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Preface

The 11th European Conference on Genetic Programming, EuroGP 2008, took
place in Naples, Italy from 26 to 28 March in the University of Naples Congress
Centre with spectacular views over the Gulf of Naples. This volume contains the
papers for the 21 oral presentations and 10 posters that were presented during
this time. A diverse array of topics were covered reflecting the current state
of research in the field of Genetic Programming, including the latest work on
representations, theory, operators and analysis, evolvable hardware, agents and
numerous applications.

A rigorous, double-blind peer review process was employed, with each sub-
mission reviewed by at least three members of the international Program Com-
mittee. In total 61 papers were submitted this year, making an acceptance rate of
34% for full papers, and an overall acceptance rate of 51% including posters. Sub-
mission of papers and the reviewing process were greatly assisted by the use of
the MyReview management software originally developed by Philippe Rigaux,
Bertrand Chardon and other colleagues from the Université Paris-Sud Orsay,
France. We are especially grateful to Marc Schoenauer from INRIA, France for
managing this system. Reviewers were asked to nominate keywords specifying
their area of expertise, and these keywords were matched to those selected by the
authors of the submitted papers with the assistance of the optimal assignment
feature of the conference management software.

EuroGP 2008 was part of the larger Evo* 2008, which included three other co-
located events, namely EvoCOP 2008, EvoBIO 2008, and EvoWorkshops 2008.
We would like to take this opportunity to thank the many people who make
EuroGP and Evo* a great success. Without the authors we would not have the
high-quality submissions and presentations that make EuroGP such an interest-
ing event. We extend our thanks to the Program Committee for their thorough,
timely and constructive reviews that ensure the continued quality of EuroGP.
We are indebted to the local organisers Antonio Della Cioppa, Ernesto Tarantino
and Giuseppe Trautteur led by Ivanoe De Falco for their smooth organisation
of the conference, in a spectacular location with many greatly-enjoyed social ac-
tivities. We wish to wholeheartedly thank Professor Guido Trombetti, rector of
the University of Naples “Federico II” and Professor Giuseppe Trautteur of the
Department of Physical Sciences, who, with their extraordinary and invaluable
support, made this event possible. Furthermore, we wish to express our most sin-
cere gratitude to Naples City Council for supporting the local organisation and
granting their patronage to the event. We also thank the Instituto Technológico
de Informática, Valencia, Spain for hosting the Evo* website.

To our internationally renowned invited keynote speakers, Professor Emeritus
Hans-Paul Schwefel (Dortmund University of Technology, Germany), and Dr.
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Stefano Nolfi (Institute of Cognitive Science and Technologies, CNR, Italy), we
express our sincere gratitude.

Last and certainly not least, we especially thank Jennifer Willies and the
Centre for Emergent Computing at Napier University. Without their continued
dedication and coordination, this event would not be possible.

March 2008 Michael O’Neill
Leonardo Vanneschi

Steven Gustafson
Anna I. Esparcia Alcázar

Ivanoe De Falco
Antonio Della Cioppa

Ernesto Tarantino
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Anikó Ekárt, Aston University, UK
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Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch

In Silicon No One Can Hear You Scream: Evolving Fighting
Creatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Thomas Miconi

Real-Time, Non-intrusive Speech Quality Estimation: A Signal-Based
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Adil Raja and Colin Flanagan

Good News: Using News Feeds with Genetic Programming to Predict
Stock Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Fiacc Larkin and Conor Ryan

A Genetic Programming Approach to Deriving the Spectral Sensitivity
of an Optical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Marc Ebner

A SIMD Interpreter for Genetic Programming on GPU Graphics
Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

W.B. Langdon and Wolfgang Banzhaf

Partitioned Incremental Evolution of Hardware Using Genetic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

David Jackson

Population Parallel GP on the G80 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt

Operator Equalisation and Bloat Free GP . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Stephen Dignum and Riccardo Poli

Practical Model of Genetic Programming’s Performance on Rational
Symbolic Regression Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Mario Graff and Riccardo Poli



X Table of Contents

Semantic Building Blocks in Genetic Programming . . . . . . . . . . . . . . . . . . . 134
Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison

A Simple Powerful Constraint for Genetic Programming . . . . . . . . . . . . . . 146
Gearoid Murphy and Conor Ryan

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits . . . . . 158
Stephen Dignum and Riccardo Poli

The Performance of a Selection Architecture for Genetic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

David Jackson

A Comparison of Cartesian Genetic Programming and Linear Genetic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Garnett Wilson and Wolfgang Banzhaf

Evolvability Via Modularity-Induced Mutational Focussing . . . . . . . . . . . . 194
Richard M. Downing

A Linear Estimation-of-Distribution GP System . . . . . . . . . . . . . . . . . . . . . 206
Riccardo Poli and Nicholas Freitag McPhee

Feature Discovery in Reinforcement Learning Using Genetic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Sertan Girgin and Philippe Preux

Hardware Accelerators for Cartesian Genetic Programming . . . . . . . . . . . . 230
Zdenek Vasicek and Lukas Sekanina

Genetic Programming and Class-Wise Orthogonal Transformation for
Dimension Reduction in Classification Problems . . . . . . . . . . . . . . . . . . . . . 242

Kourosh Neshatian and Mengjie Zhang

Posters

Evolving Proactive Aggregation Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Thomas Weise, Michael Zapf, and Kurt Geihs

GP Classification under Imbalanced Data Sets: Active Sub-sampling
and AUC Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

John Doucette and Malcolm I. Heywood

Exposing a Bias Toward Short-Length Numbers in Grammatical
Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Marco A. Montes de Oca

Cooperative Problem Decomposition in Pareto Competitive Classifier
Models of Coevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Andrew R. McIntyre and Malcolm I. Heywood



Table of Contents XI

Integrating Categorical Variables with Multiobjective Genetic
Programming for Classifier Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Khaled Badran and Peter Rockett

The Effects of Constant Neutrality on Performance and Problem
Hardness in GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
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Training Time and Team Composition

Robustness in Evolved Multi-agent Systems

Russell Thomason, Robert B. Heckendorn, and Terence Soule

University of Idaho, Department of Computer Science,Moscow, ID 83844-1010
thom0398@uidaho.edu, heckendo@uidaho.edu, tsoule@cs.uidaho.edu

Abstract. Evolutionary algorithms are effective at creating coopera-
tive, multi-agent systems. However, current Island and Team algorithms
show subtle but significant weaknesses when it comes to balancing
member performance with member cooperation, leading to sub-optimal
overall team performance. In this paper we apply a new class of coop-
erative multi-agent evolutionary algorithms called Orthogonal Evolution
of Teams (OET) which produce higher levels of cooperation and special-
ization than current team algorithms. We also show that sophisticated
behavior evolves much sooner using OET algorithms, even when training
resources are significantly reduced. Finally, we show that when teams
must be reformed, due to agent break down for example, those teams
composed of individuals sampled from OET teams perform much bet-
ter than teams composed of individuals sampled from teams created by
other methods.

1 Introduction

Many problems require solutions using teams of multiple agents working together
to achieve a goal, such as robot soccer or Serengeti world [8,9]. Other problems
like autonomous robot exploration use teams to examine the search space more
effectively. However, producing efficient and effective teams is difficult. Teams
may need tens, thousands, or in the case of nanotechnology, millions of members
performing simple tasks. Or teams may be small, but composed of agents capa-
ble of performing many tasks. In the case of heterogeneous teams, the members
might have different abilities and sub-goals. Thus, finding algorithms that au-
tomate the process of training is vitally important and evolutionary algorithms
that can evolve successful teams incorporating specialization and cooperation
simultaneously would represent an important advance.

We are also interested in evolving specific forms of robustness. 1) Robustness
with regard to team size (team size scaling), i.e. the ability of teams to effectively
scale upwards in size as more agents are needed. 2) Robustness with regard to
available resources (in this case, time scaling), i.e. the ability to quickly evolve
sophisticated behavior when training resources are significantly limited. 3) Ro-
bustness with regards to functionality, i.e. the ability to perform and cooperate
well with members that were not trained together, for example if teams had to
be reformed due to agent break down.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Our new class of cooperative, multi-agent evolutionary algorithms (OET) are
specifically designed to address these issues (specialization, cooperation and ro-
bustness) by applying evolutionary pressure on both individual members, which
leads to specialization, and evolutionary pressure on teams, which leads to coop-
eration. In this paper we show that using both types of pressure produces teams
that meet our robustness goals as well.

2 Background

Evolutionary algorithms are often used to evolve teams of agents, where the
goal is to maximize utility or solve a task, what Panait and Luke call cooper-
ative multi-agent learning [6]. Even homogeneous teams, team whose members
have identical capabilities, often benefit from control structures that allow agents
to specialize in different subdomains of the problem [5,15]. Heterogeneous teams,
teams whose members have different capabilities, require control structures that
allow agents with different abilities to operate in the same team while also en-
suring the team itself does well. Programming the behavior between multiple
agents with different abilities to optimize cooperation is extremely difficult. For
these reasons, evolutionary algorithms are often used to train teams, and the
agents within a team are usually evolved together to increase cooperation.

Evolutionary approaches for training multi-agent teams have been successfully
applied to a wide range of knowledge representations, including teams of: neural
networks[7], oblique decision trees[1], and stack-based predictors[11]. Evolution-
ary approaches have also been applied to a wide range of problem domains
including robot navigation [4], team sporting strategies [12], predator strate-
gies [3,9], hazard assessment [10], and cancer and diabetes diagnosis [1,7].

Cooperative evolutionary algorithms generally fit into two groups, Island or
Team algorithms. Research suggests Island approaches produce teams of strong
individuals that cooperate poorly, and Team approaches produce teams of weak
individuals that cooperate strongly [5,15]. Ideally, teams should be composed of
strong individuals that cooperate well. In order to overcome the weaknesses of
Island and Team approaches, Soule introduced a new class of cooperative multi-
agent evolutionary algorithms called Orthogonal Evolution of Teams (OET) that
alternately apply pressure on teams and individuals during selection and replace-
ment [5,15]. Soule described this class of algorithms as orthogonal because they
alternate between two orthogonal views of the population: as a single popu-
lation of teams of size N and as a set of N independent populations of indi-
viduals. Thomason described two main variations of OET and compared their
performance to Team and Island algorithms using classification problems [15].
It was shown that OET produces teams whose members perform better than
those generated with Team approaches and which cooperate better than those
generated using Island approaches. Increased individual performance and team
cooperation led to significantly better team performance. In addition, Soule and
Heckendorn found that OET teams are significantly more robust with regards
to team size than teams evolved using the Island and Team approaches [13,14].
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In this paper we extend the research to determine which of the three general
approaches (Team and two OET varients) produce teams that are the most ro-
bust with regard to resources (specifically time) and with regard to cooperation
with members from other teams. To test limited resource robustness we signifi-
cantly reduced the amount of time the teams were allowed to train, as compared
to how long they would operate in the environment during testing. As a novel test
of member robustness we measure how well teams perform when their members
are randomly replaced by members from other teams. Our results show that OET
performs significantly better than Team algorithms on both of these tests.

3 The Problem Environment

The environment is a two dimensional grid composed of 2025 (45x45) squares.
At the beginning of each evaluation exactly twenty percent of the squares are
labeled as interesting. The interesting squares are determined randomly for each
evaluation so that agents cannot memorize where the interesting squares are,
instead the agents must learn general search algorithms.

There are two agent types: scouts and investigators. The scouts role is to find
interesting squares and mark them with a beacon that is detectable at a distance
by the investigators. The investigators role is to investigate interesting squares.
Scouts travel at up to twice the speed of investigators. If a scout is in or next to
an interesting square, it automatically places a beacon in the interesting square
(unless there is already a beacon there). If an investigator enters an interesting
square, regardless of whether the square is marked with a beacon, it changes the
square to investigated and deactivate the beacon, if any, in the square. Neither
type of agent can sense interesting squares at a distance without a beacon. Thus,
the teams must evolve general search behaviors.

Since the agents can see the beacons (if any have been placed) at a distance,
the space can be more efficiently explored by the fast moving scouts marking
interesting areas and the slower investigators using the beacons to go directly
to the areas to be investigated. Thus, the two types of agents have different
subgoals and they must divide up the space to be searched efficiently since the
task has a time limit. If they all search in the same area they will fail to search
the entire space.

This model represents an abstraction of a number of practical problems. For
example, scouts and investigators could represent two robot types exploring a
minefield. Scouts fly overhead marking locations of potential mines and inves-
tigators deactivate the mines. Alternatively, they could represent an automated
planetary surveying team. Scouts identify potentially interesting geological for-
mations and investigators follow up by taking soil samples, etc.

The agent environment is a two-dimensional, real-valued space, so agent’s
have real vlaued location within a square. Agent movement is determined by an
expression tree that returns a vector, which represents the direction and speed
the agent will travel. However, investigators are limited to moves of length one
and scouts are limited to moves of length two.
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Input vectors (terminal nodes in the expression tree):

1. North - A unit vector pointing North (π/2 radians).
2. Constant - A vector that is generated randomly (magnitude in [0,2], direction

in [0,2π radians]) when the node is created. It remains during the lifetime of
the agent, but it can change through mutation.

3. Random - A vector that is randomized each time it is evaluated (magnitude
in [0,2], direction in [0,2π radians]).

4. Nearest Scout - A vector from the agent to nearest scout.
5. Nearest Investigator - A vector from the agent to nearest investigator.
6. Nearest Beacon - A vector from the agent to nearest beacon.
7. Nearest Edge - A vector from the agent to search space nearest boundary.
8. Last Move - A vector representing the agent’s last move.
9. Check Bounds - A zero magnitude vector with a small, arbitrary, positive

direction if inside search space and a small, arbitrary, negative direction
otherwise.

In this implementation there is no limit for detecting a beacon. If an input is
meaningless, e.g. nearest beacon when no beacons are present, then a random
vector is returned. The nearest edge also accounts for the possibility that the
agent is outside the search space, although agents must figure out for themselves
how to remain within bounds.

Vector operations (non-terminal nodes in the expression tree):

1. Add - Takes 2 vector arguments and returns the vector sum.
2. Invert - Takes 1 vector argument and returns a vector with its direction

inverted (by adding π radians).
3. If-Less-Than-Else-Magnitude - Takes four vector arguments. If the magni-

tude of vector 1 is less than the magnitude of vector 2, then return vector 3,
otherwise return vector 4.

4. If-Less-Than-Else-Direction - Takes four vector arguments. If the angle of
vector 1 is less than the angle of vector 2, then return vector 3, otherwise
return vector 4.

3.1 Fitness Evaluation

Each iteration during evolution consists of a simulation with a fixed number of
time steps. All of the agents start at random, real valued, locations within the
center square. Each agent has its input vectors updated and then its expression
tree is evaluated so the agent can move. The agents move sequentially and update
their input vectors whenever an agent moves.

Scouts gain a point for placing a beacon in an interesting square (only one
beacon per square is allowed), and investigators gain a point by investigating
an interesting square (even if no beacon is present). Beacons are removed af-
ter a square is investigated, and it cannot be re-flagged. Agents are penalized
0.1 points for each time step they remain outside of the search space. Because
the environment changes for each simulation the fitness of an agent will vary
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somewhat between evaluations. The fitness of the team is the sum of the agent
fitnesses. There are 2025 squares in the environment and 405 interesting squares
per simulation. Thus, the maximum team score is 810 points if the scouts cover
all the interesting squares with beacons, and the investigators investigate them
all, and no agent ever leaves the search space (which is very unlikely).

4 Evolutionary Algorithms

A steady state population model is used. The parameters are listed in Table 1.
In the equal time experiments the teams are trained and tested using the same
number of time steps (the amount of time they spend in the environment each
iteration). During the time scaling experiments, the teams are trained with much
less time in the environment then they have when they are tested. Every iteration
consists of PopulationSize/2 rounds of parent selection and replacement.

Table 1. Summary of the evolutionary algorithm parameters

Population Size 100

Team Size 3 scouts and 3 investigators

Selection and Replacement 3 member tournament

Mutation Probability 2 / tree size

Crossover Probability 1.0

Iterations 250

Trials 40

Training/Testing Time Steps 200/200, 300/300, 400/400 or
200/400, 300/400

In the Team algorithm all evolutionary pressure occurs at the level of teams.
During selection two teams are chosen through a tournament to be parents. The
parents are crossed over to produce two offspring which are then mutated. A re-
verse tournament is performed to find two poor teams for replacement. Offspring
replace the poor teams if their team fitness is higher. Therefore, teams are selected
and replaced based on their team fitness. Team level pressure leads to cooperation,
but there is no direct pressure to increase the fitness of individual team members.

We have not included data from an Island algorithm because team problems,
especially ones which rely on cooperation, require team algorithms. A hybrid
island algorithm was tested in the previous two papers [13,14], and it did not
perform well. If members are evolved in independent populations, it is unlikely
they will produce any sophisticated cooperative behaviors when combined for
testing, because the team members will never have trained together.

In OET1, selection is done on individuals and replacement is done on teams.
Offspring are created by making an empty team and adding fit individuals one
at a time by treating the single population of N -sized teams as N independent
populations of individuals and doing tournament selection within each popu-
lation. Therefore, the first team member is chosen from the population that
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represents all of the first members from each team; the second team member is
chosen from the population that represents all of the second members from each
team, and this continues until the new team is filled. Two teams are constructed
and undergo crossover and mutation. The offspring are evaluated as teams and
replacement is done by comparing team fitness. Team members must have high
fitness to be selected for a parent team, and a team in the population must have
a high fitness to avoid being selected for replacement.

In OET2, selection is done on teams and replacement is done on individuals.
Two fit teams are selected to be parents by tournament selection. Their members
undergo crossover and mutation to produce two new offspring teams. Replace-
ment is done by comparing the fitness of individuals in the offspring to the
fitness of individuals in the population. This is done by treating the population
of N -sized teams as N independent populations of individuals. Poor individuals
are selected for replacement by individuals in the new offspring. A team must
have high fitness to be selected as a parent and team members must have a high
fitness to avoid being selected for replacement.

Therefore, the OET algorithms apply direct pressure to individuals and teams
through selection and replacement. However, special consideration must be given
to OET2 because it replaces individuals during the replacement phase, which
means team fitness can become inaccurate. Potentially, the entire population
would need to be re-evaluated to update all the team fitnesses. Although this
is one option, it is undesirable because it increases the amount of evaluations
needed as compared to the OET1 and Team algorithms, so we decided to simply
not update team fitness at every iteration for OET2. The team fitnesses will
become out of date, but all the teams will be equally out of date, and because
most of the members have not been replaced the team fitness is reasonably accu-
rate. Then, every 25 iterations we skip a parent selection and replacement phase
and just update the entire population. This results in no increase of evaluations
needed because during a normal iteration the number of evaluations used is equal
to the population size because that many offspring are made. It also means that
only 4% of the iterations are used to update team fitnesses in the population.

5 Results

All results are the average of 40 independent trials. The results are presented
in three sections. First, are the results of the equal time experiments where
training and testing time steps are the same. Second, are the results of the
time scaling experiments where the training time steps are much smaller than
the testing time steps. Finally, are the results from a new type of cooperation
and robustness test which measures how well individuals perform in their own
team versus a random team. We also computed the P-values for the two tailed
Student’s t-test for each pair of algorithms for each combination of training and
testing time steps. All values are significant (below 0.01) except the difference
between OET1 and OET2 on the 200/200 test, which was only below 0.05. This
confirms that the differences between the average performance presented in the
following sections are in fact significant.



Training Time and Team Composition Robustness 7

5.1 Equal Time Experiments

In this experiment training and testing time steps are equal. Table 2 shows
the average team fitness and standard deviation. The difference in performance
between the Team algorithm and the OET algorithms are especially noticeable.
The OET algorithms perform very similarly and both outperform the Team
algorithm by an average of 20% in the 200/200 test, 16% in the 300/300 test,
and 10% in the 400/400 test.

The OET algorithms do especially well with limited time resources because
pressure is being applied to individuals, which forces them to spread out ear-
lier so they can gain points by dropping beacons or investigating interesting
squares. Additionally, the pressure applied to teams produces interesting coop-
erative behaviors. Often the OET algorithms would produce teams where the
agents would break out into sub-teams of investigator/scout pairs, where the
fast moving scouts would move in circular patterns around the investigators.
This allowed the scouts to drop many beacons that would be relatively close
to its nearby investigator. We suspect that this type of behavior, e.g. spreading
out early, but doing so in a way that promotes cooperation, is only consistently
reproducible through algorithms that apply direct evolutionary pressure on in-
dividuals and teams.

Table 2. Average team fitness for the equal time experiments

Algorithm Training TS Testing TS Avg Team Fitness
OET1 200 200 585.9 (20.9)
OET2 200 200 577.7 (13.7)
TEAM 200 200 483.6 (54.8)

OET1 300 300 718.3 (16.2)
OET2 300 300 708.7 (13.8)
TEAM 300 300 617.6 (59.6)

OET1 400 400 776.7 (8.8)
OET2 400 400 762.0 (11.2)
TEAM 400 400 701.8 (59.4)

Table 3 shows, for both the scouts and investigators, the average worst, av-
erages, and average best fitnesses. The average worst investigator and scout in
the teams produced by OET algorithms are almost twice as fit as those evolved
from the Team algorithm. The average best investigator and scout usually comes
from the Team algorithm which shows that most of these teams have one very
fit scout and investigator while the rest of the team members are mostly riding
its coattails. The OET algorithms produce investigators which are on average
22% more fit in the 200/200 tests, 18% more fit in the 300/300 tests, and 11%
more fit in the 400/400 tests than what the Team algorithm produces. The OET
algorithms produce scouts which are on average 19% more fit in the 200/200
tests, 13% more fit in the 300/300 tests, and 8% more fit in the 400/400 tests
than the what the Team algorithm produces.
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Table 3. Average scout and investigator fitness for the equal time experiments showing
the 200/200, 300/300 and 400/400 tests

Investigators Scouts
Algorithm Avg Min Avg Avg Max Avg Min Avg Avg Max

OET1 81.8 90.2 98.1 85.9 105.1 126.9
OET2 75.3 84.6 93.3 89.3 107.9 127.5
TEAM 43.3 71.4 93.0 50.7 89.8 129.1

OET1 107.6 119.5 132.1 88.1 119.9 149.9
OET2 103.4 117.0 130.0 97.5 119.2 143.1
TEAM 60.5 100.5 130.2 58.5 105.4 154.4

OET1 113.1 131.3 148.7 91.3 127.6 161.1
OET2 113.0 128.9 145.0 95.7 125.0 153.1
TEAM 59.6 117.3 161.8 58.1 116.7 189.3

We believe that the bigger difference in investigator performance is due to
the way that scouts cooperate with investigators in the OET algorithms. The
paired behavior described above, in which a scout circles an investigator, means
the investigators have more opportunities to investigate interesting squares since
they are next to more beacons that are placed by their nearby scout. Overall,
the data from Table 2 shows that the higher average individual fitness of the
OET algorithm is leading to higher average team fitness and that it is a function
of the sophisticated cooperation behaviors we observed.

5.2 Time Scaling Experiments

In these experiments training time is shorter than testing time. This addresses
two questions. First, do the teams with more time in the first set of experiments
perform well because they were operating in the environment longer or because
they evolved better search abilities? Second, can training efficiency be improved
by training for short periods of time? If the difference in fitness averages between
the time scaling tests and the equal time tests were large, this would imply that
some behaviors need more time to evolve. Alternatively, if the teams evolved
under shorter training periods perform equally well during longer tests it shows
that evolutionis robust with respect to trainging time.

Table 4 shows the average team fitness and standard deviation in the time
scaling experiments. Again, the OET algorithms perform very well and produce
teams that are on average 15% more fit in the 200/400 tests and about 17%
more fit in the 300/400 tests than what the Team algorithm produces. Clearly,
the Team algorithm needs as much training time as possible, as their results
improve greatly with time. In contrast, the OET algorithms perform almost as
well as the 400/400 tests with significantly fewer training time steps. This means
that OET algorithms produce teams that are fairly robust with respect to time
resources, and thus high fitness teams can be produced much quicker with the
OET algorithms. It also shows that their cooperative behavior and general search
techniques evolve relatively quickly.



Training Time and Team Composition Robustness 9

Table 4. Average team fitness for the time scaling experiments (400/400 tests included
for comparison)

Algorithm Training Time Testing Time Avg Team Fitness
OET1 200 400 747.8 (15.0)
OET2 200 400 764.0 (11.1)
TEAM 200 400 658.7 (56.0)

OET1 300 400 746.8 (19.4)
OET2 300 400 765.8 (10.9)
TEAM 300 400 646.3 (59.0)

OET1 400 400 776.7 (8.8)
OET2 400 400 762.0 (11.2)
TEAM 400 400 701.8 (59.4)

The minimum, maximum, and average performance of individual scouts and
investigators in the time scaling experiments (data not shown) produced the
same trends as in Table 3. The average best investigator and scout usually comes
from the Team algorithm, while the OET algorithms produce investigators and
scouts with higher average fitness.

5.3 Cooperation Tests

Finally, we performed two cooperation tests. During each of the previous ex-
periments the best team from each trial was saved, which resulted in a pool of
40 teams from each experiment. Random teams were formed using two differ-
ent methods and tested. The goal was to measure cooperation by testing how
well individuals perform in random teams versus the team they evolved in. In
addition, this tests robustness with regards to team composition.

In the first cooperation test the 40 teams were pooled with all investigators in
one set and all scouts in another set. 120 random teams were formed by selecting
three investigators (with replacement) and three scouts (with replacement). In
the second cooperation test we used the same 40 teams, but kept the investigators
and scouts in their respective columns. So all of the first investigators from each
team formed a list, all of the second investigators from each team formed a list,
and this continued until there were 6 lists (3 for investigators and 3 for scouts).
Then we formed another 120 random teams by selecting (with replacement) an
agent from each list.

Forming random teams using both methods allows us to determine whether
team members in particular positions within a team consistently develop similar
roles. In all three algorithms individuals maintain their position within a team
during evolution, e.g. the first scout in a team is always the first scout and is
always crossed with other first scouts. This makes it easier for members to evolve
specialized roles [2]. For example, a simple form of specialization might simply be
that the first scout always begins by exploring in the Northeast direction, and this
behavior will eventually become fixed in all members of a population. By using
the two methods described above we can determine whether similar specialized
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Table 5. Results of cooperation tests showing the 200/200, 300/300, and 400/400
tests. Average of 120 randomly sampled teams. The percent drop is compared to team
fitness in Table 2.

Test 1 Test 2
timesteps Algorithm Avg Team %Drop Avg Team %Drop

200/200
OET1 436.6 (67.9) 25 439.8 (74.7) 25
OET2 492.8 (59.8) 15 491.2 (54.6) 15
TEAM 320.1 (97.9) 34 319.6 (86.1) 34

300/300
OET1 576.8 (76.1) 20 585.4 (62.7) 19
OET2 628.5 (44.0) 11 629.0 (42.3) 11
TEAM 409.6 (124.6) 34 400.2 (144.9) 35

400/400
OET1 660.3 (95.7) 15 643.4 (99.5) 17
OET2 692.1 (89.2) 9 699.3 (48.1) 8
TEAM 476.9 (172.0) 32 465.8 (176.3) 34

behaviors evolve between trials. If they do then preserving members positions
by having six pools (method 2 above) should yield better results. Otherwise, if
specialized roles evolve completely independently across multiple trials then the
two methods should produce similar results.

Table 5 shows the results of both cooperation tests. Both OET algorithms
did significantly better when random teams were formed, and OET2 was notice-
ably better than OET1. For cooperation test 1, random teams from the Team
algorithm drop in fitness by an average of 33.8%, while random teams from
the OET1 algorithm drop in fitness by an average of 20.2%, and random teams
from the OET2 algorithm only drop in fitness by an average of 11.5%. That
the most significant drop is with the Team algorithm is reasonable, because the
composition of teams in the Team algorithm remains constant during evolution.

In contrast, in OET1, new teams are created by combining copies of the best
members in the population. These new teams will only be successful if the mem-
bers cooperate well. Thus, there is pressure not only to evolve members that
perform well and that cooperate within their team, but also to evolve members
that perform well when combined with novel members. In OET2, replacement
inserts individuals into different teams within the population. Therefore, individ-
uals are very mobile within the population and teams must evolve to successfully
accommodate the insertion of new individuals to be successful. In general, both
OET algorithms evolve extra-team cooperation naturally because OET1, and
especially OET2, places a higher order pressure on the population to maintain
individuals that cooperate well inside their own team, but also cooperate well
with similar individuals from other teams.

Finally, the results with the two cooperation tests are essentially the same.
This confirms that the specialized roles evolved by team members in a particular
position are independent between trials. That is, the evolved role of a scout
in position 1 in one trial (say searching the Northeast corner or circling the
investigator in position 3) is completely independent of the roles it evolves in
other trials, which is what we expected.
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Table 6. Results of cooperation tests showing the 200/400, 300/400, and 400/400
tests. Average of 120 randomly sampled teams. The percent drop is compared to team
fitness in Table 4.

Test 1 Test 2
Timesteps Algorithm Avg Team %Drop Avg Team %Drop

200/400
OET1 647.9 (102.5) 13 643.0 (86.7) 14
OET2 683.6 (63.0) 11 681.4 (82.4) 11
TEAM 470.7 (165.6) 29 492.0 (162.6) 25

300/400
OET1 628.1 (121.2) 16 631.8 (128.4) 15
OET2 695.1 (64.1) 9 687.6 (71.4 ) 10
TEAM 431.3 (190.0) 33 453.7 (170.5) 30

400/400
OET1 660.3 (95.7) 15 643.4 (99.5) 17
OET2 692.1 (89.2) 9 699.3 (48.1) 8
TEAM 476.9 (172.0) 32 465.8 (176.3) 34

Table 6 shows the results of the cooperation tests from the time scaling exper-
iments. Randomly sampled teams from the Team algorithm drop in fitness by
an average of 30.5%, while randomly sampled teams from the OET1 algorithm
drop in fitness by an average of 15.0%, while randomly sampled teams from the
OET2 algorithm only drop in fitness by an average of 9.7%.

6 Conclusion

Our results lead to three important conclusions. First, the equal time exper-
iments showed that OET algorithms significantly outperform standard Team
approaches on a complex multi-agent problem. Second, the time scaling experi-
ments showed that OET algorithms are very robust to limited training resources.
The teams produced by OET performed almost as well when their training time
was cut in half, while the Team approach needed as much training time as pos-
sible. This is significant because in many real world applications an agent’s time
in the field is likely to be substantially longer than the time available for train-
ing. Third, the cooperation tests showed that OET algorithms, especially OET2,
significantly outperforms other approaches when teams must be reformed and
that a significant amount of cooperation is maintained between all individuals
in the population. This team member robustness is important because it allows
teams to be successfully reformed if some members fail or are damaged.

We also observed sophisticated behavior from OET teams that evolved rela-
tively quickly. Members learned to spread out to avoid covering the same areas
and formed investigator/scout pairs where the fast moving scouts moved in cir-
cular patterns around the investigators. This cooperation increased the average
fitness of scouts, and especially, investigators. This shows that OET algorithms
are not just outperforming the team algorithms, but are doing so by evolving
effective cooperative behaviors. The speed with which these behaviors evolve is
also very promising as it strongly suggests that even with increasingly complex
agents and environments, evolutionary algorithms such as OET will be able to
generate effective cooperative behaviors in a reasonable amount of time.
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Abstract. We tell the story of BrilliAnt, the winner of the Ant Wars
contest organized within GECCO’2007, Genetic and Evolutionary Com-
putation Conference. The task for the Ant Wars contestants was to evolve
a controller for a virtual ant that collects food in a square toroidal grid
environment in the presence of a competing ant. BrilliAnt, submitted
to the contest by our team, has been evolved through competitive one-
population coevolution using genetic programming and a novel fitnessless
selection method. In the paper, we detail the evolutionary setup that lead
to BrilliAnt’s emergence, assess its human-competitiveness, and describe
selected behavioral patterns observed in its strategy.

1 Introduction

Ant Wars was one of the competitions organized within GECCO’2007, Genetic
and Evolutionary Computation Conference, in London, England, July 7–12,
2007. The goal was to evolve a controller for a virtual ant that collects food
in a square toroidal grid environment in the presence of a competing ant. In a
sense, this game is an extension of the so-called Santa-Fe trail task, a popular
genetic programming benchmark, to two-player environment.

Ant Wars may be classified as a probabilistic, two-person board game of im-
perfect information. Each game is played on a 11x11 toroidal board. Before the
game starts, 15 pieces of food are randomly distributed over the board and two
players (ants) are placed at predetermined board locations. The starting coordi-
nates of ant 1 and ant 2 are (5, 2) and (5, 8), respectively. No piece of food can
be located in the starting cells. An ant has a limited field of view – a square
neighborhood of size 5x5 centered at its current location, and receives complete
information about the states (empty, food, enemy) of all cells within it.

The game lasts for 35 turns per player. In each turn ant moves into one of 8
neighboring cells. Ant 1 moves first. If an ant moves into a cell with food, it scores
1 point and the cell is emptied. If it moves into a cell occupied by the opponent,
it kills it: no points are scored, but only the survivor can go on collecting food
until the end of the game. Moving into an empty cell has no extra effect. A game
is won by the ant that attains higher score. In case of tie, Ant 1 is the winner.

As the game outcome strongly depends on food distribution, the games may
be grouped into matches played on different boards. Each match consists of 2× k
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14 W. Jaśkowski, K. Krawiec, and B. Wieloch

games played on k random boards generated independently for each match. To
provide for fair play, the contestants play two games on the same board, in the
first game taking roles of Ant 1 and Ant 2, and then exchanging these roles; we
refer to such a pair of games a double-game. To win the match, an ant has to win
k+1 or more games within the match. In the case of tie, the total score determines
the match outcome. If there is still a tie, a randomly selected contestant wins.

The Ant War contestants were required to produce an ANSI-C function
Move(grid, row, column), where grid is a two-dimensional array representing
board state, and (row, column) represents ant’s position. The function was sup-
posed to indicate ant’s next move by returning direction encoded as an integer
from interval [0, 7]. Function code was limited to 5kB in length.

In this paper, we tell the story of Ant Wars winner, BrilliAnt, an ant submit-
ted by our team. BrilliAnt has been evolved through competitive one-population
coevolution using genetic programming (GP) and a novel fitnessless selection
method. Despite being conceptually simpler than fitness-based selection, fitness-
less selection produces excellent players without externally provided yardstick,
like a human-made strategy. An extensive computational experiment
detailed in the paper proves that BrilliAnt and other artificial ants evolved us-
ing this approach are highly human-competitive in both direct terms (playing
against a human opponent) and indirect terms (playing against a human-devised
strategy).

In the following Section 2 we shortly summarize the past game-related research
in GP. Section 3 describes the model of board perception and the repertoire of
GP functions used for strategy encoding. Section 4 provides details on experi-
mental setup and defines the fitnessless selection method. In Section 5, we assess
human-competitiveness of the evolved ants, and in Section 6 we describe the
most interesting behavioral patterns observed in BrilliAnt’s strategy.

2 Genetic Programming for Evolving Game Players

Achieving human-competitive performance in game playing has been AI’s holy
grail since its very beginning, when game playing strategies, like the famous
Bernstein’s chess and Samuel’s checker players, were hand-crafted by humans.
The most spectacular achievement of AI in the game domain was the grand
master Garry Kasparov’s defeat in duel with Deep Blue, which implemented
a brute force approach supported by human expertise. Through successful, it
is dubious whether this kind of approach can be applied to more complicated
games, and how much does it help to understand and replicate the human intel-
ligence. The $1.5M Ing Prize for the first computer player to beat a nominated
human competitor in the Go game is still untouched, presumably because Go
has too many states to be approached by brute force. Hard AI is also often
helpless when it comes to real-time (strategy) games [3] or multi-agent games
where the number of possible states can be even greater than in Go. Things get
more complicated also for hand-designed algorithms when the game state is only
partially-observable or the game is probabilistic by nature.



Winning Ant Wars: Evolving a Human-Competitive Game Strategy 15

The partial failure of hard AI in devising truly intelligent approach to games
clearly indicates that handcrafting a good game-playing strategy for a nontrivial
game is a serious challenge. The hope for progress in the field are the methods
that automatically construct game playing programs, like genetic programming
(GP, [7]) used in our approach.

Koza was the first who used GP to evolve game strategies [6] for a two-
person, competitive, simple discreet game. Since then, other researchers have
demonstrated that the symbolic nature of GP is suitable for this kind of task.
Studies on the topic included both trivial games such as Tic Tac Toe [1] or
Spoof [16], as well as more complicated and computationally-demanding games,
like poker [14]. Core Wars, a game in which two or more programs compete
for the control of the virtual computer, is among the popular benchmark prob-
lems for evolutionary computations and one of the best evolved players was
created using a μGP [4]. Luke’s work [8] on evolving soccer softball team for
RoboCup97 competition belongs to the most ambitious applications of GP to
game playing, involving complicated environment and teamwork. Recently, Sip-
per and his coworkers demonstrated [13] human-competitive GP-based solutions
in three areas: backgammon [2], RoboCode [12] (tank-fight simulator) and chess
endgames [5].

3 Ant’s Architecture

In the game of Ant Wars introduced in Section 1, ant’s field of view (FOV)
contains 25 cells and occupies 20.7% of the board area. The expected number
of visible food pieces is 3.02 when the game begins. The probability of having n
food pieces within FOV drops quickly as n increases and, for instance, for n = 8
amounts to less than 0.5%. This, together with FOV’s rotational invariance and
symmetry, indicates that the number of unique and realistically possible FOV
states is low, and any strategy based on the current (observed) FOV state only
cannot be competitive in a long run. More may be gained by virtually extending
the FOV, i.e., keeping track of past board states as the ant moves. To enable
this, we equip our ants with memory, implemented as three arrays overlaid over
the board:

– Food memory F , that keeps track of food locations observed in the past,
– Belief table B, that describes ant’s belief in the current board state,
– Track table V , that marks the cells visited by ant.

At each move, we copy food locations from ant’s FOV into F . Within FOV, old
states of F are overridden by the new ones, while F cells outside the current
FOV remain intact. As board states may change subject to opponent’s actions
and make the memory state obsolete, we simulate memory decay in the belief
table B. Initially, the belief for all cells is set to 0. Belief for the cells within
FOV is always 1, while outside FOV it decreases exponentially, by 10% with
each move. Table V stores ant’s ‘pheromone track’, initially filled with zeros.
When ant visits a cell, the corresponding element of V is set to 1.
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To evolve our ants, we use tree-based, strongly typed genetic programming. A
GP tree is expected to evaluate the utility of the move in a particular direction:
the more attractive the move, the greater tree’s output. To benefit from rota-
tional invariance, we use one tree to evaluate multiple orientations. However, as
ants are allowed to move horizontally, vertically, and diagonally, we evolve two
trees in each individual to handle these cases: a ‘straight ’ tree for handling main
directions (N, E, S, W) and a ‘diagonal ’ tree to handle the diagonal directions
(NE, NW, SE, SW)1. We present the FOV state to the trees by appropriately
rotating the coordinate system by a multiple of 90 degrees; this affects both FOV
and the ant’s memory. The orientation that maximizes trees’ output determines
the ant’s move; ties are resolved by preferring the earlier maximum.

Our ants use three data types: float (F), boolean (B), and area (A). An area
represents a rectangle stored as a quadruple of numbers: midpoint coordinates
(relative to ant’s current position, modulo board dimensions) and dimensions.
In theory, the number of possible values for area type is high, so it would be
hard for evolution to find the most useful of them. That it why we allow only
for relatively small areas, such that their sum of dimensions does not exceed 6.
For instance, the area of dimensions (2, 5) cannot occur in our setup.

The set of GP terminals includes the following operators:

– Const(): Ephemeral random constant (ERC) for type F ([−1; 1]),
– ConstInt(): Integer-valued ERC for type F (0..5),
– Rect(): ERC for type A,
– TimeLeft() – the number of moves remaining to the end of the game,
– Points() – the number of food pieces collected so far by the ant,
– PointsLeft() – returns 15−Points().

Functions implementing non-terminal nodes (operators):

– IsFood(A) – returns true if the area A contains at least one piece of food,
– IsEnemy(A) – returns true if the area A contains the opponent,
– Logic operators: And(B, B), Or(B, B), Not(B),
– Arithmetic comparators: IsSmaller(F, F), IsEqual(F, F),
– Scalar arithmetics: Add(F, F), Sub(F, F), Mul(F, F),
– If(B, F, F) – evaluates and returns second child if first child returns true,

otherwise evaluates and returns its third child,
– NFood(A) – the number of food pieces in the area A,
– NEmpty(A) – the number of empty cells in the area A,
– NVisited(A) – the number of cells already visited in the area A,
– FoodHope(A) – returns the estimated number of food pieces that may be

reached by the ant within two moves (assuming the first move is made
straight ahead, and the next one in arbitrary direction).

1 We considered using a single tree and mapping diagonal boards into straight ones;
however, this leads to significant topological distortions which could possibly signif-
icantly deteriorate ant’s perception.
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Note that functions that take the argument of area type compute their return
value basing not only on FOV, but on the food memory table F and the belief
table B. For example, NFood(a) returns the scalar product, constrained to area
a, of table F (food pieces) and table B (belief).

One should also emphasize that all GP functions mentioned here are straight-
forward. Even the most complex of them boil down to counting matrix elements
in designated rectangular areas. Using more sophisticated functions would be
conflicting with contests rules that promoted solutions where the intelligence
was evolved rather than designed.

4 How BrilliAnt Evolved

In our evolutionary runs ants undergo competitive evaluation, i.e., face each
other rather than an external selection pressure. This is often called
one-population coevolution [10] or competitive fitness environment [1,8]. In such
environments, the fitness of an individual depends on the results of games played
with other individuals from the same population. The most obvious variant of
this approach is the round-robin tournament that boils down to playing one
game between each pair of individuals. The fitness of an individual is defined as
the numbers of games won. Since the round-robin tournament needs n(n − 1)/2
games to be played in each generation for population of size n, some less com-
putationally demanding methods were introduced.

Angeline and Pollack [1] proposed single-elimination tournament that requires
only n− 1 games to be played. In each round the players/individuals are paired,
play a game, and the winners pass to the next round. At the end, when the last
round produces the final winner of the tournament, fitness of each individual
is the number of won games. Another method reported in literature, k-random
opponents, defines individual’s fitness as the average result of games with k
opponents drawn at random from the current population. The method requires
kn games to be played. The special case of this method for k = 1 is also known
as random pairing. An experimental comparison between k-random opponents
and single-elimination tournament may be found in [11].

Here we propose a novel selection method called fitnessless selection. It does
not involve explicit fitness measure and thus renders the evaluation phase of
evolutionary algorithm redundant. Fitnessless selection resembles tournament
selection, as it also selects the best one from a small set of individuals drawn
at random from the population. In the case of tournament selection the best
individual is the one with the highest fitness. Since our individuals do not have
explicit fitness, in order to select the best, we apply a single-elimination tour-
nament, in which the winner of the last (final) round becomes immediately the
result of selection. This feature, called implicit fitness, makes our approach sig-
nificantly different from most of contributions presented in literature. The only
related contribution known to us is [15].

Using ECJ [9] as the evolutionary engine, we carried out a series of prelimi-
nary experiments with various evolutionary setups, including island model and



18 W. Jaśkowski, K. Krawiec, and B. Wieloch

different variants of selection procedure. In a typical experiment, we evolved a
population of 2000 individuals for 1500 generations, which took approx. 48 hours
on a Core Duo 2.0 GHz PC (with two evaluating threads). In all experiments,
we used probabilities of crossover, mutation, and ERC mutation, equal to 0.8,
0.1, and 0.1, respectively. GP trees were initialized using ramped half-and-half
method, and were not allowed to exceed depth 8. For the remaining parameters,
we used ECJ’s defaults [9].

We relied on the default implementation of mutation and crossover available
in ECJ, while providing specialized ERC mutation operators for particular ERC
nodes. For Const() we perturb the ERC with a random, normally distributed
value with mean 0.0 and standard deviation 1/3. For ConstInt() we perturb the
ERC with a random, uniformly distributed integer value from interval [−1; 1].
For Rect() we perturb each rectangle coordinate or dimension with a random,
uniformly distributed integer value from interval [−1; 1]. In all cases, we trim
the perturbed values to domain intervals.

To speed up the selection process and to meet contest rules that required
the ant code to be provided in C programming language (ECJ is written in
Java), in each generation we serialize the entire population into one large text
file, encoding each individual as a separate C function with a unique name.
The resulting file is then compiled and linked with the game engine, which
subsequently carries out the selection process, returning the identifiers of selected
individuals to ECJ. As all individuals are encoded in one C file, the compilation
overhead is reasonably small, and it is paid off by the speedup provided by C
(compared to Java). This approach allows us also to monitor the actual size of
C code, constrained by contest rules to 5kB per individual.

The best evolved ant, called BrilliAnt in the following, emerged in an experi-
ment with population of 2250 individuals evolving for 1350 generations, using fit-
nessless selection with tournament size 5 (thus 4 matches per single-elimination
tournament), and with 2×6 games played in each match. BrilliAnt has been sub-
mitted to GECCO’07 Ant Wars competition and won it. We would like to point
out that BrilliAnt evolved and was selected in completely autonomous way, with-
out support from any human-made opponent. To choose it, we ran a round-robin
tournament between all 2250 individuals from the last generation of the evolution-
ary run. It is worth noticing that this process was computationally demanding:
having only one double-game per match, the total number of games needed was
more than 5,000,000, i.e., as much as for about 47 generations of evolution.

5 Human Competitiveness

The game-playing task allows for two interpretations of human competitiveness.
To assess the direct competitiveness we implemented a simulator that allows
humans to play games against an evolved ant. Using this tool, an experienced
human player played 150 games against BrilliAnt, winning only 64 (43%) of them
and losing the remaining 86 (57%). BrilliAnt’s total score amounted to 1079,
compared to human’s 992. Even when we take into account the fact, that playing
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Table 1. The results of a round-robin tournament between the evolved ants (in bold)
and humants (plain font). Each match consisted of 2 × 100, 000 games.

Player Matches won Games won Total score

ExpertAnt 6 760,669 10,598,317
HyperHumant 6 754,303 10,390,659

BrilliAnt 6 753,212 10,714,050
EvolAnt3 3 736,862 10,621,773

SuperHumant 3 725,269 10,130,664
EvolAnt2 3 721,856 10,433,165
EvolAnt1 1 699,320 10,355,044

SmartHumant 0 448,509 9,198,296

150 games in a row may be tiring for a human and cause him/her make mistakes,
this result can be definitely considered as human competitive. The reader is
encouraged to measure swords with BrilliAnt using Web interface provided at
http://www.cs.put.poznan.pl/kkrawiec/antwars/.

We analyzed also indirect competitiveness, meant as ant’s performance when
playing against human-designed programs (strategies), called humants in the fol-
lowing. We manually implemented several humants of increasing sophistication
and compared them with the evolved ants using matches of 2 × 100, 000 games.
Let us emphasize that the C programming language used for that purpose offers
richer control flow (e.g., loops) and more arbitrary access to game board than the
GP encoding, so this gives a significant handicap to humants. Nevertheless, the
first of our humants was easily beaten by an ant evolved in a preliminary evolu-
tionary run that lasted 1000 generations with GP tree depth limit set to 7. The
next one, SmartHumant, seemed more powerful until we increased the depth limit
to 8 and equipped ant with memory. That resulted in evolving an ant that beats
even SmartHumant. Having learned our lessons, we finally designed SuperHumant
and HyperHumant, the latter being the best humant we could develop. HyperHu-
mant stores states of board cells observed in the past, plans 5 moves ahead, uses
a probabilistic memory model and several end-game rules (e.g., when your score
is 7, eat the food piece even if the opponent is next to it).

To our surprise, by tuning some evolutionary operators we were able to evolve
an ant, ExpertAnt, that wins 50.12% of games against HyperHumant. The dif-
ference in the number of games won between ExpertAnt and HyperHumant is
statistically insignificant at the typical 0.01 level, but it is significant at the 0.15
level. As BrilliAnt turned out to be a bit worse than HyperHumant (loosing
52.02% of games), ExpertAnt apparently could be considered a better pick for
the Ant Wars contest. However, although ExpertAnt evolved without human
intervention, it has been selected by explicitly testing all ants from the last
generation against the manually designed HyperHumant. As our intention was
to evolve contestant fully autonomously, so, notwithstanding ExpertAnt perfor-
mance, we decided to submit BrilliAnt to the contest as it evolved and has been
selected completely autonomously. Quite interestingly, we observed also that the
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SuperHumant

EvolAnt2

BrilliAnt

EvolAnt3

ExpertAnt

HyperHumant

Fig. 1. Graph showing relations between players. An arrow leading from ant a to ant
b means that a is statistically better than b (α = 0.01). 2× 100, 000 games were played
between every two ants. EvolAnt1 and SmartHumant were not showed to improve
graph’s readability. EvolAnt1 wins against SmartHumant only.

method used to select ExpertAnt probably promotes overfitting: despite being
slightly better than HyperHumant, ExpertAnt loses against BrilliAnt (in 51.77%
of games).

Table 1 presents the results of a round-robin tournament between eight ants,
the five mentioned earlier and three other evolved ants (EvolAnt* ). Each partic-
ipant of this contest played 1,400,000 games against seven competitors and could
maximally score 21,000,000. It is hard to say which ant is the ultimate winner
of this tournament. Three of them won six matches each. ExpertAnt won the
most games, but it is BrilliAnt that got the highest total score.

The results of the same experiment are shown also in the form of graph in
Fig. 1. An arrow leading from a to b indicates that a turned out to be statisti-
cally better than b (at 0.01 level). No arrows between ants means no statistical
advantage. HyperHumant is the only player that never loses significantly and in
this respect it can be considered as the winner of the tournament. Interestingly,
there are no cycles in this graph and it is weakly transitive.

6 BrilliAnt’s Strategy

As BrilliAnt’s code is too complex to analyse it within this paper, we describe
selected observations concerning its behavior. Let us start from the most obvious
strategies. Faced with two corner areas of the field of view (FOV) occupied by
food, BrilliAnt always selects the direction that gives chance for more food pieces.
It also reasonably handles the trade-off between food amount and food proximity,
measured using chessboard (Chebyshev) distance (the number of moves required
to reach a board cell). For instance, given a group of two pieces of food at distance
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2 ((2, 2) for short), and a group of two pieces of food in distance 1, i.e., (2, 1),
BrilliAnt chooses the latter option, a fact that we shortly denote as (2, 2) ≺ (2, 1).
Similarly, (1, 1) ≺ (2, 2), (3, 2) ≺ (2, 1), (3, 2) ≺ (3, 1), and (2, 2) ≺ (3, 2). If both
groups contain the same number of food pieces but one of them is accompanied
by the opponent, BrilliAnt chooses the other group. It also makes reasonable use
of memory: after consuming the preferred group of food pieces, it returns to the
other group, unless it has spotted some other food in the meantime.

Food pieces sometimes happen to arrange into ‘trails’, similar to those found
in the Artificial Ant benchmarks [7]. BrilliAnt perfectly follows such paths as
long as the gaps are no longer than 2 cells (see Fig. 2). However, when faced
with a large group of food pieces, it not always consumes them in an optimal
order.

(a) (b)

Fig. 2. Brilliant’s behaviors when following a trail of food pieces (a), and in absence
of food (b). Gray cell and large rectangle mark Brilliant’s starting position and initial
FOV, respectively.

If the FOV does not contain any food, BrilliAnt proceeds in the NW direction.
However, as the board is toroidal, keeping moving in the same direction makes
sense only to a certain point, because it brings the player back to the starting
point after 11 steps, with a significant part of the board still left unexplored.
Apparently, evolution discovered this fact: after 7 steps in the NW direction (i.e.,
when FOV starts to intersect with the initial FOV), BrilliAnt changes direction
to SW, so that the initial sequence of moves is: 7NW, 1SW, 1NW, 1SW, 6NW,
1SW, 1NW. A simple analysis reveals that this sequence of 18 moves, shown
in Fig. 2b, provides the complete coverage of the board. This behavior seems
quite effective, as the minimal number of moves that scans the entire board is
15. Note also that in this sequence BrilliAnt moves only diagonally. In absence
of any other incentives, this is a locally optimal choice, as each diagonal move
uncovers 9 board cells, while a non-diagonal one uncovers only 5 of them.
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Evolving this full-board scan is quite an achievement, as it manifests in com-
plete absence of food, a situation that is close to impossible in Ant Wars, except
for the highly unlikely event of the opponent consuming all the food earlier. Bril-
liAnt exhibits variants of this behavioral pattern also after all some food pieces
have been eaten and its FOV is empty.

BrilliAnt usually avoids the opponent, unless it comes together with food and
no other food pieces are in view. In such a case, it cannot resist the temptation
and approaches the food, maintaining at least distance 2 from the opponent.
For one food piece, this often ends in a deadlock: the players hesitatingly walk
in the direct neighborhood of the food piece, keeping safe distance from each
other. None of them can eat the piece, as the opponent immediately kills such a
daredevil. However, there is one exception from this rule: when the end of game
comes close and the likelihood of finding more food becomes low, it may pay
off to sacrifice one’s life in exchange for food. This in particular applies to the
scenario when both players scored 7 and the food piece of argument is the only
one left.
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Fig. 3. Graphs show evolution dynamics for a typical process of evolution. Each point
corresponds to an best-of-generation ant chosen on the basis of 2 × 250 games against
HyperHumant. The presented values are averaged over 2×10000 games against Hyper-
Humant. It can be noticed that the evolution process usually converges around 1300
generation when the wining rate against a fixed opponent ceases to improve.

This sophisticated ‘kamikaze’ behavior evolved as a part of BrilliAnt’s strategy
and emerged also in other evolutionary runs. Figure 3b illustrates this behavior
in terms of death rate statistic for one of the experiments. The ants from several
initial generations play poorly and are likely to be killed by the opponent. With
time, they learn how to avoid the enemy and, usually at 200-300th generation,
the best ants become perfect at escaping that threat (see Fig. 3b). Then, around
400-500th generation, the ants discover the benefit of the ‘kamikaze’ strategy,
which results in a notable increase of death rate, but pays off in terms of winning
frequency.
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7 Conclusions

This paper presented an evolved game strategy that won the Ant Wars contest
and has been produced by means of a novel fitnessless mechanism of selection.
This mechanism lets individuals play games against each other and simply prop-
agates the winner to the next generation, allowing us to get rid of the objective
fitness. Though unusual from the viewpoint of the core EC research, selection
without fitness has some rationale. The traditional fitness function used in EC is
essentially a mere technical means to impose the selective pressure on the evolv-
ing population. It is often the case that, for a particular problem, the definition
of fitness is artificial and usually does not strictly conform its biological counter-
part, i.e., the a posteriori probability of the genotype survival. By eliminating
this need, we avoid subjectivity that the fitness definition is prone to.

Despite its simplicity, the evolution with fitnessless selection produces sophis-
ticated human-competitive strategies. We do not entice the evolution by provid-
ing competitive external (e.g., human-made) opponents, so that both evolution
as well as selection of the best individual from the last generation are completely
autonomous. Improvement of individuals’ performance takes place only thanks
to competition between them. Let us also emphasize that these encouraging
results have been obtained despite the fact that the game itself is not trivial,
mainly due to incompleteness of information about the board state available to
the players.

Interestingly, in our evolutionary runs we have not observed any of the infa-
mous pathologies common to coevolution, like loss of gradient or cycling. This
may be probably attributed to the fact that our setup involves single a pop-
ulation. The detailed comparison of the fitnessless selection and fitness-based
selection methods will be subject of a separate study.

So, is it really true that an evolved solution can be better than human’s mind?
Check at the page http://www.cs.put.poznan.pl/kkrawiec/antwars/ if you can
beat BrilliAnt!
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Abstract. Virtual creatures operating in a physically realistic 3D en-
vironment, as originally introduced by Karl Sims, provide a challenging
domain for artificial evolution. However, few coevolutionary experiments
have been reported. Here we describe the results of our experiments on
the evolution of physical combat among virtual creatures: essentially, we
evolve creatures that trade blows with each other. While several authors
have involved highly abstract forms of “combat” in their systems, this
is (to our knowledge) the first example of realistic physical combat be-
tween virtual creatures, based on actual contact and physical damage.
This poses the question of apportioning damage in a collision. Our solu-
tion is to assign damage proportionally to how much each colliding limb
contributed to the occurrence and depth of the collision. Our system suc-
cessfully evolves a wide range of morphologies and fighting behaviours,
which we describe visually and verbally. As with our previous efforts, our
source code is publicly available.

1 Introduction

1.1 Virtual Creatures

More than a decade ago, Karl Sims presented the results of his experiments on
the evolution of virtual creatures in a three-dimensional (3D), physically realistic
environment [1,2]. Virtual creatures offer a potentially boundless ground for
evolutionary experimentation. The complexity of physical interactions between
3D structures creates a challenging task for evolution, providing an ideal test-
bed for evolutionary algorithms and techniques. In addition, there are immediate
practical applications to evolving virtual creatures, such as modular robotics [3,4]
or self-modelling in robots. [5]

While there has been a significant amount of work in projects related to the
simulation of 3D creatures, initially, much of it was concerned with specific areas
of research, such as gene regulation in development [6] or modular robotics [4,3].
Other authors built environments based on simplified physics, such as Hornby &
Pollack [7] or the GOLEM project [8]. The Framsticks project [9] uses stick-figure
creatures and allows users to build simulations through scripts.
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Reproductions of Sims’ results were a long time coming, owing no doubt to the
lack of affordable hardware and software resources. Increases in computational
power, as well as the emergence of widely available physics simulation libraries,
have made it easier to undertake such projects in recent years. After an early
attempt at a partial replication by Taylor and Massey [10], we described the first
complete replication (and extension) of Sims’ results, using standard McCulloch-
Pitts neurons rather than the set of complex functional neurons used by Sims
[11]. Chaumont and colleagues [12] reimplemented Sims’ model and successfully
applied it to the evolution of catapults. Shim and Kim [13] evolved flying crea-
tures, although with simplified controllers (sinusoidal functions rather than neu-
ral networks) and more constrained morphologies. Lassabe and colleagues [14]
also implemented a Sims-like system, using classifier systems selecting among
pre-set activation patterns rather than neural networks, and used it to evolve
various locomotive behaviours in rugged environments (including relief, trenches,
etc.) and simple tasks such as block-pushing. Simultaneously, Bongard and col-
leagues [5] have explored new directions in the joint evolution of morphology and
behaviour: actual robots in the real world engage in continuous self-modelling
and self-simulation, in effect evolving models of themselves. This allows the robot
to recover from random damage, e.g.: “when a leg part is removed, [the robot]
adapts the self-models, leading to the generation of alternative gaits.”

2 Evolving Fighting Creatures

2.1 Coevolution: The “box-grabbing” Problem and Its Limitations

Sims’ original paper on coevolution [2] was based on the simple task of grabbing
a small cube away from an opponent. Creatures are positioned on opposite sides
and at equal distances from a cubic box (with corrections for their height),
and left to act for a fixed period of time. The final score for each creature is
the normalised difference between this creature’s distance to the box and its
opponent’s distance to the box.

The box-grabbing task has many advantages, not least simplicity: it is easy
to understand, easy to evaluate numerically, and easy to implement. It also has
the less obvious advantage of offering a fitness function that can “work” at all
stages of the evolutionary process, in that it can offer an informative evaluation
both to very poor and very advanced competitors. This is due to the fact that
it is based on relative distances, and that even the most primitive creatures will
possess some heritable variance in this characteristic (if only by falling down).

However, this simplicity can also be seen as a limitation. While there are sev-
eral ways to grab a box, the variety of efficient behaviours is necessarily limited.
Another problem is that it is not easy to see how this task could be extended to
large numbers of competing individuals. We might imagine box-grabbing com-
petitions involving a few creatures; we might even fancy the evolution of “rugby-
playing” creatures, in which teams of individuals would compete against each
other. But there does not seem to be any obvious way in which box-grabbing
could meaningfully be used in an open environment involving many independent
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individuals, constantly competing against each other, with varying lifespans and
asynchronous births and eliminations.

2.2 Physical Combat: The Appeal of (Virtual) Violence

Physical combat between creatures appears intuitively appealing as a basis for
evolution. This comes in no small part from the fact that physical combat is
ubiquitous in nature. Predation, sexual competition among males and other
forms of fighting have been fruitful sources of evolutionary creativity in many
lineages, producing remarkable examples of arms races and mutual adaptations.

Another attractive feature of physical combat is that it is a very direct form
of interaction, requiring no mediating device or instrument (as opposed to box-
grabbing, and therefore box-requiring, experiments). This means that it can be
used in many different settings with relatively few constraints. Thus physical
combat could be used in an open environment in which a population of individ-
uals would interact and evolve freely, in an unsupervised fashion.

2.3 Related Work

Many evolutionary experiments use some idealised form of “fighting” or “killing”
behaviour as part of a range of pre-defined behaviours. These include Geb [15],
Echo [16], Polyworld [17], Framsticks [9] and others. However, in these systems,
the actual process of fighting is essentially abstract. It corresponds to a pre-
defined rule, hard-coded into the program, such as “eliminate the individual
with lowest energy level,” or even simply “eliminate the individual right in front
of you, no matter what” (as in Geb). Evolution bears on when and how to use
the abstract fighting behaviour, not on how to fight.

In fact, despite the possibilities offered by physical combat, we have only been
able to find one published attempt at evolving physical combat in a 3D envi-
ronment: O’Kelly and Hsiao [18] have implemented a modified version of Sims’
model, based on a very simple form of combat. In this system, “the first creature
to touch its enemy’s root node is deemed the winner.” This simplified form of
combat is easy to implement and assess, and avoids the difficulties described in
the following sections. However, it is also less flexible in many ways, not least in
being an “all-or-nothing” measure of success. To provide a gradient for evolution,
O’Kelly and Hsiao add another component to their fitness function: at the end
of each round, both creatures are rewarded with a value inversely proportional
to the final distance between the two. This is expected to favour the emergence
of simple approach behaviours in the early stages of evolution. Of course this has
the drawback that the corresponding reward is equally given to both creatures,
independently of how much each creature contributed to reducing this distance.1

1 A simple way to reward creatures more fairly would be to calculate, at each timestep,
the modification in the distance between the position of each creature and the pre-
vious position of the other. In this manner, creatures that actually move towards
their opponent could be rewarded, while those which stay put or move away from
their opponents would not.
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Another problem with this method of combat, especially for our own block-based
creatures, is that it has an obvious weak point: simply protecting the root limb
makes a creature effectively invincible.

We would like to create a more realistic system, relying on a less abstract
form of combat. Instead, we would like to evolve actual physical fight, based
on physical shock, very much as in the real world. In such a system, a fighter’s
success would depend on how much physical damage it has inflicted upon (and
received from) its opponent. Basically, what we seek is a system in which crea-
tures would evolve to literally beat each other up. To our knowledge, no such
system has been reported in the literature.

2.4 Difficulties of Physical Combat: Newton vs. Darwin

The central question in physical combat is to determine how damage should be
evaluated: when do we say that an individual has somehow hurt, or otherwise
dominated, its opponent? This apparently simple question turns out to pose
significant problems.

The most obvious answer is simply to use impacts (and some measure of
kinetic energy at the time of impact) as the basis of combat: essentially, to let
individuals trade blows with each other. However, this introduces a difficulty
caused by Newton’s third law (often summarised as “action equals reaction”).
If two rigid blocks come into collision, and suffer some damage as a result, then
both blocks will suffer equivalent damage. This is because physical damage is
mostly related to kinetic energy. Clearly the relative velocities of each limb with
regard to the other are equal in magnitude (and of opposite signs), and the
resulting kinetic energy (and associated impact damage) will therefore be equal
for both. The consequence is that when a creature hits another, the creature
dealing the blow will suffer the same damage as the one receiving it. Clearly this
is not conducive to the evolution of fighting behaviours.

In nature, the main reason why physical combat can occur is simply the
heterogeneity of materials. Flesh, bones, teeth, skin, horn, etc., have different
properties that make it possible to inflict damage on an opponent without suf-
fering too much as a result. The cheetah’s claws are harder than the gazelle’s
skin and flesh, and can therefore damage it more than they are damaged by it.
Martial arts fighters attempt to throw their fists and heels at their opponent’s
face and stomach - rather than the other way round - because the bone struc-
ture of those parts favour (closed) hands and feet in collisions against the nose
and the belly. Additionally, the geometry of object plays a roles: sharp, pointy
objects will behave differently than flat or dull objects in collisions - hence the
variety of mammalian tooth shapes.

Implementing such variety of materials in our simulation would clearly be
cumbersome and difficult to “get right.” In addition, we would need to impose
some cost on the toughness of materials, to prevent evolution from turning into a
simple maximisation of toughness. In nature, such runaway escalation in armour
is simply prevented by the trade-offs imposed by available resources and other
tasks. This would not be readily transposable in our simple model.
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2.5 Solution: Favouring the Aggressor

To overcome this difficulty, we chose to evaluate the damage inflicted by a crea-
ture upon another by measuring “how much” this creature contributed to the
occurrence and intensity of the collision. The result is that the creature that
initiates contact more than the other (that is, the creature that is “dealing the
blow”) is favoured in the interaction.

Collision intensity is estimated by penetration depth. How can we measure
how much each of the colliding limbs contributed to this collision? This is esti-
mated by suspending the simulation, and then letting each of the colliding block
in turn move for one timestep at its current velocity, while the other one is kept
fixed; the resulting increase in penetration depth, if any, is used as a measure-
ment of how much this creature contributed to the collision - that is, how much
it actually moved towards the other (see Figure 1). After this, all blocks return
to their original positions, and the simulation proceeds normally.

Fig. 1. Damage calculation. 1: A collision occurs between limbs A and B, moving

with velocities Va and Vb respectively. 2: Letting B move at its current velocity for

one timestep (while keeping A fixed) results in a large increase in penetration depth.

3: By contrast, letting A move at its current velocity for one timestep (while keeping

B fixed) results in a smaller increase in penetration depth. Thus, in this collision, B

inflicts more damage upon A than A upon B. Note that if Va was pointing away from

B, then letting A move for one timestep would actually reduce penetration depth, and

thus A would not be inflicting any damage upon B at all.

3 System Description

3.1 Virtual Creatures

Our system has already been described in previous publications (e.g. [19,11]).
The system used here is very similar, with minor differences. Here we only pro-
vide a brief overview of the platform, including differences with previously pub-
lished material. As with our previous efforts, the source code of our experiments
is freely available (together with pictures and videos) at the following URL:
http://www.cs.bham.ac.uk/~txm/creatures/

Morphology: As in Sims’ model, the creatures are branching structures com-
posed of rigid 3D blocks. Each block (or “limb”) is connected to its parent limb
by a hinge joint, except for the first (“root” or “trunk”) limb which obviously
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has no parent. Hinge joints have limited amplitude, so that rotation can only
occur within the [−3π/4, 3π/4] range. The genetic specification of a creature is
given as a tree of nodes. Each of these nodes contain morphological and neural
information about one limb. The morphological information in each genetic node
specifies the dimensions of the limb (width, length and height), the orientation
of this limb with regard to its parent (in the form of two parameters indicating
polar angles with the xz and the xy planes, that is longitude and latitude, in the
frame of reference of the parent limb), the direction of movement which may be
either “vertical” or “horizontal” (that is aligned either with the y or with the z
axis of the limb), and a boolean flag for reflection which governs symmetric repli-
cation along the xz plane of its parent. A limb also contains neural information,
as described in the following paragraphs.

0

1a

2

1b

2

0

1b

1a

A S

A S

A S

Fig. 2. Organisation of a fictional creature pictured in the bottom-right corner. Limb

0 has no sensor (S) or actuator (A). Limb 1 is reflected into two symmetric limbs 1a

and 1b, which share the same morphological and neural information.

Creature control and neural organisation: Our creatures are controlled by neural
networks. Each limb may contain up to 5 neurons. Genetic information about a
given neuron specifies the activation function for this neuron, a threshold/bias
parameter θ, and connection information. The activation function may be either
a sigmoid ( 1

1+exp−(σ+θ) ) or the hyperbolic tangent tanh(σ + θ) where σ is the
weighted sum of inputs; the difference between sigmoid and tanh is that the first
has values in [0, 1] while the latter has values in [−1, 1]. Connection information
specifies, for each connection, the source of this connection (that is the neuron
whose output is received through this connection) and a weight value. As in
Sims’ model, neurons can only be connected with other neurons from the same
limb, from adjacent limbs, or from the root limb. Each neuron may receive up
to 3 connections.

Sensor neurons and actuator neurons are handled specially. The first type
of sensor neuron is a proprioceptive neuron, which measures the current angle
formed by the hinge joint to which this neuron’s limb is attached, scaled within
the [−1, 1] range. Additionally, there are “vision” sensors, similar to those used
by Sims: these sensors return the distance, along either the x or y axis of the
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limb’s frame of reference, to the centre of mass of the closest neighbouring ani-
mat’s trunk limb. Finally, there are contact sensors, the output of which is one
if the limb is currently in contact with a limb of another creature, and zero
otherwise. Every limb has exactly one proprioceptor, and may have any num-
ber of other sensors (within the maximum number of neurons for each limb). In
addition, the trunk limb always contains one x sensor and one y sensor.

Actuator neurons command the movement of each limb, that is, its rotation
around its joint. The output of an actuator indicates the desired angular velocity
around this joint (remember that the joints have limited amplitude). Actuator
inputs are defined similarly as other neurons, but their activation function is
always a scaled hyperbolic tangent of the form tanh(σ + threshold). Each limb
has exactly one actuator.

Expression of the genome: The creatures are constructed according to the in-
formation contained in the genetic nodes. A very simple developmental system
translates the genotype into a corresponding phenotype, and may introduce ad-
ditional complexity if the genetic information dictates it. Our system uses the
same developmental features as Sims, with some refinements. The first devel-
opmental process is reflection of limbs: if a limb has its reflection flag set, a
symmetric copy of this limb and of all its attached sub-limbs will also be gener-
ated, where symmetry is taken along the parent limb’s xz (longitudinal) plane.
This process allows for bilateral symmetry in the system. Another developmental
feature is recursion, which effectively models segmentation in biological organ-
isms: each limb may specify a recursion index r, which means that r copies of
this limb (and of its sub-limbs) will be sequentially attached to each other, sim-
ilar to repetitive segments in living animals such as arthropods and vertebrates.
A limb may also carry a “terminal” flag, which indicates that, if its parent is
recursively replicated, this limb would only be added to the very last instance
of the replicated parent. We provide fine-grained control of neural wiring among
replicated limbs, allowing for asymmetric information flow between replicated
structures, an improvement over Sims’ original model.

Genetic operators: We use three genetic operators, broadly similar to those used
by Sims. Crossover is performed by simply aligning the genetic nodes of both
parents in two rows, then building a new list of genetic nodes by concatenating
the left part of one parent with the right part of the other. Grafting corresponds
to the removal of a branch (that is a limb and all its sub-limbs), and its replace-
ment by a branch taken from another individual. Connectivity information is
adapted and maintained: the neurons of the trunk establish the same connec-
tions with the new branch as they had with the old one, and similarly the new
branch has the same connection with its new trunk as it had with its previous
trunk. Mutation occurs by sequentially and randomly altering each morphologi-
cal and neural parameter within a genome (from limb size to connection weight)
with a given probability Pmut, as well as by removing a limb with probability
Pmut and adding a new, randomly generated limb, also with probability Pmut.
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3.2 Rules of Engagement

Competitions between two creatures are organised as follows: first, creatures are
put on each side of a vertical plane, and then pushed away from each other by
a very small distance to avoid any contact. Then creatures are allowed to move
according to their controllers’ output. Over the first 10% of evaluation time,
creatures benefit from an immunity period, during which they can neither hurt
nor be hurt by each other. After this immunity period has elapsed, damage is
evaluated according to the previously described method, and accumulated over
the entire evaluation period.

The fact that creatures are initially close favours the probability of contact
occurring, even in the very early stages. This provides an immediately exploitable
gradient for natural selection to act upon.

At the end of the evaluation period, each creature is given a final score equal
to 1 + (Damage inflicted - Damage suffered) / (Damage inflicted + Damage
suffered). This calculation is inspired by Sims [2]. Note that this score always
falls within the [0, 2] range.

4 Experiments and Results

The algorithm we use is a modification of Sims’ original algorithm [2], later called
“Last Elite Opponent” (LEO) by Cliff & Miller [20]. Following Sims, we use two
populations. In essence, Sims’ LEO algorithm evaluates individual by making
them compete against the current “champion” of the opposing population. At
each generation, every member of population 1 competes against the current
“champion” of opposing population 2, resulting in a certain score: this score is
the fitness of the individual. The 20% highest-scoring individuals are chosen as
survivors for the next generation, and the remainder of population 1 is filled with
offspring of these survivors; the parents of each new individual are selected from
among the survivors via roulette-wheel selection. The highest-scoring individual
is also identified as the new “champion” of population 1. Then the same process
is applied to population 2: each individual in population 2 competes against the
current champion of population 1, a champion is identified based on this score,
highest-scoring survivors are selected and the population is filled with offspring
of the survivors. This concludes one generation of the algorithm. The cycle is
then repeated for as many generations as required. In the first generation, current
champions are chosen randomly or arbitrarily.

We modified the LEO algorithm by incorporating a “sliding archive” of past
champions in the evaluation process. At every generation, we maintain an archive
in which we store the previous champions of each population over the last 15
generations. We make each individual compete, not only against the current op-
posing champions, but also against a sample of 2 past opposing champions picked
from this sliding archive (this sample is randomly selected for each population
at the beginning of each generation, so at every generation every individual of
each population competes against the same set of opponents). This modification
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Fig. 3. Four pairs of fighters obtained in the course of the experiments described in the
next chapter. In the top-left corner, one simple creature uses its rotating cubic head to
perform a “compass” motion, while the other creature uses three rotating appendages
both as flails and legs. The dark colour indicates that the creatures are still within their
immune period. In the top-right corner, a linear individual constantly aims its wagging
tail at its more complex opponent, which uses sensors from its head to coordinate its
own movement (the neural network of the larger creature is described in Figure 4). In
the bottom-left corner, a two-armed crawler and a directed snake move towards each
other. In the bottom-right corner, a large creature uses three undulating appendages
as powerful legs to “steamroll” its opponent.

improved the performance of the algorithm, as ascertained by systematically
pitting individuals evolved with and without sliding archives against each other.

Useful creatures consistently evolved within a couple of generations. The sys-
tem generated a wide range of morphologies, as shown in Figure 3. Various
strategies emerged, some of which made use of external sensors, while others
did not. All non-trivial individuals made use of proprioceptors to synchronise
oscillating groups of limbs.

One commonly observed strategy that did not make use of external sensors
was the “compass” method: one extremity of the creature remains fixed on the
ground (mostly through sheer mass) while the other extremity features a “head”
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Fig. 4. Neural network of the larger creature in the top-right picture in Figure 3. Each
rounded rectangle indicates a limb. Limb 0 corresponds to the “neck” of the individual;
limbs 1 and 2 constitute the “head”, while the bottom limbs (3-11) represent three repli-
cated segments, each composed of three limbs. Limbs 5, 8 and 11 have no neurons at all
and are simply fixed appendages of limbs 4, 7 and 10, respectively. Notice the mutual
connections between the proprioceptors and actuators of various limbs, which induce
synchronisation between the motions of these limbs: for example, the three repeated seg-
ments move in an undulating fashion due to the pattern of direct and indirect connections
between the proprioceptors and actuators of successive limbs. This creates a locomotive
behaviour, which is guided by the sensor neurons located in the “head”.

endowed with a constantly rotating structure that propels this head against the
ground. As the head is pushed sideways by the rotating structure, while the
tail remains fixed, the creature undergoes a compass-like motion, sweeping its
immediate vicinity. In addition, the head’s rotating appendage serves as a strik-
ing implement to inflict damage upon opponents. This simple strategy proves
very effective, as the creature can inflict damage upon anything that passes
within its radius. A variant on this strategy is the “flail” method, in which the
head and single arm are replaced with a linked chain of heads and arms, which
may vary widely in size and complexity. More generally, “whipping appendages”
were widespread. A different, less common approach is the “steamroll” method,
in which a large individual composed of regular segments (each endowed with
a powerful propelling appendage) repeatedly bumps into the opponent at full
speed, constantly pushing it away in the process.
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Among strategies that made use of external sensors, a simple one is the “di-
rected worm” technique, in which a simple crawling worm (a straight chain of
aligned limbs, propelling itself through transversal oscillation) is able to con-
sistently move towards its opponent by using sensor input. A variation is the
“directed tail”, where a complex individual ensures that a swinging tail is con-
stantly directed towards its opponent. Another common occurrence is the two-
armed crawler, endowed with two symmetric oscillating arms that serve both
for propulsion and attack. By modulating the orientation of arms with sensor
input, the creature is able to move towards its opponent.

Besides such identifiable categories, we observed a multitude of idiosyncratic
morphologies, ranging from the very simple to the relatively complex. Consider,
for example, the larger creature in the top-right picture in Figure 3. The func-
tional portion of its neural network is displayed in Figure 4. Besides the use of
mutual connections between the proprioceptors and actuators of various limbs
to create synchronised oscillation patterns (and thus efficient locomotion), we
see that the “head” contains various connections from external sensors which
allow the entire creature to home in on its opponent.

5 Conclusion

We have implemented a system for evolving physical combat among 3D crea-
tures. The system proved consistently successful in evolving competent fighters.
We observed a wide range of morphologies and behaviours, ranging from the sim-
ple to the relatively complex. The success of this system indicates that physical
combat can be used for further experiments involving virtual creatures.
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Abstract. Speech quality estimation, as perceived by humans, is of vi-
tal importance to proper functioning of telecommunications networks.
Speech quality can be degraded due to various network related prob-
lems. In this paper we present a model for speech quality estimation
that is a function of various time and frequency domain features of hu-
man speech. We have employed a hybrid optimization approach, by using
Genetic Programming (GP) to find a suitable structure for the desired
model. In order to optimize the coefficients of the model we have em-
ployed a traditional GA and a numerical method known as linear scaling.
The proposed model outperforms the ITU-T Recommendation P.563 in
terms of prediction accuracy, which is the current non-intrusive speech
quality estimation model. The proposed model also has a significantly re-
duced dimensionality. This may reduce the computational requirements
of the model.

Keywords: Non-Intrusive, Signal-based, GP, MOS.

1 Introduction

Speech quality may be reduced due to various reasons in a telecommunications
network. Some of these may be the noisy/faulty channels and links, frame loss
due to irrecoverable errors and low bitrate coding. Speech quality estimation
is vital to the evaluation of quality of service offered by a telecommunications
network. Traditionally, speech quality is estimated using subjective tests. In sub-
jective tests, the quality of a speech signal under test is evaluated by a group
of human listeners who assign an opinion score on an integral scale ranging be-
tween 1 (bad) to 5 (excellent). The average of these scores, termed the Mean
Opinion Score (MOS), is considered as the ultimate determinant of the speech
quality [1]. Subjective tests are, however, time consuming and expensive. To
make up for these limitations, there has been a growing interest in devising
software based objective assessment models. There are two kinds of objective
assessment models, namely, intrusive and non-intrusive. Intrusive models eval-
uate the quality of a distorted speech signal in the presence of a corresponding
reference signal. The current International Telecommunications Union (ITU-T)
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recommendation P.862 (PESQ) [2] is an example of such an approach. Non-
intrusive models, on the other hand, do not enjoy this privilege and base their
results solely on the estimated features of the signal under test. For this reason,
the results of the latter type of models are generally considered inferior to those
of the former.

Non-intrusive models can be classified either as signal-based or parametric. As
the name suggests, signal-based models are based on the digital signal processing
of human speech. An example of such a model is the current, state-of-the-art,
ITU-T Recommendation P.563 for single-ended estimation of speech quality [3].
Parametric models, on the other hand, base their results on various properties
relevant to the telecommunications network. In the case of Voice over Inter-
net Protocol (VoIP), for instance, these may be transport layer metrics such
as packet loss, jitter and end-to-end delay of a call. An example of a paramet-
ric model is the ITU-T G.107, commonly referred to as the E-model [4]. Both
types of models have their own advantages and limitations. Thus, for instance,
signal based models are used to analyse speech quality when the spectral enve-
lope of the speech signal may have suffered from degradation over time. This
may happen due to low bitrate coding or transmission over noisy wireless links.
Parametric models may be advantageous in VoIP, for instance, where the speech
signal may have undergone packet loss, and the speech quality may be estimated
as a function of packet loss statistics. A limitation of signal-based models is that
they are compute intensive, whereas parametric models are real-time amenable.
Moreover, since parametric models are designed for a particular type of commu-
nications network, their predictions for that type of network are more accurate
than those of signal-based models; signal-based models are suitable for general
predictions for a wider variety of networks.

In this paper we propose a new non-intrusive signal based speech quality
estimation model based on evolutionary algorithms. In particular we have em-
ployed a hybrid optimization approach that uses Genetic Programming (GP) to
search for a suitable structure for the desired solution. Coefficients of the models
evolved by GP are tuned simultaneously using a Genetic Algorithm (GA) and a
numerical method known as linear scaling. It is worth mentioning here that that
to the best of the authors’ knowledge this is the first ever application of evo-
lutionary algorithms for deriving a signal based model for non-intrusive speech
quality estimation. In the past the authors applied GP along with linear scaling
to derive a parametric model as reported in [5]

The main advantage of using GP is that it can produce human-readable re-
sults in the form of analytical expressions. Moreover, GP is capable of weeding
out irrelevant parameters while concentrating on the most salient ones. These
features of GP make our research superior to the past approaches based on
various machine learning approaches, as reflected in the results.

The rest of the paper is organized as follows. Section 2 entails a discussion on
the nature of signal based models. In section 3 we discuss the speech material
used in this research and the various distortion conditions. Section 4 discusses
the various experimental details and test results. Section 5 is the conclusion.
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2 Signal Based Non-intrusive Models

Signal based non-intrusive models are preferable to parametric ones for vari-
ous reasons. Firstly, parametric models can be used only with certain types of
networks, such as VoIP. Secondly, signal based models are more general in the
sense that they are applicable for a wider range of distortion conditions. Unlike
the parametric models these models process the audio stream to extract the in-
formation relevant to distortions in a signal. The estimated distortions are then
converted into MOS for that audio stream. Given this, a signal based model may
have two main modules. 1) A feature extractor that processes the speech signal
and extracts cogent distortion indicators. 2) A mapping module that transforms
the extracted features into MOS estimates. In what follows, some of the well
known algorithms that have been used in the past for both feature extraction
and MOS mapping are briefly described.

2.1 Feature Extraction Algorithms

Feature extraction algorithms may involve time and/or frequency domain anal-
ysis of the speech signal under test. Time domain analysis may involve computa-
tion of distortions relevant to the waveform of the speech signal. Some distortions
include temporal clipping, level variation and abrupt changes in the temporal
envelope of the signal. Frequency domain analysis techniques models normally
emulate the human vocal production system [6], or the auditory processing sys-
tem [7]. ITU-T Recommendation P.563 is the current standard for signal based
non-intrusive speech quality estimation. It entails a rigorous feature extraction
process that involves the computation of plausible features from both time and
frequency domain representations of the signal under test. The overall structure
of the P.563 algorithm is divided into three stages. The first is a preprocessing
stage in which the signal is level normalized. After this, two additional versions
of the distorted signal are created. The first is created by a filter having a fre-
quency response similar to the modified intermediate reference system (IRS) as
described in ITU-T P.830 [8]. IRS emulates the frequency response of a standard
telephony handset. The second version of the normalized signal is created by us-
ing a fourth-order Butterworth high-pass filter with a 100-Hz cutoff frequency
and a flat response for higher frequencies, thus emulating the frequency response
of cordless and mobile phones. Voice Activity Detection (VAD) is also a part of
the preprocessing stage that is used to discard speech sections shorter than 12
ms and to join speech sections separated by less than 200 ms. The second stage
pertains to distortion classification which is applied on the preprocessed versions
of the signal. Distortion classification is based on three basic principles. The first
principle models the human vocal tract as a series of concatenated tubes to re-
veal the anomalies in the speech signal as a function of abnormal variations in
the tubes’ sections. The statistics relevant to these anomalies form the speech
features.

