
Crossover, Sampling, Bloat and
the Harmful Effects of Size Limits

Stephen Dignum and Riccardo Poli

Department of Computing and Electronic Systems,
University of Essex,

Wivenhoe Park, Colchester, CO4 3SQ, UK
{sandig,rpoli}@essex.ac.uk

Abstract. Recent research [9,2] has enabled the accurate prediction of the lim-
iting distribution of tree sizes for Genetic Programming with standard sub-tree
swapping crossover when GP is applied to a flat fitness landscape. In that work,
however, tree sizes are measured in terms of number of internal nodes. While
the relationship between internal nodes and length is one-to-one for the case of
a-ary trees, it is much more complex in the case of mixed arities. So, practically
the length bias of subtree crossover remains unknown. This paper starts to fill
this theoretical gap, by providing accurate estimates of the limiting distribution
of lengths approached by tree-based GP with standard crossover in the absence
of selection pressure. The resulting models confirm that short programs can be
expected to be heavily resampled. Empirical validation shows that this is indeed
the case. We also study empirically how the situation is modified by the applica-
tion of program length limits. Surprisingly, the introduction of such limits further
exacerbates the effect. However, this has more profound consequences than one
might imagine at first. We analyse these consequences and predict that, in the
presence of fitness, size limits may initially speed up bloat, almost completely
defeating their original purpose (combating bloat). Indeed, experiments confirm
that this is the case for the first 10 or 15 generations. This leads us to suggest a
better way of using size limits. Finally, this paper proposes a novel technique to
counteract bloat, sampling parsimony, the application of a penalty to resampling.

Keywords: Genetic Programming, Theory, Crossover, Search, Sampling, Bloat,
Program Length.

1 Introduction

With the advent of a greater understanding of program search spaces—for example
we now know that the functionality of programs reaches a limit as program length
increases [6,4,5]—acquiring knowledge on how GP operators sample program length
classes has become more and more urgent. Ideally, we would like to sample the length
class where the smallest optimal programs can be found. Unfortunately, in general:
a) one does not know where solutions (let alone most compact ones) are, and, b) ge-
netic operators present specific length biases which are often unknown or only partially
known and, therefore, are difficult to direct and control. In any case, a characterisation
of operator bias is needed in understanding how GP will sample the search space in the
first instance before technically sound problem specific modifications can be made.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits 159

GP, of course, applies a number of competing operators that like to sample the search
space in different ways. In this paper we look at the application of standard crossover
with uniform selection of crossover points, an operator for which recent research [9,2]
has enabled the accurate prediction of the limiting distribution in the absence of selec-
tion, i.e., when GP is applied to a flat fitness landscape. In that work, however, tree sizes
are measured in terms of number of internal nodes, which is not what GP users normally
want and use. While the relationship between internal nodes and length is one-to-one
for the case of a-ary trees, it is much more complex in the case of mixed arities. So,
practically the length bias of subtree crossover remains unknown.

This paper starts filling this theoretical gap, by extending previous research [9,2]
to include terminals as well as internal nodes in our program length distribution (Sec-
tion 2). This shows that crossover will sample increasingly more smaller programs as
the distribution converges. As smaller programs are less numerous than larger ones a
large amount of resampling takes place. Empirical evidence gathered using two standard
GP benchmark problems confirms this bias (Section 3). Although, selection is likely to
initially work against the biases of crossover, as fitness converges, either during the
later stages of a GP run or if an area of neutrality is reached, this bias will become
more acute. In Section 4 we also study empirically how the situation is modified by
the application of program length limits. Unexpectedly, the changes to the sampling
biases introduced by such limits, further exacerbate bloat in early generations, thereby
reducing the efficacy of size limits as mechanisms for bloat control.

In [2] a theory was put forward, the Crossover Bias bloat theory, which postulates
that the main reason for bloat is precisely the oversampling of short programs produced
by subtree crossover. Our findings confirm this tendency with and without length limits.
So, in Section 5 we propose a novel technique to indirectly counteract bloat, sampling
parsimony, which is effectively the application of a penalty for resampling. We study
its behaviour with and without fitness. In both cases, we show that applying even slight
resampling penalties, program growth can significantly be sped up or slowed down de-
pending on the application of the penalty. Applying a ‘resampled’ penalty to programs
confirms the crossover bias bloat theory of [2]. Applying a newly sampled program
penalty, provides a natural way of acting on the very roots of bloat: the sampling and
re-sampling of short programs.

