Michael O’Neill Leonardo Vanneschi
Steven Gustafson

Anna Isabel Esparcia Alcazar

Ivanoe De Falco Antonio Della Cioppa
Ernesto Tarantino (Eds.)

Genetic
Programming

11th European Conference, EuroGP 2008
Naples, Italy, March 2008
Proceedings

LNCS 4971

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4971

Michael O’Neill Leonardo Vanneschi
Steven Gustafson

Anna Isabel Esparcia Alcazar

Ivanoe De Falco Antonio Della Cioppa
Ernesto Tarantino (Eds.)

Genetic
Programming

1 1th European Conference, EuroGP 2008
Naples, Italy, March 26-28, 2008
Proceedings

@ Springer

Volume Editors

Michael O’Neill
University College Dublin, Ireland
E-mail: m.oneill @ucd.ie

Leonardo Vanneschi
Universita degli Studi di Milano-Bicocca, Italy
E-mail: vanneschi @disco.unimib.it

Steven Gustafson
GE Global Research, Niskayuna, NY, USA
E-mail: steven.gustafson @research.ge.com

Anna Isabel Esparcia Alcazar
Instituto Tecnoldgico de Informatica, Valencia, Spain
E-mail: aesparcia@iti.upv.es

Ivanoe De Falco

Ernesto Tarantino

ICAR-CNR, Naples, Italy

E-mail: {evostar, ernesto.tarantino } @na.icar.cnr.it

Antonio Della Cioppa
University of Salerno, Italy
E-mail: adellacioppa@unisa.it

Cover illustration: "Ammonite II" by Dennis H. Miller (2004-2005)
www.dennismiller.neu.edu

Library of Congress Control Number: 2008922954

CR Subject Classification (1998): D.1, F.1, E2,1.5,1.2,J.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78670-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78670-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12242450 06/3180 543210

Preface

The 11th European Conference on Genetic Programming, EuroGP 2008, took
place in Naples, Italy from 26 to 28 March in the University of Naples Congress
Centre with spectacular views over the Gulf of Naples. This volume contains the
papers for the 21 oral presentations and 10 posters that were presented during
this time. A diverse array of topics were covered reflecting the current state
of research in the field of Genetic Programming, including the latest work on
representations, theory, operators and analysis, evolvable hardware, agents and
numerous applications.

A rigorous, double-blind peer review process was employed, with each sub-
mission reviewed by at least three members of the international Program Com-
mittee. In total 61 papers were submitted this year, making an acceptance rate of
34% for full papers, and an overall acceptance rate of 51% including posters. Sub-
mission of papers and the reviewing process were greatly assisted by the use of
the MyReview management software originally developed by Philippe Rigaux,
Bertrand Chardon and other colleagues from the Université Paris-Sud Orsay,
France. We are especially grateful to Marc Schoenauer from INRIA, France for
managing this system. Reviewers were asked to nominate keywords specifying
their area of expertise, and these keywords were matched to those selected by the
authors of the submitted papers with the assistance of the optimal assignment
feature of the conference management software.

EuroGP 2008 was part of the larger Evo* 2008, which included three other co-
located events, namely EvoCOP 2008, EvoBIO 2008, and EvoWorkshops 2008.
We would like to take this opportunity to thank the many people who make
EuroGP and Evo* a great success. Without the authors we would not have the
high-quality submissions and presentations that make EuroGP such an interest-
ing event. We extend our thanks to the Program Committee for their thorough,
timely and constructive reviews that ensure the continued quality of EuroGP.
We are indebted to the local organisers Antonio Della Cioppa, Ernesto Tarantino
and Giuseppe Trautteur led by Ivanoe De Falco for their smooth organisation
of the conference, in a spectacular location with many greatly-enjoyed social ac-
tivities. We wish to wholeheartedly thank Professor Guido Trombetti, rector of
the University of Naples “Federico II” and Professor Giuseppe Trautteur of the
Department of Physical Sciences, who, with their extraordinary and invaluable
support, made this event possible. Furthermore, we wish to express our most sin-
cere gratitude to Naples City Council for supporting the local organisation and
granting their patronage to the event. We also thank the Instituto Technoldgico
de Informatica, Valencia, Spain for hosting the Evo* website.

To our internationally renowned invited keynote speakers, Professor Emeritus
Hans-Paul Schwefel (Dortmund University of Technology, Germany), and Dr.

VI Preface

Stefano Nolfi (Institute of Cognitive Science and Technologies, CNR, Italy), we
express our sincere gratitude.

Last and certainly not least, we especially thank Jennifer Willies and the
Centre for Emergent Computing at Napier University. Without their continued
dedication and coordination, this event would not be possible.

March 2008 Michael O’Neill
Leonardo Vanneschi

Steven Gustafson

Anna I. Esparcia Alcazar

Ivanoe De Falco

Antonio Della Cioppa

Ernesto Tarantino

Organization

Administrative details were handled by Jennifer Willies, Centre for Emergent
Computing at Napier University, Scotland, UK.

Organizing Committee

Program Co-chairs Michael O’Neill (University College Dublin, Ireland)
Leonardo Vanneschi (Universita degli Studi di
Milano-Bicocca, Italy)

Publication Chair Steven Gustafson (GE Global Research, USA)
Publicity Chair Anna I. Esparcia Alcdzar (Instituto Tecnolégico de
Informética, Spain)

Local Co-chairs Ivanoe De Falco (ICAR-CNR, Italy)

Antonio Della Cioppa (University of Salerno, Italy)
Ernesto Tarantino (ICAR-CNR, Italy)

Program Committee

Hussein Abbass, UNSWQADFA, Australia

Lee Altenberg, University of Hawaii at Manoa, USA

R. Muhammad Atif Azad, University of Limerick, Ireland
Wolfgang Banzhaf, Memorial University of Newfoundland, Canada
Anthony Brabazon, University College Dublin, Ireland
Nicolas Bredeche, Université Paris-Sud, France

Edmund Burke, University of Nottingham, UK

Stefano Cagnoni, Universita degli Studi di Parma, Italy
Antonio Della Cioppa, University of Salerno, Italy

Philippe Collard, Laboratoire I3S (UNSA-CNRS), France
Pierre Collet, LSIIT-FDBT, France

Ernesto Costa, Universidade de Coimbra, Portugal

Michael Defoin Platel, University of Auckland, New Zealand
Edwin DeJong, Universiteit Utrecht, The Netherlands

Tan Dempsey, Pipeline Financial Group, Inc., USA

Federico Divina, Universidad Pablo de Olavide, Spain

Marc Ebner, Universitdat Wiirzburg, Germany

Aniké Ekért, Aston University, UK

Anna Esparcia-Alcazar, ITI Valencia, Spain

Daryl Essam, UNSWQADFA, Australia

Francisco Ferndndez de Vega, Universidad de Extremadura, Spain
Christian Gagné, MDA, Canada

Mario Giacobini, Universita degli Studi di Torino, Italy
Folino Gianluigi, ICAR-CNR, Italy

Steven Gustafson, GE Global Research, USA

VIII Organization

Jin-Kao Hao, LERIA, Université d’Angers, France

Inman Harvey, University of Sussex, UK

Tuan-Hao Hoang, University of New South Wales @ ADFA | Canada
Gregory Hornby, UCSC, USA

Colin Johnson, University of Kent, UK

Tatiana Kalganova, Brunel University, UK

Maarten Keijzer, Chordiant Software International, The Netherlands
Robert E. Keller, University of Essex, UK

Graham Kendall, University of Nottingham, UK

Asifullah Khan, Pakistan Inst. of Engineering and Applied Sciences, Pakistan
Krzysztof Krawiec, Poznan University of Technology, Poland

Jiri Kubalik, Czech Technical University in Prague, Czech Republic
William B. Langdon, University of Essex, UK

Kwong Sak Leung, The Chinese University of Hong Kong, Hong Kong
John Levine, University of Strathclyde, UK

Simon M. Lucas, University of Essex, UK

Robert Matthew MacCallum, Imperial College London, UK
Penousal Machado, Universidade de Coimbra, Portugal

Bob McKay, Seoul National University, Korea

Nic McPhee, University of Minnesota, Morris, USA

Jorn Mehnen, Cranfield University, UK

Xuan Hoai Nguyen, Seoul National University, Korea

Miguel Nicolau, INRIA, France

Julio Cesar Nievola, Pontificia Universidade Catolica do Parana, Brazil
Michael O’Neill, University College Dublin, Ireland

Una-May O’Reilly, MIT, USA

Clara Pizzuti, Institute for High Performance Computing and Networking, Italy
Riccardo Poli, University of Essex, UK

Thomas Ray, University of Oklahoma, USA

Denis Robilliard, Université du Littoral, Cote D’Opale, France

Marc Schoenauer, INRIA, France

Michele Sebag, Université Paris-Sud, France

Lukas Sekanina, Brno University of Technology, Czech Republic

Yin Shan, Medicare, Australia

Moshe Sipper, Ben-Gurion University, Israel

Alexei N. Skurikhin, Los Alamos National Laboratory, USA

Terence Soule, University of Idaho, USA

Ivan Tanev, Doshisha University, Japan

Ernesto Tarantino, ICAR-CNR, Italy

Marco Tomassini, University of Lausanne, Switzerland

Leonardo Vanneschi, Universita degli Studi di Milano, Italy
Sébastien Verel, Université de Nice Sophia Antipolis/CNRS, France
Man Leung Wong, Lingnan University, Hong Kong

Tina Yu, Memorial University of Newfoundland, Canada

Mengjie Zhang, Victoria University of Wellington, New Zealand

Table of Contents

Oral Presentations

Training Time and Team Composition Robustness in Evolved
Multi-agent Systems.
Russell Thomason, Robert B. Heckendorn, and Terence Soule

Winning Ant Wars: Evolving a Human-Competitive Game Strategy
Using Fitnessless Selection
Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch

In Silicon No One Can Hear You Scream: Evolving Fighting
Creatliresot e e
Thomas Miconi

Real-Time, Non-intrusive Speech Quality Estimation: A Signal-Based
Model . ..o
Adil Raja and Colin Flanagan

Good News: Using News Feeds with Genetic Programming to Predict
Stock Priceso
Fiacc Larkin and Conor Ryan

A Genetic Programming Approach to Deriving the Spectral Sensitivity
of an Optical System
Marc Ebner

A SIMD Interpreter for Genetic Programming on GPU Graphics
Cards .o
W.B. Langdon and Wolfgang Banzhaf

Partitioned Incremental Evolution of Hardware Using Genetic
Programming.
David Jackson

Population Parallel GP on the G8O GPU............................
Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt

Operator Equalisation and Bloat Free GP
Stephen Dignum and Riccardo Poli

Practical Model of Genetic Programming’s Performance on Rational
Symbolic Regression Problems
Mario Graff and Riccardo Poli

X Table of Contents

Semantic Building Blocks in Genetic Programming
Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison

A Simple Powerful Constraint for Genetic Programming
Gearoid Murphy and Conor Ryan

Crossover, Sampling, Bloat and the Harmful Effects of Size Limits
Stephen Dignum and Riccardo Poli

The Performance of a Selection Architecture for Genetic
Programming.
David Jackson

A Comparison of Cartesian Genetic Programming and Linear Genetic
Programming.
Garnett Wilson and Wolfgang Banzhaf

Evolvability Via Modularity-Induced Mutational Focussing
Richard M. Downing

A Linear Estimation-of-Distribution GP System
Riccardo Poli and Nicholas Freitag McPhee

Feature Discovery in Reinforcement Learning Using Genetic
Programming.
Sertan Girgin and Philippe Preuz

Hardware Accelerators for Cartesian Genetic Programming............
Zdenek Vasicek and Lukas Sekanina

Genetic Programming and Class-Wise Orthogonal Transformation for
Dimension Reduction in Classification Problems
Kourosh Neshatian and Mengjie Zhang

Posters

Evolving Proactive Aggregation Protocols
Thomas Weise, Michael Zapf, and Kurt Geihs

GP Classification under Imbalanced Data Sets: Active Sub-sampling
and AUC Approximationo,
John Doucette and Malcolm I. Heywood

Exposing a Bias Toward Short-Length Numbers in Grammatical
Evolution
Marco A. Montes de Oca

Cooperative Problem Decomposition in Pareto Competitive Classifier
Models of Coevolutionuii e
Andrew R. McIntyre and Malcolm I. Heywood

Table of Contents

Integrating Categorical Variables with Multiobjective Genetic
Programming for Classifier Construction
Khaled Badran and Peter Rockett

The Effects of Constant Neutrality on Performance and Problem
Hardness in GP o
Edgar Galvin-Ldpez, Stephen Dignum, and Riccardo Poli

Applying Cost-Sensitive Multiobjective Genetic Programming to
Feature Extraction for Spam E-mail Filtering........................
Yang Zhang, HongYu Li, Mahesan Niranjan, and Peter Rockett

PlasmidPL: A Plasmid-Inspired Language for Genetic Programming. . . .
Lidia Yamamoto

Using Genetic Programming for Turing Machine Induction
Amashini Naidoo and Nelishia Pillay

Altering Search Rates of the Meta and Solution Grammars in the
MGG A
Erik Hemberg, Michael O’Neill, and Anthony Brabazon

Author Index

XI

Training Time and Team Composition
Robustness in Evolved Multi-agent Systems

Russell Thomason, Robert B. Heckendorn, and Terence Soule

University of Idaho, Department of Computer Science,Moscow, 1D 83844-1010
thom0398Quidaho.edu, heckendoQuidaho.edu, tsoule@cs.uidaho.edu

Abstract. Evolutionary algorithms are effective at creating coopera-
tive, multi-agent systems. However, current Island and Team algorithms
show subtle but significant weaknesses when it comes to balancing
member performance with member cooperation, leading to sub-optimal
overall team performance. In this paper we apply a new class of coop-
erative multi-agent evolutionary algorithms called Orthogonal Evolution
of Teams (OET) which produce higher levels of cooperation and special-
ization than current team algorithms. We also show that sophisticated
behavior evolves much sooner using OET algorithms, even when training
resources are significantly reduced. Finally, we show that when teams
must be reformed, due to agent break down for example, those teams
composed of individuals sampled from OET teams perform much bet-
ter than teams composed of individuals sampled from teams created by
other methods.

1 Introduction

Many problems require solutions using teams of multiple agents working together
to achieve a goal, such as robot soccer or Serengeti world [8[9]. Other problems
like autonomous robot exploration use teams to examine the search space more
effectively. However, producing efficient and effective teams is difficult. Teams
may need tens, thousands, or in the case of nanotechnology, millions of members
performing simple tasks. Or teams may be small, but composed of agents capa-
ble of performing many tasks. In the case of heterogeneous teams, the members
might have different abilities and sub-goals. Thus, finding algorithms that au-
tomate the process of training is vitally important and evolutionary algorithms
that can evolve successful teams incorporating specialization and cooperation
simultaneously would represent an important advance.

