?e)
@ = (macro ((?e1 ?e2)) : ((expr expr)) ⇒ ?e1 ?e2)

in [ ] end

The parser must account for these macros in its initial environment:

Γ0(lambda) = ((((〈00〉)) expr00)) → expr
Γ0(@) = ((expr expr)) → expr

parse(Γ, Φ, x, expr) =

{
?x if x ∈ dom(Φ)
x if x �∈ dom(Φ)

parse(Γ, Φ, ((let-syntax ((((x s1)))) s2)), expr) = let syntax x = m in e end
where parseMacro(s1) = m

and parse(Γ [x := type(m)], Φ, s2, expr) = e
parse(Γ, Φ, ((x s)), expr) = op�s′�σ

where parseOperator (Γ, Φ, x) = (op, σ → expr)
and binders(Φ, σ, ((s))) = X
and parse(Γ, Φ, ((s)), σ[X]) = s′

parse(Γ, Φ, ((s1 s2)), expr) = parse(Γ, Φ, ((@ s1 s2)), expr)
if s1 �∈ dom(Γ ) and ?s1 �∈ dom(Φ)

Fig. 4. Excerpts of the type-directed parsing algorithm
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9 Related and Future Work

Hygienic macros are over twenty years old, and many macro systems have been
designed to facilitate or guarantee hygiene [2,5,3,6]. Several have been defined
in a rigorous and formal way, but none provides a specification for hygiene, nor
any satisfying account for the guarantees it provides. Our work shares a common
observation with the syntactic closures macro system [4], namely that macro
programmers know the binding structure of macros a priori; their work provides
an API rather than a theory. Our primitive lambda and @ macros resemble the
micros of Krishnamurthi [14].

Several syntactic extension mechanisms have been designed for languages other
than Scheme [15,16]. MacroML [17] is particularly relevant since it automatically
prevents unintended variable capture. Their system is restrictive: binding forms
can only extend ML’s let form, and macros cannot inspect or destructure their
syntactic arguments. Our work allows destructuring of S-expressions while still
preserving the integrity of expressions. Our work also provides a theory of α-
equivalence. Previous work on staged notational definitions [18] provides a meta-
language SND for reasoning about MacroML programs; we believe our system
more closely matches the informal reasoning used by macro programmers.

The shape types of Culpepper and Felleisen [8] are similar in expressive power
to ours, allowing destructuring of S-expressions and synthesis of arbitrary bind-
ing forms. Our work extends theirs by accounting for binding structures. Cru-
cially, this provides us with our account of α-equivalence and hygiene. Our use of
types for expressing bindings was inspired by the nominal datatypes of Gabbay
and Pitts [9].

Gasbichler [19] provides a detailed formal account of a rich macro system
in order to study the interaction of hygienic macros and module systems. Our
work is concerned instead with the guarantees provided by hygiene. Griffin [20]
and Bove and Arbilla [21] also provide formal accounts of notational definitions
and macros, respectively. The former is based on a higher-order representation of
binding forms, the latter on de Bruijn indices. We have taken an explicitly-named
approach in order to explore the connection between hygiene and α-equivalence.
Both works prove key correctness properties, but in the context of a language
with only top-level macro definitions, i.e., without lexically scoped macros.

Finally, we note that the design of our shape types bears some resemblance to
the locally nameless approach to binding structures [22,23,24]. In particular, our
macro types use tree locations � in order to avoid using an α-equivalence relation
on shape types, but when destructuring a type, we instantiate these locations
with concrete names. We intend to investigate this relationship further.

There is much more to discover of the theory of hygienic macros. Our elemen-
tary type system is not yet expressive enough to permit important idioms in com-
mon use, including recursive macros, variable-length lists and list-patterns [25],
and case dispatch. Another important next step will be to understand the type
structure of higher-order macros, which expand into subsequent macro defini-
tions. We intend to investigate the connection to staged types for this question.
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Other areas for future exploration include procedural macros, inference for shape
types, and support for intentional capture.
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Abstract. In this article, we present a model and a denotational se-
mantics for hybrid systems. Our model is designed to be used for the
verification of large, existing embedded applications. The discrete part
is modeled by a program written in an extension of an imperative lan-
guage and the continuous part is modeled by differential equations. We
give a denotational semantics to the continuous system inspired by what
is usually done for the semantics of computer programs and then we show
how it merges into the semantics of the whole system. The semantics of
the continuous system is computed as the fix-point of a modified Picard
operator which increases the information content at each step.

1 Introduction

The importance of static analysis techniques [6] for software validation is no
longer to be outlined. Their application to highly critical programs has become
a major challenge for many industries. Such programs are often automatically
generated, imperative programs which are embedded into a heterogeneous sys-
tem. They mostly behave as follows: they capture information from the physical
environment via sensors, treat it using numerical computations and then modify
the environment via actuators. The analysis of such programs requires either to
over-approximate the physical environment, which often leads to an imprecise
analysis, or to analyze the hybrid system made of the continuous environment
and the discrete program [5,14]. We use this approach. The analysis of hybrid
systems requires as a starting point a formal description of their behavior. We
need to give a coherent interpretation of both the discrete and the continuous
subsystems. The formalization of a continuous system using the same notions
as for a computer program is already a challenge of its own. The continuous
variables move along a continuous function of the real time while the discrete
system is defined, in a denotational semantics approach, as a function between
discrete environments [24]. In this article, we propose a formalism for modeling
hybrid systems together with a description of their behavior as a hybrid denota-
tional semantics : the evolution of the hybrid system is a function between hybrid
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environments (containing a discrete and a continuous part) which is computed
as the least fix-point of a sequence of approximations.

Our model for hybrid systems is designed for an implementation level and
ensures a clear separation of the discrete and the continuous subsystems. They
are modeled in two different formalisms (see Sects. 2.1 and 2.2) which allows the
analysis of one program within various environments for example. Despite this
heterogeneity, we give a unique description of the behavior of the hybrid system.
First, we suppose that the discrete part is completely determined and we give a
semantics �κ� for the continuous part (Sect. 3). It is computed as the fix-point
of an operator Γ which acts on partially defined functions and we show that this
fix-point is actually the limit of Tarski’s iterates [22]. The semantics �Δ� of the
purely discrete part of the system is computed using the standard semantics of
imperative languages (as in [24]). We add denotations for some hybrid actions
that represent sensors and actuators, and show how these are combined to �κ�
to form the hybrid semantics �Ω�H (Sect. 4). For conciceness reasons, we ommit
in this paper most of the proofs of the presented results. An extended version
containing them with more details on the theory of ODEs can be found in [3].

Running Example. We will illustrate this article with a simplified version of the
well-known two tanks problem [18]. It consists of one water tank (Fig. 1.1(a))
filled by a constant flow i with two evacuation tubes: one at the bottom, which
has a valve v than can be open or closed, and one at height h. The continuous
system is the height x of the water in the tank, whose evolution is governed by
the ordinary differential equation of Fig. 1(b). The discrete part is a controller
whose goal is to maintain x between safe bounds by closing/opening the valve.

Related Work. The modeling of hybrid systems with hybrid automata was initi-
ated by Henzinger [16]. They are finite state automata to which we add at each
node a flow equation describing the continuous dynamics at this point. Their op-
erational semantics was introduced in the early papers and their analysis using
model checking techniques has been well studied [12,17]. A denotational seman-
tics for these models was recently proposed by Edalat [11] and proved to be
equivalent to the operational semantics. Since the first results, many models for
hybrid systems and verification methods were proposed. These include hybrid
process algebra like HyPa [8] or Hybrid Chi [23]. Meanwhile, Hybrid-CC [15]
introduced hybrid components to the concurrent constraints theory. All these

(a) Scheme.

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

i − k1
√

x − k2
√

x − h if x ≥ h and v open

i − k2
√

x − h if x ≥ h and v closed
i − k1

√
x if x ≤ h and v open

i otherwise

(b) Continuous System.

Fig. 1.1. One Tank Example
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models are generally used as high level abstract formalisms to reason about the
principles of hybrid systems. However, when the verification of industrial size,
critical systems is at stake, they are not fully sufficient. First, for safety rea-
sons, the analysis of the embedded source code is always necessary. Secondly,
for industrial size problems, it is necessary to have a clear distinction between
discrete and continuous states to allow the modeling process of the both parts
to be executed by different engineers. Most of the models we cited are not well-
suited for these requirements, although some advances have been made for the
separation issue [1]. The main difficulty in the formalization of hybrid systems
is to give a coherent meaning to the continuous and the discrete parts. Edalat
et al. proposed a formalization of differential calculus and of the solutions of
differential equations in the theory of Scott domains, both for the mono-variate
[9] and multi-variate [10] cases. We used their theory as a starting point for our
work to define the denotational semantics of the continuous subsystem.

Notations and Mathematical Background. In this article, R denotes the set of
real numbers, R+ the set of non-negative real numbers and N denotes the natural
integers. The set of compact intervals over R is I(R). For i ∈ I(R), we write i
(resp. i) its lower (resp. upper) bound. We define its width w(i) = i − i and
its midpoint mid(i) = i+i

2 . In Sect. 3, we use some advanced techniques of the
theory of ordinary differential equations (ODEs). We assume that the reader
is familiar with the basics of this theory, and give here just the main results
that we will use. The main theorem that we will use concerns the iterates of the
Picard operator PI

(
F, y0

)
. Given I ∈ I(R), a continuous function F and y0 ∈

R, PI

(
F, y0

)
is a map between continuous functions defined by PI

(
F, y0

)
(f) =

λx.y0+
∫ x

I
F (f(s), s)ds. It gives a characterisation of the solution of an initial value

problem (IVP) as a fixpoint and it provides a way to compute it via successive
approximation, as shown by Theorem 1.

Theorem 1 (Properties of the Picard operator). Let ẏ = F (y), y(0) = y0
be an IVP. A continuous, differentiable function f on (a, b), with 0 ∈ (a, b), is a
solution to the IVP if and only if it satisfies:

∀t ∈ (a, b), f(t) = P(a,b)
(
F, y0

)
(y)(t) . (1)

If F is globally Lipschitz on R, the Picard iterates defined by f0 ∈ C0([a, b]), fn+1 =
P[a,b]

(
F, y0

)
(fn) converge uniformly on (a, b). So, whatever the choice of f0, if we

iteratively compute fn+1 = P[a,b]
(
F, y0

)
(fn), the sequence converges toward the

solution of the IVP on (a, b).

2 Our Model for Hybrid Systems

Our goals for this model of hybrid systems are the following. First, the discrete
part should remain close to existing embedded software. Secondly, the action of
sensors and actuators must be clearly identified. Finally, we want the continuous
and discrete systems to be modeled separately for two reasons. First, to analyze
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the behavior of a controller in different physical environments without rewriting
the entire system, the distinction between the plant (i.e. the discrete part) and
the environment must be clear. Secondly, for existing industrial applications, the
discrete part (i.e. the program) is already written, so we want a model of the
hybrid systems that can use this program “as it is”. An obvious solution would
consist of building a cartesian product between the continuous states and the
states of the program. For combinatorial reasons, our approach consists of first
describing a model for continuous subsystems (Sect. 2.1) and then a model for
discrete subsystems (Sect. 2.2).

2.1 Model for the Continuous Subsystem

The continuous part contains variables evolving continuously with time such as
the water height in the tank or the temperature of the air. They are usually
modelled by an ordinary differential equation; for example, the temperature y
of a room with a heater is given by an ODE like ẏ = 5 − 0.1y. Let κ be the
continuous model, its expressiveness depends on the set of functions F that we
allow to define the IVP ẏ = F (y), y(0) = y0. We need to capture two phenomena:
a change in the dynamics due to the environment itself and a change due to the
discrete program. The first arises for example when the water passes above the
tube (see (2)) while the second appears when the valve is closed.

To capture the changes due to the actuators, we let F have boolean parameters :
F = F (y, t, k), where k vector of boolean valued. We write Fk(y, t) = F (y, t, k)
for every possible value of k. To capture the changes induced by the environ-
ment itself, we let each Fk be a continuous, piecewise Lipschitz function. Thus,
Fk behaves differently in different regions of the space, which is precisely the
kind of changes we wanted to model. We recall that a function g is piecewise
Lipschitz if there exist finitely many real numbers x0 < x1 < · · · < xn such that
the restriction of g to [xi, xi+1] is Lipschitz. The theory of differential equations
remain unchanged with such functions, except that the solutions are now contin-
uous but only piecewise differentiable functions. Especially, the Picard iterates
still converge uniformly on every interval.

The continuous model κ is a triple κ = (F,
(
Fk

)
k∈k

, y0) where
(
Fk

)
k∈k

is
the set of possible modes. We write Fk for

(
Fk

)
k∈k

. F is the function defining
the IVP and is such that there exists t0 < t1 < · · · < tn < . . . such that the
restriction of F to [ti, ti+1] is equal to one of the Fk. The model representing the
evolution of the liquid height in the one-tank system is (F, {F0, F1}, y0) where
(F0, F1) are given by (2).

Fk(x) =

{
i − k ∗ k1

√
x − k2

√
x − h if x ≥ h

i − k ∗ k1
√

x otherwise
(2)

2.2 Model for the Discrete Subsystem

We want the discrete model Δ to remain close to existing embedded software. We
thus start with a set of standard statements which are common to any imperative
language (stmt in Fig. 2.1): assignemnts, if statements, while loops, arithmetic
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stmt := v = exp | while(bool) stmt | if(bool) then stmt else stmt
| stmt;stmt | hyb stmt

exp := c | exp+exp | exp-exp | exp*exp ...
bool := v<exp | v>exp | bool∨bool | ...

hyb stmt := sens.y?x | act.k!c | wait c

Fig. 2.1. Statements for the discrete system

and boolean expressions. This core language can be extended to more complex
statements without perturbing the semantics of the hybrid system as they rep-
resent purely discrete actions. In addition, we have three hybrid actions. First, a
sens action for the sensors: the action of sens.y?x is to bind the variable x to
the value of the continuous variable y at the time the action is executed. Then, a
act action for the actuators: the action of act.k!c is to change the continuous dy-
namics by choosing the function Fc among all the possible dynamics Fk. Finally,
a wait action for the passing of time: we suppose that all discrete and hybrid ac-
tions are instantaneous and we model the fact that they were not by explicitly
adding these wait statements. The effect of wait c is to move time forward by
c seconds. This formalism is very close to existing imperative languages and, in
most cases, the programs already contain, as comments, the hybrid statements.
For example, the loops of industrial programs are usually precisely cadenced and
we often see in the codes comments indicating their frequency such as “this loop
runs at 8kHz”. Thus, adding a wait command at the end of the loop to model
its cadence is easy. Using this syntax, we can write a controller for the one tank
system that measures the height x of the water with a sensor and open the valve if
x is too high (see Listing 1). We suppose that closing the valve takes two seconds,
so the controller must predict the height of the water two seconds later (via the
function anticipate) and start the opening if this predicted value is too high.

1 int main ( ) {
2 sen sor x ; // sensors d e c l a ra t i on
3 actuator k ; // ac tua t o r s d e c l a ra t i on
4 while ( t rue ) {
5 sens . x?h ;
6 i f (h>h max)
7 act . k ! 1 ; throw ( alarm ) ;
8 h i n 2 s e c s = an t i c i p a t e (h ) ;
9 i f ( h i n 2 s e c s > h max )

10 act . k ! 1 ;
11 wait ( 0 . 0 1 ) ; // de l ay ac t i on
12 }
13 }

Listing 1. Controller for a one-tank system.

This model for hybrid systems conforms to our three requirements, and we de-
signed it such that it prohibits physically impossible phenomena like continuous
state jumps or Zeno effects. Actually, time is driven by the discrete subsystem
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through the wait statements, thus there must exist a minimum time between
two mode switchings (because the discrete program is finite), which prohibits
Zeno phenomena. We now give a formal, denotational semantics for this model
of hybrid systems.

3 Continuous Semantics

In this section, we give a formal, denotational semantics of the continuous model.
Let us recall that the continuous part of an hybrid system is represented as
κ =

(
F, Fk, y0) where Fk is a family of piecewise Lipschitz continuous functions

and y0 ∈ R is the initial condition (we suppose t0 = 0). Each Fk is supposed
to be globally α-Lipschitz on R, so that there exists a unique maximal solution
on R to each ODE ẏ = Fk(y, t). We first give the intuition for the continuous
semantics and then we describe the lattice structure that we manipulate (Sect.
3.1) and the computation of the semantics as a fix-point (Sect. 3.2).

In an analogy with standard denotational semantics, we want to express the
semantics of κ as a function mapping an initial environment to a final value. If
we know the behavior of the discrete part of the system, we know the times at
which the parameters k ∈ k switch. Thus, we know completely the function F
and the semantics of κ maps an initial value to the semantics of the IVP:

ẏ = F (y, t), y(0) = y0 . (3)

Basically, the semantics of the IVP is its maximal solution, i.e. a piecewise differ-
entiable, continuous function y : R+ → R which satisfies (3). Thus, the semantics
of κ is a function �κ� mapping an initial environment (i.e. the initially available
information y) to the solution of the IVP. The computation of �κ�(y) requires the
computation of a fix-point, in the sense of Banach’s fix-point theory, as shown
by Theorem 1. We translate this fix-point computation into Tarski’s fix-point
theory: �κ�(y) is computed as the fix-point of an operator Γ and we prove this
is the supremum of the iterates Γ n(⊥). Γ is defined on elements with partial
information and it updates them by increasing their information content. Our
notion of partial information is the following: a function has only partial infor-
mation if it is defined on a finite interval [0, X ] for some X ∈ R+ and its value
at each point is bounded, i.e. is an interval. Thus, the maximal elements are
the real-valued functions defined on R+ and our semantics will construct one
of these (the solution of (3)) as the limit of an approximations sequence, each
approximation being a partially defined, interval-valued function.

3.1 The Lattice of Interval-Valued Functions

We now define the set of partially defined, interval-valued functions. We also
define an order and shows that this order provides a lattice structure.

Definition 1 (Partial, interval-valued functions). Let X ∈ R+. IFX is
the set of interval-valued functions defined on [0, X ]: IFX = {f : [0, X] → I(R)}
For such a function, we define its upper f and lower f functions as the two
real-valued functions such that ∀x ∈ [0, X ], f(x) = [f(x), f (x)].
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When f (respectively f) is right-continuous (respectively left-continuous), f is
(Scott) continuous and write IF0

X the set of all continuous, partial, interval-
valued functions. We recall that a function f is right-continuous if when t tends
toward x from above, f(t) tends toward f(x); the left-continuity is the opposite.
We provide the set IF0

X with a complete partial order structure with the point-
wise reverse order: f 
X g ⇔ ∀x ∈ [0, X], g(x) ⊆ f(x). This order means that at
every point in [0, X ], g is more informative than f . Clearly, (IF0

X , �X) is a CPO
(actually, it is a continuous Scott domain [9]). The left-(resp. right) continuity
of f (resp. f) is a necessary condition for f to be Scott-continuous [9] and for
IF0

X to be a CPO; consider for example the piecewise linear functions fn ∈ IF0
1

defined by fn(x) = [0, 1] if x ∈ [0, 1
2 ], fn(x) = [0, 1 − n

2 (x − 1
2 )] if x ∈ [12 , 1

2 + 1
n ]

and fn(x) = [0, 1
2 ] otherwise. Clearly, f =

⊔
n fn is not continuous in 1

2 , while
each fn is. The right-continuity condition imposes that f(x) = 1 for x ∈ [0, 1

2 [
and f(x) = 1

2 for x ∈ [ 12 , 1].
IF0
∞ is the natural extension of IF0

X to functions defined on R+. We now build
the set of interval functions defined over arbitrary intervals of R.

Definition 2 (Arbitrary long, interval-valued functions). The set of all
continuous, partial, interval-valued functions is D0 =

(⋃
X∈R+

IF0
X

)
∪ IF0

∞.

For f ∈ D0, we note Xf the upper bound of its domain: Xf = sup(dom(f)).
The value Xf is the maximum time until which f is defined; if f is defined on
R+, then Xf = ∞.

Note that for all X ≥ 0, the set of continuous, real-valued functions C0([0, X ]) is
embedded into D0 by the function γ : f 
→ λx.[f(x), f(x)]. Thus, we will identify
a map f ∈ C0([0, X ]) with the map λx.[f(x), f(x)] and write f ∈ D0. We extend
the order �X to D0 by requiring that g is greater than f if it is more precise on
a longer interval than f :

f 
 g ⇔ Xf ≤ Xg and f 
Xf g|[0,Xf ]
and ∀x ∈ [Xf , Xg], g(x) ⊆ f(Xf ) (4)

where g|[0,Xf ]
denotes the restriction of g to [0, Xf ]. Figure 3.1 gives an example

of comparable functions (left, the dark one being bigger than the light one) and
an example of incomparable functions (right). The third hypothesis in (4) states
that g remains bounded by the last value of f on [Xf , Xg]. It is necessary for D0

to be a CPO: in any increasing chain fn, the functions fn and fn are bounded,
thus (fn) is a bounded increasing sequence (with respect to the pointwise order
for real-valued functions), so it has a limit f . Equivalently, (fn) has a limit f ,

(a) Comparable functions. (b) Incomparable functions.

Fig. 3.1. Order on partially defined functions
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which proves the existence of
⊔

n fn = [f, f ]. We extend (D0, �) with a bottom
⊥ and a top � element such that ∀f ∈ D0, ⊥ � f � �. We also define the join
and meet operators � and  as follows. Let f, g ∈ D0, with Xf ≤ Xg. Then,
f � g ∈ IF0

Xg
and f  g ∈ IF0

Xf
are defined by:

f  g(x) =

{
f(x) ∩ g(x) if x ∈ [0, Xf ]
f(Xf ) ∩ g(x) otherwise

f � g(x) = f(x) ∪ g(x)

This definition of f � g supposes that ∀x ∈ [0, Xf ], f(x) ∩ g(x) �= ∅. If this is
not true, f � g = �.

Proposition 1. (D0, �, �, ⊥, �, ) is a continuous lattice.

Let us remark that D0 is a lattice and a CPO, so every increasing chain does have
a supremum. It is however not a complete lattice as there exist infinite sequences
without supremum. For example, let us consider the sequence of functions ϕn ∈
IF0

1− 1
n

defined by ϕn(x) = [− 1
1−x , 1

1−x ]. Clearly, this sequence does not have a
supremum in D0 except �, while there are infinitely many f ∈ D0 greater than
fn for all n (for example, the constant function with value 0).We next define
some basic operations on D0 that adapt the classical operations on real-valued
functions. The arithmetic operators +, −, ∗, / are defined as an extension of the
interval arithmetic. For � ∈ {+, −, ∗, /} and f, g ∈ IF0

X , we define f �g ∈ IF0
X

as ∀x ∈ [0, X], f � g(x) = {y � z | y ∈ f(x) and z ∈ g(x)}. We next define the
composition, primitive and width of functions in D0.

Definition 3 (Function composition, Primitive and Width).
The composition of a continuous, real-valued function F : R → R and a partial,
interval-valued function f ∈ IF0

X is the function F ◦X f ∈ IF0
X defined by:

∀x ∈ [0, X], (F ◦X f)(x) = {F (y) : y ∈ f(x)}. F ◦X f is well defined because F is
continuous and f(x) is an interval, so F ◦f(x) is an interval for all x. We natu-
rally extend the notion of function composition to D0 and define the composition
operator ◦ as: ∀F : R → R and f ∈ D0, F ◦ f = F ◦Xf f .
The primitive of a function f ∈ IF0

X is IX(f) ∈ IF0
X defined by: ∀x ∈

[0, X], IX(f)(x) =
[∫ x

0 f(s)ds,
∫ x

0 f(s)ds
]
. This primitive operator is extended to

D0 straightforwardly: for f ∈ D0, we set I(f) = IXf
(f).

The width of a function f ∈ D0 is computed as the maximum width of all
intervals f(x): w(f) = maxx∈[0,Xf ] w(f(x)).

Proposition 2. The operator ◦ is monotone and continuous. The width w is a
monotone, continuous function from (D0, �) to ([0, ∞[, �) where x � y ⇔ y ≤ x.

The proof of this proposition is straightforward: we use the monotonicity of
functions with respect to set inclusion for ◦ and we note that for two intervals
i1, i2, i2 ⊆ i1 ⇒ w(i2) ≤ w(i1), thus the monotonicity of w. The primitive
operator is not monotone, as it does not preserve the third condition for the
order � (Equation (4)). However, the second condition is preserved thanks to
the monotonicity of the primitive for real-valued functions.
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Among all the functions of D0, one is of special interest for us: y∞, the maximal
solution of (3). We compute it by successive approximations and thus need to
measure the quality of our approximation. Following Keye Martin’s measure
theory [19], a measurement is a continuous function μ from a CPO D into the
set of nonnegative real numbers with reverse ordering: [0, ∞[∗ that reveals the
distance of f ∈ D to the maximal elements of D, which have measure 0. The
measurement must be coherent with the informational order on D: the more
informative f , the smaller its measure. It must also be the case that if we measure
that the sequence fn converges towards 0 (limn→∞ μ(fn) = 0), then the sequence
fn does converge towards a maximal element (

⊔
n fn = f, μ(f) = 0). For a

formal definition of a measurement, please refer to [19], Chapter 2. In our case,
the maximal elements of D0 are the real-valued functions defined on R+. These
functions have a null width and an infinitely long domain of definition. Thus, a
measurement must takes both aspects into account.

Definition 4 (The measurement μ). Let f ∈ D0. We let μ(f) = w(f) + 1
Xf

.

Clearly, μ(f) is null if and only if f is maximal, so in particular μ(y∞) = 0.

Proposition 3. μ is a measurement, i.e.:

(i) it is a Scott continuous map from (D0, �) into [0, ∞[∗.
(ii) for all f ∈ D0 such that μ(f) = 0 and all sequences fn � f , we have

limn→∞ μ(fn) = 0 ⇒ �nfn = f

We recall that the far away relation f � g means that for every increasing chain
ϕn with a supremum greater than g, the elements ϕn must become greater than
f at some N ∈ N.

We thus have built a lattice D0 and defined three operators on it: I, ◦ and w.
We also have a measurement μ on D0 which characterizes its maximal elements,
i.e. the real-valued functions defined on R+. We use μ in the next section.

3.2 The Semantics

�κ�(y) is computed as the least fix-point of the operator ΓF,y0 : D0 → D0 that
acts as follows: a function f ∈ IF0

X , it first updates the available information
by bringing each f(x) closer to y∞(x) and then it extends the function to the
right by assigning a value to f(x) for x ∈ [X, X + 1]. The first step uses an
iteration of the Picard operator (Sect. 1) while the second step extends the
function in such a way that if f encloses the solution at X , then the extension
encloses y∞ on [X, X + 1]. This is possible because F is α-Lipschitz, so y∞
cannot grow faster than eαx. We recall that the Picard operator is defined as
P[0,Xf ]

(
F, y0

)
(f) = λx.y0 +

∫ x

0 F (f(s))ds = y0 + I(F ◦ f).

Definition 5 (Updating operator). Let f ∈ D0, we suppose Xf < ∞. Let
F be a continuous, globally α-Lipschitz function and y0 ∈ R. Then, ΓF,y0(f) ∈
IF0

Xf +1 is defined by:
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ΓF,y0(f)(x) =

⎧⎪⎨
⎪⎩

P[0,Xf ]
(
F, y0

)
(f)(x) if x ≤ Xf

J + F (J) ∗ [−eα, eα] ∗ (x − X),
with J = P[0,Xf ]

(
F, y0

)
(f)(X) otherwise

If f ∈ IF0
∞, ΓF,y0(f) = P[0,∞[

(
F, y0

)
(f). ΓF,y0(⊥) is the function defined on

[0, 0] with value y0.

An example of the effect of ΓF,y0 on a partial function is shown on Fig. 3.2. The
black line represents y∞; Figure 3.2(a) shows the updating mechanism, while
Fig. 3.2(b) is the extension. The operator ΓF,y0 is not monotone on D0, but we
know that it has a fix-point: y∞. We will show in the following that this fix-point
can be computed as the supremum of the ΓF,y0 iterates, i.e. y∞ =

⊔
n Γ n

F,y0
(⊥).

Proposition 4. Let f ∈ IF0
X . ΓF,y0 verifies the invariant:

∀x ∈ [0, X], y∞(x) ∈ f(x) ⇒ ∀x ∈ [0, X + 1], y∞(x) ∈ ΓF,y0(f)(x) .

The iterates fn+1 = ΓF,y0(fn), starting from f0 = ⊥, form a sequence of ap-
proximation of y∞: they enclose it and their width converge toward 0. On Table
1 the figures show how the iterates of ΓF,y0 converge to a real valued function.
The semantics of the continuous subsystem κ =

(
F, Fk, y0

)
maps f ∈ D0 with

the least fix-point of ΓF,y0 starting from f : �κ�(f) =
⊔

n Γ n
F,y0

(f). We now give
the main result of this section.

Theorem 2. The solution y∞ of (3) is a fix-point of ΓF,y0 and

�κ�(⊥) = Fix(ΓF,y0) =
⊔
n

Γ n
F,y0

(⊥) = y∞ .

4 Hybrid Semantics

Let us now give the semantics of the complete hybrid system. The hybrid model
is a pair Ω =

(
Δ, κ) consisting of a model Δ for the discrete system and a

model κ for the continuous environment that define two dynamical systems that
run in parallel and, from time to time, communicate. On the one hand,data
are passed from κ to Δ via the sensors. This communication requires that both
dynamical systems reached the same time before the data is exchanged. The
sens actions must thus be blocking. On the other hand, orders are passed from

(a) Update the informa-
tion

(b) Extends the informa-
tion

Fig. 3.2. The updating operator (two steps)
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Δ to κ via the actuators. Indeed, the discrete system only indicates to the
continuous system what its semantics will be, i.e. it chooses one of the possible
functions Fk. This communication needs not to be blocking as it does not affect
the value of the continuous variables but only their future behavior. The hybrid
denotations for sens and act respect these facts. The semantics �Ω�H of Ω is a
function between hybrid environments. The discrete environment is altered by
the discrete subsystem while the continuous one is computed only when needed,
i.e. when a sens is found.

4.1 Hybrid Environments

A hybrid environment consists of a pair made of a discrete and a continu-
ous environment. The discrete environment σδ binds every discrete variable
v ∈ V ar to a value and the time time to a positive real value. It also con-
tains the function F that defines the semantics of the continuous variables.
This function F is piecewisely defined by the discrete program through the
act statements and thus storing F is equivalent to storing the sequence of
all executed act actions. The discrete environment thus stores both the value
of the variables, the execution time, as well as the sequence of modifications
brought to the continuous system. We write ΣΔ the set of all discrete envi-
ronments, ΣΔ =

{(
V ar → V al

)
∗

(
{time} → R+

)
∗

(
F : R+ × R → R

)}
. The con-

tinuous environment σκ contains an approximation of the physical variables
y ∈ D0 and the set of functions Fk defining the continuous dynamics, i.e.
the set of possible continuous modes that are available for the discrete pro-
gram to chose. We write Σκ the set of all continuous environments, Σκ ={(

y ∈ D0) ∗
(
Fk | Fk : R+ × R → R

)}
. As usual, we write σδ.X (resp. σκ.Y ) the

the value of a variable X ∈ V ar ∪{time, F} (resp. Y ∈ {y}∪Fk) in the discrete
(resp. continuous) environment. We write ΣH the set of all hybrid environments:

ΣH =

⎧⎨
⎩

(
σδ, σκ

)
∣∣∣∣∣∣
σδ ∈ ΣΔ and σκ ∈ Σκ and
∃(tn), (cn) s.t. ∀i ∈ N, ∀t ∈ [ti, ti+1[,

σδ.F (t) = σκ.Fci(t)

⎫⎬
⎭ . (5)

We write Πδ : (σδ, σκ) 
→ σδ and Πκ : (σδ, σκ) 
→ σκ the two projections of an
hybrid environment into a discrete (resp. continuous) one.

4.2 Hybrid Denotations

The denotation of the purely discrete parts of the language are defined as
usual for imperative languages (see [24] for example). We have denotations for
numerical (resp. boolean) expressions �exp� (resp. �bool�) which are functions
between a discrete environment and a numerical (resp. boolean) value. Every
discrete statement stmt also has a denotation which is a function between dis-
crete environmnents. We extend them to hybrid environments: �exp�H(σδ, σκ) =
�exp�(σδ), �bool�H(σδ, σκ) = �bool�(σδ) , and �stms�H(σδ, σκ) = �stms�(σδ). The de-
notation of a wait is a function from ΣH to ΣH that modifies the value of time:
�wait(c)�H(σδ, σκ) =

(
σδ[time �→ σδ.time + c, σκ

)
. The denotation of an action

sens.y?x (Equation (6) with n = �σδ.time + 1�) is a function from ΣH to ΣH
that modifies a pair (σδ, σκ) as follows: it first updates σκ to ensure that σκ.y
has a value at time σδ.time and then it binds x with this value in σδ. The first
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step is done by applying �σδ.time + 1� times the operator ΓF,y0 (see Sect. 3.2)
to σκ.y with F = σδ.F and y0 = σκ.y(0).

�sens.y?x�H(σδ, σκ) =

(
σ′

κ = σκ[y �→ Γ n
σδ.F,y(0)

(
y
)
],

σ′
δ = σδ[x �→ mid

(
σ′

κ.y(σδ.time)
)
]

)
. (6)

The denotation of an action act.k!c (Equation (7)) is a function from ΣH to
ΣH that modifies(σδ, σκ) as follows: σκ is left unchanged and in σδ, the function
F is modified so that it takes the value of σκ.Fc for times greater than σδ.time.

�act.k!c�H(σδ, σκ) =

(
σδ

[
F �→ λt, y.

{
σδ.F (y, t) if t ≤ σδ.time

σκ.Fc(y, t) otherwise

]
, σκ

)
. (7)

We can compute the hybrid semantics �Δ�H of the discrete program by com-
bining these denotations. This does not however compute the semantics of the
continuous environment, this is the role of the semantics of the hybrid system.

4.3 Hybrid Semantics

The semantics of the hybrid model Ω =
(
Δ, κ) is a function between hybrid envi-

ronments: �Ω�H : ΣH → ΣH. �Ω�H alters a pair
(
σδ, σκ

)
as follows. It computes(

σ′δ, σ
′
κ

)
= �Δ�H

(
σδ, σκ

)
and two cases occur. If σ′κ = σκ, the discrete program

has no effect on the environment, i.e. either there are no sens statements in
it, or they have no effect on σκ. This is the case only if σκ.y is a fix-point of
ΓF,y0 , i.e. σδ.y = �κ�(σδ .y). In this case, we have computed both the continuous
semantics and the discrete one, so we set �Ω�H

(
σδ, σκ

)
=

(
σ′δ, σ

′
κ

)
. On the other

hand, if σ′κ �= σκ, the program has modified the environment and thus brought
σδ.y closer to �κ�(σδ.y). σ′δ (resp. σ′κ) is only an approximation of the result of
the discrete (resp. continuous) system and we must iterate the process to obtain
a better approximation. We thus propagate σ′κ into the discrete subsystem, i.e.
we apply �Δ�H to

(
σδ, σ

′
κ

)
and repeat the operation. The semantics �Ω�H is

computed as a fix-point of a function that applies �Δ� consecutively until the
semantics of the continuous environment has been computed. The formal defini-
tion of �Ω�H is given in (8). Let us note that �Ω�H is actually the only fix-point
of the function ΓH just like �κ� was the only fix-point of ΓF,y0 in Sect. 3. �Ω�H
is compatible with the continuous semantics �κ� presented in Sect. 3: the con-
tinuous environment is finally computed as the fix-point of the operator ΓF,y0

as in Sect. 3.2. It is also compatible with the standard denotational semantics
of imperative languages: if Δ does not have any hybrid actions, then �Ω�H is
precisely the semantics of the discrete program as defined in [24] for example.

�Ω�H = Fix(Γ H) where

Γ H(ϕ)(σδ, σκ) = (σ′
δ, σ

′
κ) with

{
σ′

δ = Πδ

(
�Δ�H(σδ, σ

′
κ)

)
σ′

κ = Πκ

(
ϕ(σδ, Πκ

(
�Δ�H(σκ, σδ)

)) . (8)

4.4 Example

To illustrate that our semantics really computes the behavior of the hybrid
system, let us consider a simplified version of the one-tank controller (see the
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Table 1. First three iterations of the semantics computation

Statement Iteration 1 Iteration 2 Iteration 3
t h x t h x t h x

Initial environment 0 ⊥ ⊥ 0 ⊥

4.5

3.5

1.5

4.0

3.0

2.5

2.0

1.0

6543210

0 ⊥

4.5

51 3

4.0

2.5

1.5

3.0

1.0

42 60

3.5

2.0

wait(1); 1 1 1

sens.x?h; 2.0

3.5

1.5

4.5

4.0

3.0

2.5

2.0

1.0

6543210

2.45

3.5

1.5

4.5

4.0

3.0

2.5

2.0

1.0

654320 1

2.48

4.0

53

4.5

3.0

1.0

420

2.0

1

1.5

3.5

2.5

6

if (h>h max)
act.k!1; F �→ F0 F �→ F0 F �→ F0

wait(1); 2 2 2

sens.x?h; 2.8

4.5

3.5

1.5

4.0

3.0

2.5

2.0

1.0

6543210

2.85

4.5

51 3

4.0

2.5

1.5

3.0

1.0

42 60

3.5

2.0

2.95 2.5

3.5

3

4.5

3.0

1.5

5 6

1.0

1 420

4.0

2.0

if(h>h max)
act.k!1; F �→ F0 F �→ F0 F �→ λt.(t < 2)?F0; F1

first column of Tab. 1). We only consider two iterations of the while loop (which
has a period of one second) and forget about the anticipation mechanism. The
continuous system is still given by (2), with i = 2, k1 = k2 = 1, h = 3, h max =
2.9, and the initial value for the height of water x is x0 = 2. We have two possible
continuous dynamics : F0 (the valve is closed) and F1 (the valve is open). Initially,
the valve is closed, i.e. we start with the dynamic F0. Table 1 shows the first
three iterations of the computation of the semantics of the system. For each
line of the program, we indicate how the variables are changed (t is the time,
h the discrete variable and x the continuous one). For the act statement, we
indicate how it changes the function F of the hybrid environment. The notation
λt.(t < 2)?F0; F1 means that F (t) = F0(t) if t < 2, and F (t) = F1(t) otherwise.

5 Conclusion

In this article, we presented a new approach to hybrid systems that can be used
for the modeling and analysis of large critical embedded programs. Our model is
based on a clear separation of the discrete and the continuous systems: ordinary
differential equations with boolean parameters are used to model the continuous
system, an imperative language with hybrid statements is used for the discrete
part. The emphasis has been placed on making this model as unintrusive as
possible for existing software, so we believe that we can use it for industrial
size problems. We defined the semantics of our model in two steps: first, we
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extended results by Edalat and Lieutier [9] to consider the maximal solutions
of IVP on R+ and we presented the semantics of the continuous model as a
function mapping the initial condition to the maximal solution. The semantics
of the hybrid system is then an extension of the standard denotational semantics
of imperative languages in which actions of sensors and actuators are defined.

To the best of our knowledge, this is the first attempt to integrate into the
semantics of imperative languages the continuous environment that models the
programs inputs. We are not aware of any equivalent, operationally defined mod-
els. We believe that our model is expressive enough to encode most of Henzinger’s
hybrid automata, but both models are based on very different asumptions (for
example, we consider that time is driven by the discrete system) so that it is
difficult to formally compare them.

Thiswork is a first step toward thevalidationof embedded softwarewith their en-
vironment.The analysis of such systemsusing, for example, abstract interpretation
techniques [6] requires two stages. First, the continuous system must be abstracted
in a non-naive way. The theory of guaranteed integration of ODE [21] brings us the
adequate tools for the safe abstraction of the continuous system. Validated ODE
solvers [4] compute interval bounds that are proved to contain the solution. This
can be seen as a valid abstraction in the theory of abstract interpretation. For the
analysis of the discrete part, the use of an implementation level model allows us
to use existing methods [7,13]. These methods must however be completed so that
they consider time: the main difficulty in the analysis of the discrete system is to
carefully analyze the timeatwhich every statement is executed (this is necessary for
the sensor actions to be precise enough)This modification of standard static analy-
sis techniques to our framework will be our main concern for future work. Another
interesting application of our approach for hybrid systems is to modify standard
strictness [20] or termination analysis [2] so that they fit to our model. This could
be used to solve, in an approximateway, the reachabilityproblem of a discrete state
in a hybrid system, which is known to be undecidable [16]. Several methods have
been proposed for its simplification [17]; we believe that our approach may be effi-
ciently used for its approximate solution as it benefits from all the static analysis
based methods for programming languages.
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Abstract. This paper investigates full abstraction of a trace semantics for two
Linda-like languages. The first language provides primitives for adding and re-
moving messages from a shared memory, local choice, parallel composition and
recursion. The second one adds the possibility of checking for the absence of
a message in the store. After having defined a denotational semantics based on
traces, we obtain fully abstract semantics for both languages by using suitable ab-
stractions in order to identify different traces which do not correspond to different
operational behaviours.

1 Introduction

One of the fundamental purposes of a semantics is to provide a rigorous mean for prov-
ing the correctness of programs w.r.t. some behavioural specification. Several different
tools (operational, denotational, algebraic and logic) can be used to this aim and ideally
one would like to have a compositional and fully abstract semantics.

Compositionality is of course an important feature since it is the foundation for man-
aging large systems complexity when considering program verification, analysis and
(modular) design. Most of the above mentioned tools indeed allow to obtain rather eas-
ily a compositional semantics.

Full abstraction is also a desirable feature since it allows to simplify and “economize”
as much as possible a semantics while preserving its correctness. However, in general
this is a rather difficult target to achieve. To be more precise and to set the ground
for the content of this paper, following [4,9,12] we can summarize the terms of the
problem as follows. Given a language L, define a semantics that associates to each
process (or program) P in L a set of observable properties O(P ). This is usually done
in operational terms by using a transition system and a suitable definition of O(P )
which identifies computational aspects relevant for a specific class of applications. In
case such semantics is compositional, i.e. if we can reconstruct O(P op Q) from O(P )
and O(Q) for any operator op of the language L, we have a satisfactory semantics, since
the observational equivalence on processes induced by O(P ) is preserved by contexts.
More precisely, we have that O(P ) = O(Q) iff, for any context C[•], O(C[P ]) =
O(C[Q]).

However often this is not the case and in order to obtain a compositional semantics
some richer semantic structures than those used in O(P ) need to be considered. For
example, as we will see in Section 4, typically pairs representing the input/output be-
haviour of a process are not sufficient to obtain compositionality and one has to use
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traces. It can happen that these richer semantic structures “add too much” in the sense
that the semantics �·� based on them allows to distinguish processes which have the
same behaviour w.r.t. O(P ), under any possible context. In this case suitable abstrac-
tions must be used in �·� in order to obtain a fully abstract result which, in general, can
be stated as follows: �P � = �Q� iff, for any context C[•], O(C[P ]) = O(C[Q]) holds.

In this paper we investigate the full abstraction problem, as described above, for two
variants of Linda. Linda is a programming paradigm [11] which allows interprocess
communication through a shared data space, also called tuple space, where processes
can post and retrieve messages (also called tuples). The shared memory paradigm offers
some advantages since it decouples communication between processes: communication
is in fact asynchronous and processes do not need to be aware of each other identity or
location. Indeed, the Linda paradigm has received also a commercial interest, mainly
due to the applications which use the Java Spaces from Sun Microsystems [10] and
TSpaces from IBM [13] models, both based on Linda (a more detailed comparison of
Linda implementations can be found in [19]). Distributed Linda-like languages have
also been investigated. Notably, Klaim [17] is an implemented language based on the
Linda paradigm where the central store is replaced by several distributed local stores
and processes mobility among different locations is supported.

Fully abstract semantics based on traces for input/output observables have been stud-
ied many years ago for several concurrent languages, as we shall discuss in Section 6.
However, to the best of our knowledge no one has yet addressed this problem for a
Linda-like language.

Many different formalizations and variants of Linda have been defined. Here we
use essentially the process-algebraic formalization of Linda introduced in [6,7] and we
consider the very basic Linda dialects. The first one, which we call Linda-core, apart
from the usual operators in process algebra (choice, parallel composition, recursion)
contains the two Linda primitives in and out which allow to remove and add messages
to the store, respectively. For Linda-core we define a compositional, fixpoint trace se-
mantics which is correct but not fully abstract when considering the input/output pairs.
Hence we introduce a suitable abstraction on traces and show that this allows us to ob-
tain a fully abstract semantics. The second dialect (Linda-inp) enriches the syntax of
Linda-core by allowing also a construct (inp) which allows to check the absence of in-
formation in the store. We prove that in this case a much simpler abstraction on traces is
sufficient to obtain a full abstraction result. This accounts for the augmented expressive
power of the language with inp, which can be formally proven by using the techniques
in [6,20]. Unfortunately, due to the saturation operator, the fully abstract semantics are
not compositional. This is unavoidable in our trace model, since the properties that we
need to abstract depend on sets of traces (rather than on single ones). Of course this does
not mean that in general a compositional fully abstract semantics based on traces does
not exist. However, in case it existed, it would use traces substantially more complicated
than ours.

The remainder of the paper is organized as follows. Section 2 introduces the Linda
languages under consideration while Section 3 defines their denotational semantics. We
then provide the fully abstract semantics for the core language in Section 4. Section 5



80 C. Di Giusto and M. Gabbrielli

contains the main theorem on the full abstraction for the language extended with the
inp primitive. Finally, Section 6 concludes by discussing some related works.

2 Preliminaries

In this section, following the process algebraic view of Linda proposed in [6] we recall
the syntax of the Linda languages that we consider and their operational semantics.

2.1 Linda-Core

As previously mentioned, Linda is a paradigm which provides a simple model to de-
scribe communication between processes. The central notion in Linda is the one of tuple
space. A tuple space is a shared data space (i.e. a common store) where all the tuples
representing the information to be exchanged are stored. Here we shall abstract from the
specific nature of tuples assuming that these are elementary messages. Communication
is represented by the concurrent and asynchronous activity of several processes which
add or remove messages from the common store. I.e. the sender dispatches a message
through a non-blocking operation which adds the tuple in the tuple space. Then the
message has an independent existence until a receiver retrieves and removes it from the
shared space. Such kind of communication is called generative (see [11]).

Processes of the language Linda-core, denoted by P, Q, . . . , are then given by the
following grammar:

P ::= 0 | out(a).P | in(a).P | P | P | P + P | recX.P (1)

where we assume that a ∈ Msg and Msg denotes the set of all possible messages (or
tuples), ranged over by a, b, . . . .

Intuitively 0 represents the process that does nothing. Then the process out(a).P
adds the message a to the store and then behaves as P . The message a which has been
added to the store will be visible to other processes only after the completion of the
out(a) action, however note that other interpretations are possible for this primitive
(see [5]). If a is present in the tuple space, in(a).P removes the message and then
behaves as P . Otherwise if a is not present, the process in(a).P is suspended until a
becomes available in the store. The parallel construct P | Q is interpreted in terms
of interleaving. The process P + Q can non-deterministically choose to behave either
as P or as Q (hence we have a form of local choice). Finally we have the recursion
operator where we assume that guarded recursion is used (i.e. the process recX.X is
not allowed).

The operational semantics of Linda-core is described by means of a transition system
T = (Conf, →). Configurations Conf are pairs of the form 〈P, M〉 where P is a
process and M is a multiset containing tuples, also called tuple space or store. The
transition relation → ⊆ Conf × Conf is the least relation satisfying the rules in Table 1,
which should be self-explaining, provided we introduce the following notation.

Notation 1. To describe updates in the store we will use ⊕ and � to denote multisets
union and difference, respectively. So M⊕{a} means that a message (a tuple) ‘ a’ has
been added to the store while M � {a} indicates that a copy of ‘ a’ has been removed.
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Table 1. An operational semantics An operational semantics for Linda-core

R1 〈out(a).P,M〉 → 〈P,M ⊕ {a}〉

R2 〈in(a).P,M ⊕ {a}〉 → 〈P,M〉

R3
〈P,M〉 → 〈P ′,M′〉

〈P | Q,M〉 → 〈P ′ | Q,M′〉 and
〈Q,M〉 → 〈Q′,M′〉

〈P | Q,M〉 → 〈P | Q′,M′〉
R4 〈P + Q,M〉 → 〈P,M〉 and 〈P + Q,M〉 → 〈Q,M〉

R5
〈P [recX.P/X],M〉 → 〈P ′,M′〉

〈recX.P,M〉 → 〈P ′,M′〉

Table 2. The rule for inp

R6 〈inp(a)?P : Q,M ⊕ {a}〉 → 〈P,M〉
〈inp(a)?P : Q,M〉 → 〈Q,M〉 provided a 	∈ M

A transition 〈P, M〉 → 〈Q, M′〉 then means that the process P reduces to Q, possibly
by producing some changes in the store which evolves from M to M′ . A sequence
of configurations is called run or computation. The reflexive transitive closure of →
is denoted by ⇒. By using the transition system described above we can characterize
several different notions of observables. The ones we are interested in here consider
simply the input/output behaviour of a process in terms of the tuple space. The input is
therefore the initial tuple space, while the output is the final store produced by a process
which cannot further proceed in the computation (denoted by �) either because it is
suspended on an in operation or because it has consumed all the actions. More precisely
we define the observables as follows.

Definition 1 (Observables O(P )). Let P be a Linda process. We define:
O(P ) = {(M1, Mn) | 〈P, M1〉 ⇒ 〈Pn, Mn〉 �}

2.2 Linda-inp

We will now introduce a slightly different variant of Linda, called Linda-inp, obtained
by adding a new operator inp(a)?P : Q which allows also to check whether a message
is not present in the store. More precisely, the previous construct checks whether the
store contains the message a: if the message is present in the store then the process
continues with P , otherwise with Q.

Therefore we will add to the grammar in (1) the following primitive:

P ::= inp(a)?P : P (2)

The operational semantics for Linda-inp is obtained by (a transition system defined
by) adding to the rules of Table 1 the rules contained in Table 2. The observables can
be defined as before.



82 C. Di Giusto and M. Gabbrielli

3 Denotational Semantics

It is easy to see that the operational semantics which associates to a process P its ob-
servables O(P ) is not compositional. For example consider the processes Q = out(b)
and P = out(a).in(a).out(b). Then O(P ) = O(Q) holds, however, considering the
process R = in(a).out(ok) we have that (∅, {ok}) ∈ O(P | R) \ O(Q | R) which
means that the observables of a parallel composition cannot be obtained from the ob-
servables of the two processes being composed (in parallel). This problem is in gen-
eral well known, in fact in order to obtain a compositional model more informative
structures than input/output pairs have been used. In particular, models based on traces
(or sequences) have been used for many concurrent languages, starting from the early
works on dataflow languages [16], imperative ones [4] and concurrent constraint pro-
gramming [9].

In the following we will define a compositional semantics which correctly models
the O(P ) observables and which is based on traces. This semantics is similar to those
used for timed Linda in [8] (and therefore to that one of [9]), even though the techni-
cal treatment is different. In fact in [8], where maximal parallelism was assumed, the
denotational model used traces of pairs of tuple spaces, representing the input and the
output at each step of the computation. Here, due to the interleaving semantics and
to local choice, this kind of sequences is not sufficient to obtain a correct model. Es-
sentially the problem is that we have to distinguish the processes out(a) | in(a) and
out(a).in(a) + in(a).out(a) (because when starting with an empty store the second
process can produce an empty store as a result) and this cannot be done by using simply
input/output pairs. Hence, here we consider a denotational model which associates to a
process a set of sequences of the form α1, . . . , αn where each αi is an element of the set
A = {in(a), out(a), in(a), inp(a) | a ∈ Msg} (where Msg denotes all the possible
messages, as previously mentioned). The first two kinds of actions in A are obvious
as they represent the corresponding operations on the store, in(a) and inp(a) are used
to express absence of information. We denote with S the set of all possible sequences
defined in this way.

We introduce now two denotational semantics (one for each language we are con-
sidering) based on traces which are compositional by construction. Such semantics are
the least functions �·� : Processes → 2S , which satisfy the equations in Table 3 for
Linda-core and the equations in Table 3 plus that in Table 4 for Linda-inp. The order on
functions here is the one induced by set inclusion on the co-domain. Well known fix-
point results allow to obtain the semantics as the least fixpoint of the operators defined
implicitly by the equations in the Tables.

3.1 Denotational Semantics for Linda-Core

The equations should be self-explanatory apart from a few details. The denotation of
the 0 process is the empty sequence, while the equations D2 and D3 show the expected
behaviour for the basic primitives. Note that in equation D3 we have two cases: the first
one corresponds to the case in which a is present in the store, thus the computation can
proceed (with the sequence s) after the in action. On the other hand, the in(a) action
represents the absence of a in the store, in which case the computation terminates (the
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Table 3. A denotational semantics for Linda-core

D1 �0� = {ε}
D2 �out(a).P � = {out(a) · s | s ∈ �P �}
D3 �in(a).P � = {in(a) · s | s ∈ �P �} ∪ {in(a)}
D4 �P | Q� = �P � |̃ �Q�

where the operator |̃ is inductively defined as follow:

(x · s) |̃ y = y |̃ (x · s) = {(x · t) | t ∈ s |̃ y} ∪ {y · x · s}

(x · s) |̃ (y · t) = (y · t) |̃ (x · s) =

{(x · u) | u ∈ s |̃ (y · t)} ∪ {(y · u) | u ∈ (x · s) |̃ t}

with x, y ∈ A and s, t, u ∈ S.

D5 �P + Q� = �P � ∪ �Q�

D6 �recX.P � = �P [recX.P/X ]�

process is suspended). The parallel operator is interpreted in terms of interleaving as
usual, while since the choice is local, it can be modeled by a simple set union. Recursion
is treated in the usual way.

In order to show that the denotational semantics is correct w.r.t. our notion of observ-
ables we define the evaluation of a trace as follows (↑ means undefined).

Definition 2. Given a trace s ∈ S and a store M, the function eval1(s, M) is defined
by the following cases:

eval1(ε, M) = M
eval1(out(x) · t, M) = eval1(t, M ⊕ {x})

eval1(in(x) · t, M) =

{
eval1(t, M � {x}) if x ∈ M
↑ otherwise

eval1(in(x) · t, M) =

{
M if x 	∈ M and t = ε

↑ otherwise

The correctness is then stated by the following proposition which can be proved by
using a fixpoint characterization of the semantics �·�. This can be obtained by first
considering an interpretation as a mapping I : Processes → 2S which associates to
each process a denotation (i.e. a set of sequences). The set I of all the interpretations
is easily seen to be a cpo with the ordering induced by ⊆. An operator F : I → I
is obtained by substituting �·� for F(I) in equations D1-D5 and in the left hand side
of equation D6, and by replacing �·� for I in the right hand side of equation D6. The
semantics �·� is then the least fixpoint of F , which can be obtained as the least upper
bound of {Fn(⊥) | n ≥ 0}, where ⊥ is the least interpretation, F0(⊥) = ⊥ and
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Table 4. The equations for Linda-inp

D7 �inp(a)?P : Q� = {in(a) · s | s ∈ �P �} ∪ {inp(a) · s | s ∈ �Q�}

Fn(⊥) = F(Fn−1(⊥)). This allows us to prove the proposition by induction on the
structure of processes and on induction on the powers Fn(⊥) of the operator.

Proposition 1 (Correctness). Given a Linda-core process P ,
O(P ) = {(M0, eval1(s, M0)) | s ∈ �P � and eval1(s, M0) 	=↑} holds.

3.2 Denotational semantics for Linda-inp

When considering the Linda-inp language the denotational semantics can be obtained
from Table 3 by adding the equation in Table 4. This difference w.r.t. the case of Linda
core is due to the presence of the inp, which is described by Equation D7: since when a
is present both the inp(a) and the in(a) construct are modeled in the same way, when
a is not present we have to distinguish the two cases (by using in(a) and inp(a)) since
it would not be correct to use the evaluation given in Definition 2 for the in(a).

In order to prove the correctness of the model introduced above we need to add to
eval1 the new cases obtaining the evaluation function eval2:

Definition 3. Given a trace s ∈ S and a store M, the function eval2(s, M) is defined
by the following cases:

eval2(inp(x) · t, M) =

{
eval2(t, M) if x 	∈ M
↑ otherwise

eval2(α(x) · t, M) = eval1(α(x) · t, M) for α 	= inp

Using the same technique of Proposition 1 it can be easily proved the following
theorem that states the correctness of the denotational model:

Proposition 2 (Correctness). Given a Linda-inp process P ,
O(P ) = {(M0, eval2(s, M0)) | s ∈ �P �} holds.

4 Full Abstraction for Linda-Core

The aim of this section is to obtain a fully abstract semantics for the Linda-core lan-
guage. The semantics introduced in the previous section represents a too fine descrip-
tion of the actions that affect the store, since it records all the possible changes while
the observables capture only the initial and the final state. It is therefore immediate to
find processes which have a different denotation, while having the same input/output
behaviour under any possible context.

In order to obtain full abstraction we saturate the denotational semantics by adding
all those traces which, intuitively, represent a computation whose input/output beha-
viour, in any possible context, can be simulated by a trace which is already in the se-
mantics. The formal definition is as follows.
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Definition 4 (Saturation). Let T ⊆ S be a set of traces. We define the saturation of T
as the minimal set Sat(T ) which satisfies the following rules:

i) if s ∈ T then s ∈ Sat(T )
ii) if s · out(a) · t · in(a) · v ∈ Sat(T ) then s · t · v ∈ Sat(T )

iii) if s·out(a)·t·in(a)·v ∈ Sat(T ) then s·out(a)·t·in(a)·out(a)·in(a)·v ∈ Sat(T )
iv) s ∈ Sat(T ) iff s · in(a) · out(a) ∈ Sat(T )
v) if s · out(a) · t ∈ Sat(T ) then s · t′ ∈ Sat(T ) where t′ ∈ {out(a) |̃ t}

vi) all the traces in T of the form t · in(a) · u with u 	= ε are removed;

According to the previous definition in Sat(T ) we add all the traces which (i) are de-
rived (inductively) from the traces in T by performing the following operations: (ii)
Removing complementary actions out(a) and in(a) which appear, in this order, in dif-
ferent places of the sequence; it is rather clear that this does not change the operational
behaviour described by the original sequence. (iii) Adding a “stuttering step” repre-
sented by a sequence out(a) · in(a) of two complementary actions is also allowed,
provided that both these actions occur before (in this order) in the sequence. Intuitively,
if the out(a) action does not appear before in the sequence we cannot add it, since the
presence of a could trigger some new computation; moreover, since the multiplicity of
a message is relevant, also in case the sequence contains out(a) and not in(a) we can-
not add the sequence out(a) · in(a) because after the added out(a) we would have one
more a than in the original sequence, which, again, could trigger new computations.
(iv) Stuttering steps of the form in(a) · out(a) can be safely added and removed only
at the end of a sequence. (v) As stated in [5] an output prefix out(a).P is observably
equivalent to out(a) | P , note that from this rule follows that the core-language cannot
observe the order of appearance of messages. (vi) Finally, in(a) represents a process
suspended because the message a is not present in the store, hence it is not correct to
assume that other actions could take place afterwards. Clearly this is not anymore true
(apart from rule (vi)) in presence of a construct which allows to check for absence of
information, as we will see in the next section.

The fully abstract semantics is obtained by applying the saturation defined above to
the semantics �·�.

In order to prove the full abstraction result we proceed by steps. First we prove that
the abstraction introduced by Sat is correct (under any context) w.r.t. O(P ). This result
is obtained by first showing that the construction of Sat(�P �) does not add any trace that
does not respect the observables of P . This is the content of the following Proposition,
whose proof is immediate

Proposition 3. Given a process P , O(P )={(M0, eval1(s, M0))|s∈Sat(�P �)}.

Now we are ready to state that the abstract (saturated) semantics is correct under any
context w.r.t. the chosen observation criteria. A context C[•] is defined as a process with
a hole, that is, a process where a subprocess is left unspecified. C[P ] is then the process
obtained from C[•] by replacing • for the process P .

Theorem 2 (Correctness for Linda-core). Given two Linda-core process A and B, if
Sat(�A�) = Sat(�B�) then, for every context C[•], O(C[A]) = O(C[B]) holds.
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Proof. We will first prove O(C[A]) ⊆ O(C[B]). Let (M0, M1) ∈ O(C[A]) then fol-
lowing from Proposition 1 there exists s ∈ �C[A]� such that M1 = eval1(s, M0).
Since the denotational semantics we provide is compositional s = c ◦̃ t for some suit-
able ◦̃, where c ∈ �C[•]� and t ∈ �A�.

Since �A� ⊂ Sat(�A�) = Sat(�B�) then t ∈ Sat(�B�) therefore two cases could
arise: (1) t ∈ �B� hence s ∈ �C[B]� and (M0, M1) ∈ O(C[B]). (2) t 	∈ �B� then
there exists u ∈ �B� such that u is derived from t following the rules in definition 4
and eval1(t, M0) = eval1(u, M0). Hence by induction on the structure of c it can be
easily proved that eval1(c ◦̃ u, M0) = M1 and therefore (M0, M1) ∈ O(C[B]).

The other set inclusion O(C[B]) ⊆ O(C[A]) is symmetrical. ��

To obtain full abstraction we need now to prove the converse of the above theorem. This
is the central result of this section and is the content of the following.

Theorem 3. Given two Linda-core processes A and B, if Sat(�A�) 	= Sat(�B�) then
there exists a context C[•] such that O(C[A]) 	= O(C[B]).

Proof. Suppose that there exists t ∈ Sat(�A�) � Sat(�B�) and consider a generic
s ∈ Sat(�B�) (thus t 	= s). From the definition of Sat it follows that we can choose
s and t as the shortest sequences such that: (i) they do not contain sub-sequences of
the form out(x) · u · in(x) · out(x) · in(x), (ii) they do not contain suffixes of the
form in(x) · out(x), (iii) every output appears as soon as possible and (iv) between two
consecutive inputs the outputs are ordered in lexicographic order.

Then assume that t and s have the following form: t = r · α(x) · t1, s = r · β(y) · s1
where the common prefix r can also be empty and α, β ∈ A with α 	= β.

The proof is by cases, where we analyze the first couple of different actions α and β.
In each case we will construct a context C[•] which allows to distinguish A and B (that
is, a context such that O(C[A]) 	= O(C[B])). In the proof we will use the following
notation: if in(a1), in(a2), . . . , in(an) are all the input actions which appear, in this
order, in the sequence r (which can also contain other out actions), then InComp(r)
denotes the sequence out(a1) ·out(a2) · · · out(an): intuitively this sequence is a sort of
complement (w.r.t. in actions) of r which allows to proceed in the computation when
composed in parallel with r. Furthermore, in order to further simplify the notation, in
the following we will use these assumptions:

c1 = InComp(r)
c2 is a sequence consisting of as many in(x) as the out(x) in r

c3 is a sequence consisting of as many in(y) as the out(y) in r

We have then the following cases:

1. let β(y) · s1 = ε , thus t = r ·α(x) · t1 and s = r. Depending on t we can construct
the following distinguishing contexts C[•]:
(a) if t = r · out(x) · t1 then C[•] = • | c1.c2.in(x).out(ok);
(b) if t = r · in(x) · t1 noticing that t1 	= out(x), the following context can be

provided C[•] = • | c1.out(x).InComp(t1).
The symmetric case is completely analogous.
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2. α(x) = in(x) and β(y) = in(y) (x 	= y) then in order to separate the two processes
we need to make further distinctions (note that by construction t1 	= out(x)):
(a) if eval1(t1, ∅) 	= {x} then C[•] = • | c1.c3.out(x)
(b) if eval1(t1, ∅) = {x} and the actions out(y), in(y) do not appear in t1 then

C[•] = • | c1.c3.out(x).InComp(t2)
(c) otherwise since out(y) appears in t1, it can be provided the following context

C[•] = • | c1.c3.out(x).in(y).out(y).out(y).
3. α(x) = out(x) and β(y) = in(y) or vice versa: then it can be easily shown that

the context C[•] = • | c1.c2.c3.in(x).out(ok) allows to distinguish A and B.
4. α(x) = out(x) and β(y) = out(y) (with x 	= y). By hypothesis we can choose

t = r ·out(x) . . . in(v) . . . and s = r ·out(y) . . . in(w) . . . where in(v) and in(w)
are the first input actions after out(x) and out(y) respectively. Moreover out(x)
does not appear before in(w) in s. Then two cases could arise if v 	= x then the
context C[•] = • | c1.c4.c5 where c4 and c5 are sequences of as many in(v) and
in(w) as the out(v) and out(w) that precedes the two input actions respectively.
Instead if v = x then we can safely assume in(w) does not appear in s and the
context C[•] = • | c1.c5.InComp(t1) can distinguish the two processes.

5. There are some remaining cases, where the two sequences are different because of a
in action. However, due to the construction of our semantics, r ·in(x) ∈ Sat2(�A�)
iff r·in(x)·s ∈ Sat2(�A�). Therefore we can omit to consider the sequence r·in(x)
and just consider the case of the sequence r · in(x) · s, which is included above.

This completes the proof. ��
The previous two theorems can be summarized in the following corollary.

Corollary 1 (Full Abstraction for Linda-core). Given two Linda-core processes A
and B, Sat(�A�) = Sat(�B�) iff, for any context C[•], O(C[A]) = O(C[B]) holds.

5 Full Abstraction for Linda-inp

Now we move to consider the language Linda-inp where we can test for the absence
of a message in the store by using the primitive inp. As underlined in the introduction,
such a possibility augments the expressive power of the language. In semantic terms
this means that we can construct more powerful contexts, thus allowing to discriminate
processes which were identified by Linda-core contexts. As a simple example, consider
the two processes A = out(a).out(b) and B = out(b).out(a). These processes can-
not be distinguished (w.r.t. the observables O) by any Linda-core contexts, indeed the
corresponding traces out(a) · out(b) and out(b) · out(a) are identified by the saturation
operation. However, the context C[•] = • | in(a).(inp(b)?out(nok) : out(ok)) allows
to distinguish them, since it allows to check that a is present and b is absent in the store.
Indeed we have that (∅, ok ∈ O(C[A]) \ O(C[B])). This example shows that a fully
abstract semantics for Linda-inp must induce a finer equivalence on processes than Sat
or, in other terms, that a less abstract operation has to be used to saturate sequences.
However the Denotational semantics provided in Section 3.2 is not fully abstract. In
fact, consider the two processes A = inp(a)?0 : 0 and B = in(a) + A : these two
processes cannot be distinguish by any context, yet they have a different denotational
semantics. Thus we need the following definition.
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Definition 5 (Saturation for Linda-inp). Let T ⊆ S be a set of traces. We define the
inp-saturation of T as the set Sat2 (T ) which is obtained by performing the following
steps (in this order) on T :

1. all the traces in T of the form t · in(a) · u with u 	= ε are removed;
2. all the in(x) actions in all traces are replaced by inp(x) (for any x).

Condition 1 ensures that we obtain correct traces once we have performed the transfor-
mation in 2. In fact, in(a) comes from the evaluation of in(a), when a is not present.
Since such an evaluation is suspended, it is not correct to assume that some action can
be performed later. Thus, before transforming in(a) into inp(a) (and therefore moving
from the eval1 of Definition 2 to eval2 of Definition 3) we have to delete these traces.
The correctness of the saturation is stated by the following proposition which can be
easily proved.

Proposition 4. Given a process P , O(P )={(M0, eval2(s, M0))|s∈Sat2(�P �)}

Theorem 4. Given two Linda-inp processes A and B, if Sat2(�A�) = Sat2(�B�) then,
for every context C[•], O(C[A]) = O(C[B]) holds.

Proof. We will first prove O(C[A]) ⊆ O(C[B]). Let (M0, M1) ∈ O(C[A]) then fol-
lowing from Proposition 2 there exists s ∈ �C[A]� such that M1 = eval2(s, M0).
Since the denotational semantics we provide is compositional s = c ◦̃ t for some suit-
able ◦̃, where c ∈ �C[•]� and t ∈ �A�.

Applying the rules in definition 5 we can construct a trace t′ s.t. eval2(t, M0) =
eval2(t′, M0). Hence t′ ∈ Sat2(�A�). Since Sat2(�A�) = Sat2(�B�), t′ ∈ Sat2(�B�)
two cases could arise: (1) t′ ∈ �B� hence s ∈ �C[B]� and (M0, M1) ∈ O(C[B]).
Or (2) t′ 	∈ �B� therefore there exists u ∈ �B� where some of the actions in have
been replaced with inp and eval2(t, M0) = eval2(u, M0). Hence by induction on
the structure of c it can be easily proved that eval2(c ◦̃ u, M0) = M1 and therefore
(M0, M1) ∈ O(C[B]).

The other set inclusion O(C[B]) ⊆ O(C[A]) is symmetrical. ��

Theorem 5. Given two Linda-inp processes A and B, if Sat2(�A�) 	= Sat2(�B�) then
there exists a context C[•] such that O(C[A]) 	= O(C[B]).

Proof. Suppose that there exists t ∈ Sat2(�A�) � Sat2(�B�) and consider a generic
s ∈ Sat2(�B�). Since s 	= t by hypothesis, let t = r · α1(x1) · · · αn(xn) and s =
r · β1(y1) · · ·βm(ym) where the common prefix r can also be empty and α1, . . . , αn,
β1, . . . , βm ∈ A with α1 	= β1.

The proof is by cases, where we analyze the first different actions α1 and β1 in
the sequences t and s. In each case we will construct a context C[•] which allows to
distinguish A and B (that is, a context such that O(C[A]) 	= O(C[B])). As in the
proof of Theorem 3, if in(a1), in(a2), . . . , in(an) are all the input actions which ap-
pear, in this order, in the sequence r then InComp(r) denotes the sequence out(a1) ·
out(a2) · · · out(an). Furthermore, in order to further simplify the notation, in the fol-
lowing we will use these assumptions:
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c1 = InComp(r)
c2 is a sequence consisting of as many in(a) as the out(a) in r

c3 is a sequence consisting of as many in(b) as the out(b) in r

We have then the following cases:

1. t = r · out(a) · t1 and s = r; In this case C[•] = • | c1.c2.in(a).out(ok) allows to
distinguish A and B.

2. t = r ·in(a)·t1 and s = r; then C[•] = out(a).• | c1.c2.inp(a)?out(ok) : out(no)
is the distinguishing context.

3. t = r · out(a) · t1 and s = r · out(b) · s1. We have the following sub-cases:
(a) If the number of out(a) in t is different from the number of out(a) in s then it

can be easily proved that there is a context that distinguishes the two programs
(essentially it is a context that counts the occurrences of the out(a)). Similarly
if we are considering the b’s. The following is an example.

Example 1. If t = out(a) · in(a) · out(a) · out(b) and s = out(b) · out(a) then
we can build the distinguishing context

C[•] = • | in(a).out(a).inp(a)?out(ok) : out(no)

(b) Now suppose that the number of out(a) (or out(b)) is the same in t and s. If in
t1 or in s1 there is an input action again it is easy to provide a distinguishing
context, either by blocking the execution of the rest of the trace after the input
or by querying the store for the presence/absence of messages in the store. The
following provide an example.

Example 2. If t = out(a) · in(b) · out(b) and s = out(b) · in(b) · out(a) then
we can consider the distinguishing context

C[•] = • | in(a).out(b).inp(b)?out(ok) : out(no)

(c) If in t1 and in s1 there are only outputs then either there is an output action
which is not present in one of the two traces, and in this case it is straight-
forward to build a distinguishing context, or the output actions of a sequence
are a permutation of output actions of the other sequence; also in this case it
is easy to construct a context that distinguishes the two processes by checking
the presence of a message and the absence of the other one, as shown by the
following.

Example 3. If t = out(a) ·out(b) and s = out(b) ·out(a) then the distinguish-
ing context C[•] = • | in(a).inp(b)?out(ok) : out(no) (as seen in the initial
part of this Section).

4. t = r · out(a) · t1, s = r · in(b) · s1 and s′ = r · inp(b) ∈ Sat2(�B�). It suffices to
consider C[•] = • | c1.c2.c3.in(a).out(ok).

5. t = r · out(a) · t1, s = r · in(b) · s1 and s′ = r · inp(b) · s2 ∈ Sat2(�B�). The
following situations may arise:
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(a) if out(a) 	∈ s2 then C[•] = • | c1.c2.c3.in(a).out(ok);
(b) if in(b) 	∈ t1 then C[•] = out(b).• | c1.inp(b)?out(ok) : out(no);
(c) otherwise the only significant case is when s′ = r · inp(b) · out(a) · t1 and

therefore a suitable context can be constructed observing that the order of the
actions is different (i.e. b is consumed in two different positions). This is shown
in the following.

Example 4. If t = out(a) and s = in(b) · out(b) · out(a) recalling that s′ =
inp(b) · out(a) we can build the distinguishing context C[•] = out(b).• |
in(b).out(b).inp(b)?out(ok) : out(no)

6. t = r · in(a) · t1, s = r · in(b) · s1 and s = r · inp(b) ∈ Sat2(B). In this case
C[•] = out(a).• | c1.c2.c3.inp(a)?out(ok) : out(no).

7. t = r · in(a) · t1, s = r · in(b) · s1 and s′ = r · inp(b) · s2 ∈ Sat2(�B�). We should
here distinguish between the following further cases

(a) if out(a) 	∈ t1 and in(a) 	∈ s2 then C[•] = out(a).• | c1.c3;
(b) otherwise the worst possible scenario happens when s2 = in(a) · t1 and t1

and s1 are “symmetrical” in a and b. As already shown in some preceding
cases, when the order of the actions changes it is always possible to find a
distinguishing context. This is shown in the following, last example.

Example 5. Given A = inp(a)?(out(a).in(b).out(b)) : (in(b).out(b)), and
B = inp(b)?(out(b).in(a).out(a)) : (in(a).out(a)) thus Sat2(�A�)={in(a) ·
out(a) · in(b) · out(b), inp(a) · in(b) · out(b), . . . } and Sat2(�B�) = {in(b) ·
out(b) · in(a) · out(a), inp(b) · in(a) · out(a), . . . } and the following context
can distinguish between the two programs: C[•] = • | inp(a)?out(ok1) :
(inp(b)?out(ok2) : out(no)).

8. There are some remaining cases, where the two sequences are different because
of a inp action. However, due to the construction of our semantics, r · inp(x) ∈
Sat2(�A�) iff r · in(x) · s ∈ Sat2(�A�). Therefore we can omit to consider the
sequence r · inp(x) and just consider the case of the sequence r · in(x) · s, which
is included above.

This completes the proof. ��

The previous two theorems can be summarized in the following corollary.

Corollary 2 (Full Abstraction for Linda-inp). Given two Linda-inp processes A and
B, Sat2(�A�) = Sat2(�B�) iff, for any context C[•], O(C[A]) = O(C[B]) holds.

6 Conclusions and Related Work

We have studied the full abstraction problem for two variants of the Linda paradigm.
For the first one, the core Linda language, we have provided a trace semantics which
is fully abstract w.r.t. the input/output notion of observables. This has been obtained by
using a suitable abstraction in order to identify different traces which do not represent
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meaningful operational differences. The second language, Linda-inp, allows also check-
ing for the absence of information. The augmented expressive power of this language
permits us to obtain a full abstraction result by using a much simpler abstraction.

In the specific context of Linda, full abstraction has been previously investigated
by [3] which used also techniques inspired by [12]. The results in [3] are completely
different from ours, since in such a paper a semantics based on sequences is shown
to be fully abstract with respect to a notion of observable which consider traces of
computations. We prefer to consider a coarser notion of observables, consisting in the
input/output behaviour, which accounts for a “black box” use of processes. Clearly
our notion of observables leads to a more difficult full abstraction result, being the
denotational model based on traces.

Results similar to ours have been obtained in the context of concurrent constraint
programming (CCP) by De Boer and Palamidessi [9], however this language differs
from Linda since it does not allow to remove information from the store. This monoto-
nic nature of CCP makes its semantic treatment simpler, hence the results in [9] cannot
be applied directly to the languages we consider here. Also Brookes [4] provides a
trace model and a full abstraction result for a shared variable parallel language which is
substantially different from Linda. The same applies to the results in [12].

More generally, full abstraction results have been provided for many concurrent lan-
guages and in quite various settings, which however are different from the case we
consider here. In fact, even though our core Linda language can be seen as a fragment
of asynchronous CCS (and therefore of asynchronous π-calculus), all the full abstrac-
tion results available for these languages consider different observational equivalences
from ours. Probably the closer work in this sense is [2], where full abstraction of a trace
semantics w.r.t. may testing equivalence has been studied. Note however that may test-
ing is different from the observational equivalence that we consider (which is based on
the input-output behaviour). For example, the processes in(a).in(b) and in(b).in(a)
are may testing equivalent (see [2]) while they are not equivalent in our case, since they
can be distinguished by the context out(a).

Several other papers consider barbed equivalences and their relations with bisimula-
tion, (notably [1] for asynchronous π-calculus and [6] for Linda-like process algebras)
which, as previously mentioned, are completely different from the equivalence we con-
sider. It is also worth noticing that the construct inp, which is not available in π-calculus
and in CCS, change considerably the semantics of the language, thus for Linda-inp one
cannot use existing results for CCS or π-calculus. For example, [6] shows that in pres-
ence of inp the coarse congruence contained in barbed equivalence is a new, specific
congruence called inp-bisimulation while for the core language it is the usual one.

Recently, full abstraction results for π-calculus with contextual equivalence [18] and
for Java-like languages with testing equivalence have been obtained in [15] (by consid-
ering weak bisimulation) and in [14] (by using a model based on traces). Also in these
cases the considered equivalences are different from ours.

Our results can be extended along several lines. We have described a fully abstract
semantics which is not compositional since the abstractions that we need on sequences
are inherently non compositional. It would therefore be interesting to determine whether
a simple, compositional, fully abstract semantics based on sequences actually exists.
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Secondly we could investigate some other of the (many) dialects of Linda which exist
in the literature. In particular we are planning to investigate the case of the language
Klaim [17], which supports distribution and mobility. Finally it would be interesting to
consider full abstraction results for other notions of observational equivalences.
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Abstract. Higher-order abstract syntax (HOAS) refers to the tech-
nique of representing variables of an object-language using variables of a
meta-language. The standard first-order alternatives force the program-
mer to deal with superficial concerns such as substitutions, whose im-
plementation is often routine, tedious, and error-prone. In this paper,
we describe the underlying calculus of Delphin. Delphin is a fully im-
plemented functional-programming language supporting reasoning over
higher-order encodings and dependent types, while maintaining the ben-
efits of HOAS. More specifically, just as representations utilizing HOAS
free the programmer from concerns of handling explicit contexts and sub-
stitutions, our system permits programming over such encodings with-
out making these constructs explicit, leading to concise and elegant
programs. To this end our system distinguishes bindings of variables
intended for instantiation from those that will remain uninstantiated,
utilizing a variation of Miller and Tiu’s ∇-quantifier [1].

1 Introduction

Logical frameworks are meta-languages used to represent information. Any sys-
tem supporting the declaration of custom datatypes is providing a framework for
representing information. Church’s simply typed λ-calculus is arguably the first
logical framework that supports higher-order encodings, which means that bind-
ing constructs of the object language (the information modeled) are expressed
in terms of the binding constructs of the λ-calculus. This deceptively simple idea
allows for encodings of complex data structures without having to worry about
the representation of variables, renamings, or substitutions that are prevalent in
logic derivations, typing derivations, operational semantics, and more.

The logical framework LF [2] is essentially an extention of Church’s λ-calculus
with dependent types and signatures. A signature contains a collection of con-
stants used to construct objects of different types, also known as datatype con-
structors. Dependent types and type families (type level constants that need to
be indexed by objects) can capture invariants about representations that are
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impossible with just simple types. A list can be indexed by its length. An ex-
pression can be indexed by its type. An evaluation relation can be represented
as a type indexed by two expressions, its input and output. The list goes on.

Neither the simply typed λ-calculus nor LF are suitable for programming.
Neither framework permits the definition of recursive functions by cases. They
are logical frameworks, whose sole purpose is the representation of syntax mod-
ulo variable renaming and substitution. Furthermore, we must be careful when
adding anything to LF. For example, the addition of case analysis would in-
evitably lead to exotic terms, i.e. typeable terms that do not correspond to any
concrete term in the object-language being encoded. The existence of such exotic
terms would eliminate the main benefits of higher-order encodings.

Thus, the first challenge of designing a calculus of recursive functions sup-
porting higher-order encodings is to cleanly separate the two function spaces
for representation and computation. Our Delphin calculus defines a computa-
tion level supporting function definition by case analysis and recursion without
extending the representation level LF. Therefore, all of LF’s representational
features and properties are preserved.

The second challenge of designing our calculus is supporting recursion under
representation level (LF) functions. We solve this problem by distinguishing be-
tween two methods of variable binding. The function type constructor ∀ (or ⊃
when non-dependent) binds variables that are intended for instantiation, which
means that computation is delayed until application. Additionally, we provide
a newness type constructor ∇ to bind variables that will always remain unin-
stantiated and hence computation will not be delayed. The introduction form
of ∇ is the ν (pronounced new) construct, νx. e, where x can occur free in e.
Evaluation of e occurs while the binding x remains uninstantiated. Therefore,
for the scope of e, the variable x behaves as a constant in the signature, which
we will henceforth call a parameter. One may view ν as a method of dynamically
extending the signature.

The Delphin calculus distinguishes between parameters (extensions of the
signature) and objects (built from constants and parameters). The type A#

refers to a parameter of type A. Intuitively, the type A# is best viewed as a
subtype of A. Although all parameters of type A do have type A, the converse
does not necessarily hold.

The presence of parameters introduce concerns with respect to case analysis.
When performing case analysis over a type, we cannot only consider the con-
stants declared in the signature, but we must also consider parameters. To this
end, Delphin permits a versatile definition of cases. Pattern variables of type A#

will be used to capture these additional cases.
Our ∇-type constructor is related to Miller and Tiu’s ∇-quantifier [1], where

they distinguish between eigenvariables intended for instantiation from those
representing scoped constants. In their logic, the formula (∀x. ∀y. τ(x, y)) ⊃
∀z. τ(z, z) is provable, whereas (∇x. ∇y. τ(x, y)) ⊃ ∇z. τ(z, z) is not.
Similarly, the Delphin type (∀x. ∀y. τ(x, y)) ⊃ ∀z. τ(z, z) is inhabited by
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Types A, B ::= a | A M | Πx:A. B
Objects M, N ::= x | c | M N | λx:A. N
Kinds K ::= type | Πx:A. K

Signature Σ ::= · | Σ, a:K | Σ, c:A
Context Γ ::= · | Γ, x:A

Fig. 1. The logical framework LF

λf. λz. f z z. However, the type (∇x. ∇y. τ(x, y)) ⊃ ∇z. τ(z, z) is in general
not inhabited because nothing might be known about τ(z, z).

In this paper we describe our calculus of recursive functions and its implemen-
tation in the Delphin programming language. Delphin is available for download
at http://www.cs.yale.edu/∼delphin. We begin this paper with an overview
of the logical framework LF in Section 2. We motivate the Delphin language in
Section 3, and provide examples in Section 4. We discuss its static semantics in
Section 5 followed by the operational semantics in Section 6. Next, we present
some meta-theoretical results in Section 7. An advanced example with combina-
tor transformations is given in Section 8. We briefly discuss some implementation
details in Section 9. Finally, we describe related work in Section 10 before we
conclude and assess results in Section 11.

2 Logical Framework LF

The Edinburgh logical framework [2], or LF, is a meta-language for representing
deductive systems defined by judgments and inference rules. Its most prevalent
features include dependent types and the support for the higher-order encodings
of syntax and hypothetical judgments.

We present the syntactic categories of LF in Figure 1. Function types assign
names to their arguments in Πx:A. B. We write A → B as syntactic sugar when
x does not occur in B. Types may be indexed by objects and we provide the
construct A M to represent such types. We write x for variables while a and
c are type and object constants (or constructors), respectively. We often refer
to a as a type family. These constants are provided in a fixed collection called
the signature. The functional programmer may interpret the signature as the
collection of datatype declarations.

In the presence of dependencies, not all types are valid. The kind system of
LF acts as a type system for types. We write Γ �lf M : A for valid objects and
Γ �lf A : K for valid types, in a context Γ that assigns types to variables. The typ-
ing and kinding rules of LF are standard [2] and are omitted here in the interest of
brevity. All LF judgments enjoy the usual weakening and substitution properties
on their respective contexts, but exchange is only permitted in limited form due
to dependencies. We take ≡αβη as the underlying notion of definitional equality
between LF-terms. Terms in β-normal η-long form are also called canonical forms.

Theorem 1 (Canonical forms). Every well-typed object Γ �lf M : A possesses
a unique canonical form (modulo α-renaming) Γ �lf N : A, such that M ≡αβη N .

Encodings consist of a signature and a representation function, which maps ele-
ments from our domain of discourse into canonical forms in our logical framework.
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We say that an encoding is adequate if the representation function (�−�) is a com-
positional bijection (one that commutes with substitution). We next present ex-
amples of a few adequate encodings. We write the signature to the right of the
representation function.

Example 1 (Natural numbers).
nat : type

�0� = z z : nat
�n + 1� = s �n� s : nat → nat

Example 2 (Expressions). As another example, we choose the standard language
of untyped λ-terms t ::= x | lam x. t | t1@t2. The encoding �t� is as follows:

�x� =x exp : type
�lam x. t� = lam (λx:exp. �t�) lam : (exp → exp) → exp
�t1@t2� =app �t1� �t2� app : exp → exp → exp

In this example, we represent object-level variables x by LF variables x of
type exp, which is recorded in the type of lam. As a result, we get substitution
for free: �[t1/x]t2� = [�t1�/x]�t2�.

Example 3 (Natural deduction calculus). Let A, B ::= A ⇒ B | p be the lan-
guage of formulas. We will use ⇒ as an infix operator below. We write E ::� A if
E is a derivation in the natural deduction calculus. Natural deduction derivations
E ::� A are encoded in LF as �E� : nd �A�, whose signature is given below.

u
� A

...
� B

impi
� A ⇒ B

� A � A ⇒ B
impe

� B

o : type
⇒: o → o → o

nd : o → type
impi : (nd A → nd B) → nd (A ⇒ B)
impe : nd (A ⇒ B) → nd A → nd B.

We omit the leading Πs from the types when they are inferable. This is,
for example, common practice in Twelf. The logical framework LF draws its
representational strength from the existence of canonical forms, providing an
induction principle that allows us to prove adequacy.

3 Delphin Calculus

The Delphin calculus is specifically designed for programming with (higher-
order) LF encodings. It distinguishes between two levels: computational and
representational. Its most prominent feature is its newness type constructor ∇,
which binds uninstantiable parameters introduced by our ν construct. Figure 2
summarizes all syntactic categories of the Delphin calculus.

We use δ to distinguish between representational types A, parameters A#,
and computational types τ .1 Representational types A are the LF types defined
1 In the corresponding technical report [3] we also allow for computation-level param-

eters τ#, which we omit here for the sake of simplicity.
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Types δ ::= τ | A | A#

Computational Types τ, σ ::= � | ∀α∈δ. τ | ∃α∈δ. τ | ∇x∈A#. τ
Variables α ::= x | u

Expressions e, f ::= α | M | unit | e f | (e, f) | νx∈A#. e | e\x
| μu∈τ. e | fn (c1 | . . . | cn)

Cases c ::= εα∈δ. c | νx∈A#. c | c\x | e �→ f

Fig. 2. Syntactic Definitions of Delphin

in Section 2. We write A# to denote parameters of type A. Through this dis-
tinction we strengthen pattern matching as well as permit functions that range
over parameters. It is best to view A# as a subtype of A. We also distinguish
representation-level and computation-level variables by x and u, respectively.
Computational types are constructed from four type constructors: the unit type
constructor 
, the function type constructor ∀, the product type constructor ∃,
and the newness type constructor ∇.

Computational types τ disallow computing anything of LF type A. This is
necessary as LF types may depend on objects of type A, and we chose to disallow
dependencies on computation-level expressions. This separation ensures that the
only objects of type A are LF terms M . Although computation cannot result in
an object of type A, it may result in an object of type ∃x∈A. 
. We abbreviate
this type as 〈A〉 and summarize all abbreviations in Figure 3.

Since ∀ and ∃ range over δ, they each provide three respective function
and pairing constructs– over A, τ , and A#. For example, a function of type
∀x∈o. 〈nd x〉 computes natural deduction derivations for any formula. In con-
trast, a function of type ∀x∈o#. 〈nd x〉 only works on parameters.

As already stated, functions may range over any type δ. We write δ ⊃ τ for
∀α∈δ. τ when α does not occur in τ , which will always be the case when δ is
a τ . We define values of Delphin functions as a list of cases fn (c1 | . . . | cn),
which means that we do not introduce an explicit computation-level λ-term.
This technique allows us to avoid aliasing of bound variables, which significantly
simplifies the presentation of our calculus in the presence of dependent types.

We write a single case as e �→ f where e is the pattern and f is the body.
Patterns may contain pattern variables, which are explicitly declared. We use ε
to declare pattern variables of any type representing objects or parameters. For
example, fn εu∈τ. u �→ u encodes the identity function on type τ . Multiple cases
are captured via alternation, c1 | c2, and · stands for an empty list of cases. A
Delphin level λ-binder λα∈δ. e may thus be expressed as fn εα∈δ. α �→ e.

Function application is call-by-value and is written as e f . During compu-
tation, e is expected to yield a set of cases c, of which one that matches the
argument is selected and executed. During the matching process, ε-bound pat-
tern variables are appropriately instantiated.

The Delphin type for dependent pairs is denoted by ∃α∈δ. τ , and its values
are pairs of the form (e, f), where both e and f are values. We write δ � τ when
α does not occur in τ , which will always be the case when δ is a τ . Pairs are
eliminated via case analysis.
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δ ⊃ τ = ∀α∈δ. τ

δ � τ = ∃α∈δ. τ

〈A〉 = ∃x∈A. �
〈M〉 = (M, unit)

λα∈δ. e = fn εα∈δ. α �→ e

case e of cs = (fn cs) e

let (α∈δ, u∈τ ) = e in f
= case e of εα∈δ. εu∈τ. (α, u) �→ f

let 〈x〉 = e in f
= case e of εx∈A. 〈x〉 �→ f

let α = e in f
= (λα∈δ. f) e

Fig. 3. Abbreviations

Delphin’s newness type constructor is written as ∇x∈A#. τ and the corre-
sponding values are νx∈A#. e, where e is a value. In Section 6 we will see that
a term νx∈A#. e will always evaluate to a term νx∈A#. e′. In other words,
evaluation in an extended signature results in values in the same extended
signature. Just as ν dynamically extends the signature, the ∇-type is elimi-
nated via e\x, which dynamically shrinks the signature to its form before x was
introduced.

One may perform case analysis over a ∇-type. This gives us a way to translate
between values of the ∇-type and LF’s Π-type. For example, we can utilize case
analysis to convert between the value 〈λx. M x〉 and νx. 〈M x〉. A Delphin func-
tion that would convert the former into the latter would have type 〈Πx : A. B〉 ⊃
∇x∈A#. 〈B〉 and be written as fn εy∈(Πx : A. B). 〈y〉 �→ νx∈A#. 〈y x〉.

Conversely, a function of type ∇x∈A#. 〈B〉 ⊃ 〈Πx : A. B〉 can be written
as fn εy∈(Πx : A. B). (νx∈A#. 〈y x〉) �→ 〈y〉. Notice that the pattern is 〈y x〉,
illustrating an example of higher-order matching. Just as we introduced the ∇-
type to reason over higher-order encodings, we can employ higher-order matching
to get rid of it again.

We also remark that we have να. c and c\α over cases, which have a similar
meaning to their counterparts over expressions. By allowing these constructs to
range over cases, we add further flexibility in what we can express with pat-
tern (ε-bound) variables. For example, this is useful in implementing exchange
properties as well as the properties that will be proved in Lemma 1.

Finally, we turn to the usual recursion operator μu∈τ . e. Note that μ can only
recurse on Delphin computational types τ and not on LF types A.

4 Examples

We illustrate Delphin with a few examples building on the encodings of natural
numbers and expressions given in Section 2.

Example 4 (Addition). The function plus adds two natural numbers.

μplus∈〈nat〉 ⊃ 〈nat〉 ⊃ 〈nat〉.
fn 〈z〉 �→ fn εM∈nat.〈M〉 �→ 〈M〉
| εN∈nat.〈s N〉 �→ fn εM∈nat.〈M〉 �→ let 〈x〉 = (plus 〈N〉 〈M〉) in 〈s x〉
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Example 5 (Interpreter).

μeval ∈〈exp〉 ⊃ 〈exp〉.
fn εE1∈exp. εE2∈exp. 〈app E1 E2〉

�→ case (eval 〈E1〉, eval 〈E2〉) of
εF∈exp → exp. εV ∈exp. (〈lam F 〉, 〈V 〉) �→ eval 〈F V 〉

| εE∈exp → exp. 〈lam E〉 �→ 〈lam E〉
Example 6 (Beta Reduction). We can reduce redices under λ-binders.

μevalBeta ∈〈exp〉 ⊃ 〈exp〉.
fn εE1∈exp. εE2∈exp. 〈app E1 E2〉

�→ case (evalBeta 〈E1〉, evalBeta 〈E2〉) of
εF∈exp → exp. εV ∈exp. (〈lam F 〉, 〈V 〉) �→ evalBeta 〈F V 〉

| εx∈exp#. εV ∈exp. (〈x〉, 〈V 〉) �→ 〈app x V 〉
| εE∈exp → exp. 〈lam E〉

�→ case (νx∈exp#. evalBeta 〈E x〉) of
εE′∈exp → exp.(νx∈exp#. 〈E′ x〉) �→ 〈lam E′〉

| εx∈exp#. 〈x〉 �→ 〈x〉
The 〈lam E〉 case illustrates how we handle higher-order terms. Since E is of

functional type, we create a parameter x to continue computation with (E x) un-
der ν. The term νx∈exp#. evalBeta 〈E x〉 has type ∇x∈exp#. 〈exp〉. Although
the introduction of parameters is easy, eliminating them is more difficult. We do
this by case analysis, by first stipulating the existence of an E′ of functional type
and then match against 〈E′ x〉. This illustrates an example of higher-order match-
ing. The parameter x cannot escape its scope because E′ was declared outside of
the scope of x. This lack of dependency is reflected by the lexical scoping in the
Delphin code above: the pattern variable εE′ is declared to the left of νx.

Finally, the base case is required for completeness. New parameters are intro-
duced in the lam case and we specify here that they reduce to themselves.

Example 7 (Variable Counting). For the final example in this section, we write
a function that counts the number of variable occurrences in untyped λ-terms.
For example, the number of variables in �lam x. x@(lam y. x@y)� is �3�.

μcntvar∈〈exp〉 ⊃ 〈nat〉.
fn εE1∈exp.εE2∈exp.〈app E1 E2〉 �→ plus (cntvar 〈E1〉) (cntvar 〈E2〉)

| εE∈(exp → exp).〈lam E〉 �→ case (νx∈exp#. cntvar 〈E x〉) of
εN∈nat.(νx∈exp#. 〈N〉) �→ 〈N〉

| εx∈exp#. 〈x〉 �→ 〈s z〉
We explain the 〈lam E〉 case. Since E is of functional type, we create a param-

eter x:exp# and recurse on 〈E x〉. From the very definition of natural numbers
in Example 1, we deduce that it is impossible for the result to depend on x and
express this by matching against 〈N〉 instead of 〈N ′ x〉. Note that if it was possi-
ble for x to occur in the result then this case would only match, during runtime,
in situations where the x did not occur free in the result. Therefore, if the pro-
grammer leaves out essential cases then it is possible to get stuck, corresponding
to a match non-exhaustive error, just as in ML.
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5 Static Semantics

Before presenting the typing rules, the role of context deserves special attention.

Contexts Ω ::= · | Ω, α∈δ | Ω, x
∇

∈A#

A Delphin context, Ω, serves two purposes. Besides assigning types to vari-
ables, it also distinguishes between variables intended for instantiation from
uninstantiable parameters. We write α∈δ to express variables α that will be
instantiated, such as pattern variables. Alternatively, we write x

∇

∈A# to store
information about uninstantiable parameters, introduced by ν. The distinction
between x∈A# and x

∇

∈A# is highlighted by comparing λx∈A#. e and νx∈A#. e.
The first binds a parameter that is intended for instantiation while the latter will
remain uninstantiated. We do not allow reorderings of Ω because of dependen-
cies. Additionally, we assume all declarations in Ω to be uniquely named, and
we achieve this goal by tacitly renaming variables. During the actual execution
of Delphin programs, Ω only contains declarations of the latter form, which one
may interpret as an extension to the signature. In comparison, computation in
ML always occurs with a fixed signature.

Definition 1 (Casting). In order to employ LF typing, we define ||Ω|| as cast-
ing of a context Ω, which throws out all declarations u∈τ and converts x∈A,
x∈A#, and x

∇

∈A# all into x:A, yielding an LF context Γ .

5.1 Type System

In the presence of dependencies, not all types are valid. We write Ω � δ wff for
valid types and Ω ctx for valid contexts, but omit both judgments here due to
space considerations. We write Ω � e ∈ δ for the central derivability judgment,
which we present in Figure 4. Note that the rules have implicit premises using
the validity judgments to ensure that the context and all types are well-formed.
We make these explicit in the corresponding Technical Report [3].

The variable rules τvar and var# allow one to use assumptions in the context
of types τ and A#, respectively. The only term of type A# is a variable x.

The rule isLF is the only rule for type A and stipulates that in order for an
expression M to be an LF term, we must be able to type it using the LF typing
judgment under ||Ω|| (Definition 1).

The rest of the rules deal with computational types τ . Function types are
introduced via cases c. The introduction rule impI expresses that all branches
must have the same type. Note that we allow for an empty list of cases which
may be used to write a function over an empty type. Functions are eliminated
through application with impE. The elimination refines τ under a substitution
[f/α] replacing all occurrences of α by f . Formally, we use simultaneous substi-
tutions but refer the interested reader to the corresponding technical report [3]
for details. If δ is a computational-type σ, then α cannot occur free in τ and this
substitution will be vacuous.
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(u∈τ ) in Ω
τvar

Ω � u ∈ τ

((x∈A#) or (x
∇

∈A#)) in Ω
var#

Ω � x ∈ A#

||Ω|| �lf M : A
isLF

Ω � M ∈ A

i ≥ 0, For all i, Ω � ci ∈ τ
impI

Ω � fn (c1 | . . . | cn) ∈ τ

Ω � e ∈ ∀α∈δ. τ Ω � f ∈ δ
impE

Ω � e f ∈ τ [f/α]

Ω, x
∇

∈A# � e ∈ τ
new

Ω � νx∈A#. e ∈ ∇x∈A#. τ

Ω � e ∈ ∇x′∈A#. τ
pop

Ω, x
∇

∈A#, Ω2 � e\x ∈ τ [x/x′]

Ω � e ∈ δ Ω � f ∈ τ [e/α]
pairI

Ω � (e, f) ∈ ∃α∈δ. τ

Ω, u∈τ � e ∈ τ
fix

Ω � μu∈τ . e ∈ τ
top

Ω � unit ∈ �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω, α∈δ � c ∈ τ
cEps

Ω � εα∈δ. c ∈ τ

Ω � e ∈ δ Ω � f ∈ τ [e/α]
cMatch

Ω � e �→ f ∈ ∀α∈δ. τ

Ω, x
∇

∈A# � c ∈ τ
cNew

Ω � νx∈A#. c ∈ ∇x∈A#. τ

Ω � c ∈ ∇x′∈A#. τ
cPop

Ω, x
∇

∈A#, Ω2 � c\x ∈ τ [x/x′]

Fig. 4. Delphin Typing Rules

Cases contain explicit pattern variables, which are simply added to the con-
text in cEps. The actual function type is introduced in cMatch illustrating that
functions are defined via case analysis. In the branch e �→ f , e is the pattern and
f is the body. The type of f is refined by its pattern via a substitution τ [e/α].
This expresses how different bodies may have different types, all depending on
their corresponding pattern. As we define functions by cases, we do not need
to refine the context Ω. Additionally, our distinction between computation-level
and representation-level types ensures that this substitution is always defined.
Finally, we also have a ν and c\x construct over cases, via cNew and cPop.
These have similar semantics to their counterparts on expressions, discussed
next.