The human vocal production system may be considered to have three compo-
nents: lungs as a source of air pressure, vocal chords as source of modulation and
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the vocal tract as a resonating source. Thus for voiced sounds, the air pressure
created by the lungs excites the vocal chords to create a low frequency, quasi
periodic sound. The spectral content of this sound is changed due to resonating
characteristics of the vocal tract. While speaking, the shape of the vocal tract
is changed due to controlled contractions and relaxations of its muscles. This
changes the resonant frequencies of the vocal tract, and consequently the spec-
tral content of the speech. To this end, Gray attempted to capture the speech
distortions, caused by communications networks, by employing a human vocal
production model [6]. The vocal tract is modeled as a set of concatenated tubes
with uniform, time-varying cross-sectional areas. Here, it is assumed that most
types of speech distortions cannot be produced by a human vocal tract due to
the limited and restrained movement of the vocal tract muscles. In general terms,
an implausible change in any of the tubes’ sizes is considered as a distortion.

The second principle entails a reconstruction of a pseudo reference signal from
the signal under test to perform an intrusive quality evaluation of the speech
signal to estimate the effect of distortions revealed during reconstruction. Signal
reconstruction is done by performing a 10th order linear predictive (LP) analysis
of 5 ms frames of the distorted signal. LP coefficients are converted to line
spectral frequencies followed by quantization to constrain them to fit the vocal
tract model of a typical human talker. LP is a popular speech analysis technique
used to represent characteristics of speech with a reduced set of parameters
[9][pp280-291]. These quantized coefficients are used to reconstruct the pseudo
reference signal. The difference between the pseudo reference signal, in a spectral
sense, and the signal under test gives a basic quality estimate that is used as a
feature for overall quality estimation.

The third principle is to determine specific distortions encountered in voice
channels, such as temporal clipping, frame erasures, signal correlated and back-
ground noise, robotization and level variation etc.

According to the reference implementation of the algorithm, a total of 43
features are extracted that depict various characteristics of the speech signal
under test. All features are divided into various distortion classes. Based on a
restricted set of key parameters, an assignment to a dominant distortion classes
is made. A complete description of these features is skipped here for brevity,
but they can be into three distortion groups pertaining to: 1) Unnaturalness of
speech, 2) noise, and 3) interruptions, mutes and temporal clipping.

2.2 Mapping Algorithms

Once cogent features corresponding to the speech signal under test have been
extracted, they are mapped to the speech quality using an appropriate regression
tool or a machine learning algorithm. Thus, for training a model numerous MOS-
labelled speech databases are used. An MOS-labelled speech database may have
a considerable number of speech samples from both male and female speakers,
and possibly in different languages. The duration of each speech sample may
vary from 8-12 secs. Each speech sample may be affected by a certain type of
network distortion, such as frame erasure, bit errors and/or signal correlated/
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uncorrelated noise. Each sample also has a MOS score associated with it, derived
normally from subjective tests [1]. The features relevant to distortions for all the
samples serve as the input domain variables and the corresponding MOS scores
form the target values for learning. After learning completes, the derived model
is also tested and validated using unseen data from a separate set of speech
samples/databases, as a standard practice.

Numerous learning algorithms have been used in the past to map the effect
of speech features, and/or their relevant statistics, to speech quality. Depending
upon the learning algorithm the training and mapping procedures may vary. One
approach is to compute a significant number of feature vectors corresponding to
clean, distortion free, speech files. A database of clean speech feature vectors may
be formed by classifying the latter into clusters to form a reference code-book.
An appropriate vector quantization algorithm such as K-means, as in [10], or self
organizing maps, as in [11], may be employed. As a part of training, feature vec-
tors corresponding to distorted speech samples are extracted and their distances
are computed from the best matching feature vector in the reference code-book
in a Euclidean sense. These auditory distances are eventually mapped to refer-
ence MOS scores using a 2nd or a 3rd order polynomial. An obvious limitation of
such an approach is the time required to search for a best matching vector from
the reference code-book of feature vectors of clean speech. Another approach
is to map the feature vectors of the training speech samples directly to speech
quality using an artificial neural network [12]. In [13] Falk and Chan have used
Gaussian mixture models (GMMs), support vector classifiers and multi adaptive
regression splines at various stages of their proposed algorithm to map the co-
gent features to speech quality. Similarly in [14] Grancharov et al. also employed
a GMM for speech quality prediction. In [15] Li and Kubichek employed a hid-
den Markov model (HMM) for mapping the speech related features to quality.
Among all of these algorithms HMMs attempt to explore statistical dependen-
cies between adjacent segments of human speech, whereas for the rest of the
algorithms aggregated values of features over the entire length of speech signal
are used.

ITU-T P.563 uses a two step mapping process. First, an initial quality esti-
mate is made that is a linear combination of the values of a subset of speech
features that fall under a particular distortion class. Second, a final quality es-
timate is made that is again a linear combination of the initial quality estimate
and 11 additional features. P.563 has shown a high correlation with the human
evaluation of speech quality, ranging between 0.88–0.90 [3] for various ITU-T
benchmark tests.

2.3 Proposed Model

In this paper we have proposed a new model for speech quality estimation. We
have used P.563 as the feature extraction algorithm in this research. This has
been chosen for two reasons: 1) P.563 is the current, state-of-the-art standard for
non-intrusive speech quality estimation. 2) it computes the most numerous and
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most varied features relevant to speech quality than any other feature extraction
algorithm. However, for mapping the features to speech quality we have employed
a GP based symbolic regression approach, along with a traditional GA, and linear
scaling as proposed by Keijzer in [16], for parameter optimization. GP is used
to evolve a suitable structure for mapping the features to speech quality. GP is
also known to prune off the redundant features and to retain the most useful
ones in the genome of the final individual. The GA is employed to fine tune the
numeric leaf values during evolution.

3 Speech Databases

A total of eight MOS labeled speech databases were used in this research. Out
of these, seven multilingual databases belong to the ITU-T P-series supplement
23 (Experiments 1 and 3) [17]. These databases include 1328 speech samples
distorted due to conditions such as signal correlated noise, transcoding, bit er-
rors and frame erasures. The databases include utterances by male and female
speakers. The eighth database includes 240 utterances in North American En-
glish accent by two male and two female speakers with seven types of distortion
conditions. This database is compiled by Nortel Networks [18]. The distortion
conditions, each of varying levels, include signal correlated noise, coding distor-
tions, tandeming, temporal clipping, bit errors and speech level variation. 70%
of the speech files, and their corresponding MOS, in these databases were ded-
icated for training and the remaining 30% for testing reasons. More specifically,
input/output patterns of 1,100 speech files were picked randomly as training
data, and the remaining, 468 patterns were used for the purpose of testing.

It is worth describing here the meaning of various distortion conditions men-
tioned above. Signal correlated noise (also known as multiplicative noise or
modulated noise) is a function of the amplitude of the speech signal. It is intro-
duced by waveform codecs due to quantization of the amplitude. Some examples
are logarithmically companded PCM (ITU-T G.711) [19] and ADPCM (ITU-T
G.726) [20]. Transcoding (or codec tandeming) occurs when the speech signal
is processed by more than one codec in the transmission path. This happens
in scenarios where participants of a call use different codecs to communicate
with each other. In a digital transmission channel the speech signal or its coded
version may undergo bit errors, as in wireless networks. A frame erasure oc-
curs when a coded speech frame undergoes an irredeemable error, as in wireless
networks, or when a frame is lost entirely, as in an event of a packet loss in
VoIP. Codec distortions correspond to the degradations induced by the under-
lying speech coding/compression scheme employed on the transmission channel.
Temporal clipping occurs when a speech codec employs a voice activity detec-
tion (VAD) algorithm for silence suppression. In this, silence intervals during
speech are captured and suppressed from being transmitted to the receiver to
achieve bandwidth saving. VAD results in front-end clipping during the start of
a speech segment and may lead to an audible distortion. Finally, level variation
corresponds to abrupt changes in the volume of speech.
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4 Experiments and Results

4.1 Experimental Setup

As a first step feature extraction was performed by processing the MOS labeled
speech databases discussed in section 3 using the P.563 algorithm. Values of 43
features corresponding to each of the speech files were accumulated as the input
domain variables. The corresponding MOS scores formed the target values for
training and testing the evolutionary experiments.

Two GP experiments were conducted. The common parameters of both ex-
periments are listed in Table 1. In both of these population size was set to 3,000.
Each experiment was composed of 50 runs, each spanning 100 generations. Tour-
nament selection with Lexicographic Parsimony Pressure (LPP) [21] was used
in both experiments. An initial maximum tree depth of 6 was used. The max-
imum tree depth was changed dynamically with an upper limit of 17. Survival
was based on elitism. The elitist criterion was such that at each generation the
depth of the best individual would be noted. Any individuals in the child popu-
lation exceeding this depth would be removed from evolution at this stage as a
first step. Next, up to half of the entries of the new population would be filled
up with the remaining individuals from the offspring population on the basis of
fitness. The remaining slots in the new population would be filled with the most
fit individuals from the parent population.

Table 1. Common Parameters of GP experiments

Parameter Value
Population Size 3,000

Initial Tree Depth 6

Selection LPP Tournament

Tournament Size 7

Genetic Operators Crossover, Subtree Mutation and Point Mutation

Operator Probabilities 0.95, 0.1, 0.1

Survival Elitist

Function Set +, -, *, /, sin, cos, log10, loge, sqrt, power.

Terminal Set Random numbers [-6–6]. P.563 features.

In both of the experiments scaled mean squared error (MSEs) was used as
the fitness criterion and is given by equation (1).

MSEs(y, t) = 1/n

n∑

i

(ti − (a + byi))
2 (1)

where y is a function of the input parameters (a mathematical expression), yi

represents the value produced by a GP individual and ti represents the target
value which is the corresponding MOS. a and b adjust the slope and y-intercept



44 A. Raja and C. Flanagan

of the evolved expression to minimize the squared error. They are computed
according to equation (2).

a = t − by, b =
cov(t, y)
var(y)

(2)

where t and y represent the mean values of the corresponding entities whereas
var and cov mean the variance and covariance respectively. This approach is
known as linear scaling and is found to be very beneficial for the symbolic re-
gression tasks with GP [16]. Instead of using protected functions, any inputs were
admissible to all the functions. For the input values outside the domain of the
functions log, sqrt, division and pow, NaN (undefined) values are generated. This
results in the individual concerned being assigned the worst possible fitness.

The selection criterion was based on the notion that population diversity can
be enhanced if mating takes place between two, fitness-wise, dissimilar individu-
als, as suggested by Gustafson et. al. [22]. This selection scheme has been shown
to perform better in the symbolic regression domain and, hence, it was employed
in this research. This simple addition to the selection criterion only requires one
to ensure that mating does not take place between individuals of equal fitness.

The first experiment (referred to as experiment 1) was based purely on GP. In
the second experiment (referred to as experiment 2) the leaf coefficients of the
GP trees were tuned using a GA during evolution. Various meta-heuristic algo-
rithms and numerical methods have been employed by researchers in the past
for tuning the leaf coefficients to enhance the fitness of GP trees. For instance,
in [23] Howard and Donna proposed a hybrid GA-P algorithm, where GP was
used to find optimal expressions for problem solving and a GA was used to tune
the coefficients of the GP trees/expressions during evolution. Similarly in [24]
Topchy and Punch have used the gradient descent algorithm for the local search
of leaf coefficients of GP trees. Moreover, quasi-Newton method has been used
to achieve the same objective in [25]. As a tradeoff between fitness enhancement
and computational efficiency, our implementation of the evolutionary algorithm
employed a GA to fine tune the coefficients of 30 best GP trees of every genera-
tion was performed. The coefficients learnt by the GA based tuning were coded
back in to the respective GP trees. It was hoped that this would enhance the
overall fitness of the subsequent populations as the genetic material of these
possibly more fit GP trees would propagate to the subsequent generations. Here
a simple GA was implemented with genes of type double. A population of size
100 was used with 15 generations per run. Single point crossover and mutation
were used as the the genetic operators with probabilities equal to 0.8 and 0.2
respectively.

4.2 Results and Analysis

Table 2 lists the statistics about the MSEs of the training/testing data and
final tree size (in terms of number of nodes) of the best individuals of the two
experiments under consideration. The fitness statistics relevant to experiment 2
are generally better as compared to experiment 1 over both training and testing
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data. Nonetheless, a Mann-Whitney-Wilcoxon test was also performed to for-
mally decide if a significant difference exists between the simulations at a 5%
significance level. The significance test did not reveal any difference between the
two experiments, and consequently between the two approaches. However, the
best individual, in terms of minimum MSEs over the testing data, belongs to
experiment 2, as can be seen in Table 2.

Table 2. Statistical analysis of the GP experiments and derived models

Experiment1 Experiment2
Stats MSEtr MSEte Size MSEtr MSEte Size

Mean 0.3673 0.3488 35.58 0.3618 0.3441 36.16

Std.
Dev. 0.0172 0.0183 13.9972 0.0159 0.0169 17.5875

Max. 0.4049 0.4026 70 0.3885 0.3817 102

Min. 0.3239 0.3146 12 0.3271 0.3071 18

Performance results of the best individual over the testing data are shown in
Table 3 and a comparison with the reference implementation of ITU-T P.563
is also shown. Table 3 also lists the percentage of Prediction Gain (PG) given
by equation (3). This individual is the proposed model and is derived from
experiment 2.

%PG =
MSEP.563 − MSEp

MSEP.563
× 100 (3)

where MSEP.563 and MSEp represent the MSE of ITU-T P.563 and the pro-
posed model with respect to reference MOS respectively.

Table 3. Performance results of the proposed model versus the reference implementa-
tion of ITU-T P.563 in terms of MSEs

ITU-T GP Based Percentage
P.563 Model Enhancement

Training 0.3937 0.3415 9.89

Testing 0.3674 0.3071 16.41

The proposed model has 85 nodes (including terminals and functions), how-
ever, it is a function of only 9 features as opposed to 43 features of the reference
implementation of ITU-T P.563. This may prove beneficial in reducing the com-
putational requirements of the algorithm. The model is not given here due to
shortage of space, however, the independent variables (i.e. features of P.563) are
briefly discussed as follows:

– Average pitch: This feature is used as a basic speech descriptor. An autocor-
relation method is used to compute pitch period estimates of 64 ms voiced
frames. Average pitch is one of the distortion classifiers and is used mainly
to differentiate between unnatural male and female voices. It is also used by
ITU-T P.563 to formulate the initial estimate of quality.
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– Final VTP average: VTP refers to an array that stores the cross sectional
areas of the emulated vocal tract tubes, as described in the first principle of
ITU-T P.563 in section 2.1. Final VTP average relates to the mean of the
area of last tube over the entire length of the signal.

– ART average: ART (articulators) are formed by aggregating the elements of
the VTP elements into three groups. These groups correspond to the front,
middle and rear cavities of the human vocal tract. This feature represents
the average size of the rear cavity.

– Basic voice quality: This feature is derived from the second principle of ITU-
T P.563 described in section 2.1.

– LPC kurtosis, LPC skewness and absolute LPC skewness: These three fea-
tures represent statistics relevant to the 21 (LPC) linear predictive coeffi-
cients of the speech signal. The statistics are computed for the LPCs of each
frame and aggregated over all frames of the signal. Skewness and kurtosis
are the 3rd and 4th moments about the mean and are considered to give
meaningful insights into the spectral characteristics of the signal.

– Spectral clarity: This feature is computed for voiced sections of the speech
signal to be analyzed. It corresponds to the difference between the values of
harmonics of pitch and the non-harmonic spectral components in the gaps
between the harmonics. First five harmonics of the pitch are used. FFT is
used for spectral estimation.

– Estimated segmental SNR: This feature is used to detect the presence of
signal correlated noise.

5 Conclusion

In this paper we have presented a novel signal based method for non-intrusive
evaluation of speech quality. We employed the ITU-T P.563 algorithm for speech
feature extraction. Estimates of speech quality (MOS) from subjective tests have
been used as (reference) target values. Mapping between the various features and
the reference speech quality is obtained by GP based symbolic regression. Two
GP experiments were performed. The first was purely based on GP, with scaled
MSE as the fitness function. The second experiment additionally employed a
hybrid approach in which the coefficients of selected individuals were tuned using
a GA, during every generation of GP based evolution. Both experiments have
produced individuals that outperform the reference implementation of ITU-T
P.563. Although it was expected that the hybrid optimization approach would
produce better individuals, the obtained results were not significantly different
from the first experiment. However, the best individual was produced by the
second experiment.

The best individual, in terms of fitness over testing data, has been proposed
as a model for quality estimation. This model, being a function of only 9 fea-
tures, as opposed to 43 features of ITU-T P.563’s reference implementation, is
one of reduced dimensionality too. This is also a significant result of this re-
search. Our future goal is to benchmark the proposed model to investigate if
any computational performance gains can be achieved.
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Abstract. This paper introduces a new data set for use in the financial
prediction domain, that of quantified News Sentiment. This data is auto-
matically generated in real time from the Dow Jones network with news
stories being classified as either Positive, Negative or Neutral in relation
to a particular market or sector of interest.

We show that with careful consideration to fitness function and data
representation, GP can be used effectively to find non-linear solutions
for predicting large intraday price jumps on the S&P 500 up to an hour
before they occur. The results show that GP was successfully able to
predict stock price movement using these news alone, that is, without
access to even current market price.

1 Introduction

Stock market price prediction has long been an attractive area for research,
with techniques including everything from Neural Networks [1][3][2][4] to Ge-
netic Programming [5][6] being used to try and predict stock price movement.
These methods typically base their predictions on factors such as recent prices in
the market. This is despite the Efficient Market Hypothesis (EMH) [11], which
states that financial markets are “informationally efficient”, that is, stock prices
immediately reflect all known pertinent information so that it is not possible to
outperform the market using information which is already known to the market.

While the EMH would write off any success to luck, effectively saying that
one is as likely to have the same success rolling chicken bones as running GP,
these predictive methods gamble on having access to high quality information
that no one else has. In particular, although the same raw information (typically
stock prices) is available to everyone, not everyone has the ability to analyse it
in useful ways, and so, there is opportunity to profit while the market adjusts
its prices, as an unused source of information may give investors an advantage.

This paper considers a different source of information, news stories. Although
the basic idea that there is a relationship between news events and stock market
price movements is not a new one [7] there has been very little work done to
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incorporate news events into quantitative style models. This may be due to the
fact that the human interpretive element of news stories does not easily lend
itself to the quantitative scrutiny that is regularly applied to the so called hard
data such as employment numbers or interest rates.

However, if one could employ news stories/events in a quantitative and au-
tomatic way, then this could give one an enormous advantage in the market, in
the sense that it would be possible to react more quickly than the market.

Recently, a research company (RavenPack International, S.L.) has developed
means for quantifying news stories; and our goal was to search for a model
based on news sentiment (i.e. whether a news story is relevant to the particular
market or sector, and if it is positive, neutral or negative) that exhibited pre-
dictive behaviour for intraday price movements. We wish to find if there is a
relatively straightforward way of combining only inputs from news sentiment to
give predictions on future intraday price movement.

We start with a description of the kind of data that we are dealing with and
the sort of data pre-processing we performed. Next, in section 4, we build up an
experimental approach that uses only news stories as inputs, before demonstrat-
ing in sections 5 and 6 that we can successfully predict stock price movement in
the S&P 500 index statistically significantly better than a standard benchmark
approach.

2 Background

Understanding how to utilise news is a difficult task even when in a pre-quantified
form. The data are noisy, containing strong oscillating cycles based around cul-
tural work practises. Two distinct functions are at play within the same data;
speculative and reflective reporting, those that happen before and after events
respectively and they have very different characteristics from each other.

Despite the huge search space that has to be covered to find equations for the
complex interactions at play, this problem has only a relatively small number of
inputs, those being the raw news stories released at each time point.

Just as complicated metrics can be derived from simple price, such as the beta
coefficient used in the financial analysis of a company compared to a sector or
portfolio, so too should it be possible to construct more descriptive terms from
raw news inputs. Evidence that a small number of simple inputs can manifest
into non-linear behaviours indicative of financial time series’ was demonstrated
by Lawrenz & Westerhoff [10] who constructed an artificial exchange traded on
by a few Genetic Algorithms who learnt to dynamically adjust the coefficients
of basic technical analysis strategies in relation to the stochastic influx of news
flows and the reactions of the other trading agents. From this basic system a
time series was produced that exhibited a number of the unusual artifacts well
documented in the financial literature [7] such as the tendency for the extremities
of the distributions of price return to be more dense than a Gaussian curve would
explain and the clustering of volatility and trading volume.
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3 The Data

Stories published electronically over the Dow Jones network are classified by
RavenPack as being either Positive, Negative or Neutral for a particular market
or sector. No other information is given, nor are stories within a particular
class ranked, i.e. a story is either in a class or no. It is necessary to make the
contextual distinction as the same story can have very different interpretations
from different points of view - consider the difference in effect that reports of
political turmoil in a region would have on the price of oil vs an indigenous
technology company.

The classification procedure is done with a propriety technology in real time,
the details of which are beyond the scope of this paper. Upon initially inspecting
the three time series a number of things become very evident;

1. All three series of news stories seem to maintain a stable ratio with a tight
variation between them even though the total numbers of news stories fluc-
tuates from year to year and week to week.

2. There is always a bias toward more positive stories than negative ones. The
well known slight upward bias [13] observed in the markets over time would
not appear to explain the magnitude of the difference between positive and
negative stories which usually averages at around two to one.

3. Viewed from different time scales news has strong periodic tendencies, the
most notable of which have cycles spiking every 91 days; with the quarterly
earnings season (Fig 1), 7 days; bulging at midweek with virtually no news at
the weekends and intraday spikes occurring at around 7:30 and 16:30 daily.

4. Visual inspection (Figure 2) dispels any naive notion that a simple correla-
tion exists between current news sentiment and market movement.
Pearson’s correlation tests done between the number of positive, neutral,
negative news stories vs the S&P itself, show the absence of a straight linear
correlation (Table 1). It is simply not the case to expect that increases in
positive news stories will instantly be reflected in market movement, any
present relationship is far more complicated than that.

Table 1. The Pearson’s correlations between three news sets and the S&P 500 Index

Correlation Story Sets

-0.0058 All Stories

-0.0046 Positive Stories

-0.0177 Negative Stories

3.1 Pre-processing

Like all experiments dealing with financial data, a number of pre-processing
steps had to be applied to the data with great care given to avoid inadvertently
contaminating prior data points with future information. We used data from
January to September of 2007 at one minute’s resolution. The Standard & Poor’s
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Fig. 1. Auto correlation with lags from 1 to 365 days. The time series is the daily totals
of negative news story. note the quarterly peaks every 91 days.

500 index was chosen as our target market. The above mentioned periodicity
must be removed for each of the time scales, the financial literature contains
many ways to achieve this with exotic filters [9] most of which suffer from being
black boxes where it is hard to verify if future information has been brought
backwards in time. Fortunately, the very simple technique of subtracting the
value x points behind (where x is the cycle period) works effectively. With this
in mind we make three passes over the data one removing the 91 day cycle, one
removing the 7 day cycle and one removing the 24 hour cycle. Only after this
is done to the 24/7 data series, can all data points representing times outside of
the New York trading hours be removed.

To do this we merge the news series with the S&P data which is also neces-
sary to ensure date and time congruence, any points that do not match up are
dropped. Points lying significantly outside a series’ passed observed range are re-
moved using Data Clipping and the values must then be normalised in some way
to make them amenable to the GP operators. The average number of stories per
minute conveniently brings the values to manageable levels avoiding the need for
a rolling window normalisation. For price itself some form of differencing must
be done to detrend the data. Getting the log difference can then help curtail the
extremes but we are particularly interested in such movements and so we avoid
doing this. Great care must be taken to remove the trans-day data as not to
confuse the model into believing for example, that the first minute of Monday
morning comes immediately after the closing bell on Friday evening; this would
subject the model to sudden price shocks that don’t actually exist.
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Fig. 2. S&P 500 index along side the raw numbers of All,Positive and Negative stories
that should effect it

4 Experiments

Initially we attempted a GP hits based symbolic regression approach to predict
raw Δ price movement 20 minutes ahead of the S&P 500 index from a large
collection of news inputs. RavenPack’s sentiment series (PEQ, BMQ) were used,
these are created with proprietary phrase-list and Bayesian algorithms respec-
tively. Both have been designed to classify the effect individual stories will have
on the US domestic stock market. Dow Jones supply tags with each story giv-
ing information on the topics the story touches upon, these tags are assigned
manually by the stories author. Only stories with a specific combination of tags
deemed relevant to the US Domestic Market are fed to the classifiers to compile
the PEQ and BMQ series. The specific list of relevant filtering tags along with
the training examples for the classifiers were arrived at by a group of domain
experts. From each series we made six inputs: the three raw Pos, Neu, Neg
counts, All the sum of all stories and two manually constructed series, ξ and ψ
which are created using the cumulative daily sums.

ξt =

∑

daily

Pt −
∑

daily

Nt

∑

daily

Pt−1 −
∑

daily

Nt−1
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ψt =

∑

daily

At −
∑

daily

Ut

∑

daily

At−1 −
∑

daily

Ut−1

Where (P,N,A,U)= (Positive,Negative,All,Neutral) number of stories respectively
and the sums are daily running accumulators that reset at the start of each day.

The original 8 RavenPack inputs All, Pos, Neu, Neg for BMQ and PEQ were
subjected to the preprocessing regime detailed above, and then the additional
two columns of ξ and ψ were added for each making 12 columns of data. These
12 columns taken at time (T), (T-30)minutes and (T-60)minutes make up an
input vector of 36 columns. The desired output is the 20 minute Δ price column
20 minutes in the future. This all gives a matrix totalling 37 columns in which
every row represents a single GP fitness case with three sets of past news inputs
and one future price movement target.

To compensate for the large search space created from the 36 input repertoire
GP had to choose from, we ran numerous experiments with large populations of
5000 for 51 generations. The standard way to test the performance of a system
such as this is to compare it with a trivial speculation method, that is, one that
simply guesses the values. If the evolved system is not statistically significantly
(a P-value < 0.05) then the solution is of low quality.

These initial experiments did not yield solutions that were significantly bet-
ter, and analysis showed that there were simply too many inputs, with little
improvement being shown as the populations evolved.

4.1 Revised Experiments

While one possible remedy to the situation above is to simply increase the pop-
ulation size and resources being thrown at the problem, we instead designed a
second round of experiments that were more in keeping with the original ques-
tion, which was is there a predictive relationship between news and price? rather
than can we predict exact price over fixed time frames? A number of changes
were made to the set up:

First, rather than predicting raw price Δ at a fixed point away we switched
the target series to the maximum value Δ from the subsequent hour for every
point. Second, we switched from using single point news values at different time
lags to using average values per minute over the last 20 minutes, 60 minutes
and 1 week. The idea here is to use the general news flow levels over different
time periods rather than specific impulses at exact times. With a wider net to
sense changes for each data point we hope to leave some leeway in how long it
takes traders to react to the release of daily information. The third change in
keeping with (Tetlocks [14]) findings on extreme value news involvement was to
change to a classifier fitness function with a simpler task of predicting if at any
point in the next hour the price would move up beyond two standard deviations
of the mean, both of which are calculated from the previous week so as not to
use future knowledge. Two standard deviations were chosen as this represents a
significant jump in price.
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There are over sixty thousand data points of S&P 500 minute values in the
data set with only around three thousand positive cases where the subsequent
hour held a price move greater then two standard deviations of the past week.
This large bias of negative to positive cases would be spotted by GP easily and
undoubtedly result in premature solutions that only ever guessed negative.

The training, testing and validating sets were constructed as to give each a
representative ratio of the markets positive to negative distribution of cases. This
left us with three data sets all of size 13627, all containing 613 positive cases
and the rest negative. A modified fitness function was then created to discourage
costly false positives but also avoid overly conservative solutions.

Standardised F itness =
(α − (β + γ))

(β + 1)

Where: α=total number of fitness cases, β=number of true positives, γ= number
of true negatives and Standardised Fitness is the term we wish to minimise.

False positives represent long market positions (buy orders) that fail to in-
crease by the specified amount and may cause losses especially with trading costs
considered. We wish to avoid these false positives above all else. However any
attempt to add a punishment term to the fitness function that would exacerbate
the effects of false positives resulted in overly conservative models that would
always bet negatively for fear of getting a positive wrong. Experience showed
that better results came from rewarding a combination of both correct positive
classifications and overall correctness but with an exaggerated bias toward the
correct positives. There are far more negative cases, and so such a function serves
as encouragement enough to err on the side of caution without the need for pun-
ishment terms. It was also necessary to include a condition that gave solutions
with zero correct positives the worst (maximum standardised fitness) score. Such
solutions would invariable be in the initial population and erroneously appear to
score well under our fitness criteria, ruining the run with premature convergence.

The input set was cut to a total of nine time series, the Positive, Negative and
All average news stories per minutes at each of the above mentioned look back
periods (20 minutes, 60 minutes and one week). 31 runs of 500 individuals were
used for 51 generations in a steady state GP algorithm with tournament selec-
tion and ramped half and half initialisation. Two ephemeral random constants
{both greater than 0 but less than 1} and three statics constants {2.0,
0.5, 0.01} where also included as terminals. The function set was made of the
basic arithmetic {+, -, *, p/}, three modified logic operator {nAND, nOR,
nNOT} which operate on real floating point values and finally three conditional
structures {IF-less-than-half, nGT, nLT }.

(defmacro IF-less-than-half
(first-argument then-argument else-argument)

‘(if (< (eval ’,first-argument) 0.5)
(eval ,then-argument)
(eval ,else-argument)))
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(defun nGT (a b)
(if (>= a b) 1.0 0.0))

(defun nLT (a b)
(if (< a b) 1.0 0.0))

(defun nAND (a b)
(if (and (>= a 0.5) (>= b 0.5)) 1.0 0.0))

(defun nOR (a b)
(if (or (>= a 0.5) (>= b 0.5)) 1.0 0.0))

(defun nNOT (a)
(- 1.0 a))

5 Results

The best solution was found in one of the runs at generation 38. It had 136 nodes
with a depth of 17 and utilises all of the news inputs available. Even though there
are only two prediction classes, positive and negative, a base case comparison
using a simple coin toss would be very unfair as this would inevitably just reflect
that the vast majority of the set contains negative cases. For this reason we
use a base case comparison model that makes a random prediction base on a
probability distribution bootstrapped from the data, that is to say only one in
every 22.23 times is the base case likely to predict a positive. Table 2 compares
the best evolved solution against this base case model.

The overall hits (correct predictions; positive or negative) are higher with the
distribution aware random predictor but this is not a concern for us as 95% of
the set comprises of negatives and so a conservative model will attain most of

Table 2. Comparison of result between the GP found solution and the distribution
aware random predictor. Hits are out of 13627 while True Positives are out of 613
leaving 13014 negative cases.

GP Found Solution
TP/FP ratio Standardised Fitness Hits TP FP

Training 3.54 6.38 12612 158 560

Testing 3.14 5.39 12614 187 587

Validation 3.60 6.39 12598 160 576

Comparison Solution
TP/FP ratio Standardised Fitness Hits TP FP

Training 25.21 47.76 12433 24 605

Testing 22.71 45.36 12493 24 545

Validation 24.46 47.04 12451 24 587
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these hits. We wish the ratio between the true positives and false positives to be
as low as possible. This number serves as the trust (or lack of it) we would have
for a positive prediction made by our model. One divided by this number would
be the probability value we would use for a Kelly [12] style bet.

The validating data for our model were found to be statistically significant
at the (P < 0.001) level showing that news certainly does have predictive power
over intraday price movement although such movement as was predicted by our
model only represents about 1.1% of the cumulative movement which occurred
though out this period.

The base case achieves one correctly predicted positive in every 24.46 positive
prediction’s made. Our GP solution gets one in every 3.6 positive predictions
correct. Such a score may not sound like a lot but one must considers that
a correct positive classification means the markets upward movement within
the next hour will go beyond a very large threshold whereas the 2.6 remaining
incorrect predictions simply mean that this huge jump doesn’t occur, but not
necessarily that the market will fall in value. One could still end up making
money on an incorrect positive classification.

Using the two standard deviations of the previous rolling week could have an
unanticipated effect on the model as markets in a phase of gradual volatility
change move the expectation of what the target price jumps should be. This
may result in more conservative predicting during higher volatility and a more
progressive style in smoother times. We did not notice any great effect of this
kind. Using a static value would ensure this did not happen although it would
be wise to revise this number periodically to keep up with market conditions.

Figure 3 shows the distribution of times when the model gets true positive
and false positives. It is interesting to note the tendency for correct predictions
to occur in the last hour of trading while the false positives have their median
toward the centre. This is unsurprising when we consider the times of the day
when the event we are trying to predict actually occur. Even though it is gener-
ally known that more volatility occurs just after market open, It would appear
the specific behaviour we are looking for (upward movement beyond two stan-
dard deviation within an hour) are more likely to happen towards the end of the
day. GP without being given any direct time input is not able to pick up on this.

The best GP solution described here was structurally very complex, and un-
readable as were all solutions in this run beyond generation 10. Early on in
another run when a tree depth restriction of 5 was used an interesting parsimo-
nious solution was found. This simple little solution takes the number of negative
divided by positive Average Stories Per Minute (ASPM) over the last hour and
multiplies by the positive ASPM over the last week, if the result is greater or
equal to 0.5 it will predict a market jump. The performance of this strategy falls
between that of our complex GP solution discussed above and the base case pre-
dictor. The simplicity of this model affords us the opportunity to analyse why
such a model should do any better than average.

Primitive Solutioni = ((αi ∗ βi

γi
) >= 0.5)
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where α= Positive ASPM over the last week, β= Negative ASPM over the
last hour and γ= Positive ASPM over the last hour.

Fig. 3. The times of the day when the system gets True Positives (left), false positives
(centre) and the times when the jumps we are trying to predict actually occur (right)

Table 3. Results for the primitive solution. Hits are out of 13854, True Positives are
out of 640, leaving 13214 negative cases.

Data TP/FP ratio Standardised Fitness Hits TP FP

Training 8.23 14.94 12628 81 639

Testing 9.02 15.46 12540 84 758

Validating 8.21 14.10 12557 91 748

Unsurprisingly the rare events we are attempting to predict (jumps beyond
two standard deviations) occur at times when volatility is high. One should
be able to produce better predictions than the random solution by limiting
positives classifications to times of high volatility. We believe this little solution
is doing just that and in doing so highlights the link between news and market
volatility. This relationship between news and price volatility is a known one.
Vukic [8] shows how the analysis of news split into categories over a year reveals
an explicative relationship against the intraday volatility variances of individual
components of the French CAC 40. It is probably fair to assume this is a common
property of news and markets worldwide.

When we used the Vix volatility index as a model input we are unable to
replicate the success of the complicated GP solution using news inputs suggesting
that the information contribution of news flow data goes beyond that of simple
market uncertainty.

6 Conclusion

We have demonstrated that a new and untested data source can give a better
prediction of stock price movement than randomness can explain. This is the
first published work using this kind of data and we have shown that GP is an
appropriate tool to exploit it.
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Predictive systems attempt to react to (certain types of) new information
faster than the market can. The time it takes for this diffusion of new information
is where profit can be make. However an approach that tries to predict movement
with fixed times for the look back and look ahead periods is too brittle. As
demonstrated, using inputs and outputs that represent larger regions of time,
we can give the algorithm a better awareness of the market at each data point
and “soften” any inherit assumptions about the news assimilation rate.

From our experiments we believe that this assimilation rate (of news into
current price) has a degree of variance to it. Allowing the evolutionary process
the freedom to select this rate may be a beneficial avenue of future research. This
extra parameter would of course increase the search space exponentially, perhaps
the separate input of time data into a Strongly typed GP or GE algorithm could
mitigate some of this problem and still achieve the desired goals.

This paper is not concerned with profitability, however it seems feasible that
a GP constructed model fed on quantitative news as demonstrated could be
coupled with traditional price and volatility inputs to give a market participant
a sizable advantage. Further improvements could be made by using advanced
trading techniques such as delta hedging and the selective use of the model
under conditions when its performance has been shown to exhibit better ratios
of true to false positive predictions.
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Abstract. In color image processing, several sensors are used which re-
spond to the light in the red, green and blue parts of the spectrum.
When working with color images taken by an optical system it is very
important to know the sensitivity of the entire optical system. The op-
tical system consists of the sensor, lens and any filters which may be
used. The response characteristics of the lens and filters can be mea-
sured inside the laboratory. However, for many digital cameras it is not
clear how the sensors contained inside the camera respond to light. This
information may not be available from the manufacturer of the camera.
Even if we knew the response characteristics of the sensor, it may not
be clear what algorithms are employed by the manufacturer before the
data is finally stored as an image file. We show how genetic programming
may be used to obtain the sensor response functions using a single image
from a calibration target as input together with the reflectance data of
this calibration target.

1 Motivation

The sensor array contained inside a digital camera measures the incident light.
For many digital cameras, data about how the sensor responds to light is not
publicly available because this data may not be released by the manufacturer.
Knowing how the RGB values stored inside the image depend on the irradiance
entering the lens of the camera is very important for colorimetry [1,2] and the
research area of color constancy [3,4,5,6,7]. We show how genetic programming
[8,9,10] can be used to obtain the sensor response functions using an image from
a calibration target as input.

A standard sensor consists of a single type of light sensitive sensor and differ-
ently colored filters which are placed in front of the sensor to make it respond
to light in the red, green and blue parts of the spectrum. These sub-pixel sen-
sors are often arranged in a pattern which is called a Bayer pattern [11]. A full
color image is obtained by interpolating the data from adjacent sensors. Other
types of sensors where all three components of the incident light are measured at
the same position also exist. Imaging chips which measure more than the three
components red, green, and blue have also been developed.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 61–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The response of a sensor for a given wavelength is proportional to the irra-
diance falling onto the sensor times the sensitivity of the sensor for that given
wavelength. The energy measured by the sensor is obtained by integrating over
all wavelengths. If we know the irradiance falling onto the optical system and
also know the energy measured by the sensor, then we can formulate an opti-
mization problem in order to find the sensitivities of the optical system. Data
is typically measured at intervals of 10nm. Therefore, we have 32 data points
inside the visible range from 390nm to 700nm. Finding the sensitivity of an op-
tical system is basically an optimization problem where the 32 sensitivities at
positions {390nm, 400nm, ..., 700nm} have to be found.

A number of different problems in image processing have been addressed by
the evolutionary computation community. Zhang and Ji [12] as well as Rode-
horst and Hellwich [13], have used a genetic algorithm for camera calibration.
An evolutionary strategy was used by Cerveri et al. [14] to obtain the internal or
external parameters of a camera. Johnson et al. [15] used a genetic algorithm for
projector calibration. Carvalho et al. [16] has used a least squares approach to
obtain the response function of a sensor. A genetic algorithm was used to maxi-
mize the prediction ability of an extended generalized cross-validation measure.

Ebner [17] was the first to apply an evolutionary strategy [18,19] to obtain
the sensor response curves of an optical system. Due to the type of problem,
constraints have to be enforced in order to solve it. Ebner has shown that best
results were obtained by enforcing the constraints directly on the genotype. We
will show how genetic programming can be used to find a solution to this type
of problem. By properly choosing the set of terminal symbols and the set of
elementary functions, constraints are enforced naturally.

This article is structured as follows. First, we describe the model of color image
formation. We then explain how finding the response curves of an optical sensor
can be defined as an optimization problem. Next, we show how genetic program-
ming can be used to find a solution to this problem. We performed experiments
on simulated data where the ground truth is known and also obtained the sensor
response curves for two commercially available digital cameras. Conclusions are
given at the end of the paper.

2 Theory of Color Image Formation

Suppose that we use our optical system to take an image of a calibration target
illuminated by a light source of known spectral power distribution. A calibration
target consists of many differently colored patched of known reflectances. The
optical system measures the light which is reflected from the calibration target.
Let Np be the number of colored patches on the calibration target. Let E(p, λ)
be the irradiance which is falling onto patch p at wavelength λ. Some of the
irradiance is absorbed by the patch, the remainder is reflected and may enter
the lens of the camera. Let R(p, λ) be the reflectance of patch p at wavelength
λ. We will assume that the optical system is using three sensors which measure
the light in the red, green and blue parts of the spectrum. Let Si(λ) be the
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sensitivity of the sensor i ∈ {r, g, b}. Then the energy Ii(p) measured by sensor
i for patch p is modeled as

Ii(p) =
∫

Si(λ)R(p, λ)E(p, λ)dλ. (1)

The integration is performed over all wavelengths to which the sensor responds.
This model of color image formation is used by many algorithms in colorimetry
and color constancy [20,21,22].

We now assume that the calibration target is a Lambertian reflector, i.e. an
object which reflects the incident light in all directions. Let the radiance given
off by the light source which illuminates the calibration target be L(λ). Then
the irradiance falling onto the calibration target is simply E(p, λ) = L(λ) cosα
where α is the angle between the normal vector nS describing the orientation
of the calibration target and the unit vector nL pointing into the direction of
the light source from the object patch. Hence, the energy Ii(p) measured by the
sensor i for object patch p is given by

Ii(p) = G(p)
∫

Si(λ)R(p, λ)L(λ)dλ (2)

where G(p) = nSnT
L(p) = cosα is a geometry factor. The geometry factor scales

all channels equally.
Digital cameras usually do not save the energy data measured by the sensors.

Most produce an output image using the sRGB color space [23]. If the sRGB
color space is used, then the measured data is stored in a non-linear way such
that the non-linearity of the output device is compensated for. This is called
a gamma correction. If we process such images of our calibration target, then
this gamma correction needs to be undone such that the processed color data
depends linearly on the measured data. Some digital cameras also allow the user
to select that the raw measured data be stored in an image file. In this case, the
raw data can be processed directly. From now on, we will assume that our optical
system produces RGB color triplets ci as output and that we have ci = Ii.

3 Evolving the Sensitivities of an Optical System

We now show how evolutionary computation can be used to estimate the sensi-
tivities of an optical system. Figure 1 shows the data flow which is used by our
system. First an image of a calibration target is taken with the optical system.
For our experiments we will be using a standard IT8 calibration target made by
Wolf Faust. Such targets are frequently used for calibration of scanners or other
optical systems. This calibration target consists of 22×12 colored patches at the
top and 24 different gray patches at the bottom. It comes with a complete set
of reflectances for each of the patches for wavelengths 390nm to 700nm in steps
of 10nm.

Once an image of the calibration target has been taken, the pixel values
of each patch are averaged in order to obtain a single color measurement
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Fig. 1. Data flow of the method to obtain the sensitivities of an optical system. First,
the optical system is used to take an image of the calibration target with known
reflectances. The reflectance data is used by the evolutionary algorithm to compute
the fitness of possible solutions to this problem. After several generations, the optimal
sensitivities found by the evolutionary algorithm are output.

c(p) = [cr(p), cg(p), cb(p)] for each patch p. Pixels close to the border of a patch
are not included in the average as they are assumed to be linear combinations
of the adjacent colors. Thus, we now have a virtually noise free measurement
c(p) = I(p) for each patch p. The calibration target comes with known reflectance
data R(p, λ) for each patch p for each wavelength λ. Before we can solve Equa-
tion 2 for S(λ) = [Sr(λ), Sg(λ), Sb(λ)], we also need an estimate of the radiance
L(λ) which is emitted by the light source. One way to obtain the radiance is to
measure it using a spectrometer. Another way is to use a light source which has
a known spectral power distribution.

Digital cameras usually perform some kind of white balancing. They correct
the image colors for the spectral power distribution of the illuminant. Most
consumer cameras either perform automatic white balancing or allow the user
to set one of several possible illuminants, such as sun, cloudy sky, neon light,
light bulb or flash. Given such a camera, it is best to set the white balance to sun
and then take an image of the calibration target on a sunny day. Professional
cameras allow the user to choose a particular color temperature. In most cases, it
is not known what processing is actually performed inside the camera to obtain
the RGB color triplets from the measured data.
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Since we have assumed that we took appropriate measures to control the
illuminant and that the camera corrects for the type off illuminant used, we now
have to solve the following equation to obtain S(λ).

c = G

∫
S(λ)R(λ)dλ (3)

Note that the geometry factor G scales all color channels equally. It can be
removed by computing chromaticities ĉ.

ĉ =
1

cr + cg + cb
c (4)

We will be coding the sensor response curves S(λ) as the individuals of our
evolutionary algorithm. Given an individual which represents a particular set
of sensor response curves, we can then compute how well this set describes the
actual set of response curves. In order to determine the fitness of an individual,
we compare the measured chromaticities ĉM (p) which were obtained from the
image of the calibration target with the theoretical chromaticities ĉT (p) which
are computed using the known reflectances for all patches p.

The known reflectances Rp(λ) are used to compute the theoretical chromatic-
ities ĉT (p) for patch p. Let S(λ) be the sensor response curve represented by a
particular individual. Then the theoretical response is given as

cT (p) =
∑

λ∈{390,...,700}
S(λ)Rp(λ). (5)

Let ĉT (p) be the corresponding chromaticity, i.e.

ĉT (p) =
1∑

i ciT (p)
cT (p). (6)

The deviation Efit between the theoretical and the measured response is our
error measure

Efit =
∑

p

(ĉT (p) − ĉM (p))2 . (7)

In other words, we compute the sum of the squared differences between ĉT and
ĉM over all 288 image patches of the calibration target. The error measure Efit
describes how well the sensitivities of any given individual match those of the
optical system. We want to minimize this error measure. A perfect individual
would have Efit = 0.

4 Obtaining the Sensitivities of an Optical System Using
Genetic Programming

Ebner [17] has previously used an evolutionary strategy to obtain the sensor re-
sponse curves Si(λ) which closely match the sensor response curves of an optical
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Fig. 2. Evolutionary strategy representation. The sensitivity of the three sub-sensors
is stored consecutively inside the genotype. The drawback of this representation is
that two adjacent sensitivities are independent from each other leading to a response
function which may not necessarily be a smooth response function.

system. An evolutionary strategy is usually used for parameter optimization. For
this type of problem, an individual is simply a vector of floating point values which
represents the sensitivities of the three sub-sensors at positions {390nm, 400nm,
..., 700nm}. Such an individual is shown in Figure 2. Due to the type of problem,
the search space has to be constrained in order to guide evolution into the correct
part of the search space. Here, we have several constraints. The first constraint is
that the real sensor response curves are positive for all wavelengths λ, i.e. we have
Si(λ) ≥ 0. Another constraint is that the sensor response curve is smooth with-
out any discontinuities. Due to the computation of chromaticities, we also have
the constraint that a uniform scaling of all parameters will not change the result.
These constraints can be enforced either through the fitness function or through a
repair mechanism on the genotype. Ebner [17] showed that enforcing all the con-
straints directly on the genotype produced best results.

Instead of encoding an individual as a floating point vector and then enforcing
the constraints on the genotype, one may also use a more natural representa-
tion for this type of problem. The sensitivity of a sensor is usually Gaussian
shaped. One can consider the sensitivity as a combination of Gaussians. This
leads us to a genetic programming representation where the terminal symbols
are Gaussians which have a particular position and standard deviation inside
the visible spectrum and the set of elementary functions simply consists of the
addition function. This representation is shown in Figure 3. The nodes are Gaus-
sian functions which depend on the wavelength λ. The internal nodes are used
to combine these Gaussian functions.

The set of elementary functions and terminal symbols is shown in Table 1.
The terminal symbol sG(μ, σ) computes the following function.
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Fig. 3. Genetic programming representation. The response function of a sensor con-
sisting of three sub-sensors responding to light in the red, green, and blue part of the
spectrum is represented by three trees.

Table 1. Set of elementary functions and terminal symbols

Name Symbol Arity Internal Variables

Gaussian G 0 (s, μ, σ)
Addition + 2 none

sG(μ, σ) = se−
(λ−μ)2

2σ2 (8)

The three variables s, μ and σ are stored inside each node. The internal param-
eter s specifies the strength of the Gaussian, μ specifies its position within the
visual spectrum and σ specifies the standard deviation of the Gaussian. Addi-
tion is used as the only elementary function. This representation allows us to
naturally enforce the constraints. The evolved sensor response curves are simply
added Gaussians. Therefore, the evolved sensor response curves are smooth and
also fulfill the constraint that the curves are positive for each wavelength λ.

Individuals of the first generation are generated randomly. We then select one
of the genetic operators at random. The list of genetic operators are shown in
Table 2. Several operators change the structure of the individual, i.e. the trees,
while one evolutionary strategy type of mutation operator modifies the internal
parameters of all nodes. Offspring are generated until the new population is
filled. This process is then iterated for several generations.
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Table 2. Genetic programming operators

Name of Operator Method to generate offspring

Mutation-ES Evolutionary strategy type of mutation. All nodes of the in-
dividual are mutated by adding Gaussian distributed random
numbers to the internal parameters. Each internal parameter
x has an associated standard deviation δ which is mutated
using δ := δeN(0,τ). The parameter x is then mutated using
x := x + N(0, δ). N(μ, σ) denotes a random number having
a normal distribution with mean μ and standard deviation
σ.

Mutation-GP An individual is selected from the parent population. A ran-
dom node of a random tree of this individual is chosen. In-
ternal nodes are chosen with a probability of 90%. External
nodes are chosen with a probability of 10%. A new sub-tree
is generated and replaces the chosen node.

Extend-Mutation An individual is selected from the parent population. A ran-
dom terminal node of a random tree of this individual is cho-
sen. The chosen terminal node is replaced by the elementary
function “Addition”. A new terminal node is generated. The
new terminal node and the node that was previously chosen
become the child nodes of the newly generated elementary
function.

Prune-Mutation An individual is selected from the parent population. A ran-
dom terminal node of a random tree of this individual is
chosen. The parent node of the chosen terminal node is re-
placed by the other sub-tree of the parent node. If the tree
only consists of a single terminal node then a new terminal
node is generated replacing the old one.

Crossover Two individuals are selected from the parent population. A
random sub-tree is selected within the same random tree of
both individuals. The two sub-trees are then exchanged be-
tween the two individuals. For each crossover, we only gen-
erate a single offspring. The second offspring is discarded.

Tree-Crossover Two individuals are selected from the parent population. We
generate one offspring selecting the trees for the offspring
from either the first or the second parent.

5 Experiments

A population size of 1000 individuals was used. It was evolved for 1000 gener-
ations. Thus, a total of 106 fitness evaluations were performed. All individuals
from the first generation consisted of three Gaussians (one for each tree) with
random positions along the range from [390, 700] and standard deviations from
the range [1, 100]. An evolutionary strategy type of mutation was used to opti-
mize the strength, the position as well as the standard deviations of all Gaussians
of an individual. We are using a standard evolutionary strategy mutation oper-
ation with automatic step size adaptation, i.e. each internal parameter has an
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associated standard deviation. The mutation step size was initialized to σ = 0.01
and the variation of the step size was set to 5%, i.e. τ = 0.05. The remaining
genetic operators modify the structure of the individual.

The best individual was always reproduced once into the next generation. The
remaining individuals of the population were filled using the following percent-
ages: Mutation-ES (90%), Mutation-GP (2%), Extend-Mutation (2%), Prune-
Mutation (2%), Crossover (2%), Tree-Crossover (2%). Tournament selection with
a tournament size of 5 was used to select individuals. A human would probably
approach the problem by first adapting the position and standard deviation of
the single Gaussian for each tree and then refining this solution using additional
Gaussians as needed. That’s why we applied the evolutionary strategy type of
mutation much more frequently than the other operators.
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Fig. 4. Three different sensor response functions which are used to evaluate the evolu-
tionary algorithm

We first evaluated the proposed method on two sample problems where the
ground truth data is known. We generated synthetic response functions by over-
laying Gaussians. These two synthetic response functions are shown in Figure
4. A virtual calibration target with known reflectances was also created. The
synthetic response functions were then used to compute the response of the sim-
ulated sensor using Equation 5. The evolutionary algorithm evaluates the fitness
of an individual using Equation 7. Since we know the actual response function
S(λ), we can evaluate how well the evolved response function S̃(λ) matches this
data. For this evaluation, the evolved response function is normalized such that
the maximum response is 1.0. The fit to the actual data is then evaluated by
computing

Eactual =
1
96

∑

λ∈{390,...,700}

∑

i∈{r,g,b}
(Si(λ) − S̃i(λ))2. (9)

The results obtained for both synthetic response functions are shown in Table 3.
A total of 10 runs were performed for each sample problem. The table shows the
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Table 3. Experimental results obtained during 10 different runs. The standard devia-
tion is shown in round brackets.

Exp Efit Eactual

Test 1 0.0024(0.0030) 0.0033(0.0092)
Test 2 0.0517(0.0226) 0.0057(0.0024)
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Fig. 5. Best evolved sensor response curves during all 10 runs for the two experiments
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Fig. 6. Best evolved sensor response curves for two commercially available cameras: a
Canon 10D with an EF 28-135mm 1:3.5-5.6 IS USM Canon lens and an UV filter and
a FujiFilm FinePix F30

average minimum error measure Efit and also the average deviation between the
evolved solution and the actual sensor response function Eactual. The standard
deviations are also shown. The best of the evolved individuals during all 10
runs is shown in Figure 5. The best individuals approximate the actual sensor
response curves quite well. However, a problem of this approach is also apparent.
Gaussians with a small standard deviation may be introduced which only have
a small impact on the fitness of the individual and hence are only eventually
removed. At present, it is not clear whether the approach of Ebner [17] or the
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approach presented here is better suited to this problem. This will be evaluated
in future research.

Apart from testing the proposed method on artificial data, we also used it to
obtain the sensitivities of two commercially available digital cameras: a Canon
10D and a FujiFilm FinePix F30. The results obtained are shown in Figure 6.

6 Conclusion

Knowing the spectral sensitivity of an optical system is very important for color
vision research. The spectral sensitivities are a result of the type of sensor used
and are also influenced by the type of lens and filters which are placed in front
of the sensor. We have shown how genetic programming may be applied to this
type of problem. The method uses a calibration target with known reflectances.
The optical system is used to take an image of the calibration target. Evolution
then searches for sensor response curves which reproduce the colors shown in the
image of the calibration target. Previously, evolutionary strategies were used to
address this problem. Constraints have to be enforced in order to produce a
physically plausible sensitivity. This is because the energy measured by a sensor
is given by integrating over a range of wavelengths. With our approach the
constraints are naturally fulfilled by the type of representation used. We simply
represent a sensor response curve as the sum over several Gaussians represented
as a tree. The shape of this tree is evolved using genetic programming. Internal
parameters which define the position and standard deviations of the Gaussians
are evolved using an evolution strategy. We have used two sample problems
where the ground truth data is available to evaluate the approach. We then
applied this method to obtain the sensor response curves of two commercially
available digital cameras.
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on GPU Graphics Cards
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Abstract. Mackey-Glass chaotic time series prediction and nuclear pro-
tein classification show the feasibility of evaluating genetic programming
populations directly on parallel consumer gaming graphics processing
units. Using a Linux KDE computer equipped with an nVidia GeForce
8800 GTX graphics processing unit card the C++ SPMD interpretter
evolves programs at Giga GP operations per second (895 million GPops).
We use the RapidMind general processing on GPU (GPGPU) framework
to evaluate an entire population of a quarter of a million individual pro-
grams on a non-trivial problem in 4 seconds. An efficient reverse polish
notation (RPN) tree based GP is given.

1 Introduction

Whilst modern computer graphics cards deliver extremely high floating point
performance for personal computer gaming, the same low cost consumer elec-
tronics hardware can be used for desktop (and even laptop) scientific appli-
cations [Owens et al., 2007]. However today’s GPUs are optimised for a single
program multiple data (usually abbreviated Single Instruction Multiple Data
SIMD) mode of operation. GPU also place severe limits on data flow. Port-
ing existing applications is non-trivial. Nevertheless [Fok et al., 2007] were able
to show speed ups from 0.62 to 5.02 when they ported evolutionary program-
ming to a GPU. They ran EP mutation, selection and fitness calculation on
their GPU. Each stage being done by fixed specially hand written GPU pro-
grams. [Harding and Banzhaf, 2007] were able to show far higher (peak) speed
ups when they ran the fitness evaluation of cartesian genetic programming on a
GPU. [Chitty, 2007] used Cg to precompile tree GP programs on the host CPU
before transferring them one at a time to a GPU for fitness evaluation. Both
groups obtained impressive speed ups by running many test cases in parallel.
We demonstrate a SIMD interpreter which runs 204 800 programs simultane-
ously on the GPU on one or more test cases.

A decade ago [Juille and Pollack, 1996] demonstrated a SIMD GP system for
a Maspar MP-2 super computer on a number of problems. The MP-2 was a
general purpose supercomputer, costing in the region of $105 in the mid 1990s.
Its peak theoretical performance came from its many thousands of processing

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 73–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



74 W.B. Langdon and W. Banzhaf

No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 1. The SIMD interpreter loops continuously through the whole genetic program-
ming terminal and function sets for everyone in the population. GP individuals select
which operations they want as they go past and apply them to their own data and
their own stacks.

elements (PE) and the rapid bidirectional 2D data mesh interconnecting them.
Jullie’s coevolutionary problems were able to exploit the rapid transfer between
neighbouring PEs. Less than 200 MP-2 were sold whereas a successful GPU
typically has up to 128 independent processors and can be found in literally
millions of homes. Even a top of the range GPU can be had for about £350.

In GPUs data describing scenes are imagined to flow into the processors,
which transform them and transmit them onto the next processing stage (or
to the user’s screen). Typically recursion is not used. Part of the GPUs speed
comes from specialising this data stream and avoiding the possibility of expen-
sive side-to-side interaction. This restriction enables the GPU to schedule work
freely without user intervention between the available processors. Indeed adding
more processors can improve performance immediately without redesigning the
application. However it makes it difficult to do some operations. The GPU should
not be regarded as a “general purpose” computer. Instead it appears to be best
to leave some (low overhead) operations to the CPU of the host computer.

Previously the parallelism of GPUs has been exploited by evaluating an indi-
vidual’s fitness by running it simultaneously on multiple training examples. Here
we evaluate the entire GP population in parallel. Multiple training examples are
not needed. How is this possible on a Single Instruction Multiple Data com-
puter? Essentially the trick is to use one interpreter as the “single instruction”
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stream and treat the programs it interprets as “multiple data” items. Figure 1
shows the essential inner loop of the SIMD interpreter. The loop runs on every
computing element in the GPU. One complete cycle around the loop is used to
evaluate each leaf and function in the GP tree. E.g. five instructions (push +−×
and ÷) are needed for each primitive. In the SIMD interpreter, the role of the
interpreted data item is to select which of the five is used. (The results of other
four are discarded.) Effectively each GP individual acts as a sieve saying which
operation it wants performed next. Whilst this introduces a new overhead, use
of cond instructions to skip the four unwanted instructions and the speed of the
GPU makes our approach viable. The SIMD interpreter can support more than
four functions, but, in principle, the overhead increases with the size of the func-
tion set. While multi-ops, conditionals, loops, jumps, subroutines and recursion
are possible, they are not included in these benchmarks.

The next section discusses some other previous parallel GP systems. The sec-
tion following it discusses possible implementation avenues and why we chose
RapidMind. This is followed by descriptions of our two benchmarks (Sections 4
and 5). Whilst Section 6 describes the performance of the interpreter in prac-
tise and relates it to other work. This is followed by a discussion, future work
(Section 7) and our conclusions (Section 8).

2 Parallel Genetic Programming

While most GP work is conducted on sequential computers, the algorithm typi-
cally shares with other evolutionary computation techniques at least three com-
putationally intensive features, which make it well suited to parallel hardware.
1) Individuals are run on multiple independent training examples. 2) The fit-
ness of each individual could be calculated on independent hardware in parallel.
3) Lastly sometimes experimenters wish to assign statistical confidence to the
stochastic element of their results. This typically requires multiple independent
runs of the GP. The, comparative, ease with which EC can exploit parallel ar-
chitectures has lead to the expression “embarrassingly parallel”.

Early work includes Ian Turton’s use of a GP written in Fortran running on
a Cray super computer [Turton et al., 1996]. Koza popularised the use of Be-
owulf workstation clusters where the population is split into separately evolving
demes with limited emigration between compute nodes [Andre and Koza, 1996;
Bennett III et al., 1999] or workstations [Page et al., 1999]. Indeed as
[Chong and Langdon, 1999; Gross et al., 2002] showed by using Java and the In-
ternet, the GP population can be literally spread globally. Alternatively JavaScript
can be used to move interactive fitness evaluation to the user’s own home but
retain elements of a centralised population [Langdon, 2004].

Others have used special purpose hardware. For example, while [Eklund, 2003]
used a simulator, he was able to show how a linear machine code GP might be
run very quickly on a field programmable gate array using VHDL to model sun
spot data. However his FPGA architecture is distant from a GPU.
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512x400 floats

Population Fitness

Population

2048x2048 texture

2048 texture

error (204800 copies)

stack (204800 copies)

k, J, i, PC (204800)

Interpreter

Run 204800

Population

512x400 (16byte per program)

programs

time series
128+1200 floats

zeros

Fig. 2. Major data structures for Mackey-Glass. At the start of the run the interpreter
is compiled on the CPU (left hand side). It and the training data are loaded onto
the GPU (righthand side). Every generation the whole population is transfered to the
GPU. Each individual is interpreted using its own stack and local variables (k, J, i,
PC) and its RMS error is calculated. The error is is used as the programs’ fitness. All
transfers are made automatically by RapidMind.

In summary GP can and has been parallelised in multiple ways to take ad-
vantage both of different types of parallel hardware and of different features
of particular problem domains. We propose a new way to exploit the inherent
parallelism available in modern low cost mass market graphics hardware. Towit
a GP SIMD interpreter for GPUs.

3 Programming Graphics Cards

Perhaps unsurprisingly the first uses of graphics processing units (GPUs) with
genetic programming were for image generation [Ebner et al., 2005] & its refs.

[Harding and Banzhaf, 2007, Section 3] described the various major high level
language tools for programming GPUs (Sh, Brook, PyGPU and microsoft Ac-
celerator). nVidia has two additional tools: CUDA and Cg (C for graphics
[Fernando and Kilgard, 2003]). CUDA is specific to nVidia’s GPUs. While Sh
[McCool and Du Toit, 2004] is still available from SourceForge, its development
is effectively frozen at Sh 0.8.0 and McCool recommends using its replacement
from RapidMind. Unlike Sh, RapidMind is not free, however www.rapidmind.net
issues licences, code, tutorials and documentation to developers. They host a de-
velopers’ forum and offer prompt and effective support. Like Sh, RapidMind is
available for both microsoft directX and unix OpenGL worlds and is not tied to
a particular manufacturer’s GPU hardware. Indeed recently they started to sup-
port parallel programming on the cell processor. However C++ code written for
RapidMind’s libraries is not portable to other systems. Another nice feature of

http://libsh.org/
http://graphics.stanford.edu/projects/brookgpu/
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RapidMind is that it frees the C++ programmer from the need to learn graphics
jargon and conceals many hardware limitations.

4 Mackey-Glass

TheMackey-Glass chaotic time series isdescribed in [Langdon and Banzhaf, 2005b;
Langdon and Banzhaf, -]. Briefly the GP is given historical data from a series of
1200 points one time step apart and asked to predict the next value. It is allowed
to see data up to 128 time steps in the past. Figure 2 and Table 1 describe our im-
plementation.

Table 1. GPU GP Parameters for Mackey-Glass time series prediction

Function set: ADD SUB MUL DIV operating on floats
Terminal set: Registers are initialised with historical values of time series. D128 128

time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally D1
with the previous value. Time points before the start of the series are set
to zero (cf. zeros top of Figure 2). Constants 0, 0.01, 0.02, ... 1.27

Fitness: RMS error
Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-

ulation size 512 × 400
Initial pop: ramped half-and-half 1:3 (depth 1 to 3. 50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 15, Max tree depth 4.
Termination: 50 generations

N
W O

S
X

Fig. 3. The GP population is spread one per grid square in two dimensions. If North
is better than Origin, it is copied over it. But if Origin is better, O is copied over N.
(No change if equally fit.) After selection, crossover may occur between O and X. To
promote mixing, 50% of crossovers swap which parent supplies the root node, so a child
produced by crossover is equally likely to inherit its root from either parent. Also the
neighbourhood pairing rotates 90◦ every generation. E.g. next generation, crossover
will be between O and S.

4.1 Fine Grained Diffusion Model of Overlapping Demes

While it is not needed for operation with GPU, we used a fine grained diffusion
model of overlapping demes [Langdon, 1998], see Figure 3. This allows a low
selection pressure and ready visualisation, cf. Figure 4.
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Fig. 4. Screen shot of 512 × 400 GP population after 100 generations. Colour
indicates fitness (left) and syntax (right). Below are two histograms (log scale)
showing distribution of population by fitness and genotypic distance from the
first optimal solution. (Colour scales below each histograms.) Crossover is produc-
ing large numbers of unfit leafs (vertical lines at 540 and 600) [Poli et al., 2007].
Local convergence and the production of species is visible (esp. right). See
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html and Google videos for ani-
mation and more explanation.

4.2 Subtree Crossover and Mutation

In these experiments, the crossover and mutation rates were chosen so that all
of the next population are produced either by crossover or mutation (but not
both). This ensures almost all children are different from their parents.

Koza’s [Koza, 1992] crossover was implemented for linearised reverse polish
notation. However there is no bias towards using functions rather than terminals
as crossover points. If a pair of crossover points would cause either offspring to
be too big or too deep, both are rejected and a new pair chosen again.

One of three types of mutation are used: subtree mutation, point mutation
and constant creep mutation. In subtree mutation a subtree is chosen uniformly
at random and replaced with a subtree created by the ramped half-and-half
(depth 0:1, i.e. leaf or 1 function+2 leafs) algorithm used to create the initial
population. If the mutation point is already at the maximum depth, then the
subtree is replaced by a randomly chose leaf. If the mutant tree is too big it is
rejected and the mutation process restarted with a newly chosen mutation point.

Point mutation does not change the size or shape of the parent tree. A muta-
tion point is uniformly chosen and replaced by a function or leaf with the same
arity using the same random selection technique as was used in the initial pop-
ulation. Repeated mutations are applied until, the mutated tree is syntactically
different from its parent.

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html
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Table 2. Mackey-Glass prediction error after 50 generations in ten runs (multiplied
by 128 as was used in [Langdon and Banzhaf, 2005a])

Mean
RMS error×128 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69
Solution size 9 11 9 9 13 9 9 9 9 9 9.6
Run time secs 167.3 168.0 167.5 167.5 167.3 167.4 167.5 167.5 167.5 167.6 167.5

In constant creep mutation, one of the constant leafs in the tree is chosen
at random. (If there are no constants, point mutation is used instead.) It is
changed by just enough to give the next constant’s value. (I.e. by ±0.01 in the
Mackey-Glass experiments).

4.3 Mackey-Glass Model Accuracy

The results of ten independent GP runs on the GPU are summarised in Table 2.
The tight limit on tree size (15) and depth (4) lead to similar but smaller solu-
tions than those reported for tree GP [Langdon and Banzhaf, 2005a, , Table 2].
In 4 of 10 cases the results are better than the ten FXO (i.e. the smallest and
fastest) subtree runs. The GPU GP runs are faster than all but two CPU runs
despite having a population more than 400 times as big and performing full
floating point calculations rather than 8 bit integer ones.

Table 3. GPU SIMD GP Parameters for protein localisation

Function set: ADD SUB MUL DIV operating on floats
Terminal set: Number (integer) of each of the 20 amino acids in the protein. (Codes

B and Z are ambiguous. Counts for code B were split evenly between
aspartic acid D and asparagine N. Those for Z, between glutamic acid E
and glutamine Q.) 128 unique constants chosen from tangent distribution
(50% between -10.0 and 10.0)

Fitness: 1
2True Positive rate + 1

2True Negative rate [Langdon and Barrett, 2004]

Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-
ulation size 1024 × 1024

Initial pop: ramped half-and-half 2:5 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 63, Max tree depth 8.
Termination: 1000 generations

5 Evolving a Million Individuals for 1000 Generations
Protein Location Prediction

The system was expanded to cope with: 1) a population of a million pro-
grams. 2) bigger trees. 3) deeper trees. 4) Randomised sub-selection of train-
ing cases. (See Table 3.) The task chosen was to predict the location of proteins
within the cell given only their amino acid composition [Langdon and Banzhaf, -;
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Harding and Banzhaf, 2007]. A 1024 by 1024 population of programs of up to 63
tree elements and maximum depth of 8 was run on 200 of 1213 randomly chosen
proteins selected for training. Compared to [Langdon and Banzhaf, -, , Table 5],
in terms of predictive accuracy on unseen proteins (cf. Figure 5) this run pro-
duced better results than one technique (FXO) and the same accuracy but a
smaller solution than the other technique (two point crossover, 2XO). However
the main point is a graphics card can readily evolve millions of GP programs
over thousands of generations.
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Fig. 5. Fitness on 200 randomly chosen training cases in generation 1000, versus fitness
on 1200 unseen proteins. The strong correlations shows GP has learnt for random
samples and (better yet) GP models have avoided over fitting.

6 Performance of SIMD Interpreter

6.1 Overhead of Opcode Selection

The interpreter’s performance is summarised in Table 4.
We wished to estimate the overhead of the SIMD loop scheduling all of the

primitives and then discarding the results of all but the 20% that are needed.
To do this we selected a typical evolved Mackey-Glass program and timed how
long it took the interpreter to run it. Secondly we hand build an version of the
interpreter specific for this program, where every operation is needed and no
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Table 4. Speed (millions GP operations/sec) of GPU interpreter on an nVidia GeForce
8800 GTX. Terminal sets T include inputs and 128 constants

Experiment |T | |F| Population program size test cases Speed (M GPops−1)

Mackey-Glass 8+128 4 204 800 11.0 1200 895
Mackey-Glass 8+128 4 204 800 13.0 1200 1056
Protein 20+128 4 1 048 576 56.9 200 504
Lasera 3+128 4 18 225 55.4 151 360 656
Laserb 9+128 8 5 000 49.6 376 640 190

results are discarded. Rather than the expected five to one ratio, the standard
SIMD interpreter is only 2.89 times slower than the specialised one.

A plausible explaination is that: on the GPU floating point operations such as
addition and multiplication, which form the GP function set, are extremely fast. It
is the GP terminals (which make up 54% of the program) which take longer since
they collect thedata.The functions onlymanipulatedata alreadyon the stack.This
asymmetry in the costs of items in the SIMD dispatch loop means the addition of
a few very fast operations has proportionately less impact than was expected.

Potentially this means we could expand the function set to include trigonom-
etry, log, exponentiation, etc. Many of these are directly implemented by the
GPU. While increasing the function set would not be free, the additional over-
head should be small.

6.2 GPU Speed Up

The Mackey-Glass interpreter was recoded with minimum changes to run on the
CPU. A 2211MHz AMD Athlon 64 Processor 3500+ CPU evolved 50 gens of a
population of 204 800 trees in 1129.59 seconds. I.e. 7 times longer than the GPU.

7 Discussion

In previous work [Harding and Banzhaf, 2007] used the GPU exclusively for run-
ning training cases for cartesian genetic programming and showed impressive
speed up in some cases but that improvement was highly variable. Indeed using
the GPU was slower than the CPU in a few cases. GP program size and number
of training examples per fitness evaluation appear to be critical. We have shown
a way of actually executing a traditional tree GP population on the GPU card. It
replaces the cost of compiling each member of the population on the CPU by the
overhead of running an interpreter on the GPU. Harding’s results mostly show
that the GPU gives a big performance gain where the compiled GP program is
run many times and the programs are large. However if programs are run few
times the cost of the compiler and transfer to the GPU may not be repaid. There
appears to be a nonlinearity (perhaps in the cost of starting the compiler) so
that the relatively small cost of running short programs appears large compared
to the cost of compiling them and transferring them to the GPU. With our more
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traditional interpreter approach, the population is transfered without compila-
tion overhead to the GPU and the speedup from running in parallel on the GPU
appears to be more consistent. We obtain a speed up of more than an order of
magnitude for very small programs.

7.1 Implementation Issues

We found that the GPU would give good performance if it was given reasonable
chunks of work to do. Say between 1 and 10 seconds. Then the time to transfer
the population and the training data into the GPU and fitness vector out is ok.

RapidMind on a Linux platform uses the GNU C++ compiler GCC and GDB
debugger. Unfortunately GCC’s error reporting can be hard to interpret since
RapidMind (like Sh) makes heavy use of templates. RapidMind’s cross compiler
for the GPU worked seamlessly.

In Sections 4 and 5 the interpreter explicitly loops through all the fitness cases.
The GPU can also vectorise computation across cases. We did this recently for
a small population and executed 50 000 cases×pop size in parallel. However, we
anticipate it usually remains better to loop through the test cases and so reduce
data communication and concentrate computation in fewer threads.

7.2 No Protected Division: Closure

Special cases, like divide by zero, are handled by non data values nan and inf.
The interpreter does not check for divide by zero. Undoubtedly this makes it
faster. In effect, the GPU’s floating point hardware supplies closure for us.

However we still need to be wary. Potentially large numbers of randomly gener-
ated programs, or even offspring of evolved individuals, may have invalid fitness.
Filling the population with them may inhibit or even prevent GP successfully
evolving.

7.3 Reverse Polish Notation Expression Stack Depth

The GPU does not allow arbitrary write access to large arrays. Indeed forcing
the data flow out of the GPU to be streamlined is required to enable tasks to
be easily shared between the 128 processors and so is partly responsible for the
GPUs speed. However it does make it difficult to implement a stack. Therefore
it was necessary to simulate a stack using joins. ([Ernst et al., 2004] suggest
a somewhat complicated way to implement a GPU stack. It requires at least
two passes. [Lefohn et al., 2006] use Cg to efficiently implement a stack. Neither
approach is feasible in RapidMind 2.0.1.) Joins work fine for small stacks. Indeed
with a stack depth of 4 the interpreter flew at more than a billion GP primitives
per second (speed up of more than 12). When the depth was doubled to 8 (for
the Mackey-Glass and protein prediction experiments) it imposed about a 30%
performance penalty. It appears that a stack limit of 12 or 16 would be feasible.
While this may seem restrictive, it is worth remembering that all the original
GP experiments [Koza, 1992] were conducted in Lisp with a depth limit of 17.
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7.4 Non-tree GP, GP without a Stack

If the compilation overhead is too heavy, our interpreter approach may be attrac-
tive. It could be readily applied to cartesian GP [Harding and Banzhaf, 2007] and
to linear GP. Typically both approaches use a small number of registers and do
not require the use of a stack. Hence a linear genetic program could be interpreted
directly on a GPU without incurring the stack overhead or consequent depth limit.

We have deliberately limited ourselves to demonstrating a traditional tree GP
actually running on the GPU. We have been prepared to pay the overhead of
the instruction loop scheduling one thing at a time. However evolution can often
take advantage of muddled situations. We could imagine an evolutionary system
in which the program did not wait for exactly the next required instruction
to come around. But instead the program could say I will take the result of
several instructions, whichever is scheduled first. This might be implemented by
the interpreter looking for any bit in a bit mask being set, or an opcode lying in
some range, or some other form of fuzzy match between what the program wants
and what the interpreter is doing now. Of course the order of the actions of the
interpreter might also be evolved. While this form of coevolution is unlikely to
yield immediate speed ups on today’s problems, it might be a route to meta
evolution on more interesting problems in future.

7.5 Possible Extensions

We have shown reliable speed ups can be obtained using a SIMD interpreter
to execute a GP population on the GPU. [Fok et al., 2007] have already shown
(albeit for EP) that a GPU can implement mutation and selection. Although
genetic programming mutation is more complex, we anticipate it too could be
implemented on the GPU. Indeed, although [Fok et al., 2007] shied away from
crossover, We expect GP crossover could also be performed by the GPU. As
GPUs continue to improve, the whole GP may be run by them.

8 Conclusions

By using a postfix (RPN) rather than a prefix (Lisp) representation, we have
replaced recursive calls by an explicit stack. Avoiding recursion and using cond
to select opcodes enabled us to run tree genetic programming with mega pop-
ulations actually on the GPU. Speed up depends on terminal set, training set
size, etc. but parallel operation can yield a speed up of 7–12. Typically a mod-
ern GPU interprets hundreds of millions of GP operations per second. Indeed
in one case, we exceeded a billion GP ops per second. This is about 0.1 peta
GP opcodes per day for $500.

The SIMD interpreter could be readily adapted to linear GP. Indeed a linear
GP system would avoid the overheads associated with simulating a stack. It
might be possible to extended it to other types of GP.
C++ code available ftp://cs.ucl.ac.uk/genetic/gp-code/gpu gp 1.tar.gz

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_1.tar.gz
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Abstract. In an effort to enable evolutionary computation techniques to dis-
cover solutions for large and complex hardware systems, techniques have been 
devised to break the initial problem down into smaller sub-tasks. In particular, a 
decomposition approach has been described that is based on partitioning of the 
circuit test vectors, but it has its limitations. In an effort to address this, we have 
combined the partitioning method with an incrementally evolving genetic pro-
gramming approach. The result, referred to as Partitioned Incremental Evolu-
tion of HARDware (PIE-HARD), exhibits solution-finding performance that is 
significantly better than that of other approaches. 

1   Introduction 

Recent years have seen a growth in interest in the application of evolutionary compu-
tation techniques to the design of hardware systems, both analogue [1-3] and digital 
[4-8]. Such evolvable hardware approaches may be divided into two camps: intrinsic, 
in which evolved circuit designs are implemented and evaluated on hardware itself; 
and extrinsic, where assessment is carried out via software emulation. Whichever 
route is taken, a key problem is that of scaling up the techniques to deal with large, 
complex circuits. 

One approach is to take an algorithmic view of hardware, which in turn opens up the 
possibility of using genetic programming (GP) as a means for evolving circuits. One of 
the advantages of using GP in this way is that it is based on arbitrary length 
chromosomes, so that the number of gates used to implement a circuit is not confined to a 
pre-determined size. Another advantage is that GP has been extensively used as a vehicle 
for investigating decomposition and module reuse when solving complex problems, 
giving rise to a number of techniques that may be of value in the hardware arena.  

Within the GP field, the most well-known approach to hierarchical evolution is 
Koza’s automatically defined functions (ADFs) [9-11]. In this, the structure of program 
trees is defined in such a way that each comprises a set of parameterised function 
branches and a main branch that may invoke those functions. The main branch and the 
function branches are all subject to the same evolutionary operators, so that they evolve 
in parallel. Koza and others (e.g. Rosca and Ballard [12]) have provided extensive 
evidence that problems are often solved more readily by using ADFs than they are 
without them.  
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Alternatives to the use of ADFs include the technique of Module Acquisition 
introduced by Angeline and Pollack [13, 14]; the Adaptive Representation through 
Learning (ARL) algorithm of Rosca and Ballard [15]; the module selection scheme of 
Roberts et al [16]; and the encapsulation technique employed by Walker and Miller in 
their work on Cartesian Genetic Programming [17]. In a more hardware-oriented context, 
Lopez et al describe the reuse of GP code segments in evolving adders and multi- 
pliers [18]. 

All this is not to say that hardware evolution techniques outside the realm of GP have 
ignored the value of decomposition and reuse in circuit design. In particular, Torresen [5, 
6] has proposed a promising decomposition approach based on partitioning of a circuit’s 
test vectors. We shall return to this in Section 2, where as well as describing the approach 
in more detail we will also point out some of its limitations. 

In Section 3 we describe one of our own contributions to the introduction of hierarchy 
within GP when solving complex problems. Rather than taking a structural approach as 
most existing systems have done, we instead use a system based on learning, in which the 
genetic material used to solve a comparatively simple problem is used as the basis for 
solving higher-level, more complex problems. We will show how this technique applies 
particularly well to simple single-output circuits, but that it also has drawbacks for multi-
output logic. 

In Section 4 we explain how each of the approaches discussed in Sections 2 and 3 
addresses the weaknesses of the other. As a consequence, we propose a system based on 
a combination of the two, which we refer to as Partitioned Incremental Evolution of 
HARDware (PIE-HARD). The effectiveness of the approach is also evaluated 
experimentally in that Section. Finally, Section 5 presents some conclusions and pointers 
to further work. 

2   Vector Partitioning 

The divide-and-conquer approach to hardware evolution as described by Torresen [5, 6] 
involves dividing the input test vectors into partitions, and then evolving solutions for 
each of these partitions independently. In this way, the original system is divided into a 
number of simpler hardware subsystems which ought to be easier to evolve. Fig. 1 shows 
how this might be done to evolve a logic circuit for a pattern recognizer. In this example, 
a pattern represented as an 8-bit binary value is to be classified into one of 4 possible 
categories A, B, C or D. Hence, the circuit takes 8 inputs and produces 4 outputs. For any 
test pattern, one of the 4 outputs should be set at logic one to indicate the category, and 
all other outputs should be logic zero. 

The partitioning method considers all of the inputs but only a subset of the available 
outputs. As shown in Fig. 1, one possibility is to use just two partitions: the first invo- 
lving only A and B patterns, the second involving only C and D patterns. Thus we now 
have two subsystems, each with 8 inputs but only 2 outputs. Because each subsystem is 
less complex than the original circuit, it should be easier to evolve, and each subsystem 
can be evolved independently of the others. Creating a circuit to solve the original 
problem involves putting the subsystems together in such a way that all inputs are 
presented to all subsystems in parallel, although in principle it would be possible to use 
the subsystems as building blocks in a subsequent evolutionary process to integrate them 
more tightly. 
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    INPUTS          A B C D 
0 1 0 0 1 1 0 0     0 0 0 1 
1 0 1 0 1 0 1 0     1 0 0 0 
0 1 1 0 1 1 0 1     0 1 0 0 
1 1 0 0 1 1 1 1     1 0 0 0 
    .                  . 
    .                  . 

    INPUTS          A B 
0 1 0 0 1 1 0 0     0 0 
1 0 1 0 1 0 1 0     1 0 
0 1 1 0 1 1 0 1     0 1 
1 1 0 0 1 1 1 1     1 0 
    .                . 
    .                . 

    INPUTS          C D 
0 1 0 0 1 1 0 0     0 1 
1 0 1 0 1 0 1 0     0 0 
0 1 1 0 1 1 0 1     0 0 
1 1 0 0 1 1 1 1     0 0 
    .                . 
    .                . 

TOP-LEVEL CIRCUIT 

SUB-SYSTEM 1 SUB-SYSTEM 2 

 

Fig. 1. Example of the vector partitioning method applied to the evolution of a simple classifier 
circuit. Each simplified unit handles only a subset of the available outputs. 

The number of partitions used is flexible. In our example classifier, it would also 
be possible to evolve four subsystems, each producing just one of the four outputs. In 
Torresen’s experiments, which included a pattern classifier similar to the one we have 
described, it was found that the partitioning approach offered significant performance 
improvements over the standard approach of attempting to evolve the high-level circuit 
directly. 

There are however, a number of disadvantages and limitations of the partitioning 
approach. Firstly, its scope is limited by the number of outputs present in the top-level 
circuit. In the extreme case, if this circuit has only one output, then no partitioning in the 
manner described can be done. Secondly, the technique does nothing to reduce the 
number of inputs entering each subsystem. Each subsystem has exactly the same number 
of inputs as in the original, top level circuit. If there are n binary inputs, then a subsystem 
has to pass 2n test cases in order to be considered a solution, and each additional input 
doubles this number. Although it is hoped that partitioning will reduce the complexity of 
each subsystem, the number of test cases that it must satisfy may make it extremely 
difficult to evolve it even if partitioning is so fine-grained that it is responsible for only 
one output. Moreover, any individual that is evaluated via consideration of these test 
cases is only one small part of the overall circuit, and the individuals involved in the 
evolution of the other subsystems must be similarly assessed. Again, partitioning 
should lead to reduced complexity in the subsystems, but since there is no shared 
logic the total computation effort may still be considerable. 

3   Layered Learning 

In Layered Learning Genetic Programming (LLGP) [19-21], evolution begins in an 
initial layer that proceeds towards the solution of a sub-task of the overall problem. 
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The genetic material produced at the end of this layer then forms the basis for the 
initial population of the next layer, which uses what has been ‘learnt’ in layer 1 to 
help it evolve towards a solution of the original problem. 

There are various ways of specifying the initial decomposition. In the one we use here, 
the lower layer is used to evolve a simpler, lower-order version of the original problem. 
The issue being addressed is thus one of scalability, the original problem being scaled 
down in the hope of producing genetic material that will be of use in solving the more 
difficult version. In hardware design, complex units are often formed by connec- 
ting simpler but functionally similar sub-units, and adopting a similar approach in 
evolutionary systems seems intuitively promising. 