We draw our conclusions in Section 6.

2 Program Length Distributions in GP

2.1 Internal Node Distributions

In [9] strong theoretical and experimental evidence was provided that standard sub-tree
swapping crossover with uniform selection of crossover points pushes a population of
a-ary GP trees towards a limiting distribution of tree sizes of the form:

Pr{n} = (1 − apa)
(

an + 1
n

)
(1 − pa)(a−1)n+1pn

a (1)

This is known as a Lagrange distribution of the second kind. Pr{n} is the probability of
selecting a tree with n internal nodes and a is the arity of functions that can be used in

160 S. Dignum and R. Poli

the creation an individual. The parameter pa was shown to be related to µ0, the mean
program size at generation 0, and a according to the formula:

pa =
2µ0 +(a − 1)−

√
((1 − a)− 2µ0)2 + 4(1 − µ2

0)

2a(1 + µ0)
(2)

Equation (1) was generalised using the Gamma function: Γ(n+1) = n! in [2] to enable
mixed arity tree internal node distributions to be predicted:

Prg{n} = (1 − āpā)
Γ(ān + 2)

Γ((ā− 1)n + 2)Γ(n + 1)
(1 − pā)(ā−1)n+1pn

ā (3)

ā being an averaged arity of the primitive set. This can be calculated for mixed function
arities from experimental initialisation parameters as follows:

ā = E(arity(F)) = ∑
f

arity(f)P(F = f) (4)

where f is a non-terminal to be used in the GP experiment, arity(f) is a function re-
turning the arity of the non-terminal f , and P(F = f) is the probability that a particular
non-terminal f will be selected for a non-terminal node by the tree initialisation proce-
dure. For traditional FULL and GROW initialisation methods non-terminals are chosen
with equal probability [7].

2.2 Program Length Distributions

Our first step towards extending Equation (3) to allow us to predict program length
distributions with mixed arities, is to look at what we can say for certain regarding the
relationship between number of internal nodes and program length. First, we know for
a-ary trees where the arities of all nodes in the tree are the same, the length, �, of a
program can be expressed exactly in terms of the number of its internal nodes, n, using
the following equation

� = a × n + 1, (5)

where a is the (fixed) arity of the internal nodes. Therefore, rearranging Equation (5) to
obtain internal nodes in terms of length, i.e.,

n =
�− 1

a
, (6)

and substituting this into Equation (1), we obtain that, for a-ary trees,

Prl{�} =

{
Pr{ �−1

a } if � is a valid length (i.e., �−1
a is a non-negative integer),

0 otherwise,
(7)

where Prl{�} is the limiting distribution of program lengths. This distribution applies,
for example, for Boolean function induction problems where often all functions are
binary and symbolic regression problems where often only the standard four arithmetic
operations are used.

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits 161

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Program Length (Nodes)

F
re

q
u

en
cy

Theory
Empirical data (a=2)

Fig. 1. Comparison between theoretical and empirical program length distributions for 2-ary trees
initialised with FULL method (depth=3, initial mean size µ0 = 15.0, mean size after 500 genera-
tions µ500 = 14.49). Invalid even lengths are ignored.

Figure 1 shows an observed plotted length distribution for 2-ary trees, with invalid
(even) lengths removed, compared to that predicted by Prl . The observed values are
averages over twenty independent runs with populations of 100,000 individuals run for
500 generations.1 As we can see there is a very close fit between the two curves.

Our next step is to extend the generalised formula for mixed-arity trees (Equation (3))
so as to predict length distributions rather than internal node distributions. We know that
for a program length of 1, a single terminal, there will always be 0 internal nodes. There-
fore, the predicting single node programs is a simple one-to-one mapping with the gener-
alised formula for 0 internal nodes. However, other lengths can be obtained by different
combinations of internal nodes of different arities. For example, one can obtain programs
of length 3 by using one internal node of arity 2 or two internal nodes of arity 1.

