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Abstract. Research has shown that beyond a certain minimum program
length the distributions of program functionality and fitness converge to
a limit. Before that limit, however, there may be program-length classes
with a higher or lower average fitness than that achieved beyond the
limit. Ideally, therefore, GP search should be limited to program lengths
that are within the limit and that can achieve optimum fitness. This has
the dual benefits of providing the simplest/smallest solutions and pre-
venting GP bloat thus shortening run times. Here we introduce a novel
and simple technique, which we call Operator Equalisation, to control
how GP will sample certain length classes. This allows us to finely and
freely bias the search towards shorter or longer programs and also to
search specific length classes during a GP run. This gives the user total
control on the program length distribution, thereby completely freeing
GP from bloat. Results show that we can automatically identify poten-
tially optimal solution length classes quickly using small samples and
that, for particular classes of problems, simple length biases can signifi-
cantly improve the best fitness found during a GP run.

Keywords: Genetic Programming, Search, Bloat, Program Length, Op-
erator Equalisation.

1 Introduction

An intrinsic feature of traditional Genetic Programming (GP) is its variable
length representation. Although, this can be considered one of the method’s
strengths, researchers have struggled with the phenomenon of bloat, the growth
of program size during a GP run without a significant return in terms of program
fitness, since GP’s inception.

Numerous theories to explain bloat have been put forward including Replica-
tion Accuracy [1], Removal Bias [2], Nature of Program Search Spaces [3] and,
more recently, Crossover Bias [4]. Numerous methods to control bloat have also
been suggested [3,5,6], including, for example, size fair crossover or size fair mu-
tation [7,8], Tarpeian bloat control [9], parsimony pressure [10,11,12], or using
many runs each lasting only a few generations.

Research has shown that beyond a certain minimum program length the dis-
tributions of program functionality and fitness converge to a limit [13]. Before
that limit, however, there may be program-length classes with a higher or lower
average fitness than that achieved beyond the limit. Ideally, therefore, GP search
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should be limited to program lengths that are within the limit and that can
achieve optimum fitness. We might want, for example, to restrict our search
fixing program sizes at the point where our smallest optimal or near optimal so-
lutions can be found thereby avoiding the need to search much larger spaces with
the additional computational effort that entails. For most applications simpler
solutions are also much more desirable than larger solutions.

In this paper we provide a method, operator equalisation, that can be applied
easily to existing GP systems. This method forces GP to search specific length
classes using pre-determined frequencies so that we can control the sampling rates
of specific program lengths. As explained in Section 2, the method is very simple.
This technique has several advantages. For example, whenever the length distri-
bution and the corresponding sampling bias provided by standard operators is
not suitable for a specific program space, we can change such a bias freely making
it possible to sample or oversample certain length classes we believe can benefit
our search. The user is given complete control over the program length distribu-
tion, and bloat can be entirely and naturally suppressed by simply asking opera-
tor equalisation to produce a static length distribution. We look at how different,
static target length distributions can influence performance in Section 4. Further-
more, this method enables us to automatically sample and exploit the best fitness
values associated with particular length classes as explained in Section 5.

2 Operator Equalisation

Investigations into the properties of program length have often used the tool of
histogram representation in order to compare frequencies of programs sampled at
particular lengths during a GP run [14,15,4]. Our operator equalisation method
aims at controlling the shape of length histograms during a run. The method is
loosely inspired by both the gray-level histogram equalisation method [16] used
in image processing and digital photography to correct underexposed or overex-
posed pictures and the Tarpeian bloat control method [9] which, with a certain
probability, by setting to zero the fitness of newly created programs of above av-
erage length effectively suppresses their insertion in the population. We have taken
these ideas forward to see if by filtering which programs are allowed to be inserted
in the population we can directly manipulate those frequencies in order to force
GP to sample programs of particular lengths at pre-specified rates.