The introduction form of ∇ is called new. As discussed in Section 3, the type
∇x∈A#. τ declares x

∇

∈A# as a new parameter. The expression νx∈A#. e eval-
uates e where the parameter x can occur free. Previously, our examples have
shown how to utilize higher-order matching via case-analysis to eliminate these
types. However, the elimination rule pop eliminates a ∇-type via an application-
like construction, e\x, which shifts computation of e to occur without the unin-
stantiable parameter x. If Ω � e ∈ ∇x′∈A#. τ , then x′ is a fresh uninstantiable
parameter with respect to the context Ω. Therefore, in an extended context
Ω, x

∇

∈A#, Ω2, we can substitute x for x′ and yield a term of type τ [x/x′]. The
following lemma illustrates examples where this is useful.
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Lemma 1. The following types are inhabited.

1. ∇x∈A#. (τ ⊃ σ) ⊃ (∇x∈A#. τ ⊃ ∇x∈A#. σ)
2. (∇x∈A#. τ ⊃ ∇x∈A#. σ) ⊃ ∇x∈A#. (τ ⊃ σ)
3. ∇x∈A#. (τ � σ) ⊃ (∇x∈A#. τ � ∇x∈A#. σ)
4. (∇x∈A#. τ � ∇x∈A#. σ) ⊃ ∇x∈A#. (τ � σ)

Proof. We only show 1 and 2, the other 2 cases are straightforward.

1. λu1∈∇x∈A#. (τ ⊃ σ). λu2∈(∇x∈A#. τ). νx∈A#. (u1\x) (u2\x)
2. λu1∈(∇x∈A#. τ ⊃ ∇x∈A#. σ).

fn εE∈(∇x∈A#. τ). νx∈A#. ((E\x) �→ (u1 E)\x)

Finally, pairs are introduced via pairI and eliminated using case analysis. The
typing rules for recursion (fix) and unit (top) are standard.

6 Operational Semantics

Definition 2 (Values). The set of values of are:

Values: v ::= unit | fn (c1 | . . . | cn) | νx∈A#. v | (v1, v2) | M

As usual for a call-by-value language, functions are considered values. A newness
term νx∈A#. v is a value only if its body is a value, which is achieved via evalu-
ation under the ν-construct. LF terms M are the only values (and expressions)
of type A, and pairs are considered values only if their components are values.
Therefore, 〈M〉 is the only value of type 〈A〉 (Figure 3).

We present the small-step operational semantics, Ω � e → f , in Figure 5. The
first rule illustrates that the evaluation of νx∈A#. e simply evaluates e under the
context extended with x. The declaration is marked as x

∇

∈A# as this represents
an extension to the signature. Evaluation under ν drives our ability to reason
under LF λ-binders. Additionally, we evaluate e′\x by first evaluating e′ down
to νx′∈A#. e and then substitute x for x′. Therefore, we see that e′\x behaves
much like an application.

The small-step operational semantics for cases, Ω � c → c′, is also shown in
Figure 5. The first rule non-deterministically instantiates the pattern variables.
In our implementation we delay this choice and instantiate them by unification
during pattern matching, which is discussed briefly in Section 9. The next three
rules allow us to work with ν over cases, which is the same for the ν over
expressions. We provide a rule to reduce the pattern of a case branch, which can
be any arbitrary expression. In Section 4 we discussed how a program could get
stuck, which corresponds to a match non-exhaustive error. However, we say that
a program “coverage checks” if the list of patterns is exhaustive.

Recall that all LF terms possess a unique canonical form. Given any Delphin
term, we implicitly reduce all LF terms to canonical form allowing us to express
matching via syntactic equality in the rule marked with *.
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Ω, x
∇

∈A# � e → f

Ω � νx∈A#. e → νx∈A#. f

Ω � e → e′

Ω � (e, f) → (e′, f)

Ω � f → f ′

Ω � (e, f) → (e, f ′)

Ω � e → e′

Ω � e f → e′ f

Ω � f → f ′

Ω � e f → e f ′

Ω � e → f

Ω, x
∇

∈A#, Ω2 � e\x → f\x Ω, x
∇

∈A#, Ω2 � (νx′∈A#. e)\x → e[x/x′]

Ω � (fn (c1 | . . . | cn))\x → fn ((c1\x) | . . . | (cn\x))

Ω � ci → c′
i

Ω � (fn (. . . | ci | . . .)) v → (fn (. . . | c′
i | . . .)) v

*
Ω � (fn (. . . | v �→ e | . . .)) v → e Ω � μu∈τ . e → e[μu∈τ . e/u]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω � v ∈ δ

Ω � εα∈δ. c → c[v/α]

Ω, x
∇

∈A# � c → c′

Ω � νx∈A#. c → νx∈A#. c′

Ω � c → c′

Ω, x
∇

∈A#, Ω2 � c\x → c′\x

Ω, x
∇

∈A#, Ω2 � (νx′∈A#. c)\x → c[x/x′]

Ω � e → e′

Ω � (e �→ f) → (e′ �→ f)

Fig. 5. Small-Step Operational Semantics

7 Meta-theoretic Results

We show here that Delphin is type-safe when all cases are exhaustive.

Lemma 2 (Substitution)
If Ω � e ∈ δ and Ω, α∈δ � f ∈ τ , then Ω � f [e/α] ∈ τ [e/α].

Proof We actually prove this for a more general notion of simultaneous substi-
tutions. See Technical Report [3] for details.

Theorem 2 (Type Preservation)
If Ω � e ∈ τ and Ω � e → f then Ω � f ∈ τ .

Proof By induction on the structure of E :: Ω � e → f and F :: Ω � c → c′. See
Technical Report [3] for details.

Corollary 1 (Soundness). Parameters cannot escape their scope. If Ω � e ∈ τ
and Ω � e → e′ then all parameters in e and e′ are declared in Ω.

Theorem 3 (Progress)
Under the condition that all cases in e are exhaustive, if Ω � e ∈ τ and Ω only
contains declarations of the form x

∇

∈A#, then Ω � e → f or e is a value.

Proof By induction over E :: Ω � e ∈ τ . In matching (rule *) we assume that
cases are exhaustive and defer to an orthogonal “coverage check.” The Delphin
implementation contains a prototype coverage algorithm extending ideas from
[4], but a formal description is left for future work. Although the problem of
checking an arbitrary list of cases is undecidable, it is always possible to generate
an exhaustive list of cases for any type δ.
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8 Combinator Example

Recall the definition of the natural deduction calculus from Example 3. We will
give an algorithmic procedure that converts natural deduction derivations into the
Hilbert calculus, i.e. simply typed λ-terms into combinators. We omit the decla-
ration of inferable pattern variables (as is also allowed in the implementation).

K
� A ⊃ B ⊃ A

� A ⊃ B � A
MP

� B

S
� (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)

comb : o → type,

K : comb (A ⇒ B ⇒ A)
MP : comb(A ⇒ B) → comb A

→ comb B
S : comb ((A ⇒ B ⇒ C) ⇒

(A ⇒ B) ⇒ A ⇒ C)

Our translation follows a two-step algorithm. The first step is bracket abstrac-
tion, or ba, which internalizes abstraction. If M has type (comb A → comb B)
and N has type (comb A) then we can use ba to get a combinator, d, of type
(comb A ⇒ B). Subsequently, we can do (MP d N) to get a term that is equiv-
alent to (M N) in combinator logic. Formally, ba is written as.

μba ∈ ∀A∈o. ∀B∈o. 〈comb A → comb B〉 ⊃ 〈comb (A ⇒ B)〉.
fn A �→

(fn A �→ fn F �→ 〈MP (MP S K) K〉
| B �→ fn 〈λx. MP (D1 x) ((D2:comb A → comb C) x)〉

�→ let 〈D′1〉 = (ba A (C ⇒ B) 〈D1〉) in
let 〈D′2〉 = (ba A C 〈D2〉) in 〈MP (MP S D′1) D′2〉

| 〈λx. U〉 �→ 〈MP K U〉)

Next we write the function convert which traverses a natural deduction deriva-
tion and uses ba to convert them into Hilbert style combinators. In this function,
we will need to introduce new parameters of (nd A) and (comb A) together. In
order to hold onto the relationship between these parameters, we pass around
a function of type ∀A∈o. ∀D∈(nd A)#. 〈comb A〉. We will employ type aliasing
and abbreviate this type as convParamFun.

μconvert ∈ convParamFun ⊃ ∀A∈o. ∀D∈〈nd A〉. 〈comb A〉.
λf∈ convParamFun.

fn (B ⇒ C) �→ fn 〈impi D′〉 �→
(case (νd∈(nd B)#. νdu∈(comb B)#.

let f ′ = fn B �→ fn d �→ 〈du〉
| (εB′. εd′. νd. νdu. (B′ �→ fn d′ �→

(let R = f B′ d′ in νd. νdu. R)\d\du))\d\du

in convert f ′ C 〈D′ d〉)
of νd∈(nd B)#. νdu∈(comb B)#. 〈D′′ du〉 �→ ba B C 〈D′′〉)

| A �→ fn 〈impe D1 (D2:nd B)〉 �→
let 〈U1〉 = (convert f (B ⇒ A) 〈D1〉) in
let 〈U2〉 = (convert f B 〈D2〉) in 〈MP U1 U2〉

| A �→ fn εx∈(nd A)#. 〈x〉 �→ f A x
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The first argument to convert is a computation-level function f of type
convParamFun that handles the parameters.

The first case, 〈impi D〉, requires recursion under a representation-level λ. We
create two new parameters (or equivalently extend the signature with) d and du

in order to continue our computation by recursing on 〈D′ d〉. As we are in an
extended signature, if f was a total function on input, it is no longer total. We
therefore extend the function f into f ′ mapping d to du before recursing. We
then use the same techniques from Examples 6 and 7 to abstract the result into
an LF function D′′ exploiting that d cannot occur free in the result. Finally, we
employ ba to yield our desired combinator.

The second case does not create any parameters and hence all recursive calls
are called with f . Finally, the last case handles the parameters by simply calling
the input function f which has been built up to handle all parameters.

The above definition of f ′ illustrates how one can build up parameter func-
tions. The second branch of f ′ utilizes e\x and c\x (Section 5.1) to ensure that
the input function f is not executed in scope of d and du. The Delphin implemen-
tation offers a shorthand to extend a function f by writing “f with d �→ du”.

Example 8 (Sample Execution)

νA. convert (fn ·) (A ⇒ A) 〈impi λx. x〉
. . . → νA. case (νd. νdu. convert (fn A �→ fn d �→ 〈du〉 | . . .) A 〈d〉)

of νd. νdu. 〈D′′ du〉 �→ ba A A 〈D′′〉
. . . → νA. case (νd. νdu. (fn A �→ fn d �→ 〈du〉 | . . .) A d)

of νd. νdu. 〈D′′ du〉 �→ ba A A 〈D′′〉
. . . → νA. case (νd. νdu. 〈du〉) of νd. νdu. 〈D′′ du〉 �→ ba A A 〈D′′〉
. . . → νA. ba A A 〈λx. x〉
. . . → νA. 〈MP (MP S K) K〉

9 Implementation

An implementation is available at http://www.cs.yale.edu/∼delphin. Del-
phin is implemented in approximately 12K lines of code in SML/NJ offering a
powerful type reconstruction algorithm, typechecker, and evaluator.

The non-deterministic instantiation of pattern variables from Section 6 is im-
plemented by using logic variables to delay the choice until matching. Addition-
ally, when writing a curried function with multiple arguments we look at all the
arguments together before committing to a branch. We implement this feature
by partially evaluating functions. For example, convert (A ⇒ A) will result in a
function with three cases rather than committing to the first branch. This is an
enhancement to allow the programmer to write more concise code.

We employ a unification/matching algorithm based on the one designed by
Dowek et al. [5], but extended to handle parameters. Therefore, we only allow LF
patterns that fall into the decidable pattern fragment of higher-order unification.
Formally, this means that we only allow LF patterns of the form E x1 . . . xn

where xi is a fresh parameter (with respect to E) and all xi’s are distinct. It is
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important to note that this restriction is only an implementation limitation as
it is also possible to use different unification algorithms.

The Delphin code for all examples in this paper and many more can be found
on our website. We have implemented a function translating HOL proofs into
Nuprl proofs (approximately 400 lines of code) and a Hindley-Milner style type-
inference algorithm for Mini-ML (approximately 300 lines of code).

10 Related Work

Twelf: LF is well suited for representation but does not directly afford the ability
to reason over representations. Twelf utilizes a logic programming methodology
to conduct such reasoning by providing meta-level constructs to interpret a type
family as a function. Delphin affords the user the ability to write the functions
themselves, and we envision this will replace the underlying meta-logic of Twelf.

Higher-order encodings: The predecessor of our work was on the ∇-calculus [6],
which provided a stack based system only supporting a simply-typed logical
framework. The ∇ also referred to something different than what it does here.

Our work is related to Miller and Tiu’s [1]. In their setting, they use ∇ as
a logic quantifier designed to reason about scoped constants. However, their
reasoning occurs over formulas with an explicit local context. In our setting there
is only a global context, which renders it more useful for functional programming.

Pientka[7] also proposes a system for programming with HOAS, however only
for a simply-typed logical framework. Programming over HOAS resorts to the
explicit handling of substitutions and contexts. In contrast, we believe the pur-
pose of HOAS is to provide an implicit notion of substitution. Therefore, we
provide a computation-level in the same spirit, keeping these constructs hidden.

Dependent types: DML provides indexed datatypes whose domains were recently
generalized to LF objects to form the ATS/LF system. In contrast, the Cayenne
language supports full dependent types and even computation with types, ren-
dering it more expressive but at the expense of an undecidable type checker.
Agda and Epigram are two more languages inspired by dependent type theories.
All but the ATS/LF system lack support for higher-order encodings. Although
ATS/LF supports HOAS they resort to encoding the context explicitly, or as
they say representing terms as terms-in-contexts. By making this information
explicit they can reason about parameters in the context, but they must also
define substitutions. We suspect that they can also add a ∇-type similar to ours.

Freshness: Also related to our work are programming languages with freshness
[8], such as FreshML, which utilizes Fraenkel-Mostowski (FM) set theory to
provide a built-in α-equivalence relation for first-order encodings. This allows
for limited support of HOAS as substitution lemmas must still be explicit, albeit
easier to write. Lately, Pottier has developed a logic for reasoning about values
and the names they contain in FreshML [9]. As the creation of names is a global
effect in FreshML, his work is used to prove that names cannot escape their
scope, which is an inherent property of Delphin’s type system.
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11 Conclusion

In this paper we have presented the underlying calculus and semantics of the
Delphin programming language. This is the only functional system tackling pro-
gramming over a logical framework with both higher-order encodings and de-
pendent types. The novelty of this work is in providing a way to reason under
LF λ-binders, such that the notions of context and substitutions remain implicit
in computations as well as representations.

Acknowledgments. We would like to thank Jeffrey Sarnat and Lucas Dixon for
many helpful discussions on this and many earlier designs of the system.

References

1. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. on Compu-
tational Logic 6(4), 749–783 (2005)

2. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the
Association for Computing Machinery 40(1), 143–184 (1993)
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Abstract. JoCaml is a language for concurrent and distributed pro-
gramming. The language is an extension of Objective Caml with concur-
rent features inspired by the join-calculus.

We here present the recent release of JoCaml, motivate our fundamen-
tal design choices, compare the new release with previous ones, and give
a taste of JoCaml by means of a few examples.

1 Introduction

JoCaml is a language for programming concurrent and distributed systems. It
is based on ML for the computational part, and on the join-calculus for the
concurrent part.

The join-calculus is a name passing calculus. The purpose of such calculi is
to describe concurrent and distributed systems. Programming such systems is a
different, although related, issue, since a good model offers suitable abstractions
that help programmers.

Our language, JoCaml, is an extension of Objective Caml (OCaml), a popular
dialect of ML. By choosing to extend an existing language, and not to design one
of our own, we first intend to minimize our work. We also intend to benefit from
functional programming, from pre-existing code base, and from a population of
programmers open to innovation.

Up to three new keywords, JoCaml is a conservative extension of OCaml: OCaml
programs retain their type and behavior. But we understand compatibility in a
stronger sense: JoCaml provides a concurrent extension of ML that strictly adheres
to the spirit of functional programming. Channel definitions and synchronization
behaviors are programmed concisely, by the high-level join-definition concept, and
declaratively, by the introduction of ML pattern matching of messages in channel
definitions. Moreover, channels are typed polymorphically, as functions are in ML,
types being inferred. Channels are first class-values that, amongst other things,
can be passed as arguments to functions, sent as messages on channels, and occur
as members of modules. This, with the polymorphic typing of channels, is our way
to code re-use for concurrent components.

JoCaml web site is http://jocaml.inria.fr/. The site offers a source release
(dating June 2007), links to articles, and a 70 pages tutorial and reference man-
ual. We have programmed a few applications in the language ourselves. Amongst

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 108–111, 2008.
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expression ::= ocaml-expression
| def x1(p1) & . . . & xn(pn) = process

. . .
or xk(p

′
k) & . . . & xm(p′

m) = process
in expression

join-definition

| spawn process process execution

process ::= x(expression) message sending
| reply expression to x reply to synchronous channel
| process & process parallel composition
| expression ; process sequential composition
| let . . . in process local value definition
| def . . . in process local channel definition

Fig. 1. JoCaml syntax

those, a distributed ray tracer is the most mature. The ray tracer is available on
the web site and its source code amounts to about 7000 lines.

2 The New JoCaml

The new JoCaml system is a re-implementation from scratch of the previous
prototype. It focuses on compatibility with OCaml. Any OCaml source code is a
valid JoCaml source code and JoCaml can also call external OCaml libraries that
do not need to be re-compiled.

Briefly, we proceed by altering the OCaml compiler from parsing phase to first
intermediate code generation, and by enriching the thread library of OCaml with
specific support. Compiler alteration is justified by specific typing and pattern
matching compilation, which both need to be perform inside the compiler. Com-
piler alteration is limited in the sense that we change or add a few thousand
lines in the compiler original source files, add a few source files, and retain the
OCaml formats for binary files.

Our focus over compatibility and limited alteration of OCaml, made us aban-
don the mobility features of the join-calculus. Nevertheless, there are useful
distributed programs that can be written without code mobility.

Moreover, the new JoCaml extends the synchronization mechanism of the join-
calculus with pattern matching. It allows to define synchronization not only on
the presence of a message on a channel, but also on the value of the message.

3 A Join-Definition

JoCaml adds the new syntactical category of processes to OCaml syntax (Fig. 1).
In contrast to expressions processes yield no result and execute asynchronously.
Additionally, JoCaml slightly extends OCaml expressions. The spawn proc con-
struct introduces processes in expressions: proc is executed asynchronously and
spawn returns immediately.
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The join-definition is the distinctive feature of the join-calculus: it defines
several channels and their reception behavior at the same time. In JoCaml, join-
definitions are introduced by def and can occur both in processes and expressions.
We illustrate join-definitions by the example of a concurrent buffer based on the
two-lists implementation of functional FIFO queues.

type ’a buffer = { put: ’a -> unit; get: unit -> ’a }

let create_buffer () =
def state(xs,ys) & put(x) = state(x::xs,ys) & reply () to put
or state(xs,y::ys) & get() = state(xs,ys) & reply y to get
or state(_::_ as xs,[]) & get() =
state([], List.rev xs) & reply get() to get

in
spawn state([],[]) ;
{put=put; get=get;}

Our buffers are records, a pure OCaml concept, the novelty resides in the join-
definition (def. . . in above). Three channels are defined: state, put and get.
Channel state is asynchronous. Message sending on an asynchronous channel
is an elementary process, as illustrated by spawn state([],[]) above, for in-
stance. By contrast, put and get are synchronous channels. Message sending on
a synchronous channel yields a result, and thus is an expression. In fact, to the
sender, synchronous channels behave as functions and have functional types.

The behavior of the buffer is expressed by three reaction rules that compete
(or) for consuming messages. A reaction rule consists in a join-pattern and in
a guarded process (separated by =). The semantics is as follows: when there are
messages pending on all the channels in the join-pattern and they match the
patterns present as formal arguments, then the guarded process may be fired.
The guarded process is executed asynchronously, but may transmit return values
to the callers of synchronous channels (reply/to).

The idea of the buffer is to store the FIFO queue (implemented by a pair of
lists) as a message on the channel state. By the organization of join-patterns,
which all include state, and the fact that there is at most one message on this
channel, exclusive access to the internal state of the buffer is granted to the
callers of synchronous put and get.

The first join-pattern state(xs,ys) & put(x) is satisfied whenever there
are messages on both state and put. The behavior of the guarded process is
to perform two actions in parallel (& in processes): (1) send a new message on
state where the value x is added to the list xs and (2) return the value () to
the caller of put.

The second join-pattern state(xs,y::ys) & get() is satisfied when there
are messages on both state and put and that the message on state matches
the pattern (xs,y::ys). That is, the message is a pair whose second compo-
nent is a non-empty list. The process guarded by this join-pattern removes one
value from the buffer and returns it to the caller of get. The last join-pattern
state(_::_ as xs,[]) & get() is satisfied when there is a message on get and
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a message on state that matches a pair whose first component is a non-empty
list and second component is an empty list. The corresponding guarded pro-
cess transfers elements from one end of the queue to the other and performs get
again. Notice that there is no join-pattern that satisfies state([],[]) & get().
As a consequence, a call to get is blocked when the buffer is empty.

To initialize the buffer, a message ([],[]) is sent on state. The spawn con-
struct is here necessary, since the message sending appears in expression context
(the body of the function create_buffer).

4 Distributed Computation

The join-calculus provides a transparent model for distributed computation.
Guarded processes always execute on the site where they are defined but can be
fired from any site. More precisely given a channel c, the sending of a message
on c can be performed on any site (provided c is known), while the reception
on c can occur only on the site where c is defined. This is by design, and comes
in sharp contrast to the model of the π-calculus, where it is sufficient to know c
to perform emission and reception on c.

Obviously, the join semantics is much easier to implement than the π se-
mantics in a distributed setting. Basically, message sending to a remote site
decomposes into a transport phase and a synchronization phase (join-pattern
matching), the latter being performed locally on the receiving site.

However, performing the transport phase (and the related global naming of
sites and channels) does not upgrade concurrent JoCaml into distributed JoCaml
as if by magic. Two important issues arise that are not really expressed in the
join model: channel publication and failures. We addressed those pragmatically,
so as not to delay the release of the new JoCaml.

When they start, sites (JoCaml programs) have nothing in common. But, so as
to initiate communication, sites need to share at least a few channel names. To
that aim, JoCaml provides a name service that basically is a repository of channel
names, indexed by plain strings. In contrast to the JoCaml language, there is no
type safety at all. As to failures, our treatment is rather unsophisticated as we
rely exclusively over direct routing: communicating sites are connected by a bi-
directional link (a TCP socket). Then, the failure of the link, is interpreted by
one partner as the failure of the other partner. We plan to improve these two
points in future releases.

5 Conclusion

JoCaml is one amongst many recent language that offer serious support for con-
currency and distribution (Erlang, Cω, Alice, Scala to cite a few). In our view,
JoCaml main contribution resides in the programming style it favors: a smooth
integration of functional programming for concurrent and distributed applica-
tions. Our tool demonstration will focus on this point.
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Abstract. This paper describes T OY, an implementation of a Con-
straint Functional Logic Programming scheme CFLP (C), where C is a
coordination domain involving the cooperation among several constraint
domains D1, ..., Dn via a mediatorial domain M . This implementation
follows a cooperative goal solving calculus for CFLP (C) based on lazy
narrowing, invocation of solvers for each domain Di, and projection op-
erations for converting Di constraints into Dj constraints with the aid
of mediatorial constraints supplied by M . Mediatorial constraints allow
solving programs that require constraints of different domains, and pro-
jection may improve performance, allowing certain solvers to profit from
(the projected forms) of constraints originally intended for other solvers.
As a relevant concrete instance of our CFLP (C), we implemented the
cooperation among Herbrand, real arithmetic and finite domain con-
straints, and the mediatorial constraints relate numeric variables belong-
ing to the last two domains. These mediatorial constraints are the bridge
#== :: int -> real -> bool (that evaluates to true if their arguments
are equivalent -i.e., the real value is considered to represent the integer
one- and false otherwise), and the antibridge #/== :: int -> real ->
bool (with a countermeaning).

1 Introduction

T OY [1] is a constraint functional logic language and system, designed to sup-
port the main declarative programming styles and their combination. From
http://toy.sourceforge.net the preferred distribution for T OY can be down-
loaded. There are some possibilities: Choose either a binary distribution (a
portable application that does not need installation) or a source-code distri-
bution (which requires SICStus Prolog previously installed). Therefore, almost
any platform can run T OY (e.g., the system can be started as a Windows appli-
cation or in a Linux console). It features a command interpreter for submitting
goals and system commands. In addition, it has been connected to ACIDE [2],
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a graphical and configurable integrated development environment. Further de-
velopments are also guided to port the system to free Prolog interpreters such
as B-Prolog.

Programs in T OY can include definitions of types, operators, lazy functions
in Haskell style, as well as definitions of predicates in Prolog style. A predicate is
viewed as a particular kind of function whose right-hand side is true. A function
definition consists of an optional type declaration and one or more defining rules,
which are possibly conditional rewrite rules. Both functions and predicates must
be well-typed with respect to a polymorphic type system [3].

Programs can use constraints within the definitions of both predicates and
functions. Constraints supported by the system include symbolic equations and
disequations [4], linear and non-linear arithmetic constraints over the real num-
bers [5] and finite domain constraints [6].

T OY computations solve goals and display computed answers. T OY solves
goals by means of a demand driven lazy narrowing strategy [7] combined with
constraint solving. Answer constraints can represent bindings for logic variables,
as in answers computed by a Prolog system. Some features of T OY are:

1. Curried style. This allows that partial applications of curried functions can
be used to express functional values as partial patterns.

2. Non-deterministic functions. These are defined either by means of defining
rules with overlapping left-hand sides or using extra variables in the right-
hand side that do not occur in the left-hand side.

3. Sharing for values of all variables which occur in the left-hand sides of defin-
ing rules and have multiple occurrences in the right-hand side and/or the
conditions. Sharing implements so-called call-time choice semantics of non-
deterministic functions.

4. Higher-order functions in the style of Haskell, except that lambda abstrac-
tions are not allowed. In T OY , higher-order can be naturally combined with
non-determinism.

5. Dynamic Cut. Optimization that detects deterministic functions at compile
time, and the generated code includes a test for detecting at run-time the
computations that can actually be pruned [8].

6. Finite Failure. The primitive Boolean function fails is a direct counterpart
to finite failure in Prolog.

2 Constraint Functional Logic Programming Scheme
CFLP (C)

T OY implements a Constraint Functional LogicProgramming scheme CFLP (D)
over a parametrically given constraint domain D, proposed in [9]. CFLP (D) is
a logical and semantic framework for lazy Constraint Functional Logic Program-
ming over D, which provides a clean and rigorous declarative semantics for CFLP
languages.

In particular, D is the coordination domain C introduced in [10] as the
amalgamated sums of the domains to be coordinated, D1, . . . , Dn, along with a
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mediatorial domain M which supplies special communication constraints, called
bridges, used to impose the equivalence between values of different base types.

The CooperativeConstrained LazyNarrowingCalculus CCLNC(C) presented
in [10] provides a fully sound formal framework for functional logic programming
with cooperating solvers over various constraint domains. CCLNC(C) has been
proved fully sound w.r.t. CRWL(C) semantics [9].

3 Cooperation in T OY: Bridges and Projections

T OY comes equipped with solvers corresponding to three constraint domains:

1. Herbrand, with equality and disequality constraints.
2. Real Arithmetic, with arithmetical constraints over real numbers.
3. Finite domain, with constraints over integer numbers.

The Herbrand Solver is always available, and the real and finite domain solvers
can be optionally loaded. With the aim of extending the system applicability,
a mechanism for solver cooperation on these domains has been recently incor-
porated. This mechanism has two main pillars: Bridges, necessary for solver
communication, and Projections, that improve the efficiency of some programs.

A bridge is a special kind of ‘hybrid’ constraint which allows the communi-
cation among the real and finite (‘pure’) domains and instantiates a variable
occurring at one end of a bridge whenever the other end becomes a numeric
value. Note that, a bridge constraint can be used to impose an integral con-
straint over its right argument. As an example, suppose we want to know if two
different lines can meet at one integer point. A line can be described algebraically
by the linear equation y = m * x + b, and the corresponding T OY program is:

Program

meetLines M1 B1 M2 B2=(X,Y)
<== X #== RX,

Y #== RY,
RY == M1*RX + B1,
RY == M2*RX + B2

Goal Answer

meetLines 2 4 1 2 == L L -> (-2, 0)
meetLines 1 1 1 2 == L no %parallel
meetLines 1 1 3 2 == L no %real point

Projection takes place during goal solving whenever a pure constraint is sub-
mitted to its solver. At that moment, projection builds a mate constraint which
is submitted to the mate solver (think of finite domain solver as the mate of
real solver, and vice versa). Projection rules described in [10,11] relying on the
available bridges are used for building mate constraints. For example, suppose
we want to calculate the intersection of a triangular region (defined in the con-
tinuous plane) with an (N ×N)-size square discrete grid (defined in the discrete
plane). A T OY program that solves the problem, for any given even integer
number N , is shown below; the triangular region is described by the inequalities
whereas the square grid is described by the finite domain constraints (i.e., those
labelled with # and the function labeling/2).
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Program Mate Constraints

bothIn L X Y N :- X#==RX, Y#==RY, N#==NX,
RY >= (NX/2) - 0.5, ⇒ Y #>= �NX/2 #- 0.5�,
RY - RX <= 0.5, ⇒ Y #- X #<= �0.5�,
RY + RX <= NX + 0.5, ⇒ Y #+ X #<= �NX #+ 0.5�,
domain [X,Y] 0 N, ⇒ 0<=RX, RX<=N, 0<=RY, RY<=N
labeling L [X,Y]

Mate constraints, generated during goal solving, allow the finite domain solver
to drastically prune the domains of X and Y. Therefore, if we have a huge grid
and a tiny triangle and the projection is enabled, then the computation time is
drastically reduced. Note that not all the constraints are projected, for example
the labeling constraint.

We have borrowed the idea of constraint projection from the work of P. Hof-
stedt [12], adapting it to our CFLP scheme and adding bridge constraints as a
novel technique which makes projections more flexible and compatible with type
discipline.
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Caballero, R., Sánchez, J. (eds.) A Multiparadigm Declarative Language. Version
2.3.0 (2007), Available at http://toy.sourceforge.net
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Typing Safe Deallocation
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Abstract. In this work we address the problem of proving, by static
analysis means, that allocating and deallocating regions in the store pro-
vides a safe way to achieve memory management. That is, the goal is to
provably ensure that a program does not use pointers into a deallocated
region. A well-known approach to this problem is the one of Tofte and
Talpin. Our first contribution is to provide a simple proof, by means of a
subject reduction property, of type safety for their region calculus. Our
second, main contribution is that we actually do this for an extension
of Tofte-Talpin’s calculus, featuring a primitive construct for deallocat-
ing regions, similar to C’s free, that allows one to circumvent the strict
stack-of-regions discipline enforced in Tofte-Talpin’s calculus. Our static
analysis consists in a novel type and effect system, extending the one of
Tofte and Talpin, where we record deallocation effects.

1 Introduction

Some years ago, Tofte and Talpin [15,16] proposed a new memory model for
higher-order, typed languages, as an alternative to explicit allocation/deallo-
cation of memory (e.g. malloc/free in C) and garbage collection. The main idea
is to introduce, in an intermediate language for the compilation process, a block-
structured (letregion ρ in e) construct, allocating a new region in the memory for
the evaluation of e, and deallocating it upon termination.1 Experience has shown
that, as reported in [17], introducing region management in this way allows the
compiler to produce code for ML programs that executes quite efficiently, even
without the support of a garbage collector. Moreover, memory management with
regions is provably safe, and this is one of the most remarkable achievements of
Tofte and Talpin’s approach.

The safety proof is not so easy, however. The original proof in [16] used a
quite elaborate coinductive technique. A number of research works have been
done since then on this topic [2,4,5,6,8,11,18], in order to better understand why
the apparently simple typing of the letregion construct is actually safe, and to
get a simpler proof. Indeed, this construct allows for reusing a dead region, even
though there are still pointers in that region in the code, thus creating dangling
pointers. Moreover, the same pointers can also be subsequently reused, holding
1 This idea was previously mentioned in [14]: “Since the locations belonging to a private

region cannot be accessed after the expression returns, they can be safely deallocated
when the expression returns.” However, the semantics given in this paper did not
involve deallocation, and this statement was not proved.
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values of a different type. The difficulty is then to prove that the pointers in the
code that actually refer to defunct regions are guaranteed by typing to never be
used. The syntactic proof of [5], following the standard steps of a type safety
proof (see [20]), seems to be adopted as the classical one by now (see [13]). It
formalizes deallocation as the substitution of a dead region • for the deallocated
region everywhere in the current configuration, including in the values stored in
the memory. In [5] it is shown that this semantics is bisimilar to the original one
of [16]. However, using an explicit notion (•) of a deallocated region modifies (and
overloads) the semantics of the letregion construct, with a rewriting phase that
is not present in the original formulation, and therefore a truly direct, syntactic
proof of type safety for Tofte-Talpin’s region calculus is yet to be done. Our first
contribution is to give a fresh look at this problem.

To prove that region deallocation is safe, we have to ensure that when a region
is deallocated, it should not be used by the rest of the computation (i.e. the
evaluation context). This is done in [16] by means of a sophisticated consistency
predicate, supporting a coinductive proof technique. We shall do this here by
means of a type and effect system. The idea is very simple. First, we decompose
the (letregion ρ in e) construct of Tofte and Talpin as follows:

(letregion ρ in e) = (new ρ in (free after ρ e))

where (new ρ in e′) allocates a new region, with scope e′, and (free after ρ e)
deallocates the region ρ when the computation of e is terminated. Such a de-
composition was introduced in [1].2 Then we introduce a new kind of effects,
which we call negative effects, or deallocation effects, associated with the latter
construct in the type system, and we check that there is no conflict with the
ordinary, “positive,” or usage effects, in order to ensure that regions required
in future computations are not deleted in the current computation. Typically,
assuming a left-to-right evaluation order, as in [16], the negative effect of e0 in
(e0e1) should not intersect the positive effect of e1, in order for the application
to be typable. With this refined (flow-sensitive) effect system, which directly
extends the one of [16], we are able to show the safety of region deallocation, by
means of a Subject Reduction argument, as explained below (Section 4).

The idea of using explicit deallocation effects suggests that we could further
decompose the (letregion ρ in e) construct of Tofte and Talpin, introducing an
explicit, atomic instruction for region deallocation. We write this as (dispose ρ),
and we define

(free after ρ e) = (let x = e in (dispose ρ) ; x)

(see [19] for a similar decomposition). Quite obviously, the deallocation effects
are introduced by the dispose instruction, and our proof of type safety actually
deals with the refined region calculus, where the letregion construct is replaced
by new and dispose. The latter, which could also be defined in terms of free after
and termination (), was considered, in various concrete syntactic forms, in a
2 In [1], the allocation operation is also separated from the creation of a new name.

We shall comment on this below. The free after construct is denoted (region ρ in e)
in [5]. An analogous expression (∗private∗ ρ e) was used in [14], though with different
semantics.



118 G. Boudol

number of papers: it is denoted freerg in [8,18], deleteregion in [9,10] and release
in [12] (with different semantics), and free in [19]. One reason for using such an
explicit region deallocation construct is that, as noted very early in [1,3], the
strict stack discipline enforced in Tofte and Talpin’s calculus is too constraining
to cope with situations where it would be much more efficient to reclaim a region
without waiting for the end of its lexical scope. It is then natural to use such
an explicit deallocation construct, for optimization purposes, but the problem
of ensuring that this operation is safe comes out again, and it is a difficult one.

A specific difficulty, noted in [1], is that “for correctness it is important that
a region be allocated only once and deallocated only once during its lifetime.”
The “allocated-only-once” is a built-in feature of the (new ρ in e) construct, but
regarding deallocation, it seems appropriate to use ideas from linear logic, and
this is indeed what is done in a number of works, see for instance [7,8,18,19].
However, as we show below, resorting to linear logic techniques is not a neces-
sity. Indeed, introducing deallocation effects makes it very easy to control the
“deallocated-only-once” feature in our flow-sensitive effect system: it is enough
to ensure that a region occurring in the deallocation effect of a subexpression is
not in the (negative) effect of the rest of the computation. Our static analysis for
provably ensuring the safety of explicit region deallocation is then much simpler
than previously given ones.

The paper is organized as follows: in a first section, we introduce our extended
region calculus, and describe its operational semantics. In a next section, we
introduce our type and effect system, featuring the notion of a deallocation
effect. We then establish a Subject Reduction property up to region renaming,
and derive from it our Type Safety result. A brief conclusion is given. For lack
of space, most of the proofs are omitted.

2 The Extended Region Calculus

In this section we introduce our region calculus, extending the one of Tofte
and Talpin with an explicit primitive construct for deallocating regions, and we
describe its operational semantics. We assume given two disjoint denumerable
sets RegVar and RegCst of region variables and region constants, respectively
ranged over by ρ and r. The set Reg = RegVar ∪ RegCst of region names,
is ranged over by �. We also assume given a denumerable set Loc of memory
locations, or pointers, range over by p, q . . ., and a denumerable set Var of
variables, ranged over by x, y, . . . f, g . . .. The syntax is as follows:

a := (r, p) addresses
v ::= () | a values
w ::= λxe storable values
e ::= x | v | (w @ �) | (e0e1) | (let x = e0 in e1) expressions

| (new ρ in e) | (dispose �)

The expression (w @ �), pronounced “w at �” in [16], is meant to create a new
pointer in region � with contents w. As usual, the variable x is bound in λxe,
and ρ is bound in (new ρ in e), whereas it is free in (w @ ρ) and (dispose ρ).
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We denote by reg(e) the set of region constants and region variables that occur
(free) in e, and by ref(e) the set of addresses occurring in e. The expression e is
said to be closed if no variable or region variable occurs free in it. We denote by
{x �→v}e and {ρ �→�}e the capture-avoiding substitutions of values and region
names in e. We shall consider expressions up to α-conversion, that is up to the
renaming of bound variables and regions. We use the notation (λxe1e0), that is
(we0) where w = λxe1, as a synonym of (let x = e0 in e1), and we also write this
as e0 ; e1 whenever x is not free in e1.

In a more realistic language, there would be more (storable) values, like
booleans, integers, pairs, and so on, with appropriate constructs to use these
values, like conditional branching, etc. We regard the region calculus of Tofte
and Talpin [16] as a sub-language, where (new ρ in e) and (dispose �) are replaced
by (letregion ρ in e), with

(letregion ρ in e) =def (new ρ in (free after ρ e)) where

(free after � e) =def (let x = e in (dispose �) ; x)

as explained in the Introduction.
In order to show our safety result, we use a small-step semantics for the

language. The evaluation of an expression consists, as usual, in reducing a redex
inside an evaluation context, in the context of a store. The redexes and evaluation
contexts are as follows:

u ::= (w @ r) | (av) | (λxev) redexes
| (new ρ in e) | (dispose r)

E ::= [] | E[F] evaluation contexts
F := ([] e) | (a []) | (λxe []) frames

Definition (Stuck Expressions) 2.1. An expression e is stuck if and only
if e = E[e′] where e′ is either a variable, or (w @ ρ), or (()e′), or (dispose ρ).

Notice that a closed stuck expression has the form E[(()e)]. The following is a
standard fact:

Lemma 2.2. For any expression e, either
(i) e is a value, or
(ii) e is a stuck expression, or
(iii) there exist an evaluation context E and a redex u such that e = E[u].
As in [16], a store s is a mapping from a finite set dom(s) of region constants
to regions, where a region is a mapping from a finite set of locations to storable
values. We denote by Dom(s) the set { (r, p) | r ∈ dom(s) & p ∈ dom(s(r)) }, and
we write s(r, p) for s(r)(p) where (r, p) ∈ Dom(s). We define, for R ⊆ Reg and
r ∈ RegCst :

dom(s � R) = R ∩ dom(s)

r ∈ dom(s � R) ⇒ (s � R)(r) = s(r)

s\r = s � (dom(s) − {r})

We shall in fact use the notations f � X and f\x for any partial function f :
A ⇀ B, with x ∈ A and X ⊆ A.
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(s,E[(w@ r)]) → (s+ {(r, p) �→w},E[(r, p)]) r ∈ dom(s),
p �∈ dom(s(r))

(s,E[((r, p)v)]) → (s,E[(wv)]) r ∈ dom(s),
p ∈ dom(s(r)),
s(r, p) = w

(s,E[(λxev)]) → (s,E[{x �→v}e])

(s,E[(new ρ in e)]) → (s+ {r �→∅},E[{ρ �→r}e]) r �∈ dom(s)

(s,E[(dispose r)]) → (s\r,E[()])

Fig. 1. Reduction

In the operational semantics, we use the notations of [16] for extending or
updating the store with new regions, namely s + {r �→∅} and s + {(r, p) �→w}.
The reduction relation consists in a transition relation between configurations,
that are pairs (s, e) of a store and an expression to evaluate. This is defined in
Figure 1. The evaluation of an application (e0e1) is standard. We nevertheless
examine the various steps in details, since our typing will rely on these: first, one
computes the function e0 until an address a is obtained, possibly by reducing
an expression (w @ r). Next, the argument e1 is computed, producing a value
v. Then, to evaluate the resulting expression (av), a read operation occurs, re-
turning the value contained in the store at address a. This value should be a
function λxe, and we now have to evaluate (let x = v in e), as usual, that is: the
value v is bound to x, and finally one proceeds evaluating {x �→v}e. Regarding
the construct (new ρ in e), evaluating it consists in allocating a new region con-
stant r in the store, which is bound to ρ in e for the rest of the computation,3

while evaluating (dispose r) deallocates the region named r from the store and
terminates. Then one can check that the (letregion ρ in e) construct has the
same semantics as in [16]. Notice in particular that in allocating a new region,
reducing (new ρ in e), we do not require that the new name does not occur in
e, nor in the evaluation context E, nor in some value currently recorded in the
store. Then one can reuse a region name that still occurs in the configuration,
with the only proviso that the name is not in the domain of the current store.

3 The Type and Effect System

3.1 Effects, Types, Judgements and Rules

Our main technical novelty in this work consists, as explained in the Introduc-
tion, in refining the notion of an effect, introducing negative, deallocation effects
that are distinct from the usual “positive” effects of creating, reading or updating
a region. In this work, it will be unnecessary to distinguish various kinds of posi-
tive effects. Then an effect here is a pair ϕ = (ϕ+, ϕ−) of a positive effect ϕ+ and
a negative effect ϕ−, which both are finite sets of region names. The standard

3 For simplicity, we use region substitution {ρ �→r}e instead of a region environment.
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Σ;Γ, x : τ � x : ∅, τ Σ;Γ � () : ∅, 1l Σ, (r, p) : ζ;Γ � (r, p) : ∅, ζr

Σ;Γ, x : τ � e : ϕ, σ

Σ;Γ � λxe : (τ
ϕ
−→ σ)

Σ;Γ � w : ζ

Σ;Γ � (w@ 
) : ({
}, ∅), ζ�

Σ;Γ � e0 : ϕ0, (τ
ϕ2−−→ σ)� Σ;Γ � e1 : ϕ1, τ

Σ;Γ � (e0e1) : (ϕ0 + 
) ∪ ϕ1 ∪ ϕ2, σ

{
ϕ−0 ∩ ({
} ∪ ϕ

±
1 ∪ ϕ

±
2 ) = ∅

ϕ−1 ∩ ({
} ∪ ϕ
±
2 ) = ∅

Σ;Γ � e0 : ϕ0, τ Σ;Γ, x : τ � e1 : ϕ1, σ

Σ;Γ � (let x = e0 in e1) : ϕ0 ∪ ϕ1, σ
ϕ−0 ∩ ϕ

±
1 = ∅

Σ;Γ � e : ϕ, τ

Σ;Γ � (new ρ in e) : ϕ\ρ, τ
ρ �∈ Σ,Γ, τ

Σ;Γ � (dispose 
) : (∅, {
}), 1l

Fig. 2. The type and effect system: expressions

set-theoretic notions, like inclusion, union, etc. are extended componentwise to
effects. In the following we write ϕ± for ϕ+ ∪ϕ−, ϕ+ � for ϕ∪ ({�}, ∅), and ϕ\�
for ϕ − ({�}, {�}). The types are standard:

τ, σ . . . ::= t | 1l | ζ� types

ζ ::= (τ
ϕ−→ σ) storable value types

The type 1l is also often denoted unit. As in [16], (τ
ϕ−→ σ)� is the type of addresses

in region � of the store where one finds a functional value of type (τ
ϕ−→ σ). As

usual, a functional type records the latent effect ϕ a function of this type may
have when applied to an argument.

There are two kinds of judgments in our type and effect system. A judgment
Σ; Γ � e : ϕ, τ means that under the assumptions Σ and Γ , the expression e is
anticipated to have an effect ϕ, and has type τ . Similarly, a judgment Σ; Γ � w :
ζ means that, under the assumptions Σ and Γ , the storable value w has type
ζ (and no effect, since this is a value). The component Σ in these judgments is
the region typing context, which maps a finite set dom(Σ) of region constants to
region typings, where a region typing is a map from a finite set of locations to
types of storable values. The set { (r, p) | r∈dom(Σ) & p∈dom(Σ(r)) } is denoted
Dom(Σ), and a region typing context is written (r1, p1) : ζ1, . . . , (rm, pm) : ζm.
The Γ component is, as usual, a typing context, mapping a finite set of variables
to types. In the typing rule for (new ρ in e), we write ρ 	∈ Σ, Γ, τ to mean that
the variable ρ does not occur in Σ, Γ (that is, in the types assigned by these
typing contexts) and τ .

The rules of the type and effect system are given in Figure 2, which we now
comment. First we point out that the negative effects are, as expected, intro-
duced when typing an expression (dispose �), while a positive effect results from
a storing operation (w @ �) and reading a (functional) value from the store, in an
application. Our effect system then checks that a subexpression does not deal-
locate a region in which some future effect is anticipated. In our core language,
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where we adopt a left-to-right evaluation order, the only subexpressions that
have a “future” are e0 in (e0e1) and (let x = e0 in e1), and e1 in (e0e1), where
in the latter case, the effects that may arise after evaluating e1 are the effect of
reading the function from the store (at address e0), and the latent effect of that
function. Then in typing the application (e0e1), we have the constraint that the
region in which the value resulting from evaluating e0 is stored should not be
disposed of before the actual reading operation occurs, that is � 	∈ (ϕ−0 ∪ ϕ−1 ).
Similarly, e0 should not have the effect of removing regions that may be used
in the rest of the computation, that is ϕ−0 ∩ ϕ±1 = ∅ = ϕ−0 ∩ ϕ±2 , and finally,
e1 should not delete regions occurring in the latent effect of the function, that
is ϕ−1 ∩ ϕ±2 = ∅. The constraint in typing a (let x = e0 in e1) is similar. These
constraints mean in particular that one cannot deallocate twice the same region.
Indeed, in our calculus where allocating (via new) and deallocating (via dispose)
a region are not restricted to follow the strict block-structured discipline of [16],
it would be generally unsafe (and not very useful) to deallocate several times
the same region. For instance, evaluating an expression of the form

(new ρ0 · · · dispose ρ0 · · · (new ρ1 · · · dispose ρ0 · · · (w @ ρ1) · · · ))

could result in assigning to ρ1 the same region r that has been assigned to ρ0,
since r has been disposed of, but then the second instruction (dispose ρ0) has the
effect of deleting the region associated with ρ1, and the evaluation of (w @ ρ1)
then fails in this case. In the rule for (new ρ in e), we could require ρ ∈ ϕ−,
in order to ensure that the region assigned to ρ has been disposed of when the
evaluation exits its scope, but this would be just an indication, because the effects
anticipated by typing are not guaranteed to occur (though it is guaranteed that
no other effect can possibly occur).

Regarding the derived constructs that are involved in the Tofte and Talpin’s
sub-calculus, one can see that a derived typing rule is

Σ; Γ � e : ϕ, τ

Σ; Γ � (free after � e) : ϕ ∪ (∅, {�}), τ
� �∈ ϕ−

and consequently

Σ; Γ � e : ϕ, τ

Σ; Γ � (letregion ρ in e) : ϕ\ρ, τ
ρ �∈ Σ, Γ, τ, ϕ−

One may then observe that in typing expressions of the derived sub-calculus the
negative effect is always empty, and conclude that, up to the identification of
(ϕ+, ∅) with the single effect ϕ+, what we get is exactly the usual typing for
Tofte and Talpin’s region calculus, without any constraint on the effect.

Now let us see an example of a typable expression, inspired from examples in
[1,18]. Let w be a typable storable value, e a typable expression using (via the
variable x) this value from region ρ (and possibly having other positive effects
in this region), and let e′ be a typable expression that has no effect in region ρ.
Then the following is typable:

new ρ in let x = (w @ ρ) in
new ρ′ in let f = (λx(let y = (free after ρ e) in e′)@ ρ′) in
(free after ρ′ (fx))
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This example shows, first, that regions may have arbitrarily overlapping extent
[1]: here the evaluation will execute the sequence

new ρ · · · new ρ′ · · · dispose ρ · · · dispose ρ′

Second, in the code for the function f , the region constant assigned to ρ can
be disposed of without waiting for the call (fx) to end, since this region is only
used in a first part of the computation of (fx). As another example, one can see
that with a conditional branching construct, typed as follows:

Σ; Γ � e : ϕ, bool Σ; Γ � ei : ϕi, τ

Σ; Γ � (if e then e0 else e1) : ϕ ∪ ϕ0 ∪ ϕ1, τ
ϕ− ∩ (ϕ±

0 ∪ ϕ±
1 ) = ∅

then if a branch does not use region �, one can immediately dispose of it, while
in the other branch this action is deferred after the use of values in that region.
(As above with the new construct, we could additionally require ϕ−0 = ϕ−1 in
this rule.)

To show the type safety result, we have to extend the typing to configura-
tions. In order to type the store, one should have enough assumptions in the
region typing context: any address in the store should be the subject of a typing
assumption. Moreover, the value stored at some address should have type as pre-
scribed by the region typing context. Finally, for a configuration to be typable,
we shall require a “well-formedness” property, asserting that any region in which
the computation may have an effect should be allocated in the store. Indeed, it
is essential for safety to preserve the property that accesses to the memory never
fail. Our definition is therefore as follows:
Definition (Typing Configurations) 3.1.

(i) Σ; Γ � s ⇔def

{
Dom(s) ⊆ Dom(Σ)

(r, p) ∈ Dom(s) ⇒ Σ; Γ � s(r, p) : Σ(r, p)

(ii) Σ; Γ � (s, e) : ϕ, τ ⇔def

⎧⎪⎨
⎪⎩

Σ; Γ � s & Σ; Γ � e : ϕ, τ

∀r. r ∈ ϕ± ⇒
{

r ∈ dom(s) &
dom(Σ(r)) ⊆ dom(s(r))

3.2 Some Properties

We notice a few facts that will be used in our proof of type safety. First, the
type and effect system reflects the fact that a value has no effect:
Remark 3.2. Σ; Γ � v : ϕ, τ ⇒ ϕ = ∅
Second, some errors are, as usual, statically precluded by typing:
Remark 3.3. A closed stuck expression is not typable.
Finally, one can show some standard properties relating typing and substitution:

Lemma (Substitution) 3.4.
(i) Σ; Γ � v : ψ, τ & Σ; Γ, x : τ � e : ϕ, σ ⇒ Σ; Γ � {x �→v}e : ϕ, σ

(ii) If Σ; Γ � e : ϕ, τ and r does not occur in Σ; Γ � e : ϕ, τ then {ρ �→r}(Σ; Γ �
e : ϕ, τ).
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Σ;Γ � [] : (τ
∅
−→ τ)

Σ;Γ � E : (θ
ϕ1−−→ σ) Σ;Γ � F : (τ

ϕ0−−→ θ)

Σ;Γ � E[F] : (τ
ϕ0∪ϕ1−−−−→ σ)

ϕ−0 ∩ ϕ
±
1 = ∅

Σ;Γ � e : ϕ0, τ

Σ;Γ � ([]e) : ((τ
ϕ1−−→ σ)�

(ϕ0+�)∪ϕ1−−−−−−−→ σ)

ϕ−0 ∩ ({
} ∪ ϕ
±
1 ) = ∅

Σ, (r, p) : (τ
ϕ
−→ σ);Γ � ((r, p) []) : (τ

ϕ+r
−−−→ σ)

Σ;Γ, x : τ � e : ϕ, σ

Σ;Γ � (λxe []) : (τ
ϕ
−→ σ)

Fig. 3. The type and effect system: evaluation contexts

For the proof of our main result, it will be convenient to decompose the typing
of an expression of the form E[e] into a typing of e and a typing of the evaluation
context. (An alternative is to use a “Replacement Lemma”, see [20] for instance.)
The type system for evaluation contexts allows one to infer judgments of the form
Σ; Γ � E : (τ

ϕ−→ σ), meaning that if the context is filled with an expression of
type τ , then it will return a result of type σ, while producing effects as indicated
by ϕ. There are constraints regarding the effects similar to the ones that hold for
expressions. The rules are given in Figure 3. Then we introduce an alternative
way to type expressions, by means of judgments of the form Σ; Γ � e : ϕ, τ ,
established as follows:

Σ; Γ � e : ϕ0, τ Σ; Γ � E : (τ
ϕ1−−→ σ)

Σ; Γ � E[e] : ϕ0 ∪ ϕ1, σ
ϕ−

0 ∩ ϕ±
1 = ∅

We can prove that this provides us with just an equivalent way of typing:
Lemma 3.5.
(i) Σ; Γ � e : ϕ, τ ⇒ Σ; Γ � e : ϕ, τ

(ii) If Σ; Γ � E[e] : ϕ, τ then there exist ϕ0, ϕ1 and σ such that Σ; Γ � e : ϕ0, σ

and Σ; Γ � E : (σ
ϕ1−→ τ) with ϕ = ϕ0 ∪ ϕ1 and ϕ−0 ∩ ϕ±1 = ∅.

4 Type Safety

A technical difficulty in showing the soundness of typing deallocation is that
there is a discrepancy between the operational semantics and typing as regards
the generation of new regions. More specifically, to establish Subject Reduction
would require that the fresh name generated when reducing (new ρ in e) be as
fresh as possible, and in particular, that it does not occur in the expression e,
in order for the substitution of the new name to yield a valid typing judgment.
On the opposite side, from the operational point of view, it could be beneficial,
and therefore allowed (as it is), to reuse a name that has been disposed of, even
though it could still occur in the expression e, in a dead pointer to a deallo-
cated region for instance. Our way to reconcile the typing with the operational



Typing Safe Deallocation 125

semantics is to establish a Subject Reduction property up to simulation (where
a “simulation” is half a bisimulation – but we do not need any coinductive ma-
chinery). The idea is actually very simple: it is to show that, to preserve the
typing along a given computation, one may have to, not exactly follow, but sim-
ulate the actual computation by just making “better” (from the typing point of
view) choices of new region names and pointers, while still maintaining a tight
correspondence with the given computation, by means of a region and pointer
renaming. Safety will then result from the fact that the use of dangling pointers
is precluded by typing, cf. Definition 3.1(ii).

4.1 The Simulation Relation

We introduce a relation over configurations (s, e), that will be proved to be
a simulation. More precisely our simulation relates (s, e) to (s′, e′) by means
of a translation t, in such a way that, if (s, e) is typable and (s′, e′) performs
a transition, then one can choose regions and pointers so that (s, e) performs a
similar transition, resulting in similar configurations, while preserving typability.
The translation, relating region constants to regions constants, and pointers
to pointers, may evolve along the transitions, either because a new pointer is
created, or because a region constant is created, or reused.
Definition (Translations) 4.1. A translation t is a pair (r,p) where
(i) r is a mapping from a finite subset dom(r) of RegCst to RegCst,
(ii) p is a function with the same domain as r, such that, for any r ∈ dom(r),

p(r) is an injective mapping from a finite subset dom(p(r)) of Loc to Loc.
We denote by T the set of translations. We also write p(r) as pr. We extend the
inclusion relation to translations, as follows:

(r, p) ⊆ (r′,p′) ⇔def

{
r ⊆ r′ &

r ∈ dom(r) ⇒ pr ⊆ p′
r

For each translation t = (r,p), we define the partial mapping 〈t〉 on expressions
and storable values, by induction on the structure, as follows – omitting the
cases where the translation just goes through the structure of the expression:

〈t〉(r, p) = (r(r),pr(p)) if r ∈ dom(r) & p ∈ dom(pr)

〈t〉(w @ r) = (〈t〉w @ r(r)) if r ∈ dom(r)

〈t〉(dispose r) = (dispose r(r)) if r ∈ dom(r)

We write:
e �t e′ ⇔def e ∈ dom(〈t〉) & e′ = 〈t〉(e)

The syntactic structure of e′ is identical to the one of e whenever e �t e′: the
expression e′ is obtained from e by renaming region constants and pointers. The
following should be obvious:
Remarks 4.2.
(i) For any expression e, if we let te = (r,p) where r = { (r, r) | r ∈ reg(e) } and
pr = { (p, p) | (r, p) ∈ ref(e) } for r ∈ reg(e), then te ∈ T and e �te e.
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(ii) If e ∈ dom(〈t〉) then 〈t〉e is a value (resp. a redex, resp. a stuck expression)
if and only if e is a value (resp. a redex, resp. a stuck expression).
(iii) If e �t e′ and t ⊆ t′ then e �t′ e′.

The relation �t is compatible with substitution:

Lemma 4.3.
(i) v �t v′ & e �t e′ ⇒ {x �→v}e �t {x �→v′}e′

(ii) r ∈ dom(r) & e �r,p e′ ⇒ {ρ �→r}e �r,p {ρ �→r(r)}e′.

We define what it means for a translation t to comply with an effect, which
intuitively means that the translation does not confuse the region constants
involved in the effect:

Definition 4.4. A translation t = (r,p) complies with the effect ϕ, in notation
t ∝ ϕ if and only if ϕ± ∩ RegCst ⊆ dom(r) and r � ϕ± is injective.

Clearly
t ∝ ϕ & ψ ⊆ ϕ ⇒ t ∝ ψ (1)

Our simulation on configurations is indexed by a translation t and an effect ϕ.
We first define the relation �ϕ

t on stores, as follows:

Definition 4.5. Let t = (r,p) be a translation and ϕ an effect such that t ∝ ϕ.
Then s �ϕ

t s′, read “s simulates s′ up to ϕ modulo t,” if and only if
(i) r(ϕ±) ⊆ dom(s′)

(ii) r ∈ ϕ+ & (r, p) �t (r′, p′) ⇒
{

(r, p) ∈ Dom(s) ⇔ (r′, p′) ∈ Dom(s′)

(r, p) ∈ Dom(s) ⇒ s(r, p) �t s′(r′, p′)

It should be obvious that

s �ϕ
t s′ & ψ ⊆ ϕ ⇒ s �ψ

t s′ (2)

Then we define
(s, e) �ϕ

t (s′, e′) ⇔def s �ϕ
t s′ & e �t e′

4.2 Main Result

Now we show the Subject Reduction property suggested above: if (s0, e0) is ty-
pable, and simulates (s1, e1), and if the latter performs a transition to (s′1, e′1)
then there is a choice of regions and a typable configuration (s′0, e

′
0) which sim-

ulates (modulo the updated region translation) (s′1, e
′
1), and is the result of the

corresponding transition from (s0, e0). This property can be drawn:

(s1, e1) −→−→−→ (s′
1, e

′
1)

� �

Σ; Γ � (s0, e0) : ϕ, τ ��� Σ′; Γ � (s′
0, e

′
0) : ψ, τ
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Lemma (Subject Reduction up to Simulation) 4.6.
If Σ; Γ � (s0, e0) : ϕ, τ and (s1, e1) → (s′1, e′1) with (s0, e0)�ϕ

t (s1, e1) then there
exist s′0, e′0, Σ′ and ψ such that (s0, e0) → (s′0, e

′
0) and Σ′; Γ � (s′0, e

′
0) : ψ, τ

with (s′0, e′0) �ψ
t′ (s′1, e′1) for some t′ ∈ T .

Proof: by case on the transition (s1, e1) → (s′1, e
′
1).

• (s1,E1[(w′@ r′)]) → (s1 + {(r′, p′) �→w′},E1[(r′, p′)]) with r′ ∈ dom(s1) and
p′ 	∈ dom(s1(r′)). We have e0 = E0[(w @ r)] with r∈dom(r), r′ = r(r) and w�tw

′.
By Lemma 3.5(ii), there exist ϕ0, ϕ1 and σ such that Σ; Γ � (w @ r) : ϕ0, σ and
Σ; Γ � E0 : (σ

ϕ1−→ τ) with ϕ = ϕ0 ∪ ϕ1 and ϕ−0 ∩ ϕ±1 = ∅. Then σ = ζr with
Σ; Γ � w : ζ, and ϕ0 = ({r}, ∅). We have r ∈ ϕ+, and therefore r ∈ dom(s0) by
Definition 3.1(ii). We distinguish two cases.
(a) If there exists p such that pr(p) = p′, that is (r, p) �t (r′, p′) then p 	∈
dom(s0(r)) by Definition 4.5(ii), and therefore

(s0, e0) → (s′
0, e

′
0) where

{
s′
0 = s0 + {(r, p) �→λxe}

e′
0 = E0[(r, p)]

Since r ∈ ϕ+ and (r, p) 	∈ Dom(s0) we have, by Definition 3.1(ii), (r, p) 	∈
Dom(Σ), and Σ, (r, p) : ζ; Γ � (r, p) : ∅, ζr. Then Σ, (r, p) : ζ; Γ � (s′0, e

′
0) : ϕ1, τ

by Lemma 3.5(i) and ϕ1 ⊆ ϕ. Then obviously t ∝ ϕ1 (see (1) above), and

r(ϕ±
1 ) ⊆ r(ϕ±) ⊆ dom(s1) = dom(s′

1)

by Definition 4.5(i). If r′′ ∈ ϕ+
1 and (r′′, p′′) �t (r′, p′) then r′′ = r since r � ϕ± is

injective, and p′′ = p since pr is injective, hence (r′′, p′′) ∈ Dom(s′0). From this
we easily conclude (s′0, e

′
0) �ϕ1

t (s′1, e
′
1).

(b) Otherwise, that is if there is no p ∈ dom(pr) such that pr(p) = p′, let p
be such that (r, p) 	∈ Dom(Σ). Then (r, p) 	∈ Dom(s0) by Definition 3.1(i), and
therefore

(s0, e0) → (s′
0, e

′
0) where

{
s′
0 = s0 + {(r, p) �→λxe}

e′
0 = E0[(r, p)]

Since Σ, (r, p) : ζ; Γ � (r, p) : ∅, ζr we have Σ, (r, p) : ζ; Γ � (s′0, e
′
0) : ϕ1, τ

by Lemma 3.5(i). Let t′ = (r,p′) where p′ = p + {(r, p) �→(r′, p′)}. Then p′r is
injective, and since ϕ1 ⊆ ϕ we have t′ ∝ ϕ1 (see (1) above) and r(ϕ±1 ) ⊆ r(ϕ±) ⊆
dom(s1) = dom(s′1). There is no (r′′, p′′) such that r′′∈ϕ+

1 and (r′′, p′′)�t (r′, p′),
since otherwise we would have r′′ = r, for r � ϕ± is injective, by Definition 4.4,
and this would contradict our assumption (b). From this it is easy to conclude
(s′0, e

′
0) �ϕ1

t′ (s′1, e
′
1), using Remark 4.2(iii).

• (s1,E1[((r′, p′)v′)]) → (s1,E1[(w′v′)]) with r′∈dom(s1), p′∈dom(s1(r′)) and
s1(r′, p′) = w′. We have e0 = E0[((r, p)e2)] with (r, p) �t (r′, p′) and e2 �t v′,
hence e2 is a value v, by Remark 4.2(ii), and therefore ((r, p)e2) is a redex. By
Lemma 3.5(ii) there exist ϕ0, ϕ1 and σ such that Σ; Γ � ((r, p)v) : ϕ0, σ and
Σ; Γ � E0 : (σ

ϕ1−→ τ) with ϕ−0 ∩ ϕ±1 = ∅ and ϕ = ϕ0 ∪ϕ1. Then (r, p) ∈Dom(Σ)

with Σ(r, p) = (θ
ψ0−−→ σ)r and Σ; Γ � v : ψ1, θ with ϕ0 = (ψ0 + r) ∪ ψ1. Since

r ∈ ϕ+, we have r ∈ dom(s0) by Definition 3.1(ii), hence p ∈ dom(s0(r)) and
s0(r, p)�t s1(r′, p′) by Definition 4.5(ii), that is s0(r, p) = w with w �t w′. Then

Σ; Γ � w : (θ
ψ0−−→ σ) by Definition 3.1(i), and we have
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(s0, e0) → (s0, e
′
0) where e′

0 = E0[(wv)]

By Lemma 3.5(i) we have Σ; Γ � (s0, e
′
o) : ψ, τ where ψ = ψ0 ∪ ψ1 ∪ ϕ1 ⊆ ϕ,

and it is obvious that t ∝ ψ and (s0, e
′
0) �ψ

t (s1, e
′
1) (see the remarks (1) and (2)

above).

• (s1,E1[(λxe′2v
′)]) → (s1,E1[{x �→v′}e′2]). In this case we use the Substitution

Lemma 3.4(i). The details are left to the reader.

• (s1,E1[(new ρ in e′2)]) → (s1 + {r′ �→∅},E1[{ρ �→r′}e′2]) with r′ 	∈ dom(s1).
We have e0 = E0[(new ρ in e2)] with e2 �t e′2, and there exist ϕ0, ϕ1 and σ such
that Σ; Γ � (new ρ in e2) : ϕ0, σ and Σ; Γ � E0 : (σ

ϕ1−→ τ) with ϕ−0 ∩ ϕ±1 = ∅
and ϕ = ϕ0 ∪ ϕ1 by Lemma 3.5(ii). Let r be a fresh region constant, that does
not occur in the statement Σ; Γ � (s0, e0) : ϕ, τ , nor in dom(r). In particular,
r 	∈ dom(s0), and therefore

(s0, e0) → (s′
0, e

′
0) where

{
s′
0 = s0 + {r �→∅}

e′
0 = E0[{ρ �→r}e2]

We have Σ; Γ � e2 : ϕ′0, σ with ρ 	∈ Σ, Γ, τ and ϕ0 = ϕ′0\ρ. Then by Lemma
3.4(ii) we have Σ; Γ � {ρ �→r}e2 : {ρ �→r}ϕ′0, σ, hence Σ; Γ � (s′0, e′0) : ψ, τ
by Lemma 3.5(i), where ϕ± ⊆ ψ± ⊆ ϕ± ∪ {r}. Let t′ = (r′,p′) where r′ =
r + {r �→r′} and p′ = p + {r �→∅}. If r′′ ∈ dom(r) is such that r(r′′) = r′ then
r′′ 	∈ ψ± by Definition 4.5(i) since r′ 	∈ dom(s1), and therefore r′ �ψ± is injective,
hence t′ ∝ ψ. Clearly r′(ψ±) ⊆ dom(s′1), since r(ϕ±) ⊆ dom(s1) by Definition
4.5(i). It is then easy to conclude (s′0, e

′
0) �ψ

t′ (s′1, e
′
1), using Lemma 4.3(ii).

• (s1,E1[(dispose r′)]) → (s1\r′,E1[()]). We have e0 = E0[(dispose r)] with
r ∈ dom(r) and r(r) = r′. Then

(s0, e0) → (s′
0, e

′
0) where

{
s′
0 = s0\r

e′
0 = E0[()]

and by Lemma 3.5(ii) there exist ψ and σ such that Σ; Γ � E0 : (1l
ψ−→ τ) with

r 	∈ ψ± and ϕ = ψ ∪ (∅, {r}). Then we have Σ; Γ � (s′0, e
′
0) : ψ, τ , thanks to

Lemma 3.5(i). We obviously have t ∝ ψ (see the remark (1) above). Assume
that r′′ ∈ ψ± is such that r(r′′) = r′. Since r � ϕ± is injective, we should then
have r′′ = r, but this is impossible since r 	∈ ψ±. This shows r(ψ±) ⊆ dom(s′1).
Now assume that r′′ ∈ ψ+ is such that (r′′, p′′) �t (r′, p′). Then we should have
r′′ = r since r � ϕ± is injective, but this is impossible since r 	∈ ψ±. From this
we easily conclude that s′0 �ψ

t s′1, and therefore (s′0, e
′
0) �ψ

t (s′1, e
′
1).

We can now use this lemma to show that a typable closed expression does not
run into an error. We first define the erroneous configurations.
Definition (Faulty Configuration) 4.7. A configuration (s, e) is faulty if
either
(i) e is a stuck expression, that is E[e′] where e′ is either a variable, or (λxe′@ ρ),
or (()e′), or (dispose ρ), or
(ii) e writes in a deallocated region, that is e = E[(w @ r)] with r 	∈ dom(s), or
(iii) e uses a dangling pointer, that is e = E[((r, p)v)] with (r, p) 	∈ Dom(s).
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Then our main result is as follows:

Theorem (Type Safety) 4.8. If (s, e) is a closed, typable configuration, and
(s, e) ∗→ (s′, e′), then the configuration (s′, e′) is not faulty.

Proof: first we notice that closedness is preserved by reduction. We have Σ; Γ �
(s, e) : ϕ, τ . Let R be a finite subset of RegCst which contains all the region
constants involved in the judgment Σ; Γ � (s, e) : ϕ, τ (including the name
occurring in values stored in s, etc.). Let us define t = (r,p) as follows: r =
{ (r, r) | r ∈ R } and, for r ∈ R, pr maps any address (r, p) occurring in the
judgment Σ; Γ � (s, e) : ϕ, τ onto itself. Clearly t∈T , e�t e (see Remarks 4.2(i)-
(iii)), t ∝ ϕ and s �ϕ

t s since ϕ± ⊆ dom(s) by Definition 3.1(ii), and therefore
(s, e) �ϕ

t (s, e). Then by Lemma 4.6 there exist (s′′, e′′), Σ′, ψ and t′ = (r′,p′)
such that (s, e) ∗→ (s′′, e′′) with Σ′; Γ � (s′′, e′′) : ψ, τ and (s′′, e′′)�ψ

t′ (s′, e′), and
in particular e�t′ e′. Then by Remarks 3.3 and 4.2(ii), e′ is not a stuck expression.
If e′ = E′[(w′@ r′)] then e′′ = E[(w @ r)] with r′(r) = r′ and r ∈ ψ+ by Lemma
3.5(ii), and therefore r ∈ dom(s′′) by Definition 3.1(ii), hence r′ ∈ dom(s′) by
Definition 4.5. If e′ = E′[((r′, p′)e1)] then e′′ = E[((r, p)e0)] with (r, p)�t′ (r′, p′),
and r ∈ ψ+ by Lemma 3.5(ii). We conclude as in the previous case.

Given a closed, typable expression e with effect ϕ, which does not contain any
memory address, this result applies in particular to an initial configuration (s, e)
where s = { r �→∅ | r ∈ reg(e)∪ϕ± }. (We conjecture that for such an expression,
there exists a typing such that ϕ± ⊆ reg(e).)

5 Conclusion

In this work we have presented a new static analysis for a language with explicit
manipulations of memory regions. Our type and effect system is a direct general-
ization of the one of Tofte and Talpin. We also have introduced a new method for
proving type safety in such a language, establishing a “subject reduction up-to-
simulation” property that makes apparent the fact that, if we choose “properly”
the names created along the computation, then the typing is preserved. We be-
lieve that our idea of introducing explicit deallocation effects, which are in some
sense dual to the capabilities of [18], and to the set of “currently allocated re-
gions” of [4], can be adapted to richer settings. In particular, in an extended
version of this work, we shall show how to deal with region polymorphism and
aliasing. We also think our technique could be extended to deal with explicit
allocation, as proposed in [1] for instance, by introducing anticipated and actual
allocation effects. We preferred not to consider such an extended language here,
mainly for the purpose of keeping the exposition simple.

It would be interesting to see whether our static analysis could justify the
safety of some of the optimizations, as decribed in [1] for instance, to Tofte and
Talpin’s compilation from the call-by-value λ-calculus into the region calculus.
More generally, it would be interesting to see whether one can take some advan-
tage in using the typed language we have presented as an intermediate language
in the compilation process of functional languages.
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Abstract. We present a generic algorithm for solving Horn clauses thro-
ugh iterative specialisation. The algorithm is generic in the sense that
it can be instantiated with any decidable fragment of Horn clauses, re-
sulting in a solution scheme for general Horn clauses that guarantees
soundness and termination, and furthermore, it presents sufficient cri-
teria for completeness. We then demonstrate the use of the framework,
by creating an instance of it, based on the decidable class H1, capable
of solving a non-trivial protocol analysis problem based on the Yahalom
protocol.

1 Introduction

Horn clauses have proven to be useful in many areas of computer science. They
are very expressive (they are, in fact, Turing complete [1]) and yet they maintain
a high clarity due to the simple format. This makes them attractive for many
theoretical developments, as well as for practical purposes exemplified by the
Prolog language.

Their usefulness has, however, also been restricted for the very same reasons
that they are interesting: unrestricted Horn clauses are Turing complete. Thus
Horn clause-based problems are often undecidable, and, similarly, Horn clause-
based algorithms often have termination problems.

In this paper we shall show how to circumvent the first shortcoming, namely
that problems formulated in unrestricted Horn clauses may be undecidable,
thereby making Horn clauses more attractive for theoretical purposes such as
static analysis. Specifically, we shall present a framework for finding, and it-
eratively improving the precision of, a model for any set of unrestricted Horn
clauses. The framework is shown to guarantee soundness (i.e. it always returns
a correct model) and termination, and it may in some cases also provide com-
pleteness (i.e. the model is the least model). Completeness depends on the chosen
instance of the framework, as the framework is generic in the sense that it can
be instantiated with any known decidable fragment of Horn clauses.

The general structure of our iterative framework is shown in Fig. 1. It is
parameterised on a decidable fragment H of Horn clauses and given a formula
ϕ the first step is to check whether ϕ is in H, if so, then we can immediately
construct its least model, denoted N (ϕ) on the figure, and we are done.

If ϕ is not in H, then we apply an H-relaxation, R, and the resulting formula,
ϕ̃ = R(ϕ), will be in H. The relaxation guarantees that the least model of this

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 131–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Horn formula ϕ

ϕ ∈ H?
Return least
model: N (ϕ)

- relax ϕ to ϕ̃ = R(ϕ)
- normalise ϕ̃ to bϕ = N (ϕ̃)
- specialise ϕ to ϕ′ = S [bϕ](ϕ)

ϕ′ � ϕ?
Return approx.
model: bϕ

ϕ
Yes

No

ϕ′, bϕ

NoYes

ϕ′

Fig. 1. Iterative scheme

formula (denoted ϕ̂ = N (ϕ̃) on the figure) is also a model of ϕ, but it is possibly
too large to be useful by itself. It may, however, contain useful information
that can be used to specialise the original formula ϕ; this operation is denoted
ϕ′ = S[ϕ̂](ϕ) on Fig. 1. In order to compare the new and the original formula, we
introduce a well-founded, simplification ordering, �, over formulae; if the new
formula is an improvement of the old, according to this ordering, then the above
steps can be repeated. Otherwise the iteration stops and ϕ̂ will be the resulting
(approximative) model of ϕ.

The remainder of the paper is organised as follows. In Sect. 2 we give the
background in Horn clauses necessary for understanding the development. We
then, formally, present the iterative scheme in Sect. 3 and show that it satisfies
several attractive properties. To illustrate its usefulness, we present an instance
of the scheme in Sect. 4, using the decidable fragment of Horn clauses H1, and
afterwards in Sect. 5 demonstrate how this instance can be used for verifying
cryptographic protocols, by applying it to a specific analysis problem based on
one of the well-known protocols of the literature; the Yahalom key-distribution
protocol. Finally, Sect. 6 reflects and concludes.

2 Horn Clauses

The standard syntax of Horn clauses is presented in Table 1 and should be read as
follows. A Horn formula ϕ ∈ HC is a finite set of implications, usually referred to
as clauses. Every clause c is on the form g0 ⇐ g1, . . . , gl where the literals g0 and
g1, . . . , gl are the head and the precondition of c, respectively. A literal is of the
form p(t1, . . . , tm) where p is an m-ary predicate symbol and ti is a term built
up from variables (indicated by a capitalised first letter) through constructor
applications. In the following, we shall sometimes refer to constructors of arity
0 as constants, and clauses without preconditions as facts, written without the
implication arrow.
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Table 1. Horn syntax

ϕ ::= {c1, . . . , ck} g ::= p(t1, . . . , tm)
c ::= g0 ⇐ g1, . . . , gl t ::= X | f(t1, . . . , tn)

We let expressions, e, range over formulae, clauses, literals and terms, and
define Var(e), Con(e), and Pred(e), to be the set of variable, constructor and
predicate symbols, respectively, that occur in e1. A term, t, is called ground if it
consists of no variables, i.e. Var(t) = ∅, and for a given formula, ϕ, the set of all
ground terms built from Con(ϕ) is called its Herbrand universe, denoted Hϕ.

Horn formulae are interpreted relative to an interpretation ρ ∈ R that maps
predicate symbols to corresponding term relations; i.e. an m-ary predicate sym-
bol is mapped to an m-ary term relation which is a subset of Hm

ϕ . Letting θ
denote a substitution mapping variables to ground terms, we then define a sat-
isfaction relation |= as presented2 in Table 2.

Table 2. Satisfaction relation

ρ |= ϕ iff ∀c ∈ ϕ : ρ |= c

ρ |= g0 ⇐ g1, · · · , gl iff ∀θ : ∧l
i=1 (ρ, θ |= gi) ⇒ (ρ, θ |= g0)

ρ, θ |= p(t1, . . . , tm) iff 〈t1θ, . . . , tmθ〉 ∈ ρ(p)

An interpretation ρ, that satisfies a Horn formula ϕ is called a model of ϕ.
We then state the following well-known result [2]:

Proposition 1 (Least model). The set of models of a Horn formula ϕ ∈ HC
constitutes a Moore family (i.e. it is closed under intersection), and thus it has
a unique least model: ρϕ =

⋂
{ρ | ρ |= ϕ}.

Given a set of Horn clauses we usually want to answer questions such as mem-
bership (does 〈t1, . . . , tm〉 belong to the least model of p) or non-emptiness (is
p mapped to a non-empty set in the least model). Unfortunately, unrestricted
Horn clauses are Turing complete [1], and these questions may be undecidable.
Therefore we are particularly interested in subsets of Horn clauses where they
are decidable, and we shall refer to these fragments as decidable classes.

All our questions concern the least model of the formula, but as this model
may include infinite sets, we need a finite representation. This representation can
itself be expressed by Horn clauses, but now in a form that allows membership in
the least model to be determined in a straightforward manner (i.e. linear time).
1 Variables occurring in a clause are implicitly universally quantified in that clause;

thus, without loss of generality, one may assume that variables in different clauses
are α-renamed apart.

2 We adopt the usual postfix notation for substitutions, i.e. θθ′ stands for θ′ ◦θ; for an
expression e then eθ represents the expression resulting from replacing all variables
X ∈ dom(θ) in e with their corresponding ground terms. When convenient, we shall
use the notation [X 
→ t] for the substitution mapping only the variable X to the
ground term t.
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Table 3. A normal form for Horn clauses

(N1) p(X1, . . . , Xm) ⇐ q1(X1), . . . , qm(Xm) , ∀i�=j Xi �= Xj ∧ m ≥ 2
(N2) p(f(X1, . . . , Xn)) ⇐ q1(X1), . . . , qn(Xn) , ∀i�=j Xi �= Xj

Such a form is called a normal form, and a transformation from a decidable class
into a normal form is referred to as a normalisation, when it preserves the set of
models from the original formula and can be performed through a finite number
of operations. We present an example of a normal form in Table 3; notice that
we require the heads to be linear, i.e. no variable occurs twice. This normal form
essentially describes context-free grammars in a succinct manner and provides a
linear time lookup for both membership and non-emptiness.

To ease the understanding of the development in the following sections, the
reader may think of this particular normal form whenever we refer to an unspec-
ified normal form for Horn clauses, bearing in mind, of course, that the results
still apply to any other normal form as well. We shall write ϕ̂ ∈ ĤC to denote
a formula on normal form.

3 Iterative Scheme

The general idea in the iterative framework was already explained in Sect. 1.
We shall now present the key ingredients that, in addition to the normalisation
introduced above, include the relaxation mechanism, the specialisation function
and the simplification ordering.

3.1 The Refinement Scheme

Recall first that HC and ĤC denote the (infinite) sets of Horn formulae and nor-
malised Horn formulae, respectively. We then define the premise of our intuition
as follows: there exists a function that takes a general Horn formula and returns
an over-approximative formula (ie. a formula, for which all models are also mod-
els of the original formula, and thus it has a weakly larger least model) which
belongs to some decidable class H. We shall call such a function an H-relaxation
and formally define it as follows:

Definition 1 (H-Relaxation). Let H ⊆ HC, then a function R : HC → H is
an H-relaxation if:

∀ϕ : ∀ρ : ρ |= R(ϕ) ⇒ ρ |= ϕ

As H is decidable, then there exists a function that takes a formula ϕ ∈ H and
returns a normalised formula that represents its unique least model ρϕ. Such a
function is usually called an H-normalisation:

Definition 2 (H-Normalisation). Let H ⊆ HC, then a function N : H →
ĤC is an H-normalisation if:

∀ϕ ∈ H : ∀p ∈ Pred(ϕ) : t ∈ ρϕ(p) ⇔ t ∈ ρN (ϕ)(p)

Notice that the definition allows the normalised formula to also include auxiliary
predicates.



Iterative Specialisation of Horn Clauses 135

The combination of the relaxation and the normalisation establishes that we
can always find some model of a formula. However, we are usually only interested
in the least model or a model close to the least model. Naturally, if R returns
a formula with the same least model as the original, then the result is precise
and we are done. But this is usually not the case, and often the approximation
will be too coarse to be useful for the intended purpose. In this case, we may
inspect this coarse model and look for information that allow us to produce
a safe transformation of the formula, that may produce better results. This is
called a specialisation.

Definition 3 (Specialisation). A specialisation is a higher-order function S :
ĤC → HC → HC that satisfies:

∀ϕ̂ : ∀ϕ : ∀ρ ⊆ ρϕ̂ : ρϕ̂ |= ϕ ⇒ (ρ |= S[ϕ̂](ϕ) ⇔ ρ |= ϕ)

A specialisation takes an approximative normal formula ϕ̂ and specialises the
formula ϕ, such that the specialisation S[ϕ̂](ϕ) maintains the set of models,
smaller than or equal to the ρϕ̂.

The fourth, and last, ingredient we shall require for the iterative scheme, is
an order that ensures termination.

Definition 4 (Simplification ordering). A relation � : HC × HC is a sim-
plification ordering if it is a well-founded, partial order.

When convenient, we shall use familiar notation  for the inverse of � and
likewise � and � for their respective strict counterparts.

The combination of these operators is then supposed to form the basis of
the iterative scheme, for finding solutions for unrestricted Horn problems. How-
ever, for this to be achieved, we shall furthermore require them to form an
H-refinement scheme:

Definition 5 (H-Refinement Scheme). A quadruple (R, N , S, �); consisting
of an H-relaxation, an H-normalisation, a specialisation, and a simplification
ordering, is an H-refinement scheme if:

∀ϕ : ∀ϕ̂ : ∀p ∈ Pred(ϕ) : ϕ̂ = N (R(ϕ)) ⇒ (ρϕ̂(p) ⊇ ρR(S[ϕ̂](ϕ))(p))

3.2 The Iterative Scheme

The refinement scheme forms the basis of the larger iterative scheme, that was
graphically presented in Fig. 1 in Sect. 1. Essentially, for any decidable class
H for which there exists an H-refinement scheme, (R, N , S, �), the iterative
scheme will find a best solution to any unrestricted Horn problem.

The algorithm can terminate in two ways: (1) Either the scheme eventually
produces a specialisation within H, which is therefore decidable, and the result
is the least model of the input formula; or (2) the scheme eventually fails to
improve the formula further, with respect to �, and the result is then the best
known model of the input formula.
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3.3 Properties of the Scheme

As part of justifying the proposed scheme, we shall show that it satisfies three
key properties: we shall prove that the algorithm always terminates, that the
normalised output represents a model of the input formula, and that if the
algorithm produces a formula within the decidable class, then the corresponding
normal form represents the least model of the original input formula.

First we shall give the termination result.

Theorem 1 (Termination). The algorithm will always terminate.
Proof. Assuming that the functions R, N , and S are terminating, then the
result follows directly from the fact that � is well-founded. �
The next result states that the algorithm is sound and justifies the iterative
approach.

Theorem 2 (Soundness). The algorithm will always produce a model of the
input formula ϕ. Each iteration (weakly) improves precision of this model.
Proof. Notice that, if the algorithm terminates in the ith iteration, then the
result is either N (ϕi) or N (R(ϕi)). Thus, the proof amounts to show that these
normalised clauses represent models of the input formula for all i and that each
iteration retains the set of models smaller than or equal to found model ; i.e.
that ∀ρ ⊆ ρϕ̂i

: (ρ |= ϕi ⇔ ρ |= ϕ). This is proven by induction.
For i = 0 the result holds trivially. For the iterative step, let ϕ̂i = N (R(ϕi))

such that ρϕ̂i
|= ϕi, and assume that ∀ρ ⊆ ρϕ̂i

: (ρ |= ϕi ⇔ ρ |= ϕ). Next, let
ϕi+1 = S[ϕ̂i](ϕi) and ϕ̂i+1 = N (R(ϕi+1)). Now, according to the definition of
a relaxation and normalisation, this means that ρϕ̂i+1 |= ϕi+1. Furthermore, by
the definition of a refinement scheme, we have ∀ρ : ∀p ∈ Pred(ϕi) : ρϕ̂i

(p) ⊇
ρR(ϕi+1)(p), and thus, by definition of the normalisation, ∀ρ : ∀p ∈ Pred(ϕi) :
ρϕ̂i

(p) ⊇ ρϕ̂i+1(p). Hence, by definition of a specialisation and the assumption,
and as the specialisation does not introduce any new predicates, we have that
∀ρ ⊆ ρϕ̂i+1 : (ρ |= ϕi+1 ⇔ ρ |= ϕi ⇔ ρ |= ϕ). �

And lastly we have the partial completeness result:

Theorem 3 (Partial Completeness). If the algorithm terminates in (1), then
it produces the least model of the input formula ϕ.
Proof. The result follows directly from the proof for Theorem 2. �

4 Application to H1

This section presents one instance of the iterative framework, or more precisely,
a specific refinement scheme. For this, we have chosen the decidable subclass
H1, originally introduced in [3]. H1 describes strongly recognisable relations; i.e.
finite unions of Cartesian products of recognisable tree languages. In fact, every
clause in H1 is normalisable (to the normal form presented in Sect. 2) and the
equivalent normal form can be constructed in deterministic exponential time [3].
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Previously, this class has proven very useful for static analysis purposes, both
for specifying a Control-Flow Analysis of Spi [3] as well as for verifying real im-
plementations of cryptographic protocols in the C language [4]. Yet, as we shall
see in Sect. 5.1, a direct attempt at specifying protocol analysis, results in clauses
outside this class. This motivates the use of the iterative scheme of Sect. 3.

We begin by briefly introducing the H1-class itself, whereafter we will define
the operators in the H1-refinement scheme, (r, n, s, ≤), needed for using the
iterative scheme of Fig. 1.

4.1 The Class H1

We shall say the two variables X and Y are connected within a set of literals
{g1, . . . , gk} if there exists a sequence of literals gp1 . . . gpl

with l ≥ 1 and gpi ∈
{g1, . . . , gk} such that X ∈ Var(gp1), Y ∈ Var(gpl

) and Var(gpi) ∩ Var(gpi+1) �= ∅
for all 1 ≤ i ≤ l − 1.

We then say that the clause g0 ⇐ g1, . . . , gk has the property H1 if it satisfies
the requirements given in Table 4. Here we call two variables siblings in a literal
or term, if they occur as arguments of a common parent; i.e. X, Y are siblings
in p(X, Y ) and p(Z, f(X, Y )) but not in p(X, f(Y )).

Table 4. Property H1 for clauses of the form g0 ⇐ g1, . . . , gk

(H1.1) g0 is linear.
(H1.2) If X, Y ∈ Var(g0) are connected in {g1, . . . , gk}, then they are siblings

in g0.

A formula ϕ belongs to the class H1 if all clauses in ϕ have property H1.

Example 1. Consider, as a small, running example, the following clause, bor-
rowed from the protocol analysis case study in Sect. 5.1:

net(〈Xenc, {Xnb }Xkab
〉) ⇐ net(〈{〈b, Xkab

, na, Xnb〉}kas , Xenc〉)

Here 〈t1, . . . , tn〉 is an n-ary constructor and {t1}t2 a binary constructor.
This clause is not in H1 as the variables Xenc and Xnb

(and similarly Xenc

and Xkab
) are connected in the precondition but are not siblings in the head,

thus violating the rule (H1.2) in Table 4.

4.2 Relaxation Operator

We now want to define a relaxation function, that always produces clauses within
H1. In [5] it is shown how general Horn clauses can be approximated by H1
clauses. We shall follow this approach, but slightly improve it, as the relaxation
operator we suggest, for clauses violating (H1.2), is more precise as compared
to the approximation technique suggested in [5].

Let e be an expression. We then write e[X � t] for the expression that is as e,
except that the leftmost occurrence of X is replaced by t. We shall also employ
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the shorthand notation α for a sequence of literals g1, . . . , gl when convenient,
and point-wise extend substitutions and |= for this. We then define a function
r(ϕ) =

⋃
{r(c) | c ∈ ϕ} as follows:

r(g ⇐ α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r(g[X � X ′] ⇐ α[X 
→ X ′], α) (a) if g ⇐ α violates (H1.1)
and where X ′ is fresh

r(g ⇐ α[X 
→ X ′], p(X, Z1, . . . , Zk))∪ (b) if g ⇐ α violates (H1.2)
{p(X, Z1, . . . , Zk) ⇐ α} and where X ′ and p are fresh

{g ⇐ α} (c) otherwise

In both (a) and (b) X is the leftmost variable that gives rise to the violation, and
in (b) the siblings Z1, . . . , Zk of X in g are carried on to the auxiliary predicate,
to retain the highest amount of precision.

From the definition it is apparent that the set of clauses generated by r will
always be in H1, and that, if applied to a set of clauses already within H1, r
will be the identity function. Furthermore, as the set of variables in a clause is
always finite, it should be fairly obvious that r will always terminate.

Now, prior to showing that r indeed constitutes a relaxation function, we shall
give an auxiliary result that benefits the presentation of the proof.

Fact 4. If ρ |= c then ∀X, X ′ : ρ |= c[X �→ X ′].

Which allows us to establish the following result.

Lemma 1. The function r is a relaxation operator.

Proof. The proof proceeds by induction in the derivation sequence establishing
r(ϕ):

– (a), remembering that Y /∈ Var(g ⇐ α) the result follows from Fact 4 :

ρ |= g[X � X ′] ⇐ α[X 
→ X ′], α
⇒ ρ |= (g[X � X ′] ⇐ α[X 
→ X ′], α)[X ′ 
→ X ]
⇒ ρ |= g ⇐ α, α
⇒ ρ |= g ⇐ α

– (b) is shown analogously, relying on the fact that the auxiliary predicate p
does not occur in the head of any other clause and thus the precondition in
the first clause can only be satisfied if the second clause is satisfied.

– (c) holds vacuously. �

Example 2 (Example 1 continued). Recall that the clause from Example 1 was
not in H1, as the variables Xenc and Xnb

violated rule (H1.2). Thus, the re-
laxation r applied to this clause will decouple these variables, resulting in the
following two clauses, now both in H1.

{ net(〈Xenc, {Xnb }Xkab
〉) ⇐ net(〈{〈b, Xkab

, na, Xnb〉}kas , X ′〉), p(Xenc),

p(Xenc) ⇐ net(〈{〈b, Xkab
, na, Xnb〉}kas , Xenc〉) }
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4.3 H1-Normalisation

Normalising a set of H1-clauses amounts to bringing the clauses onto the nor-
mal form given in Table 3. This is a well-known procedure that was initially
described in a direct manner in [3] and later using resolution techniques in [5].
Basically the procedure consists of iteratively extending the set of normal clauses
by simplifying non-normal clauses using the current set of normal clauses, this
procedure is continued until no further simplification can be performed; then the
non-normal clauses are redundant and can be removed.

4.4 Specialisation Operator

The specialisation is supposed to utilise information in a given normal form
approximation ϕ̂ of a formula ϕ, to produce a new formula ϕ′, that maintains the
set of models smaller than or equal to ρϕ̂, but may yield smaller approximations.
One approach to define such an operator, is to define a function that safely
eliminates variables from the formula.

First we shall require a formulation of which ground terms a variable may be
substituted by in a clause.
Definition 6 (Substitution set). The substitution set for X ∈ Var(ϕ) is given
by Tϕ(X) = {Xθ | ∧l

i=0 ρϕ, θ |= gi ∧ (g0 ⇐ g1, . . . , gl) ∈ ϕ}.
Unfortunately, some of these substitution sets may be infinite and we are there-
fore particularly interested in the set Fϕ of variables X ∈ Var(ϕ) for which
Tϕ(X) is finite. However, it may not always be feasible to determine the com-
plete set Fϕ, or the corresponding substitution sets, and thus we shall say
that a finiteness substitution mapping Iϕ is permissable if dom(Iϕ) ⊆ Fϕ and
∀X ∈ dom(Iϕ) : Iϕ(X) ⊇ Tϕ(X).

As neither the relaxation nor the normalisation renames variables, and as
ρϕ̂ |= ϕ, it follows that for all X ∈ Var(ϕ) then Tϕ(X) ⊆ Tϕ̂(X). Thus a
permissable Iϕ̂ is also a permissable Iϕ, and the idea is then use the former
to perform a complete expansion of the formula. This is done by the function,
s : ĤC → HC → HC, defined as follows:

s[ϕ̂](ϕ) =
⋃

{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : Xθ ∈ Iϕ̂(X)}

Note that s[ϕ̂] is the identity function if there are no variables in ϕ with finite
substitution sets in Iϕ̂.
Lemma 2. The function s is a specialisation function.
Proof. Assume ϕ̂, ϕ and ρ, such that ρ ⊆ ρϕ̂. We then have

ρ |= s[ϕ̂](ϕ)
⇔ ρ |=

⋃
{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : Xθ ∈ Iϕ̂(X)}

⇔ ρ |=
⋃

{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀X ∈ dom(θ) : Xθ ∈ Tϕ̂(X)}
⇔ ρ |=

⋃
{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀(g0 ⇐ g1, . . . , gl) ∈ ϕ : ∧l

i=0 ρϕ̂ |= giθ}
⇔ ρ |=

⋃
{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ∀(g0 ⇐ g1, . . . , gl) ∈ ϕ : ∧l

i=0 ρ |= giθ}
⇔ ρ |=

⋃
{ϕθ | dom(θ) = dom(Iϕ̂) ∧ ρ |= ϕθ}

⇔ ρ |= ϕ

In the second and fourth step we use that ρ ⊆ ρϕ̂ �
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It then only remains to show how Iϕ̂ can be determined for H1, or more
specifically, for the normal form in Table 3. Such a mapping can be obtained by
the following inductively defined procedure:

∀(p(t) ⇐ α) ∈ ϕ̂ : Pred(α) ⊆ dom(F )

p ∈ dom(F ) ∧
∀(p(f(X1, . . . , Xn)) ⇐ q1(X1), . . . , qn(Xn)) ∈ ϕ̂ :

∀〈t1, . . . , tn〉 ∈ F (q1) × · · · × F (qn) :
f(t1, . . . , tn) ∈ F (p)

∀(g ⇐ α) ∈ ϕ̂ : p(X) ∈ α ⇒ p ∈ dom(F )

X ∈ dom(Iϕ̂) ∧ ∀(g ⇐ α) ∈ ϕ̂ : p(X) ∈ α ⇒ F (p) ⊆ Iϕ̂(X)

The mapping is built by first finding a mapping F , of the unary predicates with
a finite mapping in ρϕ̂, and then use this to build Iϕ̂.

Example 3 (Example 1 continued). Assume the finiteness substitution mapping
Iϕ̂ = [Xnb

�→ {nb}, Xkab
�→ {kab, m•}], then a complete expansion of the clause

from Example 1 is:

{ net(〈Xenc, {nb}kab
〉) ⇐ net(〈{〈b, kab, na, nb〉}kas , Xenc〉),

net(〈Xenc, {nb}m• 〉) ⇐ net(〈{〈b, m•, na, nb〉}kas , Xenc〉) }

4.5 Simplification Ordering

As the specialisation expands the clauses of the formula, an obvious choice of
simplification ordering is an ordering where clauses are greater than their ex-
panded counterpart.

∀ϕ : ∀ϕ′ : ϕ ≤ ϕ′ ⇔ (∃ϕ̂ : ϕ = s[ϕ̂](ϕ′))

It follows that equivalence resolves to equality, and thus the check in 4 in the
iterative scheme will amount to the test for identity. We then have the result:

Lemma 3. The operator ≤ is a simplification ordering.
Proof. We have trivially that ≤ is a partial order. That it is also well-founded
follows from the fact that any formula ϕ can only hold a finite set of variables.
As a complete expansion (modulo identity) will only expand each clause into
a finite set of new clauses, and each expanded clause will have a strictly lower
number of variables, then any formula can only be completely expanded a finite
number of times. �

4.6 H1-Refinement Scheme

Finally, to show that the different ingredients work together as intended, we
must show that they form an H1-refinement scheme.

Lemma 4. The quadruple (r, n, s, ≤) forms an H1-refinement scheme.
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Proof. To prove this, we must show that for all t and for all p ∈ Pred(ϕ), then t ∈
ρr(s[ϕ̂](ϕ))(p) implies t ∈ ρϕ̂(p), when ϕ̂ = n(r(ϕ)). But as the specialisation only
eliminates variables, and the relaxation only decouples variables, we have that
t ∈ ρr(s[ϕ̂](ϕ))(p) implies t ∈ ρs[ϕ̂](r(ϕ))(p). But then the result follows directly, as
ρr(ϕ) = ρn(r(ϕ)) = ρϕ̂, and thus t ∈ ρs[ϕ̂](r(ϕ))(p) implies t ∈ ρϕ̂(p) by definition
of the specialisation, which gives the result we seek. �

5 Worked Example

In this section, we shall give an example of how Horn clauses can be used for
formalising some analysis problems in a succinct and clear manner. But, as we
shall also see, such specifications easily end up outside any known decidable
classes, motivating the use of the iterative scheme.

We have chosen our example from protocol analysis, more specifically the
validation of the key-distribution protocol Yahalom [6], which is given in the
classical Alice-Bob notation as follows:

1. A → B : A, NA

2. B → S : B, {A, NA, NB}KBS

3. S → A : {B, KAB , NA, NB}KAS , {A, KAB}KBS

4. A → B : {A, KAB}KBS , {NB}KAB

Yahalom is considered a secure protocol (cf. [6,7]), but it is an interesting case
study, because it proves troublesome for many analyses. In particular, indepen-
dent attribute analyses, such as [8], will yield false positives for Yahalom, in the
presence of several principals.