We are also interested in evolving specific forms of robustness. 1) Robustness
with regard to team size (team size scaling), i.e. the ability of teams to effectively
scale upwards in size as more agents are needed. 2) Robustness with regard to
available resources (in this case, time scaling), i.e. the ability to quickly evolve
sophisticated behavior when training resources are significantly limited. 3) Ro-
bustness with regards to functionality, i.e. the ability to perform and cooperate
well with members that were not trained together, for example if teams had to
be reformed due to agent break down.

M. O'Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 1[12,]2008.
© Springer-Verlag Berlin Heidelberg 2008

2 R. Thomason, R.B. Heckendorn, and T. Soule

Our new class of cooperative, multi-agent evolutionary algorithms (OET) are
specifically designed to address these issues (specialization, cooperation and ro-
bustness) by applying evolutionary pressure on both individual members, which
leads to specialization, and evolutionary pressure on teams, which leads to coop-
eration. In this paper we show that using both types of pressure produces teams
that meet our robustness goals as well.

2 Background

Evolutionary algorithms are often used to evolve teams of agents, where the
goal is to maximize utility or solve a task, what Panait and Luke call cooper-
ative multi-agent learning [6]. Even homogeneous teams, team whose members
have identical capabilities, often benefit from control structures that allow agents
to specialize in different subdomains of the problem [5/15]. Heterogeneous teams,
teams whose members have different capabilities, require control structures that
allow agents with different abilities to operate in the same team while also en-
suring the team itself does well. Programming the behavior between multiple
agents with different abilities to optimize cooperation is extremely difficult. For
these reasons, evolutionary algorithms are often used to train teams, and the
agents within a team are usually evolved together to increase cooperation.
Evolutionary approaches for training multi-agent teams have been successfully
applied to a wide range of knowledge representations, including teams of: neural
networks|[7], oblique decision trees[l], and stack-based predictors[I1]. Evolution-
ary approaches have also been applied to a wide range of problem domains
including robot navigation [4], team sporting strategies [12], predator strate-
gies [3I9], hazard assessment [10], and cancer and diabetes diagnosis [1I7].
Cooperative evolutionary algorithms generally fit into two groups, Island or
Team algorithms. Research suggests Island approaches produce teams of strong
individuals that cooperate poorly, and Team approaches produce teams of weak
individuals that cooperate strongly [BI15]. Ideally, teams should be composed of
strong individuals that cooperate well. In order to overcome the weaknesses of
Island and Team approaches, Soule introduced a new class of cooperative multi-
agent evolutionary algorithms called Orthogonal Evolution of Teams (OET) that
alternately apply pressure on teams and individuals during selection and replace-
ment [BIT5]. Soule described this class of algorithms as orthogonal because they
alternate between two orthogonal views of the population: as a single popu-
lation of teams of size IV and as a set of N independent populations of indi-
viduals. Thomason described two main variations of OET and compared their
performance to Team and Island algorithms using classification problems [I5].
It was shown that OET produces teams whose members perform better than
those generated with Team approaches and which cooperate better than those
generated using Island approaches. Increased individual performance and team
cooperation led to significantly better team performance. In addition, Soule and
Heckendorn found that OET teams are significantly more robust with regards
to team size than teams evolved using the Island and Team approaches [T3I14].

Training Time and Team Composition Robustness 3

In this paper we extend the research to determine which of the three general
approaches (Team and two OET varients) produce teams that are the most ro-
bust with regard to resources (specifically time) and with regard to cooperation
with members from other teams. To test limited resource robustness we signifi-
cantly reduced the amount of time the teams were allowed to train, as compared
to how long they would operate in the environment during testing. As a novel test
of member robustness we measure how well teams perform when their members
are randomly replaced by members from other teams. Our results show that OET
performs significantly better than Team algorithms on both of these tests.

3 The Problem Environment

The environment is a two dimensional grid composed of 2025 (45x45) squares.
At the beginning of each evaluation exactly twenty percent of the squares are
labeled as interesting. The interesting squares are determined randomly for each
evaluation so that agents cannot memorize where the interesting squares are,
instead the agents must learn general search algorithms.

There are two agent types: scouts and investigators. The scouts role is to find
interesting squares and mark them with a beacon that is detectable at a distance
by the investigators. The investigators role is to investigate interesting squares.
Scouts travel at up to twice the speed of investigators. If a scout is in or next to
an interesting square, it automatically places a beacon in the interesting square
(unless there is already a beacon there). If an investigator enters an interesting
square, regardless of whether the square is marked with a beacon, it changes the
square to investigated and deactivate the beacon, if any, in the square. Neither
type of agent can sense interesting squares at a distance without a beacon. Thus,
the teams must evolve general search behaviors.

Since the agents can see the beacons (if any have been placed) at a distance,
the space can be more efficiently explored by the fast moving scouts marking
interesting areas and the slower investigators using the beacons to go directly
to the areas to be investigated. Thus, the two types of agents have different
subgoals and they must divide up the space to be searched efficiently since the
task has a time limit. If they all search in the same area they will fail to search
the entire space.

This model represents an abstraction of a number of practical problems. For
example, scouts and investigators could represent two robot types exploring a
minefield. Scouts fly overhead marking locations of potential mines and inves-
tigators deactivate the mines. Alternatively, they could represent an automated
planetary surveying team. Scouts identify potentially interesting geological for-
mations and investigators follow up by taking soil samples, etc.

The agent environment is a two-dimensional, real-valued space, so agent’s
have real vlaued location within a square. Agent movement is determined by an
expression tree that returns a vector, which represents the direction and speed
the agent will travel. However, investigators are limited to moves of length one
and scouts are limited to moves of length two.

4 R. Thomason, R.B. Heckendorn, and T. Soule

Input vectors (terminal nodes in the expression tree):

1. North - A unit vector pointing North (7/2 radians).

2. Constant - A vector that is generated randomly (magnitude in [0,2], direction
in [0,27 radians]) when the node is created. It remains during the lifetime of
the agent, but it can change through mutation.

3. Random - A vector that is randomized each time it is evaluated (magnitude

in [0,2], direction in [0,27 radians]).

Nearest Scout - A vector from the agent to nearest scout.

Nearest Investigator - A vector from the agent to nearest investigator.

Nearest Beacon - A vector from the agent to nearest beacon.

Nearest Edge - A vector from the agent to search space nearest boundary.

Last Move - A vector representing the agent’s last move.

Check Bounds - A zero magnitude vector with a small, arbitrary, positive

direction if inside search space and a small, arbitrary, negative direction

otherwise.

© 0N o

In this implementation there is no limit for detecting a beacon. If an input is
meaningless, e.g. nearest beacon when no beacons are present, then a random
vector is returned. The nearest edge also accounts for the possibility that the
agent is outside the search space, although agents must figure out for themselves
how to remain within bounds.

Vector operations (non-terminal nodes in the expression tree):

1. Add - Takes 2 vector arguments and returns the vector sum.

2. Invert - Takes 1 vector argument and returns a vector with its direction
inverted (by adding 7 radians).

3. If-Less-Than-Else-Magnitude - Takes four vector arguments. If the magni-
tude of vector 1 is less than the magnitude of vector 2, then return vector 3,
otherwise return vector 4.

4. If-Less-Than-Else-Direction - Takes four vector arguments. If the angle of
vector 1 is less than the angle of vector 2, then return vector 3, otherwise
return vector 4.

3.1 Fitness Evaluation

Each iteration during evolution consists of a simulation with a fixed number of
time steps. All of the agents start at random, real valued, locations within the
center square. Each agent has its input vectors updated and then its expression
tree is evaluated so the agent can move. The agents move sequentially and update
their input vectors whenever an agent moves.

Scouts gain a point for placing a beacon in an interesting square (only one
beacon per square is allowed), and investigators gain a point by investigating
an interesting square (even if no beacon is present). Beacons are removed af-
ter a square is investigated, and it cannot be re-flagged. Agents are penalized
0.1 points for each time step they remain outside of the search space. Because
the environment changes for each simulation the fitness of an agent will vary

Training Time and Team Composition Robustness 5

somewhat between evaluations. The fitness of the team is the sum of the agent
fitnesses. There are 2025 squares in the environment and 405 interesting squares
per simulation. Thus, the maximum team score is 810 points if the scouts cover
all the interesting squares with beacons, and the investigators investigate them
all, and no agent ever leaves the search space (which is very unlikely).

4 Evolutionary Algorithms

A steady state population model is used. The parameters are listed in Table [Tl
In the equal time experiments the teams are trained and tested using the same
number of time steps (the amount of time they spend in the environment each
iteration). During the time scaling experiments, the teams are trained with much
less time in the environment then they have when they are tested. Every iteration
consists of PopulationSize/2 rounds of parent selection and replacement.

Table 1. Summary of the evolutionary algorithm parameters

Population Size 100

Team Size 3 scouts and 3 investigators
Selection and Replacement 3 member tournament
Mutation Probability 2 / tree size

Crossover Probability 1.0

Iterations 250

Trials 40

Training/Testing Time Steps 200,/200, 300/300, 400/400 or
200/400, 300,/400

In the Team algorithm all evolutionary pressure occurs at the level of teams.
During selection two teams are chosen through a tournament to be parents. The
parents are crossed over to produce two offspring which are then mutated. A re-
verse tournament is performed to find two poor teams for replacement. Offspring
replace the poor teams if their team fitness is higher. Therefore, teams are selected
and replaced based on their team fitness. Team level pressure leads to cooperation,
but there is no direct pressure to increase the fitness of individual team members.

We have not included data from an Island algorithm because team problems,
especially ones which rely on cooperation, require team algorithms. A hybrid
island algorithm was tested in the previous two papers [I3I14], and it did not
perform well. If members are evolved in independent populations, it is unlikely
they will produce any sophisticated cooperative behaviors when combined for
testing, because the team members will never have trained together.

In OET1, selection is done on individuals and replacement is done on teams.
Offspring are created by making an empty team and adding fit individuals one
at a time by treating the single population of N-sized teams as N independent
populations of individuals and doing tournament selection within each popu-
lation. Therefore, the first team member is chosen from the population that

6 R. Thomason, R.B. Heckendorn, and T. Soule

represents all of the first members from each team; the second team member is
chosen from the population that represents all of the second members from each
team, and this continues until the new team is filled. Two teams are constructed
and undergo crossover and mutation. The offspring are evaluated as teams and
replacement is done by comparing team fitness. Team members must have high
fitness to be selected for a parent team, and a team in the population must have
a high fitness to avoid being selected for replacement.

In OET?2, selection is done on teams and replacement is done on individuals.
Two fit teams are selected to be parents by tournament selection. Their members
undergo crossover and mutation to produce two new offspring teams. Replace-
ment is done by comparing the fitness of individuals in the offspring to the
fitness of individuals in the population. This is done by treating the population
of N-sized teams as N independent populations of individuals. Poor individuals
are selected for replacement by individuals in the new offspring. A team must
have high fitness to be selected as a parent and team members must have a high
fitness to avoid being selected for replacement.

Therefore, the OET algorithms apply direct pressure to individuals and teams
through selection and replacement. However, special consideration must be given
to OET2 because it replaces individuals during the replacement phase, which
means team fitness can become inaccurate. Potentially, the entire population
would need to be re-evaluated to update all the team fitnesses. Although this
is one option, it is undesirable because it increases the amount of evaluations
needed as compared to the OET1 and Team algorithms, so we decided to simply
not update team fitness at every iteration for OET2. The team fitnesses will
become out of date, but all the teams will be equally out of date, and because
most of the members have not been replaced the team fitness is reasonably accu-
rate. Then, every 25 iterations we skip a parent selection and replacement phase
and just update the entire population. This results in no increase of evaluations
needed because during a normal iteration the number of evaluations used is equal
to the population size because that many offspring are made. It also means that
only 4% of the iterations are used to update team fitnesses in the population.

5 Results

All results are the average of 40 independent trials. The results are presented
in three sections. First, are the results of the equal time experiments where
training and testing time steps are the same. Second, are the results of the
time scaling experiments where the training time steps are much smaller than
the testing time steps. Finally, are the results from a new type of cooperation
and robustness test which measures how well individuals perform in their own
team versus a random team. We also computed the P-values for the two tailed
Student’s t-test for each pair of algorithms for each combination of training and
testing time steps. All values are significant (below 0.01) except the difference
between OET1 and OET?2 on the 200/200 test, which was only below 0.05. This
confirms that the differences between the average performance presented in the
following sections are in fact significant.

Training Time and Team Composition Robustness 7

5.1 Equal Time Experiments

In this experiment training and testing time steps are equal. Table [2] shows
the average team fitness and standard deviation. The difference in performance
between the Team algorithm and the OET algorithms are especially noticeable.
The OET algorithms perform very similarly and both outperform the Team
algorithm by an average of 20% in the 200/200 test, 16% in the 300/300 test,
and 10% in the 400/400 test.

The OET algorithms do especially well with limited time resources because
pressure is being applied to individuals, which forces them to spread out ear-
lier so they can gain points by dropping beacons or investigating interesting
squares. Additionally, the pressure applied to teams produces interesting coop-
erative behaviors. Often the OET algorithms would produce teams where the
agents would break out into sub-teams of investigator/scout pairs, where the
fast moving scouts would move in circular patterns around the investigators.
This allowed the scouts to drop many beacons that would be relatively close
to its nearby investigator. We suspect that this type of behavior, e.g. spreading
out early, but doing so in a way that promotes cooperation, is only consistently
reproducible through algorithms that apply direct evolutionary pressure on in-
dividuals and teams.

Table 2. Average team fitness for the equal time experiments

Algorithm Training TS Testing TS Avg Team Fitness

OET1 200 200 585.9 (20.9)
OET2 200 200 577.7 (13.7)
TEAM 200 200 483.6 (54.8)
OET1 300 300 718.3 (16.2)
OET2 300 300 708.7 (13.8)
TEAM 300 300 617.6 (59.6)
OET1 400 400 776.7 (8.8)
OET2 400 400 762.0 (11.2)
TEAM 400 400 701.8 (59.4)

Table [3] shows, for both the scouts and investigators, the average worst, av-
erages, and average best fitnesses. The average worst investigator and scout in
the teams produced by OET algorithms are almost twice as fit as those evolved
from the Team algorithm. The average best investigator and scout usually comes
from the Team algorithm which shows that most of these teams have one very
fit scout and investigator while the rest of the team members are mostly riding
its coattails. The OET algorithms produce investigators which are on average
22% more fit in the 200/200 tests, 18% more fit in the 300/300 tests, and 11%
more fit in the 400/400 tests than what the Team algorithm produces. The OET
algorithms produce scouts which are on average 19% more fit in the 200/200
tests, 13% more fit in the 300/300 tests, and 8% more fit in the 400/400 tests
than the what the Team algorithm produces.