The method requires users to specify the desired length distribution (which
we will call target) that they wish the GP system to first achieve and then
continue to use when sampling a program space. This allows one to specify both
simple well known probability distributions (Section 4) and also coarser grained
models (Section 5). During the initialisation of the GP system a histogram
object is created. This needs only to be primed with the maximum size allowed,
number of bins (the size of the bins being calculated from these) and of course
the target distribution. Then the method requires wrapping the existing code
for offspring generation with code that simply accepts or disallows the creation
of a child based on its length. The wrapper is extremely simple:
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repeat {
<create a child using standard genetic operators>

} until( histogram.acceptLength( child.length ) )

Internally, the histogram object maintains a set of numbers, one for each
length class, which act as acceptance probabilities. The acceptLength method
simply generates a uniform random number between 0 and 1 and compares it
against the acceptance probability associated with the length class associated
to child, returning true if the random number is less than the acceptance
probability, and false otherwise.

At the end of each generation the histogram object updates the acceptance
probabilities for each class using the following formula:

newProbability = currentProbability + ( normalisedDiff * rate )

where normalisedDiff is the difference between the desired frequency specified
in target and the current frequency divided by the desired frequency. Small
discrepancies for large classes are, therefore, largely ignored. The user defined
parameter rate determines how quickly the distributions should converge. After
some experimentation the setting rate=0.1 was found to work well and has been
used in all experimentation presented in this paper.

As one can see the method can easily be applied to existing GP applications
with minimal changes: users need to change only very few lines of code in their
existing GP systems.

3 Test Problems

We have deliberately chosen two GP problems of differing natures, a parity
problem and a symbolic regression problem, to show the benefits and limitations
of this approach. As we will show the first requires a relatively large program
size before fitness will significantly improve whilst the second is able to achieve
relatively high, though far from optimal, fitness values with small program sizes.

The Even Parity problem attempts to build a function that evaluates to 1 if
an even number of boolean inputs provided evaluate to 1, 0 otherwise. We have
chosen a relatively large input set of size 10. However, it is possible to evaluate
all possible fitness cases (1024) for each potential solution within a reasonable
time given the short length limit imposed.

Our second problem is a 10-variate symbolic regression problem: x1x2+x3x4+
x5x6 +x1x7x9 +x3x6x10 as described in [9]1, which we have called Poly-10. 500
test cases are used each comprising of a (uniform) randomly generated value for
each variable ranging between -1 and 1 and the resulting value of the equation.

As with the Even-10 problem only functions with arity 2 are used: ADD,
SUBTRACT, MULTIPLY and a protected division function called PDIV which
returns the denominator if the resulting division is less than 0.001. No Ephemeral
Random Constants (ERCs) were used.
1 This problem can be simplified to x1(x2 + (x7x9)) + x3(x4 + (x6x10)) + x5x6 to give

a smallest GP tree size of 19 nodes.
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Both problems have been sourced from [9] with minor alterations2 to en-
able comparison and analysis. Each problem is expected to bloat under non-
constrained conditions the reasons for which are described in the original paper.

4 Equalising to Simple Program Length Distributions

All experiments were initialised using the GROW method [17] with depth 6. For
simplicity subtree swapping crossover with uniform selection of crossover points
was applied without mutation or replication. Elitism was not applied. We used
tournament selection with tournament size of 2 in experimentation. The algo-
rithm was generational. All experiments used a population of 10,000 and ran
for 100 generations. Results were averaged over 100 runs. It should be noted
that due to the wrapper-like implementation there is no reason why mutation,
replication or other forms of crossover could not be applied in isolation or com-
bination. In fact it is hard to imagine any form of standard GP experimental
set-up which could not be used easily.

In order to satisfy our stated desire of bloat free GP we have chosen a strict,
deliberately small, length limit of 100 nodes. This has the added benefit of allow-
ing us to evaluate a large set of fitness cases for each potential solution within
acceptable experimental run times.