5.1 Modelling Protocols

Modelling protocol narrations in Horn clauses is relatively straightforward, as
Horn clauses provide the means for an almost direct translation from the Alice-
Bob notation. One such translation scheme was presented intuitively in [9] and
refined in [10], and we shall draw inspiration from these approaches.

We assume that all messages are sent on one global network, and that all
principals have access to this network. This is supposed to be a realistic model
of the Internet, without adding an extra layer of security to the protocol, and we
will describe it through the predicate net. Secondly, we shall model encryptions
and tuples through constructors, but to ease readability, we will employ the
familiar notation {t1}t2 for the binary encryption constructor, and 〈t1, . . . , tn〉
for the n-ary tupling constructor.

The result of this method of translation, for one instance of Yahalom, is given
in Table 5. Here we have adopted the notation g, g′ ⇐ α as a shorthand for
the clauses g ⇐ α and g′ ⇐ α. To stress the intent of the protocol, we add
predicates on the form p key for recording the ground terms that principal p
binds and believes to be the distributed key; e.g. kab.

Each step of the protocol is translated into one clause, where the right-hand
side represents the requirements imposed by the sender, and the left-hand side
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Table 5. Yahalom in Horn clauses

1. net(〈a, na〉)
2. net(〈b, {〈Xa, Xna , nb〉}kbs

〉) ⇐ net(〈Xa, Xna〉)
3. net(〈{〈b, kab, Xna , Xnb 〉}kas , {〈a, kab〉}kbs

〉) ⇐ net(〈b, {〈a, Xna , Xnb〉}kbs
〉)

4. net(〈Xenc, {Xnb }Xkab
〉), a key(Xkab

) ⇐ net(〈{〈b, Xkab
, na, Xnb〉}kas , Xenc〉)

5. b key(Xkab
) ⇐ net(〈{〈a, Xkab

〉}kbs
, {nb}Xkab

〉)

the message sent upon the network in that particular step. In addition to the
four steps of the protocol, a fifth step is added to reflect the reception of the
fourth message. The modelling captures the basic assumption of the protocol,
namely that the initiator a and the server s both know the two other principals
on advance, but that the responder b does not necessarily need to initially know
(or trust) a.

Notice that the specification allows a relational analysis as the relationship
between variables in each message is remembered. As mentioned above, this is re-
quired for correctly validating Yahalom. In this example, we have, for simplicity,
chosen to model only one instance of the protocol, but the methodology could be
extended to also model multiple instances between multiple principals, maintain-
ing the relational property, by using standard approximation techniques. This
is, however, beyond the scope of this paper.

5.2 Network Attacker and Analysis

After modelling how the legitimate principals of the system interact, we usually
want to apply an analysis for ensuring that the protocol cannot be compromised
by one or more malicious principals.

One method, that has been employed successfully numerous times before,
is modelling the so-called Dolev-Yao attacker [11], also known as the hardest
network attacker [12], and investigate whether various security properties are
upheld in presence of this attacker. In the Dolev-Yao model, the capabilities of
this attacker are defined to be: (1) receive and intercept all messages sent on the
global network and send new messages onto the global network; (2) decrypt en-
crypted messages, if it knows the encryption key, and construct new encryptions
from known terms; (3) decompose and compose tuples; and (4) generate new
ground terms. The attacker can, in principle, compose and decompose tuples of
any arity. However, in [8] it is shown that restricting the attacker to work on a
limited set of arities, does not limit its capabilities, as long as the set includes
all arities occurring in the protocol and at least one additional arity. This means
that a Dolev-Yao attacker, for a specific protocol, is directly translatable into
Horn clauses. If we let K denote the set of occurring arities (for Yahalom this
set is {2, 3, 4}), we can create an extended set K+ = K ∪ {1}, as tuples of arity
1 never occurs, and a generic Dolev-Yao attacker can then be formulated as in
Table 6.

The attacker is described through a predicate dy, storing its accumulated
knowledge. The first three rules are then straightforward, and the rule (DY4)
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Table 6. Dolev-Yao attacker in Horn clauses

(DY1) dy(X) ⇐ net(X)
net(X) ⇐ dy(X)

(DY2) dy(X) ⇐ dy({X}Xkey ), dy(Xkey)
dy({X}Xkey ) ⇐ dy(X), dy(Xkey)

(DY3)
dy(X1), . . . , dy(Xk) ⇐ dy(〈X1, . . . , Xk〉)
dy(〈X1, . . . , Xk〉) ⇐ dy(X1), . . . , dy(Xk)

}
if k ∈ K+

(DY4) dy(m•)

expresses that the attacker may generate arbitrary ground terms, but, in the
modelling, all of these are coalesced into one equivalence class represented by
the canonical name m•. Note, that a direct consequence of the rule (DY1) is that
the attacker’s knowledge and the net are identical.

A conjunction of a protocol description with the attacker in Table 6 constitutes
an instance of an analysis problem, and the least model of such a problem allows
us to investigate certain properties of the protocol. In its most simple form, such
as the formula in Table 5, the protocol descriptions allow direct verification of
confidentiality (and integrity through the predicates a key and b key) but many
other properties can be verified as well using annotation techniques [8].

5.3 Results

Even small analysis problems, such as the one presented in this section, falls,
to the best of our knowledge, outside the decidable fragments of Horn Clauses.
Hence we must rely on the iterative scheme to determine a best model of our
analysis problem.

For this, we have implemented the iterative scheme in OCaml3. The result
is an extremely succinct implementation; the normalisation itself is constrained
to 110 lines of code. As the implementation is intended to be self-explanatory
and intuitively correct, several optimisations have been omitted. However, as
the normalisation can easily normalise formulae consisting of several thousand
H1-clauses, it suffices for our needs, and the simplicity of the code leaves less
room for errors.

Applying the iterative scheme to the Yahalom analysis problem presented
above, i.e. the conjunction of Table 5 and Table 6, yields the following specialised
clauses, after a single iteration of the algorithm:

1. net(〈a, na〉)
2. net(〈b, {〈Xa, Xna , nb〉}kbs

〉) ⇐ net(〈Xa, Xna〉)
3. net(〈{〈b, kab, Xna , nb〉}kas , {〈a, kab〉}kbs

〉) ⇐ net(〈b, {〈a, Xna , nb〉}kbs
〉)

4. net(〈{〈a, kab〉}kbs
, {nb}kab

〉), a key(kab) ⇐ net(〈{〈b, kab, na, nb〉}kas , {〈a, kab〉}kbs
〉)

5. b key(kab) ⇐ net(〈{〈a, kab〉}kbs
, {nb}kab

〉)

We omit the clauses for the attacker, as all variables occurring in them have
trivially infinite substitution sets, thus these clauses remain unchanged.
3 available at http://www.imm.dtu.dk/∼{}crn

http://www.imm.dtu.dk/~{}crn
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Observe first, that the formula is now contained in H1, and thus the resulting
normal form represents its least model. This means that the analysis result
is complete, and inspecting it shows that a key and b key can only be bound
to kab. Hence one instance of the protocol serves its purpose and will always
successfully establish the intended shared key between the principals. We also
find that kas, kbs, kab /∈ dy, which guarantees confidentiality of all the shared
keys, including the newly distributed one. Both of these results were expected
as Yahalom is, as already mentioned, considered a secure protocol.

6 Conclusion

Horn clauses have many applications. One example, as we have shown, is that
it allows for a clear and intuitive specification of protocol analysis problems.
However, as is often the case with clean and simple analysis specifications, the
resulting instances of analysis problems are outside any of the known decidable
fragments of Horn clauses, threatening the analysis itself with being a mere
theoretical exercise.

This paper presents an iterative scheme for solving Horn clauses that guaran-
tees termination and soundness, and may in some cases even give completeness.
It relies on a chosen known decidable class of Horn clauses and a sound approxi-
mation method; the latter being achieved by iteratively specialising the analysis
problem and improving the analysis result, until either no further improvements
can be made or the analysis result is complete.

We also sketched a methodology for specifying static analyses of cryptographic
protocols, in particular we validated the non-trivial key-distribution protocol
Yahalom. Our example was concerned with only a single instance of the pro-
tocol, but even this simple scenario was sufficient to push the problem beyond
the known decidable classes. This demonstrates the complications of containing
problems within the decidable domains of Horn logic, but also illustrates the
usability of the scheme, as it still successfully determined a complete result for
the analysis problem.

We expect the iterative scheme to also prove useful beyond protocol anal-
ysis, as deciding the least model or a sufficiently small model of Horn clause-
based problems, is attractive to many different branches of theoretical computer
science.

References
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Around thirty years ago, P. Martin-Löf [12] suggested that the intuitionistic
theory of types, originally designed as a formal system for constructive math-
ematics, could be viewed as a programming language. The conclusion of this
paper stresses the mutual benefit of relating constructive mathematics and com-
puter programming. In one direction one gets a precise system of notations for
both statements and proofs, and one obtains the computerization of abstract
intuitionistic mathematics that was asked by Bishop [2]. In the other direction,
computer programming “gets access to the whole conceptual apparatus of pure
mathematics”.

In the first part of this talk we shall survey some recent works that illustrate
this relation and its fruitfulness. One line of work, close to Bishop, represents
real numbers and numerical functions [4,13] in type theory. Another line is con-
cerned with algorithms on finite combinatorial structure (graphs, hypermaps,
finite groups). One main example is the complete formalization of a proof of the
four color theorem by G. Gonthier and B. Werner. The report on this work [9]
points out as well the mutual benefits of this correspondence: “Although this
work is purportedly about using computer programming to help doing mathe-
matics, we expect that most of its fallout will be in the reverse direction - using
mathematics to help programming computers”. A related work, also dealing with
hypermaps, aims at obtaining formal specification in geometric modeling [6], and
presents algorithms that can be designed in this way [7]. There is also on-going
work [8] on the formalization of finite group theory.

The second part will reflect on the design of type theory as a functional pro-
gramming language. The analogy between type theory and functional program-
ming was pointed out already by Martin-Löf [12] (for instance the correspon-
dence between canonical and non-canonical form of expressions and the notion
of constructors and selectors, respectively, of Landin [11]). This analogy should
go further and type theory should benefit in using more the powerful system of
notations provided by functional programming. (In particular, where expressions
correspond to local abbreviations, definitions and lemmas, functions defined by
pattern-matching correspond to definitions by case and proofs by case analysis,
uses of recursive definitions correspond to inductive arguments, module systems
can be used to structure proofs; the system Agda [1] follows these analogies.)
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c© Springer-Verlag Berlin Heidelberg 2008



Constructive Mathematics and Functional Programming 147

The work of B. Gregoire and X. Leroy [10] illustrates well also this analogy by
showing how an evaluation machine for functional programming can be modi-
fied in a simple way to provide an efficient algorithm for testing convertibility in
type theory. We explain finally how we can precise further the representation of
type theory as a functional programming language using some recent results in
domain theory [3,5].
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Abstract. We propose an abstract interpretation algorithm for proving that a
program terminates on all inputs. The algorithm uses a novel abstract domain
which uses ranking relations to conservatively represent relations between inter-
mediate program states. One of the attractive aspects of the algorithm is that it
abstracts information that is usually not important for proving termination such
as program invariants and yet it distinguishes between different reasons for ter-
mination which are not usually maintained in existing abstract domains. We have
implemented a prototype of the algorithm and shown that in practice it is fast and
precise.

1 Introduction

This paper develops sound algorithms for inferring that C programs terminate on all
possible inputs. The oldest trick in the book of termination proofs for programs (e.g.,
[18]) is the ranking function proof. In this method, we find a function p that maps
program states into a well-founded ordered set, such that p(σ) > p(σ′) whenever σ′ is
a state reachable from state σ.

Despite the enormous progress in synthesizing ranking functions (e.g., [3]), mod-
ern programming language features such as nested loops lead to non-linear behaviours
which make it hard to apply existing techniques to synthesize ranking functions in a
sound and precise way directly to the C code.

Recently, [17] introduced the disjunctive well-foundedness principle in order to split
the termination argument into multiple ranking relations, corresponding to different
situations in the program. The main idea is to use a finite set of ranking functions
r1, r2, . . . , rn each of which is well-founded, and to require in addition that the relation
between any two intermediate states in the program is included in one of the relations,
i.e.,

τ+ ⊆
n⋃

i=1

ri (1)

where τ is the transition system describing the meaning of the program and τ+ is the
non-reflexive transitive closure of τ . This principle localizes termination proofs by al-
lowing the use of simpler ranking function synthesizers to handle more complicated
termination proofs.

However, [17] leaves two open problems: (a) what is the best way to find the set
of ranking functions r1, r2, . . . , rn and (b) how to effectively check the condition in
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Eq. 1. Notice that this is a safety question which can be attacked by any abstract inter-
preter [10]. However it may be expensive to check the condition by the abstract inter-
preter or the interpreter may fail due to imprecision.

In this paper we solve these two problems together in a novel way. The first problem
is solved by developing abstract domains which are parameterized by sets of ranking
functions. The meaning of each of the relations (ranking functions) overapproximates
the relations between intermediate states in the program. We employ standard itera-
tive fixpoint computations to compute a set of ranking functions or determine that the
program may diverge. The ranking synthesizer is invoked with larger and larger rela-
tions obtained by composing the current approximation with every possible command.
Notice that calling the ranking synthesizer allows us to abstract away information that
is not necessary for termination, but maintains enough distinctions between different
ranking functions. When a fixpoint is reached the condition in Eq. 1 is guaranteed to
hold and thus there is no need to perform the inclusion check above. The efficiency
provided by our domain is underlined by result which we prove, that, for a particular
base abstract domain, fixpoint calculations are guaranteed to converge, at most, in two
steps. For more refined domains we lose the guarantee of two, but in our experimental
results we find that fixpoints converge in few iterations.

Related Work. Program termination has been studied extensively with many impres-
sive algorithms for automatically inferring termination for functional (e.g.,[13]), logic
(e.g., [6,4]) and imperative programs (e.g., [3,7,19,1]). The result in [17] encourages
the use of existing safety analyzers in order to prove termination (e.g., SLAM [7] or
Octagon [2]). The point of departure of this work is to define a new abstract domain,
designed with termination in mind, rather than to re-use existing domains for safety.
Termination analysis requires a precise treatment of disjunction, and information about
well-foundedness, and we suggest that domains which target these properties will be
more appropriate for termination analysis than domains designed for wholly other pur-
poses. Our work follows [7,2] by employing the disjunctive well foundedness prin-
ciple [17] in order to split the termination argument into multiple ranking relations
corresponding to different situations in the program.

By tailoring our abstract domain to termination we obtain a very efficient termination
prover for imperative programs. In particular it is faster than TERMINATOR, which relies
on SLAM [7], and variance analyses based on Octagon or Polyhedra [2]. The variance
analysis we describe in this paper uses rank functions natively, in contrast to the non-
native variance analyses proposed in [2] which were constructed from existing domains
for invariance. In contrast to [2] we directly abstract ranking relations which allow us to
be more precise in the cases where the underlying abstract domain used for invariance
analysis is too coarse (e.g., non-disjunctive) and our analysis can be more efficient when
the underlying domain records complicated invariants that are not needed for proving
termination. In contrast to [7], we iteratively compute ranking functions without the use
of counterexample guided refinement.

Our abstract domain is related to the abstraction used in size-change termination
[13]. In both cases, program fragments are abstracted in terms of measures decreased
or preserved by the fragments. The major difference is that our domain contains only
those abstract elements that mean terminating program fragments (unless the elements
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are �), whilst size-change termination analyses can have an (non-�) abstract element
that denotes a diverging program fragment. As a result, size-change termination anal-
yses have to check whether (the concretization of) an abstracted program terminates,
whereas our analysis can skip this rather expensive checking.

2 Informal Description of the Analysis

In this section we informally describe the new analysis using an example. Later, in
Section 3, we provide a more formal description.

Consider the program:

1 while (x>0 ∧ y>0)
{

2 if (∗) then { x=x−1; y=∗; } else { y=y−1; }
3

}
This program illustrates the limitation of known termination analyses. The Octagon-
based and Polyhedra-based termination analyses from [2] can quickly (i.e. in 0.02s)
infer that the relation ‘x ≥ 0 ∧ ‘x ≥ x holds between any state at �=2 and any previ-
ous state at �=2, where ‘x and x denote previous and current values of x respectively.
(Note that ‘x is denoting some previous value of x, and not necessarily the last value).
Unfortunately, this relation is insufficient to prove termination of the loop, as it is not
(disjunctively) well-founded—the condition sufficient for proving termination as de-
scribed in [2].

In contrast TERMINATOR can prove the example terminating, but at a great cost
(16s). TERMINATOR finds the following disjunctively well-founded relation at �=2:

(‘x ≥ 0 ∧ ‘x−1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y−1 ≥ y)

To find this relation TERMINATOR performs three rounds of refinement on the rela-
tion itself and 9 rounds of abstraction/refinement for the checking of the 3 candidate
assertions, resulting in the discovery of 21 transition predicates.

The termination analysis in this paper gives us TERMINATOR’s accuracy at the speed
of the Octagon-based termination analysis. The new analysis finds the relation

(‘x ≥ 0 ∧ ‘x−1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y−1 ≥ y ∧ ‘x=x)

in 0.02s.
Concretely, the new analysis uses a disjunctive domain of ranking relations conjoined

with the information about unchanged variables. That is: disjunctions of relations of the
form Te ∧ VX , where

VX
def=

∧
x∈X

‘x=x, Te
def= ‘e ≥ 0 ∧ ‘e−1 ≥ e,

and ‘e is the expression e with all variables x replaced by their corresponding pre-
primed versions ‘x. Let R represent the transition relation of the loop body of our
program in DNF:

R
def= C1 ∨ C2,

C1
def= ‘x > 0 ∧ ‘y > 0 ∧ x=‘x−1, C2

def= ‘x > 0 ∧ ‘y > 0 ∧ x=‘x ∧ y=‘y−1.
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Our analysis begins by taking each disjunct in R and performing rank-function synthe-
sis on it. In this case we get

RFS(C1) = x and RFS(C2) = y.

For each disjunct, the analysis also computes a set of variables whose values do
not change. In this example, it determines that C1 can change both x and y, but C2
does not change variable x. Thus, we begin our analysis with the initial abstract state

A0
def= Tx ∨ (Ty ∧ V{x}), that is,

A0 = (‘x ≥ 0 ∧ ‘x−1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y−1 ≥ y ∧ ‘x=x).

Note that A0 overapproximates the loop body R.
The meaning of this initial abstract state (i.e. γ(A0)) is set of all finite sequences of

program states sisi+1 . . . si+n such that

(
si(x)≥0 ∧ si(x)−1≥si+n(x)

)
∨

(
si(y)≥0 ∧ si(y)−1≥si+n(y) ∧ si(x)=si+n(x)

)
.

The analysis then computes the next abstract state A1 that overapproximates the rela-
tional composition of A0 and R. It takes each disjunction from A0 and each disjunction
from R, composes them, performs rank function synthesis, infers variables that do not
change, and constructs the union of the new ranking relations together with A0. In this
case we find:

RFS(Tx; C1) = x RFS(Tx; C2) = x
RFS((Ty ∧ V{x}); C1) = x RFS((Ty ∧ V{x}); C2) = y

We also find that the last composition (Ty ∧ V{x}; C2) does not change x. Thus,

A1 =
(
A0 ∨ Tx ∨ Tx ∨ Tx ∨ (Ty ∧ V{x})

)
= A0.

Since A0 is a fixpoint and A0 overapproximates R, we know that ∀i > 0. Ri ⊆ A0,
that is, R+ ⊆ A0. Thus, because A0 is disjunctively well-founded, [17] tells us that R
is well-founded—meaning that the loop of our program guarantees termination.

Note that rank function synthesis is extremely efficient, meaning that our implemen-
tation of the analysis can compute the relation A0 for � = 2 as fast as the Octagon-based
termination analyzer (i.e. in 0.02s) [2]. In contrast to the Octagon-based analyzer, how-
ever, we compute a relation that is sufficiently strong to establish termination.

To sum up, the essence of our method is that we symbolically execute the body of
the loop, and then perform abstraction by calling a rank synthesis engine. This in effect
abstracts all information except those that are relevant to termination.

3 Formal Description

In this section we provide a rigorous description of the proposed termination analysis.
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3.1 Programming Language

We consider a simple while language in the paper. Let Vars be a finite set of program
variables x, y, z, . . . and let r represent real numbers.

e ::= x | r | e + e | r × e
b ::= e=e | e 	=e | b ∧ b | b ∨ b | ¬b
a ::= x:=e | x:=∗ | assume(b)
c ::= a | c; c | while b c | c [] c

Note that the language has two forms of assignments, normal assignment x:=e and
nondeterministic random assignment x:=∗. The nondeterministic assignment is used
to model some features of a common programming language, for example C, that are
not covered by our language above. Also notice that the language does not include the
conditional statement. It can be encoded with assume and the nondeterministic choice
operator []: (if b c0 c1)

def=
(
(assume(b); c0) [] (assume(¬b); c1)

)
.

The semantics of our language is standard. We remind the reader of only the storage
model used in the semantics:

St
def= Vars → Real.

This model shows that we assume real variables in this paper. However, changing the
type of variables from reals to integers or rationals will not affect the results of the
paper, except the ones for the fast termination in Lemma 1 and Theorem 2.

3.2 Abstract Domain

Our analysis is parameterized by a domain for representing relations on states. The
domain is specified by the following data:

1. A set D and a monotone function γr : D → P(St×St) (where the target P(St×St)
is ordered by the subset relation).

2. An abstract identity element did in D, that satisfies

ΔSt ⊆ γr(did)

where ΔSt is the identity relation on St.
3. An operator RFS : D → Pfin(D) � {�}, which synthesizes ranking functions. We

assume the following two conditions for this operator:
(a) RFS computes an overapproximation:

RFS(d)	=� =⇒ γr(d) ⊆
⋃

{γr(d′) | d′ ∈ RFS(d)}.

(b) RFS(d) denotes a well-founded relation:

RFS(d)	=� =⇒
⋃

{γr(d′) | d′ ∈ RFS(d)} is well-founded.
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4. An abstract transfer function trans(a) for each atomic commands a (i.e., assign-
ments or assume statements). The function trans(a) has type D → Pfin(D), and
satisfies

∀d ∈ D. (γr(d); [[a]]) ⊆
⋃

{γr(d′) | d′ ∈ trans(a)(d)}

where the semicolon means the usual composition of relations and [[a]] is the stan-
dard relational meaning of the atomic command a.

5. An abstract composition operator comp : D × D → D such that

γr(d); γr(d′) ⊆ γr(comp(d, d′)).

Intuitively, the data above means that we have a set D of relations, some of which are
well-founded. This set comes with an algorithm RFS, which overapproximates a rela-
tion by a ranking relation. It also has operators, trans and comp, that soundly model
all the atomic commands and concrete relation composition. One example of D is the
set of conjunction of linear constraints. In this case, we can use a linear rank synthe-
sis engine, which we denote LINEARRANKSYN, and define RFS as will be shown in
Section 3.4.

The abstract domain A of our analyzer is:

A def= (Pfin(D))� (i.e., P(D) � {�}).

It is ordered by the the subset order � extended with �. That is, A � A′ iff

A′ = �, or (A, A′ ∈ Pfin(D) and A ⊆ A′).

Each abstract element A in A denotes a set of finite or infinite sequences of states,
which we call traces. The element � denotes the set of all traces, including infinite
ones, and non-� elements A denote a set of finite nonempty traces whose initial and
final states are related by some d in A. Let γr(A) be

⋃
{γr(d) | d ∈ A}, the disjunction

of d’s in A, and define T to be the set of all nonempty traces:

T def= St+ ∪ St∞.

The formal meaning of A is given by a concretization function γ:

γ : A → P(T )
γ(A) def= if (A=�) then T else {τ | τ is nonempty, finite, and τ0[γr(A)]τ|τ |−1}

where |τ | is the length of the trace τ , and τn is the n-th state of the trace τ , and notation
s[r]s′ means that s, s′ are related by r. For instance, when [x : n, y : m] is a state
mapping x and y to n and m, a finite trace

[x : 1, y : 1][x : 2, y : 2][x : 5, y : 3][x : −2, y : 2]

belongs to γ({‘x−1 ≥ x, ‘y−1 ≥ y}), because x has a smaller value in the final state
than in the initial state.

Our domain A is a complete semi-lattice. The join of a family {Ai}i∈I of elements
in A is given by the union of all Ai’s, if none of Ai’s is � and the union is finite.
Otherwise, the join is �.
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3.3 Generic Analysis

Our generic analyzer is an abstract interpretation, defined in a denotational style.
For functions f : D → A and g : D × D → D, let f †, g† be their liftings on A:

f † : A → A g† : A × A → A
f †(A) def= if (A=�) then � else

⊔
d∈A f(d)

g†(A, B) def= if (A=� ∨B=�) then � else
⊔

d∈A,d′∈B{g(d, d′)}.

Using these liftings, we define the generic analyzer as follows: 1

[[c]]# : A → A
[[a]]#A

def= (trans(a))†A
[[c0; c1]]#A

def= ([[c1]]# ◦ [[c0]]#)A
[[c0 [] c1]]#A

def= [[c0]]#A � [[c1]]#A

[[while b c]]#A
def= let F

def= λA′.[[assume(b); c]]#({did} � A′) and As
def= {did} � A

in [[assume(¬b)]]#
(
comp†(As, fix (RFS† ◦ F ))

)
Intuitively, the argument A represents a set of finite or infinite traces that happen before
the command c. The analyzer computes an overapproximation of all traces that are
obtained by continuing the execution of c from the end of traces in A.

Our definition assumes an operator fix. The fix operator takes a function of the form
RFS† ◦ F : A → A, and returns an abstract element A in the image of RFS† such that

A = � ∨
(
A 	= � ∧ (RFS† ◦ F )(A) 	= � ∧ γr((RFS† ◦ F )(A)) ⊆ γr(A)

)
.

One can use the standard fixpoint iteration to define fix,2 because the above condition
holds for all post fixpoints A of (RFS† ◦ F ) (that are in the image of RFS†). However,
this is not mandatory. In fact, a more optimized fix operator is used in the analysis of
Section 3.4, which in some cases does not even compute a post fixpoint.

The most interesting case of the analysis is the loop. The best way to understand
this case is to assume that fix is the standard fixpoint operator and to see a sequence
generated during the iterative fixpoint computation:

A0 = {},

A1 = A0 � (RFS† ◦ F ){did}
= (RFS† ◦ F ){did}

A2 = A1 � (RFS† ◦ F )
(
{did} � (RFS† ◦ F ){did}

)
= (RFS† ◦ F ){did} � (RFS† ◦ F )2{did},

A3 = A2 � (RFS† ◦ F )
(
{did} � (RFS† ◦ F ){did} � (RFS† ◦ F )2{did}

)
= (RFS† ◦ F ){did} � (RFS† ◦ F )2{did} � (RFS† ◦ F )3{did},

. . .

1 In the definition, we view RFS, trans(a) as functions of type D → (Pfin(D))�.
2 In this case, fix (RFS† ◦ F ) is defined by the limit of the sequence {An} where A0 = {} and
An+1 = An � (RFS† ◦ F )(An).
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Here we used the fact that RFS† ◦ F preserves �. Note that in each step, we apply the
lifted rank-synthesis algorithm RFS† to the analysis result of the loop body F (An).
This application of RFS throws away all the information from F (An), except the one
necessary for proving termination. Another thing to note is that the input A is not used in
this fixpoint computation at all. As the expansion of A3 shows, the fixpoint computation
effectively starts with (RFS† ◦ F ){did}, which means the results of running the loop
body once on all states. The input A, together with {did}, is pre-composed later to the
computed fixpoint. This change of the starting point is crucial for the soundness of our
analysis, because it ensures that the analyzer overapproximates the relation between
any states (not just initial states) at a loop and the following states at the same loop (so
that we can apply a known termination proof rule based on disjunctively well-founded
relations [17]).

Given a program c, the analyzer works as follows:

ANALYSIS(c) def= let A = [[c]]#({did})
in if (A �=�) then (return “Terminates”) else (return “Unknown”).

Theorem 1. If ANALYSIS(c) returns “Terminates”, then c terminates on all states.

The proof of this theorem is given in the full version of the paper [5]. There we also clar-
ify what we mean by “terminates on all states”, by defining a concrete trace semantics
of commands based on Cousot’s work [9].

3.4 Linear Rank Abstraction

The linear rank abstraction is an instance of our generic analysis, by the domain of
linear constraints and a linear ranking synthesis algorithm LINEARRANKSYN.

Let r represent real numbers. Consider constraints C defined by the grammar below:

E ::= x | ‘x | x′ | r | E + E | r × E
P ::= E = E | E 	= E | E < E | E > E | E ≤ E | E ≥ E
C ::= P | true | C ∧ C

This grammar ensures that all the constraints are the conjunction of linear constraints.
Note that a constraint can have three kinds of variables; a normal variable x denoting the
current value of program variable x; a pre-primed variable ‘x storing the initial value
of x; post-primed variables y′ that usually denotes values which were once stored in
program variables during computation. We assume that there are finitely many normal
variables (Vars) and finitely many pre-primed variables (‘Vars), and that there is a one-
to-one correspondence between these two kinds of variables. For post-primed variables,
however, we assume an infinite set.

Each constraint means a relation on St. For each state s, let ‘s be a function from
‘Vars to Real such that for every pre-primed variable ‘x, ‘s(‘x) is s(x) for the corre-
sponding normal variable x. The meaning function γr of constraints C is defined as
follows:

γr(C) def= {(s0, s1) | (‘s0, s1 |= ∃X ′.C)}
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where X ′ is the set of post-primed variables in C and |= is the usual satisfaction relation
in first-order logic. Note that all post-primed variables in the constraint C are implicitly
existentially-quantified.

The linear rank abstraction uses the set of constraints C as the parameter set D of
the generic analysis. The identity element did is the identity relation

did
def=

∧
x∈Vars

‘x=x.

Assume that we are given an enumeration x0, . . . , xn of all program variables in
Vars. Call an expression E normalized, when (1) E does not contain any pre or post
primed variables and (2) it is of the form ai0 × xi0 + . . . aik

× xik
+ a with ai0 = 1

or −1 and i0 < i1 . . . < ik. Note that in a normalized expression E, the coefficient
of the first variable in E according to the given enumeration is 1 or −1. Conceptually,
LINEARRANKSYN implements a function of the type:3

D → ({(E, r) | E is normalized and r is a positive real}) � {�}.

The output � indicates that the algorithm fails to discover a ranking function, because
(the implementation of) the algorithm is incomplete or the input constraint defines
a non-well-founded relation between pre-primed variables and normal variables. The
other output (E, r) means that the algorithm succeeds to find a ranking function which
overapproximates the given constraint. Concretely, for a normalized expression E and
a positive real r, let

TE,r
def= (‘E ≥ 0 ∧ ‘E−r ≥ E),

where expression ‘E is E with all normal variables x replaced by corresponding pre-
primed variables ‘x. The output (E, r) of LINEARRANKSYN(C) means that

(∃X ′.C) =⇒ TE,r

where X ′ is the set of all post-primed variables in C.
Assume that we have chosen a fixed positive real dec for the analysis, which is very

small (in particular smaller than 1). Using LINEARRANKSYN and dec, we define the
operator RFS as follows:

RFS(C) def=

⎧⎨
⎩

{} if C � false
{TE,dec} else if LINEARRANKSYN(C)=(E, r) and r ≥ dec
� otherwise

where � is a sound (but not necessarily complete) theorem prover. Note that the result
of RFS is always of the form TE,dec, so the second subscript of T is not necessary. From
now on, we write TE for TE,dec.

3 Usually the implementation of linear rank synthesis returns a tuple (E, r, b) where E is an
expression without any pre or post primed variable whose value is decreasing, r is a decrement,
and b is a lower bound of E. Our analysis picks the absolute value a of the coefficient of the
first variable xi in E, transforms E/a to a normal form E′, and regards (E′ − b/a, r/a) as an
output from LINEARRANKSYN.
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The abstract transfer functions for atomic commands are defined following Floyd’s
strongest postcondition semantics:

[[x:=∗]]#C
def= {C[x′/x]} (x′ is fresh)

[[x:=e]]#C
def= {C[x′/x] ∧ x=(e[x′/x])} (x′ is fresh)

[[assume(b)]]#C
def= if (C ∧ b � false) then {}

else {C0, . . . , Cn | C0 ∨ . . . ∨ Cn = norm(C ∧ b)}.

Here norm is the standard transformation that takes a formula in the propositional logic
and transforms the formula to disjunctive normal form.

Next, we define the abstract composition comp. Let fresh be an operator on con-
straints C that renames all post-primed variables fresh. Let ‘Vars be the set of pre-
primed variables. The abstract composition is defined as follows

comp(C0, C1)
def= let

(
C2 = fresh(C1)

)
in

(
C0[Y ′/Vars] ∧ C2[Y ′/‘Vars]

)
.

The variable set Y ′ in the definition denotes a set of fresh post-primed variables, that
has as many elements as Vars. The two substitutions there replace a normal variable x
and the corresponding pre-primed variable ‘x by the same post-primed variable x′.

Finally, we specify a fix operator. For each function (RFS† ◦F ) on sets of constraints
C, let {Gn}n be the standard fixpoint iteration sequence: G0 = {} and Gn+1 = Gn �
(RFS† ◦ F )(Gn). Given G, our fix operator returns the first Gn such that

Gn=� ∨
(
Gn 	=� ∧ Gn+1 	=� ∧ ∀C ∈ Gn+1. ∃C′ ∈ Gn. C � C′

)
.

This definition assumes that some Gn satisfies the above property. If such a Gn does not
exist, the fix operator is not defined, so the analysis can diverge during the fixpoint com-
putation. In Theorem 2, we will discharge this assumption and prove the termination of
the linear rank abstraction.

Example 1. Consider the program c below:

while (x > 0 ∧ y > 0) (x:=x−1 [] y:=y−1).

Given c, the analysis starts the fixpoint computation from the empty set A0 = {}.
The first iteration of the fixpoint computation is done in two steps. First, it applies the
abstract transfer function of the loop body to {did} ∪ A0 = {did}:

[[assume(x>0∧y>0); (x:=x−1 [] y:=y−1)]]#({did})
= [[x:=x−1 [] y:=y−1]]#{did ∧ x>0∧ y>0}
= [[x:=x−1]]#{did ∧ x>0∧ y>0} ∪ [[y:=y−1]]#{did ∧ x>0 ∧ y>0}
= [[x:=x−1]]#{‘x=x ∧‘y=y ∧ x>0 ∧ y>0} ∪ [[y:=y−1]]#{‘x=x ∧‘y=y ∧ x>0∧ y>0}
= {‘x=x′ ∧‘y=y ∧ x′>0 ∧ y>0∧ x=x′−1, ‘x=x ∧‘y=y′ ∧ x>0∧ y′>0∧ y=y′−1}.

Next, the analysis calls LINEARRANKSYN twice with each of the two elements in the
result set above. These function calls return x and y, from which the analysis constructs
two ranking relations below:

Tx
def= (‘x≥ 0 ∧ ‘x−dec ≥ x) and Ty

def= (‘y ≥ 0 ∧ ‘y−dec ≥ y).

The result A1 of the first iteration is {Tx, Ty}.
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The second fixpoint iteration computes:

A1 � (RFS†◦[[assume(x>0 ∧ y>0); (x:=x−1 [] y:=y−1)]]#)A1.

We show that the abstract element on the right hand side of the join, denoted A′2, is
again A1, so that the fixpoint computation converges here. To compute A′2, the analyzer
first transforms A1 according to the abstract meaning of the loop body. This results in a
set with four elements:

{ Tx[x′/x] ∧ x′>0 ∧ y>0 ∧ x=x′−1, Tx[y′/y] ∧ x>0 ∧ y′>0 ∧ y=y′−1,
Ty[x′/x] ∧ x′>0 ∧ y>0 ∧ x=x′−1, Ty[y′/y] ∧ x>0 ∧ y′>0 ∧ y=y′−1 }.

The first two elements come from transforming Tx according to the left and right
branches of the loop body. The other two elements are obtained similarly from Ty.
Next, the analysis calls LINEARRANKSYN with all the four elements above. These
four calls return x, x, y and y, which represent well-founded relations Tx, Tx, Ty, Ty.
Thus, A′2 is the same as Tx and Ty, and the fixpoint computation stops here.

After the fixpoint computation, the analysis composes the identity relation {did} with
the result of the fixpoint computation:

comp†({did}, {Tx, Ty})= {‘x=x′0 ∧ ‘y=y′0 ∧Tx[x′0/‘x], ‘x=x′0 ∧ ‘y=y′0 ∧Ty[y′0/‘y]}
= {Tx, Ty}.

Finally, we apply [[assume(¬(x> 0 ∧ y > 0))]]# to the set above, which gives a set with
four constraints:

{ Tx ∧x≤ 0, Tx ∧ y ≤ 0, Ty ∧x≤ 0, Ty ∧ y ≤ 0 }.

Since the result is not �, the analysis concludes that the given program c terminates. �

In the example above, the fixpoint computation converges after two iterations. In the
first iteration, which computes A1, it finds ranking functions, and in the next iteration, it
confirms that the ranking functions are preserved by the loop. In fact, we can prove that
the fixpoint computation of the analysis always follows the same pattern, and finishes
in two iterations. Suppose that LINEARRANKSYN is well-behaved, such that

1. RFS always computes an optimal ranking function, in the sense that

(RFS(C)= {TE} ∧ γr(C) ⊆ γr(TE+b)) =⇒ b ≥ 0,

2. RFS depends only on the (relational) meaning of its argument.

Lemma 1. For all commands c and normalized expressions E, if there is a constraint
C ∈ [[c]]#{TE} such that RFS(C) = {TF } and γr(C) 	= ∅, then F is of the form E − b
for some nonnegative b.

Proof. The proof appears in the full version of this paper [5]. �
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Theorem 2 (Fast Convergence). Suppose that the theorem prover � is complete. Then,
for all commands c, the fixpoint iteration of

G = λA. (RFS† ◦ [[c]]#)({did} � A)

terminates at most in two steps. Specifically, G2({}) is �, or the result of fixG is {} or
G({}).

Proof. Suppose that G2({}) is not �. This implies that both G({}) and G2({}) are
finite sets of TE’s for normalized expressions E, because G(= RFS† ◦ [[c]]#) preserves
�. If G({}) is empty, {} is the fixpoint of G, thus becoming the result of fixG, as
claimed in the theorem. To prove the other nonempty case, suppose that G({}) is a
nonempty finite collection A = {TE1, . . . , TEn}. We need to show that for each TF

in G(A), there exists TEi ∈ A such that TF � TEi , which is equivalent to γr(TF ) ⊆
γr(TEi) due to the completeness assumption about the prover. Pick TF in G(A). Since
G(= RFS† ◦ [[c]]#) preserves the join operator, there exists TEi in A such that TF ∈
G({TEi}). This means that RFS(C) = {TF } for some constraint C in [[c]]#(TEi). Note
that since RFS filters out all the provably inconsistent constraints and the prover is
assumed complete, γr(C) is not empty. Thus, by Lemma 1, there is a nonnegative b
such that F = E − b. This gives the required γr(TF ) ⊆ γr(TE). �

Note that the theorem suggests that we could have used a different fix operator that does
not call the prover at all and just returns G2({}). We do not take this alternative in the
paper, since it is too specific for the RFS operator in this section; if RFS also keeps track
of equality information, this two-step convergence result no longer holds.

Refinement with simple equalities. The linear rank abstraction cannot prove the ter-
mination of the program in Section 2. When the linear rank abstraction is run for the
program, it finds the ranking functions x and y for the true and false branches of the
program, but loses the information that the else branch does not change the value of x,
which is crucial for the termination proof. As a result, the linear rank abstraction returns
�, and reports, incorrectly, the possibility of nontermination.

One way to solve this problem and improve the precision of the linear rank abstrac-
tion is to use a more precise RFS operator that additionally keeps simple forms of
equalities. Concretely, this refinement keeps all the definitions of the linear rank ab-
straction, except that it replaces the rank synthesizer RFS of the linear rank abstraction
by RFS′ below:

RFS′(C)
def
= if (RFS(C)=�) then � else

{
TE ∧ (∧(C � ‘x=x)‘x=x) | TE ∈ RFS(C)

}
.

When this refined analysis is given the program in Section 2, it follows the informal
description in that section and proves the termination of the program.

4 Experimental Evaluation

In order to evaluate the utility of our approach we have implemented the analysis in this
paper, and then compared it to several known termination tools. The tools used in the
experiments are as follows:
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1 2 3 4 5 6
LR 0.01 � 0.01 � 0.08 � 0.09 � 0.02 � 0.06 �
O 0.11 � 0.08 � 6.03 � 1.02 � 0.16 � 0.76 �
P 1.40 � 1.30 � 10.90 � 2.12 � 1.80 � 1.89 �
T 6.31 � 4.93 � T/O - T/O - 33.24 � 3.98 �

(a) Results from experiments with termination tools on arithmetic examples from the Octagon Li-
brary distribution.

1 2 3 4 5 6 7 8 9 10
LR 0.23 � 0.20 
 0.00 
 0.04 � 0.00 � 0.03 � 0.07 � 0.03 � 0.01 
 0.03 �
O 1.42 � 1.67 
 0.47 
 0.18 � 0.06 � 0.53 � 0.50 � 0.32 � 0.14 
 0.17 �
P 4.66 � 6.35 
 1.48 
 1.10 � 1.30 � 1.60 � 2.65 � 1.89 � 2.42 
 1.27 �
T 10.22 � 31.51 
 20.65 
 4.05 � 12.63 � 67.11 � 298.45 � 444.78 � T/O - 55.28 �

(b) Results from experiments with termination tools on small arithmetic examples taken from Win-
dows device drivers. Note that the examples are small as they must currently be hand-translated
for the three tools.

1 2 3 4 6 7 8 9 10 11 12
LR 0.19 � 0.02 � 0.01 † 0.02 † 0.02 † 0.01 † 0.04 † 0.01 † 0.03 † 0.02 † 0.01 †
O 0.30 † 0.05 † 0.11 † 0.50 † 0.10 † 0.17 † 0.16 † 0.12 † 0.35 † 0.86 † 0.12 †
P 1.42 � 0.82 � 1.06 † 2.29 † 2.61 † 1.28 † 0.24 † 1.36 � 1.69 † 1.56 † 1.05 †
T 435.23 � 61.15 � T/O - T/O - 75.33 � T/O - T/O - T/O - T/O - T/O - 10.31 †

(c) Results from experiments with termination tools on arithmetic examples from the POLYRANK

distribution.

Fig. 1. Experiments with 4 termination provers/analyses. LR is used to represent LINEARRANK-
TERM, O is used to represent OCTATERM, an Octagon-based variance analysis. P is POLYTERM,
a Polyhedra-based variance analysis. The T represents TERMINATOR [8]. Times are measured in
seconds. The timeout threshold was set to 500s. �=“a proof was found”. †=“false counterexam-
ple returned”. T/O = “timeout”. 
=“termination bug found”. Note that pointers and aliasing from
the device driver examples were removed by a careful hand translation when passed to the tools
O, P and LR. Note that a time of 0.00 means that the analysis was too fast to be measured by the
timing utilities used.

LR) LINEARRANKTERM is the new variance analysis that implements the linear rank
abstraction with simple equalities in Section 3.4. This tool is implemented using
CIL [15] allowing the analysis of programs written in C. However, no notion of
shape is used in these implementations, restricting the input to only arithmetic pro-
grams. The tool uses RANKFINDER [16] as its linear rank synthesis engine and uses
the Simplify prover [11] to filter out inconsistent states and check the implication
between abstract states.

O) OCTATERM is the variance analysis [2] induced by the octagon analysis OCTANAL

[14].
P) POLYTERM is the variance analysis [2] similarly induced from the polyhedra anal-

ysis POLY based on the New Polka Polyhedra library [12].
T) TERMINATOR [8].
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These tools, except for TERMINATOR, were all run on a 2GHz AMD64 processor us-
ing Linux 2.6.16. TERMINATOR was executed on a 3GHz Pentium 4 using Windows
XP SP2. Using different machines is unfortunate but somewhat unavoidable due to
constraints on software library dependencies, etc. Note, however, that TERMINATOR

running on the faster machine was still slower overall, so the qualitative results are
meaningful. In any case, the running times are somewhat incomparable since on failed
proofs TERMINATOR produces a counterexample path, but LINEARRANKTERM, OC-
TATERM and POLYTERM give a suspect pair of states.

Fig. 1 contains the results from the experiments performed with these analyses.4 For
example, Fig. 1(a) shows the outcome of the provers on example programs included in
the OCTANAL distribution. Example 3 is an abstracted version of heapsort, and Example
4 of bubblesort.

Fig. 1(b) contains the results of experiments on fragments of Windows device drivers.
These examples are small because we currently must hand-translate them before apply-
ing all of the tools but TERMINATOR.

Fig. 1(c) contains the results from experiments with the 4 tools on examples from
the POLYRANK distribution.5 The examples can be characterized as small but famously
difficult (e.g. McCarthy’s 91 function). Note that LINEARRANKTERM performs poorly
on these examples because of the limitations of RANKFINDER. Many of these examples
involve phase changes or tricky arithmetic in the algorithm.

From these experiments we can see that LINEARRANKTERM is very fast and pre-
cise. The prototype we have developed indicates that a termination analyzer using ab-
stractions based on ranking functions shows a lot of promise.
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Abstract. We present a numerical abstract domain to infer invariants
on (a possibly unbounded number of) consecutive array elements using
array predicates. It is able to represent and compute affine equality rela-
tions over the predicate parameters and the program variables, without
using disjunctions or heuristics. It is the cornerstone of a sound static
analysis of one- and two-dimensional array manipulation algorithms. The
implementation shows very good performance on representative bench-
marks. Our approach is sufficiently robust to handle programs traversing
arrays and matrices in various ways.

1 Introduction

Program analysis now involves a large variety of methods able to infer complex
program invariants, by using specific computer-representable structures, such as
intervals [1], octagons [2], linear (more exactly affine) equality constraints [3],
or affine inequality constraints [4]. Each abstract domain induces an equivalence
relation: two abstract elements are equivalent if and only if they represent the
same concrete elements. In this context, an equivalence class corresponds to a set
of equivalent abstract elements, called representatives. Although all representa-
tives are equivalent, they may not be identically treated by abstract operators or
transfer functions, which implies that the choice of a “bad” representative may
cause a loss of precision. Most numerical domains (for instance, reduced prod-
uct [5]) are provided with a reduction operator which associates each abstract
element to a “good” equivalent element, which will allow gaining precision.

Unfortunately, in some abstract domains, it may not be possible to define
a precise reduction operator, because for some equivalence classes, the notion
of “good” representatives may depend on further analysis steps, or on parts
of the program not yet analyzed. This difficulty appears in abstract domains
based on universally quantified predicates ranging over (a possibly unbounded
number of) consecutive array elements (first introduced in [6]). The abstract
elements of these domains consist of a predicate p and two parameters u and
v: p(u, v) means that all the elements whose index is between u and v (both
included) contain values for which the statement p holds. These predicates are
then combined with classic numerical abstractions to bind their parameters to
the values of the program variables.
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1: int i, n, p; bool t[n];
2: assert 0 <= p <= n;
3: i := 0;
4: while i < n do
5: t[i] := 0;
6: i := i+1;
7: done;
8: while i > p do
9: t[i-1] := 1;
10: i := i-1;
11: done;
12:

Fig. 1. Incrementing then decre-
menting array manipulations

int i, n; bool t[n];
i := 0;
while i < n do

t[i] := 0;
i := i+1;

done;
while ... do

if ... then
write_one();

else
write_zero();

end;
done;

write_one() {
if i > 0 then
t[i-1] := 1;
i := i-1;

end;
}

write_zero() {
if i < n then
t[i] := 0;
i := i+1;

end;
}

Fig. 2. Both incrementing and decrementing ar-
ray manipulations. The notation ... stands for a
non-deterministic condition.

Overview of the Problem. As an example, let us try to analyze the first loop of
the program given in Fig. 1, which initializes the array t with the boolean 0. For
that purpose, we introduce the predicate zero (which means that the associated
array elements contain the value 0), combined with the affine inequality domain.
Informally, the loop invariant consists in joining the abstract representations Σk

of the concrete memory states arising after exactly k loop iterations. For example,
after one loop iteration (k = 1), the instruction t[i] := 0 has assigned a zero
to the array element of index 0, so that zero(u, v), with u = v = 0, i = 1 and
n ≥ 1. Similarly, after ten loop iterations, the ten first array elements have been
initialized, thus zero(u, v), with u = 0, v = 9, i = 10 and n ≥ 10. It can be
shown that joining all the abstract states Σk with k ≥ 1, ie which have entered
the loop at least once, yields the invariant zero(u, v), with u = 0, v = i − 1,
and 1 ≤ i ≤ n. We now have to join this invariant with Σ0 to obtain the
whole loop invariant. The abstract state Σ0 represents the concrete memory
states which have not entered the loop. Since the array t is not initialized, Σ0
is necessarily represented by a degenerate predicate, ie a predicate zero(l, m)
such that l > m, which ranges over an empty set of array elements. Degenerate
predicates naturally form an equivalence class, containing an infinite number
of representatives, while non-degenerate predicates form classes containing a
unique representative. Now, choosing the degenerate predicate zero(u, v) with
u = 0, v = −1, i = 0, and n ≥ 0, to represent Σ0, yields the expected loop
invariant u = 0, v = i, and 0 ≤ i ≤ n. On the contrary, if we choose zero(u, v)
with u = 10, v = 9, i = 0, and n ≥ 0, we obtain an invariant zero(u, v) with
much less precise affine inequality relations, in which, in particular, the value
of u is not known exactly anymore (it ranges between 0 and 10). Therefore,
the representative zero(0, −1) is a judicious choice in the first loop analysis.
But choosing the same representative for the second loop analysis will lead to
a major loss of precision. The second loop partly initializes the array with the
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boolean 1 between from the index n−1 to the index p. Using a predicate one to
represent array elements containing the value 1, the analysis yields the expected
invariant only if the representative one(t, s) with t = n and s = n − 1 is chosen
to represent the class of degenerate predicates one.

This example illustrates that the choice of right representatives for the degen-
erate classes to avoid loss of precision, is not an obvious operation, even for sim-
ple one-dimensional array manipulations. In [6,7], some solutions are proposed to
overcome the problem: (i) use heuristics to introduce the right degenerate pred-
icates. This solution is clearly well-suited for the analysis of programs involving
very few different natures of loops, such as incrementing loops always starting
from the index 0 of the arrays, but is not adapted for more complex array manip-
ulations. In particular, we will see in Sect. 4 that even classic matrix manipula-
tion algorithms involve various different configurations for degenerate predicates.
(ii) partition degenerate and non-degenerate predicates, instead of merging them
in a single (and convex) representation. However such a disjunction may lead
to an algorithmic explosion, since at least one disjunction has to be preserved
for each predicate, including at control points located after loops: for example,
the expected invariant at the control point 12 in Fig. 1 is zero(u, v) ∧ one(s, t)
with u = 0, v = p − 1, s = p, and t = n − 1. Without further information on
n and p, this invariant contains non-degenerate and degenerate configurations
of both predicates zero(u, v) and one(s, t). Partitioning these configurations
yields the disjunction (n = p = 0) ∨ (n > p = 0) ∨ (p = n > 0) ∨ (0 < p < n).
And, if the program contains instructions after control point 12, the disjunction
must be propagated through the rest of the program analysis. Therefore, this
approach may not scale up to programs manipulating many arrays.1 (iii) parti-
tion traces [8], for instance unroll loops, in order to distinguish traces in which
non-degenerate predicates are inferred, from others. This solution is adapted to
simple loops: as an example, for the loop located at control point 4 in Fig. 1,
degenerate predicates occur only in the trace which does not enter the loop.
But, in general, it may be difficult to automatically discover well-suited trace
partitions: for example, in Fig. 2, traces in which the functions write_one and
write_zero are called the same number of times, or equivalently, i = n, should
be distinguished from others, since they contain a degenerate form of the pred-
icate one. Besides, if traces are not ultimately merged, trace partitioning may
lead to an algorithmic explosion for the same reasons as state partitions, while
merging traces amounts to the problem of merging non-degenerate and degen-
erate predicates in a non-disjunctive way.

As we aim at building an efficient and automatic static analysis, we do not
consider any existing solution as fully satisfactory.

Contributions. We present a numerical abstract domain to be combined with ar-
ray predicates. It represents sets of equivalence classes of predicates, by inferring

1 However, some techniques could allow merging disjunctions in certain cases. We will
see at the end of Sect. 3 that these techniques coincide with the join operation that
we develop in this paper.
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affine invariants on some representatives of each class. In particular, the right
representatives are automatically discovered, without any heuristics. As it is built
as an extension of the affine equality constraint domain [3,9], it does not use any
disjunctive representations. Several abstract transfer functions are defined, all
are proven to be sound. This domain allows the construction and the implemen-
tation of a sound static analysis of array manipulations. It is adapted to array
predicates ranging over the elements of one-dimensional or two-dimensional ar-
rays. Our work does not focus on handling a very large and expressive family of
predicates relative to the content of the array itself, but rather on the complex-
ity due to the automatic discovery of affine relations among program variables
and predicate parameters, hence of right representatives for degenerate pred-
icates. Therefore, the analysis has been experimented on programs traversing
arrays and matrices in various ways. In all cases, the most precise invariants are
discovered, which proves the robustness of our approach.

Section 2 presents the principles of the representation of equivalence classes
of array predicates. Section 3 introduces the domain of formal affine spaces to
abstract sets of equivalence classes of array predicates by affine invariants on
some of their representatives. In Sect. 4, the construction of the array analysis
and experiments are discussed. Finally, related work is presented in Sect. 5.

2 Principles of the Representation

As explained in Sect. 1, array predicates are related by an equivalence rela-
tion, depending on their nature (degenerate or non-degenerate): for an one-
dimensional array predicate p, two representations p(u, v) and p(u′, v′) are
equivalent if and only if both are degenerate, ie u > v∧u′ > v′, or they are equal
(u = u′∧v = v′). More generally, given predicates with p parameters, we assume
that there exists an equivalence relation ∼ over R

p, defining the equivalence of
two numerical p-tuples of predicate parameters.

Given a program with n scalar variables, a memory state can be represented
by an element of R

n+p, where each scalar variable is associated to one of the
n first dimensions, and array predicate parameters are mapped to the p last
ones. Then, the equivalence relation ∼ can be extended to R

n+p to characterize
memory states which are provided with equivalent predicates: two memory states
M, N in R

n+p are equivalent, which is denoted by M � N , if and only if M and
N coincide on their n first dimensions, and if the p-tuples formed by the p last
dimensions are equivalent w.r.t. ∼. We adopt the notation [M ] to represent the
equivalence class of M , ie the set of elements equivalent to M .

We have seen in Sect. 1 that the representation of equivalence classes by
arbitrarily-chosen representative elements may lead to a very complex invariant,
possibly not precisely representable in classic numerical domains. Our solution
consists in representing an equivalence class by a formal representative instead:
it consists in a (n+p)-tuple, whose n first coordinates contain values in R, while
the p last ones (related to predicate parameters) contain formal variables, taken
in a given set X . A formal representative R is provided with a set of valuations
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over X : each valuation ν maps R to a point Rν of R
n+p, by replacing each

formal variable x in R by the value ν(x) ∈ R. Then, an equivalence class C
can be represented by a formal representative R and a set of valuations V such
that for any ν ∈ V , the element Rν is in the class C. In other words, a formal
representative can represent several elements of a same equivalence class.

Let us illustrate the principle of formal representative with the program in
Fig. 1, with n = 3 scalar variables i, n, and p. Consider the equivalence class of
a memory state at control point 4 which has not yet entered the loop, thus
in which the predicate zero(u, v) is degenerate, and in which, for instance,
i = 0, n = 10, and p = 5. It can be represented by the formal representa-
tive R = (0, 10, 5, x, y) (written as a row vector for reason of space) and the set
of valuations V = {ν | ν(x) > ν(y)}: indeed, each representative Rν corresponds
to a predicate zero(u, v) such that u > v. In that case, all the equivalent nu-
merical configurations for the degenerate predicate zero(u, v) are represented in
the formal representative.

Therefore, formal representatives allow keeping several representatives for a
given class C instead on focusing on only one of them. In the following sec-
tions, we define formal affine spaces, which extend the affine equality domain to
range over formal representatives. These formal affine spaces are combined with
sets of valuations represented by affine inequality constraints over X , giving the
right values for the representatives. Besides, we describe how to compute the
formal affine spaces, so as to automatically discover affine invariants on some
representatives of distinct equivalence classes.

3 Formal Affine Spaces

We now formally introduce the abstract domain to represent sets of equivalence
classes of array predicates. We follow the abstract interpretation methodology [1],
by defining a concretization operator, and then abstract operators such as union.

Let Δ be the set of equivalence classes w.r.t the equivalence relation �, and
Δ(X ) be the set of formal representatives. Formally, Δ(X ) is isomorphic to
the cartesian product of R

n, representing the set of memory states over scalar
variables, with X p. Given a formal representative M , π1(M) represent the n-
tuple consisting in the n first coordinates. This element of R

n is called the real
component of M . Besides, the p last coordinates of M forms π2(M), called
formal component of M . Similarly, the ith coordinate of M is said to be real
(respectively formal) if i ≤ n (resp. i > n).

While the affine equality domain was initially introduced using conjunctions of
equality constraints [3], affine spaces can be represented by means of generators
as well [9]. An affine generator system E +Ω is given by a family E = (ei)1≤i≤s

of linearly independent vectors of R
n, and a point Ω ∈ R

n. It is associated to
the affine space defined by:

Span(E + Ω) =

{
Ω +

s∑
i=1

λiei | λ1, . . . , λs ∈ R

}
, (1)
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π1

⎧⎨
⎩

π2

{

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0
1
0
x1

x2

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
0
1
y1

y2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ +

⎛
⎜⎜⎜⎜⎝

0
0
0
z1

z2

⎞
⎟⎟⎟⎟⎠ ¦ V

where V = {x1 = x2 ∧ y1 = y2 ∧ z1 >
z2}

π1

⎧⎨
⎩

π2

{

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0
1
0
x′

1

x′
2

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
0
1
y′
1

y′
2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ +

⎛
⎜⎜⎜⎜⎝

1
0
0
z′
1

z′
2

⎞
⎟⎟⎟⎟⎠ ¦ V ′

where V ′ = {x′
1 = x′

2 = 0 ∧ y′
1 = y′

2 =
0 ∧ z′

1 = z′
2 = 0}

Fig. 3. Two formal affine spaces for n = 3 and p = 2

corresponding to the set of the points generated by the addition of linear combi-
nations of the vectors ei to the point Ω. Affine generator systems are equivalent
to sets of affine constraints. Indeed, the elimination of the λi in the combinations
given in Eq. (1) yields an equivalent set of affine constraints over the coordinates
of the points.

Formal affine spaces are defined by extending affine generator systems of R
n

with p formal coordinates: generators are now elements of Δ(X ), provided with
a set of valuations.

Definition 1. A formal affine space E + Ω ¦ V is given by a family E =
(e1, . . . , es) of vectors of Δ(X ), a point Ω of Δ(X ) verifying:

– the (π1(ei))1≤i≤s are linearly independent,
– any two formal variables occurring in (π2(ei))i and π2(Ω) are distinct,

and an affine inequality constraint system V over the formal variables occurring
in (π2(ei))i and π2(Ω).

Figure 3 gives an example of formal affine spaces. We abusively denote by ν ∈ V
the fact that the valuation ν satisfies the constraint system V . Similarly to
“classic” affine generator systems, a formal affine space E + Ω ¦ V generates a
set of formal representatives, written as combinations Ω +

∑
i λiei. As explained

in Sect. 2, each formal representative R, provided with the set of valuations
satisfying V , represents a set of several representatives which belong to a same
equivalence class C: for any ν ∈ V , C = [Rν]. Following these principles, the
concretization operator γ maps any formal space E + Ω ¦ V to the set of the
equivalence classes represented by the generated formal representatives:

γ(E + Ω ¦ V )
def
= {C | R ∈ Span(E + Ω) ∧ ∀ν ∈ V. C = [Rν]} , (2)

where Span(E + Ω) consists of the combinations Ω +
∑s

i=1 λiei, for λi ∈ R.

Example 1. Consider the formal affine space E + Ω ¦ V on the left-hand side of
Fig. 3. Any combination in Span(E +Ω) is a formal representative R of the form
(0, λ, μ, λx1 + μy1 + z1, λx2 + μy2 + z2) (written as a row vector for reason of
space) where λ, μ ∈ R. Suppose that the dimensions respectively represent the
scalar variables i, n, p, and the parameters u and v of a predicate zero(u, v).
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Then R represents the equivalence classes of memory states in which i = 0, n
and p have independent values, and for any valuation ν ∈ V ,

u = λν(x1) + μν(y1) + ν(z1) > λν(x2) + μν(y2) + ν(z2) = v , (3)

or equivalently, the predicate zero(u, v) is degenerate. In particular, E + Ω ¦ V
allows abstracting the memory states at control point 4 in Fig. 1 which have
not yet entered the loop. Besides, it represents several representatives for the
degenerate predicate zero(u, v), while a “classic” affine invariant would select
only one of them. Similarly, the formal affine space F + Ω′ ¦ V ′ on the right-
hand side of Fig. 3 yields formal representatives R′ corresponding to classes of
memory states such that i = 1, n and p are arbitrary, and u = v = 0, since for
i ∈ {1, 2}, λν′(x′i)+μν′(y′i)+ ν′(z′i) = 0 for any valuation ν′ ∈ V ′. Then, it is an
abstraction of the memory states after the first iteration of the first body loop
in Fig. 1: the first element of the array t (index 0) contains the value 0. 
�

3.1 Joining Two Formal Spaces

We wish to define a union operator � which provides an over-approximation of
two formal affine spaces E+Ω¦V and F +Ω′¦V ′. Let us illustrate the intuition
behind the definition of � by sufficient conditions.

Suppose that G+O¦W is the resulting formal space. A good start is to require
� to be sound w.r.t. the underlying real affine generator systems: if π1(G + O)
denotes the real affine generator system obtained by applying π1 on each vector
gi of G and on the origin, then π1(G + O) has to represent a larger affine space
than those generated by π1(E + Ω) and π1(F + Ω′). To ensure this condition,
let us build G + O ¦W by extending the sum system of the two real systems
π1(E +Ω) and π1(F +Ω′).2 More precisely, if Gr +Or denotes the sum system,
we add p fresh formal variables to each vector of Gr and to Or, which yields
G + O.

Then, to ensure γ(E +Ω ¦V ) ⊆ γ(G+O ¦W ), we require Span(E +Ω) to be
“included” in Span(G + O). Although the inclusion already holds for their real
components (Span(π1(E+Ω)) ⊆ Span(π1(G+O))), Span(E+Ω) and Span(G+O)
can not be directly compared since they may contain different formal variables.
Therefore, we build a substitution σP over the formal variables occurring in
π2(E + Ω), such that for any R ∈ Span(E + Ω), we have RσP ∈ Span(G + O).
This substitution is induced by the change-of-basis matrix P from π1(E +Ω) to
π1(G+O), which verifies mat(π1(E+Ω)) = mat(π1(G+O))×P (mat(π1(E+Ω))
is the matrix whose columns are formed by the vectors (π1(ei))i and π1(Ω)).
The matrix P expresses the coefficients of the (unique) decomposition of each
π1(ei) and π1(Ω) in terms of the π1(O) and (π1(gk))k. It allows to express the

2 The sum system is obtained by extracting a free family Gr from the vectors (π1(ei))i,
(π1(fi))j , and π1(Ω

′)−π1(Ω), and choosing Or = π1(Ω). Then, Gr+Or generates the
smallest affine space greatest than the affine spaces represented by both π1(E + Ω)
and π1(F + Ω′).
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P =

⎛
⎜⎜⎝

0 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎠ Q =

⎛
⎜⎜⎝

0 0 1
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎠ ∀i ∈ {1, 2}.

⎧⎪⎨
⎪⎩

σP (xi) �→ yi

σP (yi) �→ zi

σP (zi) �→ ti

⎧⎪⎨
⎪⎩

σQ(x′
i) �→ yi

σQ(y′
i) �→ zi

σQ(z′
i) �→ ti + xi

Fig. 4. Change-of-basis matrices and their associated substitutions

π2(ei) and π2(Ω) in terms of the π2(O) and (π2(gk))k as well, by defining σP by

σP (mat(π2(E + Ω)))
def
= mat(π2(G + O)) × P .

Now, it suffices that W be a stronger system of constraints than V σP , the
system obtained by applying the substitution σP on V . Indeed, for any class
C ∈ γ(E + Ω ¦ V ), there exists R ∈ Span(E + Ω) such that for any ν ∈ V ,
C = [Rν]. Then, for any ν′ ∈ W , we have ν′ ∈ V σP , so that there exists a
valuation ν ∈ V such that ∀x.(σP (x))ν′ = ν(x). This implies (RσP )ν′ = Rν,
hence C = [(RσP )ν′]. A similar reasoning can be performed for F + Ω′ ¦ V ′,
which leads to the following definition of �:

Definition 2. The union (E + Ω ¦ V ) � (F + Ω′ ¦ V ′) is defined as the formal
space G+O¦W where π1(G+O) is the sum of π1(E+Ω) and π1(F +Ω′), yielding
two change-of-basis matrices P and Q respectively, and W is the conjunction of
the two systems of constraints V σP and V ′σQ.

The following proposition states that the union operator is sound.

Proposition 1. The union (E + Ω ¦ V ) � (F + Ω′ ¦ V ′) over-approximates the
union of the sets of classes represented by E + Ω ¦ V and F + Ω′ ¦ V ′.

Example 2. Consider the formal spaces E +Ω ¦V and F +Ω′ ¦V ′ introduced in
Ex. 1. The sum of the two real affine generator systems π1(E+Ω) and π1(F +Ω′)
is a system in which i, n, and p are all independent, so that:

G + O
def
=

i

n

p

u

v

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

1
0
0
x1
x2

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
1
0
y1
y2

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
0
1
z1
z2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ +

⎛
⎜⎜⎜⎜⎝

0
0
0
t1
t2

⎞
⎟⎟⎟⎟⎠ . (4)

The corresponding change-of-basis matrices P and Q are given in Fig. 4. In par-
ticular, these matrices represent the relation π1(Ω′) = π1(O) + π1(g1), which
generates the substitutions z′1 → t1 + x1 and z′2 → t2 + x2. The associated
substitutions σP and σQ are then defined in Fig. 4. Applying them on the con-
straint systems V and V ′ yields: V σP = {y1 = y2 ∧ z1 = z2 ∧ t1 > t2} and
V ′σQ = {y1 = y2 = 0 ∧ z1 = z2 = 0 ∧ t1 + x1 = t2 + x2 = 0}, so that:

W = {x1 = −t1 ∧ x2 = −t2 ∧ y1 = y2 = 0 ∧ z1 = z2 = 0 ∧ t1 > t2} . (5)

It can be intuitively verified that G+O¦W contains the formal spaces E+Ω¦V
and F + Ω′ ¦ V ′:
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– when i = 0, we have u = t1 + λy1 + μz1 and v = t2 + λy2 + μz2 for some
λ, μ ∈ R, so that for any ν ∈ W , uν = ν(t1) > ν(t2) = vν. Then the
predicate zero(u, v) is degenerate.

– when i = 1, we have u = t1 + x1 + λy1 + μz1 and v = t2 + x2 + λy2 + μz2,
hence uν = vν = 0 for any valuation ν ∈ W . In that case, the predicate
zero(u, v) ranges over the first element of the array.

The resulting formal space G + O ¦W is an over-approximation of the memory
states arising at control point 4 in Fig. 1, after at most one loop iteration.

We could show that joining E + Ω ¦ V with the formal space resulting from
the loop body execution on G+O¦W , yields the affine space G+O¦W ′, where
W ′ = {x′1 = 0 ∧ x′2 = 1 ∧ y′1 = y′2 = 0 ∧ z′1 = z′2 = 0 ∧ t′1 = 0 ∧ t′2 = −1}.
It could be also verified that this affine space is a fixpoint of the loop transfer
function. It represents the expected invariant u = 0 and v = i − 1. In particular,
the computation automatically discovers the right representative zero(0, −1)
(obtained with i = 0) among all the representatives zero(u, v) such that u > v
contained in E + Ω ¦ V . 
�

Definition 2 and Ex. 2 raise some remarks. Firstly, when considering increasing
formal affine spaces, the underlying real affine generators are logically grow-
ing, while the sets of valuations become smaller (the constraint system becomes
stronger). Intuitively, this corresponds to an increasing determinism in the choice
of the representatives in the equivalence classes abstracted by the formal space.
In particular, when considering formal spaces obtained by iterating an increas-
ing transfer function to compute a global invariant, two cases (among possibly
more) are singular: when the set of valuations is reduced to a singleton, and
when this set is empty. In the former, the formal affine space coincide with an
affine generator system over R

n+p: in other words, some representatives in the
over-approximated equivalence classes are bound with program variables by an
affine invariant. This situation happens at the end of Ex. 2, in which u = 0
and v = i − 1 in the affine space over-approximating the loop invariant. In the
latter case, the discovery of an affine invariant failed: by definition of γ, the
concretization of the formal space is the entire set Δ.

Secondly, consider the two abstract memory states that we tried to join in
Sect. 1 to compute an invariant of the first loop in Fig. 1: on the one hand,
a degenerate predicate zero(u, v) with i = 0, and on the other hand, a non-
degenerate one zero(u, v) with u = 0, v = i − 1, and 1 ≤ i ≤ n. We could verify
that joining the two representations by means of formal spaces, and in particular,
computing the conjunction of the two corresponding constraint systems V σP and
V ′σQ, exactly amounts to check whether the affine relations u = 0 and v = i− 1
match the degenerate condition u > v when i = 0. More generally, when it
succeeds, the approach based on matching degenerate condition coincides with
the operations performed when joining two formal spaces. The major advantage
of formal affine spaces is that it is adapted to any program or coding style,
while matching degenerate conditions may fail. For example, let us consider the
piece of program i := n-1; if ... then t[i] := 0; i := i-1; fi;. The
matching approach would check if the non-degenerate invariant zero(u, v)∧u =
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v = i + 1 = n − 1 match the degenerate condition when i = n − 1, which is
obviously false.

3.2 Precision and Further Abstract Operators

All usual abstract operators can be defined on formal affine spaces. For reason of
space, we only give an enumeration. First, a partial order �, defined in a similar
way to the union operator, can be introduced. Then, the concretization γ can
be shown to be monotonic, and the union � is the best possible join operator
w.r.t. the order �. Furthermore, the definition of guard, constraint satisfiability,
and assignment operations closely follows the definition of the same primitives
on real affine generator systems [3,9], thus their design is simple. The main
difference is that guards, satisfiability and assignments over predicate parameters
involve operations on both the family of generators and the system of constraints
representing the sets of valuations. For the latter, only usual operators, such
as assignments or extracting a valuation satisfying the set of constraints, are
necessary. All the operators on formal affine spaces are proven to be conservative.
Moreover, exactness holds for guards, satisfiability, and invertible assignments,
when they are applied to a formal affine space whose system of constraints
representing the valuations is satisfiable.

4 Application to the Analysis of Array Manipulations

Formal affine spaces has been implemented to analyze array manipulation pro-
grams. The analysis computes abstract memory states consisting in a finite se-
quence of predicates, and a formal affine space over the program variables and
the predicate parameters. Note that a reduced product of formal affine spaces
with convex polyhedra [4] over scalar variables is used to increase precision, since
affine generator systems do not precisely handle inequality guards.

Array assignments (ie assignments of the form t[i] := e) introduce new
predicates in the abtract state (intuitively, non-degenerate predicates of the
form p(u, v) with u = v = i). Then, some predicates may represent contigu-
ous memory areas of a same array, and thus can be merged in a single predicate.
The situations in which two predicates p and q can be merged correspond to
simple geometric configurations. Two of these configurations for one- and two-
dimensional are depicted respectively at the top and the bottom of Fig. 5.

All these situations can be expressed as conjunctions of affine equality con-
straints over the parameters of the two predicates. When these constraints are
satisfied, a new predicate p�q is introduced in the abstract state. The statement
p � q itself over-approximates p and q: it expresses a property on the values
of the array element which is weaker than those expressed by p and q. And its
parameters are initialized to fit the whole area obtained by concatenating the
memory areas corresponding to p and q. Finally, the predicates p and q and
their parameters are removed from the abstract state.
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Fig. 5. Merging two contiguous
predicates
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Fig. 6. Example of a two-dimensional predicate

One-dimensional Predicates. Two kinds of predicates are used to analyze array
manipulations, depending on the type of arrays.

For arrays whose elements take their values in a finite set of cardinal K (such
as booleans or C enumerations), we consider one predicate c per possible value.
Then c(u, v) states that the array contains the value c between the indices u
and v. We allow at most K pairwise distinct predicates c1, . . . , cK per array.
The merging operations are applied only to predicates representing the same
constant. Besides, if two predicates c(u1, v1) and c(u2, v2) ranging over the same
array can not be merged, they are simply removed from the abstract state.
Although this choice is very strict, it offers a tractable analysis, which is precise
enough to handle the examples given in Figs. 1 and 2, as reported in Table 1.

For integer arrays, conjunctions of interval and bounded difference constraints
(ie of the form c1 ≤ x ≤ c2 or c1 ≤ x − y ≤ c2) between the array content and
the scalar variables are used. For instance, the predicate 〈0 ≤ t ≤ n − 1〉 (u, v)
represents the fact that the elements of the array t located between the indices
u and v all contain values between 0 and n − 1 (n being a program scalar
variable). Such predicates are implemented under the form of n + 1 intervals:
one to bound the array values in an interval, n to bound the differences with the
n scalar variables. Then, the analysis allows at most one predicate per array. If a
predicate associated to an array is introduced during the computation while this
array already has a predicate, both are merged if possible, or simply removed
if not. Moreover, to ensure termination, the statement p � q is obtained by
pointwise widening the intervals contained in p and q.

Two-dimensional Predicates. We use two-dimensional predicates which range
over convex quadrilateral areas of two-dimensional arrays. Predicates are of the
form p(O1, O2, O3, O4), and have now eight parameters, corresponding the x-
and y-coordinates of the associated vertices O1, O2, O3, and O4. Degenerate
and non-degenerate predicates are distinguished by the rotation direction of the
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Table 1. Analysis benchmarks

Programs Invariants (by default, at the end of the program) Time

Fig. 1 zero(0, p− 1) ∧ one(p, n− 1) ∼ 0.6 s
Fig. 2 outer loop invariant: zero(0, i− 1) ∧ one(i, n− 1) ∼ 0.7 s
full_init i. and d. 〈0 ≤ t ≤ n− 1〉 (0, n− 1) < 0.2 s
range_init i. and d. 〈p ≤ t ≤ q − 1〉 (p, q − 1) < 0.2 s
partial_init i. 〈0 ≤ t ≤ n − 1〉 (0, j − 1) and d. 〈0 ≤ t ≤ n − 1〉 (j, n− 1) ∼ 0.2 s
partition i. 〈ge ≥ 0〉 (0, gelen − 1) ∧ 〈lt ≤ −1〉 (0, ltlen − 1) ∼ 0.4 s

d. 〈ge ≥ 0〉 (gelen, n− 1) ∧ 〈lt ≤ −1〉 (ltlen, n− 1) ∼ 0.5 s
full_matrix r. 〈m = 0〉 ((0, 0), (0, n− 1), (n − 1, n− 1), (n− 1, 0)) 12.9 s

c.. 〈m = 0〉 ((n− 1, 0), (0, 0), (0, n− 1), (n− 1, n − 1)) 13.4 s
lower_triang r. 〈m = 0〉 ((0, 1), (0, n− 1), (i− 1, n− 1), (i− 1, i)) 12.6 s
(outer loop c. 〈m = 0〉 ((0, 1), (0, 1), (0, j − 1), (j − 2, j − 1)) 14.7 s
invariants) dg. 〈m = 0〉 ((0, 1), (0, k − 1), (n− k, n− 1), (n− 2, n− 1)) 11.3 s
upper_triang r. 〈m = 0〉 ((1, 0), (1, 0), (i− 1, i− 2), (i− 1, 0)) 14.6 s
(outer loop c. 〈m = 0〉 ((n− 1, 0), (1, 0), (j, j − 1), (n− 1, j − 1)) 13.1 s
invariants) dg. 〈m = 0〉 ((n− 1, 0), (n− k + 1, 0), (n− 1, k − 2), (n− 1, 0)) 15.0 s

points O1, O2, O3, and O4. We use the convention that the interior of the polygon
O1O2O3O4 is not empty if and only if O1, O2, O3, and O4 are ordered clockwise,
as in Fig. 6. The shape of the polygons O1O2O3O4 is restricted by requirements,
not fully detailed here, but implying in particular that the coordinates of the Oi

are integer, and the lines (OiOi+1) are either horizontal, vertical, or diagonal.
These requirements are weak enough to express the invariants used in the tar-
geted algorithms. Moreover, they allow characterizing degenerate polygons by a
condition consisting of several affine inequalities over the predicate parameters.

The analysis allows for each matrix at most two predicates: one is one-
dimensional, while the other is two-dimensional. Indeed, the matrix algorithms
we wish to analyze performs intermediate manipulations on rows, columns, or
diagonals. Thus, the former predicate is used to represent the invariant on the
current one-dimensional structure, while the latter collects the information on
the older structures, which form a two-dimensional shape. The predicates prop-
agate bounded difference constraints relative to the matrix content.

Benchmarks. Table 1 reports the invariants discovered by our analyzer, imple-
mented in Objective Caml (5000 lines of code), and the time taken for each anal-
ysis on a 1 Gb RAM laptop using one core of a 2 GHz Intel Pentium Core Duo
processor. The first six programs involve only one-dimensional arrays. The two
first programs are successfully analyzed using constant predicates, and the right
array shape is discovered. The third one, full_init, initializes each element t[i]
of the array t of size n with the value i. It results in a fully initialized array with
values ranging between 0 and n − 1. The program range_init has a similar be-
havior, except that it performs the initialization between the indices p and q only.
The programs partial_init and partition are taken from [7] and [10] respec-
tively. The former copies the value i in t[j] when the values of two other arrays
a[i] and b[i] are equal, and then increments j. The latter partitions the positive
or null and strictly negative values of a source array a into the destination arrays
ge and lt respectively. The three last programs involve matrices. The first one,
full_matrix, fully initializes a matrix m of size n × n. The two last ones only fill
the upper- and lower-triangular part of the matrix with the value 0. Each program
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contains two nested loops. As an illustration, the invariant of the outer loop of the
column-after-column version of lower_triang discovered by the analysis is given
in Fig. 6. The reader can verify that the final invariant obtained for i = n− 1 cor-
responds to a lower-triangular matrix. Several versions of each program are an-
alyzed: for one-dimensional array manipulation algorithms, incrementing (i.) or
decrementing (d.) loops (except for the programs in Figs. 1 and 2 which already
use both versions of loops), and for matrix manipulation loops, row-after-row (r.),
column-after-column (c.), or diagonal-after-diagonal (dg.) matrix traversal.3 All
the examples involving one-dimensional arrays only are successfully analyzed in
less than a second. Analysis time does not exceed 15 s on programs manipulating
matrices, which is a good result, considering the complexity of the merge condi-
tions for two-dimensional predicates, and the fact that these programs contain
nested loops. These benchmarks show that the analysis is sufficiently robust to
discover the excepted invariant for several stategies of array or matrix manipula-
tions programs. In particular, the right representatives for degenerate predicates
are automatically found out in various and complex situations. As an example,
the degenerate predicates discovered for the programs lower_triang (obtained
with i = 0, j = 1, and k = 1) and upper_triang (obtained with i = 1, j = 0,
and k = 1) all represent different configurations of interior-empty quadrilateral
shapes. Furthermore, although not reported in Table 1, the analysis handles sim-
ple transformations (such as loop unrolling) on the experimented programs, with-
out any loss of precision. Finally, for one-dimensional predicates, we have experi-
mented, with formal affine spaces, the manual substitution of the general degen-
erate condition u > v by the right degenerate configurations for each program.
In that case, operations on formal affine spaces roughly coincide with operations
in a usual equality constraint domain. We have found that the additional cost in
time due to formal affine spaces is small (between 8% and 30%), which suggests
that this numerical abstract domain has good performance, while it automatically
discovers the right representatives.

5 Related Work

Several static analyses usepredicates to representmemoryshapeproperties: among
others, [11,12,13,14,15] infer elaborate invariants on dynamic memory structures,
such as lists and trees. Most of these works do not involve a precise treatment of
arrays. Some abstract interpretation based analyzers [16,17,18] precisely handle
manipulations of arrays whose size is exactly known. Besides, [17] can represent all
the array elements by a single abstract element (array smashing). Albeit not very
precise, it could also represent an unbounded number of array elements.

To our knowledge, only [19,6,7,20,10,21] handle precise properties ranging over
an unbounded number of one-dimensional array elements. Most of them involve
the predicates presented in this paper, and some other expressing more prop-
erties on the values of the array elements, such as equality, sorting or pointer
3 The source code of each program is available at http://www.lix.polytechnique.
fr/Labo/Xavier.Allamigeon
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aliasing properties. The approach of [19,20,10] differs ours in the use of a theo-
rem prover in order to abstract reachable states in [19], and of counterexample-
guided abstraction refinement in [20,10]. They share with our analysis common
benchmarks: for example, [20,10] analyzes the program full_init in respec-
tively 1.190 s and 0.27 s, and partition in 7.960 s and 3.6 s.4 The returned
invariants are the same as those given in Table 1. The other works [6,7,21]
use the abstract interpretation framework. The analysis developed in [21] in-
volves predicates on arrays and lists, and allows expressing invariants of the
form E ∧

∧
j ∀Uj(Fj ⇒ ej), where E, Fj and ej are quantifier-free facts. This

approach is more general than ours, since it automatically discovers univer-
sally quantified predicates, while we explicitely define the family of predicates
(uni- or two-dimensional) in our analysis. The drawback is that it requires under-
approximation abstract domains and associated operators because of the uni-
versal quantification. In constrast, our concretization operator (defined in (2))
involves a universal quantifier over valuations ν ∈ V , which can be shown to
commute with the existential quantifier ∃R ∈ Span(E + Ω). Then, exact op-
erations on the inequality constraint systems representing the valuations, such
as intersections or assignments, yield sound and precise results (see Sect. 3.2).
In [21], full_init and partition are respectively analyzed in 3.2 s and 73.0 s
on a 3 GHz machine, yielding the same invariants than with our analysis. In [6],
semantic loop unrolling and introduction by heuristics of well-chosen degenerate
predicates (called tautologies) are combined. It handles array initialization algo-
rithm (the exact nature of the algorithm, partial, incrementing, decrementing,
etc, is not mentionned), and bubble sort and QuickSort algorithms. In [7], array
elements are distinguished according to their position w.r.t. to the current loop
index (strictly before, equal to, or strictly after). This yields a partition of the
memory configurations into distinct categories, which are characterized by the
presence or the absence of array elements having a certain position w.r.t. to a
loop index. The program partial_init is analyzed in 40 s on a 2.4 GHz ma-
chine, and yields a partition of four memory configurations corresponding to the
invariant given in Table 1. Finally, as far as we know, no existing work reports
any experiments on two-dimensional array manipulation programs.

6 Conclusion

We have introduced a numerical abstract domain which allows to represent sets
of equivalence classes of predicates, by inferring affine invariants on some rep-
resentatives of each class, without any heuristics. Combined with array predi-
cates, it has been experimented in a sound static analysis of array and matrix
manipulation programs. Experimental results are very good, and the approach is
sufficiently robust to handle several array traversing stategies. Future work will
focus on the extension of the abstraction to other systems of generators, such as
convex polyhedra, in order to incorporate the reduced product implemented in
the analysis into the abstraction of equivalence classes.
4 A 1.7 GHz machine was used in both works.
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Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, Springer, Heidelberg
(2004)

10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI 2007, ACM Press, New York (2007)

11. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3–valued logic.
In: POPL 1999 (1999)

12. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. SIGPLAN Not. 36(5) (2001)

13. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
Springer, Heidelberg (2006)

14. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, Springer, Heidelberg (to appear, 2007)
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Abstract. We present a polynomial-time algorithm which at the extra cost of a
factor O(k) (k the number of variables) generalizes inter-procedural copy con-
stant propagation. Our algorithm infers variable-variable equalities in addition
to equalities between variables and constants. Like copy constant propagation, it
tracks constant and copying assignments but abstracts more complex assignments
and guards. The algorithm is based on the observation that, for the abstract lattice
of consistent equivalence relations, the upper adjoints of summary functions can
be represented much more succinctly than summary functions themselves.

1 Introduction

The key task when realizing inter-procedural analyses along the lines of the functional
approach of Sharir/Pnueli [13,8], is to determine the summary functions for procedures
which describe their effects on the abstract program state before the call. Given a com-
plete lattice D for the abstract program states, the summary functions are taken from
the set of monotonic or (if we are lucky) distributive functions D → D. This set is
often large (if not infinite), rendering it a nontrivial task to identify a representation
for summary functions which is efficiently supports basic operations such as function
composition or function application to values of D. Examples for such efficient repre-
sentations are pairs of sets in case of gen/kill bit-vector problems [6] or vector spaces
of matrices in case of affine equality analyses [11].

In this paper we present one further analysis where efficient representations of sum-
mary functions exist, namely, the analysis of variable-variable together with variable-
constant equalities. This analysis is a generalization of copy constant propagation [6].
Based on the new analysis, register allocation can be enhanced to additionally remove
certain register-register assignments. The idea is to allow the allocator to assign vari-
ables x and y to the same register, given that x = y holds at each program point where
both variables are live. This technique is known as register coalescing [3].

Example 1. Consider the program from Fig. 1. In this program, the variables x2 and
x3 are both live at program point 3. Since x2 = x3 definitively holds at this program
point, we can coalesce x2,x3 into a variable y. By doing so, the assignment x3 ← x2
becomes y ← y and thus can be removed. ��

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 178–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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M [x2]← x3

x3 ← x2

x2 ← x1 + 1 y ← x1 + 1

y ← y

y ← x1 + 1

M [x2]← y M [x2]← y

Fig. 1. A program with variable-variable assignments

The summary functions for inter-procedural equality analysis are completely distribu-
tive, i.e., commute with arbitrary least upper bounds. Also, the complete lattice of
abstract values at program points is �-atomic (for a precise definition see below). There-
fore, summary functions can (at least in principle) be represented through tabulation of
their values for �-atoms. The number of these atoms, though, is exponential in the
number of program variables — rendering this immediate idea as not practical.

In this paper, we report that summary functions for equality analysis can nonetheless
be succinctly represented. The key idea is not to represent summary functions them-
selves, but their upper adjoints — a well-known construction from the theory of Galois
connections which, for a completely �-distributive function, returns a completely �-
distributive function. This construction has also been used for demand-driven program
analyses [5,7]. It provides the solution in our application since the lattice in question has
quadratically many �-atomic elements only, thus allowing for an efficient tabulation of
upper adjoints. As a result, we obtain a fast inter-procedural equality analysis whose
worst-case complexity is only one factor k (k the number of variables) slower than the
fastest known algorithm for inferring copy constants [6].

Related work. Equality of variables can be considered as a particular case of a general-
ized analysis of availability of expressions, also called value numbering [1]. Originally,
this analysis tracks for basic blocks the symbolic expressions representing the values of
the variables assigned to. The key point is that operator symbols are left uninterpreted.
The inferred equalities between variables and terms therefore are Herbrand equalities.
Later, the idea of inferring Herbrand equalities was generalized to arbitrary control-flow
graphs [14]. Only recently, this problem has attracted fresh attention. In [4], Gulwani
and Necula show that the original algorithm of Steffen, Knoop and Rüthing can be
turned into a polynomial time algorithm if one is interested in polynomially sized equal-
ities between variables and terms only. Progress in a different direction was made in [10]
and [12] where the authors generalize Herbrand equalities to deal with negative guards
or side-effect free functions, respectively. Still, it is open whether full inter-procedural
analysis of Herbrand equalities is possible.

On the other hand, when only assignments of variables and constants are tracked,
the abstract domain can be chosen finite – thus implying computability of the analysis.
The naive approach, however, results in an exponential-time algorithm. A less naive
approach may interpret (or code) the constants as numbers. The problem then consists
in inferring specific affine equalities between variables. The latter problem is known to
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x1 ← x2

work ()

main()

x1 ← x2

work ()

x1 ← x2

x2 ← 0x1 ← 1

x2 ← 2

Fig. 2. An example program with procedures

be inter-procedurally decidable in polynomial time (given that each required arithmetic
operation counts for O(1)). The algorithm for this problem as presented in [11], how-
ever, has a factor k8 in the worst-case complexity bound (k the number of variables).
In the present paper we improve on this by reducing the exponent to 4 in the worst case
— where sparse representations could be even more efficient.

This paper is organized as follows. After defining programs and their collecting seman-
tics in Section 2, we introduce in Section 3 the complete lattice of consistent equiv-
alence relations that is central for our approach. We discuss basic operations on this
lattice and their complexity. Section 4 is concerned with representing summary func-
tions as needed in our inter-procedural analysis. It turns out that in our scenario it is
advantageous to represent summary functions not directly but by their upper adjoints.
We then present in Section 5 our inter-procedural analysis. We extend our approach to
local variables in Section 6. Section 7 summarizes and concludes.

2 Programs and Their Collecting Semantics

For this paper, we view programs as a finite collection of procedures f where each f is
given by a finite control-flow graph as in Fig. 2. Each edge in the control-flow graphs
is either labeled with a call f() to a procedure f or with an assignment s. In pictures,
we omit the label if it represents a skip operation xi ← xi. Let V denote the set of
values the program uses in its computations. For technical reasons, we assume |V | ≥ 2.
Let X = {x1, . . . ,xk} be the set of global program variables. Later, we extend our
approach to deal with local variables as well. In order to concentrate on the essen-
tials of the analysis, we consider simplified programs only. So, we assume that condi-
tional branching has already been abstracted to non-deterministic branching. Since our
analysis only tracks variable-to-variable assignments and constant-to-variable assign-
ments, we consider assignments xi ← xj , xi ← c or xi ←? for variables xi,xj ∈ X
and constants c ∈ V . Here the non-deterministic assignment xi ←? may assign any
value to xi. This is used to abstract read operations which change the value of xi in an
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unpredictable way or assignments of expressions that are not just a variable or constant.
Note that the same class of programs is considered for copy constant propagation [6].

The collecting semantics of a program assigns to each program point v the set C[u] of
program states which occur at u in an execution of the program. In our application, the
variables x1, . . . ,xk take values from the set V . Accordingly, an individual program
state can be represented by a vector (x1, . . . , xk) ∈ V k where xi denotes the value of
variable xi, and C[u] is a subset of V k. The definition of the collecting semantics of a
program is based on a specification of the effects [[s]] of assignments s onto the set of
states in which s is to be executed. The effects of assignments are given by:

[[xi ←?]] Y = {x′ | ∃x ∈ Y : ∀ k 
= i : x′k = xk}
[[xi ← xj ]] Y = {x′ | ∃x ∈ Y : x′i = xj ∧ ∀ k 
= i : x′k = xk}
[[xi ← c]] Y = {x′ | ∃x ∈ Y : x′i = c ∧ ∀ k 
= i : x′k = xk}

A procedure f induces a transformation of the set of possible program states before the
call to the set of program states that occur after the call if the procedure is called in any
of these states. Here, we choose to collect this transformation from the rear and consider
for each program point u of a procedure f , the transformation S[u] : 2V k → 2V k

induced by same-level program executions starting from u and reaching the procedure
exit of f at the same level. Then, the transformation for procedure f is given by S[stf ],
where stf is the entry point of f . The transformations S[u] are characterized as the least
solution of the following system of in-equations:

S[rtf ] ⊇ Id rtf exit point of procedure f
S[u] ⊇ S[v] ◦ S[stf ] (u, f(), v) a call edge, stf entry point of f
S[u] ⊇ S[v] ◦ [[s]] (u, s, v) an assignment edge

where Id X = X for every set of program states X and “⊇” is the pointwise extension
of the superset relation to set-valued functions. Since the expressions on right-hand
sides of all in-equations denote monotonic functions, the system of in-equations has a
unique least solution by the Knaster-Tarski fixpoint theorem.

Assume that we are given the effects S[stf ] of calls to the procedures f . Then these
can be used to determine, for every program point u, the set of program states C[u] ⊆
V k which possibly are attained when reaching u. These can be determined as the least
solution of the following system of in-equations:

C[stmain] ⊇ V k

C[stf ] ⊇ C[u] (u, f(), ) a call edge
C[v] ⊇ S[stf ] (C[u]) (u, f(), v) a call edge
C[v] ⊇ [[s]] (C[u]) k = (u, s, v) an assignment edge .

3 The Abstract Domain

We are interested in equalities between variables and variables and between variables
and constants. In order to express such properties, we introduce the complete lattice
E(X, V ) (or E for short). Its least element ⊥ describes the empty set of program states
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and represents that all conceivable equalities are valid. Thus, α(∅) = ⊥ where α :
2V k → E is the function which maps sets of program states to their respective best
description in E. Every element E 
= ⊥ in the lattice is an equivalence relation on X∪V
where constants are considered as pairwise distinct, i.e., non-equivalent. Let us call
such an equivalence relation consistent. The consistent equivalence relation describing
a set ∅ 
= X ⊆ 2V k

, is given by α(X) where (xi,xj) ∈ α(X) iff xi = xj for all
(x1, . . . , xk) ∈ X and (xi, c) ∈ α(X) for c ∈ V iff xi = c for all (x1, . . . , xk) ∈
X . Technically, we can represent a consistent equivalence relation E as an array (for
simplicity also denoted by E) where E[i] = c iff the equivalence class of xi contains the
constant c ∈ V and E[i] = xj for one representative variable xj from the equivalence
class of xi if this class does not contain a constant. Then, two variables xi and xj

belong to the same equivalence class iff E[i] = E[j] and a variable xi and a constant c
belong to the same class iff E[i] = c. Logically, we can represent E by the conjunction
of equalities xi = E[i] for those xi with E[i] 
= xi, i.e., by a conjunction of at most k
equalities of the form xi = xj or xi = c for distinct variables xi,xj and constants c.

On the set E, we define an ordering � as implication, i.e., E1 � E2 iff either E1 =
⊥ or E1 is a consistent equivalence relation where every equality of E2 is implied
by the conjunction of equalities of E1. Thus, the least upper bound of two consistent
equivalence relations E1, E2 is the equivalence relation which is represented by the
conjunction of all equalities implied by E1 as well as by E2. The greatest lower bound
of two equivalence relations logically is given by their conjunction.

Not every two consistent equivalence relations have an other consistent equivalence
relation as greatest lower bound. The conjunction of x1 = 1 and x1 = 2, e.g., equates
the distinct constants 1 and 2. The greatest lower bound therefore is given by ⊥ which
thus logically denotes false. Note that the length h of a strictly increasing sequence:

⊥ � E1 � . . . � Eh

in E is bounded by h ≤ k + 1 where k is the number of program variables.

Lemma 1. 1. The least upper bound E1 � E2 can be computed in time O(k).
2. The greatest lower bound E1�. . .�En of n equivalence relations can be computed

in time O((n + k) · k).

Proof. W.l.o.g. assume that all Ei are different from ⊥. The first assertion follows since
we can determine, in linear time, for each variable xi, the pair (E1[i], E2[i]) giving us
the pair of equivalence classes w.r.t. E1 and E2, respectively, to which xi belongs. Then
using bucket sort, the equivalence classes of E = E1 � E2 can be computed in time
O(k). Let X denote a maximal set of variables all mapped to the same pair (t1, t2). If
t1 = t2 = c for a constant c, then E[j] = c for all xj ∈ X . Otherwise, all variables in
X are equal, but have unknown value. Therefore, we set, for each xj ∈ X , E[j] = xi

for some (e.g., the first) variable xi ∈ X .
An algorithm establishing the complexity bound of the second assertion works as

follows. We start with one of the given equivalence relations E = E1 and then suc-
cessively add the at most (n − 1) · k equalities to represent the remaining equivalence
relations. An algorithm for computing (xi = t) ∧ E for (an array representation of) a
consistent equivalence relation E 
= ⊥ is presented in Fig. 3.
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(xi = c) ∧ E = if (E[i] = c′ ∈ V ) if (c = c′) return E; else return ⊥;
else { // E[i] is a variable

X ← {xj | E[j] = E[i]};
forall (xj ∈ X) E[j] ← c;
return E;

}
(xi = xj) ∧ E = if (E[i] = E[j]) return E;

else if (E[i] = c ∈ V ) if (E[j] = c′ ∈ V ) return ⊥;
else { // E[j] is a variable

X ← {xj′ | E[j′] = E[j]};
forall (xj′ ∈ X) E[j′] ← c;
return E;

}
else { // E[i] is a variable

X ← {xi′ | E[i′] = E[i]};
forall (xi′ ∈ X) E[i′] ← E[j];
return E;

}

Fig. 3. The Implementation of conjunctions xi = t ∧ E for E �= ⊥

Every test in this algorithm takes time O(1). If some update of E occurs, then either
an equivalence class receives a constant value or two equivalence classes are merged.
Both events can only occur O(k) times. Since each update can be executed in time
O(k), the complexity estimation for the greatest lower bound computation follows. ��

The mapping α is completely distributive, i.e., it commutes with arbitrary least upper
bounds. Thus, it is the lower adjoint (abstraction) of a Galois-connection [9]. The coun-
terpart to α, the concretization γ : E → 2V k

is given by γ(E) = {x ∈ V k | x |= E}
for E 
= ⊥ and γ(⊥) = ∅. Here, we write x |= E for a vector x satisfying the equiva-
lence relation E. For every assignment s, we define the abstract effect [[s]]� by:

[[xi ←?]]� E = ∃�xi. E

[[xi ← t]]� E =
{

(xi = t) ∧ ∃�xi. E, if t 
= xi

E, if t = xi

for every t ∈ X ∪ V . Here, the abstract existential quantification ∃�xi. E
′ is defined as

⊥ if E′ = ⊥ and otherwise as the conjunction of all equalities implied by E′ which
do not contain xi. We note that E′ �→ ∃�xi. E

′ is completely distributive, i.e., com-
mutes with arbitrary least upper bounds. Therefore, all abstract transformers [[s]]� are
completely distributive. An implementation of the transformer [[xi ←?]]� for consistent
equivalence relations E 
= ⊥ is provided in Fig. 4. According to this implementation,
the result of [[xi ←?]]� E, i.e., ∃�xi. E can be computed in time O(k). Therefore, all
abstract transformers [[s]]� can be evaluated in linear time. The result of the analysis
of the program from Fig. 1 is shown in Fig. 5. Note that we have listed only the non-
trivial equalities. Also, the information is propagated in forward direction through the
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[[xi ←?]]� E = if (E[i] = c ∈ V ) {E[i] ← xi; return E; }
else { X ← {xj | j �= i, E[j] = E[i]};

E[i] ← xi;
if (X �= ∅) {choose xj ∈ X; forall (xj′ ∈ X) E[j′] ← xj ; }
return E;

}

Fig. 4. The Implementation of the transformer [[xi ←?]]� for E �= ⊥

2

3

1

4x2 = x3

x2 = x3

�

�

x3 ← x2

x2 ← x1 + 1

M [x2]← x3

Fig. 5. The equalities between the variables in the program of Fig. 1

control-flow graph where at program start only trivial equalities between variables are
assumed, i.e., E0[i] = xi for all i.