8 R. Thomason, R.B. Heckendorn, and T. Soule

Table 3. Average scout and investigator fitness for the equal time experiments showing
the 200/200, 300/300 and 400/400 tests

Investigators Scouts
Algorithm Avg Min Avg Avg Max Avg Min Avg Avg Max
OET1 81.8 90.2 98.1 85.9 105.1 126.9
OET2 75.3 84.6 93.3 89.3 1079 1275
TEAM 43.3 714 93.0 50.7 89.8 129.1
OET1 107.6 119.5 132.1 88.1 119.9 1499
OET2 103.4 117.0 130.0 97.5 119.2 143.1
TEAM 60.5 100.5 130.2 58.5 1054 1544
OET1 113.1 131.3 1487 91.3 127.6 161.1
OET2 113.0 1289 145.0 95.7 125.0 153.1
TEAM 59.6 117.3 161.8 58.1 116.7 189.3

We believe that the bigger difference in investigator performance is due to
the way that scouts cooperate with investigators in the OET algorithms. The
paired behavior described above, in which a scout circles an investigator, means
the investigators have more opportunities to investigate interesting squares since
they are next to more beacons that are placed by their nearby scout. Overall,
the data from Table 2] shows that the higher average individual fitness of the
OET algorithm is leading to higher average team fitness and that it is a function
of the sophisticated cooperation behaviors we observed.

5.2 Time Scaling Experiments

In these experiments training time is shorter than testing time. This addresses
two questions. First, do the teams with more time in the first set of experiments
perform well because they were operating in the environment longer or because
they evolved better search abilities? Second, can training efficiency be improved
by training for short periods of time? If the difference in fitness averages between
the time scaling tests and the equal time tests were large, this would imply that
some behaviors need more time to evolve. Alternatively, if the teams evolved
under shorter training periods perform equally well during longer tests it shows
that evolutionis robust with respect to trainging time.

Table @ shows the average team fitness and standard deviation in the time
scaling experiments. Again, the OET algorithms perform very well and produce
teams that are on average 15% more fit in the 200/400 tests and about 17%
more fit in the 300/400 tests than what the Team algorithm produces. Clearly,
the Team algorithm needs as much training time as possible, as their results
improve greatly with time. In contrast, the OET algorithms perform almost as
well as the 400/400 tests with significantly fewer training time steps. This means
that OET algorithms produce teams that are fairly robust with respect to time
resources, and thus high fitness teams can be produced much quicker with the
OET algorithms. It also shows that their cooperative behavior and general search
techniques evolve relatively quickly.

Training Time and Team Composition Robustness 9

Table 4. Average team fitness for the time scaling experiments (400/400 tests included
for comparison)

Algorithm Training Time Testing Time Avg Team Fitness

OET1 200 400 747.8 (15.0)
OET2 200 400 764.0 (11.1)
TEAM 200 400 658.7 (56.0)
OET1 300 400 746.8 (19.4)
OET2 300 400 765.8 (10.9)
TEAM 300 400 646.3 (59.0)
OET1 400 400 776.7 (8.8)
OET2 400 400 762.0 (11.2)
TEAM 400 400 701.8 (59.4)

The minimum, maximum, and average performance of individual scouts and
investigators in the time scaling experiments (data not shown) produced the
same trends as in Table[Bl The average best investigator and scout usually comes
from the Team algorithm, while the OET algorithms produce investigators and
scouts with higher average fitness.

5.3 Cooperation Tests

Finally, we performed two cooperation tests. During each of the previous ex-
periments the best team from each trial was saved, which resulted in a pool of
40 teams from each experiment. Random teams were formed using two differ-
ent methods and tested. The goal was to measure cooperation by testing how
well individuals perform in random teams versus the team they evolved in. In
addition, this tests robustness with regards to team composition.

In the first cooperation test the 40 teams were pooled with all investigators in
one set and all scouts in another set. 120 random teams were formed by selecting
three investigators (with replacement) and three scouts (with replacement). In
the second cooperation test we used the same 40 teams, but kept the investigators
and scouts in their respective columns. So all of the first investigators from each
team formed a list, all of the second investigators from each team formed a list,
and this continued until there were 6 lists (3 for investigators and 3 for scouts).
Then we formed another 120 random teams by selecting (with replacement) an
agent from each list.

Forming random teams using both methods allows us to determine whether
team members in particular positions within a team consistently develop similar
roles. In all three algorithms individuals maintain their position within a team
during evolution, e.g. the first scout in a team is always the first scout and is
always crossed with other first scouts. This makes it easier for members to evolve
specialized roles [2]. For example, a simple form of specialization might simply be
that the first scout always begins by exploring in the Northeast direction, and this
behavior will eventually become fixed in all members of a population. By using
the two methods described above we can determine whether similar specialized

10 R. Thomason, R.B. Heckendorn, and T. Soule

Table 5. Results of cooperation tests showing the 200/200, 300/300, and 400/400
tests. Average of 120 randomly sampled teams. The percent drop is compared to team
fitness in Table

Test 1 Test 2

timesteps Algorithm Avg Team %Drop Avg Team %Drop

OET1 436.6 (67.9) 25 439.8 (T4.7) 25
200/200 OET2 492.8 (59.8) 15 491.2 (54.6) 15
TEAM 3201 (97.9) 34 319.6 (86.1) 34
OET1 576.8 (76.1) 20 585.4 (62.7) 19
300/300 OET2 6285 (44.0) 11 620.0 (42.3) 11
TEAM 409.6 (124.6) 34 4002 (144.9) 35
OET1 660.3 (95.7) 15 643.4 (99.5) 17
400/400 OET2 692.1 (89.2) 9 699.3 (48.1) 8
TEAM 476.9 (172.0) 32 4658 (176.3) 34

behaviors evolve between trials. If they do then preserving members positions
by having six pools (method 2 above) should yield better results. Otherwise, if
specialized roles evolve completely independently across multiple trials then the
two methods should produce similar results.

Table [B] shows the results of both cooperation tests. Both OET algorithms
did significantly better when random teams were formed, and OET2 was notice-
ably better than OET1. For cooperation test 1, random teams from the Team
algorithm drop in fitness by an average of 33.8%, while random teams from
the OET1 algorithm drop in fitness by an average of 20.2%, and random teams
from the OET2 algorithm only drop in fitness by an average of 11.5%. That
the most significant drop is with the Team algorithm is reasonable, because the
composition of teams in the Team algorithm remains constant during evolution.

In contrast, in OET1, new teams are created by combining copies of the best
members in the population. These new teams will only be successful if the mem-
bers cooperate well. Thus, there is pressure not only to evolve members that
perform well and that cooperate within their team, but also to evolve members
that perform well when combined with novel members. In OET2, replacement
inserts individuals into different teams within the population. Therefore, individ-
uals are very mobile within the population and teams must evolve to successfully
accommodate the insertion of new individuals to be successful. In general, both
OET algorithms evolve extra-team cooperation naturally because OET1, and
especially OET2, places a higher order pressure on the population to maintain
individuals that cooperate well inside their own team, but also cooperate well
with similar individuals from other teams.

Finally, the results with the two cooperation tests are essentially the same.
This confirms that the specialized roles evolved by team members in a particular
position are independent between trials. That is, the evolved role of a scout
in position 1 in one trial (say searching the Northeast corner or circling the
investigator in position 3) is completely independent of the roles it evolves in
other trials, which is what we expected.

Training Time and Team Composition Robustness 11

Table 6. Results of cooperation tests showing the 200/400, 300/400, and 400/400
tests. Average of 120 randomly sampled teams. The percent drop is compared to team
fitness in Table [l

Test 1 Test 2

Timesteps Algorithm Avg Team %Drop Avg Team %Drop

OET1 647.9 (102.5) 13 643.0 (86.7) 14
200/400 OET2 683.6 (63.0) 11 681.4 (82.4) 11
TEAM 470.7 (165.6) 29 492.0 (162.6) 25
OET1 6281 (121.2) 16 631.8 (128.4) 15
300/400 OET2 695.1 (64.1) 9 687.6 (71.4) 10
TEAM 4313 (190.0) 33 453.7 (170.5) 30
OET1 660.3 (95.7) 15 643.4 (99.5) 17
400/400 OET2 692.1 (89.2) 9 699.3 (48.1) 8
TEAM 476.9 (172.0) 32 4658 (176.3) 34

Table [G shows the results of the cooperation tests from the time scaling exper-
iments. Randomly sampled teams from the Team algorithm drop in fitness by
an average of 30.5%, while randomly sampled teams from the OET1 algorithm
drop in fitness by an average of 15.0%, while randomly sampled teams from the
OET?2 algorithm only drop in fitness by an average of 9.7%.

6 Conclusion

Our results lead to three important conclusions. First, the equal time exper-
iments showed that OET algorithms significantly outperform standard Team
approaches on a complex multi-agent problem. Second, the time scaling experi-
ments showed that OET algorithms are very robust to limited training resources.
The teams produced by OET performed almost as well when their training time
was cut in half, while the Team approach needed as much training time as pos-
sible. This is significant because in many real world applications an agent’s time
in the field is likely to be substantially longer than the time available for train-
ing. Third, the cooperation tests showed that OET algorithms, especially OET2,
significantly outperforms other approaches when teams must be reformed and
that a significant amount of cooperation is maintained between all individuals
in the population. This team member robustness is important because it allows
teams to be successfully reformed if some members fail or are damaged.

We also observed sophisticated behavior from OET teams that evolved rela-
tively quickly. Members learned to spread out to avoid covering the same areas
and formed investigator/scout pairs where the fast moving scouts moved in cir-
cular patterns around the investigators. This cooperation increased the average
fitness of scouts, and especially, investigators. This shows that OET algorithms
are not just outperforming the team algorithms, but are doing so by evolving
effective cooperative behaviors. The speed with which these behaviors evolve is
also very promising as it strongly suggests that even with increasingly complex
agents and environments, evolutionary algorithms such as OET will be able to
generate effective cooperative behaviors in a reasonable amount of time.

12 R. Thomason, R.B. Heckendorn, and T. Soule
References
1. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary al-

10.

11.

12.

13.

14.

15.

gorithms. IEEE Transactions on Evolutionary Computation 7(1), 5468 (2003)

. Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Weif3,

G., Sen, S. (eds.) Adaptation and Learning in Multiagent Systems. LNAI, Berlin,
Germany, Springer, Heidelberg (1995)

Haynes, T., Sen, S., Schoenefeld, D., Wainwright, R.: Evolving a team. In: Siegel,
E.V., Koza, J.R. (eds.) Working Notes for the AAAI Symposium on Genetic Pro-
gramming. AAAI, 10-12 November, pp. 23-30. MIT, Cambridge (1995)

Iba, H.: Multiple-agent learning for a robot navigation task by genetic program-
ming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo,
R.R. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Con-
ference, pp. 195-200. Morgan Kaufmann, San Francisco (1997)

Komireddy, P., Soule, T. (eds.): Orthogonal Evolution of Teams: A Class of Algo-
rithms for Evolving Teams with Inversely Correlated Errors (2006)

Luke, S., Panait, L.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-agent Systems 11(3), 387-434 (2005)

Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation
learning. IEEE Transactions on Evolutionary Computation 4(4), 380-387 (2000)
Luke, S., Hohn, C., Farris, J., Jackson, G., Hendler, J.: Co-evolving soccer softbot
team coordination with genetic programming. In: Proceedings of the First Interna-
tional Workshop on RoboCup, at the International Joint Conference on Artificial
Intelligence, Nagoya, Japan (1997)

Luke, S., Spector, L.: Evolving teamwork and coordination with genetic program-
ming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, Stanford University,
CA, USA, 28-31 July, pp. 150-156. MIT Press, Cambridge (1996)

Obitz, D.W., Basak, S.C., Gute, B.D.: Hazard assessment modeling: An evolution-
ary ensemble approach. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference: GECCO-1999, pp. 1543-1650. Morgan Kaufmann, San Francisco
(1999)

Platel, M.D., Chami, M., Clergue, M., Collard, P.: Teams of genetic predictors
for inverse problem solving. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van
Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, Springer, Hei-
delberg (2005)

Raik, S.,; Durnota, B.: The evolution of sporting strategies. In: Stonier, R.J., Yu,
X.H. (eds.) Complex Systems: Mechanisms of Adaption, pp. 85-92. IOS Press,
Amsterdam (1994)

Soule, T., Heckendorn, R.B.: Evolutionary optimization of cooperative heteroge-
neous teams. In: SPIE Defense and Security Symposium (2007)

Soule, T., Heckendorn, R.B.: Improving performance and cooperation in multi-
agent systems. In: Proceedings of the Genetic Programming Theory and Practice
Workshop (2007)

Thomason, R., Soule, T.: Novel ways of improving cooperation and performance
in ensemble classifiers. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference: GECCO-2007, pp. 1708-1715. Morgan Kaufmann, San Francisco
(2007)

Winning Ant Wars:
Evolving a Human-Competitive Game Strategy
Using Fitnessless Selection

Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch

Poznan University of Technology, Poznan, Poland
Institute of Computing Science

Abstract. We tell the story of BrilliAnt, the winner of the Ant Wars
contest organized within GECCO’2007, Genetic and Evolutionary Com-
putation Conference. The task for the Ant Wars contestants was to evolve
a controller for a virtual ant that collects food in a square toroidal grid
environment in the presence of a competing ant. BrilliAnt, submitted
to the contest by our team, has been evolved through competitive one-
population coevolution using genetic programming and a novel fitnessless
selection method. In the paper, we detail the evolutionary setup that lead
to BrilliAnt’s emergence, assess its human-competitiveness, and describe
selected behavioral patterns observed in its strategy.

1 Introduction

Ant Wars was one of the competitions organized within GECCO’2007, Genetic
and Evolutionary Computation Conference, in London, England, July 7-12,
2007. The goal was to evolve a controller for a virtual ant that collects food
in a square toroidal grid environment in the presence of a competing ant. In a
sense, this game is an extension of the so-called Santa-Fe trail task, a popular
genetic programming benchmark, to two-player environment.

Ant Wars may be classified as a probabilistic, two-person board game of im-
perfect information. Each game is played on a 11x11 toroidal board. Before the
game starts, 15 pieces of food are randomly distributed over the board and two
players (ants) are placed at predetermined board locations. The starting coordi-
nates of ant 1 and ant 2 are (5,2) and (5, 8), respectively. No piece of food can
be located in the starting cells. An ant has a limited field of view — a square
neighborhood of size 5x5 centered at its current location, and receives complete
information about the states (empty, food, enemy) of all cells within it.

The game lasts for 35 turns per player. In each turn ant moves into one of 8
neighboring cells. Ant 1 moves first. If an ant moves into a cell with food, it scores
1 point and the cell is emptied. If it moves into a cell occupied by the opponent,
it kills it: no points are scored, but only the survivor can go on collecting food
until the end of the game. Moving into an empty cell has no extra effect. A game
is won by the ant that attains higher score. In case of tie, Ant 1 is the winner.

As the game outcome strongly depends on food distribution, the games may
be grouped into matches played on different boards. Each match consists of 2 x k

M. O'Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 13[24] 2008.
© Springer-Verlag Berlin Heidelberg 2008

14 W. Jaskowski, K. Krawiec, and B. Wieloch

games played on k random boards generated independently for each match. To
provide for fair play, the contestants play two games on the same board, in the
first game taking roles of Ant 1 and Ant 2, and then exchanging these roles; we
refer to such a pair of games a double-game. To win the match, an ant has to win
k+1 or more games within the match. In the case of tie, the total score determines
the match outcome. If there is still a tie, a randomly selected contestant wins.