As a first approximation, we will assume that we can still estimate the expected
number of internal nodes in a tree of length � by applying Equation (6), simply using ā
instead of a. We can then substitute the result into Equation (3) to obtain the distribution
of lengths we are looking for. Naturally, between the variable � and the variable n there
is a difference in scale (the factor ā). So, we will need to normalise the values produced
by Equation (3) to ensure the new distribution sums to 1.

Putting all of this together, we obtain an approximate model of the limiting distribu-
tion of program lengths in the case of primitive sets of mixed arities. Namely:

Prv{�} =

{
Prg{0} if � = 1,
Prg{ �−1

ā }
ā if � is a valid length greater than 1.

(8)

Note, we do not require �−1
ā to be an integer.

Since there were approximations in the original derivation of Equation (3) in [2],
and we added further approximations in the derivation of Equation (8), one might won-
der whether the model is sufficiently accurate to be of practical use. Figure 2 shows

1 These and all other experimental parameters were chosen as in [2] for ease of comparison.

162 S. Dignum and R. Poli

observed and theoretical values of the limiting length distribution experiment set up for
internal nodes of arities of 1 and 2 where all lengths are valid, whilst Figure 3 compares
the theoretical and empirical distribution obtained in a GP run with the primitive set of
the Artificial Ant problem, which has internal nodes arities of 2, 2 and 3, for IF-FOOD-
AHEAD, PROGN2 and PROGN3, respectively. Note, with this choice there is no way
of generating programs of length � = 2. Finally, Figure 4 shows the results of using
arities of 1, 2, 3 and 4. Note that in order to highlight the fit for larger and less common
programs we used a log scale for frequency.

As one can see, the model in Equation (8) accurately models the distribution ob-
served in real runs in all cases, with only minor deviations at the very short program
lengths where some of the assumptions behind the model are less applicable.2 However,
generally both the theoretical model and the actual runs show that in almost all cases
crossover will sample with high frequency small programs. The effects of this bias are
investigated in the next section.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Program Length (Nodes)

F
re

q
u

en
cy

Theory
Empirical data (a=1.5)

Fig. 2. Comparison between theoretical and empirical program length distributions for trees cre-
ated with arity 1 and 2 functions initialised with FULL method (depth=3, initial mean size µ0 =
8.13, mean size after 500 generations µ500 = 8.51). All lengths are valid.

3 Sampling and Resampling

Our first step is to see how standard crossover will sample the search space on a flat
fitness landscape. Our primary purpose for doing this is simply to isolate the search bias
for crossover. It should be noted, however, that, while in the presence of fitness gradients
selection will counteract the crossover bias (this is analysed further in conjunction with
selection in Section 5), there are situations where the crossover bias may become the
prominent search bias. This may happen, for example when GP search reaches an area
of neutrality, e.g., when GP operators, during an experimental run, are unable to escape
areas of similar fitness.

2 Curing the slight mismatches for earlier lengths would require a more accurate estimation of
number of internal nodes of each arity for small �. We will investigate more precise models in
future work.

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits 163

In particular we are interested in finding out how much resampling goes on. This
gives us an idea of the efficiency or otherwise of the search. To empirically analyse
crossover sampling we took two out-of-the-box problems from the ECJ evolutionary
toolkit [8]: 4 Bit Even Parity and the Artificial Ant. As the Parity problem uses Boolean
operators only we know that, in the absence of selection, the limit program length dis-
tribution to be that of a 2-ary tree as shown in Figure 1, whilst, as previously discussed,
the Artificial Ant will follow a distribution similar to the one in Figure 3.

Adjustments were made to ECJ to remove mutation, ensure uniform selection of
crossover points, and to prevent a depth limit being applied. A population size of 1,000
individuals was used and the results for 200 generations were averaged over one hun-
dred independent runs. All experiments were initialised using the RAMPED method [3]
with a maximum depth of 6 and minimum depth of 2. A constant fitness value was re-
turned in all cases.

0 10 20 30 40 50 60 70 80 90 100
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Program Length (Nodes)

F
re

q
u

en
cy

Theory
Empirical data (a=7/3)

Fig. 3. As in Figure 2 but for arities 2, 2 and 3 (µ0 = 32.12, µ500 = 33.22). Invalid length 2 is
ignored.