4 Representing Summary Functions

Let g : E → E denote a completely distributive function. As the lattice E is quite large,
a direct representation of g, e.g., through a value table is not practical. Surprisingly,
this is different for the upper adjoint g− of g. For an arbitrary complete lattice D and
g : D → D, the function g− : D → D is defined by:

g−(d) =
⊔

{d′ ∈ D | g(d′) � d}

It is well-known from lattice theory that for completely distributive g, the pair of func-
tions (g, g−) forms a Galois connection. Thus, g− ◦ g � Id and g ◦ g− � Id. In
particular, the upper adjoint g− is completely distributive as well – however, for the re-
verse ordering (see, e.g., [9]), i.e., for every X ⊆ D, g−( ⊔X) = ⊔{g−(d) | d ∈ X}.
For a distinction, we call g− completely �-distributive. For completely distributive g,
the function g− is just another representation of the function g itself. In order to see
this, we define for a completely �-distributive function g : D → D the lower adjoint:

g+(d′) = ⊔{d ∈ D | d′ � g(d)}

It is well-known that lower and upper adjoints determine each other uniquely. Thus, we
have, for every completely distributive g, (g−)+ = g. Summarizing, we conclude that
instead of computing with g, we as well might compute with its upper adjoint g−. From
an efficiency point of view, however, the functions g and g− need not behave identical.
Exactly this is the case for equality analysis.
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An element d 
= ⊥ of a complete lattice is atomic if d1 � d implies that either
d1 = ⊥ or d1 = d. A lattice is atomic if every element x is the least upper bound
of all atomic elements smaller or equal to x. Indeed, the set E ordered with “�” is an
atomic complete lattice — the number of atomic elements, though, is huge. A consistent
equivalence relation E is atomic iff each equivalence class contains a distinct constant.
Thus, the number of atomic elements in E equals mk where k and m are the numbers
of variables and constants, respectively.

Interestingly, the set E ordered with the reverse ordering “�” is also an atomic com-
plete lattice. For a distinction, we call the atomic elements of (E, �) �-atomic and the
atomic elements of the dual lattics (E, �) �-atomic. For our lattice, the �-atomic ele-
ments are given by the single equalities xi = xj and xi = c for variables xi,xj and
constants c. Thus, the number of �-atomic elements is only O(k · (k + m)).

Over an atomic lattice, a completely distributive function g is given by its image
on the atoms. In our case, this means that this representation for g− is much more
succinct than the corresponding representation for g. More specifically, it is of size
O(k2 · (k +m)) as the image of each of the O(k · (k+m)) �-atoms can be represented
by a conjunction of at most k equalities. For computing the upper adjoints of the effects
of procedures, we need the upper adjoints of the basic computation steps of the program.
Thus, we define [[s]]− = ([[s]]�)− for statements s and find:

[[xi ←?]]−E = ∀xi. E =
{

E if xi does not occur in E
⊥ otherwise

[[xi ← t]]−E = E[t/xi]

In case of the complete lattice E, we realize that the upper adjoints of the abstract
transformers of assignments in fact equal the weakest pre-condition transformers for
these statements. An implementation of these abstract transformers for arguments E 
=
⊥ (represented as an array) is given in Fig. 6. In particular, we find that each of these
transformers can be evaluated in time O(k).

5 Inter-procedural Analysis

In the following, we present our inter-procedural analysis. For simplicity, we first con-
sider global variables only. Assume that the set of global variables is given by X =
{x1, . . . ,xk}. The effect of a single edge is represented by a completely distributive
function from F = E → E where E = E(X, V ). Again, we collect the abstract effects
of procedures from the rear:

[[rtf ]]− � Id rtf exit point of procedure f

[[u]]− � [[stf ]]− ◦ [[v]]− (u, f(), v) a call edge, stf entry point of f

[[u]]− � [[s]]− ◦ [[v]]− (u, s, v) an assignment edge

where IdE = E for every E ∈ E. For a program point u of a procedure f , [[u]]−

describes the upper adjoint of the transformation induced by same-level program exe-
cutions starting from u and reaching the procedure exit of f at the same level.
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[[xi ←?]]− E = if (E[i] �= xi) return ⊥;
else if (∃ j �= i. E[j] = E[i]) return ⊥;
else return E;

[[xi ← c]]− E = if (E[i] = c′ ∈ V ) if (c �= c′) return ⊥;
else {E[i] ← xi; return E; }

else { // E[i] is a variable
X ← {xj | j �= i, E[j] = E[i]};
E[i] ← xi; forall (xj ∈ X) E[j] ← c;
return E;

}
[[xi ← xj ]]

− E = if (E[i] = c ∈ V ) if (E[j] = c′ ∈ V ) if (c �= c′) return ⊥;
else {E[i] ← xi; return E; }

else { // E[j] is a variable
X ← {xj′ | E[j′] = E[j]};
E[i] ← xi; forall (xj′ ∈ X) E[j′] ← c;
return E;

}
else { // E[i] is a variable

X ← {xi′ | i′ �= i, E[i′] = E[i]};
E[i] ← xi; forall (xi′ ∈ X) E[i′] ← E[j];
return E;

}

Fig. 6. The Implementation of the transformers [[s]]− for E �= ⊥

The crucial computation step here is the composition h− ◦ g− where g−, h− ∈ F. In
order to determine h−(g−(e)) for an equality e, we recall that g−(e) is represented by
at most k equalities e′. We can determine h−(g−(e)) by computing the greatest lower
bound of the values h−(e′), i.e. of at most k equivalence relations. By Lemma 1 (2),
the latter takes time O(k2). For determining a representation of h− ◦ g−, the values
h−(g−(e)) need to be computed for O(k · (k + m)) equalities if m is the number of
constants. We conclude that composition can be computed in time O(k3 · (k + m)).

Since the expressions on right-hand sides of in-equations are monotonic, the system
of in-equations has a unique greatest solution. Since the operations used in right-hand
sides of the equation system are completely �-distributive, we obtain:

Theorem 1. For every procedure f and every program point u of f , [[u]]−=(ᾱ(S[u]))−.

Here, the abstraction function ᾱ : (2V k → 2V k

) → E → E for summary functions
is defined as the best abstract transformer, i.e., by ᾱ(g) = α ◦ g ◦ γ. We observe that,
during evaluation of a procedure, the values of constants will not change. Therefore,
instead of analyzing the weakest pre-condition for every equation xi = c, c ∈ V ,
separately, we can as well determine the weakest pre-condition for the single equation
xi = • for a distinguished fresh variable •. The weakest pre-condition Ec for the
specific equation xi = c then can be determined from the weakest pre-condition E for
xi = • by substituting c for •, i.e., as Ec = E[c/•]. The advantage is that now the size
of the representation of a function is just O(k3) and thus independent of the number of
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constants occurring in the program. Also, composition of function then can be executed
in time O(k4). Note that variables not assigned to during procedure evaluation can also
be treated as constants and therefore be captured by • — thus allowing to shrink the
representation of summary functions even further.

Example 2. Consider the program from Fig. 2. The set of variables is X = {x1,x2}.
The assignments x1 ← x2 and x2 ← 2 correspond to the functions h−1 , h−2 with

h−1 h−2
x1 = x2 � x1 = 2
x1 = • x2 = • x1 = •
x2 = • x2 = • 2 = •

In a first round of Round-Robin iteration, we obtain for program points 11, 10, 9, 8, 7
of the procedure work:

11 10 9 8 7
x1 = • x1 = • x1 = • � x1 = • x2 = •
x2 = • x2 = • 2 = • � 2 = • 2 = •
x1 = x2 x1 = x2 x1 = 2 � x1 = 2 x2 = 2

In this example, the fixpoint is reached already after the second iteration. ��
From the upper adjoint [[stf ]]−, we obtain the abstract effect of procedure f by:

[[f ]]�(E) = ([[stf ]]−)+(E) = ⊔{E′ | [[stf ]]−(E′) � E}
where the E′ in the greatest lower bound are supposed to be �-atomic. The number
of these elements is O(k · (k + m)). Using the trick with the extra variable •, we can
compute the application of [[f ]]� to a given element E in time O(k3) – independent of
the number of constants occurring in the program.

The functions [[f ]]� can be used to determine, for every program point u the con-
junction of all equalities E [u] ∈ E which definitely hold when the program point u is
reached. For that, we put up the following system of in-equations whose unknowns E [v]
(v program point) take values in E:

E [stmain] � �
E [stf ] � E [u] (u, f(), ) a call edge
E [v] � [[f ]]� (E [u]) (u, f(), v) a call edge
E [v] � [[s]]�(E [u]) (u, s, v) an assignment edge

It should be noted that, during fixpoint iteration, we never must construct [[f ]]� as a
whole. Instead, we only need to evaluate these functions on argument values E. Since
all right-hand sides are monotonic, this system of in-equations has a least solution.

Example 3. Consider again the program from Fig. 2. Then we obtain the following
equalities for program points 0 through 11:

1, 2, 3 4 5 6 7, 8, 9 10 11
� x1 = x2 x2 = 2 x1 = x2 = 2 x1 = x2 � x2 = 2

��
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Also for inter-procedural reachability, a precision theorem can be proven. We have:

Theorem 2. The least solution E [v], v a program point, can be computed in time O(n ·
k4) where n is the size of the program and k is the number of variables in the program.
Moreover, for every program point v, E [v] = α(C[v]). ��
In order to compute the least solution within the stated running time, we first compute
the values [[stf ]]− by applying semi-naive fixpoint iteration as in [2] to the system of
in-equations characterizing the (upper adjoints of) summary functions. The key idea
of semi-naive iteration is to propagate just the individual increments to attained values
instead of abstract values as a whole. In our case, such an increment consists of a single
equality (xi = t) that is added as an additional conjunct to the pre-condition of some
�-atomic element in the representation of some computed summary function. Thus,
distributed over the fixpoint computation, the accumulated effort spent on a single in-
equation is not bigger than the effort for a single complete evaluation of the right hand
side on functions with a representation of maximum size. As mentioned, the most com-
plex operation occuring in a right hand side, composition of functions, can be computed
in time O(k4) using the special variable •. Given the values [[stf ]]−, the fixpoint of the
system of in-equations for E can be computed by standard fixpoint iteration: as the
height of the lattice E is O(k) each right hand side is re-evaluated at most O(k) times
and the most complex operation, application of [[f ]]� takes time O(k3). The total run-
ning time estimation given in Theorem 2 follows by summing up over all in-equations
as their number is bounded by the size of the program.

The resulting bound is by a factor k larger than the best known upper bound for copy
constant propagation [6] where no equalities between variables are tracked. On the other
hand, instead of relying on equivalence relations, we could code variable equalities as
specific linear dependences. The techniques from [11] then result in an algorithm with
worst-case complexity O(n · k8) — which is a factor k4 worse than the new bound.

6 Local Variables

In the following, we extend our inter-procedural analysis to local variables.

Example 4. Consider the program from Fig. 7. The local variable a1 of procedure work
can be coalesced with the global x1 as both are equal throughout the body of work . ��

In order to simplify notation, we assume that all procedures have the same set of local
variables A = {a1, . . . ,al}. The set of global variables is still X = {x1, . . . ,xk}. First
of all, we extend the collecting semantics to local variables. A state is now described
by a vector (x1, . . . , xk, a1, . . . , al) ∈ V k+l which is identified with the pair (x, a)
of vectors x = (x1, . . . , xk) ∈ V k and a = (a1, . . . , al) ∈ V l of values for the
global and local variables, respectively. The transformations S[u] now are taken from
the set T = V k+l → V k+l. In order to avoid confusion between the values of the local
variables of caller and callee the rules for call edges must be modified. For this purpose
we introduce two transformations: The first, enter ∈ T, captures how a set of states
propagates from the call to the start edge of the called procedure:

enter(X) = {(x, a) | ∃a′ : (x, a′) ∈ X}
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7
work ()

4

5

3

2

6

x2 ←?

1

0

x1 ← a1

work ()

a1 ← 0a1 ← 1

a1 ← x1

work ()

x2 ← a1

main()

Fig. 7. An example program with local variable a1

Here, we assume that local variables have an arbitrary value at the beginning of their
scope but other conventions can be described similarly. The second transformation H :
T → T adjusts the transformation computed for a called procedure to the caller:

H(g)(X) = {(x′, a) | ∃x, a′ : (x′, a′) ∈ g(enter {(x, a)})}

It ensures that local variables of the caller are left untouched by the call. The modified
rules for call edges in the systems of in-equations for S and C look as follows:

S[u] ⊇ S[v] ◦ H(S[stf ]) (u, f(), v) a call edge, stf entry point of f
C[stf ] ⊇ enter(C[u]) (u, f(), ) a call edge
C[v] ⊇ H(S[stf ])(C[u]) (u, f(), v) a call edge

In addition, V k is replaced by enter(V k+l) in the in-equation for C[stmain].
As for global variables alone, we first define the domain for the forward analysis

whose summary functions then are represented through their upper adjoints. The extra
complication is that now equalities may involve local variables of the procedures on
the call stack which are not visible inside the called procedure. The solution is to allow
auxiliary variables from a set Y (of cardinality k) for distinct local information of the
caller which must be tracked by the callee, but not modified. Thus, the abstract forward
semantics of procedures operates on conjunctions of equations over global variables X,
local variables A, and auxiliary variables Y, i.e., takes elements from E

′ = E(X ∪
A ∪ Y, V ). Since at procedure exit, local variables of the procedure are no longer of
interest, post-conditions are conjunctions just over global and auxiliary variables, i.e.,
summary functions should return elements from E

′′ = E(X ∪ Y, V ). Thus, forward
summary functions are completely distributive functions from F

′ = E
′ → E

′′ whereas
their upper adjoints are completely �-distributive functions from F

′′ = E
′′ → E

′. In
this setting, the abstraction function α̃ : (2V k+l → 2V k+l

) → F
′ takes the form:

α̃(F )(E) = ⊔{E′ | ∀y, x′, a′ :
(x′, a′) ∈ F ({(x, a) | (x, a, y) |= E}) ⇒ (x′, y) |= E′} .
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As in Section 5, we aim at avoiding to treat each constant in post-conditions separately.
Recall that auxiliary variables from Y are not modified during the execution of the call.
We conclude that, for the sake of determining weakest pre-conditions, at most one aux-
iliary variable, say •, suffices in single equality post-conditions. Since we have at most
this single • in the post-condition, we also have at most one •-variable in pre-conditions.
Accordingly, we represent upper adjoints by completely �-distributive functions from:

F0 = E(X ∪ {•}, ∅) → E(X ∪ A ∪ {•}, V )

Any such function g ∈ F0 is meant to represent the function Ext(g) ∈ F
′′ defined by:

Ext(g)(xi = xj) = g(xi = xj)

Ext(g)(e) =
{

e, if g−(x1 = •) 
= �
�, if g−(x1 = •) = �

Ext(g)(xi = t) = g(xi = •)[t/•]

where the equality e and the term t contain only constants, local variables or •. The
first clause exploits that g is special in that it does not introduce • for post-conditions
not containing •. The second clause deals with equalities between local variables and
constants in presence of non-termination of the called procedure (identified through
g−(x1 = •) = �). In order to determine the representations from F0 for procedures,
effects of control-flow edges are described by completely �-distributive functions from

F = E(X ∪ {•} ∪ A, V ) → E(X ∪ {•} ∪ A, V )

If g− is the (upper adjoint of the) effect of a procedure body, the (upper adjoint of the)
effect of a call to this procedure is given by H−(g−) ∈ F where

H−(g−)(xi = xj) = ∀a1 . . .al. g
−(xi = xj)

H−(g−)(e) =
{

e, if g−(x1 = •) 
= �
�, if g−(x1 = •) = �

H−(g−)(xi = t) = (∀a1 . . .al. g
−(xi = •))[t/•]

Here, the equality e and the term t contain only constants, local variables or •. Then
summary functions can be characterized by the least solution of the constraint system:

[[rtf ]]− � Id rtf exit point of procedure f

[[u]]− � H−([[stf ]]−) ◦ [[v]]− (u, f(), v) a call edge, stf entry point of f

[[u]]− � [[s]]− ◦ [[v]]− (u, s, v) an assignment edge

where IdE = E for every E ∈ E(X ∪ {•}, ∅). For a program point u of a procedure
f , [[u]]− ∈ F0 describes the upper adjoint of the transformation induced by program
executions that start at u and reach the procedure exit of f at the same level.

The crucial computation step here is the composition h− ◦g− for g− ∈ F0 and h− ∈
F. In order to determine the value h−(g−(e)) for an equality e, we recall that every
equivalence relation g−(e) is represented by at most k + l + 1 equalities e′ for k global
and l local variables. Thus, h−(g−(e)) can be computed as the greatest lower bound of
the O(k + l) equivalence relations h−(e′). By Lemma 1 (2), the latter can be done in
time O((k + l)2). For determining h− ◦ g−, the values h−(g−(e)) must be computed
for O(k2) equalities. Thus, composition can be computed in time O(k2(k + l)2).
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Example 5. Consider the program from Fig. 7. The assignments a1 ← x1 and x2 ← a1
correspond to the following functions:

a1 = x1 a1 = x2 x1 = x2 a1 = • x1 = • x2 = •
[[a1 ← x1]]

− � x1 = x2 x1 = x2 x1 = • x1 = • x2 = •
[[x2 ← a1]]

− a1 = x1 � a1 = x1 a1 = • x1 = • a1 = •
In a first round of Round-Robin iteration, we obtain for program points 11, 10, 9, 8, 7:

11 10 9 8 7
x1 = • x1 = • x1 = • � x1 = • x1 = •
x2 = • x2 = • a1 = • a1 = • a1 = • x1 = •
x1 = x2 x1 = x2 x1 = a1 � x1 = a1 �

The second iteration changes the value for the postcondition x1 = x2 at program point
9 from � to x1 = a1. Here, the fixpoint is reached after the second iteration. ��
Since the expressions on right-hand sides of in-equations are completely distributive,
the system of in-equations has a unique greatest solution, and we find:

Theorem 3. For every program point u, Ext([[u]]−) = (α̃(S[u]))−.

The proof of this theorem is a generalization of the corresponding proof for Theorem 1.
From [[stf ]]−, we again obtain the abstract effect of a call to f , this time by

[[f ]]�(E) = (H−([[stf ]]−))+(E)

where g+ (E) =
∧

{e | E � g (e)}. According to the special structure of g, time
O((k + l)2 · k) is sufficient to compute all equalities e with E � H−([[stf ]]−)(e).

The abstract effects [[f ]]� allow to determine for every program point u, the conjunc-
tion of all equalities which hold when reaching u. These are characterized by:

E [stmain] � enter�(�)
E [stf ] � enter� (E [u]) (u, f(), ) a call edge
E [v] � [[f ]]� (E [u]) (u, f(), v) a call edge
E [v] � [[s]]�(E [u]) (u, s, v) an assignment edge

where enter� (E) is the conjunction of all equalities e involving only globals and con-
stants implied by E. The resulting consistent equivalence relation can be constructed in
time O(k + l). This is also the case for [[s]]�(E), s an assignment (see Section 3).

Example 6. Consider the program from Fig. 7. We obtain the following equalities:

0, 1, 2, 3 4 5 6 7 8, 9, 10 11
� x1 = a1 x1 = x2 = a1 x1 = a1 � x1 = a1 x1 = x2 = a1

We conclude that inside the procedure work, we can coalesce x1 and a1 and thus avoid
to intermediately move the value of the global x1 into the local a1. ��
Theorem 4. The system of in-equations for reachability in presence of local variables
has a least solution E [v], v program point, where for every v, E [v] = α(C[v]).

Thus, the sets of valid equalities at all program points can be computed in time
O(n · k2 · (k + l)2) for programs of size n with k global and l local variables. ��
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7 Conclusion

We have provided an algorithm for inter-procedurally inferring all valid variable-variable
and variable-constant equalities — after abstracting from guards and complex assign-
ments. Based on the succinct representation of summary functions through their up-
per adjoints, we constructed a polynomial time algorithm with worst-case complexity
O(n ·k4) (where k is the number of program variables and n is the size of the program).
We then extended our approach to programs with local variables. The key observation
is that upper adjoints allow very succinct representations of summary functions: on the
one hand, the number of �-atomic elements is smaller than the number of �-atomic ele-
ments, on the other hand, we can avoid tracking each constant individually. Similar ideas
may also help to speed up further inter-procedural program analyses. In future work, we
also want to apply our analysis to inter-procedural register coalescing.
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Abstract. This paper defines the cover of a formula φ with respect to a
set of variables V in theory T to be the strongest quantifier-free formula
that is implied by ∃V : φ in theory T . Cover exists for several useful
theories, including those that do not admit quantifier elimination. This
paper describes cover algorithms for the theories of uninterpreted func-
tions and linear arithmetic. In addition, the paper provides a combination
algorithm to combine the cover operations for theories that satisfy some
general condition. This combination algorithm can be used to compute
the cover a formula in the combined theory of uninterpreted functions
and linear arithmetic. This paper motivates the study of cover by de-
scribing its applications in program analysis and verification techniques,
like symbolic model checking and abstract interpretation.

1 Introduction

Existential quantifier elimination is a core primitive used in several program
analysis and verification techniques. Given a quantifier-free formula φ and a set
of variables V , existentially quantifying away V involves computing a quantifier-
free formula that is logically equivalent to ∃V : φ. This operation is useful in
practice to eliminate variables that are no longer necessary from a formula.
For instance, the image computation in symbolic model checking [14] involves
computing the quantifier-free formula equivalent to ∃V : R(V ) ∧ T (V, V ′). Here,
R(V ) represents the current set of reachable states and T (V, V ′) represents the
transition relation between the current values of the state variables V and their
new values V ′.

Existential quantifier elimination can be performed, albeit with exponential
complexity, for propositional formulas. However, this operation is not defined
for formulas containing interpreted symbols from certain theories. For example,
consider the formula F (x) = 0 in the theory of uninterpreted functions. There is
no quantifier-free formula that is equivalent to ∃x : F (x) = 0 as it is not possible
to state that 0 is in the range of function F without using quantifiers. This limits
the application of techniques like symbolic model checking to systems described
by formulas in these theories.

To address this problem, we introduce the notion of cover. Given a quantifier-
free formula φ containing interpreted symbols from theory T and a set of vari-
ables V , we define CT V : φ (called the cover of φ with respect to V in T ) as the
strongest quantifier-free formula in T that is implied by ∃V : φ. Formally, the
cover operation satisfies the following constraints.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 193–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(∃V : φ) ⇒T (CT V : φ)
((∃V : φ) ⇒T γ) iff ((CT V : φ) ⇒T γ) , for all quantifier-free formulas γ

When the theory T is obvious from context, we drop the subscript T from the
notation and refer to the cover simply as CV : φ.

Intuitively, applying the cover operation on a formula with respect to V elim-
inates all variables in V from the formula. However, the resulting formula only
retains quantifier-free facts pertaining to other variables in the formula. For an
example, let φ be the formula y = Mem(a + x) − Mem(b + x), where Mem is an
uninterpreted function. Using cover to eliminate the variable x, we get

(Cx : y = Mem(a + x) − Mem(b + x)) ≡ (a = b ⇒ y = 0)

Note that ∃x : φ implies the right hand side of the above equation. The results
in this paper show that this is the most precise quantifier-free formula that
is implied by φ and that does not involve x. Example 3 in Section 4 provides
an algorithm to compute the cover of this formula, and Section 2.2 describes
an application that requires computing the cover of such formulas. Finally, the
reader should also note that applying cover does not retain quantified facts. For
example, Cx : φ does not imply the fact (∀x : Mem(a + x) = Mem(b + x)) ⇒ y = 0,
while ∃x : φ does.

This distinguishing fact of cover allows us to define this operation even for theo-
ries that do not admit existential quantifier elimination. In Section 3, we describe
the cover algorithm for the theory of uninterpreted functions. Note that cover is
trivially defined for propositional formulas and theoryof linear arithmetic, as cover,
by definition, reduces to existential quantifier elimination when it exists.

In Section 4, we present a combination algorithm for computing cover for
union of two theories that individually support cover operations and satisfy
some general condition. Our combination algorithm is based on extension of
Nelson-Oppen methodology for combining decision procedures [16]. However,
in our combination framework, we also need to exchange conditional variable
equalities (of the form γ ⇒ v1 = v2) and variable-term equalities (of the form
γ ⇒ v = t) between component theories. Our combination algorithm works
for theories that are convex, stably infinite, disjoint, and have a finite set of
simple terms (Definition 1 in Section 4). The theories of linear arithmetic and
uninterpreted functions, for example, satisfy these constraints.

We also describe how the cover operation can be used in program analysis
and verification techniques that otherwise depend on existential quantifier elim-
ination. In particular, this paper presents a modified symbolic model checking
algorithm (Section 2.1) using the cover operation in the image computation step.
This new algorithm can be used to reason about transition systems involving
operations from the rich set of theories for which the cover operation is defined.
Moreover, when the transition system can be described using quantifier-free for-
mulas, we show that the symbolic model checking algorithm using cover is not
only sound, but also precise (Theorem 1). In other words, when the checking
algorithm terminates, any error reported is guaranteed to be a real error in
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the system. This is in stark contrast with other over-approximation based tech-
niques [1,3,15], which only guarantee soundness. Precision is very important for
falsification techniques. A similar application is in performing abstract interpre-
tation of programs over abstractions whose elements are quantifier-free formulas
describing program states.

In summary, this paper has the following main contributions.

– We introduce the notion of cover as the most precise quantifier-free over-
approximation to existential quantifier elimination. We study this operation
and present its useful properties.

– As a practical application, we present a new symbolic model checking al-
gorithm using cover. This algorithm is both sound and precise, and can be
used to reason about transition systems described using formulas in a rich
set of theories.

– We show how to do a precise analysis of programs by performing abstract
interpretation over abstract domains that describe program states using
quantifier-free formulas.

– We show that cover can be computed for the theory of uninterpreted func-
tions.

– We present an extension to the Nelson-Oppen combination framework that
can be used to combine the cover operation of theories satisfying a general
condition. We show that useful theories such as the theory of uninterpreted
functions and linear arithmetic satisfy these conditions.

2 Applications of Cover

Before presenting cover algorithms for some theories, and a methodology for
combining cover algorithms in the following sections, we first motivate the study
of cover by describing some useful applications for the cover operation.

2.1 Symbolic Model Checking

Our main motivation for cover is to apply symbolic model checking to reason
about transition systems that involve rich operations from the theory of un-
interpreted functions, which naturally arise in program analysis and software
verification.

A transition system can be described by the tuple (V, I(V ), T (Vold, Vnew),
E(V )), where V represents the set of state variables, I(V ) is a formula describing
the set of initial states, T (Vold, Vnew) is a formula describing the transition relation
between the old values Vold and new values Vnew of the variables in V , and E(V )
is a formula describing the set of error states. For clarity, if φ(V ) is a formula with
variables from V , we will use φ(V ′) to be the formula obtained from φ by renaming
each variable in V with the corresponding variable in V ′.

Given a transition system, the symbolic model checking algorithm computes
the set of reachable states R(V ) iteratively as follows.
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R0(V ) ≡ I(V )
Ri(V ) ≡ Ri−1(V ) ∨ (∃Vold : Ri−1(Vold) ∧ T (Vold, V )) for i > 0

This iteration reaches a fix point at n if and only if Rn(V ) ⇒ Rn−1(V ). At
this point, Rn(V ) is an inductive invariant of the transition system. Also, if
Rn(V ) ⇒ ¬E(V ) then the system does not reach an error state.

A transition system (V, I(V ), T (Vold, Vnew), E(V )) is quantifier-free when the
formulas I(V ), T (Vold, Vnew), and E(V ) are all quantifier-free. In practice, transi-
tion systems arising from many software verification applications are quantifier-
free. For such systems, we propose a new symbolic model checking algorithm that
uses the cover operation instead of existential quantification. Also, we show that
this new algorithm is sound and precise. Moreover, this algorithm terminates
whenever the original model checking algorithm terminates.

In the discussion below, we assume that the transition system uses operations
from a theory T , such as the union of the theory of reals and uninterpreted
functions. We assume that the cover operations are performed with respect to
this theory. (See Section 3 for the actual cover algorithms.)

The symbolic model checking algorithm using cover is as follows.
SMC-Cover Algorithm:

CR0(V ) ≡ I(V )
CRi(V ) ≡ CRi−1(V ) ∨ (CVold : CRi−1(Vold) ∧ T (Vold, V )) for i > 0

In the equations above, CRi(V ) determines the set of reachable states deter-
mined using the cover operation after i iterations. The fix point is reached, as
before, at point n when CRn(V ) ⇒ CRn−1(V ).

Lemma 1. Given a quantifier-free transition system (V, I(V ), T (Vold, Vnew),
E(V )), CRn(V ) ⇒ φ if and only if Rn(V ) ⇒ φ for all quantifier-free formulas
φ.

Proof. The proof is by induction. The base case is trivial as CR0(V ) ≡ I(V ) ≡
R0(V ). For the induction, assume the lemma holds for all iterations up to n− 1.
Note, that by definition

Rn(V ) ≡ ∃Vold : Rn−1(Vold) ∧ T (Vold, V ) ∨ Rn−1(V )

CRn(V ) ≡ CVold : CRn−1(Vold) ∧ T (Vold, V ) ∨ CRn−1(V )

Consider a quantifier-free formula φ that does not contain, without loss of
generality, variables from Vold.1 Now, if Rn(V ) ⇒ φ, then the following are true

Rn−1(V ) ⇒ φ

∃Vold : Rn−1(Vold) ∧ T (Vold, V ) ⇒ φ

1 The variables from Vold, if present, can be renamed.
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From the first equation, we have CRn−1(V ) ⇒ φ by induction. Moreover from
the second equation, we have

Rn−1(Vold) ∧ T (Vold, V ) ⇒ φ as φ does not contain variables in Vold

Rn−1(Vold) ⇒ (T (Vold, V ) ⇒ φ)
CRn−1(Vold) ⇒ (T (Vold, V ) ⇒ φ) by induction, as T(Vold,V ) is quantifier-free

CRn−1(Vold) ∧ T (Vold, V ) ⇒ φ

CVold : CRn−1(Vold)∧ T (Vold,V )⇒ φ by definition

Thus, we have CRn(V ) ⇒ φ, proving the if direction of the lemma. Proving
the other direction is similar and follows from the property that cover over-
approximates existential quantification.

Using Lemma 1 and the following properties of cover, we can prove the desired
result stated in Theorem 1.

Property 1. CV : CW : φ(V, W ) ≡ CV, W : φ(V, W )

Property 2. CV : ∃W : φ(V, W ) ≡ CV : CW : φ(V, W )

Theorem 1. Given a transition system (V, I(V ), T (Vold, Vnew), E(V )), where
both T (Vold, Vnew) and E(V ) are quantifier-free, then the symbolic model checking
algorithm using cover is sound and precise.

Proof. The proof follows from Lemma 1. Since E(V ) is quantifier-free, Rn(V ) ⇒
¬E(V ) if and only if CRn(V ) ⇒ ¬E(V ). Thus, the symbolic model checking
algorithm using cover proves the absence of error whenever the original symbolic
model checking algorithm proves the same. Also, when the former algorithm
reports an error, the latter reports the error.

Theorem 2. Given a transition system (V, I(V ), T (Vold, Vnew), E(V )), where
both T (Vold, Vnew) and E(V ) are quantifier-free, then the symbolic model check-
ing algorithm using cover terminates whenever the symbolic model checking al-
gorithm terminates.

Proof. Say, the symbolic model checking algorithm terminates at step n, then
Rn(V ) ⇒ Rn−1(V ). Thus, by Lemma 1, we have Rn(V ) ⇒ CRn−1(V ). Since
CRn−1(V ) is a quantifier-free formula we have CRn(V ) ⇒ CRn−1(V ). Thus the
symbolic model checking algorithm using cover terminates.

Checking Infinite State Systems. The algorithm mentioned above is, in
general, not guaranteed to terminate when the transition system describes an
infinite state systems. To guarantee termination, this algorithm has to be com-
bined with appropriate abstraction [15] or widening techniques [4] to selectively
lose facts regarding the set of reachable states. Designing such algorithms is be-
yond the scope of this paper. However, the cover operation, as opposed to a less
precise approximation to existential quantification, is still useful in this setting
because it greatly simplifies the design of subsequent refinement [1,3] algorithms.
In particular, refinement needs to be performed only at the ’widen’ points where
information is lost [6].
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void foo(int a[], int b[]) {
int y = 0; int x = ?;
while(*) { y = y + a[x] - b[x]; x = ?; }
if (y �= 0) { assert(a �= b); }

}

Fig. 1. An example program whose loop invariant (required to prove the assertion) can
be generated using cover operation

2.2 Abstract Interpretation over Precise Abstractions

Abstract Interpretation is a well-known methodology to analyze programs over a
given abstraction [4]. An abstract interpreter performs a forward analysis on the
program computing invariants (which are elements of the underlying abstract
lattice over which the analysis is being performed) at each program point. The
invariants are computed at each program point from the invariants at the preced-
ing program points in an iterative manner using appropriate transfer functions.

Most of the abstract interpreters that have been described in literature operate
over an abstraction whose elements are usually conjunction of atomic predicates
in some theory, e.g., linear arithmetic [5], uninterpreted functions [8,9]. These
abstractions cannot reason about disjunctive invariants in programs and there
is a loss of precision at join points in programs.

Abstractions whose elements are boolean combinations of atomic predicates in
an appropriate theory can reason about disjunctive invariants in programs. The
join operation (required to merge information at join points) for such an abstrac-
tion is simply disjunction, while the meet operation (required to gather informa-
tion from conditional nodes) is simply conjunction. However, the strongest post-
condition operation (required to compute invariants across assignment nodes) is
non-trivial. In fact, it is exactly the cover operation for the underlying theory.
Hence, a cover operation for a theory can be used to perform abstract interpreta-
tion of programs over an abstraction whose elements are quantifier-free formulas
over that theory.

Consider, for example, the program shown in Figure 1. We do not know of any
existing abstract interpreter that can prove the assertion in the program. For
this, we need to do abstract interpretation over the abstraction of quantifier-
free formulas in the combined theory of linear arithmetic and uninterpreted
functions. Analyzing the first loop iteration involves computing the strongest
postcondition of y = 0 with respect to the assignment y := y + a[x] − b[x] (in
the abstraction of quantifier-free formulas), which is equivalent to computing
Cx′, y′ : (y′ = 0 ∧ y = y′ + Mem(a + x′) − Mem(b + x′) ∧ x = ∗), where Mem denotes
the deference operator and can be regarded as an uninterpreted function. This
yields the formula a = b ⇒ y = 0, which also turns out to be the loop invariant
and hence fixed point is reached in the next loop iteration.

Furthermore, the invariant computed at the end of the procedure can be
turned into a procedure summary by eliminating the local variables of the pro-
cedure, again by using the cover operation. Procedure summaries are very useful
in performing a context-sensitive reasoning of a program in a modular fashion.
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2.3 Computation of Interpolants

Finally, the cover operation can be used to compute quantifier-free interpolants.
Let φ1(V1, V ) and φ2(V2, V ) be quantifier-free formulas, such that φ1 contains
variables in V1 ∪V , φ2 contains variables in V2 ∪V , V1 ∩V2 = ∅, and φ1(V1, V ) ⇒
φ2(V2, V ). A quantifier-free interpolant I(V ) is a quantifier-free formula that
contains only variables from V and satisfies (φ1(V1, V ) ⇒ I(V )) ∧ (I(V ) ⇒
φ2(V, V2)). We can see that CV1 : φ1(V, V1) and ¬(CV2 : ¬φ2(V, V2)) are (respec-
tively the strongest and weakest) quantifier-free interpolants. Such interpolants
have recently been used in fix point computations [15] and to refine abstrac-
tions [11].

3 Cover Algorithm for the Theory of Uninterpreted
Functions

The cover algorithm for theory of uninterpreted functions is given in Figure 3.
The algorithm assumes that there are only binary uninterpreted functions, but
it can be easily extended to handle uninterpreted functions of any arity.

Property 3. The cover operation distributes over disjunctions, i.e.,

(CV : (φ1 ∨ φ2)) ≡ (CV : φ1) ∨ (CV : φ2)

Hence, without loss of any generality, the algorithm assumes that the input
formula φ is a conjunction of atomic facts, where each atomic fact is either a
positive or negative atom.

The reasoning behind the cover algorithm is as follows. Suppose φ(U, V ) ⇒
γ(U, W ) such that U = Vars(φ) ∩ Vars(γ), U ∩ V = ∅, and W ∩ U = ∅.
We require CV : φ ⇒ γ. By Craig’s interpolant theorem, there exists a δ(U)
such that (φ(U, V ) ⇒ δ(U)) ∧ (δ(U) ⇒ γ(U, W )). The fact that one can find a
quantifier-free interpolant for formulas in the theory of uninterpreted functions
follows from [15]. Without loss of generality, one can represent δ(U) (in conjunc-
tive normal form) as a conjunction of clauses where each clause is of the form
(s1 = t1∧. . .∧sa = ta) ⇒ (s′1 = t′1∨. . .∨s′b = t′b), where the terms si, ti, s

′
j , t
′
j only

contain variables from U . Therefore, φ(U, V ) implies each of the clauses individ-
ually. Finally, from the convexity of the theory of uninterpreted functions [16],
whenever φ(U, V ) implies (s1 = t1∧. . .∧sa = ta) ⇒ (s′1 = t′1∨. . .∨s′b = t′b), there
exists some 1 ≤ i ≤ b such that φ(U, V ) implies (s1 = t1∧. . .∧sa = ta) ⇒ s′i = t′i.
Lines 12 and 15 in the function ComputeCoveruf(φ) compute all such implied
equalities. While there could be infinite such implied equalities, one only needs
to consider equalities of the form sj = tj , 1 ≤ j ≤ a where sj and tj are terms
in the congruence closure graph of φ. This is because equalities can only propa-
gate “upwards” during congruence closure. Similarly, one only needs to consider
the case in which s′i and t′i are in the congruence closure graph of φ. The formal
correctness of the cover algorithm is presented in the full version of the paper [7].

Line 1 involves computing a congruence closed graph G that represents the
equalities implied by φ. G is a set of congruence classes, and each congruence
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Formula φ : s1 = F (z1, v) ∧ s2 = F (z2, v) ∧ t = F (F (y1, v), F (y2, v))

Cv : φ : z1 = z2 ⇒ s1 = s2 ∧
∧

i,j∈{1,2}

y1 = zi ∧ y2 = zj ⇒ t = F (si, sj)

Fig. 2. An example of cover operation for the theory of uninterpreted functions

class is a set of nodes n, where a node is either a variable y, or a F -node F (c1, c2)
for some congruence classes c1 and c2. Note that two nodes n1 and n2 in G are
in the same congruence class iff φ implies n1 = n2. The function Rep(c) returns
a representative term for class c that does not involve any variables in V , if any
such term exists; otherwise it returns ⊥.

Line 2 calls procedure Mark that takes a congruence closed graph G and a
set of variables V as inputs, and sets M [n] to 1 for F -nodes n iff node n in G
becomes undefined if variables V are removed from G. An F -node F (c1, c2) is
undefined iff classes c1 or c2 are undefined. A class c is undefined iff it contains
all undefined nodes. The function AllMark takes a congruence class c as an input
and returns true iff all nodes in c are marked.

Lines 5 through 8 compute W [n1, n2], which denotes the weakest constraint
not involving variables in V and which along with φ implies n1 = n2. W [n1, n2] is
first initialized to Init(n1, n2), which returns a constraint not involving variables
in V and which along with φ implies n1 = n2. W [n1, n2] is then updated in a
transitive closure style.

Line 4 initializes result to all equalities and disequalities that are implied
by φ and that do not involve any variables in V . Lines 12 and 15 then update
result by conjoining it with all implied equalities that are implied by φ and
that do not involve any variable from V . Lines 11-12 can be treated as a special
case of lines 13-15 when the context Z does not contain any holes (i.e., k = 0).

Example 1. Figure 2 shows an example of the cover operation over the theory
of uninterpreted functions. For the formula φ in Figure 2, let n1 be the node
F (y1, v), n2 be the node F (y2, v), and n be the node F (n1, n2). The procedure
Mark marks all the nodes in the congruence closed graph G, as every node de-
pends on the variable v that needs to be eliminated. After executing lines 5
through 8, the algorithm computes W [s1, n1], for instance, to be the constraint
z1 = y1. Note, that an equality between z1 and y1 results in an equality be-
tween the nodes s1 and n1, and this is the weakest constraint to do so. Similarly,
W [s1, n2] is the constraint z2 = y1, and so on. For this example, the set Ne in
Line 9 contains all the nodes in G. Consider the context Z[n1, n2] = F (n1, n2).
By choosing the node m1 to be s1 and m2 to be s1 in line 13, we obtain the
formula z1 = y1 ∧ z2 = y1 ⇒ t = F (s1, s1) in line 15, and so on. The result
returned by the algorithm is shown in Figure 2.

Complexity: The complexity of the algorithm described in Figure 3 can be ex-
ponential in the size of the input formula φ. This is because there can be an
exponential number of ways of choosing an appropriate sequence of k nodes
m1, . . . , mk in line 13. Hence, the size of the cover can itself be exponential in
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ComputeCoveruf(φ, V ) =
1 Let G be the congruence closure of φ.
2 Mark(G,V );
3 let G′ be the graph obtained from G after removing all nodes n s.t. M [n] = 1;
4 result ← all equalities and disequalities implied by G′;

// Compute W [n1, n2]
5 forall nodes n1, n2 ∈ G: W [n1, n2] ← Init(n1, n2);
6 forall nodes n ∈ G:
7 forall nodes n1, n2 ∈ G:
8 W [n1, n2] ← W [n1, n2] ∨ (W [n1, n] ∧ W [n, n2]);

// Compute result
9 let Ne = {n | n ∈ G, M [n] = 1, CRep(n) �= ⊥};

10 forall nodes n ∈ Ne

11 forall nodes m ∈ G s.t. W [m, n] �= false:
12 result ← result ∧ (W [n, m] ⇒ CRep(n) = CRep(m));
13 forall contexts Z[n1, . . , nk] s.t. n = Z[n1, . . , nk], Vars(Z) ∩ V = ∅, ni ∈ Ne for 1 ≤ i ≤ k
14 forall nodes m1, . . , mk ∈ G s.t. W [ni, mi] �= false and CRep(mi) �= ⊥ for 1 ≤ i ≤ k:

15 result ← result ∧
((

k∧
i=1

W [ci, di]

)
⇒ CRep(n) = Z[CRep(m1), . . . , CRep(mk)]

)
;

16 return result;

// Marks those nodes n (M[n] = 1) which become undefined when variables in V are removed
Mark(G,V) =

forall nodes n ∈ G: M [n] ← 1;
forall variables y �∈ V : M [y] ← 0;
while any change

forall nodes F (c1, c2): if ¬AllMark(c1) ∧ ¬AllMark(c2), M [F (c1, c2)] ← 0;

// Returns true if every node in the equivalence class c is marked
AllMark(c) =

forall nodes n in class c: if M [n] = 1, return true;
return false;

// Initial candidate for the weakest constraint that implies n1 = n2

Init(n1,n2) =
if Class(n1) = Class(n2), return true;
if n1 ≡ F (c1, c2) and n2 ≡ F (c′

1, c
′
2)

if Rep(c1) �= ⊥ ∧ Rep(c′
1) �= ⊥ ∧ c2 = c′

2, return Rep(c1) = Rep(c′
1);

if Rep(c2) �= ⊥ ∧ Rep(c′
2) �= ⊥ ∧ c1 = c′

1, return Rep(c2) = Rep(c′
2);

return Init(c1, c
′
1) ∧ Init(c2, c

′
2);

return false;

// Find a term in the equivalence class not containing a variable in V
Rep(c) =

if AllMark(c) return ⊥;
if c has a variable y s.t. M [y] = 0, return y;
let F (c1, c2) be the node s.t. M [F (c1, c2)] = 0. return F (Rep(c1), Rep(c2));

// Find a representative term for n that does not contain a variable in V
CRep(n) =

return Rep(Class(n));

Fig. 3. Cover Algorithm for Theory of Uninterpreted Functions
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size of the input formula φ. The formula φ in Figure 2 can be easily generalized
to obtain a formula of size O(n) whose cover is of size O(2n).

Special Case of Unary Uninterpreted Functions. For the special case when
the formula φ involves only unary uninterpreted functions, the cover algorithm
simply involves erasing variables in V from congruence closure of φ. Equivalently,
the algorithm only involves Lines 1 through 4 in the ComputeCover procedure de-
scribed in Figure 3. The complexity of the cover algorithm for unary uninterpreted
functions is thus O(n log n), where n is the size of the input formula.

4 Combination Algorithm for Cover

In this section, we show how to obtain a cover algorithm for combination of
two theories T1 ∪ T2 from the cover algorithms for the individual theories T1
and T2. Our combination methodology is based on extension of Nelson-Oppen
methodology for combining decision procedures for two theories. As a result,
the restrictions on theories that allow for efficient combination of their decision
procedures (namely, convexity, stably infiniteness, and disjointness) also transfer
to the context of combining cover algorithms for those theories.

The Nelson-Oppen methodology for combining decision procedures involves
sharing variable equalities v = u between the formulas in the two theories. For
combining cover algorithms, we also need to share variable-term equalities (i.e.,
equalities between variables and terms) apart from variable equalities. Further-
more, these equalities may also be conditional on any predicate. More formally,
the general form of equalities that we share between the two formulas in the two
theories is γ ⇒ v = t, where γ is a formula that does not involve any variable to
be eliminated, and either v and t are both variables (in which case we refer to it
as a conditional variable equality) or v is a variable that needs to be eliminated
and t is a term that does not involve any variable to be eliminated (in which case
we refer it to as a conditional variable-term equality). The terms t are restricted
to come from a set that we refer to as set of simple terms (Definition 1).

We now introduce some notation that is needed to describe the cover algorithm
for combination of two theories.

Definition 1 (Set of Simple Terms). A set S is a set of simple terms for
variable v with respect to a formula φ in theory T (denoted by SSTT (v, φ)), if for
all conjunctions of atomic predicates γ such that v �∈ Vars(γ), and all terms t
that are distinct from v:

v �∈ Vars(S) and Vars(S) ⊆ Vars(φ)
(γ ∧ φ ⇒T v = t) ⇒ ∃t′ ∈ S s.t.(γ ∧ φ ⇒T v = t′) ∧ (γ ∧ φ ⇒T t = t′)

We refer to t′ as ST (S, γ, t).

The theories of linear arithmetic and uninterpreted functions admit a finite set of
simple terms for their formulas. The following theorems describe how to compute
a set of simple terms for a formula in the corresponding theory.
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Theorem 3 (Set of Simple Terms for Linear Arithmetic). Let φ be the

formula
n∧

i=1
v ≤ ai∧

m∧
i=1

v ≥ bi∧
n′∧

i=1
v < a′i∧

m′∧
i=1

v > b′i∧φ′. where v �∈ Vars(φ′), v �∈

Vars(ai) and v �∈ Vars(bi)). Then, {ai}n
i=1 is SST�a(v, φ).

Theorem 4 (Set of Simple Terms for Uninterpreted Functions). Let φ
be a formula over the theory of uninterpreted functions. Let G be the congruence
closure of φ. Let t be any term in the congruence class of v in G that does
not involve v (if any such term exists). Then, the singleton set containing t is
SSTuf(v, φ) (if any such term exists). If no such term exists then, SSTuf(v, φ) = ∅.

The proofs of Theorem 3 and Theorem 4 are given in the full version of the
paper [7].

We use the notation WCT (φ, δ, V ) to denote ¬CT V : φ ∧ ¬δ. Intuitively,
WCT (φ, δ, V ) denotes the weakest constraint that together with φ implies δ and
that does not involve any variable from set V .

The following property is useful in describing CoverT1∪T2(φ, V ) in terms of
CoverT1 and CoverT2 .

Property 4. Let φ and φ′ be quantifier-free formulas in theory T such that

φ ⇒T φ′

V ∩ Vars(φ′) = ∅
(V ∩ Vars(γ) = ∅ ∧ φ ⇒T γ) ⇒ (φ′ ⇒T γ) , for all quantifier-free formulas γ

Then, φ′ ≡ CoverT (φ, V ).

We use the notation Num(T ) for any theory T to denote the maximum number
of variables that may occur in any atomic predicate in theory T . For example,
Num(T ) = 2 for difference logic (theory of linear arithmetic with only difference
constraints) as well as for theory of unary uninterpreted functions.

The procedure ComputeCoverT1∪T2
in Figure 4 takes as input a formula φ

and a set of variables V to be eliminated and computes CT1∪T2V : φ using
the cover algorithms for theories T1 and T2. Line 1 performs purification of φ,
which involves decomposing φ (which is a conjunction of atomic predicates in
the combined theory T1 ∪ T2) into conjunctions of atomic predicates that are
either in theory T1 or in T2 by introducing a fresh variable for each alien term in
φ. The set of all such fresh variables is referred to as U , while V ′ denotes the set
of all variables that we need to eliminate from φ1 ∧ φ2. Lines 4 to 11 repeatedly
exchange conditional variable equalities and conditional variable-term equalities
between φ1 and φ2. Lines 13 and 14 call the procedure ComputeSimpleCoverT,
which takes as inputs a set of variables V , a formula φ in theory T , and a formula
F of the form

∧
γi ⇒T ′ vi = ti (where vi ∈ V and T ′ is any theory) such that

V ∩ (Vars(γi) ∪ Vars(ti)) = ∅, and computes CT∪T ′V : φ ∧ F .
The proof of correctness (including termination) of the combination algorithm

in Figure 4 is non-trivial and is given in the full version of the paper [7]. We give
a brief sketch of the proof here. Let γi’s be some atomic predicates that do not
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ComputeCoverT1∪T2
(V, φ) =

1 φ1, φ2 = Purify(φ); let U be the variables introduced during Purify(φ);
2 let V ′ = V ∪ U;
3 F1 ← true; F2 ← true;
4 repeat until no change:
5 for j = 1, 2:

6 let
n∧

i=1
γi ⇒ vi = ui be some conditional variable equalities implied by F3−j;

7 let
m∧

i=1
δi ⇒ wi = ti be some conditional variable-term equalities implied by F3−j;

8 let ψ =
n∧

i=1
γi ∧

m∧
i=1

δi; let E =
k∧

i=1
vi = ui; let W = V ′ − {wi | 1 ≤ i ≤ m};

9 let Sv ≡ SSTTj (v, CTj W − {v} : φj ∧ E) for any variable v;
10 Fj ← Fj ∧

∧
v1,v2∈V ′

ψ ∧ WCTj (φj ∧ E, v1 = v2, W )[ti/wi] ⇒ v1 = v2

11 ∧
∧

v∈V ′,t∈Sv

ψ ∧ WCTj (φj ∧ E, v = t, W )[ti/wi] ⇒ v = t

12 let F ′
j be the conjunction of all implied variable-term equalities γi ⇒ vi = ti

implied by Fj s.t. Vars(γi) ∩ V ′ = ∅ (for j = 1, 2);
13 let α1 = ComputeSimpleCoverT1

(V ′, φ1, F
′
2);

14 let α2 = ComputeSimpleCoverT2
(V ′, φ2, F

′
1);

15 return α1 ∧ α2;

ComputeSimpleCoverT(V, φ, F ) =
result ← ComputeCover(V, φ);

forall collections
m∧

i=1
γi ⇒ wi = ti of conditional variable-term equalities implied

by F s.t. m ≤ Num(T ) and wi are all distinct variables:

let γ =
n∧

i=1
γi; let W = V − {wi | 1 ≤ i ≤ m};

result ← result ∧ (γ ⇒ ComputeCover(W, φ)[ti/wi]);
return result;

Fig. 4. Cover algorithm for combination of two theories T1 ∪ T2

involve variables in V and furthermore φ ⇒ γ1 ∨ . . . ∨ γk. We show that the
formula ComputeCoverT1∪T2

(V, φ)∧¬γ1 ∧ . . .∧¬γk is unsatisfiable by simulating
the decision procedure for theory T1 ∪T2 based on Nelson-Oppen’s combination
methodology (with the knowledge of the Nelson-Oppen proof of unsatisfiability
of the formula φ ∧ ¬γ1 ∧ . . . ∧ ¬γk).

The complexity of the cover algorithm for combination of two theories is an
exponential (in size of the input formula φ and cardinality of its set of simple
terms) factor of the complexity of the cover algorithms for individual theories.
For combination of difference logic (theory of linear arithmetic with only differ-
ence constraints) and unary uninterpreted functions, which is a useful combina-
tion that occurs in practice, the cover algorithm can be simplified and it runs in
time polynomial in size of the input formula φ.

We now present some examples of computation of cover for the combined
theory of linear arithmetic (�a) and uninterpreted functions (uf). Example 2
demonstrates the importance of sharing variable-term equalities, while Exam-
ple 3 demonstrates the importance of sharing conditional equalities.

Example 2. Compute C�a∪uf{v1, v2} : φ, where φ is (a ≤ v1+1∧v1 ≤ a−1∧v2 ≤
b ∧ v1 = F (v3) ∧ v2 = F (F (v3))), for some uninterpreted function F .

We first decompose φ into pure formulas φ1 and φ2:



Cover Algorithms and Their Combination 205

φ1 = (a ≤ v1 + 1 ∧ v1 ≤ a − 1 ∧ v2 ≤ b)
φ2 = (v1 = F (v3) ∧ v2 = F (F (v3)))

We then share variable-term equalities between φ1 and φ2 as follows:

φ1
v1=a−1−−−−−→ φ2

v2=F (a−1)−−−−−−−→ φ1

We then compute C�a{v1, v2} : φ1∧v2 = F (a−1) to obtain the result F (a−1) ≤ b.
Note that the cover algorithm for linear arithmetic does not need to understand
the term F (a − 1) and can just treat it as some fresh variable.

Example 3. Compute C�a∪ufx : φ, where φ is (y = Mem(a + x) − Mem(b + x)) for
some uninterpreted function Mem.
Purifying φ, we obtain φ1 and φ2 by introducing new variables u1, u2, u3, u4.

φ1 = (y = u1 − u2 ∧ u3 = a + x ∧ u4 = b + x)
φ2 = (u1 = Mem(u3) ∧ u2 = Mem(u4))

We then share conditional equalities between φ1 and φ2 as follows:

φ1
a=b⇒u3=u4−−−−−−−−→ φ2

a=b⇒u1=u2−−−−−−−−→ φ1

We then compute C�a{x, u1, u2, u3, u4} : φ1 ∧ a = b ⇒ u1 = u2 to obtain the
result a = b ⇒ y = 0.

5 Related Work

5.1 Discovering Invariants over Combination of Linear Arithmetic
and Uninterpreted Functions

There has been some work on generating conjunctive invariants that involve
combination of linear arithmetic and uninterpreted functions. [10] discovers in-
variants over a given set of terms, while generates invariants over programmer
specified templates [2]. Our approach (extended with a suitable widening oper-
ation) can be used to discover (possibly disjunctive) invariants over the combi-
nation of theories without the need to provide any terms/templates.

5.2 Abduction

An important key idea used in the cover algorithms described in this paper is that
of abduction. Abduction is reasoning from an observation to its best explanation.
More formally, an abductive explanation of observation ψ given environment E
in language L is a formula ψ′ = Abduct(E, ψ, L) such that ψ′ ∧ E ⇒ ψ, ψ′ is
in L, and ψ′ is the weakest such formula. The notion of abduction is widely
used in the artificial intelligence community [17] and in the logic programming
community [12].

The array W [n1, n2] (computed in lines 5 through 8 in Figure 3) used in
the algorithm for computing cover of a formula φ with respect to variables
V in the theory of uninterpreted functions is essentially Abduct(φ, n1=n2, L),
where L is the language of formulas over variables other than V . Similarly,
the formula WC(φ, δ, V ) used in the combination cover algorithm is essentially
Abduct(δ, φ, L).
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5.3 Predicate Cover

The notion of cover discussed in this paper is similar to the predicate cover [13]
operation used in predicate abstraction algorithms. For a formula φ, predicate
cover is the weakest Boolean formula over a set of given predicates that implies
φ. In contrast, the cover of φ is defined over a much richer language — the set
of all quantifier-free formulas.

6 Conclusion and Future Work

This paper defines cover as the most precise quantifier-free over-approximation
to existential quantifier elimination, and describes algorithms to compute the
cover of formulas in the theories of uninterpreted functions and linear arith-
metic. In addition, this paper provides a combination algorithm to combine the
individual cover algorithms for these theories. This paper also describes how the
cover operation can be used in program analysis and verification techniques that
otherwise require existential quantifier elimination.

We hope to extend this study in future work. We are currently exploring the
implementation of the symbolic model checking algorithm described in this pa-
per. Also, the notion of cover can be parameterized by types of formulas that one
is interested in. Instead of generating the most precise quantifier-free formula, one
may be interested in formulas that are conjunctions of, say, atomic predicates, or
at most k disjunctions of atomic predicates, or implications of the form φ1 ⇒ φ2,
where φ1 and φ2 are conjunctions of atomic predicates in variables V1 and V2 re-
spectively. The latter may be useful in computing procedure summaries, where V1
and V2 denote the set of input and output variables respectively.
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TAPIDO: Trust and Authorization Via Provenance and
Integrity in Distributed Objects

(Extended Abstract)�

Andrew Cirillo, Radha Jagadeesan, Corin Pitcher, and James Riely

School of CTI, DePaul University

Abstract. Existing web services and mashups exemplify the need for flexible
construction of distributed applications. How to do so securely remains a topic of
current research. We present TAPIDO, a programming model to address Trust and
Authorization concerns via Provenance and Integrity in systems of Distributed
Objects. Creation of TAPIDO objects requires (static) authorization checks and
their communication provides fine-grain control of their embedded authorization
effects. TAPIDO programs constrain such delegation of rights by using prove-
nance information. A type-and-effect system with effect polymorphism provides
static support for the programmer to reason about security policies. We illustrate
the programming model and static analysis with example programs and policies.

1 Introduction

Web services, portlets, and mashups are collaborative distributed systems built by as-
sembling components from multiple independent web applications. Building such sys-
tems requires programming abstractions that directly address service composition and
content aggregation. From a security standpoint, such composition and aggregation in-
volves subtle combinations of authentication, authorization, delegation, and trust.

The issues are illustrated by account aggregation services that provide centralized
control of an individual’s accounts held with one or more institutions. An individual
first grants permission for an aggregator to access owned accounts located at various
institutions. In a typical use case, the aggregator is asked to provide a summary balance
of all registered accounts: the aggregator asks each institution for the relevant account
balance; the institution then determines whether or not to grant access; with the ac-
cumulated balances, the aggregator returns a summary of registered accounts to the
individual. This simple service already raises several security and privacy issues related
to trust and authorization. To name just two:

– The account owner’s intent to access their account should be established by the insti-
tution. Message integrity is required to verify such intent.

– Principals should establish that the flow of messages through the system complies
with authorization, audit, and privacy policies for account access. Message prove-
nance is required to verify that the message history does comply with such policies.

� Companion technical report available at http://www.teasp.org/tapido/. Andrew Cirillo
and James Riely were supported by NSF Career 0347542. Radha Jagadeesan and Corin Pitcher
were supported by NSF Cybertrust 0430175.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 208–223, 2008.
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Principal: OWNER

Owner

getAllBalances

Principal: AGGR

Aggr

addAggr

getBalance

getBalance

Acct

Principal: ACCT

Principal: MONITOR

Monitor

Institution

checkBalance granted denied

Fig. 1. Principals Involved in Account Aggregation

It has been said that “An application can be mashup-friendly or it can be secure,
but it cannot be both.” [1]. We disagree. In this paper, we describe the use of message
provenance and integrity to achieve both security and flexibility aims in this general
programming context. In this extended abstract, we focus on the expressive power of
the programming model using examples. For a complete formal treatment of the static
analysis, please see the companion technical report.

In the remainder of this section, we present an informal overview of our approach us-
ing the account aggregation example. The principals involved are the account owner, the
aggregation service, and two principals for the institution holding the account. The in-
stitution uses two principals to distinguish privileged monitor code from public-facing,
unprivileged code. The owner requests the balance from the public-facing account ob-
ject, which in turn contacts a trusted monitor to determine whether access should be
granted or denied. The flow of messages is summarized in Figure 1.

Object model. TAPIDO’s object model is based upon Java’s notion of remote objects.
We locate objects at atomic principals. Examples of atomic principals are nodes on
a distributed system, a user or a process. For an object p, the location is available to
the programmer via p.loc. As with Java’s remote objects, objects are immobile and
rooted at the location where they are created. A method invocation on an object leads to
code execution at the location of the callee object. Thus, when the caller and callee ob-
jects are located at different locations, method invocation leads to a change of location
context. References to objects are mobile — they can be freely copied and they move
around through the system as arguments to methods or return values. We do not address
mobility of objects themselves; thus, we do not discuss serialization and code mobility.

TAPIDO assumes a communication model that guarantees the provenance and in-
tegrity of messages. Thus, TAPIDO focuses on semantic attacks on trust and authoriza-
tion, rather than on attacks against the cryptographic techniques required to achieve
this communication model. Thus, our approach assume an underlying network model
in which the sender of the message can be reliably determined; this model is well-
studied [2,3,4,5] and realizable [6,7,8]. Using a relatively high-level model permits us
to concentrate on attacks that seek unauthorized access, rather than studying the under-
lying cryptographic protocols that facilitate the integrity assumption.

Statics. Effects are communicated through object references. The language of effects
is a decidable monotonic fragment of first-order logic (e.g., Datalog) extended to work
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over authorization logics. The modalities of authorization logics [9,10,11,12] permit
different participants of a distributed system to maintain potentially inconsistent world-
views, e.g. if b receives an object with effect φ created by a, it receives the effect a says
φ , rather than the more absolute truth φ . Our language of effects also includes logic
variables to achieve ML-style polymorphism with respect to effects.

Our “object-centric” notion of effects differs from the more usual “method-centric”
notions explored in the literature on effects in Object-Oriented (OO) languages. The
effects on objects can only refer to the immutable data of the object — if the object is
an authorization token, this effect can record the rights associated with these object. For
honest agents, object effects are validated at the point of creation, effectively ensuring
that the global policy permits the creation of the object. When such an object is received
— e.g., as an argument to a method call — the effects are transferred as a benefit to the
recipient. In any execution of a well-typed program, there is a corresponding [13] object
creation validating such accrual of rights.

The attackers that we consider are untrustworthy atomic principals running any well-
typed Java program. Following [14] and our own earlier work [15], they may “utter”
anything whatsoever in terms of effects. For example, opponents may create authoriza-
tion objects without actually having the rights to create them, aiming to subvert the
global authorization policy. A program is safe [16] if every object creation at runtime is
justified by the accumulated effects. Our type system ensures that well-typed programs
remain safe under evaluation in the face of arbitrary opponent processes.

In the account aggregation example, consider when an individual requests their bal-
ance from the institution holding their account through the aggregator. The guarantee
sought is that the institution may only respond with the account balance when the re-
quest is approved by the account owner. With a pre-arranged protocol, approval can be
conveyed by a message passed from the account owner to the institution via the ag-
gregator. The institution’s code must be able to verify that it originates with the owner
and not been modified en route. The code must also ensure that the integrity-verified
message and the pre-arranged protocol entail the owner’s approval in the past; even in
the presence of attackers who (perhaps falsely) claim possession of rights.

We describe a program incorporating such a design in our model, and verify the
required properties with our static analysis.

Programming Provenance. Provenance — the history of ownership of an object —
has received much interest in databases, e.g., see [17] for a survey. Security-passing
style implementations [18] of stack inspection are already reminiscent of such ideas in
a security context, since the provenance of the extra security-token parameter can be
viewed as encoding the current relevant security context.

Provenance plays a crucial role in both the privacy architecture and the security (ac-
cess control and accountability) of the account aggregation example. Consider the re-
quest from the account owner to the institution via the aggregator. The institution may
impose an access control policy on the provenance of the request, e.g., to restrict the ag-
gregators that can be used with the institution’s services. Such a policy is distinct from,
but can be used in conjunction with, an access control policy based upon the originator
of the request. Similarly, the institution’s audit policy may require a record of the prove-
nance of requests (including the identities of the owner and the aggregator) to support
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an accountability obligation, e.g., to explain why and to whom account information was
provided should the institution be accused of dishonest behavior.

Finally, the account owner can demand security of the path traversed by the result
of such a request to ensure data privacy. This is demonstrated to the account owner by
returning the relevant snapshot of the history of their data along with their data.

In contrast to stack inspection and history-based access control (e.g., see [19]) that
mandate the flow of the security token, and record in it the full history of information
used to make a judgement, our “user-defined” approach relies on trust relationships
between the principals that are recorded as part of the history to make judgements.

In the account aggregation example, the response from the institution to the account
owner has full history that can be described with the regular expression ACCT · trusted∗ ·
AGGR · trusted∗ · OWNER, where trusted represents a collection of trusted principals.
Our explicit programming of this path in the sequel maintains only a subsequence of
the history that matches ACCT · trusted∗ · AGGR · OWNER. Such abbreviations of the full
history are codified in the security policy by assumptions on these principals — e.g.,
that the aggregator received the result from a trustworthy principal that can be relied
upon to enforce the policy, and that the aggregator can be relied upon to report this
information accurately.

We describe a program incorporating such a design in our model, and verify the
required properties with our static analysis.

Related work. The study of effect systems was initiated in the context of functional
languages (e.g., see Gifford and Lucassen [20,21], and Talpin and Jouvelot [22,23]
amongst others). The ideas have since been applied broadly to OO languages; to name
but a few, specifying the read/write behavior of methods [24,25], confinement [26,27],
type reclassification [28], object protocols [29] and session types [30].

The most closely related papers are types for authorization, by Fournet, Gordon and
Maffeis [31], a successor paper by the same authors [14] and our own earlier paper [15].
All of these papers (including this one) focus on authorization issues and so the work
on information flow, e.g., see [32] for a survey, is not directly relevant. However, as in
information flow based methods, TAPIDO global policy drives program design.

Fournet, Gordon and Maffeis [31] introduce an assume-guarantee reasoning frame-
work with Datalog assertions for dealing with types for authorization. Both papers
[31,14] are based in a pi-calculus formalism and view authorization as “a complex
cryptographic protocol” [31] in the context of the traditional “network is the opponent”
model. The successor paper uses dependency analysis on authorization logic to formal-
ize a subtle notion of security despite compromise. Our object-centric effects adapt their
static annotations to an OO setting. Our requirements on object creation (resp. transfer
of effects to the callee) are analogous to their expectation (resp. statement) annotations.

Our prior paper [15] was inspired by [31]. It was also placed in a mobile process
calculus, but diverged from [31,14] in assuming a model with explicit identities and a
network that guaranteed integrity.

In this paper, we study imperative distributed objects by building on these intuitions.
Our primary aim in this paper is to provide foundations of a programming methodol-
ogy to ensure that distributed systems validate authorization and security policies; e.g.,
one of the aims of our examples is to illustrate the use of standard OO mechanisms
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to incrementally construct security guarantees. While the pi-calculus (with notions of
keys) is expressive enough to code distributed objects (with explicit identities), such a
translation is arguably inconsistent with our overall aims — just consider the complex
encoding of state in the control of a pi-program. Such a translation based semantics
approach obfuscates the simple (from an object standpoint) invariants that underlie our
analysis. At any rate, the type systems in these three papers do not include the invariants
of processes required to capture the type annotations of TAPIDO.

2 Language

We present the evaluation semantics for TAPIDO, a distributed class-based language
with mutable objects. Our treatment of classes follows earlier direct semantics for class-
based languages [33,34,24,35]. We do not address issues of genericity [36,34] or inner
classes [37]. Our treatment of concurrency follows Gordon and Hankin’s concurrent
object calculus [38]. As in Cardelli’s Obliq [39], our object references have distributed
scope, rather than local scope [40]. Our treatment of locations borrows heavily from
process algebras with localities (see [41] for a survey).

We first describe our naming conventions. Names for classes (c, d), methods (�),
fields (f , g), variables (x, y, z), objects (p, q) and principals (a, b) are drawn from sep-
arate namespaces, as usual. Predicate variables (α , β ) and predicate constructors (γ)
occur in static annotations used during type-checking.

The reserved words of the language include: the variable names “this” and “caller”;
the binary predicate constructors “∧”, representing conjunction, and “says”, represent-
ing quoting; the ternary predicate constructor Prov is used to indicate that the first argu-
ment (an object) was received from the second argument (source principal) by the third
argument (target principal). We write the binary constructors infix.

The language is explicitly typed. Object types (c<�φ>) include the actual predicate
parameters �φ , which we treat formally as extended values. Value types include objects
(C), principals (Prin) and Unit. Extended value types include predicate types (P), which
are resolved during typechecking. The process type (Proc) has no values.

C,D ::= Object Typesc<�φ>
T,S ::= Value TypesC | Prin | Unit
P,Q ::= Predicate TypesPred( �T )
T ,S ::= TypesT | P | Proc

μ ::= Mutability Annotationsfinal | mutable

D ::= Classes (�α bound in D, θ , �T , �M )class c<�α :�P>�D{�μ �T�f; �M }[θ]
M ::= Methods (�β bound in S, �T , M;�x in M)<�β : �Q>S �(�T �x){M}

One may write classes and methods that are generic in the predicate variables, achiev-
ing ML-style polymorphism with respect to effects. Class declarations thus include the
formal predicate parameters �α , which may occur in the effect θ (see next table) asso-
ciated with instances of the class. In addition to effects, class declarations include field
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and method declarations, but omit implicit constructor declarations. Fields include mu-
tability annotations, which are used in the statics. The syntax of values and terms is as
follows1.

V,W,U,A,B,φ ,ψ ::= Open Extended Values
x | p | a | unit Variable, Runtime Value
α | γ | φ(�V) | · · · Predicates

M,N,L,θ ::= Terms
V | new c<�φ>(�V) Value, Object Creation
let x=V.�<�φ>(�W);M | V.f | V.loc | V.f :=W Object Operations
if V =W then M else N | let x=N;M | N ||-M Control Flow
p:c{�f =�V} | (ν p:C)M | a[M] Runtime Terms

We use the metavariables φ , ψ and θ to represent values and terms of predicate type, and
the other metavariables to represent runtime values and terms, with A and B reserved for
values of principal type. Predicates are static annotations used in type-checking, which
do not play any role in the dynamics.

An expectation “expect θ” may be written as “new Proof<θ>()”, where class Proof
is defined “class Proof<α :Pred>{}[α]”.

The syntax of terms includes standard OO primitives for object creation, method call,
and field get/set. The let binder in method calls is necessary to describe the provenance
of return values. Constructors and methods take predicate parameters that are used stat-
ically. The special “field” loc returns the location of an object. The conditional allows
equality testing of values.

Concurrent composition (||-) is asymmetric. In N ||-M, the returned value comes from
M; the term N is available only for side effects. In the sequential composition “let x =
N;M”, x is bound with scope M. We elide the let, writing simply “N;M” when x does
not occur in M. We also use standard syntactic sugar in place of explicit sequencing.
For example, we may write “y.f.g” to abbreviate “let x=y.f;x.g”.

Heap elements (p:c{ · · ·}), name restriction ((ν p)) and frames (a[M]) are meant
only to occur at runtime. The first two of these model the heap, whereas the last models
the (potentially distributed) “call stack”. We expect that these constructs do not occur
in user code. An object name binder (ν) is separate from the associated denotation
(p:c{�f =�V}), allowing arbitrary graphs of heap objects. (The preceding example in-
dicates that p is located at a, with actual class c and fields�f =�V .) The frame a[M]
indicates that M is running under the authority of a.

Structural Congruence. Evaluation is defined using a structural congruence on terms.
Let ≡ be the least congruence on terms that satisfies the following axioms. The rules
in the left column are from [38]. They capture properties of concurrent composition,

1 When writing definitions using classes and methods, we often elide irrelevant bits of syntax,
e.g., we leave out the parameters to classes when empty, such as writing Object rather than
Object< ·>. We identify syntax up to renaming of bound names, and write M[x :=V ] for sub-
stitution of V for x in M (and similarly for other categories). We sometimes write extends
for � for clarity. We often elide type information. We write “S � (�T�x);” as shorthand for
“S � (�T�x) {}”.
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including semi-associativity and the interaction with let. The rules in the right column,
inspired by [41], capture properties of distribution. The first of these states that the
interpretation of a value is independent of the location at which it occurs. The second
states that computation of a frame does not depend upon the location from which the
frame was invoked.

Structural Congruence. (M ≡ M′) (where p /∈ fn(M))

(M ||-N)||-L ≡ M ||- (N ||-L)
(M ||-N)||-L ≡ (N ||-M)||-L
((ν p)N)||-M ≡ (ν p)(N ||-M)
M ||- ((ν p)N) ≡ (ν p)(M ||-N)
let x= (L||-N);M ≡ L||- (let x=N;M)
let x= ((ν p)N);M ≡ (ν p)(let x=N;M)

a[V] ≡ V
a[b[M]] ≡ b[M]
a[N ||-M] ≡ a[N]||-a[M]
a[(ν p)N] ≡ (ν p)a[N]
a[let x=N;M] ≡ let x=a[N];a[M]

One may view interesting terms as configurations, which we now define. A store Σ is a
collection of distributed heap terms, b1[p1:c1{ · · ·}]||- · · ·||- bm[pm:cm{ · · ·}], where
each p j is unique. A thread is either a value or a term a[M] that does not contain oc-
currences of a name restriction or heap term. (A value represents a terminated thread.)
An initial thread is a term a[M] such that M additionally contains no blocks. A con-
figuration is a term of the form (ν�p)(Σ ||-M1 ||

- · · ·||-Mn), where each Mi is a thread. A
configuration is initial if each of its threads is initial. Evaluation preserves the shape of
a configuration up to structural equivalence: If M is a configuration and M → M′ then
M′ is structurally equivalent to a configuration.

Evaluation. The evaluation relation is defined with respect to an arbitrary fixed class
table. The class table is referenced indirectly in the semantics through the lookup func-
tions fields and body; we elide the standard definitions.

Evaluation is defined using the following axioms; we elide the standard inductive
rules that lift structural equivalence to evaluation (M → M′ if M ≡ N → N′ ≡ M′) and
that describe computation in context (for example, b[M] → b[M′] if M → M′). We
discuss the novelties below.

Term Evaluation. (M → M′)

new c(�V) → (ν p)(p:c{�f =�V}||- p)
if fields(c) =�f and |�f | = |�V |

b[p:c{ · · ·}]||-a[let y= p.�(�W);L] → b[p:c{ · · ·}]||-a[let y=b[M′];L′]
if body(c.�) = (�x){M} and |�x| = |�W |
where M′ = Prov(�W ,a,b)||-M[caller := a][this := p][�x := �W ]
and L′ = Prov(y,b,a)||-L

b[p:c{ · · ·}]||- p.loc → b[p:c{ · · ·}]||-b
b[p:c{f =V · · ·}]||- p.f :=W → b[p:c{f =W · · ·}]||-unit

b[p:c{f =V · · ·}]||- p.f → b[p:c{f =V · · ·}]||-V
if V =V then M else N → M
if V =W then M else N → N if V �= W
let x=V;M → M[x :=V ]
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The rule for new creates an object and returns a reference to it; in the Gordon/Hankin
formalism, the heap stays on the left, whereas the return value goes on the right. p.loc
returns the location of p.

Method invocation happens at the callee site, and thus a new frame is introduced in
the consequent b[M′]. The provenance of the actual parameters is recorded in Prov(�W ,
a,b), which is shorthand for Prov(W1,a,b), . . . ,Prov(Wn,a,b). In M′, the special vari-
able caller is bound to calling principal; there are also standard substitutions for this
and the formal parameters. In L′, the provenance of the return value is recorded in
Prov(y,b,a).

Effects. Effects play a crucial role in the statics, but are ignored by evaluation. In
summary, trustworthy processes are required to justify object creation by validating the
expectations associated with classes in terms of accumulated effects. Opponent pro-
cesses, on the other hand, may ignore expectations but are otherwise well typed. We
say that a term is safe if the expectations associated with object creation by trusted
principals during evaluation are always justified by the accumulated effects. We es-
tablish the standard properties of Preservation and Progress. As a corollary, we de-
duce that well-typed trustworthy processes remain safe when composed with arbitrary
opponents.

Our proof of type-safety identifies the key properties required of the logic of effects.
Thus, the logic of effects has to support structural rules on the left, support transitivity
via cut, and ensure closure of the equality predicate under substitution and reduction. In
addition, typechecking of examples (such as the ones that follow) also requires closure
of inference under the inference rules of affirmation in the authorization logic of [10],
e.g., functoriality of says, distribution of says over conjunction, and (α ⇒ A says β ) ⇒
(A says α ⇒ A says β ). In this extended abstract, we illustrate the type system using
examples; full details can be found in the companion technical report.

3 Examples

In these examples, effects are described in a variant of Datalog extended to work over
authorization logic. As with regular Datalog, a program is built from a set of Horn
clauses without function symbols. In contrast to regular Datalog, the literals can also
be in the form of quotes of principals. The well-formed user predicates are typed, with
fixed arity. They are always instantiated with pure terms in a type-respecting fashion;
pure terms are guaranteed to converge to a value without mutating the heap.

3.1 Workflow

In this stateful workflow pattern, a user submits data of type T by creating an object of
class SubmittedCell. (For simplicity, we do not address generic types here.) The man-
ager must subsequently approve the data by creating an object of class ApprovedCell.
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final T data; final Prin user; final Prin manager;
} [this.user says α(this.data)]
class ApprovedCell<α,β :Pred(T)> extends CellI<α,β> {
final T data; final Prin user; final Prin manager;

} [this.user says α(this.data) ∧ this.manager says β (this.data)]
class FailedCell<α,β :Pred(T)> extends CellI<α,β> { }

In CellI<α,β>, α is the predicate that the user establishes on the data in the submission.
β is the predicate that the manager establishes on the data. The final effect on approved
cells represents both approvals in the static types.

The submission and approval objects are generated by a CellFactory in response to
receipt of a request object (of class CellReq<γ>). The submit method of CellFactory
<α,β> receives the effect req.loc says α(req.data) on its req parameter. The result-
ing instance of SubmittedCell<α,β> carries this assumption, along with the name of a
manager that must approve the request.

class CellReq<γ:Pred(T)> { final T data; } [γ(this.data)]
class CellFactory<α,β :Pred(T)> {

SubmittedCell<α,β> submit(CellReq<α> req, Prin manager) {
new SubmittedCell<α,β>(req.data, req.loc, manager)

}
CellI<α,β> approve(CellReq<β> req, SubmittedCell<α,β> cell) {
if ((req.loc=cell.manager) && (req.data=cell.data) && (this.loc=cell.loc))
then new ApprovedCell<α,β>(cell.data, cell.user, cell.manager)
else new FailedCell<α,β>()

} }

The approve method receives the effect req.loc says β (req.data). After checking that
req.loc is the same as cell.manager, it may conclude that cell.manager says β (req.data).
To establish the final effect on the ApprovedCell, the factory must establish that the data
in the approval request is the same as the data in the initial request. Further, it must be
the case that submit and approve are called upon factories located at the same princi-
pal, since the ApprovedCell vouches for both α and β , although these are validated at
different times. If any of the equality tests are missing, the code fails to typecheck.

Visitors for typecases. The class CellI is an interface for cells. The visitor design pat-
tern [42] provides a type-safe way to write code that is dependent on the actual dynamic
type/subclass. Thus, we add methods such as visitApprovedCell to class CellV<α,β>
(in general, one such visit method for each subclass). To dispatch to the visitor, the CellI
interface is augmented with an accept method, implemented in each subclass; e.g., if S
is the return type of the visitor, the implementation of ApprovedCell<α,β>.accept is:

S accept(CellV<α,β> v) { v.visitApprovedCell(this) }
Encoding Provenance. The submission and approval requests described above for the
workflow cell do not track provenance. To accommodate provenance tracking, e.g., for
the account balance requests discussed in Section 1, we develop an idiom for decorating

class CellI<α,β :Pred(T)> { }
class SubmittedCell<α,β :Pred(T)> extends CellI<α,β> {
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such requests as they are passed from principal to principal. The decorations indicate
the provenance of the transmitted data. As usual with a decorator design pattern [42],
the Req<α> class is split into three classes: the interface ReqI<α>, the concrete class
ReqC<α> (which corresponds to the original Req<α>), and the decorator ReqD<α>.
We use a visitor to inspect the resulting object. Again, let T be the type of the request
data and S be the arbitrary return type of the visitor.

class ReqV<α> { S visitReqC(ReqC<α> x); S visitReqD(ReqD<α> x); }
class ReqI<α> { S accept(ReqV<α> v); }
class ReqC<α> extends ReqI<α> { final T data;

S accept(ReqV<α> v) { v.visitReqC(this) }
} [α(this)]
class ReqD<α> extends ReqI<α> { final ReqI<α> payload; final Prin src; final Prin tgt;

S accept(ReqV<α> v) { v.visitReqD(this); }
} [Prov(this.payload, this.src, this.tgt)]

Significantly, it is the concrete class ReqC<α> that retains the original effect α(this).
The decorator, instead, carries an effect concerning the provenance of the decorated
data. The effect Prov, used here at type Pred(ReqI<α>,Prin,Prin), is a claim about
the provenance of one hop of a request. It indicates that this.payload was received from
this.src by this.tgt. Thus, the object creation new ReqD(p,A,B) typechecks only when
the static semantics can deduce that p has been received by B from A.

To illustrate request decoration, consider the following trustworthy forwarder2:

class TrustworthyForwarder extends AggrI { mutable AggrI next;
RespI getAllBalances(ReqI<SubmitBal> req) {
let resp:RespI = next.approve(new ReqD<SubmitBal>(req, caller, this.loc));
new RespD(resp, next.loc, this.loc); } }

The method body is typechecked in the context of the assertion Prov(req,caller,this.loc),
thus permitting the construction of the ReqD object. Similarly, the Prov(resp,next.loc,
this.loc) assertion established by the method invocation on next enables the typecheck-
ing of the construction of the new RespD object. In contrast, an untrustworthy forwarder
might produce an inaccurate provenance decoration for the request, e.g., using new
ReqD<SubmitBal>(req,FAKESRC,FAKETGT)). In the following account aggregation
example, the principals trusted to provide accurate provenance decorations are speci-
fied via the θ2 component of the global policy.

3.2 Account Aggregation

Recall, from Figure 1, a rough outline of the protocol: (1) OWNER informs ACCT that
AGGR may aggregate its balances (using Acct.addAggr); (2) OWNER requests a sum-
mary of its balances from AGGR (using Aggr.getAllBalances); (3) AGGR requests the

2 For reasons of space we omit definition of AggrI, an interface class with a single
getAllBalances method, and classes RespI, RespC, RespD for responses by analogy with
non-generic versions of request classes ReqI, ReqC, ReqD.
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balance from ACCT using Acct.getBalance. Steps (1) and (3) involve communication
between the public-facing ACCT and the private MONITOR. In addition, let the princi-
pal FORWARDER be trusted to relay messages using the decorator previously discussed.
For simplicity, we use a single forwarder and account as well as a single class to rep-
resent the code running at each principal. (We follow the convention that field owner
references an instance of class Owner located at principal OWNER.) Due to space limi-
tations, we elide the code implementing step (1) of the protocol. We recall that Step (2)
of the protocol is initiated by the OWNER, with a call to Aggr.getAllBalances.

The global security policy. The global system policy has the form [OWNER says (θ0)]∧
[AGGR says (θ1 ∧θ2 ∧θ3)]∧ [MONITOR says (θ4 ∧θ5)]∧ [ACCT says θ6]. The predicates
θ0 . . .θ6 are formalized shortly. Informally, θ0 will ensure that the OWNER is authorized
to submit balance requests. θ1 and θ2 will characterize the paths that are considered
secure. θ3 will ensure that the aggregator only creates requests that arrive from owner on
secure paths. θ4 and θ5 will ensure that the MONITOR only accepts requests from owner
or from aggregators certified by the owner. θ6 will ensure that the account delegates
authorization decisions to the monitor.

The design of the entire program that follows is driven by this global policy, i.e.,
our code is set up to satisfy the expectations of each principal. Our presentation of
the formal policies piecemeal along with the associated classes is only for concise
exposition.

Notation. To encode the policy, we use several predicate constructors, which we write
in italics. SubmitAggr, with type Pred(Prin), indicates that an aggregator has been
submitted for approval. Likewise ApproveAggr indicates that the request was approved.
SubmitBal, with type Pred(ReqC<SubmitBal>), is a claim that a balance request has
been submitted. ApproveBal, with type Pred(ReqI<SubmitBal>), is a claim that a bal-
ance request (perhaps with decorators) has been approved. As described previously,
Prov, used here at type Pred(ReqI<SubmitBal>,Prin,Prin), is a claim about the prove-
nance of one hop of a request. CheckedProv, with type Pred(ReqI<SubmitBal>), indi-
cates that the provenance of a request has been checked, and is specified using reacha-
bility via Prov, incorporating trust in principals that report about each hop.

We assume that the field Monitor.cell is set appropriately. For simplicity, we have
hard-coded AGGR and other principals throughout the example code; one may instead
use a final field to store principals of interest, deferring the choice to instantiation-time.

Owner. We use some abbreviations and elide the code to check the response received
back from the aggregator, which is similar to the visitor used by the aggregator, shown
later below. Acct.addAggr expects arguments of type CellReq<SubmitAggr>, and Aggr.
getAllBalances expects arguments of type ReqI<SubmitBal>.

class Owner { mutable AcctI acct; mutable AggrI aggr; /* could be forwarders */
Unit main() {

acct.addAggr(new CellReq<SubmitAggr>(aggr));
let response:RespI = aggr.getAllBalances(new ReqC<SubmitBal>(this.loc));
. . . /* check response for compliance with privacy policy */ }

} [θ0]
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where θ0 = (SubmitAggr(AGGR))∧ (SubmitBal(X):-X.data = X.loc = this.loc). This
effect indicates that the instantiator must be able to submit the aggregator request and
that the instantiator must be able to submit any balance request that it creates, so long as
the data field truthfully records its identity. The second requirement is expressed using
a Datalog variable X, ranging over values of type ReqC<SubmitBal>.

Aggregator. The code uses the following effects.

θ1 = CheckedProv(X) :- Prov(X, S, this.loc), S = owner OR S = forwarder
θ2 = CheckedProv(X.payload) :- forwarder says Prov(X.payload, S, forwarder),

CheckedProv(X)
θ3 = SubmitBal(X) :- owner says SubmitBal(Y), Y.data=X.data=owner, CheckedProv(Y)

The first two of these deal with provenance. The base case θ1 validates an object deliv-
ered to aggregator from forwarder or owner. θ2 recurses down one level of the decorated
object, making explicit the trust on trusted forwarders. Together θ1 and θ2 ensure that
a request is deemed valid if it has passed through trusted intermediaries. θ3 allows the
aggregator to create new balance requests, if it has checked the provenance of the re-
quest: both the new request X and the old one Y must have the data field set to OWNER;
further, the OWNER must avow that they created the old request.

class Aggr extends AggrI { final Acct acct;
RespI getAllBalances(ReqI<SubmitBal> req) {
if ((caller=forwarder) || (caller=owner)) then
let req2:ReqI<SubmitBal> = req.accept(new AggrReqV(req));
let resp:RespI = acct.getBalance(req2);
new RespD(resp, acct.loc, this.loc) }

} [θ1 ∧ θ2 ∧ θ3]

The validation of the creation of req2 uses θ1 to satisfy the effect of the the class
AggrReqV. The auxiliary class AggrReqV is a visitor to typecase on the request be-
ing either a concrete request, or being a forwarded request.

class AggrReqV extends ReqV<SubmitBal> {
final ReqI<SubmitBal> in;
ReqI<SubmitBal> visitReqC(ReqC<SubmitBal> x) {
if ((this.in=x) && (x.loc=x.data=owner)) then
new ReqC<SubmitBal>(x.data)

else . . . /* error */ }
ReqI<SubmitBal> visitReqD(ReqD<SubmitBal> x) {
if ((this.in=x) && (x.loc=x.tgt=forwarder)) then

x.payload.accept(new AggrReqV(x.payload))
else . . . /* error */ }

} [θ1 ∧ θ2 ∧ θ3 ∧ CheckedProv(this.in)]

As the visitor traverses the decorators, it maintains the invariant that CheckedProv is
true of the object being visited. The visitor updates the effect each time it moves to a new
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element by creating (and using) a new visitor. On callback to visitReqC or visitReqD, the
ReqI should be the same as the one with the effect; the type system ensures that this is
explicitly checked. To type visitReqC requires θ3, which allows us to create the newReqC
located at AGGR. To type visitReqD, we first deduce CheckedProv(x) from this.in = x
and the class effect. Since x is a ReqD, we have x.loc says Prov(x.payload, x.src, x.tgt).
Since x.loc = x.tgt = FORWARDER and CheckedProv(x), then θ2 yields CheckedProv(x.
payload), allowing creation of the new AggrReqV.

The enforcement of the privacy policy of the introduction by the OWNER can be
achieved using similar techniques.

Account. Calls to Acct.getBalance are delegated to Monitor.checkBalance, which re-
sults in a call back to either Acct.granted or Acct.denied.

class Acct { mutable int Balance; mutable Monitor monitor; mutable RespI result;
RespI getBalance(ReqI<SubmitBal> req) {

monitor.checkBalance(req, this);
this.result }

Unit granted(ReqI<ApproveBal> req) {
if (req.loc=monitor) then
expect monitor says ApproveBal(req);
this.result := new RespC(req)

else . . . /* error */ }
Unit denied() { . . . /* error */ } . . .

} [θ6]

Here θ6=ApproveBal(X):-MONITOR says ApproveBal(X). Thus, if the granted method
is called back, then it must be the case that the monitor approved the request.

Monitor. The effects of the monitor code are expressed using the following predicates.

θ4 = ApproveBal(X) :- owner says SubmitBal(X), X.data=owner
θ5 = ApproveBal(X) :- owner says SubmitAggr(Y), this.loc says ApproveAggr(Y),

Y says SubmitBal(X), X.data=owner

class Monitor { mutable CellI<SubmitAggr, ApproveAggr> cell;
Unit checkBalance(ReqI<SubmitBal> req, Acct acct) {
if (req.loc=req.data=owner)
then /* audit the request */ ; acct.granted(new ReqC<ApproveBal>(req.data))
else this.cell.accept(new MonitorCellV(req, acct)) }

} [θ4 ∧ θ5]
class MonitorCellV extends CellV<SubmitAggr, ApproveAggr> {
final ReqI<SubmitBal> req; final Acct acct;
Unit visitFailedCell(FailedCell<SubmitAggr, ApproveAggr> x) { this.acct.denied() }
Unit visitSubmittedCell(SubmittedCell<SubmitAggr, ApproveAggr> x) { this.acct.denied() }
Unit visitApprovedCell(ApprovedCell<SubmitAggr, ApproveAggr> x) {
if ((x.loc=this.loc) && (owner=x.user) && (this.loc=x.manager)

&& (this.req.loc=x.data) && (this.req.data=owner))
then /* audit the request */ ; this.acct.granted(new ReqC<ApproveBal>(this.req.data))
else this.acct.denied() }

} [θ5]
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In checkBalance, θ4 establishes the safety of creating the ReqC, whereas θ5 establishes
the safety of creating the MonitorCellV.

4 Conclusion

TAPIDO is designed to counter the claim that “an application can be mashup-friendly
or it can be secure, but it cannot be both.” Our model of dynamics adds only two non-
standard features, namely (a) the ability to detect the creator location, and (b) integrity
of remote method invocation. We have shown that this suffices to code useful tracking
of the provenance of an object reference. Our type system adds (polymorphic) object
level effects to standard types. From a programming point of view, this style allows
trust-based decisions that are validated by the policy context of the application.
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Yûta Kaneko and Naoki Kobayashi

Graduate School of Information Sciences, Tohoku University
{kaneko,koba}@kb.ecei.tohoku.ac.jp

Abstract. We propose a new notion of declassification policy called lin-
ear declassification. Linear declassification controls not only which func-
tions may be applied to declassify high-security values, but also how
often the declassification functions may be applied. We present a lin-
ear type system which guarantees that well-typed programs never vio-
late linear declassification policies. To state a formal security property
guaranteed by the linear declassification, we also introduce linear re-
laxed non-interference as an extension of Li and Zdancewic’s relaxed
non-interference. An application of the linear relaxed non-interference to
quantitative information flow analysis is also discussed.

1 Introduction

There have been extensive studies on policies and verification methods for infor-
mation flow security [4,16,10,7,11,13]. The standard policy for secure information
flow is the non-interference property, which means that low-security outputs can-
not be affected by high-security inputs. A little more formally, a program e is
secure if for any high inputs h1 and h2 and low input l, e(h1, l) and e(h2, l)
are equivalent for low-level observers. The standard non-interference property
is, however, too restricted in practice, since it does not allow any leakage of se-
cret information. For example, a login program does leak information about the
result of comparison of a string and a password.

To allow intentional release of secret information, a variety of notions of de-
classification have been proposed [7,12,13]. Sabelfeld and Myers [12] proposed
delimited information release, where e is secure if, roughly speaking, whenever
d(h1) = d(h2) for the declassification function d, e(h1, l) and e(h2, l) are equiva-
lent for low-level observers. As a similar criterion, Li and Zdancewic [7] proposed
a notion of relaxed non-interference (relaxed NI, in short), where e is secure (i.e.,
satisfies relaxed NI) if e(h, l) can be factorized into e′(dh), where d is a declassi-
fication function and e′ does not contain h. Both the frameworks guarantee that
a program leaks only partial information d(h) about the high-security value h.
For example, if d is the function λx.xmod 2, then only the parity information
can be leaked.

The above criteria alone, however, do not always guarantee desirable secrecy
properties. For example, consider a declassification function d

�
= λx.λs.(s = x),

which takes a high-security value x, and returns a function that takes a string
and returns whether s and x are equal. Declassifications through such a function

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 224–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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often occur in practice, for instance, in a login program, which compares a user’s
password with an input string. Note that d(h) ≡ λs.(s = h) and h contain the
same quantity of information; In fact, even if e is h itself (so that it clearly leaks
the entire information), it can be factorized into:

(λg.let test(s) = if g(s) then s else test(s + 1) in test(0)) (d(h)).

Thus, the relaxed NI guarantees nothing about the quantity of information
declassified through the function d. (In the case of delimited information re-
lease [12], the problem can be avoided by choosing λx.(l = x) as d, instead of
λx.λs.(s = x); see more detailed discussion in Section 5.)

To overcome the problem mentioned above, we propose a new notion of declas-
sification called linear declassification, which controls how often declassification
functions can be applied to each high-security value, and how often a value
(which may be a function) obtained by declassification may be used. We define
a linear type system that ensures that any well-typed program satisfies a given
linear declassification policy.

To formalize the security property guaranteed by the linear declassification, we
also extend Li and Zdancewic’s relaxed non-interference [7] to linear relaxed non-
interference, which says that e is secure if e can be factorized into e′(λux.(dh)),
where e′ does not contain h and e′ can call the function λx.(dh) at most u times
to declassify the value of h.

The linear relaxed non-interference is useful for quantitative information flow
analysis [8,3,2]. For example, if a program e containing an n-bit password sat-
isfies the linear relaxed non-interference under the policy that λx.λs.(s = x) is
used at most once, we know that one has to run e O(2n) times in average to
get complete information about the password. On the other hand, if the declas-
sification function is replaced by λx.λs.(s > x), the password may be leaked
by only n runs of the program. In the paper, we show (through an example)
that the linear relaxed non-interference enables us to estimate the quantity of
information leakage (per program run) by looking at only the security policy,
not the program.

The rest of this paper is structured as follows. Section 2 introduces the lan-
guage of programs and linear declassification policies. Section 3 introduces a
linear type system which guarantees that a program adheres to linear declassifi-
cation policies. Section 4 defines linear relaxed non-interference as an extension of
Li and Zdancewic’s relaxed non-interference. Section 4 also discusses an applica-
tion of the linear relaxed non-interference to quantitative analysis of information
flow. Section 5 discusses related work and Section 6 concludes.

2 Language

This section introduces the syntax and semantics of programs and declassifica-
tion policies.
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2.1 Syntax

Definition 1 (expressions). The set of expressions, ranged over by e, is de-
fined by:

e (expressions) ::= x | n | σ | d〈〈e〉〉 | e1 ⊕ e2 | if e1 then e2 else e3
| λux.e | fix x(y) = e | e1e2 | 〈e1, . . . , en〉 | #i(e)

u (uses) ::= 0 | 1 | ω
⊕ (operators) ::= + | − |=| · · ·

Here, the meta-variables x and n range over the sets of variables and integers
respectively. The meta-variable σ ranges over the set of special variables holding
high-security integers, to which security policies (given below) are associated. For
the sake of simplicity, we consider only integers as primitive values, and assume
that e1 = e2 returns 1 if the values of e1 and e2 are the same, and returns 0
otherwise. if e1 then e2 else e3 returns the value of e3 if the value of e1 is 0,
and returns the value of e2 otherwise. The expression λux.e denotes a function
that can be used at most u times. If u is ω, the function can be used an arbitrary
number of times.1 Note that use annotations can be automatically inferred by
standard usage analysis [17,6,9], so that programmers need not specify them
(except for those in policies introduced below). The expression fix x(y) = e
denotes a recursive function that can be used an arbitrary number of times. The
expression e1e2 is an ordinary function application. The expression d〈〈e〉〉 is a
special form of function application, where the meta-variable d ranges over the
set ND of special function variables (defined in a policy introduced below). The
expression 〈e1, . . . , en〉 returns a tuple consisting of the values of e1, . . . , en. Note
that n may be 0, in which case, the tuple is empty.

We write [e′/x]e for the (capture-avoiding) substitution of e′ for x in e. We
write SVar(e) for the set of security variables occurring in e.

Definition 2 (policies). The set of policies is defined by:

p (security levels) ::= L | H | {d1 �→ u1, · · · , dn �→ un}
D (declassification environment) ::= {d1 �→ λωx.e1, · · · , dn �→ λωx.e2}

Σ (policy) ::= {σ1 �→ p1, · · · , σn �→ pn}

A security level p expresses the degree of confidentiality of each value. If p is L,
the value may be leaked to low-security principals. If p is H, no information about
the value may be leaked. If p is {d1 �→ u1, · · · , dn �→ un}, then the value may be
leaked only through declassification functions d1, . . . , dn and each declassification
function di may be applied to the value at most ui times. For example, if the
security level of σ is {d1 �→ 1, d2 �→ ω, d3 �→ 0}, then d1〈〈σ〉〉 + d2〈〈σ〉〉 + d2〈〈σ〉〉 is
allowed, but neither d3〈〈σ〉〉 nor d1〈〈σ〉〉 + d1〈〈σ〉〉 is.

A declassification environment D defines declassification functions. A policy
Σ maps σi to its security level. Note that the use of D(di) is always ω. This is
because how often di can be used is described in Σ for each security variable σ.
1 For the sake of simplicity, we consider only 0, 1, ω as uses. It is easy to extend the

language and the type system given in the next section to allow 2, 3, . . ..
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Example 1. Let D = {d �→ λωx.λ1y.x = y} and Σ = {σ �→ {d �→ 1}}. This pol-
icy specifies that information about σ can be leaked by at most one application
of d. Since the result of the application is a linear (use-once) function λ1y.σ = y,
the policy means that σ may be compared with another integer only once.

Note that if D(d) is λωx.λωy.x = y, then the declassification may be per-
formed only once, but the resulting value λωy.σ = y can be used an arbitrary
number of times. Therefore, an attacker can obtain complete information about
σ by applying the function to different values.

2.2 Operational Semantics

This section introduces an operational semantics to define the meaning of ex-
pressions and policies formally.

A run-time state is modeled by a pair 〈H, e〉, where H is a heap given below.2

Definition 3 (heap)

H (heap) ::= {f1 �→ λu1x1.e1, . . . , fn �→ λunxn.en,
σ1 �→ (n1, p1), . . . , σm �→ (nm, pm)}

f (function pointer) ::= x | d

Here, f ranges over the set consisting of (ordinary) variables (x, y, z, . . . ) and
declassification function variables (d1, d2, . . . ,).

A heap H keeps information about how often each function may be applied and
how the value of each security variable may be declassified in the rest of the com-
putation. For example, H(σ) = (2, {d �→ 1}) means that the value of σ is 2, and
the value can be declassified only once through the declassification function d.