The Ant War contestants were required to produce an ANSI-C function
Mowe(grid, row, column), where grid is a two-dimensional array representing
board state, and (row, column) represents ant’s position. The function was sup-
posed to indicate ant’s next move by returning direction encoded as an integer
from interval [0, 7]. Function code was limited to 5kB in length.

In this paper, we tell the story of Ant Wars winner, BrilliAnt, an ant submit-
ted by our team. BrilliAnt has been evolved through competitive one-population
coevolution using genetic programming (GP) and a novel fitnessless selection
method. Despite being conceptually simpler than fitness-based selection, fitness-
less selection produces excellent players without externally provided yardstick,
like a human-made strategy. An extensive computational experiment
detailed in the paper proves that BrilliAnt and other artificial ants evolved us-
ing this approach are highly human-competitive in both direct terms (playing
against a human opponent) and indirect terms (playing against a human-devised
strategy).

In the following SectionPlwe shortly summarize the past game-related research
in GP. Section [3] describes the model of board perception and the repertoire of
GP functions used for strategy encoding. Section Ml provides details on experi-
mental setup and defines the fitnessless selection method. In Section Bl we assess
human-competitiveness of the evolved ants, and in Section [6 we describe the
most interesting behavioral patterns observed in BrilliAnt’s strategy.

2 Genetic Programming for Evolving Game Players

Achieving human-competitive performance in game playing has been AI’s holy
grail since its very beginning, when game playing strategies, like the famous
Bernstein’s chess and Samuel’s checker players, were hand-crafted by humans.
The most spectacular achievement of Al in the game domain was the grand
master Garry Kasparov’s defeat in duel with Deep Blue, which implemented
a brute force approach supported by human expertise. Through successful, it
is dubious whether this kind of approach can be applied to more complicated
games, and how much does it help to understand and replicate the human intel-
ligence. The $1.5M Ing Prize for the first computer player to beat a nominated
human competitor in the Go game is still untouched, presumably because Go
has too many states to be approached by brute force. Hard Al is also often
helpless when it comes to real-time (strategy) games [3] or multi-agent games
where the number of possible states can be even greater than in Go. Things get
more complicated also for hand-designed algorithms when the game state is only
partially-observable or the game is probabilistic by nature.

Winning Ant Wars: Evolving a Human-Competitive Game Strategy 15

The partial failure of hard AT in devising truly intelligent approach to games
clearly indicates that handcrafting a good game-playing strategy for a nontrivial
game is a serious challenge. The hope for progress in the field are the methods
that automatically construct game playing programs, like genetic programming
(GP, [7]) used in our approach.

Koza was the first who used GP to evolve game strategies [G] for a two-
person, competitive, simple discreet game. Since then, other researchers have
demonstrated that the symbolic nature of GP is suitable for this kind of task.
Studies on the topic included both trivial games such as Tic Tac Toe [I] or
Spoof [16], as well as more complicated and computationally-demanding games,
like poker [14]. Core Wars, a game in which two or more programs compete
for the control of the virtual computer, is among the popular benchmark prob-
lems for evolutionary computations and one of the best evolved players was
created using a uGP []. Luke’s work [§ on evolving soccer softball team for
RoboCup97 competition belongs to the most ambitious applications of GP to
game playing, involving complicated environment and teamwork. Recently, Sip-
per and his coworkers demonstrated [I3] human-competitive GP-based solutions
in three areas: backgammon [2], RoboCode [12] (tank-fight simulator) and chess
endgames [5].

3 Ant’s Architecture

In the game of Ant Wars introduced in Section [I ant’s field of view (FOV)
contains 25 cells and occupies 20.7% of the board area. The expected number
of visible food pieces is 3.02 when the game begins. The probability of having n
food pieces within FOV drops quickly as n increases and, for instance, for n = 8
amounts to less than 0.5%. This, together with FOV’s rotational invariance and
symmetry, indicates that the number of unique and realistically possible FOV
states is low, and any strategy based on the current (observed) FOV state only
cannot be competitive in a long run. More may be gained by virtually extending
the FOV, i.e., keeping track of past board states as the ant moves. To enable
this, we equip our ants with memory, implemented as three arrays overlaid over
the board:

— Food memory F', that keeps track of food locations observed in the past,
— Belief table B, that describes ant’s belief in the current board state,
— Track table V, that marks the cells visited by ant.

At each move, we copy food locations from ant’s FOV into F'. Within FOV, old
states of F' are overridden by the new ones, while F' cells outside the current
FOV remain intact. As board states may change subject to opponent’s actions
and make the memory state obsolete, we simulate memory decay in the belief
table B. Initially, the belief for all cells is set to 0. Belief for the cells within
FOV is always 1, while outside FOV it decreases exponentially, by 10% with
each move. Table V stores ant’s ‘pheromone track’, initially filled with zeros.
When ant visits a cell, the corresponding element of V' is set to 1.

16 W. Jaskowski, K. Krawiec, and B. Wieloch

To evolve our ants, we use tree-based, strongly typed genetic programming. A
GP tree is expected to evaluate the utility of the move in a particular direction:
the more attractive the move, the greater tree’s output. To benefit from rota-
tional invariance, we use one tree to evaluate multiple orientations. However, as
ants are allowed to move horizontally, vertically, and diagonally, we evolve two
trees in each individual to handle these cases: a ‘straight’ tree for handling main
directions (N, E, S, W) and a ‘diagonal’ tree to handle the diagonal directions
(NE, NW, SE, SW. We present the FOV state to the trees by appropriately
rotating the coordinate system by a multiple of 90 degrees; this affects both FOV
and the ant’s memory. The orientation that maximizes trees’ output determines
the ant’s move; ties are resolved by preferring the earlier maximum.

Our ants use three data types: float (F), boolean (B), and area (A). An area
represents a rectangle stored as a quadruple of numbers: midpoint coordinates
(relative to ant’s current position, modulo board dimensions) and dimensions.
In theory, the number of possible values for area type is high, so it would be
hard for evolution to find the most useful of them. That it why we allow only
for relatively small areas, such that their sum of dimensions does not exceed 6.
For instance, the area of dimensions (2, 5) cannot occur in our setup.

The set of GP terminals includes the following operators:

— Const(): Ephemeral random constant (ERC) for type F ([—1;1]),

— Constlnt(): Integer-valued ERC for type F (0..5),

Rect(): ERC for type A,

TimeLeft() — the number of moves remaining to the end of the game,
Points() — the number of food pieces collected so far by the ant,
PointsLeft() — returns 15—Points().

Functions implementing non-terminal nodes (operators):

— IsFood(A) — returns true if the area A contains at least one piece of food,

— IsEnemy(A) — returns ¢rue if the area A contains the opponent,

— Logic operators: And(B, B), Or(B, B), Not(B),

— Arithmetic comparators: IsSmaller(F, F), IsEqual(F, F),

— Scalar arithmetics: Add(F, F), Sub(F, F), Mul(F, F),

— If(B, F, F) — evaluates and returns second child if first child returns true,
otherwise evaluates and returns its third child,

— NFood(A) — the number of food pieces in the area A,

— NEmpty(A) — the number of empty cells in the area A,

— NVisited(A) — the number of cells already visited in the area A,

— FoodHope(A) — returns the estimated number of food pieces that may be
reached by the ant within two moves (assuming the first move is made
straight ahead, and the next one in arbitrary direction).

! We considered using a single tree and mapping diagonal boards into straight ones;
however, this leads to significant topological distortions which could possibly signif-
icantly deteriorate ant’s perception.

Winning Ant Wars: Evolving a Human-Competitive Game Strategy 17

Note that functions that take the argument of area type compute their return
value basing not only on FOV, but on the food memory table F' and the belief
table B. For example, NFood(a) returns the scalar product, constrained to area
a, of table F' (food pieces) and table B (belief).

One should also emphasize that all GP functions mentioned here are straight-
forward. Even the most complex of them boil down to counting matrix elements
in designated rectangular areas. Using more sophisticated functions would be
conflicting with contests rules that promoted solutions where the intelligence
was evolved rather than designed.

4 How BrilliAnt Evolved

In our evolutionary runs ants undergo competitive evaluation, i.e., face each
other rather than an external selection pressure. This is often called
one-population coevolution [I0] or competitive fitness environment [II§]. In such
environments, the fitness of an individual depends on the results of games played
with other individuals from the same population. The most obvious variant of
this approach is the round-robin tournament that boils down to playing one
game between each pair of individuals. The fitness of an individual is defined as
the numbers of games won. Since the round-robin tournament needs n(n —1)/2
games to be played in each generation for population of size n, some less com-
putationally demanding methods were introduced.

Angeline and Pollack [I] proposed single-elimination tournament that requires
only n — 1 games to be played. In each round the players/individuals are paired,
play a game, and the winners pass to the next round. At the end, when the last
round produces the final winner of the tournament, fitness of each individual
is the number of won games. Another method reported in literature, k-random
opponents, defines individual’s fitness as the average result of games with &
opponents drawn at random from the current population. The method requires
kn games to be played. The special case of this method for k = 1 is also known
as random pairing. An experimental comparison between k-random opponents
and single-elimination tournament may be found in [TT].

Here we propose a novel selection method called fitnessless selection. It does
not involve explicit fitness measure and thus renders the evaluation phase of
evolutionary algorithm redundant. Fitnessless selection resembles tournament
selection, as it also selects the best one from a small set of individuals drawn
at random from the population. In the case of tournament selection the best
individual is the one with the highest fitness. Since our individuals do not have
explicit fitness, in order to select the best, we apply a single-elimination tour-
nament, in which the winner of the last (final) round becomes immediately the
result of selection. This feature, called implicit fitness, makes our approach sig-
nificantly different from most of contributions presented in literature. The only
related contribution known to us is [I5].

Using ECJ [9] as the evolutionary engine, we carried out a series of prelimi-
nary experiments with various evolutionary setups, including island model and

18 W. Jaskowski, K. Krawiec, and B. Wieloch

different variants of selection procedure. In a typical experiment, we evolved a
population of 2000 individuals for 1500 generations, which took approx. 48 hours
on a Core Duo 2.0 GHz PC (with two evaluating threads). In all experiments,
we used probabilities of crossover, mutation, and ERC mutation, equal to 0.8,
0.1, and 0.1, respectively. GP trees were initialized using ramped half-and-half
method, and were not allowed to exceed depth 8. For the remaining parameters,
we used ECJ’s defaults [9].

We relied on the default implementation of mutation and crossover available
in ECJ, while providing specialized ERC mutation operators for particular ERC
nodes. For Const() we perturb the ERC with a random, normally distributed
value with mean 0.0 and standard deviation 1/3. For ConstInt() we perturb the
ERC with a random, uniformly distributed integer value from interval [—1;1].
For Rect() we perturb each rectangle coordinate or dimension with a random,
uniformly distributed integer value from interval [—1;1]. In all cases, we trim
the perturbed values to domain intervals.

To speed up the selection process and to meet contest rules that required
the ant code to be provided in C programming language (ECJ is written in
Java), in each generation we serialize the entire population into one large text
file, encoding each individual as a separate C function with a unique name.
The resulting file is then compiled and linked with the game engine, which
subsequently carries out the selection process, returning the identifiers of selected
individuals to ECJ. As all individuals are encoded in one C file, the compilation
overhead is reasonably small, and it is paid off by the speedup provided by C
(compared to Java). This approach allows us also to monitor the actual size of
C code, constrained by contest rules to 5kB per individual.

The best evolved ant, called BrilliAnt in the following, emerged in an experi-
ment with population of 2250 individuals evolving for 1350 generations, using fit-
nessless selection with tournament size 5 (thus 4 matches per single-elimination
tournament), and with 2 x 6 games played in each match. BrilliAnt has been sub-
mitted to GECCO’07 Ant Wars competition and won it. We would like to point
out that BrilliAnt evolved and was selected in completely autonomous way, with-
out support from any human-made opponent. To choose it, we ran a round-robin
tournament between all 2250 individuals from the last generation of the evolution-
ary run. It is worth noticing that this process was computationally demanding;:
having only one double-game per match, the total number of games needed was
more than 5,000,000, i.e., as much as for about 47 generations of evolution.

5 Human Competitiveness

The game-playing task allows for two interpretations of human competitiveness.
To assess the direct competitiveness we implemented a simulator that allows
humans to play games against an evolved ant. Using this tool, an experienced
human player played 150 games against BrilliAnt, winning only 64 (43%) of them
and losing the remaining 86 (57%). BrilliAnt’s total score amounted to 1079,
compared to human’s 992. Even when we take into account the fact, that playing

Winning Ant Wars: Evolving a Human-Competitive Game Strategy 19

Table 1. The results of a round-robin tournament between the evolved ants (in bold)
and humants (plain font). Each match consisted of 2 x 100,000 games.

Player Matches won Games won Total score
ExpertAnt 6 760,669 10,598,317
HyperHumant 6 754,303 10,390,659
BrilliAnt 6 753,212 10,714,050
EvolAnt3 3 736,862 10,621,773
SuperHumant 3 725,269 10,130,664
EvolAnt2 3 721,856 10,433,165
EvolAntl 1 699,320 10,355,044
SmartHumant 0 448,509 9,198,296

150 games in a row may be tiring for a human and cause him/her make mistakes,
this result can be definitely considered as human competitive. The reader is
encouraged to measure swords with BrilliAnt using Web interface provided at
http://www.cs.put.poznan.pl/kkrawiec/antwars//.

We analyzed also indirect competitiveness, meant as ant’s performance when
playing against human-designed programs (strategies), called humants in the fol-
lowing. We manually implemented several humants of increasing sophistication
and compared them with the evolved ants using matches of 2 x 100,000 games.
Let us emphasize that the C programming language used for that purpose offers
richer control flow (e.g., loops) and more arbitrary access to game board than the
GP encoding, so this gives a significant handicap to humants. Nevertheless, the
first of our humants was easily beaten by an ant evolved in a preliminary evolu-
tionary run that lasted 1000 generations with GP tree depth limit set to 7. The
next one, SmartHumant, seemed more powerful until we increased the depth limit
to 8 and equipped ant with memory. That resulted in evolving an ant that beats
even SmartHumant. Having learned our lessons, we finally designed SuperHumant
and HyperHumant, the latter being the best humant we could develop. HyperHu-
mant stores states of board cells observed in the past, plans 5 moves ahead, uses
a probabilistic memory model and several end-game rules (e.g., when your score
is 7, eat the food piece even if the opponent is next to it).