0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

10
4

10
5

Program Length (Nodes)

F
re

q
u

en
cy

 (
L

o
g

 S
ca

le
)

Theory
Empirical data (a=2.5)

Fig. 4. As in Figure 2 but for arities 1, 2, 3 and 4 (µ0 = 25.38, µ500 = 23.76). All lengths are valid.

164 S. Dignum and R. Poli

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

Program Length (Nodes)

F
re

q
u

en
cy

 (
L

o
g

 S
ca

le
)

Total Programs
New Programs

Fig. 5. Frequencies of new unique programs not sampled previously compared to all programs
generated at generation 200, for the Artificial Ant Problem applied to a flat fitness landscape

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Program Length (Nodes)

R
at

io
 (

N
ew

 P
ro

g
ra

m
s

/ T
o

ta
l P

ro
g

ra
m

s)

Generation 1
Generation 20
Generation 200

Fig. 6. Ratio of new unique programs not sampled previously compared to programs generated at
generations 1, 20 and 200, for the Artificial Ant Problem applied to a flat fitness landscape

The total number of programs for each length was recorded at each generation along
with the number of programs for each length that had been sampled in a previous gen-
eration. Taking the artificial ant problem, as we can see in Figure 5, at generation 200
the number of new unique programs is extremely small compared to that of the total
for that generation. The majority of all programs sampled under these conditions are of
course in the smaller length classes.

As a ratio, new programs divided by total programs, plotted in Figure 6, it is clear
that newly sampled programs are being generated at the larger length classes and that
crossover is progressively resampling more and more programs.

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits 165

4 Effects of Size Limits

The standard technique to control bloat, namely the application of a depth or length
limit, is known to have significant effects on GP dynamics (see, for example, [1]). Un-
fortunately, we don’t have a mathematical model for the limit distribution of sizes (nei-
ther in terms of internal nodes nor in terms of lengths) in the presence of length limits.
However, we can conduct experimentation to study their effects on such a distribution.
Figure 7 shows the affect of applying length limits of 25, 50 and 100 to the Artifical
Ant problem. The effect of the length limit is that programs become more frequent in
the smaller length classes. This over-sampling exacerbates the wasteful resampling of
programs of smaller lengths.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Program Length (Nodes)

F
re

q
u

en
cy

Length Limit 25
Length Limit 50
Length Limit 100
No Length Limit

Fig. 7. Comparison of sampling frequencies associated with length limits for the Artificial Ant
Problem applied to a flat fitness landscape

In the presence of fitness, this effect can be counteracted but not cancelled by selec-
tion. So, one should expect more sampling and resampling of short programs. However,
following the line of reasoning of the crossover bias bloat theory [2], we know that for
most problems these programs cannot be solutions, and in fact are typically very unfit,
and, so, longer programs will be preferentially selected, leading to bloat. Thus, size lim-
its effectively increase the tendency to bloat since they induce more sampling of short
programs, and, so, in the presence of non-flat fitness landscapes, GP populations rush
towards the limit even more quickly than in the absence of the size limit! This effect
is particularly clear if one looks at the mode (the peak) of the program length distri-
bution with and without length limits. Figure 8 shows how the mode (averaged over
100 independent runs) changes generation by generation for different limits in the case
of the Parity problem (with selection). We can see that smaller size limits encourage
GP to sample larger programs in the early generations before the size limit is reached.
We found this effect because we looked into how the crossover sampling bias interacts
with size limits. The effect has never been noticed before, probably because it becomes
apparent only if one uses the right statistical tools: the mode of the size distribution
(which is almost never used in reporting GP results).