For a system (Σ, D, e), the initial heap is determined by Σ, D, and the actual
values of the security variables. Let g be a mapping from dom(Σ) to the set of
integers. We write HΣ,D,g for the initial heap D∪{σ1 �→ (g(σ1), Σ(σ1)), . . . , σk �→
(g(σk), Σ(σk))} (where dom(Σ) = {σ1, . . . , σk}). We use evaluation contexts to
define the operational semantics.

Definition 4 (evaluation context). The set of evaluation contexts, ranged
over by E, is given by:

E (evaluation context) ::= [ ] | [ ]e | x[ ] | d〈〈[ ]〉〉 | if [ ] then e1 else e2
| [ ]⊕e | v⊕[ ] | 〈v1, . . . , vk−1, [ ], ek+1, . . . , en〉 | #i([ ])

v (values) ::= f | n | σ | 〈v1, . . . , vn〉

The relation 〈H, e〉 −→ 〈H ′, e′〉 is the least relation closed under the rules in
Figure 1. In the figure, F{x �→ v} is the mapping F ′ such that F ′(x) = v, and
F ′(y) = F (y) for any y ∈ dom(F ) \ {x}. val (H, v) is defined to be n if v = n, or
v = σ and H(σ) = (n, p).

The key rules are E-App and E-Decl. In E-App, the use of the function y
is decreased by one. Here, the subtraction u − 1 is defined by: 1 − 1 = 0 and
2 Note that unlike the usual heap-based semantics, tuples are not stored in a heap.
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y fresh

〈H,E[λux.e]〉 −→ 〈H{y �→ λux.e}, E[y]〉
(E-Fun)

H(d) = λωx.e

〈H{σ �→ (n, p)}, E[d〈〈σ〉〉]〉 −→ 〈H{σ �→ (n, p − d)}, E[[n/x]e])〉
(E-Decl)

H(d) = λωx.e

〈H,E[d〈〈n〉〉]〉 −→ 〈H,E[[n/x]e]〉
(E-Decl2)

〈H{y �→ λux.e}, E[yv]〉 −→ 〈H{y �→ λu−1x.e}, E[[v/x]e]〉 (E-App)

val(H,v) �= 0

〈H,E[if v then e1 else e2]〉 −→ 〈H,E[e1]〉
(E-IfT)

val(H,v) = 0

〈H,E[if v then e1 else e2]〉 −→ 〈H,E[e2]〉
(E-IfF)

〈H,E[v1 ⊕ v2]〉 −→ 〈H,E[val(H,v1)⊕val(H,v2)]〉 (E-Op)

z fresh

〈H,E[fix x(y) = e]〉 −→ 〈H ∪ {z �→ λωy.[z/x]e}, E[z]〉
(E-Fix)

〈H,E[#i〈v1, . . . , vn〉]〉 −→ 〈H, E[vi]〉 (E-Proj)

Fig. 1. Evaluation rules

ω − 1 = ω. Note that 0 − 1 is undefined, so that if H(y) = λ0x.e, the function y
can no longer be used (in other words, the evaluation of E[yv] get stuck).

In E-Decl, the security level p for σ changes after the reduction. Here, p − d
is defined by:

{d1 �→ u1, . . . , dn �→ un} − di = {d1 �→ u′1, . . . , dn �→ u′n}

where u′j =
{

uj − 1 if j = i
uj otherwise

L − di = L

For example, if the security level p of σ is {d �→ 1}, then after the declassification,
the security level becomes p − d = {d �→ 0}, which means that the value of σ
can no longer be declassified. Note that H − di is undefined, so that an integer
of security level H can never be declassified. Rule E-Decl2 is for the case when
a declassification function d is applied to an ordinary integer.

In rule E-Op, ⊕ is the binary operation on integers denoted by the operator
symbol ⊕. The remaining rules are standard.

Example 2. Recall the security policy in Example 1: D = {d �→ λωx.λ1y.(x =
y)} and Σ = {σ �→ {d �→ 1}}.
〈HΣ,D,{σ �→3}, d〈〈σ〉〉2〉 is reduced as follows.

〈D ∪ {σ �→ (3, {d �→ 1})}, d〈〈σ〉〉2〉
−→ 〈D ∪ {σ �→ (3, {d �→ 0})}, (λ1y.(3 = y))2〉
−→ 〈D ∪ {σ �→ (3, {d �→ 0}), z �→ λ1y.(3 = y)}, z(2)〉
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−→ 〈D ∪ {σ �→ (3, {d �→ 0}), z �→ λ0y.(3 = y)}, 3 = 2〉
−→ 〈D ∪ {σ �→ (3, {d �→ 0}), z �→ λ0y.(3 = y)}, 0〉

On the other hand, both 〈d〈〈σ〉〉, d〈〈σ〉〉〉 and (λωf.〈f(1), f(2)〉)(d〈〈σ〉〉) get stuck.

�

3 Type System

This section introduces a linear type system, which ensures that if 〈Σ, D, e〉 is
well-typed, then e satisfies the security policy specified by Σ and D.

3.1 Types

Definition 5 (types). The set of types, ranged over by τ , is defined by:

τ (types) ::= intp | τ1
ϕ→u τ2 | 〈τ1, . . . , τn〉

ϕ (effects) ::= t | nt

The integer type intp describes integers whose security level is p. For example,
int{d �→1} is the type of integers that can be declassified through the function d at
most once. The function type τ1

ϕ→u τ2 describes functions that can be used at
most u times and that take a value of type τ1 as an argument and return a value
of type τ2. The effect ϕ describes whether the function is terminating (when
ϕ = t) or it may not be terminating (when ϕ = nt). The effect will be used for
preventing leakage of information from the termination behavior of a program.
The type 〈τ1, . . . , τn〉 describes tuples consisting of values of types τ1, . . . , τn.

The sub-effect relation ≤ on effects is the partial order defined by t ≤ nt. The
sub-level relation  on security levels and the subtyping relation τ1 ≤ τ2 are the
least relations closed under the rules in Figure 2. For example, int{d �→1}

t→ω

int{d �→ω} is a subtype of int{d �→ω}
nt→1 int{d �→1}. We write ϕ1 ∨ ϕ2 for the least

upper bound of ϕ1 and ϕ2 (with respect to ≤), and p1 � p2 for the least upper
bound of p1 and p2 with respect to .

L 	 p 	 H
u′

i ≤ ui for each i ∈ {1, . . . , m}
{d1 �→ u1, . . . , dm �→ um, . . .} 	 {d1 �→ u′

1, . . . , dm �→ u′
m}

p1 	 p2

intp1 ≤ intp2

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 u′ ≤ u ϕ ≤ ϕ′

τ1
ϕ→u τ2 ≤ τ ′

1
ϕ′
→u′ τ ′

2

τi ≤ τ ′
i for each i ∈ {1, . . . , n}

〈τ1, . . . , τn〉 ≤ 〈τ ′
1, . . . , τ

′
n〉

Fig. 2. Subtyping rules
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3.2 Typing

A type environment is a mapping from a finite set consisting of extended vari-
ables (ordinary variables, security variables, and declassification function names)
to types. We have two forms of type judgment: � 〈Σ, D, e〉 for the whole system
(consisting of a policy, a declassification environment, and an expression), and
Γ � e : τ & ϕ for expressions. The judgment � 〈Σ, D, e〉 means that e satisfies
the security policy specified by Σ and D. Γ � e : τ & ϕ means that e evaluates
to a value of type τ under an environment described by Γ . If ϕ = t, then eval-
uation of e must terminate. If ϕ = nt, then e may or may not terminate. For
example, σ : int{d �→1}, f : int{d �→1}

t→ω int{d �→1} � fσ : int{d �→1}& t is a valid
judgment, but neither σ : int{d �→1}, f : int{d �→ω}

t→ω int{d �→1} � fσ : int{d �→1}& t

nor σ : int{d �→1}, f : int{d �→1}
nt→ω int{d �→1} � fσ : int{d �→1}& t is. (In the former,

the security level of σ does not match that of the argument required by f . In
the latter, the type of f says that f may not terminate, but the conclusion says
that fσ terminates.)

Figure 3 shows the typing rules. Two auxiliary judgments � Σ : Γ and � D : Γ
are used for defining � 〈Σ, D, e〉. The definitions of the operations used in the
typing rules are summarized in Figure 4.

We explain some key rules below.

– T-Op: Suppose e1 has type int{d �→1}. Then, the value of e1 can be declassified
through the function d, but that does not necessarily imply that e1 ⊕ e2 can
be declassified through the function d. Therefore, we raise the security level
of e1 ⊕ e2 to H unless both of the security levels of e1 and e2 are L.

– T-If: Since information about the value of e0 indirectly flows to the value
of the if-expression, the security level of the if-expression should be greater
than or equal to the ceil of security level of e0. For the sake of simplicity, we
require that the values of if-expressions must be integers.

– T-Fun: The premise means that free variables are used according to Γ each
time the function is applied. Since the function may be applied u times, the
usage of free variables is expressed by u · Γ in total.

– T-Dcl: The premise ensures that e must have type intd �→1, so that e can
indeed be declassified through d.

Example 3. Let τd = intL
t→ω intL

t→1 intL. d〈〈σ〉〉2 is typed as follows.

σ : int{d �→1} � σ : int{d �→1}& t

d : τd, σ : int{d �→1} � d〈〈σ〉〉 : intL
t→1 intL & t ∅ � 2 : intL & t

d : τd, σ : int{d �→1} � d〈〈σ〉〉2 : intL & t

Example 4. Let e be fix f(x) = if d〈〈σ〉〉x then x else f(x + 1). Let Σ1 = {σ �→
{d �→ ω}}, Σ2 = {σ �→ {d �→ 1}}, and D = {d �→ λωx.λ1y.(x = y)}. Then,
� 〈Σ1, D, e(0)〉 : intL holds but � 〈Σ2, D, e(0)〉 : intL does not.
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Γ � e : τ

Γ, x : τ � x : τ & t (T-Var)

Γ � n : intL & t (T-Const)

Γ, σ : intp � σ : intp & t
(T-SVal)

Γ1 � e1 : intp1 & ϕ Γ2 � e2 : intp2 & ϕ

Γ1 + Γ2 � e1 ⊕ e2 : int�p1���p2� & ϕ
(T-Op)

Γ, x : τ1 � e : τ2 & ϕ

u · Γ � λux.e : τ1
ϕ→u τ2 & t

(T-Fun)

Γ, x : τ1
nt→ω τ2, y : τ1 � e : τ2 & ϕ

ω · Γ � fix x(y) = e : τ1
ϕ→ω τ2 & t

(T-Fix)

Γ1 � e1 : τ1
ϕ0→1 τ2 & ϕ1

Γ2 � e2 : τ1 & ϕ2

Γ1 + Γ2 � e1 e2 : τ2 & ϕ0 ∨ ϕ1 ∨ ϕ2

(T-App)

Γ � e : int{d �→1} & ϕ1

(d : intL
ϕ0→ω τ) + Γ � d〈〈e〉〉 : τ & ϕ0 ∨ ϕ1

(T-Dcl)

Γ � e : τ ′ & ϕ′ τ ′ ≤ τ ϕ′ ≤ ϕ

Γ � e : τ & ϕ
(T-Sub)

Γ1 � e0 : intp0 & ϕ0 Γ2 � e1 : intp1 & ϕ1 Γ2 � e2 : intp2 & ϕ2

ϕ1 = ϕ2 = t if �p0� = H

Γ1 + Γ2 � if e0 then e1 else e2 : int�p��p1�p2 & ϕ0 ∨ ϕ1 ∨ ϕ2
(T-If)

Γi � ei : τi & ϕi (for each i ∈ {1, . . . , n})

Γ1 + · · · + Γn � 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉 & ϕ1 ∨ · · · ∨ ϕn

(T-Tuple)

� Σ : Γ

� {σ1 �→ p1, . . . , σn �→ pn} : (σ1 : intp1 , . . . , σn : intpn) (T-Policy)

� D : Γ

∅ � λωx.ei : τi & ϕi for each i ∈ {1, . . . , n}
� {d1 �→ λωx.e1, · · · , dn �→ λωx.en} : (d1 : τ1, . . . , dn : τn)

(T-DEnv)

� 〈Σ, D, e〉

� Σ : Γ1 � D : Γ2 Γ1, Γ2 � e : τ & ϕ
all the security levels in Γ2 are L

� 〈Σ, D, e〉 : τ
(T-Sys)

Fig. 3. Typing rules

3.3 (Partial) Type Soundness

The following theorem means that evaluation of a well-typed program never gets
stuck. A proof is given in the extended version of this paper [5].
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u1 + u2 =

⎧⎨
⎩

0 if u1 = u2 = 0
1 if (u1, u2) ∈ {(0, 1), (1, 0)}
ω otherwise

intL + intL = intL intH + intH = intH
int{d1 �→u1,...,dn �→un} + int{d1 �→u′

1,...,dn �→u′
n} = int{d1 �→(u1+u′

1),...,dn �→(un+u′
n)}

(τ1
ϕ→u τ2) + (τ1

ϕ→u′ τ2) = τ1
ϕ→(u+u′) τ2

〈τ1, . . . , τn〉 + 〈τ ′
1, . . . , τ

′
n〉 = 〈τ1 + τ ′

1, . . . , τn + τ ′
n〉

(Γ1 + Γ2) (x) =

⎧⎨
⎩

Γ1 (x) if x ∈ dom(Γ1) \ dom(Γ2)
Γ2 (x) if x ∈ dom(Γ2) \ dom(Γ1)
Γ1 (x) + Γ2 (x) if x ∈ dom(Γ1) ∩ dom(Γ2)

u1 · u2 =

⎧⎨
⎩

0 if u1 = 0 or u2 = 0
1 if u1 = u2 = 1
ω otherwise

u · intL = intL u · intH = intH

u · int{d1 �→u1,...,dn �→un} = int{d1 �→u·u1,...,dn �→u·un}
u · (τ1 →u′ τ2) = τ1 →u·u′ τ2 u · 〈τ1, . . . , τn〉 = 〈u · τ1, . . . , u · τn〉
(u · Γ ) (x) = u · Γ (x)

�p� =

{
L if p = L
H otherwise

Fig. 4. Operations on policies, types, and type environments

Theorem 1. Suppose that dom(Σ) = {σ1, . . . , σk}.
If � 〈Σ, D, e〉 and 〈HΣ,D,{σ1 �→n1,...,σk �→nk}, e〉 −→∗ 〈H, e′〉 �−→, then e′ is a value.

Note that Theorem 1 alone does not necessarily guarantee that e satisfies the
security policy. In fact, the evaluation of 〈H∅,∅,{σ �→2}, σ + 1〉 does not get stuck
(yields the value 3), but it does leak information about σ. The security property
satisfied by well-typed programs is formalized in the next section.

4 Linear Relaxed Non-interference

In this section, we define linear relaxed non-interference (linear relaxed NI, in
short) as a new criterion of information flow security, and prove that well-typed
programs of our type system satisfy that criterion. Linear relaxed NI is an ex-
tension of relaxed NI [7]. We first review relaxed NI and discuss its weakness
in Section 4.1. We then define linear relaxed NI and show that our type sys-
tem guarantees linear relaxed NI. Section 4.3 discusses an application of linear
relaxed NI to quantitative information flow analysis.

4.1 Relaxed Non-interference

Relaxed non-interference [7] is an extension of non-interference. Suppose that
Σ = {σ �→ {d �→ ω}}. Informally, an expression e satisfies relaxed NI under the



Linear Declassification 233

policy Σ if e can be factorized (up to a certain program equivalence) into e′(dσ),
where e′ does not contain σ. If d is a constant function λx.0, then the relaxed
NI degenerates into the standard non-interference.

As already discussed in Section 1, the relaxed NI does not always guarantee
a desired secrecy property. For example, consider the case where d = λx.λy.x =
y. Then, any expression containing σ can be factorized into e′(dσ) up to the
standard contextual equivalence. In fact, σ is contextually-equivalent to:3

(λωg.(fix test(s) = if g(s) then s else test(s + 1)) 0)(d〈〈σ〉〉)

4.2 Linear Relaxed Non-interference

We first define the notion of (typed) contextual equivalence. For the sake of sim-
plicity, we consider only closed terms (thus, it suffices to consider only contexts
of the form e[ ]). We write 〈H, e〉 ⇓ n if 〈H, e〉 −→∗ 〈H ′, n〉 for some n.

Definition 6 (contextual equivalence). Suppose that ∅ � e1 : τ & ϕ and
∅ � e2 : τ & ϕ. e1 and e2 are contextually equivalent, written e1 ≈τ,ϕ e2, if, for
any e such that ∅ � e : τ

nt→ω intL, 〈∅, ee1〉 ⇓ 0 if and only if 〈∅, ee2〉 ⇓ 0.

Note that in the above definition, the initial heap is empty, so that neither secu-
rity variables σ nor declassification functions are involved; thus, the contextual
equivalence above should coincide with standard typed equivalence for linear
λ-calculus.

We now define the linear relaxed non-interference.

Definition 7 (linear relaxed non-interference). Let Σ = {σ1 �→ {d1 �→
u11, . . . , dk �→ u1k}, . . . , σm �→ {d1 �→ um1, . . . , dk �→ umk}}. Suppose also that
SVar(e) ⊆ {σ1, . . . , σm}. 〈Σ, D, e〉 satisfies linear relaxed non-interference at
τ if there exists e′ such that the following equivalence holds for any integers
n1, . . . , nm:

[n1/σ1, . . . , nm/σm]D(e) ≈τ,nt e′ 〈λu11x.(D(d1)n1), . . . , λu1kx.(D(dk)n1)〉
· · ·
〈λum1x.(D(d1)nm), . . . , λumkx.(D(dk)nm)〉

Here D(e) denotes the term obtained from e by replacing each occurrence of a
declassification expression d〈〈e〉〉 with D(d)e.

Intuitively, the above definition means that if 〈Σ, D, e〉 satisfies linear relaxed
non-interference, then e can leak information about the security variables σ1, . . . ,
σm only by calling declassification functions at most the number of times speci-
fied by Σ. Note that in the above definition, e′ cannot depend on the values of
the security variables n1, . . . , nm.
3 Actually, Li and Zdancewic [7] uses a finer equivalence than the contextual equiva-

lence, so that the above factorization is not valid. However, if σ ranges over a finite
set, then a similar factorization is possible by unfolding the recursion: consider a
program if σ = 0 then 0 else if σ = 1 then 1 else if σ = 2 then 2 else · · ·.
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We now show that well-typed programs satisfy linear relaxed non-interference.

Theorem 2. If � 〈Σ, D, e〉 : τ and all the security levels in τ are L, then
〈Σ, D, e〉 satisfies the linear relaxed non-interference at τ .

A proof of the above theorem is given in [5].

4.3 Application to Quantitative Information Flow Analysis

In this subsection, we discuss how linear relaxed NI can be applied to quanti-
tative information flow analysis [8,2]. Unlike the classical information flow anal-
ysis, which obtains binary information of whether or not a high-security value
is leaked to public, the quantitative analysis aims to estimate the quantity of
the information leakage based. Recently, definitions and methods of the quanti-
tative information flow analysis have been extensively studied by Malacaria et
al. [8,2], based on Shannon’s information theory [15]. The quantitative analysis
is generally more expensive than the classical information flow analysis, and has
not been fully automated. As discussed below, the linear relaxed NI enables us
to estimate the quantity of information leakage per program run by looking at
only the security policy, not the program itself. Since the security policy of a
program is typically much smaller than the program itself, this reduces the cost
of quantitative information flow analysis.

For the sake of simplicity, we consider below only a single high security variable
σ and the declassification environment D = {d �→ λωx.λ1y.x⊕y}, with the fixed
security policy Σ = {σ �→ {d �→ 1}}.

Suppose that 〈Σ, D, e〉 satisfies linear relaxed NI at intL. Let us consider the
quantity of information that flows from σ to the value of e. By Definition 7, there
exists an e′ such that for any n and n1, 〈{σ �→ (n, p)} ∪ D, e〉 ⇓ n1 if and only
if 〈{σ �→ (n, p)} ∪ D, e′〈λ1x.d〈〈σ〉〉〉〉 ⇓ n1, where e′ does not contain σ. More-
over, since e′(λ1x.d〈〈σ〉〉) is well-typed, if 〈{σ �→ (n, p)} ∪ D, e′〈λ1x.d〈〈σ〉〉〉〉 −→∗
〈H, n1〉 and the value of σ is used during the reduction, then the reduction
sequence must be of the following form:4

〈{σ �→ (n, {d �→ 1})} ∪ D, e′〈λ1x.d〈〈σ〉〉〉〉
−→∗ 〈{σ �→ (n, {d �→ 1})} ∪ H1, E1[λ1x.d〈〈σ〉〉]〉
−→∗ 〈{σ �→ (n, {d �→ 1}), z �→ λ1x.d〈〈σ〉〉} ∪ H2, E2[z〈 〉]〉
−→∗ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ1y.n ⊕ y} ∪ H3, E3[w(m)]〉
−→ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ0y.n ⊕ y} ∪ H3, E3[n ⊕ m]〉
−→ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ0y.n ⊕ y} ∪ H3, E3[m′]〉
−→∗ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ0y.n ⊕ y} ∪ H4, n1〉

Here, since e′ does not contain σ, Hi and Ei (i = 1, 2, 3) are independent of the
value n of σ.

4 For the sake of simplicity, we consider only terminating programs. Non-terminating
programs can be treated in a similar manner, by introducing a special value ⊥ for
representing non-termination.
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Let L be a random variable representing e′ above, H be a random variable
representing the value n of σ, and O be a random variable representing the final
value n1. Then, by the reduction sequence above, O can be expressed as follows.

O = f0(f1(L), H⊕f2(L))

Here, f1(L) corresponds to the pair (H3, E3) and f2(L) corresponds to m in the
reduction step above. The function f0 represents the computation of n1 from
the configuration 〈{σ �→ (n, {d �→ 0}), . . .} ∪ H3, E3[m′]〉.

According to [8,2], the leakage of information is expressed by:5

I(O; H | L) = H(O | L) = H(O, L) − H(L)

Here, H( 	X) is defined as ΣxP ( 	X = 	x) log 1
P ( �X=�x)

(and P ( 	X = 	x) denotes the

probability that the value of 	X is 	x).
Using O = f0(f1(L), H⊕f2(L)), I(O; H | L) is estimated as follows.

I(O; H | L) = H(O, L) − H(L)
= H(f0(f1(L), H⊕f2(L)), L) − H(L)
≤ H(f1(L), H⊕f2(L), L) − H(L) (by H(f(X)) ≤ H(X))
= H(H⊕f2(L), L) − H(L) (by the definition of H)
= H(H⊕f2(L) | L) (by the definition of H(X | Y))
≤ H(H⊕f2(L) | f2(L))

Thus, I(O; H | L) is bound by the maximum information leakage by the operation
⊕ (more precisely, the maximum value of H(H⊕X | X) obtained by changing the
distribution for X).

If ⊕ is the equality test for k-bit integers, then

H(H⊕X | X) = P (H = X) log 1
P (H=X) + P (H �= X) log 1

P (H 	=X)

= 1
2k log 2k + 2k−1

2k log 2k

2k−1 ≤ k+1
2k

Thus, the maximum leakage is bound by k+1
2k (which is considered safe if k is

sufficiently large).
On the other hand, if ⊕ is the inequality test <, then, the maximum value of

H(H⊕X | X) is obtained by letting P (X = 2k−1) = 1.

H(H⊕X | X) = P (H < 2k−1) log 1
P (H<2k−1) + P (H ≥ 2k−1) log 1

P (H≥2k−1) = 1

Thus, we know that 1 bit of information about σ may be leaked by each run of
the program.

Note that the above discussion, we used only the fact that 〈Σ, D, e〉 satisfies
linear relaxed NI; the discussion applies to any program e that satisfies the policy
Σ and D. Thus, the quantity of information leakage can be estimated only by
looking at Σ and D.
5 Note that we are considering deterministic programs. Note also that we do not

consider timing attacks. It is possible to hide timing attacks to some extent, by
using Agat’s technique, for instance [1].
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5 Related Work

There have been many studies on information flow security and declassification
policies: see [11,13] for a general survey and comparison of declassification poli-
cies. Most closely related to our work is Sabelfeld and Myers’ work on delimited
information release [12], and Li and Zdancewic’s work on relaxed NI [7]. They
control what functions can be used for declassification, but not how often the de-
classification functions may be used. Controlling what declassification functions
are used is sufficient if the declassification functions do not return functions.
In fact, in delimited information release, one can use λx.(l = x) (where l is a
low security variable) for the password example; No matter how often declassi-
fication is performed, the leaked information is the one bit information h = l.
(In the relaxed NI [7], this is not allowed since policies must be closed terms.)
If the declassification functions return functions (as in the password example
in this paper), however, controlling what declassification functions are used is
not sufficient for bounding the quantity of information leakage. In the case of
the password example, if one wants to specify that the password can be com-
pared with some string but does not to want to specify which string should be
compared with the password, then one should use λx.λs.(s = x) as the declas-
sification function. We should therefore control how often functions are used to
bound the quantity of information leakage.

Another approach to extending relaxed NI would be to replace the equivalence
relation in the definition of relaxed NI with a complexity-preserving relation, as
discussed in [13]. Let us write e � e′ if e′ is more efficient than e (see [14]
for formal discussion of such a relation). Then, if e � e′(d h) holds for some e′

that does not contain h, e cannot declassify information about h much faster
than by calling the declassification function d. In the password example (where
d = λx.λs.(x = s)), e � e′(d h) implies that it takes a time exponential in the bit
length of h for e to leak the entire information about h. Thus, this approach is
useful for estimating the speed of information leakage. The approach, however,
sometimes gives too conservative estimation of the rate of information leakage.
For example, PIN code for a bank account typically consists of only 4 digits,
hence knowing that a program satisfies the complexity-preserving relaxed NI
for the declassification function λx.λs.(x = s) does not give enough security
assurance (because calling the declassification function 104 times would not take
a second). On the other hand, if the program satisfies the linear relaxed NI,
the PIN code can be tested only once per program run, so that we can obtain
reasonable security assurance by controlling how often the program can be run.

Li and Zdancewic’s type system for relaxed NI [7] allows more flexible declassi-
fication than ours; for example, if a declassification function for σ is λx.((x+1) =
2), then declassification can be performed in two steps, by first applying λx.x+1
and then λy.y = 2. We think it is possible to extend our linear type system to
allow such flexible declassification.

Quantitative analysis of information flow has been recently studied by
Malacaria et al. [8,3,2] for imperative languages. As demonstrated in Section 4.3,
the linear relaxed non-interference allows us to apply quantitative analysis only
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to declassification functions instead of the whole program, by which enabling
a combination of traditional information flow analysis (with linearity analysis)
and quantitative information flow analysis. A limitation of our approach is that
only 0, 1, ω uses are considered, so that if a declassification is performed inside
a recursive function, the number of declassifications is always estimated as ω.
To remove that limitation, we need to generalize uses, possibly using dependent
types (for example, we can write Πn : intL.int{d �→n} → intL for the type of
functions that takes an integer n and a high-security value x, and applies the
declassification function d to x, n times).

Our type system can be considered an instance of linear type systems [17,6,9].
In the usual linear type systems, the type of an integer is annotated with how
often the integer is accessed. In our type system, the type of an integer is anno-
tated with how often each declassification function may be applied to the integer.
We did not discuss a type inference algorithm in this paper, but a type inference
algorithm (that is quadratic in the program size, provided that the number of
declassification functions is constant) can be developed in a standard manner [9].

6 Conclusion

We introduced a new notion of declassification called linear declassification,
which not only controls what functions can be used for declassifying high-security
values but also how often the declassification functions may be applied. We have
also introduced linear relaxed non-interference to formalize the property guar-
anteed by linear declassification. The linear relaxed non-interference enables in-
tegration of traditional type-based information flow analysis and quantitative
information flow analysis, by allowing us to apply quantitative analysis locally
to declassification functions.

In the paper, we used password checking as the motivating example. It is left
for future work to study more applications of linear declassification. We used a
static type system to guarantee linear relaxed NI. Combining our approach with
dynamic analysis (for counting of how often functions are called) would also be
an interesting direction for future work.
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Abstract. There are many settings in which sensitive information is made avail-
able to a system or organisation for a specific purpose, on the understanding that
it will be erased once that purpose has been fulfilled. A familiar example is that of
online credit card transactions: a customer typically provides credit card details
to a payment system on the understanding that the following promises are kept:
(i) Noninterference (NI): the card details may flow to the bank (in order that the
payment can be authorised) but not to other users of the system; (ii) Erasure: the
payment system will not retain any record of the card details once the transaction
is complete. This example shows that we need to reason about NI and erasure in
combination, and that we need to consider interactive systems: the card details
are used in the interaction between the principals, and then erased; without the
interaction, the card details could be dispensed with altogether and erasure would
be unnecessary. The contributions of this paper are as follows. (i) We show that
an end-to-end erasure property can be encoded as a “flow sensitive” noninterfer-
ence property. (ii) By a judicious choice of language construct to support erasure
policies, we successfully adapt this result to an interactive setting. (iii) We use
this result to design a type system which guarantees that well typed programs are
properly erasing. Although erasure policies have been discussed in earlier papers,
this appears to be the first static analysis to enforce erasure.

1 Information Erasure

There are many settings in which sensitive information is made available to a system
or organisation for a specific purpose, on the understanding that it will be erased once
that purpose has been fulfilled. Common examples involve erasure of some authentica-
tion token, such as voter identity in e-voting, or biometric data in fingerprint-activated
left-luggage lockers. A more everyday example is an online credit card transaction. A
customer typically provides credit card details to a payment system on the understand-
ing that the following promises are kept:

Noninterference (NI): the card details may flow to the bank (in order that the payement
can be authorised) but not to other users of the system;

Erasure: the payment system will not retain any record of the card details once the
transaction is complete.

In this case, erasure ensures that the transaction does not make the customer or bank
vulnerable to breaches of security in the payment system which occur after the transac-
tion is complete. Two aspects of erasure are illustrated by this example:

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 239–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1. We need to be able to reason about NI and erasure in combination: we show that
flow sensitive NI combined with erasure is equivalent to a re-classification of the
erased input.

2. To give a satisfactory account of erasure, we need to consider interactive systems:
the card details are used in the interaction between the customer, the payment sys-
tem and the bank, and then erased; without the interaction, the card details could
be dispensed with altogether and erasure would be unnecessary.

Background. The idea and motivations for studying erasure properties of programs
come from recent work of Chong and Myers [CM05], and we borrow some notation
from that paper. Their paper deals with expressive temporal information flow policies
for program variables which include combinations of erasure and declassification. In
their simplest form, erasure policies are written in the form a c↗ b, and are used to
describe a variable whose security level is initially a, but which is erased to level b as
soon as condition c (in principle an arbitrary property of the computation) is satisfied.
Policies as described in [CM05] are quite complex (expressive), and their semantics is
necessarily quite involved. It is perhaps not surprising that they have not described an
enforcement mechanism (e.g. a type system) for their policy language.

In this paper we take a fresh look at the erasure problem with a much less ambi-
tious policy language. We focus on just erasure, independently from declassification
concerns. We show how, together with a judicious choice of language construct to sup-
port erasure policies, we can take advantage of the close relationship between erasure
semantics and noninterference to provide, to our knowledge, the first static analysis to
enforce erasure policies.

Summary. We begin (Section 2) by considering what we call end-to-end erasure for
non interactive programs. Consider the following trivial program: y := y + 1 ; cc := 0.
This program erases (the initial value of) cc. On the other hand, (if isVisa(cc) y :=
y + 1) ; cc := 0 does not erase cc, since some information about cc is retained by
y. More generally (following [CM05]) we talk about erasure of a variable to a higher
security level. In this very simple setting we show that:

– an end-to-end erasure property can be encoded as a “flow sensitive” noninterference
property (Proposition 1), and

– if we also require that the program is noninterfering, then this is a necessary and
sufficient condition for erasure (Proposition 2).

while serverUp {
input cc from user
input details from user
payment := process(cc)
output payment to bank
custInfo := custInfo ⊕ details
cc := 0

} . . .

End-to-end erasure is too simple to be useful
in itself. In Section 3 we move on to the study of
erasure in the presence of fresh inputs and pro-
gram outputs. Consider for example the program
to the right. Here the erasure property we might
want is that no information about the input cc
in the first line of the loop body can be observed
after the transaction (the loop body) is complete.
In this case the input is not erased because it is
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still present in payment , so if the server goes down the credit card information of the
last transaction could be retrieved from this variable and output by the system.

Defining what it means for a program to erase data in the general case is poten-
tially complex and, we suspect, correspondingly difficult to enforce. The key idea that
we introduce in Section 3 is a simple language mechanism to specify a well behaved
class of erasure policies. We introduce a block structured input command of the form
input x from a erased in C (the exact syntactic form accommodates a more general
notion than this and is written input x : a↗ b in C ) thereby tying the semantic
lifetime of the input (from the point of view of certain observers) to code block C. This
facilitates the subsequent development as follows:

– the definition of when a program correctly enforces such erasure policies (we call
such a program input erasing) becomes easy to state (Definition 4)

– because of the block structured nature of the erasure policy, we can apply ideas
from Section 2 to determine a local end-to-end style erasure condition (Defini-
tion 6) which, as for end-to-end erasure, can also be expressed as a reclassified
noninterference property (Theorem 1)

– we can then show that the local erasure condition together with a suitable noninter-
ference property is sufficient to guarantee that a program is input erasing
(Theorem 2).

Our final contribution (Section 4) is to use this local characterisation of erasure to de-
sign a type system which guarantees that well typed programs are input erasing. The
type system is a direct adaptation (extension) of a flow sensitive type system for nonin-
terference described in [HS06].

Section 5 discusses some of the subtleties of erasure and the computation model.
Section 6 concludes, revisiting related work and sketching some ideas for further work.

2 End-to-End Erasure

We start by considering erasure in its “purest” form. Consider programs which just
transform some initial memory state to a final memory state. Concretely, we can
consider a simple while language with no input or output commands (essentially the
language described in Figure 2 with all the input-output machinery removed). The se-
mantics of this language can be given as a small-step deterministic transition relation
on configurations, where terminating computations have the form 〈C, s〉 � 〈skip, t〉
(here C is a program and s, t are memory states: finite mappings from the set Var of
variable names to values).

2.1 Flow Sensitive End-to-End Noninterference

As in [HS06] we consider a flow sensitive form of noninterference. Let Γ, Γ ′ be finite
mappings from variable names to elements of 〈L, �, �, �〉 a lattice of security levels.
We will call these security type assignments. We write s =X t to mean that states s and
t agree on all variables in the set X . For a ∈ L we write Γ 
 s =a t to mean that s and
t are equal to all observers at or below security level a, with respect to the security type
assignment Γ . That is: Γ 
 s =a t iff s =X t where X = {x|Γ (x) � a}.
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Definition 1 (Noninterference (NI)). A command C is noninterfering from Γ to Γ ′,
written Γ {C} Γ ′, iff, for all a ∈ L, if Γ 
 s =a t and 〈C, s〉 � 〈skip, s′〉 then
〈C, t〉 � 〈skip, t′〉 for some t′ such that Γ ′ 
 s′ =a t′.

(Note that, since programs are deterministic, if t′ exists - ie if the program terminates
- it is unique.) In other words, noninterference says that if two initial states are indis-
tinguishable to an observer at a (with respect to Γ ) then the resulting states will also
be indistinguishable (with respect to Γ ′). Note that, unlike [HS06], this is a termination
sensitive NI property, meaning that we do not allow information leaks through termina-
tion/nontermination behaviour. We chose this stronger variant because it is better suited
to a computational model with input-output (Section 3).

2.2 End-to-End Erasure

In what follows we have chosen to model erasure of the information stored in individual
variables. Our choice is essentially pragmatic: it allows us to express the key ideas in
a simple way while supporting reasonably expressive erasure policies. Other choices
are possible. For example we could model erasure of all information stored at a given
security level, or, conversely, partial erasure of the information stored in a variable. To
be more general still, one could model erasure of arbitrary projections on the program
state – and such things could be done in the PER model [SS01] or using abstract non-
interference [GM04]).

We define end-to-end erasure as a simple information flow property. In its simplest
form, say that a program completely erases the information in variable x if varying (just)
the information in x prior to execution has no effect on the final program state. In fact
we want to be more general than this (following [CM05]). We will say that x is erased
to some level b, if varying x leaves the final state unchanged from the viewpoint of all
observers except those at level b or above. In what follows we write ¬x for Var −{x}.

Definition 2 (End-to-End Erasure). Command C erases x to b in Γ ′, written
C : x↗b in Γ ′, iff, whenever s =¬x t and 〈C, s〉 � 〈skip, s′〉 then 〈C, t〉 �
〈skip, t′〉, for some t′ such that ∀c � b, Γ ′ 
 s′ =c t′.

Note that we can recover complete erasure from the more general definition, in the form
C : x↗� in Γ , as long as we have some security level � such that, for all variables y,
Γ (y) � �.

Consider the example programs in Figure 1. We have P1 : zL ↗ H in Γ , but P2
does not erase zL↗H because although zL itself is physically overwritten, information
about the initial value of zL is still present in yM . The same goes for P3: it does not
erase zL to H , this time because of an indirect information flow to yM .

Typically, we will wish to enforce policies in which erasure is required in addition
to NI. The programs in Figure 1 satisfy Γ {Pi} Γ (i = 1, 2, 3). If we replaced zL :=
0 with zL := yM in P1 the program would still erase zL to H , but would not be
noninterfering from Γ to Γ .

2.3 Relating End-to-End Erasure and NI

It is clear from the definitions that end-to-end erasure and noninterference are closely
related. In later sections we exploit this relationship in both the design of an erasure
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P1 : xH := xH + yM + zL

yM := yM + 2
zL := 0

P2 : xH := xH + yM + zL

yM := yM + zL

zL := 0

P3 : xH := xH + yM + zL

if (zL = 0) yM := yM +1
zL := 0

Fig. 1. Example programs, assuming security type assignment Γ = [xH �→H,yM �→M, zL �→L]
with respect to the three point lattice L � M � H

policy mechanism, and in the adaptation of the flow sensitive type system from [HS06]
to produce a type system which also enforces erasure policies. The key observation is
that every erasure property can be enforced by requiring a related NI property.

Proposition 1. If Γ [x �→ b] {C} Γ ′ then C : x↗b in Γ ′.

Proof. Assume lhs. Suppose s =¬x t and c �� b. From the definitions and by assumption
of lhs, it suffices to show that Γ [x �→ b] � s =c t: this is immediate from s =¬x t and
Γ [x �→ b](x) = b �� c. �	

For example, the Proposition tells us that we can verify P1 : zL ↗ H (Figure 1) by
showing that Γ [xL �→H ] {P1} Γ , and this can be done, for example, using the type
system from [HS06].

While useful, this leaves open the possibility that the reclassified NI condition of
Proposition 1 is too strong in general, requiring much more than is necessary to ensure
erasure. In practice, however, we wish to enforce erasure and noninterference together.
The following result shows that, if we already require the NI property Γ {C} Γ ′, then
the reclassified NI property Γ [x �→ b] {C} Γ ′ is precisely what we need to ensure that
x is erased to b.

Proposition 2. If Γ {C} Γ ′ then C : x↗b in Γ ′ ⇐⇒ Γ [x �→ b] {C} Γ ′.

Proof. (Sketch) Assume Γ {C} Γ ′ and consider the ⇐⇒. From right to left is immedi-
ate by Proposition 1. Now, for arbitrary sets of variables X, Y , let us write C : X ⇒ Y
to mean that, for all s, t such that s =X t, if execution of 〈C, s〉 terminates in some state
s′ then 〈C, t〉 terminates in some state t′ =Y s′. It should be clear that both erasure and
NI are conjunctions of properties of this form. The key step in the argument from left to
right is to establish the lemma that

∧
i C : Xi ⇒ Y implies C :

⋂
i Xi ⇒ Y and hence

that the conjunction of NI and erasure implies the rhs. We omit the details but note that
the lemma does not hold in general for termination insensitive NI. ��

3 Erasure in the Presence of Input-Output

The previous section showed how end-to-end erasure policies can be determined by
using reclassification and noninterference. But end-to-end erasure is not the kind of
policy we ultimately want to enforce. If all the attacker does is literally observe the
final values of a computation then Proposition 2 really tells us that an erasure policy
is just a way to fix a noninterference policy for which some data was assigned a level
which is too low.

Our task now is to generalise the notion of erasure to make it more meaningful and
more expressive. To do this we consider a system with inputs and outputs, and a notion
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of erasure at an intermediate program point. For simplicity, we will identify security
levels with channels, thus for each a ∈ L, we assume exactly one channel, also named
a, which carries data at level a (c.f. [OCC06]).

It is tempting (and potentially expressive) to introduce separate constructs for input

input x from a
if (x = 0)(x := −1; erased x to b)
output x on a

and erasure. But consider the example to the
right. Clearly, x is literally overwritten with a
constant in every run which passes the era-
sure assertion. Intuitively though, this pro-
gram should be rejected, since an observer of outputs on a can still deduce something
about the erased data. This is an example of one particular problem; there are poten-
tially many such problems compounded by the interaction between different erasure
operations and the deductions an observer can make though inputs and outputs.

Our key idea is to avoid these problems by combining input and erasure into a single
block structured command:

input x : a↗b in C

which can be read as the policy “input x on channel a then compute C, after which x
will have been erased to level b”. By associating the lifetime of the data with the erasure
policy in a block-structured way we avoid some of the subtle problems of indirect in-
formation flow interacting with the erasure policy. More importantly, we will show that
we can apply the end-to-end erasure definition locally to the command C to achieve a
meaningful global erasure.

To show that this is really the case we must first extend our definitions of noninter-
ference and erasure to take into account the fact that the language now has IO.

3.1 A Language with Input and Output

To be concrete let us take the simple while language and add input as an erasure dec-
laration as above, and a simple output statement. For the operational semantics of this
language we assume the existence of an infinite input stream for each security level.
We let I denote the set of input streams and, for any level a, Ia denotes the stream of
a-inputs, and Ia(m), m > 0 denotes the mth input on channel a.

We assume a small-step operational semantics with configurations of the form
〈C, s, i〉, where C and s are as before and i ∈ L → N is the input stream pointer
which records how much of the input streams have been consumed so far.

Transitions are written in the form I 
 〈C, s, i〉 �→ 〈C′, t, i′〉 where the label � is
either an input event a?v, a silent transition τ , or an output event a!v. We will often
omit the label τ . The syntax and semantics are given in Figure 2. The input streams I
are left implicit in the rules. We assume an expression evaluator [[E]]s which produces
a value from an expression and an environment. We implicitly assume well-typedness
for expressions.

A “vanilla” input command input x from a, i.e. one which is not associated with
an erasure property, can be defined as a shorthand for the trivial erasure input x :
a↗ a in skip (it is trivially erasing because “after executing skip the value input on
channel a will only be visible at level a or above”).
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Expressions E ::= n | x | E op E′

Commands C ::= skip| x := E | C1 ; C2| if E C1 C2| while E C

| input x : a↗b in C | output E on a

Reduction Contexts R ::= [·] | (R[·] ; C)

Ia(n) = v n = i(a) + 1

〈input x : a↗b in C, s, i〉 a?v→ 〈C, s[x �→ v], i[a �→ n]〉

[[E]]s = v

〈x := E, s, i〉 τ→ 〈skip, s[x �→ v], i〉
[[E]]s = v

〈output E on a, s, i〉 a!v→ 〈skip, s, i〉
[[E]]s = v ∈ {true, false}

〈if E Ctrue Cfalse, s, i〉 τ→ 〈Cv, s, i〉

〈while E C, s, i〉 τ→ 〈if E (C ; while E C) skip, s, i〉

〈(skip ; C), s, i〉 τ→ 〈C, s, i〉
〈C, s, i〉 �→ 〈C′, s′, i′〉

〈R[C], s, i〉 �→ 〈R[C′], s′, i′〉

Fig. 2. Syntax and Semantics

From the single step evaluation relation we define the zero-or-more-step relation α�,
labelled with a sequence of non-silent events, in the obvious way. We write c1 � c2 to
mean that c1

α� c2 for some (possibly empty) α and c1
α� to mean ∃c2.c1

α� c2.

3.2 Noninterference and Input Erasure

We extend the equality relation =a to input streams (and input stream pointers) by
saying I =a I ′ (i =a j) whenever Ic = I ′c (i(c) = j(c)) for all c � a. We write α =a β
to mean equality of the projections of α and β to all labels on channel a or lower.

Definition 3 (Input-Output Noninterference). We define a command C to be input-
output noninterfering if for all a ∈ L, and all input streams I and I ′, if I =a I ′ and

I 
 〈C, s, i〉 α� then I 
 〈C, s, i〉 β� for some β such that α =a β.

Let us now turn to the definition of the erasure property that we want. It says that in any
execution, once control has reached the end of the input block input x : a↗ b in C –
i.e. once we have finished executing C – then no information about x should be visible
through subsequent input or output events except at level b or higher.

Definition 4 (Input Erasure). We say that a command C0 is input erasing if for all
input streams I the following property holds. Suppose we have a computation of the
following form:

I 
 〈C0, s0, i0〉 � 〈R[input x : a↗b in C], s, i〉 � 〈R[skip], s1, i1〉 α�

where the computation R[input x : a↗ b in C] � R[skip] is independent of R[·].
Let I ′ be an input stream which only differs from I on channel a at input position
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i(a) + 1. Then the input erasing condition requires that there exists a computation of
the following form:

I ′ 
 〈C0, s0, i0〉 � 〈R[input x : a↗b in C], s, i〉 � 〈R[skip], t1, j1〉 β�

such that ∀c � b we have si =c ti, ii =c ji (i = 1, 2) and α =c β.

Note that the requirement that I ′ 
 〈C0, s0, i0〉 � 〈R[input x : a↗ b in C], s, i〉
is actually vacuous since the computation has not yet reached the point at which I and
I ′ differ. The start state s0 and i0 in the above are universally quantified, but could be
fixed. A natural choice for an initial input pointer would of course be λa.0.

The following proposition formalises the sense in which the “vanilla” input is triv-
ially erasing:

Proposition 3. If C is input-output noninterfering and if each input command in C has
the form input x : a↗a in skip for some x and a then C is input erasing.

3.3 Characterising Input Erasure with a Local Erasure Condition

In this section we develop a local characterisation of erasure – a generalisation of end-
to-end erasure which we can apply locally to the command input x : a↗ b in C –
which will help us establish the “global” input erasure condition.

To do this we will need to work with a stronger notion of noninterference than input-
output noninterference. Although the definition of input-output noninterference is a rea-
sonable top level definition (for more discussion on this point see section 5) it is difficult
to work with since it says nothing about the state. For example it is not compositional
with respect to sequential composition: C1 = input x on H ; if x then y := 1 is
IO-noninterfering, and so is C2 = output y on L, but C1 ; C2 is not. It is convenient
therefore to work with a stronger definition which also looks at the initial and terminal
state (in the case that the program terminates).

Definition 5 (Stateful Input-Output Noninterference). A command C is noninter-
fering from Γ to Γ ′, written Γ {C} Γ ′, iff, for all a ∈ L, and all input streams I, I ′, if
Γ 
 s =a t, I =a I ′, i =a j then

1. if I 
 〈C, s, i〉 α� then I ′ 
 〈C, t, j〉 β� for some β such that α =a β, and
2. if I 
 〈C, s, i〉 � 〈skip, s′, i′〉 then I ′ 
 〈C, t, j〉 � 〈skip, t′, j′〉 such that i′ =a j′

and Γ ′ 
 s′ =a t′.

Now we will define an extension of the end-to-end erasure property. The idea is that,
when enforced locally on the erasing input command, the property will be sufficient to
ensure the global erasure property.

The definition ensures that if a specific variable x is erased from a to b then it is
neither “visible” in the state except at or above b (precisely as before) nor via the input
pointer:

Definition 6 (Local Erasure). Command C erases x to b in Γ ′, written C : x↗b in
Γ ′, iff, whenever s =¬x t and I 
 〈C, s, i0〉 � 〈skip, s′, i〉 then I 
 〈C, t, i0〉 �
〈skip, t′, j〉, for some t′ and j such that ∀c � b, Γ ′ 
 s′ =c t′ and i =c j.
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Note that in definitions 5 and 6 we have overload the terminology used in definitions 1
and 2 respectively. It is reasonable to do this because they are conservative extensions
of the earlier definitions.

The local erasure condition ignores the input and outputs that take place before the
computation is complete, but the condition nevertheless demands that i =c j. This is
motivated by the fact that the state of the input pointer can be used as a covert store to
save information about the erased secret. Consider the command C defined as

if (x �= 0) (input y on M);
x := 0; y := 0 (where L � M � H)

If we ignored the final value of the input pointers, then this command would be con-
sidered to erase x. This would be too weak for our purposes because after the erasure,
information about x will be known to an observer at level M . To see this, consider

y := 0 ;
input x : L↗H in C;
input y on M ;
output y on M

using the command (C) in the program to the right.
So for example if the M input stream has the value
0, 1 . . . then the value of y output on M will be 0 if
x was 0 and 1 otherwise.

Reclassification. In the manner of Proposition 1, we will show that the local erasure
property can be characterised in terms of noninterference. But since noninterference
cares about the input output events that occur during a computation, and local erasure
does not, we need a way to “turn a blind eye” to input output events. Towards this end
it is useful – for specification purposes only – to introduce a language construct which
“hides” inputs and outputs:

Definition 7. We extend the language with commands of the form Ĉ with semantics

〈C, s, i〉 α→ 〈C′, s′, i′〉
〈Ĉ, s, i〉 τ→ 〈Ĉ′, s′, i′〉 〈ŝkip, s, i〉 τ→ 〈skip, s, i〉

This is essentially just like the hiding operation of CSP, and is commonly used in pro-
cess calculi to specify noninterference properties (see e.g. [Ros95, FG95]), except that
here we are hiding all events, so Ĉ behaves like C but with every input or output label
of C replaced by the silent action τ .

Theorem 1 (Local Erasure as Reclassification). If Γ {C} Γ ′ then

C : x↗b in Γ ′ ⇐⇒ Γ [x �→ b] {Ĉ} Γ ′

The theorem says that to check noninterference and erasure for a command it is neces-
sary and sufficient to check noninterference and a reclassified noninterference property
but where input and output labels are ignored.

Proof (Omitted for space reasons. See extended version of this article).
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3.4 From Local to Global Erasure

We have defined a local erasure condition for commands with IO. The purpose of the
local condition is to provide sufficient conditions for input erasure. But in order to com-
plete this picture we need some noninterference conditions: the local erasure property
can only give input erasure if the rest of the program does not allow the erased infor-
mation to flow back down to a lower level, i.e. it must have a noninterference property.

Annotations. To state the noninterference assumptions we need, we will use program
annotations. Annotations will provide the link to compositional program analyses such
as type systems. An annotation here is just a security type assignment. The operational
semantics of an annotation is transparent (otherwise it would not be an annotation!): we
extend the grammar of reduction contexts with the annotated context (R[·])Γ , and spec-
ify the rule 〈skipΓ , s, i〉 → 〈skip, s, i〉. In an annotated subterm CΓ , the annotation
Γ is intended to describe the security levels of the state at the point in execution after
C has been evaluated. This intuition is made concrete in the following definition which
connects annotations to the noninterference property.

Definition 8 (Well-annotated Commands). Command C0 is well annotated iff:

1. every annotated input command (input x : a↗ b in C)Γ in C0 has the local
erasure property C : x↗b in Γ ;

2. whenever a command of the form R[skipΓ ] is reached from any computation be-
ginning with C0, then Γ {R[skip]} Γ ′ for some Γ ′.

Theorem 2. If C0 is a well-annotated command such that every input command in C0
is annotated, then C0 is input erasing.

Proof (Omitted for space reasons. See extended version of this article).

4 Erasure by Typing

In this section we use the results of the previous section to design a type system for
erasure (and noninterference). The idea is that we use Theorem 1 to guide us in the
treatment of the input erasure command, standard subject reduction and noninterference
properties of the type system to establish a well-annotated version of the program, and
Theorem 2 to prove that the type system guarantees input erasure.

Our type system is a simple extension of the flow sensitive system of [HS06] (al-
ternative flow sensitive base systems, such as [AB04], could also be considered). We
modify the system of [HS06] to be termination sensitive: the rules only allow while
loops to be performed over the lowest security level (⊥), and these can only occur in
the context ⊥. This is of course a rather restrictive notion. A more liberal system would
allow high loops when they can be shown to be terminating.

The type rules are shown in Figure 3. For a command C, judgements have the form
p 
 Γ {C} Γ ′ where p ∈ L, and Γ, Γ ′ are security type assignments. The idea is that
if Γ gives the security levels of variables before execution of C, then Γ ′ will give their
security levels afterwards. The type p represents the usual “program counter” level and
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Skip
p � Γ {skip} Γ

Assign Γ � E : t
p � Γ {x := E} Γ [x �→ p 	 t]

Erase
p � Γ [x �→ a] {C} Γ ′ p � Γ [x �→ b] {C′} Γ ′ p � a C′ = deleteOutput(C)

p � Γ {input x : a↗b in C} Γ ′

Output
Γ � E : b p 	 b � a

p � Γ {output E on a} Γ
Annotate

p � Γ {C} Γ ′

p � Γ {CΓ ′} Γ ′

Seq
p � Γ {C1} Γ ′ p � Γ ′ {C2} Γ ′′

p � Γ {C1 ; C2} Γ ′′ If
Γ � E : t p 	 t � Γ {Ci} Γ ′ i = 1, 2

p � Γ {if E C1 C2} Γ ′

While
Γ � E : ⊥ ⊥ � Γ {C} Γ

⊥ � Γ {while E C} Γ
Sub

p1 � Γ1 {C} Γ ′
1

p2 � Γ2 {C} Γ ′
2

p2 � p1, Γ2 � Γ1, Γ
′
1 � Γ ′

2

Fig. 3. Type System

serves to eliminate indirect information flows: the rules ensure that only variables with
final types (in Γ ′) greater than or equal to p may be changed by C. Similarly, input and
output is only permitted on channels greater than or equal to p.

The purpose of the type system is to guarantee noninterference and input erasure.
Here we provide explanation of the rules for input and output, since they are the new
ones. The rule for input commands follows Theorem 1 rather directly, making use of a
command transformer deleteOutput(C) which simply replaces every output command
in its argument with skip. This is the means by which we ignore outputs when checking
the local erasure requirement. We cannot however ignore inputs, since we still need
to ensure that there are no covert channels via the input pointers. Output is simply
treated like an assignment to a variable of a fixed security type. One can note that if we
specialise the typing rules to “vanilla” inputs, as represented by commands of the form
input x : a↗ a in skip, then we get what appears to be a flow sensitive version of
the deterministic part of the type system from [OCC06].

Example. Let us reconsider the credit-card transaction server loop from the introduc-
tion. Let us suppose that ⊥ � user � bank � �. To represent the intention that the
credit card data is erased by the end of each loop iteration, the code can be rewritten as

while serverUp {
input cc : user↗� in {

input details from user
payment := process(cc)
output payment to bank
custInfo := custInfo ⊕ details
cc := 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

C

}
} . . .

shown to the right. For the purpose of typ-
ing we assume that process(cc) is just some
expression involving cc. Since � is used to
model the level of data that is no longer
physically present, no variables should be
given a final type of �. With this restric-
tion there is (thankfully) no typing for this
program. The body of the erasure state-
ment C is, in fact, suitably noninterfering, as
shown by the typing ⊥ 
 Γ {C} Γ where
Γ (serverUp) = ⊥ and Γ (x) = user for all other variables x. But to type the enclosing
erasure input we also need the typing ⊥ 
 Γ [cc �→�] {eraseOutput(C)} Γ . This is
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not possible because payment := process(cc) forces payment to type � instead of
user . By appending payment := 0 to the end of C the program becomes typeable.

4.1 Type Correctness

In this section we sketch the main milestones in the correctness argument. For reasons
of space, details of proofs are not included. In what follows, we say that C is well-typed
if, for some p, Γ, Γ ′, there exists a derivation of p 
 Γ {C} Γ ′.

Before verifying the motivating semantic properties of the type system, we show that
it is well behaved with respect to reduction by establishing the obvious subject reduction
property.

Theorem 3 (Subject Reduction). If C is well-typed and I 
 〈C, s, i〉 � 〈C′, s′, i′〉,
then C′ is well-typed.

The two fundamental semantic properties we require of the type system are:

NI Type Correctness: that it guarantees the stateful input-output NI property, Defini-
tion 5 (and thus the top level input-output NI property, Definition 3).

Erasure Type Correctness: that it can be used to establish the premises of Theorem 2
(and thus to guarantee input erasure).

Theorem 4 (NI Type Correctness). If p 
 Γ {C} Γ ′ then Γ {C} Γ ′.

The proof, an induction on the computation steps, makes use (as usual) of the subject
reduction property and an auxiliary property that C does not modify store or perform
any inputs or outputs on channels below level p.

Corollary 1. Well-typed programs are input-output noninterfering.

Theorem 5 (Erasure Type Correctness). If C is well-typed then C is well-annotated.

Proof. (Sketch) The proof of the theorem is in two parts, corresponding to the two parts
of the definition of well-annotation. For the first part we rely on Theorem 1, which
shows that well-annotation of input commands is a corollary of the following lemma:

Lemma 1. If p 
 Γ {(input x : a↗b in C)Γ ′} Γ ′′ then Γ [x �→ b] {Ĉ} Γ ′.

For the second part, we rely on the following lemma:

Lemma 2. If p 
 Γ0 {R[skipΓ ]} Γ ′ then Γ {R[skip]} Γ ′.

– which is proved by induction on R[·]. The second part of well-annotation then follows
by subject reduction. ��

Corollary 2. Well-typed programs are input erasing.

Proof. By inspection of the type system, any derivation of a typing for a program must
include a sub-derivation p 
 Γ {input x : a↗b in C} Γ ′ for every input command,
and we can use each such Γ ′ to annotate the corresponding input command. By insert-
ing uses of Annotate into the original type derivation we can clearly recover a derivation
for the annotated program. By Theorem 5 the annotated program is well-annotated and
hence, by Theorem 2, is input erasing. Since the annotated program is semantically
equivalent to the original, it follows that the original is input erasing. ��
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5 On the Adequacy of the Input-Output Model

We have adopted a simple stream-based model of input-output. In a general nondeter-
ministic setting, such a model does not adequately model a “high” attacker who is trying
to pass information to “low” through the program, and it becomes necessary to quantify
over all possible strategies adopted by the principals. This is a well known problem in
the noninterference literature [WJ90]. See [OCC06] for a recent language-based take
on the issue. Fortunately, since we deal with deterministic programs, it turns out that
simple stream models are nevertheless adequate, as shown recently by Clark and Hunt
[CH07].

What about erasure? Are there potential problems that arise from not modelling an
active attacker’s strategy? In fact the problem here is that we cannot reasonably model
inputs as coming from an attacker with an arbitrary strategy, because it only makes
sense to promise to erase data if the supplier is not an adversary. A payment system
typically promises, on completion of a transaction, to erase the credit card data but to
retain the shipping address. The system will not succeed in erasing the credit card data
if the user’s strategy is to re-input the credit card data as a response to a subsequent
request for the shipping address, but clearly we do not want to admit such strategies.

There are more subtle cases which show that we must assume even more about the
data supplier’s behaviour. Suppose that, before the credit card is erased, the program
sends back to the user a special offer code “zahojasf23” with the promise “present this
code when you next shop with us for a 10% discount”. What if this code is simply an
encryption of the credit card number? The program in this case may well have erased
the credit card number by the end of the transaction, but if the user re-inputs this code
then the program will have reconstructed the credit card number.

What assumptions are reasonable for the data supplier? We assume, from a nonin-
terference perspective, that attackers can make arbitrarily accurate semantic deductions
based on their observations and complete knowledge of the program. For a non attacker
it seems reasonable to assume the opposite – the honest user sees the program as a black
box. How then can we solve the problem from the example above if the user cannot be
relied upon to know whether “zahojasf23” contains their credit card information? Our
proposed solution is to:

– assume that the user is aware of the erasure “contract”; they know that they are
providing an input which is scheduled for erasure, and they are notified when the
erasure is complete, and

– assume that the user treats any outputs from the program (at their level) as poten-
tially tainted with data currently scheduled for erasure.

We believe that the stream model that we have used here correctly captures these as-
sumptions, but it is beyond the scope of this paper to explicitly model such user strate-
gies in order to prove that the stream model is indeed correct in this sense.

6 Conclusions and Further Work

We have studied the semantics of erasure and shown its connection to noninterfer-
ence. We have introduced a particular idiom for expressing erasure policies in code,
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and shown that a natural global erasure property can be enforced by a combination of
noninterference and a local erasure property, which in turn can also be established by
a noninterference property. This leads to a fairly direct definition of a type system for
which well typed programs correctly erase their data. We conclude here by returning to
the related work, before finishing with some remarks about further work.

Related work. In addition to Chong and Myers work [CM05], Hansen and Probst
[HP06] describe what they call simple erasure policies which correspond to a specific
instance of our end-to-end erasure policies, but stated in terms of the erasure of a whole
level rather than a single variable. Neither of these works describe an implementation
of erasure, either by encoding into standard noninterference or developing a specific
program analysis.

There are several fundamental differences between the definition of erasure devel-
oped here and that of Chong and Myers. Ignoring the fact that [CM05] also deals with
declassification policies, we note the following differences. Firstly, [CM05] does not
consider a system with interaction, something that we feel is central to making notions
of erasure meaningful. Secondly, in the abstract system model in [CM05] the state of
the system is just a store. The obvious way to encode an imperative program as such
a system would be to use a program counter variable, but there is no suitable policy
in their language which one could attach to such a program counter. Thus their model
might not be suitable for modelling imperative programs – at least not with a straight-
forward encoding. Thirdly, they require a “physical erasure” condition which says that
at the point where a variable is erased it should contain a predefined constant. This is
stronger than necessary. Although we can satisfy erasure properties in that way, there
is nothing to stop us from erasing data to level b by e.g. overwriting it with something
else from a lower level. Lastly, since erasure can be thought of as a dual to declassi-
fication (since it is used to strengthen as opposed to weaken NI) we can see that their
erasure condition and ours tackle different dimensions of erasure: using the terminol-
ogy of [SS05], their erasure properties deal with when erasure takes place, whereas our
input-centric erasure determines where (in the code) erasure takes place.

Finally, we note that our use of a block structured erasure command is similar in spirit
to Almeida Matos and Boudol’s [AB05] block structured declassification construct,
flow F in C, which locally extends the global information flow policy with flows F
for the duration of C.

Further Work. There are several obvious avenues for further work.
We can follow the “dimensions” and consider, for example, refinement of what is

erased. For example, erasure of all except the first four digits of a credit card number.
Work on corresponding “what” declassification policies [SS05] can be applied directly.

The input erasure construct used here can be generalised in a number of potentially
useful ways. One possibility is to introduce an erasure region – a code block in which
all subsequent inputs are erased.

A naive implementation of the type system as presented is potentially exponential in
the depth of nesting of erasure statements, because the body of the erasure statement
appears twice in the premise of the Erase rule. By building on results from [HS06], we
are hopeful that this behaviour can be avoided by obtaining the two typings for the body
of an erasure input as specialisations of a single principal type.
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On the theoretical side we noted at the end of the previous section the need for further
work on modelling attacker strategies and “honest” participants. A process calculus
setting may prove more suitable to conduct such an investigation.
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Abstract. The concurrent constraint pi-calculus (cc-pi-calculus) has been intro-
duced as a model for concluding Service Level Agreements. The cc-pi calculus
combines the synchronous communication paradigm of process calculi with the
constraint handling mechanism of concurrent constraint programming. While in
the original presentation of the calculus a reduction semantics has been proposed,
in this work we investigate the abstract semantics of cc-pi processes. First, we de-
fine a labelled transition system of the calculus and a notion of open bisimilarity
à la pi-calculus that is proved to be a congruence. Next, we give a symbolic char-
acterisation of bisimulation and we prove that the two semantics coincide. Essen-
tially, two processes are open bisimilar if they have the same stores of constraints
- this can be statically checked - and if their moves can be mutually simulated. A
key idea of the symbolic transition system is to have ‘contextual’ labels, i.e. la-
bels specifying that a process can evolve only in presence of certain constraints.
Finally, we show that the polyadic Explicit Fusions calculus introduced by Gard-
ner and Wischik can be translated into monadic cc-pi and that such a transition
preserves open bisimilarity. The mapping exploits fusions and tuple unifications
as constraints.

1 Introduction

Service Oriented Computing is an emerging paradigm that builds upon the notion of
services as interoperable elements that can be described, published, searched and com-
posed. Services may expose both functional properties (i.e. what they do) and non-
functional properties (i.e. the way they are supplied). A Service Level Agreement (SLA)
is a contract between two parties, usually a service provider and a customer, that records
non-functional properties about a service like performance, availability, and cost.

The concurrent constraint pi-calculus (cc-pi calculus) [5] is a model of SLA ne-
gotiations that combines two main programming paradigm: name-passing calculi (see
e.g. [9]) and concurrent constraint programming [14,13]. On the one side, cc-pi in-
herits from the Pi-F calculus [16] a symmetric, synchronous mechanism of interaction
between senders and receivers, where the sent name is ‘fused’ (i.e. identified) to the
received name and such explicit fusion allows to use interchangeably the two names.

� Research supported by the EU IST-FP6 16004 Integrated Project SENSORIA.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 254–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Open Bisimulation for the Concurrent Constraint Pi-Calculus 255

On the other side, cc-pi generalises explicit fusions to be arbitrary constraints and intro-
duces primitives for creating, removing and making logical checks on constraints. For
instance, a cc-pi process P = c |tell c′.Q can place a constraint c′ corresponding to a
certain SLA parameter and then evolve to the parallel composition of c ⊗ c′ and Q, if
c ⊗ c′ is consistent. A process P = c |ask c′.Q makes a transition to Q if the constraint
c′ is entailed by c. As another example, a process P = (x = v⊗v = y) |x〈z〉.P′ |y〈w〉.Q′,
with x〈z〉 an output action, y〈w〉 an input action and (x = v ⊗ v = y) a combination
of constraints, can make a synchronisation because the identification of the names x
and y is entailed by the constraints in parallel. Moreover, such an interaction yields the
name fusion z = w, which is consistent with the other constraints. In fact, we can think
about this synchronisation as a simultaneous execution of an ask x = y action and a
tell z = w action. From this viewpoint, cc-pi calculus combines primitives borrowed
from different paradigms in a coherent way. Another feature of the cc-pi calculus is to
include a restriction operation (x) à la pi-calculus that allows for local stores of con-
straints. Synchronisations may have the effect of combining local stores of interacting
processes into a global store.

The constraint systems adopted in cc-pi rely on named c-semirings, i.e. c-semirings
[3] enriched with a notion of support to express the relevant names of a constraint.
These structures can specify networks of constraints for defining constraint satisfaction
problems and to model fuzzy or probabilistic values, as well as Herbrand unifications.

A main contribution of this work is to characterise cc-pi processes that have the same
behaviours. Not surprisingly, as a notion of behavioural equivalence we take bisimula-
tion, which is a key idea in the context of process calculi. Roughly, two processes are
bisimilar if they are able to match each other’s moves. A desirable property of be-
havioural equivalences is that two processes are equivalent in all contexts. Indeed, this
feature allows for compositional reasoning about complex interactive systems. Never-
theless, the universal quantification over all contexts makes this definition of a little
use in practice. Open bisimulation [12] has been introduced on the pi-calculus as a
behavioural equivalence that has a coinductive definition and is guaranteed to be a con-
gruence. In fact, the term ‘open’ is meant to emphasise that in this bisimulation names
can be identified at any time and, so, the relation is preserved by name substitutions.

In this paper we show that open bisimulation naturally transfers to cc-pi processes and
it is still a congruence. In our setting, constraints running in parallel with a process have
an effect on the names of that process as they can allow or disallow transitions. Hence,
the parallel contexts consisting of constraints are as discriminating as arbitrary contexts
and the natural adaptation of open bisimilarity to cc-pi is to replace substitutions with
constraints in parallel. For instance, the process x〈z〉.0 |y〈w〉.0 that tries to synchronise
on channels with different names and the inert process 0 are not bisimilar since, in the
context x = y | , the first one can make a move while the second one is stuck. Beside
the dynamic behaviour of processes, the present open bisimilarity takes into account
the knowledge exposed by a process to its environment, that is expressed by the store
of constraints of the process. This notion reminds the definition of static equivalence
that has been defined for the applied pi-calculus [1] and it generalises to constraints a
similar concept used for open bisimulation in Pi-F [15]. Note that checking whether
two processes have the same static behaviour can be performed at compile-time. As
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an example, consider the processes c |0 and 0. They are both inert but, in the context
ask c | , the first process can make a transition while the second one cannot.

Checking open bisimilarity is hard since it involves a universal quantification over
constraints. We provide an efficient version of open bisimulation and we prove that the
two notions coincide. The main idea behind symbolic bisimulations [8,4,12] is to define
specialised transition systems, whose labels specify the minimum conditions that must
hold in order for a transition to take place. We adapt this concept to our framework
by defining a transition system whose labels represent the ‘least restrictive’ constraints
that allow process moves. We exploit the division operator over c-semiring values [2],
which is well defined under mild assumptions. According to the symbolic semantics,
e.g., the process c |ask d.0 can make a transition labelled by a constraint c′ = d ÷ c,
which is the weakest constraint such that the combination c ⊗ c′ entails d.

The results of this work generalise to constraints analogous achievements proved for
the Pi-F calculus [15]. To highlight this connection, we translate polyadic Pi-F calculus
into monadic cc-pi and we prove that such a translation is fully abstract with respect to
open bisimulation. This amounts to say that open bisimilarity over the instance of cc-
pi corresponding to Pi-F coincides with the analogous equivalence over Pi-F processes.
Note that the encoding of polyadicity exploits the fact that name tuples can be expressed
as Herbrand constraints and that tuple matching corresponds to term unification.

Diaz Frias et al. [6] introduce the pi+-calculus, an extension of the pi-calculus with
constraint agents that can perform tell and ask actions, and they define a barbed bisim-
ulation for the calculus. In contrast to our model, the constraint systems are first-order
theories rather than algebraic structures and they do not support local stores. Gilbert
and Palamidessi [7] address the interplay between mobility and constraints. Unlike our
approach, they enrich concurrent constraint programming with the notion of localities
and process migration rather than adding a channel-based communication mechanism
à la pi-calculus.

2 Named Constraints

Let N be an infinite, countable set of names and let x,y,z . . . range over names. We
define (name) fusions as total equivalence relations on N with only finitely many non-
singular equivalence classes. By x=y we denote the fusion with a unique non-singular
equivalence class containing x and y. bA substitution is a function σ : N → N . We
denote by [y/x] the substitution that maps x into y. A permutation ρ is a bijective substi-
tution. The kernel K(ρ) of a permutation ρ is the set of names that are changed by ρ. A
permutation algebra A is defined by a carrier set and by a function defining how states
are transformed by the finite-kernel permutations. In our case, A characterises the set of
‘relevant’ names of each element c of the c-semiring as the support supp(c) in A.

We now recall basic concepts about semirings and c-semirings. We refer to [11,3,2]
for a more detailed treatment. A commutative semiring is a tuple 〈A,⊕, ⊗,0,1〉 such
that: (i) A is a set and 0,1 ∈ A, and ⊕,⊗ : A × A → A are binary operators making the
triples 〈A,⊗,1〉 and 〈A,⊕,0〉 commutative monoids (semigroups with identity), satis-
fying the following axioms.

a ⊗ (b ⊕ c) = (a ⊗ b)⊕ (a ⊗ c) ∀a,b,c ∈ A a ⊗ 0 = 0 ∀a ∈ A
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A constraint semiring (c-semiring) 〈A,⊕, ⊗,0,1〉 is a commutative semiring such that
⊕ is idempotent and such that a⊕1 = 1 for all a ∈ A (i.e. with top element). Typical ex-
amples are the c-semiring for classical constraint satisfaction problems
〈{False,True},∨,∧, False, True〉, the c-semiring for fuzzy constraint satisfaction prob-
lems 〈[0,1],max, min,0,1〉, and the c-semiring of weighted constraint satisfaction prob-
lems 〈R+ ∪ {+∞},min,+, +∞,0〉. Note that the Cartesian product of two c-semirings
is a c-semiring, hence this framework is also suited to model multicriteria optimization.

Commutative semirings with top element are also known in the literature as absorp-
tive. Absorptiveness implies that the sum operator is idempotent. Semirings that satisfy
this last property are often called tropical. Hence, c-semirings are tropical semirings
with top element. Next, we briefly overview some classical notions and results on ab-
sorptive and tropical semirings that we rephrase for c-semirings.

Let � be a relation over A such that a�b iff a ⊕ b = b. This relation gives us a way
to compare semiring values and constraints. Assume a c-semiring C = 〈A,⊕,⊗,0,1〉.
Then: (i) � is a partial order; (ii) ⊕ and ⊗ are monotone on �; (iii) a ⊗ b�a,b, for all
a,b; (iv) 0 is its minimum and 1 its maximum; and (v) for all a,b ∈ A, a⊕b is the least
upper bound of a and b. Moreover, if ⊗ is idempotent, a⊗b is the greatest lower bound
of a and b. C is invertible if there exists an element c ∈ A such that b ⊗ c = a for all
elements a,b ∈ A such that a�b; C is complete if it is closed with respect to infinite
sums, and the distributivity law holds also for an infinite number of summands. It can
be proved that if C is complete then the set {x ∈ A |b ⊗ x�a} admits a maximum for
all elements a,b ∈ A, denoted a ÷ b. Note that the idempotency of ⊗ implies that the
invertibility property holds. However, for the purpose of this paper, we simply require
invertibility and completeness while not imposing idempotency of ⊗.

2.1 Named c-Semirings

A named c-semiring is a complete and invertible c-semiring enriched with a notion
of name fusions, a permutation algebra A and a hiding operator (νx. ) that makes a
name x local in c. Note that in certain named c-semirings the hiding operator coincides
with the homologous operator ∃x defined in cc programming. Formally, a named c-
semiring C = 〈C,⊕,⊗,νx. ,ρ,0,1〉 is a tuple where: (i) x=y ∈ C for all x and y in N ;
(ii) 〈C,⊕,⊗,0,1〉 is a complete and invertible c-semiring; (iii) 〈C,ρ〉 is a finite-support
permutation algebra such that every permutation ρ distributes over ⊗ and ⊕ and is in-
active on 0 and 1 ; (iv) ∀x, νx. : C → C is a unary operation; (v) for all c,d ∈ C and
for all ρ the following axioms hold.

x=y⊗c = x=y⊗ [y/x]c ρ(νx.c) = νx.(ρc) if x /∈ K(ρ)
νx. 1 = 1 νx.νy.c = νy.νx.c νx. c = νy. [y/x]c if y �∈ supp(c)
νx.(c⊗d) = c⊗νx.d if x �∈ supp(c) νx.(c⊕d) = c⊕νx.d if x �∈ supp(c)

The top left axiom above accounts for combining fusions and generic elements of c-
semirings According to the top right axiom, the order of ρ and ν can be changed if x is
not affected by ρ. The remaining axioms rule how the ν operation interacts with the op-
erations of the c-semiring and they are inspired by the analogous structural congruence
axioms for restriction in process calculi. Note that the notion of support supp(c) asso-
ciated with permutation algebras recalls the concept of free names in process calculi.
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Given C = 〈A,⊕,⊗,ρ,νx. ,0,1〉, a (named) constraint c is an element of A. For C ⊆ A,
C is consistent if (⊗C) �= 0; moreover, for c ∈ A, C entails c if (⊗C) ≤ c.

Herbrand constraints. A Herbrand constraint system can be defined by considering
a signature Σ along with an equational theory =E on the term algebra TΣ(N ) plus the
additional rules:

(SUB-TERM)
f (t1, . . . ,tn) =E f (t ′1, . . . ,t

′
n)

ti =E t ′i
i = 1, . . . ,n (REPLACE)

x =E t t1 =E t2

[t/x]t1 =E [t/x]t2

and with the restrictions that x �=E t(x) and f (t1, . . . ,tn) �=E g(t1, . . . ,tm), where t(x) is
any term different than x which contains x and f �= g. Axiom (SUB-TERM) above allows
to reduce the unification of two terms to the unification of their sub-terms provided that
the outer function symbols are the same. Axiom (REPLACE) reduces the unification of
two terms containing a term t such that t =E x to the unification of the terms with x in
place of t. The restrictions prevents from unifying, respectively, a variable with terms
containing that variable, and two terms containing a distinct outer function symbols.

We let CH be the tuple CH = 〈C,⊕,⊗,νx. ,ρ,0,1〉 where: (i) C is the set of the
above-defined equational theories plus a bottom element ⊥; (ii) E1 ⊕ E2 = E1 ∩ E2;
(iii) E1 ⊗ E2 is the unification of E1 and E2, i.e. it is the smallest equational theory
largest than or equal to E1 ∪ E2, if it exists, otherwise ⊥; (iv) νx. E = E ∩ Ē , where
t1 =Ē t2 if t1 =E t2 or x does not occur in t1,t2; (v) ρ t1 =ρE ρ t2 if t1 =E t2; (vi) 0 = ⊥ and
1 = {(t,t) |t ∈ TΣ(N )}. CH can be proved to be a named c-semiring with idempotent
product ⊗.

Example 1 (pairs, tuples). Pairs of names can be expressed as elements of the named
c-semiring CH by assuming two sorts, names and lists, and by taking the signature
Σ = {( , ),nil}, where nil is a constant of sort ‘→ lists’ and ( , ) is a binary opera-
tion of sort ‘names× lists → lists’. A tuple of arity n can be defined as 〈x1, . . . ,xn〉 =
(x1,(x2,(. . . (xn−1,nil)) . . .). Notice that, for instance, the unification of two theories of
different arities 〈x1,x2〉 and 〈y1,y2,y3〉 reduces to unifying the subterms nil and (y3,nil)
hence leading to ⊥, since the outer functions are distinct. On the other hand, the unifi-
cation of 〈x1,x2,x3〉 and 〈y1,y2,y3〉 yields the identification of the components xi = yi.

Soft constraints. Given a domain D of interpretation for the set of names N and
a c-semiring S = 〈A,⊕,⊗,0,1〉, a soft constraint c can be represented as a function
c = (N → D) → A associating to each variable assignment η = N → D (i.e. instan-
tiation of the variables occurring in it) a value in A, which can be interpreted e.g. as
a set of preference values or costs. Soft constraints can be combined by means of the
operators of S. Assume Csoft is the tuple Csoft = 〈C,⊕′,⊗′,νx. ,ρ,0′,1′〉 such that: (i) C
is the set of all soft constraints over N , D and S; (ii) name equalities x=y are defined
as (x = y)η = 1 if η(x) = η(y), (x = y)η = 0 otherwise; (iii) (c1 ⊕′ c2)η = c1η⊕ c2η;
(iv) (c1 ⊗′ c2)η = c1η⊗c2η; (v) (νx.c)η = ∑d∈D (cη{d/x}), where ∑d∈D denotes the c-
semiring sum operator and the assignment η{d/x} is defined, as usual, as η{d/x}(y) = d
if x = y, η(y) otherwise; (vi) (ρc)η = cη with η(x) = η(ρ(x)); (vii) 0′ η = 0 and
1′η = 1 for all η. It is possible to prove that CH is indeed a named c-semiring and
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that the product ⊗′ is idempotent provided that ⊗ is idempotent. Remark that for
S = 〈{False,True},∨,∧,False,True〉, the named constraints of Csoft leads to solutions
consisting of the set of tuples of legal domain values.

3 The cc-pi Calculus

The concurrent constraint calculus (cc-pi calculus) features symmetric non-binding in-
put and output actions like in Pi-F calculus along with primitives for constraint han-
dling. The syntax and reduction semantics of the calculus are defined in Fig. 1. Unlike
the original presentation of cc-pi [5], here we give a monadic version of the calculus.
Moreover, we disregard the check and retract operators. In fact, check is irrele-
vant for the purpose of this paper but it could be easily included; by contrast, adding
retract would not be trivial since it would require dealing with a more complex con-
straint theory. The cc-pi calculus is parametric with respect to named constraints. We
let c,d,e . . . range over constraints of an arbitrary named c-semiring C . The notions of
bound names, free names, and α-conversion of a process are as usual apart that the oc-
currence of the name y in a process with an input prefix x〈y〉.U is free and that the set
of free names is extended to constraints by adding the following clauses:

fn(π.U) = supp(c)∪ fn(U) if π = tell c, ask c fn(c) = supp(c)

The last three structural axioms in Fig. 1 state the correspondence between parallel
composition and semiring product, restriction and constraint hiding, the inert process
0 and the top element of c-semiring 1, respectively. Using structural congruence, every
process P can be rewritten into the normal form P ≡ (x̃)(c |U), where c is a constraint,
U can only contain restrictions under prefixes, i.e. U �≡ (ỹ)U ′, and if xi ∈ supp(c) then
xi ∈ fn(U). Roughly, the rules move each name x /∈ fn(U) close to c and then apply νx.
to c.

The idea behind the reduction relation is to proceed as follows. First, to put processes
into the normal form by applying the rule for structural congruent processes. Next,
applying the rules for dealing with primitives on constraints or for synchronising pro-
cesses. Afterward, closing with respect to summation, parallel composition of uncon-
strained processes, and restriction. For instance, the parallel composition
x = z |x〈y〉.U |z〈w〉.V can evolve to x = z⊗ y = w |U |V since the equality of the names
x and z is entailed by the constraint x = z and the store x = z ⊗ y = w is consistent.
Remark that it is legal to treat name equalities as constraints c over C because, by
definition, named c-semirings contain fusions. Note also that the rule for parallel com-
position intentionally allows to add only unconstrained process. For this reason, several
rules like those for τ’s and summation must include the constraint c in parallel.

4 A Labelled Semantics for cc-pi

We now come to the first contribution of this work. We propose a labelled semantics that
coincides with the reduction semantics when restricting to closed processes. We start
by introducing the notion of store of constraints of processes, that represents the static
knowledge exposed by a process to its environment. Roughly, store(P) is the constraint
which is obtained by replacing each unconstrained process occurring in P with 0 and by
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The syntax of prefixes π, unconstrained processes U and constrained processes P is:

π ::= τ
∣∣ x〈y〉

∣∣ x〈y〉
∣∣ tell c

∣∣ ask c

U ::= 0
∣∣ U |U

∣∣ ∑i πi.Ui
∣∣ (x)U

∣∣ I(ỹ)

P ::= U
∣∣ c

∣∣ P|P
∣∣ (x)P

The structural congruence, ≡, is the smallest congruence over processes closed with respect to

α-conversion and satisfying the following axioms:

P|Q ≡ Q|P (P|Q)|R ≡ P|(Q|R) (x)(y)P ≡ (y)(x)P P|(x)Q ≡ (x)(P|Q) if x �∈ fn(P)

I(ỹ) ≡ [ỹ/x̃]U if I(x̃) def= U c |d ≡ c ⊗ d (x)c ≡ νx.c 0 ≡ 1

The reduction relation over processes �→ is the smallest relation satisfying the following rules:

c |τ.U �→ c |U c |tell d.U �→ c⊗d |U if c⊗d �= 0 c |ask d.U �→ c |U if c�d

c |(x〈y〉.U +∑πi.Ui) |(z〈w〉.V +∑π′
j.Vj) −→ c⊗ (y = w) |U |V if c⊗ (y = w) �= 0∧ c�x = z

c |πi.Ui �→ P

c | ∑πi.Ui �→ P

P �→ P′

P |U �→ P′ |U

P �→ P′

(x)P �→ (x)P′

P ≡ P′ P′ �→ Q′ Q′ ≡ Q

P �→ Q

Fig. 1. The cc-pi calculus

applying the structural axioms on constraints to compute the resulting constraint. More
formally, for P a process, store(P) is inductively defined as follows:

store(c) = c store(P |Q) = store(P)⊗ store(Q) store(U) = 1 store((x)P) = νx.store(P)

For example, if P = (x)(y = x |x = z |c(x,v) |(w)y〈w〉.U), store(P) = y = z ⊗ c(y,v).
Note that the concept of store is close to the notion of ‘frame’ given in applied pi-
calculus [1] and it generalises to constraints the equivalence relation that characterises
the explicit fusions of a process in Pi-F calculus [15].

Assume a set of actions A = {τ, x〈y〉, x〈y〉,x(z),x(z)}, where τ is a silent action, x〈y〉
and x〈y〉 are free actions, and x(z) and x(z) are bound actions. We let α,β range over A .
The labelled transition semantics of processes is the smallest relation P

α−→ Q, defined
by the rules in Fig. 2 plus a rule (OPEN-O) for output and the symmetric counterpart
of rule (COMM). The operational rules that deal with τ-transitions are analogous to the
reduction rules given in the previous section. The additional rules are standard apart
that the usual side condition x �= z of the rule (OPEN-I) is replaced by the condition that

x = z cannot be entailed by the store of constraints of the process. By
τ−→

�
we refer to a

sequence of transitions
τ−→.

Proposition 1. Let P be a process. P �→ Q iff P
τ−→ Q.

4.1 Example: Modelling Service Level Agreements

We now consider a variant of an example introduced in [5] that does not include
retract operations. Consider a service that offers computing resources like units of
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(PREF)

c |π.U
π−→ c |U π = τ,x〈y〉,x〈y〉

(TELL)

c |tell d.U
τ−→ c⊗d |U if c⊗d �= 0

(ASK)

c |ask d.U
τ−→ c |U if c�d

(SUM)

c |πi.Ui
α−→ U ′

c | ∑πi.Ui
α−→ U ′

(PAR)

P
α−→ P′ bn(α)∩ fn(U) = /0

P |U α−→ P′ |U
(COMM)

c |U x〈y〉−→ c |U ′ c |V z〈w〉−→ c |V ′ c⊗ (y = w) �= 0 c�x = z

c |U |V τ−→ c⊗ (y = w) |U ′ |V ′

(RES )

P
α−→ P′ x /∈ n(α)

(x)P
α−→ (x)P′

(OPEN-I)

P
z〈x〉−→ P′ store(P) ��x = z

(x)P
z(x)−→ P′

(STRUCT)

P ≡ P′ P′ α−→ Q′ Q′ ≡ Q

P
α−→ Q

Fig. 2. Labelled Transition System of the cc-pi calculus

CPUs of a given power and suppose the service provider and a client want to reach a
SLA. The provider and the client can be described by the following cc-pi processes.

Clientreq(r) ≡ (y)(tell creq(y).r〈y〉)
Provideroff,N(r) ≡ (x0)(tell (x0 = N).Ac Reqoff (x0,r))

Ac Reqoff(x,r) ≡ (v)(x′)(tell (x′ = x−v⊗x′ ≥ 0).tell doff (v)).r〈v〉.Ac Reqoff(x′,r))

The client starts by placing a constraint creq(y) that specifies that the requested re-
sources y must be at least req, then it contacts the provider on channel r. If the synchro-
nisation succeeds, the negotiation is concluded. On the other side, the provider initially
fixes the maximum number of total available resources N, then starts to accept requests
by imposing two constraints on the number of resources v that will be allocated to each
client: (x′ = x−v)⊗x′ ≥ 0 states that v must be less than the total available resources (x
is initially N) and that the remaining resources are x′ ≥ 0; doff(v) specifies that v must
be less than a fixed maximum number of resources off that are offered to every client.
Finally, the provider tries to reach an agreement with a client over channel r and, in case
of success, is ready to offer the remaining resources x′ to other clients. The negotiation
between a client Clientreq(r) and a provider Provideroff,N(r) can be modelled in cc-pi
as follows. First, each party consumes its tell prefixes:

(r)(Provideroff,N(r) |Clientreq(r)) τ−→
�

(r)(y)(x0)(v)(x′)(creq(y)⊗doff (v)⊗ (x0 = N) ⊗
(x′ = x0 −v⊗x′ ≥ 0) |r〈y〉 |r〈v〉.Ac Reqoff(x′,r))

If the fusion y = v yields a consistent store of constraint, the synchronisation on r can
take place and the two parties have reached an agreement expressed by the constraint

creq(y)⊗doff (v)⊗ (x0 = N)⊗ (x′ = x0 −v)⊗ (x′ ≥ 0)⊗ (y = v) (1)

As mentioned in the previous section, the cc-pi calculus is parametric with respect to
named constraints. Hence, in cc-pi we can capture different constraint satisfaction prob-
lems by changing the underlying named c-semiring of a given process while keeping the
same process specification. To highlight this feature, we now consider two instantiations
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of the constraint system adopted in the above negotiation scenario and we show that they
lead to different solutions. In both cases, we assume an assignment η : N → N of names
to non-negative integers and we take the constraints to be functions c : (N → N) → A
that map each name assignment to a value of a c-semiring S = 〈A,⊕,⊗,0,1〉. Con-
straints are combined by using the operations of S, as shown in §2.1. The two cases
below correspond to different choices of the c-semiring S.

Crisp constraint interpretation. Consider S = 〈{False,True}, ∨,∧,False,True〉 that
leads to solutions consisting of the set of tuples of legal domain values. For instance, the
interpretation of the constraint c = (a ≥ x)⊗ (y ≥ b), where x,y are names, a and b are
in N, and ≥ stands for ‘greater than or equal’ over N, is that cη = True if a ≥ η(x) and
η(y) ≥ b, while cη = False otherwise. We define the constraints creq and doff as follows:

creq(y) def= y ≥ req doff (v) def= off ≥ v.

Assuming the interpretation of name equalities is as expected, the store of constraints
(1) has a solution if min{off,N} ≥ req. For instance, Provider7,15 can reach an agree-
ment with Client5, but not with Client8. Moreover, the constraint system resulting from
the negotiation between a provider and n clients has a solution if

reqi ≤ off and ∑
i

reqi ≤ N for i = 1, . . . ,n.

For example, if there are three clients and each of them requests at least 6 units of
resources, a provider Provider7,15 can only reach an agreement with two of them.

Weighted constraint interpretation. Consider the c-semiring of weighted constraint sat-
isfaction problems SW = 〈R+ ∪ {+∞}, min,+, 0,+∞〉, which associates a cost to each
domain tuple. In our example, this c-semiring allows to model the viewpoint of the
client that wishes to minimise the total cost of the proposed solution. Note that in this
case the associated ordering � over constraints reduces to ≥ over reals, i.e. a value is
preferred to another if it is smaller. The interpretation of a named constraint c = (x = y)
is that, for η an assignment of names to non-negative integers, cη = 0 if η(x) = η(y),
while cη = +∞ otherwise. The constraints y = 0, x0 = N, x′ = x0 −v, and y = v, where 0
and N are values in the domain N, can be interpreted similarly. We define the constraints
doff and creq as below.

doff(v → n)

+∞

off

n ∈ N

creq(y → n)

+∞

−m

m req

req 2 req
n ∈ N

The constraint doff is a simple translation of the analogous constraint given in the crisp
case, i.e. doff(v → n) = 0 if off ≥ n, while doff(v → n) = +∞ otherwise. On the other
side, the constraint creq(y) specifies that: (i) if y assumes a value that is less than req,
then the cost is maximum; (ii) if the value of y is between req and 2req, the cost de-
creases according to the slope −m; (iii) for every value that is greater than 2req the cost
is minimum, meaning that the client has no additional benefit in acquiring more than
2req resources. The possible solutions of the constraint system (1) are as follows.
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(a)

+∞

req 2 req

min{off, N}

(b)

+∞

req min{off, N}

If min{off,N} < req, the system has no solution. If min{off,N} ≥ 2req the system
yields a set of solutions which all have the maximum level of preference 0 (case (a)).
Finally, if req ≤ min{off,N} < 2req the solution is selected by means of the c-semiring
⊕ operation (min over reals) in that interval, thus leading to min{off,N} (case (b)).

Remark 1. The present semantics does not specify how to solve the constraint system
generated at each step. In fact, the consistency check performed when placing new
constraints, either through a tell action or by a synchronisation, only requires that the
resulting constraint is different from the bottom element of the c-semiring 0. While in
the crisp case this choice amounts to take optimal solutions (i.e., name instantiations
that lead to constraint evaluating to the top element 1), in the more general setting of
soft constraints this semantics does not provide a way to discard non-optimal solutions.

5 Open Bisimulation

We now define a process equivalence à la open pi-calculus bisimulation. In our setting,
the obvious counterpart of closing with respect to substitutions is to close with respect to
constraints in parallel. We require that two equivalent processes have the same static and
dynamic behaviour. Hereafter, by c�(α = β) we abbreviate: (i) c�(x = y)⊗ (w = z), if
α = x〈w〉 and β = y〈z〉 (and analogously for input actions), (ii) c�(x = y), if α = x(w)
and β = y(w), where � and ⊗ are the partial order and the product operations of c-
semirings; c�τ = τ stands for c�1.

Definition 1 (open bisimilarity). Open bisimilarity (∼o) is the largest symmetric rela-
tion S between processes such that PSQ implies:

1. store(P) = store(Q);

2. If P
α−→ P′ with bn(α)∩ fn(Q) = /0 then Q

β−→ Q′ and P′ S Q′, for some Q′ and β such
that store(P)�α = β;

3. c |P S c |Q, for all constraints c �= 0.

The first item above states that two processes must expose the same stores. This require-
ment does not take dynamic behaviours of processes into account. From this viewpoint,
the equivalence of stores is a generalisation to constraints of the static equivalence de-
fined in applied pi-calculus [1]. The condition store(P)�α = β in the second item intu-
itively means that the label identification must be entailed by the constraints of P, i.e. the
labels must coincide in the ‘context’ store(P). For instance, x = y |x〈z〉 and x = y |y〈z〉
satisfy this requirement. Finally, the third item of the above definition is the counterpart
of closing with respect to substitutions in open bisimulation for pi-calculus processes.
As an example, the processes ask c.U and 0 are not bisimilar because c |ask c.U can
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make a move while c |0 is stuck. In fact, it is possible to show that ∼o coincides with a
classical notion of contextual equivalence. We now state that ∼o is preserved by every
operator of the calculus. The proof is a generalisation of the proofs of the analogous
results on open pi-calculus without restriction and Pi-F calculus.

Theorem 1. ∼o is a congruence.

Example 2. Consider the example depicted in § 4.1. Suppose there are two providers
Provider4,40 and Provider3,40 that have the same amount of available resources but
that offer different units of resources to each client. Obviously, these two providers
behave differently when interacting with other processes. For instance, only the first
provider can reach an agreement with a client that requires at least 4 resources, i.e.
Client4 |Provider4,40 can make a τ-transition while Client4 |Provider3,40 is stuck. It can
be easily shown that the two processes are not open bisimilar. After Provider4,40 and
Provider3,40 place their own constraints, they both evolve to the processes

(r)(x0)(v)(x′)(x0 = 40 ⊗ x′ = x0 −v ⊗ x′ ≥ 0 ⊗ v ≤ offi |r〈v〉.Ac Reqoffi
(x′,r))

where offi are 4 and 3, respectively. Since the names are all bound, the stores are both
empty and, hence, the target processes cannot be distinguished. However, after the pro-
cesses ‘extrude’ the name v over r, their respective stores become

(r)(x0)(x′)(x0 = 40⊗x′ = x0 −v⊗x′ ≥ 0⊗v ≤ offi)

which are equal to v ≤ min{40,offi}. Thus, the stores of the two processes are now
distinguished and the first condition of Def. 1 does not hold. Similarly, we can show
that the processes Provider4,40 and Provider4,32 are not bisimilar.

5.1 Symbolic Characterisation

We now give an efficient version of open bisimulation and we prove that the two
notions coincide. For lack of space, we omit the proof of this result. Let L = A ∪
{c |c is a named constraint}, ranged over by λ, be a set of labels, and assume the label
τ coincides with the top element of the named c-semiring 1.

We define a transition system whose transitions are of the form P
λ� Q, where λ can

be either a standard label or a constraint e that is the maximal element (according to �)
such that e |store(P) allows P to evolve to Q. Recall that c�d intuitively means that d
is ‘less restrictive’ than c. Hence, transitions that are labelled by maximal constraints
specify minimal conditions.

The symbolic transition semantics of processes is the smallest relation P
λ� Q, de-

fined by the rules in Fig. 3 plus a rule (S-OPEN-O) for output and the symmetric version
of rule (S-COMM). The symbolic transition system is the same as its ‘concrete’ counter-
part but for rules (S-ASK) and (S-COMM). According to rule (S-ASK), a process ask d.U
in parallel with a constraint c can make a transition labelled by the least restrictive
constraint whose combination with c entails d, i.e. by the maximal element of the set
{x ∈ A |c ⊗ x�d}. The assumption on the completeness of c-semirings ensures that
such an element, noted d ÷ c, exists and is unique (see § 2). Remark that, in general, it
does not hold that d ÷ c ⊗ c = d. Rule (S-COMM) follows the same intuition, though in
this case the condition that must be entailed is x = z.
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(S-PREF)

c |π.U
π� c |U π = τ,x〈y〉,x〈y〉

(S-TELL)

c |tell d.U
τ� c⊗d |U if c⊗d �= 0

(S-ASK)

c |ask d.U
d÷c� c |U

(S-SUM)

c |πi.Ui
λ� U ′

c | ∑πi.Ui
λ� U ′

(S-PAR)

P
λ� P′ bn(λ)∩ fn(U) = /0

P |U
λ� P′ |U

(S-COMM)

c |U
x〈y〉
� c |U ′ c |V

z〈w〉
� c |V ′ c⊗ (y = w) �= 0

c |U |V
(x=z)÷c

� c⊗ (y = w) |U ′ |V ′

(S-RES)

P
λ� P′ x /∈ n(λ)

(x)P
λ

� (x)P′

(S-OPEN-I)

P
z〈x〉
� P′ store(P) ��x = z

(x)P
z(x)
� P′

(S-STRUCT)

P ≡ P′ P′ λ� Q′ Q′ ≡ Q

P
λ� Q

Fig. 3. Symbolic Semantics of the cc-pi calculus

Definition 2 (symbolic bisimilarity). Symbolic (open) bisimilarity (∼s) is the largest
symmetric relation S between processes such that PSQ implies:

1. store(P) = store(Q);

2. If P
α� P′ with α �= τ and bn(α)∩ fn(Q) = /0 then Q

β
� Q′ and P′ S Q′, for some Q′

and β such that store(P)�α = β;

3. If P
c� P′ then Q

d� Q′ and c |P′ S c |Q′, for some Q′ and d such that c�d.

The last condition above reminds the analogous clause of symbolic open pi-calculus in
which a process that can evolve under a certain condition can be simulated by another
process that can make a transition labelled with a weaker condition.

Example 3. Consider again the example shown in § 4.1. Assume two providers
Provider10,8 and Provider15,8 that offer different amounts of resources to each client
but that have the same number of remaining resources. Trivially, these two processes
are equivalent, because they can only satisfy clients that require maximum 8 resources.
However, proving that the two processes are open bisimilar requires checking their be-
haviour in presence of any constraint. Let us see why they are symbolically bisimilar.
Initially, the two processes place their own constraints and evolve to processes that have
the same empty store of constraints. Next, when the number of offered resources v is
communicated the stores of constraints of the processes become v ≤ min{offi,8}, which
admit the same solutions regardless offi is 15 or 10.

Theorem 2. Symbolic bisimilarity ∼s and open bisimilarity ∼o coincide.