To our surprise, by tuning some evolutionary operators we were able to evolve
an ant, EzpertAnt, that wins 50.12% of games against HyperHumant. The dif-
ference in the number of games won between ExpertAnt and HyperHumant is
statistically insignificant at the typical 0.01 level, but it is significant at the 0.15
level. As BrilliAnt turned out to be a bit worse than HyperHumant (loosing
52.02% of games), ExpertAnt apparently could be considered a better pick for
the Ant Wars contest. However, although ExpertAnt evolved without human
intervention, it has been selected by explicitly testing all ants from the last
generation against the manually designed HyperHumant. As our intention was
to evolve contestant fully autonomously, so, notwithstanding ExpertAnt perfor-
mance, we decided to submit BrilliAnt to the contest as it evolved and has been
selected completely autonomously. Quite interestingly, we observed also that the

20 W. Jaskowski, K. Krawiec, and B. Wieloch

Gyt
o)
Copmar)
Certans)
Gt
Certane

Fig. 1. Graph showing relations between players. An arrow leading from ant a to ant
b means that a is statistically better than b (oo = 0.01). 2 x 100, 000 games were played
between every two ants. EvolAntl and SmartHumant were not showed to improve
graph’s readability. EvolAnt1 wins against SmartHumant only.

method used to select ExpertAnt probably promotes overfitting: despite being
slightly better than HyperHumant, ExpertAnt loses against BrilliAnt (in 51.77%
of games).

Table [presents the results of a round-robin tournament between eight ants,
the five mentioned earlier and three other evolved ants (EvolAnt*). Each partic-
ipant of this contest played 1,400,000 games against seven competitors and could
maximally score 21,000,000. It is hard to say which ant is the ultimate winner
of this tournament. Three of them won six matches each. ExpertAnt won the
most games, but it is BrilliAnt that got the highest total score.

The results of the same experiment are shown also in the form of graph in
Fig. [l An arrow leading from a to b indicates that a turned out to be statisti-
cally better than b (at 0.01 level). No arrows between ants means no statistical
advantage. HyperHumant is the only player that never loses significantly and in
this respect it can be considered as the winner of the tournament. Interestingly,
there are no cycles in this graph and it is weakly transitive.

6 BrilliAnt’s Strategy

As BrilliAnt’s code is too complex to analyse it within this paper, we describe
selected observations concerning its behavior. Let us start from the most obvious
strategies. Faced with two corner areas of the field of view (FOV) occupied by
food, BrilliAnt always selects the direction that gives chance for more food pieces.
It also reasonably handles the trade-off between food amount and food proximity,
measured using chessboard (Chebyshev) distance (the number of moves required
to reach a board cell). For instance, given a group of two pieces of food at distance

Winning Ant Wars: Evolving a Human-Competitive Game Strategy 21

2 ((2,2) for short), and a group of two pieces of food in distance 1, i.e., (2,1),
BrilliAnt chooses the latter option, a fact that we shortly denote as (2,2) < (2,1).
Similarly, (1,1) < (2,2), (3,2) < (2,1), (3,2) < (3,1), and (2,2) < (3,2). If both
groups contain the same number of food pieces but one of them is accompanied
by the opponent, BrilliAnt chooses the other group. It also makes reasonable use
of memory: after consuming the preferred group of food pieces, it returns to the
other group, unless it has spotted some other food in the meantime.

Food pieces sometimes happen to arrange into ‘trails’, similar to those found
in the Artificial Ant benchmarks [7]. BrilliAnt perfectly follows such paths as
long as the gaps are no longer than 2 cells (see Fig. [J). However, when faced
with a large group of food pieces, it not always consumes them in an optimal
order.

(a) (b)

Fig. 2. Brilliant’s behaviors when following a trail of food pieces (a), and in absence
of food (b). Gray cell and large rectangle mark Brilliant’s starting position and initial
FOV, respectively.

If the FOV does not contain any food, BrilliAnt proceeds in the NW direction.
However, as the board is toroidal, keeping moving in the same direction makes
sense only to a certain point, because it brings the player back to the starting
point after 11 steps, with a significant part of the board still left unexplored.
Apparently, evolution discovered this fact: after 7 steps in the NW direction (i.e.,
when FOV starts to intersect with the initial FOV), BrilliAnt changes direction
to SW, so that the initial sequence of moves is: TNW, 1SW, INW, 1SW, 6NW,
1SW, INW. A simple analysis reveals that this sequence of 18 moves, shown
in Fig. @b, provides the complete coverage of the board. This behavior seems
quite effective, as the minimal number of moves that scans the entire board is
15. Note also that in this sequence BrilliAnt moves only diagonally. In absence
of any other incentives, this is a locally optimal choice, as each diagonal move
uncovers 9 board cells, while a non-diagonal one uncovers only 5 of them.

22 W. Jaskowski, K. Krawiec, and B. Wieloch

Evolving this full-board scan is quite an achievement, as it manifests in com-
plete absence of food, a situation that is close to impossible in Ant Wars, except
for the highly unlikely event of the opponent consuming all the food earlier. Bril-
liAnt exhibits variants of this behavioral pattern also after all some food pieces
have been eaten and its FOV is empty.

BrilliAnt usually avoids the opponent, unless it comes together with food and
no other food pieces are in view. In such a case, it cannot resist the temptation
and approaches the food, maintaining at least distance 2 from the opponent.
For one food piece, this often ends in a deadlock: the players hesitatingly walk
in the direct neighborhood of the food piece, keeping safe distance from each
other. None of them can eat the piece, as the opponent immediately kills such a
daredevil. However, there is one exception from this rule: when the end of game
comes close and the likelihood of finding more food becomes low, it may pay
off to sacrifice one’s life in exchange for food. This in particular applies to the
scenario when both players scored 7 and the food piece of argument is the only
one left.

Killed per game

20% [

. 0%
o 200 400 600 800 1000 1200 1400 1600 1800 2000 o 200 400 600 800 1000 1200 1400 1600 1800 2000
generation generation

(a) Percent of deaths per game (b) Percent of wins per game

Fig. 3. Graphs show evolution dynamics for a typical process of evolution. Each point
corresponds to an best-of-generation ant chosen on the basis of 2 x 250 games against
HyperHumant. The presented values are averaged over 2 x 10000 games against Hyper-
Humant. It can be noticed that the evolution process usually converges around 1300
generation when the wining rate against a fixed opponent ceases to improve.

This sophisticated ‘kamikaze’ behavior evolved as a part of BrilliAnt’s strategy
and emerged also in other evolutionary runs. Figure Bb illustrates this behavior
in terms of death rate statistic for one of the experiments. The ants from several
initial generations play poorly and are likely to be killed by the opponent. With
time, they learn how to avoid the enemy and, usually at 200-300"" generation,
the best ants become perfect at escaping that threat (see Fig.Bb). Then, around
400-500*" generation, the ants discover the benefit of the ‘kamikaze’ strategy,
which results in a notable increase of death rate, but pays off in terms of winning
frequency.

Winning Ant Wars: Evolving a Human-Competitive Game Strategy 23
7 Conclusions

This paper presented an evolved game strategy that won the Ant Wars contest
and has been produced by means of a novel fitnessless mechanism of selection.
This mechanism lets individuals play games against each other and simply prop-
agates the winner to the next generation, allowing us to get rid of the objective
fitness. Though unusual from the viewpoint of the core EC research, selection
without fitness has some rationale. The traditional fitness function used in EC is
essentially a mere technical means to impose the selective pressure on the evolv-
ing population. It is often the case that, for a particular problem, the definition
of fitness is artificial and usually does not strictly conform its biological counter-
part, i.e., the a posteriori probability of the genotype survival. By eliminating
this need, we avoid subjectivity that the fitness definition is prone to.

Despite its simplicity, the evolution with fitnessless selection produces sophis-
ticated human-competitive strategies. We do not entice the evolution by provid-
ing competitive external (e.g., human-made) opponents, so that both evolution
as well as selection of the best individual from the last generation are completely
autonomous. Improvement of individuals’ performance takes place only thanks
to competition between them. Let us also emphasize that these encouraging
results have been obtained despite the fact that the game itself is not trivial,
mainly due to incompleteness of information about the board state available to
the players.

Interestingly, in our evolutionary runs we have not observed any of the infa-
mous pathologies common to coevolution, like loss of gradient or cycling. This
may be probably attributed to the fact that our setup involves single a pop-
ulation. The detailed comparison of the fitnessless selection and fitness-based
selection methods will be subject of a separate study.

So, is it really true that an evolved solution can be better than human’s mind?
Check at the page http://www.cs.put.poznan.pl/kkrawiec/antwars/ if you can
beat BrilliAnt!

Acknowledgment

This research has been supported by the Ministry of Science and Higher Educa-
tion grant # N N519 3505 33.

References

1. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for
complex tasks. In: Forrest, S. (ed.) Proceedings of the 5th International Conference
on Genetic Algorithms, pp. 264-270 (1993)

2. Azaria, Y., Sipper, M.: GP-gammon: Genetically programming backgammon play-
ers. Genetic Programming and Evolvable Machines 6(3), 283-300 (2005)

3. Buro, M.: Real-time strategy games: A new Al research challenge. In: Gottlob, G.,
Walsh, T. (eds.) IJCIA, pp. 1534-1535. Morgan Kaufmann, San Francisco (2003)

24

10.

11.

12.

13.

14.

15.

16.

W. Jaskowski, K. Krawiec, and B. Wieloch

Corno, F., Sanchez, E., Squillero, G.: On the evolution of corewar warriors. In:
Proceedings of the 2004 IEEE Congress on Evolutionary Computation, June 20-
23, 2004, pp. 133-138. IEEE Press, Los Alamitos (2004)

Hauptman, A., Sipper, M.: Evolution of an efficient search algorithm for the
mate-in-N problem in chess. In: Ebner, M., O’Neill, M., Ekart, A., Vanneschi, L.,
Esparcia-Alcdzar, A.l. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 78-89. Springer,
Heidelberg (2007)

Koza, J.R.: Genetic evolution and co-evolution of game strategies. In: The Inter-
national Conference on Game Theory and Its Applications, Stony Brook (1992)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

Luke, S.: Genetic programming produced competitive soccer softbot teams for
robocup97. In: J.R.K., et al., (eds.) Genetic Programming 1998: Proceedings of
the 3rd Annual Conference, Madison, Wisconsin, USA, pp. 214-222 (1998)

. Luke, S.: ECJ evolutionary computation system (2002),

http://cs.gmu.edu/eclab/projects/ecj/

Luke, S., Wiegand, R.: When coevolutionary algorithms exhibit evolutionary dy-
namics. In: 2002 Genetic and Evolutionary Computation Conference Workshop
Program, pp. 236-241 (2002)

Panait, L., Luke, S.: A comparison of two competitive fitness functions. In: GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
503-511. Morgan Kaufmann, San Francisco (2002)

Shichel, Y., Ziserman, E., Sipper, M.: GP-robocode: Using genetic programming
to evolve robocode players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van
Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 143-154.
Springer, Heidelberg (2005)

Sipper, M.: Attaining human-competitive game playing with genetic programming.
In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173,
Springer, Heidelberg (2006)

Smilak, K.C.: Finding the ultimate video poker player using genetic programming.
In: Koza, J.R. (ed.) Genetic Algorithms and Genetic Programming at Stanford
1999, pp. 209-217 (1999)

Tettamanzi, A.G.B.: Genetic programming without fitness. In: Koza, J.R. (ed.)
Late Breaking Papers at the Genetic Programming 1996 Conference (1996)
Wittkamp, M., Barone, L.: Evolving adaptive play for the game of spoof using ge-
netic programming. In: S.J.L., et al. (eds.) Proceedings of the 2006 IEEE Sympo-
sium on Computational Intelligence and Games (CIG 2006), University of Nevada,
Reno, USA, pp. 164-172. IEEE, Los Alamitos (2006)

http://cs.gmu.edu/eclab/projects/ecj/

In Silicon No One Can Hear You Scream:
Evolving Fighting Creatures

Thomas Miconi

School of Computer Science,
University of Birmingham,
Birmingham B152TT, UK

txm@cs.bham.ac.uk

Abstract. Virtual creatures operating in a physically realistic 3D en-
vironment, as originally introduced by Karl Sims, provide a challenging
domain for artificial evolution. However, few coevolutionary experiments
have been reported. Here we describe the results of our experiments on
the evolution of physical combat among virtual creatures: essentially, we
evolve creatures that trade blows with each other. While several authors
have involved highly abstract forms of “combat” in their systems, this
is (to our knowledge) the first example of realistic physical combat be-
tween virtual creatures, based on actual contact and physical damage.
This poses the question of apportioning damage in a collision. Our solu-
tion is to assign damage proportionally to how much each colliding limb
contributed to the occurrence and depth of the collision. Our system suc-
cessfully evolves a wide range of morphologies and fighting behaviours,
which we describe visually and verbally. As with our previous efforts, our
source code is publicly available.

1 Introduction

1.1 Virtual Creatures

More than a decade ago, Karl Sims presented the results of his experiments on
the evolution of virtual creatures in a three-dimensional (3D), physically realistic
environment [Il2]. Virtual creatures offer a potentially boundless ground for
evolutionary experimentation. The complexity of physical interactions between
3D structures creates a challenging task for evolution, providing an ideal test-
bed for evolutionary algorithms and techniques. In addition, there are immediate
practical applications to evolving virtual creatures, such as modular robotics [3/4]
or self-modelling in robots. [5]

While there has been a significant amount of work in projects related to the
simulation of 3D creatures, initially, much of it was concerned with specific areas
of research, such as gene regulation in development [6] or modular robotics [43].
Other authors built environments based on simplified physics, such as Hornby &
Pollack [7] or the GOLEM project [§]. The Framsticks project [9] uses stick-figure
creatures and allows users to build simulations through scripts.

M. O'Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 25 [36] 2008.
© Springer-Verlag Berlin Heidelberg 2008

26 T. Miconi

Reproductions of Sims’ results were a long time coming, owing no doubt to the
lack of affordable hardware and software resources. Increases in computational
power, as well as the emergence of widely available physics simulation libraries,
have made it easier to undertake such projects in recent years. After an early
attempt at a partial replication by Taylor and Massey [10], we described the first
complete replication (and extension) of Sims’ results, using standard McCulloch-
Pitts neurons rather than the set of complex functional neurons used by Sims
[11]. Chaumont and colleagues [I2] reimplemented Sims’ model and successfully
applied it to the evolution of catapults. Shim and Kim [I3] evolved flying crea-
tures, although with simplified controllers (sinusoidal functions rather than neu-
ral networks) and more constrained morphologies. Lassabe and colleagues [14]
also implemented a Sims-like system, using classifier systems selecting among
pre-set activation patterns rather than neural networks, and used it to evolve
various locomotive behaviours in rugged environments (including relief, trenches,
etc.) and simple tasks such as block-pushing. Simultaneously, Bongard and col-
leagues [5] have explored new directions in the joint evolution of morphology and
behaviour: actual robots in the real world engage in continuous self-modelling
and self-simulation, in effect evolving models of themselves. This allows the robot
to recover from random damage, e.g.: “when a leg part is removed, [the robot]
adapts the self-models, leading to the generation of alternative gaits.”

2 Evolving Fighting Creatures

2.1 Coevolution: The “box-grabbing” Problem and Its Limitations

Sims’ original paper on coevolution [2] was based on the simple task of grabbing
a small cube away from an opponent. Creatures are positioned on opposite sides
and at equal distances from a cubic box (with corrections for their height),
and left to act for a fixed period of time. The final score for each creature is
the normalised difference between this creature’s distance to the box and its
opponent’s distance to the box.