In our approach [21], genetic material is passed between layers in the form of 
parameterised modules. The initial population is defined in such a way that each member 
consists of a single function branch and a main execution branch. In layer 1, evolution 
focuses solely on the function, with the aim being to evolve a solution to a lower-order 
version of the problem. As soon as a solution is found, the resulting function is 
propagated to all other individuals in the population and we enter layer 2. In this upper 
layer, evolutionary effort shifts entirely to the main execution branches of the programs, 
which are free to make use of the function as evolution proceeds towards generating a 
solution to the higher-order problem. 

Table 1. GP parameters for the even-4 parity problem 

Objective To evolve a program capable of determining if the 
number of logic 1s on the 4 inputs is even 

Terminal set D0, D1, D2, D3 

Function set AND, OR, NAND, NOR 
Initial population Ramped half-and-half 
Evolutionary process Steady-state; 5-candidate tournament selection 
Fitness cases 16, representing all combinations of inputs 
Fitness Number of mismatches with expected outputs (0-16) 
Success predicate Zero fitness (solution found) 
Other parameters Pop size=500; Gens=51; prob. crossover=0.9; no 

mutation; prob. internal node used as crossover 
point=0.9 

 
As an example, consider the problem of evolving a digital logic circuit which returns a 

TRUE output if the number of logic one values on its 4 inputs is even, FALSE otherwise. 
This is the well-known even-4 parity problem. In solving it with standard genetic progra- 
mming, the parameters we use are presented in Table 1. As an additional bench- mark 
against which to test the effectiveness of our layered learning approach, we have also 
used GP systems which allow automatically defined functions (ADFs) to be evolved. In 
implementing this, we have followed Koza’s precept [9] of enabling the evolution of one 
subroutine for each of the arities from 2 up to n-1, where n is the size of the terminal set. 
Hence, for the even-4 parity problem, we allow for one subroutine with 2 parameters, and 
a second with 3 parameters (although not all formal parameters need be used within the 
body of these functions). 
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Table 2. Comparison of LLGP with unlayered (monolithic) GP for even-4 parity 

Approach Success rate (%) Comp. Effort 
Monolithic GP 14 700,000 
Monolithic GP with ADFs 43 97,500 
LLGP using even-2 95 12,000 
LLGP using even-3 78 45,000 

 
In comparing approaches, we make use of the success rate at finding solutions over 

100 runs, each of 50 generations. We also make use of Koza’s metric of computational 
effort [9], defined as the minimum number of individuals that must be processed to 
achieve a 0.99 probability that a solution will be found. Table 2 compares the perfor- 
mance figures for each of the systems we have described. In the case of the layered 
learning system, two versions were produced: one in which the lower layer works on the 
even-2 parity problem, and one in which the lower layer evolves an even-3 parity 
solution. It should be noted that the computational effort for the layered learning 
approaches is calculated over both layers, and not just the upper layer. 

Table 3. Comparison of LLGP with monolithic GP for even-6 parity problem 

Approach Success rate (%) Comp. Effort 
Monolithic GP 0 - 
Monolithic GP with ADFs 16 1,056,000 
LLGP using even-2 70 120,000 
LLGP using even-3 36 570,000 

 
It is clear that the layered learning approach dramatically out-performs conventional 

and ADF-based GP. Similar improvements are found in higher-order versions of the 
problem. Table 3, for example, shows the results obtained for the even-6 parity problem, 
with the population size increased from 500 to 2000. As before, both versions of the 
layered learning approach perform much better. 

Despite these encouraging results, there are limitations to the layered approach as we 
have outlined it. A particular source of difficulty is the fact that many hardware systems 
produce multiple outputs. LLGP works by encapsulating a solution to a lower-order 
version of the problem as a single parameterised module which can be invoked by a 
separately evolved main branch. However, GP functions normally return only one result. 
Requiring a module to return multiple results introduces complications. It would be 
possible, for example, to have the module combine the separate outputs together into a 
single multi-bit result, but then additional functions are required both to join signals 
together and then to split them again in the main branch. Other possibilities are to make 
use of globally accessible variables, or to use pass-by-reference when invoking the 
module. However, these mechanisms also add complexity to the GP system. Moreover, 
none of the suggested approaches removes the burden from the lower layer module of 
having to evolve logic for multiple outputs simultaneously. 
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4   Partitioned Incremental Evolution 

The previous two sections of the paper have described: (i) a partitioning approach which 
provides benefits by decomposing a circuit based on subsets of the available outputs, but 
which cannot offer gains for single-output logic; and (ii) an incremental evolution tech- 
nique which can boost evolution performance for single-output hardware designs, but 
which does not extend well to multiple outputs. It therefore seems appropriate to attempt 
to bring together the complementary strengths of the two approaches in a single hardware 
evolution system. Henceforth, we shall refer to this new system as PIE-HARD (Parti- 
tioned Incremental Evolution of HARDware). 

ORIGINAL CIRCUIT 

LOWER-ORDER CIRCUIT SUBSYSTEMS 

PARTITIONING 

PARTITIONING LAYERING 

 

Fig. 2. Overview of the PIE-HARD approach, showing how partitioning is used in both layers, 
the components of the lower layer feeding into the evolution of the upper 

An overview of the PIE-HARD approach is given in Fig. 2. To evolve hardware to re-
alise the original, top-level circuit, we use vector partitioning to divide it into a number of 
subsystems, as shown on the right hand side of the diagram. However, unlike the ap-
proach described in Section 2, we do not try to evolve those subsystems directly. Instead, 
we firstly solve a lower order version of the original problem. To do so, we also divide 
the lower-level circuit via vector partitioning into a number of single-output parameter-
ised modules. Genetic programming is then used to evolve solutions for each of these 
modules in turn. Once all of the modules have been created, they are made available to 
be called as functions during the next stage of evolution, which aims to solve each of the 
higher-order subsystems. 

In the following experiments, we will show exactly how PIE-HARD operates for real-
istic circuits. 
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4.1   Half Adder 

In a half-adder circuit, two numerical values are added to produce a result. In its simplest 
form, each of the inputs is a single binary digit, and there are two output signals which 
together encode the possible summation results 0-2. The most significant of these two 
output bits is often referred to as the carry-out. 

In our first set of experiments we will attempt to evolve a 2-bit half adder. That is, 
each of the two addends comprises 2 bits, representing the values 0-3, and the output 
consists of three bits, capable of holding the results 0-6. In evolving this circuit via stan-
dard GP, most of the parameters remain as given earlier in Table 1. The terminal set is 
now {A0, A1, B0, B1} for the four input lines, and the function set is {AND, OR, NOT, 
XOR}. To enable conventional GP to deal with the multiple outputs required, we also 
define a pseudo-function called JOIN. This is present only at the root node of each indi-
vidual and acts simply as a connector for the multiple branches corresponding to the 
circuit’s outputs. As in the even-4 parity example, we will also use an ADF-based GP 
system for comparison; for a 2-bit adder with 4 inputs, each individual will have 2 ADFs 
– one with arity 2 and the other with arity 3. 

For further comparison, we will also examine the effectiveness of using vector parti-
tioning in isolation (i.e. without the incremental evolution offered by a layered learning 
approach). For a 2-bit half adder with 4 inputs and 3 outputs this gives us three subsys-
tems, each with 4 inputs and one output. This is precisely the situation depicted in Fig. 2. 

In using PIE-HARD, we need to introduce a lower-order version of the problem in the 
bottom layer. Since we are solving a 2-bit adder, the lower-order problem needs to be a 
1-bit adder. Vector partitioning of this sub-problem leads to 2 modules, each with 2 in-
puts and one output. Again, this is exactly as shown in Fig. 2. PIE-HARD’s first task, 
then, is to evolve code for each of the modules forming the sub-divided logic of the 1-bit 
adder. Once these have emerged, they are made available as callable functions in the 
code being evolved to solve the subsystems of the 2-bit adder. 

Table 4 presents the performance figures for each of the systems we have de-
scribed. Again, where evolution consists of multiple stages (as in vector partitioning 
and PIE-HARD) the computational effort figure is over all stages. 

As can be seen, the introduction of ADFs does nothing to aid the performance of a 
standard GP system. When vector partitioning is used there is an enormous step up in 
performance, but PIE-HARD improves on this even further, cutting the computational 
effort by more than half. 

Table 4. Performance figures for evolution of a 2-bit half-adder 

Approach Success rate (%) Comp. Effort 
Monolithic GP 13 490,000 
Monolithic GP with ADFs 4 2,881,500 
Vector partitioning 68 44,000 
PIE-HARD 85 20,000 
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For a 3-bit adder, the task becomes more difficult. The expansion of the terminal set to 
{A0, A1, A2, B0, B1, B2} effectively quadruples the number of test cases to be satisfied. 
However, it also offers us a choice in the case of PIE-HARD, in that either a 1-bit adder 
or a 2-bit adder can form the basis for the lower layer. Table 5 gives the comparative 
figures for both of these options. In all the systems in this experiment, the population size 
is set at 2000. 

Table 5. Performance figures for evolution of a 3-bit half-adder 

Approach Success rate (%) Comp. Effort 
Monolithic GP 0 - 
Monolithic GP with ADFs 0 - 
Vector partitioning 6 4,800,000 
PIE-HARD using 1-bit 16 1,674,000 
PIE-HARD using 2-bit 50 432,000 

 
The conventional GP approach, either with or without ADFs, is unable to evolve a 3-

bit adder circuit. Vector partitioning does at least find some solutions, but is clearly 
struggling. Although it often manages to evolve some of the subsystems, it rarely man-
ages to discover them all within 50 generations. PIE-HARD again comes out on top, 
particularly so when it solves a 2-bit adder in its lower layer, leading to half of all runs 
finding solutions and a computational effort that is less than a tenth of that needed in the 
partitioning system. 

4.2   Full Adder 

A full-adder circuit requires an extra input referred to as the carry-in. The idea is that the 
carry-out signal from one adder unit becomes the carry-in of the next unit, allowing ad-
ders of larger bit-widths to be constructed. In one sense this makes evolution more diffi-
cult, since the additional input doubles the number of test cases. On the other hand, it 
offers evolutionary systems, especially hierarchical variants,  the opportunity to discover 
ways of combining sub-units via the connection of carry signals in the manner just de-
scribed. 

Beginning again with a 2-bit adder, we achieve the results shown in Table 6. The ter-
minal set is {A0, A1, B0, B1, CIN}, and the population size has been set at 1000. 

Table 6. Performance figures for evolution of a 2-bit full-adder 

Approach Success rate (%) Comp. Effort 
Monolithic GP 5 3,240,000 
Monolithic GP with ADFs 1 18,819,000 
Vector partitioning 31 572,000 
PIE-HARD 97 20,000 
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The extra input and corresponding increase in test cases has made it difficult for stan-
dard and ADF-based GP to cope. Partitioning into three subsystems improves matters, 
but each subsystem still has to solve for 32 test cases; hence, this approach does not do 
nearly so well as it did for a 2-bit half-adder. By contrast, the possibility of connecting 
simpler sub-units via their carry signals appears to have been successfully discovered and 
exploited by PIE-HARD, giving it a success rate that is over three times greater than that 
of the partitioning approach, and a hugely reduced computational effort. 

Progressing to a 3-bit version, we have again tried PIE-HARD with both 1-bit and 2-
bit adders being evolved in the lower layer. The results for a population size of 2000 are 
presented in Table 7. This time the vector partitioning approach joins the conventional 
GP systems in being unable to evolve a 3-bit full-adder. PIE-HARD is much more suc-
cessful, although this time it is the version which evolves a 1-bit adder in the lower layer 
that exhibits the best performance. 

Table 7. Performance figures for evolution of a 3-bit full-adder 

Approach Success rate (%) Comp. Effort 
Monolithic GP 0 - 
Monolithic GP with ADFs 0 - 
Vector partitioning 0 - 
PIE-HARD using 1-bit 65 308,000 
PIE-HARD using 2-bit 46 720,000 

4.3   Counter 

Moving away from addition circuits, our next example is that of a counter circuit. In this, 
a count of the logic one values present on the data lines is output as a multi-bit integer. 
For example, if there are ten data inputs, then four output lines will be needed to repre-
sent each of the possible counts from 0 to 10 as a binary number. The function set for the 
problem is {AND, OR, NOT}. Other evolutionary parameters are as those used for the 
even-parity problem in Table 1. Because of the poor showing of the ADF approach in 
previous experiments, that technique has been abandoned here. 

Beginning with a 3-input counter and a population size of 500, the comparative results 
are given in Table 8. The PIE-HARD system evolves a 2-bit counter in its lower layer. 

Table 8. Performance figures for evolution of a 3-input counter 

Approach Success rate (%) Comp. Effort 
Monolithic GP 22 300,000 
Vector partitioning 72 44,000 
PIE-HARD 100 2,500 

 
Although it is a reasonably difficult problem for standard GP to solve, the division of 

the 2-output circuit into two halves makes it much easier. However, once again it is the 
PIE-HARD approach which has the greatest success: every run generates a solution and 
within only a few generations, resulting in a comparatively tiny computational effort. 
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Moving to a 4-bit counter requires that the circuit has three outputs. With the popula-
tion doubled to 1000 individuals, the results for the various approaches are shown in 
Table 9. The PIE-HARD system is tried with a 2-bit counter and a 3-bit counter being 
evolved in the initial layer. 

Table 9. Performance figures for evolution of a 4-input counter 

Approach Success rate (%) Comp. Effort 
Monolithic GP 0 - 
Vector partitioning 0 - 
PIE-HARD using 2-bit 76 60,000 
PIE-HARD using 3-bit 23 406,000 

 
The additional input and output make all the difference as far as the vector partitioning 

system goes, it being now unable to find any solutions. For PIE-HARD, the evolution of 
a 2-bit counter in the lower layer leads to overwhelmingly better performance than using 
a 3-bit counter. 

These results suggested that it might be possible for the PIE-HARD approach to 
evolve a 5-bit counter whilst maintaining the population size at 1000. Table 10 bears this 
out. Note that this time it is the evolution of a 3-bit counter in the lower layer that leads to 
the better performance. 

Table 10. Performance of PIE-HARD in evolving a 5-input counter 

Approach Success rate (%) Comp. Effort 
PIE-HARD using 2-bit 8 2,550,000 
PIE-HARD using 3-bit 33 442,000 

5   Conclusions 

In this paper we have firstly examined two ways of simplifying the task of hardware 
evolution by introducing a hierarchical approach. The first – partitioning of the circuit 
into subsystems responsible for specific subsets of the circuit outputs – has proved to be 
effective for a number of problems. It is, however, limited by the number of outputs 
available, and it does not reduce the number of test cases that must be considered during 
fitness evaluation; overall, in fact, the number of subsystems acts as a multiplier of the 
test cases to be applied to solve the original problem. 

The second approach uses learning rather than structure as the basis for decomposi-
tion. Systems based on this approach firstly solve a simpler version of the problem, and 
then use the genetic material evolved as the foundation for evolving a solution to the 
original problem. This incremental approach has proved to be highly effective in evolv-
ing single-output digital logic designs. Its use of parameterised modules does mean, 
however, that it does not extend well to multi-output logic. 
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By bringing the two approaches together in PIE-HARD, we produce a system in 
which each of the two approaches just outlined addresses the weaknesses of the other. As 
we have shown, this hybrid system exhibits a solution-finding performance that is sig-
nificantly better than that of other approaches. 

There are many opportunities for further work arising from the research described 
here. For instance, it is not yet clear how wide-ranging the approach is: although it is easy 
to see that a lower-order version of a 3-bit adder is a 2-bit adder, it is not immediately 
obvious what is meant by a lower-order version of, say, a prosthetic hand controller. 
Another unanswered question regarding the lower order problem is the level of simplicity 
that should be addressed. In solving a 4-bit counter circuit, the use of a 2-bit counter in 
the lower layer proved more advantageous than using a 3-bit counter, but the reverse was 
true in our experiments on a 5-bit counter. The reason for this may be something as 
straightforward as the number of bits being odd or even, but further analysis is necessary 
to confirm or deny that and to give clues as to how layering should be implemented in the 
more general case. With regard to this, another avenue of research would be to attempt to 
extend our dual layer approach to multiple layers; whilst introducing more steps into the 
problem-solving process, it should also have the effect of smoothing the evolutionary 
gradient, and it would be interesting to see the results of the trade-offs involved. 
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Abstract. The availability of low cost powerful parallel graphics cards
has stimulated a trend to port GP on Graphics Processing Units (GPUs).
Previous works on GPUs have shown evaluation phase speedups for large
training cases sets. Using the CUDA language on the G80 GPU, we show
it is possible to efficiently interpret several GP programs in parallel, thus
obtaining speedups also for small training sets starting at less than 100
training cases. Our scheme was embedded in the well-known ECJ library,
providing an easy entry point for owners of G80 GPUs.

1 Introduction

Newly introduced graphics processing units (GPUs) provide fast parallel hard-
ware for a fraction of the cost of a traditional parallel system. GPUs are designed
to efficiently compute graphics primitives in parallel in order to produce the pix-
els of the video screen. Driven by ever increasing requirements from the video
game industry, GPUs have evolved into very powerful and flexible processors,
while their price remained in the range of consumer market. They now offer
floating-point calculation much faster than today’s CPU and, beyond graphics
applications, they are very well suited to address general problems that can be
expressed as data-parallel computations (i.e. the same code is executed on many
different data).

Moreover, several general purpose high level-languages for GPUs have become
available such as Brook1 and thus developers do not need any more to master the
extra complexity of graphics programming APIs when they design non graphics
applications2. In this paper, we work with an Nvidia GeForce 8800GTX graphics
card that is built around the G80 GPU. We used an NVidia provided extension
to the C language, named CUDA (Compute Unified Device Architecture) that
runs on the G80 GPU family, allowing fine control over the hardware capabilities.
Note that this toolkit is not available for other manufacturers hardware, and is
not backward compatible with older Nvidia GPUs.

Up to now, exploiting the power of GPUs within the framework of evolution-
ary computation has been done mostly for genetic algorithms, e.g. [1,2,3,4,5]. At

1 http://graphics.stanford.edu/projects/brookgpu/
2 See http://www.gpgpu.org for a survey.
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� Springer-Verlag Berlin Heidelberg 2008



Population Parallel GP on the G80 GPU 99

the time of the writing of this paper, using GPUs for Genetic Programming is
still fresh matter: a first approach using Microsoft’s Accelerator toolkit has been
proposed by Harding and Banzhaf [6,7], a tutorial-like paper using a graphics
API approach was issued by Chitty[8], and a technical report using the Rapid-
Mind development kit has been made available by Langdon [9]. However we may
expect a quickly increasing number of studies in the near future.

Harding and Banzhaf’s and Chitty’s works are both based on the same ap-
proach: every GP individual is compiled for the GPU native machine code and
then evaluated on the fitness cases using the parallel ability of the GPU. This
scheme is iterated on every individual, until the whole population has been eval-
uated. These authors have obtained interesting speedups but mainly for large
individuals and/or several thousands fitness cases. In [6] this is acknowledged as
a weakness of this scheme: “Many typical GP problems do not have large sets
of fitness cases...” and “this leads to a gap between what we can realistically
evaluate, and what we can evolve”. We also think that evolving programs with
hundreds of thousands training cases is not the most common setting in today’s
GP problems. For example, GP is often used to perform supervised classification,
and it may be difficult to provide large sets of labeled training cases, noticeably
when labeling requires human intervention like medical diagnosis. Moreover, a
look at Koza’s et al. last book (chapter 15 in [10]) suggests that solving real world
problems with GP may be more in need of large populations (up to 5,000,000
individuals in [10]) than large data sets.

In order to also exploit the power of the GPU on training sets of modest size,
we propose another parallelization scheme. Instead of evaluating sequentially the
GP solutions, parallelizing the training cases, we share the parallel capacity of the
GPU between GP programs and data. Thus we evaluate different GP programs
in parallel, and assign to each of them a cluster of elementary processors to treat
the training cases in parallel. This yields more data to fill the pipeline of each
ALU of the GPU, in order to improve the efficiency. As a consequence more
computational power is available for e.g. increasing the population size.

As a consequence we must emulate a MIMD task (running different programs)
on a basically SIMD hardware. A solution to this problem has been proposed in
the 1990s [11] in the form on an interpreter that considers the set of programs
as data. This was implemented for GP in the late 90s by Juillé and Pollack [12]
on the MASPAR machine, and a similar technique is also proposed by Lang-
don [9] on the G80 GPU. Our approach differs from Langdon’s since we use the
CUDA development kit that allows a finer grain access to the hardware. Thus
we can exploit a characteristic of the G80: it runs in Single Program Multi-
ple Data (SPMD) mode, rather than SIMD, i.e. elementary processors run the
same program (the interpretor) in parallel but they are divided into clusters
that share their own program counter. This gives the opportunity to achieve
increased speedups, since e.g. a cluster can interpret the “if” branch of a test
while another cluster treat independently the “else” branch. On the opposite,
performing the same computation inside a cluster is also possible, but the two
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branches are processed sequentially in order to respect the SIMD constraint: this
is called divergence and of course it is less efficient.

We interfaced our CUDA based evaluation with the popular ECJ library3, and
retained the most part of its flexibility. Our experiments have been done with the
mainstream tree representation for GP individuals, using tutorial benchmarks
taken from the ECJ library. The GPU speedup values that we are giving are for
complete evolution runs and not only for the evaluation phase. Thus we hope
these figures are close to the speedup readers may expect with their usual setting.
An archive containing a sample code for a regression application is available at
http://www-lil.univ-littoral.fr/˜robillia/EuroGP08/gpuregression.tgz .

The rest of the paper is organized in the following way: next section provides
some information on the graphics processing unit and the CUDA programming
language. In Section 3, the implementation of the GP system is described. Sec-
tion 4 presents benchmarks and results. Section 5 concludes and discusses future
works.

2 The G80 GPU Architecture Overview

The graphics card we used is a NVidia GeForce 8800 GTX based on the G80
GPU. It is natively limited to single precision floating point (32-bit data pre-
cision), although double precision can be used through a software library. This
hardware is based on an unified architecture: instead of the traditional special-
ized vertex and fragment processors that are found on many graphics cards,
here the elementary processors are identical and managed as a pool of 16 so-
called multiprocessors. A multiprocessor contains 8 elementary scalar stream
processors that operate at a 1.35 GHz clock rate, giving a total number of 128
elementary stream processors on the graphics card. A multiprocessor also owns
16 kb of fast memory that can be shared by its 8 stream processors. Multipro-
cessors are SIMD devices, meaning their 8 stream processors execute the same
instruction at every time step on its own data. However alternative and loop
structures can be programmed. Let us suppose we execute a while structure and
the conditional expression results as false for only one of the 8 stream processors
that are contained in a multiprocessor. Then this stream processor is simply
put into idle mode during the remaining loops performed by the others. This is
called divergence, and of course it implies some waste of computing power.

Due to its architecture, the G80 GPU is able to function in SPMD mode (Sin-
gle Program, Multiple Data) at the level of the multiprocessors: every multipro-
cessor must run the same program, but each of them owns its private program
counter, thus they do not need to execute the same instruction at the same time
step (as opposed to their internal stream processors). This flexibility allows to
avoid divergence between multiprocessors by carefully dispatching the tasks on
them, but up to now it can only be accessed with the CUDA development kit
proposed by NVidia. Other toolkits consider this GPU only as a SIMD device
containing 128 elementary processors, thus increasing the risk of divergence and
3 http://cs.gmu.edu/˜eclab/projects/ecj/
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wasting computing power. This is why we used CUDA when implementing our
population parallel scheme.

Note that our machine was equipped with another graphics card dedicated
to display the X screen, while the 8800GTX card was reserved for the compu-
tations and thus not attached to a X server. This dual cards setting allowed
us to obtain cleaner timings (no interference with the display). Note that it is
perfectly possible to use the 8800GTX for both display and GP evolution, with
some constraints: during intensive computation, the user interaction with the X
desktop is suspended; moreover any given call to the GPU (i.e. executing the
interpreter in our case) cannot last more than 5 seconds, otherwise the process
is killed by the X server.

3 Population Parallel Model

As said above, previous works about GP on GPU have demonstrated interesting
speedups for very large training sets and/or programs. Indeed if we execute one
GP program at a time on the G80, parallelizing only the training data as it is pro-
posed in [6], then we do not have enough data to fill all ALU pipelines of the 128
stream processors, thus the GPU is under-exploited. This phenomenon, in addi-
tion to compilation overheads, may also explain the bad GPU timings observed
by [6] on the 7300 GPU with small training cases sets. A possible solution is to
evaluate several programs in parallel to increase the computation load.

As the G80 is a SPMD device, SP meaning Single Program, we cannot per-
form the direct execution of several different programs in parallel. The same
problem arose for Juillé and Pollack when they implemented GP on the MAS-
PAR machine [12] and they proposed to bypass this limitation by interpreting
GP solutions. In the same way, we run one program on the GPU: an interpreter
dedicated to execute any GP program for our benchmark problems. The GP
programs are simply considered as data from the interpreter point of view. This
is clearly a trade-off choice: the computing time of iterating interpreted code on
training cases is to be balanced against the time of compiling and iterating a
compiled code. Few training cases means few iterations thus the interpreter may
be a sensible trade-off.

In order to interpret the GP programs, we first have to copy them into the
graphics card memory. This is not straightforward, since we want to integrate the
GPU evaluation inside the ECJ library, while retaining the most part of its flex-
ibility. Indeed, GP tree nodes in ECJ are scattered into memory, so we need to
compact them into a single chunk of memory that can be transfered to the GPU.
We also translate the trees into linear stack-based postfixed notation code that will
be easier to interpret, although it is not required. This is illustrated in Figure 1.

The interpreter code is run on the GPU and is quite simple, being composed
of a main loop fetching the next instruction to process, and a switch that per-
forms the operations required depending on this instruction, see pseudo-code in
Table 1. The if structure and the short-circuit {And, Or} operators are imple-
mented as usual in code generation, i.e. bypassing branches that do not need to
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PUSH 3
PUSH 1
ADD
PUSH 4
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Postfixed translationGP Tree

Fig. 1. Sample GP tree and its translation into linear postfixed notation, prior to its
interpretation

Table 1. Pseudo code of the interpreter

sp = 0 ; // initialize stack pointer
GP pc = baseAddress[i] ; // load base address of prog i
while (instructionArray[GP pc] != RETURN) {

switch (instructionArray[GP pc]) {
case OPERAND : stack[sp++] = data; // push data on stack
case ADD : stack[sp-2] = stack[sp-1] + stack[sp-2]; sp--;
case MUL : stack[sp-2] = stack[sp-1] * stack[sp-2]; sp--;
...

}
GP pc++;

}

be evaluated (see [13]). A detailed GP oriented implementation is found in [12].
We use a stack to hold temporary results.

In order to limit the occurrences of divergence, we dispatch the population of
GP trees in such a way that, at any time, each multiprocessor interprets only
one GP tree. That is, GP trees are parallelized on the multiprocessors, giving
up to 16 GP programs interpreted in parallel on the G80, and the fitness of a
given tree is in turn parallelized on the 8 stream processors contained in the
multiprocessor. This scheme is illustrated in Figure 2. So every stream processor
evaluates 1/8th of the training cases. This 1/8th factor leaves enough data to
fill the ALU pipelines in most cases, even with small training sets. In a scheme
where only one GP program is run and only the training data are parallelized,
each stream processor receives only 1/128th of the training cases and this leads
to under-exploitation with small training sets.
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Fig. 2. Parallelization scheme: multiprocessors independently execute the interpreter
code. On every multiprocessor, each stream processor handles a part of the training set
and stores in register memory the current address of the GP program instruction to
be interpreted (GP pc). These GP pc do not need to point to the same instruction of
their GP program. However, if the instructions to be interpreted in parallel are not the
same for all the stream processors on a given multiprocessor, this will imply divergence
and loss of efficiency while some stream processors wait in idle mode.

To sum up some characteristics of our scheme:

– when the evaluation of a GP program is finished on a multiprocessor, there
is no need to wait in idle mode for the completion of programs that are
interpreted on other multiprocessors: another GP tree can be interpreted
immediately; this is possible because we work in SPMD mode, versus the
SIMD scheme proposed by [12,9];

– the same holds when two different programs contain if or loop instructions:
this does not create divergence between programs;

– however we can incur divergence between stream processors on the same
multiprocessor, as they always work in SIMD mode, when e.g. an if struc-
ture resolves into different cases within the set of 8 training cases that are
processed in parallel4.

4 Results and Discussion

In this section, we assess the performance of our parallelization scheme on the
G80 GPU against an Intel 2,6 GHz CPU (single core). We used three standard
4 Actually this is a bit more complex since CUDA schedules multiples of 4 computa-

tions per stream processor in order to amortize memory access overheads. A detailed
explanation is not possible within the size constraints of this paper.
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benchmarks taken from the ECJ library: real and boolean regression and a clas-
sification problem. Two of these benchmarks were also used by [6], although it
is not possible to perform a direct comparison since we do not use the same
hardware. Anyway, we do not focus on GP being able to solve these standard
benchmarks — this has been covered in numerous previous works — but rather
on the computing time speedup that can be brought by the GPU. Timings are
monitored for the evaluation phase, that includes translation to postfixed code
in the GPU case, and also for full evolutionary runs.

All runs were done using 32-bits floating point arithmetics on both CPU and
GPU. We noticed small differences between the fitness values computed on both
schemes. These differences were about 10−7 in magnitude and are implied by
the parallelization scheme: the raw fitness is cumulated into a single loop on the
CPU, while on the GPU each stream processor computes the fitness associated
to its part of the training cases before the global result is cumulated. Thus small
rounding errors appear that can change the result of the evolutionary selection
phase, especially with the bigger populations where probabilities are higher to
meet individuals with very close fitness values. These rounding errors tend to
accumulate over generations and can yield slightly different runs between CPU
and GPU. Here the situation is somewhat comparable to what happens when
one performs a GP benchmark between machines with different precision levels.
Thus, in order to obtain significant figures, we have done 30 independent evolu-
tionary runs for each problem and setting, then we have averaged the running
times. In turn, these average times are divided by the average evolved tree size
observed respectively for the CPU and the GPU, in order to obtain a comparable
time per node ratio. The speedup indicates how many times the GPU version is
faster than the CPU one and is computed as:

speedup =
GPU mean tree size
CPU mean tree size

∗ CPU mean running time
GPU mean running time

The first benchmark is the standard regression problem x6−2x4+x2 (see [14]),
using population sizes of 100, 500, 2500 and 12500 individuals, 50 generations,
and training set sizes of 64, 256 and 1024 training cases. The function set is
{+, -, *, /, sin, cos, exp, log} and terminal set {ERC (i.e. Ephemeral Random
Constants), X}. Depending on the population and training set sizes, the average
evolved tree size ranges from 30 to 66 nodes. Speedup figures are shown in
Figure 3.

The second benchmark is based on the multiplexer-6 and multiplexer-11 prob-
lems (see [14]) with respectively 64 and 2048 training cases, for population sizes
100, 500, 2500 and 12500 individuals, and 50 generations. We used as function
set {And, Or, Not, If} and terminal set {A0-A1, D0-D4}, resp. {A0-A2, D0-D7}.
The “And” , “Or” and “If” are shortcut versions (i.e. bypassing branches that
do not need to be evaluated) and boolean values are stored as integers, to obtain
comparable results with the ECJ standard code. Depending on the population
and training set sizes, the average evolved tree size ranges from 112 to 157 nodes.
Speedup is illustrated in Figure 4.
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Full run speedup for regression problem.
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Fig. 3. GPU vs CPU speedup on regression problem x6−2x4+x2. On the left, speedup
for whole evolutionary runs, on the right speedup for evaluation phase only.

Full run speedup for multiplexer.

population size

s
p
e
e
d
u
p
 f
a
c
to

r

100 500 2500 12500

0
1

2
3

4

speedup=1(i.e. no speedup)

multiplexer−6
multiplexer−11

Evaluation phase speedup for multiplexer

population size

s
p
e
e
d
u
p
 f
a
c
to

r

100 500 2500 12500

0
2

4
6

8

speedup=1(i.e. no speedup)

multiplexer−6
multiplexer−11

Fig. 4. GPU vs CPU speedup on multiplexer-6 and multiplexer-11 (64 and 2048 train-
ing cases respectively). On the left, speedup for whole evolutionary runs, on the right
speedup for evaluation phase only.

The third benchmark is the intertwined spirals problem (see [15]), again pop-
ulation sizes range from 100 to 12500 individuals, and the training set size is
fixed to 194. The function set is {+, -, *, /, sin, cos, Iflte5} and the terminal set
is {ERC, X}. Depending on the population size, the average evolved tree size
ranges from 119 to 208 nodes. Speedup is illustrated in Figure 5.

These Figures show that, in all but one cases, evaluation on the GPU yields
a speedup in computing time, for small training cases sets and short expression
lengths: the largest average tree size we encountered was 208 nodes. However
the CPU is superior for the multiplexer-6 problem: the memory transfer and

5 Iflte is a quaternary operator that stands for “If sibling1 less than sibling2 then
sibling3 else sibling4.
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Full run speedup for intertwined spirals.
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Fig. 5. GPU vs CPU speedup on intertwined spirals (194 training cases). On the left,
speedup for whole evolutionary runs, on the right speedup for evaluation phase only.
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Fig. 6. Mean evaluation and breeding time for the GPU runs on the x6 − 2x4 + x2

regression problem, with 1024 cases. As breeding is kept on the CPU, it becomes the
bottleneck when processing large populations.

tree-to-postfix translation overheads cannot be counter-balanced by the speedup
in parallel computation. Note that typical solutions to this problem contain many
If operators and may be suspected to create a high divergence between the 8
inner stream processors that deal with one GP program. This means that many
branches of the GP tree must be interpreted with part of the stream processors
in idle mode to respect the SIMD constraint, with a drop of performance.

For full runs, the speedup increases with the population size until we reach
a threshold where it begins to stagnate or drop. Of course the speedup cannot
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increase indefinitely and must anyway reach an upper bound when the GPU
is saturated. But in our case, this phenomenon occurs earlier due to one basic
implementation choice: the breeding phase is done by the ECJ library, so it is
computed on the CPU and its cost increases faster than the evaluation cost, as
can be seen on Figure 6 for the regression problem x6 − 2x4 + x2. We recall
that the evaluation time includes the cost of compacting the programs in linear
form and translating them to postfixed notation. This phase is also performed
on the CPU in our current implementation, and thus does not benefit from
parallelization. This is responsible for the slight drop of evaluation speedup in
the right plot of Figure 3 with population size 12500.

At last, speedup factors obviously depend on the problem, especially if it needs
operators such as “If” that create unavoidable divergence between stream pro-
cessors, wasting computation cycles. This explains the difference in performance
between the regression benchmark and the two others.

5 Conclusions and Future Works

Previous works about parallelizing GP on GPU brought speedups with respect
to large programs or/and large training sets. However it is not always possible
to gather large training sets, e.g. when labeling training cases requires human
intervention like medical diagnosis. It is neither always easy to evolve large GP
individuals without incurring a high level of over-fitting. Thus it is also interest-
ing to obtain speedups for small GP trees and small training cases.

We worked on one of the current fastest GPU, the Nvidia G80. Our solution
consists in parallelizing both GP programs and training data, as opposed to run
sequentially each compiled program and parallelizing only the training set. When
several programs are run in parallel, they process proportionally more training
cases on each elementary processor of the GPU, so we can expect a better filling
of the ALUs and an overall increased efficiency. As running different GP pro-
grams on a basically SIMD architecture is not possible, we use an interpreter to
process both programs and training cases as data. On a SIMD device, a typical
problem raises when the main interpreter switch is required to execute differ-
ent instructions in parallel: the GPU executes these instructions sequentially,
putting alternatively some of the elementary processors in idle mode. This is
called divergence. As our scheme relies on a fine grain parallelization allowed by
the CUDA language, we have the opportunity to exploit the SPMD architecture
of the G80, i.e. this GPU is composed of a set of 16 independent SIMD multipro-
cessors. We dispatch one program per multiprocessor, thus divergence appears
only in the case when the GP function set contains “if” or “loop” nodes.

With this parallelization scheme we obtained evaluation phase speedups rang-
ing from 8 times to 80 times for 5 out of 6 benchmarks, using from 64 to 1024
training cases and mean evolved tree sizes from 30 to 208 nodes. However no
speedup was obtained on the multiplexer-6 benchmark, which cumulates a small
training set together with a high tendency to create divergence through the
major part of its function set (if, shortcut and, shortcut or).
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By implementing the GPU evaluation as part of the Java ECJ library, we also
allow other users of G80 cards to easily develop their own GP applications. How-
ever, keeping ECJ flexibility has a drawback: the breeding phase is performed
on the CPU and does not benefit from the GPU power. Experiences showed
that when population size increases, the breeding time grows until it is no more
negligible against the evaluation time.

Future works include extending ECJ to store the GP population into an array
and implementing an interpreter for prefix code, removing the need for compact-
ing and translating GP trees to postfix. Nonetheless the cost of the breeding
phase suggests that it is also required to implement it on the GPU, in order to
take full advantage of the new graphics cards power to evolve large populations.

Acknowledgements. This work was partially supported by European Union
Interreg IIIA project 182b.
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Abstract. Research has shown that beyond a certain minimum program
length the distributions of program functionality and fitness converge to
a limit. Before that limit, however, there may be program-length classes
with a higher or lower average fitness than that achieved beyond the
limit. Ideally, therefore, GP search should be limited to program lengths
that are within the limit and that can achieve optimum fitness. This has
the dual benefits of providing the simplest/smallest solutions and pre-
venting GP bloat thus shortening run times. Here we introduce a novel
and simple technique, which we call Operator Equalisation, to control
how GP will sample certain length classes. This allows us to finely and
freely bias the search towards shorter or longer programs and also to
search specific length classes during a GP run. This gives the user total
control on the program length distribution, thereby completely freeing
GP from bloat. Results show that we can automatically identify poten-
tially optimal solution length classes quickly using small samples and
that, for particular classes of problems, simple length biases can signifi-
cantly improve the best fitness found during a GP run.

Keywords: Genetic Programming, Search, Bloat, Program Length, Op-
erator Equalisation.

1 Introduction

An intrinsic feature of traditional Genetic Programming (GP) is its variable
length representation. Although, this can be considered one of the method’s
strengths, researchers have struggled with the phenomenon of bloat, the growth
of program size during a GP run without a significant return in terms of program
fitness, since GP’s inception.

Numerous theories to explain bloat have been put forward including Replica-
tion Accuracy [1], Removal Bias [2], Nature of Program Search Spaces [3] and,
more recently, Crossover Bias [4]. Numerous methods to control bloat have also
been suggested [3,5,6], including, for example, size fair crossover or size fair mu-
tation [7,8], Tarpeian bloat control [9], parsimony pressure [10,11,12], or using
many runs each lasting only a few generations.

Research has shown that beyond a certain minimum program length the dis-
tributions of program functionality and fitness converge to a limit [13]. Before
that limit, however, there may be program-length classes with a higher or lower
average fitness than that achieved beyond the limit. Ideally, therefore, GP search
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should be limited to program lengths that are within the limit and that can
achieve optimum fitness. We might want, for example, to restrict our search
fixing program sizes at the point where our smallest optimal or near optimal so-
lutions can be found thereby avoiding the need to search much larger spaces with
the additional computational effort that entails. For most applications simpler
solutions are also much more desirable than larger solutions.

In this paper we provide a method, operator equalisation, that can be applied
easily to existing GP systems. This method forces GP to search specific length
classes using pre-determined frequencies so that we can control the sampling rates
of specific program lengths. As explained in Section 2, the method is very simple.
This technique has several advantages. For example, whenever the length distri-
bution and the corresponding sampling bias provided by standard operators is
not suitable for a specific program space, we can change such a bias freely making
it possible to sample or oversample certain length classes we believe can benefit
our search. The user is given complete control over the program length distribu-
tion, and bloat can be entirely and naturally suppressed by simply asking opera-
tor equalisation to produce a static length distribution. We look at how different,
static target length distributions can influence performance in Section 4. Further-
more, this method enables us to automatically sample and exploit the best fitness
values associated with particular length classes as explained in Section 5.

2 Operator Equalisation

Investigations into the properties of program length have often used the tool of
histogram representation in order to compare frequencies of programs sampled at
particular lengths during a GP run [14,15,4]. Our operator equalisation method
aims at controlling the shape of length histograms during a run. The method is
loosely inspired by both the gray-level histogram equalisation method [16] used
in image processing and digital photography to correct underexposed or overex-
posed pictures and the Tarpeian bloat control method [9] which, with a certain
probability, by setting to zero the fitness of newly created programs of above av-
erage length effectively suppresses their insertion in the population. We have taken
these ideas forward to see if by filtering which programs are allowed to be inserted
in the population we can directly manipulate those frequencies in order to force
GP to sample programs of particular lengths at pre-specified rates.

The method requires users to specify the desired length distribution (which
we will call target) that they wish the GP system to first achieve and then
continue to use when sampling a program space. This allows one to specify both
simple well known probability distributions (Section 4) and also coarser grained
models (Section 5). During the initialisation of the GP system a histogram
object is created. This needs only to be primed with the maximum size allowed,
number of bins (the size of the bins being calculated from these) and of course
the target distribution. Then the method requires wrapping the existing code
for offspring generation with code that simply accepts or disallows the creation
of a child based on its length. The wrapper is extremely simple:
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repeat {
<create a child using standard genetic operators>

} until( histogram.acceptLength( child.length ) )

Internally, the histogram object maintains a set of numbers, one for each
length class, which act as acceptance probabilities. The acceptLength method
simply generates a uniform random number between 0 and 1 and compares it
against the acceptance probability associated with the length class associated
to child, returning true if the random number is less than the acceptance
probability, and false otherwise.

At the end of each generation the histogram object updates the acceptance
probabilities for each class using the following formula:

newProbability = currentProbability + ( normalisedDiff * rate )

where normalisedDiff is the difference between the desired frequency specified
in target and the current frequency divided by the desired frequency. Small
discrepancies for large classes are, therefore, largely ignored. The user defined
parameter rate determines how quickly the distributions should converge. After
some experimentation the setting rate=0.1 was found to work well and has been
used in all experimentation presented in this paper.

As one can see the method can easily be applied to existing GP applications
with minimal changes: users need to change only very few lines of code in their
existing GP systems.

3 Test Problems

We have deliberately chosen two GP problems of differing natures, a parity
problem and a symbolic regression problem, to show the benefits and limitations
of this approach. As we will show the first requires a relatively large program
size before fitness will significantly improve whilst the second is able to achieve
relatively high, though far from optimal, fitness values with small program sizes.

The Even Parity problem attempts to build a function that evaluates to 1 if
an even number of boolean inputs provided evaluate to 1, 0 otherwise. We have
chosen a relatively large input set of size 10. However, it is possible to evaluate
all possible fitness cases (1024) for each potential solution within a reasonable
time given the short length limit imposed.

Our second problem is a 10-variate symbolic regression problem: x1x2+x3x4+
x5x6 +x1x7x9 +x3x6x10 as described in [9]1, which we have called Poly-10. 500
test cases are used each comprising of a (uniform) randomly generated value for
each variable ranging between -1 and 1 and the resulting value of the equation.

As with the Even-10 problem only functions with arity 2 are used: ADD,
SUBTRACT, MULTIPLY and a protected division function called PDIV which
returns the denominator if the resulting division is less than 0.001. No Ephemeral
Random Constants (ERCs) were used.
1 This problem can be simplified to x1(x2 + (x7x9)) + x3(x4 + (x6x10)) + x5x6 to give

a smallest GP tree size of 19 nodes.
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Both problems have been sourced from [9] with minor alterations2 to en-
able comparison and analysis. Each problem is expected to bloat under non-
constrained conditions the reasons for which are described in the original paper.

4 Equalising to Simple Program Length Distributions

All experiments were initialised using the GROW method [17] with depth 6. For
simplicity subtree swapping crossover with uniform selection of crossover points
was applied without mutation or replication. Elitism was not applied. We used
tournament selection with tournament size of 2 in experimentation. The algo-
rithm was generational. All experiments used a population of 10,000 and ran
for 100 generations. Results were averaged over 100 runs. It should be noted
that due to the wrapper-like implementation there is no reason why mutation,
replication or other forms of crossover could not be applied in isolation or com-
bination. In fact it is hard to imagine any form of standard GP experimental
set-up which could not be used easily.

In order to satisfy our stated desire of bloat free GP we have chosen a strict,
deliberately small, length limit of 100 nodes. This has the added benefit of allow-
ing us to evaluate a large set of fitness cases for each potential solution within
acceptable experimental run times.

4.1 Does Operator Equalisation Work?

Initial investigation using our parity and regression problems showed that using
a fairly unforgiving initialisation method (GROW), i.e., that in no way matched
to our desired length distributions, we could equalise program lengths within
approximately 20 generations. This is shown in Figure 1 for the Poly-10 problem
equalised for a uniform length distribution.

With both problems there was a small dip for some of the early length classes.
This is due to the fact that when the population has a uniform length distribu-
tion, crossover is less likely to produce very short programs than is ordinarily
the case in the absence of equalisation. This is illustrated in Figure 2 where we
look at the number of programs rejected by the wrapper at generation 100. As
we can see the number of programs rejected for these length classes is extremely
small. Our equaliser is, therefore, doing the best with what it has been presented
by the underlying GP system.3 The smallest class was always well populated.
As the bias of subtree crossover towards sampling programs of a single node has
been widely reported in the literature this is of little surprise.
2 Our Even-10 problem has no NOT function. So all functions have an arity of 2. Also,

Poly-10 here uses 500 fitness cases, where originally 50 were used.
3 In other experiments (not reported) we found that the dip is slightly worsened by

the use of larger tournament sizes since this increases the ability of selection to
repeatedly present certain program sizes. The effect is, by contrast, reduced when
using a steady state model, as GP can select newly created programs, i.e., those
accepted by our equaliser, immediately without having to wait for a generation to
be completed.
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Fig. 1. Length histogram for Poly-10 regression problem with uniform equalisation of
program length classes

Although it is possible to imagine extreme conditions where infinite loops
could be encountered, for the experimentation detailed in the following sec-
tions, all runs were completed succesfully and no unusually large run-times were
recorded. It is of course possible to add a simple retry limit to the wrapper code
to escape such loops.

4.2 Efficiency of Different Length Distributions

Having established that our simple operator equalisation algorithm works for
our test problem, we then applied this method to see how the use of elementary,
easily recognisable, target probability distributions could affect our search. In
this paper, we only consider static distributions, although operator equalisation
works also with dynamic targets—a case that we will study in detail in future
research.

In Figure 3 we see the final length distributions for the parity problem, i.e., at
generation 100, for different target distributions. Each length class is 2 nodes in
size. Given that all the functions in our function set (AND, OR, NOR, NAND,
XOR and EQ) have an arity of 2, we have an individual class for every possible
length up to our size limit.

We have chosen to look at a uniform distribution where each length is sampled
with the same frequency, a triangular distribution which has a linearly increasing
bias towards sampling larger programs, a ’reverse’ triangle where smaller pro-
grams are sampled more often and a reverse exponential distribution where we
sample larger programs exponentially more frequently than shorter ones. Note,
the distribution for the length limit with no equalisation is also shown. In all
cases the target distribution was reached very quickly. For example, after some
initial fluctuations, as we can see in Figure 4, the average size for each of the
experiments settled to a fixed value.
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Fig. 2. Number of equaliser rejections at generation 100 for Poly-10 regression problem
with uniform equalisation of program length classes

If we compare the best fitness values recorded for different target distributions
(Figure 5), we can see that the push towards sampling larger programs has had
a beneficial effect compared to using the simple length limit. The exponential
distribution has a sharper upwards gradient for generations 20 to 60 than that
of the triangular distribution although both eventually converge to the same
value. The bias towards the sampling of smaller programs has had the most
negative effect. Selection does, however, manage to improve fitness in all of our
experiments. Perhaps surprisingly, all equalisation methods improve the best
fitness value compared to the simple length limit during the early generations.
The value of exploring certain length classes during early generations is discussed
further below.

Unlike the Even-10 problem we can see in Figure 6 that the imposition of
target length distributions has a negative effect on all forms of equalisation
for best fitness compared to our simple length limit for the Poly-10 problem,
any undersampling of smaller programs during the early generations having the
most marked effect. It has long been known that in symbolic regression problems
smaller programs can obtain relatively high fitness. In fact, the reverse triangle
distribution performs as well as the simple length limit up to generation 15 and
outperforms most other methods most of the time. This indicates that in this
problem the dynamics of the length distribution is important, and GP benefits
from exploring short programs for 10 or 15 generations and then progressively
moves towards sampling longer programs, as GP with a simple length threshold
does. So, this suggests that there could be benefits in using dynamic target
distributions. As previously mentioned, we will explore this in future work.

Methods to detect this bias are discussed in the next section.

5 Length Class Sampling

As we have a method to directly influence the sampling of particular length
classes, we can now look at two sampling techniques that can help us gain an
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Fig. 3. Final length distributions for Even-10 parity problem using a strict length limit
and different equalisation targets
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Fig. 6. Best fitness (Minus Mean Squared Error) for Poly-10 Symbolic Regression
problem using a strict length limit and different equalisation methods

insight into the program space that we wish to search. We present these tech-
niques in Sections 5.1 and 5.2. Both problems from the previous section were
investigated using them.

Note that for the experiments described below we used the same GP system
as in Section 4, but with two small, yet important, differences. Firstly, in order to
remove any initial length bias the GROW initialisation method has been replaced
with the RAND TREE method described in [18]. Secondly, to show that useful
insights into the program space of a problem can be achieved without undue
computer resources, we have used both a smaller length limit of 80 nodes and a
much reduced population size of 1,000.4

5.1 Single Length Classes

Using the RAND TREE method we can sample without bias specific length
classes. We can, therefore, look at the sampling of individual classes in isolation.
For our experimentation the search space was divided into 20 equal length classes
with each class sampling two distinct program lengths e.g. 1 and 3 for the first
class, 5 and 7 for the second etc.5 The objective was to find out which area
(length class) of the search space would appear preferable to a GP system in the
early generations of a run.

For the Even-10 problem (Figure 7) we can see quite clearly that there is small
threshold where potential solutions cannot achieve anything better than 512 cor-
rect classifications, exactly half the total possible. However, as we move to larger
program sizes we can see a distinct improvement in fitness. Selection will, there-
fore, quickly guide GP to larger programs in the early stages of a GP run.

4 As we have used a smaller population size we cannot directly compare the best
fitness results reported in this section with those reported in the previous section.

5 Even sized programs are not possible for 2-ary trees.
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Fig. 7. Best fitness for Even-10 problem sampling 20 distinct size classes using the
RAND TREE method. Results are averages over 100 samples of 1,000 individuals each
(1,000=GP population size).

Figure 8 shows that, for the Poly-10 problem, when we initially sample the pro-
gram space, we find that the smallest programs do indeed have relatively better fit-
ness than their larger counterparts. This explains GP’s concentration in this area
during earlier generations in the experimentation reported in Section 4. Of course,
these areas do not contain optimal solutions: we need at least 19 nodes to achieve
that. However, to an initial random sampling these areas display a higher propor-
tion of relatively fit programs than those of the larger program size search spaces
sampled. This explains why without histogram equalisation GP first samples the
short programs but then quickly moves towards the longer programs, where, upon
sufficiently sampling, better solutions can be found. This also explains why equal-
isation with a reverse triangular distribution does well initially, but cannot com-
pete with standard GP later on (see Figure 6). Finally, it also explains why equal-
isation with distributions that sample the longer programs more frequently, such
as the reverse exponential distribution, produce much worse fitness that standard
GP and reverse triangular equalisation, initially.6

5.2 Multiple Length Classes

Of course the picture may change significantly if we sample two or more classes,
perhaps with differing proportions. Also, what may look like a good sampling
histogram initially (upon the random sampling produced by initialisation) may
later turn out to be suboptimal after many generations of GP exploration. So,
in this section we look at how the picture changes when using multiple length
classes in combination and when comparing the initial to the final generation of
runs.
6 The fitness plot for the reverse exponential distribution in Figure 6, however, remains

parallel to the plot of standard GP, suggesting that given enough generations his-
togram equalisation with this distribution would eventually catch up.
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Fig. 8. Best fitness for Poly-10 problem in the same conditions as for Figure 7

To this end, we divided the length distribution into 4 bins of size 20 nodes
and sampled each combination of bins using frequencies that were multiples of
20%. For example, bins 2 and 3 might have frequencies of 40% each, while bin 1
might have a frequency of 20% and bin 4 a frequency of 0%. Every combination
(including those where some bins were empty) was sampled. There were 56
combinations in total. For each the resulting best fitness values at each generation
were tabulated.

This produced a very large dataset, which we cannot report here due to space
limitations. However, we report summaries of it in the form of the multiple linear
regression formulas resulting from fitting the data at generations 0 and 100. The
formulas will have the following form:

bestF itness = β0 + β1X1 + β2X2 + β3X3 + β4X4 (1)

β0 is the constant term and βi being the coefficient of each of the length classes
Xi, X1 being the smallest class. After the multiple linear regression was ap-
plied to the Even-10 problem the following formula was found for our initial
generation:

bestF itness = 424.897 + 96.256X1 + 103.899X2 + 110.831X3 + 113.911X4 (2)

As we can see there is a small improvement in best fitness as we search the larger
classes. After applying GP search, at generation 100 the improvement is more
distinct as shown by the regression formula:

bestF itness = 509.914 − 36.000X1 − 12.000X2 + 216.276X3 + 342.748X4 (3)

For the Poly-10 problem for the first generation we obtain:

bestF itness = −179.595 − 15.509X1 − 54.645X2 − 56.678X3 − 52.763X4 (4)

while after 100 generations the picture is somewhat different:

bestF itness = −147.146 − 33.712X1 − 25.438X2 − 46.835X3 − 41.161X4 (5)
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We can clearly see that for Poly-10 different parts of the search space yield
different results for our initial generation and later stages of GP search. As
one would expect from these results the best and worst combinations for our
100th generation showed a strong dislike for the third class. A 100% sampling
of which, was indeed our worst result of -215.265, whilst more interestingly a
broader sampling of the surrounding classes yielded the best results all of which
were below -170.

6 Conclusions

In this paper we have introduced operator equalisation, a programatically simple
method that can be easily applied to current experimental environments that
allows us to finely bias GP search to specific program lengths. In particular, when
method can force GP to sample the search space using static (and arbitrary)
length distributions. This completely and naturally suppresses bloat.

We have applied this method to first see how simple bias can influence the
results of two different but potentially bloating problems. The Even-10 parity
problem was shown to have a simple positive bias towards longer programs within
the ’experimentally-friendly’ 100 node limit we have specified, whilst the Poly-10
regression problem was shown to have a positive bias towards the sampling of
shorter programs during early generations.

Using simple statistical techniques we have then shown how we can use the
method to quickly gain information about the search space and the best way to
sample it with GP (with and without equalisation).

The primary aim of bloat free GP is to sample program spaces in such a way
that we allow GP to discover optimal or acceptable near-optimal solutions with-
out wasting resourses searching ever larger spaces with little return with regard
to fitness. Here we have made some strong steps in this direction. An automatic
method of defining the appropriate search space for a GP problem may not be so
far off. For example, there is no reason why the method introduced in this paper
cannot be applied to the initial setting of size limits (either maximum or mini-
mum), or even to define a dynamic schedule for biasing the sampling of programs
to certain sizes over the entire run or during different stages of a GP run.
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Abstract. Many theoretical studies on GP are criticized for not being
applicable to the real world. Here we present a practical model for the
performance of a standard GP system in real problems. The model gives
accurate predictions and has a variety of applications, including the as-
sessment of the similarities and differences of different GP systems.

1 Introduction

Despite recent successes in developing solid theoretical foundations for Genetic
Programming (GP) (e.g., see [3,6] and the recent review in [5]) and the establish-
ment of a forum where theoreticians and practitioners can meet and discuss (the
“Genetic Programming Theory and Practice” workshop series [8,4,9,7]), there is
a growing gap between GP theory and practice. Often theoretical studies in GP
(and evolutionary computation more generally) are criticized for being rarely
applicable to realistic situations. One of the reasons for this is that producing a
comprehensive theory for complex adaptive systems such as evolutionary algo-
rithms is objectively a very hard and slow process, while GP technology develops
at an unrelentingly fast pace. Still, sometimes theoreticians appear to focus on
approaches and problems that are too distant from practice. On the other hand,
despite the proven effectiveness of GP, there is a growing need for a theory
that can clarify the applicability of different types of GP to particular problems,
provide design guidelines and, thereby, avoid the current, very time-consuming,
practice of hand-tuning algorithms, parameters and operators.

In this paper we start filling this theoretical gap by proposing a practical
model of GP which, unlike previous research, does not attempt to capture all
the characteristics of the algorithm nor to model it exactly. Instead, we focus
on modelling the most important characteristic from the practitioner’s point
of view: GP’s performance. In particular, inspired by recent research where we
successfully modelled the performance of a GA exploring small landscapes using
a linear function [1], here we attempt to model the performance of GP using a
linear approach. The main difference, here, however, is that we don’t model a
toy situation with tiny landscapes and unrealistically small populations. Instead,
we model standard GP on a huge class of realistic problems: symbolic regression
problems whose target model is a rational function.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 122–133, 2008.
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The paper is organised as follows. In Section 2 we briefly review the main
concepts presented in [1]. In Section 3 we identify problems with the original
approach of [1] when applied to GP, and propose ways of going beyond them.
In Section 4 we describe the parameter settings and problems used to test our
approach. This is followed by our experimental results (Section 5) and some
conclusions (Section 6).

2 Information Landscapes and GA Performance

Let Ω = {0, 1}� be the search space explored by a GA, and f be a fitness function
over Ω. Let us enumerate the bit strings in Ω using their value in decimal. The
information landscape [1] for a problem is represented by a comparison matrix
M with elements

mi,j =

⎧
⎪⎨

⎪⎩

1 if f(i) > f(j)
0.5 if f(i) = f(j)
0 if f(i) < f(j).

(1)

Because of obvious symmetries we more concisely represent the information land-
scape using the vector v = (m0,1, m0,2, ..., m2�−2,2�−1), which contains the ele-
ments of M above the main diagonal. This representation of f is particularly
suited for search algorithms which only use relative fitness values to make de-
cisions. For example, a GA based on rank or tournament selection only cares
about which solution is superior to which other, not by how much.

Irrespective of the particular type of performance measure chosen, the per-
formance of a GA is a function P : f → R. [1] proposed to approximate P (f)
using a semi-linear model in which f is first transformed into its corresponding
information landscape, and then the components of the landscape are used in a
linear function to approximate P (f). That is

P (f) ≈ c0 + c · v(f), (2)

where c0 is a suitable scalar constant, c is a suitable constant vector (termed
the performance landscape), v(f) is the information landscape associated to
f and · is the scalar product. The coefficient c0 and the vector c are estimated
using multivariate linear regression, i.e., by least square fitting of a training set of
(v(f), P (f)) pairs. The number of parameters to be estimated is 22�−1−2�−1+1,
which grows exponentially with �. So, exponentially large training sets of fitness
functions are required. In principle, this is not an obstacle since there are many
more distinct fitness functions than parameters to identify. However, since the
GA is stochastic, for each fitness function the exact value of P (f) (required to
form an example (v(f), P (f)) pair for the training set) is unknown and can only
be estimated by running the GA many times with fitness function f . This makes
the approach very costly indeed, and, for this reason, it has only been tested on
very small cases (� = 3). In some cases, however, the linear approximation in
Equation (2) has been exceptionally accurate. For example, when computed for
a tournament-based GA and tested against all possible problems with � = 3, the
linear model gave a correlation coefficient of over 93%.
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3 Modelling GP Performance

Given its simplicity and successful results we attempted to extend the approach
described in [1] and summarised in the previous section to predict GP perfor-
mance. However, a number of serious problems effectively prevented this. So,
a generalisation of the original approach became necessary. In Section 3.1 we
describe these problems. In Section 3.2 we describe the new approach we take in
this paper to developing performance models of GP. Finally, in Section 3.3 we
explain how our models are adapted to optimise their accuracy.

3.1 Problems with Information Landscapes in GP

The first obstacle to using Equation (2) is, of course, the fact that, in principle,
GP explores an infinite search space. So, one would need to estimate an infinite-
dimension c vector, which would require an infinite-dimension training set. To
rectify this problem, we considered limiting the size of the structures considered.
After all, one might argue, Equation (2) is an approximation. So, what if we
limited the M matrix (and, correspondingly, the v and c vectors) to include
only comparisons between the fitness of program trees of depth D or less?

Unfortunately, for typical primitive sets, the number of distinct programs of up
to a certain depth grows doubly exponentially with the depth, making it difficult
to use the approach described in the previous section even for the smallest of
trees. For example, there are 302 distich programs of depths 0 to 2 for the
primitive set {x, y,

√
, +, ×} and 6,087 programs of depth 0 to 2 for the primitive

set {x1, x2, x3, AND, NAND, OR, NOR}. This requires 45,452 and 18,522,741
parameters to be identified in Equation (2), respectively. These numbers are also
the minimum number of fitness-performance pairs required in the training sets
to make the identification of c0 and c well-posed. The number of runs required
to compute such training sets would then be of the order of millions and billions,
respectively, making the approach really hard to port to GP.

Furthermore, the scalability of the information landscape approach is not the
only problem to be faced when attempting to used it for GP. Another prob-
lem is that in most primitive sets there are symmetries which imply that two
syntactically different trees may in fact present the same functionality. For exam-
ple, within the search space generated by {x, y,

√
, +, ×}, the programs (

√
(×

x y)) and (
√

(× y x)) are functionally indistinguishable. Even worse is the
situation with the primitive set {x1, x2, x3, AND, NAND, OR, NOR}, where,
because we only have 3 variables, there can just be 256 different Boolean func-
tions of these variables. So, each program in the search space must implement
one of these 256 functions. Now consider two particular programs that imple-
ment the same functionality. Then, for all functions f considered in the training
set, these two programs will produce identical components in the correspond-
ing v(f) vectors. This creates dependent rows in the system of equations that
one needs to solve to identify c0 and c. Unless, there are sufficient independent
data-points, the system becomes impossible to solve due to numerical instability.
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Indeed, all our attempts resulted in ill-conditioned problems. We then con-
sidered overcoming this problem by representing only the elements of the search
space that implement different functionalities in the comparison matrix M (and
the vector v). However, this too was ridden with difficulty. For example, for the
Boolean primitive set mentioned above, we would have 256 different trees, but
there are 257 variables to identify. As a result, this approach, too, consistently
gave ill-conditioned systems.

What is necessary is to generalise and then abandon the original information
landscape representation. We do this in the next section.

3.2 Beyond Information Landscapes

In a sense the information landscape is a re-representation of the original fitness
function. Indeed, to any searcher that uses only relative fitness to decide where to
search next, this is an exact re-representation, since the searcher cannot make use
of any information about a fitness function f other than that explicitly stored in the
information landscapev(f).However,v(f) is not the onlymodel of f one could use.

Formally the fitness function f is fully specified if one indicates what fitness is
associated to each program in the search space. Here we propose an approximate
re-representation of the fitness function, namely one where f is represented using
the ordered set F(f) = {f1, f2, . . . } where fi ∈ R is the fitness of program i ∈ S
(when the fitness function is f), where S is a subset of Ω, the set of all program
trees constructed by recursively composing the primitives in the primitive set.1

E.g., S might include all programs of up to a certain depth or size or might simply
be an random sample of Ω. Then we propose to approximate the performance
function of a GP system using the following linear function

P (f) ≈ a0 +
∑

i∈S

fiai. (3)

Typically, in GP the fi are computed as follows

fi =
∑

x∈γ

d(i(x), g(x)) (4)

where i(x) is the value returned by program i given input x, g(x) is the target
value in x, γ is a set of inputs where functionalities are tested, i.e., {(x, g(x)) :
x ∈ γ} is the set of fitness cases,2 and the function d can be any reasonable
comparison function. Commonly, d(i(x), g(x)) = (i(x)−g(x))2 or d(i(x), g(x)) =
|i(x) − g(x)|. In this work we define

d(i(x), g(x)) =
(i(x) − g(x))2

|γ| , (5)

where |γ| represents the cardinality of the set γ.
1 Clearly, if S ≡ Ω then F(f) is an exact representation of f .
2 Note, here we are representing the target values using a function notation, g(x). This

is because in many test environments the data we want GP to fit are obtained by
sampling some ideal function g(x) for x ∈ γ. This is what we will do here as well.
However, the approach does not require the explicit knowledge of g(x) for x �∈ γ.
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As we did for the performance landscape in Section 2, the coefficients ai can
be obtained by the least square method applied to a suitable training set of
(F(f), P (f)) pairs. The procedure to estimate P (f), as before, requires running
GP on problem f multiple times and estimating GP’s performance by averaging
(or some other statistical means).

A relevant question then is: How accurate is our new linear approximation of
GP’s performance? Also, presumably some choices of S are better than others.
How can we choose the best S? We will look at these issues in the next section.

3.3 Model Optimisation

Before we describe the methodology used to test the linear model and to select
the elements of the set S, we need to introduce a quality measure for different
performance models. The Relative Squared Error is used:

rse =
∑

i(pi − p̃i)2∑
i(pi − p̄)2

(6)

where i ranges over a set of test problems used to evaluate the accuracy of a
model, pi is the average performance recorded for problem i when performing
real runs, p̃i is the performance predicted by a linear model, and p̄ is the average
mean performance over all runs. The objective is to obtain rse as close as possible
to 0.3

We are now in a position to try to optimally identify the elements of set S
to be used in our model of GP performance (Equation (3)). In order to obtain
the elements of set S we use a Genetic Algorithm (GA) where each individual
includes n loci, and where each allele represents a rational function (created
with same procedure used to create the functions in the training and validation
sets). Each GA individual, therefore, encodes a potentially different S set of size
n. The objective is to find the set of n trees which gives the minimum rse. In
some sense, therefore, each GA individual is a linear model. So, to evaluate each
individual, first we need to derive the corresponding ai coefficients. These can be
obtained by using the least square method on a suitable training set. Once the
ai’s are known we can predict GP’s performance using Equation (3). Naturally,
when the GA optimisation is over, one needs to test the best model (S) evolved
using an independent validation set to ensure the model generalises correctly.
The quality of the model is given by Equation (6).

Note that, while we said that S is subset of Ω, a simple inspection of Equa-
tions (3)– (5) reveals that nothing would prevent the inclusion in S of func-
tions which are not elements of Ω. Both ways of building S lead to valid re-
representations of f . In this paper we will focus on the case S ⊂ Ω, but we
will compare the advantages and disadvantages of the two ways of building S in
future research.
3 A value of rse close to 1 means that the model is as good (or bad) at predicting

performance differences as the mean. A value of rse less than 1 means that the
model predicts better than the mean, while rse > 1 implies worse predictions than
the mean.
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Table 1. Parameters used in the GP experiments

Crossover rate pxo 100%, 90%, and 80%

Mutation rate pm 0%, 10%, and 20%

Population size 1000

Number of generations 50

4 Test Problems and Parameter Settings

To test our performance model, we used a standard GP system (Table 1 shows
the parameters of the GP system). We used subtree crossover and subtree mu-
tation. In subtree mutation we generated random trees with a the maximum
depth of 4. The only significant difference w.r.t. the GP system used in [2] is
that we select crossover and mutation points uniformly at random, while [2] used
different probabilities for internal nodes and leaves.

The benchmark problem used was continuous symbolic regression. The target
functionality was produced by sampling rational functions. We created 200 dif-
ferent rational functions using the following procedure. Two polynomials, W (x)
and Q(x), were built by randomly choosing the degree of each in the range 2 to 8,
and then choosing random real coefficients in the interval [−10, 10]. The rational
function is then given by g(x) = W (x)

Q(x) . Each of the 200 rational functions was then
sampled at 21 points uniformly distributed in the interval [−1, 1]. These 21 points
formed the set γ.4 The resulting set of 200 problems was divided into a training
set and a validation set. For each g in either set we performed 50 independent GP
runs recording the fitness of the best individual found in each run. We then asso-
ciated to each g an estimate of P (f) obtained by averaging the best fitness values
fbest recorded in the 50 runs. Since f is a measure of distance between the target
g and a program i, values of P (f) close to zero represent good performance.

The training set was used for the optimisation of S via the GA. We test the
model in different configurations, but in all cases the cardinality of set |S|, n, was
set to 5 and all the members of S were rational functions. In order to understand
the behaviour of the model in different GP systems the crossover rate was varied
from 80% to 100% and the mutation rate from 0% to 20%.

In this paper we used the class of rational symbolic regression problem as
a benchmark. However, the methodology presented can be applied to others
problems. In the future, for example, we intend to test this approach on the
class of Boolean problems. Also, the accuracy of fit is not the only performance
measure of interest. In future work we will also look at modelling success rates.

To give an idea of the time needed to build the model, it is necessary to
remember that one needs to build a training set and a validation set, and these
are created by running GP several times on each problem. Once these sets are
built, the runtime of the GA is negligible. Our Python GA implementation takes
only a few seconds to produce a model.
4 We sample the functions in our dataset since we are only interested in their value for

x ∈ γ (see Equations (3)– (5)).
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Table 2. Accuracy of the model for different configurations of the GP system

GP System Training set Validation set
pxo pm rse rse

100 % 0 % 0.0833 0.1960

90 % 10 % 0.1235 0.2092

90 % 0 % 0.0931 0.1995

80 % 20 % 0.1303 0.2389

80 % 10 % 0.1195 0.2731

80 % 0 % 0.0933 0.2172

5 Results

We performed 10 independent runs of the GA to obtain S on training data
collected with a GP system with pxo = 90% and pm = 0%. The mean rse at
the end of the GA runs was 0.13029 and the standard deviation was 0.04517,
indicating that in all runs the GA was able to find models that fitted our problem
training-set well. As our final linear performance model we used the S set that
exhibited the best rse both in the training set and in the validation set. The
performance exhibit in the validation set by this model is 0.1995.

Since the model was selected looking at its performance in the validation set,
we need to create a separate test set to assess the generalisation capability of
model. This new set was created using the same procedure as for the training
and validation sets. The performance exhibited by the model in this new set was
0.2353.

Table 2 shows the model’s rse in the different GP configurations. As can
be seen from the table, in all the configurations tested the model exhibit good
accuracy in the training and validation sets. This implies that the elements of
S, which were selected using the configuration pxo = 90% and pm = 0%, can be
used to model the different GP configurations presented in this work without
the need to find a different S for each GP configuration.

In order to give an idea of the model’s accuracy, in Figure 1(a) we show a
scatter plot of the performance measured in actual runs vs the performance ob-
tained via Equation (3). The data plotted correspond to the training set used
to choose S (i.e., pxo = 90% and pm = 0%). The solid line in the plot rep-
resents the behaviour of a perfect model. Figure 1(b) presents the same data
as Figure 1(a) but with a different scale, so as to provide a clearer idea of the
accuracy of the model for the functions where GP is able to find solutions that
fit rational functions reasonably well. As can be seen, in both plots the points
form a cloud around the perfect model which is a clear qualitative indication
that Equation (3) is an accurate and unbiased model of GP performance.

Another way to measure the model’s accuracy is to compare the statistics
of the distribution of GP performance (for the training and validation sets)
obtained by running the GP system against those obtained by using the model.
Table 3 presents statistics of the GP system (for pxo = 90% and pm = 0%)
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Fig. 1. Measured performance vs performance obtained using the linear model

in the training and validation set. The first and third columns are the statistics
obtained by running the GP system and the second and fourth columns show the
corresponding statistics obtained by using the model. While it is not surprising
to find that the means in the training set are identical, we note that also the
means in the validation set are very similar. Also the standard deviations are very
similar, with noticeable discrepancies appearing only for higher order statistics
and, particularly, for the validation set.

Together these results indicate that our linear model is really accurate. How-
ever, the differences in predicted vs actual kurtosis in the validation set caught
our attention. This difference suggested that there might be a particularly un-
usual regression problem in the validation set where the GP system produced
exceptionally bad performance. Indeed we found such a problem. Due to its rar-
ity problems of this kind were not included in the training set and the model
cannot predict performance accurately for this problem. Indeed, when we re-
moved this problem from the validation set, we obtained that the new measured
kurtosis in the validation set is 16.4639 and the one obtained by the model is
12.2223. So, all statistics up to the forth order match very closely.5

So far, in this section we have focused on the evaluation of the accuracy of
our linear model of performance. In the rest of this section, we will describe
the model obtained. As we will see there are many lessons one can learn from
analysing it.

As is clear in Equation (3), a model is made up of two things: a set of functions
S and the linear regression coefficients ai associated to those functions. Table
4 shows the values of the ai for different configurations of the GP system. The

5 It is worth noting that while the model’s accuracy in this rare problem was not
very good, the model still predicted correctly that GP would have performed very
badly on the problem. Indeed, the actual performance measure is 182.17 while the
model predicted 104.70. Naturally, if accurately predicting the performance of rare
problems where GP produces extremely bad results is important to a user, one could
actively look for such problems and make sure that a suitable set of representatives
is included in the training set.
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Table 3. Comparison of actual vs predicted GP performance statistics (for pxo = 90%
and pm = 0%) for the training and validation sets

Training set Validation set

Measured Obtained Measured Obtained

Mean 7.2354 7.2354 7.2268 7.2948

σ 14.9689 14.2551 21.3410 17.8337

Skewness 3.3902 2.8377 6.2037 3.5837

Kurtosis 12.7442 8.2259 44.8033 13.0803

Table 4. Values of ai for different configurations of GP

GP system a0 a1 a2 a3 a4 a5

pxo pm

100 % 0 % 155.3130 −0.3701 −0.1120 0.3674 −0.7178 0.8730

90 % 10 % 128.1946 −0.2073 −0.1292 0.0083 −0.5262 0.8356

90 % 0 % 151.3647 −0.2945 −0.1726 0.1758 −0.6398 0.9027

80 % 20 % 122.6533 −0.1365 −0.1317 −0.1367 −0.4826 0.8134

80 % 10 % 105.9296 −0.2429 −0.0317 0.0132 −0.4411 0.7935

80 % 0 % 139.4810 −0.2707 −0.1878 −0.0185 −0.5154 0.9261

table is complemented by Figure 2 which shows the plots of the functions in S
that correspond to a1 through to a5.

The signs of the coefficients ai (i > 0) can be interpreted as follows. If ai < 0
then in order to have a good performance the target function must be far from
the function of S corresponding to ai. In other words, the value of the l.h.s. of
Equation (4), where g is the target and i is the functionality associated with ai,
should be as high as possible. If ai > 0, then g should be as close as possible to
i for good performance.

Looking at the ai coefficients in Table 4, we can see, for example, that a5 > 0
in all configurations, meaning that if a target function is similar to the function in
Figure 2(b), then good performance should be expected. Inspecting Figure 2(b) we
can understand why: the function is nearly constant and close to 0 almost every-
where, and so, if the function g is similar to it, it would be extremely easy for GP
to come up with a constant or a low order polynomial that fits it reasonably well.

Another interesting functionality is that associate to the coefficient a3 (which
is the one with a peak near x = −0.8 on the left of the plot in Figure 2(b)).
As shown in Table 4, not all GP configurations present a3’s of the same sign.
This suggests that there are classes of problems where a GP system with, for
example, 100% crossover and 0% mutation would perform very differently from a
GP system with 80% crossover and 20% mutation. Finally, all other coefficients
are always negative, with the a4 being the largest single contributor.

By analysing in detail the signs of the model’s coefficients and the shape of
the functions in S, it is possible to infer what problems are particularly easy or
hard for any specific GP system. We will perform an in-depth analysis of this
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Fig. 2. Elements of set S

issue in future research. Here, instead, we will concentrate on another important
applications of the model: the analytical comparison of different GP systems. As
can be seen, Equation (3) represents an hyperplane. We propose to use the angle
between the hyperplanes associated to different GP configurations to measure
the difference in behaviour (in relation to performance) of such configurations. In
order to obtain the angle between two hyperplanes we need to rewrite Equation
(3) in its normal form, namely

(−1, a1, · · · , a|S|) · ((P, f1, · · · , f|S|) − p̄) = 0 (7)

where p̄ is a point on the hyperplane, and P is GP’s performance. Using this
representation the similarity between a GP system with the coefficients a′

i and
a GP system with coefficients a′′

i is the angle between vectors (−1, a′
1, · · · , a′

|S|)
and (−1, a′′

1 , · · · , a′′
|S|).

With this methodology we compared different configurations of GP, using
configuration pxo = 100% pm = 0% as reference against which all other configu-
rations are compared (via the calculation of the angle between each configuration
and the reference). All configurations are shown as angles in Figure 3. The refer-
ence configuration is the x-axis. As shown in Table 5, the reference configuration
has the worst mean performance. Interestingly, the configuration closest to the
reference, pxo = 90% pm = 0%, has the second worst mean, while the configu-
ration that forms the largest angle with the reference, pxo = 80% pm = 20%,
presents the best mean.

Finally, we should note that the objective of this work is not to solve the
set of rational symbolic regression problems well. That is we have used rational
symbolic regression as a test bed to show the viability of linear models of GP
performance. Nonetheless, looking at Table 5 any experience GPer will find it
interesting that such problems are better solved by configurations of GP where
mutation is used. There is also one other characteristic that is interesting: the
standard deviation σ appears to decrease as the mutation rate increases. Are
these differences statistically significant? If so, why do they occur? In future
research we hope to be able to answer these questions.
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Table 5. Performance of the different GP systems

GP system Training set Validation set

Mean σ Mean σ

pxo = 100% pm = 0% 7.3591 15.6271 7.1952 20.7939

pxo = 90% pm = 10% 6.5138 13.7010 5.6921 14.1050

pxo = 90% pm = 0% 7.2354 14.9689 7.2268 21.3410

pxo = 80% pm = 20% 5.9480 12.4507 5.4467 14.3367

pxo = 80% pm = 10% 6.5210 13.8889 6.2925 18.4059

pxo = 80% pm = 0% 7.1018 14.2824 7.0071 19.7771

6 Conclusions

In this paper we have presented a new practical model of the performance of
GP. The model is unusual for two reasons: it models real (non-toy) GP systems
in real (non-toy) problems, and it is extremely simple and accurate. We tested
this approach on the class of rational symbolic regression problems.

The simplest and most obvious application of our model is to test whether a
function is hard or easy for GP without actually running the system. Another
application studied in this work is the comparison of different GP systems. We
have made a first step in this direction. In future work we plan to do more
extensive comparisons of GP systems with different parameters (e.g., crossover
rates). In addition we want to compare the behaviour of tree-based, linear and
grammar-based GP, just to mention a few. Also, in this work we analysed only
the case where performance was the mean fitness of the best individuals of each
run. In future work we plan to test this methodology using different measures
of performance like, for example, the success rate.

Besides the application describe in this paper, there are many more which we
did not have space to describe, and which will be the subject of future papers.
For example, it is possible to use the model to directly create functions that are
particularly hard or easy for GP. Another important application of the model
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is to select which set of GP parameters, operators or algorithms would give the
best results for a given symbolic regression problem.
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Abstract. We present a new mechanism for studying the impact of subtree
crossover in terms of semantic building blocks. This approach allows us to com-
pletely and compactly describe the semantic action of crossover, and provide in-
sight into what does (or doesn’t) make crossover effective. Our results make it
clear that a very high proportion of crossover events (typically over 75% in our
experiments) are guaranteed to perform no immediately useful search in the se-
mantic space. Our findings also indicate a strong correlation between lack of
progress and high proportions of fixed contexts. These results then suggest sev-
eral new, theoretically grounded, research areas.

1 Introduction

Subtree crossover is one of the oldest and remains one of the most widely used recombi-
nation operators in genetic programming (GP). It is still unclear, however, why or how
it works. It’s hardly obvious that yanking a random chunk of code from one program,
and plopping it unceremoniously in a random location in a second program would be a
good thing. Yet it clearly works (at some level) in GP.

But why? How does subtree crossover move the population closer to the solution?
Is it really just a happy accident that this simple operator provides some sort of useful
recombination? Are there better operators and representations waiting to replace this
strangely random process?

Here we present a new mechanism for studying the semantic effect of subtree
crossover in terms of semantic building blocks. Subtree crossover combines two tree
components: the context (the root parent with a subtree removed) and the subtree being
inserted into that context. Our approach allows us to completely and compactly describe
(for Boolean problems) the semantics of these two key components (contexts and sub-
trees), which allows us to completely describe the semantic action of subtree crossover.
We can also enumerate the occurrences of different context and subtree semantics in
a population, independent of their syntax. This allows us to perform detailed studies
of the semantic components present in a population, and the opportunities this provides
for subtree crossover. The resulting data strongly suggest that the distribution of context
semantics are key to the success (or failure) of runs. Our results also make it clear that
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a very high proportion (typically over 75% in our experiments) of crossover events are
guaranteed to perform no immediately useful search in the semantic space. These tools
and results not only shed new light on the operation and impact of subtree crossover,
but they also suggest a number of ideas for new operations and approaches to genetic
programming based on this new theoretical and empirical understanding.

In the next section (Section 2) we review some of previous work on GP building
blocks and the behaviour of crossover. In Section 3 we present our new tools and show
how the semantics of contexts and subtrees can be calculated and enumerated. In Sec-
tion 4 we go over results from empirical runs and data collected using new measures
enabled by these ideas. We discuss those results and some of their implications in Sec-
tion 5, and conclude in Section 6.

2 Related Research

“Building blocks” have a long history in genetic algorithms (GAs), and there have been
various definitions proposed for building blocks in GP. These were typically strictly
syntactic in nature, and often part of an effort to adapt GA schema theory to GP (e.g.,
[13,19,15,20,16,17]; see [4] for additional review). There have also been numerous
studies on the impact of subtree crossover, other recombination operators, and their
interactions with things like mutation [2,1,14,8,12,4].

Many of these studies have helped us better understand important properties of GP
such as code growth. None, however, have shed much light on the underlying semantic
behavior of subtree crossover or provided tools to track and analyze those semantics.
Perhaps the closest to the current research that we’re aware of is [2], where the proposed
marking process captures useful semantic information about potential crossover points
that is related to our notion of fixed contexts (discussed in Section 3.2).

3 Enumerating Semantic “Building Blocks”

In sub-tree crossover we construct a new offspring by replacing a randomly chosen sub-
tree from parent A with a random sub-tree from parent B. To understand the possibilities
afforded by sub-tree crossover, then, we need to be able to characterize what sub-trees
can be chosen from B, and where they can go in A.

We define a context to be a tree with some specific (but arbitrary) subtree removed
(see Figure 1); we will use ‘#’ to indicate the removed subtree.1 Given this definition,
describing the semantic impact of sub-tree crossover reduces to describing the seman-
tics of sub-trees, the semantics of contexts, and their interactions. We will describe these
ideas in some detail below; see [10] for additional detail and examples.

This paper will focus on the Boolean domain, i.e., trees that represent Boolean func-
tions. Working in such a small (finite) domain is valuable because it makes it much
easier to compute and catalogue the complete semantics of the sub-trees and contexts
involved. (See Sec 5 for more on extending these ideas to other domains.) In the Boolean

1 This is similar to a tree schema with one ‘#’ leaf symbol from [4]. A schema, however, repre-
sents a set of trees, whereas for us a context is simply a syntactic construct.
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Fig. 1. An example of a context, i.e.,
a tree with one subtree (represented
by #) removed

Table 1. The (sub)tree semantics for the four Boolean
functions used in our experiments. In a finite (e.g.,
Boolean) domain we can fully characterize the seman-
tics of a (sub)tree by enumerating the values of a tree
(i.e., a function) on all its possible inputs.

x y (and x y) (or x y) (nand x y) (nor x y)
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 0

domain we can generate a highly compact representation of both subtree and context
semantics. This allows us to enumerate the semantics of all the sub-trees in a given tree
in the population, or even all the sub-trees of all the trees in a given population. We can
then explore this distribution of sub-tree semantics to better understand the possibilities
available to sub-tree crossover.