6 Embedding Polyadic Pi-F Calculus

We start by recalling the Pi-F calculus. For better relating the calculus with cc-pi, we
present the Pi-F in the standard pi-calculus fashion rather than in the ‘commitment’
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style [16]. Assume the set of labels M = {τ,z〈ỹ〉,z〈ỹ〉,(x̃)z〈w̃〉,(x̃)z〈w̃〉 | x̃ ⊆ w̃} and let
µ range over M . The syntax, structural congruence and labelled transition system of
Pi-F processes are shown in Figure 4. The syntax (Fig. 4(a)) is similar to the syntax of
cc-pi processes but for the fact that in Pi-F input and output prefixes are polyadic, that
summation, tell, ask are missing, and that explicit fusions x̃ = ỹ replace constraints c.
Despite the original presentation of the calculus, this syntax rules out processes contain-
ing name fusions under prefixes. This choice follows the analogous restriction applied
in cc-pi, which avoids that two processes synchronise and, simultaneously, add some
constraints to the store, thus possibly yielding an inconsistency. However, we can re-
lease this restriction in both calculi if we consider the fragment of cc-pi with explicit
fusions rather than arbitrary constraints. To emphasise this syntactical analogy with cc-
pi, we have chosen also in this case to distinguish between processes U and P. The
structural axioms (Fig. 4(b)) are the same as in cc-pi but for the fact that the axioms
dealing with constraints are replaced by the axioms for explicit fusions. The definition
of equivalence relation Eq(P) (Fig 4(c)) specifies the explicit fusions of a process P.
We write ϕ∪ψ for the equivalence-closed union of the equivalence relations ϕ and ψ,
ϕ \ x for when x is a singleton class and all other names are related as in ϕ, and Id for
the identity relation. In [15] several bisimulations for the Pi-F calculus are proposed,
including a symbolic bisimulation, and they are all proved equivalent. For convenience,
here we consider the inside-outside bisimulation that is the closest to open bisimulation.

π ::= τ
∣∣ x〈ỹ〉

∣∣ x〈ỹ〉 U ::= 0
∣∣ U |U

∣∣ π.U
∣∣ (x)U

∣∣ I(ỹ) P ::= U
∣∣ x̃ = ỹ

∣∣ P|P
∣∣ (x)P

(a) syntax

P |0 ≡F P P |Q ≡F Q |P (P |Q) |R ≡F P |(Q |R) (x)(y)P ≡F (y)(x)P

P|(x)Q ≡F (x)(P|Q) if x �∈ fn(P) I(ỹ) ≡F [ỹ/x̃]U if I(x̃) def= U
x=x ≡F 0 (x)(x=y) ≡F 0 x=y ≡F y=x x=y |y=z ≡F x=z |y=z
x=y |x〈z̃〉.P ≡F x=y |y〈z̃〉.P w=y |x〈z̃〉.P ≡F w=y |x〈z̃〉[y/w].P if w ∈ z̃
x=y |x〈z̃〉.P ≡F x=y |y〈z̃〉.P w=y |x〈z̃〉.P ≡F w=y |x〈z̃〉[y/w].P if w ∈ z̃

(b) structural congruence

Eq(0) = Id Eq(x = y) = {(x,y),(y,x)}∪ Id Eq(π.U) = Id

Eq(P |Q) = Eq(P)∪Eq(Q) Eq((x)P) = Eq(P)\x Eq(I(ỹ)) = Eq([ỹ/x̃]U) if I(x̃) def= U
(c) equivalence relation Eq(P)

(PREF)

π.U
π→f U

(COMM)

P
x〈ỹ〉→f P′ Q

x〈w̃〉→f Q′ |ỹ| = |w̃|

P |Q τ→f P′ |Q′ | ỹ = w̃

(PAR)

P
µ→f P′ bn(µ)∩ fn(Q) = /0

P |Q µ→f P′ |Q
(RES)

P
µ→f P′ x /∈ n(µ)

(x)P
µ→f (x)P′

(OPEN-I)

P
(w̃)z〈ỹ〉→f P′ (x,z) /∈ Eq(P), x ∈ ỹ\ w̃

(x)P
(xw̃)z〈ỹ〉→f P′

(STRUCT)

P ≡F P′ µ→f Q′ ≡F Q

P
µ→f Q

(d) operational semantics (omitting a rule (OPEN-O) for output)

Fig. 4. Pi-F calculus
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Definition 3 (inside-outside bisimilarity). Inside-outside bisimilarity (∼io) is the
largest symmetric relation S between Pi-F processes such that PSQ implies:

– Eq(P) = Eq(Q);
– If P

µ→f P′ with bn(µ)∩ fn(Q) = /0 then Q
µ→f Q′ and P′ S Q′;

– P |x = y S Q |x = y, for all fusions x = y.

We give below a translation of Pi-F processes into cc-pi where we take the underlying
named c-semiring to be the named c-semiring of Herbrand constraint systems with a
signature including the operations for tupling, as shown in Example 1. Remark that in
this case x = 〈y1, . . . ,yn〉 denotes the unification of the name x with the term 〈y1, . . . ,yn〉
and that a name equality x̃ = ỹ, with x̃ and ỹ of the same arity n, can be modelled as the
constraint z = 〈x1, . . . ,xn〉⊗ w = 〈y1, . . . ,yn〉⊗ z = w. We abbreviate 〈x1, . . . ,xn〉 by x̃.

Definition 4. Let [[ ]] be the following translation of Pi-F agents:

[[τ.U ]] = τ.[[U ]] [[x〈ỹ〉.U ]] = (z)(x〈z〉.[[U ]] |z = ỹ) [[x〈ỹ〉.U ]] = (z)(x〈z〉.[[U ]] |z = ỹ)

[[0]] = 0 [[P |Q]] = [[P]] | [[Q]] [[(x)P]] = (x)[[P]] [[I(ỹ)]] = [[[ỹ/x̃]U ]] if I(x̃) def= U

Theorem 3. P ∼io Q iff [[P]] ∼o [[Q]].

Proof (Hint). By theorem 2 and by an analogous result proved in [15] for the Pi-F
calculus, the theorem can be restated by replacing ∼o and ∼io with their respective
symbolic versions. This fact greatly simplifies the proof. Another key point is that the
instance of cc-pi that we consider includes more contexts that Pi-F, i.e. the contexts
x̃ = ỹ, where the arity of x̃ and ỹ is non-null and it is the same for both tuples. In fact,
the cc-pi processes that belong to the inverse image [[ ]]−1 of the translation cannot be
discriminated by these contexts. To see this point, note that checking equivalence over

the above contexts corresponds to taking the symbolic transitions [[P]]−1
x=y⊗c
� [[Q]]−1 |c

where [[P]]−1
x=y
� [[Q]]−1 also holds. The first kind of transition is not maximal and it can

be discarded since there is another transition that is maximal.

7 Conclusions

In general our labelled transition system takes any name instantiation that leads to con-
straints not evaluating to the bottom element of the c-semiring and it does not provide
a way to discard non-optimal solutions. We plan to generalise the notion of consistency
to α-consistency, where α is a strictly non-negative threshold. Accordingly, we could
study a variant of the present semantics in which, for instance, the consistency check
in the rules for placing constraints is substituted by an α-consistency check. We also
intend to enrich our semantics in order to model non-deterministic timed behaviours
and to compare it to paradigms such as timed concurrent constraint programming [10].

It would also be interesting to further explore the expressiveness of cc-pi by pro-
viding fully abstract encodings of other calculi, such as the applied pi-calculus and the
pi-calculus. The main idea behind embedding applied pi-calculus would be to charac-
terise a variant of the named c-semiring for Herbrand constraints that models a generic
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signature along with an equational theory. On the other side, translating the pi-calculus
into cc-pi seems harder. The main challenge in translating the pi-calculus would be to
express in terms of named constraints the concept of distinctions, which are used to
define open bisimulation on the cc-pi calculus with restriction operator.

Acknowledgments. We thank Fabio Gadducci, Magnus Johansson and Bjorn Victor for
fruitful discussions.
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The Conversation Calculus:
A Model of Service-Oriented Computation

Hugo T. Vieira, Luı́s Caires, and João C. Seco

CITI / Departamento de Informática, Universidade Nova de Lisboa, Portugal

Abstract. We present a process-calculus model for expressing and analyzing
service-based systems. Our approach addresses central features of the service-
oriented computational model such as distribution, process delegation, commu-
nication and context sensitiveness, and loose coupling. Distinguishing aspects
of our model are the notion of conversation context, the adoption of a context
sensitive, message-passing-based communication, and of a simple yet expressive
mechanism for handling exceptional behavior. We instantiate our model by ex-
tending a fragment of the π-calculus, illustrate its expressiveness by means of
many examples, and study its basic behavioral theory; in particular, we establish
that bisimilarity is a congruence.

1 Introduction

Web services have emerged mainly as a toolkit of technological and methodological
solutions for building open-ended collaborative software systems on the Internet. Many
concepts that are frequently put forward as distinctive of service-oriented computing,
namely, object-oriented distributed programming, long duration transactions and com-
pensations, separation of workflow from service instances, late binding and discovery
of functionalities, are certainly not new, at least when considered in isolation. What
is certainly new about services is that they are contributing to physically realize (on
the Internet) a global, interaction-based, loosely-coupled, model of computation. We
would like to better understand in what sense service orientation is to be seen as a new
paradigm to build and reason about distributed systems.

The main contributions of this work are the development of a process calculus for
service-oriented computing based on a novel notion of conversation context, and the
study of its basic behavioral theory. In particular, we establish that bisimilarity is a con-
gruence, thus asserting the proper status of the proposed constructions as operators at
the level of the behavioral semantics; we believe that such a result has not yet been
provided for other related service calculi. Our starting point is an attempt to isolate
and clarify essential characteristics of the service-oriented model, in order to propose a
motivation from “first principles” of a reduced set of general abstractions for express-
ing and analyzing service-based systems. We then instantiate our model by modularly
extending the static fragment of the π-calculus with conversation contexts, message-
passing communication primitives, and an exception handling mechanism.

1.1 Some Key Aspects of Service-Oriented Computing

We identify as key aspects of the service-oriented computational model: distribution,
process delegation, communication and context sensitiveness, and loose coupling.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 269–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Distribution. The purpose of a service relationship is to allow the incorporation of
certain activities in a given system, without having to engage local resources and capa-
bilities to support or implement such activities. By delegating activities to an external
service provider, which will perform them using its own remote resources and capabili-
ties, a computing system may concentrate on those tasks for which it may autonomously
provide convenient solutions. Thus, the notion of service makes particular sense when
the service provider and the service client are separate entities, with access to sepa-
rate sets of resources and capabilities. This understanding of the service relationship
between provider and client assumes an underlying distributed computational model,
where client and server are located at least in distinct (operating system) processes,
more frequently in distinct sites of a network.

Process Delegation versus Operation Invocation. The primitive remote communi-
cation mechanism in distributed computing is message passing. On top of this basic
mechanism, the only one really implementable, more sophisticated abstractions may be
represented, namely remote procedure call (passing first-order data) and remote method
invocation (also passing remote object references). Along these lines, we see service in-
vocation as a still higher level mechanism, allowing the service client to delegate to a
remote server not just a single operation or task, but the execution of a whole interactive
activity (technically, a process). This emphasis on the remote delegation of interactive
processes is, in our view, a distinguishing feature of service-oriented computing, as
opposed to the remote delegation of individual operations.

Invocation of a service by a client results in the creation of a new service instance. A
service instance is composed by a pair of endpoints, one endpoint located in the server
site, where the service is defined, the other endpoint in the client site, where the request
for instantiation took place. From the viewpoint of each partner, the respective endpoint
acts as a local process, with potential direct access to local resources and capabilities.
Thus, we do not consider an endpoint to be a name, a port address, or channel, but
an interactive process. Dual endpoints work together in a tightly coordinated way, by
exchanging data and control information through a private communication tunnel.

Contexts and Context Sensitiveness. A context is a space where computation and
communication happens. A context may have a spatial meaning, e.g., as a site in a
distributed system, but also a behavioral meaning, e.g., as a context of conversation be-
tween two or more parties. In the latter situation, remote parties may well talk under
the same context of conversation, so that contexts of conversation need not be local-
ized, but accessible at different points. Moreover, the same message may appear in two
different contexts, with different meanings – web services technology has introduced
artifacts such as “correlation” to determine the appropriate context for otherwise in-
distinguishable messages. Thus, the notion of context of conversation seems to be a
convenient abstraction mechanism to structure the interactions between several entities
collaborating in a service-oriented system.

A context is also a natural abstraction to publish together closely related services.
Typically, services published by the same entity are expected to share common re-
sources; we notice that such sharing is common at several scales of granularity. Ex-
treme examples are: a “small” object, where the service definitions are the methods and
the shared context is the object internal state, and an ISP such as, e.g., Amazon, that
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publishes many services for many different purposes; such services certainly share
internal resources in the Amazon context, such as databases, payment gateways, and
so on.

Loose Coupling. A service-based computation usually consists in an collection of re-
mote partner service instances, in which functionality is to be delegated, some locally
implemented processes, and one or more control (or orchestration) processes. The flex-
ibility and openness of a service-based design, or at least an aimed feature, results from
a loose coupling between these various components. For instance, an orchestration de-
scribing a “business process”, should be specified in a quite independent way of the
particular subsidiary service instances used, paving the way for dynamic binding and
dynamic discovery of service providers. In the orchestration language WSBPEL [2],
loose coupling to external services is enforced to some extent by the separate decla-
ration of “partner links” and “partner roles” in processes. In the modeling language
SRML [11], the binding between service providers and clients is mediated by “wires”,
which describe plugging constraints between otherwise hard to match interfaces. These
are two instances of the same general principle.

To avoid tight coupling of services, the interface between a service instance (at each
of its several endpoints) and the context of instantiation should be mediated by appro-
priate connecting processes, in order to hide and/or adapt the endpoint communication
protocol (which is in some sense dependent of the particular implementation or ser-
vice provider chosen) to the abstract behavioral interface expected by the context of
instantiation. All computational entities cooperating in a service task should then be en-
capsulated (delimited inside a conversation context), and able to communicate between
themselves and the outer context only via some general message passing mechanism.

Communication. Computations interacting in a context may offer essentially three
forms of communication capabilities. First, they may communicate within the context,
corresponding to regular internal computations in the context. Second, an endpoint must
be able to send messages to and receive messages from the other (dual) endpoint of the
context, reflecting interactions between the client and the server roles of a service in-
stance. Third, internally to a context it must be possible to send messages to and receive
messages from the enclosing context, thus allowing for a context to be seen as a regular
process by its peers at the upper level. Contexts as the one described may be nested at
many levels, corresponding to subsidiary service instances, processes, etc.

In the next Section, we present the conversation calculus, a process model crafted
to incorporate the several key aspects just discussed; we explain the various primitives
of the calculus, and define its syntax and operational semantics. In Section 3 we fur-
ther motivate our model and calculus by means of several examples. In Section 4 we
define the behavioral semantics and present related technical results. We compare our
approach with related work in Section 5 and conclude in Section 6.

2 The Conversation Calculus

In this section, we motivate and present in detail the primitives of our calculus. After
that, we present the syntax of our calculus, and formally define its operational seman-
tics, by means of a labeled transition system.
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Context. A key contribution of this paper is the notion of conversation context. A con-
versation context is a medium where related interactions can take place. A conversation
context can be distributed in many pieces, and processes inside any piece can seam-
lessly talk to any other piece of the same context. Each context has a unique name (cf.,
a URI), and is partitioned in two endpoints, which we will refer by “initiator” (�), or
“responder” (�). We use the endpoint access construct n � [P ] to say that the process
P is placed at the initiator endpoint of context n, and the (dual) construct n � [P ] to
say that the process P is placed at the responder endpoint of context n. Potentially, each
endpoint access will be placed at a different enclosing context. On the other hand, any
such endpoint access will necessarily be placed at a single enclosing context. The rela-
tionship between the enclosing context and such an endpoint may be seen as a call/callee
relationship, but where both entities may interact continuously.

Communication. Communication between subsystems is realized by means of mes-
sage passing. Internal computation is related to communications between subsystems
inside a given context. First, we denote the output and the input of messages to/from
the current context by the constructs out � label (ṽ).P and in � label(x̃).P . In the
output case, the terms vi represent message arguments, values to be sent, as expected.
In the input case, the variables xi represent message parameters and are bound in P , as
expected. The direction symbol � (read “here”) says that the corresponding communi-
cation actions must interact in the current endpoint.

Second, we denote the output and the input of messages to/from the enclosing end-
point by the constructs out � label(ṽ).P and in � label (x̃).P . The direction symbol
� (read “up”) says that the corresponding communication actions must interact in the
(uniquely determined) enclosing endpoint.

Third, we denote the output and the input of messages to/from the dual endpoint by
the constructs out � label(ṽ).P and in � label (x̃).P The direction symbol � (read
“other”) says that the corresponding communication action must interact with the dual
endpoint, relative to the context where the out � or in � process is running.

Service Publication and Service Instantiation. A context may publish one or more
service definitions. Service definitions are stateless entities, pretty much as function def-
initions in a functional programming language. A service definition may be expressed
by the construct def serviceName ⇒ ServiceBody where serviceName is the service
name, and ServiceBody is the process that is to be executed at the service endpoint
(responder) for each service instance, in other words the service body. In order to be
published, such a definition must be inserted into a context, e.g.,

serviceProvider � [def serviceName ⇒ ServiceBody | · · · ]

Such a published service may be instantiated by means of the construct

instance n ρ serviceName ⇐ ClientProtocol

where n ρ describes the context (n) and the endpoint role (ρ) where the service is pub-
lished. For instance, the service defined above may be instantiated by

instance serviceProvider � serviceName ⇐ ClientProtocol
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The ClientProtocol describes the process that will run inside the initiator endpoint.
The outcome of a service instantiation is the creation of a new globally fresh context
identity (a hidden name), and the creation of two dual endpoints of a context named
by this fresh identity. The responder endpoint will contain the ServiceBody process
and will be placed at the serviceProvider context. The initiator endpoint will contain
the ClientProtocol process and will be placed at the same context as the instance

expression that requested the service instantiation. The newly created endpoints appear
to their enclosing contexts as a local process, and may interact continuously by means
of � communication.

Context Awareness. A process running inside a given context is able to dynamically
access its identity, by means of the construct here(x).P . The variable x will be replaced
inside the process P by the name n of the current context. The computation will proceed
as P{x�n}. This primitive bears some similarity with the self or this of object-
oriented languages, even if it has a different semantics.

Exception Handling. We introduce primitives to model exceptional behavior, in par-
ticular fault signaling, fault detection, and resource disposal. These aspects are or-
thogonal to the introduced communication mechanisms, but need to be tackled in any
model of service-oriented computation. The primitive to signal exceptional behavior
is throw.Exception . This construct throws an exception with continuation the process
Exception , and has the effect of forcing the termination of all other processes running in
all enclosing contexts, up to the point where a try−catch block is found (if any). The
continuation Exception will be activated when (and if) the exception is caught by such
an exception handler. The exception handler construct try P catch Handler actively
allows a process P to run until some exception is thrown inside P . At that moment, all
of P is terminated, and the Handler handler process, which is guarded by try−catch,
is activated, concurrently with the continuation Exception of the throw.Exception that
originated the exception, in the context of a given try− catch− block. By exploiting
the interaction potential of the Handler and Exception processes, one may represent
many adequate recovery and resource disposal protocols.

2.1 Syntax and Semantics of the Calculus

We may now formally introduce the syntax and semantics of the conversation calcu-
lus. We assume given an infinite set of names Λ, an infinite set of variables V , and an
infinite set of labels L. We abbreviate a1, . . . , ak by ã. We use dir for the communi-
cation directions, α for directed message labels, and ρ for the endpoint roles (ρ =�,
the initiator role, or ρ =�, the responder role). We denote by ρ the dual role of ρ, for
instance � = �. Notice that message and service identifiers (from L) are plain labels,
not subject to restriction or binding. The syntax of the calculus is defined in Fig. 1.

The static core of our language is derived from the π-calculus [19]. We thus have
stop for the inactive process, P | Q for the parallel composition, (new a)P for name
restriction, and !P for replication. Then we have context-oriented polyadic communica-
tion primitives: out α(ṽ).P for output and in α(x̃).P for input. In the communication
primitives, α denotes a pair of name and direction, as explained before. We then have the
context endpoint access construct n ρ [P ], the context awareness primitive here(x).P ,
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a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, v, . . . ∈ Λ ∪ V
l, s . . . ∈ L (Labels)
dir ::= � | � | � (Directions)
α ::= dir l
ρ ::= � | � (Endpoint Roles)

P, Q ::=
stop | n ρ [P ]

| P | Q | here(x).P
| (new a)P | instance n ρ s ⇐ P
| out α(ṽ).P | def s ⇒ P
| in α(x̃).P | try P catch Q
| !P | throw.P

Fig. 1. The Conversation Calculus

the service invocation and service definition primitives instance n ρ s ⇐ P and
def s ⇒ P , respectively. The primitives for exception handling are thetry P catch Q
and the throw.P . The distinguished occurrences of a, x̃, and x are binding occurrences
in (new a)P , in α(x̃).P , and here(x).P , respectively. The sets of free (fn(P )) and
bound (bn(P )) names and variables in a process P are defined as usual, and we implic-
itly identify α-equivalent processes.

We define the semantics of the conversation calculus using a labeled transition sys-
tem. We introduce transition labels λ. We use act to range over actions, defined as

act ::= τ | α(ã) | here | throw | def s

Then, a transition label λ is an expression as given by λ ::= c ρ act | act | (νa)λ.
In (νa)λ the distinguished occurrence of a is bound with scope λ (cf., the π-calculus
bound output and bound input actions). A transition label containing c ρ is said to be
located at c ρ (or just located), otherwise is said to be unlocated. We write (ν̃a) to
abbreviate a (possibly empty) sequence (νa1) . . . (νak).

We adopt a few conventions and notations. We note by λdir a transition label λdir

containing the direction dir (�, �, �). Then we denote by λdir ′
the label obtained by

replacing dir by dir ′ in λdir . Given an unlocated label λ, we represent by c ρ · λ the
label obtained by locating λ at c ρ , so that e.g., c ρ · (ν̃a)act = (ν̃a)c ρ act. We assert
loc(λ) if λ is not located and does not contain here.

The set of transition labels is polarized and equipped with an injective involution λ

(such that λ = λ). The involution, used to define synchronizing (matching) transition
labels, is defined such that act �= act′ for all act, act′, and

c ρ def s � c ρ def s c ρ � α � c ρ � α c ρ � α � c ρ � α

We define out(λ) as ã \ (̃b ∪ {c}), if λ = (ν̃b)c ρ α(ã) or λ = (ν̃b)α(ã). We use fn(λ)
and bn(λ) to denote (respectively) the free and bound names of a transition label.

In Figs. 2, 3 and 4 we present the labeled transition system for the calculus. The rules
presented in Fig. 2 closely follow the π-calculus labeled transition system (see [20]). In
(vii) the unlocated � label is excluded (to synchronize it must first get located in some
context). We omit the rule symmetric to (vi).

We briefly review the rules presented in Fig. 3: (i) service instantiation request;
(ii) service instantiation; (iii) after going through a context boundary, an � message
becomes �; (iv ) an unlocated � message gets located at the context identity in which it
originates, analogously (v) for a � message and (vi) for service instantiation; (vii) a
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out α(ṽ).P
α(ṽ)−→ P (i) in α(x̃).P

(ν̃n)α(ṽ)−→ P{x̃�ṽ} (ñ ⊆ ṽ) (ii)

P
λ−→ Q n �∈ fn(λ)

(new n)P
λ−→ (new n)Q

(iii)
P

λ−→ Q n ∈ out(λ)

(new n)P
(νn)λ−→ Q

(iv)
P | !P

λ−→ Q

!P
λ−→ Q

(v)

P
λ−→ Q λ �= throw

P | R
λ−→ Q | R

(vi)
P

(ν̃n)λ−→ P ′ Q
(ν̃n)λ−→ Q′ λ �= � l(ã)

P | Q
τ−→ (new ñ)(P ′ | Q′)

(vii)

Fig. 2. Basic Operators

instance n ρ s ⇐ P
(νc)nρ def s−→ c � [P ] (i) def s ⇒ P

(νc)def s−→ c � [P ] (ii)

P
λ�

−→ Q

n ρ [P ]
λ�

−→ n ρ [Q]
(iii)

P
λ�

−→ Q

n ρ [P ]
nρ·λ�

−→ n ρ [Q]
(iv)

P
λ�

−→ Q

n ρ [P ]
nρ·λ�

−→ n ρ [Q]
(v)

P
(νc)def s−→ Q

n ρ [P ]
(νc)nρ def s−→ n ρ [Q]

(vi)
P

nρ here−→ Q

n ρ [P ]
τ−→ n ρ [Q]

(vii) here(x).P
nρ here−→ P{x�n} (viii)

P
λ−→ Q loc(λ)

n ρ [P ]
λ−→ n ρ [Q]

(ix)
P

τ−→ Q

n ρ [P ]
τ−→ n ρ [Q]

(x)
P

(ν̃n)act−→ P ′ Q
(ν̃n)cρ act−→ Q′

P | Q
cρ here−→ (new ñ)(P ′ | Q′)

(xi)

Fig. 3. Service and Context Operators

throw.P
throw−→ P (i)

P
throw−→ R

P | Q
throw−→ R

(ii)
P

throw−→ R

n ρ [P ]
throw−→ R

(iii)

P
λ−→ Q λ �= throw

try P catch R
λ−→ try Q catch R

(iv)
P

throw−→ R

try P catch Q
τ−→ Q | R

(v)

Fig. 4. Exception Handling Operators

here label matches the enclosing context; (viii ) a here label reads the context identity;
(ix ) a non-here located label transparently crosses the context boundary, likewise (x )
for a τ label; (xi) an unlocated label synchronizes with a part (the unlocated part) of a
located label, originating a here label, thus requiring the interaction to occur inside the
given context. We omit the rule symmetric to (xi).

As for the rules in Fig. 4: (i) signals an exception; (ii) and (iii) terminate enclosing
computations, (iv ) a non-throw transition crosses the handler block, (v) an exception
is caught by the handler block. We omit the rule symmetric to (ii).

Notice that the presentation of the transition system is fully modular: the rules for
each operator are independent, so that one may easily consider several fragments of
the calculus (e.g., without exception handling primitives). The operational semantics
of closed systems, usually represented by a reduction relation, is here specified by

τ−→.
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3 Examples

In this section, we illustrate the expressiveness of our calculus through a sequence of
simple, yet illuminating examples. For the sake of commodity, we informally extend
the language with some auxiliary primitives, e.g., if−then−else, etc, and recursion
rec X.P (that may be represented using replication).

3.1 Reading a Remotely Generated Value

A provider antarctica provides a service temperature. Whenever invoked, such service
reads the current value of a sensor at the provider site, and sends it to the caller endpoint.

antarctica � [Sensor | def temperature ⇒ in � measure(x).out � value(x)]

By Sensor we denote some process running in the antarctica � [· · · ] context, and
that is able to send measure(t) messages inside that context, where t is the current
temperature. To use the service in “one shot”, a remote client may use the code

instance antarctica � temperature ⇐ in � value(x).out � temp(x)

The effect of this code would be to send a temp(t) message to the client context, where
t is the temperature as read at the antarctica site. A service delegation as the one just
shown resembles a plain remote method call in a distributed object system.

3.2 Service Composition and Orchestration

Our next example, depicted in in Fig. 5, illustrates a familiar service composition and
orchestration scenario (inspired by a tutorial example on BPEL published in the Ora-
cle website [15]). Any instance of the travelApproval service is expected to receive
a TravelRequest message and return a clientCallBack message after finding a suit-
able flight. The implementation of the service relies on subsidiary services provided by
americanAirlines and deltaAirlines in order to identify the most favorable price.

Notice how the service instance interacts with service side resources in order to find
the travelClass associated to each employee, by means of the employeeTravelStatusRe-
quest and employeeTravelStatusResponse messages to and from the server context.

Notice also that the service endpoint is used to pass around control messages with the
requests and responses to and from the two airline services involved – flightRequestAA,
flightRequestDA and flightResponseAA, flightResponseDA, respectively. These message
exchanges form a loosely-coupled interaction between the orchestration code and the
subsidiary service endpoints. There is thus a clear separation between the partner ser-
vice instances, that adapt the remote endpoint functionalities (or protocols) to the partic-
ular roles performed by the instances in this local process, and the orchestration script,
that is a process communicating with the several instances via messages. In our view,
this separation captures the essence of BPEL’s partner links and partner roles, intro-
duced with the motivation of decoupling the description of the business process (the
workflow) from the identification and binding to the actual partners involved in the
particular service instances.

We discuss an interesting variation of the previous example. We would now like to
instantiate the flightAvailability services independently (e.g., at site setup time), in the
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def travelApproval ⇒ (
instance americanAirlines � flightAvailability ⇐ % Partner americanAirlines

in � flightRequestAA(flightData , travelClass).
out � flightDetails(flightData , travelClass).
in � flightTicketCallBack(response , price).
out � flightResponseAA(response , price)

|
instance deltaAirlines � flightAvailability ⇐ % Partner deltaAirlines

in � flightRequestDA(flightData , travelClass).
out � flightDetails(flightData , travelClass).
in � flightTicketCallBack(response , price).
out � flightResponseDA(response , price)

|
in � travelRequest (employee,flightData). % Orchestration
out � employeeTravelStatusRequest (employee).
in � employeeTravelStatusResponse (travelClass).(

out � flightRequestAA(flightData , travelClass) |
out � flightRequestDA(flightData , travelClass))

|
in � flightResponseAA(flightAA, priceAA).
in � flightResponseDA(flightDA, priceDA).
if (priceAA < priceDA) then

out � clientCallBack(flightAA)
else

out � clientCallBack(flightDA)
)

Fig. 5. The Travel Approval Service

service provider context, rather than creating new instances for each instantiation of the
travelApproval service. In other words, the service deltaAirlines � flightAvailability
and the service americanAirlines � flightAvailability will be used by the orchestra-
tion script in the same way as the employeeT ravelStatus already was, by means of
loosely coupled message exchanges. We depict the solution in Fig. 6. Since many con-
current instantiations of the travelApproval service may be outstanding at any given
moment, the need arises to explicitly keep track of the messages relative to each in-
stance (establish a correlation mechanism, in web services terminology). Correlation is
achieved by passing the name of the current context (accessed by the here(context)
primitive) in the request messages to the services instantiated in the shared context (e.g.,
as in the message flightRequestAA(context , · · · )), allowing the replies associated with
the requests to be placed directly in the corresponding contexts.

3.3 Orc

The Orc language [16] is frequently cited as an interesting general model of service
orchestration. This example is also relevant to our discussion because Orc also seems
to present a mechanism of process delegation, although in a more restricted sense than
we are introducing here. In fact, calling a site in Orc causes a persistent process to be
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instance americanAirlines � flightAvailability ⇐
! in � flightRequestAA(r,flightData , travelClass).
out � flightDetails(flightData , travelClass).
in � flightTicketCallBack (response , price).
r � [out � flightResponseAA(response , price)]

|
instance deltaAirlines � flightAvailability ⇐

! in � flightRequestDA(r,flightData , travelClass).
out � flightDetails(flightData , travelClass).
in � flightTicketCallBack (response , price).
r � [out � flightResponseDA(response , price)]

|
! def travelApproval ⇒ (

in � travelRequest (employee ,flightData).
here(context ).
out � employeeTravelStatusRequest (context, employee).
in � employeeTravelStatusResponse (travelClass).(

out � flightRequestAA(context ,flightData , travelClass) |
out � flightRequestDA(context , flightData , travelClass))

|
in � flightResponseAA(flightAA, priceAA).
in � flightResponseDA(flightDA, priceDA).
· · · % respond to client as before)

Fig. 6. Correlating concurrent conversations

spawned, consisting the observable behavior of such a process in streaming a sequence
of values to the caller context.

We present an encoding of Orc in Fig. 7. To simplify presentation, we introduce
anonymous contexts defined as [P ] � (new n)(n � [P ]) where n is not used in P . We
denote by �O�out the encoding of an Orc process O into a conversation calculus pro-
cess. The out parameter identifies the message label used to output the stream of values
generated by the Orc process. So, for instance, in the encoding of Orc’s sequential com-
position f � x � g each value produced by f (and hence emitted by �f�out1 in out1)
will replace x in a new copy of g. The anonymous context guarantees non interference,
being the values produced by g forwarded to the upper environment as values produced
by f � x � g.

The operational correspondence property between the encoding presented in Fig. 7
and the formal semantics presented in [16] is shown in the technical report [8], where
an encoding of a distributed object calculus [7] is also developed.

3.4 Exceptions

We illustrate a few usage idioms for our exception handling primitives in Fig. 8. In
Fig. 8 (a) and (b) we show how exceptions can be used to program conversation inter-
ruption. As shown in (a) any remote endpoint instance of the interruptible service may
be interrupted by the service protocol ServiceProto by dropping a stop() message inside
the endpoint context. Such a message causes the endpoint to send a stop() message to
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�n.S(x)�out � instance n � S ⇐
(out � args(x).!in � result(x).out � out(x))

�n.S(x) = e� � n � [! def S ⇒ (in � args(x).�e�out |
!in � out(x).out � result(x))]

�f 	 x 	 g�out � [�f�out1 |
!in � out1(x).(�g�out2 | in � out2(x).out � out(x))]

�f where x :∈ g�out � [(new x)(
�f�out |
!in � out(x).out � out(x) |
try

�g�out2 | in � out2(y).throw x � [out � val(y)]
catch 0)]

�x�out � x � [in � val(y).out � out(y)]

�f | g�out � �f�out | �g�out

�0�out � 0

Fig. 7. An embedding of Orc

(a)

server � [
def interruptible ⇒

in � stop().out � stop().throw
| ServiceProto ]

(b)

instance
server � interruptible ⇐

in � stop().throw
| ClientProto

(c)

rec Restart .
try

instance
server � interruptible ⇐ . . .

catch Restart

(d)

server � [
def timeBound ⇒

in � timeAllowed(delay).
wait(delay).throw
| ServiceProto ]

Fig. 8. Exception handling

the other (client side) endpoint, and then throwing an exception, which will cause abor-
tion of the service endpoint. On the other hand, the service invocation protocol, shown
in (b), will throw an exception at the client endpoint upon reception of stop(). Notice
that this behavior will possibly happen concurrently with ongoing interactions between
ServiceProto and ClientProto. In Fig. 8 (c) we show a pattern for a client that allows
for the recovery of a failure by repeatedly re-launching the service. In Fig. 8 (d) we
show a time-aware service definition. Any invocation of the TimeBound service will be
allocated no more than delay time units before being interrupted, where delay is a dy-
namic parameter value read from the current server side context (we assume a possible
extension of our sample language with a wait(t) primitive).

Somehow related to exceptional behavior is the notion of compensation (see [12]), of
particular relevance to service-oriented computing. In the technical report [8] we exhibit
an encoding into the conversation calculus of a core fragment of the Compensating CSP
calculus [6].
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4 Behavioral Semantics

We define a compositional behavioral semantics of the conversation calculus by means
of strong bisimulation. The main technical result of this section is a proof that strong
bisimilarity is a congruence for all the primitives of our calculus. This further ensures
that our syntactically defined constructions induce properly defined behavioral opera-
tors at the semantic level. Detailed proofs may be found in the technical report [8].

Definition 4.1. A (strong) bisimulation is a symmetric binary relation R on processes
such that, for all processes P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) ∩ fn(Q) = ∅ then there is Q′ such that Q

λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest strong bisimulation.

Theorem 4.2. Strong bisimilarity is a congruence for all operators.

N.B. Here we consider for input prefix the universal instantiation congruence principle:
if P{x�n} ∼ Q{x�n} for all n then in α(x).P ∼ in α(x).Q (cf., [20] Theorem
2.2.8(2)). We may also prove several other behavioral equations of interest.

Proposition 4.3. The following equations hold up to strong bisimilarity.

1. n � [P ] | n � [Q] ∼ n � [P | Q].
2. m � [n � [o � [P ]]] ∼ n � [o � [P ]].
3. n � [out � m(ṽ).R] ∼ out � m(ṽ).n � [R].
4. m � [n � [out � l(ṽ).P ]] ∼ n � [out � l(ṽ).m � [n � [P ]]].
5. m � [n � [out � l(ṽ).P ]] ∼ n � [out � l(ṽ).m � [n � [P ]]].
6. m � [n � [def s ⇒ P ]] ∼ n � [def s ⇒ P ]
7. m � [n � [instance nρ s ⇐ P ]] ∼ n � [instance nρ s ⇐ P ]

For instance, Proposition 4.3(2) captures the local character of message-based com-
munication in our model. The behavioral identities stated in Proposition 4.3 allow us
to prove an perhaps surprising normal form property, that contributes to illuminate the
spatial structure of conversation calculus systems. A guarded process is a process of the
form out α(ṽ).P or in α(x̃).P , here(x).P , instance n ρ s ⇐ P , or def s ⇒ P .
We use G to range over parallel compositions of guarded processes. We then have the
following

Proposition 4.4. Let P be a process in the finite exception-free fragment. Then there
exist sets of guarded processes G̃, G̃′, G̃′′, sets of names ã, b̃, c̃, d̃, and roles ρ̃, ρ̃′, ρ̃′′
such that

P ∼ (new ã)( G1 | . . . | Gt | b1 ρ1 [G′1] | . . . | bj ρj

[
G′j

]
| c1 ρ′1 [d1 ρ′′1 [G′′1 ]] | . . . | ck ρ′k [dk ρ′′k [G′′k ]])

and where the sequences biρi and ciρ
′
idiρ

′′
i are all pairwise distinct.
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Intuitively, Proposition 4.4 states that any process (of the finite exception-free fragment
of the calculus) is behaviorally equivalent to a process where the maximum nesting of
contexts is two. The restriction to finite (replication-free) and exception-free processes
is sensible, if one just wants to focus on the communication topology.

We may interpret the normal form existence result as follows. A system is com-
posed by several conversation contexts. The set of upward (�) communication paths of
a system may be seen as a graph, where the nodes are processes and contexts, and arcs
connect processes to their call-ancestor contexts. As each such arc is uniquely defined
by its two terminal nodes, so is the communication structure of an arbitrary process
defined (up to bisimilarity) by a system where the (syntactic) nesting of contexts is of
at most depth two (see [8]). Intuitively, the structure suggested here represents the join-
subconversation relation of concurrently ongoing conversations. Then, the normal form
of Proposition 4.4 is analogous to a flattened representation of such a graph.

5 Related Work

Various calculi have been recently proposed with the aim to capture aspects of service-
oriented computation. At the root of each one, one finds different motivations and
methodological approaches. Some intend to model artifacts of the web services technol-
ogy, in order to develop applied verification techniques (e.g., COWS [18], SOCK [13]),
others were introduced in order to demonstrate analysis techniques (e.g., [7,9]), yet
others have the goal of isolating primitives for formalizing and programming service-
oriented applications (SCC [3], SSCC [17], CaSPiS [4]) just to refer a few.

The inspiration for the work presented here was motivated by previous developments
around SCC [3], a process calculus designed to model service-oriented computing in-
troduced within the Sensoria Project [1]. Our proposal inherits from [14] and SCC the
presence of client-server session establishment primitives. However, we end up follow-
ing a fresh approach, based on the notion of conversation context, and on a simple and
flexible message-passing communication. Our development of the concept of conversa-
tion context was initially motivated by the concept of session (see [14]). We see conver-
sation contexts as being more general than sessions, in the same sense that coroutining
may be seen as a generalization of the stricter procedure (stack-oriented) call discipline.
Moreover, the fact that in our model endpoint accesses may appear as arbitrary inter-
acting processes to their enclosing contexts makes them quite different from the more
familiar data streaming session endpoints.

Our up (�) communication primitive was introduced with the aim of expressing
the interaction between nested conversation contexts, in particular, between service in-
stances endpoints and their callers, with loose-coupling in mind. Similar primitives have
been already introduced in ambient calculi, namely Seal [10], Boxed Ambients [5] and
Box π [21]. Our computation model is very different from those models (which are
targeted at modeling migration and mobility), as witnessed by Proposition 4.4. Hence,
even if formally related to some primitives introduced in [5,10], at least when their reac-
tion rules are considered in isolation, our communication primitives have very different
consequences at the semantic level (for example, two � messages can synchronize, just
as long as they originate in subcontexts of the same context).
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Primitives to deal with exceptional behavior (for example, closing sessions) are
present in several service calculi. Perhaps surprisingly, our exception mechanism, al-
though clearly based on the classical construct for functional languages, does not seem
to have been much explored in process calculi; we believe that it allows us to express
many interesting exceptional behavior situations.

We have demonstrated that our approach is expressive enough to capture Orc’s com-
position operators; we expect that similar results may be established for calculi with
related constructs, such as streams and pipelines [17,4], at least in the absence of types.

6 Concluding Remarks

We have presented a model for service-oriented computation, building on the identifica-
tion of some general aspects of service-based systems. We have instantiated our model
by proposing the conversation calculus, which incorporates abstractions of the several
aspects involved by means of carefully chosen programming language primitives. We
have focused our presentation on a detailed justification of the concepts involved, on
examples that illustrate the expressiveness of our model, and on the semantic theory for
our calculus, based on a standard strong bisimilarity. Our examples demonstrate how
our calculus may express many service-oriented idioms in a rather natural way. The be-
havioral semantics allowed us to prove several interesting behavioral identities. Some of
these identities suggested a normal form result that clarifies the spatial communication
topology of conversation calculus systems.

Conversation contexts are natural subjects for typing disciplines, in terms of the mes-
sage interchange patterns that may happen at their borders. We expect types specifying
various properties of interfaces, service contracts, endpoint session protocols, security
policies, resource usage, and service level agreements, to be in general assigned to con-
text boundaries. One of the most interesting challenges to be addressed by type systems
for the conversation calculus is then to discipline the delegation of conversation con-
texts according to quite strict usage disciplines, allowing for the static verification of
systems where several (not just two) partners join and leave dynamically a conversation
in a coordinated way.
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Abstract. We present a static analysis for inferring the maximum
amount of buffer space used by a program consisting of concurrently
running processes communicating via buffered channels. We reduce the
problem to linear programming by casting the analysis as a fractional
capability calculus system. Our analysis can reason about buffers used
by multiple processes concurrently, and runs in time polynomial in the
size of the program.

1 Introduction

We consider programs consisting of concurrently running processes communicat-
ing via buffered channels. Each process runs sequentially at its own speed, and
synchronizes by communicating over channels. Communications are buffered in
the sense that the messages may not be immediately sent to the receiver, but are
held at some place. But holding messages costs buffer resources. If the buffers
have a predetermined maximum size, unwanted behavior may happen if a process
tries to send over a channel whose buffer is full. If the buffer is lossy, messages
could get lost. Otherwise, it could block or change the sender process’s control
flow. This paper presents a static analysis for obtaining a conservative bound
on channel buffers so that such behavior never happens, that is, channel buffers
are used within their bounds. Such an analysis has application in determining a
program’s resource usage bound.

We cast our analysis as a capability calculus. The capability calculus is a static
system originally proposed for reasoning about resources in sequential compu-
tation [2]. We use the extension of the capability calculus to channel communi-
cating concurrent programs to allow capabilities to be passed at synchronization
points [6]. We also use fractional capabilities [1,5,6] so that we can efficiently
infer capabilities via linear programming.

Our analysis can automatically discover some non-trivial buffer bounds. For
example, consider the program in Figure 1 consisting of two concurrently running
processes communicating via the channels foo and bar, used to transmit integer
values. The variables i, j, m, n are assumed to be initialized to some positive
integers. Process 1 reads from the channel bar and stores the read value in
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Process 1
while i < m

bar?(x);
foo!(1);
foo!(i);
i := i + x

Process 2
while j < n

bar!(j);
foo?(y);
foo?(z);
j := j + y + z

Fig. 1. Example

variable x, writes twice to foo, and then updates the variable i and repeats if
the loop condition is met. Process 2 writes once to bar and reads twice from
foo, and then repeats if the loop condition is met. Buffer space to store only one
integer is needed for the channel bar. This is because when process 2 is about
to write to bar for the second time, process 1 must have already read the first
integer from bar as process 2’s write is preceded by the two reads from foo in
the previous iteration, which in turn were written by process 1 after the read
from bar. The same argument holds by induction for the subsequent iteration
of the loop. Similarly, the program only needs buffer space to store two integers
for the channel foo. Our analysis is able to automatically infer these optimal
bounds.

The rest of the paper is organized as follows. Section 2 introduces the syntax of
the simple concurrent language we use to describe the analysis. Section 3 defines
the operational semantics of the language and formally defines what it means for
a program to run within a buffer bound. Section 4 presents the capability calculus
which statically guarantees that a program runs within a buffer bound. Section 5
presents the analysis algorithm as a type inference algorithm for the capability
calculus. Section 6 discusses limitations of our work. Section 7 discusses related
work. Section 8 concludes.

2 The Simple Concurrent Language

We focus on the simple concurrent language shown in Figure 2. The language is
essentially the simple imperative language WHILE extended with concurrency
primitives. Formally, a program, p, is a parallel composition of finitely many
processes. A process, i.s, is a sequential statement s prefixed by a process index
i. A sequential statement consists of the usual imperative features as well as
primitives for buffered communications. Here, e1!(e2) means writing the value
of e2 to the buffered channel e1, and e?(x) means storing the value read from
the channel e in variable x. The variables are process-local, and so the only
means of communication are channel reads and writes. We use meta-variables
x, x′, etc. for variables and c, c′, etc. for channels. Channels are first class and
can be used as values, that is, they can be assigned to variables or written to
channels. Binary integer operations such as +, −, ×, ≤, etc., are ranged over by
the symbol op.

To keep the presentation to the novel features of the analysis, this simple
language lacks the ability to create processes and channels dynamically, but it is
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p ::= i.s (process)
| p1 || p2 (parallel composition)

s ::= s1; s2 (sequential composition)
| skip (skip)
| if e then s1 else s2 (branch)
| while e do s (loop)
| x := e (assignment)
| e1!(e2) (channel write)
| e?(x) (channel read)

e ::= c (channel constant)
| x (local variable)
| n (integer constant)
| e1 op e2 (integer operation)

Fig. 2. The syntax of the simple concurrent language

easy to extend the analysis to handle dynamic creation of processes and channels
by borrowing the techniques from [3,6].

3 Operational Semantics

We define the following mathematical convention. Given a mapping (i.e., a set-
theoretic function) f , f [a �→ b] is a mapping such that f [a �→ b](a) = b and
f [a �→ b](a′) = f(a′) for a′ �= a.

The operational semantics of the language is defined as a series of reductions
from states to states. A state is represented by the triple (B, S, p) where B is a
buffer and S is a store.

A store is a mapping from process index to process store. A process store a
mapping from variables to values. We use symbols h, h′, etc. to denote a process
store. Values are subset of expressions (e) defined as follows.

v ::= c | n

Figure 3 shows the evaluation rules. Expressions are evaluated entirely locally.
Their evaluation relation are of the form (h, e) ⇓ v and defined by the rules
Chan, Int, Var, and Op. Here, [[op]] is the standard semantics of the binary
operator op. The sequential composition operator ; is associative. Also, we let
skip be a ; identity, that is, s = s; skip = skip; s. The parallel composition
operator || is commutative and associative, e.g., p1 || p2 || p3 = p2 || p3 || p1.
Note that the process reduction rules only reduce the left-most process, and so
we rely on process re-ordering to reduce other processes. We assume that the
process indices are disjoint in any program p. If1, If2, While1, and While2
do not involve channel communication and are self-explanatory. Assign is also
a process-local reduction because variables are local.

Write and Read handle communications over channels. We write
B.write(c, v) for the buffer B after v is written to the channel c, and B.read(c)
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(h, c) ⇓ c
Chan

(h, n) ⇓ n
Int

(h, x) ⇓ h(x)
Var (h, e1) ⇓ n1 (h, e2) ⇓ n2

(h, e1 op e2) ⇓ n1 [[op]] n2
Op

(S(i), e) ⇓ n n �= 0

(B, S, i.(if e then s1 else s2); s || p) → (B, S, i.s1; s || p)
If1

(S(i), e) ⇓ 0

(B, S, i.(if e then s1 else s2); s || p) → (B, S, i.s2; s || p)
If2

(S(i), e) ⇓ n n �= 0

(B, S, i.(while e do s1); s || p) → (B, S, i.s1; (while e do s1); s || p)
While1

(S(i), e) ⇓ 0

(B, S, i.(while e do s1); s || p) → (B, S, i.s || p)
While2

(S(i), e) ⇓ v S′ = S[i �→ S(i)[x �→ v]]

(B, S, i.x := e; s || p) → (B, S′, i.s || p)
Assign

(S(i), e1) ⇓ c (S(i), e2) ⇓ v B′ = B.write(c, v)

(B, S, i.e1!(e2); s || p) → (B′, S, i.s || p)
Write

(S(i), e) ⇓ c (B′, v) = B.read(c) S′ = S[i �→ S(i)[x �→ v]]

(B, S, i.e?(x); s || p) → (B′, S′, i.s || p)
Read

Fig. 3. The operational semantics of the simple concurrent language

for the pair (B′, v) where v is the value read from channel c and B′ is the buffer
after the read.

Formally, a buffer B is a mapping from channels to buffer contents. We model
buffer contents as a bag of values. Buffer writes and reads are defined as follows.

B.write(c, v) = B[c �→ B(c) � {v}]
B.read(c) = (B[c �→ S], v) if B(c) = S � {v}

Here, � denotes bag union, e.g., {v} � {v} = {v, v}. Note that we are not con-
cerned about the order of values written/read to/from a buffer, and so to allow
maximum generality, we model a buffer as a bag of values from which an arbi-
trary value can be read at a channel read provided that the bag is non-empty.

The operational semantics allows arbitrary many values to be stored in a
buffer. In practice, buffers may be bounded due to physical resource constraints.
Exactly what happens if a sender tries to write to a full buffer is outside of the
scope of the paper. The goal of the analysis is to infer buffer bounds to ensure
that such behavior never occurs. In contrast, a receiver is allowed to wait on an
empty buffer, allowing the processes to synchronize over a channel.

For simplicity, we assume that every value has the same size and occupies
the same amount of space in the buffers. We write P →∗ Q for zero or more
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reduction steps from the state P to the state Q. We now formally define what
it means for a program to run within a buffer bound.

Definition 1. We say that the buffer bound of c in P is within n if for any
(B, S, p) such that P →∗ (B, S, p), |B(c)| ≤ n.

4 The Capability Calculus

Our analysis returns a buffer bound for each channel in the program. To this
end, we design a capability calculus such that given a state P , we can obtain a
buffer bound for each channel in P from the derivation for P in the calculus.

The capability calculus is a kind of a type system. The types are defined as
follows.

τ ::= ch(ρ, τ, Ψ) (channels)
| int (integers)

The type ch(ρ, τ, Ψ) denotes a type of a channel used to send and receive values of
the type τ . Here, ρ is the handle of the channel. Let Handles be the set of channel
handles. Symbols Ψ , Ψ ′, etc. represent capability mappings. A capability mapping
is a function from Handles to non-negative rational numbers augmented with
∞, that is, Q

+ ∪ {0, ∞}. We use the ordering q ≤ ∞ for all q ∈ Q
+ ∪ {0, ∞},

and the following arithmetic relation: q + ∞ = ∞, q × ∞ = ∞ for q �= 0, and
0 × ∞ = 0.

We say that Ψ such that Ψ(ρ) = q has q amount of ρ. We often refer to
Ψ itself as “capabilities”, with the understanding that we mean the amount
of capabilities in Ψ . Capabilities are conceptual, that is, capabilities only exist
in the static type system world and do not appear in the dynamic semantics.
Conceptually, each process holds some amount of capabilities representing the
amount of buffer space available for its use. For instance, a process holding
capabilities Ψ may write Ψ(ρ) many values to the buffers for channels with the
handle ρ. The capability mapping appearing in a channel type represent the
capabilities that are passed when communicating over that channel. That is,
when two processes communicate over a channel having the type ch(ρ, τ, Ψ), the
sender process passes the capabilities Ψ to the receiver process.

We define arithmetic operations over capabilities. The addition and subtrac-
tion of capability mappings are defined point-wise as Ψ + Ψ ′ = λρ.Ψ(ρ) + Ψ ′(ρ)
and Ψ −Ψ ′ = λρ.Ψ(ρ)−Ψ ′(ρ). Because capabilities must be non-negative, Ψ −Ψ ′

is undefined if Ψ(ρ) < Ψ ′(ρ) for some ρ. We define the relation Ψ ≤ Ψ ′ point-wise
as ∀ρ ∈ Handles.Ψ(ρ) ≤ Ψ ′(ρ). For convenience, we let 0 denote a constant ca-
pability mapping that maps all handles to 0, that is, 0 = λρ.0. Therefore, for
example, 0 [ρ �→ 1] is a capability mapping that maps ρ to 1 and ρ′ to 0 for all
ρ′ �= ρ.

Figure 4 shows the type checking rules. The judgements for expressions are
of the form Γ � e : τ , where Γ is a type environment mapping variables and
channels to their types. The rules VAR, CHAN, INT, and OP type expressions
and are self-explanatory.
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Γ � c : Γ (c)
CHAN

Γ � n : int
INT

Γ � x : Γ (x)
VAR Γ � e1 : int Γ � e2 : int

Γ � e1 op e2 : int
OP

Γ, Ψ � skip : Ψ
SKIP Γ � e : Γ (x)

Γ, Ψ � x := e : Ψ
ASSIGN

Γ, Ψ � s1 : Ψ1 Γ, Ψ1 � s2 : Ψ2

Γ, Ψ � s1; s2 : Ψ2
SEQ

Γ � e : int Ψ ′ ≤ Ψ1 Ψ ′ ≤ Ψ2 Γ, Ψ � s1 : Ψ1 Γ, Ψ � s2 : Ψ2

Γ, Ψ � if e then s1 else s2 : Ψ ′ IF

Γ � e : int Γ, Ψ ′ � s : Ψ ′′ Ψ ′ ≤ Ψ Ψ ′ ≤ Ψ ′′

Γ, Ψ � while e do s : Ψ ′ WHILE

Γ � e : ch(ρ, Γ (x), Ψ ′)

Γ, Ψ � e?(x) : Ψ + Ψ ′ + 0 [ρ �→ 1]
READ

Γ � e : ch(ρ, τ, Ψ ′) Γ � e′ : τ

Γ, Ψ � e!(e′) : Ψ − Ψ ′ − 0 [ρ �→ 1]
WRITE

Fig. 4. The type checking rules

The type judgements for the statements are of the form Γ, Ψ � s : Ψ ′, where
Ψ is the capabilities before the execution of s, and Ψ ′ is the capabilities after
the execution of s. SKIP, SEQ, and ASSIGN are self-explanatory. IF ensures
that the capabilities at the branch join point cannot exceed the capabilities after
the then branch or the else branch. WHILE is similar to IF.

In READ, the hypothesis ensures that type of the received value agrees with
the type of the variable where the value is going to be stored. In the conclusion
of READ, the capabilities Ψ ′ passed from the sender is added to the capabilities
held by the process. In addition, because a read frees a buffer space, we gain a
single buffer space, and so we add the capability 0 [ρ �→ 1].

WRITE passes Ψ ′ to the receiver, and thus the capabilities Ψ ′ is subtracted in
the conclusion of the rule. The subtraction of capabilities is defined as Ψ1 −Ψ2 =
Ψ3 iff Ψ3 + Ψ2 = Ψ1. In addition, because a write uses a buffer space, we express
this by subtracting 0 [ρ �→ 1] in the conclusion. Note that the non-negativity
assumption of capabilities implies that Ψ(ρ) ≥ 1.

We define some notational shortcuts. Let writeSend(ch(ρ, τ, Ψ)) = Ψ and
hdl(ch(ρ, τ, Ψ)) = ρ. Let HCB(ρ, Γ ) be the subset of the domain of B having
the handle ρ, that is,

HCB(ρ, Γ ) = {c ∈ dom(B) | hdl(Γ (c)) = ρ}

Note that |HCB(ρ, Γ )| > 1 means that multiple channels have the same handle
ρ.
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We write Γ � B(c) to mean that the buffer B(c) is well-typed, that is, for
each v ∈ B(c), Γ � v : τ , where Γ (c) = ch(ρ, τ, Ψ) for some ρ, Ψ . We write Γ � h
to mean that the process store h is well-typed, that is, Γ � h(x) : Γ (x) for each
x ∈ dom(h). Because variables are process local, without loss of generality, we
assume that each process uses a disjoint set of variables.

Definition 2 (Well-typed State). We write

Γ, Ψ1, . . . , Ψn, ΨB � (B, S, i1.s1|| . . . ||in.sn)

if

(1) For each channel c ∈ dom(B), Γ � B(c).
(2) For each ij, Γ � S(ij).
(3) For each sj, Γ, Ψj � sj : Ψ ′j for some Ψ ′j.
(4) ΨB =

∑
c∈dom(B) |B(c)| × writeSend(Γ (c)).

In (4), m × Ψ is defined as λρ.m × Ψ(ρ).
For simplicity, we have used simple types so that some programs are untypable

(for instance, a program that uses integers as channels). But it is easy to extend
the system with sum types and recursive types so that all programs become
typable [4].

We now state the main result of this section which says that a well-typed
program runs within buffer bounds that can be obtained from its type derivation.

Theorem 1. Suppose Γ, Ψ1, . . . , Ψn, ΨB � (B, S, p). Suppose hdl(Γ (c)) = ρ. Let
Ψp = ΨB +

∑n
j=1 Ψj. Then the buffer bound of c in (B, S, p) is within Ψp(ρ) +∑

c′∈HCB(ρ,Γ ) |B(c′)|.

The key steps of the proof appear in the appendix.

4.1 Example

Recall the following program from Section 1. Let us call this program p.

1.while i < m do (bar?(x); foo!(1); foo!(i); i := i + x) ||
2.while j < n do (bar!(j); foo?(y); foo?(z); j := j + y + z)

Let B be an empty buffer, that is, B(foo) = B(bar) = ∅. Let S be a store such
that S(1) maps i, m, x to some integer and S(2) maps j, n, y, z to some integer. Let

Γ = {i �→ int, j �→ int, m �→ int, n �→ int,
x �→ int, y �→ int, z �→ int,
foo �→ ch(ρfoo, int, 0 [ρbar �→ 0.5]),
bar �→ ch(ρbar, int, 0 [ρfoo �→ 2])}

Ψ1 = ΨB = 0
Ψ2 = 0 [ρfoo �→ 2][ρbar �→ 1]
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Then, we have Γ, Ψ1, Ψ2, ΨB � (B, S, p). The type of foo indicates that whenever
process 2 reads from foo, 0.5 amount of capability for bar is passed to process
2. Therefore, by reading foo twice, process 2 gains 0.5+0.5 = 1 buffer space for
bar. Likewise, bar’s type says that reading bar once begets two buffer space for
foo.

Let Ψp = Ψ1 + Ψ2 + ΨB. Note that Ψp(ρfoo) = 2 and Ψp(ρbar) = 1, indicating
that the buffer bound of foo is 2 in (B, S, p) and the buffer bound of bar is 1 in
(B, S, p). As argued in Section 1, these are the optimal bounds for the program.

5 Analysis Algorithm

Intuitively, the analysis algorithm is a type inference algorithm for the type sys-
tem presented in Section 4. Because there are multiple type derivations possible
for a program, we would like to obtain a derivation that gives the smallest buffer
bound for each channel. Our strategy is to reduce the problem to linear pro-
gramming such that the buffer bound appears as the objective function to be
minimized.

The analysis is separated in two phases. Informally, the first phase infers ev-
erything about the type derivation except for the amount of capabilities. The
second phase uses linear programming to find the minimum amount of capabil-
ities required to complete the type derivation.

5.1 Phase 1

The first phase is mostly a standard type-based analysis based on unification
constraints, generating capability constraints on the side. Figure 5 shows the
constraint generation rules. Here, α’s are type variables, �’s are channel han-
dle variables, and ϕ’s are capability mapping variables. The inference rules are
straightforward constraint-based implementation of the type checking rules in
Figure 4.

The inference judgement for expressions, Δ � e : α; C, is read “given the
environment Δ, e is inferred to have the type α with the set of constraints
C.” The inference judgement for statements, Δ, ϕ � s : ϕ′; C is read “given
environment Δ, s is inferred to have the pre-capability ϕ and the post-capability
ϕ′ with the set of constraints C.”

We initialize Δ such that each Δ(x) and each Δ(c) is a fresh type variable.
We visit each AST node (expressions and statements) in a bottom up manner
to build the set of constraints.

The resulting set of constraints contains two kinds of constraints:

(a) Type unification constraints: σ = σ′

(b) Capability inequality constraints: φ ≤ φ′

where
σ ::= α | ch(�, α, ϕ) | int
φ ::= ϕ | 0 [� �→ 1] | φ + φ | φ − φ
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α, �, ϕ fresh

Δ � c : Δ(c); {ch(�, α, ϕ) = Δ(c)}
CHAN

α fresh

Δ � n : α; {α = int}
INT

Δ � x : Δ(x); ∅
VAR

Δ � e1 : α1; C1 Δ � e2 : α2; C2 α3 fresh

Δ � e1 op e2 : α3; C1 ∪ C2 ∪ {α1 = α2 = α3 = int}
OP

ϕ fresh

Δ, ϕ � skip : ϕ; ∅
SKIP

Δ � e : α; C ϕ fresh

Δ, ϕ � x := e : ϕ; C ∪ {α = Δ(x)}
ASSIGN

Δ, ϕ1 � s1 : ϕ′
1; C1 Δ, ϕ2 � s2 : ϕ′

2; C2

Δ, ϕ1 � s1; s2 : ϕ′
2; C1 ∪ C2 ∪ {ϕ′

1 = ϕ2}
SEQ

Δ � e : α; C Δ, ϕ1 � s1 : ϕ′
1; C1 Δ, ϕ2 � s2 : ϕ′

2; C2 ϕ, ϕ′ fresh

Δ, ϕ � if e then s1 else s2 : ϕ′;
C ∪ C1 ∪ C2 ∪ {α = int, ϕ1 = ϕ2 = ϕ, ϕ′ ≤ ϕ′

1, ϕ
′ ≤ ϕ′

2}

IF

Δ � e : α; C Δ, ϕ′ � s : ϕ′′; C′ ϕ fresh

Δ, ϕ � while e do s : ϕ′; C ∪ C′ ∪ {α = int, ϕ′ ≤ ϕ, ϕ′ ≤ ϕ′′}
WHILE

Δ � e : α; C �, ϕ, ϕ′, ϕ′′ fresh

Δ, ϕ � e?(x) : ϕ′′; C ∪ {α = ch(�, Δ(x), ϕ′), ϕ′′ = ϕ + ϕ′ + 0 [� �→ 1]}
READ

Δ � e : α; C Δ � e′ : α′; C′ �, ϕ, ϕ′, ϕ′′ fresh

Δ, ϕ � e!(e′) : ϕ′′;
C ∪ C′ ∪ {α = ch(�, α′, ϕ′), ϕ′′ = ϕ − ϕ′ − 0 [� �→ 1]}

WRITE

Fig. 5. The type inference rules

Note that an equality constraint φ = φ′ can expressed by inequality constraints
φ ≤ φ′ and φ′ ≤ φ. The constraints of the kind (a) can be resolved by the
standard unification algorithm, which may create more constraints of the kind
(b). In addition, it creates constraints of the form � = �′, which can also be
resolved by the standard unification algorithm. This leaves us with a set of
constraints of the kind (b).

5.2 Phase 2

The second phase of the algorithm finds a satisfying solution to the remaining
constraints generated in the first phase. In general, there can be more than
one solution to these constraints. We find the minimum solution as follows. Let
p = i1.s1 || . . . || in.sn be the program being analyzed. Phase 1 returns pre-
capability ϕj for each process sj such that Δ, ϕj � sj : ϕ′j ; Cj . We create a fresh
capability mapping variable ϕp and add the constraint ϕp =

∑n
j=1 ϕj .
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Next, for each � (that is, its equivalence class obtained via the unification
in phase 1), we instantiate a linear programming problem using the remaining
constraints together with the constraint ϕp =

∑n
i=1 ϕi. More precisely, each

constraint mapping variable ϕ is instantiated as a linear programming variable
ϕ(�), and 0 [�′ �→ 1] is replaced by 1 if �′ = � and by 0 otherwise. We also add
constraints ϕ(�) ≥ 0 to ensure that each capability mapping is non-negative. The
objective function to minimize is ϕp(�). For any solution to the set of constraints,
ϕp(�) is a valid buffer bound on the channel with the handle �, and so minimizing
ϕp(�) gives us the best possible buffer bound for the analysis.

We state the correctness of the analysis algorithm. We use the symbol η to de-
note a constraint solution, which is a sorted substitution mapping type variables
to types, channel handle variables to channel handles, and capability mapping
variables to capability mappings. A constraint solution becomes a mapping from
σ, Δ, and φ in the obvious way (we let η(0 [� �→ 1]) = 0 [η(�) �→ 1]).

Definition 3. We write η |= C (“η solves C”) if

– for each σ = σ′ ∈ C, η(σ) = η(σ′).
– for each φ ≤ φ′ ∈ C, η(φ) ≤ η(φ′).

Lemma 1

– If Δ � e : α; C and η |= C, then η(Δ) � e : η(α).
– If Δ, ϕ � s : ϕ′; C and η |= C, then η(Δ), η(ϕ) � s : η(ϕ).

Proof By induction on the type derivation.

Theorem 2 (Soundness). Let p = i1.s1 || . . . || in.sn. Suppose

η |= {ϕp =
n∑

j=1

ϕj} ∪
n⋃

j=1

Cj

where Δ, ϕj � sj : ϕ′j ; Cj for each sj. Let P = (B, S, p) such that B is an
empty buffer (i.e., B(c) = ∅ for all channels c) and S is a store such that
η(Δ) � S(ij) for each ij, then the buffer bound of c in P is within η(ϕp)(ρ),
where ρ = hdl(η(Δ)(c)).

Proof. Straightforward from Lemma 1 and Theorem 1.

We have implemented a prototype of the analysis algorithm, available at http://
research.cs.berkeley.edu/project/cccd-impl.

5.3 Analysis of the Algorithm

Linear programming is one of the most well studied problems in computer sci-
ence. Algorithms with both good theoretical complexity and practical running
times are known. The instance of linear programming problem in phase 2 can
be solved in time polynomial in the size of the constraints by algorithms such as
interior points methods.
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Therefore, the complexity of the algorithm is bound by the time phase 1
takes to generate the capability constraints, which is polynomial for our simple
concurrent language. In general, the complexity will increase if we include more
complex programming constructs such as data structures and functions if we
stick with the simple types. But this can be avoided by incorporating sum types
and recursive types [4].

5.4 Example

We demonstrate the algorithm on the running example.

1.while i < m do (bar?(x); foo!(1); foo!(i); i := i + x) ||
2.while j < n do (bar!(j); foo?(y); foo?(z); j := j + y + z)

Suppose that the following environment Δ was inferred in the first phase.

Δ(i) = Δ(j) = Δ(m) = Δ(n) = int
Δ(x) = Δ(y) = Δ(z) = int
Δ(foo) = ch(�foo , int, ϕfoo)
Δ(bar) = ch(�bar , int, ϕbar )

The capability constraints generated from analyzing process 1 are as follows
(after some simplification).

ϕentr1 ≤ ϕexit1

ϕtemp11 = ϕentr1 + ϕbar + 0 [�bar �→ 1]
ϕtemp12 = ϕtemp11 − ϕfoo − 0 [�foo �→ 1]
ϕexit1 = ϕtemp12 − ϕfoo − 0 [�foo �→ 1]

Here, ϕentr1 is the capabilities at the while loop entry, ϕexit1 is the capabilities
at the loop exit, ϕtemp11 is the capabilities after the read bar?(x), and ϕtemp12

is the capabilities after the write foo!(1). The capability constraints generated
from analyzing process 2 are as follows (after some simplification).

ϕentr2 ≤ ϕexit2

ϕtemp21 = ϕentr2 − ϕbar − 0 [�bar �→ 1]
ϕtemp22 = ϕtemp21 + ϕfoo + 0 [�foo �→ 1]
ϕexit2 = ϕtemp22 + ϕfoo + 0 [�foo �→ 1]

Here, ϕentr2 is the capabilities at the while loop entry, ϕexit2 is the capabilities
at the loop exit, ϕtemp21 is the capabilities after bar!(j), and ϕtemp22 is the
capabilities after foo?(y).

The capabilities to minimize is ϕp = ϕentr1 + ϕentr2 , or more precisely,
ϕp(�foo) and ϕp(�bar ). For ϕp(�bar ), this reduces to solving the following lin-
ear programming instance.

minimize entr1 + entr2
exit1 ≥ entr1
temp11 = entr1 + bar + 1
temp12 = temp11 − foo
exit1 = temp12 − foo

exit2 ≥ entr2
temp21 = entr2 − bar − 1
temp22 = temp21 + foo
exit2 = temp22 + foo
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We also add the constraint a ≥ 0 for each linear programming variable a ap-
pearing above. The minimum solution is attained at

{entr1 = 0, entr2 = 1, bar = 0, foo = 0.5,
temp11 = 1, temp12 = 0.5, exit1 = 0,
exit2 = 1, temp21 = 0, temp22 = 0.5}

This gives us the bound entr1 + entr2 = 1. Similarly, solving for the minimum
ϕp(�foo) gives us the bound 2 for foo.

6 Limitations

Our analysis cannot infer a finite buffer bound for channels written in a (reach-
able) loop whose capabilities cannot be “balanced” at the loop exit. Consider
the following program.

1.i := 0; while i < 3 do (c!(0); i := i + 1)

Clearly, the buffer bound for the channel c is 3. But note that the WHILE
rule in Figure 4 requires the capabilities at the end of the loop to be greater
than that of the start, and this is not possible for this loop due to c!(0). This
manifests in the analysis as ∞ returned as the bound (that is, there exists no
finite solution to the linear programming instance). This implies that any loop
that makes an “unbalanced send” must be unrolled prior to the analysis. This
is actually an instance of the analysis’s insensitivity to branch conditions. The
issue just becomes most pronounced for loops.

Also, because of its simple flow&path-insensitive unification-based nature, our
analysis may equate different channels when channels are used as values (e.g.,
stored in variables and passed as messages). This leads to different channels
sharing the same buffer in the analysis. For example, analyzing the program
below, the analysis equates the channels c and d, and thus infers the bound 2
for both c and d even though the ideal bound is 1.

1.x := c; x := d || 2.c!(0) || 3.d!(0)

Hence, the analysis may need to be coupled with a more powerful alias analysis
to analyze programs that extensively use channels as values.

7 Related Work

Closely related work is Kobayashi et al.’s type and effect system [3] for inferring
the upper bound on the number of pending inputs and outputs on rendezvous
channels. There are several differences from our work with theirs. One is that
their system relies more on the syntactic structure of the program to deter-
mine who is responsible to send and receive capabilities (viewing their effect
constraints as capability sends and receives). For instance, if there are multiple
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reads in a succession then the last read is responsible for receiving all the nec-
essary capabilities. In contrast, our analysis allows more freedom on who can
send and receive capabilities, and lets linear programming choose the optimal
amount of capabilities to send and receive. For example, in the program below,
the optimum buffer space for the channel c is 1, which our analysis is able to
infer.

1.c!(0) || 2.b?(x); a?(x); c!(1) || 3.c?(y); b!(0) || 4.a!(0)

But because c!(1) is preceded immediately by a?(x), Kobayashi et al.’s system
infers the bound 2 instead. Another difference is the use of fractions (i.e., rational
arithmetic) that allows our system to have a polynomial time type inference via
linear programming. Also, some programs (e.g., the running example) require
fractions to infer the optimal buffer bound.

The main technique used in our analysis, passing of fractional capabilities, was
used for the purpose of checking determinism of concurrent programs [6]. Frac-
tional capabilities were invented for the purpose of allowing concurrent reads of
reference cells [1,5], and capability calculus was originally proposed for reasoning
about resources in sequential programs [2]. In previous applications of fractional
capabilities, linear programming was used only to find a satisfying solution to a
set of linear inequality constraints, whereas our work makes use of the objective
function to find the minimum solution.

8 Conclusions

We have presented a static analysis for inferring the buffer bound of concurrent
programs communicating via buffered channels. We have cast the analysis as a
capability calculus with fractional capabilities where capabilities can be passed
at channel communication point. Our analysis reduces the problem to linear
programming and runs in time polynomial in the size of the program.
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A Proof of Theorem 1

Lemma 2. Suppose Γ � e : τ , Γ � h, and (h, e) ⇓ v. Then Γ � v : τ .

Proof. By induction on the type derivation.

Lemma 3. Suppose Γ, Ψ1, . . . , Ψn, ΨB � (B, S, p1) and (B, S, p1) → (B′, S′, p2).
Then there exist Ψ ′1, . . . , Ψ

′
n, Ψ ′B such that

(a) Γ, Ψ ′1, . . . , Ψ
′
n, Ψ ′B � (B′, S′, p2)

(b) Let Ψp = ΨB +
∑n

j=1 Ψj and Ψ ′p = Ψ ′B +
∑n

j=1 Ψ ′j. Then, for each channel
c, Ψ ′p(ρ) +

∑
c′∈HCB′ (ρ,Γ ) |B′(c′)| ≤ Ψp(ρ) +

∑
c′∈HCB(ρ,Γ ) |B(c′)| where ρ =

hdl(Γ (c)).

Proof. The proof is by case analysis on (B, S, p1) → (B′, S′, p2). We just show
the key cases. First, note that (b) can be restated so that the statement is “for
each ρ, ...” instead of “for each c, ... where ρ = hdl(Γ (c)).” We use this form as
it is more convenient.

Consider the case (B, S, p1) → (B′, S′, p2) is an instance of Write, that is,

(S(ij), e1) ⇓ c (S(ij), e2) ⇓ v B′ = B.write(c, v)
(B, S, ij .e1!(e2); s || p) → (B′, S, ij.s || p)

Without loss of generality, let j = 1. We have

Γ � e1 : ch(ρ, τ, Ψ ′) Γ � e2 : τ

Γ, Ψ1 � e1!(e2) : Ψ1 − Ψ ′ − 0 [ρ �→ 1]

Let Ψ ′1 = Ψ1−Ψ ′−0 [ρ �→ 1]. Let Ψ ′j = Ψj for j �= 1. Let Ψ ′B =
∑

c∈dom(B′) |B′(c)|×
writeSend(Γ (c)). Then we have Γ, Ψ ′1, . . . , Ψ ′n, Ψ ′B � (B′, S, ij .s || p). Thus (a)
holds.

By Lemma 2, hdl(Γ (c)) = ρ. Let Ψ ′p = Ψ ′B +
∑n

j=1 Ψ ′j and Ψp = ΨB +
∑n

j=1 Ψj .
Clearly, for ρ′ �= ρ,

Ψ ′p(ρ
′) +

∑
c′∈HCB′(ρ′,Γ )

|B′(c′)| = Ψp(ρ′) +
∑

c′∈HCB(ρ′,Γ )

|B(c′)|

Also, because Ψ ′B + Ψ ′1 = ΨB + Ψ1 − 0 [ρ �→ 1] and |B′(c)| = |B(c)| + 1,

Ψ ′p(ρ) +
∑

c′∈HCB′ (ρ,Γ )

|B′(c′)| = Ψp(ρ) +
∑

c′∈HCB(ρ,Γ )

|B(c′)|

Thus (b) holds.
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Consider the case (B, S, p1) → (B′, S′, p2) is an instance of Read, that is,

(S(ij), e) ⇓ c (B′, v) = B.read(c) S′ = S[ij �→ S(ij)[x �→ v]]
(B, S, ij .e?(x); s || p) → (B′, S′, ij.s || p)

Without loss of generality, let j = 1. We have

Γ � e : ch(ρ, Γ (x), Ψ ′)
Γ, Ψ1 � e?(x) : Ψ1 + Ψ ′ + 0 [ρ �→ 1]

Let Ψ ′1 = Ψ1+Ψ ′+0 [ρ �→ 1]. Let Ψ ′j = Ψj for j �= 1. Let Ψ ′B =
∑

c∈dom(B′) |B′(c)|×
writeSend(Γ (c)). Then we have Γ, Ψ ′1, . . . , Ψ

′
n, Ψ ′B � (B′, S′, ij .s || p). Thus (a)

holds.
By Lemma 2, hdl(Γ (c)) = ρ. Let Ψ ′p = Ψ ′B +

∑n
j=1 Ψ ′j and Ψp = ΨB +

∑n
j=1 Ψj .

Clearly, for ρ′ �= ρ,

Ψ ′p(ρ
′) +

∑
c′∈HCB′(ρ′,Γ )

|B′(c′)| = Ψp(ρ′) +
∑

c′∈HCB(ρ′,Γ )

|B(c′)|

Also, because Ψ ′B + Ψ ′1 = ΨB + Ψ1 + 0 [ρ �→ 1] and |B′(c)| = |B(c)| − 1,

Ψ ′p(ρ) +
∑

c′∈HCB′ (ρ,Γ )

|B′(c′)| = Ψp(ρ) +
∑

c′∈HCB(ρ,Γ )

|B(c′)|

Thus (b) holds.

Theorem 1. Suppose Γ, Ψ1, . . . , Ψn, ΨB � (B, S, p). Suppose hdl(Γ (c)) = ρ. Let
Ψp = ΨB +

∑n
j=1 Ψj. Then the buffer bound of c in (B, S, p) is within Ψp(ρ) +∑

c′∈HCB(ρ,Γ ) |B(c′)|.

Proof. Straightforward from Lemma 3.
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Abstract. We survey recent developments in an approach to the veri-
fication of higher-order computation based on game semantics. Higher-
order recursion schemes are in essence (programs of) the simply-typed
lambda calculus with recursion, generated from uninterpreted first-order
symbols. They are a highly expressive definitional device for infinite
structures such as word languages and infinite ranked trees. As ap-
plications of a representation theory of innocent strategies based on
traversals, we present a recent advance in the model checking of trees
generated by recursion schemes, and the first machine characterization
of recursion schemes (by a new variant class of higher-order pushdown
automata called collapsible pushdown automata). We conclude with some
speculative remarks about reachability checking of functional programs.
A theme of the work is the fruitful interplay of ideas between the neigh-
bouring fields of semantics and verification.

Game semantics has emerged as a powerful paradigm for giving semantics to
a variety of programming languages and logical systems. It has been used to
construct the first syntax-independent fully abstract models for a spectrum
of programming languages ranging from purely functional languages to lan-
guages with non-functional features such as control operators and locally-scoped
references [3,26,4,5,25,2,30] etc. In this extended abstract, we present in brief
recent developments in algorithmic game semantics, which is concerned with
applying game semantics to computer-assisted verification and program analysis
[22,19,36,33,34].

Game semantics has several features which make it very promising for such
applications. It provides a very concrete way of building fully abstract models. It
has a clear operational content, which admits compositional methods in the style
of denotational semantics. The basic objects studied in game semantics are games
(between two players, called P and O), and strategies on games. As strategies
can be seen as certain kinds of highly-constrained processes, they admit the
same kind of automata-theoretic representations central to model checking and
allied methods in computer-assisted verification [43,14]. Moreover games and
strategies naturally form themselves into intricate mathematical structures that
give very accurate models of advanced high-level programming languages, as the
various full abstraction results show. For an introduction to game semantics, see
for example [6].
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Traversal: A Representation Theory of Innocent Strategies

In game semantics, programs are modelled as P -strategies. Strategies, which
are certain sets of plays (or legal positions), are typically composed by paral-
lel composition plus hiding, in the sense of the process algebra CSP [24]. The
starting point of our work is a representation theory of the game semantics of
higher-type programs (such as recursion schemes, PCF and Idealized Algol) that
is very concrete, involving combinatorics over infinite structures defined by the
abstract syntax trees of the programs being modelled. Take a program M which
may be open. In this approach the strategy-denotation of M , written [[ M ]], is
represented by a set T r(M) of traversals over a possibly infinite tree – called the
computation tree of M – which is generated from (a souped up version of) the
abstract syntax tree of M . (Formally a traversal over a tree is a sequence of nodes
starting from the root; quite unlike a path in the tree, a traversal can “jump”
all over the tree, and may visit certain nodes infinitely often.) A traversal over
the computation tree of M does not correspond to a play in [[M ]], but rather
to an interaction sequence that is obtained by uncovering [26] a play in [[M ]]
in a hereditary fashion; and a suitable projection of T r(M) – corresponding to
the operation of hiding – gives the strategy-denotation [[M ]]. We call such a re-
sult a Path-Traversal Correspondence Theorem. (Denoting programs by sets of
interaction sequences obtained by hereditary uncovering was first considered by
Greenland in his DPhil thesis [20], which he has called revealed semantics.) The
set T r(M) is defined by recursion over the syntax of M and by rule induction.
Intuitively these formation rules define what amounts to the composition algo-
rithm of innocent strategies (less the hiding) but expressed in a setting in which
moves (of the innocent game) are mapped to nodes of the computation tree. In
[12] (see also Blum’s forthcoming DPhil thesis [10]) we give a self-contained ac-
count of the traversal-based representation theory and establish Path-Traversal
Correspondence Theorems for a number of higher-order languages including re-
cursion schemes and PCF.

In the following we consider (higher-order) recursion schemes as a definitional
device for infinite structures (mainly ranked trees, but also word languages and
directed graphs). We sketch two applications of a Path-Correspondence Theo-
rem for recursion schemes: the first concerns the verification of (possibly infinite)
ranked trees generated by recursion schemes, and the second is a machine char-
acterization of recursion schemes.

Recursion schemes of order 1, originally known as recursive program schemes,
were first formalized and studied in the early 70’s [17,35] (although the basic
ideas of program schemes and fixpoint theory go further back to David Park in
the late 60’s); they were an influential formalism for the semantical analysis of
both imperative and functional programs [35,15]. We fix a (ranked) alphabet Σ.
Types are generated from a base type o using the arrow constructor →. A (higher-
order) recursion scheme is a finite set of equations of the form F x1 · · · xn = e,
where F : A1 → · · · → An → o is a typed non-terminal, each xi : Ai is a
typed variable, and e is an applicative term of type o constructed from the
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non-terminals (which include a distinguished start symbol), terminals (which
are the Σ-symbols), and variables x1, · · · , xn. The scheme is said to be order-k
if the highest order of the non-terminals is k. We use (deterministic) recursion
schemes here as generators of possibly infinite term-trees. The tree generated by
a recursion scheme is defined to be the (possibly infinite) term-tree built up from
the first-order terminal symbols by applying the (equations qua) rewrite rules
ad infinitum, replacing the formal parameters by the actual parameters, starting
from the start symbol. Note that in essence, recursion schemes are programs of
the simply-typed lambda calculus with recursion (generated from uninterpreted
1st-order symbols).

Model-Checking Trees Generated by Recursion Schemes

In a FOSSACS’02 paper [28], Knapik, Niwiński and Urzyczyn studied the infinite
hierarchy of term-trees generated by higher-order recursion schemes that are ho-
mogeneously typed and satisfy a syntactic constraint called safety1. They showed
that for every n ≥ 0, the trees that are generated by order-n safe schemes have
decidable monadic second-order (MSO) theories. Later in the year at MFCS’02
[13], Caucal introduced a tree hierarchy and a graph hierarchy that are defined by
mutual recursion, using a pair of powerful transformations that preserve decid-
ability of MSO theories. Caucal’s tree hierarchy coincides with the hierarchy of
trees generated by higher-order safe recursion schemes. In [28] Knapik et al. asked
if the safety assumption is really necessary for their MSO decidability result. A
partial answer was subsequently obtained by Aehlig, de Miranda and Ong; in a
TLCA’05 paper [7], they showed that trees that are generated by order-2 recur-
sion schemes, whether safe or not, have decidable MSO theories. Independently,
Knapik, Niwiński, Urzyczyn and Walukiewicz obtained a sharper result: in an
ICALP’05 paper [29], they proved that the modal mu-calculus model-checking
problem for trees generated by order-2 recursion schemes (whether safe or not) is
2-EXPTIME complete. A year later in a LICS’06 paper [37], we gave a complete
answer to the question:

Theorem 1 (Decidability). The modal mu-calculus model-checking problem
for trees generated by order-n recursion schemes (whether safe or not, and
whether homogeneously typed or not) is n-EXPTIME complete, for every n ≥ 0.
Thus these trees have decidable MSO theories.

Our approach to the decidability result is to transfer the algorithmic analysis
from the tree generated by a recursion scheme, which we call value tree, to the
computation tree, which is itself a tree generated by a related order-0 recursion
scheme (equivalently, a regular tree). The computation tree recovers useful in-
tensional information about the computational process behind the construction
of the value tree. Paths in the value tree correspond exactly to plays in the game

1 The safety condition may be presented as a set of rules that determine where a
variable may occur as a subterm of a term, depending on both the order of the
variable and the order of the term (see [11,10]).
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semantics of the recursion scheme; a traversal is then (a representation of) the
uncovering of such a play. By appealing to the Path-Traversal Correspondence
Theorem, we prove that a given alternating parity tree automaton (APT) [18]
has an accepting run-tree over the value tree if and only if it has an accepting
traversal-tree over the computation tree. Our problem is then reduced to finding
an effective way of recognizing a set of infinite traversals (over a given computa-
tion tree) that satisfy the parity condition. This requires a new idea as a traversal
is most unlike a path. Our solution again exploits the game-semantic connection.
It is a property of traversals that their P-views are paths (in the computation
tree). This allows us to simulate a traversal over a computation tree by (the
P-views of its prefixes, which are) annotated paths of a certain kind in the same
tree. The simulation is made precise in the notion of traversal-simulating APT.
We establish the correctness of the simulation by proving that a given property2

APT has an accepting traversal-tree over the computation tree if and only if the
associated traversal-simulating APT has an accepting run-tree over the compu-
tation tree. Note that the decidability of the modal mu-calculus model-checking
problem for trees generated by recursion schemes follows at once since compu-
tation trees are regular, and the APT acceptance problem for regular trees is
decidable [40,18].

A Machine Characterization of Higher-Order Recursion Schemes

Another application of the Path-Traversal Correspondence Theorem concerns a
fundamental question about higher-order recursion schemes: Can we characterize
their expressivity by a class of machine models? Knapik, Niwiński and Urzyczyn
[28] have shown that as generators of ranked trees, higher-order safe recursion
schemes are equi-expressive with higher-order pushdown automata [31]. Their
result and an earlier result by Damm and Goerdt [16] may be viewed as attempts
to answer the question; they both had to impose somewhat unnatural syntactic
constraints (of safety and derived types respectively) on recursion schemes in
order to establish their characterizations.

A partial answer was recently obtained by Knapik, Niwiński, Urzyczyn and
Walukiewicz. In an ICALP’05 paper [29], they proved that order-2 homogeneously-
typed (but not necessarily safe) recursion schemes are equi-expressive with a vari-
ant class of order-2 pushdown automata called panic automata. In a preprint [21],
we give a complete answer to the question. We introduce a new kind of higher-order
pushdown automata (which generalize pushdown automata with links [8], or equiv-
alently panic automata, to all finite orders), called collapsible pushdown automata
(CPDA), in which every symbol in the stack has a link to a (necessarily lower-
ordered) stack situated somewhere below it. In addition to the higher-order stack
operations pushi and popi, CPDA have an important operation called collapse,
whose effect is to “collapse” a stack s to the prefix as indicated by the link from
the top1-symbol of s. In [21] we prove the following result:

2 Property APT because the APT corresponds to the property described by a given
modal mu-calculus formula.
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Theorem 2 (Equi-Expressivity). CPDA are equi-expressive with recursion
schemes as generators of (possibly infinite) ranked trees.

In one direction, we give a simple algorithm that transforms an order-n CPDA to
an order-n recursion scheme that generates the same tree, uniformly for all n ≥ 0.
In the other direction, using ideas from game semantics, we give an effective
transformation of order-n recursion schemes (not assumed to be homogeneously
typed, and hence not necessarily safe) to order-n CPDA that compute traversals
over the computation tree of the scheme, and hence paths in the tree gener-
ated by the scheme. Our equi-expressivity result is the first automata-theoretic
characterization of higher-order recursion schemes. Thus CPDA are also a char-
acterization of the simply-typed lambda calculus with recursion (generated from
uninterpreted 1st-order symbols) and of (pure) innocent strategies.

Verifying PCF Programs: Reachability Checking

As a further direction (and a possible application of path-traversal correspon-
dence), we consider the problem of reachability checking of higher-order compu-
tation. In the simplest form, reachability is the problem: Given a state of a tran-
sition system, is it reachable from the start state? Reachability is arguably the
most important test in the computer-assisted verification of computing systems.
Reachability (in its various forms) is expressible in standard temporal logics such
as EF, LTL, CTL, etc., but it is typically computationally more tractable than
the model checking of any of these logics (e.g. for pushdown systems, reachabil-
ity is polytime [1], whereas EF-, LTL- and CTL-model checking are respectively
PSPACE-complete, EXPTIME-complete and EXPTIME-complete [27]). In re-
cent years, reachability checkers (such as SLAM [9], Blast [23], etc.) for first-order
imperative programs have had a major impact in the verification community.
Perhaps because of its simplicity and ease of use, reachability is now a standard
approach to checking safety properties in the industry. It is therefore somewhat
surprising that no reachability checker has been developed for higher-order pro-
gramming languages such as Ocaml, Haskell and F#. Indeed, to our knowledge,
reachability of higher-order computation does not appear to have been studied
in the literature.

The simplest (though already challenging) setting is PCF (generated from
finite base types). We propose the following decision problem:

PCF-Reachability: Given a (possibly open) PCF term M and a sub-
term N of M , is there a program context C[ ] such that the evaluation of
C[M ] entails the evaluation of N? (Precisely, is there a program context
C[ ] such that C[M ] −→∗ E[N ] for some evaluation context E[ ]?)

For which fragment of PCF is the problem decidable? If there are positive
answers, it would be interesting to consider the “global version” of the problem
i.e. is it possible to compute a finite description of the set of contexts C[ ] for a
given pair of M and N?
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An approach that seems promising is to appeal to the Path-Traversal Theorem
for PCF [10], and consider traversals over the computation tree of M . The idea
is to use appropriate alternating tree automata to “guess” a set of paths in the
computation tree simulating traversals that witness yes-instances of the problem
(see [37]). If this works out, it would be interesting to present the algorithm in
terms that functional programmers can readily understand and appreciate.

Remark 1. (i) It is not clear if there is any connection between reachability (in
our sense) and control flow analysis (e.g. [42]) of functional programs. In the
past couple of years there have been several interesting developments in the
verification and flow analysis of functional language. Xu and Peyton Jones have
studied contract checking in Haskell (see Xu’s forthcoming PhD thesis). A recent
project of Shivers et al. [32] used abstract interpretation (specifically abstract
counting) to build more precise flow analysers by garbage collecting “dead”
environment structure in the abstract state space traversed by the functional
programs.

(ii) When restricted to finitary (i.e. recursion-free) PCF, the problem is re-
lated to the atoms case of the Interpolation Problem, which is decidable [38].
(The Interpolation Problem is equivalent to the Higher-Order Matching Problem
[41,39].)
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Abstract. Methods that query the state of a data structure often return identical
or equivalent values as long as the data structure does not change. Program ver-
ification depends on this fact, but it has been difficult to specify and verify such
equivalent-results methods and their callers.

This paper presents an encoding from which one can determine equivalent-
results methods to be deterministic modulo a user-defined equivalence relation.
It also presents a technique for checking that a query method returns equivalent
results and enforcing that the result depends only on a user-defined influence set.

The technique is general, for example it supports user-defined equivalence re-
lations based on Equals methods and it supports query methods that return newly
allocated objects. The paper also discusses the implementation of the technique
in the context of the Spec# static program verifier.

Introduction

Computer programs contain many methods that query the state of a data structure and
return a value based on that state. As long as the data structure remains unchanged, one
expects different invocations of the query method to produce equivalent return values.
For methods returning scalar values, the return values are expected to be the same. For
methods returning object references, the most interesting equivalences are reference
equality and equivalence based on the Equals method.

A simple and common example of a query method is the Count method of a col-
lection class, like List in Fig. 0, where for a given collection the method returns the
number of elements stored in the collection. Obviously, one expects Count to return
identical values when called twice on the same collection. Another example is shown in
the Calendar class in Fig. 2, where invocations of the GetEarliestAppointment will
yield equivalent results as long as the state of the calendar does not change. However,
since GetEarliestAppointment returns a newly allocated object, the results will not
be identical. Due to object-allocation, query methods cannot be expected to be deter-
ministic. Nevertheless, their results are expected to be equivalent. Therefore, we shall
refer to such query methods as equivalent-results methods.

Query methods (also called pure methods) are particularly important in assertion lan-
guages such as JML [16] or Spec# [2] because they allow assertions to be expressed in
an abstract, implementation-independent way. For instance, Count is used in the pre-
condition of GetItem (Fig. 0) to refer to the number of elements in the list without
revealing any implementation details. However, reasoning about assertions that contain
query methods is difficult. The client program in Fig. 1 illustrates the problem. It uses a
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class List 〈T 〉 {
int Count()

ensures 0 � result;
{ . . . }

T GetItem(int n)
requires 0 � n < Count();

{ . . . }
...

}

Fig. 0. A List class whose Count method returns the number of elements in a given list and
whose GetItem method returns a requested element of the list. The postcondition of Count
promises the return value to be non-negative, and the precondition of GetItem requires param-
eter n to be less than the value returned by Count .

List 〈T 〉 list ;
...
if (n < list .Count()) {

S // some statement that changes the state, but not the list
t = list .GetItem(n);

}

Fig. 1. A code fragment that uses the List class from Fig. 0. The if statement guards the invoca-
tion of GetItem to ensure that GetItem ’s precondition is met. To verify the correctness of this
code, one needs to be able to determine that the two invocations of Count return the same value.

conditional statement to establish the precondition of GetItem . We assume that state-
ment S does not change the list structure. Therefore, we expect that the condition still
holds when GetItem is called, that is, that the two calls to Count yield the same result.
There are essentially three approaches for a program verifier to conclude this fact.

The first approach is to require that the postcondition of the query method is strong
enough for a caller to determine exactly what value is returned. Typically, this can be
achieved by having a postcondition of the form result = E . In our example, this post-
condition would allow the verifier to compare the state affected by S to the state read
by E to determine whether the two calls to Count return the same result. However,
requiring such strong postconditions may entail a dramatic increase in the complexity
of the specification. For Count , one would have to axiomatize mathematical lists and
use that mathematical abstraction in the specification of the List class. We consider
this burden too high, in particular for the verification of rather simple properties.

The second approach is to define the return value of the method to be a function
of the program state. If the program state has not changed by the time the method is
invoked again, this approach allows one to conclude the return value is the same as
before. But this approach is too brittle, for two reasons. First, it treats state changes too
coarsely. For example, statement S in Fig. 1 may change the program state, but as long
as it does not change the state of the list, we want to be able to conclude that the result
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class Appointment {
int time;
// . . . more fields here

pure override boolEquals(object o)
ensures GetType() = typeof (Appointment) ⇒

(result ⇐⇒
o �= null ∧ GetType() = o.GetType() ∧
time = ((Appointment)o).time ∧ . . . more comparisons here);

{ . . . }
}

class Calendar {
pure Appointment GetEarliestAppointment(int day) {

Appointment a;
// find earliest appointment on day day
. . .
return a.Clone();

}

void ScheduleMorningMeeting(int day , List 〈Person〉 invitees)
requires 10 � GetEarliestAppointment(day).time;

{ . . . }
}

class Person {
voidInvite(Calendar c, . . .) {

if (10 � c.GetEarliestAppointment(5).time) {
// compute invitees
List 〈Person〉 invitees = new List 〈Person〉();
while (. . .) {

. . .
invitees.Add(p);

}
// schedule those invitees
c.ScheduleMorningMeeting(5, invitees);

}
}

}

Fig. 2. A Calendar program whose GetEarliestAppointment method returns an equivalent
value as long as the calendar does not change. The correctness of the code fragment at the bot-
tom of the figure depends on that the call to GetEarliestAppointment in the precondition of
ScheduleMorningMeeting returns a value that is equivalent to the one returned by the call to
GetEarliestAppointment in the guard of the if statement.

of Count is unchanged. Second, this approach is too precise about the return value.
For example, the object references returned by two calls to GetEarliestAppointment
in Fig. 2 are not identical, yet the data they reference are equivalent. Queries that return
newly allocated objects are very common, especially in JML’s model classes [17].
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The third approach is to require that all query methods used in specifications are
equivalent-results methods whose results depend only on certain heap locations. We
call this set of locations the influence set of a query method. With this approach, the
code in Fig. 1 can be verified by showing that the locations modified by S are not
in the influence set of Count . From the equivalent-results property and the fact that
Count returns an integer, we can conclude that the two calls to Count yield the same
results.

Existing program verifiers such as the Spec# static program verifier Boogie [1] and
ESC/Java2 [15] apply the third approach. However, these systems do not enforce that
query methods actually are equivalent-results methods and that their result actually de-
pends only on the declared influence set. Blindly assuming these two properties is un-
sound. Checking the properties is not trivial, even for methods that return scalar values.
For instance, GetHashCode is an equivalent-results method and should be permitted
in assertions, but returning the hash code of a newly allocated object leads to non-
determinism and must be prevented.

In this paper, we present a simple technique to check that a query method is an
equivalent-results method and that its result depends only on its parameters and the de-
clared influence set. This technique supports user-defined equivalence relations based
on, for instance, Equals methods. We use self-composition [3,21] to simulate two ex-
ecutions of the method body from start states that coincide in the influence set and to
prove that the respective results are indeed equivalent. We also present axioms that en-
able reasoning about equivalent-results methods and argue why they are sound. Our
technique is very general: it supports user-defined equivalence relations, it does not re-
quire a particular way of specifying influence sets, and it uses a relaxed notion of purity.
In particular, implementations of query methods may use non-deterministic language
features and algorithms, and may return newly allocated objects. We plan to implement
our technique for pure methods in Boogie, but our results do not rely on the specifics of
Spec#. Therefore, they can be adopted by other program verifiers.

Outline. Section 1 provides the background on program verification that is needed
in the rest of this paper. Section 2 presents an encoding of equivalent-results methods
that enables the kind of reasoning discussed above. Section 3 explains our technique for
checking the equivalence of results. Section 4 discusses the application of our technique
to Spec#. The remaining sections summarize related work and offer conclusions.

1 Background on Program Verification

In this section, we review details of program verification relevant to our paper. For
a more comprehensive and tutorial account of this material, we refer to some recent
Marktoberdorf lecture notes [20].

Architecture of Program Verifiers. To verify a program, the program’s proof obliga-
tions (e.g., that preconditions are met) are encoded as logical formulas called verifica-
tion conditions. The verification conditions are valid formulas if and only if the program
is correct with respect to the properties being verified. Each verification condition is fed
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class C {
int y ;
int M (int x)

requires 0 � x ;
modifies this.y ;
ensures result + x � this.y ;

{ . . . }

Fig. 3. An example class in the source language, showing an instance field y and a method M
with a method specification

to a theorem prover, such as an SMT solver or an interactive proof assistant, which at-
tempts to ascertain the validity of the formula or construct counterexample contexts that
may reveal errors in the source program. As has been noted by several state-of-the-art
verifiers, it is convenient to generate verification conditions in two steps: first encode
the source program in an intermediate verification language, and then generate input for
the theorem prover from the intermediate language [1,12,5]. Since the second step con-
cerns issues that are orthogonal to our focus in this paper, we look only at the first step.
The notation we will use for the intermediate verification language is BoogiePL [1,11].
A BoogiePL program consists of a first-order logic theory, which in particular specifies
the heap model of the source language, and an encoding of the source program. We
explain these two parts in the following subsections.

Heap Model. We model the heap as a two-dimensional array that maps object iden-
tities and field names to values [24], so a field selection expression o.f is modeled as
$Heap[o, f ] . By making the heap explicit, we correctly handle object aliases, as is well
known [4,24]. In the encoding, we use a boolean field $alloc in each object to model
whether or not the object has been allocated. The subtype relation is denoted by <: .

For any set S of locations (that is, of object-field pairs), we define a relation ≡S that
relates two heaps if they have the same values for all locations in S . More precisely:

( ∀H ,K ,S • (H ≡S K ⇐⇒ ( ∀ o, f • (o, f ) ∈ S ⇒ H [o, f ] = K [o, f ] )) )

Note that ≡S is an equivalence relation: it is reflexive, symmetric, and transitive. If
H ≡S K , we say that H and K are equivalent modulo S .