4.1 Does Operator Equalisation Work?

Initial investigation using our parity and regression problems showed that using
a fairly unforgiving initialisation method (GROW), i.e., that in no way matched
to our desired length distributions, we could equalise program lengths within
approximately 20 generations. This is shown in Figure 1 for the Poly-10 problem
equalised for a uniform length distribution.

With both problems there was a small dip for some of the early length classes.
This is due to the fact that when the population has a uniform length distribu-
tion, crossover is less likely to produce very short programs than is ordinarily
the case in the absence of equalisation. This is illustrated in Figure 2 where we
look at the number of programs rejected by the wrapper at generation 100. As
we can see the number of programs rejected for these length classes is extremely
small. Our equaliser is, therefore, doing the best with what it has been presented
by the underlying GP system.3 The smallest class was always well populated.
As the bias of subtree crossover towards sampling programs of a single node has
been widely reported in the literature this is of little surprise.
2 Our Even-10 problem has no NOT function. So all functions have an arity of 2. Also,

Poly-10 here uses 500 fitness cases, where originally 50 were used.
3 In other experiments (not reported) we found that the dip is slightly worsened by

the use of larger tournament sizes since this increases the ability of selection to
repeatedly present certain program sizes. The effect is, by contrast, reduced when
using a steady state model, as GP can select newly created programs, i.e., those
accepted by our equaliser, immediately without having to wait for a generation to
be completed.
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Fig. 1. Length histogram for Poly-10 regression problem with uniform equalisation of
program length classes

Although it is possible to imagine extreme conditions where infinite loops
could be encountered, for the experimentation detailed in the following sec-
tions, all runs were completed succesfully and no unusually large run-times were
recorded. It is of course possible to add a simple retry limit to the wrapper code
to escape such loops.

4.2 Efficiency of Different Length Distributions

Having established that our simple operator equalisation algorithm works for
our test problem, we then applied this method to see how the use of elementary,
easily recognisable, target probability distributions could affect our search. In
this paper, we only consider static distributions, although operator equalisation
works also with dynamic targets—a case that we will study in detail in future
research.

In Figure 3 we see the final length distributions for the parity problem, i.e., at
generation 100, for different target distributions. Each length class is 2 nodes in
size. Given that all the functions in our function set (AND, OR, NOR, NAND,
XOR and EQ) have an arity of 2, we have an individual class for every possible
length up to our size limit.

We have chosen to look at a uniform distribution where each length is sampled
with the same frequency, a triangular distribution which has a linearly increasing
bias towards sampling larger programs, a ’reverse’ triangle where smaller pro-
grams are sampled more often and a reverse exponential distribution where we
sample larger programs exponentially more frequently than shorter ones. Note,
the distribution for the length limit with no equalisation is also shown. In all
cases the target distribution was reached very quickly. For example, after some
initial fluctuations, as we can see in Figure 4, the average size for each of the
experiments settled to a fixed value.



Operator Equalisation and Bloat Free GP 115

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200

220

Class (Size 2 Nodes)

F
re

q
u

en
cy

Poly−10 Regression − Uniform Equalisation − Rejections (Generation 100)

Fig. 2. Number of equaliser rejections at generation 100 for Poly-10 regression problem
with uniform equalisation of program length classes

If we compare the best fitness values recorded for different target distributions
(Figure 5), we can see that the push towards sampling larger programs has had
a beneficial effect compared to using the simple length limit. The exponential
distribution has a sharper upwards gradient for generations 20 to 60 than that
of the triangular distribution although both eventually converge to the same
value. The bias towards the sampling of smaller programs has had the most
negative effect. Selection does, however, manage to improve fitness in all of our
experiments. Perhaps surprisingly, all equalisation methods improve the best
fitness value compared to the simple length limit during the early generations.
The value of exploring certain length classes during early generations is discussed
further below.