The box-grabbing task has many advantages, not least simplicity: it is easy
to understand, easy to evaluate numerically, and easy to implement. It also has
the less obvious advantage of offering a fitness function that can “work” at all
stages of the evolutionary process, in that it can offer an informative evaluation
both to very poor and very advanced competitors. This is due to the fact that
it is based on relative distances, and that even the most primitive creatures will
possess some heritable variance in this characteristic (if only by falling down).

However, this simplicity can also be seen as a limitation. While there are sev-
eral ways to grab a box, the variety of efficient behaviours is necessarily limited.
Another problem is that it is not easy to see how this task could be extended to
large numbers of competing individuals. We might imagine box-grabbing com-
petitions involving a few creatures; we might even fancy the evolution of “rugby-
playing” creatures, in which teams of individuals would compete against each
other. But there does not seem to be any obvious way in which box-grabbing
could meaningfully be used in an open environment involving many independent

In Silicon No One Can Hear You Scream: Evolving Fighting Creatures 27

individuals, constantly competing against each other, with varying lifespans and
asynchronous births and eliminations.

2.2 Physical Combat: The Appeal of (Virtual) Violence

Physical combat between creatures appears intuitively appealing as a basis for
evolution. This comes in no small part from the fact that physical combat is
ubiquitous in nature. Predation, sexual competition among males and other
forms of fighting have been fruitful sources of evolutionary creativity in many
lineages, producing remarkable examples of arms races and mutual adaptations.

Another attractive feature of physical combat is that it is a very direct form
of interaction, requiring no mediating device or instrument (as opposed to box-
grabbing, and therefore box-requiring, experiments). This means that it can be
used in many different settings with relatively few constraints. Thus physical
combat could be used in an open environment in which a population of individ-
uals would interact and evolve freely, in an unsupervised fashion.

2.3 Related Work

Many evolutionary experiments use some idealised form of “fighting” or “killing”
behaviour as part of a range of pre-defined behaviours. These include Geb [I5],
Echo [I6], Polyworld [I7], Framsticks [9] and others. However, in these systems,
the actual process of fighting is essentially abstract. It corresponds to a pre-
defined rule, hard-coded into the program, such as “eliminate the individual
with lowest energy level,” or even simply “eliminate the individual right in front
of you, no matter what” (as in Geb). Evolution bears on when and how to use
the abstract fighting behaviour, not on how to fight.

In fact, despite the possibilities offered by physical combat, we have only been
able to find one published attempt at evolving physical combat in a 3D envi-
ronment: O’Kelly and Hsiao [I8] have implemented a modified version of Sims’
model, based on a very simple form of combat. In this system, “the first creature
to touch its enemy’s root node is deemed the winner.” This simplified form of
combat is easy to implement and assess, and avoids the difficulties described in
the following sections. However, it is also less flexible in many ways, not least in
being an “all-or-nothing” measure of success. To provide a gradient for evolution,
O’Kelly and Hsiao add another component to their fitness function: at the end
of each round, both creatures are rewarded with a value inversely proportional
to the final distance between the two. This is expected to favour the emergence
of simple approach behaviours in the early stages of evolution. Of course this has
the drawback that the corresponding reward is equally given to both creatures
independently of how much each creature contributed to reducing this distance

1 A simple way to reward creatures more fairly would be to calculate, at each timestep,
the modification in the distance between the position of each creature and the pre-
vious position of the other. In this manner, creatures that actually move towards
their opponent could be rewarded, while those which stay put or move away from
their opponents would not.

28 T. Miconi

Another problem with this method of combat, especially for our own block-based
creatures, is that it has an obvious weak point: simply protecting the root limb
makes a creature effectively invincible.

We would like to create a more realistic system, relying on a less abstract
form of combat. Instead, we would like to evolve actual physical fight, based
on physical shock, very much as in the real world. In such a system, a fighter’s
success would depend on how much physical damage it has inflicted upon (and
received from) its opponent. Basically, what we seek is a system in which crea-
tures would evolve to literally beat each other up. To our knowledge, no such
system has been reported in the literature.

2.4 Difficulties of Physical Combat: Newton vs. Darwin

The central question in physical combat is to determine how damage should be
evaluated: when do we say that an individual has somehow hurt, or otherwise
dominated, its opponent? This apparently simple question turns out to pose
significant problems.

The most obvious answer is simply to use impacts (and some measure of
kinetic energy at the time of impact) as the basis of combat: essentially, to let
individuals trade blows with each other. However, this introduces a difficulty
caused by Newton’s third law (often summarised as “action equals reaction”).
If two rigid blocks come into collision, and suffer some damage as a result, then
both blocks will suffer equivalent damage. This is because physical damage is
mostly related to kinetic energy. Clearly the relative velocities of each limb with
regard to the other are equal in magnitude (and of opposite signs), and the
resulting kinetic energy (and associated impact damage) will therefore be equal
for both. The consequence is that when a creature hits another, the creature
dealing the blow will suffer the same damage as the one receiving it. Clearly this
is not conducive to the evolution of fighting behaviours.

In nature, the main reason why physical combat can occur is simply the
heterogeneity of materials. Flesh, bones, teeth, skin, horn, etc., have different
properties that make it possible to inflict damage on an opponent without suf-
fering too much as a result. The cheetah’s claws are harder than the gazelle’s
skin and flesh, and can therefore damage it more than they are damaged by it.
Martial arts fighters attempt to throw their fists and heels at their opponent’s
face and stomach - rather than the other way round - because the bone struc-
ture of those parts favour (closed) hands and feet in collisions against the nose
and the belly. Additionally, the geometry of object plays a roles: sharp, pointy
objects will behave differently than flat or dull objects in collisions - hence the
variety of mammalian tooth shapes.

Implementing such variety of materials in our simulation would clearly be
cumbersome and difficult to “get right.” In addition, we would need to impose
some cost on the toughness of materials, to prevent evolution from turning into a
simple maximisation of toughness. In nature, such runaway escalation in armour
is simply prevented by the trade-offs imposed by available resources and other
tasks. This would not be readily transposable in our simple model.

In Silicon No One Can Hear You Scream: Evolving Fighting Creatures 29

2.5 Solution: Favouring the Aggressor

To overcome this difficulty, we chose to evaluate the damage inflicted by a crea-
ture upon another by measuring “how much” this creature contributed to the
occurrence and intensity of the collision. The result is that the creature that
initiates contact more than the other (that is, the creature that is “dealing the
blow”) is favoured in the interaction.

Collision intensity is estimated by penetration depth. How can we measure
how much each of the colliding limbs contributed to this collision? This is esti-
mated by suspending the simulation, and then letting each of the colliding block
in turn move for one timestep at its current velocity, while the other one is kept
fixed; the resulting increase in penetration depth, if any, is used as a measure-
ment of how much this creature contributed to the collision - that is, how much
it actually moved towards the other (see Figure[Il). After this, all blocks return
to their original positions, and the simulation proceeds normally.

Fig.1. Damage calculation. 1: A collision occurs between limbs A and B, moving
with velocities Va and Vb respectively. 2: Letting B move at its current velocity for
one timestep (while keeping A fixed) results in a large increase in penetration depth.
3: By contrast, letting A move at its current velocity for one timestep (while keeping
B fixed) results in a smaller increase in penetration depth. Thus, in this collision, B
inflicts more damage upon A than A upon B. Note that if Va was pointing away from
B, then letting A move for one timestep would actually reduce penetration depth, and
thus A would not be inflicting any damage upon B at all.

3 System Description

3.1 Virtual Creatures

Our system has already been described in previous publications (e.g. [I9I1T]).
The system used here is very similar, with minor differences. Here we only pro-
vide a brief overview of the platform, including differences with previously pub-
lished material. As with our previous efforts, the source code of our experiments
is freely available (together with pictures and videos) at the following URL:
http://www.cs.bham.ac.uk/ txm/creatures/

Morphology: As in Sims’ model, the creatures are branching structures com-
posed of rigid 3D blocks. Each block (or “limb”) is connected to its parent limb
by a hinge joint, except for the first (“root” or “trunk”) limb which obviously

30 T. Miconi

has no parent. Hinge joints have limited amplitude, so that rotation can only
occur within the [—3m/4, 37 /4] range. The genetic specification of a creature is
given as a tree of nodes. Each of these nodes contain morphological and neural
information about one limb. The morphological information in each genetic node
specifies the dimensions of the limb (width, length and height), the orientation
of this limb with regard to its parent (in the form of two parameters indicating
polar angles with the xz and the xy planes, that is longitude and latitude, in the
frame of reference of the parent limb), the direction of movement which may be
either “vertical” or “horizontal” (that is aligned either with the y or with the z
axis of the limb), and a boolean flag for reflection which governs symmetric repli-
cation along the xz plane of its parent. A limb also contains neural information,
as described in the following paragraphs.

Fig. 2. Organisation of a fictional creature pictured in the bottom-right corner. Limb

0 has no sensor (S) or actuator (A). Limb 1 is reflected into two symmetric limbs la
and 1b, which share the same morphological and neural information.

Creature control and neural organisation: Our creatures are controlled by neural
networks. Each limb may contain up to 5 neurons. Genetic information about a
given neuron specifies the activation function for this neuron, a threshold/bias
parameter 6, and connection information. The activation function may be either
a sigmoid (, +exp1,(a +oy) or the hyperbolic tangent tanh(o + #) where o is the
weighted sum of inputs; the difference between sigmoid and tanh is that the first
has values in [0, 1] while the latter has values in [—1, 1]. Connection information
specifies, for each connection, the source of this connection (that is the neuron
whose output is received through this connection) and a weight value. As in
Sims’ model, neurons can only be connected with other neurons from the same
limb, from adjacent limbs, or from the root limb. Each neuron may receive up
to 3 connections.

Sensor neurons and actuator neurons are handled specially. The first type
of sensor neuron is a proprioceptive neuron, which measures the current angle
formed by the hinge joint to which this neuron’s limb is attached, scaled within
the [—1, 1] range. Additionally, there are “vision” sensors, similar to those used
by Sims: these sensors return the distance, along either the x or y axis of the

In Silicon No One Can Hear You Scream: Evolving Fighting Creatures 31

limb’s frame of reference, to the centre of mass of the closest neighbouring ani-
mat’s trunk limb. Finally, there are contact sensors, the output of which is one
if the limb is currently in contact with a limb of another creature, and zero
otherwise. Every limb has exactly one proprioceptor, and may have any num-
ber of other sensors (within the maximum number of neurons for each limb). In
addition, the trunk limb always contains one x sensor and one y sensor.

Actuator neurons command the movement of each limb, that is, its rotation
around its joint. The output of an actuator indicates the desired angular velocity
around this joint (remember that the joints have limited amplitude). Actuator
inputs are defined similarly as other neurons, but their activation function is
always a scaled hyperbolic tangent of the form tanh(o + threshold). Each limb
has exactly one actuator.

Expression of the genome: The creatures are constructed according to the in-
formation contained in the genetic nodes. A very simple developmental system
translates the genotype into a corresponding phenotype, and may introduce ad-
ditional complexity if the genetic information dictates it. Our system uses the
same developmental features as Sims, with some refinements. The first devel-
opmental process is reflection of limbs: if a limb has its reflection flag set, a
symmetric copy of this limb and of all its attached sub-limbs will also be gener-
ated, where symmetry is taken along the parent limb’s 2z (longitudinal) plane.
This process allows for bilateral symmetry in the system. Another developmental
feature is recursion, which effectively models segmentation in biological organ-
isms: each limb may specify a recursion index r, which means that r copies of
this limb (and of its sub-limbs) will be sequentially attached to each other, sim-
ilar to repetitive segments in living animals such as arthropods and vertebrates.
A limb may also carry a “terminal” flag, which indicates that, if its parent is
recursively replicated, this limb would only be added to the very last instance
of the replicated parent. We provide fine-grained control of neural wiring among
replicated limbs, allowing for asymmetric information flow between replicated
structures, an improvement over Sims’ original model.

Genetic operators: We use three genetic operators, broadly similar to those used
by Sims. Crossover is performed by simply aligning the genetic nodes of both
parents in two rows, then building a new list of genetic nodes by concatenating
the left part of one parent with the right part of the other. Grafting corresponds
to the removal of a branch (that is a limb and all its sub-limbs), and its replace-
ment by a branch taken from another individual. Connectivity information is
adapted and maintained: the neurons of the trunk establish the same connec-
tions with the new branch as they had with the old one, and similarly the new
branch has the same connection with its new trunk as it had with its previous
trunk. Mutation occurs by sequentially and randomly altering each morphologi-
cal and neural parameter within a genome (from limb size to connection weight)
with a given probability P,,.:, as well as by removing a limb with probability
Pt and adding a new, randomly generated limb, also with probability P,,q:.

32 T. Miconi

3.2 Rules of Engagement

Competitions between two creatures are organised as follows: first, creatures are
put on each side of a vertical plane, and then pushed away from each other by
a very small distance to avoid any contact. Then creatures are allowed to move
according to their controllers’ output. Over the first 10% of evaluation time,
creatures benefit from an immunity period, during which they can neither hurt
nor be hurt by each other. After this immunity period has elapsed, damage is
evaluated according to the previously described method, and accumulated over
the entire evaluation period.

The fact that creatures are initially close favours the probability of contact
occurring, even in the very early stages. This provides an immediately exploitable
gradient for natural selection to act upon.

At the end of the evaluation period, each creature is given a final score equal
to 1 + (Damage inflicted - Damage suffered) / (Damage inflicted + Damage
suffered). This calculation is inspired by Sims [2]. Note that this score always
falls within the [0, 2] range.

4 Experiments and Results

The algorithm we use is a modification of Sims’ original algorithm [2], later called
“Last Elite Opponent” (LEO) by CIliff & Miller [20]. Following Sims, we use two
populations. In essence, Sims’ LEO algorithm evaluates individual by making
them compete against the current “champion” of the opposing population. At
each generation, every member of population 1 competes against the current
“champion” of opposing population 2, resulting in a certain score: this score is
the fitness of the individual. The 20% highest-scoring individuals are chosen as
survivors for the next generation, and the remainder of population 1 is filled with
offspring of these survivors; the parents of each new individual are selected from
among the survivors via roulette-wheel selection. The highest-scoring individual
is also identified as the new “champion” of population 1. Then the same process
is applied to population 2: each individual in population 2 competes against the
current champion of population 1, a champion is identified based on this score,
highest-scoring survivors are selected and the population is filled with offspring
of the survivors. This concludes one generation of the algorithm. The cycle is
then repeated for as many generations as required. In the first generation, current
champions are chosen randomly or arbitrarily.