3.1 Semantics of Subtrees

Following the ideas used in sub-machine code GP [18], we can completely specify the
semantics of a Boolean valued (sub)tree (or, equivalently, function) by enumerating
its value on each of the possible sets of input values (as in the construction of truth
tables). Taking 0 to be false and 1 to be true, the function (and x y), for example,
has the semantics 0001 corresponding to the third column in Table 1. (See Fig. 2 and
[10] for additional examples of sub-tree semantics.) This, then, allows for a complete
characterization of the semantics of any Boolean (sub)tree in the sense that if two trees
S0 and S1 have the same semantics, and tree T contains S0 as a sub-tree, we can replace
the occurrance of S0 in T with S1, and the semantics of T will remain unchanged.

3.2 Semantics of Contexts

In general we won’t know the semantics of a tree with an unspecified subtree removed,
since the details of that subtree will usually affect the semantics of the entire tree. How-
ever, some contexts depend less on the details of their open subtree than others. For ex-
ample, the context (and false #) is always going to return false, regardless of which
subtree we insert into the open position. Further, we know from experience that genetic
programming has strong tendencies towards the creation of such contexts [9,5,4].

We refer to a context as being fixed for a particular set of inputs (or a particular posi-
tion when using strings to represent semantics) if the value of that context is completely
determined (either true or false) regardless of what subtree is inserted at the open
node (#). We define the entire context to be fixed if it is fixed for every possible set of
inputs (i.e., at every position in the semantics string).

In the Boolean domain the semantics of a context depend on the details of the inserted
subtree in a systematic manner. Consider the context (and true #). Here the value
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X Y
0011 0101

0111

X Y
0011 0101

1000

+000

00-0 0-00

0+++

+000 +000

AND

OR NOR

Fig. 2. A sample syntax tree showing both subtree and context semantics. The arrows pointing
upward (on the left of the edges) are the semantics of the subtree below them, e.g., the semantics
of (or x y) is 0111. The arrows pointing downward (on the right on the edges) are the semantics
of the context obtained by removing the subtree below the arrow. For example, the semantics of
(and # (nor x y)) is +000.

of this context will be the same as the value of whatever subtree we insert for the #.
We will denote the semantics in such a case with a +, indicating that the value of the
subtree passes through unchanged. The alternative case is represented by a context like
(nand 1 #). Here the value of the context is going to be the negation of the value
returned by the inserted subtree. We will use a - to denote the semantics in this case.
([10] provides several examples in more detail.) Thus while the interactions between
contexts and subtrees can be quite complex, in the case of Boolean functions there are
only four options for a context on a specific set of inputs: the fixed semantics (0 and 1),
the “unchanged semantics” (+), and the “negation semantics” (-).

A key difference between subtree semantics and context semantics is which compo-
nents need to be taken into consideration when computing the semantics. The semantics
of a subtree are solely a function of the operator and the value of its arguments; they
are completely independent of where that subtree might be located. For context seman-
tics, the case is slightly more complex. While we associate the semantics with the edge
above the insertion point, they are still a function of the entire tree around that point. In
particular they depend on three things (see Fig. 3):

– The operator g immediately above the insertion point.
– The semantics of the context obtained by removing the subtree rooted at g (the

“Parent semantics” in Figure 3).
– The subtree semantics of the other argument (x) of the operator g (the “Arg seman-

tics” in Figure 3).

The one exception is when the insertion point (#) is in fact the root of the context, in
which case there is no parent node. In this case the context semantics are simply defined
to be + since the value returned by the tree is going to be the value of the inserted subtree.

Table 2 lists the cases for the Boolean functions used in this work: and, or, nand, and
nor. In the last line of Table 2, for example, if the parent semantics of a nand node is -,
and the argument semantics of the sibling is 1, then the context semantics is +.
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g
Arg

semantics

Parent
semantics

#x

Fig. 3. Illustration of the interaction of the different components in computing the context se-
mantics. Here we have a tree with some subtree removed (the insertion point, indicated by the #
in the lower right). g is the parent node of the insertion point, and x represents the other argument
of g (i.e., the sibling subtree of the insertion point). Note that x is not necessarily a leaf but can
represent an arbitrarily complex node. The semantics of this context is then a function of the spe-
cific operator g, the semantics of the context obtained by removing the subtree rooted at g, and
the subtree semantics of x.

Notationally it is convenient to associate context semantics with the edge extending
down to the insertion point (i.e., the # symbol), as this allows us to indicate the semantics
of all the possible contexts in a tree on a single diagram as is done in Figure 2. It’s
important to realize, however, that even though they are attached to a specific edge,
these semantics describe the entire context, i.e., the entire tree minus the subtree below
the edge in question.

4 Empirical Results

To see how subtree crossover affects the distribution of both context and subtree seman-
tics, we did multiple runs on five different problems: Even Parity problems with 2, 3, 4,
and 6 bits (2-EP, 3-EP, 4-EP, and 6-EP), the 6-bit multiplexer (6-MUX) problem, and
flat fitness on four bits (4-Flat).

4.1 Parameters and Data Collected

For each problem we did 38 independent runs using the parameters listed in Table 3.
Since we weren’t particularly interested in maximizing our chances of solving the prob-
lems, no effort was made to tune our parameter choices.

For each test problem except the flat fitness case (4-Flat) the fitness was the number
of test cases handled correctly, with higher values being better. For 4-Flat the fitness
was constant for all individuals, so there was no selection bias in those runs.

Along with traditional data such as fitnesses and tree sizes, we also tracked two kinds
of data specific to building block semantics:
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Table 2. The context semantics for and, or, nand, and nor. These functions are all symmetric, so
we only show the context with the # as the second argument. See the text for further details.

Parent Arg
semantics semantics (x) (and x #) (or x #) (nand x #) (nor x #)

0 0 0 0 0 0
0 1 0 0 0 0
1 0 1 1 1 1
1 1 1 1 1 1
+ 0 0 + 1 -
+ 1 + 1 - 0
- 0 1 - 0 +
- 1 - 0 + 1

Table 3. Parameters used in our runs. The crossover probability of 1 means that subtree crossover
was the only recombination operator used in these runs, i.e., there was no mutation and no repro-
duction.

Parameter Value
Function set Binary AND, OR, NAND, and NOR
Terminal set x0,x1, . . . ,xn−1, where n is the number of variables (or bits) in

the problem.
Control strategy Generational
Population size 1000
Initialization PTC2 [7], with equal proportions of sizes 50, 70, and 100 nodes

and maximum initial depth of 10
# of generations 500
Tournament size 2
XO Probability 1
XO bias away from leaves None (all nodes are equally likely)
Maximum size after XO 500 (If the resulting child is too large, then new parents are

chosen independently and process begins again.)

Proportion of fixed contexts. The percentage of contexts (over all contexts in every
individual in the population) that are completely fixed, i.e., all the positions are
either a 0 or 1. This means that any crossover using this context is going to be
a semantic no-op, yielding an offspring with the same semantics as the context
regardless of the subtree inserted. High proportions of fixed contexts suggest that a
run has essentially stalled, with very little effective search going on anymore. Note
that this is not necessarily a bad thing – if the run has found the target, for example,
then fixing strongly is not necessarily problematic. However, if the target has yet to
be found then a large proportion of fixed contexts is probably undesirable.

Proportion of compatible contexts. The percentage of contexts (over all contexts in
every individual in the population) that are compatible with the target context. A
compatible context is a context that has the possibility of producing a target so-
lution in one step, meaning that any fixed values in the context must match the
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Fig. 4. Boxplots of the percentage of compatible contexts for the first 240 generations across the
38 runs for all five problems. The median and two middle quartiles are plotted. Note the log scale
on the y-axis.

corresponding values in the target. (A fully fixed context that will always produce
a target solution is also considered a compatible context.) If a context is incom-
patible, it is guaranteed to not produce a solution if it is used in a crossover event.
Therefore low proportions of compatible contexts suggest that a run is unlikely to
succeed, at least in the near term.

4.2 Results

Not surprisingly, the 2-EP and 3-EP problems were quite easy and had 100% success
rates. The 4-EP runs found a solution 20 out of 38 times; two of these 20 runs, however,
later lost their successful solution (we weren’t using any form of elitism) and ultimately
converged on functions with fitness 15. None of the 6-EP runs solved the problem,
while all of the 6-MUX were successful, supporting the idea that 6-MUX is generally
much easier to solve than 6-EP with this function set. We weren’t particularly interested
in the success of the runs, but the relative difficulty of these problems (as demonstrated
by these success rates) is clearly reflected in many of the results below.

Compatible Contexts. Figure 4 plots the proportion of compatible contexts for all five
non-flat problems (Flat fitness is not included here because it does not make sense to
talk about compatible contexts when there is no target to be compatible with.) The pro-
portion of compatible contexts for the relatively easy 2-EP and 3-EP problems quickly
jumps to nearly 1 as solutions are found, and subsequent bloat leads to large trees with
many (correctly) fixed contexts. 6-MUX, which also has a very high success rate, shows
a similar behavior, although it takes a little longer for it to find a solution so the propor-
tion of compatible contexts does not rise as soon.

The proportion of compatible contexts for most 6-EP runs quickly drops to ef-
fectively zero, indicating that those runs have converged on local optima that are
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Fig. 5. Median proportion of contexts that are fixed vs. generation for all six test environments.
Note the y-axis doesn’t continue all the way down to 0. Also, the 3-EP and 6-MUX plots almost
completely overlap for the second half of the plots.

inconsistent in a significant way with the target. This suggests that those runs are very
unlikely to ever find a solution, as it would presumably take a significant jump to move
from the peak they’ve converged on to the target peak. What’s not indicated in the plot
(because the whiskers and outliers are suppressed) is that there are handful of runs (4
of 38) with considerably higher proportions of compatible contexts. The proportions in
these runs are around 0.01, putting them in the lower range of the plotted data for the
4-EP runs. None of the 6-EP runs succeed in finding a solution in the 500 generations
we used, but it seems plausible that this small group of runs would be the most likely to
eventually find a solution if given more time.

The higher persistent variance in the percentages for the 4-EP runs presumably re-
flects the fact that several of the runs have succeeded, while others remain stuck at local
optima. The fact that many of the (so far) unsuccessful 4-EP runs have percentages
of compatible contexts that are well above zero (around 0.01) suggests, however, that
those runs may still have some chance of eventually jumping to the solution.

The percentage of compatible contexts provides an upper bound on the probability
of constructing a target solution via sub-tree crossover (since doing so will require both
a compatible context and an appropriate subtree). Our empirical data shows, at least for
these test conditions, that the probability of constructing a target is in fact almost equal
to the percentage of compatible contexts. (See [11] for more.)

Proportion of Fixed Contexts. Figure 5 shows the median proportion (over the 38
runs) of contexts that are completely fixed for each of our six test environments. Re-
member that a completely fixed context is one where the return value in all cases is
completely determined and will be unaffected by the details of the particular subtree in-
serted into the context. Thus a crossover using a completely fixed context is guaranteed
to generate an offspring with the same semantics as the root (or context) parent, and no
semantic exploration will have occurred.
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It is worrying, then, that in each of the six cases, the proportion of fixed contexts
in the population exceeded 60% at all times, and was typically greater than 75%. This
means that a great majority of all crossover events are (at least in the short term) useless,
as they don’t explore any new semantic space.2 The harder problems (4-EP and 6-EP)
had the lowest percentage of fixed contexts, but even in these problems well over half
of all crossovers were guaranteed to be explore no new semantic space.

All the problems except 4-Flat show a small drop in the proportion of fixed contexts
in the first few generations, with the proportion of fixed contexts then climbing again
from around generation 10 to around generation 30; we suspect the dip is connected to
the early reshuffling often seen in GP runs. After 200 generations the median proportion
of fixed contexts become fairly flat in all problems, except 4-Flat where there appears
to be a certain amount of drift. As was true with the proportion of compatible contexts,
the percentage of fixed contexts also “sorts” the problems according to difficulty. The
percentages of fixed contexts at generation 500 are in fact pairwise different at the 5%
confidence level (using the pairwise Wilcoxon test) except for 4-Flat vs. 4-EP, and 3-EP
vs. 6-MUX.

Figure 5 also shows that the proportion of fixed contexts in the initial generations are
driven (for these problems) by the number of inputs. 4-EP and 4-Flat for example, both
start at the same proportion, but diverge almost immediately, with 4-Flat’s proportion
of fixed contexts growing gently instead of dipping initially as is the case with 4-EP.
Similarly 6-EP and 6-MUX start out similarly for a few generations, and then diverge
as the 6-MUX runs begin to gain traction on the problem while the 6-EP runs continue
to flounder.

5 Discussion

Approximation and Extension to Non-Boolean Domains. As mentioned in Sec-
tion 3, these techniques can currently only be used on Boolean problems, and even for
Boolean problems they scale badly with the number of variables. Of the new measures
mentioned above (proportions of compatible contexts and proportion of fixed contexts),
the proportion of fixed contexts is probably the easiest to generalize to problems with
more variables and non-Boolean domains. Given that the proportion of fixed contexts
appears to have potential as an indicator of problem difficulty (see Figure 5), being able
to estimate it should have value.

One could estimate the proportion of fixed contexts on larger Boolean problems, for
example, by randomly sampling contexts (perhaps as part of the existing crossover pro-
cess), and checking to see if they’re fixed. One could, for example, insert each of the 22N

different subtree semantics at the crossover point in the context to see if any changed the
semantic value of the context. It is sufficient, however, to only check any two comple-
mentary subtree semantics (e.g., the constants true and false). If the (Boolean) context
is in fact not completely fixed, then it must contain at least one ’+’ or ’-’, which means
it will have different values for at least one set of inputs when complementary subtree

2 It is possible that such a crossover creates new syntactic structure that, when sampled in later
generations, will lead to an important discovery. Given the lack of any immediate semantic
effect, however, such benefit is quite random and unguided by the fitness function.
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semantics are inserted. One would still need to check all 2N possible inputs to know for
certain if the context is fixed, but for large N one could further approximate by sampling
the set of possible inputs.

For non-Boolean domains the problem becomes more complex, especially in contin-
uous domains like symbolic regression over the reals. With real-valued functions, for
example, there is potentially a whole spectrum of fixation. A completely fixed context
might (as in the Boolean case) be completely independent of the inserted subtree, while
a “nearly fixed” context might change, but only by very small amounts. There’s also
no simple analogy to the complementary subtree semantics (such as true and false) to
simplify the sampling of the subtree semantics. Still, it seems likely that sampling a few
constant values at the insertion point across several sets of input values would provide
a useful approximation of the “fixedness” of a context, even in a real-valued problem.

Designing New Operators and Representations. In many ways the high proportion
of fixed contexts (Figure 5) is quite disheartening, as it suggests that the majority of
crossover events are exploring no new semantic space. We could, therefore, use these
results to guide the design of new recombination operators that would deliberately work
to reduce the proportion of fixed contexts, hopefully increasing the exploratory power
of our system.

Experiments, for example, with a crossover operator that avoids choosing approxi-
mately fixed contexts (essentially the same as the approach taken in [2]) don’t appear to
improve the likelihood of finding solutions and can significantly slow down the evalua-
tion of individuals. It does, however, provide a very effective bloat control mechanism,
and it’s possible that modifications of this idea, or combinations with other operators,
could improve performance.

We could see the data reported here as the result of a co-evolutionary system where
there is a serious problem of disengagement [3], where one population (the contexts)
“beats” the other (the subtrees). In this case the population of contexts reaches such
a high proportion of fixedness that the subtrees are essentially frozen out of the pro-
cess. The restricted crossover operator defined above, then, could be seen as a means of
combating disengagement by increasing the chances that a context distinguishes among
subtrees instead of simply dominating them [3]. One could extend this observation to
build an explicit co-evolutionary model of subtree crossover in GP. Obviously in stan-
dard GP the “population” of contexts and the “population” of subtrees are linked on
several levels (any particular node is a component of numerous contexts and numerous
subtrees at the same time), but given the apparent dominance of contexts in determin-
ing the likelihood of success, detaching the two might in fact prove helpful rather than
problematic.

Alternatively, one could see our distributions of context and subtree semantics as the
basis for a co-evolutionary estimation of distribution (EDA) algorithm [6].

6 Conclusions

In this paper we have presented a novel means of exactly and compactly describing
(for Boolean problems) the semantics of the two tree components combined by subtree
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crossover: the context (the root parent with a subtree removed) and the subtree being
inserted into that context. This allows us to completely describe the semantic action
of subtree crossover, and enumerate in a syntax independent fashion the occurrence of
different context and subtree semantics in a population. The resulting data strongly sug-
gest that the distribution of context semantics are key in the success (or failure) of runs.
The proportion of fixed contexts in these problems is very high (typically over 75%),
indicating that the substantial majority of subtree crossover events actually perform no
search in the semantic space.

As well as shedding valuable new light on the impact of subtree crossover, these tools
and results suggest a number of ideas for new operations and approaches to genetic
programming that would be based on theoretical and empirical understanding rather
than simple guesswork.
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Abstract. This paper demonstrates the ability of Hereditary Repulsion
to perform well on a range of diverse problem domains. Furthermore, we
show that HR is practically invulnerable to the effects to overfitting and
does not suffer a loss of generalisation, even in the late stages of evolu-
tion. We trace the source of this high quality performance to a pleasingly
simple constraint at the heart of the HR algorithm. We confirm its ef-
fectiveness by incorporating the constraint into one of the benchmark
systems, observing substantial improvements in the quality of generali-
sation in the evolved population.

1 Introduction

This paper demonstrates the striking effectiveness of an elegantly simple con-
straint at the heart of the Hereditary Repulsion algorithm. Hereditary Repul-
sion [10] is a convergence manipulation algorithm, which has been shown to
dramatically improve the performance of GP on a difficult regression problem
by improving the probability that genetic content of the population will be used
to its fullest potential.

The convergence dynamics of an evolutionary algorithm are highly influential
in affecting the quality of the evolved population. The effectiveness of these
dynamics is highly inconsistent. This inconsistency is addressed by running the
same problem dozens, if not hundreds of times, to derive statistical confidence
in an assertion of the systems performance.

The cause of this variance lies in the stochastic component of the algorithm,
which can sometimes promote sub-optimal solutions to a state of dominance in
the population. As the sub-optimal genetic content is propagated throughout
the population, relatively unfit but potentially useful genetic content is lost.
This loss of genetic material eliminates the scope available to the algorithm for
evaluating alternative solutions, thus resulting in evolutionary gridlock.

Even under circumstances wherein the dynamics of convergence are sustained
by favourable random behaviour, there is a chance that the process of adaptation
may become so acutely attuned to the irrelevant peculiarities of the training set
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that the system loses generality, thus rendering it obsolete for the target appli-
cation. Overfitting is particularly likely to occur in the later stages of evolution,
when the algorithm has exhausted the most probable trajectories to higher fit-
ness and must explore the possible improvements afforded by esoteric adapta-
tions to the training signal.

These two phenomenon are known as premature convergence and overfitting
respectively. Practitioners have attempted to address these principle pitfalls of
GP by manipulating the dynamics of convergence in the algorithm. By improving
the quality of convergence, the consistency of the algorithm to achieve its full
potential is improved while the tendency of the algorithm to explore counter
productive adaptations is inhibited.

The structure of the paper is as follows: A review of previous convergence
manipulation techniques is given in Section 2 with a detailed description of
Hereditary Repulsion provided in Section 3. An overview of the experimental
setup is found in Section 4 followed by the three experiments of the paper. The
first experiment, which demonstrates the strength of HR in contrast to a suite of
benchmark systems is given in Section 5. The second experiment, in Section 6,
evaluates the contribution of the repulsion tournament to the performance of
GP. Section 7 confirms the results of Section 6 by incorporating the fitness
constraint of HR into a steady state algorithm, resulting in drastically improved
performance. Section 8 discusses the significance of the results along with future
research directions.

2 Background

Manipulating convergence so as to improve the quality of evolution is a consis-
tent theme of research in evolutionary algorithms. One of the first approaches
to this problem was to inhibit dense concentrations of homogeneous solutions
by forcing similar solutions to share their fitness [5]. Fitness sharing techniques
thus attempt to emulate observations of natural biological systems wherein phe-
notypes exhibit niche specialisation. Many variants of this strategy have been
pursued such as sequential niching, [2], speciation with implicit fitness sharing
and co-evolution, [3] and a niching method [11] known as clearing.

While effective at encouraging the occupation of multiple local optimum, fit-
ness sharing methods suffer from the need to set a priori parameters such as
the similarity measure needed to define a minimum distance between optima.
Such measures are hard to define and may need to change in the later stages
of evolution, [11]. Hierarchal Fair Competition Model [7] has also demonstrated
Using fitness as the primary segregation measure.

A highly effective convergence manipulation algorithm known as ALPs uses
the concept of age to inhibit premature convergence [6]. The method uses age
“bands” to define the population pools the individuals of the population may
occupy. New individuals are continually introduced so as to maintain exploration.
Normal evolutionary dynamics are present within the age “bands”.
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Finally, spatial segregation has been employed to prevent the spread of a
single dominant individual. In this model, multiple initial populations are allowed
to evolve, the idea being that each population will develop towards different
optima. After a pre-specified number of evolutionary cycles, the “islands” [8] are
allowed to intercommunicate. By such communication, the models are producing
a number of beneficial effects.

Primarily, the homogenisation of each island is delayed with the introduction
of such new material, with beneficial consequences for the ultimate convergence
of the entire population of islands. Also, separate aspects of the final solution may
be present in different islands, by communication these sub solutions are allowed
to coexist and intermingle. The incompatibility of highly evolved solutions of the
same domain but from different evolutionary runs is a well known phenomenon,
an inter island communication protocol avoids this by maintaining coherence
between the islands.

Simulated annealing [1] employs controlled randomness to reinvigorate the
evolutionary search which also has a beneficial effect on the convergence
dynamics.

3 Hereditary Repulsion

Hereditary Repulsion is a convergence manipulation protocol which can signif-
icantly improve the performance consistency of an evolutionary algorithm. HR
was born out of the observation that the individuals in the later stages of evo-
lution are descended from only a few individuals in the initial population [9].

This state, wherein the population is saturated with the progeny of a few
dominant individuals, typically characterises premature convergence. As a pre-
emptive measure against this eventuality, HR employs a “repulsion tournament”
which inhibits crossover events between individuals with a similar hereditary his-
tory.

The algorithm begins by selecting an individual at random. This individual is
used as the reference for the repulsion algorithm. A tournament pool of size N
is then filled with random individuals. The shared hereditary history between
the individuals in the pool and the reference individual is measured. The pool
individual with the smallest hereditary overlap is selected to be crossed over
with the reference individual. Figure 1 provides an example of how the overlap
is calculated between two individuals. A HR tournament of size 1 is the same
as random selection. This is because the reference individual is chosen randomly
initially and since there is only 1 individual in the tournament who is also chosen
randomly. The selection process is consequently equivalent to random selection,
as the repulsion process has no other candidates against which to consider hered-
itary similarity.

Given that the repulsion tournament algorithm will place pressure on the
dynamics to explore diverse representations, there is a possibility that the quality
of the population will degrade as it explores the expression space. To protect the
algorithm from the potential deleterious effects of intense exploratory dynamics,
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a constraint was incorporated which mandated that an individual must be better
than both its parents before it can be considered for insertion into the next
generation.

It is notoriously difficult to accurately determine the effective diversity of a
population due to well known incongruities between the semantic and syntac-
tic content of a population. In Boolean problem domains, such as the Parity
problem, one may map the binary sequence (of outputs from the set of standard
inputs) associated with each solution to an integer and very accurately deter-
mine the phenotypic diversity of the population. Figure 2 contrasts the loss of
phenotypic diversity between a HR system and a standard GP algorithm. These
results are discussed in more detail in [10].

It is clear from Figure 2 that HR is extremely effective at sustaining diversity
in the population. Significantly, HR does this without any explicit analysis of
the population’s content, in contrast to other techniques such as edit distance
algorithms [4]. This facility broadens the applicability of HR to a wide range of
evolutionary computation contexts.

Finally, due to the nature of the algorithm, HR will have a variable number of
evaluations per generation. This is caused by the many rejected crossover events
for each successful one. For this reason, the HR algorithm is provided with an
upper limit to how many evaluations it may make during a run. For the sake of
comparison, this upper limit is set equal to the total number of evaluations in a
corresponding standard GP run.

Fig. 1. Illustration of Common Hereditary History between 2 Individuals in a Gener-
ation System. In this example, individuals A and B share 9 common ancestors.

4 Experimental Overview

This section describes the experimental design used in deriving the results in this
paper. The results in this paper demonstrate that the fitness constraint in HR
consistently outperforms standard approaches with respect to both training and
testing performance. Furthermore, we show that by incorporating this constraint
into a standard steady state algorithm, a minor programmatical modification,
one can expect similar performance increases. Such a claim requires extensive
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experimental evidence, and for this reason we demonstrate our results in a diverse
range of problem domains including 3 classification problems and 3 regression
problems. The parameters and primitives used for each setup are discussed in
the following sections.

We employ a steady state and generational algorithm as benchmarks against
which the performance of our algorithms are compared. For all experiments
and all systems a population size of 100 was used and a tournament size of 2.
The initial population of expressions was created using ramped half and half
initialisation with a minimum initial depth of 2 and a maximum initial depth of
4. The generational system employed 2 elites to stabilise evolution. No mutation
was used. All results shown are the average behaviour of 30 independent runs.

Due to space constraints, only testing results are shown, except for the Parity
problem. The Parity problem is from the Boolean domain and thus has an finite
set of inputs cases which can be enumerated in training, so the notion of testing
performance is not relevant in this case. It must also be noted that testing
performance is a better measure of system quality as it reflects generalisation,
or learning the “true” distribution. This measure may decrease even when the
system appears to be improving on the training data.

4.1 Binary Classification

Binary classification GP takes a set of input values and classifies the instance as
being a positive or negative. The domains used were concerned with medical clas-
sification problems. These were the BUPA Liver Disorder problem, the Wiscon-
sin Prognostic Breast Cancer problem and the Pima Indians Diabetes problem.
These were all sourced from the UCI Machine Learning Database Repository.

A small number of incomplete records were discarded and the data sets were
split into training and testing respectively. All input values were normalised by
the associated maximum value for each column of input data. An output greater
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than 0.5 was taken to be a positive result and an output less than 0.5 was taken
to be a negative result.

The primitives used were {*,%,+,-}. Any divide by zero exception signalled
the algorithm with an NAN result. Any such expressions were discarded by the
algorithm. Evolution was executed for 500 generations or 50000 evaluations. The
maximum tree depth was set to 8. Fitness measure was derived from the Root
Mean of Squared Error (RMSE) : 1/(1 + RMSE).

4.2 Real Valued Regression

Real valued regression symbolically regresses functions in the real domain. The
domains used were the Quartic Polynomial and the Rastrigin functions. The
Rastrigin equation is a function of 2 variables, x and y. The range for both
variables is [−5.12, 5.12]. The function is defined as : f(x, y) = 20 + x2 + y2 −
10 ∗ (cos2πx + cos2πy). The quartic polynomial is a function of 1 variable, x, in
the range [−1.0, 1.0]. It is defined as f(x) = x8 +x7 +x6 +x5 +x4 +x3 +x2 +x.
Both problems used 20 randomly sampled points for training and testing.

The primitives used were {*,%,+,- cos,sin}. Any divide by zero exception sig-
nalled the algorithm with an NAN result. Any such expressions were discarded
by the algorithm. Evolution was executed for 500 generations or 50000 evalua-
tions. The maximum tree depth was set to 8. Fitness measure was derived from
the RMSE : 1/(1 + RMSE).

4.3 Odd 5 Parity

The Odd Parity problem takes a sequence of input bits and returns a 1 if the
number of active bits is odd, a 0 otherwise. The number of input bits used was
5. This amounted to 25, 32 training cases.

The primitives used were {AND, OR, NOR, NAND}. This problem domain is
notoriously difficult without the XOR or EQUAL functions, thus evolution was
allowed to continue for 5000 generations or 500000 evaluations. The maximum
tree depth was set to 16. Both the tree depth and period of evolution is much
higher in the experiment as the problem domain is much more difficult. Fitness
measure was the number of correct outputs (max 32).

5 Experiment 1: Validation of Method

This section presents the results of the experiments whose purpose was to vali-
date the applicability of HR to a wide range of problem domains. The medical
classification experiments, shown in Figures 3, 4 and 5 demonstrate HRs ability
to resist overtraining and continuously improve the quality of the population
well into the late stages of evolution. This is in stark contrast to the benchmark
systems which despite being initialised with the same settings quickly degrade
their ability to generalise.
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This behaviour is similar in the Rastrigin experiment on Figure 7 and the Poly-
nomial experiment on Figure 6. A notable observation is that the generational GP
system does quite well on the Polynomial experiment, however this is an exception
across all the other problem domains. The Boolean regression results, in Figure 8
demonstrate the effectiveness of HR on the difficult Parity problem.

6 Experiment 2: Analysis

This experiment was designed to determine the contribution the repulsion al-
gorithm makes to the performance of HR under normal circumstances. Results
in [10] indicated that the repulsion algorithm was useful in extreme circum-
stances, such as when the population was very small.

The experiments used tournament sizes ranging from 1 to 5. A tournament
size of 1 is equivalent to random selection, thus completely eliminating the effect
of repulsion on the selection dynamics.

The results for all the problem domains, shown in Figures 9, 10, 11, 12, 13
and 14 do not indicate a clear difference between the different strategies. There
are minor differences in some experiments, such as the slight degradation of the
random selection HR system in the Rastrigin problem on Figure 13. Notably,
these differences are not consistent across the problem domains and the differ-
ences between the approaches is minor.

This confirms earlier indications in [10] that the effect of the repulsion algo-
rithm has a little bearing under circumstances where the population is relatively
large. The main contribution to the increased performance is therefore the core
constraint of HR. If this is truly the case, one would expect similar performance
increases simply by including this constraint into the benchmark systems.

7 Experiment 3: Constraint Evaluation

This experiment demonstrates the immediate and tangible performance increases
that can be expected simply by modifying an existing evolutionary algorithm
to include the elementary constraint used by HR. To this end, we modified the
benchmark steady state system with this constraint and evaluated its perfor-
mance across the problem domains.

The change was completed by modifying a single line of code in the steady
state system. Put simply; in our steady state system, if a child was to get into the
population it had to be better than at least one of its parents. Our modification
was that the child had to be better than both its parents. The steady state system
used here also used random selection, rather than tournament or roulette wheel
selection schemes. These were found to have a negative effect on performance.

The results for all the problem domains, shown in Figures 15, 16, 17, 18, 19
and 20 are a convincing demonstration of the effectiveness of the HR constraint.

While the constrained steady state GP system is more susceptible to the
negative effects of highly evolved populations, such as overfitting, it dramatically
outperforms the steady state benchmark system it was derived from on a range
of diverse problem domains.
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8 Discussion and Future Work

Hereditary Repulsion is a convergence manipulation protocol which can dras-
tically improve the quality of evolution even under circumstances of extremely
small populations. We have validated the ability of HR to improve evolution and
significantly, resist the loss of generalisation associated with highly converged so-
lutions.

Furthermore, we have shown how the essential simple constraint at the heart of
the HR algorithm can be effortlessly incorporated into existing algorithms with
immediate tangible improvements in the quality of the evolutionary process.
Lacking the analytical tools required to prove the effectiveness of this approach,
we have empirically demonstrated the power of this constraint in 6 different
problem domains.

Why does the HR constraint result in such a dramatic improvement?. The
original motivation behind the HR work was to eliminate the phenomenon of
premature convergence. This is particularly likely when suboptimal solutions
replace potentially useful but relatively unfit genetic material. By forcing the
algorithm to improve against both its parents, the system has no choice but to
progress through recombination events which combine genuinely useful aspects
of both parents. This prevents the propagation of a single high quality individual
while ensuring that useful content from both parents is propagated.

Future work will focus on methods to improve the efficiency of evolution. This
may entail techniques to prevent repeated crossover events as well as extrapo-
lation of potentially fruitful crossover sites. Another research focus will be the
development of different convergence methodologies. Currently steady state and
generational methods have strengths and weaknesses that are unique to each ap-
proach. Steady state preserves high quality solutions but suffers from overfitting
while generational techniques are highly resistant to overfitting but suffer from
the potential loss of high quality solutions over time. Perhaps by incorporating
aspects of both algorithms, it may be possible to reap their combined benefits.
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Abstract. Recent research [9,2] has enabled the accurate prediction of the lim-
iting distribution of tree sizes for Genetic Programming with standard sub-tree
swapping crossover when GP is applied to a flat fitness landscape. In that work,
however, tree sizes are measured in terms of number of internal nodes. While
the relationship between internal nodes and length is one-to-one for the case of
a-ary trees, it is much more complex in the case of mixed arities. So, practically
the length bias of subtree crossover remains unknown. This paper starts to fill
this theoretical gap, by providing accurate estimates of the limiting distribution
of lengths approached by tree-based GP with standard crossover in the absence
of selection pressure. The resulting models confirm that short programs can be
expected to be heavily resampled. Empirical validation shows that this is indeed
the case. We also study empirically how the situation is modified by the applica-
tion of program length limits. Surprisingly, the introduction of such limits further
exacerbates the effect. However, this has more profound consequences than one
might imagine at first. We analyse these consequences and predict that, in the
presence of fitness, size limits may initially speed up bloat, almost completely
defeating their original purpose (combating bloat). Indeed, experiments confirm
that this is the case for the first 10 or 15 generations. This leads us to suggest a
better way of using size limits. Finally, this paper proposes a novel technique to
counteract bloat, sampling parsimony, the application of a penalty to resampling.

Keywords: Genetic Programming, Theory, Crossover, Search, Sampling, Bloat,
Program Length.

1 Introduction

With the advent of a greater understanding of program search spaces—for example
we now know that the functionality of programs reaches a limit as program length
increases [6,4,5]—acquiring knowledge on how GP operators sample program length
classes has become more and more urgent. Ideally, we would like to sample the length
class where the smallest optimal programs can be found. Unfortunately, in general:
a) one does not know where solutions (let alone most compact ones) are, and, b) ge-
netic operators present specific length biases which are often unknown or only partially
known and, therefore, are difficult to direct and control. In any case, a characterisation
of operator bias is needed in understanding how GP will sample the search space in the
first instance before technically sound problem specific modifications can be made.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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GP, of course, applies a number of competing operators that like to sample the search
space in different ways. In this paper we look at the application of standard crossover
with uniform selection of crossover points, an operator for which recent research [9,2]
has enabled the accurate prediction of the limiting distribution in the absence of selec-
tion, i.e., when GP is applied to a flat fitness landscape. In that work, however, tree sizes
are measured in terms of number of internal nodes, which is not what GP users normally
want and use. While the relationship between internal nodes and length is one-to-one
for the case of a-ary trees, it is much more complex in the case of mixed arities. So,
practically the length bias of subtree crossover remains unknown.

This paper starts filling this theoretical gap, by extending previous research [9,2]
to include terminals as well as internal nodes in our program length distribution (Sec-
tion 2). This shows that crossover will sample increasingly more smaller programs as
the distribution converges. As smaller programs are less numerous than larger ones a
large amount of resampling takes place. Empirical evidence gathered using two standard
GP benchmark problems confirms this bias (Section 3). Although, selection is likely to
initially work against the biases of crossover, as fitness converges, either during the
later stages of a GP run or if an area of neutrality is reached, this bias will become
more acute. In Section 4 we also study empirically how the situation is modified by
the application of program length limits. Unexpectedly, the changes to the sampling
biases introduced by such limits, further exacerbate bloat in early generations, thereby
reducing the efficacy of size limits as mechanisms for bloat control.

In [2] a theory was put forward, the Crossover Bias bloat theory, which postulates
that the main reason for bloat is precisely the oversampling of short programs produced
by subtree crossover. Our findings confirm this tendency with and without length limits.
So, in Section 5 we propose a novel technique to indirectly counteract bloat, sampling
parsimony, which is effectively the application of a penalty for resampling. We study
its behaviour with and without fitness. In both cases, we show that applying even slight
resampling penalties, program growth can significantly be sped up or slowed down de-
pending on the application of the penalty. Applying a ‘resampled’ penalty to programs
confirms the crossover bias bloat theory of [2]. Applying a newly sampled program
penalty, provides a natural way of acting on the very roots of bloat: the sampling and
re-sampling of short programs.

We draw our conclusions in Section 6.

2 Program Length Distributions in GP

2.1 Internal Node Distributions

In [9] strong theoretical and experimental evidence was provided that standard sub-tree
swapping crossover with uniform selection of crossover points pushes a population of
a-ary GP trees towards a limiting distribution of tree sizes of the form:

Pr{n} = (1 − apa)
(

an + 1
n

)
(1 − pa)(a−1)n+1pn

a (1)

This is known as a Lagrange distribution of the second kind. Pr{n} is the probability of
selecting a tree with n internal nodes and a is the arity of functions that can be used in
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the creation an individual. The parameter pa was shown to be related to µ0, the mean
program size at generation 0, and a according to the formula:

pa =
2µ0 +(a − 1)−

√
((1 − a)− 2µ0)2 + 4(1 − µ2

0)

2a(1 + µ0)
(2)

Equation (1) was generalised using the Gamma function: Γ(n+1) = n! in [2] to enable
mixed arity tree internal node distributions to be predicted:

Prg{n} = (1 − āpā)
Γ(ān + 2)

Γ((ā− 1)n + 2)Γ(n + 1)
(1 − pā)(ā−1)n+1pn

ā (3)

ā being an averaged arity of the primitive set. This can be calculated for mixed function
arities from experimental initialisation parameters as follows:

ā = E(arity(F)) = ∑
f

arity( f )P(F = f ) (4)

where f is a non-terminal to be used in the GP experiment, arity( f ) is a function re-
turning the arity of the non-terminal f , and P(F = f ) is the probability that a particular
non-terminal f will be selected for a non-terminal node by the tree initialisation proce-
dure. For traditional FULL and GROW initialisation methods non-terminals are chosen
with equal probability [7].

2.2 Program Length Distributions

Our first step towards extending Equation (3) to allow us to predict program length
distributions with mixed arities, is to look at what we can say for certain regarding the
relationship between number of internal nodes and program length. First, we know for
a-ary trees where the arities of all nodes in the tree are the same, the length, �, of a
program can be expressed exactly in terms of the number of its internal nodes, n, using
the following equation

� = a × n + 1, (5)

where a is the (fixed) arity of the internal nodes. Therefore, rearranging Equation (5) to
obtain internal nodes in terms of length, i.e.,

n =
�− 1

a
, (6)

and substituting this into Equation (1), we obtain that, for a-ary trees,

Prl{�} =

{
Pr{ �−1

a } if � is a valid length (i.e., �−1
a is a non-negative integer),

0 otherwise,
(7)

where Prl{�} is the limiting distribution of program lengths. This distribution applies,
for example, for Boolean function induction problems where often all functions are
binary and symbolic regression problems where often only the standard four arithmetic
operations are used.
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Fig. 1. Comparison between theoretical and empirical program length distributions for 2-ary trees
initialised with FULL method (depth=3, initial mean size µ0 = 15.0, mean size after 500 genera-
tions µ500 = 14.49). Invalid even lengths are ignored.

Figure 1 shows an observed plotted length distribution for 2-ary trees, with invalid
(even) lengths removed, compared to that predicted by Prl . The observed values are
averages over twenty independent runs with populations of 100,000 individuals run for
500 generations.1 As we can see there is a very close fit between the two curves.

Our next step is to extend the generalised formula for mixed-arity trees (Equation (3))
so as to predict length distributions rather than internal node distributions. We know that
for a program length of 1, a single terminal, there will always be 0 internal nodes. There-
fore, the predicting single node programs is a simple one-to-one mapping with the gener-
alised formula for 0 internal nodes. However, other lengths can be obtained by different
combinations of internal nodes of different arities. For example, one can obtain programs
of length 3 by using one internal node of arity 2 or two internal nodes of arity 1.

As a first approximation, we will assume that we can still estimate the expected
number of internal nodes in a tree of length � by applying Equation (6), simply using ā
instead of a. We can then substitute the result into Equation (3) to obtain the distribution
of lengths we are looking for. Naturally, between the variable � and the variable n there
is a difference in scale (the factor ā). So, we will need to normalise the values produced
by Equation (3) to ensure the new distribution sums to 1.

Putting all of this together, we obtain an approximate model of the limiting distribu-
tion of program lengths in the case of primitive sets of mixed arities. Namely:

Prv{�} =

{
Prg{0} if � = 1,
Prg{ �−1

ā }
ā if � is a valid length greater than 1.

(8)

Note, we do not require �−1
ā to be an integer.

Since there were approximations in the original derivation of Equation (3) in [2],
and we added further approximations in the derivation of Equation (8), one might won-
der whether the model is sufficiently accurate to be of practical use. Figure 2 shows

1 These and all other experimental parameters were chosen as in [2] for ease of comparison.
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observed and theoretical values of the limiting length distribution experiment set up for
internal nodes of arities of 1 and 2 where all lengths are valid, whilst Figure 3 compares
the theoretical and empirical distribution obtained in a GP run with the primitive set of
the Artificial Ant problem, which has internal nodes arities of 2, 2 and 3, for IF-FOOD-
AHEAD, PROGN2 and PROGN3, respectively. Note, with this choice there is no way
of generating programs of length � = 2. Finally, Figure 4 shows the results of using
arities of 1, 2, 3 and 4. Note that in order to highlight the fit for larger and less common
programs we used a log scale for frequency.

As one can see, the model in Equation (8) accurately models the distribution ob-
served in real runs in all cases, with only minor deviations at the very short program
lengths where some of the assumptions behind the model are less applicable.2 However,
generally both the theoretical model and the actual runs show that in almost all cases
crossover will sample with high frequency small programs. The effects of this bias are
investigated in the next section.
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Fig. 2. Comparison between theoretical and empirical program length distributions for trees cre-
ated with arity 1 and 2 functions initialised with FULL method (depth=3, initial mean size µ0 =
8.13, mean size after 500 generations µ500 = 8.51). All lengths are valid.

3 Sampling and Resampling

Our first step is to see how standard crossover will sample the search space on a flat
fitness landscape. Our primary purpose for doing this is simply to isolate the search bias
for crossover. It should be noted, however, that, while in the presence of fitness gradients
selection will counteract the crossover bias (this is analysed further in conjunction with
selection in Section 5), there are situations where the crossover bias may become the
prominent search bias. This may happen, for example when GP search reaches an area
of neutrality, e.g., when GP operators, during an experimental run, are unable to escape
areas of similar fitness.

2 Curing the slight mismatches for earlier lengths would require a more accurate estimation of
number of internal nodes of each arity for small �. We will investigate more precise models in
future work.
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In particular we are interested in finding out how much resampling goes on. This
gives us an idea of the efficiency or otherwise of the search. To empirically analyse
crossover sampling we took two out-of-the-box problems from the ECJ evolutionary
toolkit [8]: 4 Bit Even Parity and the Artificial Ant. As the Parity problem uses Boolean
operators only we know that, in the absence of selection, the limit program length dis-
tribution to be that of a 2-ary tree as shown in Figure 1, whilst, as previously discussed,
the Artificial Ant will follow a distribution similar to the one in Figure 3.

Adjustments were made to ECJ to remove mutation, ensure uniform selection of
crossover points, and to prevent a depth limit being applied. A population size of 1,000
individuals was used and the results for 200 generations were averaged over one hun-
dred independent runs. All experiments were initialised using the RAMPED method [3]
with a maximum depth of 6 and minimum depth of 2. A constant fitness value was re-
turned in all cases.
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Fig. 3. As in Figure 2 but for arities 2, 2 and 3 (µ0 = 32.12, µ500 = 33.22). Invalid length 2 is
ignored.
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Fig. 4. As in Figure 2 but for arities 1, 2, 3 and 4 (µ0 = 25.38, µ500 = 23.76). All lengths are valid.
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Fig. 5. Frequencies of new unique programs not sampled previously compared to all programs
generated at generation 200, for the Artificial Ant Problem applied to a flat fitness landscape
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Fig. 6. Ratio of new unique programs not sampled previously compared to programs generated at
generations 1, 20 and 200, for the Artificial Ant Problem applied to a flat fitness landscape

The total number of programs for each length was recorded at each generation along
with the number of programs for each length that had been sampled in a previous gen-
eration. Taking the artificial ant problem, as we can see in Figure 5, at generation 200
the number of new unique programs is extremely small compared to that of the total
for that generation. The majority of all programs sampled under these conditions are of
course in the smaller length classes.

As a ratio, new programs divided by total programs, plotted in Figure 6, it is clear
that newly sampled programs are being generated at the larger length classes and that
crossover is progressively resampling more and more programs.
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4 Effects of Size Limits

The standard technique to control bloat, namely the application of a depth or length
limit, is known to have significant effects on GP dynamics (see, for example, [1]). Un-
fortunately, we don’t have a mathematical model for the limit distribution of sizes (nei-
ther in terms of internal nodes nor in terms of lengths) in the presence of length limits.
However, we can conduct experimentation to study their effects on such a distribution.
Figure 7 shows the affect of applying length limits of 25, 50 and 100 to the Artifical
Ant problem. The effect of the length limit is that programs become more frequent in
the smaller length classes. This over-sampling exacerbates the wasteful resampling of
programs of smaller lengths.
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Fig. 7. Comparison of sampling frequencies associated with length limits for the Artificial Ant
Problem applied to a flat fitness landscape

In the presence of fitness, this effect can be counteracted but not cancelled by selec-
tion. So, one should expect more sampling and resampling of short programs. However,
following the line of reasoning of the crossover bias bloat theory [2], we know that for
most problems these programs cannot be solutions, and in fact are typically very unfit,
and, so, longer programs will be preferentially selected, leading to bloat. Thus, size lim-
its effectively increase the tendency to bloat since they induce more sampling of short
programs, and, so, in the presence of non-flat fitness landscapes, GP populations rush
towards the limit even more quickly than in the absence of the size limit! This effect
is particularly clear if one looks at the mode (the peak) of the program length distri-
bution with and without length limits. Figure 8 shows how the mode (averaged over
100 independent runs) changes generation by generation for different limits in the case
of the Parity problem (with selection). We can see that smaller size limits encourage
GP to sample larger programs in the early generations before the size limit is reached.
We found this effect because we looked into how the crossover sampling bias interacts
with size limits. The effect has never been noticed before, probably because it becomes
apparent only if one uses the right statistical tools: the mode of the size distribution
(which is almost never used in reporting GP results).
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Fig. 8. Comparison of modal (peak) classes associated with length limits for the 4 Bit Even Parity
Problem with selection
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Fig. 9. Comparison of average program size applying resampling limits to the 4 Bit Even Parity
Problem with a flat fitness landscape

These results suggest that, if size limits are imposed to combat bloat, then these
should not be applied from generation 1, but much later and on demand, for example, if
the average program size exceeds some pre-fixed threshold. This would avoid speeding
up program growth in the early generations of a run.

Naturally, virtually all methods to combat bloat give more selective preference to
shorter program than to longer ones. If in so doing they cause an oversampling of the
short programs w.r.t. the base case (i.e., in the absence of the anti-bloat method)—
which many do—then we should expect this phenomenon to still take place also with
other bloat-control mechanisms, although perhaps with a lesser degree. We will explore
this issue in future research.
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5 Bloat and Sampling Parsimony

In section 3 we looked at how crossover likes to progressively sample smaller programs
and the resulting resampling of programs, hence re-evaluations, that result from this. In
this section we look at the prevention of resampling and its effect on program length.

To understand the effect of resampling and to control it, we have employed a novel
technique which we have called Sampling Parsimony. This has two parameters, a resam-
pling penalty to be applied, which is implemented as a percentage reduction of fitness,
and a count of the number of times that a unique program can be sampled before that
penalty is applied or removed.

Our first application is to look at how average program length will be affected by the
application of a super penalty ensuring that a resampled program will not be reselected
in the next generation. Using our standard ECJ problems with parameters as described
in section 3 from Figure 9 we can see that, as we progressively prevent resampling
by lowering our resampling limit, we increase the average size of the programs in our
population. We have in effect created an effective fitness landscape [6] where the ability
for a child to exist in the next generation is solely determined by whether that program
has previously been sampled.

From our earlier analysis it, is unsurprising that we see that by depressing the fitness
of resamples we will increase the sampling of larger programs, thereby increasing the
average program size as we are in effect penalising smaller programs. What is more
interesting is that we have managed to isolate the Crossover Bias bloating effect as
described in [2]. Our method only penalises children and prevents them from being par-
ents rather than preventing their creation. GP, therefore, uses larger programs as parents
(see Figure 6), hence, increasing the average size of children and thereby increasing
the average program size in the next generation. As smaller children are still created by
crossover but have no chance of being chosen by selection, this process will continue.
Even a relatively large resampling allowance of 200 on our flat landscape will greatly
increase program size.

We apply our resampling penalty method to the Ant Problem with selection in Fig-
ure 10. We can see that our penalty, increases program growth within 100 generations.
This is because we have, effectively, accelerated the Crossover Bias effect (crossover
creating small programs that selection then ignores) already present in the ‘No Limit’
distribution. Practically, we can see that this acceleration only happens beyond a prob-
lem specific value of the number of resamples allowed, suggesting that experimental
resampling restrictions may not attract significant additional program growth once an
acceptable limit has been determined.3

Finally we reverse our method to apply a penalty to all programs from the beginning.
We only remove the penalty after a specific number of resamples have been achieved,
thereby allowing a program to be selected as a parent only after it has been sampled
a number of times. From Figure 11 we can see that program growth is significantly
reduced by applying a single sample penalty, whilst progressively increasing the sam-
pling threshold before normal fitness is applied will reduce program growth towards a
limit of approximately 50 samples.4

3 Experimentation showed that no changes are observed beyond 5 resamples for the 4 Bit Even
Parity problem, and approximately 15+ for the Artificial Ant.

4 Approximately 5 for the Parity Problem, again the threshold is problem dependant.
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Fig. 10. Comparison of average program size applying resampling limits to the Artificial Ant
Problem with selection
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Fig. 11. Comparison of average program size applying sampling penalties to the Artificial Ant
Problem with selection

Although its effect on bloat is self evident, it remains to be seen whether the sampling
parsimony method can be successfully applied to improving overall program fitness over
an entire run. We leave this for future work. The current ‘blanket’ method is of course very
unsophisticated in that we prevent entire search spaces from being investigated without
regard to program fitness. However, we believe that this remains an interesting technique
that is worth exploring in greater depth and which might find application is a variety of ar-
eas, including, for example, escaping experimental stagnation under various conditions.

6 Conclusions

In this paper we have presented a limiting length distribution for GP with standard
crossover with uniform selection of crossover points. This distribution now includes ex-
ternal nodes along with internal nodes, thereby extending previous research. Empirical
validation confirms the accuracy of our model. Both theory and experiments show that
the application of this form of crossover will quickly enable a population to converge to
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a distribution that will exponentially sample smaller programs. As there are exponen-
tially fewer unique smaller programs than larger ones, the sampling of new programs
becomes less likely during a GP run if only crossover is applied. The effect becomes
more prevalent as fitness values converge. This bias also becomes more acute with the
application of a length limit, where, in addition to wasting more resources in resamples,
it has further important consequences. In particular, we find that size limits initially
speed up bloat, almost completely defeating their original purpose of combating bloat.

Although the application of selection before any fitness convergence will work
against the crossover bias, smaller programs will always be created by crossover. As
it is unlikely that these programs will be able to obtain a reasonable fitness, particularly
during later stages of a GP run, they will be ignored by selection for the next generation
and only larger parents will be selected. The continuing application of selection and
crossover, therfore, causes the mean program size to increase, thereby creating bloat.

To explore what happens if one directly addresses this sampling-related cause for
bloat, we have introduced a novel technique called Sampling Parsimony to tackle bloat.
Curiously, this can be used accelerate growth as well as to reduce its effect. We have
not, however, directly verified if Selection Parsimony is competitive with other anti-
bloat techniques. We will address this question in future work.
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Abstract. Hierarchical decomposition and reuse techniques are seen as making 
a vital contribution to the scalability of genetic programming systems. Existing 
techniques either try to identify and encapsulate useful code fragments as they 
evolve, or else they rely on intelligent prior deconstruction of the problem at 
hand. The alternative we propose is to base decomposition on a partitioning of 
the input test cases into subsets or ranges. To effect this, the program architec-
ture of individuals is such that each subset is dealt with in an independently 
evolved branch, rooted at a selection node handling branch activation. Experi-
mentation reveals that performance of systems employing this architecture is 
significantly better than that of more conventional systems. 

1   Introduction 

Although genetic programming (GP) has proved itself a valuable tool for finding 
solutions to many and varied problems, the complexities of real-world domains make 
it vital that methods be found for scaling up GP techniques to solve larger-scale, more 
difficult tasks. Since the typical approach taken by human software engineers is to 
decompose a problem into simpler, more manageable sub-tasks, it seems natural that 
analogous approaches should be investigated as a means for dealing with complexity 
in genetic programming. 

To this end, many researchers have extended and adapted GP systems so that 
instead of being monolithic or single-level, they accommodate decomposition and 
reuse mechanisms that allow evolution to proceed in a more hierarchical manner. The 
best established of these adaptations is that of Koza’s Automatically Defined 
Functions (ADFs) [1-3], in which a number of function-defining branches are evolved 
alongside a main branch that can invoke and pass arguments to those functions. Other 
approaches include the Module Acquisition technique of Angeline and Pollack [4,5], 
Rosca and Ballard’s Adaptative Representation through Learning (ARL) algorithm 
[6], and a two-stage method proposed by Roberts et al [7]. The importance of 
modularisation has also been recognised for genetic programming systems which use 
representations that differ from the tree structure usually employed. In his work on 
Cartesian Genetic Programming (CGP), for example, Miller has described bottom-up 
techniques for building hardware circuits from simpler ‘cells’ [8], and for 
encapsulation of modules in evolving CGP programs [9,10].  
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In many of the hierarchical systems that have been described in the literature, the 
focus is on attempting to identify and then encapsulate useful fragments of code as 
they appear during the evolutionary process. Typically, the number and nature of such 
fragments is not known or specified in advance, and so program architectures are 
often decided upon in a fairly ad-hoc way. However, in direct contrast to this, there 
have been some attempts to tackle problems by initially evolving solutions to tasks 
which are precisely defined, and which can contribute genetic material which is useful 
in a higher-level evolutionary process addressing the original problem [11-15]. 

In this vein, we propose the use of a GP program architecture which is also hierar-
chical in nature and which also has a form dictated by a pre-specified decomposition 
of the problem. The distinguishing characteristic of this architecture is that it is based 
not upon any intelligent insight into the nature of program behaviour and structure, 
but rather upon a fairly mechanical breakdown of the program’s inputs into subsets. 
In the next section, we provide more details of this selection architecture, and then go 
on to examine its performance in comparison with other GP approaches. 

2   A Selection Architecture 

In most conventional GP systems, the program code of individuals is represented in a 
tree structure, the internal nodes being members of the function set, and the leaf nodes 
being taken from the terminal set. Alternatives to this format include linear code and 
more general graph structures. Attempts to evolve code that is more hierarchical in 
nature, and which makes use of evolving sub-structures, involve modifications of 
these basic forms. 

PROGRAM 

FUNCTION 
DEFN. 

FUNCTION 
DEFN.

BODY 
ACTING ON 
(T, F+{ADF0, ADF1…}) 

NAME 
(ADF0)

BODY 
ACTING ON 
({P1, P2…}, F) 

PARAM LIST 
(P1, P2,…) 

 

Fig. 1. Typical program architecture for ADF-based GP systems 

The most well-known of the hierarchical approaches to GP is that of Koza’s 
Automatically Defined Functions (ADFs). Typically, the architecture of programs in 
an ADF-based system is as shown in Figure 1. In this, a program tree comprises one 
or more function-defining branches and a main branch that may invoke those 
functions. Each function definition has a formal parameter list, and only members of 
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this list can appear as terminals in the body of the function; the terminal set of the 
problem itself is not accessible within an ADF. The body of the program as a whole – 
its main branch – is built from the usual terminal set, members of the problem 
function set, and members of the set of ADFs. During evolution, operators are usually 
subject to some context restrictions; in crossover, for example, if the first parent’s 
crossover point is within, say, ADF0, then the second parent’s crossover point is also 
confined to ADF0. In this way, all of the function branches and the main branch 
evolve simultaneously towards a solution to the problem. 

One of the problems arising from the use of an ADF-based system is defining the 
precise shape of the architecture. Specifically, one must decide in advance how many 
ADFs are present and how many formal parameters each ADF should possess. There 
are no hard and fast rules, but a precept advocated by Koza is to provide one function 
for each of the arities 2 to n-1, where n is the size of the terminal set for the problem. 
For example, a problem with four items in its terminal set would have one ADF with 
2 parameters and another with 3 parameters (although there is no requirement that all 
formal parameters be accessed within the body of a function). Once the ADF 
architecture has been decided upon, there are no further constraints on the behaviour 
that may evolve within each ADF, how their arguments are used, and how (or even if) 
the ADFs are called by the main branch. 

The alternative architecture we propose is also hierarchical in nature, but it assigns 
a more definite purpose to each of the lower-level subsystems. Conceptually, it is 
quite simple, as shown in Figure 2. Like an ADF tree, this structure also contains a 
pre-defined number of branches off the root node. Unlike its ADF counterpart, 
however, there is no ‘main’ branch. Instead, each branch is charged with the respon-
sibility of handling a subset of the input test cases to be applied to the individual as a 
whole. 

SELECT 

BRANCH 0 BRANCH 1 BRANCH n 

INPUTS 

TEST 
SUBSET 0 

TEST SUBSET 1 

TEST 
SUBSET n 

 

Fig. 2. Overview of the selection architecture 

The idea is that, given a set or range of input cases, we partition it into a number of 
subsets. Code for handling each subset is then evolved independently in separate 
branches of the program. Decomposition of the original problem in this way should lead 
to a number of sub-objectives which, in isolation, are easier to solve via evolutionary 
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computation; a trade-off is an increase in the number of code fragments that must be 
evolved to solve all branches. 

The branches in the selection architecture are not functions in the ADF sense: they 
are simply code fragments composed from the normal terminal and function sets of 
the problem. Despite this, each branch does not interact directly with other branches; 
rather, it is evolved separately and independently. This is a key difference from the 
ADF architecture, in which all branches evolve simultaneously towards the solution 
of a problem and the evolutionary value of each branch is judged according to the 
contribution it makes to the fitness of the individual as a whole. In the selection 
architecture each branch has its own evolutionary target, its fitness being calculated 
according to how well it deals with its assigned subset of test cases. Evolutionary 
effort is focused on one branch at a time rather than all branches at once, although the 
independent nature of the code fragments means that all branches could readily be 
evolved in parallel on a multiprocessor machine. 

A further difference between the two architectures is that, whereas the number of 
branches in an ADF system is rather arbitrary, the branch count in the selection 
architecture is determined by the number of subsets into which the test cases have 
been divided. These branches are linked together at a single root node, the purpose of 
which is to decide which branch to activate for a particular combination of inputs. The 
root node therefore acts as a kind of switch, its exact form depending on the problem 
being solved and the language being used to encode evolved programs. In most 
situations it will correspond to a straightforward ‘case’ statement or a nested ‘if-then-
else’ construct. The following, for example, is an evolved 4-branch solution to the 
even-4 parity problem (see next section): 

 
SWITCH (INT(D3..D0)) 
CASE 0..3: 
NAND(OR(D0 D1) NAND(D0 D1)) 
CASE 4..7: 
NOR(NOR(OR(D1 D2) OR(D1 D1)) NAND(OR(D0 D1) NAND(D0 D1))) 
CASE 8..11: 
AND(AND(OR(NAND(OR(D1 D0) AND(D1 D1)) OR(NAND(D1 D0) NAND(D3 D1))) 
OR(NOR(NOR(D2 D0) NAND(D2 D2)) OR(D1 D0))) OR(NAND(NOR(D2 NOR(D0 D0)) 
NOR(NAND(D0 D0) NOR(D0 D2))) NAND(NAND(AND(D1 D2) NOR(D0 D3)) AND(AND(D2 
D3) NAND(D3 D1))))) 
CASE 12..15: 
OR(AND(AND(NAND(AND(D1 D0) OR(D2 D1)) AND(NAND(D0 D3) NAND(D1 D2))) 
AND(OR(AND(D2 D1) NAND(D3 D0)) OR(NAND(D1 D3) OR(D2 D3)))) AND(D1 D0)) 

3   Performance 

In evaluating the selection architecture, we begin with the even-parity problem, one of 
a class of Boolean problems that is known to be difficult for GP to solve. In the even-
4 version, the aim is to evolve a Boolean design that returns a TRUE output if the 
number of logic one values on its 4 inputs D0-D3 is even, FALSE otherwise. The 
parameters for the problem as we have implemented it in our GP systems are given in 
Table 1. 
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Table 1. GP parameters for the even-4 parity problem 

Objective To evolve a program capable of determining if the 
number of logic 1s on the 4 inputs is even 

Terminal set D0, D1, D2, D3 

Function set AND, OR, NAND, NOR 
Initial population Ramped half-and-half 
Evolutionary process Steady-state; 5-candidate tournament selection 
Fitness cases 16, representing all combinations of inputs 
Fitness Number of mismatches with expected outputs (0-

16) 
Success predicate Zero fitness (solution found) 
Other parameters Pop size=500; Gens=51; prob. crossover=0.9; no 

mutation; prob. internal node used as crossover 
point=0.9 

The performance of our selection-based system can be compared against a 
conventional GP system, and also against one which makes use of ADFs. In doing 
this, we need to make a decision as to how many branches are required, and this in 
turn is governed by how we choose to partition the test cases. For even-4 parity, 
exhaustive testing using all combinations of the four inputs {D0, D1, D2, D3} 
requires 16 test cases. In this experiment, we will assess the effectiveness of having 2 
branches, the first dealing with the integer values 0-7 on the four binary inputs, the 
other dealing with the values 8-15. We will also evaluate the effect of using four 
branches, dealing with values 0-3, 4-7, 8-11 and 12-15, respectively. 

In comparing approaches, we make use of the success rate at finding solutions over 
100 runs, each of 50 generations. We also make use of Koza’s metric of 
computational effort [1], defined as the minimum number of individuals that must be 
processed to achieve a 0.99 probability that a solution will be found. Table 2 presents 
these figures for each of the systems we have described. 

Table 2. Performance comparisons for the even-4 parity problem 

Approach Success rate (%) Comp. Effort 
Standard GP 14 700,000 
ADF GP 43 97,500 
2 branches, 8 cases each 71 59,500 
4 branches, 4 cases each 100 3,500 

It is patent that the selection architecture leads to substantially improved 
performance. When four branches are used, the branches are trivially easy to evolve, 
several often appearing together in the initial population. 

The success of the approach for even-4 parity encouraged us to try it for the more 
difficult even-5 parity problem. The only changes to the problem parameters given in 
Table 1 are an additional input D4, a corresponding increase in the fitness cases to 32, 



 The Performance of a Selection Architecture for Genetic Programming 175 

and an increase in population size from 500 to 2000. As before, we experimented with 
two forms of the selection architecture: one with 4 branches dealing with 8 of the 32 
test cases each, and one with 8 branches handling 4 cases each. The results are 
compared in Table 3. 

Table 3. Performance comparisons for the even-5 parity problem 

Approach Success rate (%) Comp. Effort 
Standard GP 0 - 
ADF GP 32 864,000 
4 branches, 8 cases each 91 192,000 
8 branches, 4 cases each 100 16,000 

Like Koza [1], we found that discovering a solution to the even-5 parity problem 
using standard GP is extremely difficult. By incorporating an ADF mechanism we 
were able to get much better results, with a success rate of 32%. When we try the 
selection architecture using 4 branches, the success rate is almost triple that achieved 
in the ADF system, leading to a huge decrease in the computational effort. As before, 
the use of 8 branches gives us a solution on every run, and an associated 
computational effort that is comparatively tiny. 

To evaluate the approach further, we applied it to the majority-on problem. In this, 
the aim is to evolve a program that is capable of determining whether the majority of 
its Boolean inputs are set to logic-one. Thus, in the 5-input version, a solution will 
deliver TRUE if three or more inputs are logic-one, and FALSE otherwise. The 
function set for the problem is F={AND, OR, NOT}, but other parameters for the 
problem as we have implemented it are the same as given for the even-parity problem. 
For the selection-based approach, we have experimented with 2 branches of 16 cases 
each, and 4 branches of 8 cases each. The results are given in Table 4. 

Table 4. Performance comparisons for the majority-5-on problem 

Approach Success rate (%) Comp. Effort 
Standard GP 62 49,000 
ADF GP 7 945,000 
2 branches, 16 cases each 90 19,500 
4 branches, 8 cases each 100 6,500 

An unusual characteristic of this problem is that the performance of the ADF 
version is substantially worse than that of the conventional GP approach. The 
superiority of the selection architecture over both of these approaches is evident. 

In general, as the number of test cases per branch is lowered, each branch becomes 
correspondingly easier to evolve, and solutions can be found with a comparatively 
small population size. At the same time, small test subsets imply a large branch count, 
so that even though only a small number of generations may be needed to evolve each 
branch, the maximum number of generations per run may have to be greatly increased 
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in order to allow enough evolutionary time to generate all branches. Utilising this 
knowledge allows us to solve comparatively difficult problems by using only small 
GP populations, simply by extending run lengths to include a sufficient number of 
generations. A further demonstration of the efficacy of the selection architecture 
approach is presented in Table 5, which gives the performance figures obtained from 
solving the even-10 parity problem using a population size of only 2000. To achieve 
this, the program architecture has been given 256 branches, each handling just 4 test 
cases, and the maximum run length is set at 500 generations. It is perhaps worth 
remarking that the figure of computational effort for this approach to the even-10 
parity problem is lower than that required for standard GP to solve the even-4 parity 
problem. 

Table 5. Performance of the selection approach on the even-10 parity problem 

Approach Success rate (%) Comp. Effort 
256 branches, 4 cases each 100 628,000 

A very different type of problem is that of symbolic regression, in which the GP 
system attempts to evolve a formula establishing the relationship between two sets of 
numeric values. Table 6 shows the parameters used for this problem. 

Table 6. GP parameters for the polynomial symbolic regression problem 

Objective Symbolic regression of the polynomial 
4x4 – 3x3 + 2x2 - x 

Terminal set x 

Function set +, -, *, / 
Initial population Ramped half-and-half 
Evolutionary process Steady-state; 5-candidate tournament 

selection 
Fitness cases 32 x-values in the range [0, 1), from 0.0 

increasing in steps of 1/32, plus corre-
sponding y values 

Fitness Sum of absolute errors in calculated y 
values 

Success predicate 32 hits, a hit being error less than 0.01 
Other parameters Pop size=500; Gens=51; prob. cross-

over=0.9; no mutation; prob. internal 
node used as crossover point=0.9 

In making use of our selection architecture for this problem we divide the range of 
x values into equal parts. If, for example, we use two partitions, then one partition 
handles x values in the range [0,0.5), and the other handles x values in the range  
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[0.5,1.0). As before, we can make comparisons of performance based on success rate 
and computational effort. Table 7 shows how conventional GP fares against the 
selection architecture using 2, 4 and 8 subsets. An ADF system has not been used in 
these experiments; the reason is, as Koza has reported [2], that while the use of ADFs 
can be beneficial for sextic polynomials and above, it offers no improvements for 
quintic and lower order polynomials. 

Table 7. Performance comparisons for symbolic regression problem 

Approach Success rate (%) Comp. Effort 
Standard GP 6 1,299,500 
2 branches, 16 x-values each 12 1,050,000 
4 branches, 8 x-values each 24 535,500 
8 branches, 4 x-values each 10 1,876,500 

The improvements obtained by the selection architecture are nowhere near as 
dramatic as they were for the Boolean problems, but are still significant. The 2-branch 
version does not result in a huge drop in the computational effort needed for standard 
GP, but does double its success rate. This rate is re-doubled by the 4-branch version, 
with a halving of the computational effort. 

The computational effort statistic provides a rough guide to the amount of work 
needed to obtain solutions, based on the success frequency and the points during the 
evolutionary process at which solutions are found. However, it has received criticism 
regarding its accuracy as an effort prediction tool [16]. For example, although it gives 
a figure in terms of the number of individuals, it does not take into account 
differences in the nature of individuals produced by two evolutionary mechanisms, 
and nor does it consider overheads and other differences in those mechanisms. For 
this reason, we have gathered further statistics relating to execution runs of the 
symbolic regression systems. 

One way to measure and compare execution performance is to maintain a count of 
the number of tree nodes evaluated by the fitness function in each of a set of runs. 
Table 8 summarises the results obtained over a sequence of 50 runs, together with the 
time elapsed in executing those 50 runs. 

Table 8. Comparison of execution statistics for symbolic regression problem 

 Standard GP 2-branch 4-branch 8-branch 
Avg. nodes/run (x106) 558 205 147 83 
Max nodes/run (x106) 3494 1432 889 355 
Min nodes/run (x106) 18 9 3 2 
Significant? - yes yes yes 
Time for 50 runs (secs) 762 334 233 142 
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It will be seen that the number of nodes evaluated in the selection architecture is 
substantially less than the number evaluated in the conventional GP system, and that 
this number decreases as the number of branches increases. As a result, the elapsed 
time to execute 50 runs of the selection architecture is also much lower (80% lower in 
the case of the 8-branch version). This is so even though the selection architecture 
exhibits better success at finding solutions. In the last-but-one row of the table, the 
node counts for all 50 runs of the standard GP system are compared against those for 
the selection architecture using a statistical t-test to validate the significance of the 
results at the 99% confidence level. 

The nature of symbolic regression problems is such that the input data under 
consideration do not always correspond precisely to a simple polynomial or other formula. 
Often, one is searching for a formula which provides the closest fit to the curve plotted by the 
given data. Success rates and computational effort metrics are based purely on evolved 
programs that satisfy all data points (within the predefined error value). Such programs are 
all well and good, but what about other, less successful runs? How well do these perform in 
providing a ‘closeness of fit’ to the ideal? 

The figures in Table 9 are based on the performances of the ‘best’ programs 
obtained at the end of each run of the symbolic regression problem. In the problem as 
we have stated it there are 32 data pairs to be satisfied, and so a correct solution will 
achieve 32 hits. In runs where this is not achieved, the ‘best’ program is defined as the 
individual which attains the greatest number of hits. 

Table 9. Comparison of hits attained by best programs in each run 

 Standard GP 2-branch 4-branch 8-branch 
Avg. best hits 18.8 24.7 24.96 27.28 
Max. best hits 32 32 32 32 
Min. best hits 6 15 15 22 
Significant? - yes yes yes 

The value of 32 in each of the entries for the row headed ‘Max best hits’ simply 
indicates that at least one fully correct solution was evolved by each of the GP 
systems under comparison. More interesting are the other figures, which show that, in 
general, the selection architecture is capable of evolving programs that are closer to 
the ideal. This conclusion is also supported by a statistical t-test on the best-hit values 
obtained across all runs. Particularly interesting is the column for the 8-branch 
selection architecture: despite having a lower success rate and a higher computational 
effort value than the other forms of the same architecture, it has a higher average 
number of hits produced by its best programs. Moreover, every run evolved an 
individual capable of scoring at least 22 out of the 32 hits available (compare this with 
standard GP, in which at least one individual reached only 6 hits). 

A more visual indication of comparative performance can be obtained by using a 
scatter graph. Figure 3 plots the best hits obtained for each run, both for standard GP  
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and for the 4-branch version of the selection architecture. It can easily be appreciated 
that, in general, the points corresponding to the selection architecture lie significantly 
above those for standard GP. 
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Fig. 3. Scatter plot of hit values attained by best programs in each run 

Another characteristic of symbolic regression problems is that the fitness values 
used to drive evolution do not correspond directly to the hits values. Rather, the 
fitness of an individual is calculated as the sum of the absolute errors in the calculated 
y-values. Hence, at any point during evolution, the individual with the best fitness is 
not necessarily the same as the ‘best’ individual judged on hit rate. In Table 10, 
therefore, we also consider the best fitnesses obtained in each of our runs. It should be 
borne in mind that, with regard to fitness, smaller equals better. As before, a scatter 
graph (Figure 4) helps to confirm visually the superior performance of the selection 
architecture. 

Table 10. Comparison of best fitnesses achieved in each run 

 Standard GP 2-branch 4-branch 8-branch 
Avg. best fitness 0.6 0.3 0.25 0.24 
Max. best fitness 3.25 0.97 0.76 0.58 
Min. best fitness 0.09 0.06 0.09 0.1 
Significant? - yes yes yes 
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Fig. 4. Scatter plot of best fitness values achieved in each run 

4   Conclusions 

The selection architecture described in this paper offers significant performance 
advantages over conventional genetic programming systems. Not only does it lead to 
a greater success rate at finding solutions, and with less computational effort, it also 
involves the evaluation of far fewer program nodes, giving a much reduced elapsed 
execution time. Even in runs where solutions are not obtained, the general fitness of 
programs that are evolved is much better. 

There are other advantages to the use of the selection architecture. The fact that 
program branches are independently evolved means that branches obtained from 
differing runs can be combined to form new individuals. For example, the shortest 
code fragments obtained for each test subset across a sequence of runs can be put 
together to create a more parsimonious individual. The independent nature of 
branches also makes it trivial to evolve all branches in parallel on a multiprocessor 
machine, rather than sequentially as we have done here. 

That said, the nature of programs evolved using the selection architecture is very 
different from that produced by more conventional approaches, consisting as they do 
of a set of connected relationships rather than a single one across the whole input 
domain. This gives rise to further intriguing questions regarding the applicability and 
generality of the approach which we aim to address in future research. 
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Abstract. Two prominent genetic programming approaches are the graph-based 
Cartesian Genetic Programming (CGP) and Linear Genetic Programming (LGP).  
Recently, a formal algorithm for constructing a directed acyclic graph (DAG) 
from a classical LGP instruction sequence has been established.  Given graph-
based LGP and traditional CGP, this paper investigates the similarities and 
differences between the two implementations, and establishes that the significant 
difference between them is each algorithm’s means of restricting inter-
connectivity of nodes.  The work then goes on to compare the performance of two 
representations each (with varied connectivity) of LGP and CGP to a directed 
cyclic graph (DCG) GP with no connectivity restrictions on a medical 
classification and regression benchmark.   

Keywords: Linear Genetic Programming, Cartesian Genetic Programming. 

1   Introduction 

Genetic programming implementations have been proposed that evolve populations of 
individuals that are constructed as graphs.  Two prominent options in the literature 
that model GP individuals in this way are Cartesian Genetic Programming (CGP) [1-
3] and Linear Genetic Programming (LGP) formulated as a graph structure.  LGP in 
graph form was first presented in [4, 5], with the algorithm for the conversion of 
imperative instructions to graph  formally stated in [6].  The goal of this work was to 
definitively determine the differences and similarities between CGP and LGP.  The 
comparison motivated an obvious new representation to compare connectivity of the 
implementations: a directed, cyclic graph (DCG) version of CGP, which is subse-
quently empirically compared to the original LGP and CGP representations on two 
types of benchmark problems.  The DCG alternative in this paper is simply referred to 
as “DCG” and is the CGP implementation with the input nodes allowing cycles in the 
graph.  That is, there is simply no restriction on the permitted input nodes: the inputs 
for a given node may refer to other nodes that occur further “ahead” in the graph, or 
permit the node to reference itself.  Many other more or less elaborate DCG 
implementations have been introduced in the past, often with the aim of relaxing the 
restriction of using only feed-forward connectivity to adapt the graphs to real world 
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applications.  The aim of this paper, rather than to survey graph-based GP approaches, 
is to investigate the fundamental difference between traditional forms of LGP and 
CGP, and their restrictions in connectivity.   

The following section describes the Cartesian Genetic Programming (CGP) 
implementation and the components of its representation, with Section 3 describing 
the implementation and representation of Linear Genetic Programming (in its graph 
form) in a similar vein.  Section 4 compares CGP and LGP implementations to 
determine their fundamental differences and similarities.  Section 5 applies CGP and 
LGP, each with two parameterizations with differing connectivity constraints, and an 
unrestricted connectivity DCG, to a classification and regression benchmark. 

2   Cartesian Genetic Programming 

Cartesian genetic programming (CGP) represents phenotypes of individuals as a grid 
of nodes addressable in a Cartesian coordinate system.  Formally, a Cartesian 
program is defined by Miller in [3] as the set {G, ni, no, nn, F, nf, nr, nc, l} where G is 
the genotype that is a set of integers to be described, ni is the indexed program inputs, 
nn is the node input connections for each node, and no is program output connections.  
The set F represents the nf functions of the nodes, and nr, nc are the number of nodes 
in a row and column, respectively.  The levels back parameter, l, indicates how many 
previous columns of cells have their outputs connected to a node in the current 
column (with primary inputs treated as node outputs).  Program inputs are permitted 
to connect to any node input, but nodes in the same column are not allowed to be 
connected to each other.  Any node can be either connected or disconnected.  See 
Figure 1 for a diagram of a typical CGP graph.   

A graph of the individual consists of a string of integers specifying, firstly, nn 
inputs and one internal function for each node, and lastly the no program outputs.  The 
CGP genotype thus takes the form of the string of integers 

C0, f0; C1, f1;…;Ccr-1, fcr-1;O1, O2, …,Om                               (1) 

where Ci indicates the points to which the inputs of the node are connected, and each 
node is given an associated user-defined function fi.  It is possible to have a list 
composed of functions with different arities by setting the node arity to be the 
maximum arity present in the function list and allowing nodes that require fewer 
inputs to simply ignore the extra inputs.  Node 0, described by C0, f0, always has an 
output label that is one greater than the number of program inputs (denoted n in 
Figure 1). There are also m output genes Oi corresponding to the m program outputs. 

In principle, CGP is capable of representing directed multigraphs but has only been 
used thus far to represent directed acyclic graphs (DAGs).  If CGP only encodes 
DAGs, then the set of possible alleles for Ci are restricted so nodes can only have their 
inputs connected to either program nodes from a previous (left) column or program 
inputs.  (In other words, they have “feed-forward” connectivity.)  As stated by Miller  
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and Smith [2], in many actual CGP implementations the number of rows (r) is set to 
one, and thus the number of columns (c) is the maximum allowed number of nodes.  
The levels-back parameter (l) can thus be chosen to be any integer from one to the 
number of nodes in the graph (n).   The output genes are also unnecessary if the 
program outputs are taken from the m rightmost consecutive nodes when only one 
row is used.  The generic form of CGP is presented in Figure 1 (left), along with 
typical practical restrictions (right). 

 

Fig. 1. The generic (left) and typical (right) CGP representations where fi is a member of the 
function set, n is the number of inputs, m is the number of outputs, c is the number of columns, 
and r is the number of rows  

To relate CGP in practice to CGP as originally defined in [3], we recall that a CGP 
program is formally defined by  

{G, ni, no, nn, F, nf, nr, nc, l}                                            (2) 

For simplicity, since we are interested in the final graphical representation of a 
CGP individual, we can eliminate G (the integer representation of the graphical 
elements no, nn which is redundant for the purposes of representing only the 
components of a CGP graph) and F (the set of user-defined functions that will be 
represented as nodes) that are not themselves components of the graph.  The CGP 
graph is now represented  

{ ni, no, nn, nf, nr, nc, l}                                                 (3) 

In practice, the no program outputs need not be used in a graph representation [2].  
Instead, recall that some m < c rightmost consecutive nodes for c columns provide 
outputs when one row is used.  This eliminates the need of the no variable in the graph 
representation.  Also, when the number of rows is set to one, the number of nodes in a  
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column nc will always be one and it is necessarily the case that nr = c (where c is the 
number of columns = number of internal nodes).  Finally, the levels back parameter is 
often set to be the number of columns, c (as in [2]) to allow a given node to connect to 
any previous node, but l can be set to any integer k, k < c.  Making appropriate 
substitutions, this gives us the typical graph representation of  

 

{ ni, 0, nn, nf, 1, c, l}                                                  (4) 

3   Graph Representation of Linear Genetic Programming (LGP) 

In linear genetic programming (LGP), the genotype individuals have the form of a linear 
list of instructions as a binary string [6].  This binary string may in turn be interpreted or 
represented as a set of integers, just as in CGP genotype representations.  Program 
execution is that of a simple register machine (Von Neumann computer), and 
instructions are made up of opcodes and operands (providing linear forms of Functional 
and Terminal sets, respectively).  As the program executes, it alters the contents of the 
internal registers (or stack) and solution register(s). 

When the bit strings are interpreted, they correspond to members of the Functional 
(and sometimes Terminal) sets to produce a phenotype solution.  For instance, the 
binary sequence “011” in the individual’s genotype could be interpreted as the 
functional set member “addition” in the phenotype.  The immediately following bits 
often refer to destination and source registers, if registers are used as opposed to a 
stack.  The phenotype is then evaluated to determine the corresponding fitness.  The 
structure of a linear GP individual is depicted below in Figure 3.   

The instruction sequence (imperative) view of a linear program can be transformed 
into an equivalent functional representation in the form of a directed acyclic graph 
(DAG).  This is simply an alternate way of representing the linear program and 
registers.  The directed nature of the graph better enables the deciphering of 
functional dependencies and execution flow during interpretation of the instructions.  
For details of the formal algorithm to convert LGP to a DAG, the reader is referred to 
[6].  The application of the algorithm to imperative instructions produces a DAG such 
that the number of inner nodes always equals the number of imperative instructions.  
Each of these inner nodes includes an operator, and has as many incoming edges as 
there are operands for that operator in the corresponding imperative instruction.  Sink 
nodes have no outgoing edges and are labeled as registers or constants.  While the 
nodes in [6] are labeled with only operators, the nodes are plotted as unique nodes in 
virtue of target register and operator at a particular execution point.  The maximum 
number of sink nodes is thus the total number of registers and constants in the 
terminal set.  Upon completion of the DAG, the sinks represent input variables of the 
program.  Constant sinks and inputs may be pointed to from every program position.  
An LGP program in the form of binary genotype, interpreted program, and graph 
structure is shown in Figure 2 below. 
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Fig. 2. Representations of a LGP individual 

4   Comparison of CGP and LGP Representations 

We must now determine whether or not LGP and CGP graphs are similar 
representations, and if they are, what is the nature of that similarity?  In the case of 
both graphs, each unique node is identified by a function and the nodes from which 
input to the function is received.  Again, in both cases, inputs for a given inner node 
can only be received from nodes or variable/constant sinks (inputs for CGP) that have 
already been established in the graph.  The semantic representation of the nodes is 
thus relevantly similar between the two representations. 

Using the seven-tuple {ni, no, nn, nf, nr, nc, l} representation of CGP, how would 
LGP be formulated?  In LGP, the constant and variable sinks are effectively program 
inputs, ni.  By specifying the output to be the content of an LGP register at the finish 
of imperative instruction execution, no is set to 0 as in common CGP practice.  That 
is, there are no special output nodes in either CGP or LGP.  There are a given number 
of internal nodes in LGP specified by input connections and functions; let us specify 
these as nn just as in CGP implementations.  There is also a function set consisting of 
nf functions.  As in the most common CGP implementations, there is no notion of 
separate rows and columns in LGP, so there are nc = c and nr = 1 nodes in an LGP 
graph.  If nodes are capable of being connected to any previous node in LGP (as is 
typical in CGP), then l = c.  However, the usual in LGP (as presented in [6]) is that a 
given node can only connect to the particular nodes in the previous layers that last 
used the registers specified by the function in the current node.   

Given the considerations thus far in this section, the tuple representing a LGP graph 
contains the same representative elements as typical CGP (Eq. 4), with the exception 
that nodes in LGP graphs take input from previous nodes that last used the registers 
the current node requires as inputs.  Thus, the levels-back parameter (l) of the tuple is 
not relevant to LGP graphs, giving the tuple where l is not applicable (n/a):   
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{ ni, 0, nn, nf, 1, c, n/a}     (5) 
 

The representation elements of typical LGP and typical CGP in practice really only 
differ in the parameter of the number of levels back.  (Compare Eq. 4 and Eq. 5.)  In a 
practical sense, this means that there are different restrictions on how a given inner 
(function) node in the two implementations can refer to incoming nodes.  The 
interconnectivity of the LGP graph is thus constrained in an implicit way, as opposed 
explicitly specifying the levels-back parameter in CGP. 