Unlike the Even-10 problem we can see in Figure 6 that the imposition of
target length distributions has a negative effect on all forms of equalisation
for best fitness compared to our simple length limit for the Poly-10 problem,
any undersampling of smaller programs during the early generations having the
most marked effect. It has long been known that in symbolic regression problems
smaller programs can obtain relatively high fitness. In fact, the reverse triangle
distribution performs as well as the simple length limit up to generation 15 and
outperforms most other methods most of the time. This indicates that in this
problem the dynamics of the length distribution is important, and GP benefits
from exploring short programs for 10 or 15 generations and then progressively
moves towards sampling longer programs, as GP with a simple length threshold
does. So, this suggests that there could be benefits in using dynamic target
distributions. As previously mentioned, we will explore this in future work.

Methods to detect this bias are discussed in the next section.

5 Length Class Sampling

As we have a method to directly influence the sampling of particular length
classes, we can now look at two sampling techniques that can help us gain an
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Fig. 3. Final length distributions for Even-10 parity problem using a strict length limit
and different equalisation targets
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Fig. 4. Average length (nodes) for Even-10 parity problem using a strict length limit
and different equalisation targets
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Fig. 6. Best fitness (Minus Mean Squared Error) for Poly-10 Symbolic Regression
problem using a strict length limit and different equalisation methods

insight into the program space that we wish to search. We present these tech-
niques in Sections 5.1 and 5.2. Both problems from the previous section were
investigated using them.

Note that for the experiments described below we used the same GP system
as in Section 4, but with two small, yet important, differences. Firstly, in order to
remove any initial length bias the GROW initialisation method has been replaced
with the RAND TREE method described in [18]. Secondly, to show that useful
insights into the program space of a problem can be achieved without undue
computer resources, we have used both a smaller length limit of 80 nodes and a
much reduced population size of 1,000.4

5.1 Single Length Classes

Using the RAND TREE method we can sample without bias specific length
classes. We can, therefore, look at the sampling of individual classes in isolation.
For our experimentation the search space was divided into 20 equal length classes
with each class sampling two distinct program lengths e.g. 1 and 3 for the first
class, 5 and 7 for the second etc.5 The objective was to find out which area
(length class) of the search space would appear preferable to a GP system in the
early generations of a run.

For the Even-10 problem (Figure 7) we can see quite clearly that there is small
threshold where potential solutions cannot achieve anything better than 512 cor-
rect classifications, exactly half the total possible. However, as we move to larger
program sizes we can see a distinct improvement in fitness. Selection will, there-
fore, quickly guide GP to larger programs in the early stages of a GP run.

4 As we have used a smaller population size we cannot directly compare the best
fitness results reported in this section with those reported in the previous section.

5 Even sized programs are not possible for 2-ary trees.



118 S. Dignum and R. Poli

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
510

515

520

525

530

535

540

545

550

Class (Size 4 Nodes)

B
es

t 
F

it
n

es
s

Even−10, Best Fitness, 20 Distinct Classes

Fig. 7. Best fitness for Even-10 problem sampling 20 distinct size classes using the
RAND TREE method. Results are averages over 100 samples of 1,000 individuals each
(1,000=GP population size).

Figure 8 shows that, for the Poly-10 problem, when we initially sample the pro-
gram space, we find that the smallest programs do indeed have relatively better fit-
ness than their larger counterparts. This explains GP’s concentration in this area
during earlier generations in the experimentation reported in Section 4. Of course,
these areas do not contain optimal solutions: we need at least 19 nodes to achieve
that. However, to an initial random sampling these areas display a higher propor-
tion of relatively fit programs than those of the larger program size search spaces
sampled. This explains why without histogram equalisation GP first samples the
short programs but then quickly moves towards the longer programs, where, upon
sufficiently sampling, better solutions can be found. This also explains why equal-
isation with a reverse triangular distribution does well initially, but cannot com-
pete with standard GP later on (see Figure 6). Finally, it also explains why equal-
isation with distributions that sample the longer programs more frequently, such
as the reverse exponential distribution, produce much worse fitness that standard
GP and reverse triangular equalisation, initially.6