We assume that pure methods do not modify the state of any object that is allocated
in the pre-state of the method execution. This definition allows a pure method to allocate
and modify new objects such as iterators [25]. More precisely, if H 0 and H 1 denote
the heaps immediately before and after the call to a pure method, and S is a set of
locations of objects that are allocated in H 0 , the following property holds:

H 0 ≡S H 1 (0)

Encoding of Source Programs. Each source-language method is encoded as a proce-
dure in the intermediate verification language. To understand the basic encoding, con-
sider a method M in a class C with a field y , shown in Fig. 3.

The specification of M has a precondition that obligates the callers of M to pass a
non-negative argument value. In turn, the precondition lets the implementation of M



312 K.R.M. Leino and P. Müller

procedure C .M (this, x) returns (result);
requires this �= null;
free requires $Heap[this, $alloc] ∧ $typeof (this) <: C ;
ensures result + x � $Heap[this, C .y ];
ensures ( ∀ o, f • o �= this ∧ old($Heap)[o, $alloc] ⇒

$Heap[o, f ] = old($Heap)[o, f ] ∨ (o = this ∧ f = y) );
free ensures (∀ o • old($Heap)[o, $alloc] ⇒ $Heap[o, $alloc] );

Fig. 4. A BoogiePL procedure declaration that encodes the signature and specification of the
example method C .M

assume x to be non-negative on entry. The specification also has a modifies clause
and a postcondition that obligate the implementation to make sure that its return value,
parameter x , and the y field of the method’s receiver object are related as specified,
and to modify only this.y . A caller can assume these properties upon return of a call.

A representative encoding of M as a BoogiePL procedure is shown in Fig. 4. The
procedure declaration makes the implicit receiver parameter this explicit, and the
anonymous return value is encoded as a named out-parameter. The types in BoogiePL
are more coarse-grained than those in the source language, and for the purposes of this
paper, they are only a distraction, so we omit them altogether. Three things are worth
noting about the procedure specification.

First, method M ’s pre- and postconditions have direct analogs in the BoogiePL pro-
cedure, where the implicit dereferencing of the heap in a field selection expression is
made explicit in the BoogiePL encoding.

Second, the method’s modifies clause is encoded as a BoogiePL postcondition that
dictates which locations in the heap are allowed to change. The latter says that for any
non-null object o allocated on entry to the method and for any field f , the heap at
location o.f is unchanged except possibly at location this.y .

Third, to verify a program, one often needs to know some properties that are guar-
anteed by the source language. For example, the static type of the receiver parameter
of method M is C and the source-language type checker thus guarantees that the allo-
cated type of the receiver is some subtype of C . The source language also guarantees
that all object references in use by a program are allocated and (thanks to the fiction
created by the garbage collector) remain allocated forever. To incorporate these guar-
anteed conditions in the encoding, BoogiePL conveniently offers free pre- and post-
conditions as part of a procedure declaration. Free preconditions are assumed on entry
to a procedure implementation, but not checked at call sites, and analogously for free
postconditions.

Proof Obligations and Soundness. Proving the correctness of a BoogiePL program
amounts to statically verifying that the program does not abort due to a violated as-
sertion (such as a precondition or postcondition). To do that, each assertion is turned
into a proof obligation. One can then use an appropriate program logic to show that the
assertions hold. For the proof, one may assume the conditions expressed as free precon-
ditions, free postconditions, and explicit assume statements. The verification is sound
if all of these assumptions actually hold.
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2 Encoding of Equivalent-Results Methods

Our idea is to define an equivalence class of return values for each equivalent-results
method. We define the equivalence class via a programmer-defined similarity rela-
tion. Typical choices for the similarity relation are reference equality and the Equals
method. Rather than letting the similarity relation be the equivalence relation, we define
the equivalence class to be those values that are related by the similarity relation to a
particular element, called the anchor element. This has the advantage that the similarity
relation need not be symmetric and transitive, which in practice the Equals method
often is not [26]. Another advantage is that using an anchor element allows us to state
axioms that are handled more efficiently by the theorem prover.

In this section, we explain similarity relations, anchor elements, and the influence
sets that define the dependencies of method results.

Similarity Relations. For a method M , we let RM (H , r ,H ′, r ′) denote M ’s sim-
ilarity relation, relating r whose state is evaluated in heap H and r ′ whose state is
evaluated in heap H ′ . For example, if RM denotes equality of scalar values or refer-
ence equality for object values, we have:

RM (H , r ,H ′, r ′) ⇐⇒ r = r ′ (1)

and if RM uses the Equals method, we have:

RM (H , r ,H ′, r ′) ⇐⇒ @Equals(H , r ,H ′, r ′) (2)

where @Equals is a function automatically generated from the specification of Equals .
Value r is always a return value of the method; r ′ is either a return value, in which case
H = H ′ or the anchor element, in which case H ′ is a special heap AnchorHeapM (p)
where we evaluate anchor elements. The similarity relation defines an equivalence class
of values that are related to the anchor element.

For the Appointment .Equals method in Fig. 2, the following axiom is automati-
cally generated for function @Equals :

(∀H , this ,K , o •
this �= null ∧ $typeof (this) <: Appointment ∧ $typeof (o) <: Object ⇒

(@Equals(H , this ,K , o) ⇐⇒
o �= null ∧ $typeof (this) = $typeof (o) ∧
H [this , time] = K [o, time] ∧ . . . more comparisons here) )

(3)

where, here and throughout, quantifications over H and K range over well-formed
heaps. It is not the subject of our paper to describe how axioms for pure methods are
described, but see our previous work with Ádám Darvas [10,9]; the difference is that
here we use one heap argument for each of the two parameters to Equals .

Influence Sets. The influence set is a set of locations in the heap. Let FM (H , p) de-
note the influence set of M as computed for parameters p in a heap H . Note that
the computation of the influence set may depend on the heap. For example, consider
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a class Schedule with an Appointment field a . Suppose the influence set for some
method applied to a schedule s is given by the set of path expressions {s .a, s .a.time} .
Viewed in the intermediate-language notation, these path expressions denote the follow-
ing object-field pairs: (s , a), ($Heap[s , a], time) .

We require every influence set to be self-protecting [14], which means that any two
heaps equivalent modulo the influence set compute the influence set the same way:

(∀H ,K , p • H ≡FM (H ,p) K ⇒ FM (H , p) = FM (K , p) ) (4)

Self-protection can be enforced by requiring the set of path expressions that specify the
influence set to be prefix closed: if it contains a path expression E .x .y , then it must
also contain the path expression E .x . Therefore, the expression E .x .y denotes the
same location in heaps H and K .

The influence set specifies which parts of the program state are allowed to influence
the return value. To a first order of approximation, the influence set is the read set or
read effect of the method [6], but, technically, we actually allow methods to read any
part of the state, as long as the values of things outside the influence set have no bearing
on the return value.

Anchor Elements. The encoding of equivalent-results methods has to allow us to prove
that two calls to an equivalent-results method M return equivalent results if the two
heaps before the calls are equivalent modulo the influence set of M . We reach this
conclusion in two steps. First, we encode by an axiom that the anchor element remains
the same as long as the program state indicated by the influence set does not change.
Second, we encode by a free postcondition that the actual return value of M is related
to the anchor element by the similarity relation. Hence, the results of the two calls to
M are in the same equivalence class.

Step A: In our intermediate-language encoding, we introduce a function AnchorM
that yields an anchor element for the equivalence class of the return values of M . We
axiomatize AnchorM as follows:

(∀ p,H ,K • H ≡FM (H ,p) K ⇒ AnchorM (H , p) = AnchorM (K , p) ) (5)

The axiom says that we pick the same anchor element whenever M is invoked with the
same arguments p in two heaps H and K that are equivalent modulo FM (H , p) . In
other words, the anchor element is a function of the program state projected onto the
influence set.

Step B: We add to our encoding the following free postcondition:

free ensures RM ($Heap, result ,AnchorHeapM (p),AnchorM ($Heap, p)); (6)

To make sure the anchor object always denotes the same equivalence class, we evaluate
its state in a special, constant heap AnchorHeapM . We postpone until Section 3 how
to justify this free postcondition.
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H 0 := $Heap;
call r := GetEarliestAppointment(c, 5);
H 1 := $Heap;
if (10 � $Heap[r , time]) {

// code to compute invitees . . .
K0 := $Heap;
call r ′ := GetEarliestAppointment(c, 5);
K1 := $Heap;
assert 10 � $Heap[r ′, time];
. . .

}

Fig. 5. A sketch of the code fragment from the bottom of Fig. 2, giving the names H 0 , H 1 ,
K0 , and K1 to the intermediate values of the heap, and giving the names r and r ′ to the return
values of the two calls to GetEarliestAppointment . The assert statement at the end shows the
condition that we want to prove.

Example. To prove the correctness of method Invite in Fig. 2, it suffices to show
that the two invocations of GetEarliestAppointment return equivalent values. Re-
call, the second invocation takes place during the evaluation of the precondition of
ScheduleMorningMeeting . Fig. 5 shows a BoogiePL encoding of that fragment. As
illustrated by the assert statement in Fig. 5, we wish to prove that H 1[r , time] equals
K1[r ′, time] .

The influence set of GetEarliestAppointment contains the fields that make up the
representation of the Calendar object. Let H 0 and H 1 denote the heaps immediately
before and after the first call to GetEarliestAppointment , and let K0 and K1 denote
the heaps immediately before and after the second call.

Since GetEarliestAppointment is pure, it does not change the values of any pre-
viously allocated locations (see condition (0)), so H 0 and H 1 are equivalent modulo
F(H 0, c, 5) , and K0 and K1 are equivalent modulo F(K0, c, 5) (we drop the sub-
script GetEarliestAppointment in this example). Assuming that the code that com-
putes invitees has no effect on the values of the locations in the influence set, we also
have that H 1 and K0 are equivalent modulo F(H 1, c, 5) . By self-protection (4), we
know that the three influence sets are equal. Thus, we can conclude by transitivity:

H 1 ≡F(H1,c,5) K1 (7)

By axiom (5) and equation (7), we conclude that the anchor elements for the two calls
are the same:

Anchor(H 1, c, 5) = Anchor(K1, c, 5) (8)

Now let r and r ′ denote (as indicated in Fig. 5) the values returned by the two calls
to GetEarliestAppointment . The similarity relation is given by the Equals method.
Thus, we conclude from postcondition (6):

@Equals(H 1, r , AnchorHeap(c, 5),Anchor(H 1, c, 5)) and
@Equals(K1, r ′, AnchorHeap(c, 5),Anchor(K1, c, 5))
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procedure M (p) returns (result)
requires P($Heap, p);
free requires Q($Heap, p);
ensures S(old($Heap), $Heap, p, result);
free ensures T (old($Heap), $Heap, p, result);
free ensures RM ($Heap, result , AnchorHeapM (p),AnchorM ($Heap, p));

{
var locals;
Body

}

Fig. 6. A procedure in the intermediate verification language, illustrating the general form of the
procedure into which the method translates

By axiom (3) and property (8), we have

H 1[r , time] = AnchorHeap(c, 5)[Anchor(H 1, c, 5), time] ∧
K1[r ′, time] = AnchorHeap(c, 5)[Anchor(H 1, c, 5), time]

from which we conclude H 1[r , time] = K1[r ′, time] , as required to establish the
precondition of the call to ScheduleMorningMeeting .

3 Verifying Equivalence of Results

As we mentioned in Section 1, soundness of a verification system comes down to jus-
tifying every assumption that the proof system allows a proof to make use of. In the
previous section, we introduced three conditions that we used as assumptions in the
proof. The first assumption is the axiom of self-protection (4). It can be justified by a
syntactic check on the path expressions used to define the influence set. The second
assumption is the axiom about AnchorM (5). It is justified on the basis that there ex-
ists a function AnchorM that satisfies the axiom, for example any constant function.
The third assumption is the free postcondition (6). In this section, we present a proof
technique based on self-composition that justifies this assumption.

Ordinarily, a method M gives rise to a verification condition prescribed by a Boo-
giePL procedure implementation like procedure M in Fig. 6, where p denotes the
in-parameters, P and S denote some checked pre- and postconditions, Q and T de-
note some free pre- and postconditions (cf. Fig. 4), locals are local variables, and Body
is the BoogiePL encoding of the implementation of method M .

For every equivalent-results method M , we will now prescribe a second BoogiePL
procedure, whose validity will justify the free postcondition (6). The key idea is to
execute the method body twice starting in states that agree on the values of the in-
parameters and all objects in the influence set. We then prove that the two executions
yield equivalent results. This second procedure has the form shown by M ′ in Fig. 7 and
is described as follows:

– The body of M ′ starts off with $Heap , locals , and result set to arbitrary values,
saves the value of $Heap in $oldHeap , and assumes the preconditions P and Q .



Verification of Equivalent-Results Methods 317

procedure M ′(p) returns (result) {
var locals;

var $oldHeap := $Heap;
assume P($Heap, p) ∧ Q($Heap, p);
Body ′

assume S($oldHeap, $Heap, p, result) ∧ T ($oldHeap, $Heap, p, result);

assume AnchorM ($Heap, p) = result ∧ AnchorHeapM (p) = $Heap; // L0

havoc $Heap, locals, result ;
assume $Heap ≡FM ($oldHeap,p) $oldHeap;

$oldHeap := $Heap;
assume P($Heap, p) ∧ Q($Heap, p);
Body ′

assume S($oldHeap, $Heap, p, result) ∧ T ($oldHeap, $Heap, p, result);

assert RM ($Heap, result , AnchorHeapM (p),AnchorM ($Heap, p)); // L1
}

Fig. 7. A procedure that checks by assertion (L1) that M satisfies its free postcondition (6)

– It then performs Body ′ , which is Body with occurrences of old($Heap) replaced
by $oldHeap and occurrences of assert statements (i.e., checked conditions) re-
placed by assume statements. These assume statements are justified by the fact that
procedure M already prescribes checks for them, so if the conditions do not hold,
the program verifier will generate appropriate errors when attempting to verify M .

– Upon termination of Body ′ , the postconditions S and T are assumed. Again, S
can be assumed here because it is checked by M .

– We explain the assume statement (L0) below.
– Next, the code prepares for another execution of Body ′ . The second execution of

Body ′ is to start in a state where all locations of the influence set have the same
values as in the first execution. Thus, $Heap , locals , and result are set to arbitrary
values (using a havoc statement) and the value of $Heap is constrained (using an
assume statement) to be equivalent to $oldHeap modulo the influence set.

– The preconditions are assumed, Body ′ is executed a second time, and the postcon-
ditions are assumed.

– We explain the assert statement (L1) below.

The first half of M ′ culminates in assume statement (L0), which has the effect of
defining AnchorM ($Heap, p) and AnchorHeapM (p) to be the result value and result
heap of an arbitrary execution of the method (namely, the first execution of Body ′ ). In
fact, by axiom (5), (L0) defines AnchorM ($Heap, p) for all heaps that are equivalent
to $Heap modulo the influence set. The second half of M ′ checks that (6) is indeed a
postcondition of the method for all those equivalent heaps.

With that, we have justified all the assumptions that our technique introduces, and
thus we have established that our technique is sound.
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4 Application to Spec#

In verifying Spec# programs, we have run across scores of examples like the one in
Fig. 0, where in Spec# the Count method tends to be a property getter, which is a form
of parameter-less method. By default, property getters are treated as pure methods that
read only the ownership cone of the receiver object. The ownership cone of an object
is the set of locations that make up the object’s representation [7]. Previously, our best
solution for dealing with this situation in the Spec# program verifier was to introduce an
axiom that says the return value of the method is a function of the ownership cone. But
such an axiom is not sound if a pure method returns newly allocated object or values
that are derived from such objects. Our technique in this paper gives a sound solution
to the problem, and we intend to implement it. In this section, we describe some issues
that pertain to the practical implementation of equivalent-results methods in Spec#.

We intend to restrict the choices for RM in Spec# to support only the two choices (1)
and (2). This will simplify the implementation while supporting the most common sim-
ilarity relations. (The only other useful similarity we found puts all non-null references
in one equivalence class.) To select between the two choices, we will introduce a default
choice and a method annotation (a custom attribute) that can override the default.

For the influence set, we will only support the union of the ownership cones for
some subset of the parameters. Ownership provides a form of abstraction, allowing one
to specify influence sets without being specific about implementation details. There is
already a notion of confined in Spec# that says that a pure method reads the ownership
cone of a parameter. Moreover, the Spec# program verifier already has an encoding that
lets one deduce, for valid objects, whether or not the ownership cone of the object has
changed. The encoding is simply to inspect the object’s ghost field snapshot [9]. An
object is valid when its object invariant holds [19]. Since this is the precondition of
almost all methods, we will not attempt to prove ownership cones to be the same other
than via the snapshot field. Because of the snapshot encoding, we can write axiom (5)
as:

( ∀ p,H ,K • H [p, valid ] ∧ K [p, valid ] ∧ H [p, snapshot ] = K [p, snapshot ]
⇒ AnchorM (H , p) = AnchorM (K , p) )

(We have abused notation slightly: by H [p, valid ] and H [p, snapshot ] , we really mean
to refer to the valid and snapshot fields of all the parameters in p that contribute to
the influence set, and likewise for K .) In fact, there is an alternative way to encode this
property that is significantly more efficient for the SMT solver because it avoids quan-
tification over pairs of heaps. The alternative encoding [9] introduces an uninterpreted
function AM and uses it to more directly say that AnchorM (H , p) is a function of p
and H [p, snapshot ] :

( ∀ p,H • H [p, valid ] ⇒ AnchorM (H , p) = AM (p,H [p, snapshot ]) )

With the restriction to influence sets based on ownership cones and our focus on rea-
soning about these via snapshots, axiom (4) becomes trivial, so we omit it.
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5 Related Work

The Java Modeling Language (JML) requires pure methods to be deterministic [18].
This requirement is not practical since pure methods often need to return newly allo-
cated objects, which is illustrated by many pure methods in JML’s model library [17].
Our notion of equivalent-results methods allows pure methods to return newly allo-
cated objects. Since our axioms are based on a user-defined similarity relation such as
an Equals method, determinism is not required for soundness.

The axiomatization of pure methods consists of two groups of axioms: method-
specific axioms that specify the behavior of each individual method and general axioms
that describe common properties of all pure methods. Previous work by Darvas and
Müller [10] focuses on the method-specific axioms, but does not discuss the general ax-
ioms that we provide in this paper. Their axiomatization is sound, but too weak for many
interesting examples. Darvas and Leino [9] present general axioms that are used in the
Spec# verifier Boogie. Some of their work assumes that a pure method is deterministic
and that its result depends only on a specified influence set, but these assumptions are
not checked. Therefore, their axiomatization is unsound for pure methods that return
newly allocated objects or whose result depends on locations outside the influence set.
Our work eliminates both sources of unsoundness.

Jacobs developed SpecLeuven, a variant of Spec# for multi-threaded programs. In
his work [13], inspector methods are syntactically enforced to be deterministic, which
is sound but overly restrictive. Influence sets are checked by an extension of the Boogie
methodology [19], which requires an object to be unpacked before its state is read.
Our verification technique based on self-composition does not require any particular
methodology.

ESC/Java2 [15,8] also operates under the unchecked assumption that pure methods
are deterministic, which is unsound if they are not. Moreover, since JML specifications
typically do not declare an influence set, ESC/Java2 has but limited support for reason-
ing about the effect of a heap modification on the result of a pure method.

The influence sets we use in this paper are similar to read effects. However, read
effects constrain the whole execution of a method, whereas our influence sets only
constrain the method result. We allow methods to read arbitrary locations as long as
the result depends only on the declared influence set. Clarke and Drossopoulou [6]
show how to declare and check read effects in an ownership type system. We use self-
composition to verify influence sets, which is in general more fine-grained than type
checking and does not require a particular ownership scheme.

Self-composition has been applied to prove secure information flow [3,21]. In fact,
proving that a method result depends only on a specified influence set can be seen as an
instance of secure information flow, where the method result, the method parameters,
and the locations in the influence set have a low security level and all other locations
have a high security level. In addition to information flow, we use self-composition to
prove that two executions of a method yield equivalent results.

Separation logic [22] provides a powerful and elegant way to reason about the ef-
fects of heap modifications. The effect of pure methods can be achieved by introducing
abstract predicates [23]. The influence set of a pure method corresponds to the footprint
of the predicate. The frame rule can be used to show that certain heap modifications do
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not affect the truth value of the abstract predicate. However, even if pure methods are
not used in contracts, the correctness of some programs relies on the equivalent-results
property. We believe that our verification technique is also applicable to separation logic
in order to verify such programs.

6 Conclusions

In this paper, we introduced the notion of equivalent-results methods and explained
their usefulness for program specification: equivalent-results methods are expressive,
for instance, they may return newly-allocated objects, and they permit an axiomatiza-
tion that is sound and strong enough to verify interesting programs. We showed that the
equivalent-results property can be checked by an automatic program verifier using self-
composition. Our technique is very flexible: it does not require a particular program-
ming methodology, uses a relaxed notion of purity, and even handles non-deterministic
language features and algorithms. As future work, we plan to implement our technique
in the Spec# verifier Boogie.

Acknowledgments. The idea of using self-composition was inspired by a discussion
with Anindya Banerjee. We thank David Naumann and the anonymous reviewers for
helpful comments, one of which led to a simplification of Fig. 7.
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Abstract. A data structure is said to be persistent when any update
operation returns a new structure without altering the old version. This
paper introduces a new notion of persistence, called semi-persistence,
where only ancestors of the most recent version can be accessed or up-
dated. Making a data structure semi-persistent may improve its time
and space complexity. This is of particular interest in backtracking al-
gorithms manipulating persistent data structures, where this property is
usually satisfied. We propose a proof system to statically check the valid
use of semi-persistent data structures. It requires a few annotations from
the user and then generates proof obligations that are automatically dis-
charged by a dedicated decision procedure.

1 Introduction

A data structure is said to be persistent when any update operation returns a new
structure without altering the old version. In purely applicative programming,
data structures are automatically persistent [16]. Yet this notion is more general
and the exact meaning of persistent is observationally immutable. Driscoll et al.
even proposed systematic techniques to make imperative data structures per-
sistent [9]. In particular, they distinguish partial persistence, where all versions
can be accessed but only the newest can be updated, from full persistence where
any version can be accessed or updated. In this paper, we study another notion
of persistence, which we call semi-persistence.

One of the main interests of a persistent data structure shows up when it is
used within a backtracking algorithm. Indeed, when we are back from a branch,
there is no need to undo the modifications performed on the data structure:
we simply use the old version, which persisted, and start a new branch. One
can immediately notice that full persistence is not needed in this case, since we
are reusing ancestors of the current version, but never siblings (in the sense of
another version obtained from a common ancestor). We shall call semi-persistent
a data structure where only ancestors of the newest version can be updated. Note
that this notion is different from partial persistence, since we need to update
ancestors, and not only to access them.

A semi-persistent data structure can be more efficient than its fully persis-
tent counterpart, both in time and space. An algorithm using a semi-persistent
data structure may be written as if it was operating on a fully persistent data
structure, provided that we only backtrack to ancestor versions. Checking the
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correctness of a program involving a semi-persistent data structure amounts to
showing that

– first, the data structure is correctly used ;
– second, the data structure is correctly implemented.

This article only addresses the former point. Regarding the latter, we simply
give examples of semi-persistent data structures. Proving the correctness of these
implementations is out of the scope of this paper (see Section 5).

Our approach consists in annotating programs with user pre- and postcondi-
tions, which mainly amounts to expressing the validity of the successive versions
of a semi-persistent data structure. By validity, we mean being an ancestor of
the newest version. Then we compute a set of proof obligations which express
the correctness of programs using a weakest precondition-like calculus [8]. These
obligations lie in a decidable logical fragment, for which we provide a sound and
complete decision procedure. Thus we end up with an almost automatic way of
checking the legal use of semi-persistent data structures.

Related work. To our knowledge, this notion of semi-persistence is new. How-
ever, there are several domains which are somehow connected to our work, ei-
ther because they are related to some kind of stack analysis, or because they
provide a decision procedure for reachability issues. First, works on escape anal-
ysis [12,4] address the problem of stack-allocating values; we may think that
semi-persistent versions that become invalid are precisely those which could be
stack-allocated, but it is not the case (as illustrated in Section 3.5). Second,
works on stack analysis to ensure memory safety [14,18,19] provide methods to
check the consistent use of push and pop operations. However, these approaches
are not precise enough to distinguish between two sibling versions (of a given
semi-persistent data structure). Regarding the decidability of our proof obliga-
tions, our approach is similar to other works regarding reachability in linked
data structures [15,3,17]. However, our logic is much simpler and we provide a
specific decision procedure. Finally, we can mention Knuth’s dancing links [13]
as an example of a data structure specifically designed for backtracking algo-
rithms; but it is still a traditional imperative solution where an explicit undo
operation is performed in the main algorithm.

This paper is organized as follows. First, Section 2 gives examples of semi-
persistent data structures and shows the benefits of semi-persistence with some
benchmarks. Then our formalization of semi-persistence is presented in two
steps: Section 3 introduces a small programming language to manipulate semi-
persistent data structures, and Section 4 defines the proof system which checks
the valid use of semi-persistent data structures. Section 5 concludes with possible
extensions. A long version of this paper, including proofs, is available online [7].

2 Examples of Semi-persistent Data Structures

We explain how to implement semi-persistent arrays, lists and hash tables and
we present benchmarks to show the benefits of semi-persistence.
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Arrays. Semi-persistent arrays can be implemented by modifying the persistent
arrays introduced by Baker [1]. The basic idea is to use an imperative array for
the newest version of the persistent array and indirections for old versions. For
instance, starting with an array a0 initialized with all zeros, and performing the
successive updates a1 = set(a0, 1, 7), a2 = set(a1, 2, 8) and a3 = set(a2, 5, 3),
we end up with the following situation:

When accessing or updating an old version, e.g. a1, Baker’s solution is to first
perform a rerooting operation, which makes a1 point to the imperative array by
reversing the linked list of indirections:

But if we know that we are not going to access a2 and a3 anymore, we can save
this list reversal. All we need to do is to perform the assignments contained in
this list (leaving a2 and a3 unchanged):

Thus it is really easy to turn these persistent arrays into a semi-persistent data
structure, which is more efficient since we save some pointer assignments. This
example is investigated in more detail in [6].

Lists. As a second example, we consider an immutable data structure which we
make semi-persistent. The simplest and most popular example is the list data
structure. To make it semi-persistent, the idea is to reuse cons cells between
successive conses to the same list. For instance, given a list l, the cons opera-
tion 1::l allocates a new memory block to store 1 and a pointer to l. Then a
successive operation 2::l could reuse the same memory block if the list is used
in a semi-persistent way. Thus we simply need to replace 1 by 2. To do this, we
must maintain for each list the previous cons, if any.

Hash Tables. Combining (semi-)persistent arrays with (semi-)persistent lists,
one easily gets (semi-)persistent hash tables.

Benchmarks. We present some benchmarks to show the benefits of semi-
persistence. Each of the previous three data structures has been implemented in
Ocaml1. Each data structure is tested the same way and compared to its fully
persistent counterpart. The test consists in simulating a backtracking algorithm
with branching degree 4 and depth 6, operating on a single data structure. N

1 The full code is available in the long version of this paper [7].
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successive update operations are performed on the data structure between two
branching points.

The following table gives timings for various values of N . The code was com-
piled with the Ocaml native-code compiler (ocamlopt -unsafe) on a dual core
Pentium 2.13GHz processor running under Linux. The timings are given in sec-
onds and correspond to CPU time obtained using the UNIX times system call.

N 200 1000 5000 10000
persistent arrays 0.21 1.50 13.90 30.5
semi-persistent arrays 0.18 1.10 7.59 17.3
persistent lists 0.18 2.38 50.20 195.0
semi-persistent lists 0.11 0.76 8.02 31.1
persistent hash tables 0.24 2.15 19.30 43.1
semi-persistent hash tables 0.22 1.51 11.20 28.2

As we can see, the speedup ratio is always greater than 1 and almost reaches
7 (for semi-persistent lists). Regarding memory consumption, we compared the
total number of allocated bytes, as reported by Ocaml’s garbage collector. For
the tests corresponding to the last column (N = 10000) semi-persistent data
structures always used much less memory than persistent ones: 3 times less for
arrays, 575 times less for lists and 1.5 times less for hash tables. The dramatic
ratio for lists is easily explained by the fact that our benchmark program reflects
the best case regarding memory allocation (allocation in one branch is reused in
other branches, which all have the same length).

3 Programming with Semi-persistent Data Structures

This section introduces a small programming language to manipulate semi-
persistent data structures. In order to keep it simple, we assume that we are
operating on the successive versions of a single, statically allocated, data struc-
ture. Multiple data structures and dynamic allocation are discussed in Section 5.

3.1 Syntax

The syntax of our language is as follows:

e ::= x | c | p | f e | let x = e in e
| if e then e else e

d ::= fun f (x : ι) = {φ} e {ψ}
ι ::= semi | δ | bool

A program expression is either a variable (x), a constant (c), a pointer (p), a
function call, a local variable introduced by a let binding, or a conditional.
The set of function names f includes some primitive operations (introduced in
the next section). A function definition d introduces a function f with exactly
one argument x of type ι, a precondition φ, a body and a postcondition ψ. A
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type ι is either the type semi of the semi-persistent data structure, the type δ
of the values it contains, or the type bool of booleans. The syntax of pre- and
postconditions will be given later in Section 4. A program Δ is a finite set of
mutually recursive functions.

3.2 Primitive Operations

We may consider three kinds of abstract operations on semi-persistent data
structures: update operations backtracking to a given version and creating a
new successor, which becomes the newest version; destructive access operations
backtracking to a given version, which becomes the newest version, and then
accessing it; and non-destructive access operations accessing a valid version,
that is an ancestor of the newest version, without modifying the data structure.

Since update and destructive access operations both need to backtrack, it
is convenient to design a language based on the following three primitives:
backtrack, which backtracks to a given version, making it the newest version;
branch which builds a new successor of a given version, assuming it is the newest
version; and acc, which accesses a given version, assuming it is a valid version.
Then update and destructive access operations can be rephrased in terms of the
above primitives:

upd e = branch (backtrack e)
dacc e = acc (backtrack e)

3.3 Operational Semantics

We equip our language with a small step operational semantics, which is given
in Figure 1. One step of reduction is written e1, S1 → e2, S2 where e1 and e2 are
program expressions and S1 and S2 are states. A value v is either a constant c or
a pointer p. Pointers represent versions of the semi-persistent data structure. A
state S is a stack p1, . . . , pm of pointers, pm being the top of the stack. The se-
mantics is straightforward, except for primitive operations. Primitive backtrack
expects an argument pn designating a valid version of the data structure, that is
an element of the stack. Then all pointers on top of pn are popped from the stack
and pn is the result of the operation. Primitive branch expects an argument pn

being the top of the stack and pushes a fresh value p, which is also the result
of the operation. Finally, primitive acc expects an argument pn designating a
valid version, leaves the stack unchanged and returns some value for version pn,
represented by A(pn). (We leave A uninterpreted since we are not interested in
the values contained in the data structure.)

Note that reduction of backtrack pn or acc pn is blocked whenever pn is not
an element of S, which is precisely what we intend to prevent.

3.4 Type System with Effect

We introduce a type system to characterize well-formed programs. Our language
is simply typed and thus type-checking is immediate. Meanwhile, we infer the
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E ::= [] | f E | let x = E in e | if E then e else e
v ::= c | p
S ::= p · · · p

if true then e1 else e2, S → e1, S
if false then e1 else e2, S → e2, S

let x = v in e, S → e{x ← v}, S
f v, S → e{x ← v}, S if fun f (x : ι) = {φ} e {ψ} ∈ Δ

backtrack pn, p1 · · · pnpn+1 · · · pm → pn, p1 · · · pn

branch pn, p1 · · · pn → p, p1 · · · pnp p fresh
acc pn, p1 · · · pnpn+1 · · · pm → A(pn), p1 · · · pnpn+1 · · · pm

E[e1], S1 → E[e2], S2 if e1, S1 → e2, S2 and E �= []

Fig. 1. Operational Semantics

effect ε of each expression, as an element of the boolean lattice ({⊥, �}, ∧, ∨).
This boolean indicates whether the expression modifies the semi-persistent data
structure (⊥ meaning no modification and � a modification). Effects will be
used in the next section to simplify constraint generation. Each function is given
a type τ , as follows:

τ ::= (x : ι) →ε {φ} ι {ψ}

The argument is given a type and a name (x) since it is bound in both precon-
dition φ and postcondition ψ. Type τ also indicates the latent effect ε of the
function, which is the effect resulting from the function application.

A typing environment Γ is a set of type assignments for variables (x : ι),
constants (c : ι) and functions (f : τ). It is assumed to contain at least type
declarations for the primitives, as follows:

backtrack : (x : semi) →� {φbacktrack} semi{ψbacktrack}
branch : (x : semi) →� {φbranch} semi{ψbranch}

acc : (x : semi) →⊥ {φacc} δ {ψacc}

where pre- and postcondition are given later. As expected, both backtrack and
branch modify the semi-persistent data structure and thus have effect �, while
the non-destructive access acc has effect ⊥.

Given a typing environment Γ , the judgment Γ � e : ι, ε means “e is a well-
formed expression of type ι and effect ε” and the judgment Γ � d : τ means “d is
a well-formed function definition of type τ”. Typing rules are given in Figure 2.
They assume judgments Γ � φ pre and Γ � ψ post ι for the well-formedness of
pre- and postconditions respectively, to be defined later in Section 4.1. Note that
there is no typing rule for pointers, to prevent their explicit use in programs.

A program Δ = d1, . . . , dn is well-typed if each function definition di can be
given a type τi such that d1 : τ1, . . . , dn : τn � di : τi for each i. The types τi can
easily be obtained by a fixpoint computation, starting with all latent effects set
to ⊥, since effect inference is clearly a monotone function.
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Var
x : ι ∈ Γ

Γ � x : ι,⊥
Const

c : ι ∈ Γ

Γ � c : ι,⊥

App
f : (x : ι1) →

ε2 {φ} ι2 {ψ} ∈ Γ Γ � e : ι1, ε1

Γ � f e : ι2, ε1 ∨ ε2

Ite
Γ � e1 : bool, ε1 Γ � e2 : ι, ε2 Γ � e3 : ι, ε3

Γ � if e1 then e2 else e3 : ι, ε1 ∨ ε2 ∨ ε3

Let
Γ � e1 : ι1, ε1 Γ, x : ι1 � e2 : ι2, ε2

Γ � let x = e1 in e2 : ι2, ε1 ∨ ε2

Fun
x : ι1 � φ pre x : ι1 � ψ post ι2 Γ, x : ι1 � e : ι2, ε

Γ � fun f (x : ι1) = {φ} e {ψ} : (x : ι1) →
ε {φ} ι2 {ψ}

Fig. 2. Typing Rules

3.5 Examples

Let us consider the following two functions f and g:

fun f (x0 : semi) = {valid(x0)}
let x1 = upd x0 in
let x2 = upd x0 in
acc x2

fun g (x0 : semi) = {valid(x0)}
let x1 = upd x0 in
let x2 = upd x0 in
acc x1

Each function expects a valid version x0 of the data structure as argument and
successively build two successors x1 and x2 of x0. Then f accesses x2, which
is valid, and g accesses x1, which is illegal since x1 is not an ancestor of the
newest version x2. Let us check this on the operational semantics. Let S be a
state composed of a single pointer p. The reduction of f p in S runs as follows:

f p, p → let x1 = upd p inlet x2 = upd p inacc x2, p
→ let x1 = p1 in let x2 = upd p in acc x2, pp1
→ let x2 = upd p inacc x2, pp1
→ let x2 = p2 in acc x2, pp2
→ acc p2, pp2
→ A(p2), pp2p3

and ends on the value A(p2). On the contrary, the reduction of g p in S blocks
on g p, p → . . . → acc p1, pp2.

4 Proof System

This section introduces a theory for semi-persistence and a proof system for this
theory. First we define the syntax and semantics of logical annotations. Then
we compute a set of constraints for each program expression, which is proved to
express the correctness of the program with respect to semi-persistence. Finally
we give a decision procedure to solve the constraints.



Semi-persistent Data Structures 329

4.1 Theory of Semi-persistence

The syntax of annotations is as follows:

term t ::= x | p | prev(t)
atom a ::= t = t | path(t, t)

postcondition ψ ::= a | ψ ∧ ψ
precondition φ ::= a | φ ∧ φ | ψ ⇒ φ | ∀x. φ

Terms are built from variables, pointers and a single function symbol prev.
Atoms are built from equality and a single predicate symbol path. A postcondi-
tion ψ is restricted to a conjunction of atoms. A precondition is a formula φ built
from atoms, conjunctions, implications and universal quantifications. A negative
formula (i.e. appearing on the left side of an implication) is restricted to a con-
junction of atoms. We introduce two different syntactic categories ψ and φ for
formulae but one can notice that φ actually contains ψ. This syntactic restric-
tion on formulae is justified later in Section 4.5 when introducing the decision
procedure. In the remainder of the paper, a “formula” refers to the syntactic
category φ. Substitution a of term t for a variable x in a formula φ is written
φ{x ← t}. We denote by S(A) the set of all subterms of a set of atoms A.

The typing of terms and formulae is straightforward, assuming that prev has
signature semi → semi. Function postconditions may refer to the function result,
represented by the variable ret . Formulae can only refer to variables of type semi
(including variable ret). We write Γ � φ to denote a well-formed formula φ in a
typing environment Γ .

We now give the semantics of program annotations. The main idea is to ex-
press that a given version is valid if and only if it is an ancestor of the newest
version. To illustrate this idea, the following figure shows the successive version
trees for the sequence of declarations x1 = upd x0, x2 = upd x1, x3 = upd x1
and x4 = upd x0:

The newest version is pictured as a black node, other valid versions as white
nodes and invalid ones as gray nodes.

The meaning of prev and path is to define the notion of ancestor: prev(x) is
the immediate ancestor of x and path(x, y) holds whenever x is an ancestor of
y. The corresponding theory can be axiomatized as follows:
Definition 1. The theory T is defined as the combination of the theory of equal-
ity and the following axioms:

(A1) ∀x. path(x, x)
(A2) ∀xy. path(x, prev(y)) ⇒ path(x, y)
(A3) ∀xyz. path(x, y) ∧ path(y, z) ⇒ path(x, z)

We write |= φ if φ is valid in any model of T .
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The three axioms (A1)–(A3) exactly define path as the reflexive transitive clo-
sure of prev−1, since we consider validity in all models of T and therefore in
those where path is the smallest relation satisfying axioms (A1)–(A3). Anti-
symmetry is not needed (the absence of cycle in the version tree is related to the
implementation of a semi-persistent data structure, not to its use). Note that
prev is a total function and that there is no notion of “root” in our logic. Thus
a version always has an immediate ancestor, which may or may not be valid.

To account for the modification of the newest version as program execution
progresses, we introduce a “mutable” variable cur to represent the newest ver-
sion. This variable does not appear in programs: its scope is limited to anno-
tations. The only way to modify its contents is to call the primitive operations
backtrack and branch. We are now able to give the full type expressions for
the three primitive operations:

backtrack : (x : semi) →� {path(x, cur)} semi{ret = x ∧ cur = x}
branch : (x : semi) →� {cur = x} semi{ret = cur ∧ prev(cur) = x}

acc : (x : semi) →⊥ {path(x, cur)} δ {true}

As expected, effect � for the first two reflects the modification of cur . The valid-
ity of function argument x is expressed as path(x, cur ) in operations backtrack
and acc. Note that acc has no postcondition (written true and which could
stand for the tautology cur = cur) since we are not interested in the values
contained in the data structure.

We are now able to define the judgements used in Section 3.4 for pre- and
postconditions. We write Γ � φ pre as syntactic sugar for Γ, cur : semi � φ.
Similarly, Γ � ψ post ι is syntactic sugar for Γ, cur : semi, ret : ι � ψ when
return type ι is semi and for Γ, cur : semi � ψ otherwise. Note that since Γ only
contains the function argument x in typing rule Fun, the function precondition
may only refer to x and cur , and its postcondition to x, cur and ret .

4.2 Constraints

We now give an algorithm to compute a formula expressing that a given pro-
gram is correct. This is mostly a weakest precondition calculus, which is greatly
simplified here since we have only one mutable variable (namely cur). For a pro-
gram expression e and a formula φ we write this weakest precondition C(e, φ).
This is a formula expressing the conditions under which φ will hold after the
evaluation of e. Note that cur may appear in φ, denoting the result of e, but
does not appear in C(e, φ) anymore. For a function definition d we write C(d) the
formula expressing its correctness, that is the fact that the function precondition
implies the weakest precondition obtained from the function postcondition, for
any function argument and any initial value of cur . The definition for C(e, φ) is
given in Figure 3. This is a standard weakest precondition calculus, except for
the conditional rule. Indeed, one would expect a rule such as

C(if e1 then e2 else e3, φ) =
C(e1, (ret = true ⇒ C(e2, φ)) ∧ (ret = false ⇒ C(e3, φ)))
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framef (φ) = φf{x ← ret} ∧ ∀ret ′. ψf{ret ← ret ′, x ← ret} ⇒ φ{ret ← ret ′}
if f : (x : ι) →⊥ {φf} ι′ {ψf}

framef (φ) = φf{x ← ret} ∧ ∀ret ′cur ′. ψf{ret ← ret ′, x ← ret , cur ← cur ′} ⇒
φ{ret ← ret ′, cur ← cur ′}

if f : (x : ι) →� {φf} ι′ {ψf}

C(v, φ) = φ{ret ← v}
C(if e1 then e2 else e3, φ) = C(e1, C(e2, φ) ∧ C(e3, φ))

C(let x = e1 in e2, φ) = C(e1, C(e2, φ){x ← ret})
C(f e1, φ) = C(e1, framef (φ))

C(fun f (x : ι) = {φ} e {ψ}) = ∀x.∀cur . φ ⇒ C(e, ψ)

Fig. 3. Constraint synthesis

but since φ cannot test the result of condition e1 (φ may only refer to variables
of type semi), the conjunction above simplifies to C(e2, φ) ∧ C(e3, φ).

The constraint synthesis for a function call, C(f e1, φ), is the only nontrivial
case. It requires precondition φf to be valid and postcondition ψf to imply the
expected property φ. Universal quantification is used to introduce f ’s results
and side-effects. We use the effect in f ’s type to distinguish two cases: either the
effect is ⊥ which means that cur is not modified and thus we only quantify over
f ’s result (hence we get for free the invariance of cur); or the effect is � and
we quantify over an additional variable cur ′ which stands for the new value of
cur . To simplify this definition, we introduce a formula transformer framef (φ)
which builds the appropriate postcondition for argument e1. Note that primitive
operations are particular cases of function calls.

4.3 Examples

Simple Example. Let us consider again the two functions f and g from Sec-
tion 3.5, valid(x0) being now expressed as path(x0, cur) and primitive opera-
tion upd having type

upd : (x : semi) →� {path(x, cur)} semi{ret = cur ∧ prev(cur) = x}

We compute the associated constraints for an empty postcondition true. The
constraint C(f) is

∀x0. ∀cur. path(x0, cur) ⇒
path(x0, cur) ∧ ∀x1. ∀cur1. (prev(x1) = x0 ∧ cur1 = x1) ⇒
path(x0, cur1) ∧ ∀x2. ∀cur2. (prev(x2) = x0 ∧ cur2 = x2) ⇒
path(x2, cur2) ∧ ∀ret . true ⇒ true

It can be split into three proof obligations, which are the following universally
quantified sequents:
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path(x0, cur) � path(x0, cur)

path(x0, cur), prev(x1) = x0, cur1 = x1 � path(x0, cur1)

path(x0, cur), prev(x1) = x0,
cur1 = x1, prev(x2) = x0, cur2 = x2 � path(x2, cur2)

The three of them hold in theory T and thus f is correct. Similarly, the constraint
C(g) can be computed and split into three proof obligations. The first two are
exactly the same as for f but the third one is slightly different:

path(x0, cur), prev(x1) = x0,
cur1 = x1, prev(x2) = x0, cur2 = x2 � path(x1, cur2)

In that case it does not hold in theory T .

Backtracking Example. As a more complex example, let us consider a backtrack-
ing algorithm. The pattern of a program performing backtracking on a persistent
data structure is a recursive function bt looking like

fun bt (x : semi) = . . . bt (upd x) . . . bt (upd x) . . .

Function bt takes a data structure x as argument and makes recursive calls on
several successors of x. This is precisely a case where the data structure may be
semi-persistent, as motivated in the introduction. To capture this pattern in our
framework, we simply need to consider two successive calls bt(upd x), which can
be written as follows:

fun bt (x : semi) = let = bt (upd x) in bt (upd x)

Function bt obviously requires a precondition stating that x is a valid version of
the semi-persistent data structure. This is not enough information to discharge
the proof obligations: the second recursive call bt(upd x) requires x to be valid,
which possibly could no longer be the case after the first recursive call. Therefore
a postcondition for bt is needed to ensure the validity of x:

fun bt (x : semi) =
{ path(x, cur) } let = bt (upd x) in bt (upd x) { path(x, cur ) }

Then it is straightforward to check that constraint C(bt) is valid in theory T .

4.4 Soundness

In the remainder of this section, we consider a program Δ = d1, . . . , dn whose
constraints are valid, that is |= C(d1) ∧ · · · ∧ C(dn). We are going to show that
the evaluation of this program will not block.

For this purpose we first introduce the notion of validity with respect to a
state of the operational semantics:
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Definition 2. A formula φ is valid in a state S = p1, . . . , pn, written S |= φ, if
it is valid in any model M for T such that

{
prev(pi+1) = pi for all 1 ≤ i < n
cur = pn

Then we show that this validity is preserved by the operational semantics. To
do this, it is convenient to see the evaluation contexts as formula transformers,
as follows:

E E[φ]
[] φ

let x = E1 in e2 E1[C(e2, φ){x ← ret}]
if E1 then e2 else e3 E1[C(e2, φ) ∧ C(e3, φ)]

f E1 E1[framef (φ)]

There is a property of commutation between contexts for programs and contexts
for formulae:

Lemma 1. S |= C(E[e], φ) if and only if S |= C(e, E[φ]).

We now want to prove preservation of validity, that is if S |= C(e, φ) and e, S →
e′, S′ then S′ |= C(e′, φ). Obviously, this does not hold for any state S, program
e and formula φ. Indeed, if S ≡ p1p2, e ≡ upd p1 and φ ≡ prev(p2) = p1, then
C(e, φ) is

path(p1, cur) ∧ ∀ret ′cur ′. (prev(ret ′) = p1 ∧ cur ′ = ret ′) ⇒ prev(p2) = p1

which holds in S. But S′ ≡ p1p for a fresh p, e′ ≡ p, and C(e′, φ) is prev(p2) = p1
which does not hold in S′ (since p2 does not appear in S′ anymore). Fortunately,
we are not interested in the preservation of C(e, φ) for any formula φ, but only for
formulae which arise from function postconditions. As pointed out in Section 4.1,
a function postcondition may only refer to x, cur and ret . Therefore we are only
considering formulae C(e, φ) where x is the only free variable (cur and ret do not
appear in formulae C(e, φ) anymore). This excludes the formula prev(p2) = p1
in the example above.

We are now able to prove preservation of validity:

Lemma 2. Let S be a state, φ be a formula and e a program expression. If
S |= C(e, φ) and e, S → e′, S′ then S′ |= C(e′, φ).

Finally, we prove the following progress property:

Theorem 1. Let S be a state, φ be a formula and e a program expression. If
S |= C(e, φ) and e, S →∗ e′, S′ →, then e′ is a value.

4.5 Decision Procedure

We now show that constraints are decidable and we give a decision procedure.
First, we notice that any formula φ is equivalent to a conjunction of formulae
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of the form ∀x1. . . .∀xn. a1 ∧ · · · ∧ am ⇒ a, where the ai’s are atoms. This re-
sults from the syntactic restrictions on pre- and postconditions, together with
the weakest preconditions rules which are only using postconditions in nega-
tive positions. Therefore we simply need to decide whether a given atom is the
consequence of other atoms.

We denote by H� the congruence closure of a set H of hypotheses {a1, . . . , am}.
Obviously S(H�) = S(H) since no new term is created. H� is finite and can be
computed as a fixpoint.

Algorithm 1. For any atom a such that S({a}) ⊆ S(H), the following algo-
rithm, decide(H, a), decides whether H |= a.

1. First we compute the congruence closure H�.
2. If a is of the form t1 = t2, we return true if t1 = t2 ∈ H� and false

otherwise.
3. If a is of the form path(t1, t2), we build a directed graph G whose nodes are

the subterms of H�, as follows:
(a) for each pair of nodes t and prev(t) we add an edge from prev(t) to t;
(b) for each path(t1, t2) ∈ H� we add an edge from t1 to t2;
(c) for each t1 = t2 ∈ H� we add two edges between t1 and t2.

4. Finally we check whether there is a path from t1 to t2 in G.

Obviously this algorithm terminates since H� is finite and thus so is G. We now
show soundness and completeness for this algorithm.
Theorem 2. decide(H, a) returns true if and only if H |= a.
Note: the restriction S({a}) ⊆ S(H) can be easily met by adding to H the
equalities t = t for any subterm t of a; it was only introduced to simplify the
proof above.

4.6 Implementation

We have implemented the whole framework of semi-persistence. The implemen-
tation relies on an existing proof obligations generator, Why [10]. This tool
takes annotated first-order imperative programs as input and uses a traditional
weakest precondition calculus to generate proof obligations. The language we
use in this paper is actually a subset of Why’s input language. We simply use
the imperative aspect to make cur a mutable variable. Then the resulting proof
obligations are exactly the same as those obtained by the constraint synthesis
defined in Section 4.2.

The Why tool outputs proof obligations in the native syntax of various exist-
ing provers. In particular, these formulas can be sent to Ergo [5], an automatic
prover for first-order logic which combines congruence closure with various built-
in decision procedures. We first simply axiomatized theory T using (A1)–(A3),
which proved to be powerful enough to verify all examples from this paper and
several other benchmark programs. Yet it is possibly incomplete (automatic the-
orem provers use heuristics to handle quantifiers in first-order logic). To achieve
completeness, and to assess the results of Section 4.5, we also implemented the-
ory T as a new built-in decision procedure in Ergo. Again we verified all the
benchmark programs.



Semi-persistent Data Structures 335

5 Conclusion

We have introduced the notion of semi-persistent data structures, where up-
date operations are restricted to ancestors of the most recent version. Semi-
persistent data structures may be more efficient than their fully persistent coun-
terparts, and are of particular interest in implementing backtracking algorithms.
We have proposed an almost automatic way of checking the legal use of semi-
persistent data structures. It is based on light user annotations in programs, from
which proof obligations are extracted and automatically discharged by a decision
procedure.

There is a lot of remaining work to be done. First, the language introduced in
Section 3, in which we check for legal use of semi-persistence, could be greatly en-
riched. Beside the missing features such as polymorphism or recursive datatypes,
it would be of particular interest to consider simultaneous use of several semi-
persistent data structures and dynamic creation of semi-persistent data struc-
tures. Regarding the former, one would probably need to express disjointness
of version subtrees, and thus to enrich the logical fragment used in annotations
with disjunctions and negations; we may lose decidability of the logic, though.
Regarding the latter, it would imply to express in the logic the freshness of the
allocated pointers and to maintain the newest versions for each data structures.

Another interesting direction would be to provide systematic techniques to
make data structures semi-persistent as previously done for persistence [9].
Clearly what we did for lists could be extended to tree-based data structures.
It would be even more interesting to formally verify semi-persistent data struc-
ture implementations, that is to show that the contents of any ancestor of the
version being updated is preserved. Since such implementations are necessarily
using imperative features (otherwise they would be fully persistent), proving
their correctness requires verification techniques for imperative programs. This
could be done for instance using verification tools such as SPEC# [2] or Ca-
duceus [11]. However, we would prefer verifying Ocaml code, as given in the
long version of this paper [7] for instance, but unfortunately there is currently
no tool to handle such code.
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Abstract. We present a denotational model of impredicative Hoare
Type Theory, a very expressive dependent type theory in which one can
specify and reason about mutable abstract data types.

The model ensures soundness of the extension of Hoare Type Theory
with impredicative polymorphism; makes the connections to separation
logic clear, and provides a basis for investigation of further sound exten-
sions of the theory, in particular equations between computations and
types.

1 Introduction

Dependent types provide a powerful form of specification for higher-order, func-
tional languages. For example, using dependency, one can specify the signature of
an array subscript operation as sub : ∀ α . Π x :αarray.Π y :{i :nat | i < x.size} . α,
where the type of the third argument, y, refines the underlying type nat using
a predicate that ensures that y is a valid index for the array x.

Dependent types have long been used in formal mathematics, but their use in
practical programming languages has proven challenging. One of the main rea-
sons is that the presence of any computational effects, including non-termination,
exceptions, access to store, or I/O – all of which are indispensable in practical
programming – can quickly render a dependent type system unsound.

This can be addressed by restricting dependencies to only effect-free terms
(e.g. as in DML [27]). But the goal of our work is to realize the full power of
dependent types for specification of effectful programs. We have been developing
the foundations of a language that we call Hoare Type Theory or HTT [18,17],
which we intend to be an expressive, explicitly annotated internal language, pro-
viding a semantic framework for elaborating more practical external languages.

HTT starts with a pure, dependently typed core language and augments it
with an indexed monadic type of the form {P}x:A{Q}. This type encapsulates
effectful computations that may diverge or access a mutable store. The type
can be read as a Hoare-like partial correctness specification, asserting that if the
computation is run in a heap satisfying the pre-condition P , then if it terminates,
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it will return a value x of type A and leave a heap described by Q. Through
Hoare types, the system can enforce soundness in the presence of effects. The
Hoare type admits small footprints as in separation logic [23,19], where the pre-
and postconditions only describe the part of the store that the program actually
uses; the unspecified part is automatically assumed invariant.

The most distinguishing feature of HTT in comparison with other recent pro-
posals for Hoare- and separation logics for higher-order languages [4,14,28,15]
is that specifications in HTT are integrated with types. In Hoare logic, it is not
possible to abstract over specifications in the source programs, aggregate the
logical invariants of the data structures with the data itself, compute with such
invariants or nest the specifications into larger specifications or types. These fea-
tures are essential ingredients for data abstraction and information hiding, and
a number of works have been proposed towards integrating Hoare-like reason-
ing with type checking. Examples include tools and languages like Spec# [2],
SPLint [12], ESC/Java [11], and JML [10].

Our prior work on HTT [18,17] addresses several of the main challenges for
languages for integrated programming and verification [10]: (1) we allow effect-
ful code in specifications by granting such code first-class status, via the monad
for Hoare triples; (2) we control pointer aliasing, by employing the small foot-
print approach of separation logic; and (3) we use higher-order logic to allow
for a uniform approach to programming and verification of imperative modules
(aka mutable abstract data types), as suggested for separation logic in [5,6]. In
our earlier work on HTT we proved soundness of the type theory via mostly
operational methods, by proving progress and type preservation results. The op-
erational proof was combined with a very crude denotational model, which just
served to show that the assertion logic of HTT was sound. To deal with de-
pendent types the operational proofs relied heavily on sophisticated techniques
involving so-called hereditary substitutions [26].

In this paper we define a realizability model for an extension of Hoare Type
Theory with impredicative polymorphism. Apart from the inherent interest in
obtaining a denotational model, which provides an alternative more abstract
conceptual understanding of the theory, the model serves the following purposes:

– Using the model we can prove soundness / consistency of an extension of
Hoare Type Theory with impredicative polymorphism. Impredicative poly-
morphism is important for data abstraction (we show an example below)
and for representing certain compiler transformations, such as closure con-
version [16], in HTT. It is well-known that the operational methods involving
hereditary substitutions mentioned above do not easily scale to impredicative
polymorphism. We emphasize that it is highly non-trivial to devise a model
of dependent type theory combining an impredicative universe of types with
a classical logic and with computation types supporting fixed point induc-
tion. We summarize the key challenges involved later on in this introduction.

– The model allows us to use syntax and typing rules that have a more natural
reading; in earlier presentations of HTT the operational techniques forced
clunkier terms (in order to get the theorems to go through). In particular,
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the syntax for computations is fairly close to the one employed in separation
logic. Our impredicative HTT is the first model of separation logic for such
an expressive language (higher types and impredicative polymorphism).

– We can finally introduce some non-trivial equations on computations. The
operational approach we took before largely precluded this.

It is non-trivial to construct sound models of sophisticated dependent type the-
ories such as HTT. Models for various fragments of dependent type theories
have been studied intensively in categorical type theory; see, e.g., [13] and the
references therein. Thus we shall make use of results from categorical type the-
ory to prove that we construct a sound model of impredicative HTT, but we
shall always write out the definitions in explicit terms so as to make the paper
reasonably self contained. We now give an intuitive overview of the development.

Overview of HTT. HTT is a dependent type theory with types and kinds,
where types are included in the kinds, and where types and kinds can both
depend on kinds (and thus types). Thus contexts Γ assign kinds to variables
and there are judgments Γ � τ : Type and Γ � A : Kind to conclude that τ is
a well-formed type in context Γ and that A is a well-formed kind in context
Γ . Type and kind formers include dependent product (Π) and dependent sum
(Σ). In the extension with impredicative polymorphism that we consider in this
paper, we have that Type is a kind. Thus this part of pure impredicative HTT
is (weak) Full Higher-order Dependent Type Theory (FhoDTT) [13].

In addition to types and kinds, HTT also includes a logic for reasoning about
terms in context. Thus there is a judgment Γ � P : Prop for concluding that
P is a well-formed proposition and a judgment Γ | P1, . . . , Pn � P for logical
entailment. The logic is higher-order, so Prop is a kind. In Jacobs’s terminology
we thus have a Higher-order Dependent Predicate Logic over (weak) Full Higher-
order Dependent Type Theory [13]. The extra feature of HTT is that it includes a
type for computations Γ � {P} x :τ {Q} :Type. Here P and Q are propositions
in context Γ and Γ, x : τ , respectively. The intuition is that elements of this
type consist of computations, which, given a heap satisfying P either diverges or
produces a value of type τ and a heap in Q. Note that computations can diverge;
term formers for computations include a fixed point term.

The great benefit of impredicative polymorphism is that for any type τ , Π α :
Type . τ is also a type, even if τ depends on α. Thus terms of this polymorphic
type can be returned by computations and stored in memory. Prop is also a kind.
So again ΠP :Prop . τ is a type where τ may depend on P . This enables us to
abstract over predicates in computation types. Using that ΣP :Prop . τ is a type,
we can pack computations with abstract invariants and hide implementation
details. As an illustration of both of these features consider the following type
of abstract stacks:

stacktype = Πα :Type . Σβ :Type.Σ inv :β × α list → Prop .
/ ∗ new ∗ / (−).{emp}s :β{inv(s, [])} ×
/ ∗ push ∗ / Πs :β . Πx :α . (l :α list).{inv(s, l)}u :1{inv(s, x :: l)} ×
/ ∗ pop ∗ / Πs :β . (x :α, l :α list) . {inv(s, x :: l)}y :α{inv(s, l) ∧ y =α x} ×
/ ∗ del ∗ / Πs :β . (l :α list).{inv(s, l)}u :1{emp}
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The contexts before the precondition in the computation types, e.g., (l : α list)
for push, universally binds auxiliary / logical variables used in the specifications.
A term of type stacktype accepts a type α and produces a stack of elements of
this type. Such a stack consists of

– β, an abstract type to be thought of as α stack.
– inv, an abstract invariant that expresses that objects of type β represent

functional stacks (as described by α list).
– Operations new, push, pop, and del. Notice, that push, pop, and del require

an element of type β, and that the only way to obtain one such is via new.

Since stacktype is by impredicativity itself a type, we can have stacks of stacks.
More generally, we can compose first-class abstract data types (i.e., objects)
without needing to artificially stratify them which is necessary in modern pro-
gramming. Note that in separation logic parlance the types are tight. For in-
stance, the precondition for new is simply emp, so new does not rely on the input
heap; the frame rule ensures that new can also be used with the following type
(−).{emp ∗ R}s :β{inv(s, []) ∗ R}, for any R. Further observe that implementors
of the above abstract stack type are free to choose both the representation type
β and the representation predicate inv. For example, an implementation using
linked lists could take β to be Nat (since we use Nat as the type of locations) and
inv(s, l) to be the predicate that holds if s points to a linked list representation
of l. A simple example client that creates a new Nat stack, pushes 4, pops it
again to return it and deletes the stack would then look like this:

C = λS :stacktype . do SNat ← ret S(Nat) in
unpack SNat as (β, inv, new, push, pop, del) in
do s ← new in push(s)(4);do n4 ← pop(s) in del(s); ret n4

Then C has type ΠS :stacktype . (−).{emp}n :Nat{emp∧n =Nat 4}. We often
(as in C) abbreviate do y ← M in N to M ; N when y does not occur in N .

Computations are not only needed for accessing the store but also for non-
termination as the pure fragment does not include fixed points. As an example
of a simple fixed point computation (not using the store), consider the factorial
function fac : T , where T = Πn :Nat . (−).{emp}m :Nat{emp ∧ m =Nat n!}:

fac = fix f(n) in case n of
zero ⇒ ret 1 or
succ y ⇒ do m ← f(y) in ret m × succ y

We can implement another version of factorial using the store but with the
same type, in the following manner. First we define a term facS : TS, where
TS = Πl :Nat . (n :Nat).{l �→Nat n}u :1{l �→Nat n!}:

facS = fix f(l) in do t ← !Nat l in case t of
zero ⇒ l :=Nat 1 or
succ y ⇒ do ly ← allocNat y in

f(ly); do ty ← !Nat ly in l :=Nat ty × succ y; dealloc ly

Given this we can implement the factorial function as

fac′ = λn :Nat . do l ← allocNat n in facS(l); do r ← !Nat l in dealloc l; ret r
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Now fac′ has the same type T as fac. Using the model, we can prove that
fac =T fac′, so we can use them interchangeably when reasoning in the logic.
This could not be done in earlier versions of HTT.

Overview of Model. Our model is a realizability model, built over a univer-
sal domain V , which is sufficiently rich to model divergent computations. The
domain V also includes a subdomain of computations, called T(V ).

The model for the weak FhoDTT part of HTT is mostly standard (see, e.g.,[13,
Examples 11.6.5 and 11.6.7]): types are interpreted as chain-complete partial
equivalence relations (complete pers) over V and kinds are interpreted as so-
called assemblies (aka ω-sets) over V . The category of assemblies is an extension
of the category of sets and functions which contains the category of complete
pers as a full subcategory. The latter ensures that we soundly model that types
are included among kinds. Moreover, the collection of all complete pers form
a set and hence an assembly, and thus we model that Type is a Kind. Terms
with type Πx : τ.σ are modeled as set-theoretic functions between the set of
equivalence classes for the pers interpreting τ and σ which are realized by an
element in V . That is, there is a continuous function from V to V that maps
related elements in the first per to related elements in the second per. In reality,
the model is a bit more complicated since we have to deal with families of types
and kinds to model that types and kinds depend on kinds. Hence everything is
indexed/fibred over the category of assemblies.

The propositions in HTT correspond to what is often called assertions in
Hoare and separation logic. We model our classical propositions using the power
set of heaps. Formally, we prove that the standard BI-hyperdoctrine [5] over Set
can be extended to one over assemblies, and this guarantees that we get a sound
model of the higher-order assertion logic (now for dependent types and kinds).

Finally, computation types are modeled roughly as follows. A computation
type Γ � (Δ).{P}x : τ{Q} :Type is modeled as an admissible per of continuous
functions from Heap to V × Heap (or, rather, as a family of such, indexed over
the interpretation of Γ ). A per is admissible if it relates the bottom element to
itself and is complete. Admissibility is needed for interpreting fixed points. An
interesting issue is what per one should use on heaps. We have decided to use a
per which equates two heaps if they have the same domain. This ensures that al-
location of new heap cells, modeled here as taking the least unallocated address,
will preserve the partial equivalence relation. This description is a bit rough for
the following reasons. First, the interpretation ensures that computations can
only access memory that is either described by the precondition P or allocated
during the computation. Second, the interpretation uses the chain-complete clo-
sure of the post-condition Q. This ensures that the computation type really is
interpreted as an admissible per. Taking the admissible closure is an alternative
to restricting propositions to a fragment that always generates admissible pers or
using test-functions/biorthogonality [9] to force admissibility. Third, the inter-
pretation builds in the frame rule from separation logic, essentially by interpret-
ing Γ � (Δ).{P}x :τ{Q} :Type as Γ � ∀R :Prop.(Δ).{P ∗ R}x :τ{Q ∗ R} :Type,
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at the modeling level. This idea comes from [8,9]; type theoretically the idea was
also used in the earlier formulations of HTT [18,17].

In HTT every pure term can also be viewed as a computation. In the model
this holds because pure terms are modeled via continuously realized functions,
and such can be extended to continuous computations. Note that in a cruder set-
theoretic model of the pure fragment of HTT, with types as sets with bounded
cardinality and kinds as all sets, we would not be able to extend every pure term
(any function, not necessarily continuous) to a continuous computation.

Let us summarize our informal overview of the model by mentioning what
the key technical challenges are in constructing a model: First, note that our
impredicative HTT combines a classical logic with an impredicative universe
of types. Consistency, the very existence of a non-trivial model, is therefore
highly non-trivial. It hinges on the fact that impredicative HTT does not include
full subset types or the axiom of unique choice (that every functional relation
determines a term). Second, note that we need to model types as some kind of
domains in order to accomodate fixed points for the computation types, and, at
the same time, types should form an impredicative universe. That is why we use
chain-complete pers and not the more standard model of FhoDTT using all pers,
and thus we need to prove that we actually do get a model of HTT using such
pers. Third, we need to find chain-complete pers for modelling the computation
types. Finally, since the logic is over dependent types we need to prove that we
can get a model of separation logic over dependent types.

Related Work. In the previous section we have given some pointers to related
work on models of separation logic and categorical models of dependent type
theory. Other very related work includes the recent step-indexed model by Ap-
pel et. al. [1], where they describe a model that can be used for the types of
imperative languages. However, their model is for a much simpler type system
than the one we consider since we deal with dependent types involving pre- and
postconditions. Appel et. al. do, however, include a treatment of recursive types;
we have left that for future work. It is more challenging in our setting, since our
types are much more expressive. (Recursive types should exist, though, since
admissible pers do accomodate a wide range of recursive types [7].) In contrast
with Appel et. al. we further include a logic to reason about terms; so far it is
not well-understood how to model logics in step-indexed models.

Let us also emphasize the relation to the work of Honda, Yoshida, and Berger
on Hoare logics for higher-order languages (see [28] and the references therein).
One of the differences between the two approaches is that Honda et. al. do not
allow for equational reasoning among functions (as we do in dependent type
theory). Instead they make use of an evaluation predicate. Intuitively, the eval-
uation predicate of Honda et. al. can be used to represent in the logic the dis-
tinction between pure terms and computations that we instead capture using
the monadic language. Honda et. al. have so far focused on total correctness
and have thus avoided the need for admissibility, which we have to deal with
as we consider partial correctness and have a rule for fixed point induction.



A Realizability Model for Impredicative Hoare Type Theory 343

Honda et. al. are able to deal with recursion through the store, but do not cover
impredicative polymorphism.

The remainder of the paper is organized as follows: In Section 2 we present
the language of impredicative HTT, and in Section 3 the model. In Section 4 we
conclude and describe future work. For reasons of space the formal treatment is
brief, please see the accompanying technical report [20] for more details.

2 Language

The grammar for types, kinds, propositions, terms and computations is as fol-
lows:

Types τ, σ, ρ ::= Nat | 1 | ΠT x :A . τ | ΣT x :A . τ | (Γ ).{P}x :τ{P}
Kinds A, B ::= τ | Type | Prop | ΠK x :A . A | ΣK x :A . A

Prop′s P, Q, R ::= � | ⊥ | M =A M | P ∧ P | P ∨ P | P ⊃ P | ¬P |
∀ x :A . P | ∃ x :A . P | emp | M →τ M | P ∗ P | P −∗ P

Terms M, N ::= x | zero | succ M | recNat(M, M) | () | λK x :A.M |
λT x :A.M | M M | (M, M)K | (M, M)T | fst M |
snd M | unpack M as (x, y) in M | ret M |
case M of zero ⇒ M or succ x ⇒ M | fix f(x) in M |
!τ M | M :=τ M | do x ← M in M | allocτ M | dealloc M

and there are the following judgments:

Γ � A :Kind Γ � A = A : Kind Γ � τ :Type Γ � P :Prop
Γ � M :A Γ � M = M : A Γ | Θ � P

The external equality rules include β- and η-equalities and monadic laws for
computations.

To express the pre- and post conditions of computations in terms of proposi-
tions, we often write M �→τ − as a shorthand for ∃x :τ.M �→τ x. The model that
we present in the Section 3 also accommodates coproducts of types and kinds,
but we have omitted these from this paper.

Given the explanation in the Introduction, most of the rules are standard
except for those for the computation fragment, which we include below. There
are two kinds of sums: ΣT x :A . σ (a type) is used for weak sums over families
of types, and ΣK x :A . B (a kind) is used for strong sums over families of kinds.
Because of the distinction between weak and strong sums, there are two sets of
elimination rules for sums (one with unpack M as (x, y) in M and one with
fst and snd ), as is standard. In the following section describing the model we
explain why we get these different kinds of elimination rules when we show the
concrete interpretation of sums.

Here are the non-structural rules for computations. Most of them are unsur-
prising for a tight interpretation of separation logic. The fix rule is used to
define recursive functions and captures reasoning via fixed-point induction.
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Γ � M : (Δ).{P}y :σ{S} Γ, Δ, x :τ � Q :Prop Γ, y :σ � N : (Δ).{S}x :τ{Q}
seq

Γ � do y ← M in N : (Δ).{P}x :τ{Q}

Γ, Δ � τ :Type Γ � M :τ
dia

Γ � ret M : (Δ).{emp}x :τ{emp ∧ x =τ M}

Γ � τ :Type Γ � M :Nat
lookup

Γ � !τ M : (y :τ ).{M →τ y}x :τ{M →τ y ∧ x =τ y}

Γ � τ :Type Γ � M :Nat Γ � N :τ
update

Γ � M :=τ N : (−).{M →σ −}x :1{M →τ N}

Γ � τ :Type Γ � M :τ
alloc

Γ � allocτ M : (−).{emp}x :Nat{x →τ M}

Γ � τ :Type Γ � M :Nat
dealloc

Γ � dealloc M : (−).{M →τ −}x : 1{emp}

Γ � M1 : (Δ).{P ∧ M =Nat zero}x :τ{Q} Γ � M :Nat

Γ, y :Nat � M2 : (Δ).{P ∧ M =Nat succ y}x :τ{Q}
case

Γ � case M of zero ⇒ M1 or succ y ⇒ M2 : (Δ).{P}x :τ{Q}

Γ, f :ΠT y :A . (Δ).{P}x :τ{Q}, y :A � M : (Δ).{P}x :τ{Q}
fix

Γ � fix f(x) in M :ΠT y :A . (Δ).{P}x :τ{Q}
The structural rules for computations include the frame rule and the rule of
consequence, see [20] for details.

3 Model

Universe of Realizers. Let Cppo⊥ denote the category of chain-complete
pointed partial orders and strict continuous functions. Recall that one can solve
recursive domain equations in Cppo⊥ for locally continuous bifunctors on Cppo⊥.
We take our universe of realizers to be a domain V satisfying the following
recursive domain equation in Cppo⊥:

V ∼= 1⊥ ⊕ N⊥ ⊕ (V × V )⊥ ⊕ (V → V )⊥ ⊕ T(V )⊥,

where 1⊥ is the lift of the one-element set, N⊥ is lift of the flat natural numbers,
⊕ is smash sum, × is cartesian product, V → V is the set of continous functions
from V to V , and T(V ) is the domain of computations:

T(V ) = H(V )⊥ �
(
(V ⊗ H(V )⊥) ⊕ E

)
,

in which � denotes strict function space, ⊗ is smash product, E = {err}⊥ and
H(V ) is the domain of heaps: {h ∈ Cppo⊥(N⊥, V ) | supp(h) is finite}, where
supp(h) is the set {x ∈ dom(h) | h(x) = ⊥}, ordered in the following way:
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h ≤ h′ ⇔ supp(h) = supp(h′) ∧ ∀n ∈ supp(h).h(n) ≤ h′(n). Note that H is a
locally continous functor whose functorial action is given by composition.

To denote elements in V we use the following injections, mapping elements
into the appropriate summand and then, via the above isomorphism, into V .

in1 : 1→ V inN : N → V in× : (V × V ) → V
in→ : (V → V ) → V inT : T(V ) → V

Semantic Operations on Heaps. Elements of H(V ) are total functions with
finite support. We wish to think of them as partial functions in order to model
separation logic. This is accomplished by interpreting h(n) = ⊥ as “n is not
allocated in h”. This works because two heaps are only related in the partial
order if they have the same support (and, moreover, are also pointwise ordered).
Here we describe some definitions reflecting this interpretation.

Firstly, for h, h′ ∈ H(V ) we define h
↓
= h′ as h and h′ having the same support.

We can then define the ∗-operator on “disjoint” heaps. For heaps h1, h2 ∈ H(V )
such that supp(h1) ∩ supp(h2) = ∅, we define h1 ∗ h2 as the heap with support
supp(h1) ∪ supp(h2) satisfying (h1 ∗ h2)|supp(h1) = h1 ∧ (h1 ∗ h2)|supp(h2) = h2.
In other words, h1 ∗ h2 is the (disjoint) amalgamation of h1 and h2.

For h ∈ H(V ), it makes sense to ask for “the least unallocated cell of h”.
leastfree(h) is defined as min{n ∈ N | h(n) = ⊥}.

Updating the heap cell n is by redefining the value at n. For h ∈ H(V ), n ∈ N

and d ∈ V , we define the heap h[n �→ d] by λm ∈ N . if m = n then d else h(m).
Allocation is then by updating a cell that was previously unallocated with an
element different from ⊥ and deallocation of cell n in h results in h[n �→ ⊥].

Types and Kinds. We now describe the FhoDTT structure needed for inter-
preting types and kinds, beginning with the category Asm(V ) of assemblies over
V , which will be used for modeling contexts:

Definition (Asm(V )):

Objects: (X, E), where X is a set, and E : X → P(V ), such that for all
x ∈ X , E(x) = ∅.
Morphisms: f : (X, E) → (X ′, E′), where f : X → X ′ is a set-theoretic
function, such that there exists a realizer α for it, i.e

∃ α :V → V . ∀x ∈ X . ∀d ∈ E(x) . α(d) ∈ E(f(x))

Note that Asm(V ) is an extension of the category of sets and functions: there
is a full and faithful functor ∇ : Set → Asm(V ), which maps a set X to (X, E)
with E(x) = V . Functor ∇ is right adjoint to Γ : Asm(V ) → Set, defined by
Γ (X, E) = X , that is, there is a one-to-one correspondence between morphisms
(X, E) → ∇(Y ) in Asm(V ) and functions X → Y in Set.

Kinds in context are interpreted as families of assemblies indexed over assem-
blies. Formally, the structure is a fibration UFam(Asm(V )) → Asm(V ), defined
as in [13]. The fibration of uniform families of assemblies is equivalent to the
standard codomain fibration over assemblies, denoted Asm(V )→ → Asm(V ).
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Types in context are modelled as families of chain-complete per’s indexed
over assemblies. We denote the category of chain-complete per’s by CPer(V ).
The indexing is captured via a fibration UFam(CPer(V )) → Asm(V ), defined
similarly to the one for all pers (not only chain-complete pers).

Any complete per R can be seen as an assembly (V/R, E), where V/R is the
set of equivalence classes of R and E is the identity function. This will be used
to model that types are included among the kinds. This inclusion of complete
pers into assemblies extends to families and the extension has a left adjoint:

Lemma 1. The fibred inclusion of UFam(CPer(V )) into UFam(Asm(V )) has a
fibred left adjoint given by chain completion.

We now present the formal statement which ensures that we can model soundly
the pure type and kind fragment of HTT. After that, we explain how types and
kinds are modeled concretely.

Theorem 1. The categories and functors in the diagram

UFam(CPer(V ))

���������������
� � �� UFam(Asm(V ))
��

��

� �� Asm(V )→

��������������

Asm(V )

constitute a split weak FhoDTT with a fibred natural numbers object in UFam
(CPer(V )), which is also a fibred natural numbers object in UFam(Asm(V )).

Corollary 1. The pure type and kind fragment (excluding computation types)
of HTT is sound wrt. the interpretation in the above FhoDTT.

The empty context is interpreted as the terminal object in Asm(V ): [[∅]]Ctxs =
1 = ({∗}, ∗ �→ V ), and if [[Γ ]]Ctxs = (X, E) and [[Γ � A : Kind]]Kinds =
((Ax, EAx))x∈X (a family of assemblies indexed over the assembly (X, E)), then
[[Γ, x :A]]Ctxs is

(Σx∈XAx, (x, a) → {(d, d′) ∈ V × V | d ∈ E(x) ∧ d′ ∈ EAx(a)})

Thus context formation is modeled by dependent sum. We now describe parts
of the interpretation of kinds:

– the inclusion of types into kinds is modeled via the inclusion from complete
pers into assemblies

– Type is modeled as an object in the fibre UFam(Asm(V ))1 over the terminal
object 1 in Asm(V ), i.e., as an object in Asm(V ), namely ∇(Obj(CPer(V )),
where Obj(CPer(V )) is the set of all chain-complete pers over V .

– Prop is modeled by ∇P(H(V )) (see the next subsection).
– ΠK is modeled by dependent product: If [[Γ �A :Kind]]Kinds =((Ax, EAx))x∈X

and [[Γ, x : A � B : Kind]]Kinds = ((B(x,a), EB(x,a)))(x,a)∈Σ x:X . Ax
then

[[Γ � ΠK x :A . B :Kind]]Kinds is given by

({f ∈ Πa∈AxB(x,a) | EΠx(f) �= ∅}, EΠx)x∈X ,
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where EΠx is given by

f → {in→(g) | ∀a ∈ Ax.e ∈ EAx(a) ⇒ g e ∈ EB(x,a)(f(a))}.

– ΣK is modeled by dependent sum.
– External equality of kinds is interpreted by equality in the model.

We now describe the interpretation of the pure types:

– Nat is modeled by the flat naturals, i.e ({(inN(n), inN(n)) | n ∈ N})
– 1 is modeled by the terminal object in CPer(V ), i.e., as ({(in1(∗), in1(∗))}).
– ΠT is modeled by dependent product.
– ΣT is modeled by dependent sum: If [[Γ � A :Kind]]Kinds = ((Ax, EAx))x∈X

and [[Γ, x : A � τ : Type]]Types = (R(x,a))(x,a)∈Σ x:X . Ax
then [[Γ � ΣT x :

A . τ :Type]]Types is given by (Bx)x∈X , where Bx is

CC({(in×(d, e), in×(d′, e′)) | ∃a ∈ Ax.d, d′ ∈ EAx(a) ∧ e R(x,a)e
′}).

Here CC(R) denotes the chain completion of R (the reflection into UFam
(CPer(V )), cf. Lemma 1). We need to use the chain-completion to get a chain-
complete per and the elements in the chain-completion are not necessarily
pairs of realizers for the constituent types. This is why these sums are only
weak. Indeed, if we try to apply the first-projection realizer to a realizer
for an element of the above sum, then we will not be sure to end up with a
realizer for A (we only know that we’ll get something in the chain-completion
of A).

An external equality judgment of kinds Γ � A = B : Kind holds if A and B are
interpreted as the same objects in the fibre over the interpretation of Γ . Likewise
for external equality of types Γ � τ = σ : Type. The soundness corollary 1 means
that any external equality judgment that can be derived holds.

The following lemma shows that any well-typed term corresponds to a proper
value in the model, even the diverging computation. The computation types
relate the least element of T(V ) to itself.

Lemma 2. For any type Γ � σ :Type, no per in the family [[Γ � σ :Type]]Types

relates ⊥ to itself.

We omit the description of the interpretation of pure terms. Suffice it to say
that lambda abstractions in the calculus really are interpreted via continuous
functions (realizers from V → V ).

We say that an external equality judgment of terms Γ � M = N : A holds
if M and N are interpreted as the same morphism. The soundness corollary 1
means that any derivable external equality judgment of terms holds.

Logic. As in separation logic, we really have a logic of heaps and hence propo-
sitions will be modeled as subsets of H(V ). We obtain the structure needed
for interpreting the logic as follows. The power set of heaps P(H(V )) ordered
by inclusion is a BI-algebra [21] in Set. We embed it into Asm(V ) via the
functor ∇ to get ∇(P(H(V ))). One can show that the object is an internally
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complete BI-algebra in Asm(V ). Hence, as explained in [5], there is a canoni-
cal BI-hyperdoctrine P = Asm( , ∇(P(H(V )))), which soundly models classical
higher-order separation logic. Note that the fibre over an object (X, E) in P is
the set of morphisms in Asm(V ) from (X, E) to ∇(P(H(V ))), which, as men-
tioned earlier, is in one-to-one correspondence with functions from X to P(H(V ))
in Set. Hence, a proposition in context Γ � P : Prop is interpreted as follows:
Suppose Γ is interpreted as the assembly (X, E). Then P is interpreted as a
function from X to P(H(V )). The propositional connectives are all interpreted
in the standard way from separation logic. For instance, [[Γ � P ∗ Q :Prop]]Props

x
is {h | ∃h1 ∈ [[Γ � P :Prop]]Props

x , h2 ∈ [[Γ � Q :Prop]]Props
x . h = h1 ∗ h2}. The

quantifiers are also interpreted in the standard way. For instance,

[[Γ � ∀y :A.P :Prop]]Props
x = {h | ∀y ∈ [[Γ � A :Kind]]Kinds

x . h ∈ [[Γ, y :A � P ]]Props
(x,y) }

In the display above, note that [[Γ � A : Kind]]Kinds is a uniform family of
assemblies over (X, E), so [[Γ � A :Kind]]Kinds

x is an assembly (Y, EY ). When we
write y ∈ [[Γ � A :Kind]]Kinds

x , we mean that y ∈ Y . Note that y may depend on
x (we have a separation logic for a dependent type theory).

Now it should also be clear why the kind Prop is interpreted as ∇(P(H(V )) .

Computations. As mentioned in Section 1, a computation type (Δ).{P}x :
τ{Q} is modeled as an admissible per of realizers in T(V ), which given heaps
satisfying the precondition P do not produce error and upon termination leaves
a heap satisfying the postcondition Q. The context Δ is implicitly quantified, so
that this behaviour should be adhered to for all instantiations of Δ. Formally it
looks like this. Assume [[Γ ]]Ctxs = (X, E) and [[Γ, Δ]]Ctxs = (Σx∈XYx, F ). Then
[[Γ � (Δ).{P}x :τ{Q} :Type]]Types is the family of pers (Sx)x∈X with fields given
by d ∈ |Sx| iff d = inT(f) and

∀y ∈ Yx.∀E ∈ PropΓ,Δ.∀h ∈ [[Γ, Δ � (P ∗ E)]]Props
(x,y) .(f(h) �= err) ∧(

f(h) = (vf , hf ) ⇒ vf ∈ |[[Γ, Δ � τ :Type]]Types
(x,y) | ∧

hf ∈ CC([[Γ, Δ, x :τ � (Q ∗ E)]]Props
(x,y,vf ))

)

So suitable realizers are elements of T(V ) that for any extension P ∗ E of P
takes heaps satisfying P ∗ E to heaps satisfying the chain-completion of Q ∗ E
and do not produce error. Thus the frame rule is baked into the interpretation
of computations. This does not support the law of conjunctivity. The actual per
is then given by inT(f) Sx inT(g) iff inT(f), inT(g) ∈ |Sx| and

∀y ∈ Yx.∀E ∈ PropΓ,Δ.∀h, h′ ∈ [[Γ, Δ � (P ∗ E)]]Props
(x,y) .h

↓
= h′ ⇒

f(h) ↓⇔ g(h′) ↓ ∧
(
f(h) = (vf , hf ) ∧ g(h′) = (vg , hg) ⇒

vf [[Γ, Δ � τ :Type]]Types
(x,y) vg ∧ hf

↓
= hg

)

So two realizers denote the same computation if they both fulfill the specification
and on heaps with equal support gives results related in the interpretation of
the return type and heaps with equal support.

Lemma 3. Let [[Γ ]]Ctxs = (X, E) and [[Γ � (Δ).{P}x : τ{Q} : Type]]Types =
(Sx)x∈X . Then for all x ∈ X, Sx is a chain-complete per with its field inside
T(V ), relating inT(λh . ⊥) to itself. As such it is an admissible per over T(V ).



A Realizability Model for Impredicative Hoare Type Theory 349

As mentioned in the introduction, we require that computations should produce
heaps with equal support (given suitable heaps with equal support) so that allo-
cation can be modeled by taking the least unallocated address (see the semantics
of alloc below). An unfortunate consequence of this choice is that two computa-
tions that intuitively behave in the same way but allocate cells in different order
may not be equated by the model. We believe that the model can be refined by
using realizers in FM-domains [25,24,3], such that support would then be up to
a permutation of the locations in the heap. (Indeed, FM-domains have already
been applied in a recent parametric model for separation logic [9].) We leave this
refinement for future work, however.

We now describe how terms of computation types are interpreted in the model.
Recall that for a computation type (Δ).{P}x : τ{Q}, we can give the interpre-
tation of Γ � M : (Δ).{P}x :τ{Q} by giving the realizer α.

We first consider the structural rules for computations. We begin with the
frame rule. Assume [[Γ ]]Ctxs = (X, E) and that [[Γ � M : (Δ).{P}x : τ{Q}]]Terms

is realized by α. Then [[Γ � M : (Δ).{P ∗ R}x : τ{Q ∗ R}]]Terms is also realized
by α since, for all x ∈ X , the field of [[Γ � (Δ).{P}x : τ{Q} : Type]]Types

x is
included in the field of [[Γ � (Δ).{P ∗ R}x : τ{Q ∗ R} : Type]]Types

x (here we use
that the frame rule is baked into the interpretation of computation types). The
remaining structural rules are also interpreted by using the same realizer. For
the consequence rule we use that the chain-completion operation is monotone.

Now for the non-structural rules: Assume [[Γ ]]Ctxs = (X, E) and that [[M ]] is
given by α and [[N ]] is given by β when they are of computation types and m
and n otherwise. Then

[[Γ � do y ← M in N : (Δ).{P}x :τ{Q}]]Terms

= λe . λh . if α(e)(h) = (vM , hM ) then β(e, vM )(hM ) else α(e)(h)
[[Γ � ret M : (Δ).{emp}x :τ{emp ∧ x =τ M}]]Terms = λe . λh.(m(e), h)
[[Γ � !τ M : (y :τ ).{M →τ y}x :τ{M →τ y ∧ x =τ y}]]Terms

= λe . λh . if h(m(e)) = ⊥ then err else (h(m(e)), h)
[[Γ � M :=τ N : (−).{M → −}x :1{M →τ N}]]Terms = λe . λh.(∗, h[m → n])
[[Γ � allocτ M : (−).{emp}x :Nat{x →τ M}]]Terms

= λe . λh . let l = leastfree(h) in (l, h[l → m])

[[Γ � dealloc M : (−).{M →τ −}x : 1{emp}]]Terms

= λe . λh.if h(m) = ⊥ then err else (∗, h[m → ⊥])
[[Γ � case M of zero ⇒ M1 or succ y ⇒ M2 : (Δ).{P}x :τ{Q}]]Terms

= λe . λh . if m(e) = inN(0) then α1(e)(h) else α2(e, m − 1)(h)
[[Γ � fix f(x) in M :ΠT y :σ . (Δ).{P}x :τ{Q}]]Terms

= λe . fixedpointof λf . λy . α(e, f, y))

Note that the realizers for computations are as one would hope. Consider, for
example, lookup !M , whose realizer is λe . λh . if h(m(e)) = ⊥ then err else
(h(m(e)), h). Given a realizer e in EX(x) (intuitively, a realizer for Γ ), it produces
a computation that when given a heap h yields error if the location m(e) is not
allocated in h and otherwise the value stored in h at m(e), along with h. The
realizer e is needed, as always, because the type theory is dependent.

For fixed points, the realizer is obtained by the usual least fixed point con-
struction, which applies since λf . λy . α(e, f, y) is indeed an endofunction of the
pointed domain V → T (V ), when α is the realizer for [[Γ, f :ΠT y :σ . (Δ).{P}x :
τ{Q}, y :σ � M : (Δ).{P}x :τ{Q}]]Terms.
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Theorem 2. The interpretation of computations is well-defined, i.e., any well-
typed computation term Γ � M : (Δ).{P}x : τ{Q} is interpreted as a morphism
1 → [[Γ � (Δ).{P}x : τ{Q} :Type]]Types in the fibre over [[Γ ]]Ctxs. Moreover, the
external equality rules for computations hold.

Notice that the above theorem expresses that well-typed programs do not produce
error : If [[Γ ]]Ctxs = (X, EX) and [[Γ � M : (Δ).{P}x : τ{Q}]]Terms = m then, for
all x ∈ X , all e ∈ EX(x), m(e) is in [[Γ � (Δ).{P}x : τ{Q} : Type]]Types

x . Thus
m(e) is a realizer in T(V ), which given a heap satisfying P does not produce
err. If m(e) then terminates (does not give ⊥), it returns a value and a heap in
the chain-completion of Q. For a discussion of the use of the chain-completion,
please see the accompanying technical report.

4 Conclusion and Future Work

We have developed a realizability model for impredicative Hoare Type Theory, a
very expressive dependent type theory in which one can specify and reason about
mutable abstract data types. The model is used to establish the soundness of
the type theory. Moreover, the model can be used to discover new equations
between terms and types.

Our model also accommodates certain kinds of subset kinds and types. For
a kind A we can model the subset kind {x : A | P}, for all propositions P .
For a type τ we can model the subset kind {x : τ | P}, for all chain-complete
propositions P ; it also seems possible to model subset types {x : τ | P}, for all
propositions P by using the chain-completion. The subset kinds / types will not
be full subset kinds / types, however, for the same reason that we do not have
full subset types for the standard separation logic BI-hyperdoctrine over Set [5].
Future work includes investigating how to model recursive types, as needed for
the specification of programs that recurse through the store [22]. It would also
be interesting to refine the model using, e.g., FM-domains to get a more abstract
model of allocation leading to more equalities among terms. Another avenue for
future work is to explore the soundness of higher-order frame rules [8]. This seems
to involve a further level of indexing over a Kripke structure similar to the one
in [8]. Finally, it would also be interesting to investigate relational parametricity
for the impredicative polymorphism.
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Abstract. We define (with machine-checked proofs in Coq) a modular
operational semantics for Concurrent C minor—a language with shared
memory, spawnable threads, and first-class locks. By modular we mean
that one can reason about sequential control and data-flow knowing al-
most nothing about concurrency, and one can reason about concurrency
knowing almost nothing about sequential control and data-flow con-
structs. We present a Concurrent Separation Logic with first-class locks
and threads, and prove its soundness with respect to the operational se-
mantics. Using our modularity principle, we proved the sequential C.S.L.
rules (those inherited from sequential Separation Logic) simply by adapt-
ing Appel & Blazy’s machine-checked soundness proofs. Our Concurrent
C minor operational semantics is designed to connect to Leroy’s optimiz-
ing (sequential) C minor compiler; we propose our modular semantics as
a way to adapt Leroy’s compiler-correctness proofs to the concurrent set-
ting. Thus we will obtain end-to-end proofs: the properties you prove in
Concurrent Separation Logic will be true of the program that actually
executes on the machine.

1 Introduction

In recent years there has been substantial progress in building machine-checked
correctness proofs: for a compiler front-end [8], for a nonoptimizing subset-Pascal
compiler [9], and for a multistage optimizing compiler from C to assembly lan-
guage [10]. These efforts, though they are remarkable and inspiring, do not ad-
dress the problem of concurrency. Reasoning about concurrent programs, and
compiling concurrent shared-memory programs with an optimizing compiler, can
be very difficult. The model of computation that programmers might expect does
not correspond to what is provided by the machine.

Can we adapt the sequential-language compilers and correctness proofs to
the concurrent case by adding threads and locks to their source languages? Not
easily. As Boehm explains, “Threads cannot be implemented as a library.” [3]
An optimizing compiler must be aware of the concurrency model or it might
inadvertantly break the locking discipline by, for example, changing the order
of loads and stores to shared data. Boehm “point[s] out the important issues,
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and argue[s] that they lie almost exclusively with the compiler and the language
specification itself, not with the thread library or its specification.” But Boehm
does not present a formal semantics: he just explains what can go wrong without
one. In this paper we provide the formal semantics that Boehm called for. And we
do it in such a way that sequential compilers and proofs preserve their sequential
flavor: we will add threads as a kind of semantic library.

Contributions. First we show that “C + threads” can be specified modularly,
by presenting an operational semantics of Extensible C minor. This language is
sufficient for compiling C, ML, Java, and other high-level languages. Appel and
Blazy [1] have demonstrated a (sequential) Separation Logic, with a machine-
checked soundness proof in Coq w.r.t. the small-step operational semantics of
any possible extension of Extensible C minor.

Second, we present a powerful and expressive Concurrent Separation Logic
(CSL) that goes beyond O’Hearn’s [11] by permitting dynamic lock and thread
creation and by permitting ordinary assertions to describe lock invariants, which
are in turn ordinary assertions. Our CSL is very similar to one that Gotsman
et al. [5] independently developed, demonstrating that it must be the natural
generalization of O’Hearn’s CSL to first-class threads and locks.1

Third, we construct the operational semantics of Concurrent C minor, formed
by extending Extensible C minor with threads and locks. A novel component of
this semantics is a modal substructural logic for reasoning about separation in
space and evolution in time. Our operational semantics is for well-synchronized
programs without data races: any access to a memory location must be per-
formed while holding a lock that gives ownership of that location: at least shared
ownership for a read and full ownership for a write. Access without ownership
causes the operational semantics to get stuck, meaning that the program has
no semantics. One can use CSL (using a proof assistant, or via automatic flow
analysis [6]) to prove that source programs are well synchronized.

Fourth, from the concurrent operational semantics we will construct a pseu-
dosequential oracle semantics for Concurrent C minor. When a sequential thread
peforms a concurrent operation such as lock or unlock, the oracle calculates the
effect of running all the other threads before resuming back into this thread. We
show the correctness of the oracle semantics w.r.t. the concurrent semantics.

The oracle semantics is ideal for reasoning about individual threads—for com-
pilation and flow analysis, and for reusing proofs about the sequential language.
Footprint annotations prevent unsound optimizations across lock/unlock oper-
ations but are minimally restrictive across sequential operations. The oracle is
silent when any of the core sequential control- and data-flow operations are
executed, and the operational semantics is deterministic. Therefore, adapting

1 Our semantic model for CSL is more powerful than Gotsman’s in several ways:
our model permits assertions to be embedded directly into source code, permits
function pointers, recursive assertions, and impredicative quantification; and (unlike
Gotsman’s) ours connects directly to a small-step sequential operational semantics
for a verified-compilable intermediate representation, C minor.
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existing machine-checked correctness proofs of the C minor compiler to Oracu-
lar C minor should be straightforward.

Fifth, we present a shallow embedding of CSL in the Calculus of Inductive
Constructions (Coq). A shallow embedding, because it has no induction over CSL
syntax, permits new CSL operators to be constructed as needed in a modular
way. Our shallow embedding is independent of C-minor statement syntax, thus
permitting the insertion of semantic CSL preconditions as annotations in C
minor programs.

Finally, we demonstrate that CSL is sound with respect to our oracle se-
mantics, and the oracle semantics is sound w.r.t. the concurrent operational
semantics. Thus, properties proved of concurrent C programs will actually hold
in machine-language execution.

2 Extensible C Minor

Appel and Blazy [1] describe some changes to Leroy’s original C minor [10] that
make it more suitable for Hoare-Logic reasoning. Expressions can read from the
heap but have no side effects. Expression evaluation Ψ ; σ � e ⇓ v is with respect
to a program Ψ and a sequential state σ = (ρ; w; m), where ρ is the local-
variable environment of the current function activation; and m is the global
shared memory. The world w specifies the permissions that this thread has to
access memory addresses in m. Worlds enable separation-logic-like reasoning:
our semantics gets stuck on loads/stores outside the world. In this presentation
we elide many details of C minor; see the full technical report [7] for details.

The sequential small-step relation Ψ � (Ω, σ, κ) �−→ (Ω′, σ′, κ′) operates on
continuations (Ω, σ, κ) where Ω is an oracle, σ is a sequential state, and κ is a
control stack:

κ : control ::= Kstop | s · κ | . . .

Kstop is the empty control stack, s · κ means “execute the statement s, then
continue with κ.” C minor has other control operators for function return and
nonlocal exit from loops. However, the concurrent semantics is parametric over
any syntax of control with at least Kstop and ·.

Our C minor has a fixed set of control-flow constructs (e.g., if, loop, function
call) and straight-line commands (e.g., assign, store, skip). To build an extension,
one instantiates syntax of additional straight-line commands (e.g. lock, unlock).
Then one provides a model of oracles to help interpret the additional commands.
The oracle contains the state of all the other threads (and the schedule) and
calculates what they do when control is yielded. Since our programs are (proved)
race-free, preemptive schedules will yield equivalent results. For purely sequential
C minor, oracles can be unit.

3 Concurrent C Minor

We extend C minor with five more statements to make Concurrent C minor :

s : stmt ::= . . . | lock e | unlock e | fork e (�e) | make lock e R | free lock e
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The lock (e) statement evaluates e to an address v, then waits until it acquires
lock v. The unlock (e) statement releases a lock. A lock at location v is locked
when the memory contains a 0 at v.

Each lock comes with a resource invariant R which is a predicate on world
and memory. The invariants serve as a kind of “induction hypothesis” for a
correctness or safety proof in CSL, and in particular they tell our operational
semantics what addresses are owned by each thread and by each lock, and what
addresses are transferred when locking or unlocking. This is standard in CSL [11];
but we go farther and use the invariants at a crucial point in our operational
semantics to guarantees the absence of race conditions.

As usual in CSL [11] in order that the resource invariant R will be supported
by a unique set of memory addresses in any given memory—these addresses
constitute the memory ownership that a thread gains when acquiring a lock
or loses when releasing it—the invariant R must be precise. The world (∼ set
of memory locations) controlled by a lock need not be static; it can change
over time depending on the state of memory (one could say, “this lock controls
that variable-sized linked list”). When a thread locks a lock, it joins the lock’s
world with its own; when it later unlocks the lock, it gives up the (possibily
different) world satisfying R. This protocol ensures the absence of read/write or
write/write race conditions.

The statement make lock e R takes an address e and a lock invariant R, and
declares e to be a lock with the associated invariant. The address is turned back
into an ordinary location by free lock e. Both instructions are thread-local (don’t
synchronize with other threads or any global lock-controller). It is illegal to apply
lock or unlock to nonlock addresses, or to apply ordinary load or store to locks.

The fork statement spawns a new thread, which calls function e on arguments
�e. No variables are shared between the caller and callee except through the func-
tion parameters. The parent passes the child a portion of its world, implicitly
specified by the (precise) precondition of the forked function. This portion typi-
cally contains visibility (partial ownership) of some locks—then the two threads
can communicate. A thread exits by returning from its top-level function call.

We have not added a join operator, since this can be accomplished by the
Concurrent C minor programmer by the use of a lock passed from parent to
child, unlocked by the child just before exiting.

The concurrent operational semantics checks the truth of lock invariants when
unlocking a lock, and checks the truth of function pre- and postconditions when
spawning or exiting a thread. Failure of this check causes the operational se-
mantics to get stuck. The language of these conditions contains the full power of
logical propositions (Coq’s Prop), so the operational semantics is nonconstruc-
tive: it is given by a classical relation.2 The lock invariants and the function
pre/postconditions can be taken directly from a program proof in concurrent
separation logic.

For an example program in Concurrent C minor, see the technical report.