In terms of genotype representation, a CGP genotype is a series of pairs 
representing nodes.  Each pair consists of a set of points to which the inputs of the 
node are connected, and the function for the node.  Upon listing the connections and 
functions for all nodes, the nodes from which the output(s) are to be taken are 
specified in the genotype (see Section 2), or they may simply be specified as some 
number of last nodes in the graph as a parameter outside the genotype.  This is largely 
a design decision, but the specification of output nodes may or may not be under 
control of evolution as part of the genotype in CGP.  In contrast, an LGP implement-
tation typically chooses particular register(s) in which the output is to be found, and 
the output registers are not listed in the genome.  As mentioned previously, the output 
nodes are typically taken to be the last layer of graph nodes in CGP, so output nodes 
are effectively left out of the CGP genotype in modern representations (making the 
genotype similar to LGP in that the nodes specified for output are not part of the 
genotype).  In the case of both LGP and CGP, one can also have a number of outputs 
from the registers or nodes, respectively.   

An LGP individual’s genotype is a list of imperative instructions.  Each line 
represents a function and has some associated registers and a destination register.  
Using the algorithm of Brameier and Banzhaf, though, the genotype representation 
can be converted to a graph, which can alternately be described as a listing of nodes 
including function and input edges.  A node is made unique in virtue of three 
components: source register(s) (or source data) and destination register, function, and 
when it is executed in the program (placed in the graph).  The source register(s) or 
source data effectively indicate nodes to which the incoming edges are connected 
because the last nodes having used the source registers of the current node as their 
target register (or simply the specified input data from variable or sink nodes) will be 
connected to the incoming edges.  The destination register serves to reference the 
output edge of the node because the next future nodes to reference the current node’s 
destination register as source registers will form an incoming edge from the current 
node. The final value in the register(s) of interest at the end of execution in LGP are 
the output value(s) in LGP, and they are the last instances of the nodes labeled with 
the relevant registers in an LGP graph.  Note that this has the same effect as choosing 
a particular node (or nodes) as the output in CGP, which is what is done typically in 
current implementations.  Also, nodes are actually labeled with only the instruction 
operator, and the target register can be added to the node label for clarity but is 
generally used as a temporary variable to plot the LGP graph (see [6]).  In this work, 
the target registers are included on the node labels for clarity of interpretation, but 
they are generally left out the of the final plot (as in [6]).      
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Functions are encoded in the same way in both CGP and graph LGP.  Collectively, 
the components of a single instruction in an LGP genotype correspond to a node that 
is a unique imperative instruction.  The only difference in the encoding of the LGP 
and CGP graph is that there is an explicit identification of the node for future 
outgoing edges that is encoded in the genome in LGP (in virtue of the instruction’s 
target register), whereas in CGP the nodes are just sequentially ordered as they appear 
and not encoded as part of the genome.  This means that the encoding of the genome 
restricts what previous nodes get connected to a node in a current layer in graph LGP. 
In contrast, in CGP that restriction is handled by specifying the levels back (l) 
parameter, and it is not explicitly coded in the genome.  Thus, in LGP the 
connectivity of the nodes is under evolutionary control since it is part of the genome, 
but in CGP it is specified a priori as a design parameter.      

The characteristics of the elements required for graph representation and the 
genotype structures of CGP and LGP dictate their graphs will be similar (Eq. 4 and 
Eq. 5).  Consider the common CGP using one row and the LGP graph for programs of 
single non-conditional, non-branching imperative instructions.  Typically, these 
graphs will both involve two inputs per node if Boolean functions such as AND, 
NAND, OR, and NOR as are typically used in circuit board design are used.  
However, in both CGP and LGP graphs, the nodes may accept varying numbers of 
input edges depending on the maximum required by the function with the most 
arguments in the function set.  Furthermore, both graphs are directed, with data only 
flowing in the direction from input nodes/sinks to output nodes.  In other words, 
programs are restricted such that nodes only have their inputs connected to the 
program inputs or nodes from a previous column; edges only point in the general 
direction of the output.  To summarize, both CGP and DGP are represented as DAGs 
with each node capable of any number of input edges.  The only difference between 
CGP and DGP graphs is the restriction on how the input edges are assigned to a node 
(as discussed in the previous section).  Thus, given an unlabelled DAG with arbitrary 
node layout generated by either GP variant, the user could not readily distinguish 
between the two without further information, namely the design parameterization of 
the CGP tuple {ni, no, nn, nf, nr, nc, l} and the number of registers used in the LGP 
algorithm.  See Table 1 below for a summary of the comparison of LGP and CGP 
graph representations. 

Table 1.  Comparison of representation components of CGP and LGP (differences in bold) 

 CGP Graph Graph LGP 
Tuple  { ni, 0, nn, nf, 1, c, l} { ni, 0, nn, nf, 1, c, n/a} 
Genotype Integer or binary string Integer or binary string 
Graph Type DAG DAG 
Node content Function Function 
Connectivity  Restricted by levels-back 

(not under evolutionary control) 
Restricted by usage of target 
registers (evolutionary control) 

Incoming edges Maximum required by function set Maximum required by function set 
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5   Comparison of Graph-Based Genetic Programming Techniques 
on Classification and Regression Benchmarks 

In previous sections, the representation elements and their implications for the 
functionality of the CGP and LGP graph types was discussed.  The main difference 
between LGP and CGP was the mechanism used to restrict the allowed input edges to 
a given node, including whether or not the edges are under evolutionary control.  To 
provide contrast to, and determine the practical value of, the connectivity restrictions 
of CGP and LGP, we introduce a new graph type called simply “DCG” for “directed 
cyclic graph.”  This new graph type follows the CGP representation, only that each 
node can accept inputs from any node in the graph.  This means that there is no 
restriction of data flow to only feed-forward connectivity, cycles are permitted, and 
the levels back parameter is not relevant.  LGP graphs can also permit cycles, but the 
corresponding imperative LGP programs would have to involve jump statements.  
Such considerations are beyond the scope of this work, as the LGP would no longer 
conform to the current formal algorithm in [6] which  is used here for the comparison 
of traditional CGP and graph LGP. 

Two implementations of CGP with varying connectivity are tried, with levels back 
being equal to the number of columns (nodes), or only 2.  In LGP, two progressively 
constricting instruction forms are tried: 1 input and 2 input.  In the single input 
implementation, an instruction applies a function to data from a source register X and 
target register Y, replacing the data in that same target register Y.  In the two input 
implementation, an instruction applies a function to data from two source registers X 
and Y, placing the result in another target register Z.  In addition, the number of inner 
nodes in LGP graphs is determined by the nature of the instructions: Due to the use of 
registers in LGP, functions in nodes may draw their input(s) from registers or fitness 
cases.  If there is a larger number of fitness cases than registers (as in the 
classification benchmark), fewer bits are needed to specify one of four registers, but 
more bits are needed to load from one of the fitness case fields.  In the regression 
benchmark, there are fewer fitness case features than number of registers.  Whether or 
not to load from register or fitness case is determined by a binary flag.  Only the 
required number of bits is used to interpret a given instruction, resulting in individual-
dependent graph sizes.  The summary of the general parameterization of the 
implementations is given in Table 2. 

Table 2.  General parameterization of CGP, LGP, and DCG implementations 

Tournament Style Steady State, 4 individuals per round 
Population size  25 
Genotype structure 240 bit string, 4 registers (LGP) 
Graph structure  16 inner nodes + input nodes (CGP & DGP), 

determined by bit string (LGP) 
Genotype mutation point mutation, threshold = 0.9 

 
Here we compare the graph GPs’ empirical performance on a real world 

classification benchmark, namely the Heart Disease data that is part of the UCI 
Machine Learning Repository [7],  and the Mexican Hat regression benchmark as 
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described in [6].  Only mutation is used in these experiments, as crossover in CGP 
does not make intuitive sense.  Furthermore, mutation is appropriately restricted in 
CGP so that a given node can only refer to previous nodes in the graph according to 
the levels back parameter.  Naturally, mutation is unrestricted in LGP and DGP.  
Execution is carried out from inner start node to end node in CGP and DCG 
(execution sequence is already determined by order of instructions in LGP).  To allow 
data (other than default) placed in a node to be fed back through the network in DCG, 
multiple execution iterations over the inner nodes is required.  In DCG experiments, 
five iterations of the inner nodes are executed per fitness case.    

The medical database contains 303 instances (164 negative, 139 positive), each 
consisting of 13 attributes, with a 14th indicating positive or negative diagnosis.  Prior 
to trials, unknown values were replaced by the mean value of the relevant attribute 
and the positive or negative diagnosis was changed to ‘1’ or ‘0’, respectively.  The 
results use four-fold cross-validation to verify accuracy of the findings.  Each 
partition consisted of a unique 25% test set and 75% training set and retained the class 
distribution of the entire data set.  If the output of an individual was less than 0 on a 
fitness case, the case was classified as a negative diagnosis; otherwise the individual 
classified the case as positive.  The function set used was { +, *, -, /, SIN, COS, EXP, 
NATLOG }, protected as appropriate.  Fitness was defined simply as number of 
correct classifications, and training was conducted for 30 000 rounds.  The results are 
shown in Figure 2.  The median and spread shown in the boxplot correspond to the 
mean accuracy across the four unique test sets used in four-fold cross-validation over 
the 50 trials.  Each box indicates the lower quartile, median, and upper quartile 
values.  If the notches of two boxes do not overlap, the medians of the two groups 
differ at the 0.95 confidence interval.  Points represent outliers to whiskers of 1.5 
times the interquartile range.  A customized version of the popular Java-based Prefuse 
[8] framework was created a provide a means of visualizing the final graph topo-
logies, where the best trial in each implementation for the first partition are shown in 
Figure 3.   

 
Fig. 3. Boxplot of mean classification accuracy for the Cleveland Heart data set over 50 trials 
using four-fold cross-validation.  Each partition was 75% training, 25% test.   



 A Comparison of Cartesian Genetic Programming and Linear Genetic Programming 191 

 
 

Fig. 4. Individuals corresponding to the best final solution for CGP (l = c), LGP (2 input), and 
DCG types for the best trial in a particular partition of the UCI Machine Learning Repository 
Heart Disease test set.  The node corresponding to final classification is the lower right-hand 
node in the CGP and DCG graphs, and the upper left node in LGP.  

 
Figure 2 indicates that the chosen DCG model (center) outperformed the more 

restrictive and traditional Cartesian GP implementations (two leftmost).  DCG was 
not outperformed by the more restrictive form of LGP (rightmost), with no 
statistically significant difference shown (note overlapping notches.)  The least 
restrictive LGP implementation did not perform as well as the other implementations 
(second from the right).  The additional freedom of data flow within the DCG graph 
due to the admission of cycles enhanced classification ability.  Furthermore, in all 
cases, the restriction of information flow within implementations of both CGP and 
LGP models led to decreased classification accuracy.  In figure 3, the directed edges 
in the DCG solution show that it clearly takes advantage of its freedom of 
connectivity and admission of cycles. 

The two- Mexican Hat problem as described in [6] is tested on the implementations 
to provide a regression benchmark.  The problem is named for the shape of the three-
dimensional plot of its function 

2 22 2 ( )
8 8

( , ) (1 )
4 4

x y

mexicanhat x y

x y
f e

− −
= − − ×                              (6) 

Following the parameterization of [6], 400 fitness cases were used, with the input 
range restricted to [-4.0, 4.0].  The function set consisted of {+, -, x, /, xy}, protected  
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Fig. 5. Boxplot of mean sum squared error for the Mexican Hat problem set over 50 trials 

 

Fig. 6. Individuals corresponding to the best final solution for CGP (l = c), LGP (2 input), and 
DCG types for the best trial for the Mexican Hat problem.  The node corresponding to final 
classification is the lower right node in CGP and DCG, and the upper left node in LGP. 

when needed, and tournaments ran for 1000 rounds.  Figure 4 shows the boxplot of 
the mean sum squared errors of the implementations for the Mexican Hat problem, 
with best final networks of CGP, DCG, and LGP shown in Figure 5. 

Given the regression benchmark (Figure 4), DCG clearly does not perform as well.  
It is also noteworthy that the unrestricted LGP has the greatest variability over all 
solutions.  Comparing classification and regression benchmark performance (Figures 
2 and 4), it is evident that less restricted connectivity (DCG and 2 source LGP) is not 
of benefit in this regression benchmark.  Furthermore, all CGP variants and the 
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restricted LGP variant perform best on the regression benchmark but worse on the 
classification.  This difference may be due to the freely connected nature of DCG 
allowing it to provide a more highly adapted configuration for classification of a 
complex problem.  In contrast, the definite answer in the regression problem, to be 
found within a lower number of tournament rounds, is hindered by the greater 
availability of configurations and cycles in the DCG.  In Figure 5, we see that this is 
the case where the best DCG incorporates extensive connectivity while processing 
only one input, whereas CGP does not maximize its available levels-back flexibility. 

6   Conclusions and Future Work 

This work establishes that the difference between graph-based LGP and CGP is the 
means with which they restrict the feed-forward connectivity of their DAG graphs.  In 
particular, CGP restricts connectivity based on the levels-back parameter while LGP’s 
connectivity is implicit and is under evolutionary control as a component of the 
genotype.  Unrestricted forms of LGP and CGP, and DCG, performed well on the real 
world medical classification benchmark, but the flexibility of the less restricted graph 
types did not allow them to perform as well on a regression benchmark.  In future 
work, we plan to explore GP-based search using DCGs in an industry-based real 
world application.  Possibilities for future investigation also include a DCG analogy 
of LGP graphs, and a closer examination of the relationship between performance of 
the representations and their connectivity characteristics and evolvability. 
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Abstract. This work postulates a mechanism by which random geno-
typic variation is directed towards favourable phenotypic variation.
Evolvability is a poorly understood concept at present: it is unclear pre-
cisely how the genotype-phenotype map aligns random genotypic mu-
tation with favourable phenotypic variation. By static analysis of the
distribution of the genotypic representation of functionality, an emer-
gent bias in the representation of the adapted and maladapted is shown.
This bias is facilitated by a form of reuse modularity, and it serves to
direct phenotypic variation to where there is selective opportunity.

1 Introduction

Organisms in nature generate offspring that are both highly viable and which
vary in dimensions for which there is selective opportunity. This phenotypic
variation is not random, though it is generated by random genotypic variation.
Kirshcner & Gerhart’s [10] theory of facilitated variation states that it is the
organism itself that is central in directing phenotypic variation. However, the
mechanisms by which this is achieved are not fully understood.

Systems of artificial evolution lack the capability to direct phenotypic varia-
tion in a manner so readily exhibited in nature: they lack evolvability. Altenberg
[2] states of evolvability:

“It comes from the genetic operators being able to transform the repre-
sentation in ways that leave intact those aspects of the individual that are
already adapted, while perturbing those aspects which are not yet highly
adapted. Variation should be channeled toward those “dimensions” for
which there is selective opportunity.”

But how, and what are the properties and mechanisms that facilitate it? For
evolvability to be applied to systems of artificial evolution, it must first be un-
derstood and characterised.

In a trivial representation in which there is a one-to-one correspondence be-
tween genotypic and phenotypic features, mutation is just as likely to affect one
feature as it is any other, so variation is not ‘channeled’ at all. In a non-trivial
representation, for which there is not a one-to-one correspondence between geno-
typic and phenotypic features, the genotypic representation of adapted and mal-
adapted functionality within the genotype overlaps. Under that assumption, the
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variation operators must, it would seem, have some mystical property to change
the representation in a way that perturbs the maladapted but leaves intact the
adapted: understanding evolvability can therefore appear insurmountable.

This paper hypothesises a mechanism by which directed phenotypic variation
may be facilitated. The hypothesis is referred to as Evolvability via Modularity-
induced Mutational Focussing (EMMF). EMMF postulates that a biased distri-
bution of adapted and maladapted functionality emerges within the genotype
under the forces of random mutation and selection. Such a bias greater exposes
the maladapted functionality to perturbation while protecting the adapted. By
this, variation is channeled towards dimensions for which there is selective op-
portunity, fulfilling Altenerg’s requirement for facilitating evolvability.

2 Representation and Algorithm

For this work, Downing’s approach of Evolving Binary Decision Diagrams with
Inherent Neutrality (EBDDIN) [7] is employed. Binary Decision Diagrams are
first introduced, followed by an overview of the EBDDIN algorithm.

Introduced by Lee [11] and further by Akers [1], a Binary Decision Diagram
(BDD) is a rooted directed acyclic graph representing a function of the form
f(V ) : B

n −→ B. Each non-terminal is labeled with a Boolean variable v ∈ V
and has a then child and an else child, reflecting the fact that each non-terminal
represents an if-then-else operation on v. Terminals are labeled from B. Given
an assignment of values for V , the output is determined by traversing the BDD
from the root to a terminal following the child indicated by each vertices’ variable
label value.

Bryant [6] introduced the ordered BDD (OBDD), which imposes a total order-
ing on the appearance of non-terminal labels along any path with π, the variable
ordering. Thus, π = [v1, v2, . . . , vn], an ordered list of variables, and i < j must
hold for each vi followed by vj along any path. It is not necessary that all v ∈ π
appear in a path.

The OBDD representation is derived from the Shannon expansion [12]. A
Boolean function f(x1, . . . , xn) is decomposed into subfunctions using a specified
ordering of variables, represented by vertices in the OBDD, thus:

f = xi · f |xi=1 + x̄i · f |xi=0

where f |xi=b∈B is the restriction of x to the constant b ∈ B. The decomposition of
the subfunctions continues until the Boolean constants are reached. The resulting
list of expressions may contain some redundancy, i.e. duplicate expressions (see
[3] for further details).

Redundancy in an OBDD can be removed in two ways:

1. Remove Redundant Tests. A nonterminal α that has both outgoing edges
pointing to the same vertex β is redundant. Redirect all α’s incoming edges
to β.
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Fig. 1. Truth table, BDT, and ROBDD representations of the function f(x, y, z) =
x̄ȳz̄+xy+yz. The BDT is easily created from the truth table. The BDT is then reduced
to the canonical ROBDD form by applying the reduction mechanisms mentioned in
the text. Many intermediate OBDDs are created in the reduction process.

2. Remove Duplicate Vertices. If α and β are nonterminals and have the
same variable label and same children, or α and β are terminals of the
same value, one can be removed with its incoming edges redirected to the
remaining vertex.

A reduced OBDD (ROBDD) is an OBDD that cannot have its complexity re-
duced further by the reductions described above. Bryant [6] has shown ROBDDs
to be canonical forms : each function has a unique ROBDD representation for
each π, allowing easy equivalence and satisfiability checking. Figure 1 shows three
different representations of the same function. The Binary Decision Tree (BDT),
which is a specific form of OBDD, is easily constructed from the truth table, as
every input vector (i.e. line in the truth table) has its own path in the BDT.
The BDT is reduced to the canonical ROBDD representation by repeatedly ap-
plying the reduction mechanisms described above; many intermediate OBDDs
are generated in the process.

The variable ordering can have a dramatic impact on the complexity of re-
sulting ROBDD: in this paper, the complexity of an π-ROBDD is the number
of nonterminals it contains. For example, the best π for the 6-bit multiplexer
produces an ROBDD having complexity 7 while the the worst π results in and
ROBDD having complexity 29 (see figure 2); for the 11-bit multiplexer, the
best and worst ROBDD complexities are 15 and 509 respectively; for the 20-
bit multiplexer it is 31 and over 130,000 respectively. For the n-bit multiplexer,
the complexity grows linearly for the best π and exponentially for the worst.
In general, the variable ordering problem is NP-complete in both exact and
approximate solutions [5,13].

The EBDDIN approach to evolving BDDs employs four neutral mutations
derived from the reduction mechanisms above and their inverses, and also a
mutation that redirects a child edge to a new vertices. See figure 3. In this paper
only a static variable ordering is considered. The test function employed is the
11-bit multiplexer function, and it is used two configurations: the first having the
best ordering and ROBDD complexity 15 (11-mux); the second having the worst
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Fig. 2. The effects differing π on ROBDD complexity for the 6-bit multiplexer function.
Both of the above ROBDDs are representations of the same function but have different
variable orderings. ROBDD complexity for this function is very sensitive to π, having
a linear complexity in the number of variables for the best π, but exponential for the
worst π.

and reverse ordering and ROBDD complexity 509 (11-mux(R). This function was
chosen specifically because of its extreme sensitivity to changes in π, and should
better emphasise the property under study. However, any function with similar
sensitivity to π would suffice. Further details on EBDDIN can be found in [7].

3 Modularity

Many EAs incorporate modularity to their reported benefit. Modularity can
help generalisation, facilitate reuse, and help prevent disruption by variation
operators [4]. Furthermore, Woodward [14] has shown that, in the presence of
modularity and equal expressitivity, the complexity of solution is independent
of the chosen function set.

An OBDD can be thought of as a more general form of a tree in which sub-
trees are shared and reused in a modular fashion. In this respect, an OBDD is
somewhat like a tree in Koza’s GP with inherent ADFs. For a function with a
compact ROBDD representation there are a plethora of neutral variants, each
exhibiting different degrees and configurations of modularity. These neutral vari-
ants occupy the space between the ROBDD and BDT representations of the
function. Each neutral mutation either removes or adds one vertex to the size
of the OBDD, and there will typically be several variants of even a given size.
Thus, the neutral evolution of modularity under EBDDIN is a gradual matter
under a minimal mutation severity, with many degrees of freedom and a poten-
tially massive number of configurations to explore. The potential for modularity
to evolve in EBDDIN is, therefore, significant.
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Fig. 3. The five mutations of EBDDIN, four neutral and one functionally modifying.
N1/N1’: remove or insert redundant test; N2/N2’: merge nodes with identical label and
children, or split; A1: redirect an edge to another vertex at a lower level to the parent.

What the different configurations represent are different alignments between
the spaces of phenotypic variation and fitness. Favourable configurations will
better facilitate perturbation of the maladapted functionality while leaving intact
the adapted functionality. If such configurations can emerge in evolution then
evolvability will be enhanced, and this is what the EMMF hypothesis predicts.

4 Modularity and Punctuated Evolution

Before going onto investigate the EMMF hypothesis in detail, a comparison of
fitness curves on both modular and non-modular representations of 11-bit mul-
tiplexer is given. Figures 4 and 5 show the fitness curves for the best individual
for 11-mux and 11-mux(R) using a (5+10) ES. There is a very clear contrast
here. The figures show that it is not only the pace of evolution that differs, but
also the manner. While 11-mux(R) exhibits a fairly consistent gradualistic curve,
11-mux has much more erratic and variable behaviour. Long periods of stasis
are interspersed with periods of rapid evolution, and this is indicative of Gould’s
[9] punctuated equilibria phenomenon.
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Two of the main stasis points are indicated in figure 4. These points of stasis
happen at fitness levels of -128 and -256. Once a stasis point is broken free of,
fitness increases at a rate not appearing to significantly decrease from the rate
prior to stasis. The implication is that the solution has emerged in component
parts consistent with the subfunctions of the ROBDD target representation, or
some fraction thereof. The stasis points are indicative of higher-level compo-
nents the foundations of which have not yet emerged. Once the foundation of
the missing functional component is discovered, functional evolution continues
apace, exploiting preexisting lower-level components; exploiting the preexisting
to generate significant and viable phenotypic variation is entirely consistent with
facilitated variation [10, ch. 7]. The fact that no similar stasis points occur for
11-mux(R) in figure 5, the ROBDD of which does not make extensive reuse of
subfunction, further suggests punctuated evolution as a possible side affect of
this kind of modularity.

5 Focussing Mutation: A Thought Experiment

A thought experiment will elucidate the mechanism of EMMF. The target func-
tion for the experiment is the 11-mux, but any function with a compact ROBDD
representation would suffice. The variable ordering is static.

Using only the N1’ and N2’ mutation operators, any ROBDD can be expanded
so that the nonterminals form a tree in the nonterminals. The tree representa-
tion of 11-mux has size exponential in the number of variables in contrast to
the ROBDD representation of 11-mux, which is linear in size. Clearly, there are
a plethora of OBDD representations intermediate in size between the tree and
ROBDD representations of 11-mux. In general, the larger the OBDD represen-
tation, the greater the level of redundancy and the lower the level of modularity.
Thus, the tree representation of 11-mux has the highest level of redundancy, with
many redundant subfunctions. It is the fact that the tree representing 11-mux
has high regularity of subfunctions that allows the tree to be compressed to a
maximally modular ROBDD having linear complexity.

Now, consider the effect of random mutation, without selection, on the tree
representation of 11-mux. The mutation operators are both neutral and non-
neutral and applied to random locations repeatedly. Further, assume that the
size of the OBDD remains similar to the tree. Clearly, the function represented by
the OBDD will change from 11-mux. However, and more importantly, mutation
will disrupt the regularity that was present before: it must be expected that
a greater variety of subfunctions will result. The consequence will be that the
mutated OBDD will be less compressible than 11-mux and have a larger ROBDD
representation.

Now consider the tree representation of 11-mux again. This time, however,
mutation is applied only to one side of the tree; the other half is left untouched.
Clearly, the untouched half will retain both its function and compressibility,
but the mutated half will retain neither. The representation of the functional
part of the OBDD that is correct can be compressed into a comparatively small
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structure, while the part that is not functionally correct will have a comparatively
larger representation under compression. That part of the genotype that repre-
sents the incorrect part of the function now presents a relatively bigger target for
mutation. Thus, the part of function that is incorrect attracts a disproportionate
amount of applications of the A1 operator under random mutation. That part
of the function that is correct is protected from mutation by the relative density
of its representation.

The situation described above could not arise under normal evolutionary
forces: it simply serves as an example to illustrate that the representation of
the correct part of the function is compressible, while the representation of the
randomised part is not, and the consequence this has for biasing mutation. The
question is whether this effect can arise under normal evolutionary forces? To
address this question, the combined effects of all the mutation operators and
selection must be considered over several generations. It will assist to group the
effects of mutation into three principal forces.

– Disruptive force. The expanding neutral mutations, N1’ and N2’, combined
with the non-neutral A1 mutation serves to decompress and disrupt regu-
larity, inhibiting compression.

– Compressive force. Reducing neutral mutations, N1 and N2, serve to com-
press parts of the representation, regardless of whether those parts are
adapted.

– Preservative force. Selection serves to preserve the adapted part of the func-
tion, propagating it to future generations.

Expanding parts of the genotype that represent adapted function exposes that
part to disruption by A1. Given that disruption of correct function will usu-
ally result in deleterious offspring, such lineages will be selected against. This
is nothing more than stabilising selection preferring those configurations that
less expose adapted functionality to mutation. Expanding parts of the genotype
that represent maladapted function, however, will greater expose the maladapted
function to disruption by A1, which will serve to improve fitness and inhibit
compression of the representation of the maladapted function, and will not be
selected against. Preexisting or newly adapted function that is uncompressed is
compressible using N1 and N2, while maladapted function is less so. That mal-
adapted function that is compressible is relatively more susceptible to expansion
and functional disruption, and so the cycle continues.

6 The Genotypic Distribution of Functionality

This section investigates the hypothesised emergence of such a biased distribu-
tion. In order to do so, the concept of utility is introduced. Utility provides an
indication of the relevance of difference parts of the genotype to the adapted
as opposed to maladapted functionality. The parts of the genotype that are of
primary interest are the edges rather than the vertices, as it is the edges that are
redirected under A1 mutation. However, it may also make sense to talk about
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the utility of a vertex or other genotypic features in some contexts. The utility
density, Ud, is the total number of fitness cases processed by an edge. The utility
proportion, Up, is the fraction of fitness cases processed by an edge that are cor-
rect. The expected utility proportion, UE , is the fraction of all fitness cases used
in evaluation that are correct. Clearly, UE correlates with fitness.

The root vertex processes all fitness cases, so Up = UE here. In any ran-
domly generated OBDD genotype, Up ≈ UE should be exhibited throughout the
genotype: Up not approximating UE indicates a biased distribution of the repre-
sentation of adapted and maladapted functionality. EMMF predicts a distortion
of the distribution of Up under the forces of random mutation and selection
when the target has a compact ROBDD representation. Any bias should distort
the bulk of the distribution away from UE towards the extremes Up = 1 and
Up = 0, the former becoming more prominent as fitness increases. 11-mux(R)
has the reverse variable ordering, and an ROBDD having exponential complexity
in contrast to the linear complexity of 11-mux. Therefore, while 11-mux is sub-
ject to EMMF, 11-mux(R) should be less so, and should exhibit a distribution
of Up more consistent with UE .

7 Analysis

Figure 6 contrasts frequency polygons for 11-mux and 11-mux(R). Each fre-
quency polygon has 20 buckets with centres in the range 2.5 through 97.5 in
steps of 5, representing frequencies of Up as a percentage. The frequency polygon
connects the top centres of the histogram, and can facilitate easier comparison
of distributions than a histogram. There are five sub figures, each representing
intervals of fitness as UE in the range indicated by the vertical bars. Samples
are taken of the parent at each fitness improvement step and averaged over the
interval, though the distributions were found not to be significantly different at
other times also. To accommodated genotypes of varying size, Up frequencies are
normalised for each individual so that the sum of frequencies is 1.

The shape of the distributions are telling. 11-mux(R) approximates a peaked
skewed distribution of Up with a mode close to UE . This indicates that the distri-
bution of functionality is very close to that which would result from a randomly
generated OBDD representation of the function. However, 11-mux has a very
different distribution. As fitness increases the distribution spreads considerably
from UE , with a much higher proportion of edges exhibiting maximum values of
Up, or values much less that UE . The distribution begins to form a hollow at UE

and the upper tail soon disappears before optimal fitness is neared, implying a
very biased distribution of functionality within the genotype.

In both cases, the majority of lower values of Up are quickly eliminated. An
edge with a low value of Up, say Up <= 50%, has a good probability of providing a
fitness improvement under A1 mutation because mutating that edge to a random
subfunction has and expected Up of around 50%. However, given that good
subfunctions must be present in the genotype for above average fitness to be
exhibited, it can be expected that the result of mutating an edge with A1 will
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Fig. 6. Frequency distributions of Up for 11-mux and 11-mux(R). Each plot shows an
interval of fitness as UE . No plot is shown for 11-mux(R) in the interval 90-100% as fit-
ness improvement stagnated here. The distribution of Up for 11-mux(R) approximates
UE . The distribution of Up for 11-mux, however, sees a biased distribution in which
the upper tail disappears completely and the lower tail is extended.
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result in Up > 50% for mux-11. Still, the figure shows that small frequencies of
Up <= 50% persist up into the highest fitness interval for 11-mux, exhibited as
an extended lower tail on the distribution.

Similar experiments were conducted on both the parity and adder functions.
The results here were consistent with the EMMF hypothesis also, giving further
confidence. The 10-bit parity is insensitive to changes in π, but the bias was
similar to that for 11-mux depicted in figure 6. For the 4-bit adder, both best and
worst π were compared. The former exhibited a bigger bias, and the latter had a
lesser bias not consistent with UE . However the growth in ROBDD complexity
for the worst π is not as severe to approximate a tree, allowing some room for
compression. It is the comparison of the distributions of the worst and best π
for a function that is telling.

8 Conclusion

The EMMF hypothesis predicts an emergent bias in the distribution of the
representation of adapted and maladapted functionality within the genotype,
and this has been born out by experimentation. Where the target function has
the potential for modularity (i.e. a compact ROBDD), mutation and selection
give rise to the bias. Where the target function does not have the potential for
modularity, no bias will emerge. Downing [8] has shown that better π emerge as
a logical consequence of being correlated with evolvability under EBDDIN with
a dynamic π. This implies that the emergence of better π better facilitates the
bias. Thus, a cascading influence is imparted that induces the representation to
evolve at different levels of organisation to facilitate evolvability.

Some of the properties of EBDDIN that facilitate EMMF are important to
appreciate. The massive redundancy of the OBDD representation facilitates a
plethora neutral genotypic configurations to explore, each offering different dis-
trubtion in the representation of adapted and maladapted functionality. With-
out this redundancy, genotypes exhibiting a biased distribution of functionality
would not occur so readily. The neutral networks that connect all the representa-
tions of a given function facilitates exploration of those configurations, allowing
the favourable configurations to emerge by the reproductive advantage they im-
part. The neutral evolution of modularity towards favourable configurations is
necessarily gradual, else favourable configurations would be difficult to maintain
within the population and neutral walk would be stifled.

It was shown that evolution of a modular target can give rise to punctuated
evolutionary characteristics. This was suggested as a result of delayed discov-
ery of foundations of significant functional components. Once such a foundation
is discovered, however, evolution continues apace, exploiting lower-level com-
ponents and providing significant, but viable, phenotypic change. This is also
consistent with facilitated variation [10], which postulates the means by which
minimal genotypic mutation can trigger significant, but viable, phenotypic
change (e.g. a second set of insect wings [10, p. 190]).
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Future work will seek to further understand evolvability issues in EBDDIN
and other representations. A deeper understanding of evolvability, its emergence
and the mechanisms that facilitate it will aid in the design of new EAs that
address scalability issues for application-specific problems.
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Abstract. We present N-gram GP, an estimation of distribution algorithm for the
evolution of linear computer programs. The algorithm learns and samples a joint
probability distribution of triplets of instructions (or 3-grams) at the same time as
it is learning and sampling a program length distribution. We have tested N-gram
GP on symbolic regressions problems where the target function is a polynomial
of up to degree 12 and lawn-mower problems with lawn sizes of up to 12 × 12.
Results show that the algorithm is effective and scales better on these problems
than either linear GP or simple stochastic hill-climbing.

1 Introduction

Estimation of distribution algorithms (EDAs) (see [4] for a review) are powerful
population-based searchers where the variation operations traditionally implemented
via crossover and mutation in evolutionary algorithms are replaced by the process of
sampling from a distribution. For example, PBIL [2] and UMDA [6] assume that the
distribution is a product of univariate marginals. EDAs modify the distribution gener-
ation after generation, using information obtained from the more fit individuals in the
population. The objective of these changes is to increase the probability of generating
individuals with high fitness. Different algorithms use different models for the proba-
bility distribution that controls the sampling.

There have been several applications of EDA-style probabilistic model-based evo-
lution to tree-based GP; we review several below and provide a full literature review
in [8]. In PIPE [11], the first EDA-type GP system, the population is replaced by a
hierarchy of probability tables organised into a tree, where each table represents the
probability that a particular instruction be at that particular location in a newly gener-
ated program tree. eCGP [12] assumes that all trees will be created by sampling within
a maximal tree and partitions the nodes in this tree into groups. The co-occurrence of
the nodes in each group is modelled by a full joint distribution table. EDP [16] uses
a conditional probability table which can, in principle, capture more complex depen-
dencies between nodes. As in eCGP and PIPE, programs are tree-like and are assumed
to always fit within an ideal maximal full tree. A hybrid between EDP and GP was
proposed in [17].

Various other systems have been proposed which combine the use of grammars and
probabilities.1 For example, [10] used a stochastic context free grammar to generate

1 In fact, there is a fundamental equivalence between probabilistic grammars and other proba-
bilistic approaches (see [14] for a detailed explanation).

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 206–217, 2008.
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program trees. The probability of application of each rewrite rule was adapted using
a standard EDA approach so as to increase the probability of application of successful
rules. Slightly more general is the approach taken in PEEL (Program Evolution with Ex-
plicit Learning) [13], where a probabilistic L-system is used with rewrite rules that are
depth- and location-dependent and have associated probabilities of application which
are adapted by an Ant Colony Optimisation (ACO) algorithm. Another programming
system based on a probabilistic grammar optimised via ant systems is ant-TAG [1].

While there is a significant amount of prior work, there has been no application
of EDA-style ideas to linear GP. This paper starts filling this gap by proposing N-gram
GP, an EDA-type GP system capable of evolving machine-language-type programs [7].
A further novelty is our use of n-grams, borrowed from the field of natural language
processing, to represent regularities in the language necessary to solve a problem.

2 N-Gram GP

An n-gram is a group of n consecutive items from a longer sequence. For example,
a b, b c and c d are all 2-grams from the sequence a b c d, while a b c and b c d are 3-
grams. The items in the sequence can be of a variety of types, including words from
natural language, base pairs in a DNA fragment, and phonemes in a speech record-
ing. Very often n-grams are used for the purpose of modelling the statistical prop-
erties of sequences, particularly natural language [15,9,5]. In particular, an n-gram
model assumes that the probability of a particular symbol appearing in a sequence
depends only on what appeared before that symbol and in its vicinity in the sequence.
More formally, if we imagine that a particular sequence x1,x2, . . . is an instantiation
of a family of stochastic variables X1,X2, . . . , the assumption is that, for any k-gram,
Pr{Xi = xi|Xi−1 = xi−1, . . . ,Xi−k+1 = xi−k+1} is independent of i and is sufficient to
correctly capture the probability of Xi taking the value xi in a particular sequence.

In this work we will use an n-gram distribution to generate linear computer programs,
that is sequences of instructions from the assembly language of a register-based CPU,
as in linear GP [7]. We will limit our attention to the case of 3-grams. So, if P =
{p1, p2, . . . , pN} is the primitive set, our model of the language can then be represented
by a matrix M(3) = (ml,m,n) with elements ml,m,n = Pr{Xi = pn,Xi−1 = pm,Xi−2 = pl},
where the indices l, m, and n range over the set {1, . . . ,N}. From this matrix we derive
two further matrices, M(2) = (ml,m) and M(1) = (ml), with elements ml,m = ∑n ml,m,n

and ml = ∑m ml,m, respectively. So, the elements of these matrices are marginals of the
distribution Pr{Xi = pn,Xi−1 = pm,Xi−2 = pl}.

Note that, in general, by definition Pr{Xi = xi,Xi−1 = xi−1, . . . ,Xi−k+1 = xi−k+1}
= Pr{Xi = xi|Xi−1 = xi−1, . . . ,Xi−k+1 = xi−k+1}×Pr{Xi−1 = xi−1, . . . ,Xi−k+1 = xi−k+1}.
So, the elements of M(3) are proportional to Pr{Xi = pn|Xi−1 = pm,Xi−2 = pl}, the el-
ements of M(2) are proportional to Pr{Xi−1 = pm|Xi−2 = pl}, and, finally, the elements
of M(1) are proportional to the priors Pr{Xi−2 = pl}.

Assuming that the matrices M(1), M(2) and M(3) are available, one can then use them
to generate sequences of instructions with the same statistical properties as the language
the n-gram model is supposed to represent. The process starts by sampling the primitive
set P using probability distribution M(1) to obtain the first instruction of a program.
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The second instruction is drawn by using the distribution prescribed by the row of M(2)

corresponding to the first primitive. The third and all subsequent instructions are then
drawn using the appropriate entries from M(3). (See Alg. 1 for more details.)

How does this process terminate? If one of the instructions in the primitive set P is
an EXIT instruction of some type, the construction process can naturally terminate when
such an instruction is drawn. The program length distribution is then determined by the
probability of drawing EXIT instructions. An alternative, which gives more control on
program length, is to dispense with the EXIT instruction and instead explicitly represent
and update a program length distribution. In this case a length is first drawn from the
length distribution, and programs are then grown up to the prescribed length. In this
paper we take the latter approach.

One option when explicitly representing the length would be to add an extra dimen-
sion to our N-gram model, making it possible to learn different 3-gram distributions
for different length classes. However, this is problematic. The matrix M(3) is of size N3,
where N is the size of the primitive set. Extending the model to 4 dimensions implies an
increase in the number of parameters to be learnt by two or more orders of magnitude,
which is a distinct disadvantage. So, we decided in this initial research to focus on a
system where program length is independent from program primitives. That is, we as-
sume that the joint distribution of 3-grams and length is a product of the form M(3) ×PL,
where PL is the length distribution. The construction of new programs, therefore, pro-
ceeds as shown in Alg. 1.

So far we have assumed that the distributions M(3) and PL were somehow available.
Now we look at how we construct such models. We do this using a standard EDA
approach with minor modifications as shown in Alg. 2. We start by initialising the dis-
tributions PL and M(3). If we have no prior information on the problem to be solved (as
is assumed in all experiments reported in the paper), the most natural initialisation is
the uniform distribution. If �max represents the maximum program size we are interested
in, then all entries of PL are initialised to 1/�max. Similarly, all the entries of M(3) are
initialised to 1/N3. Then, after projecting M(3) to obtain its marginals, we proceed to
construct a new population. This is, for the most part, created by sampling from our
model (the distribution M(3) ×PL). However, occasionally (on average once per genera-
tion) the best individual seen so far in the run is reintroduced to guarantee stability in the
estimated distribution. To maintain diversity and ensure that the search continues even
after many entries of M(3) converge to 0, we follow standard EDA practice and perform
point mutation (at a low per-locus rate) on the individuals returned by the genProgram
routine. Like in many EDAs, the population then undergoes a step of truncation selec-
tion, where the best individuals are stored in a set elite which is then used to update
the program distribution; in this work we used the top 1/5 of the population for elite.

The update of the distribution is performed independently for PL and M(3) using an
additive update rule as shown in Alg. 3. Note that the arrays are not explicitly zeroed
before they are updated. In this way the model used to produce individuals at one partic-
ular generation can depend also on successful individuals discovered in previous gen-
erations in the run. How much the current elite influences the model depends on two
learning rates, ηM and ηL. If desired, these can be made arbitrarily big. When ηM � 1
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Algorithm 1. Program generation algorithm for N-gram GP.

genProgram( M(1), M(2), M(3), PL)
1: Select program length, � > 0 based on the probabilities stored in the distribution PL {Perform

a roulette wheel selection on the entries of PL}
2: Select the first instruction, x1, based on the probabilities stored in M(1) {via roulette wheel}
3: If � > 1 select the second instruction, x2, based on the probabilities stored in the x1-th row of

M(2), which we indicate with M(2)
x1 {Again this is done via roulette wheel selection on M(2)

x1 }

4: for i = 3 to � do
5: Select xi based on M(3)

xi−2,xi−1 {M(3)
xi−2,xi−1 is the xi−2-th row in the xi−1-th page of M(3)}

6: end for
7: return x1,x2, · · · ,x�

Algorithm 2. N-gram GP main loop.
N-gram-GP
1: Initialise the distributions PL and M(3)

2: repeat
3: Compute marginals of M(3) to obtain M(1) and M(2)

4: for i = 1 . . .popsize do
5: With probability 1/popsize, pop[i]= best individual found so far
6: With probability1−1/popsize, pop[i]=mutate(genProgram(M(1),M(2),M(3),PL))
7: end for
8: elite = truncationSelection( pop )
9: updateProbabilities( PL, M(3), elite )

10: until Solution found or max number of iterations exhausted
11: return best individual found

and ηL � 1, PL and M(3) are almost entirely determined by the current elite, effectively
independent of the previous history of the run.

3 Experimental Results

3.1 Problems and Primitive Sets

We used two families of test problems: Polynomial and Lawn-Mower. Polynomial is
a symbolic regression problem where the objective is to evolve a function which fits a
polynomial of the form x+x2 + · · ·+xd , where d is the degree of the polynomial, and x is
in the range [−1,1]. In particular we considered degrees d = 5, . . . ,12, and we sampled
the polynomials at the 21 equally spaced points x ∈ {−1.0,−0.9, . . . ,0.9,1.0}. Fitness
(to be minimised) was the sum of the absolute differences between target polynomial
and the output produced by the program under evaluation over these 21 fitness cases.
Polynomials of this type have been widely used as benchmark problems in the GP
literature. However, we are unaware of any experiments with degrees as high as the
ones we consider here.
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Algorithm 3. Learning in N-gram GP.

updateProbabilities( PL, M(3), elite )
1: for all x in elite do
2: � = length( x )
3: PL,� = PL,� +ηL/�max

4: for j = 3 . . . � do

5: M(3)
x j−2,x j−1,,x j = M(3)

x j−2,x j−1,x j +ηM/N3

6: end for
7: end for
8: M(3) = M(3)/∑l,m,n M(3)

l,m,n
9: PL = PL/∑l PL,l .

Table 1. Primitive sets used in our experiments (% represents protected division, which returns
its first argument if the second argument is zero)

Polynomial Lawn
ID PlusTimesSwapR1R2 AllOpsSwapR1R2 Mower

0 R1 = RIN R1 = RIN Mow
1 R2 = RIN R2 = RIN Left
2 R1 = R1 + R2 R1 = R1 + R2 Right
3 R2 = R1 + R2 R2 = R1 + R2
4 R1 = R1 * R2 R1 = R1 * R2
5 R2 = R1 * R2 R2 = R1 * R2
6 Swap R1 R2 Swap R1 R2
7 R1 = R1 - R2
8 R2 = R1 - R2
9 R1 = R1 % R2

10 R2 = R1 % R2

For these problems we considered two primitive sets: PlusTimesSwapR1R2, that is
particularly suitable for the solution of this problem, and AllOpsSwapR1R2 which is a
superset of PlusTimesSwapR1R2 containing two spurious primitives. These primitive
sets are detailed in the first two columns of Table 1. The instructions refer to three
registers: the input register RIN which is loaded with the value of x before a fitness
case is evaluated and the two registers R1 and R2 which can be used for numerical
calculations. R1 and R2 are initialised to x and 0, respectively. The output of the program
is read from R1 at the end of its execution.

Lawn-Mower is a variant of the classical Lawn Mower problem introduced by Koza
in [3]. As in the original version of the problem, we are given a square lawn made up
of grass tiles. In particular, we considered lawns of size d × d with d = 5, . . . ,12. The
objective is to evolve a program which allows a robotic lawnmower to mow all the grass.
In our version of the problem, at each time step the robot can only perform one of three
actions (see Table 1): move forward one step and mow the tile it lands on (Mow), turn
left by 90 degrees (Left) or turn right by 90 degrees (Right). In the original problem
fitness (to be minimised) was measured by the number of tiles left non-mowed at the
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end of the execution of a program; whether or not the lawnmower kept visiting other
tiles after finishing the job was not considered a relevant part of the problem. This makes
the problem rather easy to solve and uninteresting if the GP system is allowed to grow
large enough programs. So, to make the problem more difficult, we implemented two
further constraints. First, we limited the number of instructions allowed in a program
to a small multiple of the number of tiles available in the lawn (more precisely 4 × d2).
Second, we required the lawnmower to be energy efficient, so we added corrections to
the fitness function which encouraged the evolution of rapidly-mowing programs and
programs that stop immediately after having cut the last grass patch:

fitness =
{

0.0001 × extraMoves if all tiles mowed
0.1 × progLength+ numUnmowedTiles otherwise

where extraMoves is the number of moves made after the last tile was mowed.

3.2 Other Algorithms Used for Comparison

In order to evaluate the strengths and weaknesses of N-gram GP, we tested it against two
other techniques: simple stochastic hill climbing and a traditional linear GP system. All
algorithms were given the same number of fitness evaluations (20,000 in all experiments
reported in the paper) and were individually optimised (by doing a large sweep of their
parameter space) to maximise their performance on our test problems. These parameters
are detailed in Table 2.

The hill climber is initialised by choosing a random program length between 1 and
�max and then generating a random program of that length. From then on, the algorithm
repeatedly attempts to improve over the best individual seen so far by randomly mu-
tating it. The algorithm has two equally probable mutation operations to choose from.
The first is point mutation which is applied to the primitives of the best program with
a mutation rate of p/� where � is the length of the current best program and p is a
parameter (p = 2 in our experiments). This form of mutation cannot change program
length. The second form of mutation is effectively subtree mutation applied to linear
sequences. I.e., a random mutation point is chosen in the parent individual, all of the
instructions following the mutation point are excised, and they are replaced by a newly
generated random sequence. As a result, the offspring program can have a length which
is different from the parental length.

Our linear GP system works as follows. It initialises the population by repeatedly cre-
ating random individuals using the same distribution as for the initialisation of the hill
climber, and evaluating their fitness. Then a typical steady state evolutionary loop starts.
At each iteration the algorithm decides whether to create a new individual via mutation
or crossover. If mutation is chosen, a parent individual is selected via tournament selec-
tion (with tournament size 2), and an offspring is generated using the same algorithm as
for the hill climber (i.e., we use point mutation 50% of the time, and subtree mutation
the other 50% of the time). If crossover is chosen, we select two parents (again, via tour-
nament selection) and apply homologous two-point crossover with 50% probability, and
subtree crossover with 50% probability. Subtree crossover involves the selection of one
crossover point in each parent, and the swap of the instructions following the crossover
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Table 2. Parameter settings for hill-climber, linear GP and N-gram GP

Parameter Hill-Climber Linear GP N-gram GP
Fitness evaluations 20,000 20,000 20,000
Independent runs 1,000 1,000 1,000
�max Polynomial Problem 100 100 100

Lawn-Mower 4×d2 4×d2 4×d2

Point mutation rate (per primitive) 2
�

1
�

0.25
�

Population size 1 500 10
Generations 20,000 40 2,000
Crossover rate (per individual) n/a 0.9 n/a
Mutation rate (per individual) 1 0.1 1
Tournament size n/a 2 n/a
Truncation selection ratio n/a n/a 5
ηM learning rate n/a n/a 8
ηL learning rate n/a n/a 0.075

points. Homologous crossover requires choosing the same crossover points in both par-
ents. Irrespective of the genetic operation chosen, the individual picked for replacement
is selected via a negative tournament.

3.3 Performance Results

Fig. 1(a) shows a comparison of the success rate obtained by the hill climber, the N-
gram GP and the linear GP on Polynomial problems of degrees from 5 to 12, when
using the PlusTimesSwapR1R2 primitive set. It is apparent how the use of a small set of
suitable primitives makes the problem solvable for all techniques tested. Unsurprisingly,
the simple hill-climber does well on the relatively easy instances, but its performance
is unsatisfactory for d bigger than 9 or 10. On the contrary, the performance of the
linear GP never really drops to unacceptable levels. Furthermore, both linear GP and
the hill-climber do marginally better than the N-gram GP for small d. On the more
difficult problems, however, N-gram GP shows much better performance. Furthermore,
its performance drops more slowly than the other techniques as d increases, suggesting
better scalability on these problems.

As illustrated in Fig. 1(b), the use of a larger-than-necessary primitive set
(AllOpsSwapR1R2) makes the problem harder, because the size of the search space in-
creases enormously without a corresponding increase in the size of the solution space.
In these conditions, a searcher would need more time and resources to identify solu-
tions. However, in this work, all problems, searchers and primitive sets are compared
using the same number of fitness evaluations, leading to generally poorer performance.
Despite this general trend, all observations we made for Fig. 1(a) appear to be valid for
Fig. 1(b) as well. In particular the N-gram GP system still shows superior scalability
and higher performance on the harder problems.

Finally, let us consider the Lawn-Mower problem. Again the simple hill-climber is
the weakest of all searchers. Linear GP is marginally superior to N-gram GP for small
problem sizes. However, its performance rapidly degrades, becoming unacceptable for
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Fig. 1. Success rate of hill climber, N-gram GP and linear GP on Polynomial problems of degrees
from 5 to 12, when using the PlusTimesSwapR1R2 primitive set (a) and the AllOpsSwapR1R2
primitive set (b). Parameters are as detailed in Table 2.

problems of size d = 11 or larger. Conversely, N-gram GP’s performance degrades
much more gracefully, leading it to being still able to solve problems of size d = 12 in
about one third of runs.

4 Analysis and Discussion

The results from Sec. 3.3 clearly show that N-gram GP outperforms hill-climbing and
often also linear GP, so the N-gram GP is obviously learning during a run. What is being
learned, and how is that happening? Presumably, if there is learning going on, it is in the
proportions being stored in the M(i) and PL arrays. To better understand this learning,
we will examine the kinds of bias that develops in these matrices in successful runs.

Of particular interest is whether (and how) N-gram GP learns longer patterns when
limited to only keeping statistics on the occurrence of triplets. Even though N-gram GP
can only learn triplets, there can obviously be correlations across multiple triplets; if
wxy and xyz both have high probabilities, then the 4-tuple wxyz is a likely outcome if
one starts with wx. To what degree does N-gram GP utilise this opportunity? How long
are the patterns that it learns? What role does repetition play in those patterns?

To address these questions, we took successful runs, generated probability trees based
on the distribution matrices, and catalogued programs that were generated with high prob-
abilities. In every instance that we explored, there were clear patterns of instructions cap-
tured in the distribution matrices. In Sec. 3.3, the runs were halted once the goal was
discovered. The distribution matrices often were not strongly converged when the goal
was first found, so for this section we allowed runs to continue through the maximum
allowed number of fitness evaluations, regardless of whether a solution was discovered.
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Fig. 2. Success rate of hill climber, N-gram GP and linear GP on Lawn-Mower problems with
lawn sizes from 5×5 to 12×12. Parameters are as detailed in Table 2.

This gave the distribution matrices the opportunity to continue converging after finding
the goal, making it easier to see what was being learned. To make it easier to present long
sequences of instructions, and to see patterns in those sequences, we will present pro-
grams as sequences of the integer IDs of the instructions, using the IDs given in Table 1.

4.1 Polynomial

To simplify our analysis of the polynomial problems, we will consider each sequence
of instructions as a mapping from one state of the system to another. Since the state in
the regression problems is fully determined by the contents of the registers, we can rep-
resent that state as an ordered tuple. In the two register problems, for example, we can
use an ordered pair (r1,r2) to represent the values of R1 and R2, respectively. Consider,
for example, the pair of instructions represented by the index sequence 53, namely in-
struction 5 (R2 = R1 * R2) followed by instruction 3 (R2 = R1 + R2). If we start the
system in state (a,b) (where a and b represent arbitrary initial values) and execute this
pair of instructions we end in the state (a,a(b + 1)).

It turns out that polynomials of the form x + x2 + · · ·+ xd can be easily constructed
in a highly patterned way using our simple instruction set. In one run, for example,
with the degree 7 target (x+x2 + · · ·+x7), the evolved distribution matrices have a high
probability of generating sequences containing repetitions of the instruction pair 53,
such as the solution 1535353535352. Here the initial instruction (1) loads x into R2,
which, because R1 is initialised to contain x, means that our state is (x,x) after that first
instruction. The first pair 53 then maps this to (x,x + x2), the second to (x,x + x2 + x3),
and so on until the last 53 pair yields the state (x,x + x2 + x3 + x4 + x5 + x6). The final
pair is 52 which has a similar effect, but leaves the result in R1, so we have the final
state (x + x2 + · · ·+ x7,x2 + x3 + x4 + x5 + x7), which has our target function in R1.

This solution is actually somewhat brittle because it depends crucially on getting
the final 52 pair at the end, while having 53’s everywhere else. This is reflected in the
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probability matrices, where the probability of following 35 with a 3 is 66%, while the
probability of following 35 with a 2 is only 1.3%. Contrast this with the probabilities
following the pair 53, where the probability of a 5 is greater than 99.999%. Conse-
quently the system has learned that the sequence 53 should always be followed by a 5,
where the sequence 35 should usually be followed by 3, but occasionally by a 2 instead.

A somewhat more robust solution found on another run is 3412412412412412412.
Here the only “novelty” is the initial 3, which ensures that both registers have a copy
of the argument x at the beginning. Then the pattern 412 generates the sequence of
polynomials x, x+x2, x+x2 +x3, . . . , x+x2 +x3 +x4 +x5 +x6 +x7 in R1. This solution
is also interesting in that it in fact generates every polynomial of the form x+x2 + · · ·+
xd , and all that is necessary to generate polynomials of other degrees is to increase or
decrease the number of 412 triplets appropriately.

One might reasonably assume that the probability of generating the sequence 412
must be very high in this solution, perhaps approaching 1. It is, however, 83% which,
while quite high, certainly is not high enough to ensure long repeated sequences of
412 triples. Looking at the length distribution, it turns out that the length 91 is far and
away the most likely length in this run (an order of magnitude more likely than any
other length in PL). 91 instructions is obviously far more than necessary to solve this
problem, so a successful 91 instruction program based on the 412 pattern is going to
have to “get lucky” and have some instructions re-write R1 to x towards the end, leaving
just the right number of 412 triples at the end. This, however, requires that there is some
reasonable chance of “escaping” runs of 412, which presumably accounts for the lower
than expected probability for this key triplet. If this run had settled on a shorter length,
one might expect the probability of generating the 412 sequence to be higher.

Tests with functions with more complex structure, e.g., the polynomials of the form
xd +2xd−1 +3xd−2 + · · ·+d x (not reported due to space limitations), show that N-gram
GP is capable of learning correlations that allow it to construct important sequences that
are considerably longer than the triplets actually tracked in the distribution matrices.
For example, in one case, N-gram GP solve a problem by learning a sequence of 9
instructions and setting triplets probabilities so that this sequence was generated with
roughly 63% probability, which is over 500,000 times more likely than choosing it at
random from a uniform distribution of sequences of seven instructions. N-gram GP
is thus clearly capable of capturing and using long distance correlations despite only
tracking the distribution of 3-grams.

4.2 Lawnmower

In contrast to the polynomial regression problems discussed above, the lawnmower
problem requires much less precision in the sequence of instructions, and consequently
the distribution matrices do not converge as strongly on a specific sequence.

One representative run, for example, is capable of generating a whole variety of
sequences of instructions, with much less obvious patterning, including sequences such
as 0000000001002 . . ., 0000000020202 . . ., and 2001122020020 . . . . Still, while there
are not clear sequences of instructions, there are definite trends in the distribution of
instructions. This run has a high probability (74%) of starting with a Mow instruction,
and given an initial Mow instruction, again a high probability (75%) of following that
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with a second Mow instruction. In general Mow instructions are very likely throughout,
as we would expect, while other combinations are quite uncommon. A Mow-Right pair
has effectively no chance of being followed by a Left, which seems reasonable as
a Right-Left sequence is effectively a NO-OP; in fact a Mow-Right pair is almost
always followed by another Mow.

As an indication of the trends in the evolved distribution matrices, there are five initial
sequences of length 8 that have a cumulative probability of at least 0.0001 of being
generated: 00000000, 00000200, 00002000, 00020000 and 00200000. Mow instructions
obviously dominate, with at most one other instruction in each case (which is in fact
always a Right). So, in the lawnmower problem, instead of learning specific sequences
of instructions to mow the lawn, N-gram GP develops stochastic space filling strategies.

5 Conclusions

We presented N-gram GP, an EDA for the evolution of linear computer programs. The
algorithm learns and samples the joint probability of 3-grams of instructions at the same
time as it is learning and sampling a program length distribution.

This work has several interesting features. Firstly, while several authors have ex-
tended EDAs to evolve computer programs, virtually all have done so for a tree repre-
sentation. Here, for the first time, we explore the application of EDAs to a linear GP.
The second distinctive feature of this work is that we explictly represent the program
length distribution to be used during the search. With tree-based representations this is
not used, since the primitive set always includes terminals, which, if drawn with suffi-
ciently high frequency can terminate the construction of programs. A disadvantage of
relying on terminal selection is that the probability of drawing terminals is totally un-
der the control of evolution. Thus the user has no control over the size of the evolved
programs, which, if unchecked, can easily become excessive. So, often hard limits on
program depth or length must be artificially enforced, producing an undesirable bias.
Here, by explicitly modelling the size distribution we instead have a natural way of
limiting the search to programs of manageable size, without introducing any undesired
bias. Finally, previous work has tended to use different probability distributions for
different positions (or loci) in a tree, thereby expanding significantly the size of the pa-
rameter space in which the model lives. This is not a problem per se, but one must keep
in mind that the more parameters a model has the more information must be collected
from the search space to properly set those parameters, while still avoiding over-fitting.
In N-gram GP we borrow from the field of natural language processing, using n-grams
to represent regularities in the language necessary to solve a problem. This means that
we use the same distribution for all loci in a program (except the first two, of course).
This leads to a much smaller model space, where models can thus reliably be identified
with less sampling, and with a higher degree of regularity in the evolved solutions.2

In our tests with two problem classes the N-gram GP system has been a very ef-
fective solver. Furthermore, its scalability has been significantly better than the simple

2 Regular solutions to a problem are normally more compact and easier to interpret. However,
whether or not highly regular solutions exist for a particular problem, or are easier to find than
irregular ones, depends on the problem. If there is regularity, N-gram GP can exploit it.
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hill-climber and linear GP, leading it to routinely solve problems of a difficulty which
is way beyond what can be tackled by the other two algorithms tested.
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Abstract. The goal of reinforcement learning is to find a policy that
maximizes the expected reward accumulated by an agent over time based
on its interactions with the environment; to this end, a function of the
state of the agent has to be learned. It is often the case that states are
better characterized by a set of features. However, finding a “good” set of
features is generally a tedious task which requires a good domain knowl-
edge. In this paper, we propose a genetic programming based approach
for feature discovery in reinforcement learning. A population of individ-
uals, each representing a set of features, is evolved, and individuals are
evaluated by their average performance on short reinforcement learning
trials. The results of experiments conducted on several benchmark prob-
lems demonstrate that the resulting features allow the agent to learn
better policies in a reduced amount of episodes.

1 Introduction

Reinforcement learning (RL) is the problem faced by an agent that is situated
in an environment and must learn a particular behavior through repeated trial-
and-error interactions with it [1]; at each time step, the agent observes the state
of the environment, chooses its action based on these observations and in return
receives some kind of “reward”, in other words a reinforcement signal, from
the environment as feedback. Usually, it is assumed that the decision of the
agent depends only on the current state but not on the previous ones, i.e. has
the Markovian property. The aim of the agent is to find a policy, a way of
choosing actions, that maximizes its overall gain. Here, the gain is defined as
a function of rewards, such as the (discounted) sum or average over a time
period. Unlike supervised learning problem, in RL correct input/output pairs,
i.e. optimal action at a given situation, are not presented to the agent, nor sub-
optimal actions explicitly corrected. One key aspect of RL is that the rewards
can be delayed in the sense that immediate rewards received by the agent may
not be reflecting the true values of the chosen actions. For example, in the game
of chess a move which causes your opponent to capture a piece of yours can be
regarded as a “bad” move. However, a series of such moves on purpose may be
essential to win the game and consequently receive a higher reward in the future.
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There are two main approaches for solving RL problems. In the first approach,
the agent maintains a function V π(s), called value function, that estimates the
expected return when starting in state s and following policy π thereafter, and
tries to converge to the value function of the optimal policy. The policy is in-
ferred from the value function. Alternatively, in direct policy search approaches,
the policy is represented as a parameterized function from states to actions and
an optimal policy is searched directly in the space of such functions. There also
exist methods that combine both approaches. Note that, in any case, the func-
tions that we are learning (either value function, policy, or both) are naturally
functions of the state (observation) variables. However, in a given problem (i)
all these variables may not be relevant, which leads to feature selection problem,
i.e. selecting a subset of useful state variables, or worse (ii) in their raw form
they may be inadequate for successful and/or efficient learning and it may be
essential to use some kind of feature discovery.

The most obvious situation where the second case emerges is when the number
of states is large, or infinite, and each state variable reflects limited and local
information about the problem. Let us consider the popular game of Tetris.
In Tetris, traditionally each state variable corresponds to the binary (occu-
pied/empty) status of a particular cell of the grid. Not only the number of
possible states increases exponentially with respect to the size of the grid, but
also each state variable tells very little about the overall situation. A human
player (most successful computer players as well) instead takes into consider-
ation more informative features that are computable from the state variables,
such as the height of each column or the number of holes in the occupied regions
of the grid, and decides on his actions accordingly. Similar reductions are also
quite common in other domains, such as image processing applications where
instead of the raw bitmap various high level features derived from it are fed into
learning algorithms. On the other end of the spectrum, in some cases, additional
features can be useful to improve the performance of learning. An example of
this situation is presented in Fig. 1 for the classical cart-pole balancing problem.
By adding sine and cosine of the pole’s angle as new features to existing state
variables, optimal policy can be attained much faster. A related question is, of
course, given a problem what these features are and how to find them. Note
that feature discovery, which will also be our main objective, is a more general
problem and includes feature selection as a special case.

Usually, the set of features that are to be used instead of or together with
state variables are defined by the user based on extensive domain knowledge.
They can either be fixed, or one can start from an initial subset of possible
features and iteratively introduce remaining features based on the performance
of “the current set”, this is the feature iteration approach [2]. However, as the
complexity of the problem increases it also gets progressively more difficult to
come up with a good set of features. Therefore, given a problem, it is highly
desirable to find such features automatically solely based on the observations of
the agent. In this paper, we report using a Genetic Programming (GP) [3] based
approach for that purpose. Our aim is to find functions of state variables (and
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Fig. 1. In the cart-pole problem, the objective is to hold a pole, which is attached to a
cart moving along a track, in upright position by applying force to the cart. The state
variables are the pole’s angle and angular velocity and the cart’s position and velocity.
Learning performance of policy gradient algorithm with Rprop update [4] when sine
and cosine of the angle of the pole are added as new features, and using the features
found by GP.

possibly other basis functions) that, when used as input, result in more efficient
learning. Without any prior knowledge of the form of the functions, GP arises as
a natural candidate for search and optimization within this context. Compared
to other similar methods, such as neuro-evolutionary algorithms, it allows the
user to easily incorporate domain knowledge into the search by specifying the
set of program primitives. Furthermore, due to their particular representation,
the resulting functions have the highly desirable property of being interpretable
by humans and therefore can be further refined manually if necessary.

The rest of the paper is organized as follows: In Sect. 2, we review related
work on feature discovery in RL and GP based approaches. Section 3 describes
our method in detail. Section 4 presents empirical evaluations of our approach
on some benchmark problems. We conclude in Sect. 5 with a discussion of results
and future work.

2 Related Work

Feature discovery is essentially an information transformation problem; the in-
put data is converted into another form that “better” describes the underlying
concept and relationships, and “easier” to process by the agent. As such, it
can be applied as a preprocessing step to a wide range of problems and it has
attracted attention from the data-mining community.

In [5], Krawiec studies the change of representation of input data for ma-
chine learners and genetic programming based construction of features within
the scope of classification. Each individual encodes a fixed number of new feature
definitions expressed as S-expressions. In order to determine the fitness of an in-
dividual, first a new data set is generated by computing feature values for all
training examples and then a classifier (decision tree learner) is trained on this
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data set. The resulting average accuracy of classification becomes the evaluation
of the individual. He also proposes an extended method in which each feature of
an individual is assigned a utility that measures how valuable that feature is and
the most valuable features are not involved in evolutionary search process. The
idea behind this extension is to protect valuable features from possible harm-
ful modifications so that the probability of accidentally abandoning promising
search directions would be reduced. It is possible to view this extension as an
elitist scheme at the level of an individual. While Krawiec’s approach has some
similarities with our approach presented in this paper, they differ in their fo-
cus of attention and furthermore we consider the case in which the number of
features is not fixed but also determined by GP.

Smith and Bull [6] have also used GP for feature construction in classification.
However, they follow a layered approach: in the first stage, a fixed number of new
features (equal to the number of attributes in the data set subject to a minimum
7) is generated as in Krawiec (again using a decision tree classifier and without
the protection extension), and then a genetic algorithm is used to select the most
predictive ones from the union of new features and the original ones by trying
different combinations. Although their method can automatically determine the
number of features after the second stage, in problems with a large number of
attributes the first stage is likely to suffer as it will try to find a large number
of features as well (which consequently affects the second stage).

In RL, Sanner [7] recently introduced a technique for online feature discovery
in relational reinforcement learning, in which the value function is represented
as a ground relational naive Bayes net and structure learning is focused on fre-
quently visited portions of the state space. The features are relations built from
the problem attributes and the method uses a variant of the Apriori algorithm
to identify features that co-occur with a high frequency and creates a new joint
feature as necessary.

The more restricted feature selection problem can easily be formulated us-
ing a fixed-length binary encoding. It has been extensively studied within the
soft computing community, and in particular, various genetic algorithm (GA)
based methods have been proposed. One of the earliest works is by Siedlecki
and Sklansky in which GA is used to find the smallest subset of features such
that the performance of a classifier meets the specified criterion [8]. We refer the
interested reader to [9] and [10] for reviews of related work.

3 Feature Discovery in RL Using GP

When GP is being applied to a particular problem, there are three main issues
that need to be addressed: (i) structure and building blocks (i.e. primitive func-
tions and terminals) of the individuals, (ii) set of genetic operators, and (iii)
fitness function. In our case, due to the fact that we are interested in identifying
useful features for a given RL problem, each individual must essentially be a pro-
gram that generates a set of features based on the state variables. Consequently,
state variables are the independent variables of the problem and are included in
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the set of terminals together with (ephemeral) constants and possible problem
specific zero argument functions. An individual consists of a list of S-expressions,
called feature-functions ; each S-expression corresponds to a unique feature repre-
sented as a function of various arithmetic and logical operators and terminals in
parenthesized prefix notation. This particular representation of an S-expression
lends itself naturally to a tree structure. Given the values of state variables,
the values of features can be calculated by traversing and evaluating the cor-
responding S-expressions. In our implementation, instead of directly using the
tree forms, we linearized each S-expression in prefix-order and then concatenated
them together to obtain the final encoding of the individual. This compact form
helps to reduce memory requirements and also simplifies operations. As we will
describe later, each individual is dynamically compiled into executable binary
form for evaluation and consequently this encoding is accessed/modified only
when genetic operators are applied to the individual.

Note that the number of useful features is not known a priori (we are indeed
searching for them) and has to be determined. Instead of fixing this number to an
arbitrary value, we allowed the individuals to accommodate varying number of
feature functions (S-expressions) within a range, typically less than a multiple of
the number of raw state variables, and let the evolutionary mechanism search for
an optimal value. To facilitate the search, in addition to regular genetic operators
presented in Table 1 we also defined a single-point crossover operator over the
feature function lists of two individuals. Let n and m be the number of features
of two individuals selected for cross-over, and 0 < i < n and 0 < j < m be
two random numbers. The first i features of the first individual are merged with
the last m − j features of the second individual, and the first j features of the
second individual are merged with the last n−i features of the first individual to
generate two off-springs (Fig. 2). The generated off-springs contain a mixture of
features from both parents and may have different number of features compared
to them.

Fig. 2. Single point cross-over on feature lists of two individuals. Cross-over point is
shown by vertical dashed line. The number of features represented by the off-springs
differ from that of their parents.

Since our overall goal is to improve the performance of learning, the obvious
choice for the fitness of an individual is the expected performance level achieved
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Table 1. Genetic operators

Cross-over One of the nodes in any feature function of an individual and the whole
branch under it is switched with another node from another individual in the
population.

Mutation (node) One of the nodes in any feature function of an individual is sub-
stituted with another compatible one – a terminal or a zero argument function is
replaced with a terminal or a zero argument function, and an n-ary operator is
replaced with an n-ary operator. Note that the branch under the mutated node, if
any, is not affected.

Mutation (tree) One of the nodes in any feature function of an individual and
the whole branch under it is substituted with a new randomly generated sub-tree
having a depth of 3 or less.

Shrinkage One of the operator nodes in any feature function of an individual is
substituted with one of its children.

Feature-list cross-over See text and Fig. 2.

by the agent when the corresponding feature functions are applied on a particu-
lar RL algorithm on a particular problem. In this work, we opted for two different
algorithms, namely λ policy iteration and policy gradient method with RProp
update; they are described in more detail in Sect. 4. In both RL algorithms, we
represented the value function and the policy as a linear combination of feature
functions, hence the parameters correspond to the coefficients of each feature
function. The fitness scores of individuals are calculated by taking their average
performance over a small number (around 4-10) of short learning trials using
the corresponding RL algorithm. In the experiments, we observed that both al-
gorithms converge quickly towards an approximately optimal policy when the
basis feature functions capture the important aspects of the complicated non-
linear mapping between states and actions. We also penalized feature functions
according to their size to avoid very large programs, but in practice we observed
that this penalization had very little effect as feature sets consisting of simpler
functions tend to perform better and receive higher scores.

Accelerating the Computations

It is well known that GP is computationally demanding. In our case, which
also applies in general, there are two main bottlenecks: (i) the time required to
execute the program represented by an individual, and (ii) the need to evaluate
many individuals in each generation.

During the evaluation of a single individual, feature functions are called re-
peatedly for different values of state variables in order to calculate the
corresponding feature values. If at each call, the actual tree structure of each
feature function (or its linear form) is interpreted directly by traversing the S-
expression, much time is spent in auxiliary operations such as following nodes,
pushing/popping values onto the stack, parsing node types etc. This overhead
can easily, and in fact eventually, become a bottleneck as the size of the
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Fig. 3. Speedup for the evaluation of functions in the form of complete binary trees
having depth 2-8. Each function is executed 106 times and the results are averaged
over 10 independent runs.

individuals (i.e the number of nodes) and the number of calls (in the order of
thousands or more) increase. Several approaches have been proposed to over-
come this problem, such as directly manipulating machine language instructions
as opposed to higher level expressions [11,12] or compiling tree representation
into machine code [13]. Following the work of Fukunaga et.al. [13], we dynam-
ically generate machine code at run-time for each feature function using GNU
Lightning library, and execute the compiled code at each call. GNU Lightning
is a portable, fast and easily retargetable dynamic code generation library [14];
it abstracts the user from the target CPU by defining a standardized RISC in-
struction set with general-purpose integer and floating point registers. As code is
directly translated from a machine independent interface to that of the underly-
ing architecture without creating intermediate data structures, the compilation
process is very efficient and requires only a single pass over the tree representation
or linearized form of an individual1. Furthermore, problem specific native oper-
ators or functions (mathematical functions etc.) can be easily called from within
compiled code. Figure 3 shows the speedup of an optimized implementation of
standard approach compared to the dynamically compiled code on randomly
generated functions that have a complete binary tree form (i.e. contains 2d − 1
nodes where d is the depth of the tree). The speed-up increases with the size of
the functions, reaching about 75 fold improvement which is substantial.

In GP, at each generation the individuals are evaluated independently of each
other, that is the evaluation process is highly parallelizable. As such, it can be
implemented efficiently on parallel computers or distributed computing systems.
By taking advantage of this important property, we developed a parallel GP
system using MPICH2 library [15], an implementation of the Message Passing
Interface, and run the experiments on a Grid platform. This also had a significant
impact on the total execution time.

1 Time to compile a function of 64 nodes is around 100 microseconds on a 2.2Ghz PC.
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4 Experiments

We evaluate the proposed GP based feature discovery method on three different
benchmark problems: Acrobot [16], multi-segment swimmer [17] and Tetris [18].
The first two problems, Acrobot and multi-segment swimmer, are dynamical
systems where the state is defined by the position and velocity of the elements
of the system, and action being an acceleration which, according to Newton’s
law, defines the next state. These are non-linear control tasks with continuous
state and action spaces; the number of state variables are respectively 4 and
2n+2 where n is the number of segments of the swimmer. Despite their seemingly
easiness, these two tasks are difficult to learn (to say the least, far from obvious).
In Acrobot, there is only a single control variable, whereas in swimmer the agent
has to decide on torques applied to each of n − 1 joints. Although it is similar
in nature to Acrobot, swimmer problem has significantly more complex state
and control spaces that can be varied by changing the number of segments. As
the number of segments increase the problem also becomes harder. Our third
benchmark problem, the game of Tetris, has discrete state and action spaces. The
state variables are the following: (i) the heights of each column, (ii) the absolute
difference between the heights of consecutive columns, (iii) the maximum wall
height, (iv) the number of holes in the wall (i.e. the number of empty cells that
have an occupied cell above them), and (iv) the shape of the current object. We
used a 12×8 grid and 7 different shapes that consist of 4 pieces, thus the number
of features was 18.

For evaluating the individuals and testing the performance of the discovered
features, we employed two different RL algorithms: λ policy iteration for the
Tetris problem, and policy gradient method with RProp update for the Acrobot
and swimmer problems. λ policy iteration is a family of algorithms introduced
by Ioffe and Bertsekas which generalizes standard value iteration and policy it-
eration algorithms [2]. Value iteration starts with an arbitrary value function
and at each step updates it using the Bellman optimality equation (with one
step backup); the resulting optimal policy is greedy with respect to the value
function2. On the other hand, policy iteration starts with an initial policy and
generates a sequence of improving policies such that each policy is greedy with
respect to the estimated value (calculated by policy evaluation) of its predeces-
sor. λ policy iteration fuses both algorithms together with a parameter λ ∈ (0, 1)
by taking a λ-adjustable step toward the value of next greedy policy in the se-
quence [19]. We used the approximate version of λ policy iteration as defined
in Sect. 8.3 of [18]. Policy gradient method also works on the policy space,
but approximates a parameterized (stochastic) policy directly. Starting from
an initial policy, the policy parameters are updated by taking small steps in
the direction of the gradient of its performance and under certain conditions
converge to a local optima in the performance measure [20]. The gradient is
usually estimated using Monte Carlo roll-outs. With RProp update, instead of
directly relying on the magnitude of the gradient for the updates (which may

2 For example, that selects in each state the action with highest estimated value.
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lead to slow convergence or oscillations depending on the learning rate), each
parameter is updated in the direction of the corresponding partial derivative
with an individual time-varying value. The update values are determined us-
ing an adaptive process that depends on the change in the sign of the partial
derivatives.

In the experiments, a population consisting of 100 individuals evolved for
50 generations. We set crossover probability to 0.7 (with a ratio of 1/6 for
the feature-list crossover), and the remaining 0.3 is distributed among mu-
tation and shrinkage operators. Node mutation is given two times higher
probability than the others. There is a certain level of elitism, 10% of best
performing individuals of each generation are directly transferred to the next
generation. The set of operators is {+, −, ∗, /, sin, cos√

.} for the Acrobot and
swimmer problems and {+, −, ∗, /, min, max, ‖−‖1} for the Tetris problem where
‖−‖1 denotes the absolute difference between two values. The terminals consist
of the set of original state variables as given above and {1, 2, e} where e de-
notes an ephemeral random constant ∈ [0, 1]. In the policy gradient method
(Acrobot and swimmer problems), an optimal baseline is calculated to mini-
mize the variance of the gradient estimate, and the policy is updated every 10
episodes. We tested with two different sets of parameters: (�min = 0.01, �ini =
0.1, �max = 0.5) and (�min = 0.002, �ini = 0.02, �max = 0.1). In λ policy
iteration (Tetris), we run 30 iterations and sampled 100 trajectories per iter-
ation using the greedy policy at that iteration. λ is taken as 0.6. The results
presented here are obtained using a single GP run for each problem. The dis-
covered features are then tested on the same RL algorithms but with a longer
training period (50000 iterations for policy gradient, and 30 iterations for λ
policy iteration) to verify how well they perform. We averaged over 20 such
test trainings.

Figure 4a and Fig. 5[a,c] show the testing results for the Acrobot and multiple-
segment swimmer problems, respectively. In both cases, features found by GP
show an improvement over original features and allow the agent to learn poli-
cies with larger return. The improvement is more evident in swimmer problem,
where the agents utilizing the discovered features can learn policies that perform
on average 50% better. Since candidate feature-functions are evaluated based on
their average performances on short learning trials, learning speed is also faster
in the initial stages as expected. The fitness values of best individuals and av-
erage fitness of the population in each generation during the feature discovery
process indicate that the evolutionary search drives towards better solutions and
further improvement may be possible with longer GP runs especially in swimmer
problem (Fig. 4b and Fig. 5[b,d]). Note that, the learning curves are not strictly
increasing due to stochasticity in the simulations. We obtained inferior results
with smaller population sizes (Fig. 5b). Although we used a different RL algo-
rithm, the results for Tetris are also similar to those of Acrobot and swimmer,
and show considerable improvement in terms of the performance of the resulting
policies (Fig. 6).
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Fig. 4. Results for Acrobot. (a) Performance of discovered features, and (b) fitness
values of best individuals in each generation.
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Fig. 5. Results for 3 (Fig. a and b) and 5 (Fig. c and d) segment swimmers. (a, c)
Performance of discovered features, and (b, d) fitness values of best individuals and
average fitness of the population in each generation. Figure b also shows the fitness
values of best individuals for the population sizes of 25 and 50.
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Fig. 6. Results for Tetris. (a) Performance of discovered features, and (b) fitness values
of best individuals and average fitness of the population in each generation.

5 Conclusion

In this paper, we explored a novel genetic programming based approach for dis-
covering useful features in reinforcement learning problems. Empirical results
show that evolutionary search is effective in generating functions of state vari-
ables that when fed into RL algorithms allow the agent to learn better policies.
As supported by previous results in classification tasks, the approach may also
be applicable in supervised settings by changing the learning algorithm used for
evaluating the individuals. However, care must be taken to choose algorithms
that converge quickly when supplied with a “good” state representation.

One important point of the proposed method is that it allows the user to
guide the search and if needed incorporate domain knowledge simply by spec-
ifying the set of program primitives (i.e. ingredients of the feature functions).
Furthermore, resulting feature functions are readable by humans (and not hard
to comprehend) which makes it possible to fine-tune and also transfer knowl-
edge to (feature extraction process of) similar problems. This can be done either
manually, or by converting them into meta functions, as in automatically de-
fined functions [21], leading to a hierarchical decomposition. We pursue future
research in this direction.
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Abstract. A new class of FPGA-based accelerators is presented for
Cartesian Genetic Programming (CGP). The accelerators contain a ge-
netic engine which is reused in all applications. Candidate programs
(circuits) are evaluated using application-specific virtual reconfigurable
circuit (VRC) and fitness unit. Two types of VRCs are proposed. The
first one is devoted for symbolic regression problems over the fixed point
representation. The second one is designed for evolution of logic circuits.
In both cases a significant speedup of evolution (30–40 times) was ob-
tained in comparison with a highly optimized software implementation
of CGP. This speedup can be increased by creating multiple fitness units.

1 Introduction

According to John Koza, genetic programming (GP) can routinely deliver high-
return human-competitive machine intelligence [1]. Its competitiveness and
performance has been demonstrated in many tasks and design areas. Simul-
taneously, the computational power which GP needs for obtaining innovative
results is enormous for most applications. GP usually spends most of time by
running domain-specific simulators which evaluate candidate individuals using
large training sets. In order to reduce the computational time, various methods
have been employed. In general, they can be divided into four classes: (1) algo-
rithmic – the use of smart search strategies, genetic operators and fitness eval-
uation strategies, (2) source code optimization for a given platform, (3) parallel
GP implementations on clusters of workstations and (4) hardware accelerators.
However, even with a parallel GP, the evolution is very time consuming. For
example, Koza’s team has utilized two clusters of workstations, 1000 x Pentium
II/350 MHz processor and 70 x DEC Alpha/533 MHz processor. For 36 tasks
solved using GP on the clusters, the average population size is 3,350,000 individ-
uals, 128.7 generations are produced in average and the average time to reaching
a solution is 81.9 hours [1].

This paper is focused on the acceleration of GP using a suitable digital hard-
ware. For genetic algorithms, FPGA (Field Programmable Gate Arrays) based
implementations have been created for a long time [2, 3]. As the fitness evalua-
tion of a candidate program is the most time consuming part of GP, hardware

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 230–241, 2008.
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acceleration should primarily be devoted to the fitness calculation. A straigh-
forward implementation involves multiple fitness calculation units which work
concurrently. Another key issue in hardware is whether the particular prob-
lem requires the floating-point (FP) operations or fixed-point (FX) operations.
The fixed-point arithmetic circuits or even logic circuits can be accelerated in a
much easier way than floating-point operations on a commonly accessible hard-
ware such as FPGA. Martin implemented a complete linear genetic programming
system in an FPGA. It operates with FX expressions encoded as linear programs.
Depending on the number of hardware fitness evaluation units, he reported the
speedup 18 (for 2 fitness units) - 419 (64 fitness units) for the even 6-parity
problem and 13 (2 fitness units) - 107 (32 fitness units) for the artificial ant
problem in comparison with the PowePC processor running at 200 MHz [4].

Recently, Graphics Processing Units (GPUs) that are available in common
desktop computers have been used to parallelize the fitness evaluation (also for
the FP domain) [5, 6, 7]. The CPU converts arrays of test cases to textures on
the GPU and loads a shader program into the shader processors. According to a
GP expression, a shader program is created. The program is then executed, and
the resulting texture is converted back in to an array. The fitness is determined
from this output array [6]. Chitty [7] reports the speedup 0,4 – 30 depend-
ing on target problem (two symbolic regressions, Iris classification and 8-input
multiplexer tested) for NVidia GeForce 6400 GO graphic card in comparison
with a 1.7 GHz Pentium 4 processor. Harding and Banzhaf have shown how the
speedup of candidate individual evaluation depends on the expression length for
various problems. With the growing expression length and growing number of
test cases, GPU becomes more effective than CPU. The maximum speedup is
approx. 1000 for Boolean expressions and 14 for a protein classification problem.
Note that these results only show the number of times faster evaluating evolved
GP expressions is on the GPU (NVidia GeForce 7300 GO) compared to CPU
implementation (Intel Centrino T2400 running at 1.83 GHz). I.e., the speedup
of evolution was not reported. Unfortunately, for training sets of a common size,
the overhead of transferring data to the GPU and for constructing shaders leads
to a worse performance than CPU.