166 S. Dignum and R. Poli

5 6 7 8 9 10 11 12 13 14 15
50

100

150

200

Generation

M
o

d
al

 P
ro

g
ra

m
 L

en
g

th
 (

N
o

d
es

)

No Length Limit
Length Limit 150
Length Limit 125
Length Limit 100
Length Limit 75

Fig. 8. Comparison of modal (peak) classes associated with length limits for the 4 Bit Even Parity
Problem with selection

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Generation

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

(N
od

es
)

No Limit
Resample 1
Resample 5
Resample 50
Resample 200

Fig. 9. Comparison of average program size applying resampling limits to the 4 Bit Even Parity
Problem with a flat fitness landscape

These results suggest that, if size limits are imposed to combat bloat, then these
should not be applied from generation 1, but much later and on demand, for example, if
the average program size exceeds some pre-fixed threshold. This would avoid speeding
up program growth in the early generations of a run.

Naturally, virtually all methods to combat bloat give more selective preference to
shorter program than to longer ones. If in so doing they cause an oversampling of the
short programs w.r.t. the base case (i.e., in the absence of the anti-bloat method)—
which many do—then we should expect this phenomenon to still take place also with
other bloat-control mechanisms, although perhaps with a lesser degree. We will explore
this issue in future research.

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits 167

5 Bloat and Sampling Parsimony

In section 3 we looked at how crossover likes to progressively sample smaller programs
and the resulting resampling of programs, hence re-evaluations, that result from this. In
this section we look at the prevention of resampling and its effect on program length.

To understand the effect of resampling and to control it, we have employed a novel
technique which we have called Sampling Parsimony. This has two parameters, a resam-
pling penalty to be applied, which is implemented as a percentage reduction of fitness,
and a count of the number of times that a unique program can be sampled before that
penalty is applied or removed.

Our first application is to look at how average program length will be affected by the
application of a super penalty ensuring that a resampled program will not be reselected
in the next generation. Using our standard ECJ problems with parameters as described
in section 3 from Figure 9 we can see that, as we progressively prevent resampling
by lowering our resampling limit, we increase the average size of the programs in our
population. We have in effect created an effective fitness landscape [6] where the ability
for a child to exist in the next generation is solely determined by whether that program
has previously been sampled.

From our earlier analysis it, is unsurprising that we see that by depressing the fitness
of resamples we will increase the sampling of larger programs, thereby increasing the
average program size as we are in effect penalising smaller programs. What is more
interesting is that we have managed to isolate the Crossover Bias bloating effect as
described in [2]. Our method only penalises children and prevents them from being par-
ents rather than preventing their creation. GP, therefore, uses larger programs as parents
(see Figure 6), hence, increasing the average size of children and thereby increasing
the average program size in the next generation. As smaller children are still created by
crossover but have no chance of being chosen by selection, this process will continue.
Even a relatively large resampling allowance of 200 on our flat landscape will greatly
increase program size.

We apply our resampling penalty method to the Ant Problem with selection in Fig-
ure 10. We can see that our penalty, increases program growth within 100 generations.
This is because we have, effectively, accelerated the Crossover Bias effect (crossover
creating small programs that selection then ignores) already present in the ‘No Limit’
distribution. Practically, we can see that this acceleration only happens beyond a prob-
lem specific value of the number of resamples allowed, suggesting that experimental
resampling restrictions may not attract significant additional program growth once an
acceptable limit has been determined.3

Finally we reverse our method to apply a penalty to all programs from the beginning.
We only remove the penalty after a specific number of resamples have been achieved,
thereby allowing a program to be selected as a parent only after it has been sampled
a number of times. From Figure 11 we can see that program growth is significantly
reduced by applying a single sample penalty, whilst progressively increasing the sam-
pling threshold before normal fitness is applied will reduce program growth towards a
limit of approximately 50 samples.4

3 Experimentation showed that no changes are observed beyond 5 resamples for the 4 Bit Even
Parity problem, and approximately 15+ for the Artificial Ant.

4 Approximately 5 for the Parity Problem, again the threshold is problem dependant.

168 S. Dignum and R. Poli

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Generation

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

(N
od

es
)

No Limit
Resample 1
Resample 5
Resample 15

Fig. 10. Comparison of average program size applying resampling limits to the Artificial Ant
Problem with selection

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

Generation

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

(N
od

es
) (

Lo
g

Sc
al

e)

No Limit
Resample 1
Resample 5
Resample 20
Resample 50

Fig. 11. Comparison of average program size applying sampling penalties to the Artificial Ant
Problem with selection

Although its effect on bloat is self evident, it remains to be seen whether the sampling
parsimony method can be successfully applied to improving overall program fitness over
an entire run. We leave this for future work. The current ‘blanket’ method is of course very
unsophisticated in that we prevent entire search spaces from being investigated without
regard to program fitness. However, we believe that this remains an interesting technique
that is worth exploring in greater depth and which might find application is a variety of ar-
eas, including, for example, escaping experimental stagnation under various conditions.