2 We use a small, consistent set of classical axioms in Coq: extensionality, proposition
extensionality, dependent unique choice, relational choice.
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4 Concurrent Separation Logic

We define the usual operators of Separation Logic: emp, separating conjunction
∗, disjunction ∨, conjunction ∧, and quantifiers ∃, ∀. Bornat et al. [4] explain
the utility of fractional permissions for reasoning statically about alternating
concurrent read with exclusive write access, so singleton “maps-to” is extended
to support fractional permissions e1

π�→ e2. A share can always be split: e1
π1�→

e2 ∗ e1
π2�→ e2 ⇔ e1

π1⊕π2�→ e2.
In fact we go beyond fractions, building on the share models presented by

Parkinson [12, ch. 5] (see [7]). This permits correctness proofs of sophisticated
visibility management schemes. But here we will simplify the presentation by just
writing 100%, 50%, et cetera. 100% gives permission to read, write, or dispose.
Owning 0 < π < 100% gives read-only access.

We introduce a new assertion e
π•→ R, which means that the expression e

evaluates to a memory location containing a lock with resource-invariant R. We
write resource(l, R) to mean that R is precise and closed (w.r.t. local variables). A
location is either used as a lock or as a mutable reference: a lock assertion e

π•→
does not separate from a maps-to assertion e

π′
�→ . Any nonempty ownership π

gives the right to (attempt to) lock the lock. An auxiliary assertion, hold e R,
means that lock e with invariant R is locked by “this” thread.

To unlock a lock, the thread must “hold” it: another thread cannot unlock
the lock unless the hold has been transferred. Therefore a lock invariant R for
lock l must claim the hold of l, in addition to other claims S. That is, R ⇔
hold l R ∗ S, where ⇔ means equivalence of assertions. We achieve this with a
recursive assertion μR.(hold l R ∗ S), using the μ operator of our CSL.

The assertion that some value f is a function with precondition P and post-
condition Q is written f : {P}{Q}. A function can be either called (within this
thread) or spawned (as a new thread); but to be spawned, its precondition must
be precise: the precondition must specify uniquely the part of the world that the
parent passes to the spawned thread.

To handle functions we extend the traditional Hoare triples with an extra
context to become Γ � {P}s{Q}. The concurrent extension of the logic is

resource(e, R) R ⇔ (hold eR ∗ S)

Γ � {e
100%�→ 0}make lock eR{e

100%•→ R ∗ hold eR}

Γ � {e
100%•→ R ∗ hold eR}free lock e{e

100%�→ 0}

Γ � {e
π•→ R}lock e{e

π•→ R ∗ R}
R ⇔ (hold e R ∗ S)

Γ � {R}unlock e{emp}

precise (R)

Γ � {e : {R}{S} ∗ R(�e)}fork e�e{e : {R}{S}}

Fig. 1. Concurrent Separation Logic
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P ∗ Q separating conjunction

P ⇒ Q P ∧ Q P ∨ Q implication, (nonseparating) conjuction, disjunction

∀v.Q ∃v.Q quantification over values, shares, or predicates

v
π�→ v′ v is the address of readable data (writable if π = 100%)

v
π•→ R v is a lock with resource invariant R

hold v R the token for “I currently hold the lock v”

v : {P}{Q} v is a function with precondition P , postcondition Q

μF recursive: μF = F (μF )

e ⇓ v the C minor expression e evaluates to v

[A]Coq formula A in the underlying logic is true

resource(l, R) R is a valid resource invariant (precise, closed) for lock l

world w the current state’s world is equal to w

� Q “later”: Q(ρ,w′, m) holds in all worlds w′ strictly later than w

� Q “necessarily”: Q ∧ � Q

©Q “fashionably”: Q(ρ,w′, m) holds in all worlds w′ the same age as w

!Q “everywhere”: Q(ρ′, w, m′) holds on all ρ′, m′ in the current world

safe(Ψ, κ) with current state σ, for all oracles Ω, stepping Ψ � (Ω, σ, κ) �−→∗ ...
cannot get stuck.

Fig. 2. A selection of assertion operators

independent of the sequential operators and we refer to Appel and Blazy [1]
for a description of the sequential logic, in which Γ specifies pre/postconditions
of global functions. The concurrent rules are presented in figure 1; the full tech-
nical report [7] shows our logic applied to an example program.

Impredicativity. Our logic supports both recursive assertions and impredicative
polymorphism: one can quantify not only over values and shares, but also as-
sertions. We will use this when describing the lock invariants of object-oriented
and higher-order-functional programs, in the same way that impredicative poly-
morphism is needed in the typed assembly languages of such programs. We also
support recursive value-parameterized lock invariants that can describe, for ex-
ample, “sorted list of lockable cells.”

Our CSL does not reason about liveness, and cannot guarantee the absence of
memory leaks. Resources can be sent down a black hole by deadlocks, by infinite
loops, or by unlocking all of a lock’s visibility into its own resource, or by a
thread exiting with a nonempty postcondition.

5 A Modal Model of Joinable Worlds

Consider the assertion P = (e π•→ R); here one assertion P describes another
assertion R; and maybe R itself describes yet another assertion Q. This makes
first-class locks difficult to model semantically. Intuitively, the solution is that P
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is really a series of increasingly good approximations to the “true” invariant; the
kth approximation of P can describe only the k − 1 approximation of R, which
in turn describes only the k − 2 approximation of S. Then we can do induction
on k to reason about the program.

To structure this in a clean way that avoids explicit mention of k, we adapt
the “very modal model” of Appel, Melliès, Richards, and Vouillon [2]. They use
modal logic to reason about the decrease of k as time advances through the
storing and fetching of mutable references. Henceforth we will not mention k
explicitly, but it will be implicit in the concept of the age of a world.

Our new model advances time as locks are acquired and released. But in
addition, now we also reason modally about separation in space. From machine
states we build a Kripke model, which we hide underneath a modal logic,
which we hide underneath the user view of Concurrent Separation Logic.

The Kripke model: σ � Q means that assertion Q holds in a state σ. The forcing
relation � is simple: Qσ with Q simply a predicate on states. The world w in σ =
(ρ; w; m) plays the same role (granting permissions to read/write locations) as did
the “footprints” φ in Appel & Blazy’s Coq proof of sequential-Separation-Logic
soundness, which makes it easy to use their proof techniques. The predicates Q of
the modal logic are exactly the assertions of the Separation Logic.

Worlds map locations to permissions. Inside the Kripke model (not in the
modal logic) we write Valπw to describe a nonempty fractional permission π to
access a value-cell in world w. The permission Lockπ

wR says that location l is
a lock in world w with (nonempty) fractional visibility π. (The subscript w is
needed to distinguish the “age” of the Lock permission, as Lockπ

w′R in a later
world w′ has a more approximate semantic meaning.) Fractional visibility of a
lock is enough to lock it; 100% visibility (so no other thread can see the lock)
is required to deallocate the lock. To model that the locking thread “holds” the
lock, and no other thread can unlock it (unless the “hold” is explicitly trans-
ferred), we require that R imply (at least) 50% visibility of the lock itself. That
is, part of the “visibility” of a lock is really modeling “holding” the lock. The
permission Funπ

wPQ is a function with precondition P and postcondition Q.
Worlds contain lock-permissions; lock-permissions carry assertions; and asser-

tions are predicates on worlds. We resolve this (contravariant) circularity with
a stratified construction as shown in the technical report [7].

A world describes the domain of the heap, where the contents of the heap
reside in the global memory m. We write w1 ⊕ w2 for the disjoint union of two
worlds (where there may be overlap at an address l if the permissions agree and
the shares do not exceed 100%). However, w1 ⊕ w2 is only defined if w1 and
w2 are of the same age; every world in the system ages one tick whenever any
thread does a lock, unlock, or fork.

The operators above the line in Fig. 2 are what one might expect in a model
of Concurrent Separation Logic. Below the line we have some new modal opera-
tors, useful in constructing the semantics but not to be seen by the end user of
the Concurrent Separation Logic. The modalities are contained within our CSL
soundness proof.
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Why a modal logic. Suppose we are in world w, and we expect that the current
memory m will satisfy predicate Q after one or more communications. We write
ρ, w, m � � Q. A lock invariant is an example of a predicate we can only establish
“later.” To implement higher-order locks, we use the modal logic to keep track
of approximations of assertions. We weaken Q every time the clock ticks (i.e.,
when a thread communicates), and we use � to keep track of this weakening.

Suppose we lock l that controls world wl, so our world goes from w to w′⊕w′l,
where primes indicate ticking the clock. By “later” we do not refer to the fact
that we gain wl; the modal operator � talks only about w → w′ or wl → w′l.
The operator ∗ talks about the ⊕ joining. See the technical report[7] for further
explanation.

6 Concurrent Operational Semantics

We specify a concurrent operational semantics to justify the claim that we have a
reasonable model of conventional concurrency that corresponds to real machines.
The semantics is “world-aware”, that is, it gets stuck if a thread attempts to read
data for which it has no permission. This means that it must also be “resource-
invariant-aware”, so that it can transfer the appropriate worlds when locking or
unlocking a lock. Therefore, the operational semantics uses the modal logic.

The semantics has two distinct parts. The first part, called the “sequential
submachine,” executes all instructions that do not depend on other threads, such
as call, store, and loop. The second part is fully concurrent; it schedules threads
for execution by the sequential part and also handles the explicit synchronization
commands: lock, unlock, and fork. Although make lock and free lock are new
instructions, they do not require synchronization and can be executed by the
sequential part of the machine.

This two-part design supports the first half of our modularity principle by
hiding the complexities of sequential control- and data-flow from concurrent
reasoning. Oracle semantics (section 7) supports the other half by hiding the
complexities of concurrent computation from sequential reasoning.

6.1 Sequential Submachine

To build the internal sequential submachine, we extend Extensible C minor
with the full syntax of all the concurrent instructions and rules for evaluating
make lock and free lock . The computational result of both of these statements
is straightforward, so we use the null oracle �Ω : unit.

To execute make lock e R, the machine evaluates e, ensures that that location
is fully owned and currently contains a zero, and updates the world to treat the
location as a lock with invariant R. The lock is created with 100% visibility and
is held 100% as well.

Ψ ; (ρ; w; m) � e ⇓ v ρ, w, m � (v 100%�→ 0) ∗ worldwcore

ρ, w′, m � resource(v, R) ρ, w′, m � (v 100%•→ R) ∗ hold v R ∗ worldwcore

Ψ � ( �Ω, (ρ; w; m), make lock e R · κ) �−→ ( �Ω, (ρ; w′; m), κ)
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free lock e does the opposite, turning a wholly-owned lock back into a regular lo-
cation [7]. At the truly concurrent operations – lock , unlock , fork – the sequential
submachine is simply stuck.

6.2 Threads and Concurrent Machine State

The point of a concurrent machine is to execute several threads of control. We
define a thread θ to be the tuple (ρ, w, κ̂) with local variables ρ, a private world
w, and a concurrent control-descriptor κ̂, defined as follows:

κ̂ : concurrent control ::= Krun κ | Klock v κ

Krun κ means the thread is in a runnable state, with κ as the next sequential
control to execute. Klock v κ means that the thread is waiting on a lock at address
v; after acquiring the lock, it will continue with κ. A list of threads we denote
by �θ, and we indicate the ith thread by θi.

A concurrent machine state S = (�; �θ; L; m) has a schedule �, a (finite) list
of thread-ids (natural numbers); a list of threads �θ; a lock pool L, which is a
partial function that associates addresses of unlocked locks with the worlds they
control; and a memory m. We will be quantifying over all schedules; once given a
schedule, C minor executes deterministically, which greatly simplifies reasoning
about sequential control-flow [1].

A concurrent machine state also carries with it a set of consistency require-
ments, ensuring the threads’ private worlds are disjoint (among other things [7]).
In Coq we ensure consistency of concurrent states with a dependently typed
record. For this presentation, any concurrent machine state given should be con-
sidered consistent.

6.3 Concurrent Step Relation

The concurrent small-step relation Ψ � S �=⇒ S′ describes how one concurrent
state steps to another in the context of a program Ψ . The full concurrent step
relation is given in the technical report[7], but the two critical features are a
coroutine interleaving model and a nonconstructive semantics.

Coroutine Interleaving. The concurrent machine context-switches only for fully
concurrent operations (lock, unlock, and fork). When executing a series of se-
quential instructions, the concurrent machine does so without interleaving
(thread-number i is not removed from the head of the schedule):

Ψ � ( �Ω, (ρ; w; m), κ) �−→ ( �Ω, (ρ′; w′; m′), κ′)
�θ′ = [θ1, . . . , θi−1, (ρ′, w′, Krun κ′), θi+1, . . . , θn]

Ψ � (i :: �; [θ1, . . . , θi−1, (ρ, w, Krun κ), θi+1, . . . , θn];L; m) �=⇒ (i :: �; �θ′;L; m′)

This coroutine model of concurrency may seem strange: it is true that in general
it is not equivalent to execution on a real machine. However, our operational
semantics permits only well-synchronized programs to execute, so we can rea-
son at the source level in a coroutine semantics and execute in an interleaving
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semantics or even a weakly consistent memory model. Of course, this claim will
require proof: but the proof must be done w.r.t. the machine-language program
in a machine-language version of our concurrent operational semantics; this is
future work.

Nonconstructive semantics. The noncomputability of our operational semantics
arises from the unlock rule:

Ψ ; (ρ; w; m) � e ⇓ v m(v) = 0 ρ, w, m � (hold v P ) ∗ true
w′ ⊕ wlock = w ρ, wlock, m � � P

L′ = v : wlock, L �θ′ = [θ1, . . . , θi−1, (ρ, w′, Krun κ), θi+1, . . . , θn]
m′ = [v �→ 1]m ContextSwitch (i :: �; �θ′; L′; m′) = S

Ψ � (i :: �; [θ1, . . . , θi−1, (ρ, w, Krun unlock e · κ), θi+1, . . . , θn]; L; m) �=⇒ S

When a lock is unlocked, the semantics checks to make sure that its invariant will
hold later (ρ, wlock, m � �P ) – that is, after the unlock operation ticks the clock.
If the invariant will not hold, the semantics gets stuck. However, assertions P
may contain arbitrary predicates in classical logic—there is no decison procedure
for assertions. We are saved by two things: first, if we are executing a program
for which we have a proof in CSL, we will know that this check will succeed.
Second, if one actually wished to execute a program to see the result, one could
execute it on the fully constructive erased machine.

An erased machine is simply one that has had all of the worlds and oracles
removed, leading to the following much simpler and constructive unlock rule:

Ψ ; (ρ, m) � e ⇓ v m(v) = 0 θi = (ρ, Krun unlock e · κ) θ′
i
= (ρ, Krun κ)

Ψ � (i :: �, [θ1, . . . , θi, . . . , θn], m) �=⇒ (�, [θ1, . . . , θ
′

i
, . . . , θn], [v �→ 1]m)

This is a useful sanity check: the real machine takes no decisions based on
erasable information; the erased semantics simply approves of fewer executions
than the real machine.

When to erase. One could imagine (1) prove safety of a concurrent program
w.r.t. the unerased semantics; (2) erase; (3) compile. But this would be a mistake:
as explained by Boehm [3], the compiler may do concurrency-unsafe optimiza-
tions. Instead, we must preserve the worlds in the semantics in both source- and
machine-language. This gives the compiler a specification of concurrency-safe
optimizations. We erase the worlds last, after full compilation.

7 Oracle Semantics

A compiler, or a triple {P}c{Q} in separation logic, considers a single thread at
a time. Thus we want a semantics of single-thread computation. The sequential
submachine of section 6.1 is single-threaded, but it is incomplete: it gets stuck
at concurrent operations. The compiler (and its correctness proof) wants to
compile code uniformally even around the concurrent operations. Similarly, in
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projection

Ω = (�, �θ, L) �θ = [θ1, . . . , θi−1, θi+1, . . . , θn]
�θ′ = [θ1, . . . , θi−1, (ρ, w, κ̂), θi+1, . . . , θn]

(Ω, (ρ; w; m), κ̂)
i∝ (�; �θ′; L; m)

Ready
θi = (ρ, w, Krun κ)

Ready i (i :: �; [θ1, . . . , θn]; L; m)
SO-done

Ready i S

Ψ � StepOthers i S S

SO-step
¬(Ready i S) Ψ � S �=⇒ S′ Ψ � StepOthers i S′ S′′

Ψ � StepOthers i S S′′

Ω-Invalid
Ω = (i :: , , ) � ∃S.(Ω, σ, Krun (sc · κ))

i∝ S

Ψ � (Ω, σ, sc · κ) ��−→ (Ω,σ, sc · κ) Note: sc
ranges over
only the
concurrent
instructions.

Ω-Diverges

Ω = (i :: , , ) (Ω, σ, Krun (sc · κ))
i∝ S

Ψ � S �=⇒ S′ � ∃S′′.Ψ � StepOthers i S′ S′′

Ψ � (Ω, σ, sc · κ) ��−→ (Ω, σ, sc · κ)

Ω-Steps

Ω = (i :: , , ) (Ω, σ, Krun (sc · κ))
i∝ S

Ψ � S �=⇒ S′ Ψ � StepOthers i S′ S′′ (Ω′, σ′, κ)
i∝ S′′

Ψ � (Ω, σ, sc · κ) ��−→ (Ω′, σ′, κ)

Fig. 3. Oracle reduction relation ��−→

a CSL proof, the commands c1 and c2 in {P}c1;c2{Q} may contain concurrent
operations, but a soundness proof for the sequence rule of separation logic is
complicated enough (because of C minor’s nonlocal exits) without adding to it
the headaches involved in concurrency. Thus we want a deterministic sequential
operational semantics that knows how to handle concurrent communications.

To build the desired semantics, we will build an oracular machine using our C
minor extension system. As in Section 6.1, we provide the syntax of concurrent
C minor. Instead of providing the empty oracle �Ω, however, we define a more
meaningful oracle as follows:

Ω : oracle := (�, �θ, L)

An oracle now contains a schedule �, a list of threads �θ, and a lock pool L.
We generalize a sequential continuation (Ω, σ, κ) to a concurrent continuation

(Ω, σ, κ̂) whose concurrent control κ̂ may be ready (Krun κ) or blocked on a lock
(Klock v κ). An oracle allows one to build a concurrent machine S from a thread
number i and a concurrent continuation. The precise relationship is given by
(Ω, σ, κ̂)

i∝ S, pronounced “(Ω, σ, κ̂) is the ith projection of S” (Figure 3).
To execute the extended statements, we use the rules given in Figure 3. For

clarity, we use the symbol ��−→ for the sequential step in oracular C minor, to
distinguish from �−→ which is the sequential step in the submachine (section 6.1).
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However, both machines are built with the same C minor extension functors
(applied to different oracle types) and therefore have much in common.

When the oracular machine gets to a concurrent instruction, there are several
possibilities. The first is that there is no concurrent machine that can be built
from the situation given (the rule Ω-Invalid). In this case, the machine loops
endlessly, thereby becoming safe. In our proofs we quantify over all oracles—not
just valid ones—and this rule allows us to gracefully handle invalid oracles.

In the remaining two cases, we are able to construct a concurrent machine S,
and take at least one concurrent step: makelock, freelock, block on a lock (be-
come Klock and context switch), or release a lock (and context switch), or fork
(and context switch). After taking this step, the machine decides (classically)
if the current thread will ever have control returned to it, by branching on the
StepOthers judgement. If the schedule is unfair, if another thread executes an
illegal instruction, or if the current thread is deadlocked, then the current thread
might never have control returned to it. Rule Ω-Diverges models this by having
the machine loop endlessly. The final case is when control returns (rule Ω-Steps);
in this case the step proceeds with the new memory, world, and so forth that
came from running the concurrent machine.

Classical reasoning in this system is unavoidable: first, the concurrent machine
itself requires classical reasoning to find a world satisfying an unlock assertion;
second, determining if control will return to a given thread reduces the halting
problem. The nonconstructivity of our operational semantics is not a bug: we
are not building an interpreter, we are building a specification for correctness
proofs of compilers and program logics.

We use the oracular step to keep “unimportant” details of the concurrent
machine from interfering with proofs about the sequential language. The key
features of the oracular step are: 1) It is deterministic (proof in the t.r.[7]),
2) When it encounters a synchonization operation, it is able to make progress
using the oracle, whereas the regular step relation gets stuck, 3) It composes with
itself, whereas the regular step relation does not (because memory will change
“between steps” due to other threads), and 4) In the cases where control would
never return, such as deadlock, we will be safe.

8 Soundness of CSL on the Oracle Semantics

In this section we prove that Concurrent Separation Logic is sound with respect
to the oracular step. In the next section we prove that the oracular step is sound
with respect to the concurrent operational semantics.

A concurrent machine S is concurrently safe if, for any S′ reachable by
S �=⇒∗ S′, either S′ can step or its schedule is empty (S′ is not stuck). We
define σ � safe(Ψ, κ) for a single thread of the oracular machine to mean that
Ψ � (Ω, σ, κ) �−→∗ does not get stuck with any oracle Ω. We call this thread
(Ω, σ, κ) sequentially safe, written Ψ � safe(Ω, σ, κ). That is, safe(Ψ, κ) is a
modal assertion that quantifies over all oracles; safe(Ω, σ, κ) is a predicate on a
particular thread with a particular oracle.
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Appel and Blazy [1] explain how to model the Hoare tuple Γ � {P}c{Q}
in a continuation-passing style. We improve over Appel and Blazy in that our
assertions are not predicates over programs. Our global assertion Γ = f1 :
{P1}{Q1} ∗ · · · ∗ fn : {Pn}{Qn} characterizes pre-and post-conditions of global
function-names, while theirs characterized function bodies (i.e., syntax). This
means that we can embed semantic assertions in program syntax without circu-
larity. However, we are in danger of a different circularity: Γ � {P}c{Q} means
“provided that for every fi : {Pi}{Qi} in Γ , the judgment Γ � {Pi} Ψ(fi) {Qi}
holds, then command c satisfies its pre- and postcondition,” where Ψ(fi) is the
body of function fi. We solve this problem by defining the Hoare judgment as a
recursive assertion. We use the later operator � to achieve contractiveness, and
we tick the clock at function calls. Because of this tick, by the time the caller
actually enters a function body, it will be later.

Γ � {P}c{Q} ≈ ∀F, Ψ, κ. (� function pre/postconditions in Γ relate to Ψ) ⇒
F closed w.r.t. modified vars of c ⇒

(� ©!(Q ∗ Γ ∗ F ⇒ safe(Ψ, κ))) ⇒
(� ©!(P ∗ Γ ∗ F ⇒ safe(Ψ, c · κ)))

The continuation-passing interpretation of the Hoare triple is, for any frame F ,
if Q ∗ F is enough to guard κ, then P ∗ F is enough to guard c · κ. We say Q ∗ F
guards κ when any state σ that satisfies Q ∗ F is safe to execute with control κ.
Each rule of sequential separation logic is proved as a derived lemma from this
definition of the Hoare tuple.

Lemmas: The rules of CSL are proved as derived lemmas from the definition
of the Hoare triple. For sequential statement rules, see [1]; for a proof of a
concurrent rule, see [7].

Definition. We write Ψ � Γ to mean that for every function mentioned in Γ , its
body in Ψ satisfies pre/postconditions of its function declarations. The end-user
will prove this using the rules of CSL.

Theorem. Suppose Ψ � Γ , and Γ ⇒ main : {true}{true}. Then for any n one
can construct wn and a consistent Ω such that (Ω, (ρ0; wn; m), callmain ()·Kstop)
is safe to run for at least n communications+function calls.

Corollary. If a program is provable in CSL, then callmain is sequentially safe.

9 Concurrent Safety from Oracular Safety

Now we connect the notions of sequential safety and concurrent safety. We say
that a concurrent continuation (Ω, σ, κ̂) is “safe-as i” if, supposing it is the ith
thread of the (unique) concurrent machine consistent with its oracle, then if this
thread is ever ready and selected then it will be sequentially safe:

(Ω, σ, κ̂)
i

∝ S

� ∃S′.(Ψ � StepOthers i S S′)
Ψ � safe-as i (Ω, σ, κ̂)

(Ω, σ, κ̂)
i

∝ S Ψ � StepOthers i S S′

(Ω′, σ′, Krunκ)
i

∝ S′ Ψ � safe (Ω′, σ′, κ)
Ψ � safe-as i (Ω, σ, κ̂)
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Progress. All-threads-safe(S) means that each projection of S will be sequen-
tially safe the next time it is ready and selected; this is enough for progress:

∀i, Ω, σ, κ̂. (Ω, σ, κ̂)
i∝ S → Ψ � safe-as i (Ω, σ, κ̂)

Ψ � all-threads-safe(S)

Lemma. If Ψ � all-threads-safe(S), then S is not stuck. Proof: see [7].

Preservation. The preservation theorem is more complex due to the existence
of forks: we need to know that the child will be safe if its function-precondition
is satisfied. To handle this issue, we make the following definition:

∃Γ. ∀ρ, w. (w ∈ �θ ∨ w ∈ L) →
ρ, w, m � (Ψ � Γ ) ∧ (∀v, P, Q. v : {P}{Q} ⇒ �©!(Γ ⇒ v : {P}{Q}))

Ψ � all-funs-spawnable(�, �θ, L, m)

Lemma. IfΨ � all-threads-safe(S),Ψ � all-funs-spawnable(S),andΨ � S �=⇒ S′,
then Ψ � all-threads-safe(S′) and Ψ � all-funs-spawnable(S′).

Theorem. If each thread is sequentially safe and all functions are spawnable, the
concurrent machine is safe.

Corollary. For any schedule �, if the initial thread callmain () is sequentially
safe and all functions are spawnable, then the concurrent machine is safe.

10 Conclusion

An implementation of C-threads comprises an optimizing C compiler and a threads
library implemented in assembly language to handle lock/unlock/fork. From our
oracle semantics, we can derive some very simple axioms that the proof of correct-
ness of the optimizing compiler can use. For example, the compiler may wish to
hoist loads and stores from one place to another, as dataflow and thread-safety
permit. Thread-safety can be captured by simple axioms such as,

Ψ ; (ρ; w; m) � e ⇓ v w ⊂ w′

Ψ ; (ρ; w′; m) � e ⇓ v

That is, a bigger world doesn’t hurt expression evaluation. To prove w ⊂ w′, we
can provide the compiler with rules such as,

c = loop c′ ∨ c = exit n ∨ c = (x:=e) ∨ c = if e then c1 else c2
Ψ � (Ω, (ρ; w; m), c · κ) �−→ (Ω′, (ρ′; w′; m′), κ′)

w = w′

For the extended instructions, the compiler may choose to use no rules at all
(so that it cannot hoist loads/stores across calls to functions which may contain
lock/unlock), or it may use rules that the world can only grow at a lock or shrink
at an unlock. This allows hoisting loads/stores down past lock or up past unlock.
All of these rules can be proved sound for our operational semantics.
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Our goal in this research has been to provide the compiler with this simple
and usable (and proved sound) operational semantics, which in turn is a basis
for machine-checked compiler correctness proofs that connect end-to-end (via
soundness of CSL) to correctness proofs of concurrent source programs. In future
work we hope to connect (at the top) to flow analyses that can produce safety
proofs witnessed in CSL, and (at the bottom) to formally prove that machines
with weakly consistent memory operations will correctly execute a world-aware
machine-level operational semantics that is the output of the compiler. Ideally
these should be machine-checked proofs that connect to our Coq proofs of the
CSL soundness that we have described here.

All definitions and claims have been fully machine-checked, except that the
Coq proofs for Sections 8 and 9 are incomplete; these sections have been proved
by hand at the level of rigor traditional for this conference. The concurrent and
oracle machines (excluding core C minor) are specified in 1,331 lines; the proofs
are 14,430 lines; total including sequential C minor and the sequential separation
logic soundness proofs is 42,277 lines.

Acknowledgments. We thank Peter O’Hearn and Matthew Parkinson for many
interesting and useful discussions.
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Abstract. A certificate is a mathematical object that can be used to
establish that a piece of mobile code satisfies some security policy. Since
in general certificates cannot be generated automatically, there is an in-
terest in developing methods to reuse certificates. This article formalises
in the setting of abstract interpretation a method to transform certifi-
cates of program correctness along program transformations.

1 Introduction

A certificate c is a mathematical object that can be checked automatically
against some property φ it intends to prove; certificates arise naturally in logic,
in the context of proof checking (via the Curry-Howard isomorphism) and of
result checking. Certificates are also used to carry evidence of innocuousness
of components in mobile code: in a typical Proof Carrying Code (PCC) sce-
nario [11], a piece of mobile code is downloaded together with a certificate that
shows its adherence to the consumer policy. While certificate checking is reason-
ably understood, certificate generation remains a challenging problem: while it
is possible to generate certificates automatically for properties that are enforce-
able by automated program analyses, and in particular type systems, certificate
generation remains necessarily interactive in the general case. It is therefore of
interest to develop methods that simplify the construction of certificates.

In this paper, we use the setting of abstract interpretation [8,9] to describe
a method for transforming certificates along program transformations. We pro-
vide sufficient conditions for transforming a certificate of a program G into a
certificate of a program G′, where G′ is derived from G by a semantically jus-
tified program transformation, typically a program optimization. These results
provide substantial leverage on our earlier work on certificate translation [3].

Certificate Translation. The primary goal of certificate translation is to extend
the scope of PCC to complex policies, by supporting the generation of certificates
from interactive source code verification. The scenario is of interest in situations
where the functional correctness of the downloaded code is essential, and where
certificate issues such as size or checking time are not relevant, e.g. in whole-
sale PCC, where one code verifier checks the certificate prior to distributing a
cryptographically signed version to code consumers.

Certificate translation is tightly bound to the compilation infrastructure: for
compilers that do not perform any optimization, proof obligations are preserved

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 368–382, 2008.
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(up to syntactic equality), and hence it is possible to reuse directly certificates
of source code programs for their compilation; see e.g. [4].

In contrast, program optimizations make certificate translation more chal-
lenging. In [3], we show in a simplified setting that one can define certificate
transformers for common program optimizations, provided one can infer au-
tomatically certificates of correctness for the underlying program analyses, by
means of certifying analyzers. The existence of certifying analyzers and certifi-
cate translators is shown individually for each optimization.

Comparison with our previous work. The lack of a framework in which to formu-
late the basic concepts of certificate translation was a clear limitation of our ear-
lier work, and made it difficult to assess the generality of certificate translation.
The present article overcomes this limitation: we capture the essence of certifi-
cate translation in an algebraic setting that abstracts away from the specifics of
programming languages, program transformations, and of verification methods.
In fact, our results provide a means to generate, for given verification settings
and program transformations, a set of proof obligations that guarantee the ex-
istence of certificate translators. The results of [3,4] can then be recovered by
discharging these proof obligations.

2 Certified Solutions

This section extends the basic framework of abstract interpretation with cer-
tificate infrastructures, in order to introduce formally the notion of certified
solution. Definition 7 provides a general definition of certified solution that is
of independent interest from certificate transformation, and provides a unifying
framework for existing ad hoc definitions, see Section 5. For the purpose of this
article, one can think about certified solutions as:

– programs annotated with logical assertions, and bundled with a certificate
of the correctness of the verification conditions, or;

– programs annotated with abstract values (or types), and bundled with a
certificate that the program is correct with respect to the interpretation of
the abstract values.

We view programs as flow graphs. Thus, programs are directed pointed graphs
with a distinguished set of output nodes, from which execution may not flow.

Definition 1 (Programs). A program is a pointed directed graph G=〈N, E, lsp〉,
where N is a set of nodes, lsp ∈ N is a distinguished initial node, and E ⊆N ×N
a finitely branching relation; elements of E are called edges. We let O be the set
of nodes without successors.

Throughout this section, we let G = 〈N , E , lsp〉 be a program.
The semantics of programs is specified as a transition relation between states.

Although more general definitions could be used, we choose to model states as
pairs consisting of a program point and of an environment.
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c := 1
x′ := x
y′ := y
while (y′ �= 1) do
if (y′ mod 2 = 1) then
c := c × x′

fi
done
x′ = x′ × c

Fig. 1. Fast exponentiation algorithm Fig. 2. Graph representation

Definition 2 (States, semantics). Let Env be an abstract set of environments.
The set of states is defined as State = N × Env. The semantics of program G is
given by an abstract relation �⊆ State × State.

Example. Consider as a running example (Fig. 1) a fast exponentiation algo-
rithm. Its representation as a (labeled) graph is given in Figure 2; labels are
either assignments of the form x:=e, in which case the node has exactly one
successor, or conditional statements of the form b?, in which case the node has
exactly two successor nodes, respectively corresponding to the true and false
branch of the condition.

Both the analysis and verification frameworks are viewed as abstract interpre-
tations. Note that, in contrast to standard abstract interpretation, our domains
are pre-orders, rather than partial orders1.

Definition 3 (Abstract interpretation). Let G = 〈N , E , lsp〉 be a program.
An abstract interpretation of G is a triple I = 〈A, {Te}e∈E , f〉, where

– A is a pre-lattice2 〈DA, �A, �A, �A, 	A, 
A, ⊥A〉 of abstract states. By abuse
of notation, we write A instead of DA;

– f is the flow sense, either forward (f =↓), or backward (f =↑);
– {Te}e∈E : A → A is a family of monotone transfer functions.

Thus, an abstraction of the program consists of an abstract domain, e.g. asser-
tions or types, and a set of transfer functions, e.g. weakest precondition trans-
formers.
1 A binary relation � on a set A is a pre-order if it is reflexive and transitive. A

pre-order is a partial order if it is also antisymmetric. One natural domain for the
verification infrastructure is that of propositions; we do not want to view it as a
partial order since it would later imply (in Definition 6) that any formulas φ1 and
φ2, if logically equivalent (i.e. if φ1 � φ2 and φ2 � φ1), by antisymmetry will have
the same certificates (since φ1 = φ2), which is not desirable.

2 Although it is sufficient to consider meet or join semi-lattices, depending on the
flow of the interpretation, we find it more convenient to require our domains to be
pre-lattices, since we deal both with forward and backwards analyses.
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Furthermore, for every abstract domain A, we assume that |=A⊆ Env×A is a
satisfaction relation, s.t. � is an approximation order, i.e., that for all η ∈ Env,
a1, a2 ∈ A, if |=A η : a1 and a1 � a2 then |=A η : a2. In the following, we simply
write |= omitting the subscript A.

Definition 4 (Consistency). We say that I is consistent with the semantics
of G w.r.t. |= iff for all states 〈l, η〉, 〈l′, η′〉 ∈ State such that 〈l, η〉 � 〈l′, η′〉, and
for all a ∈ A:

– if f =↓ and |= η : a, then |= η′ : Te(a);
– if f =↑ and |= η : Te(a), then |= η′ : a.

A common means to verify program properties is to consider (pre- or post-)
fixpoints of the transfer functions.

Definition 5 (Solution). A labeling S : N → A is a solution of I if

– f =↑ and for every l in N , S(l) �
�
〈l,l′〉∈E T〈l,l′〉(S(l′));

– f =↓ and for every node l in N , S(l) �
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)).

Lemma 1. Let S be a solution of the abstract interpretation I = 〈A, {Te}, f〉
and assume I consistent with the semantics of G. Then, if 〈l, η〉 �� 〈l′, η′〉 and
|= η : S(l) then |= η′ : S(l′).

In order to capture the notion of certified solution at an appropriate level of
abstraction, we rely on a general notion of certificate infrastructure.

Definition 6 (Certificate infrastructure). A certificate infrastructure for
G consists of an abstract interpretation I = 〈A, {Te}e∈E , f〉 for G, and a proof
algebra P that assigns to every a, a′ ∈ A a set of certificates P(� a � a′) s.t.:

– P is closed under the operations of Figure 3, where a, b, c ∈ A;
– P is sound, i.e. for every a, a′ ∈ A, if a �� a′, then P(� a � a′) = ∅.

In the sequel, we write c :� a � a′ or c :� a′ � a instead of c ∈ P(� a � a′).

In the context of standard proof carrying code, the underlying pre-lattice is that
of logical assertions, with logical implication ⇒ as pre-order, and the trans-
fer functions are the predicate transformers (based on weakest precondition or
strongest postcondition) induced by instructions at any given program point.
The particular form of certificates is irrelevant for this paper. It may neverthe-
less be helpful for the reader to think about certificates in terms of the Curry-
Howard isomorphism and consider that P is given by the typing judgment in a
dependently typed λ-calculus, i.e. P(φ) = {e ∈ E | 〈〉 � e : φ}, where E is the set
of expressions of the type theory. Under such assumptions, one can provide an
obvious type-theoretical interpretation to the functions of Figure 3; for example,
intro� is given by the λ-term λf. λg. λa. 〈fa, ga〉.

In the sequel, we let I = 〈A, {Te}, f〉 be a certificate infrastructure for G.

Definition 7 (Certified solution). A certified solution for I is a pair 〈S, c〉,
where S : N → A is a labeling and c = (cl)l∈N is a family of certificates s.t. for
every l ∈ N ,
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axiom : P(� a � a)
weak� : P(� a � b) → P(� a � c � b)
weak� : P(� a � b) → P(� a � b � c)
elim� : P(� c � a � b) → P(� c � a) → P(� c � b)
intro� : P(� a � c) → P(� b � c) → P(� a � b � c)
intro� : P(� a � b) → P(� a � c) → P(� a � b � c)

Fig. 3. Proof Algebra

– if f =↑ then cl :� S(l) �
�
〈l,l′〉∈E T〈l,l′〉(S(l′));

– if f =↓ then cl :�
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)) � S(l).

It follows that S is a solution for I.

Many techniques, including lightweight bytecode verification and abstraction
carrying code, do not bundle code with a full (certified) solution, but with a
partial labeling (and some certificates) from which a full (certified) solution can
be reconstructed. The remaining of this section relates the construction of a
(certified) solution from a partial labeling.

Definition 8 (Labeling). A partial labeling is a partial function S : N ⇀ A
s.t. entry and output nodes are annotated, i.e. O ∪ {lsp} ⊆ dom(S), and such
that the program is sufficiently annotated, i.e. the restriction GN\dom(S) of G to
nodes that are not annotated is acyclic. A labeling S is total if dom(S) = N .

In a partial labeling annot, annotations on entry and output nodes serve as spec-
ification, whereas we need sufficient annotations to reconstruct a total labeling
annot from the partial one.

Definition 9. [Annotation propagation, verification condition] Let annot be a
partial labeling. The labeling annot is defined by the clause:

– if f =↑, annot(l) =
{

annot(l) if l ∈ dom(annot)�
〈l,l′〉∈E T〈l,l′〉(annot(l′)) otherwise

– if f =↓, annot(l) =
{

annot(l) if l ∈ dom(annot)⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) otherwise

For every l ∈ dom(annot), the verification condition vc(l) is defined by the clause

– vc(l) := annot(l) �
�
〈l,l′〉∈E T〈l,l′〉(annot(l′)) if f =↑;

– vc(l) :=
⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) � annot(l) if f =↓.

Given a partial labeling annot, one can build a certificate for annot from certifi-
cates for the verification conditions on dom(annot).

Lemma 2. Let annot be a partial labeling for I and assume given cl :� vc(l) for
every l ∈ dom(annot). Then there exists c′ s.t. 〈annot, c′〉 is a certified solution.
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In the sequel, we shall abuse language and speak about certified solutions of the
form 〈annot, c〉 where annot is a partial labeling and c is an indexed family of
certificates that establish all verification conditions of annot.

Corollary 1. Let 〈annot, c〉 be a certified partial labeling of 〈I, P〉 and assume
I consistent with the semantics of G. Then, if 〈lsp, η〉 �∗ 〈lo, η′〉 with lo ∈ O
and |= η : annot(lsp) then |= η′ : annot(lo).

Example. The verification infrastructure to certify the running example is built
from a weakest precondition calculus over first-order formulae. That is, the back-
ward transfer functions are defined, for any assertion φ, as T〈l,l′〉(φ) = φ[e/x]
in case the node l contains the assignment x:=e, and as b ⇒ φ or ¬b ⇒ φ
respectively for the positive and negative branch of a jump statement con-
ditioned by the boolean expression b. We assume given a certificate of func-
tional correctness for the program, i.e. we assume given a certified solution
〈annot, c〉 of I = 〈A, {Te}, ↑〉, where annot (as shown in Figure 5) is the par-
tial labeling s.t. the precondition is trivial, i.e. annot(l1) = true, the invariant is
annot(l2) = c × x′y

′
= xy and the postcondition is annot(l7) = x′=xy .

3 Certifying Analyzers

The certificate transformations studied in the next section require that the an-
alyzers upon which the program transformation is based are certifying, i.e. pro-
duce certificates which justify their results. In this section, we thus provide suf-
ficient conditions under which every solution may be certified. Proposition 1
below generalizes a previous result of Chaieb [7], who only considered the case
where f =↑ and f � =↓.

Let G be a program, I� = 〈A�, {T �
e}, f �〉 be an abstract interpretation, I =

〈A, {Te}, f〉 a certificate infrastructure of program G, and γ : A� → A a con-
cretization function.

Proposition 1 (Existence of certifying analyzers). For every solution S
of I�, one can compute c s.t. 〈γ ◦S, c〉 is a certified solution for I, provided there
exist:

– for every a, a′ ∈ A� s.t. a �� a′, a certificate monotγ(a, a′) :� γ(a) � γ(a′);
– for every x ∈ A�, a certificate cons(x) :� φ(x), where φ(x) is defined in

Figure 4 according to the flows of the interpretations.

Proof. For space reasons, we only show how to construct a certificate for the
analysis in case f = f � =↓. Let hyp stand for T �

〈l′,l〉(S(l′)) � S(l) in

p1:=monotγ(hyp) : � γ(T �
〈l′,l〉(S(l′))) � γ(S(l))

p2:=cons(S(l′)) : � T〈l′,l〉(γ(S(l′))) � γ(T �
〈l′,l〉(S(l′)))

p3:=weak�(−, p1) : � γ(T �
〈l′,l〉(S(l′))) 	 T〈l′,l〉(γ(S(l′))) � γ(S(l))

p4:=elim�(p3, p2) : � T〈l′,l〉(γ(S(l′))) � γ(S(l))
cl:=intro	({p4}〈l′,l〉∈E) : �

⊔
〈l′,l〉∈E T〈l′,l〉(γ(S(l′))) � γ(S(l))
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f = f � =↓ Te(γ(x)) � γ(T �
e (x))

f = f � =↑ Te(γ(x)) 
 γ(T �
e (x))

f =↑, f � =↓ Te(γ(T �
e (x))) 
 γ(x)

f =↓, f � =↑ Te(γ(T �
e (x))) � γ(x)

Fig. 4. Definition of φ(x)

While Proposition 1 provides a means to con-
struct certifying analyzers, it is sometimes of
interest to rely on more direct methods to
generate certificates: in [3], we show how to
construct compact certificates for constant
propagation and common sub-expression
elimination in an intermediate language.

4 Certificate Translation

In this section, we provide sufficient conditions for the existence for certificate
translators, that map certificates of a program G into certificates of another pro-
gram G′, derived from G by a program transformation. Rather than attempting
to prove a general result where G and G′ are related in some complex manner,
we establish three existence results that can be used in combination to cover
many cases of interest.

In a first instance, Section 4.1 generalizes program transformations by allow-
ing G′ to contain additional nodes that arise from duplicating fragments of G,
as is the case for transformations such as loop unrolling. In a second instance,
certificate transformation as defined in Section 4.2 requires that the transformed
program G′ is a subgraph of the original program G. This is the case, for ex-
ample, when G′ is derived from G by applying optimizations such as constant
propagation or common sub-expression elimination. In a third instance, in Sec-
tion 4.3, we provide a notion of program skeleton, which abstracts away some of
the structure of the program, to deal with transformations that do not preserve
so tightly the structure of programs, such as code motion. Finally, in Section 4.4
we generalize certificate translation, covering optimizations such as dead variable
elimination.

Throughout this section, we assume given two programs: an initial program
G = 〈N , E , lsp〉 and a transformed program G′ = 〈N ′, E ′, lsp〉. Furthermore,
we assume given the required infrastructure to certify these programs; more
concretely, consider the two abstract interpretations I = 〈A, {Te}e∈E , f〉 and
I ′ = 〈A, {T ′e}e∈E′ , f〉 over G and G′, and a proof algebra P over A. Note that
the abstract interpretations share the same underlying domain and flow sense.

4.1 Code Duplication

In this section, we consider the case where some subgraphs of the initial pro-
gram are duplicated in the transformed program, with the aim to trigger further
program optimizations. Typical cases of code duplication are loop unrolling and
function inlining.

Definition 10 (Node replication). A program G+ = 〈N ∪ N+, E+, lsp〉 is a
result of replicating nodes of program G = 〈N , E , lsp〉 if N+ ⊆ {l+ | l ∈ N} and
E = {〈l1, l2〉 | 〈l, l′〉 ∈ E+ ∧ 〈l, l′〉 ∈ {l1, l

+
1 } × {l2, l

+
2 }}.
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Fig. 5. Annotated program Fig. 6. Program after loop unrolling

Let 〈I, P〉 be a certificate infrastructure with I = 〈A, {Te}e∈E , f〉. Then, we
define an extended certificate infrastructure I+ = 〈A, {Te}e∈E+ , f〉 for program
G+, the transfer functions Te for e ∈ E+ \ E being such that for all 〈l1, l2〉 ∈ E+,
with li ∈ {li, l

+
i }, T〈l1,l2〉 = T〈l1,l2〉.

Proposition 2. Assume the certificates of Fig. 7 exist for every a1, a2, b1, b2 ∈
A. Then every certified solution 〈S, c〉 for G can be transformed into a certified
solution 〈S+, c′〉 for G+, s.t. S+(l+) = S(l) for all l ∈ dom(S).

Example. Figure 6 shows the result of applying loop unrolling. Formally, it con-
sists in duplicating a subset of nodes as defined in Section 4.1. In the graph, nodes
l2, l3, l4 and l5 are respectively duplicated into the nodes l′2, l′3, l′4, l′5 and a new
subset of edges is defined accordingly. A certified labeling 〈annot+, c+〉, where
annot+(l′2) = annot(l2), is generated for the program in Figure 6, by application
of Proposition 2.

4.2 Subgraph Transformation

In this section, we assume that G′ is a subgraph of G, i.e. N ′ ⊆ N and E ′ ⊆ E .
Furthermore, we assume given an abstract interpretation I = 〈A, {Te}e∈E , f〉 of
G and a labelling S that justifies the transformation from G to G′.

Proposition 3 (Existence of certificate translators). Let 〈S, cS〉 be a cer-
tified solution for I such that for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

– if f =↑ then justif(l1, l2) : � S(l1) 	 T〈l1,l2〉(a) � T ′〈l1,l2〉(a);
– if f =↓ then justif(l1, l2) : � T ′〈l1,l2〉(a) � S(l2) 	 T〈l1,l2〉(a)

Then, provided the certificates in Fig. 7 are given for every a1, a2, b1, b2 ∈ A,
one can transform every certified labeling 〈annot, c〉 for G into a certified la-
beling 〈annot′, c′〉 for G′, where annot′(l) = annot(l) 	 S(l) for every node l in
dom(annot′) = dom(annot) ∩ N ′.
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monotT : P(� a1 � a2) → P(� T (a1) � T (a2))
distr←

(T,�) :� T (a1) � T (a2) � T (a1 � a2)

distr→
(T,�) :� T (a1 � a2) � T (a1) � T (a2)

assoc←
� : P(� a1 � (b1 � b2) � (a1 � b1) � b2)

assoc→
� : P(� (a1 � b1) � b2 � a1 � (b1 � b2))

commut� : P(� a1 � a2 � a2 � a1)

Fig. 7. Requirements for certificate translation.

Using the results of Proposition 1, Proposition 3 can be instantiated to prove the
existence of certificate transformers for many common optimizations, including
constant propagation and common sub-expression elimination. In a nutshell, one
first runs the certifying analyzer, which provides the solution S, then performs
the optimization, and finally one provides a justification justif(l1, l2) for each
edge (instruction) that has been modified by the optimization. This process is
further illustrated in the following example.

Example. Suppose that we know (e.g. from the execution context) that the pro-
gram is called with an even y; such knowledge is formalized by a precondition
y = 2×p. Then, one can consider a forward abstract interpretation that analyses
parity of variables and which variables are modified. A certifying analyzer for
such an abstract interpretation exists by Proposition 1 and will produce a certi-
fied solution 〈S, cS〉 such that S (shown inside double squared boxes in Fig. 6)
associates the assertion y = 2×p to the node l1, the assertion y′ = 2×p∧x = x′

to the nodes {l′2, l
′
3, l
′
5} and true to any other node.

Figure 8 contains an optimized version of the program of Figure 6, where jump
statements whose conditions can be determined statically have been eliminated
(nodes l′2 and l′3) and unreachable nodes have been removed (node l′4), and where
assignments have been simplified by propagating the results of the analysis (node
l′5). By Proposition 3, one can build a certificate for the optimized program, with
labeling annot′(l) = annot(l)	S(l) for all nodes l ∈ dom(annot) (in squared boxes
in the figure), provided there exists, for every a ∈ A and for every modified edge,
i.e. for every 〈l, l′〉 ∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉}, a certificate:

justif〈l,l′〉 : � y′ = 2 × p ∧ x = x′ 	 T〈l,l′〉(a) � T ′〈l,l′〉(a)

The remaining certificates justif(l, l′) for 〈l, l′〉 �∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉} are triv-
ially generated since T ′〈l,l′〉 = T〈l,l′〉.

We conclude this section with a proof sketch of the existence of certificate
transformers in the case of a backward certificate infrastructure. The idea is to
build for every l in N ′ the certificate

goal(l) : � S(l) 	 annot(l) � annot
′(l)

from which the existence of a certificate for annot′ follows. We proceed by induc-
tion, using the principle derived from the fact that annot is a sufficient annota-
tion. More concretely, one can attach to every node a weight that corresponds to
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Fig. 8. Program after optimizing
transformations

Fig. 9. Node coalescing and dead as-
signment elimination

the length of the longest path to an annotated node, i.e. a node l ∈ dom(annot).
In the base case, where l ∈ dom(annot′), the certificate goal(l) is defined trivially,
since annot

′(l) = S(l) 	 annot(l). For the inductive step, where l �∈ dom(annot′),
the proof is given in Figure 10, where the application of certificates assoc←� ,
assoc→� and commut� is omitted for readability.

4.3 Program Skeletons

Proposition 3 requires that the transformation is justified for each edge of the
program; this rules out several well known optimizations such as instruction
swapping or code motion, whose justification involves more than one instruc-
tion. To overcome this limitation, one can abandon the intuitive representation
of programs, where each edge represents one instruction, and cluster several in-
structions into a single edge. The purpose of this section is to capture formally
this idea of clustering, and use it to strengthen our basic result.

Throughout this section, we assume that N0 ⊆ N is a set of nodes such
that G|N\N0 and G′|N ′\N0

are acyclic. We define E0 = E� ∩ N0 × N0 where E�

denote the transitive closure of E . Let 〈I, P〉 be a certificate infrastructure with
I = 〈A, {Te}, f〉. The transfer functions T̂ are defined for every 〈l, l′〉 ∈ E0 and
a ∈ A as Ť〈l,l′〉(a), where Ťe is defined for every e ∈ E as:

– if f =↑,
{

Ť〈l,l′〉 = T〈l,l′〉 〈l, l′〉 ∈ E
Ť〈l,l′〉(a) =

�
{〈l,l′′〉∈E|reaches(l′′,l′)} T〈l,l′′〉(Ť〈l′′,l′〉(a)) 〈l, l′〉 �∈ E

– if f =↓,
{

Ť〈l′,l〉 = T〈l′,l〉 〈l′, l〉 ∈ E
Ť〈l′,l〉(a) =

⊔
{〈l′′,l〉∈E|reaches(l′,l′′)} T〈l′′,l〉(Ť〈l′,l′′〉(a)) 〈l′, l〉 �∈ E

where the condition reaches(l, l′) stands for the existence of a sequence of labels
l1, . . . , lk with l1 = l and lk = l′ s.t. 〈li, li+1〉 ∈ E , for all i ∈ {1, . . . , k − 1}. The
set E ′0 and the transfer functions T̂ ′ are defined in a similar fashion.

The results of the previous sections extend immediately to program skeletons.
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Let a = S(l), a′ = S(l′), T = T〈l,l′〉 and T ′ = T ′
〈l,l′〉 in:

hyp1:=monotT : P(� b1 � b2) → P(� T (b1) � T (b2))
hyp2:=distribT : P(� T (b1) � T (b2) � T (b1 � b2))

p1:=goal(l′) : � a′ � annot(l′) � annot′(l′)
p2:=hyp1(p1) : � T ′(a′ � annot(l′)) � T ′(annot′(l′))
p3:=justif(l, l′) : � a � T (a′ � annot(l′)) � T ′(a′ � annot(l′))
p5:=elim�(weak�(−, p2), p3) : � a � T (a′ � annot(l′)) � T ′(annot′(l′))
p6:=hyp2 : � T (a′) � T (annot(l′)) � T (a′ � annot(l′))
p7:=axiom : � a � a
p8:=weak�(p6) : � a � T (a′) � T (annot(l′)) � T (a′ � annot(l′))
p9:=intro�(p8, weak�(p6)) : �:� a � T (a′) � T (annot(l′))a � T (a′ � annot(l′))

p10:=elim�(weak�(p5), p9) : � a � T (a′) � T (annot(l′)) � T ′(annot′(l′))
p11:=cS

l : � a � T (a′)
p12:=elim�(p10, p11) : � a � T (annot(l′)) � T ′(annot′(l′))
p13:=weak�(p12) : � a �

�
〈l,l′〉∈E T (annot(l′)) � T ′(annot′(l′))

goal(l):=intro�({p12}〈l,l′〉∈E) : � a �
�

〈l,l′〉∈E T (annot(l′)) �
�

〈l,l′〉∈E T ′(annot′(l′))

Fig. 10. Definition of goal(l) for certificate translation (case f =↑)

Lemma 3. Let 〈S, cI〉 be a certified solution for I s.t dom(S) ⊆ N0. Then
〈Ŝ, ĉÎ〉 = 〈S, cI |N0〉 is a certified solution of Î = 〈A, T̂e, f〉.

Proposition 4. Let 〈Ŝ, ĉÎ〉 = 〈S, cI |N0〉 be a certified solution of Î = 〈A, T̂e, f〉.
Suppose that for every 〈l1, l2〉 ∈ E ′0 and a ∈ A:

– if f =↑ then justif(l1, l2) : � Ŝ(l1) 	 T̂〈l1,l2〉(a) � T̂ ′〈l1,l2〉(a);
– if f =↓ then justif(l1, l2) : � T̂ ′〈l1,l2〉(a) � Ŝ(l2) 	 T̂〈l1,l2〉(a)

Then every certified labeling 〈annot, c〉 for G such that dom(annot) ⊆ N0 can be
transformed into a certified labeling 〈annot′, c′〉 for G′, where annot′(l) is defined
as annot(l) 	 S(l) for all l ∈ dom(annot′) = dom(annot) ∩ N ′.

Example. A further simple transformation consists of coalescing the nodes l′2,
l′3 and l′5 to simplify the graph representation. Formally, we use the program
skeletons to cluster the sub-graph constituted by the nodes l′2, l′3 and l′5 into a
single node l′2. Then, we define the transfer function T̂〈l′2,l2〉 = T ′〈l′5,l2〉 (formally,
one should have T〈l′2,l2〉 = T ′〈l′2,l′3〉 ◦ T ′〈l′3,l′5〉 ◦ T ′〈l′5,l2〉 but T ′〈l′2,l′3〉 and T ′〈l′3,l′5〉 are
the identity function). Hence, by a trivial application of Proposition 4, there
exists a certified solution 〈 ˆannot, ĉ〉, for the collapsed program representation
〈N0, E0, lsp〉, s.t. ˆannot(l) = annot(l) for all l ∈ N0.

Proposition 4 can be used to prove preservation of proof obligations for non-
optimizing compilers. Indeed, non-optimizing compilation transforms a graph
representation of a program by splitting each node into a subgraph of more
basic nodes, preserving the overall program structure. Thus, one can coalesce
back the generated subgraphs into a skeleton structure similar to the source
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program. If we assume that transfer functions of the skeleton representation are
equal to those of the source program (it is not sufficient that the functions are
equivalent w.r.t. �; equality is essential), then proof obligations are preserved
and certificates can be reused without modification.

4.4 Second-Order Analysis-Based Optimizations

Proposition 3 does not cover optimizations that rely on analyses such as variable
liveness to justify their result. This motivates the following mild generalization,
in which the transformation is justified w.r.t. a composition operator.

Proposition 5. Let � : A × A → A be a composition operator s.t. for every
a1, a2, b1, b2 ∈ A there exists a certificate

monot� : P(� a1 � a2) → P(� b1 � b2) → P(� a1 � b1 � a2 � b2)

Let 〈S, cS〉 be a certified solution for I s.t. for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

– if f =↑ then justif(l1, l2) : � S(l1) � T〈l1,l2〉(a) � T ′〈l1,l2〉(a � S(l2));
– if f =↓ then justif(l1, l2) : � T ′〈l1,l2〉(a � S(l1)) � S(l2) � T〈l1,l2〉(a)

Then, provided the certificate monotT defined in Fig. 7 exist for all a1, a2 ∈
A, every certified labeling 〈annot, c〉 for G can be transformed into a certified
labeling 〈annot′, c′〉 for G′, where annot′(l) = annot(l) � S(l) for every node l in
dom(annot′) = dom(annot) ∩ N ′.

Example. Finally, we perform liveness analysis on program variables and remove
assignments to dead variables. The resulting program is given in Figure 9. The
remaining of this subsection is devoted to an explanation of the analysis, and to
a justification of the transformation.

Assuming a standard program semantics, we say that a variable is live at a
certain program point if its value will be needed in the future. An intensional
definition classifies a variable x as live at a program node l if there is a path from
l that reaches an expression referring to x, without traversing an assignment to
x. We prefer to use a more extensional interpretation of liveness, inspired by
Benton’s Relational Hoare Logic [5], identifying a declaration of a set of live
variables as a relational proposition. To this end, we generalize the abstract
domain A of the certificate infrastructure to include relational propositions. An
abstract domain A is relational if the associated satisfaction relation |=A is a
subset of (Env × Env) × A. Hence, a relational proposition will be interpreted
as a relation on execution environments. Formally, the extension consists on
partitioning the domain of variables by attaching to each of them an index 〈1〉
or 〈2〉. The set of transfer functions is also modified accordingly; for instance, the
substitution φ[e/x] corresponding to the assignment x:=e at node l, is replaced
by the substitution φ[e〈1〉/x〈1〉 ][

e〈2〉/x〈2〉 ], where e〈i〉 is the result of indexing every
variable occurring at e with 〈i〉.

Then, we define γ(X) =
∧

v∈X v〈1〉 = v〈2〉 as an interpretation of the fact that
all variables in X are live. In order to generate a certificate for the optimized
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program, we apply Proposition 5, using as composition operator over relational
propositions the function � defined as

φ � ψ = ∃x1, . . . , xk. φ[x
1
〈2〉/x] . . . [x

k
〈2〉/x] ∧ ψ[x

1
〈1〉/x] . . . [x

k
〈1〉/x]

where {x1, . . . , xk} are the set of variables in φ or ψ. The interpretation of the
composition operator is that if X declares the set of live variables, then γ(X) �φ
is the result of existentially quantifying away from φ the variables that are not
live.

By Proposition 1, we know that a certified solution 〈γ ◦ live, c′′〉 exists s.t.
live(l1) = {x, y}, live(l′2) = {x, y, c} and live(l) = {x, y, c, x′, y′} for l �∈ {l1, l

′
2}.

Since node l1 contains an assignment to variables x′ and y′ and these variables
are not live in node l′2, we may safely simplify the statement by removing such
assignments. From Proposition 5 we can transform the current certified solution
by assuming the certificate

justif(l1, l′2) : � γ(live(l1)) � T〈l1,l′2〉(φ) � T ′〈l1,l′2〉(γ(live(l′2)) � φ) .

For readability, if φ is a non-relational proposition, γ(X) � φ is equivalently de-
noted ∃y1, . . . , ym. φ where {y1, . . . , ym} = Var − X . Then, the goal of the cer-
tificate justif(l1, l′2) can be interpreted as � φ[1/c][x/x′ ][y/y′ ] � (∃x′, y′. φ)[1/c].

5 Related Work

Certified solutions. Abstraction Carrying Code (ACC) is an instance of PCC
where programs come with a solution in an abstract interpretation that can be
used to specify the consumer policy [1]. ACC is closely related to our notion
of certified solution; in fact, one may view the latter as a natural extension of
ACC to settings where the pre-order relation is either undecidable, or expensive
to compute, and where the use of certificates is required in order to check solu-
tions. Besson et al [6] have recently developed a program analysis framework in
which certificates are used to verify inclusions between elements of the abstract
domain of polyhedra. Their analysis is also an instance of a certified solution.
Rival [12,13] proposed a method to translate the result of a static analysis along
program compilation. Result validation is restricted to post-fixpoint checking,
i.e. there is no notion of certificate.

Certifying analyzers. We are aware of two previous works on certifying, or proof-
producing, program analyses. Both consider the backwards case. Seo, Yang and
Yi [15] consider a generic backwards abstract interpretation for a simple imper-
ative language and provide an algorithm that automatically constructs safety
proofs in Hoare logic from abstract interpretation results. Chaieb [7] considers a
flow chart language equipped with a weakest precondition calculus, and provides
sufficient conditions of the existence of certificates for solutions of backwards
abstract interpretations. The technique was applied in the context of a certified
PCC infrastructure [16].
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Certificate translation. Müller and co-workers [2,10] define a proof transforming
compiler for sequential Java. They consider Hoare logics for source and bytecode
programs, and transform a correct derivation for a Java program into a correct
derivation for the JVM program obtained by non-optimizing compilation.

Saabas and Uustalu [14] develop type-based methods to establish the existence
of certifying analyzers and certificate transformers. They illustrate the feasibility
of their method by explaining in detail two particular transformations: common
subexpression elimination and dead variable elimination. They demonstrate the
correctness of both transformations, by derivability of Hoare logic proofs, and
provide an algorithm to transform a Hoare proof of the original program to a
Hoare proof of the transformed program.

6 Conclusion

We have provided a crisp formalization of certificate translation in a mild ex-
tension of abstract interpretation in which solutions carry a certificate of their
correctness. Our formalization allows us to give a rational reconstruction of our
earlier work, and to establish the scalability of certificate translation. In order
to further demonstrate the benefits of our framework, we show that certificate
translation scales to concurrent languages, to relational program logics, which
have been used to prove information flow properties, and that similar techniques
can be used to justify hybrid certificates, that combine simultaneously several
verification methods.

Acknowledgments. We are grateful to David Pichardie, Tamara Rezk and the
referees for their constructive comments. This work is partially supported by the
EU project MOBIUS.
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Abstract. In an optimistic approach to security, one can often simplify protocol
design by relying on audit logs, which can be analyzed a posteriori. Such auditing
is widely used in practice, but no formal studies guarantee that the log informa-
tion suffices to reconstruct past runs of the protocol, in order to reliably detect
(and provide evidence of) any cheating. We formalize audit logs for a sample op-
timistic scheme, the value commitment. It is specified in a pi calculus extended
with committable locations, and compiled using standard cryptography to imple-
ment secure logs. We show that our distributed implementation either respects
the abstract semantics of commitments or, using information stored in the logs,
detects cheating by a hostile environment.

1 A Cautiously Optimistic Approach to Security

Mutual distrust in distributed computing makes enforcing system-wide security assur-
ances particularly challenging. Common protocols perform an important number of
mandatory runtime checks and allow only legal computations to progress: in session-
establishment protocols, for instance, a strong security invariant is usually enforced at
every step of the run of the protocol. These runtime checks have a cost, in terms of
cryptographic and networking operations; they may also conflict with other goals of the
protocol, such as confidentiality.

A different approach, which we call optimistic, presumes instead that all involved
principals are honest and well-behaved, and thus omits some runtime checks. Traces of
protocol runs are stored in a secure log and can be used a posteriori to verify the compli-
ance of each principal to its role: principals who attempt non-compliant actions will be
blamed using the logged evidence. The security invariant is weaker than those achieved
by more conservative protocols, but adequate for many non-critical applications.

Some protocols inherently rely on logs to establish their security properties. These
protocols are often based on a commitment scheme. A principal commits to a value
kept hidden; other principals of a system cannot read this value, but have a procedure
to detect any change to the value after the commitment. Distant coin flipping is a sim-
ple protocol that illustrates commitments: suppose that A and B are not physically at
the same place and want to toss a coin. Both A and B flip their own coin, exchange
commitments on their results, then reveal and compare these results; A wins the toss
if the two results are the same. For fairness, A’s commitment should neither reveal any
information to B, nor enable A to change her committed result after receiving B’s.

Commitment is a building block for many protocols such as mental poker [3], sealed
bid auctions, e-voting [6,5], and online games [12]. For instance, mental poker relies

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 383–397, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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on commitment to build a fair shuffling of the deck, then gradually reveal cards as the
game proceeds. At the end of the game, the deck permutations used by each player can
be revealed for auditing purposes.

Secure logging is not only an essential component of optimistic schemes, but is also
widely used in standard practice. Much research effort has been devoted to techniques
for implementing logs so as to guarantee properties such as correctness, forward in-
tegrity, and forward secrecy [15,18,17]. Still, which data should be logged? and why?
Between general recommendations such as “an audit trail should include sufficient in-
formation to establish what events occurred and who (or what) caused them” [14,11]
and efficient implementation techniques, we are not aware of any formal studies that
characterize and verify the security properties achieved by protocols relying of logs.

In this paper, we give a formal answer to this question for the commitment scheme.
We extend a simple distributed language, the applied pi calculus [1], with commitment
datatypes and primitives, and we illustrate this extension by programming an online
game. To abstract away from the possible misbehaviors of the environment, we propose
a trustful and strong operational semantics for our commitment primitives. We show
that our language can be compiled to the applied pi calculus, using standard crypto-
graphic primitives, with adequate protection against an arbitrary, possibly hostile envi-
ronment. We obtain an important security property stating that, for any source systems,
our distributed implementation either respects the semantics of commitments or, using
information stored in the logs, detects (and proves) cheating by a hostile environment.

Related work. Value commitments appear in formal models of protocols (e.g. [13])
and implementations of language abstractions (e.g. [19]). More closely related to our
work, Etalle et al. [10,4] advocate the usage of logs for optimistic security enforce-
ment. They formalize audit-based discretionary access control in collaborative work
environments, and develop a logical framework for user accountability; they also de-
sign cryptographic support for communication evidence in a decentralized setting [8].

Contents. Section 2 presents our source language with value commitment. Section 3
illustrates the use of commitment for programming online games. Section 4 describes
the language implementation, as a cryptographic translation to the applied pi calculus.
Section 5 develops a labeled semantics and an extended translation to keep track of
source-program invariants. Section 6 states our main results. Section 7 reports on our
prototype implementation. Section 8 discusses future work.

Additional details appear online, at http://www.msr-inria.inria.fr/
projects/sec/logs, including complete definitions for the source and target se-
mantics and all proofs.

2 A Language with Value Commitment

The applied pi calculus is a process language parametrized by an equational theory on
terms, which provides flexible support for modeling symbolic cryptographic primitives
and data structures. We refer to [1] for a general presentation of its semantics.

To express the value commitment scheme, we extend an instance of applied pi with
committable cells. The grammar for terms (M, V ), processes (P ), and systems (A) is
given below. Our extensions to the standard syntax appear in grey boxes .

http://www.msr-inria.inria.fr/projects/sec/logs
http://www.msr-inria.inria.fr/projects/sec/logs
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M , V ::=
| u
| func (M̃ )

| u.Idu

| u.Idc(p)

| u.Rd(p M )

P ::=
| 0
| P1 |P2

| ν c .P
| u?(x).P
| u!〈M 〉.P
| if M = M ′ thenP else P ′

| repl P
| newloc (x , y).P

| commit M u (x).P

A ::=
| 0
| A1 | A2

| ν u . A
| {M / x }
| p[P ]

| u.(p)

| u.(p M )

Terms are built from variables (denoted x, y, . . .), names (denoted c, l, s, . . .), func-
tion applications, and capabilities (described below). We assume that functions include
at least a pairing function, denoted +, with associated projections +1, +2 and equations
+i(x1+x2) = xi for i = 1, 2. (Our results extend to arbitrary data structures; we use
integer constants in examples.) The metavariable u ranges over names and variables.
Among names, we distinguish the set of principals, denoted p, a, e, and the set of lo-
cation names, ranged over by l. Contrarily to standard applied pi, each process P runs
under the control of a principal p, denoted p[P ].

Committable cells and capabilities. A cell is a memory location owned by a principal
who can, once, commit its content to a value of its choice. In addition, the owner can
pass capabilities to other principals, thereby granting these principals partial read access
to the cell.

Our language features three kinds of capabilities. The read capability l . Rd (p M) is
created by the owner p of the location l when it commits to a value M . Any principal can
use a read capability to read the content of the location associated to the capability. The
identity capabilities instead partially disclose the state of a cell without actually reveal-
ing the value possibly committed. So the committed id capability l . Idc (p ) proves that
the location l is committed and reveals the owner p of the location. The uncommitted id
capability l . Idu just asserts the identity l of the location.

The language of terms is sorted: we distinguish marshallable values, that include all
the terms except location and channel names, and committable values, that include all
marshallable values except those that mention committed id and read capabilities.

The state of each committable cell is represented by a process: l .(p ) denotes an
uncommitted cell named l owned by p; l .(p M ) denotes the same cell once it has been
committed to the committable value M . Two new kinds of processes manipulate cells.
The newloc process creates a fresh, uncommitted location and binds both its unique
identifier l (from L) and its uncommitted capability in its continuation:

a[newloc (x , y).P ] −→ ν l . (l .(a ) | a[P{l/x}{l . Idu/y}])

where l is fresh for P . The unique identifier l can then be used to commit an uncom-
mitted cell to some committable value M :

l .(a ) | a[commitM l (x ).P ] −→ l .(a M ) | a[P{l . Rd (a M)/x}]

The commit process yields a read capability for the newly-committed cell. The sort sys-
tem does not allow to communicate or store in another location the cell name l: hence,
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only the principal that created the cell can commit a value into it. The abbreviation
newcommit creates a new committed location (where x′, x′′ are fresh for P ):

p[newcommitM (x ).P ] def= p[newloc (x ′, x ′′).commitM x ′ (x ).P ]

Capabilities can be communicated over channels; they can also be manipulated using
special functions, according to the equational theory below.

read(x . Rd (p v)) = v get idc(x . Rd (p v)) = x . Idc (p )
get idu(x . Idc (p )) = x . Idu get prin(x . Idc (p )) = p

is idu(x . Idu) = ok is idc(x . Idc (p )) = ok is rd(x . Rd (p v)) = ok

The read function yields the value from read capabilities. Since the read capability is
generated when committing the cell, the semantics of the source language guarantees
that all reads for a given cell always return the same value. The get prin function yields
the principal that owns the cell from committed capabilities. (We could also provide
get prin from uncommitted capabilities, at some additional cost in the cryptographic
implementation.) The get idu and get idc functions downgrade capabilities, yielding
a more restrictive capability for the same cell. Hence, get idu yields an uncommitted
capability, which can be used only to identify the cell, whereas get idc takes a read
capability and hides its committed value. The language finally has functions that support
dynamic typechecking of capabilities. In particular, is idc(x) = ok or is rd(x) = ok
implies that the cell associated with x is committed.

3 Example: An Online Game

Our example describes a game run by a server a0, between n players a1, . . . , an. The
game is played in one turn, with all players revealing their moves simultaneously. (A
simple instance of the game with n = 2 is Rock, Paper, Scissors.) The players and
the server are willing to cooperate, but with minimal trust assumptions between them;
however, it is deemed sufficient to detect any dishonest principal at the end of the game.
Similar examples include multiparty protocols for online auctions, voting, or partial-
information games [16,3,6].

The protocol has three exchange rounds between the server and each player, using
channels ci for i = 1..n: (1) the server sets up the game, distributes the details to the
players, and collects their sealed moves; (2) the server distributes all the players’ sealed
moves and collects their actual moves; (3) the server distributes the result of the game.

We begin with the server code, given below. For simplicity, the code does not provide
any error handling—execution stops when a test fails.

A0 = a0[newloc (l, resultid).newcommit resultid +details (challenge).(
ci !〈challenge〉.ci?(promisei ).if get prin(promisei) = ai then

)
i=1..n

newcommit challenge+ ˜promise (game).(
ci !〈game〉.ci?(movei ).if get idc(movei) = promisei then

)
i=1..n

commitwinner(m̃ove, challenge) l (result).
(
ci !〈result〉.0

)
i=1..n

]
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In round (1), the server creates an uncommitted cell l for storing the outcome of the
game, and a readable cell challenge that provides the identifier for l and the (unspec-
ified) details of the game. Upon receiving each player’s response, the server authenti-
cates it as a committed capability from that player. In round (2), the server creates a
second committed cell that binds the challenge to the received commitments from all
players. Upon receiving each player’s second response, the server correlates it as the
read capability associated with their first response. In round (3), the server has all the
players’ information: it resolves the game and finally commits the cell l to the pub-
lished result of the game (which may include, for instance, selected information from
the players’ moves). We omit the code for the function winner that computes this result.

The code for the players performs symmetric operations:

Ai = ai [ci?(challenge).if get prin(get idc(challenge)) = a0 then
newcommit zi (movei ).ci !〈get idc(movei)〉.
ci?(game).if valid game ( game , challenge , movei ) then

ci !〈movei 〉.ci?(resulti).if no cheat ( resulti , read(game) ) thenPi ]

In round (1), after receiving the challenge, each player confirms its validity, for instance
by checking that it is a genuine readable capability from a0, then it selects a move and
sends back its commitment. In round (2), after receiving all commitments, the player
correlates them to the challenge and verifies that its own commitment is recorded (using
for instance valid game) then it releases its move in clear. In round (3), the player checks
the outcome of the game and verifies a posteriori that the server followed the rules
(using for instance no cheat). The tests are defined as follows:

valid game ( x1 , x2 , x3 ) def= +1(read(x1)) = x2 and get idc(x3) ∈ +2(read(x1))
no cheat ( x , y ) def= get idu(get idc(x)) = +1(y) and get idc(x) ∈ +2(y)

Guarantees offered to the players. We distinguish language level guarantees, en-
forced by the abstract semantics of locations, and application level guarantees, relying
on high-level, application-specific checks on top of the language semantics. For each
kind of guarantees, we also distinguish between immediate (conservative) and deferred
(optimistic) enforcement. For instance, enforcement may be deferred until the content
of a cell becomes readable.

As an illustration of immediate language-level checks, committed values offer basic
authentication guarantees to the participants. For instance, each player has the privi-
lege to choose its moves, and the move is securely attributed to the player even if the
communication channels ci are unprotected; participants can also check this attribution
later.

To protect application integrity, the code must perform sufficient checks before pro-
ceeding with the game. Systematic testing of the owner identities for the received capa-
bilities avoids unauthorized, possibly non-accountable, participants. Some checks are
immediate, e.g. testing if two capabilities are associated to the same location; other
checks that depend on the commitment semantics are delayed. In the example, play-
ers are guaranteed that they all get the same result (if any) for any given game, since
they must get the same location read capability, but it is up to the application code to
correlate the received read capability to the initial uncommitted capability.
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At the same time, the applicative logic of our protocol guarantees that, even if the
server is willing to leak information to the other players, those players cannot get that
information before committing to their own moves.

4 Distributed Cryptography Implementation

The target language is an instance of applied pi, with standard (symbolic) cryptographic
primitives and data structures but without ad-hoc rules or constructs for locations.

We rely on a cryptographic hash function, denoted h, and a public-key signature
mechanism satisfying the equation verify(v , sign(v , sk(m)) , pk(m)) = ok. The func-
tions sk(m) and pk(m) generate a pair of secret/public keys from a nonce m. All other
data constructors admit a projection function funci(func(x1 , ... , xn)) = xi .

To every principal p, we associate a keypair and export its public key tagged with
constructor prin using an active substitution of the form { prin(pk(mp)) / p }.

Cryptographic implementation of capabilities. We compile the capabilities associ-
ated to a location l .(p V ) as follows:

l . Rd (p V) rd(p , s , [[V ]] , w)
l . Idc (p ) idc(p , h(s) + h(s + [[V ]]) , w)
l . Idu idu(h(p + h(s)))

where p = prin(pk(mp)) is the owner’s public key, s is a fresh value used as a seed, and
w = sign(h(s) + h(s + [[V ]]) , sk(mp)) signs the committed value [[V ]].

A read capability is a tagged tuple that includes these elements. A committed id ca-
pability is a tagged tuple that provides p and verifiable evidence of the commitment
without actually revealing [[V ]]. To this end, it includes both a hash of the committed
value, first concatenated with the seed s, to protect against brute force attacks, yielding
h(s + [[V ]]), and the hash h(s), to enable the receiver to correlate the owner and signa-
ture with a previously-received uncommitted id capability by recomputing the identifier
h(p + h(s)). An uncommitted id capability just includes this unique location identifier,
which may be compared to other capabilities and, later, associated with p and s. The
receiver can compute committed capabilities from read capabilities, and uncommitted
capabilities from committed capabilities, but not the converse.

The signature w authenticates read and committed id capabilities, binding their con-
tent to the owner’s key sk(mp). Their receiver can extract p and h(s) + h(s + [[V ]]) from
these tagged tuples and use them to verify w. When the signature is valid, the public
key identifies the owner of the location associated to the capability.

Detection of multiple commitments. In a typical run, an honest principal receives a
commitment to some value from the principal p, say idc(p , v1 + v2 , w), and later the
value itself, say rd(p , s , z , w ′). The receiver can easily check that the two capabilities
refer to the same location, by testing h(s) = v1, and verify the two signatures w =
sign(v1 +v2 , sk(mp)) and w′ = sign(h(s)+h(s + z) , sk(mp)). If these tests succeed, then
the receiver can check whether v2 = h(s + M): if the test fails, the principal p can be
convicted of multiply committing the location identified by h(p + h(s)).
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In preparation for the translation, we introduce functions that operate on tuples rep-
resenting capabilities in the target language. For instance, the function read implements
source-language reads as a projection, and check idc verifies the seal of committed ids.

read(x) def= rd3(x)
get idc(x) def= idc(rd1(x) , h(rd2(x)) + h(rd2(x) + rd3(x)) , rd4(x))

check idc(x ) def= verify(idc2(x) , idc3(x) , prin1(idc1(x))) = ok

get idu(x) def= idu(h(idc1(x) + (+1 idc2(x))))

In general, inconsistent capabilities may be scattered in the whole system. To detect
such inconsistencies and reliably blame cheating principals, a compiled system logs all
the committed capabilities generated or received by honest principals by sending them
over the channel log to the following resolution process R:

R = repl log?(y1).log?(y2).
if check idc(y1) and check idc(y2) then

if get idu(y1) = get idu(y2) and idc2(y1) �= idc2(y2) then bad !〈get prin(y1)〉
This resolution process repeatedly reads pairs of Idc capabilities over the log chan-
nel and tests them for inconsistencies, as described above. If cheating is detected, the
principal is blamed on channel bad. The resolution process acts as an external judge
auditing the compiled system, and the data sent over the channel log as a secure audit
trail. Since all messages on log are replicated, log entries cannot be erased or modified
by a malicious principal, and every principal may run its own copy of process R. At the
same time, a malicious principal cannot forge capabilities that would accuse an honest
principal, as it cannot produce a valid seal associated with the honest principal.

Translation of initial configurations. Protocol descriptions can be expressed as initial
configurations of a source system that do not contain, or refer to, locations and capabil-
ities; these are created later, during the run of the protocol. We describe the translation
of such configurations; a full treatment of capabilities and locations is deferred to Sec-
tion 5. Our translation is a homomorphism over terms and over most systems.

[[x ]] = x [[c]] = c [[func(M1 , ... , Mn)]] = func([[M1]] , ... , [[Mn ]])

[[[A]]] = [[A]] | R | E [[a[P ]]] = ν ma . ([[P ]]a | { prin(pk(ma)) / a })

[[A1 | A2]] = [[A1]] | [[A2]] [[ν u .A]] = ν u . [[A]] [[{ M / x }]] = { [[M ]] / x }
Let A the set of principals running a process in the system and E the set of other

(possibly dishonest) principals whose names occur in the system (E = P ∩ fn(A) \ A).
For each principal a ∈ A, the translation creates a secret seed ma used to generate

the pair of secret/public keys of the principal. The public key is published using an ac-
tive substitution, while the process run by the principal is compiled within the scope of
the private seed ma used for signing. Similarly, the translation includes active substi-
tutions E =

∏
e∈E({ prin(pk(me)) / e } | {He / me }) that records, for each principal

e ∈ E , a public key pk(me) and an associated secret He. The translation also spawns a
replicated resolution server R.

The translation of processes is given next. (We omit the homomorphic clauses for 0,
P1 |P2, replP , and ν c .P ).
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[[newloc (x , y).P ]]a = ν s ′
l . ν cl . (cl !〈None〉 | [[P ]]a {cl/cx } {s′

l/sx } {idu(h(a+h(s′
l)))/y})

[[commit V x (x ′).P ]]a = cx ?(y).([[P ]]a | repl log !〈idc(a , vx , wx)〉)
{h(sx)+h(sx+[[V ]])/vx } {sign(vx , sk(ma))/wx } {rd(a , sx , [[V ]] , wx)/x ′}

parse x P =

if is rd(x) = ok then
if check idc(get idc(x)) then parse read(x) (P | repl log!〈get idc(x)〉) else r !〈None〉

else if is idc(x) = ok then if check idc(x) thenP | repl log !〈x〉 else r !〈None〉
else if is prin(x) = ok or is idu(x) = ok thenP

else if is pair(x) = ok then parse (+1 x) (parse (+2 x)P) else r !〈None〉

[[c!〈M 〉.P ]]a = c!〈[[M ]]〉.[[P ]]a

[[c?(x).P ]]a = ν r . (c?(x).parse x [[P ]]a | repl (r?( ).c?(x).parse x [[P ]]a ))

[[if M = M ′ thenP1 elseP2]]a = if [[M ]] = [[M ′]] then [[P1]]a else [[P2]]a

The translation of newloc creates a fresh location seed s′l and a local channel cl (with
a message None, recording that the location is uncommitted), and substitutes cl for cx,
s′l for sx and the idu capability for y in the continuation.

The translation of commit can proceed only if the location has not been previously
committed (the message on cx provides mutual exclusion); it then substitutes the rd
capability for x′ in the continuation code. It also generates the corresponding idc capa-
bility for the location and logs it by sending it to the resolution protocol.

The parse function filters any received value received over channels. If the value is
tagged with rd or idc, then it might (or not) be a valid capability, depending on the
validity of its embedded signature: valid capabilities are passed to the continuation,
while the associated idc is sent to the resolution protocol. If the value is tagged as
a principal or an uncommitted capability, it is always passed to the continuation. For
compound data, here pairs, each element is separately parsed. Other values, as well as
non-valid committed capabilities, are silently discarded. In the translation of an input,
we assume that the channel r is fresh for [[P ]]a , and use this channel to loop after
discarding such values.

5 Model and Translation of Environment Interactions

We define a labeled source semantics that explicitly captures all possible interactions
between a system composed of honest principals and an abstract environment com-
posed of potentially hostile principals. To maintain the committable-cell invariants, this
semantics keeps track of the capabilities exported to the environment and of the partial
knowledge acquired when receiving capabilities from the environment. We then extend
our translation from initial configurations to any such reachable configuration.

Extended location states and capabilities. We use overlapping syntaxes for capa-
bilities appearing in values, in transition labels, and in the processes representing the
state of the cells. Their general form is l . Cap ( [ p ] [H ] [V ] ), where l is the loca-
tion identifier; Cap ∈ {0, Idu, Idc, Rd} is a capability tag; p is a principal name; H
ranges over terms of the target language; and V is a value of the source language.
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(This syntaxes extend those given in Section 2 for capabilities and location states, with
l .(a M ) = l . 0 (a M)). The fields p, H , and V are optional. The presence of a value V
indicates that the location is committed to this value. The term H plays no role in the
source language, but is technically convenient in its translation: it enables us to repre-
sent any reachable state of our implementation as the translation of a source system.

The interpretation of Cap depends on the principal p that owns the location. If a
location is owned by a ∈ A, then Cap represents the most permissive capability sent to
the environment (and H is omitted), with Cap = 0 when no capabilities have been ex-
ported so far. If a location is owned by e /∈ A, then Cap represents the most permissive
capability received from the environment (and H records some opaque cryptographic
value in its received representation).

Ordering capabilities. We formalize the notion of “more permissive capability” by
defining a preorder � on capabilities. Intuitively, C � C ′ holds if C and C′ have
compatible contents and C can be derived from C′ using the equational theory. We also
introduce a special capability ⊥ that represents the absence of knowledge on a location.
The order is defined by the axioms below:

⊥ � 0 ct 0 ct � Idu ct Idu fu (ct) � Idc ct Idc fc (ct) � Rd ct

Cap (p H ) � Cap (p H V)

where ct is any fixed contents and fu and fc are fixed functions that rewrite H in ct.
We write C �C ′ for the sup of C and C′ with respect to �, when it exists.

Normal form. We say that a system is in normal form when it is of the form

S = νN
(∏

l∈L l .Cl |
∏

a∈A a[Pa] | φ
)

for some finite sets of names N , L, and A and active substitutions φ. Every initial
configuration can be written in normal form (with L = ∅) using structural equivalence.
A system S is well-formed when it is structurally equivalent to a normal form such that
if l is a location name within S then l ∈ L and l occurs only

1. in terms l.C such that: (a) if get prin(l . Cl) ∈ A, then C and Cl are owned by the
same principal and if C has a value, then Cl has the same value; and
(b) if get prin(l . Cl) /∈ A, then C � Cl (informally, for a cell owned by the envi-
ronment, the system cannot have capabilities more permissive than those received);

2. in subprocesses commitM l (x ).P of Pa when a = get prin(l . Cl);
3. in N when get prin(l . Cl) ∈ A and Cl = 0 ct .

In the labeled semantics below, we require that the initial and final systems and the
label be well-formed. We define labeled transitions A α−→ A′ between source systems
on top of an auxiliary relation C

γ−→ C′ between capabilities.

Labeled transitions on capabilities. Input/output actions with the environment can
affect the state of memory cells. To model these updates compositionally we define a
labeled transition semantics between capabilities.
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C !C ′
−−→ C �C ′

C ′ � C prin(C ′) ∈ A
C ?C ′

−−→ C

prin(C ′) /∈ A
C ?C ′

−−→ C �C ′

The label ! C′ records that the capability C′ is exported to the environment: the outcome
of the transition C�C ′ is an updated record of the most permissive exported capability.
The label ? C′ records that the capability C′ is imported from the environment. There
are two import rules, depending on the owner of C′. If the owner is in A, then the capa-
bility refers to a location which is part of the system, so the environment can send back
at most capabilities that can be derived from those exported by the system, hence the
C ′ � C condition. On the contrary, if the owner is not in A, the environment can send
any capability, provided that the capability is compatible with the partial knowledge
that the system already has, i.e. that C �C ′ exists.

Labeled transitions on systems. The labeled semantics for systems is adapted from
the one for the applied pi calculus. We point out the novelties, and refer to the compan-
ion paper for the full semantics.

The labeled semantics has silent steps for all system reductions, including the location-
specific reductions described in Section 2. The axioms for input and output are recalled
below. (We refer to [1] for a discussion of admissible output values when the equational
theory includes cryptographic primitives.)

a[c!〈M 〉.P ] c !M−−−→ a[P ] a[c?(x ).P ] c?M−−−→ a[P{M �

/x}]

When a capability is received, the rule substitutes in a capability value M � obtained
from the capability label M by erasing information used only to update the cell state.

The context rules below ensure that the communication of capabilities is reflected in
the state of the cells of the system; the condition l.C in M checks whether the cell l.C
occurs in the transmitted capability (possibly within another capability).

A c !M−−−→ A′ C0
!C−−→ C1 l .C inM

l .C0 | A c !M−−−→ l .C1 | A′
A c?M−−−→ A′ C0

?C−−→ C1 l .C inM

l .C0 | A c?M−−−→ l .C1 | A′

A α−→ A′ l .C not inα

l .C0 | A α−→ l .C0 | A′

We equate l . ⊥ | A to A, so that the input rule covers the case of an input carrying
fresh, unknown locations from the environment. (The resulting configuration must be
well-formed, which excludes the introduction of a fresh location state for l if one al-
ready exists in the system.) We impose the following well-formedness conditions on
labels: (1) in every label, a location name occurs at most in a single, well-formed ca-
pability, plus possibly in the label restriction—this excludes e.g. pairs of simultaneous,
incompatible commitments; and (2) the target term H , the principal in uncommitted
capabilities, and the value in committed capabilities, appear iff the transition is an input
and the capability is owned by e /∈ A.

Example of transitions in the source language. Consider the third round of the game
of Section 3, with two honest players a1 and a2 and an external, untrusted principal
e0 /∈ A running the server. A simplified configuration of this system can be written
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A′ = l . Idu (e0 H ) | a1[c1?(x1).P1] | a2[c2?(x2).P2]

where l is the uncommitted cell pre-allocated by e0 to store the winning move. (Here
H = h(e0 + h(s)) for some secret s created by e0.) We have possible input transitions
on channels c1 and c2, to notify the winning move to each of the players. The first
transition may be:

A′
c1?l . Rd (e0 s 11)−−−−−−−−−−→ l . Rd (e0 s 11) | a1[P1{l . Rd (e0 11)/x1}] | a2[c2?(x2).P2]

which triggers the final process P1 with a read capability for l substituted for x1, car-
rying the game result (here 11). At the same time, the state for l is updated by the third
capability-transition rule, since Idu (e0 H )�Rd (e0 s 11) = Rd (e0 s 11). Conversely,
for instance, transitions with a label that attributes l to a1 instead of e0 are disabled.
At this stage, the configuration records the commitment on l, so the only subsequent

input transition A′′ c2?l . C ′
−−−−−→ A′′′ carrying a read capability C′ for l must be such that

Rd (e0 s 11) � C ′ (by the third capability-transition rule), that is, C′ = Rd (e0 s 11).
This guarantees that the second player gets exactly the same result as the first one.

Relating the reduction-based and labeled semantics for the source language. The
labeled semantics precisely characterizes the interactions between a system and an ar-
bitrary environment. Given two systems A and E consisting of principals in A and E ,
respectively, if E | A −→∗ S then there exist two such systems A′ and E′ and transi-

tions A
φ−→ A′ such that S ≡ νN .(E′ | A′), where N is the set of names exported in

the labels of φ. Conversely, for all systems A and transitions A
φ−→ A′, there exists a

system E′ and reductions E | A −→∗ νN .(E′ | A′).

Translation of extended location states and capabilities. We extend the translation of
Section 4 to cover all configurations reachable by transitions from initial configurations.
This extended translation is inductively defined for all well-formed configurations in
normal form, using the clauses of Section 4 plus the rules below for location states and
capabilities.

We extensively rely on active substitutions [1] with the following naming conven-
tions: for a location l, cl denotes the local channel that contains the state of the location,
sl the secret seed, vl the hidden value, and wl the seal. We define two extended pro-
cesses that compute and log identifiers, commitment values, and seals for a location
owned by a given principal p using active substitutions.

ϕ(M1,M2)p = { h(p + M1) / l } | ς(M1,M2)p
ς(M1,M2)p = {M1 + M2 / vl } | { sign(vl , sk(mp)) / wl } | repl log !〈idc(p , vl , wl)〉

We first translate locations owned by honest principals a ∈ A. The translation imple-
ments these locations by sending the location state on the local channel cl, activating the
relevant substitutions, creating a fresh secret and, for committed locations only, running
a replicated log entry:

[[l . 0 (a )]] = [[l . Idu (a )]] = cl !〈None〉 | { h(a + h(sl)) / l } | ν s . { s / sl }
[[l . 0 (a V)]] = [[l . Idc (a V)]] = [[l . Rd (a V)]] = ϕ(h(sl), h(sl + [[V ]]))a | ν s . { s / sl }
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We also translate locations owned by principals e /∈ A whose capabilities have been
previously received by some principals in A. The translation records partial knowledge
of these locations, in the form of active substitutions plus, for committed locations only,
a replicated log entry. The form of the terms in these substitutions reflect the test that
processes in A have successfully performed before accepting these values, e.g. that the
seal is well-formed signature from e.

[[l . Idu (e H )]] = {H / l }
[[l . Idc (e (M ′ + M ′′ )V)]] = ϕ(M ′,M ′′)e
[[l . Rd (e M V)]] = {M / sl } | ϕ(h(M), h(M + [[V ]]))e

In a well-formed system, there is a location state for every capability that occurs in
the system. Accordingly, the translation of capabilities relies on the active substitutions
introduced by the translation of location states, as follows:

[[l . Idu]] = idu(l) [[l . Idc (p )]] = idc(p , vl , wl) [[l . Rd (p V)]] = rd(p , sl , [[V ]] , wl)

The compilation of each location state l .C introduces name cl and variables sl, vl,
wl, l whose visibility from the environment depend on the exported capability recorded
in C. Thus, our translation finally introduces the following top-level restrictions: for
every location, if no capability have been exported, all these names and variables are
restricted; if C has tag Idu, the identifier l is unrestricted. for locations owned by prin-
cipals in A; if C has tag Idc, the variables wl and vl are also unrestricted; if C has
tag Rd, only the channel cl is restricted.

Example of transitions in the target language. Let us consider how our translation
operates on the following transition, which represents player a1 receiving the result of
the game from server e0 (with H = h(e0 + h(s))).

l . Idu (e0 H ) | a1[c1?(x).P1]
c1?l . Rd (e0 s 11)−−−−−−−−−−→ l . Rd (e0 s 11) | a1[P1{l . Rd (e0 11)/x}]

The translated system {H / l } | [[[a1[c1?(x ).P1]]]] simulates the source transition by
an input with label c1 ? ( rd(e0 , s , 11 , sign(h(s) + h(s + 11) , sk(me0))) ), followed by a
series of reductions through the code of parse, including dynamic checks on is rd and
check idc. In 6 silent steps (including 3 steps for recursive processing of value 11), this
yields the process

{H / l } | [[a1[P1]]]{rd(e0 , s , 11 , sign(h(s)+h(s+11) , sk(me0)))/x}
| repl log !〈get idc(x)〉 | ν r . (repl r?( ).c1?(x ).parse x [[P ]]a) | R | E.

After applying structural equivalence with active substitutions and eliminating the dead
loop on channel r, we obtain a system

ν sl . ν vl . ν wl . ({ s / sl } | ϕ(h(sl), h(sl +11))e0 | [[a1[P1]]]{rd(e0 , sl , 11 , wl)/x}) | R | E

that matches the translation of the resulting source system above.
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6 Correctness Results

The first proposition states that the behavior of every source system can be simulated by
its translation. That is, for any labeled trace of all source systems, there is a labeled trace
of the process resulting from its translation. This shows the correctness (or functional

adequacy) of our translation. We let
φ−→ (resp.

ψ−→) range over series of transitions in the
labeled semantics of the source (resp. target) language.

Theorem 1 (Functional adequacy). Let A be a well-formed source system.

For all series of transitions A
φ−→
∗

A′ , there exist transitions [[[A]]]
ψ−→
∗

[[[A′]]].

The proof of the theorem is by induction on a series of source transitions between
systems in normal forms. For each source transition, we exhibit target transitions that
commute with the translation.

The “upwards” direction is more challenging: the trace produced by the translation
of a source process A can be related to a trace produced by A unless its translation emits
the name of a cheating principal on the special channel bad . This property uniformly
guarantees the security of the translation of all systems with respect to the source seman-
tics, provided that a proof that a principal cheated is a reasonable exceptional outcome
for the other principals.

We let S −→∗D S ′ denote that a target system S goes to S′ with a (possibly empty)

series of silent deterministic transitions, and let S ⇓ M abbreviate S −→∗D
bad!M−−−−→ S ′

for some S′; we then say that M is blamed.

Theorem 2 (Security). For all transitions [[[A]]]
ψ−→
∗

S starting from a well-formed
source system A, we have

1. either there are source transitions A
φ−→
∗

A′ leading to a well-formed source sys-
tem A′ such that S −→∗D [[[A′]]]; or S ⇓ e for some e /∈ A;

2. if S ⇓ M , then M /∈ A.

The proof is by induction on the series of transitions in the target language that do not
trigger a blame. The first part of the theorem states that either the source semantics is
respected, or the implementation at least provides the honest participants with the name
of one dishonest principal to blame. Said otherwise, its statement excludes the possi-
bility of cheating without eventual detection. The second part of the theorem expresses
that honest participants are never blamed (even in the case some dishonest participants
cheat), a necessary property for any optimistic implementation.

The form of our theorem differs from security properties for other programming
abstractions (e.g. [7,2]), where any run or labeled trace of the cryptographic implemen-
tation of a source program is related to a run or labeled trace of the program on the
source level. Reflecting a more flexible approach to security, it enables bad runs as long
as malicious principals are reliably detected and blamed.

We illustrate how the Resolution protocol and the verifications made by the transla-
tion of receive suffice to detect write-after-commit attacks. Consider the online game
example and suppose that a1, a2 ∈ A and e0 /∈ A, that is, the server implementation
is malicious. In particular, the server implementation may commit location l twice, to
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convince a1 that he is the winner with his bid 11 and a2 that he is the winner with his
bid 8. The system composed by the translation of the two clients [[[A1 | A2]]] generates
a trace

[[[A1 | A2]]] → · · · → [[[A′]]]
c1 ? ( rd(e0 , s , 11 , w) )−−−−−−−−−−−−−−→ c2 ? ( rd(e0 , s , 8 , w ′) )−−−−−−−−−−−−−→ S

where the seals w and w′ sign commitments of l to 11 and 8, respectively.
For the first input transition, there exists a matching source transition, with a re-

sulting source system A′′ that includes the location state l . Rd (e0 s 11). Moreover, the
translation of A′′ emits the corresponding idc on log.

For the second input transition, however, there is no matching source transition. This
would require a capability transition from Rd (e0 s 11) to Rd (e0 s 8), which is excluded
by our definition of the � preorder. Instead, the resulting system sends a second Idc
on log. As soon as the Resolution process reads both commitments, it detects that they
are inconsistent, and blames e0 on bad .

7 Prototype Implementation

We have implemented committable cells as a library for OCaml [9]. We have also coded
a series of examples, including simple online games and sealed-bid auctions.

The library provides abstract datatypes and access functions that closely follow those
of our source language. Its implementation relies on standard cryptographic libraries and
on a public-key (X.509) infrastructure for processing capabilities; it uses pseudo-random
number generation for creating fresh secret seeds. Programs that use our library may com-
municate with one another using OCaml marshalling and network socket interfaces—
cryptographic validation of received capabilities then occurs during unmarshalling.

The main difference between the implementation and its formal semantics is the
handling of resolution. We refine the idealized resolution mechanism of Section 4 as
follows: instead of relying on a central resolution process, our implementation keeps
track of all principals and cells involved in a run of the system, and eventually imple-
ments the exchange and local resolution for all shared commitments.

8 Conclusions and Future Work

We presented a simple language for specifying systems based on optimistic commit-
ments, and we compiled this language into a realistic concurrent framework modeled
in the applied pi calculus. We established two security properties relating the labeled
traces of a source semantics with commitment primitives to those of their implementa-
tion, with a target semantics that uses only ordinary communications and cryptographic
functions. We only consider authenticity for now, but we believe it would also be pos-
sible to guarantee some properties of formal secrecy.

Although committable cells provide a reasonably useful (and formally challenging)
block for building protocols, we focused on one particular usage of secure logs, rather
than proposing a comprehensive language design for optimistic protocols. Our formal
approach could be extended to other, more involved datatypes—as long as we can repre-
sent their live cycles using a preorder on exported capabilities, as detailed in Section 5.
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It would be interesting, for instance, to design compilers for such datatypes with incre-
mental commitment properties.

More generally, audit logs constitute an important tool for designing protocols and
applications. Although their efficient implementation has been thoroughly studied, we
believe ours is the first work to address their reliable, principled usage from a program-
ming-language viewpoint.
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