5.2 Multiple Length Classes

Of course the picture may change significantly if we sample two or more classes,
perhaps with differing proportions. Also, what may look like a good sampling
histogram initially (upon the random sampling produced by initialisation) may
later turn out to be suboptimal after many generations of GP exploration. So,
in this section we look at how the picture changes when using multiple length
classes in combination and when comparing the initial to the final generation of
runs.
6 The fitness plot for the reverse exponential distribution in Figure 6, however, remains

parallel to the plot of standard GP, suggesting that given enough generations his-
togram equalisation with this distribution would eventually catch up.
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Fig. 8. Best fitness for Poly-10 problem in the same conditions as for Figure 7

To this end, we divided the length distribution into 4 bins of size 20 nodes
and sampled each combination of bins using frequencies that were multiples of
20%. For example, bins 2 and 3 might have frequencies of 40% each, while bin 1
might have a frequency of 20% and bin 4 a frequency of 0%. Every combination
(including those where some bins were empty) was sampled. There were 56
combinations in total. For each the resulting best fitness values at each generation
were tabulated.

This produced a very large dataset, which we cannot report here due to space
limitations. However, we report summaries of it in the form of the multiple linear
regression formulas resulting from fitting the data at generations 0 and 100. The
formulas will have the following form:

bestF itness = β0 + β1X1 + β2X2 + β3X3 + β4X4 (1)

β0 is the constant term and βi being the coefficient of each of the length classes
Xi, X1 being the smallest class. After the multiple linear regression was ap-
plied to the Even-10 problem the following formula was found for our initial
generation:

bestF itness = 424.897 + 96.256X1 + 103.899X2 + 110.831X3 + 113.911X4 (2)

As we can see there is a small improvement in best fitness as we search the larger
classes. After applying GP search, at generation 100 the improvement is more
distinct as shown by the regression formula:

bestF itness = 509.914 − 36.000X1 − 12.000X2 + 216.276X3 + 342.748X4 (3)

For the Poly-10 problem for the first generation we obtain:

bestF itness = −179.595 − 15.509X1 − 54.645X2 − 56.678X3 − 52.763X4 (4)

while after 100 generations the picture is somewhat different:

bestF itness = −147.146 − 33.712X1 − 25.438X2 − 46.835X3 − 41.161X4 (5)
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We can clearly see that for Poly-10 different parts of the search space yield
different results for our initial generation and later stages of GP search. As
one would expect from these results the best and worst combinations for our
100th generation showed a strong dislike for the third class. A 100% sampling
of which, was indeed our worst result of -215.265, whilst more interestingly a
broader sampling of the surrounding classes yielded the best results all of which
were below -170.

6 Conclusions

In this paper we have introduced operator equalisation, a programatically simple
method that can be easily applied to current experimental environments that
allows us to finely bias GP search to specific program lengths. In particular, when
method can force GP to sample the search space using static (and arbitrary)
length distributions. This completely and naturally suppresses bloat.

We have applied this method to first see how simple bias can influence the
results of two different but potentially bloating problems. The Even-10 parity
problem was shown to have a simple positive bias towards longer programs within
the ’experimentally-friendly’ 100 node limit we have specified, whilst the Poly-10
regression problem was shown to have a positive bias towards the sampling of
shorter programs during early generations.

Using simple statistical techniques we have then shown how we can use the
method to quickly gain information about the search space and the best way to
sample it with GP (with and without equalisation).

The primary aim of bloat free GP is to sample program spaces in such a way
that we allow GP to discover optimal or acceptable near-optimal solutions with-
out wasting resourses searching ever larger spaces with little return with regard
to fitness. Here we have made some strong steps in this direction. An automatic
method of defining the appropriate search space for a GP problem may not be so
far off. For example, there is no reason why the method introduced in this paper
cannot be applied to the initial setting of size limits (either maximum or mini-
mum), or even to define a dynamic schedule for biasing the sampling of programs
to certain sizes over the entire run or during different stages of a GP run.
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