6 Conclusions

In this paper we have presented a limiting length distribution for GP with standard
crossover with uniform selection of crossover points. This distribution now includes ex-
ternal nodes along with internal nodes, thereby extending previous research. Empirical
validation confirms the accuracy of our model. Both theory and experiments show that
the application of this form of crossover will quickly enable a population to converge to

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits 169

a distribution that will exponentially sample smaller programs. As there are exponen-
tially fewer unique smaller programs than larger ones, the sampling of new programs
becomes less likely during a GP run if only crossover is applied. The effect becomes
more prevalent as fitness values converge. This bias also becomes more acute with the
application of a length limit, where, in addition to wasting more resources in resamples,
it has further important consequences. In particular, we find that size limits initially
speed up bloat, almost completely defeating their original purpose of combating bloat.

Although the application of selection before any fitness convergence will work
against the crossover bias, smaller programs will always be created by crossover. As
it is unlikely that these programs will be able to obtain a reasonable fitness, particularly
during later stages of a GP run, they will be ignored by selection for the next generation
and only larger parents will be selected. The continuing application of selection and
crossover, therfore, causes the mean program size to increase, thereby creating bloat.

To explore what happens if one directly addresses this sampling-related cause for
bloat, we have introduced a novel technique called Sampling Parsimony to tackle bloat.
Curiously, this can be used accelerate growth as well as to reduce its effect. We have
not, however, directly verified if Selection Parsimony is competitive with other anti-
bloat techniques. We will address this question in future work.

References

1. Crane, E.F., McPhee, N.F.: The effects of size and depth limits on tree based genetic program-
ming. In: Yu, T., Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice
III, Ann Arbor, May 12-14. Genetic Programming, ch. 9, pp. 223–240. Springer, Heidelberg
(2005)

2. Dignum, S., Poli, R.: Generalisation of the limiting distribution of program sizes in tree-based
genetic programming and analysis of its effects on bloat. In: Thierens, D., Beyer, H.-G., Bon-
gard, J., Branke, J., Clark, J.A., Cliff, D., Congdon, C.B., Deb, K., Doerr, B., Kovacs, T., Ku-
mar, S., Miller, J.F., Moore, J., Neumann, F., Pelikan, M., Poli, R., Sastry, K., Stanley, K.O.,
Stutzle, T., Watson, R.A., Wegener, I. (eds.) GECCO 2007: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, London, July 7-11, vol. 2, pp. 1588–1595.
ACM Press, New York (2007)

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

4. Langdon, W.B.: How many good programs are there? How long are they? In: De Jong, K.A.,
Poli, R., Rowe, J.E. (eds.) Foundations of Genetic Algorithms VII, Torremolinos, Spain,
Sepember 4-6 2002, pp. 183–202. Morgan Kaufmann, San Francisco (published, 2003)

5. Langdon, W.B.: Convergence of program fitness landscapes. In: Cantú-Paz, E., Foster, J.A.,
Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman,
M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller,
J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1702–1714. Springer, Heidelberg
(2003)

6. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)
7. Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Transactions on

Evolutionary Computation 4(3), 274–283 (2000)
8. Luke, S.: ECJ 13: A Java-based Evolutionary Computation Research System (2005),

http://cs.gmu.edu/∼eclab/projects/ecj/
9. Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of program sizes in tree-

based genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 193–204. Springer, Heidelberg (2007)

http://cs.gmu.edu/~eclab/projects/ecj/

	Crossover, Sampling, Bloat and the Harmful Effects of Size Limits
	Introduction
	Program Length Distributions in GP
	Internal Node Distributions
	Program Length Distributions

	Sampling and Resampling
	Effects of Size Limits
	Bloat and Sampling Parsimony
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