In the recent years, human-competitive results were obtained using Cartesian
Genetic Programming (CGP) [8]. CGP is a sort of genetic programming which
represents candidate programs as graphs consisting of an array of programmable
nodes. This representation is natural for hardware implementation. In this pa-
per, we propose an approach to building CGP accelerators in an FPGA. The
accelerator consists of genetic unit, fitness unit and the so-called virtual reconfig-
urable circuit (VRC) which is utilized to evaluate candidate programs. We will
show that even if only a single fitness unit operating at 100 MHz is utilized, the
evolution is 30–40 times faster than a highly optimized software implementation
running at a GHz processor. This approach is well suited especially for integer-
level symbolic regression problems and evolution of logic expressions. The imple-
mentation utilizes a commercial off-the-shelf FPGA Virtex II Pro which contains
sufficient logic resources and on-chip PowerPC processors. As genetic operations
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are implemented in the PowerPC processor, the designer can define a new target
problem and change various parameters of CGP very quickly.

The proposed solution was originally intended for evolution of image filters.
In this particular problem, human competitive results were obtained because
“the result (i.e. image filters presented in [9]) is publishable in its own right as a
new scientific result – independent of the fact that the result was mechanically
created” (criterion D from [10]). The goal of this paper is to demonstrate that
the method can be extended to be considered as a general CGP accelerator for
those problems which utilize FX operators or logic operators. The VRCs for
typical target domains will be presented together with an analysis of the impact
of their parameters on the performance. In particular, we will investigate the
effect of setting the level of interconnectivity (the L-back parameter of CGP).
A new hardware approach will be presented which allows optimizing not only
for function but also for the size of a candidate program (not reported so far in
literature). In addition to the use of multiple fitness units and pipelining, we will
also introduce a new parallel approach to the evaluation of candidate programs.
The accelerators will be evaluated using benchmark problems commonly used in
this area.

2 Cartesian Genetic Programming

In CGP, a candidate program is modeled as an array of u (columns) × v (rows)
of programmable elements (gates). The number of inputs, ni, and outputs, no,
is fixed. Feedback is not allowed. Each node input can be connected either to
the output of a node placed in the previous L columns or to some of program
inputs. The L-back parameter, in fact, defines the level of connectivity and
thus reduces/extends the search space. For example, if L=1 only neighboring
columns may be connected; if L = u, the full connectivity is enabled. Each node
is programmed to perform one of functions defined in the set Γ (nf denotes |Γ |).
As Figure 1 shows, while the size of chromosome is fixed, the size of phenotype
is variable (i.e. some nodes are not used). Every individual is encoded using
u × v × 3 + no integers.
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Fig. 1. An example of a candidate program. CGP parameters are as follows: L = 3,
u = 4, v = 2, Γ = {AND (0), OR (1)}. Nodes 5 and 9 are not utilized. Chromosome:
1,2,1, 0,0,1, 2,3,0, 3,4,0 1,6,0, 0,6,1, 1,7,0, 6,8,0, 6, 10. The last two integers indicate
the outputs of the program.
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CGP operates with the population of λ individuals (typically, λ = 5 − 20).
The initial population is randomly generated. Every new population consists of
the best individual and its mutants. In case when two or more individuals have
received the same fitness score in the previous population, the individual which
did not serve as a parent in the previous population will be selected as a new
parent. This strategy is used to ensure the diversity of population.

The fitness function usually takes one of two forms. For the symbolic regres-
sion problems, a training set is used. The goal is to minimize the difference
between the output of a candidate program and required output. For evolution
of logic circuits, all possible input combinations are applied at the candidate
circuit inputs, the outputs are collected and the goal to minimize the differ-
ence between obtained truth table and required truth table. In case when the
evolution has found a solution which produces correct outputs for all possible
input combinations, other parameters, such the number of components or delay
are getting to minimize. The evolution is stopped when the best fitness value
stagnates or the maximum number of generations is exhausted.
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fitness=10/16 + 8/16

Fig. 2. Parallel simulation of a combinational circuit. Values y1 and y2 are the results
of simulation, r1 and r2 are the required outputs.

Software implementations of CGP, which are intended for evolution of logic
circuits, strongly benefit from the so-called parallel simulation. In a circuit sim-
ulator working at the gate level, a single gate is usually modeled using a logic
function. The idea of parallel simulation is to utilize bitwise operators operating
on multiple bits in a high-level language (such as C) to perform more than one
evaluation of a gate in a single step. Therefore, when a combinational circuit un-
der simulation has four inputs and it is possible to concurrently perform bitwise
operations over 24 = 16 bits in the simulator then this circuit can completely
be simulated by applying a single 16-bit test vector at each input (see encoding
in Fig. 2). In contrast, when it is impossible then sixteen four-bit test vectors
must be applied sequentially. Practically, current processors allow us to operate
with 64 bit operands, i.e. it is possible to evaluate the truth table of a six-input
circuit by applying a single 64-bit test vector at each input. Therefore, the ob-
tained speedup is 64 against the sequential simulation. In case that a circuit
has more than 6 inputs then the speedup is constant, i.e. 64. This technique can
be also utilized in hardware. However, it is mainly useful for gate-level evolution.
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In case of function-level evolution, for example, over b-bit operators (such as
addition, subtraction, maximum etc.) the speedup is only c/b, where c is the
number of bits of the operators implemented in hardware.

3 Accelerators for CGP

The basic idea of proposed accelerator is that a given instance of CGP (i.e. a
reconfigurable graph consisting of u × v programmable nodes) is implemented
as a reconfigurable circuit on the FPGA. Its configuration is defined using a
bitstream which is stored in a configuration register implemented also in the
FPGA. This concept is called the virtual reconfigurable circuit [11]. In order
to evaluate a candidate chromosome, a controller has to store the chromosome
into the configuration register of VRC and activate the fitness unit (FU). FU
generates the input vectors for VRC, reads the output vectors from VRC and
compares them with required output vectors. The fitness value is sent to the on-
chip PowerPC processor where new candidate chromosomes are created. This
architecture was introduced in [12].

3.1 Architecture Overview

The proposed CGP accelerator is completely implemented in a single FPGA and
consists of Genetic unit (GU), Processor and Memory Interface (PMI), Fitness
Unit (FU), VRC and a Control Unit (CU) – a communication interface to a
common PC (see Fig. 3). The PC is used just to define parameters of CGP and
target data (the truth table or training set). External SRAM memories are used
to store large training sets (e.g. training images for designing of image filters),
while on-chip BlockRAM (BRAM) memories are used to store small training
sets.
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Fig. 3. Generic architecture of CGP accelerators in the FPGA Virtex 2 Pro
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All components (except the VRC) are connected to the internal bus called Lo-
calBus which provides an effective communication interface between FPGA and
PCI bus. In order to maximize the overall performance, the CU plays the role
of master, controls the entire system and provides an interface to the host PC.
The PowerPC generates a new candidate individual when a requirement is spec-
ified. The instruction memory of the PowerPC is implemented using BRAMs.
However, our search algorithm can completely be stored in an instruction cache.

The population of candidate configurations is also stored in on-chip BRAM
memories. The population memory is divided into banks; each of them contains a
single configuration bitstream of VRC. An additional bit (associated with every
bank) determines data validity; only valid configurations can be evaluated. In
order to overlap the evaluation of a candidate configuration with generating a
new candidate configuration, at least two memory banks have to be utilized.
While a circuit is evaluated, a new candidate configuration is generated. The
new configuration is used immediately after completing the evaluation of the
previous one.

The PMI component consists of two subcomponents working concurrently.
The first subcomponent, controlled by the CU, reconfigures the VRC using con-
figurations stored in the population memory. The second subcomponent is re-
sponsible for sending the fitness value to the PowerPC processor. As soon as the
fitness value is valid, it is sent (together with some additional data, such as the
size of phenotype) to the PowerPC. An interrupt (IRQ) is generated to activate
a service routine of the PowerPC. In this routine, a new candidate configuration
is generated for the given bank. The PowerPC processor acknowledges the inter-
rupt (IRQACK) and sets up the validity bit. This process is controlled by the
FU. The PMI component also provides an interface to the population memory
via LocalBus.

The proposed system allows the use of various search algorithms [12]. These al-
gorithms utilize a population of candidate solutions and a single genetic operator
— mutation, which inverts k bits of the chromosome (i.e. of the configuration).
No crossover operator is used. An analysis of various mutation operators and
pseudorandom number generators was presented in [12, 13].

3.2 VRC for Symbolic Regression Problems

Proposed CGP accelerators mainly differ in the VRC organization and fitness
unit. Fig. 4 shows the VRC implemented for the image filter design problem,
which is a kind of a symbolic regression problem over the FX representation [12].
Every candidate program (image filter) is considered as a digital circuit of nine
8-bit inputs and a single 8-bit output.

The VRC consists of 2-input Configurable Logic Blocks (CFBs), denoted as
Ei, placed in a grid of 8 columns and 4 rows. Any input of each CFB may be
connected either to a primary circuit input or to the output of a CFB, which is
placed anywhere in the preceding column. Any CFB can be programmed to im-
plement one of 16 function from Γ , where Γ includes addition, subtraction, shift,
minimum, maximum and logic functions. All these functions operate with 8-bit
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operands and produce 8-bit results. The reconfiguration is performed column by
column. The computation is pipelined; a column of CFBs represents a stage of
the pipeline. Registers (denoted D) are inserted between the columns in order
to synchronize the input pixels with CFB outputs. The configuration bitstream
of VRC, which is stored in a register array conf reg, consists of 384 bits. A sin-
gle CFB is configured by 12 bits, 4 bits are used to select the connection of a
single input, 4 bits are used to select one of the 16 functions. Evolutionary algo-
rithm directly operates with configurations of the VRC; simply, a configuration
is considered as a chromosome.
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Fig. 4. VRC for symbolic regression problems

In tasks of symbolic regression, training data are stored in external SRAM
memories. Fitness unit loads training data from external SRAM1 memory and
forwards them to the inputs of VRC. The outputs of VRC, yi, are compared with
required outputs, ri, (which are loaded from another external memory, SRAM2)
and simultaneously stored into the third external memory, SRAM3. The FU
can be considered as an extension of the VRC pipeline because in each clock
cycle, a temporary fitness value is updated by a new difference, |yi − ri|. Due
to pipelined reconfiguration as well as execution of VRC, the evaluation of a
candidate program (circuit) requires k clock cycles, where k is the number of
training vectors.

3.3 VRC for Logic Expressions

The architecture of VRC is similar to the VRC for symbolic regression. There are
four main differences: PEs contain only logic functions, L-back=2 is supported,
the size of phenotype can be calculated and a data parallel operation of PEs (the
same as used in the software parallel simulation) is introduced. The size of data
is denoted as “data width”, dw, in the rest of paper. If PEs operate at dw bits
then the speedup against the bit-level execution is dw-times. In order to support
L-back=2, additional registers (D) have been used to store the results of stage
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i− 2 for stage i of the pipeline (see Fig. 5). The number of configuration bits for
a single column is 2∗ log2(ni +2u)+ log2(nf ). In contrast to symbolic regression,
the training data (truth table) is stored in BRAMs. For example, if ni = 16
then 64 BRAMs are utilized. All possible input combinations are generated in
the process of fitness calculation. When the size of circuit is not optimized, the
maximum fitness value is 2nino.
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Fig. 5. VRC for evolution of digital circuits

Figure 6 explains the calculation of the size of a candidate circuit. The method
assumes that a PE can implement a single wire. Once a functionally-perfect
solution is found, the size is optimized. The objective is to maximize the number
of PEs which operate as wires. The configuration of a single column of VRC is
analyzed using comparators. The comparator returns 1 in case that a particular
PE operates as a wire. These 1s are added using a tree of adders. This calculation
is performed when the column of PEs is configured. It costs no extra time. The
size of phenotype is stored to 8 the least significant bits of the fitness value.
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4 Experimental Results

4.1 Evolution of Digital Circuits

Table 1 provides results of synthesis for various parameters of VRC. While the
size of VRC and the number of inputs and outputs are fixed, the number of
test vectors evaluated in parallel (i.e. dw) increases from 1 to 12. When no data
parallel execution is used, the whole design occupies approx. 10% resources;
when dw = 12 (i.e. 12 test vectors are evaluated in parallel by a PE) the design
occupies approx. 90% resources. Using this setup we can achieve 27 times faster
evaluation in comparison with a highly optimized SW implementation running
at a CPU Intel Xeon 3 GHz processor (and utilizing a parallel simulation at 32
bits), even if the VRC works at 100 MHz.

Table 1. Results of synthesis for VRC with 10x10 PEs, 9 inputs, 9 outputs and 4 logic
functions per PE (XC2VP50-ff1517 Xilinx FPGA). DFF is the number of flip-flops and
FG is the number of function generators.

# of vectors evaluated in parallel (dw)
resource available 1 2 4 8 12
BRAMs 232 14 16 20 28 36

used 6.0% 6.9% 8.6% 12.1% 15.5%

DFFs 49788 2743 2993 3533 4709 5843
used 5.5% 6.0% 7.1% 9.5% 11.7%

FGs 47232 4836 7813 14164 26734 41281
used 10.2% 16.5% 30.0% 56.6% 87.4%

Table 2 contains the results of synthesis for various VRC sizes. The number
of inputs, outputs, logic functions and data width are fixed. The last row shows
the number of configuration bits of VRC.

Table 2. Results of synthesis for various VRCs of 9 inputs, 9 outputs, 4 logic functions
and dw = 2 (FPGA XC2VP50-ff1517)

VRC size
resource available 10 × 10 12 × 12 14 × 14 16 × 16

DFFs 49788 1644 2336 3634 4664
used 3.3% 4.7% 7.3% 9.4%

FGs 47232 6242 9012 26700 32352
used 13.2% 19.1% 56.5% 68.5%

# of conf. bits 1200 2016 2744 3584

In order to investigate the impact of the L-back parameter, we created two
VRCs with L = 1 and L = 2. Proposed implementations were evaluated in
the task of multiplier evolution, a traditional hard benchmark problem for evo-
lutionary circuit design. A parallel version of Hill Climbing algorithm with
neighbourhood of two and population size of 8 individuals was used (see [13]).
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Table 3 summarizes results of 10 independent experiments for each problem. We
can see that the increasing value of L-back parameter has the positive effect
on the average number of generations and the success rate. Obtained results
are comparable to the best-known results [14] (where the authors allowed the
maximum value of L-back parameter).

Table 3. Results for evolution of multipliers (Γ = {wire, and, xor, ā and b})

.

Parameters of evolution
multiplier 2 × 2 2 × 3 3 × 3 3 × 4 4 × 4
l-back 1 2 1 2 1 2 1 2 1 2
VRC 8x8 8x8 10x10 10x10 10x10 10x10 10x10 10x10 16x16 16x16
inputs 4 4 5 5 6 6 7 7 8 8
gener. (max) 10k 10k 100k 100k 1M 1M 10M 10M 20M 20M

Results
success rate 91% 96% 92% 100% 72% 96% 18% 84% 0% 4%
gates (min) 7 7 13 13 29 24 60 45 - 125
gates (max) 19 13 20 21 45 47 67 68 - 156
gates (avg) 9 8 15 15 34 33 61 57 - 138
gener. (avg) 1.8k 1.5k 20k 13k 22k 284k 4.84M 3.84M - 14.2M

Table 4 compares the number of evaluated candidate circuits per one second
in a highly optimized SW implementation and proposed HW accelerator. In case
of the SW implementation, the time of circuit evaluation depends on the size
of the phenotype and the number of training vectors. On the other hand, in
hardware, this time depends only on the number of training vectors. Hence, the
accelerator becomes more useful for larger VRCs and larger sets of training data.

Table 4. The number of evaluations per second. VRC operates at 100 MHz (dw = 4),
SW is executed on the Intel(R) Xeon(TM) CPU 3.06 GHz (dw = 32).

# VRC size (SW) VRC size (HW) evaluation
inputs 10 × 10 12 × 12 16 × 16 10 × 10 12 × 12 16 × 16 speedup

6 400 296 222 6250 6250 6250 15–28
7 250 173 89 3125 3125 3125 12–35
8 154 95 51 1563 1563 1563 10–30
9 85 50 25 781 781 781 9–31

4.2 Symbolic Regression Problems

Similarly to the accelerator for logic circuit synthesis, the CGP accelerator for
symbolic regression problems was implemented on the COMBO6X card equipped
with Virtex II Pro 2VP50ff1517 FPGA. Results of synthesis are summarized in
Table 5. While the PowerPC works at 300 MHz, the logic supporting the Pow-
erPC works at 150 MHz. The remaining FPGA logic (including VRC and FU)
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works at 100 MHz. Experimental results show that approximately 6,000 can-
didate programs can be evaluated per second when the training set consists of
15876 vectors which is 44 times faster than the same algorithm running at the
Celeron 2.4 GHz [12]. This accelerator was utilized to discover novel implemen-
tations of image filters [12, 9, 13].

Table 5. Results of synthesis for the symbolic regression problems

VRC IO blocks BRAM Slices DFF
Available 852 232 23 616 49 788

4 × 8 CFBs 602 12 4 591 3 638
used 70% 5% 20% 7%

5 Discussion

The obtained speedup (30–40 against a common PC) is significant although
only a single fitness unit was utilized. Note that the results reported in [6, 7, 4]
employed multiple fitness units. In order to exploit also this level of parallelism,
we can create up to 7 VRCs (depending on the number of PEs) on our FPGA.
It means that the FPGA which we are currently using is able to speed up the
evolution 100–200 times in comparison with a PC.

6 Conclusions

A new class of FPGA-based accelerators was presented for CGP. The accel-
erators contain a genetic engine which is reused in all applications. Candidate
programs (circuits) are evaluated in an application-specific virtual reconfigurable
circuit and fitness unit. Two types of VRCs are proposed. The first one is de-
voted for symbolic regression problems over the FX representation. The second
one is designed for evolution of logic circuits. In both cases a significant speedup
of evolution was obtained in comparison with a highly optimized software imple-
mentation of CGP. This speedup can be increased by creating multiple fitness
units. Moreover, as the system is implemented on a single chip, it will be useful
for online in-situ adaptive computing.
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Abstract. This paper describes a new method using genetic program-
ming (GP) in dimension reduction for classification problems. Two issues
have been considered: (a) transforming the original feature space to a
set of new features (components) that are more useful in classification,
(b) finding a ranking measure to select more significant features. The
paper presents a new class-wise orthogonal transformation function to
construct a variable terminal pool for the proposed GP system. Infor-
mation entropy over class intervals is used as the ranking measure for
the constructed features. The performance measure is the classification
accuracy on 12 benchmark problems using constructed features in a de-
cision tree classifier. The new approach is compared with the principle
component analysis (PCA) method and the results show that the new
approach outperforms the PCA method on most of the problems in terms
of final classification performance and dimension reduction.

1 Introduction

The quality of representation has a significant effect on the learning capability
of an agent. An important issue in representation is the number of dimensions
of a particular problem. In most cases, the lower the number of dimensions, the
easier to learn a system. Generally with smaller number of dimensions, as long
as it is enough to represent the task, the learnt models are simpler and more
general. These models are also easier to interpret in most cases.

Principle component analysis (PCA) is one of the dimension reduction tech-
niques that is widely used in different applications. The goal of PCA is to linearly
transform data to a more meaningful basis. It can eliminate the redundancy be-
tween measurements (features), and reduce the noise by selecting more impor-
tant components. This is done by diagonalizing the covariance matrix. However,
as PCA is blind to the class labels in the training set, in many cases, it is not
effective for classification problems. Another drawback of PCA is that, it makes
the assumption that more diversity along an axis (feature) is a sign of a more
informative and important feature and so it ranks generated components based
on this factor. However, this assumption is certainly not always true.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 242–253, 2008.
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The problem of dimension reduction can be seen as a feature construction
problem in which the constructed features are functions of the original features
and the total number of constructed features is sufficiently smaller than the
number of original features in the problem. For example, the PCA method can
be treated as a feature construction scenario in which all the constructed fea-
tures are linear polynomials and the objective is to find the coefficients of these
polynomials so that PCA goals are satisfied. A limiting issue with PCA and
many other dimension reduction methods is that they have a constant general
model (for example a linear polynomial) and then the dimension reduction pro-
cedure is about the estimation of the model’s parameters (for example finding
the coefficients of that polynomial).

Genetic programming (GP) is a flexible and expressive tool in dynamically
building mathematical models based on an objective function. It means that GP
expressions are not bound to any predefined template; they can be any type
of expressions (linear, non-linear, trigonometric, etc) that satisfy the objective
function. This feature makes GP an excellent choice for automatic feature con-
struction. Recently there has been a new research trend in using GP for feature
construction. GP has been used in different classification scenarios such as a
complementary tool in the learning process of a decision tree [1], as a part of
problem solving [2,3,4], or as a pre-processing phase [5].

There are two approaches to using GP for feature construction: the wrapper
approach and the non-wrapper (or pre-processing) approach. In the wrapper
approach [6], the final learner is used as an indicator for the appropriateness
of the constructed features. In each step, the constructed features are fed into
the classifier, then the classification accuracy is used as a guide to rank features
[7,8]. Some approaches use a structure consisting of several program trees in each
chromosome [7] while others perform a cooperative co-evolution for this purpose
[8]. The number of constructed features is usually the same as the number of
original features, which means that the number of dimensions cannot be reduced.
However, [2] tries to compensate for this deficiency by implicitly putting pressure
to select the classifiers that use a smaller number of features. Because every
fitness evaluation involves a complete run of the classifier, the search process
is very expensive in the wrapper approach. Moreover, as both the construction
and the learning process are performed at the same time, the solutions tend to
be specific to a particular type of classifier. In the non-wrapper approach, the
process of feature construction is performed as a pre-processing phase. Since
no particular classifier is involved in evaluating the constructed features, the
process is expected to be more efficient and the results are expected to be more
general. This approach can be adopted for both single feature construction [5,9]
and multiple feature construction [10].

This paper aims to develop an approach to the use of GP for dimension
reduction in classification problems with the goal of improving classification
performance. As the vastness of the search space is a considerable issue in GP
solutions, we have tried to make the search process more promising by providing
a set of potential useful building blocks in a variable terminal pool. This is
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achieved by proposing a new orthogonal transformation which is sensitive to
the target class labels in the training data set. The original features and their
transformation together comprise a variable terminal pool which is used in the
GP search.

The goal of the GP search is to construct some new high level features based
on the original features. Instead of wrapping a particular classifier for single
feature construction as in most of the existing methods, a stand-alone fitness
function based on information entropy is used for ranking a selecting constructed
features. This approach is examined and compared with the standard decision
tree method using the original features and using PCA transformation of the
original features.

2 Using GP for Dimension Reduction

A new GP system is proposed for constructing new features and reducing the
dimensionality. The overall block diagram of the system is illustrated in Figure 1.
The data set with original features is divided into a training set and a test set.
A proposed class-wise orthogonal linear transformation is applied to the original
feature set. The details of the transformation are described in section 3. The
transformed features together with the original ones are later used as the variable
terminal set of the GP search. The number of dimensions is increased at this
stage, however using a new ranking (fitness) function, the number of dimensions
is decreased after the GP search.

The fitness function of the GP system is based on the concept of entropy over
class intervals [10]. The GP search is conducted for every target class in the
problem. If n is the number attributes in the original input space, and m is the
number of distinct classes in the problem, then m different high level features
are created as the output of the GP system. As usually m is much smaller than
n, the number of dimensions of the problem is decreased at this stage. Based
on the constructed features, the training and testing sets are then transformed
into new training and testing sets, from which the decision tree (DT) method
is used for learning. The DT classifier is then applied to the transformed test
set to obtain the final classification results. The performance of the method is
measured based on the classification accuracy over the test set.

Results
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Training Set

Transformed
Variable
Terminals

Original
Variable

Terminals

Terminal Pool

Original Features

DT Learning

DT Classifier
Learned

Test Set
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Transformed
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Transformed

Entropy−based

Fig. 1. Overview of the system
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3 Transformation Function and Terminal Pool

3.1 DT Difficulty in Partitioning Input Space

With the assumption that instances of a particular class follow an n-dimensional
normal distribution, they form a hyper-spheroid cloud around the centre of the
class in a n-dimensional input space. The axes of this hyper-spheroid need not to
be along the original feature space axes. This phenomenon causes many decision
trees to try to cover the decision boundary with several adjacent hyper-cubes. A
two dimensional example of this phenomenon is depicted in Figure 2. There are
two classes with two different labels. The solid lines show the axes of distribution
in each class. The dashed line shows the boundary between two classes. Because
decision trees divide the input space to some rectangular sub-spaces to find the
class areas, an angled class boundary causes the DT learner to make several
such rectangular intervals to include the desired class instances and exclude the
unwanted ones. This makes learnt trees more complicated which consequently
affects their generalization capability and classification performance and also
increases their execution time. This issue has been discussed in [11].

 x
1

 x
2

Fig. 2. An artificial data set with two attributes (x1 and x2 axes) and two classes (+
and ◦)

3.2 PCA Transformation

PCA can be applied to a data set to diagonalise the covariance matrix by lin-
early transforming data to a new basis that instances are distributed along new
components [18]. The new location of instances are obtained by multiplying
the original coordination by eigen vectors of the covariance matrix. Figure 3
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shows such a transformation, in which the shape of the whole data set (includ-
ing both classes) has been straightened along the new coordinates. However,
because PCA cannot distinguish between different class labels, the class bound-
ary (dashed line) is still at an angle. Training a decision tree in this new input
space has similar deficiencies to the above-mentioned issue. This suggests that
PCA is not suitable for dealing with the issue of angled class boundaries when
using DT for classification.

 pc
1

 p
c 2

Fig. 3. Transformed input space based on the two principle components resulted by
applying PCA

3.3 Class-Wise Orthogonal Transformation

To cope with this problem, we define a modified version of orthogonal transfor-
mation which is class-wise. A data set is analysed class by class, and for each
class a new n-dimensional transformation is performed.

Given X a finite set of sequences (x1, x2, . . . , xn) where xi ∈ R and n cor-
responds to the input dimension of the problem and C a set of class labels
{c1, c2, . . . , cm} where m is the number of distinct classes in the problem, a
training data set D can be defined as:

D : X �→ C (1)

The training set is then divided into m partitions according to the class labels
of instances. So a partition Pi is defined as:

Pi = {x | (x, c) ∈ D, c = ci} where ∪m
i=1 Pi = X (2)
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Each partition represents a hyper-spheroid cloud. We are interested in finding
the axes of these hyper-spheroids (axes along which the cloud of instances are
mostly scattered) which are more likely to be the boundaries of the classes. For
this purpose, the covariance of data in each partition should be diagonalised.
The covariance of each partition i is calculated as:

Covi = E[(Pi − E[Pi])(Pi − E[Pi])T ] (3)

where E denotes the expected value and Covi is an n by n square matrix
containing the covariances (and variances along the diagonal) of features based
on the data instances observed in the i-th partition. The axes of this partition
(assuming data following an n-dimensional normal distribution) can be obtained
by finding corresponding eigen vectors of the partition covariance matrix [18]:

Ai = eigen(Covi) (4)

where each row of this matrix shows a vector in an n-dimensional space. This
implies that a transformation by means of the rows of this matrix makes the
axes of the resulting data set orthogonal to the new coordination system. As our
goal here is to find some class boundaries that are perpendicular to the axes, we
do not care about the eigen values, despite the way it is used in PCA for ranking
resulting components.

While the calculation of the covariances and the eigen vectors is based on
the partitioned data, the transformation is applied to the whole data set. So
for each partition (distinct class in the problem), one transformation is applied.
For example for the problem of Figure 2, two 2-dimensional transformations are
created, one of which is shown in Figure 4. The boundary of two classes (dashed
line) is now perpendicular to the new component (horizontal axis).

3.4 Terminal Pool

If n is the size of the original input space, then each transformation generates
n new intermediate features. The transformation process is repeated for each
class in the problem so that with m distinct class labels in a problem, m × n
new intermediate features are constructed at this stage and added together with
original features to the terminal set of the GP search. So the number of variables
in the pool is equal to n × (m + 1). While this is an increase in the number of
dimensions, it gives more chance to the GP search to find an appropriate high
level feature. Later on an entropy-based fitness function is used to choose the
best features among a set of constructed features and reduce the dimensionality.

3.5 Fitness Function

For ranking the constructed features, we have used a fitness function which is
calculated based on the entropy of the constructed features over class interval
[10]. Assuming that the class data approximately follow normal distributions, we
can use equation 5 to determine the boundaries of the interval. In this equation
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Fig. 4. Transformed input space based on the two class-wise orthogonal transforma-
tions (out of four)

xc is the value of the feature for an instance of class c and μ and σ are mean
and standard deviation of the class along the feature respectively. This interval
can theoretically cover 99% of the class instances [12].

μ − 3σ ≤ xc ≤ μ + 3σ (5)

The discovered interval is regarded as an information channel and different
class labels over the interval as different symbols in the channel. Accordingly,
the entropy of the channel is used to measure the level of uncertainty [13] as
shown in equation 6. In this equation, I is the interval, C is the set of all classes,
c is the class index, and PI(c) is the probability of class c in interval I.

Entropy(I) =
∑

c∈C

−PI(c) log2 PI(c) (6)

For a training set S and a target class c, the fitness of an individual program
p is calculated as follows:

1. Use program p to convert each example in the training set S to a new trans-
formed set Snew . The program uses the original feature values of an instance
as inputs and produces a single floating point value for each instance.

2. Make a subset Subc from all instances of the target class c in Snew.
3. Calculate the mean μ and standard deviation σ over all examples of Subc.
4. Determine an Intervalc according to equation (5), which is [μ − 3σ, μ + 3σ].
5. Collect all instances from Snew which fall in the interval and calculate the

entropy over Intervalc using equation 6. The entropy is used as the fitness
of the program p.
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If most of the instances falling into an interval belong to a single class, the
entropy will be quite low. According to this design, the smaller the fitness, the
better the program, and consequently the better the constructed feature. For
each class in the problem, one GP run needs to be conducted. At each run the
fitness function focuses on a particular class. At the end of the run, the best
evolved program will be used as the constructed feature for that class. So for
every problem the number of constructed features is equal to the number of
classes in the problem.

4 Experiment Design and Configurations

A set of four experiments have been conducted on each data set(problem). In the
first experiment the original features were fed to the DT classifier to determine
the performance of classification on each data set. The results of this experiment
were used as a baseline for other experiments. In the second experiment the
data set was transformed using PCA and then all the generated components
were fed to the DT for classification. In the third experiment, PCA was used
for transforming the original data set but only high ranked components were
chosen. The number of selected components was equal to the number of features
generated by GP. In the fourth experiment, the proposed GP system was used
for constructing features. In this experiment, a terminal pool was created based
on the proposed method; then a GP search with the proposed fitness function
was conducted for each target class in the problem.

A 10-fold cross-validation has been used for all the experiments. 30 different
random seeds were generated for each experiment. For each generated random
seed, the data set was shuffled and stratified to 10 folds. Each time one of the
folds was taken as the test fold and the remaining as the training set. It means
that each experiment was repeated 300 times. For the GP experiment if m is the
number of classes in the problem, then 300 × m runs were conducted for each
problem. The performance of the DT classifier on the constructed features has
been the main measure for comparing different approaches.

4.1 GP Settings

We used the tree-based structure to represent genetic programs [14], each of
which produces a single floating number output. The terminal (feature) pool
described in the previous section was used as the terminal set of the GP system.
A number of randomly generated constants were also added to the terminal set
during run time.

The four standard arithmetic operators were used to form the function set:
FuncSet = {+, −, ×, ÷}. The +, −, and × operators had their usual meanings
— addition, subtraction and multiplication, while ÷ represented “protected”
division which is the usual division operator except that a divide by zero gives
a result of zero. Each of these functions takes two arguments.
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The ramped half-and-half method [14] was used for generating programs in the
initial population and for the mutation operator. During the search process we
used a heavy dynamic limit on tree depth [16] to control the code bloating. The
probability of the crossover and mutation operators are adapted automatically
at run time [17]. An elitist approach has been taken to keep the best individual
of the generation. The population size was 1000. The initial maximum program
tree depth was set to 3 but the trees could be increased to a depth of 6 during
evolution. The evolution was terminated at a maximum number of generations of
200. In all experiments, the J48 implementation of the C4.5 decision tree inducer
[11] was used to evaluate the quality of the constructed features.

4.2 Data Sets

We used 12 data sets collected from the UCI machine learning repository [15]
in the experiments. Table 1 summarises the main characteristics of these data
sets. These include binary and multiple class classification problems and also
problems with either relatively low or high number of attributes. In some data
sets, for example the original Wisconsin breast cancer data set, instances with
missing values have been excluded.

Table 1. Specification of data sets used in experiments

Problem # Features # Instances # Classes

Balance Scale 4 625 3
Glass Identification 9 214 6

Iris Plant 4 150 3
Johns Hopkins Ionosphere 34 351 2

Liver disorders 6 345 2
Pima Indians Diabetes 8 768 2

Sonar 60 208 2
Thyroid Disease 5 215 3

Waveform 21 5000 3
Wine Recognition 13 178 3

Wisconsin Breast Cancer (WBC)-Diagnostic 30 569 2
Wisconsin Breast Cancer (WBC)-Original 9 683 2

5 Results

The experiment results are presented in Table 2. The table has two parts for
each problem. The first part shows the number of features in the different stages
of the proposed GP process. The first column in this part (Org.) shows the
number of original features in the problem. The second column (Pool) shows the
number of generated features in the terminal pool of the GP system. It includes
transformation of all the original features under the proposed transformation
function for each class in the problem, plus the original feature set. For example,
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Table 2. Result of standard DT, DT and PCA, and the proposed GP system

Problem
# of Features Classification Performance (%)

Org. Pool Cnst. Reduct. (%) Org. PCA PCA-DR GP

Balance Scale 4 16 3 25.0 78.1 90.1 85.9 100
Glass Identification 9 63 6 33.3 67.8 68.8 68.3 64.3

Iris Plant 4 16 3 25.0 95.0 94.7 94.7 95.3
JH Ionosphere 34 102 2 94.1 89.6 86.6 81.8 90.1
Liver Disorders 6 18 2 66.7 65.9 63.4 56.8 69.5
Pima Diabetes 8 24 2 75.0 74.6 74.6 72.0 74.4

Sonar 60 180 2 96.7 73.2 74.9 48.5 78.4
Thyroid Disease 5 20 3 40.0 93.2 87.4 86.1 95.9

Waveform 21 84 3 85.7 76.4 76.9 86.2 85.7
Wine Recognition 13 52 3 76.9 93.0 84.3 81.5 94.8
WBC-Diagnostic 30 90 2 93.3 93.5 92.6 93.1 96.6
WBC-Original 9 27 2 77.8 95.3 97.5 97.5 97.0

Average 65.8% 82.9% 82.7% 79.4% 86.8%

in Glass Identification problem, there are (6 × 9 + 9) features in the pool. The
third column (Cnst.) shows the number of constructed features (output of the
GP system) which is equal to the number of classes in the problem. The fourth
column shows the dimension reduction ratio for each problem which is calculated
by Org.−Cnst.

Org. .
The second part of Table 2 shows the classification performance of J48 deci-

sion tree on different feature sets using the test folds. The first column in this
part shows the classification performance using the original feature set. The sec-
ond column (PCA) shows the performance of classification when all the features
are transformed by the PCA method to a new set of components. Note that
this includes all the generated components which are as many as the number of
original features. The third column in this part (PCA-DR) shows the classifica-
tion performance when only high ranked components are selected from the PCA
transformation. For the sake of comparison the number of selected components
is equal to the number of generated features by the GP system. The last column
shows the performance of the classifier after using GP generated features. Bold
numbers in each row show the highest performance in that row.

As shown in Table 2, on all the problems, the dimensionality has been de-
creased by GP. However as the number of constructed features is related to the
task, the reduction rate is different from one problem to another. The dimension
reduction rate is over 50% on 8 out of the 12 classification problems. On average
the reduction rate on all problems has been around 66%.

Comparing the classification performance achieved by constructed features
(GP column of Table 2) with the original classification performance (Orig. col-
umn in that table), we found out that on 10 out of all the 12 data sets, the
new system has been able to improve the classification performance while con-
siderably reducing the number of dimensions. On 8 problems the performance
of the proposed GP system outperforms all other approaches. On three tasks
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(Pima, Waveform and WBC-Original), the performance of the new approach
is very similar to the best performing system and only on one problem (Glass
Identification) the performance has been 4.5% less than the best performing
system.

When PCA is used as transformation method, only on one problem (Glass
identification) it performs the best. When PCA is used as a transformation and
dimension reduction tool (PCA-DR column), only on two problems (Waveform
and WBC-Original) it performs the best.

The average of 86.8% for classification performance using the proposed GP
system for feature construction over 12 data sets, shows a significant improve-
ment over all other methods.

6 Conclusions

The goal of this research was to develop an approach to reducing the dimension-
ality of classification problems and improving the classification performance. The
proposed approach was to transform the original input space to a new one via a
set of GP-constructed new features. A class-wise orthogonal transformation was
proposed for generating a variable terminal pool of the GP search to establish
perpendicular class boundaries between classes. We used the entropy of class
intervals as a fitness measure for constructed features to provide better class
separation in the new transformed input space.

The approach was examined and compared with the standard decision tree
approach, and the PCA combined with the decision tree approach. The results
show that the proposed GP system not only achieved the initial goal of dimension
reduction, but also significantly improved the classification performance in most
cases. The results also show that the proposed system outperforms the standard
decision tree method in terms of performance and the DT method with PCAs
in terms of dimension reduction and classification performance. This suggests
that GP is an effective approach to reducing the dimensionality of classification
problems and improving the classification performance by constructing a set of
high-level features.

For future work, we would consider providing a more flexible model to find
class intervals without depending on the assuption that the class instances are
normally distributed. Another development to the current approach would be
providing the capability of constructing an arbitrary number of features for each
problem.
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Abstract. We present an approach for the automated synthesis of
proactive aggregation protocols using Genetic Programming and discuss
major decisions in modeling and simulating distributed aggregation pro-
tocols. We develop a genotype, which is an abstract specification form
for aggregation protocols. Finally we show the evolution of a distributed
average protocol under various conditions to demonstrate the utility of
our approach.

1 Introduction

Genetic Programming has some popular application areas like the synthesis of
analog electrical circuits, cellular automata, and data mining. In larger networks,
especially sensor networks or MANETs, the design of protocols for distributed
processing may become a challenge. We believe that employing Genetic Program-
ming for the automatic synthesis of protocols reveals a lot of future potential for
designing distributed systems [1,2,3].

In order to unleash this potential, a clear and structured approach is needed. In
this paper, we stepwise exercise such an approach on the example of automated
distributed aggregation protocol synthesis.

Aggregation functions with their ability to summarize information in a certain,
user-specified way are a very important building block for distributed applica-
tions [4]. We illustrate its utility in sensor networks [5] in an initial example
scenario in Section 2. This example helps to clarify the problem domain and the
required features of possible solutions. We then select a suitable Genetic Pro-
gramming technique that can be extended to suffice these needs. The next step
(taken in Section 3) is to derive suitable models for the entities in the problem
domain. This means modeling the relevant properties of both, the nodes that
will run the protocols and the network itself. Now the structure of the solution
candidates and how they have to be simulated in order to determine their fitness
can be defined, as done in Section 4. Section 5 shows results from experiments
which demonstrate the applicability of the approach before we conclude this
article in Section 6.
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2 The Scenario

2.1 Gossip-Based Aggregation

Jelasity, Montresor and Babaoglu [6] propose a simple yet efficient type of proac-
tive aggregation protocols [7]. Its basic assumption is that each node in a net-
work holds one numerical value x. This value represents the information about
the node or its environment that should be aggregated, for example the current
work load. The task of an aggregation protocol is to provide all nodes in the net-
work with an up-to-date estimate of the aggregate function α(x) of the vector
of all values x = (xp, xq, . . .). Of course, we cannot compute α directly since x
is distributed over the network.

The nodes hold local states s (containing x) which they can exchange via
messages. Therefore, each node regularly picks a communication partner with
the function getNeighbor(). Once in each δ > 0 time units, at a randomly picked
time, a node p selects a neighbor q. Both partners exchange their information and
update their states with the update method: p calls update(sp, sq) and q invokes
update(sq, sp). update is defined according to the aggregate that we want to be
computed.

2.2 The Distributed Average

Imagine a network of distributed temperature sensors, carrying a little display
visible to the public. The temperatures measured locally will fluctuate because
of wind or light changes. Thus, the displays should not only show the temper-
ature measured by the sensor node they are directly attached to, but also the
average of all temperatures measured by all nodes. The network needs to ex-
ecute a distributed aggregation protocol in order to estimate that average. If
we choose a gossip-based average protocol, each node will hold a state variable
containing its local estimation of the mean. The update function, receiving the
local approximation and the estimate of another node, returns the mean of its
inputs.

updateavg(sp, sq) =
sp + sq

2
(1)

If two nodes p and q communicate with each other, the new value of sp and sq

will be sp(t + 1) = sq(t + 1) = 0.5 ∗ (sp(t) + sq(t)). The sum – and thus also
the mean – of both states remains constant. Their, variance, however becomes
0 and so the overall variance in the network gradually decreases.

2.3 Why Synthesize Aggregation Protocols?

There are three use cases for an automated aggregation protocol synthesis:

– We may already know a valid aggregation protocol but want to find an
equivalent protocol which has advantages like faster convergence or robust-
ness in terms of input volatility. This case is analogous to finding arithmetic
identities in symbolic regression.
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– We do not know the aggregate function α nor the protocol but have a set
of sample data vectors xi (maybe differing in dimensionality) and corre-
sponding aggregates yi. Using Genetic Programming we attempt to find an
aggregation protocol that fits to this sample information.

– The most probable use case is that we know how to compute the aggregate
locally with a given α function but want to find a distributed protocol that
does the same. In order to automate this transformation, we use α to create
sample data sets and then apply the approach of the second use case.

2.4 Symbolic Regression

Our goal is to provide a framework which allows such an automated transla-
tion of a (local) aggregate function α into a proactive, gossip-based aggregation
protocol. For this purpose we extend Koza’s technique of symbolic regression [8].

Regression means finding a function f� : R
m �→ R that approximates

an unknown relation ϕ of one dependent variable y ∈ R to m indepen-
dent variables x1, x2, x3, . . . , xm by analyzing a given set of sample data S =
{(x1,i, x2,i, . . . , xm,i, yi)}. Traditional approaches like linear regression define a
parametric curve fP and then minimize the mean square error MSE of the curve
to the data samples by optimizing the parameters P.

MSE(f) =
1

|S|

|S|∑

i=1

[yi − fP(x1,i, . . . , xm,i)]
2 (2)

Symbolic regression does not limit the solution to a given form, as mentioned
in numerous works [8,9,10]. Here, mathematical expressions are represented as
tree structures. Nodes are mathematical functions and their child nodes are
their parameters. Real constants and the independent variables x1 . . . xm act
as leafs. The (functional) objective function is usually the mean square error
γ1(f) ≡ MSE(f) which turns symbolic regression into a maximum likelihood
estimation method [11].

In the following sections we will show how this approach can be extended in
order to allow the evolution of proactive aggregation protocols.

3 Modeling

3.1 Network Model

An important aspect of communication is how the nodes select their partners for
the data exchange. Jelasity, Montresor, and Babaoglu have shown that different
getNeighbor methods influence the convergence speed of the protocols [6]. A
suitable partner selection method leads to fast convergence, speeding up the
simulations used for evaluating the protocols during the evolution significantly.

For networks N which have a number of nodes of m = |N | = 2d, we can
specify an optimal selection scheme: In each protocol step t with t = 1, 2, . . ., we
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Algorithm 1 γ1(u, e, r) = evalAggProtocol(u, m, T )

Input: u, the evolved protocol update function
Input: m, the number of nodes in the simulation
Input: T , the maximum number of simulation steps
Output: γ1(u, e, r), the sum of all square errors

begin1

d ←− �log2 m�2

S(0) ←− new n × m Matrix3

// initialize with local values

S(0)I,k ←− getInput(k, 0)4

t ←− 15

while t ≤ T do6

S(t) ←− copyMatrix(S(t − 1))7

// perform communication

k ←− 18

while k ≤ m do9

p ←− (k + Δ) mod m10

S(t)rj ,p ←− S(t − 1)ej ,k ∀ j = 1 . . . |r|11

k ←− k + 112

k ←− 113

while k ≤ m do14

S(t)i,k ←− getInput(k, t)15

S(t)�,k ←− u(S(t)�,k)16

res ←− res + (y(t) − S(t)o,k)217

k ←− k + 118

t ←− t + 119

return res20

end21

compute a value Δ = 2t mod d. We then build pairs in the form (i, i + Δ), where
i is the ID number of the node. This setup is optimal in terms of convergence
speed, as shown in Figure 1. The data from node 0 (marked with a thick border)
spreads in the first step to node 1. In the second step, it reaches node 2 directly
and node 3 indirectly through node 1. In the third protocol step, the remaining
four nodes receive knowledge of the information from node 0. Now the cycle
would start over again.

We can generalize this approach for networks sizes that are no powers of 2.
Here, we set d = �log2 m� while still leaving Δ = 2t mod d and define that a node
i sends its data to the node (i + Δ) mod m for all i as illustrated in Figure 2.

3.2 Node Model

The model of nodes comprising a network is just as important as the network
model itself. A node p executing a gossip-based aggregation protocol receives
input in form of the locally known value (for example, a sensor reading) and
also in form of messages containing data from other nodes in the network. The
output of p is, on one hand, the local approximation of the aggregate value,



258 T. Weise, M. Zapf, and K. Geihs

and on the other hand the information sent to its partners in the network. The
computation is done by a processor which updates the local state by executing
the update function. The local state sp of p can most generally be represented
as a vector sp ∈ R

n of dimension n, where n is the number of memory cells
available on a node.

Until now, we have considered the states to be scalars. Generalizing them
to vectors allows us to specify or evolve more complicated protocols. The state
vector contains approximations of aggregate values at positions 1 ≤ i ≤ n.
It does not only serve as a container for the aggregate, but also as memory
capable of accumulating information. It is probably unnecessary to exchange
the complete state during the communication. Therefore we specify an index list
e containing the indices of the elements to be sent and a list r with the indices of
the elements that shall receive the values of the incoming messages. For a proper
communication between the nodes, the length of e and r must be equal and each
index must occur at most once in e and also at most once in r. Whenever a node
p receives a message from node q, the following assignment will be done, with
s[i] being the ith component of the vector:

sp[rj ] ←− sq[ej ] ∀ j = 1 . . . |r| (3)

In the original form of gossip-based aggregation protocols, the state is initialized
with a static input value which is stepwise refined to approximate the aggregate
value [6]. In our model, this restriction is no longer required. We specify an index
I pointing at the element of the state vector that will receive the input. This
allows us to grow protocols for static and for volatile input data – in the latter
case, the inputs are refreshed in each protocol step. A node p would then perform

sp(t)[I] ←− getInput(p, t) (4)

The function getInput(p, t) returns the input value of node p at time step t.
With this definition, the state vectors s become time-dependent, written as
s(t). Finally, update is now designed as a map R

n �→ R
n to return the new state

vector.
sp(t + 1) = update(sp(t)) (5)

In the simulation, we can put the state vectors of all nodes together to a single
n × m matrix S(t). The column k of this matrix contains the state vector sk of
the node k.

S(t) = (s1, s2, . . . , sm) (6)
Sj,k = sk[j] (7)

4 Breeding the Protocol

4.1 Evaluation and Objective Values

The models described before are the basis of the evaluation of the aggregation
protocols that we breed. In general, there are two functional features that we
want to develop in the artificial evolution:



Evolving Proactive Aggregation Protocols 259

1. We want to grow aggregation protocols where the deviation between the
local estimates and the global aggregate is as small as possible, ideally 0.

2. This deviation can surely not be 0 after the first iteration at t = 1, because
the nodes do not know all data at that time. However, the way how received
data is incorporated into the local state of a node influences the speed of
convergence to the wanted value. We want to find protocols that converge
as quickly as possible.

In all use cases discussed in Section 2.3, we already know either the correct
aggregation values yi or the local aggregate function α : R

m �→ R that calculates
them from data vectors of the length m. The objective is to find a distributed
protocol that computes the same aggregates in a network where the data vector
is distributed over m nodes. In our model, the estimates of the aggregate value
can be found at the positions SO,� ≡ sk[O] ∀ k ∈ 1 . . . n in the state matrix or
the state vectors respectively.

The deviation ε(k, t) of the local approximation of a node k from the correct
aggregate value y(t) at a point in time t denotes its estimation error.

y(t) = α
(
(getInput(1,t),...,getInput(m,t))′

)
(8)

ε(k, t) = y(t) − SO,k(t) = y(t) − sk[O] (9)

We have already argued that the mean square error is an appropriate quality
function for symbolic regression. Analogously, the mean of the squares of the
errors ε over all simulated time steps and all simulated nodes is a good criterion
for the utility of an aggregation protocol. It tangents both functional aspects
subject to optimization: The larger it is, the greater is the deviation of the
estimates from the correct value. If the convergence speed of the protocol is
low, these deviations will become smaller more slowly by time. Hence, the mean
square error will also be higher. For any evolved update function u we define1:

γ1(u, e, r) =
1

T ∗ m

T∑

t=1

m∑

k=1

ε(k, t)2
∣∣∣∣∣
u,e,r

(10)

This rather mathematical definition is realized indirectly in Algorithm 1, which
returns the value of γ1 for an evolved update method u and also applies the fast,
convergence-friendly communication scheme discussed in Section 3.1.

4.2 Phenotypic Representation

We have to find a proper representation for gossip-based aggregation protocols.
Such a protocol consists of two parts: the evolved update function and a speci-
fication of the properties of the state vector – the variables I, O, r, and e.
1 Where |u,e,r means “passing u, e, r as input to Algorithm 1”
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Representation for the update Function. The function update as defined
in the context of our basic model for aggregation protocols receives the state
vectors sk(t) ∈ R

m of time step t as input. It returns the new state vectors
sk(t + 1) ∈ R

m of time step t + 1. This function is indeed an algorithm by itself
which can be represented as a list of tuples l = [. . . , (uj , vj), . . .] of mathematical
expressions uj and vector element indices vj . This list l is processed sequentially
for j = 1, 2, . . . , |l|. In each step j, the result of the expression uj is computed
and assigned to the vjth element of the old state vector s(t − 1). In the simplest
case, l will have the length |l| = 1. One example for this is the well-known
distributed average protocol illustrated in Figure 3: In the single formula, the
first element of s1(t), [1], is assigned to 0.5 ∗ ([1] + [2]) which is the average of
its old value and the received information. Here the value of the first element is
send to the partner and the received message is stored in the second element,
i.e. r = [2], e = [1]. The terminal set of the expressions now does not contain the
simple variable x anymore but all elements of the state vectors. Finally, after all
formulas in the list have been computed and their return values are assigned to
the corresponding memory cells, the modified old state vector sk(t) becomes the
new one sk(t + 1).

*

0.5

[2] [1]

[2]

+

Fig. 3. A distributed average
protocol
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/ ^abs max

[1] [2] * 0.5[3] *-

[1] [2][1] [2][2] *

[1] [2][2] [3]

Fig. 4. The square root of the distributed average
protocol

Figure 4 shows a more complicated protocol where update consists of |l| = 4
formulas [(u1, 1), (u2, 2), (u3, 3), (u4, 2)]. We will not elaborate deeper on these
examples but just note that both are obtained with Genetic Programming. The
point is that we are able to provide a form for the first part of the aggregation
protocol specification that is compatible to normal symbolic regression and which
hence can be evolved using standard operators.

Besides a sequence of formulas computed repetitively in a cycle, we also need
an additional sequence that is executed only once, in the initialization phase.
This is needed for some other protocols than the distributed minimum, max-
imum, and average, which cannot assume the approximation of the estimate
to be the current input value. Here, another sequence of instructions is needed
which transforms the input value into an estimate which then can be exchanged
with other nodes and used as basis for subsequence calculations. This additional
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sequence is evolved and treated exactly in the same way as the set of formulas
used inside the protocol cycle.

Straightforward, we can specify a non-functional objective function γ2 that
returns the number of expressions in both sets and hence puts pressure into the
direction of small protocols with less computational costs.

Representation for I, O, e, and r. Like the update function, the parameters
of the data exchange, r and e, become subject to evolution. I and O are only
single indices; we can assume them to be fixed as I = 1 and O = 2. Although we
could do the same with e and r, there is a very good reason to keep them variable:
If e and r are built during the evolutionary process, different protocols with
different message lengths (|e1| �= |e2|) can emerge. Therefore, we introduce a non-
functional objective function γ3 minimizing the message lengths. The results of
Genetic Programming will thus be optimal not only in accuracy of the aggregates
but also in terms of communication costs. A good encoding scheme for e and r
is a variable-length integer string (array) for each of the two. Such genomes are
common and we can reuse standard operators of genetic algorithms.

4.3 Volatile Input Data

The specification of getInput(k, t) which returns the input value of node k at
time t ∈ [0, T ] allows us to evolve aggregation protocols for static as well as for
volatile input. Traditional aggregation protocols are only able to deal with static
inputs [6], having good convergence properties, as illustrated in Figure 5.

They would need to be restarted in a real application from time to time
in order to provide up-to-date approximations of the aggregate. This approach
is good if the input values in the real application change slowly. If they are
volatile, the estimations of these protocols become more and more imprecise. The
fact that an aggregation protocol needs a certain number of cycles to converge
is an issue especially in larger or mobile sensor networks. One way to solve
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this problem is to increase the data rate of the network accordingly and to
restart the protocols more often. If this is not feasible, because for example
energy restrictions in a low-power sensor network application prohibit increasing
the network traffic, dynamic aggregation protocols may help. They represent
a sliding average of the approximated parameter and are able to cope with
changing input data. In each protocol step, they will incorporate their old state,
the received information, and the current input data into the calculations. A
dynamic distributed average protocol like the one illustrated in Figure 6 is a
weighted sum of the old estimate, the received estimate, and the current value.
The weights in the sum can be determined by the Genetic Programming process
according to the speed with which the inputs change. In order to determine
this speed for the simulations, a few real sample measurements would suffice to
produce customized protocols for each application situation.

5 Results from Experiments

For our experiments, we have used a simple elitist evolutionary algorithm with
a population size of 4096 and an archive size of 64. In the simulations, 16 virtual
machines were running, each holding a state vector s with five elements. For
evaluation, we perform 22 simulation runs per protocol where each run is granted
28 cycles in the static and 300 cycles in the dynamic case. In the evolution, we
put most of the pressure on optimizing the first objective, and only take the
other values into consideration to break ties. This tiered comparison structure
[11] leads to optimal sets with few members that most often (but not always)
have equal objective values and only differ in their phenotypes.

5.1 Average – Static

With this configuration, protocols for simple aggregates like minimum, maxi-
mum, and average can be obtained in just a few generations. We have used the
distributed average protocol which computes αavg = x in many of the previous
examples, for instance in Section 2.2 and in Figure 4.

The evolution of a static version of such an algorithm is illustrated in Figure 7.
It shows how the values of the first objective function (the mean square error
sum) improve with the generations in twelve independent runs of the evolution-
ary algorithm. All runs actually converged to the optimal solution previously
discussed, most of them very quickly in less then 50 generations.

Figure 8 reveals the inter-relation between the first and second objective func-
tion for two randomly picked runs. Most often, when the accurateness of the (best
known) protocols increases, so does the number of formula expressions. These
peaks in γ2 are always followed by a recession caused by stepwise improvement of
the protocol efficiency by eliminating unnecessary expressions. This phenomenon
is rooted in the tiered comparison that we chose: A larger but more precise pro-
tocol will always beat a smaller, less accurate one. If two protocols have equal
precision, the smaller one will prevail.
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5.2 Root-of-Average – Static

In [3] we used the evolution of the root-of-average protocol as benchmark prob-
lem. Here, a distributed protocol for the aggregate function αra shall be evolved:

αra(x) =
√

|x| (11)

One result of these experiments has already been sketched in Figure 4. Figure 9
is a plot of eleven independent evolution runs. It also shows a solution found
after only 84 generations in the quickest experiment. The values of the first
objective function γ1, denoting the mean square error, improve so quickly in all
runs at the beginning that a logarithmic scale is needed to display them properly.
This contrasts with the simple average protocol evolution where the measured
fitness is approximately proportional to the number of generations. The reason
is the underlying aggregate function which is more complicated and thus, harder
to approximate. Therefore, the initial errors are much higher and even small
changes in the protocols can lead to large gains in accurateness.

The example solution contains a useless initialization sequence. In the exper-
iments, it paradoxically did not vanish during the later course of the evolution
although the secondary (non-functional) objective function γ2 puts pressure into
the direction of smaller protocols. For the inter-relation between the first and
second objective function, the same observations can be made as in the average
protocol. Improvements in γ1 often cause an increase in γ2 which is followed by
an almost immediate decrease.

5.3 Average – Dynamic

Dynamically changing inputs are more interesting, since creating protocols for
this scenario by hand is more complicated. We first repeat the “average” experi-
ment for two different scenarios with volatile input data. The first one is depicted
with solid lines in Figure 10. Here, the true values of the aggregate α(x(t)) can
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vary in each protocol step by 1% and in one simulation by 50% in total. In the
second scenario, denoted by dashed lines, these volatility measures are increased
to 3% and 70% respectively.

The different settings have a clear impact on the results of the error functions
– the more unsteady the protocol inputs, the higher will γ1 be, as Figure 10
clearly illustrates. The evolved solution exhibits very simple behavior: In each
protocol step, a node first computes the average of its currently known value and
the new sensor input. Then, it sets the new estimate to the average of this value
and the value received from its partner node. Each node sends its current sensor
value. This robust basic scheme seems to work fine in a volatile environment.

5.4 Root-of-Average – Dynamic

Here we follow the same approach as for the dynamic average protocol: Tests are
run with the same two volatility settings as in Section 5.3. For the tests with data
changing more slowly, we got a similar process of γ1 like in Figure 9. However,
we found that the evolutions with the highly dynamic input dataset did not yield
functional aggregation protocols. We suppose that there is a threshold of volatility
from which on Genetic Programming is no longer able to breed stable formulas.

Again, in every experiment run, increasing γ1 is usually coupled to a deterio-
ration of γ2 followed by a recreation span where the formulas are reduced in size.
After a phase of rest, where the new protocol supposable spreads throughout the
population, this cycle starts over again until the end of the evolution.

6 Conclusions

In this article we have illustrated how Genetic Programming can be utilized for
the automated synthesis of aggregation protocols. The transition to the evolution
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of protocols for dynamically changing input data is a step towards a new direc-
tion. Especially in applications like large-scale sensor networks, it is very hard
for a software engineer to decide which protocol configuration is best. With our
evolutionary approach, different solutions could be evolved for different volatil-
ity settings which can then be selected by the network according to the current
situation. The practical utilization of this new technique will be our next step
in future work.
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Abstract. The problem of evolving binary classification models under
increasingly unbalanced data sets is approached by proposing a strategy
consisting of two components: Sub-sampling and ‘robust’ fitness func-
tion design. In particular, recent work in the wider machine learning
literature has recognized that maintaining the original distribution of
exemplars during training is often not appropriate for designing classi-
fiers that are robust to degenerate classifier behavior. To this end we
propose a ‘Simple Active Learning Heuristic’ (SALH) in which a subset
of exemplars is sampled with uniform probability under a class balance
enforcing rule for fitness evaluation. In addition, an efficient estimator
for the Area Under the Curve (AUC) performance metric is assumed in
the form of a modified Wilcoxon-Mann-Whitney (WMW) statistic. Per-
formance is evaluated in terms of six representative UCI data sets and
benchmarked against: canonical GP, SALH based GP, SALH and the
modified WMW statistic, and deterministic classifiers (Naive Bayes and
C4.5). The resulting SALH-WMW model is demonstrated to be both
efficient and effective at providing solutions maximizing performance as-
sessed in terms of AUC.

1 Introduction

Genetic Programming (GP) provides many unique opportunities for posing so-
lutions to the basic Machine Learning design questions of representation, cost
function, and credit assignment. In this work we are specifically interested in
the topic of cost function design under the classification domain of supervised
learning. Classically, an equally weighted cost function is assumed, such as ‘hits’
[11] or sum square error [2]. Such a design choice might be natural under bal-
anced binary classification problems where each class carries an equal risk, but
is questionable in the wider context of real world data sets that are frequently
unbalanced. At the very least, as the class distribution becomes increasingly un-
balanced, the likelihood of evolving degenerate classifier behavior will increase
[6], [19]. Addressing the class imbalance problem has at least two related per-
spectives: identification of an appropriate cost (fitness) function, and sampling
the original distribution of training exemplars such that the learning algorithm
adapts under a different distribution than the original data set.
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In the case of sampling algorithms, several paradigms have appeared, includ-
ing: (1) boosting and bagging algorithms that tend to result in multiple individ-
uals being built relative to static resampling of the original training data, and;
(2) active learning or sub-sampling algorithms that may identify a sub-sample of
exemplars from the larger training data set at each training cycle. The later case
is of interest in this work. In particular we begin with the observation made from
Weiss and Provost (under decision tree induction) [20]; that is, robust classifiers
may be built relative to the post training performance metric of Area Under the
Curve (AUC) if sub-samples are built stochastically using a uniform sampling
heuristic that simultaneously enforces class balance in the sub-sample.

In this work we assume the balanced stochastic sub-sampling model as our
base line model for scaling GP to larger (and therefore more interesting) data
sets than would typically be the case without a hardware speedup; hereafter
denoted the Simple Active Learning Heuristic (SALH). Next we investigate the
utility of a fitness function capable of approximating the properties of the AUC
metric. Specifically, AUC represents a rank based performance metric that ex-
plicitly measures performance in terms of two typically ‘conflicting’ performance
goals at multiple performance points. As such, the model is encouraged to, for ex-
ample, maximize recall while simultaneously minimizing false positive rate, thus
explicitly penalizing degenerate behaviors that might dominate models trained
from unbalanced distributions of exemplars. One drawback associated with the
wider utility of AUC as a cost function in Machine Learning has been the com-
putational cost of first estimating the Receiver Operating Characteristic (ROC)
curve and then deriving the associated AUC. Naturally, by assuming a sub-
sampling model we decouple the evolutionary cycle from the original dimension
of the data set. However, even under such conditions a significant overhead still
exists in the inner loop if we attempt to estimate the AUC directly. The final
component of the model investigated in this work is therefore to make use of the
Wilcoxon-Mann-Whitney (WMW) statistic where this provides a direct estima-
tor for the AUC metric [9], [21]. To this end, we detail modifications necessary
to focus the ensuing GP classifiers, such that ‘robust’ performance under the
WMW metric was generalized to corresponding behavior under test conditions.

The proposed model of WMW fitness function estimated over exemplar sub-
sets identified under SALH, is benchmarked over six unbalanced data sets from
the UCI repository [16]. Comparisons are made against both deterministic clas-
sifiers (C4.5 and Naive Bayes), canonical GP, and GP under SALH (both of
the latter assume ‘hits’ based fitness). The WMW model is the most success-
ful in maximizing the area under the curve performance statistic on test data,
bettering C4.5 on five of the six data sets, and significantly better than either
alternative GP paradigm.

2 Related Work

As indicated in the introduction we approach the problem of designing a ‘ro-
bust’ classifier using two inter-related concepts: establishing a suitable training
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exemplar sampling algorithm, and establishing an appropriate cost (fitness) func-
tion. Within the context of Genetic Programming in particular, several works
have proposed approaches to the training exemplar sub-sampling problem. The
work of Gathercole and Ross in particular demonstrated that not all exemplars
are equally relevant to the training task at any point in time [8]. Two heuristics,
denoted exemplar ‘age’ and ‘difficulty’ were used to bias the selection of exem-
plars to appear in the current fitness evaluation (training epoch). Such a model
provides a considerable speedup relative to fitness evaluation over all training
exemplars and was demonstrated to result in individuals performing no worse.
Recent research has considered the utility of competitive coevolutionary mod-
els as the basis for an alternative model of active learning. In particular the
host-parasite model of Hillis demonstrated that such a model could provide the
basis for biasing the selection of a subset of training exemplars at fitness eval-
uation [10]. The host-parasite model does however suffer from the problem of
establishing the relevant problem dependent ‘virulence factor’ to ensure that the
exemplars selected (parasite) do not dominate the ability of the learners (host)
[3], [15]. More recently, the competitive coevolutionary model for rewarding the
ability of exemplars to ‘distinguish’ between learners under a Pareto model of
coevolution has received a lot of interest [7], [17], [5]. Attempts to make use of the
Pareto competitive coevolutionary paradigm under the GP classification domain
have utilized a two population model, with one population representing the sub-
set of training exemplars on which fitness evaluation is conducted, and a second
population in which classifiers are evolved. Under such an architecture, Pareto
competitive frameworks to date concentrate on establishing archiving strate-
gies that posses desirable properties (such as monotonic progress) [4]. However,
the indexing of exemplars by the ‘point’ population does not hold any implicit
structure to guide the definition of appropriate variation operators. As such the
most successful Pareto Competitive models, under the GP classification domain,
have relied on the uniform selection of exemplar indexes and a class balancing
heuristic to create the point population [13].

With respect to the utility of performance metrics that explicitly reward the
evolution of ‘robust’ as opposed to naive classifier behaviors, many authors have
considered cost functions which make use of fixed penalty functions [19], [18].
Adaptive cost functions have also been proposed, for example Eggermont et al.
developed a scheme for periodically re-weighting the error associated with train-
ing exemplars during training [6]. This is naturally related to the ‘difficulty’
heuristic devised by Gathercole, but without attempting to use this as an ex-
emplar selection bias under an active learning paradigm. Langdon and Buxton
considers the problem of AUC optimization given two previous classifiers with
different ROC profiles [12]. However, the problem addressed is naturally distinct
from designing the initial classifiers such that ROC profiles are suitably distinct.

The two themes central to the method adopted in this work result from the
findings of Weiss and Provost on training decision tree induction classifiers under
unbalanced data sets [20], and a successful attempt at constructing an AUC type
cost function for training a neural network classifier on a very unbalanced data
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set [21]. In the case of Weiss and Provost, a systematic study is performed on the
impact of training subset class balance under the C4.5 algorithm. A clear sta-
tistically significant preference was demonstrated for uniform exemplar selection
while enforcing equal representation of major and minor classes. Such a heuristic
was central to establishing effective operation of point population sampling algo-
rithms for Pareto competitive coevolution of classifiers, and in some cases may
out perform this model [14]. The work of Yan et al., began by formally demon-
strating that minimizing metrics such as mean square error or cross-entropy is
not sufficient for maximizing AUC [21]. They then make use of the WMW esti-
mator for AUC and derive an alternative, back-propagation compatible version
of the metric, thus enabling them to train a multi-layer perceptron to maximize
the AUC performance metric directly, and demonstrate the utility of such an
algorithm under a very unbalanced ‘churn’ prediction problem.

3 Methodology

The basic goal of this work is to provide a generic model for the evolution
of GP classifiers under unbalanced data sets through a combined approach of
class balanced stochastic sub-sampling and a modified WMW cost function. The
combined approach is necessary to: (1) actively bias the distribution of exemplars
over which learning is conducted; (2) establish a ‘robust’ cost function, and; (3)
address the computational cost of fitness evaluation. In the following we will
define the sub-sampling based active learning model of GP classification, and
WMW cost function and associated modification for the case of GP.

3.1 Simple Active Learning Model

In order to decouple the cost of fitness evaluation from the size of the training
data set, an active learning model is assumed. The Dynamic Subset Selection
(DSS) model of Gathercole and Ross has been widely used in the GP domain.
However, in this work we assume a simpler model. Specifically, exemplars are
selected with uniform probability from the original training partition, such that
major and minor class provide an exemplar subset of fixed size with equal rep-
resentation of both classes. The DSS algorithm was originally compared against
subsets formed from exemplars sampled with purely uniform probability, but
without the requirement for equal class balance [8]. This may naturally result
in subsets being formed that represent major and minor classes with the same
distribution as in the entire training partition. However, as the distribution of
major to minor class increases, the likelihood of building ‘degenerate’ subsets
increases, see for example the comparison of DSS and canonical GP in [13]. The
study of Weiss and Provost establishes that such a scheme for building sub-
samples will result in optimizing for an accuracy based performance metric, but
relative to a more informative performance metric such as AUC, will result in
very low scores. Thus, this study adopts a class balance enforcing subsampling
model that selects exemplars with uniform probability from major and minor
class, until the equal class constraint is satisfied.
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Aside from the active learning model for defining a new subset of exemplars at
each generation, the GP classifier takes the form of canonical tree structured GP.
Specifically, in the case of the wrapper operator, a sigmoid is employed where
this has the desirable property of encouraging exemplars to move away from the
switching point of the class boundary.

y(x) =
2

(1 + exp(−GPout(x)))
− 1 (1)

where GPout(x) denotes the ‘raw’ scalar value returned by the root node of the
phenotype following evaluation of the program on input vector ‘x’, and y(x)
denotes class membership over the interval [-1, 1] with respect to exemplar ‘x’.
Naturally, values tending towards ‘-1’ indicate out of class and values tending
towards ‘1’ are indicative of in class membership.

3.2 Wilcoxon-Mann-Whitney Fitness Function

The area under the curve (AUC) metric expresses classifier performance in terms
of the area under the ‘receiver operating characteristic’ or ROC. Such curves
typically characterize classifier performance in terms of true positive rate versus
false positive rate [1], [9]. Unlike most widely utilized performance metrics, such
as accuracy or precision and recall, the ROC curve does not rely on a single
performance point to characterize classifier behavior. That is to say, both true
positive rate and false positive rate are estimated at multiple performance points
for each exemplar; where the performance points are derived, for example, from
cuts taken across the class membership function of (1). Needless to say, the
more thresholds utilized, the more accurate the characterization, but the more
expensive the evaluation. Specifically, estimating the ROC curve requires the re-
evaluation of true and false positive rates for a sufficient number of performance
points to provide an accurate rendition of the curve. Only with this complete
can estimate of the AUC. All of this takes place within the inner loop of GP.
Thus in this work, we do not estimate the AUC or ROC, but make use of the
Wilcoxon-Mann-Whitney (WMW) statistic, where this is already known to be
an equivalent estimator for AUC without building the ROC [9]. The WMW
statistic has the form,

WMW (I, P, N) =
|P |∑

i=0

|N |∑

j=0

C(y, Pi, Nj) (2)

where

C(y, a, b) =

{
1 if y(a) > y(b)
0 otherwise

(3)

and y(a) is the class membership returned by the wrapper operator of equation
(1) under the exemplar represented by input vector a, P is the set of all majority
class exemplars, and N is the set of all minority class exemplars. Thus, Pi(Nj)
is the ith (j th) element of P (N).
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Naturally, equation (2) conducts a series of pairwise comparisons between in
and out of class exemplars, only rewarding cases in which the class membership
function for in class exemplars exceeds that for the out of class cases as per
(3). However, when used in combination with a continuous valued (as opposed
to binary) membership operator it is also necessary to explicitly reward class
membership values that fall on the relevant side of the origin. We denote the
resulting WMW based fitness function WMWfitness, expressed as follows,

WMWfitness(y, P, N) = f(y, P ) · f(y, N) + WMW (y, P, N) (4)

where

f(y, S) =
|S|∑

i=0

{
1 if d(Si) = y(Si)
0 otherwise

(5)

and d(Si) is the desired class label of exemplar i, and I(Si) is the corresponding
binary class label suggested by the GP classifier (i.e. thresholding the wrapper
about the origin).

The first component of the right hand side of (4) contributes a ‘point’ for
every pair of correctly labeled exemplars; whereas the second component takes
the form of the original WMW metric. On an exemplar by exemplar basis, the
WMW contribution is satisfied first; thus, evolution will first find individuals
with good AUC properties and then normalize the pairwise dominance property
relative to the origin of the activation function, equation (1).

4 Results

4.1 Canonical GP

The empirical evaluation is conducted utilizing a common canonical tree struc-
tured model of GP [11] using the 1.1 distribution of lilgp [22], although the GP
representation itself has no impact on the algorithm proposed. The selection op-
erator takes the form of Koza’s ‘overselection’, thus the top thirty two (bottom
sixty eight) percent of the population account for eighty (twenty) percent of the
parents. Such a model naturally has a higher take-over rate than would be the
case for fitness-proportionate selection alone. The terminal set was limited to
indexing the features of the problem domain, whereas the function set took the
form of the four arithmetic operators, four higher order operators with a single
argument (sine(a), cos(a), ea,

√
a) and the standard conditional statement with

four arguments (c if a < b, d otherwise). The remaining GP parameters take the
form: Population size (800), Max tree nodes (256), Half-half initialization (2-6
node depth), Crossover (0.7), Mutation (0.3), Internal versus leaf node likelihood
(0.9/0.1). In no cases was any attempt made to optimize these values.

4.2 Data Sets

A total of six data sets were employed in the evaluation, five corresponding to
a subset of those used in the study of Weiss and Provost [20], and the sixth



272 J. Doucette and M.I. Heywood

corresponding to the widely utilized BUPA liver diagnosis data set. All data sets
are available through the UCI repository [16] and have been selected on account
of the resulting varied ratio of major to minor class distributions. As per the the
Weiss and Provost study, we make the multiclass data sets binary by defining the
minor class as in class and the remaining classes as the out of class exemplars.
In each case the data set is stratified, with twenty five percent of the data set
being withheld for the purpose of establishing a test set and the remainder of
the data representing the training set. Table 1 establishes the basic properties
each data set as a whole.

Table 1. Data Set Characterization

Name Size % Minority Class # Attributes

Abalone 4,177 8.7 8

Sick Thyroid 3,163 9.3 25

Opt. Digits 5,620 9.9 64

Solar Flare 1,389 15.7 10

Adult 48,842 23.9 14

Liver 345 42 6

4.3 Evaluation

Evaluation is conducted in the form of three separate comparisons. In the first
case we compare canonical GP with the Simple Active Learning Heuristic
(SALH) of Section 3.1 over the four smaller data sets (too computationally
expensive to apply canonical GP to the Adult data set). The only difference
between the two models is the set of exemplars utilized for fitness evaluation.
Experiment two compares GP classifiers evolved using the SALH and a count
based fitness function, versus the same active learning heuristic, but with fitness
evaluated over the modified WMW metric of (4). Our last comparison compares
GP models evolved under the WMW metric with those trained under determin-
istic machine learning algorithms.

All post training evaluation will be performed in terms of test set performance
as measured by the AUC metric derived from the trapezoidal integration algo-
rithm [1]. That is to say, the AUC metric expresses the area under the curve as
estimated from the receiver operating characteristic (ROC). The ROC is con-
structed from the performance of each classifier under true positive and false
positive rates taken from twenty two points representing thresholds taken uni-
formly across the interval of the wrapper operator, equation (1). This results in
a scalar characterization of performance, with values in the range of zero (no
better than guessing) to a half (perfect classification of both minority and major
classes).

Canonical GP Versus SALH. In order to establish whether the baseline
canonical model of classification, that is fitness evaluation over the entire set of
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training exemplars, produces classifiers that are any more robust than fitness
evaluation over the balanced uniform model of subset selection, we compare
post training AUC performance over fifty runs of each model on all but the
‘Adult’ data set from Table 1. In no cases was a statistically significant difference
recorded at a Confidence interval of ninety five percent (Student T-test). Thus
no negative impact is attributed to fitness evaluation conducted over exemplar
subsets identified under SALH versus all training exemplars.

Combining SALH with WMW Fitness. The next test establishes the sig-
nificance of introducing the WMW fitness function in combination with SALH.
In effect we how have an efficient mechanism for evolving individuals under a
‘robust’ estimator of fitness, albeit only over subsets selected stochastically un-
der the balance enforcing heuristic. Figures 1 and 2 summarize AUC returned
on each test data set as first quartile, median, and third quartile (statistic col-
lected over fifty runs). The WMW fitness function yields solutions with sta-
tistically significantly better AUC values under five of the six data sets at a
confidence of ninety nine percent, and at ninety five percent in the case of the
liver data set. The amount of variation in results returned in models trained
using the WMW based fitness function are also much lower than that under
the hits based fitness function. In short, even when the natural distribution of
the original data set tends to equal representation of both classes, the WMW
based fitness function is much more effective at directing the credit assignment
process.
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Fig. 1. SALH with WMW fitness function: Post training AUC performance under test
partition for each data set
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Fig. 2. SALH with ‘hits’ fitness function: Post training AUC performance under test
partition for each data set

Comparison with Deterministic Models. Our final test compares the test
set performance of models trained using Naive Bayes and C4.5 to those evolved
under the WMW fitness function. This immediately presents the problem of
establishing a framework for making the comparison. In particular, the deter-
ministic models are trained following a single pass through the entire training
data set, whereas evolutionary models are evolved over multiple runs. Making
multiple folds of the original partition does not alter this relationship. Each fold
would still require multiple runs of the evolutionary method. In effect GP re-
quires the initialization of “free parameters” that are distinct from the learning
parameters, whereas deterministic models such as C4.5 and Naive Bayes only
have learning parameters. Thus, we adopt the following policy in which the de-
terministic model is used to establish a performance threshold against which we
then ask what is the likelihood of the evolutionary model matching or bettering
this performance.

Figure 3 reports the likelihood of the GP classifier initializations matching or
bettering the performance of the Naive Bayes and C4.5 deterministic classifiers.
Larger bars imply more of the GP solutions matched or bettered the base line
established by the deterministic model. Conversely, no bar implies that all GP
solutions were worse than the deterministic base line. The data set that returned
no benefit from the GP model was the largest data set, Adult, where this might
be an indicator for evolving over more generations (the common training limit
of fifty generations implies that only seven percent of the Adult training data
is sampled). Both Abalone and Euthyroid, the two data sets with the largest
degree of class imbalance were most likely to result in the GP model improving
on the deterministic classifier base line. Interestingly, C4.5 found the Solar flare
data set particularly difficult, whereas Naive Bayes did not perform as well on
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the Liver data set (the most balanced data set considered). However, the Naive
Bayes classifier bettered both C4.5 and GP on the Optical Character recognition
problem. In short the GP solutions were better than the Naive Bayes classifier in
a minimum of sixty percent of the cases in four of the six data sets, and unable
to better Naive Bayes on the other two data sets. Under the performance target
set by C4.5, GP was better at least fifty percent of the time under four of the six
data sets, and returned results that were better in at least twenty five percent
of the initializations on the fifth data set.
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Fig. 3. Percent of SALH-WMW solutions matching or bettering the deterministic clas-
sifier baseline under post training AUC performance statistic evaluation of test parti-
tion

5 Conclusion

The problem of training GP classifiers under large unbalanced binary data sets
is addressed through the dual approach of training exemplar selection and ap-
propriate fitness function design. We begin by utilizing a class balance heuristic
under an active learning paradigm, for the evolution of GP classifiers. The en-
suing Simple Active Learning Heuristic is shown to perform at least as well as
canonical GP evolved over all training exemplars. The second part of our ap-
proach begins with the WMW estimator for the AUC metric. As is, this metric
rewards pairwise dominance behaviour as measured between minor and major
class exemplars. However, we are also interested in maximizing the separation
between the two sets of behaviors as mapped to ‘GPout’ and resolved in terms of
a smooth wrapper operator, a sigmoid. To this end, we introduce a second factor
into the fitness function, such that individuals that both establish the pairwise
dominance property and enforce class membership relative to the wrapper oper-
ator origin receive more reward than those establishing the dominance property
alone. Benchmarking on six data sets from the UCI repository with minor class
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representations in the range of five to forty percent of the data set demonstrates
that the proposed approach is significantly better than classifiers evolved under
the same active learning heuristic and typically better than C4.5 or Naive Bayes
under five and four of the six data sets respectively.

Future work will continue to investigate the significance of fitness functions in
GP classifier design. In particular, recent work in machine learning has demon-
strated a bias between classes of cost function and classifier operation. We antici-
pate there being equivalent relationships between function set design and classes
of fitness function.
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Abstract. Many automatically-synthesized programs have, like their
hand-made counterparts, numerical parameters that need to be set prop-
erly before they can show an acceptable performance. Hence, any ap-
proach to the automatic synthesis of programs needs the ability to tune
numerical parameters efficiently.

Grammatical Evolution (GE) is a promising grammar-based genetic
programming technique that synthesizes numbers by concatenating dig-
its. In this paper, we show that a naive application of this approach can
lead to a serious number length bias that in turn affects efficiency. The
root of the problem is the way the context-free grammar used by GE is
defined. A simple, yet effective, solution to this problem is proposed.

1 Introduction

Genetic Programming (GP) [1] has been used for the automatic synthesis of
computer programs and other kinds of systems. In many cases, a GP system
is required to find two equally important components: a system’s structure and
optimal (or near-optimal) values for numerical parameters. Although both com-
ponents determine the overall system’s performance, it is its structure that de-
termines the number and importance of numerical parameters [2]. Obviously,
tuning numerical variables effectively and efficiently is crucial in any GP ap-
proach and the topic has been the subject of active research [3], [4], [5].

Previous work on the ability of Grammatical Evolution (GE) [6], a grammar-
based GP technique, to synthesize numerical values has shown that a simple digit
concatenation approach is superior to the traditional expression-based one [7].
In this paper, a study on the efficiency with which this approach is able to
generate numerical parameters is presented. The study relies on the assumption
that a good structure (i.e., the number of numerical variables) has already been
found during evolution, so that the efficiency with which GE can tune numerical
variables can be studied in detail.

The main finding reported here is that the classical digit concatenation gram-
mar used by GE to generate numerical parameters induces a bias toward short-
length numbers. This bias can affect substantially the efficiency of the search
process which can hinder the applicability of GE as a whole. A simple, yet effec-
tive, solution to this problem is proposed. It consists of a grammar modification

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 278–288, 2008.
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that makes the distribution of lengths in the initial population more uniform,
effectively making the search for numbers of different lengths more efficient.

The paper is organized as follows. Section 2 describes the GE approach. A
brief summary of related work is presented in Section 3. Section 4 presents the
number length bias problem. Section 5 describes the experimental setup used to
evaluate both the magnitude of the problem and the benefits obtained with the
proposed solution. The paper is concluded in Section 6.

2 Grammatical Evolution

Grammatical Evolution (GE) [6] is a recent evolutionary computation technique
for the automatic synthesis of programs in an arbitrary language. At the core of
the approach is a grammar-based mapping process that transforms a number of
variable-length integer vectors into syntactically correct programs. The elements
of an integer vector are used to select a production rule from a grammar defined
in a Backus-Naur form. By expanding production rules in this way, a complete
program can be generated.

The components of a solution vector are normally integers in the range [0, 255].
Their values are used to select a production rule1 from the nonterminal symbol
that is being expanded. The selected production rule is determined by

selected rule = (integer value) mod (No. of rules for current nonterminal) , (1)

where mod denotes the modulus operator.
As an example of the operation of GE, consider the problem of performing

symbolic regression. A grammar G = {N, T, S, P} for this problem is shown
below (taken from [8]). N is the set of nonterminal symbols, T is the set of
terminal symbols, S is the start symbol, and P is the set of production rules.

N = {< expr >, < op >, < func >, < var >}
T = {sin, cos, exp, log, +, −, /, ∗, x, 1.0, (, )}
S = < expr >

P ={
< expr >→ < expr > < op > < expr >

| (< expr >)
| < func > (< expr >)
| < var >

< op >→ + | − | / | ∗
< func >→ sin | cos | exp | log

< var >→ 1.0 | x
}

1 Rules are numbered starting from 0.
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Suppose that the solution vector we want to map is

[6, 25, 120, 58, 43, 62, 126, 87, 67, 23, 11, 2] .

From the start symbol < expr >, there are 4 rules to choose from. Since the
first element of the solution vector is 6, the selected rule is rule number 6 mod 4 =
2. After this first expansion, the solution takes the form < func > (< expr >).
The mapping process continues by selecting a production rule from the leftmost
nonterminal symbol, which in our example is < func >. In the next expansion
step, the selected rule is rule number 25 mod 4 = 1, so the solution takes the
form cos(< expr >). If we continue with this process the final solution would be
cos(log(exp(x))/1.0).

The mapping process is repeated until a string with no nonterminal symbols
is generated or until no more elements in the vector remain to be mapped. If
after processing all the elements of the solution vector a valid solution is still
incomplete, there are two possible actions to take. The first one is called wrapping
and consists in reinterpreting the solution vector again starting from the first
element until a valid solution is generated or a maximum number of wrappings
occur. Although the elements of the solution vector are reused, their effect on
the generated string depends on the nonterminal symbol that is being rewritten.
The second option is to discard the solution and assigning it the lowest fitness
value.