We modified the LEO algorithm by incorporating a “sliding archive” of past
champions in the evaluation process. At every generation, we maintain an archive
in which we store the previous champions of each population over the last 15
generations. We make each individual compete, not only against the current op-
posing champions, but also against a sample of 2 past opposing champions picked
from this sliding archive (this sample is randomly selected for each population
at the beginning of each generation, so at every generation every individual of
each population competes against the same set of opponents). This modification

In Silicon No One Can Hear You Scream: Evolving Fighting Creatures 33

Fig. 3. Four pairs of fighters obtained in the course of the experiments described in the
next chapter. In the top-left corner, one simple creature uses its rotating cubic head to
perform a “compass” motion, while the other creature uses three rotating appendages
both as flails and legs. The dark colour indicates that the creatures are still within their
immune period. In the top-right corner, a linear individual constantly aims its wagging
tail at its more complex opponent, which uses sensors from its head to coordinate its
own movement (the neural network of the larger creature is described in Figure (). In
the bottom-left corner, a two-armed crawler and a directed snake move towards each
other. In the bottom-right corner, a large creature uses three undulating appendages
as powerful legs to “steamroll” its opponent.

improved the performance of the algorithm, as ascertained by systematically
pitting individuals evolved with and without sliding archives against each other.

Useful creatures consistently evolved within a couple of generations. The sys-
tem generated a wide range of morphologies, as shown in Figure [Bl Various
strategies emerged, some of which made use of external sensors, while others
did not. All non-trivial individuals made use of proprioceptors to synchronise
oscillating groups of limbs.

One commonly observed strategy that did not make use of external sensors
was the “compass” method: one extremity of the creature remains fixed on the
ground (mostly through sheer mass) while the other extremity features a “head”

34 T. Miconi

B —

Connection with
positive weight

.. ,.“_“ ------- -
@- - ,® ~® "-@ Connection with

negative weight

Actuator

Proprioceptor

Y-Sensor

Contact
Sensor

12

5

©
ONORONO,

Fig. 4. Neural network of the larger creature in the top-right picture in Figure Bl Each
rounded rectangle indicates a limb. Limb 0 corresponds to the “neck” of the individual;
limbs 1 and 2 constitute the “head”, while the bottom limbs (3-11) represent three repli-
cated segments, each composed of three limbs. Limbs 5, 8 and 11 have no neurons at all
and are simply fixed appendages of limbs 4, 7 and 10, respectively. Notice the mutual
connections between the proprioceptors and actuators of various limbs, which induce
synchronisation between the motions of these limbs: for example, the three repeated seg-
ments move in an undulating fashion due to the pattern of direct and indirect connections
between the proprioceptors and actuators of successive limbs. This creates a locomotive
behaviour, which is guided by the sensor neurons located in the “head”.

endowed with a constantly rotating structure that propels this head against the
ground. As the head is pushed sideways by the rotating structure, while the
tail remains fixed, the creature undergoes a compass-like motion, sweeping its
immediate vicinity. In addition, the head’s rotating appendage serves as a strik-
ing implement to inflict damage upon opponents. This simple strategy proves
very effective, as the creature can inflict damage upon anything that passes
within its radius. A variant on this strategy is the “flail” method, in which the
head and single arm are replaced with a linked chain of heads and arms, which
may vary widely in size and complexity. More generally, “whipping appendages”
were widespread. A different, less common approach is the “steamroll” method,
in which a large individual composed of regular segments (each endowed with
a powerful propelling appendage) repeatedly bumps into the opponent at full
speed, constantly pushing it away in the process.

In Silicon No One Can Hear You Scream: Evolving Fighting Creatures 35

Among strategies that made use of external sensors, a simple one is the “di-
rected worm” technique, in which a simple crawling worm (a straight chain of
aligned limbs, propelling itself through transversal oscillation) is able to con-
sistently move towards its opponent by using sensor input. A variation is the
“directed tail”, where a complex individual ensures that a swinging tail is con-
stantly directed towards its opponent. Another common occurrence is the two-
armed crawler, endowed with two symmetric oscillating arms that serve both
for propulsion and attack. By modulating the orientation of arms with sensor
input, the creature is able to move towards its opponent.

Besides such identifiable categories, we observed a multitude of idiosyncratic
morphologies, ranging from the very simple to the relatively complex. Consider,
for example, the larger creature in the top-right picture in Figure Bl The func-
tional portion of its neural network is displayed in Figure [l Besides the use of
mutual connections between the proprioceptors and actuators of various limbs
to create synchronised oscillation patterns (and thus efficient locomotion), we
see that the “head” contains various connections from external sensors which
allow the entire creature to home in on its opponent.

5 Conclusion

We have implemented a system for evolving physical combat among 3D crea-
tures. The system proved consistently successful in evolving competent fighters.
We observed a wide range of morphologies and behaviours, ranging from the sim-
ple to the relatively complex. The success of this system indicates that physical
combat can be used for further experiments involving virtual creatures.

References

1. Sims, K.: Evolving virtual creatures. In: SIGGRAPH 1994, pp. 15-22. ACM Press,
New York (1994)

2. Sims, K.: Evolving 3d morphology and behavior by competition. In: Brooks, R.,
Maes, P. (eds.) Procs 4th Intl Works on Synthesis and Simulation of Living Systems
(ALIFE 1V), pp. 28-39. MIT Press, Cambridge (1994)

3. Marbach, D., Ijspeert, A.: Co-evolution of configuration and control for homoge-
nous modular robots. In: Groen, F. (ed.) Procs of the Eighth Conference on Intel-
ligent Autonomous Systems (IASS8), pp. 712-719. I0S Press, Amsterdam (2004)

4. Mesot, B.: Self-organisation of locomotion in modular robots: A case study. Mas-
ter’s thesis, EPFL, Lausanne (February (2004)

5. Bongard, J., Zykov, V., Lipson, H.: Resilient Machines Through Continuous Self-
Modeling. Science 314(5802), 1118 (2006)

6. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and
phenotypic complexity in artificial ontogeny. In: [21], pp. 829-836.

7. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a genera-
tive encoding. In: [21], pp. 868-875

8. Lipson, H., Pollack, J.: Automatic design and manufacture of artificial lifeforms.
Nature 406, 974-978 (2000)

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

T. Miconi

Komosinski, M.: The world of framsticks: Simulation, evolution, interaction. In:
Heudin, J-C. (ed.) VW 2000. LNCS (LNAI), vol. 1834, pp. 214-224. Springer,
Heidelberg (2000)

Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and
controllers for physically simulated creatures. Artificial Life 7(1), 77-87 (2001)
Miconi, T., Channon, A.: An improved system for artificial creatures evolution.
In: Rocha, L., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A., Yaeger,
L. (eds.) Procs. 10th Intl. Conf. on Simulation and Synthesis of Living Systems
(ALIFE X), MIT Press, Cambridge (2006)

Chaumont, N., Egli, R., Adami, C.: Evolving Virtual Creatures and Catapults.
Artificial Life 13(2), 139-157 (2007)

Shim, Y., Kim, C.: Evolving Physically Simulated Flying Creatures for Efficient
Cruising. Artificial Life 12(4), 561-591 (2006)

Lassabe, N., Luga, H., Duthen, Y.: A new step for artificial creatures. In: Procs
1st IEEE Conference on Artificial Life (IEEE-ALife 2007), vol. 243, IEEE Press,
Los Alamitos (2007)

Channon, A.D.: Unbounded evolutionary dynamics in a system of agents that ac-
tively process and transform their environment. Genetic Programming and Evolv-
able Machines 7(3), 253-281 (2006)

Hraber, P.T., Jones, T., Forrest, S.: The ecology of Echo. Artificial Life 3(3), 165—
190 (1997)

Yaeger, L.: Computational genetics, physiology, metabolism, neural systems, learn-
ing, vision and behaviour or polyworld: Life in a new context. In: Langton, C.G.
(ed.) Artificial Life III, Vol. XVII of SFI Studies in the Sciences of Complexity, pp.
263-298. Addison-Wesley, Reading (1994)

O’Kelly, M.J.T., Hsiao, K.: Evolving mutually perceptive creatures for combat. In:
Vogt, P. (ed.) Procs. 9th Intl. Conf. on Simulation and Synthesis of Living Systems
(ALIFE IX), MIT Press, Cambridge (2004)

Miconi, T., Channon, A.: Analysing coevolution among artificial creatures. In:
Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005.
LNCS, vol. 3871, Springer, Heidelberg (2006)

Cliff, D., Miller, G.F.: Tracking the red queen: Measurements of adaptive progress
in co-evolutionary simulations. In: Mordn, F., Merelo, J.J., Moreno, A., Chacon,
P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 200-218. Springer, Heidelberg (1995)
Spector, L., Goodman, E.D., Wu, A., Langdon, W.B. (eds.): Proceedings of the
GECCO 2001 conference. Morgan Kaufmann, San Francisco (2001)

Real-Time, Non-intrusive Speech Quality
Estimation: A Signal-Based Model

Adil Raja and Colin Flanagan

Department of Electronic and Computer Engineering,
University of Limerick, Limerick, Ireland
{adil.raja,colin.flanagan}@ul.ie
http://www.ul.ie/wireless

Abstract. Speech quality estimation, as perceived by humans, is of vi-
tal importance to proper functioning of telecommunications networks.
Speech quality can be degraded due to various network related prob-
lems. In this paper we present a model for speech quality estimation
that is a function of various time and frequency domain features of hu-
man speech. We have employed a hybrid optimization approach, by using
Genetic Programming (GP) to find a suitable structure for the desired
model. In order to optimize the coefficients of the model we have em-
ployed a traditional GA and a numerical method known as linear scaling.
The proposed model outperforms the ITU-T Recommendation P.563 in
terms of prediction accuracy, which is the current non-intrusive speech
quality estimation model. The proposed model also has a significantly re-
duced dimensionality. This may reduce the computational requirements
of the model.

Keywords: Non-Intrusive, Signal-based, GP, MOS.

1 Introduction

Speech quality may be reduced due to various reasons in a telecommunications
network. Some of these may be the noisy/faulty channels and links, frame loss
due to irrecoverable errors and low bitrate coding. Speech quality estimation
is vital to the evaluation of quality of service offered by a telecommunications
network. Traditionally, speech quality is estimated using subjective tests. In sub-
jective tests, the quality of a speech signal under test is evaluated by a group
of human listeners who assign an opinion score on an integral scale ranging be-
tween 1 (bad) to 5 (excellent). The average of these scores, termed the Mean
Opinion Score (MOS), is considered as the ultimate determinant of the speech
quality [I]. Subjective tests are, however, time consuming and expensive. To
make up for these limitations, there has been a growing interest in devising
software based objective assessment models. There are two kinds of objective
assessment models, namely, intrusive and non-intrusive. Intrusive models eval-
uate the quality of a distorted speech signal in the presence of a corresponding
reference signal. The current International Telecommunications Union (ITU-T)

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 37 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://www.ul.ie/wireless

38 A. Raja and C. Flanagan

recommendation P.862 (PESQ) [2] is an example of such an approach. Non-
intrusive models, on the other hand, do not enjoy this privilege and base their
results solely on the estimated features of the signal under test. For this reason,
the results of the latter type of models are generally considered inferior to those
of the former.

Non-intrusive models can be classified either as signal-based or parametric. As
the name suggests, signal-based models are based on the digital signal processing
of human speech. An example of such a model is the current, state-of-the-art,
ITU-T Recommendation P.563 for single-ended estimation of speech quality [3].
Parametric models, on the other hand, base their results on various properties
relevant to the telecommunications network. In the case of Voice over Inter-
net Protocol (VoIP), for instance, these may be transport layer metrics such
as packet loss, jitter and end-to-end delay of a call. An example of a paramet-
ric model is the ITU-T G.107, commonly referred to as the E-model [4]. Both
types of models have their own advantages and limitations. Thus, for instance,
signal based models are used to analyse speech quality when the spectral enve-
lope of the speech signal may have suffered from degradation over time. This
may happen due to low bitrate coding or transmission over noisy wireless links.
Parametric models may be advantageous in VoIP, for instance, where the speech
signal may have undergone packet loss, and the speech quality may be estimated
as a function of packet loss statistics. A limitation of signal-based models is that
they are compute intensive, whereas parametric models are real-time amenable.
Moreover, since parametric models are designed for a particular type of commu-
nications network, their predictions for that type of network are more accurate
than those of signal-based models; signal-based models are suitable for general
predictions for a wider variety of networks.

In this paper we propose a new non-intrusive signal based speech quality
estimation model based on evolutionary algorithms. In particular we have em-
ployed a hybrid optimization approach that uses Genetic Programming (GP) to
search for a suitable structure for the desired solution. Coefficients of the models
evolved by GP are tuned simultaneously using a Genetic Algorithm (GA) and a
numerical method known as linear scaling. It is worth mentioning here that that
to the best of the authors’ knowledge this is the first ever application of evo-
lutionary algorithms for deriving a signal based model for non-intrusive speech
quality estimation. In the past the authors applied GP along with linear scaling
to derive a parametric model as reported in [5]

The main advantage of using GP is that it can produce human-readable re-
sults in the form of analytical expressions. Moreover, GP is capable of weeding
out irrelevant parameters while concentrating on the most salient ones. These
features of GP make our research superior to the past approaches based on
various machine learning approaches, as reflected in the results.

The rest of the paper is organized as follows. Section [2] entails a discussion on
the nature of signal based models. In section [3] we discuss the speech material
used in this research and the various distortion conditions. Section @] discusses
the various experimental details and test results. Section [l is the conclusion.

Real-Time, Non-intrusive Speech Quality Estimation 39

2 Signal Based Non-intrusive Models

Signal based non-intrusive models are preferable to parametric ones for vari-
ous reasons. Firstly, parametric models can be used only with certain types of
networks, such as VoIP. Secondly, signal based models are more general in the
sense that they are applicable for a wider range of distortion conditions. Unlike
the parametric models these models process the audio stream to extract the in-
formation relevant to distortions in a signal. The estimated distortions are then
converted into MOS for that audio stream. Given this, a signal based model may
have two main modules. 1) A feature extractor that processes the speech signal
and extracts cogent distortion indicators. 2) A mapping module that transforms
the extracted features into MOS estimates. In what follows, some of the well
known algorithms that have been used in the past for both feature extraction
and MOS mapping are briefly described.

2.1 Feature Extraction Algorithms

Feature extraction algorithms may involve time and/or frequency domain anal-
ysis of the speech signal under test. Time domain analysis may involve computa-
tion of distortions relevant to the waveform of the speech signal. Some distortions
include temporal clipping, level variation and abrupt changes in the temporal
envelope of the signal. Frequency domain analysis techniques models normally
emulate the human vocal production system [6], or the auditory processing sys-
tem [7]. ITU-T Recommendation P.563 is the current standard for signal based
non-intrusive speech quality estimation. It entails a rigorous feature extraction
process that involves the computation of plausible features from both time and
frequency domain representations of the signal under test. The overall structure
of the P.563 algorithm is divided into three stages. The first is a preprocessing
stage in which the signal is level normalized. After this, two additional versions
of the distorted signal are created. The first is created by a filter having a fre-
quency response similar to the modified intermediate reference system (IRS) as
described in ITU-T P.830 [8]. IRS emulates the frequency response of a standard
telephony handset. The second version of the normalized signal is created by us-
ing a fourth-order Butterworth high-pass filter with a 100-Hz cutoff frequency
and a flat response for higher frequencies, thus emulating the frequency response
of cordless and mobile phones. Voice Activity Detection (VAD) is also a part of
the preprocessing stage that is used to discard speech sections shorter than 12
ms and to join speech sections separated by less than 200 ms. The second stage
pertains to distortion classification which is applied on the preprocessed versions
of the signal. Distortion classification is based on three basic principles. The first
principle models the human vocal tract as a series of concatenated tubes to re-
veal the anomalies in the speech signal as a function of abnormal variations in
the tubes’ sections. The statistics relevant to these anomalies form the speech
features.