By the way GE is designed, it is possible to separate the search and solution
spaces. This has the advantage of decoupling the way search is done from the
way solutions are constructed. Consequently, GE does not necessarily rely on
genetic algorithms to work.

GE has been used in fields such as financing [9], combinatorial optimiza-
tion [10] and machine learning [11]. In these and other cases a common problem
stands out: synthesizing numerical values effectively and efficiently. Previous
work on this direction is presented below.

3 Constant Creation by Grammatical Evolution

There have been some previous studies on the ability of GE to synthesize num-
bers. O’Neill et al. [7] presented a comparison between the traditional expression-
based approach used in tree-based Genetic Programming with a digit concate-
nation one. Based on experimental evidence, they conclude that the digit con-
catenation approach is superior to the expression-based one on the problem of
synthesizing numbers. In Dempsey et al. [12], a comparison between the digit
concatenation approach and another one using random constants was performed
on problems similar to those used by O’Neill et al. [7]. No conclusive evidence was
found on the superiority of any of these approaches. Recently, a more detailed
study was undertaken by Dempsey et al. [13] in which they finally conclude that
the digit concatenation approach is superior to the random constants approach
on problems requiring the synthesis of static constants. The random constants
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approach proved to be better suited for dynamic problems (in which the target
number changes over time).

Dempsey et al. [14] explored a meta-grammar approach to constant creation.
The grammars that were used to create the potential solutions were evolved
along with the solutions themselves. In this work, the effects of using different
grammars were indirectly studied but no grammar analysis was conducted in
detail and therefore, no grammar-construction guidelines were derived. Dempsey
and colleagues found that the meta-grammar approach offered some advantages
over other approaches on dynamic problems.

In this paper, we focus on the efficiency of the digit concatenation approach. It
uses a grammar that includes the basic building blocks for number construction.
For example, a grammar for synthesizing unsigned integer numbers is presented
below.

Digit Concatenation Grammar

N = {< number >, < digitlist >, < digit >}
T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
S = < number >

P ={
< number >→ < digitlist >

< digitlist >→ < digit > | < digit >< digitlist >

< digit >→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
}

This same approach, with small changes in the grammar, can be used for
creating signed and floating-point numbers. Note that, in principle, it is possible
to build numbers of any length. However, we will see later that this grammar
induces a bias toward short-length numbers, making the pure digit concatenation
approach inefficient when high-precision numbers are needed.

4 Number Length Bias in Digit Concatenation Grammars

The works described in Section 3 studied the ability of GE to find constants, the
length of which (or of their components in the case of floating-point numbers) was
short (between one and five digits) (see e.g., [13] and [7]). Interestingly, in their
results one can notice that the error after several generations is still quite high
in the case of “long” constants (those with at least 5-digit-long components).
Since the focus of these works was on the relative performance obtained by
GE when using different approaches for constant creation, this phenomenon
remained largely unexplained.

Large errors when trying to build long numbers can be explained using simple
concepts from the theory of stochastic context-free grammars [15], in which each
production rule r ∈ P has an associated probability p(r) of being selected.
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Consider a normal application of GE that uses a context-free grammar (CFG).
We can consider the probability of selecting a production rule whose left-hand
side nonterminal symbol is X , to be

p(r) =
1

|X | , (2)

where |X | is the number of production rules that have X as their left-hand side
symbol. Since we are using CFGs, the probability of a complete derivation is
simply the product of the rule probabilities used and thus, the probability of
generating a particular string (in our case, a number) is the sum of the proba-
bilities of all possible derivations producing that particular string. For example,
the probability of generating the number 5261 (in a GE style) from the digit
concatenation grammar presented before is

< number >→ < digitlist > p1 = 1.0
< digitlist >→ < digit >< digitlist > p2 = 0.5

< digit >→ 5 p3 = 0.1
< digitlist >→ < digit >< digitlist > p4 = 0.5

< digit >→ 2 p5 = 0.1
< digitlist >→ < digit >< digitlist > p6 = 0.5

< digit >→ 6 p7 = 0.1
< digitlist >→ < digit > p8 = 0.5

< digit >→ 1 p9 = 0.1

p(< number > ⇒ 5261) = p1p2p3p4p5p6p7p8p9 = 6.25 × 10−6 .

The probabilistic view presented above applies only when we generate strings
at random, which is the case at initialization. The search algorithm behind GE
will then try to adjust the population so as to increase the individuals’ fitness
(or reduce error). However, from a practical point of view, initial fitness is very
important because it determines to a great extent the efficiency (i.e., the speed
of convergence) of the approach.

In general, the probability of generating in the initial population a number of
n digits (without instantiating any digit to a specific number) using the digit con-
catenation grammar is 1/2n. Clearly, the longer the length of the target number,
the less likely it is to have a good approximation of it in the initial population.

5 Experiments

In our experiments, we measure the relative error δx̂ of the best solution x̂ with
respect to the target number value x. It is computed as follows

δx̂ =
|x̂ − x|

|x| , (3)

where x �= 0, which is always the case in our experiments.
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The relative error measure is used as the fitness evaluation which is to be
minimized. It guides a steady-state genetic algorithm which is used as search
algorithm. At each trial, a different target number of length n is randomly gen-
erated in the range [10n−1, 10n − 1]. The parameters of the algorithm and the
experiments are listed in Table 1.

Table 1. Parameters settings used in our experiments

Parameter Value

Search algorithm Steady state GA
Crossover operator One point
Mutation operator Bit-wise mutation

Population size 100
Number of generations 100
Probability of crossover 0.9
Probability of mutation 0.01

Population replacement strategy 100%
Wrapping events No
Number of trials 100

The steady-state genetic algorithm with a 100% population replacement strat-
egy effectively behaves as an algorithm with a (μ+λ) replacement strategy where
the best individuals among parents and offspring are passed over to the next gen-
eration.

Figure 1 shows the relative error after 1000 fitness evaluations obtained by
GE as a function of the length of the target number when using the classical
digit concatenation grammar presented in Section 3.

The relative error grows with the target number length reaching a maximum
value of 1.0. A maximum value of the relative error equal to 1.0 means that the
best solutions found after 1000 fitness evaluations are insignificant (in terms of
value) with respect to the long-length target numbers. It should be noted that
the effectiveness of the approach is not under discussion. After 10000 fitness
evaluations, the algorithm was capable of finding the target number irrespective
of its length; however, it should be stressed that the focus of this study is on
efficiency. In this respect, the results show clearly that building numerical values
by using the classical digit concatenation grammar induces a strong bias toward
short-length numbers.

The probability of having long-length numbers in the initial population de-
creases exponentially with the numbers’ length. Ideally, this problem is solved
by substituting the digit concatenation production rule by a rule with exactly
the same number of digits as the target number. The rule in question is the
following:

< number > → < digit >< digit > . . . < digit > .︸ ︷︷ ︸
n digits



284 M.A. Montes de Oca

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number length

R
el

at
iv

e 
er

ro
r

Fig. 1. Relative error as a function of the length of the target number. These results were
obtained after 1000 fitness evaluations with the classical digit concatenation grammar.
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Fig. 2. Relative error as a function of the length of the target number. These results
were obtained after 1000 fitness evaluations with an exact-length grammar. The gram-
mar corresponds exactly with the length of the target number.

By using this rule, the problem is reduced to select the appropriate value
for each of the digits of the target number. Effectively, short- and long-length
numbers (up to a length of n digits) are generated with equal probability in this
way. Figure 2 shows the relative error obtained by GE as a function of the length
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Fig. 3. Relative error obtained after 1000 fitness evaluations with an overestimated (in
this case aimed at 15 digits) exact-length grammar. Note the logarithmic scale in the
error axis.

of the target number using this exact-length grammar. Relative errors are small
irrespective of the target number’s length.

The solution just described suffers from one main drawback: It is necessary to
estimate accurately the length of the target number before running the search
process. If the length of the target number is greater than the estimation, the
solution will fail miserably because it will not be possible to generate a number
of the appropriate length. If the length of the target number is shorter than the
estimate, the relative error will grow exponentially with the overestimation as
shown in Figure 3.

An intermediate solution is thus proposed. It reduces considerably the bias
toward short-length numbers and eliminates the need of estimating the target
number’s length beforehand. The production rules involved in the digit concate-
nation process are the following:

< number > → < digitlist >

< digitlist > → < digit > | < digit >< digitlist >

| < digit >< digit > | < digit >< digit >< digitlist >

. . .

| < digit >< digit > . . . < digit >︸ ︷︷ ︸
k digits

| < digit >< digit > . . . < digit >︸ ︷︷ ︸
k digits

< digitlist > ,
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Fig. 4. Relative error as a function of the length of the target number obtained after
1000 fitness evaluations with a hybrid grammar

where k <= n and n is the target number’s length. Figure 4 shows the relative
error obtained with a “hybrid” grammar in which k = 5.

In general, the obtained error is much higher than the one obtained with
an exact-length grammar, but lower than the one obtained with a pure digit
concatenation grammar. The parameter k determines the maximum size of the
building blocks available to GE to produce numbers. It is expected that the
greater k, the more uniform the distribution of numbers of different lengths in
the initial population becomes.

6 Conclusions

Grammatical evolution (GE) is a relatively new evolutionary algorithm for the
synthesis of programs or systems in any arbitrary representation language. This
is possible thanks to a grammar-based search.

This paper highlights the importance of properly defining the grammar used
by GE for the solution of a problem. One of the main strengths of GE is the
possibility of biasing the search by means of a grammar; however, undesired
biases can also be introduced. Although the focus here was on the synthesis of
numerical values, the analysis based on stochastic context-free grammars can be
applied to determine whether there is any undesired grammar-induced bias on
other applications. A careful grammar design is needed in all cases.

This and previous studies have focused only on the synthesis of one numer-
ical value at a time. This has been done because a detailed understanding of
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the inner workings of grammatical evolution is necessary before embarking into
more complicated studies. An investigation into the performance of GE on prac-
tically relevant application scenarios, in which several (not just one) numerical
parameters are to be found, should be done in the future.
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Abstract. Pareto competitive models of coevolution have the potential
to provide a number of distinct advantages over the canonical approach
to training under the Genetic Programming (GP) classifier domain. Re-
cent work has specifically focused on the reformulation of training as a
two-population competition, that is learners versus training exemplars.
Such a scheme affords, for example, the capacity to decouple the fitness
evaluation overhead from the data set size through sub sampling while
naturally encouraging ‘teams’ or composite solutions as opposed to solu-
tions based on a single individual alone. One outstanding question with
respect to the latter characteristic is with regards to the nature of the
team (archive) behavior in terms of pattern coverage. That is to say,
which models are used when, and what are the implications for solution
modularity as it relates, for example, to the assignment of exemplars
to solution participants. The current work investigates two Pareto com-
petitive approaches to classification under GP, with one configured to
employ an explicitly cooperative multi-objective cost function based and
the other employing the classical (error-based) cost function. We empir-
ically demonstrate a critical distinction between the two with regards
to problem decomposition, with the capacity to provide a decomposi-
tion into unique behaviors being much more prevalent when co-operative
mechanisms are explicitly supported.

1 Introduction

Pareto competitive coevolution has begun to make the transition from the ge-
netic algorithm (GA) to genetic programming (GP) domain. The basic Pareto
competitive coevolutionary model of relevance to the classification domain en-
courages evolution to take place between one or more populations such that one
set of individuals represent a set of test cases (training exemplar subset) and the
other a set of learners. A Pareto ranking model is established in which the test
cases are rewarded for their ability to distinguish between the learners, and the
learners are rewarded for their ability to remain non-dominated (with respect to
the set of test conditions) [2], [10], [1]. The end result is that two Pareto fronts
are built, one in which a set of non-dominated test points exist (corresponding
to the minimal set of tests necessary to distinguish between the current set of
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learners) and the second details the corresponding set of non-dominated learners.
The advantage that such a model provides is twofold. Fitness evaluation need no
longer be conducted over the entire set of training exemplars, and a formal pro-
cess has been established for identifying the ‘best’ training points and learners.
Moreover, it is also possible to interpret convergence in terms of the behavior
of the learner Pareto front, thus addressing the issue of domain independent
stop criterion1. To date, however, the GA bias to this research has emphasized
the issues of diversity maintenance, monotonic progress, and niching within the
learner population.

In a GP setting the same issues exist, enabling some of the solutions to be
carried over from a GA context. In particular, GA Pareto competitive models
have been relatively successful in establishing a basis for coevolving two popula-
tion models under the GP classification domain [5], [6], [12], [8]. In this work we
will examine one of the basic problems unique to the GP classification domain
under a Pareto competitive model, and illustrate how it can be dealt with by
introducing a cooperative model of fitness assignment in addition to the Pareto
competitive coevolutionary model.

Specifically, under the classification domain the Pareto competitive model
results in a front of solutions for both learner and (test) point populations. This
means that the solution will no longer be in the form of a single classifier, but
in terms of a set of classifiers (those in the Pareto front). The basic issue at
stake here is how to determine which model to use when. The problem does not
appear in a GA setting for the most part because individuals take the form of
a co-ordinate in a multi-dimensional space, thus application of an appropriate
distance metric is sufficient to resolve which individual to apply when. Moreover,
the GA domain may also introduce diversity mechanisms based on Euclidean
distance metrics to encourage desirable ‘coverage’ properties in the Pareto front
itself. Finally, although GA domains might utilize a Pareto method to evolve a
front of solutions, they often assume that only one is chosen for deployment by
the user.

Conversely, under a GP classification domain we demonstrate in this work
that a lot depends on how the fitness function and associated wrapper operator
are designed. In particular, the most straightforward approach might assume
a binary (hit) based model on account of the ease with which the associated
Pareto dominance test might be made. We show in this work that this results
in a weak learner type of association between learners and exemplars, with sig-
nificant overlap between the exemplars and responding learners. Conversely, by
assuming a cooperative multi-objective model to fitness evaluation (in addition
to the Pareto competitive model of evolution) we are able to establish an explicit
decomposition of exemplars to learners. As such, the post training assignment
of learners to exemplars merely takes the form of utilizing the learner providing
maximum class membership.

In the following, models for Pareto competitive coevolutionary and Pareto
cooperative-competitive models of GP coevolution are introduced, Section 2.

1 Originally proposed under the GA paradigm [4], and reapplied under GP [8].
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In doing so, we contrast the utility of local and global wrapper operators, and
make the case for establishing reward mechanisms that explicitly encourage co-
operative behaviors. Both algorithms provide solutions in the form of a ‘front’ of
solutions. Section 3 investigates the nature of the interaction between individuals
within the front under three multi-class classification problems. The effectiveness
of the cooperative–coevolutionary model is now clear, with solutions typically
taking the form of a clear behavioral decomposition of the problem domain. Con-
versely, the competitive–descriminator based model typically results in solutions
in which a complex mixture of classifiers takes place, without any improvement
over the classification accuracy of the former model.

2 Pareto Competitive and Pareto Cooperative–
Competitive Coevolution

In order to illustrate the aforementioned property of competitive coevolutionary
GP classifiers, we compare the operation of two recent frameworks that utilize a
Pareto based model of interaction between points (exemplars) and learners (clas-
sifiers): the Pareto-coevolutionary Genetic Programming Classifier [5], and Com-
petitive Multi-objective Grammatical Evolution [8], [7]. For consistency both are
implemented in terms of a canonical model of Grammatical Evolution (GE) [11],
although both are entirely independent of the model of evolution on which they
are based. Hereafter we refer to them as PGEC and CMGE respectively. In the
following we establish the principle differences between the two models, and refer
the reader to the original works for the detailed algorithmic descriptions.

The basic features of the CMGE classifier are summarized as follows relative
to the pseudo code listing provided in Algorithm 1.

1. Identification of the subset of exemplars over which individual (learner) eval-
uation will take place (steps 2(a), 2(b));

2. Identification of the local membership function (wrapper operator) for each
individual, relative to the associated gpOut distribution (steps 2(c)ii.A to
D);

3. Fitness evaluation of individuals relative to the learning objectives under a
multiobjective methodology (lines 2(c)ii.E to G);

4. Identification and archiving of the most valuable individual classifiers and
exemplars (steps 2(d));

5. Class-wise assessment of early stopping criteria (steps 2(e)).

Conversely, the PGEC model is limited to: steps 2(a) and (b), define the
content of the learner and point archives, after which the outcome vector for
each individual is established, and then step 2(d) is performed, that is the Pareto
assessment for establishing archive content.

2.1 Competitive Multi-objective Grammatical Evolution

The standard initialization process of step 1, Algorithm 1 stochastically creates
GP population members (learners) and prepares the relevant data structures,
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including archives for both learners and exemplars (data points or simply,
points). A while loop (step 2) encloses the main sections of the algorithm, en-
suring that the training of GP is repeated until stopping conditions are met
(as evaluated at the end of each iteration in step 2(e)). Steps 2(a) and 2(b) set
up the training subset at each iteration ensuring a balanced view of data, thus
enabling robustness against problems having unbalanced class distributions.

Algorithm 1. High-level Pareto Coevolution.

1. Initialize Learner Population (LP);
2. WHILE ! (Stop criteria)

(a) Point Population (PP) := random balanced sample of training partition;
(b) Training Subset (TS) := PP concatenated with Point Archive contents

(PA);
(c) FOR i := 1 to sizeof(LP)

i. Apply variation operators to Produce Children (C)
ii. FOR j := 1 to sizeof(C)

A. Establish phenotype of individual C[j];
B. Map TS to 1-d number line ‘gpOut’ of C[j];
C. Cluster gpOut of C[j];
D. Parameterize Gaussian Local Membership Function (LMF) of

child C[j];
E. Evaluate C[j] with respect to:

SSE, Overlap wrt. Learner Archive (LA), Parsimony.
F. Rank C[j] with respect to LP and assign fitness;
G. Replacement (insert C[j] into LP);

(d) Archive PP, LP members based on outcomes (according to IPCA)
i. Points in PP enter PA if they provide a new distinction;
ii. Learners in LP enter LA if they are non-dominated wrt. LA;

(e) Evaluate Stop Criteria (method of Rank Histograms);
3. Class-wise LA denote solution: Build appropriate weighting scheme;

Line 2(c) of Algorithm 1 begins the cooperative coevolution training loop
which employs an Evolutionary Multi-objective Optimization (EMO) model
loosely based on that of [4] to train GP. On each pass of the loop, selection
and variation operators are applied to the GP population and children are pro-
duced (line 2(c)i). Next, individuals are decoded to their respective phenotype
(line 2(c)ii.A) and the current selection of exemplars are mapped to the gpOut
axis. We now require a mechanism to identify the local membership function
(wrapper operator) neighborhood without resorting to inappropriate or arbi-
trary predefinitions of regions along the gpOut axis. In order to achieve this
goal we assume that the neighborhoods of most relevance are those having the
highest density, a requirement satisfied by a clustering algorithm (step 2(c)ii.C).
The clustering algorithm returns the location of the mid point associated with
the ‘most dense’ set of points and exemplars associated with this cluster, M. The
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process itself is independent of class label. We now have the properties for the
local membership function (LMF) defined in terms of a Gaussian with mean, μ,
and variance, σ (line 2(c)ii.D).

A fitness function is now applied to the subset of points of the neighborhood,
M (line 2(c)ii.E, Algorithm 1). The objectives are designed to encourage: least
ambiguity in cluster membership, non overlapping behavior of the exemplars
mapped to different individuals, maximization of the number of in-class exem-
plars mapped to an individual, and simplicity of the GP mapping. Note that, in
common with the findings of other EMO research, we establish a set of objec-
tives that have a degree of implicit ‘tension’ between them. In doing so we are
able to encourage mappings that reduce the likelihood of degenerate solutions.
Moreover, in order to measure these objectives, the mapping is assigned a class,
where this is assumed to correspond to the class of the point at the center of the
LMF. In taking this route we avoid making any assumptions regarding which
individuals are mapping which classes, and effectively let individuals compete
for the right to map exemplars. The inner loop is completed by returning to the
generic PCGA EMO algorithm of [4] in order to complete the Pareto ranking
and replacement policy (lines 2(c)ii.F and G respectively). The significance of
the Pareto ranking and ensuing fitness assignment is that selection operators
proportionately favor individuals of higher fitness (lower ranking) over those
having lower fitness (higher ranking). This tends to encourage the GP algorithm
to more frequently sample material corresponding to individuals that lie closer
to the Pareto front, with the goal of establishing improvements in the objectives.
The PCGA model also provides the concept of rank histograms, which essen-
tially summarizes the content of the population (in objective space) in terms
of the Pareto ranks, so that content can be readily compared between training
epochs. When calculated for each class, this provides the basis for the detection
of class wise early stopping, line 2(e).

The inner loop defined by line 2(c) denotes the cooperative EMO model. This
portion of the main loop is performed in combination with the Pareto competitive
model2 for the purpose of adapting learner and test point archives as memories
at line 2(d). That is to say, the competitive coevolution model’s evaluation is
conducted over the contents of the subset of training exemplars, TS (step 2(b)),
dynamically identified by a competitive co-operative model for archiving the
most discriminatory test points (step 2(d)i) and non dominated learners (step
2(d)ii), both from the perspective of a Pareto front. The competitive model thus
plays a primarily archival role, acting as a memory for the cooperative model.
The archive entry criteria are evaluated in terms of GP classification ‘outcomes’
which are directly related to the LMF definition and it’s associated performance
on the training set i.e., the outcome vector is takes on real values as opposed to
the binary case of IPCA.

Deployment of the classifier (step 3) takes the form of copying the contents
of the learner archives and assignment of weights to each on the basis of the

2 A variant of de Jong’s IPCA algorithm [12], although any of this class of algorithm
would be appropriate.
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training data. A winner-take-all policy with respect to LMF response determines
the assignment of class labels among the team individuals.

2.2 Discussion

The critical differences between the PGEC and CMGE models are the use of
EMO fitness evaluation in which cooperative behavior is explicitly sought in
the mapping between exemplars and class membership, step 2(c), Algorithm 1.
PGEC instead relies on the standard sigmoid based global wrapper operator
for the purpose of mapping gpOut to class labels. This also implies that PGEC
is a binary classifier, requiring multiple runs to evolve classifiers for each class,
whereas CMGE provides classifiers for all classes from a single run. The interface
to IPCA, line 2(d) remains unchanged i.e., the outcome vector. As such the
principle mechanism for encouraging problem decomposition is the competitive
model of Pareto dominance, as expressed between points and learners. Given that
there is no explicitly cooperative mechanism for establishing population diversity,
we maintain that this will generally result in PGEC producing classifiers with
overlapping behaviors. That is to say, learners need only differ in one outcome
in order to satisfy the Pareto dominance criterion and appear in the learner
archive.

Unlike IPCA, both CMGE and PGEC make use of heuristics to enforce finite
archive sizes for point and learner archives, PA and LA. In the case of the
point archive, both PGEC and CMGE replace points once the archive limit is
reached using an Euclidean distance metric in which the nearest current point is
replaced [5]. In the case of the learner archive both PGEC and CMGE replace the
individual currently within the archive with largest overall error (as estimated
against the current training subset, TS ).

A second difference resulting from the two models appears in the post train-
ing voting mechanism, step 3, Algorithm 1. PGEC relies on a majority policy,
where this is designed to make use of the expected overlap in learner archive
classifier behavior. Conversely, CMGE learners are expected to be unique, thus
a winner takes all policy is assumed. In the case of PGEC, the merit of assuming
a particular policy is expected to be more significant, as the degree of interac-
tion between learners is likely to be data set specific. Conversely, under CMGE
a winner takes all policy is a natural consequence of the explicitly cooperative
model of evolution, reinforced by the action of the Gaussian local membership
function.

3 Results

The PGEC and CMGE models are implemented using a common grammar and
set of evolutionary parameters, Table 1. The grammar is capable of specifying
zero argument (exemplar features), single argument (cosine, square root, natural
log, exponential), and double argument (plus, minus, multiply, divide) operators.
Variation operators take the form of one point crossover and mutation (PXO and
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PM respectively) and their corresponding context aware variants (PCXO and
PCM respectively) [3]. Classifiers are implemented as a ‘parallel model’ in which
a ‘k’ class problem implies that ‘k’ learner archives are evolved. A larger study,
[7], conducted an evaluation over nine additional multi-class data sets taken
from the UCI repository [9]. In this work, we focus on three interesting cases
that characterized the behavior of all nine cases: Iris (IRIS), Boston Housing
(BOST), and Contraceptive (CONT). Table 2 characterizes the basic properties
of the data sets as deployed in this study. All three data sets are three class
problems, and results employ ten fold cross validation with fifty runs per fold.
The only pre-processing performed involved removing duplicate and incomplete
exemplars from the original data set.

Table 1. GE Parameterization

Parameter Value Parameter Value

Max Generation 500 Learner Pop Size 50

Max Codon 256 Learner Archive Size 30

Max Codon Trans. 4,096 Point Pop Size 30

– – Point Archive Size 30

PXO (PCXO) 0.5 (0.9) PM (PCM) 0.01 (0.9)

Table 2. Data Set Characterization

Data set num. Exemplars num. Features Class distribution (percent)

IRIS 147 3 33–33–33

BOST 506 12 33–33–33

CONT 1,425 8 43–22–35

3.1 Evaluating Intra-class Voting Behavior

In order to investigate the effectiveness of the cooperative mechanism in CMGE
versus the PGEC model, a metric for intra-class voting behavior is derived. In
particular we wish to measure the degree to which learners comprising the Pareto
front form constructive interactions, that is decompose the problem into non
overlapping associations between learners and exemplars. This is interpreted in
terms of the strength of the class membership operators, Gaussian and Sigmoid
(local and global) for CMGE and PGEC respectively, relative to the median
performance of the set of individuals constituting the ‘team’ of the same class.
That is to say, given a winning classifier (the individual with maximum mem-
bership on an exemplar) we measure the difference in membership of the winner
relative to the median membership of other classifiers associated with the same
class. Differences would be distributed over the unit interval, and results in the
metric characterizing performance in terms of three generic outcomes,
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– Differences tending towards zero: indicates that there is little difference be-
tween membership of winning classifier and the median classifier perfor-
mance. Needless to say, this could be associated with the majority of indi-
viduals labeling an in class exemplar correctly or incorrectly;

– Differences tending towards the mid point (0.5): indicates an individual with
strong winning class membership, but with the majority of ‘runner up’ in-
class individuals responding with a ‘fifty percent’ membership. Thus, the
winning individual had a membership in the interval [0.5, 1], with the ma-
jority of the remaining intra-class classifiers responding with membership in
the interval [0.25, 0.75]. Such behavior is considered undesirable as it is no
longer possible to establish a clear difference between individuals labeling in
class behaviors and those associated with out of class behavior.

– Differences tending towards unity: implies that the class winner responds
with a class membership tending towards unity, whereas the majority of the
other individuals respond with low class membership. Naturally, this implies
a strong uniqueness in the classifier to exemplar decomposition.

The following comparison will first establish the baseline performance of each
model in terms of detection rate, false positive rate and the number of partic-
ipating models. This establishes that nothing is lost by assuming a model that
enforces cooperative problem decomposition. The second evaluation character-
izes the nature of the intra-class decomposition.

Complexity and Classification Performance. Table 3 establishes the num-
ber of classifiers participating and ensuing detection / false positive rates over
the test partition in terms of the class-wise median. Both models clearly uti-
lize multiple classifiers per class. It is also clear that the CMGE model provides
a more reliable classifier, with the significantly higher per class detection rates
more than out weighing any increases in false positive rate. Moreover, the PGEC
model was uncompetitive on both the ‘balanced’ Iris data set as well as the larger
unbalanced data sets. Also of significance is that this is typically achieved while
CMGE utilizes the entire contents of the learner archive. Thus only on class one
of IRIS did CMGE employ a much lower count of classifiers than that in the
remaining cases (all of which tend to the archive limit of thirty).

Intra-class Coverage. The above section established that the explicitly co-
operative model of GMGE is able to build on the competitive coevolutionary
paradigm shared by both models. In this section we characterize the form of the
decomposition using the aforementioned coverage metric. Specifically, we build
histograms of the CMGE and PGEC intra-class coverage over the test partition
(no significant differences appearing between training and test histograms). Fig-
ures 1, 2 and 3 summarizing the basic behaviors on the Boston Housing, Iris and
Contraceptive data sets respectively. In the case of the Boston Housing data set,
CMGE results in a bimodal distribution in which there is either a considerable
differentiation between winning classifier and the remainder of the same class
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Table 3. Median Test Set Performance

Classifiers per Class

Data set IRIS BOST CONT

Class 1–2–3 1–2–3 1–2–3

CMGE 3–30–30 30–30–30 29–30–30
PGEC 1–5–4 10–14.5–10 14–15–21

Detection Rate

CMGE 100–100–100 87.5–35.3–82.4 73.8–31.2–24
PGEC 0–100–40 17.6–52.9–6.2 18–11.1–32.7

False Positive Rate

CMGE 0–0–0 22.9–9.4–15.2 53.7–14.5–16.3
PGEC 0–50–0 6.1–44.1–2.9 11.1–9.4–28

classifiers (the right peek at unity), or the majority of the classifiers have a simi-
lar class membership behavior (the left peek at zero). Moreover, class 2 appears
to result in classifiers demonstrating most behavioral uniqueness, whereas classes
1 and 3 result in behavior distributed equally at the two peeks. PGEC on the
other hand demonstrates a strong preference for multiple individuals responding
at an intermediate level of class membership (i.e., the peak at 0.5). As such it is
not possible to establish that the majority of in-class individuals respond with a
strong in-class preference or a strong differentiation between in and out of class
behavior, Figure 1(b).

(a) CMGE (Test) (b) PGEC (Test)

Fig. 1. Team behavior: Boston data set

Under the Iris data set, CMGE demonstrates two distinct distributions. In
the case of the linearly separable class (one) a distribution similar to that for
the Boston Housing data set is returned i.e., strong similarity or strong differen-
tiation. The single peak at the mid point is, in this case, produced as an artifact
of an equal number of in-class classifiers returning both maximum (1) and min-
imum (0) differences. On the two non-linearly separable classes the intermixing
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(a) CMGE (Test) (b) PGEC (Test)

Fig. 2. Team behavior: Iris data set

(a) CMGE (Test) (b) PGEC (Test)

Fig. 3. Team behavior: Contraceptive data set

of the class boundary results in a bias towards a higher similarity in behavior be-
tween in-class classifier membership. Given the strong classification performance
of the model as a whole, Table 3, this implies that multiple classifiers are involved
in supplying a correct label. The PGEC model also produces two distinct distri-
butions under the Iris data set. However, although the linearly separable class
does result in a desirable peak at unity, there are also secondary distributions
in the interval 0.8 to 1 and around 0.7. The two non linearly separable classes
(two and three) appear to rely on a complex intermixing of class votes with no
clear differentiation between winner and other in-class classifiers. In short PGEC
appears to find it difficult to encourage individual classifiers to take a definite
policy regarding the subset of exemplars on which they will respond. This is
reinforced by the poor overall classification results, Table 3.

Finally, the Contraceptive data set, Figure 3, is representative of the most
difficult problem domain considered and in the case of CMGE results in a clear
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emphasis towards classifiers that respond to very different subsets of exemplars
(high count of large differences). Conversely the PGEC model is generally unable
to establish a clear differentiation in class membership values, with most of the
distribution again sitting in the mid region of the histogram.

4 Conclusion

Coevolutionary models of classification using GP are beginning to appear in
which the test point competitive coevolutionary Pareto models developed under
a GA setting by Watson, Ficici, de Jong, and Pollock frequently serve as the
starting point. The model provides many useful properties, not least that the
inner loop of GP is now decoupled from the size of the original training data
set. In this work we emphasize that there are also several GP and classification
domain specific problems that were not especially relevant in the original GA
domain. In particular, just because the solution (typically) takes the form of
a set of classifiers (the contents of the learner archive or Pareto front), this is
not sufficient to encourage distinct behaviors between the learners themselves.
Related to this property is the need to introduce a mechanism for establishing
post-training class labels from the ensuing classifiers. In this work we revisit
the original Pareto competitive classification model of Lemczyk [5] in which
a global membership function and majority voting are used to establish class
labels, and compare with a local membership function in which members of the
Pareto front are required to explicitly cooperate under a local wrapper operator
[8],[7]. In order to investigate this property a ‘coverage’ metric is introduced
to establish the degree of differentiation between ‘winning’ class behavior and
the median performance of the remaining classifiers. The resulting evaluation
clearly demonstrates that the competitive-coevolutionary CMGE model is able
to associate specific exemplar subsets with specific classifiers, whereas PGEC is
unable to provide a clear separation between classifier behaviors. Moreover, this
is achieved without compromising the performance of the ensuing classifiers.

Future work will revisit the representation used within the context of the point
population. In particular the GP domain typically employs a GA population for
the points in which exemplars are directly represented by indices. The basic prob-
lem with this is that although directly supporting the competitive coevolutionary
model, there is no natural mechanism for establishing context on which a crossover
operator could operate. Thus, to date the most effective model appears to simply
re-establish the point population at each generation using uniform selection with
a class balance enforcing heuristic, whereas finding a representation that permits
variation operator context might provide a more elegant solution.
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Abstract. Genetic programming (GP) has proved successful at evolving
pattern classifiers and although the paradigm lends itself easily to con-
tinuous pattern attributes, incorporating categorical attributes is little
studied. Here we construct two synthetic datasets specifically to investi-
gate the use of categorical attributes in GP and consider two possible ap-
proaches: indicator variables and integer mapping. We conclude that for
ordered attributes, integer mapping yields the lowest errors. For purely
nominal attributes, indicator variables give the best misclassification
errors.

1 Introduction

Genetic programming (GP) has been used successfully to evolve classifiers [5,
7, 9, 11, 13]. A GP tree is well-suited to performing pre-processing tasks and
feature extraction on continuous pattern attributes, however there are many
pattern recognition tasks of practical interest where the pattern attributes are
either purely categorical or mixed continuous/categorical. How to handle cate-
gorical or mixed attributes in classification is a general problem. Decision trees
and Bayesian belief networks are inherently based on categorical attributes and
continuous attributes generally have to be discretised for use with these clas-
sifiers. Classifiers such as support vector machines, neural networks and linear
discriminants, on the other hand, are fundamentally continuous paradigms and
their use with categorical variables usually requires special pre-processing – see,
for example, [12].

(In fact, there are two types of categorical variables: Ordinal and nominal.
Ordinal attributes have a clear ordering, for example, Height > 1.5m, Height >
1.6m, etc. Nominal values on the other hand, have no such order, for example:
Red, Blue, Green, etc.)

Using GP-derived classifiers with categorical variables is of significant interest
given the promise shown by the approach on continuous variable classification

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 301–311, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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problems but as far as we are aware, there has been only one report studying how
to integrate categorical variables into GP classifiers [10]. Loveard & Ciesielski
investigated four strategies for using categorical attributes:

1. Mapping each category to an integer value. For example, an attribute value
of Red returns 0, a value of Green returns 1, an attribute value of Blue
returns 2, and so on. This mapping generally corresponds to some ordering
of the data and makes the implicit assumption that it is possible to define a
distance metric in the attribute space.

2. Using indicator variables, that is, defining a node type for every value of
every attribute. So for the case of three attribute values, Red, Green and
Blue, we have three nodes. The first type returns the numerical value of
unity if the value of the pattern attribute is Red, otherwise it returns zero,
and so on for nodes which return unity when the attribute value is Blue and
zero otherwise, and one which returns unity when the attribute is Green but
zero otherwise. Indicator variables have a long history in data analysis.

3. A multi-way branch node which, for example, executes the first sub-tree if
the attribute value is Red, the second sub-tree if the attribute value is Green
and the third sub-tree if the attribute value is Blue.

4. A series of ‘if-then-else’ nodes, one per possible attribute value. So there is
one node where the left sub-tree is executed if the attribute value is Red but
the right sub-tree is executed if the attribute value is not Red. And so on
for all other possible attribute values.

See [10] for further details. Unfortunately, the report by Loveard & Ciesielski
was brief (4 pages) and thus contained too few experimental details to allow
replication of their results with any degree of certainty. Further, their study was
phenomenological in that it examined real datasets but could only conclude that
the best strategy “varied from one (real) dataset to another”. The principal
motivation of the current work has been to gain a greater understanding of
the problem and to produce more concrete guidelines on handling categorical
variables than were yielded by [10].

Of the possible strategies enumerated above, the third and fourth require
the definition of new node types for every problem and for categorical attributes
which can take a large number of possible values, the size of the trees will increase
proportionately, increasing the size of the search space. Therefore, in this paper
we consider only the first two strategies: Integer mapping and indicator variables.
On the basis of the experiments reported here we reach firm conclusions on the
range of applicability of each strategy.

In the following section we outline the GP environment we have used to con-
duct our experiments. In Sections 3 and 4 we describe two specially-constructed
synthetic datasets and associated experiments designed to elucidate the domains
of applicability of the two strategies. In Section 5, we report results on a range
of both categorical and mixed real datasets and offer overall conclusions in
Section 6.
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2 Multiobjective Genetic Programming Environment

The multiobjective GP environment used in this work minimises the two objec-
tives of: Tree node count and misclassification error over the training set. The
tree node count objective imposes a parsimony pressure which has been shown
to be highly effective in preventing bloat [3]. We use the Pareto multiobjective
framework described by Fonseca & Fleming [4] and the evolutionary strategy
was a steady-state (μ + 2) algorithm [8] with the worst-ranked two individuals
being discarded after every breeding cycle.

For all the experiments reported here, we have used a fixed population size of
100 which was initialised with half being randomly-generated trees of depth 7,
and the other half randomly generated trees of randomly chosen depths in the
range [1 . . . 7]. We have used the depth-fair crossover operator due to Ito et al. [6]
together with point mutation which gives every sub-tree an equal probability of
being chosen for mutation and thereby replaced with a randomly-generated tree
of randomly selected depth ∈ [2 . . . 4].

The function set comprised: +, −, × and protected division. We used three
possible terminal nodes: continuous attributes, terminals which map each cate-
gory to an integer value and terminals which implement indicator variables. Hav-
ing projected each pattern vector into a 1D decision space with the GP-derived
tree, we determine an optimal decision threshold within the evolutionary loop
using Golden Section search.

For the synthetic data described in Sections 3 and 4 we have used a fixed
number of 20,000 tree evaluations – at this point, all further improvement in the
population had long since ceased. For the real datasets described in Section 5, we
continued each GP run until further improvements in the population had long
ceased; the exact numbers of tree evaluations vary from problem-to-problem.

3 Synthetic Ordinal Dataset

3.1 Dataset

In the first series of experiments we have constructed 2-class synthetic data using
Gaussian distributions, where the numbers of dimensions, D ∈ [2, 4, 6]. One class
is assigned a zero mean vector (μ1) while the mean vector of the other class, μ2

is given by:

μ2,i =
α√
D

for i ∈ [1 . . .D]

where scaling the vector elements by
√

D ensures a fixed Mahalanobis distance
between the class means and hence the Bayes error is independent of D. Thus
for convenience, all misclassification errors are on approximately the same scale.
α was adjusted to give a convenient misclassification error of around 10-15%
and held constant thereafter at a value of 0.8. The covariance matrices of both
classes were taken as the identity matrix.
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We generated 10 training data per class per dimension and 100 test data
per dimension per class. To convert this continuous data into ordinal data, we
discretised (binned) each attribute into varying numbers of bins, NB, where the
width of each bin was given by:

3 × μ2,i

NB

and the two outermost (guard) bins extend to +∞ and −∞, respectively.
Each continuous pattern attribute was replaced with the index of the bin into

which it fell, starting with an (arbitrary) index value of zero. Thus we generated
sets of ordinal categorical data; since the data were generated from continuous
distributions the bin indices of each attribute were ordered. Further, the number
of possible categories for each datum is given by NB.

3.2 Experiments

We have repeated the following experiments for D = 2, 4, 6 and for NB = 6, 9, 12
making a total of nine experiments on the synthetic ordinal data. Since the
trends are clear and identical across all experiments, for the sake of brevity,
we show only results for D = 2, NB = 6; D = 4, NB = 9; D = 6, NB = 6
and D = 6, NB = 12. In each experiment we have shuffled different numbers of
the attributes and observed the minimum test error obtainable for both ways
of handling the categorical attributes (integer mapping and indicator variables).
Shuffling removes the ordering in the data and by shuffling more attributes, more
of the ordering can be removed. In this way we are able to vary the characteristics
of the dataset from completely ordered (i.e. ordinal) in the case of no shuffling,
to completely nominal after every attribute has been shuffled. The results shown
are all averages over ten random initialisations of the population; the sizes of
the error bars over the ten repetitions imply that this is a sufficient number of
trials to obtain reliable results. In addition, for the shuffling experiments, each
shuffled attribute was re-ordered in a different way on each repetition.

The results are shown in Figures 1–4 where we also show error bars so that
it is possible to gauge the significance of the variations. The filled circle is the
error obtained for the continuous data whereas the open circles are the errors
for the integer mapping strategy. It is clear that even when the categories are
unshuffled, that discretisation has increased the error since this process removes
information from the data. Shuffling the categorical attributes clearly increases
the error (open circles); in addition, the variance of the errors increases since
some of the random shuffles preserve more order than others leading to a large
variability in the observed error rates.

Using indicator variables, on the other hand (filled triangles), the errors for
completely unshuffled data are worse than for integer mapping. But the error
rate from using indicator variables is insensitive to shuffling of the attributes;
the error variances for indicator variables are also little affected by shuffling.
When around half of the attributes have been shuffled, indicator variables give
consistently lower errors than integers. Across all nine sets of experiments, it
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thus seems clear that for ordinal data, integer mapping gives the lowest errors
but for categorical data, indicator variables give lower errors.

Figure 3 shows a particularly interesting extension to these data. The open
triangles show the errors from representing each shuffled attribute with an indi-
cator variables and the remaining unshuffled attributes with integer mappings.
This hybrid representation yields better errors than using all integers or all in-
dicators, further reinforcing the observations above. (All nine experiments show
the same unambiguous trend – we only show these ‘hybrid’ results in Figure 3
because in all other graphs showing the additional data creates so much clutter
that the main results are obscured.)

A numerical summary of the results for all nine experiments is given in Table 1.

Table 1. Summary of misclassification errors for shuffling the synthetic ordinal data

Unshuffled Shuffled

D NB Continuous Integers Indicator Integers Indicator

Mean SD Mean SD Mean SD Mean SD Mean SD

2 6 0.1215 0.001 0.1338 0.003 0.1743 0.013 0.2745 0.070 0.1708 0.010
4 6 0.1527 0.001 0.1580 0.001 0.1999 0.011 0.2833 0.039 0.2093 0.009
6 6 0.1689 0.002 0.1900 0.006 0.2388 0.006 0.3089 0.038 0.2400 0.018
2 9 0.1215 0.001 0.1370 0.001 0.1735 0.009 0.2913 0.066 0.1948 0.035
4 9 0.1527 0.001 0.1579 0.001 0.2188 0.012 0.3140 0.040 0.2206 0.018
6 9 0.1689 0.002 0.1917 0.010 0.2653 0.017 0.3300 0.040 0.2766 0.018
2 12 0.1215 0.001 0.1318 0.002 0.2503 0.051 0.3133 0.056 0.2415 0.050
4 12 0.1527 0.001 0.1589 0.001 0.2276 0.019 0.3243 0.048 0.2291 0.011
6 12 0.1689 0.002 0.1865 0.013 0.2664 0.013 0.3467 0.043 0.2655 0.014

4 Synthetic Nominal Dataset

The results in the preceding section show that when the order in ordinal data is
progressively destroyed by shuffling, indicator variables become an increasingly
better choice of attribute representation. In this section, we seek to generate
synthetic nominal data and compare integer mapping and indicator variables.
This represents a complementary approach to that of the previous section.

4.1 Dataset

Again we have generated data with either D = 2, 4, 6 attributes and the numbers
of categories in each attribute is given by NB = 6, 9, 12. We have randomly
generated the different categories according to the percentage schema: For NB =
6 : Class 1 = {5, 5, 10, 20, 25, 35} and Class 2 = {35, 25, 20, 10, 5, 5}. For NB = 9 :
Class 1 = {3, 3, 3, 11, 10, 10, 20, 20, 20} and Class 2={20, 20, 20, 10, 10, 11, 3, 3, 3}.
And for NB = 12 : Class 1 = {2, 2, 2, 2, 8, 8, 8, 8, 15, 15, 15, 15} and Class 2 =
{15, 15, 15, 15, 8, 8, 8, 8, 2, 2, 2, 2}. That is, for NB = 6 and Class 1, for example,
5% of the data were drawn from category 1, 5% from category 2, 10% from
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Fig. 1. Misclassification error vs. Number of Shuffled Attributes; D = 2, NB = 6. The
dashed line shows the mean baseline error for continuous variables. Filled circle/dashed
line = baseline error for continuous attributes. Open circles = integer mapping. Filled
triangles = indicator variables. See text for details.

Fig. 2. Misclassification error vs. Number of Shuffled Attributes; D = 4, NB = 9. The
dashed line shows the mean baseline error for continuous variables. Filled circle/dashed
line = baseline error for continuous attributes. Open circles = integer mapping. Filled
triangles = indicator variables. See text for details.
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Fig. 3. Misclassification error vs. Number of Shuffled Attributes; D = 6, NB = 6. The
dashed line shows the mean baseline error for continuous variables. Filled circle/dashed
line = baseline error for continuous attributes. Open circles = integer mapping. Filled
triangles = indicator variables. See text for details.

Fig. 4. Misclassification error vs. Number of Shuffled Attributes; D = 6, NB = 12. The
dashed line shows the mean baseline error for continuous variables. Filled circle/dashed
line = baseline error for continuous attributes. Open circles = integer mapping. Filled
triangles = indicator variables. See text for details.
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category 3, 20% from category 3, 25% from category 4 and 35% from category 5.
These nominal data were shuffled further for each of the ten tests. As with the
synthetic ordinal data, we generated 10×D training data per class and 100×D
test data per class.

4.2 Experiments

The results for ten repetitions of classifying each dataset using either integer
mappings of the (nominal) attributes or indicator values are shown in Table 2.
From Table 2 – and wholly consistent with the results in Section 3 – we can
conclude that for all nine datasets, indicator variables produce lower error rates
than integer mapping for these purely nominal attributes.

Table 2. Summary of misclassification errors on the synthetic nominal data. The lowest
errors are shown in bold face.

Integers Indicators

D NB Mean SD Mean SD

6 6 0.1803 0.0314 0.1084 0.0108
4 6 0.1936 0.0225 0.1463 0.0148
2 6 0.2288 0.0361 0.1910 0.0065
6 9 0.2174 0.0237 0.1339 0.0086
4 9 0.2455 0.0394 0.1675 0.0083
2 9 0.2503 0.0334 0.1858 0.0102
6 12 0.2798 0.0435 0.1539 0.0149
4 12 0.2908 0.0540 0.1710 0.0127
2 12 0.2855 0.0461 0.2010 0.0126

5 Real Datasets

Finally we consider a range of real datasets containing either solely categori-
cal attributes or mixed continuous/categorical attributes. These datasets, which
are publicly-available from the UCI Repository1, are summarised in Table 3;
some have previously been investigated in [10]. For those datasets which have a
separate test set we have measured error performance using that test set. For
the rest, we have have employed Alpaydin’s F -test [1, 2] to gauge the statisti-
cal significance of any differences in misclassification error. The results for the
train-test datasets are shown in Table 4. Indicator variables perform best on the
three Monk datasets which is consistent with the fact that these data are nomi-
nal. Interestingly, the test error on the Monk-3 dataset is less than the training
error: this comes about because in the Monk-3 training set 5% of the patterns
have been deliberately mislabelled by the originators of this dataset. Since the
evolved classifier gives zero error on the test set, we infer we are obtaining good
generalisation.
1 http://mlearn.ics.uci.edu/MLRepository.html

http://mlearn.ics.uci.edu/MLRepository.html
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For the Adult dataset, however, integers perform best . Since this is a mixed
dataset, we cannot be sure of the relevance to classification of the categorical
attributes; further it is difficult to decide whether some of the attributes are
ordered or not. The Highest Level of Education Achieved attribute ∈Bachelors,
Some- college, 11th, High-School-grad, etc., for example, clearly has a recognised
hierarchy but whether or not this is an order is not straightforward.

Table 3. Summary of the real datasets used

Classes Attributes Dataset Sizes

Total Categorical Continuous Whole Train Test

Mushroom 2 22 22 0 5644 50% 50%
Tic Tac Toe 2 9 9 0 958 50% 50%
Australian Credit 2 14 6 8 690 50% 50%
Monk-1 2 6 6 0 556 124 432
Monk-2 2 6 6 0 601 169 432
Monk-3 2 6 6 0 554 122 432
Adult 2 14 6 8 45222 30162 15060

Table 4. Summary of results for the train-and-test real datasets. Lowest errors are
shown in bold face.

Integers Indicator Variables

#Evaluations Train Validation Train Validation

Monk-1 50000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Monk-2 50000 0.178 0.031 0.251 0.027 0.068 0.046 0.102 0.065
Monk-3 50000 0.050 0.009 0.027 0.000 0.035 0.009 0.000 0.000
Adult 20000 0.162 0.005 0.163 0.005 0.174 0.008 0.173 0.008

Results for the datasets compared using the 5×2 cv test [1] are shown in Table 5;
an F value > 4.74 is statistically significant at the 95% level. Again for the purely
nominal categorical Mushroom and Tic-Tac-Toe datasets, indicator variables
give statistically better performance. The mixed Australian Credit dataset gives
a better error with integers. Unfortunately, in the case of this last dataset all
information on the attributes has been removed (we believe as a condition of
allowing publication of the dataset). Consequently, we can say little more about
the superiority of integers in this case.

Some of these real datasets were also investigated by Loveard & Ciesielski [10]
who considered two other possible approaches for mapping categorical variables.
Direct comparison needs some care since Loveard & Ciesielski presented the
average of the best five runs they obtained whereas we have shown the average
over all of our 10 runs; further details of how the datasets were split for cross-
validation are missing from [10]. Nonetheless, we both obtain zero error for
the Mushroom dataset. For the Adult dataset, Loveard & Ciesielski obtained
a best average of 0.149 using indicator variables (“binary conversion” in their
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parlance) whereas we observe a best average error of 0.163 for integer mapping
(“numeric conversion” to Loveard & Ciesielski). This discrepancy may be due
to Loveard & Ciesielski presenting only their best hand-picked results compared
to our uncensored reporting.

For the Australian Credit data, Loveard & Ciesielski obtain a best average
error of 0.139 for integer mapping whereas we obtain an error of 0.119, also for
integer mapping. (We cannot, of course, judge the statistical significance between
these results because there are insufficient details in [10].)

Table 5. Summary of results for the 5 × 2 cv tests on real datasets. Lowest validation
errors and the statistically significant values of F are shown in bold face. An F statistic
> 4.74 is statistically significant at the 95% level.

Integers Indicator Variables

Evaluations Train Validation Train Validation F

Mushroom 30000 0.012 0.012 0.000 0.000 4.233
Tic-Tac-Toe 50000 0.195 0.232 0.137 0.175 4.757
Australian credit 20000 0.090 0.119 0.092 0.131 5.563

6 Conclusions

In this paper we have compared the misclassification performance of classi-
fiers evolved by multiobjective genetic programming for two different methods
of handling categorical attributes: mapping-to-integer and indicator variables.
The mapping-to-integer approach implies the attributes exist in a metric space
which is reasonable for ordinal attributes but unwarranted for purely nominal
attributes.

We have constructed two sets of synthetic data: a nominal dataset and an
ordinal dataset. For the nominal data, indicator variables perform best whereas
for ordinal data, integer mapping is superior. By shuffling the ordinal data by
increasing degrees, we have progressively removed ordering in this data – effec-
tively ‘nominal-ising’ it – and observed that when more than around half the
attributes had been shuffled, indicator variables yielded the best error rates.

The results from purely categorical real data show that indicator variables are
better although the results from the mixed continuous/categorical data appear
confounded by uncertainties about the discriminatory rôle of the continuous
variables and the interpretation of the categorical attributes.

Based on the results from the synthetic datasets, we conclude that ordinal
attributes should be represented by integer mapping and nominal attributes by
indicator variables. In practice, however, determining to which type a categorical
attribute belongs is sometimes not straightforward: perhaps our conclusion could
also be used for data exploration in that the ‘type’ of a categorical attribute could
be inferred from the representation which gives the best error.
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3. Ekárt, A., Németh, S.Z.: Selection based on the Pareto nondomination criterion for
controlling code growth in genetic programming. Genetic Programming & Evolv-
able Machines 2, 61–73 (2001)

4. Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple con-
straints handling with evolutionary algorithms. Part 1: A unified formulation. IEEE
Trans. Systems, Man & Cybernetics 28, 26–37 (1998)

5. Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming
with application to fault classification. IEEE Transactions on Systems, Man &
Cybernetics - Part B 35, 89–99 (2005)

6. Ito, T., Iba, H., Sato, S.: Non-destructive depth-dependent crossover for genetic
programming. In: 1st European Workshop on Genetic Programming, Paris, France,
pp. 14–15 (1998)

7. Krawiec, K.: Genetic programming-based construction of features for machine
learning and knowledge discovery tasks. Genetic Programming & Evolvable Ma-
chines 3, 329–343 (2002)

8. Kumar, R., Rockett, P.: Improved sampling of the Pareto-front in multi-objective
genetic optimization by steady-state evolution: A Pareto converging genetic algo-
rithm. Evolutionary Computation 10, 283–314 (2002)

9. Loveard, T., Ciesielski, V.: Representing classification problems in genetic program-
ming. In: Congress on Evolutionary Computation, Seoul, Korea, pp. 1070–1077
(2001)

10. Loveard, T., Ciesielski, V.: Employing nominal attributes in classification using
genetic programming. In: 4th Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL 2002), Singapore, pp. 487–491 (2002)

11. Smith, M.G., Bull, L.: Genetic programming with a genetic algorithm for feature
construction and selection. Genetic Programming & Evolvable Machines 6, 265–281
(2005)

12. Tian, Y., Deng, N.: Support vector classification with nominal attributes. In: Hao,
Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.)
CIS 2005. LNCS (LNAI), vol. 3801, pp. 586–591. Springer, Heidelberg (2005)

13. Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multi-objective
genetic programming: A methodology and preliminary study on edge detection. In:
Genetic & Evolutionary Computation Conference (GECCO 2005), Washington,
DC, pp. 795–802 (2005)



The Effects of Constant Neutrality on Performance and
Problem Hardness in GP
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Abstract. The neutral theory of molecular evolution and the associated notion
of neutrality have interested many researchers in Evolutionary Computation. The
hope is that the presence of neutrality can aid evolution. However, despite the
vast number of publications on neutrality, there is still a big controversy on its
effects. The aim of this paper is to clarify under what circumstances neutrality
could aid Genetic Programming using the traditional representation (i.e. tree-like
structures) . For this purpose, we use fitness distance correlation as a measure
of hardness. In addition we have conducted extensive empirical experimentation
to corroborate the fitness distance correlation predictions. This has been done
using two test problems with very different landscape features that represent two
extreme cases where the different effects of neutrality can be emphasised. Finally,
we study the distances between individuals and global optimum to understand
how neutrality affects evolution (at least with the one proposed in this paper).

1 Introduction

Evolutionary Computation (EC) systems are inspired by the theory of natural evolution.
The theory argues that through the process of selection, organisms become adapted to
their environments and this is the result of accumulative beneficial mutations. However,
in the late 1960s, Kimura [11] put forward the theory that the majority of evolution-
ary changes at molecular level are the result of random fixation of selectively neutral
mutations. Kimura’s theory, called the neutral theory of molecular evolution or, more
frequently, the neutral theory, considers a mutation from one gene to another as neutral
if this modification does not affect the phenotype.

Neutral theory has inspired researchers from the EC community to incorporate neu-
trality in their systems in the hope that it can aid evolution. Despite the vast work car-
ried out towards understanding the effects of neutrality in evolutionary search, as will
be seen in the following section, there are no general conclusions on its effects.

In this paper we make an effort to understand how neutrality works and identify
under what circumstances it could aid Genetic Programming (GP) [13].

The paper is organised as follows. In the next section, previous work on neutrality in
EC is summarised. In Section 3, the approach used to carry out our research is described.
In Section 4 we review the notion of fitness distance correlation (fdc) and present the
distance used to calculated fdc in tree-like structures. In Section 5 we introduce the
problems used to analyse the effects of neutrality. In Sections 6 and 7 we present and
discuss the results of experiments with unimodal and deceptive landscape problems and
draw some conclusions.

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 312–324, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Previous Work on Neutrality

As mentioned previously, there has been a considerable amount of work on neutrality.
However, there is a lack of final conclusions on its effects. For instance, Fonseca and
Correia [7] developed two redundant representations using different approaches based
on mathematical tools. The authors focused their attention on the properties highlighted
by Rothlauf and Goldberg [17] and pointed out some potential fallacies in such work.
In [17], Rothlauf and Goldberg stated that when using synonymously redundant repre-
sentations, the landscape connectivity is not increased. Fonseca and Correia, however,
stated that this is not necessarily true. They reported that in their proposed representa-
tions the connectivity tends to increase accordingly to the number of redundant bits.

In [5], an effort has been made to analyse some aspects of the search space in GP.
Ebner focused his attention on the fact that finding a given behaviour on such search
spaces is not as difficult as finding a given individual. As the author pointed out, this is
due to in GP using tree-like structures, many individuals map exactly to the same phe-
notype. Correspondingly, the same situation is observed in nature (i.e., highly redun-
dancy). With these elements in hand, Ebner suggested that search spaces that present
similar characteristics as the ones found in nature may be beneficial in evolving poten-
tial solutions towards finding a global solution to a specific problem.

This line of thought was further explored by Ebner et al. [6]. The authors pointed out
that the presence of neutrality could aid evolution under certain circumstances. To il-
lustrate this point,they used two types of mappings: random Boolean networks (RBNs)
and cellular automaton (see [6] for a full description of both mappings). In their stud-
ies, Ebner et al. pointed out that neutrality could have a positive impact in evolutionary
search, if a given population is spread out in a neutral network. To exemplify this point,
Ebner et al. used a dynamic fitness landscape and shown how the presence of neutrality
gives the opportunity to a population to ”start” over again and eventually (if this is the
case) being able to escape from local optima (which is not the case on a non-redundant
mapping). In [12], Knowles and Watson distinguished advantages and disantages of
what they called random genetic redundancy. In particular the authors used RBNs [6]
to conduct their experiments. In their work, Knowles and Watson mentioned that in
particular RBNs are useful because help to mantain diversity. On the other hand, the
authors also mentioned that the performance, in some cases, was better when neutral-
ity introduced by RBNs was not present and so, one should be carefull when adding
artificial neutrality.

Yu and Miller [22] argued that in the traditional GP representation, implicit neutral-
ity is difficult to identify and control during evolution and so, they used Cartesian GP
(CGP) to add what they called explicit neutrality. To analyse the effects of neutrality
they tested their approach on the even parity problems and used an Evolutionary Strat-
egy. CGP uses a genotype-phenotype mapping that allows programs to have inactive
code (i.e., this is how neutrality is artificially added) at genotype level. The genotype
uses an integer string coding. This type of encoding allowed the authors to use Ham-
ming distance to measure the amount of neutrality present in the evolutionary search. In
their studies, they found that the larger the amount of neutrality present during evolu-
tion, the higher the percentage of success in finding the global optimum, regardless the
mutation rate. They concluded that neutrality is fundamental to improve evolvability.
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Collins [4] claimed that Yu and Miller’s conclusions in [22] were flawed. Collins
started his analysis by highlighting that the use of a Boolean parity problem is a strange
choice given that the problem in itself is neutral (i.e., the fitness value of individuals is
the same except for the one that finds the global optimum) and, so, the effects of neu-
trality are harder to analyse using this type of problem. Moreover, Collins focused his
attention on the results found for the even-12-parity Boolean problem and pointed out
that the CGP representation used in [22] favours shorter sequences than those yielding
solutions for this problem. He also showed that the good results reported in [22] (i.e.,
55% of success in finding the solutions) are not surprising and that random search has
a better performance. He also concluded that the effects of neutrality are more complex
than previously thought.

Theoretical work has also been developed in an effort to shed some light on neu-
trality. In [8] we studied perhaps the simplest possible form of neutrality using GAs:
a neutral network of constant fitness, identically distributed in the whole search space.
For this form of neutrality, we analysed both problem-solving performance and popula-
tion flows. We used the fitness distance correlation, calculating it in such a way to make
the dependency between problem difficulty and neutrality of the encoding explicit.

In [2], Beaudoin et al. proposed a family of fitness landscapes called the ND land-
scapes, where one can vary the length of the genome N and the neutral degree distribu-
tion D. This presents some advantages over other types of landscapes (i.e., NKp, NKq
and Technological) previously proposed in the literature to analyse neutrality, which,
however, do not consider the distribution of neutrality. This, according to the authors,
is instead a key feature in evolution.

Recently, we [14] proposed and studied three different types of genotype-phenotype
encodings that add neutrality in the evolutionary search. To analyse in detail the effects
of these kinds of neutrality on three different types of landscape, we used the fdc and
the newly introduced notion of phenotypic mutation rates. We also developed a mathe-
matical framework that helped explain some of our empirical findings.

As it can be seen from the previous summaries, the results reported on the effects of
neutrality in evolutionary search are very mixed (except perhaps the theoretical works
previously summarised).

3 Constant Neutrality

With many primitive sets, GP has the ability to create a rich and complex network of
natural networks. This may be a useful feature, but it is a feature that is hard to control
and analyse. For this reason, in this paper we propose to artificially create a further
neutral network within the search space, which is simple and entirely under our control,
thereby making it possible to evaluate the effects of neutrality on GP behaviour and
performance. In particular, we propose to add a neutral network of constant fitness.
More specifically:

– In our approach, called constant neutrality, neutrality is “plugged” into the tradi-
tional GP representation (i.e., tree-like structures) by adding a flag to the represen-
tation: when the flag is set, the individual is on the neutral network and, as indicated
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previously, its fitness has a pre-fixed value. When the flag is off, the fitness of the
individual is determined as usual.

– We use fitness distance correlation (fdc) as a measure of hardness when neutrality
is present in the evolutionary search and in its absence. We also perform extensive
empirical experiments to corroborate the results found by fdc.

– We use two benchmark problems with significantly different landscape features:
a unimodal landscape where we expect neutrality to be detrimental and a multi-
modal deceptive landscape where neutrality helps evolution by escaping from local
optima.

As mentioned previously, to allow the presence of constant neutrality in the GP pro-
cess, we added a flag to the representation. This is in charge of indicating if a given
individual is or is not on the neutral layer. To allow the migration to and from the neu-
tral layer we use a special mutation, which is applied with probability Pnm. The process
to set or unset the neutral flag works as follows. Firstly, we initialise the population by
creating random individuals in the usual way, and, with probability Pnm, we activate the
flag of the resulting individuals. Secondly, during the evolutionary process, every time
an offspring is created, it inherits the flag of its parent. However, before the individual
is inserted in the population, with probability Pnm, we flip its flag. For example, if the
parent of the individual was already on the neutral layer (i.e., flag activated) and the flag
is flipped, the offspring is off the neutral layer and its fitness is calculated as usual. If,
instead, the flag was not flipped, the individual’s flag remains activated and its fitness is
constant. The situation is symmetric if the original parent was not on the neutral layer.

In the proposed approach, we used traditional crossover (i.e., swapping subtrees) and
structural mutation [20] and so, to add neutrality using any of these operators, we set the
value of Pnm > 0 (see Section 5). The main reason of using structural mutation in our
experiments is mainly because it is more close to the defition of distances between tree-
based structures widely discussed in [19,20]. Structural mutation involves two types
of mutation: inflate and deflate mutation. Inflate mutation takes a random internal node
whose arity a is lower than the maximum arity defined in the function set, and it replaces
it with a random function of arity a + 1. A terminal is inserted as the (a + 1) argument
of the new function. Deflate mutation takes any internal node with an arity a greater
than the minimum arity defined in the function set and where at least one argument is
a terminal, and it replaces the node with a function of arity a − 1, deleting one of the
terminals rooted on the original node.

In the form of neutrality explained previously, we can easily see how the size of
the search space has increased dramatically. However, we still are in the presence of a
single global optimum. So, the addition of neutrality comes at a cost: after all we are ex-
panding the search space without correspondingly expanding the solution space. Thus,
we should expect that the presence of neutrality will aid evolution only if it modifies the
bias of the search algorithm in such a way to make the sampling of the global optimum
much more likely.

With these elements in hand, it is very difficult to imagine how adding neutrality to a
unimodal landscape can aid evolution. The addition of the form of neutrality explained
previously – constant neutrality – changes the unimodal landscape into a landscape with
plateaus where the search becomes totally random, which could lead to not finding the
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optimum solution. If the global solution is found, we should expect that it will take
longer for the evolutionary process to find it because of the presence of plateaus.

At this point some question arise. What will the effects of neutrality be on multi-
modal landscapes? Specifically, will the problem be easier in the presence of neutrality?
Will neutrality provide a path to cross optima solutions and be able to find global so-
lutions? Will the presence of neutrality provide advantages on tree-like structures, like
for example, control bloat? To answer these questions, we will use fitness distance cor-
relation ( f dc) as a measure of hardness. Moreover we will conduct extensive empirical
experiments to compare the performance of our approach and the findings of f dc.

4 Fitness Distance Correlation

Jones [10] proposed fitness distance correlation (fdc) to measure the difficulty of a
problem by studying the relationship between fitness and distance. The idea behind fdc
was to consider fitness functions as heuristics functions and to interpret their results as
indicators of the distance to the nearest global optimum in the search space.

The definition of fdc is quite simple: given a set F = { f1, f2, ..., fn} of fitness values
of n individuals and the corresponding set D = {d1,d2, ...,dn} of distances to the nearest
global optimum, we compute the correlation coefficient r, as:

r =
CFD

σF σD
,

where:

CFD =
1
n

n

∑
i=1

( fi − f )(di − d)

is the covariance of F and D, and σF , σD, f and d are the standard deviations and
means of F and D, respectively. The n individuals used to compute fdc can be chosen
in different ways. For reasonably small search spaces or in theoretical calculations it is
often possible to sample the whole search space. However, in most other cases, f dc is
estimated by constructing the sets F and D via some form of random sampling.

According to [10] a problem can be classified in one of three classes: (1) misleading
(r ≥ 0.15), in which fitness tends to increase with the distance from the global opti-
mum, (2) difficult (−0.15 < r < 0.15), for which there is no correlation between fitness
and distance, and (3) easy (r ≤ −0.15), in which fitness increases as the global opti-
mum approaches. There are some known weaknesses with fdc as a measure of problem
hardness [1,16]. However, it is fair to say that the method has been generally very suc-
cessful [3,10,14,18,19,20,21].

Several papers have proposed the use of fdc. Slavov and Nikolaev were among the
first to use fdc in GP [18]. In their experiments, they calculated fdc using fitness-distance
pairs which were recorded during runs. The authors defined the distance between a
given individual (DT ) in the form of tree-like structure and the global optimum (O) as
follows

d(DT,O) =
{

1 + ∑i∈DT,O d(child(DTi),child(Oi)) if root DTi �= root Oi,
∑i∈DT,O d(child(DTi),child(Oi)) otherwise.
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Later, Clergue et al. [3] extended this idea. As a first step in their investigation, they
used the same function and terminal sets defined by Punch et al. [15] where the function
set was Fset = {A,B,C, · · ·}, where A has arity 1, B has arity 2 and so on. The terminal
set included a single symbol, X . Moreover, they set a restriction and generated trees
respecting one rule: for every node in a tree, if the arity of the node is n, the nodes below
it must have an arity less than n. Initially, Clergue et al. defined the distance between
trees T1 and T2 as follows d1(T1,T2) = |weight(T1)− weight(T2)| where weight(T ) =
1 · nX(T )+ 2 · nA(T )+ 3 · nB(T )+ 4 · nC(T )+ · · · , nX(T ) is the number of symbols X
in the tree T , nA(T ) is the number of symbols A in the tree T and so on. However,
this definition of distance between a pair of trees had a major problem: two trees with
very different structures can have distance of 0. In an effort to overcome this problem,
Clergue et al. came up with following idea. Each tree with root i must have a greater
weight than the trees with root j, if j < i, where: (a) i, j ∈ {X ,A,B,C, · · ·} and (b) there
is an order such that X < A < B < C · · · . Moreover, a prize is given to each root. This
new definition improved the situation but there was still a problem: two individuals that
have vertical axis of symmetry have a distance 0, despite their structures being different.

The same authors eventually overcame these limitations [3,21] and computed and
defined a distance (which is the distance used in this work) between two trees in three
stages: (a) The trees are overlapped at the root node and this process is recursively applied
starting from the leftmost subtrees, (b) For each pair of nodes at matching positions,
the difference of their codes c (i.e., index of an instruction within the primitive set) is
calculated and (c) The computed differences are combined in a weighted sum. That is,
the distance between two trees T1 and T2 with roots R1 and R2 is calculated as follows:

dist(T1,T2,k) = d(R1,R2)+ k
m

∑
i=1

dist(childi(R1),childi(R2),
k
2
) (1)

where d(R1,R2) = (|c(R1)−c(R2)|)z. childi(Y ) is the ith of the m possible subtrees of a
generic node Y , if i ≤ m, or the empty tree otherwise, and c evaluated on the root of an
empty tree is equal to 0. Finally, k is a constant used to give different weights to nodes
belonging to different levels in the trees. This distance produced successful results on a
wide variety of problems [19,20,21].

Calculating distances between trees is not as simple as it is when the distance is
calculated for a pair of bitstrings. Once the distance has been computed between two
trees, it is necessary to normalise it in the range [0,1]. In [20], Vanneschi proposed five
different methods to normalised the distance. Here, we propose another way to carry out
more efficiently this task and that we have called “normalisation by maximum distance
using a fair sampling”. This works as follows: (a) A sample of ns individuals is created
using the ramped half and half method and using a global maximum depth greater than
the maximum depth allowed during evolution, (b) The distance is calculated between
each individual belonging to ns and the global optimum, (c) Once all the distances have
been calculated, the maximum distance ms found in the sampling is stored.

At the end of this process, the global maximum distance ms is used to normalise
the distances throughout the evolutionary process. The global maximum depth1 used to

1 For our experiments the maximum distance is given by maximum depth+2.
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create a sample of individuals ns
2 is greater than the maximum depth allowed through

evolution. So, through the evolutionary process a higher value for the global maximum
distance it is highly unlikely to be found. Moreover, to control bloat we allow a maxi-
mum length that is determined during the application of the sampling method.

In the following section, we calculate f dc using Equation (1) on the problems used
to study the problem hardness in the absence and in the presence of neutrality in evolu-
tionary search.

5 Experimental Setup

We have used two problems to analyse neutrality. The first one is the Max problem. The
problem consists of finding a program, subject to size or depth (D), which produces the
largest possible output. For this problem we have defined F = {+}, T = {0.5} and
maximum depth D = 5 (for all our examples the root node is at depth 0). Naturally,
using these sets, the problem has only one global optimum (a full tree with depth 5)
and the landscape is unimodal. For this example, we have used the grow method [13]
to create our population.

The second problem is a trap function [9]. For this example, we have used the function:

f (X) =

{
1 − d

B if d ≤ B,
R(d−B)

1−B otherwise

where d is the normalised distance between a given individual and the global optimum
solution. d, B and R are values in the range of [0,1]. B is the slope-change location
for the optima and R sets their relative importance. For our problem, there is only one
global optimum and by varying the parameters B and R, we make the problem easier or
harder.

Figure 1 depicts the global optimum solution used in the trap problem where B =
0.01 and R = 0.8 (i.e., the problem is considered to be very difficult). The language that
has been used to code individuals in the trap function is the one proposed by Punch et
al. [15]. Their idea was to use functions with one increasing arity. That is, for a function
set F = {A,B,C, · · ·} their corresponding arities are 1, 2, 3, · · · and the terminal set is
defined by T = {x} which its arity is 0. Moreover, we have initialised our individuals
with the full method [13] using D = 5. The maximum allowed depth for programs
was 7. Notice that we have used two different methods to initialise the populations for
each of the two examples. This has been done to avoid sampling the global solutions
for both problems.

The experiments were conducted using a GP with tournament selection size 10. We
used standard crossover and mutation (inflate and deflate) independently (i.e., when
crossover was used, mutation did not take place during evolution and vice versa). To
obtain statistically meaningful results, we performed 100 independent runs for each
of the values of fitness of the neutral layer. Runs were stopped when the maximum
number of generations was reached. The parameters we have used for both problems
are summarised in Table 1. In Tables 2 and 3 we show the constant value ( fn) assigned
to the neutral layer for each of the problems.

2 For our experiments ns is typically 10 times larger than the population size.
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Fig. 1. A tree used as global optimum in the trap function setting B = 0.01 and R = 0.8 meaning
that the problem is considered to be very difficult

Table 1. Summary of Parameters

Parameter Value

Population Size 400
Generations 300
Neutral Mutation Probability (Pnm) 0.05
Mutation Rate 90%
Crossover Rate 90%

6 Results and Analysis

6.1 Performance Comparison

Let us focus our attention on the Max problem (see Table 2). As discussed previously,
it is very hard to imagine how neutrality could aid evolution in a unimodal landscape.
When neutrality is not present, GP is able to find the global solution without difficul-
ties both when using crossover and when using structural mutation, the percentage of
success being 100% regardless the operator used. This situation, however, changes rad-
ically when neutrality is added in the evolutionary search. That is, when neutrality is
added the performance of GP decreases. As shown in Table 2, the percentage of suc-
cess goes from 100% when neutrality is not present to 0% when the fitness of constant
neutrality is set to 15 (remember that for this problem the global optimum has fitness
16). This is easy to explain because as discussed previously, individuals which fitness
is below the fitness of the neutral layer will tend to move there and once they are in
the neutral layer, the search will behave like random search. Note that f dc correctly
predicts these performance variations.

Now, let us consider the second problem – the trap function. In Table 3 we show the
results found on this problem when calculating f dc. Again we have complemented this
by comparing the performance of GP in the presence and in the absence of neutrality
using standard crossover and structural mutation.
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Table 2. Statistical information on the Max problem using F = {+}, T = {0.5} and D = 5.
The fitness of the global optimum is 16. Avr. Gen. refers to the average number of generations
required to find the global optimum.

fn value f dc Crossover Structural Mutation
Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality -0.9999 29.14 100% 14.22 100%
5 -0.1994 65.69 95% 17.08 100%

10 0.0661 350.29 17% 28.94 100%
15 0.1380 NA 0% 42.08 100%

Table 3. Statistical information on the Trap function using as global optimum the program shown
in Figure 1

fn value f dc Crossover Structural Mutation
Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 0.9971 5.00 1% 3.60 5%
0.10 0.9627 6.00 1% 3.25 3%
0.20 0.8638 6.00 1% 5.33 3%
0.30 0.7070 64.41 12% 107.75 4%
0.40 0.5677 66.83 12% 4.00 2%
0.50 0.4616 94.87 8% NA 0%
0.60 0.3828 202.20 5% NA 0%
0.70 0.3234 202.80 5% NA 0%
0.80 0.2778 470.00 1% NA 0%
0.90 0.2419 NA 0% NA 0%

When neutrality is not present in the evolutionary search, we can see how f dc clas-
sify the problem as very difficult (i.e., f dc = 0.9999), which is actually the case. When
neutrality is added, there are some circumstances where its presence is more helpful
than others. For instance, when the constant fitness in the neutral layer is 0.30 and 0.40,
the performance of GP increases dramatically when using standard crossover (i.e., when
neutrality is not present, the percentage of success is only 1% compared with 12% when
neutrality is added). By how much neutrality will help the search strongly depends on
the constant fitness assigned in the neutral layer, fn. However, for almost all values of
fn we observe improvements over the case where neutrality is absent when crossover is
used. Here there is a rough agreement between f dc and actual performance.

Surprisingly, however, when structural mutation is used, in virtually all cases the
addition of neutrality hinders performance, and there appears to be a general trend indi-
cating that the higher fn the worse the results. This goes exactly in the opposite direction
of the predictions of f dc. This is perhaps the result of the distance in Equation (1) not
being well-suited to capture the offspring-parent differences produced by the actions of
the mutation operator.
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Fig. 2. Average normalised distance (top) and average length of individuals (bottom) using
crossover on a difficult trap function. Figure 1 shows the global optimum.

6.2 Distances between Individuals and Global Optimum

As shown previously, neutrality aids evolution in deceptive landscapes when using
crossover. This situation, however, varies depending on the constant value assigned to
the neutral layer. Since GP with crossover is effectively the standard, we want to anal-
yse in more detail how neutrality affects evolution. To do so, we study how the distance
between the individuals in the population and the global optimum (shown in Figure 1)
varies generation after generation for different values of fn.

In the top left-hand side of Figure 2, notice how the normalised distance between
individuals and the global optimum for the cases fn = {0.10,0.20} effectively varies
in the same ways as when neutrality is not present in evolution. Indeed, as confirmed
by results shown in Table 3 the percentage of success are almost the same (i.e., in the
range of 0% and 1%).

This situation, however, changes radically when using fitter neutral layers, i.e., fn =
{0.30,0.40}, as shown at the top right-hand side of Figure 2. Notice how the average
distance between individuals and the global optimum tends to drop dramatically com-
pared to when fn ≤ 0.20. Individuals are now on average much closer to the global
optimum and, so, it is easier for the GP system to eventually sample it and solve the
problem.
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A reason why GP with crossover is able to sample the global optimum more often
in the presence of neutrality with fn = {0.30,0.40} is that GP tends to produce shorter
encodings. This can be observed in the bottom right-hand side of Figure 2. However,
this does not mean that GP produces in general smaller individuals regardless the con-
stant fitness set in the neutral layer.

7 Conclusions

The effects of neutrality are unclear. The goal of this paper is to clarify under what
circumstances neutrality could aid GP evolution.

In this paper we considered perhaps the simplest possible form of neutrality in GP.
This is introduced simply by adding a flag to each individual which indicates whether
or not the individual is on the neutral layer. We used the distance, shown in Equation
(1), proposed and studied in [19,20,21] to calculate fitness distance correlations ( f dc)
in GP landscapes. We used it as a measure of hardness and compared its findings with
extensive empirical experimentation using the Max problem with unimodal landscape
features and a Trap function with deceptive landscape features.

We found that f dc roughly predicts how problem difficulty is affected by the pres-
ence of neutrality for GP with subtree crossover. The prediction of difficulty for GP
with structural mutation is, instead, more problematic.

Based on these observations and on empirical results, it is clear that the form of
neutrality studied in this paper (constant neutrality) can only aid evolution when the
landscape is complex and multimodal. This is interesting, since, in fact, most realistic
GP landscapes present such features. However, we have also found that it is important
how to set the fitness of the neutral layer ( fn) carefully if for the potential benefits
of neutrality to materialise. Much less we can say about the problems where GP with
structural mutation could benefit from the use of constant neutrality.
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Abstract. In this paper we apply multiobjective genetic programming
to the cost-sensitive classification task of labelling spam e-mails. We con-
sider three publicly-available spam corpora and make comparison with
both support vector machines and näıve Bayes classifiers, both of which
are held to perform well on the spam filtering problem. We find that for
the high cost ratios of practical interest, our cost-sensitive multiobjective
genetic programming gives the best results across a range of performance
measures.

1 Introduction

Spam – unsolicited e-mail – is a major and growing problem. It is estimated that
in the month of May 2006, for example, 86% of all e-mails sent were spam [17].
Consequently, a large amount of effort has been expended on devising effective
filters to identify spam e-mails.

Spam filtering presents a number of challenges. To incorrectly label as spam
any solicited e-mails is highly undesirable; on the other hand, it is preferable
to filter as much spam as possible. Conventional rule-based spam filters are
usually implemented by maintaining/updating a list of keywords or phrases as
indicators of unsolicited e-mails. Rejection or acceptance of a given e-mail is
decided based on matching to this list. Unfortunately, the dynamic content of
spam and individual tolerances to different content are difficult to interpret as
reusable and updateable rules. Hence the rule-based method has been criticised
for lacking good “time characteristics”, since is hard to manually adapt the
rules to changing spam; furthermore, there is no automatic learning mechanism
which can be utilised. In contrast, content-based (or statistical-based) spam
filtering has attracted increasing interest and much work has been carried-out
on the design of spam filters using data mining and machine learning methods
[5,9,19,20,21].

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 325–336, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



326 Y. Zhang et al.

Among the methods employed, Bayesian analysis [19] is widely used to im-
plement statistically-based spam filters. Based on the assumptions that the
distributions of both non-spam and spam e-mails are known beforehand and
components in the representation vector of an e-mail are independent, a näıve
Bayesian (NB) classifier becomes an attractive approach due to its simplicity.
However, as pointed-out by Fawcett [7], both the distributions, priors and con-
cept are changing over different time spans. The first assumption can hardly
be correct in real world circumstances. Further, the independence assumption
of the feature vector components can only be met by applying further feature
extraction methods, e.g. Independent Component Analysis. In addition, aware
of the Bayesian word analysis, spammers started to attach or mix their messages
with common words to break the underpinning independence assumptions, so
distorting the real information in spam e-mails.

The dependence on the assumption of class distributions is undesirable given
the skewed and drifting class distributions for both classes, particularly for spam
e-mails, together with the fact that spammers are intelligent humans who delib-
erately produce ‘cleverer’ spam to avoid being recognised by the available filters.
Longer term, a continuous learning mechanism is desired to track the changing
spam e-mail concept.

Support vector machines (SVMs) have been a popular method for designing
spam filters via a machine learning approach [5,13,22]. Li & Niranjan [16] have
also explored subspace representations of this, and similar high dimensional prob-
lems, using sequential forward selection and backward deletion. Other conven-
tional classifiers such as decision trees and neural networks have been used in the
spam filtering problem as well as genetic programming (GP). GP was introduced
to evolve a text classifier by Clack et al. [4] who fed documents (including e-mails)
to a central classifier which autonomously routed documents to different cate-
gories. A single fitness function was designed based on weighted and combined
terms. Hirsch et al. [10] used GP to evolve compact rules for document classifi-
cation giving equal weight to precision and recall as a single fitness value. Katirai
[12] applied GP to filter spam e-mails by evolving a specific classifier to distinguish
between spam and legitimate e-mails. A single fitness value was calculated based
on the raw combination of precision and recall over the training dataset. Katirai
concluded that although the precision of the GP output was comparable to that
of the näıve Bayes classifier, its recall trailed näıve Bayes by 6.67%.

From a technical point of view, spam filtering – the devising classifiers to la-
bel an e-mail as spam or non-spam – presents a number of challenges. In this,
as in many pattern recognition problems (e.g. medical diagnosis), the costs of
erroneous labelling are not equal so simply minimising the raw error rate is not
satisfactory: here the unequal costs have to be taken into account. Also, the in-
put feature vectors are typically of very high dimensionality. This is a significant
obstacle to machine learning tasks involving small numbers of training patterns
per dimension due to the limited representation of the problem by the avail-
able samples – high-dimensional spaces are inherently sparse. Without care, the
normal learning process will tend to produce a system with poor generalisation.
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In this paper we report the results of applying multiobjective GP to the cost-
sensitive problem of spam filtering (csMOGP). We have examined three publicly
available spam corpora and made quantitative comparison with support vector
machines and the näıve Bayes classifier models which are held to perform well on
the spam filtering task. For the practically important cases of high cost ratios,
csMOGP is shown to out-perform both comparator algorithms.

2 Spam Datasets

There are only a few publicly-available benchmark datasets for spam filtering
evaluation. Though publishing a collection of spam e-mails is not difficult, pri-
vacy reasons prevent the publication of non-spam e-mails. Hence many studies
report results from private corpora collected for specific purposes which makes
fair comparisons between different algorithms difficult. Furthermore, choosing
the appropriate performance measures with which to conduct the comparisons
is another important research issue [3,21], especially when cost-sensitive learning
is concerned (see Section 3.4). For these reasons, three publicly available datasets
were chosen for this study: LingSpam, Spambase and SpamAssassin.
LingSpam1. LingSpam is a popular spam e-mail filtering corpus consisting of
481 spam messages and 2,412 messages sent via the Linguist list (a list about
the profession and science of linguistics). In this corpus the legitimate messages
are more topic-specific which is reflected by the relatively lower spam ratio than
the other two datasets used here.
Spambase2. Spambase, constructed in 1999, is a collection of 4,601 vectors with
each of them representing either a spam or legitimate message using 57 pre-
selected attributes, most of them words or character frequencies. The original
messages in the Spambase corpus are not available.
SpamAssassin3. The SpamAssassin mail corpus was publicly released in 2005.
It comprises groups of private e-mails donated by different users. Unlike the
previous two corpora, all the e-mail headers are reproduced in full in SpamAs-
sassin. There are 6,047 messages in the corpus, with 1,897 spam e-mails (a 31.4%
spam ratio), 3,900 easy non-spam e-mails which do not contain any of the ob-
vious ‘spam’ signatures (such as HTML tags, etc.) and 250 hard but legitimate
e-mails which are ‘closer’ to typical spam in many respects (use of HTML, un-
usual HTML mark-up, coloured text, ‘spammish’-sounding phrases, etc.)

In this study words are taken as being separated by white space. In the Spam-
base corpus, individual characters such as ‘$’ and ‘#’ are used; in the other two
corpora, those characters are not considered. Further, e-mails may contain web
links, HTML scripts, pictures, attachments, etc. In this study, the focus is on
the text content of messages.

Details of the three corpora used in this work are summarised in Table 1.

1 From http://www.aueb.gr/users/ion/data/lingspam/public.tar.gz
2 From http://www.ics.uci.edu/∼mlearn/MLRepository.html
3 From http://spamassassin.apache.org

http://www.aueb.gr/users/ion/data/lingspam/public.tar.gz
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://spamassassin.apache.org
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Table 1. Summary of the spam e-mail corpora used giving sizes and spam ratios:
LingSpam, Spambase and SpamAssassin

Corpus Spam Non-spam Total Spam ratio Vocabulary Published Encrypted

LingSpam 481 2,412 2,893 16.63% 65,728 2000 No
Spambase 1,813 2,788 4,601 39.4% – 1999 Yes
Spam Assassin 1,897 4,150 6,047 31.4% 134,850 2005 No

3 Feature Extraction/Classifier Construction Using GP

The feature selection stages used in common inductive learning algorithms ap-
pear incapable of providing sufficient discriminability for classification or can
be easily bypassed by spammers. After detailed investigation of the dynamic
properties of spam, Fawcett [7] concluded that more effort should be spent in
devising effective feature extraction methods which should be able to adapt to
the new distorted instances via automatic data-driven learning. Zhang et al. [22]
confirmed that certain feature selection/extraction methods can enhance classifi-
cation performance. They argued that especially when cost ratios are considered,
the choice of the appropriate feature pre-processing step can be critical.

More generally, it is widely accepted that mapping a vector of raw pattern at-
tributes into a new domain can improve the separability of classes. (Indeed, many
algorithms which are usually recognised as classifiers fall into in the paradigm
of projecting the raw pattern attributes into R

1 and then assigning a class label
by thresholding in the projected space. Fisher’s linear discriminant is probably
the most obvious example.)

In this paper we have used multiobjective genetic programming (MOGP) to
induce the ‘optimal’ mappings from R

m → R
1, where m is the dimension of the

pattern vector for the spam labelling problem. We view this as feature extraction
followed by a (trivial) thresholding step in R

1 to assign a class label since the
principal focus of our work has been inducing the mapping. (This could equally
well be viewed as directly inducing a classifier.)

3.1 Raw Pattern Vector Construction

The spam filtering problem has its origin in text categorisation so the content-
based machine learning approach regards the words in an e-mail as the original
features. Thus a vector can be constructed for each e-mail. If we consider the
content of the original e-mail, a vector representation can be constructed by
analysing the various words in the e-mails. An intuitive way of constructing the
vector for each e-mail is to use the number of times a word appears – Term
Frequency (TF ) – as the components of the vector. However, a word which
has a high frequency of occurrence is not always a good signature of the e-
mail’s content if it occurs in many other e-mails. Thus, enhancements to the
TF representation, Document Frequency (DF ) and Inverse DF (IDF ) are used
and multiplied by the TF , and termed TF − IDF . DF is the number of times
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a word occurs in all e-mails in the corpus and is a popular weighting method in
text categorisation. IDF is defined as:

IDF (ei) = log
(

#D

DF (ei)

)

where DF (ei) is the document frequency of word, i in the collection. #D is the
number of e-mails in the corpus. The pattern vectors, xj were normalised such
that:

xi,j =
TF (ei,j) × IDF (ej)√

n∑
j=1

TF 2(ei,j) × IDF 2(ej)

Yang & Pedersen [21] concluded that DF has clear advantages over both mu-
tual information (MI) and term strength (TF ) representations while Drucker et
al. [5] have demonstrated the effectiveness of TF −IDF representations in spam
filtering. Thus this method is used to construct raw pattern vectors which form
the input to both the csMOGP feature extraction stage and the conventional
comparator classifiers.

We have performed a pre-processing sequence on the corpora which we be-
lieve is fairly standard in text categorisation and spam filtering. For each e-mail,
its textual portion was represented by a concatenation of the subject line and
the body of the message. The word-extraction process was carried-out by sub-
stituting all non-alphanumeric characters with white spaces; HTML tags were
removed. Words are defined as contiguous strings of characters delimited by
white space with all characters converted to lowercase for simplicity. We pre-
processed the e-mail messages by stop word elimination and Porter stemming
[18]. Further, Zipf’s law was applied to eliminate word features with frequency
less than five in either class. Finally, the vectorisation process was completed by
weighting the words using TF − IDF .

The dimensionalities of the final pre-processed pattern vectors were: 505 for
LingSpam, 57 for Spambase and 3644 for SpamAssassin.

3.2 Description of MOGP System

The genetic programming implementation used in this work is the steady-state
evolutionary strategy [14] straightforwardly adapted for GP. Depth-fair crossover
[11] was used along with mutation; since the evolutionary strategy was steady-
state, crossover followed by mutation was always applied. The MOGP settings
are listed in Table 2. Optimisation was carried-out for a fixed number of function
evaluations after which the evolution was stopped. As listed in Table 2, three
objectives were used to construct a three-dimensional fitness vector, comprising:
tree complexity, misclassification cost and an approximation to the Bayes error
in the 1D projected space.

The tree complexity objective is designed to inhibit bloat for which it has
been found to be very effective [6]. We have used a simple count of tree nodes
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as a complexity measure. In addition, a beneficial side-effect of minimising the
tree complexity is to minimise the numbers of terminal nodes used in the tree,
that is the numbers of raw pattern attributes used. Thus, as well as evolving
the ‘optimal’ feature extraction mapping, we also perform implicit feature selec-
tion; unless an attribute has sufficient discriminatory power it will tend not be
included (in a tree of a given size).

The misclassification cost objective was designed to enable cost-sensitive
learning and since it is pivotal to this work, it is discussed in greater detail
in the following sub-section.

The Bayes error estimate in the transformed feature space was calculated by
histogramming the projected class-conditioned values and calculating the overlap
between the spam and non-spam classes. Bayes error is a fundamental lower
bound on the separability of classes and was used to provide a selective pressure
to ‘force apart’ the two class-conditioned distributions in the decision space. (We
have also observed empirically that Bayes error acts as a useful ‘helper’ objective
in the early stages of evolution and thus can speed convergence.)

Having projected the patterns into a 1D decision space, we determined the
optimum decision threshold for minimum misclassification cost using Golden
Section search.

All three objectives were optimised simultaneously within a Pareto framework
using the method of Fonseca & Fleming [8], leading to an (approximation to the)
Pareto set for a given dataset.

Table 2. Cost-Sensitive MOGP Settings

Terminal set Input pattern vector elements
10 floating point numbers ∈ [0.0, 0.1, . . . 0.9, 1.0]

Function set sqrt, log, pow2, unary minus, sin, -, +, ×, ÷,
max, min, if-then-else

Raw fitness vector Bayes error, Misclassification cost,
Number of tree nodes

Population size 500

Initial population 50% full trees + 50% random trees

Original tree depth 7

Max. number of generations 500,000

Stopping criterion Max no. of generations exceeded

3.3 Cost-Sensitive Multiobjective Feature Extraction

The spam filter design problem is naturally multiobjective. Firstly, given a spam
filter, stopping as many as the spam e-mails as possible is in direct conflict with
preventing the filtering of legitimate e-mails. In fact, the conflicting nature of
decreasing the number of false positives (fraction labelled as spam from the non-
spam class) and the increasing the number of true positives (fraction labelled
correctly as spam) is a very general problem in pattern recognition. In other
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words, it is difficult to design a filter which simultaneously optimises the precision
and recall.

Secondly, as studies on the cost-sensitive spam filtering problem have shown
– see [3] – the trade-off between increasing precision and recall becomes more
complex when different cost ratios are considered. Indeed, the use of GP in cost-
sensitive classification has been previously addressed by Li et al. [15] who defined
a single aggregate fitness function calculated from precision and recall with the
cost ratio.

Let the cost of mislabelling a spam e-mail as a legitimate class be CS→ L and
the cost of mislabelling a legitimate e-mail as spam be CL→ S , with the correct
label incurring zero cost. NS→ L and NL→ S are the numbers of e-mails which
are labelled as legitimate-from-spam and labelled as spam-from-legitimate class,
respectively. The misclassification cost, MC is calculated as:

MC = CL→ S × NL→ S

NL
× PL + CS→ L × NS→ L

NS
× PS

where PS and PL are the priors, estimated from the training set. NS and NL

are the total numbers of spam and legitimate e-mails over the training set.

3.4 Performance Measures

To make a fair comparison is always critical in performance evaluation and a
number of performance measures have been proposed [3,21]; this is harder when
different cost ratios have to be taken into account for a typical cost-sensitive
problem such as spam filtering. In this study, the precision, P and recall, R pair
is calculated for each algorithm under every investigated cost ratio and for each
corpus. (Precision and recall comparisons have been carried out in [12,21].) Fur-
thermore, for each combination, the raw misclassification error rate and weighted
accuracy (WAcc) [8] are calculated to compare not only the raw error rate but
also the algorithm’s performance when false negatives and false positives are
weighted differently under different cost ratios. The same evaluation process has
been employed in [9,22] and in [3] where detailed descriptions of the measures
can be found.

NS→ S is the number of spam samples correctly labelled as spam and NL→ L

the number of correctly labelled legitimate e-mails. Precision, P, recall, R and
weighted accuracy, WAcc are defined by:

P =
NS→ S

NS→ S + NL→ S
R =

NS→ S

NS→ S + NS→ L
WAccμ =

μNL→ L + NS→ S

μNL + NS

where μ = CL→ S/CS→ L denotes the cost ratio. Following the suggestions in [2],
three different values have been examined here: μ = {1, 9, 999}. With increasing
μ, the penalty on false positives – mislabelling legitimate-to-spam – increases.
To give a reasonable interpretation of the WAcc value when the μ value is very
high, TCRμ = NS/(μNL→ S + NS→ L) was introduced [2] to act as a single
measure, larger values indicating better spam filtering performance.
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Zhang et al. [22] conducted their comparisons via pairwise combinations of
the five classifiers under investigation using TCR9 values. Hitherto, the usual
practice to gauge the statistical difference between the performance of different
classifiers has been to perform N -fold cross-validation followed by a t-test. This,
however, is unsound due to the failure of the implicit independence assump-
tions. Consequently, we have used Alpaydin’s F -test [1] to statistically compare
classifier performance where the F -measure was calculated for TCR values with
different μ values to decide whether or not to reject the null hypothesis that the
performances of the two spam filters were identical. Throughout this work we
used a 95% confidence level to infer a statistical difference. The comparisons are
focused on SVM and NB since they are widely considered to be the best per-
forming on spam filters [21,22]. The implementations used were from the Weka
Machine Learning system4 with parameters of each classifier ‘tuned’ to minimise
misclassification cost. The cost-sensitive learning for both SVM and NB was im-
plemented by weighting the training instances according to the cost ratio per
class.

4 Results

To assess the relative performances of the classifiers, each corpus was split into
equal-sized training and validation sets. The results reported here are the aver-
ages over ten folds for each corpus. Since MO optimisation yields a Pareto set of
equivalent solutions, we have selected a single csMOGP-generated classifier for
comparison from the minimum misclassification cost over the validation set.

In Table 3 the raw mislabelled patterns are counted directly without consid-
eration of the class from which they come. Viewed as a pure pattern recognition
problem (μ = 1), csMOGP appears superior on the LingSpam corpus and com-
petitive with SVM on Spambase although is out-performed by both SVM and
NB on SpamAssassin. (Note, raw error rate alone does not to address the cost-
sensitive learning problem here and these results are shown only for the sake of
completeness; we have not analysed them further.)

We believe that in practice, both users and organisations would tend to err on
the side of receiving a few more spam e-mails rather than risk losing legitimate
e-mails which might be mislabelled as spam. Thus, in the following analyses we
place greater emphasis on the results for larger values of μ – that is, imposing a
large cost on a legitimate-to-spam misclassification.

The precision/recall pairs in Table 4 show that as μ increases (the penalty
of misclassifying a legitimate e-mail as spam increases), then recall decreases.
In other words, because of the increasing cost of losing a legitimate e-mail, the
discrimination process can achieve the greatest profit by minimising the number
of legitimate e-mails mislabelled as spam. The SVM gives infinite precision and
no recall on LingSpam and Spambase for μ = 999, which means that for a
very unbalanced cost ratio, the SVM classified all patterns as legitimate e-mails
which is not useful in practice since it is not filtering-out any spam. In contrast,
4 See http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Table 3. Raw Error Rates Comparisons among SVM, Näıve Bayes and csMOGP

Classifier SVM Näıve Bayes csMOGP

Cost Ratio 1:1 1:9 1:999 1:1 1:9 1:999 1:1 1:9 1:999
LingSpam 3.5% 1.6% 16.6% 3.7% 3.1% 3.0% 2.9% 5.0% 5.1%
Spambase 11.0% 28.2% 39.4% 20.7% 20.5% 19.8% 10.4% 19.7% 19.7%
SpamAssassin 1.8% 27.4% 31.2% 3.7% 10.2% 10.2% 7.4% 10.1% 18.1%

csMOGP is able to give 100% precision for the high cost ratio of 1:999, which
means no legitimate e-mail is wrongly labelled as spam.

Zhang et al. [22] have pointed-out that since the precision/recall values cannot
provide comparisons which incorporate the const-sensitive penalty information,
we have calculated the WAcc (Table 5) and TCR (Table 6) measures to address
this issue.

Table 4. Precision/Recall Comparisons among SVM, Näıve Bayes and csMOGP. Up-
per number is the precision, the lower recall. (∞ denotes infinite precision).

Classifier SVM Näıve Bayes csMOGP

Cost Ratio 1:1 1:9 1:999 1:1 1:9 1:999 1:1 1:9 1:999

LingSpam
1.00 0.92 ∞ 0.88 0.89 0.89 1.00 1.00 1.00
0.80 0.99 0.0 0.90 0.93 0.93 0.90 0.83 0.60

Spambase
0.91 0.98 ∞ 0.67 0.67 0.68 0.88 0.98 1.00
0.81 0.29 0.0 0.95 0.95 0.95 0.66 0.35 0.14

SpamAssassin
0.98 1.00 ∞ 0.99 0.76 0.76 0.89 0.98 1.00
0.96 0.12 0.0 0.89 0.98 0.98 0.87 0.69 0.42

From Table 5 it is clear that csMOGP delivers most of the highest weighted
accuracies across all combinations over the three corpora (13 highest over 18
pairwise comparisons, shown in bold). csMOGP gives the highest values for all
corpora for μ = 999. For μ = 9, csMOGP gives the highest values of WAcc for the
SpamAssassin and Spambase corpora but for this cost ratio, SVM performs best
on the LingSpam corpus although whether the difference (99.58% vs. 99.54%) is
statistically significant is doubtful.

Table 5. Weighted Accuracy Comparisons for SVM, Näıve Bayes and csMOGP for
Three Cost Ratios. Highest values shown in bold face.

Classifier SVM Näıve Bayes csMOGP

Cost Ratio 1:1 1:9 1:999 1:1 1:9 1:999 1:1 1:9 1:999
LingSpam 96.5% 99.6% 97.8% 96.3% 97.5% 97.7% 97.1% 99.5% 99.9%
Spambase 89.1% 94.8% 93.3% 79.3% 71.2% 70.7% 78.8% 95.8% 99.9%
SpamAssassin 98.2% 95.8% 99.9% 96.3% 86.7% 86.2% 91.6% 97.9% 99.9%
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The set of values for the TCR measure are shown in Table 6. Here, higher
values imply better spam filtering performance. csMOGP gives the highest TCR
scores for all combinations with the exceptions of: i) μ = 9 for the LingSpam
corpus on which SVMs give a slightly greater value, and ii) μ = 1 for the Spam-
Assassin corpus on which the SVM performs very well. (For reasons explained
above, this latter case is not of great practical interest.) It is also noteworthy
that TCR < 1 (the baseline value) denotes that the spam filter is unsuccessful
in practice; clearly the NB classifier falls below this threshold for many values
of cost ratio. To gauge the statistical significance of the differences between the
classifiers’ performance, we have conducted a series of F -tests, shown in Table 7
in which a circle denotes that csMOGP gives worse filtering performance over
that corpus-cost combination and a tick denotes the superiority of csMOGP; a
dash denotes no statistical difference at the 95% level. csMOGP offers statisti-
cally better performance than SVM and näıve Bayes over most of the corpus-cost
combinations and universally so at the high cost ratios which are of practical
importance.

Table 6. TCR Comparisons among SVM, Näıve Bayes and csMOGP for three cost
ratios, μ = {1, 9, 999}

Classifier SVM Näıve Bayes csMOGP

Cost Ratio 1:1 1:9 1:999 1:1 1:9 1:999 1:1 1:9 1:999
LingSpam 24.12 25.66 5.03 7.68 4.35 0.04 35.21 23.63 12.70
Spambase 2.37 1.99 1.54 2.93 0.36 0.00 4.31 2.44 1.66
SpamAssassin 37.82 2.51 2.21 18.74 0.80 0.01 8.157 5.14 3.80

Table 7. Results of pairwise 5×2 cv F -tests between SVM, Näıve Bayes and csMOGP
See text for details

Classifier SVM Näıve Bayes

Cost Ratio 1:1 1:9 1:999 1:1 1:9 1:999

LingSpam � − � � � �

Spambase � � � � � �

SpamAssassin © � � © � �

5 Discussion

From examination of typical trees it is apparent that the transformations gener-
ated by csMOGP are highly non-linear. With the increase in μ-value, the trees
in the converged csMOGP evolutions are more complex. A number of intuitively
‘sensitive’ word stems have been selected by csMOGP, such as “adult”, “monei”,
“edu”, “free”, “remov”, “credit”, etc. Specifically, the word “free” was been se-
lected several times by csMOGP across a number of solutions.

Finally, the drifting concept and skewed class distributions in spam filtering
present a challenge to conventional machine learning methods. These phenomena
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stem from the fact that the people who produce spam are continually changing
the topic as well as the way they deliver their information. Spammers are intel-
ligent humans and they are continuously learning to cope with de facto spam
filtering methods, even when machine learning techniques are applied. In other
words, the spam problem together with the spammers are evolving, therefore
machine learning approaches based on static learning will need retraining at var-
ious intervals during their lifetime. A few recent efforts have focused on dynamic
learning as well as personalised spam filter design. csMOGP provides an obvious
way to continuously ‘co-evolve’ with the spammers – the csMOGP-trained filter
could be continuously updated (as a background process) using newly acquired
training data. Examining the continuous evolution characteristics of csMOGP
in spam filtering is a potentially promising area for future research.

6 Conclusions

We have examined the application of multiobjective genetic programming to the
cost-sensitive task of spam filtering. In particular, we have evolved (near-)optimal
feature extraction stages which map the content of the e-mail in question to a
1D decision space in which we apply a threshold to determine the class label. We
have made comparison over three publicly-available spam corpora with support
vector machines (SVMs) and näıve Bayes (NB) classifiers which are both held
to be successful on the spam filtering task. For the practically important high
cost ratios (which impose a high penalty of mislabelling a legitimate e-mail as
spam), the csMOGP approach out-performs both SVMs and NB classifiers and
for the case of the TCR metric, by statistically significant margins.
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6. Ekárt, A., Németh, S.Z.: Selection based on the Pareto nondomination criterion for
controlling code growth in genetic programming. Genetic Programming & Evolv-
able Machines 2, 61–73 (2001)

7. Fawcett, T.: In vivo spam filtering: A challenge problem for data mining. KDD
Explorations 5, 140–148 (2003)



336 Y. Zhang et al.

8. Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple con-
straints handling with evolutionary algorithms. Part 1: A unified formulation. IEEE
Trans. Syst., Man & Cybern. 28, 26–37 (1998)

9. Hidalgo, J.G.: Evaluating cost-sensitive unsolicited bulk e-mail categorization. In:
Proc. 17th ACM Symposium on Appl. Computing, pp. 615–620 (2002)

10. Hirsch, L., Saeedi, M., Hirsch, R.: Evolving rules for document classification. In:
Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.)
EuroGP 2005. LNCS, vol. 3447, pp. 85–95. Springer, Heidelberg (2005)

11. Ito, T., Iba, H., Sato, S.: Non-destructive depth-dependent crossover for genetic
programming. In: 1st European Workshop on Genetic Programming, pp. 14–15
(1998)

12. Katirai, H.: Filtering junk e-mail: A performance comparison between genetic
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Abstract. We present PlasmidPL, a plasmid-inspired programming
language designed for Genetic Programming (GP), and based on a chemi-
cal metaphor. The basic data structures in PlasmidPL are circular virtual
molecules or rings which may contain code and data. Rings may react
with each other to perform computations on the rings themselves. A vir-
tual chemical reactor stochastically chooses which reactions should occur
and when. Code and data may be rewritten in the process, leading to a
system that constantly modifies itself. In order to be closer to chemistry,
PlasmidPL relies solely on the data and code stored in molecules.

After describing the language, we show some hand-written sam-
ple programs that implement initial program generation, mutation and
crossover within self-modifying chemical programs. These programs are
then used to solve a typical symbolic regression problem, as a feasibil-
ity study. Finally, we discuss future directions into specific application
scenarios that can benefit from such a chemical model.

1 Introduction

The motivation for this work lies in obtaining software that autonomously reacts
to environmental changes by ultimately changing its own code. The applications
for such self-evolving software include robotics [1,2], sensor-actuator networks
[3], pervasive, organic and autonomic computing. As in biology, the software
itself would be responsible for its own “survival”, including reproduction and
variation mechanisms which under selective pressure from the real world could
result in successive generations of ever improving individuals.

PlasmidPL is a new artificial polymer chemistry [4] inspired by the structure
and behaviour of plasmids. In biology, plasmids are small circular DNA segments
that can exist and replicate separately from the chromosomal DNA of their host
cell which is usually a bacterium. Multiple plasmids and several instances of the
same plasmid may co-exist in the same cell.

A PlasmidPL program is a multiset of rings. Rings are circular arrays of
atoms that can manipulate other rings, producing new rings as results. A ring
data structure wraps around itself in a modulo fashion, such that any position
in a ring is a valid position. In this way, information can always be extracted

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 337–349, 2008.
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from rings, or written to them without any “array out of bounds” exception.
As with protected division in GP, the ring structure aims at helping to obtain
valid programs using genetic operators. Furthermore, the language is designed
with minimal syntactic and semantic constraints, such that any random pro-
gram can potentially be interpreted to produce some result. In contrast with
related approaches to the evolution of programs using chemical metaphors [5,6],
computation with PlasmidPL relies exclusively on the data and code stored in
molecules. Any kind of information storage outside molecules (such as external
stacks, registers, or memory positions) is explicitly forbidden. The state of the
system is therefore fully defined by the set of molecules present in the reactor.

Rings may be regarded either as passive data molecules or as standalone mini-
threads of computation. They may react with each other to perform computa-
tions on the rings themselves. A virtual chemical reactor chooses which reactions
should occur and when, acting as a thread scheduler whose scheduling algorithm
emulates a stochastic chemical reaction process. Code and data may be rewritten
during the reaction process, threads may fork and join, giving rise to a dynamic
system in which code and data are constantly being modified. Indeed, PlasmidPL
is heavily based on self-modifying code: due to the absence of explicit variables
and external data structures, programs must rewrite themselves in order to get
the right values in the right places where they are needed.

In this paper we present the syntax and behaviour of PlasmidPL programs,
and show how they can be used to produce code that rewrites itself in order to
implement steps from evolution runs such as initial population generation and
genetic operators. We then show how these elements can be used in a simple
symbolic regression problem: although it looks like a fairly classical GP run, an
important difference must be highlighted: the code generation and modification
operators act on the same program (or plasmid “soup”) where they are located.
This is a first step towards evolving self-modifying programs and their genetic
operators as done in [7,8], this time using a chemical metaphor closer to nature.

After a brief introduction to biological plasmids in Sect. 2 and some literature
review in Sect. 3, the language is described in Sect. 4. First GP experiments are
reported Sect. 5, and further steps, insights and perspectives in Sect. 6.

2 Biological Plasmids

A plasmid is a small DNA molecule that can exist and replicate separately from
the chromosomal DNA. It is typically circular and double-stranded. Plasmids
are most commonly found in bacteria, but have also been found in eukaryotes.
Fig. 1 (left) schematically depicts a set of plasmids inside a bacterium.

The structure of a plasmid comprises its ori (origin of replication) region,
and a set of genes (Fig. 1 (centre)). The ori region is a nucleotide sequence that
unites the two extremities of the DNA. During replication, this region is nicked
and the DNA is duplicated starting from there. When the replication process is
complete the plasmid recircularizes.
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Fig. 1. Left: Bacterium holding chromosomal DNA and plasmids. Centre: A plasmid
with its genes (large segments) and its origin of replication (ori). Right: A plasmid
being transferred from a donor bacterium to a recipient during conjugation.

Plasmids are mobile genetic elements: they often migrate from one bacterium
to another via conjugation, an asexual mechanism by which genetic material is
transferred from a donor cell to a recipient by direct contact (Fig. 1 (right)).

Some plasmid genes may confer selective advantages to the host bacterium,
such as antibiotic resistance. Since plasmids may reproduce and migrate to other
bacteria, they are important transmission vectors of antibiotic resistance. Plas-
mids are also extensively used as cloning vectors in genetic engineering. More
recently, Plasmid Computing has been proposed as a new DNA computing tech-
nique that uses plasmids to store information, capable of solving NP-complete
problems such as the maximal independent subset problem [9], and the knapsack
problem [10].

3 Background and Related Work

In most GP systems the code to be optimized is produced and manipulated by
an external program. We would like to explore the possibility of including all the
evolutionary steps within the code itself, like in nature, where DNA reproduces
with the help of proteins that are manufactured from genes within the DNA
itself. Systems with these characteristics have been extensively studied in Arti-
ficial Life and Complex Systems research [11,4,12]. Many such systems exhibit
interesting life-like properties such as self-reproduction [12], self-evolution [6],
self-maintenance [11,4], and so on. They are typically meant to study biological
or organizational issues in general, such as the origin of life and the emergence
of self-organizing structures. Artificial Chemistries [4] are intimately related to
evolution: it is conjectured that evolution itself could have emerged out of cat-
alytic chemical reactions. Modelling programs with an artificial chemistry could
perhaps show evolutionary paths that remain unexplored so far.

Artificial Polymer Chemistries [4] are artificial chemistries in which molecules
are character sequences that can be concatenated or cleaved during the reactions.
PlasmidPL can be seen as a instance of an artificial polymer chemistry, in which
molecules contain code that can be transformed via GP. However, our goal is not
to study life phenomena but to optimize programs that offer services to users.

The notion of active code strands that operate on passive data strands
is present in several earlier artificial chemistries [13,11,6,14]. Similarly, earlier
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ring-based computation models exist. For instance, in [14] machines operate on
circular tapes that contain a searched pattern, resulting in a system that is able
to evolve simple self-replication loops up to complex autocatalytic networks. The
potential benefit of PlasmidPL over such systems is to offer a fully blown and
intuitive programming language based on a chemical metaphor, in which pro-
grams can be produced by humans as well as automatically via GP. Such hybrid
approach has been successful in mainstream GP and could bring the chemical
metaphor closer to everyday applications.

Our approach share goals with Ontogenetic Programming [8] and Autocon-
structive Evolution [7], both based on variants of the Push language [15]. We
took inspiration from Push for some aspects of PlasmidPL, which will become
evident in Sect. 4.2. Languages such as MGS [16] are also inspired by a chemi-
cal metaphor. However, they have not been designed for GP, and as such, their
syntax does not lend itself to easy automatic manipulation.

4 PlasmidPL: Language Description

As in most chemical models, PlasmidPL models programs as a multiset of virtual
molecules (a set in which elements may occur more than once). Virtual molecules
are rings or plasmids, represented as vectors of indivisible atoms or symbols.
All reactions are second-order, i.e. involve two reactants. At each iteration, the
reactor selects two molecules at random for reaction: the first one is chosen
among the currently active (executable) molecules, and the second among the
passive (data) ones.

The symbols in a plasmid are indexed starting from zero at the ori junction
point. Any integer index i ∈ Z is converted to an index j, 0 ≤ j < L which
always falls within a valid position in the plasmid:

j = i%L if i ≥ 0
j = (L − (|i|%L))%L if i < 0

where L is the length of the plasmid in number of atoms and % is the modulo
(division remainder) operator. Empty plasmids with L = 0 do not make sense
and are never present in the multiset, therefore division by zero does not occur.
For protected GP, floating point indices are rounded to the nearest integer before
the above computation, and other (non-numeric) atoms are treated as zero.

Logically a plasmid wraps around itself in a circular shape. Physically however
(in the source code), a plasmid is represented simply as a list of atoms in textual
form (a0 a1 ... aL−1) equivalent to a LISP list without recursion. The ori position
is not represented, and is logically situated between atoms aL−1 and a0. The list
format also allows us to refer to plasmid positions informally as front positions
(near the head of the list) and rear positions (near the tail’s end).

For computational efficiency in treating long polymers, molecules are identi-
fied by keys stored in their front symbols. Any atom may in principle play the
role of a key. Keys are used to identify reactants, as will be explained next.
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(read x 23 y push y 2 + write y z)

(x 3 4 7 8 2 0)

(push y 2 + write y z)

(x 3 4 7 8 2 0)

(x 0 34 6) (y 4) (x 0 34 6)

Fig. 2. Reaction between two plasmids. Top: Schematic representation. Bottom: Code
example. An active (code) plasmid operates on a passive (data) plasmid.

Fig. 2 depicts the plasmid reaction metaphor. An active and a passive plasmid
react if they have the same key (x in the example) at their index positions one
and zero, respectively. The active plasmid operates on the passive one to obtain
reaction products. Both plasmids may be modified in the process, while the
executed code of the first (active) plasmid is consumed. The front keyword of the
active molecule (i.e. the atom at position zero, read in the example) determines
the action to be performed on the passive one, according to Reaction Table 1.
The action may result in a modification of the passive molecule, of the active
molecule itself, and/or the production of another molecule. After the action is
performed, the atoms corresponding to the executed code fragment in the active
molecule are consumed. In the example of Fig. 2, a read instruction produces
a third plasmid (y 4) containing the read value. y is the output key given as a
parameter to the read instruction, and 4 is the atom at position 23%L = 2 of
molecule (x 3 4 ...) with length L = 7. Note from the bottom code example
that two passive plasmids with the same key x occur: they have equal chance to
participate in the reaction, and the first one is chosen at random.

The virtual chemical reactor is driven by a variant of the Gillespie algorithm
[17], which simulates the stochastics of a real tank reactor by determining which
reactions should occur and when. The choice of reactants is based on the molecule
key. This partitions the set of all molecule chains in the reaction into species
groups identified by the same key symbol. All the molecules belonging to the
same group are treated as the same molecular species as input to the Gillespie
algorithm. The search for matching reactants can then be reduced to a simple
key lookup in a hash table. Multiple copies of identical rings are represented
only once in the reactor by incrementing the multiplicity counter (number of
copies of an item in the multiset) of the molecule. The resulting algorithm has
complexity O(s) per iteration, where s is the total number of distinct front key
symbols.
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4.1 PlasmidPL Reactions

The language instructions specify chemical reactions that operate on a molecule
whose front atom matches the reaction key. The syntax and semantics of the
reaction rules are shown in Table 1.

Table 1. Semantics of PlasmidPL reactions

read R P S read symbol at position P from ring R; result goes to ring/position S
write R P S write symbol S at position P on ring R
insert R P S insert symbol S into ring R at pos P
delete R P delete symbol at position P from ring R
join R join ring R with current ring (append)
cleave R P divide ring R between ori and position/character P
copy R duplicate ring R
destroy R destroy ring R
length R P length of ring R (written to ring/position P)
exec R spawn ring R for execution; equivalent to (copy R delete R 0)
push R S push symbol S onto stack R; if S is an operator, pop items from S,

perform the operation and push the result onto R
pop R P pops top of stack R and writes its value in ring/position P
if C... else... if top of stack C is true, consume region after else atom, else consume

region before else

The general syntax of a code fragment corresponding to a reaction instruction
is (keyword k p1 p2 ..) where keyword is the reserved atom that indicates the
type of reaction to be performed (e.g. read, write), k is the matching key that
indicates which molecules may be chosen as passive side for the reaction, and pi

is a set of parameters. Parameters may indicate a position in the passive ring
where information should be read/written from/to, the key for a new ring to be
produced as output, the specific symbol value to be written to a ring, and so on.
As a result of the reaction, rings may join, divide, duplicate, disappear, change
from active to passive and vice-versa, become shorter or longer, etc.

For conciseness, we abuse the notation as follows: “ring R” means “a ring
with atom R at position zero”, i.e. a ring of the form (R ...). “Ring/position X”
refers either to a new ring (X ...) (if X is a non-numeric atom) or to an offset X
(if X is a numeric value) at the self-molecule (the current active molecule) after
the current code fragment (which will be consumed after the reaction). This
apparently awkward syntax is intended both to facilitate code rewriting and to
ensure that all possible parameters and their types are accepted as valid.

The read instruction is a typical example of this double semantics:

(read a 1 y), (a 10) → (y 10)

(read a 1 3 write z 1 V), (a 10) → (write z 1 10)

In the first case (read a 1 y), a new molecule (y 10) is produced containing
the value read from (a 10). In the second case (read a 1 3) the same value is



PlasmidPL: A Plasmid-Inspired Language for Genetic Programming 343

written to the self molecule, which can then be used as a parameter for the next
instruction in the flow of execution.

An exhaustive description of the instruction set is outside the scope of this pa-
per. Sect. 5 will show some concrete code examples that will hopefully highlight
the basic language principles in a practical way.

4.2 Arithmetic and Logic Expressions

We recall that rings are generic data structures that may contain code and
data. As such, they can be used to store multiple data structures such as lists,
vectors or stacks. Arithmetic and logic expression can be more easily evaluated
by looking at a ring as a stack. Three instructions currently have such a semantic:
push, pop, and if. This section focuses on the push instruction which will be used
in the experiments of Sec. 5.3.

When reacting with a matching ring R, the push instruction uses this ring as
a stack: the front portion is the top of the stack and the rear is the bottom.
It works as follows: the atom S in the self-molecule immediately after the key
R is inspected: If S is an operand (e.g. number) push it to ring R. If it is an
operator (e.g. + - *), pop needed operands from stack, perform operation and
push the result onto R. In both cases the corresponding atom is consumed from
the active ring. A reaction keyword in the place of S (or an empty S) acts as
a stop condition: the push keyword is consumed, together with its key R. The
stack R now contains the result of the computation.

The push reaction evaluates a postfix expression like a conventional stack-
based language. However the evaluation does not happen at once, but one atom
at a time, each time the molecule is chosen for reaction. This preserves the
molecule thread model in the sense that other molecules may be chosen for
processing in between. The following example shows the reaction path (execution
trace) for incrementing a counter c:

(push c 1 +), (c 4) → (push c +), (c 1 4) → (push c), (c 5) → (c 5)

If there were more instances of c molecules in the soup, each instance would
have an equal chance to react with (push c ..), regardless of their content,
leading to a non-deterministic execution which is very characteristic of chemical
models.

The push reaction accepts arithmetic, logic and comparison operators which
look like those in the C language, plus stack manipulation operators and a num-
ber of mathematical functions, including a random number generator. The set
of operators can be easily enhanced. The current set is listed in Table 2.

For protected GP operations, all the stack operators follow the principle
adopted by the Push language [15]: when insufficient arguments are available
on top of the stack, or when arguments do not match the required types, or
when arguments do not satisfy the pre-conditions for an operation (for exam-
ple, in case of division by zero) then the operator is interpreted as a nop (no
operation) and simply discarded without touching the stack.
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Table 2. push reaction operators

+ - * / % ^ arithmetic operators (plus, minus,... mod, power)
== != > < >= <= comparison (equal, not equal, greater than...)
&& || ! logic operators (and, or, not)
swap, dup, del stack manipulation: swap the two symbols on top of stack,

duplicate or delete symbol on top of stack
sqrt, log, sin, cos... various math functions (square root, logarithm...)
rnd, int.rnd random number generation (float and integer, respectively)

5 Genetic Programming with PlasmidPL

In this section we show hand-made examples of PlasmidPL programs that im-
plement initial program generation, mutation and crossover in GP. In contrast to
most GP systems, these GP operations are performed within the program itself
that is being evolved. This is a first step towards evolving code that self-modifies,
within which the genetic operators would naturally co-evolve.

5.1 Generating an Initial Program

Here we show a PlasmidPL program that generates a random postfix expression
by composing it from a pool of atoms.

(genexpr push len dup 0 >
if len

push len 1 -
read atom 1 3

insert templ 3 A
exec genexpr

else
write templ 0 expr
destroy len)

(templ push stack
write stack 0 result)

(push maxlen dup 1 - int.rnd 1 +
read maxlen 1 len
exec genexpr)

(maxlen 6)
(atom 0) (atom 1) ...
(atom +) (atom *) ...
(atom dup) ...

The left side shows the genexpr molecule, which upon activation by an exec

ring generates an initial expression by combining random atoms taken from the
pool of atom molecules on the right side. An initialization phase occurs first:
the pair (push maxlen ) and (maxlen ) react together to produce a molecule len

containing the target length of the expression to be generated, chosen randomly
between one and the maximum length indicated within maxlen (6 atoms in this
example). After that, genexpr is executed: if the length is positive, it decrements
it, reads one atom at random from the atom pool, and inserts the atom within
the template molecule temp between the push stack and write atoms. Then it
invokes genexpr again, until the target length reaches zero. The template templ

is then renamed to expr, and the temporary len molecule is destroyed. expr now
contains the final expression that will be later evaluated. A sample expression
generated in this way is:
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(expr push stack + 4 5 + / - write stack 0 result)

Note that save the fixed prefix and suffix atoms from the template, the ex-
pression itself is a random sequence of atoms obeying no syntactic rules. It can
nevertheless be evaluated since all the operators are protected.

The same principle could be applied to generate other types of programs, by
injecting different atom molecules containing the symbols to be composed, e.g.
(atom read), (atom write), etc. In this case, however, in order to improve the
feasibility of the resulting programs, the modified genexpr molecule would have
to contain code that inspects the chosen atom and fills in the next atoms with
the expected number of parameters. This would be a next step in showing how
entirely new code can be produced by rewriting rings.

5.2 Genetic Operators

Code extracts for mutation and crossover are shown below. They operate on the
expression expr generated as described in Sect. 5.1.

Each mutate molecule implements a different type of mutation. For conciseness
the choice of the mutation point is omitted, and only the code fragment that
actually performs the mutation is shown: the first molecule replaces one symbol
at random in the expression, using a write to a position P which is previously
rewritten with the actual index. The value V to be written is also previously
rewritten by the read atom 1 3 instruction, which reads one atom at random
from those listed in the example of Sect. 5.1. The other mutate molecules insert
or delete one symbol at random, respectively, in a similar way.

An (exec mutate) molecule might react equally likely with each of the mutate

variants (atom replacement, insertion, and deletion, respectively). The proba-
bilities of each variant may be adjusted by injecting multiple copies of each in
different proportions into the reactor.

(mutate ...
read atom 1 3
write expr P V ...)

(mutate .. insert expr P V ..)
(mutate .. delete expr P ..)

(crossover
.. insert cp11 cp12 P
.. insert cp11 | P
cleave cp11 | exec mk1 ..)

(mk1 .. join cp11 join cp22 ch1)

The right box above shows fragments of a simple one-point crossover opera-
tor. It takes two input expressions, both in the format shown in Sect. 5.1. one
of them is the native expression that already resided in the reactor, coming
from the initial population generation step. The second one is a copy of another
plasmid’s expression, injected via a conjugation mechanism. After choosing a
crossover point at random in both expressions (which will be written into atom
P’s position) an identifier for the second segment (cp12 in the above example)
and a breakpoint atom ’|’ are inserted at the crossover point. The rings are then
broken up at the breakpoint position and recombined in a crossed way. The re-
sult of the crossover is available in molecules ch1 and ch2 (not shown), which are
later captured for building a new generation as will be shown in Sect. 5.3.
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Here is a simplified reaction trace of the crossover mechanism:

(cp11 a b c d), (cp21 x y z) →
(cp11 a b | cp12 c d), (cp21 x | cp22 y z) →
(cp11 a b), (cp12 c d), (cp21 x), (cp22 y z) →
(ch1 a b y z), (ch2 x c d)

5.3 Postfix Symbolic Regression

The expression generator from Sect. 5.1 together with the genetic operators
from Sect. 5.2 can be combined to solve a simple symbolic regression problem.
Each individual in the population is a chemical reactor that exchanges molecules
with the external environment. The result is a fairly standard stack-based GP
run, except that the code for the generation and modification of individuals is
included within the individuals themselves. Besides such code, each individual
contains code that: (i) obtains an input value corresponding to a fitness case and
pushes it onto the stack molecule used to evaluate the automatically generated
expression; (ii) when the computation is finished, rewrites the stack into an
output molecule that is going to be read by an external fitness evaluator. Fitness
evaluation and selection are implemented externally, simulating the fact that
individuals must survive some environmental pressure. The target function is the
well-known quartic polynomial. The fitness function is the sum of the squares of
the errors between the obtained and the expected values.

Table 3. Koza tableau of symbolic regression experiments

objective: evolution of a quartic
polynomial in postfix form
f(x) = x + x2 + x3 + x4

atom set: + - * / ^ dup swap
0 1 2 3 4 5

fitness cases: 5 values x ∈ [−2; 2]
pop. size: 100 individuals

crossover prob.: 90%
mutation prob.: 5%
selection: tournament size 4
termination criterion: zero fitness
max. # generations: 100
max. program size: none
initialization method: grow

The Koza tableau for the experiments is shown in Table 3. The population
size, maximum number of generations, number of fitness cases and tournament
size are intentionally kept small. For simplification no ephemeral constants are
used. Moreover, since there are no explicit variables, the program is obliged to
take all its input at the beginning when it can be found on the top of the stack.

Fig. 3 shows the evolution results averaged over 10 runs. The average fitness of
the best individual decreases with the generations, as expected. Program sizes
grow visibly, as well as the variation in sizes. This can be expected as naive
mutation and crossover operators were used, with no intron growth control.

One of the runs finds the following 100% correct solution at generation 60:
(swap dup dup dup * + swap dup dup dup * + swap 2 ^ * +)
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Fig. 3. Evolution of a quartic polynomial using PlasmidPL. Left: average fitness of the
best individual of each generation. Right: average length of best of generation.

It evaluates exactly to: f(x) = (x + xx) + (x + xx)(x2) = x + x2 + x3 + x4

which is the expected expression. It leaves no garbage on the stack and contains
only one “intron” (the first swap instruction).

Hand-made solutions include:
(dup dup dup 1 + * 1 + * 1 + *)

(dup 4 ^ swap dup 3 ^ swap dup 2 ^ swap + + +)

The solution found by GP is parsimonious and at a comparable level of effi-
ciency to hand-made ones. This is remarkable since neither intron growth mech-
anisms nor stack-correct genetic operators were used.

We have also performed experiments with a quintic polynomial and other
functions, with similar results (omitted for conciseness).

6 Discussion

We have described PlasmidPL and shown some examples of how it can be used
for a form of GP based on code rewriting. First experiments show that it is
feasible to perform fairly “standard” GP with PlasmidPL. This is not the main
goal of the language, but only the very first steps. The goal is to have a system
that can make use of a chemical metaphor that includes self-modification to con-
trol code evolution intrinsically. A research issue in this context is the trade-off
between the stochastic nature of program execution, and the potential robust-
ness that could achieved through the redundancy provided by multiple molecules
performing similar functions. As pointed out in [5], in an algorithmic chemistry
the concentration of instructions is more important than their execution order.
A robust online evolution scheme would thus inherently rely on the control of
code concentrations.

Experiments with more complex target programs must be performed next.
Although helpful, the concept of rings is not sufficient to ensure viable individu-
als. At the current stage, most instructions expect a fixed number of parameters.
This is prone to a frame shift in case of a random mutation: a missing or extra
parameter may shift the whole execution to a different point, having the effect of
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a macro-mutation. This can be fixed by allowing a variable number of parame-
ters, combined with protected variation operators that operate on frame borders
instead of random positions.

Many aspects of state-of-the-art GP have not been treated here: recursion,
modularity, data types, and so on. These should in principle also be possible with
a chemical model, however the requirement to operate exclusively on molecules
would certainly impose new approaches to these problems.

7 Conclusions and Future Work

We presented PlasmidPL, a new programming language inspired by circular
DNA structures called plasmids. The language is still in early stage of develop-
ment, and is currently only loosely based on real biological plasmids. This paper
shows some initial feasibility experiments. PlasmidPL is intended for online tasks
related to environment monitoring and control, such as reacting to chemicals
present in the environment by diffusing other chemicals in a controlled way.

The chemical metaphor offers a more biologically plausible model of evolution
with the potential of autonomous evolution without external support. Indeed,
Fontana [11] pointed out that in the physical universe the level of molecules is the
only one that “has been observed to spontaneously support complex phenomena
as life”. In his chemistry based on λ-calculus, molecules (λ-expressions) represent
code and data that operate on each other in a standalone way, thus do not
really on a centralized machine architecture. We seek to bring these benefits to
practical applications in the GP context. By moving a step closer to chemistry,
the building blocks of life, new behaviours might emerge from evolved programs.
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Abstract. Turing machines are playing an increasingly significant role in Com-
puter Science domains such as bioinformatics. Instead of directly formulating a  
solution to a problem, a Turing machine which produces a solution algorithm is 
generated. The original problem is reduced to that of inducing an acceptor for a re-
cursively enumerable language or a Turing machine transducer. This paper reports 
on a genetic programming system implemented to evolve Turing machine accep-
tors and transducers. Each element of the population is represented as a directed 
graph and graph crossover, mutation and reproduction are used to evolve each gen-
eration. The paper also presents a set of five acceptor and five transducer bench-
mark problems which can be used to test and compare different methodologies for 
generating Turing machines. The genetic programming system implemented 
evolved general solutions for all ten problems. 

Keywords: Turing machines, genetic programming, grammatical inference. 

1   Introduction 

As the potential of Turing machines in more recent domains of Computer Science such 
as bioinformatics is being realized, interest in the automatic induction of these automata 
is growing. While there has been a number of investigations into the evolution of other 
forms of automata such as finite acceptors ([2] and [4]) and transducers ([3] and [6]), 
there has not been much research into the use of evolutionary algorithms for Turing ma-
chine induction. Research in this domain was initiated by the study conducted by 
Tanomaru [7] in the early nineties. The main motivation of Tanomaru’s study was that 
once a Turing machine is evolved it can be easily implemented as a computer program 
solution to the problem. Tanomaru used an evolutionary algorithm to generate Turing 
machine transducers for two problems. This system did not scale well when applied to 
Turing machine acceptor problems and “population shifting” was introduced to over-
come this problem. The revised system evolved solutions to three acceptor problems. 

Since this initial study there has not been much research into this domain. In the  
late nineties Pereria et al. [5] have evolved solutions to the Busy Beaver problem. The 
main aim of this study was to test the effectiveness of using graph-crossover instead of  
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two-point crossover.  Graph-crossover was found to improve the success rate of the evo-
lutionary algorithm and the system produced some of the best results in this field.  In 
2001 Vallejo et al. [8] implemented an evolutionary algorithm to induce Turing machine 
acceptors for recognizing HIV biosequences. The biosequences to be recognized are 
treated as a recursively enumerable language. The system found solutions that general-
ized well and correctly classified sequences not in the training set.  The system was also 
successfully applied to evolving a two-way deterministic finite automaton which was 
used to find a solution to the multiple sequence alignment problem. 

The study presented in this paper extends the research conducted by Tanomaru by 
evaluating the use of evolutionary algorithms for Turing machine induction on a larger 
set of problems. Furthermore, based on the success that Pereria et al. had with represent-
ing each Turing machine as a graph, a transition graph representation is used, rather than 
the state transition table representation used by Tanomaru.   

The following section describes the genetic programming system implemented to 
evolve Turing machines and section 3 specifies the experimental setup used in applying 
the system to ten Turing machine problems. The performance of the system on ten 
problems is discussed in section 4. Section 5 summarizes the conclusions of this study 
and describes future extensions of this project. 

2   The Genetic Programming System 

This section provides an overview of the genetic programming system implemented to 
evolve Turing machines. As is the case of the three previous studies in this domain, the 
generational control model is used. The representation, method of initial population gen-
eration, methods for selection and fitness evaluation and the genetic operators are de-
scribed in the sections that follow. 

2.1   Representation and Initial Population Generation  

Tanomaru [7] emphasizes the importance of representing Turing machines as “intui-
tively” as possible. He states that this facilitates easy and efficient translation of the Tur-
ing machine without loss of information. Thus, in the study conducted by Tanomaru each 
Turing machine is represented using a state transition table instead of a chromosome or a 
tree. Pereira et al. [5] take this idea a step further by representing each machine directly 
as a transition graph. Given the success that Pereira et al. had with this representation, it 
was decided to use the same representation in this study.  In the previous three studies 
each Turing machine was of a fixed size. In order to allow for more of the search space to 
be explored it was decided that Turing machines would be of variable size in this study.  
However, an upper bound is set on the Turing machine size. 

Each machine has access to two tapes, an input tape and an output tape. It is assumed 
that the input string is on the input tape and the read-write head is at the first character of 
this string. The tape is infinite on both sides and the cells not occupied by the input 
string contain the blank symbol (B). Note that the input tape is a read-only tape. In the 
case of Turing machine transducers, the output string must be written to the output tape. 
The system caters for two types of transducers. In the first type all contiguous non-blank 
output on the tape is considered to be the output of the machine and the read-write head 
does not necessarily point at the first character of the output string.  In the second type 
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the read-write head is positioned at the beginning of the output on the output tape and 
the first blank encountered from this point onward is treated as the end of string marker.   
Initially the output tape contains blank symbols and the read-write head is pointing at 
any cell.  The read-write head can move left (L), right (R), or remain where it is (S).  
Figure 1 illustrates an example of an input and output tape before processing.  The read-
write head is represented as an arrow.  The input string is aba. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Input and output tapes for a Turing machine 

An example of a Turing machine transducer is illustrated in Figure 2 and a Turing 
machine acceptor is depicted in Figure 3. Note that each machine has a single HALT 
state. Each transition is defined as a two-tuple. The first component of the transition 
specifies the symbol that must be read from the input tape and the action of the read-write 
head for this tape. The second component of the transition describes the character that 
must be read from the output tape, the character to be written to the output tape and the 
action of the read-write head.  The second component does not have to write a character 
to the output tape in which case the second argument is not specified.  For example, b/R, 
B/a/R means that a b must be read from the input tape and the read-write head must move 
right; a blank is read from the output tape, an a is written to the output tape overwriting 
the blank and the read-write head is moved right for this tape.  In order for a transition to 
be executed the character to be read in the first component must be on the input tape and 
the character to be read in the second component must be on the output tape. 

HALT1

B/R, B/B/R
b/R, B/a/R
a/R, B/b/R

 

HALT

1

b/S, B/L
a/R, B/a/R

2

B/S, B/S

b/R, B/a/R

 

Fig. 2. Turing Machine Transducer 

 

Fig. 3. Turing Machine Acceptor 
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Figure 4 illustrates how the input string aba is processed by the Turing machine in 
Figure 2. The first transition executed is a/R, B/b/R as there is an a on the input tape and a 
blank on the output tape. The read-write head on the input tape is now at the character b 
and the output tape read-write head is pointing at a blank. Thus, the next transition per-
formed is b/R, B/a/R. This is followed by the application of the transition a/R, B/b/R 
again. Finally, the read-write heads on the input and output tapes are pointing at blanks 
which results in the transition B/R,B/B/R being executed causing the Turing machine to 
halt.  

The process involved in creating a Turing machine is depicted in Figure 5. The first 
node created automatically becomes the start state. The arity of the node is randomly 
chosen to be in the range of 1 and the maximum number of transitions permitted. The 
start state cannot be a HALT state. Nodes representing successive states are randomly 
chosen to be a HALT state or not. Transitions connecting a node to each of its children 
are created by randomly choosing elements from the input alphabet, tape alphabet (in  
the case of the second component) and the read-write head actions. In the example in 
Figure 5 the third child of the start state has been randomly chosen to be the HALT state.  
If a HALT has not been chosen before the maximum number of nodes permitted is 
reached, the last state is designated as a HALT state. 
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Fig. 4. Processing of the input string aba using the Turing machine transducer in Figure 2 

 
Each element of the initial population is created in this way. This population is re-

fined on successive iterations of the evolutionary algorithm. The following section 
describes methods used to calculate the fitness of an individual and select the parents 
of each generation.  
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1

1.  Create the start node

2.  Insert a transition to the first child of the first node

1

a/R, B/b/R

3.  Insert a transition to the second child of the first node

1

a/R, B/b/R
b/R, B/a/R

1

4.  Insert a transition to the third child of the first node

1

a/R, B/b/R
b/R, B/a/R

HALT1 B/R, B/B/R

 

Fig. 5. Process of creating an element of the population 

2.2   Fitness Calculation and Selection 

The fitness of each element of the population is calculated by applying the individual to a 
set of fitness cases. The fitness cases for Turing machine transducers are comprised of 
pairs of input and the corresponding output strings. In the case of Turing machine accep-
tors the fitness cases are positive and negative sentences of the language, i.e. elements 
and non-elements of the language respectively.  

Each input string is processed using the particular Turing machine and the output pro-
duced is compared to that of the corresponding target output. As in the study conducted 
by Pereira et al. [5] a limit is set on the number of transitions performed by a machine so 
as to prevent non-halting machines from running infinitely.  If this limit is reached the 
machine is halted and the output at that point is compared to the target output for that 
fitness case. The machine is also halted if it reaches a HALT state or the current state does 
not have a transition for the combination of the characters currently being pointed to on 
the input and output tapes.  An input string is accepted by an acceptor if the machine 
stops in a HALT state upon processing the entire input string.  In all other cases the string 
is rejected. 
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The fitness of a Turing machine transducer is the number of fitness cases for which 
the machine produces the same output as that specified in the fitness case while the fit-
ness of an acceptor is the number of sentences correctly classified as belonging or not 
belonging to the language.  If the fitness of Turing machine is equal to the number of 
fitness cases, this machine is reported as a solution.  These fitness values are used by the 
selection method to choose the parents of each generation.  In this study tournament 
selection is used for this purpose.  Selection is with replacement. 

2.3   Genetic Operators 

The reproduction, mutation and crossover operators are used to create the next genera-
tion. The parents chosen, using tournament selection, are passed to the genetic operators. 

The mutation operator randomly chooses a mutation point. The sub-graph rooted at 
this position is removed. A newly created sub-graph is inserted at this point. The cross-
over operator is similar to the graph-crossover operator implemented by Pereira et al. [5].  
Crossover points are randomly selected in each of the parents. The sub-graphs rooted at 
these points are swapped and the states are re-numbered in each of the offspring.  HALT 
states cannot be chosen as crossover points. 

The destructive effects of genetic operators often result in offspring with worse fitness 
than there parents and can lead to the GP system converging to an area of the search 
space in which a solution cannot be found [1]. Thus, if the offspring produced by muta-
tion and crossover are not at as fit as the parents the operation is repeated until offspring 
with fitness at least as good as the parents are produced. This results in the algorithm 
converging quicker but could result in the system converging to local optima. To prevent 
this, a limit is set on the number of attempts at producing fitter offspring. If this limit is 
exceeded the current offspring is/are returned.  Note that as a result of this the number of 
fitness evaluations cannot be directly determined from the number of generations used. 

The following section describes the experimental setup used to test the genetic pro-
gramming system on a set of ten Turing machine problems. 

3   Experimental Setup 

The GP system was tested on the five transducer and five acceptor problems listed in 
Table 1. 

The GP system was implemented in Java (JDK version 1.5.0_06) and simulations 
were run on a Windows based 1.86 GHz PC with 1GB of RAM.  Due to the random-
ness associated with evolutionary algorithms (not to prove statistical significance) ten 
runs, each using a different seed, were performed for each problem.  Ten seeds were 
generated prior to the simulations and these ten seeds are used for all the problems.  In 
order to prevent premature convergence of the system due to selection noise, multiple 
iterations were performed per seed. A maximum of ten iterations is permitted per seed 
for all problems.  If a solution is found before the ten iteration limit is reached the proc-
ess is terminated, the solution is reported and the run is counted as a successful run. 
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Table 1. Turing machine problems 
 

Problem Description 
T1 A Turing machine to perform unary addition of two unary integers separated 

by a zero, e.g. if the input is 110111 the output string is 111110 
T2 A  Turing machine that takes in a unary integer n and outputs 2n, e.g. if the 

input string is 111 the output is 111111 
T3 A Turing machine that takes a unary integer n as input and outputs 2n+1, 

e.g. if the input string is 11 the output is 11111 
T4 A Turing machine that takes two unary integers separated by zero as input 

and outputs the greater of the two integers, e.g. if the input is 1101 the output 
should be 11 

T5 A Turing machine to perform unary subtraction of two unary integers sepa-
rated by a zero.  If the second unary integer is larger or equal to the first 
unary integer a zero is output otherwise the difference, as a unary integer, is 
output, e.g. if the input string is 1111011 the output string is 111 

A1 L={anbn: n>=1}, Σ={a,b} 
A2 L={awb: w є {a,b} }, Σ={a,b} 
A3 L={anbnan: n>=1}, Σ={a,b} 
A4 L={ anbncn: n>=1}, Σ={a,b,c} 
A5 L={anbn+1: n>=1}, Σ={a,b} 

 
Values for the GP parameters are listed in Table 2. These values were obtained em-

pirically by performing trail runs of the system. The maximum size of machines during 
initial population generation is seven while the maximum size of offspring produced on 
successive generations is fifteen. If a genetic operator produces offspring exceeding this 
limit it is reapplied until an offspring of the correct size is produced.  The evolutionary 
algorithm terminates if either a solution is found or the maximum number of generations 
has been completed.  A Turing machine transducer is regarded as a solution if it produces 
the target output for all the fitness cases and a Turing machine acceptor is a solution if it 
correctly classifies all fitness cases. 

 
Table 2. GP parameter values 

 
Parameter Value 

Population size 2000 
Maximum number of generations 100 
Tournament size 5 
Initial number of nodes 7 
Maximum number of nodes 15 
Application rates Crossover: 50%   Mutation: 40%  Reproduction: 10% 
Termination criteria A solution is found or the maximum number of gen-

erations has been reached 

 
A different number of fitness cases was used for each problem. These values are listed 

in Table 3 and were also obtained empirically by performing trial runs. The trial runs 
were used to identify an approximate number of fitness cases needed to sufficiently rep-
resent each problem domain so that the solutions evolved are not brittle.  Thus, the num-
ber of fitness cases differs from one problem to the next. 
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Table 3. Number of fitness cases used for each problem 
 

Problem Number of Fitness Cases 
T1 10 
T2 3 
T3 4 
T4 22 
T5 11 
A1 405 
A2 92 
A3 106 
A4 186 
A5 276 

 
Tanomaru [7] states that the lower success rates for the acceptors in his study could 

possibly be attributed to the low number of fitness cases used. Forty fitness cases were 
used for A1, A2 and A3 in the Tanomaru study. Thus, we have ensured that sufficient 
fitness cases have been provided for all acceptor problems in this study. 

4   Results and Discussion 

The GP system evolved general solutions, i.e. the solutions were not brittle and gen-
eralized well for the particular problem, to all ten of the problems listed in Table 1.  
An example of one of the transducers evolved for T1 is illustrated in Figure 8.    

 
 

 
 
 
 
 
 
 
 
 

Fig. 6. One of the transducers evolved for T1 

 
This transducer performs unary addition given an input string consisting of two unary 

integers separated by a zero. For example, if 11011 is the input string the transition 1/R, 
B/1/R is the only transition satisfied at state 1 as the read-write head on the input tape is 
pointing at a 1 and the read-write head on the output tape is pointing at a B, i.e. a blank.  
This transition is applied twice at state 1. The next transition applied is 0/R, B/B/S.  A 0 is 
read on the input tape and a blank on the output tape.  The read-write head on the output 
tape remains in the same position while the read-write head on the input tape moves right 
and is now pointing at a 1.  The transition 1/R, B/1/R is applied twice again resulting in 
the remaining 1’s being written to the output tape and the read-write heads on both the 

1 HALT

0/R,B/B/S
1/R,B/1/R

1/L,1/S

0/S,1/B/L
B/R, B/0/R
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tapes pointing at blanks.  This satisfies the transition B/R, B/0/R which writes a 0 to the 
output tape and halts the machine. 

Note that the transition 1/L, 1/S from state 1 to itself and the transition 0/S, 1/B/L from 
the start state to the HALT state will never be executed. We refer to these as structural 
redundancies. A number of the evolved solutions for the ten problems were found to 
contain such redundant transitions. These redundancies increase the structural complexity 
of the evolved solutions and may indirectly increase processing time. Future work will 
examine these redundancies and the possible elimination of them in more detail. 

Figure 9 depicts one of the acceptors induced by the system for A1. The language ac-
cepts all strings of the form anbn with n>=1. Suppose that the input string is ab. The tran-
sition satisfied at the start state is a/R, B/b/S as the read-write head on the input string is 
pointing at the character a and the read-write head on the output string is pointing at a 
blank. Executing this transition results in the machine being moved to state 2 with the 
read-write heads on both the input and output tapes pointing at the character b. Thus, the 
transition b/R, b/L is executed. This results in the machine remaining at state 2 and both 
the read-write heads pointing at blanks. This satisfies the transition B/L, B/B/L at state 2 
which causes the machine to halt. The machine has stopped at a HALT state, thus the 
string ab is accepted.   

Alternatively, consider the input string aab which does not belong to the language.  
Again at the start state the transition a/R, B/b/S is executed resulting in the machine mov-
ing to state 2 with the second a being read in on the input tape and the read-write head of 
the output tape pointing to the b that has just been written to it. The transition a/S, b/R is 
then executed. The read-write on the input tape remains at the a and the read-write head 
on the output tape is now pointing at a blank. This transition results in the machine mov-
ing back to state 1 and the transition  a/R, B/b/S being executed again followed by the 
transition b/R, b/L at state 2. The read-write head of the input tape is pointing at a blank 
and the read-write head of the output tape is pointing at the character b. There is no tran-
sition at state 2 which satisfies this combination, thus the machine halts. The machine has 
halted in a state that is not a HALT state and the input string is therefore rejected. 

 
 

 

 
 
 
 
 
 
 
 

 

Fig. 7. An example of a solution evolved for A1 
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The success rates for the ten problems are listed in Table 4. The success rate is the 
percentage of the ten runs performed that produced a general solution. As in the study 
conducted by Tanomaru [7] the system did not experience any difficulties in evolving 
Turing machine transducers and a success rate of 100% was obtained for all five trans-
ducer problems. The problem of inducing acceptors is more complicated as the Turing 
machine has to accept a set of strings while at the same time reject all other string combi-
nations for the given alphabet. In the case of a transducer the machine has to produce a 
single output string corresponding to the input string.  Thus, the search space is larger for 
acceptors than transducers.  For the acceptor problems A1, A2 and A5 the success rates 
are a 100% or close to 100%.  The failure of the system to find a solution on one iteration 
for A1 and A5 can possibly be attributed to selection noise. 

The success rates for A3 and A4 are much lower compared to that of the other  
acceptor problems. These problems are slightly more complicated than the other ac-
ceptor problems and have larger search spaces. Future work will investigate the low 
success rates in more detail. It is suspected that the system is not exploring a wide 
enough region of the search space. The use of similarity indexes will be introduced 
during initial population generation to ensure that the initial population represents 
more of the search space. The effects of the genetic operators will also be studied in 
detail and refined accordingly if necessary. 

Table 4. Success rates for the ten Turing machine problems 

Problem Success Rate 
T1 100% 
T2 100% 
T3 100% 
T4 100% 
T5 100% 
A1 90% 
A2 100% 
A3 10% 
A4 10% 
A5 90% 

The results obtained by the system for the acceptor problems, given the particular pa-
rameter values used, are comparative to that obtained in the Tanomaru study. The success 
rates obtained by the Tanomaru system are listed in Table 5. Note that the number of runs 
performed per problem in the Tanomaru study is a hundred while ten runs were per-
formed in this study. The success rate for each problem in Table 5 is the percentage of 
the hundred runs that have produced solutions for the problem. The results obtained in 
this study appear to be an improvement over the previous results obtained for Turing 
machine acceptors, however a direct comparison is difficult as the Tanomaru system 
used population shifting while the system presented in the paper does not. Furthermore, 
the system presented in the paper uses multiple iterations to escape local optima caused 
by selection variance and the genetic operators implemented incorporate a form of hill-
climbing as a preventative measure against the destructive effects of crossover and muta-
tion.  This improvement needs to be studied further to draw more concrete conclusions. 



360 A. Naidoo and N. Pillay 

 

Table 5. Success rates for acceptor problems for the Tanomaru study 

Problem Without population shifting With population shifting 
A1 9% 82% 
A2 41% 62% 
A3 1% 38% 

5   Conclusion and Future Work 

The study presented in this paper forms part of a larger initiative aimed at examining 
the possibility of evolving a Turing machine that produces a solution to a problem, 
rather than evolving the solution algorithm itself.  This study extends the work carried 
out by Tanomaru [7] to evaluate evolutionary algorithms as a means of inducing solu-
tions to basic transducer and acceptor Turing machine problems. The study presented 
in this paper has revealed that evolutionary algorithms are effective at generating 
Turing machine transducers. The GP system implemented obtained a 100% success 
rate for all five transducer problems. The system was also able to evolve general solu-
tions to all five acceptor problems. The success rates obtained for two of the more 
complicated acceptor problems was not high.  We suspect that this can be attributed to 
not enough of the search space being explored during initial population generation 
and by the genetic operators. Future extensions of this project will examine this fur-
ther.  Some of the solutions evolved by the system were found to contain structural 
redundancies which could indirectly increase the processing time of the Turing ma-
chine. Future work will also investigate the existence and possible removal of such 
redundancies. 
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Abstract. Adoptingameta-GrammarwithGrammaticalEvolution(GE)
allows GE to evolve the grammar that it uses to specify the construction of
a syntactically correct solution. The ability to evolve a grammar in the con-
text of GE means that useful bias towards specific structures and solutions
can be evolved during a run. This can lead to improved performance over
the standard static grammar in terms of adapting to a dynamic environ-
ment and improved scalability to larger problem instances. This approach
allows the evolution of modularity and reuse both on structural and sym-
bol levels resulting in a compression of the representation of a solution. In
this paper an analysis of altering the rate of sampling of the evolved solution
grammars isundertaken. It is foundthat themajorityofevolutionary search
is currently focused on the generation of the solution grammars to such an
extent that the candidate solutions are often hard-coded into them making
the solution chromosome effectively redundant. This opens the door to fu-
ture work in which we can explore how the search can be better balanced
between the meta and solution grammars.

1 Introduction

This paper aims to investigate if the performance of a search using meta-
grammars and Grammatical Evolution (GE) can be improved if the grammars
sampled by the meta-grammar are explored more thoroughly. The ability to
evolve a grammar in the context of GE means that useful bias towards specific
structures and solutions can be evolved during a run. This can lead to improved
performance over the standard static grammar both in terms of the ability to
adapt to a dynamic environment and scalability [1,8]. Meta-grammar GE adopts
two chromosomes, one is used to map the meta-grammar to a solution grammar.
The second chromosome is used to map the solution grammar to a candidate so-
lution. Earlier studies in meta-grammar GE have used the same rate of search on
both of these chromosomes by adopting the same rate of mutation and crossover
on each. In this study, two approaches to altering the rate of exploration of the so-
lution grammars are examined. The first adopts implicit sampling using different
rates of mutation on the evolved solution grammar versus the solutions sampled
from the evolved solution grammar. The second approach explicitly generates
more than one sample from each solution grammar. The paper is structured as

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 362–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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follows. First an overview of the meta-grammar approach to GE is presented and
earlier research in this area is exposed in Sec. 2. Sec. 3 describes the two exper-
iments undertaken and results obtained. In light of the results further analysis
is described in Sec. 4, before finishing the paper in Sec. 5 with Conclusions and
Future Work.

2 Meta Grammars in Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study is
based is the Grammatical Evolution by Grammatical Evolution algorithm [1],
Which is based on the Grammatical Evolution algorithm [2, 3]. This is a meta
grammar Evolutionary Algorithm in which the input grammar is used to spec-
ify the construction of another syntactically correct grammar. The generated
grammar is then used in a mapping process to construct a solution.

In order to allow evolution of a grammar (Grammatical Evolution by Gram-
matical Evolution (GE)2), we must provide a grammar to specify the form a
grammar can take. See [2, 4] for further examples of what can be represented
with grammars and [5] for an alternative approach to grammar evolution. By
allowing an Evolutionary Algorithm to adapt its representation (here through
the evolution of the grammar) it is possible to automatically incorporate biases
into the search process. In this case we can allow the meta grammar Genetic
Algorithm to evolve biases towards different useful code blocks of varying sizes.

In (GE)2 the meta grammar dictates the construction of the solution gram-
mar. In this study two separate, variable-length, genotypic binary chromosomes
were used, the first chromosome to generate the solution grammar from the meta
grammar and the second chromosome generates the solution itself. Crossover op-
erates between homologous chromosomes, that is, the solution grammar chromo-
some from the first parent recombines with the solution grammar chromosome
from the second parent, with the same occurring for the solution chromosomes.
For evolution to be successful it must co-evolve both the meta grammar and
the structure of solutions based on the evolved meta grammar, and as such the
search space is larger than in standard GE. In Fig. 1 a meta grammar GE is
shown.

+

Meta−grammar Chromosome Universal
Grammar

Solution
Grammar Solution Chromosome

Candidate
Solution

+

Fig. 1. An overview of the meta-grammar approach to GE
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An example of a meta-grammar that could be used to evolve grammars for
generating 8 bit binary strings is given below.

<g> ::= "<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk4> ::= <bbk4t> | <bbk4t> "|" <bbk4>
<bbk2> ::= <bbk2t> | <bbk2t> "|" <bbk2>
<bbk1> ::= <bbk1t> | <bbk1t> "|" <bbk1>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"

| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>" | 1 | 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::= 1 | 0

An example bit string grammar that could be sampled from the above meta-
grammar follows below. In this example, there are five possible forms that a
<bitstring> can take on, with two possible choices for blocks of sizes 4, 2 and
1. The rule for generating a <bit> has four possible outcomes with a clear bias
towards a <bit> becoming a 1 with a probability of 0.75.

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>
| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>

<bbk4> ::= <bit>11<bit> | 000<bit>
<bbk2> ::= 11 | 00 | <bit>1
<bbk1> ::= 0 | 0
<bit> ::= 1 | 0 | 1 | 1

2.1 Earlier Research

There have been a number of studies of a meta-grammar approach to GE [1,6,7,
8,9]. In each of these the same rate of evolutionary search was adopted on both
the meta-grammar and solution chromosomes through the adoption of the same
rates of mutation and crossover. The original study [1] investigated the feasibility
of this approach and demonstrated its effectiveness in dynamic environments. In
the mGGA [6] the meta-grammar approach was shown as an effective method to
perform as an alternative binary string Genetic Algorithm through the provision
of a mechanism to achieve modularity. A follow-up study demonstrated that the
mGGA had an improved ability to scale to harder problem instances over the
modular GA [10]. An observation of some of the solutions and solution grammars
evolved by meta-grammar GE has exposed a tendency of generating grammars
that did not have the possibility to produce many different strings [6, 9].

3 Experiments and Results

In order to test the effects of more search on the solution grammar the following
experiment was setup.
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Checkerboard. In this problem a pattern of colours or states is imposed upon
a two dimensional grid called the Checkerboard, introduced in [10]. There are 2
possible states adopted for each square on the grid, i.e., black or white, which
here are represented as bit values 1 and 0 respectively. Fitness is simply measured
by summing the number of squares that are in an incorrect state. Fig.2 which
illustrates scaled-up versions of a pattern. The instances will be referred to by
the total number of bits needed to describe the board. The board consists of 8
squares of consecutive zeros or ones. In this paper the board sizes used where
Cb32, Cb72, Cb128, Cb200, Cb288.

Fig. 2. Checkerboard patterns for Cb32, Cb72 and Cb128

Grammar. To solve the Checkerboard a meta grammar was created. To allow
the creation of multiple blocks of different sizes the following grammar could be
used. Below a is an example of a grammar for Cb32.

<g> ::= "<bitstring> ::=" <reps>
"<bbk16> ::=" <bbk16>
"<bbk8> ::=" <bbk8>
"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk16> ::= <bbk16t> | <bbk16t> "|" <bbk16>
<bbk8> ::= <bbk8t> | <bbk8t> "|" <bbk8>
<bbk4> ::= <bbk4t> | <bbk4t> "|" <bbk4>
<bbk2> ::= <bbk2t> | <bbk2t> "|" <bbk2>
<bbk1> ::= <bbk1t> | <bbk1t> "|" <bbk1>
<bbk16t> ::= <bit><bit><bit><bit><bit><bit><bit><bit><bit><bit><bit><bit><bit><bit><bit><bit>
<bbk8t> ::= <bit><bit><bit><bit><bit><bit><bit><bit>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk16><bbk16>" | "<bbk8><bbk8><bbk8><bbk8>"

| "<bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4>"
| "<bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2>

<bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>

<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>" | 1 | 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::= 1 | 0

When ssi, the number of consecutive 1s or 0s, is a power of 3 a building block
is created for 2j where j is 0, 1, . . . , n where n = log2(N/2) and N is the total
number of squares on the checkerboard. Otherwise ssi the following is applied.
For Cb72 the blocks are 32, 12, 6, 3, 1, for Cb200 they are 100, 20, 10, 5, 1 and for
Cb288 they are 144, 24, 12, 6, 3, 1.
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3.1 Experiment 1 - Different Mutation Rates

The first experiment tests if there is any improvement in the performance of GE
by having different mutation rates on the two chromosomes. The argument can
be made that if the meta grammar should evolve at a slower pace then further
exploration of the solution grammar would be possible, thus creating a version
of a meta grammar local search.

Hypothesis. The performance is measured as the average number of fitness
evaluations required for 30 runs to solve an instance of the Checkerboard. μ is
the performance with the mutation being the same for both chromosomes. The
performance for the chromosome having different mutation rates is referred to
as μ0. For each instance the following hypothesis is stated:

H0: Equal mutation rate on both chromosomes has the same performance as or
better performance then a lower mutation rate on the first chromosome i.e.
μ ≤ μ0

H1: Equal mutation rates have worse performance compared to a low mutation
rate on the first chromosome i.e. μ > μ0

α: The significance level of the test is 0.05.

Table 1. Parameters for the GE algorithm

Fitness function Checkerboard
Checkerboard size 32, 72, 128, 200, 288
Fixed chromosome size 90, 210, 300, 580, 800
Initialisation Random
Selection operation Tournament
Tournament size 3
Replacement Rank replacement
Max wraps 1
Generations 800
Crossover probability meta 0.9
Crossover probability solution 0.9
Mutation probability meta 0.001
Mutation probability solution 0.01

Setup. The settings in Table 1 were adopted.
The population size was determined by finding a value within 10% of where

30 runs are successful for a maximum of 800 iterations. Both chromosomes had
the same initial length, roughly three times the problem size. The chromosomes
were variable-length vectors of integers (2byte integers). Rank replacement is
adopted with a constant population size, where the new children are pooled
with the current population, ranked, and the worst individuals are removed.
One-point crossover where the same crossover point is used for both parents and
integer mutation where a new value was randomly chosen are used.
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3.2 Results

The results for the average number of fitness evaluations are shown in Fig 3.
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Fig. 3. On the x-axis are the problem instances, indicated by the total number of bits,
and on the y-axis the number of fitness evaluations (log-scale)

After performing a right tailed t-test it was shown that there is a significant
decrease in the average number of fitness evaluations required when using a lower
meta chromosome mutation rate for the problem instances Cb32 and Cb128. For
these instances it is possible to reject H0, although it is not possible to draw this
conclusion for all the problems. Fig. 4 shows fitness progression over time.
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Fig. 4. Left Cb128, right Cb200. Log scale on x-axis and normalized y-axis. The devel-
opment of best fitness during the fitness evaluations.

3.3 Experiment 2 - Sampling Each Solution Grammar n Times

In this experiment an explicit increase in sampling of the solution grammars is
achieved by randomly mutating the solution chromosome, which is used to con-
struct sentences from the evolved solution grammar. N samples of each solution
grammar are generated, where N varies between 1 and 60, and the fitness of
each evaluated.
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Hypothesis. The performance is measured as the average number of fitness
evaluations required for 30 runs to solve an instance of the Checkerboard. μ is
the performance with only one sample from each chromosome. The performance
of the n samples from the generated grammar is referred to as μ1U−nS , where n
is 2, 5, 10, 20, 60. The false discovery rate(FDR) [11] is calculated. The p-values
are derived from t-tests between μ and μ1U−nS . For each instance the following
hypothesis is stated:

H0: None of the changes in sampling rate of the generated grammar gains sig-
nificant performance to using only one sample in any of the experiments,
i.e. μ1U−1S ≤ μ1U−2S and μ1U−1S ≤ μ1U−5S and μ1U−1S ≤ μ1U−10S and
μ1U−1S ≤ μ1U−20S and μ1U−1S ≤ μ1U−60S .

H1: At least one of the increases in sampling of the generated grammar gains
significant performance for at least one experiment, i.e. μ1U−1S > μ1U−2S or
μ1U−1S > μ1U−5S or μ1U−1S > μ1U−10S or μ1U−1S > μ1U−20S or μ1U−1S >
μ1U−60S .

α: The significance level of the FDR is 0.05.

Setup. The same settings are adopted as given in Table 1 with the exception
that the same rate of mutation (0.01) is arbitrarily chosen and used on both the
meta-grammar and solution-grammar chromosomes.

n individuals of each Universal Grammar. The following algorithm is
performed after a random initialization. N is the population size.

Sample. Mutate the solution chromosome with a probability of 0.01 for each
individual to create n-samples. Rank the samples amongst themselves. Add
the best individual to the population.

Select. Select N individuals using tournament selection.
Crossover. Crossover the N individuals to create N new individuals.
Mutate. Mutate the new individuals.
Replace. Add the new individuals to the old individuals. Rank all and remove

the N worst individuals.

3.4 Results

The results for the average number of fitness evaluations are shown in Fig 5.
After a right tailed t-test on the fitness evaluations to calculate p-values and
then a FDR for each checkerboard size. The FDR gave only one significant test
for the decrease in the number of fitness evaluations when sampling a meta
grammar for the cb32.

In Fig. 6 the progression of fitness during is shown. The shifting of the curves
is due to the increase in the fitness evaluations required to solve larger instances.
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4 Discussion

Results for the rate of mutation experiments in Sec. 3.1 might indicate some-
thing. On three out of the five instances there is no difference in performance.
It would appear that adopting a slower rate of evolution, through a lower mu-
tation rate, on the meta-grammar chromosome can improve the performance of
meta-grammar GE on the problems investigated.

The results of experiment two presented in Sec. 3.3 were initially surprising
to us as we expected that an explicit increase in sampling of the evolved solution
grammars would yield performance gains, but this was shown not to be the case.
However if the solution grammars are considered in number of solutions they
represent then there is not more search anyway. It would appear that there was
no significant overall gain in performance by changing the way the algorithms
explore the grammar generated by the meta grammar. What this might tell us
is that most of the search is performed on the first chromosome. It has been
observed in earlier studies [6, 9] that the evolved solution grammars tended to
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provide little choice in terms of the number of possible solutions they represented.
In many cases the solutions were hard-coded into these evolved grammars, and
we see similar results in this study. Below is an example of a Cb32 grammar that
solves the problem when using equal mutation rates on the chromosomes.

<bitstring> ::= <bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4>
<bbk4> ::= 1 1 0 0 | 0 0 <bit> 1
<bit> ::= 1

Example of a Cb32 grammar that solves the problem when taking 10 samples
from the grammar.

<bitstring> ::= <bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4><bbk4> | <bbk16><bbk16>
| <bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2>

<bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2><bbk2>
<bbk16> ::= 1 0 1 1 1 0 <bit> 1 <bit> 1 <bit> <bit> 0 0 1 1

| 1 <bit> 0 0 <bit> 1 0 <bit> 0 <bit> 0 <bit> <bit> <bit> <bit> 1
<bbk4> ::= <bit> 1 0 0 | 0 0 <bit> 1 | 1 0 <bit> 0
<bbk2> ::= <bit> 0 | 0 <bit> | 0 <bit>
<bit> ::= 1

These results show that the blocks of useful code evolved into the solution gram-
mar sometimes match the pattern completely. Given this evidence and the results
of the experiments conducted in this study, a more detailed analysis of the the
meta-grammar approach was required. In particular we wish to better under-
stand the sizes of the evolved solution grammars and the relative amount of
search being undertaken on the meta-grammar and solution grammar chromo-
somes.

4.1 Individual Inspection

The individual solutions generated were scrutinized in order to further investi-
gate the suggestion that most search is performed on the first chromosome.

Codons Used. The average length and fraction of codons used at the end of
each run are shown in Fig. 7. The number of codons used in the solution grammar
chromosome does not increase as much as the meta grammar chromosome when
the problems sizes increase, and there are a lot more expressed codons on the
meta-grammar chromosome than on the solution grammar chromosome. When
we compare the chromosomes lengths and expressed lengths for the mutation
rate experiment no significant difference is observed. This analysis would suggest
performance could be increased by using a different initialization operation that
balanced the use of the two chromosomes.

Possible Output Strings from the Solution Grammar. The solutions
grammars seem to have quite few paths through them. A path describes a se-
quence of productions which creates an output string. Combining the paths with
the number of codons used gives the set of non-unique possible output strings.
These are shown in Fig. 8 and 9. It can be seen that the possible output strings
of the grammars are not infinite and sometimes as low as 4.
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It is therefore clear that the evolved solution grammars do not represent a large
proportion of the overall search space as covered by the original meta-grammar,
and the number of solutions represented tends to be very small. Despite this the
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performance of meta-grammar GE is impressive, and this analysis provides us a
guide future research to improve the performance of meta-grammar GE.

5 Conclusion and Future Work

An analysis of altering the rate of sampling of the evolved solution grammars
in meta grammar GE is undertaken. Two approaches were examined, the first
adopts implicit sampling using different rates of mutation on the evolved solution
grammar versus the solutions sampled from the evolved solution grammar. The
second approach explicitly generates more than one sample from each solution
grammar in a kind of local-search by randomly mutating the solution chromo-
some, which is used to construct sentences from the evolved solution grammar.
On the problem instances examined neither approach was found to conclusively
improve the performance of the meta-grammar approach to GE in terms of the
number of fitness evaluations to find a solution. It is found that the majority
of the evolutionary search is currently focused on the generation of the solution
grammars to such an extent that the candidate solutions are often hard-coded
into them making the solution chromosome effectively redundant. This opens
the door to future work in which we can explore how the search can be better
balanced between the meta and solution grammars, and the possibility of further
performance gains. Further experimentation is needed to see if the same effects
occur on other problem types e.g. Trap functions, dynamic functions. A study
of the initialisation will be undertaken, and of measures adopted to understand
the form of the evolved blocks of code in the evolving solutions grammars.
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