The human vocal production system may be considered to have three compo-
nents: lungs as a source of air pressure, vocal chords as source of modulation and

40 A. Raja and C. Flanagan

the vocal tract as a resonating source. Thus for voiced sounds, the air pressure
created by the lungs excites the vocal chords to create a low frequency, quasi
periodic sound. The spectral content of this sound is changed due to resonating
characteristics of the vocal tract. While speaking, the shape of the vocal tract
is changed due to controlled contractions and relaxations of its muscles. This
changes the resonant frequencies of the vocal tract, and consequently the spec-
tral content of the speech. To this end, Gray attempted to capture the speech
distortions, caused by communications networks, by employing a human vocal
production model [6]. The vocal tract is modeled as a set of concatenated tubes
with uniform, time-varying cross-sectional areas. Here, it is assumed that most
types of speech distortions cannot be produced by a human vocal tract due to
the limited and restrained movement of the vocal tract muscles. In general terms,
an implausible change in any of the tubes’ sizes is considered as a distortion.

The second principle entails a reconstruction of a pseudo reference signal from
the signal under test to perform an intrusive quality evaluation of the speech
signal to estimate the effect of distortions revealed during reconstruction. Signal
reconstruction is done by performing a 10" order linear predictive (LP) analysis
of 5 ms frames of the distorted signal. LP coefficients are converted to line
spectral frequencies followed by quantization to constrain them to fit the vocal
tract model of a typical human talker. LP is a popular speech analysis technique
used to represent characteristics of speech with a reduced set of parameters
[9][pp280-291]. These quantized coefficients are used to reconstruct the pseudo
reference signal. The difference between the pseudo reference signal, in a spectral
sense, and the signal under test gives a basic quality estimate that is used as a
feature for overall quality estimation.

The third principle is to determine specific distortions encountered in voice
channels, such as temporal clipping, frame erasures, signal correlated and back-
ground noise, robotization and level variation etc.

According to the reference implementation of the algorithm, a total of 43
features are extracted that depict various characteristics of the speech signal
under test. All features are divided into various distortion classes. Based on a
restricted set of key parameters, an assignment to a dominant distortion classes
is made. A complete description of these features is skipped here for brevity,
but they can be into three distortion groups pertaining to: 1) Unnaturalness of
speech, 2) noise, and 3) interruptions, mutes and temporal clipping.

2.2 Mapping Algorithms

Once cogent features corresponding to the speech signal under test have been
extracted, they are mapped to the speech quality using an appropriate regression
tool or a machine learning algorithm. Thus, for training a model numerous MOS-
labelled speech databases are used. An MOS-labelled speech database may have
a considerable number of speech samples from both male and female speakers,
and possibly in different languages. The duration of each speech sample may
vary from 8-12 secs. Each speech sample may be affected by a certain type of
network distortion, such as frame erasure, bit errors and/or signal correlated/

Real-Time, Non-intrusive Speech Quality Estimation 41

uncorrelated noise. Each sample also has a MOS score associated with it, derived
normally from subjective tests [I]. The features relevant to distortions for all the
samples serve as the input domain variables and the corresponding MOS scores
form the target values for learning. After learning completes, the derived model
is also tested and validated using unseen data from a separate set of speech
samples/databases, as a standard practice.

Numerous learning algorithms have been used in the past to map the effect
of speech features, and/or their relevant statistics, to speech quality. Depending
upon the learning algorithm the training and mapping procedures may vary. One
approach is to compute a significant number of feature vectors corresponding to
clean, distortion free, speech files. A database of clean speech feature vectors may
be formed by classifying the latter into clusters to form a reference code-book.
An appropriate vector quantization algorithm such as K-means, as in [10], or self
organizing maps, as in [I1], may be employed. As a part of training, feature vec-
tors corresponding to distorted speech samples are extracted and their distances
are computed from the best matching feature vector in the reference code-book
in a Euclidean sense. These auditory distances are eventually mapped to refer-
ence MOS scores using a 2"? or a 3" order polynomial. An obvious limitation of
such an approach is the time required to search for a best matching vector from
the reference code-book of feature vectors of clean speech. Another approach
is to map the feature vectors of the training speech samples directly to speech
quality using an artificial neural network [12]. In [T3] Falk and Chan have used
Gaussian mixture models (GMMSs), support vector classifiers and multi adaptive
regression splines at various stages of their proposed algorithm to map the co-
gent features to speech quality. Similarly in [I4] Grancharov et al. also employed
a GMM for speech quality prediction. In [I5] Li and Kubichek employed a hid-
den Markov model (HMM) for mapping the speech related features to quality.
Among all of these algorithms HMMs attempt to explore statistical dependen-
cies between adjacent segments of human speech, whereas for the rest of the
algorithms aggregated values of features over the entire length of speech signal
are used.

ITU-T P.563 uses a two step mapping process. First, an initial quality esti-
mate is made that is a linear combination of the values of a subset of speech
features that fall under a particular distortion class. Second, a final quality es-
timate is made that is again a linear combination of the initial quality estimate
and 11 additional features. P.563 has shown a high correlation with the human
evaluation of speech quality, ranging between 0.88-0.90 [3] for various ITU-T
benchmark tests.

2.3 Proposed Model

In this paper we have proposed a new model for speech quality estimation. We
have used P.563 as the feature extraction algorithm in this research. This has
been chosen for two reasons: 1) P.563 is the current, state-of-the-art standard for
non-intrusive speech quality estimation. 2) it computes the most numerous and

42 A. Raja and C. Flanagan

most varied features relevant to speech quality than any other feature extraction
algorithm. However, for mapping the features to speech quality we have employed
a GP based symbolic regression approach, along with a traditional GA, and linear
scaling as proposed by Keijzer in [I6], for parameter optimization. GP is used
to evolve a suitable structure for mapping the features to speech quality. GP is
also known to prune off the redundant features and to retain the most useful
ones in the genome of the final individual. The GA is employed to fine tune the
numeric leaf values during evolution.

3 Speech Databases

A total of eight MOS labeled speech databases were used in this research. Out
of these, seven multilingual databases belong to the ITU-T P-series supplement
23 (Experiments 1 and 3) [I7]. These databases include 1328 speech samples
distorted due to conditions such as signal correlated noise, transcoding, bit er-
rors and frame erasures. The databases include utterances by male and female
speakers. The eighth database includes 240 utterances in North American En-
glish accent by two male and two female speakers with seven types of distortion
conditions. This database is compiled by Nortel Networks [I8]. The distortion
conditions, each of varying levels, include signal correlated noise, coding distor-
tions, tandeming, temporal clipping, bit errors and speech level variation. 70%
of the speech files, and their corresponding M OS, in these databases were ded-
icated for training and the remaining 30% for testing reasons. More specifically,
input/output patterns of 1,100 speech files were picked randomly as training
data, and the remaining, 468 patterns were used for the purpose of testing.

It is worth describing here the meaning of various distortion conditions men-
tioned above. Signal correlated noise (also known as multiplicative noise or
modulated noise) is a function of the amplitude of the speech signal. It is intro-
duced by waveform codecs due to quantization of the amplitude. Some examples
are logarithmically companded PCM (ITU-T G.711) [19] and ADPCM (ITU-T
G.726) [20]. Transcoding (or codec tandeming) occurs when the speech signal
is processed by more than one codec in the transmission path. This happens
in scenarios where participants of a call use different codecs to communicate
with each other. In a digital transmission channel the speech signal or its coded
version may undergo bit errors, as in wireless networks. A frame erasure oc-
curs when a coded speech frame undergoes an irredeemable error, as in wireless
networks, or when a frame is lost entirely, as in an event of a packet loss in
VoIP. Codec distortions correspond to the degradations induced by the under-
lying speech coding/compression scheme employed on the transmission channel.
Temporal clipping occurs when a speech codec employs a voice activity detec-
tion (VAD) algorithm for silence suppression. In this, silence intervals during
speech are captured and suppressed from being transmitted to the receiver to
achieve bandwidth saving. VAD results in front-end clipping during the start of
a speech segment and may lead to an audible distortion. Finally, level variation
corresponds to abrupt changes in the volume of speech.

Real-Time, Non-intrusive Speech Quality Estimation 43
4 Experiments and Results

4.1 Experimental Setup

As a first step feature extraction was performed by processing the MOS labeled
speech databases discussed in section [J using the P.563 algorithm. Values of 43
features corresponding to each of the speech files were accumulated as the input
domain variables. The corresponding MOS scores formed the target values for
training and testing the evolutionary experiments.

Two GP experiments were conducted. The common parameters of both ex-
periments are listed in Table[Il In both of these population size was set to 3,000.
Each experiment was composed of 50 runs, each spanning 100 generations. Tour-
nament selection with Lexicographic Parsimony Pressure (LPP) [21I] was used
in both experiments. An initial maximum tree depth of 6 was used. The max-
imum tree depth was changed dynamically with an upper limit of 17. Survival
was based on elitism. The elitist criterion was such that at each generation the
depth of the best individual would be noted. Any individuals in the child popu-
lation exceeding this depth would be removed from evolution at this stage as a
first step. Next, up to half of the entries of the new population would be filled
up with the remaining individuals from the offspring population on the basis of
fitness. The remaining slots in the new population would be filled with the most
fit individuals from the parent population.

Table 1. Common Parameters of GP experiments

Parameter Value

Population Size 3,000

Initial Tree Depth 6

Selection LPP Tournament

Tournament Size 7

Genetic Operators Crossover, Subtree Mutation and Point Mutation
Operator Probabilities 0.95, 0.1, 0.1

Survival Elitist

Function Set +, -, *, /, sin, cos, logio, loge, sqrt, power.
Terminal Set Random numbers [-6-6]. P.563 features.

In both of the experiments scaled mean squared error (M SE;) was used as
the fitness criterion and is given by equation ().

n

MSE(y,t) = 1/n’Y" (t — (a + by,)? (1)

K2

where y is a function of the input parameters (a mathematical expression), y;
represents the value produced by a GP individual and t¢; represents the target
value which is the corresponding M OS. a and b adjust the slope and y-intercept

44 A. Raja and C. Flanagan

of the evolved expression to minimize the squared error. They are computed
according to equation (2I).

L, _ cou(t,y)
a=t—>by,b var(y) (2)

where ¢ and y represent the mean values of the corresponding entities whereas
var and cov mean the variance and covariance respectively. This approach is
known as linear scaling and is found to be very beneficial for the symbolic re-
gression tasks with GP [I6]. Instead of using protected functions, any inputs were
admissible to all the functions. For the input values outside the domain of the
functions log, sqrt, division and pow, NaN (undefined) values are generated. This
results in the individual concerned being assigned the worst possible fitness.

The selection criterion was based on the notion that population diversity can
be enhanced if mating takes place between two, fitness-wise, dissimilar individu-
als, as suggested by Gustafson et. al. [22]. This selection scheme has been shown
to perform better in the symbolic regression domain and, hence, it was employed
in this research. This simple addition to the selection criterion only requires one
to ensure that mating does not take place between individuals of equal fitness.

The first experiment (referred to as experiment 1) was based purely on GP. In
the second experiment (referred to as experiment 2) the leaf coefficients of the
GP trees were tuned using a GA during evolution. Various meta-heuristic algo-
rithms and numerical methods have been employed by researchers in the past
for tuning the leaf coefficients to enhance the fitness of GP trees. For instance,
in [23] Howard and Donna proposed a hybrid GA-P algorithm, where GP was
used to find optimal expressions for problem solving and a GA was used to tune
the coefficients of the GP trees/expressions during evolution. Similarly in [24]
Topchy and Punch have used the gradient descent algorithm for the local search
of leaf coefficients of GP trees. Moreover, quasi-Newton method has been used
to achieve the same objective in [25]. As a tradeoff between fitness enhancement
and computational efficiency, our implementation of the evolutionary algorithm
employed a GA to fine tune the coefficients of 30 best GP trees of every genera-
tion was performed. The coefficients learnt by the GA based tuning were coded
back in to the respective GP trees. It was hoped that this would enhance the
overall fitness of the subsequent populations as the genetic material of these
possibly more fit GP trees would propagate to the subsequent generations. Here
a simple GA was implemented with genes of type double. A population of size
100 was used with 15 generations per run. Single point crossover and mutation
were used as the the genetic operators with probabilities equal to 0.8 and 0.2
respectively.

4.2 Results and Analysis

Table 2 lists the statistics about the MSE, of the training/testing data and
final tree size (in terms of number of nodes) of the best individuals of the two
experiments under consideration. The fitness statistics relevant to experiment 2
are generally better as compared to experiment 1 over both training and testing

Real-Time, Non-intrusive Speech Quality Estimation 45

data. Nonetheless, a Mann-Whitney-Wilcoxon test was also performed to for-
mally decide if a significant difference exists between the simulations at a 5%
significance level. The significance test did not reveal any difference between the
two experiments, and consequently between the two approaches. However, the
best individual, in terms of minimum MSE; over the testing data, belongs to
experiment 2, as can be seen in Table[2

Table 2. Statistical analysis of the GP experiments and derived models

FExperimentl Experiment?2
Stats MSE: MSEi Size MSEy MSE:; Size
Mean 0.3673 0.3488 35.58 0.3618 0.3441 36.16
Std.
Dev. 0.0172 0.0183 13.9972 0.0159 0.0169 17.5875
Max. 0.4049 0.4026 70 0.3885 0.3817 102
Min. 0.3239 0.3146 12 0.3271 0.3071 18

Performance results of the best individual over the testing data are shown in
Table B and a comparison with the reference implementation of ITU-T P.563
is also shown. Table B also lists the percentage of Prediction Gain (PG) given
by equation (@). This individual is the proposed model and is derived from

experiment 2.
MSFEpss3s — MSE,

%PG =
’ MSEp 563
where M SEpss3 and M SE, represent the MSE of ITU-T P.563 and the pro-
posed model with respect to reference MOS respectively.

x 100 (3)

Table 3. Performance results of the proposed model versus the reference implementa-
tion of ITU-T P.563 in terms of M SE

ITU-T GP Based Percentage
P.563 Model Enhancement
Training 0.3937 0.3415 9.89
Testing 0.3674 0.3071 16.41

The proposed model has 85 nodes (including terminals and functions), how-
ever, it is a function of only 9 features as opposed to 43 features of the reference
implementation of ITU-T P.563. This may prove beneficial in reducing the com-
putational requirements of the algorithm. The model is not given here due to
shortage of space, however, the independent variables (i.e. features of P.563) are
briefly discussed as follows:

— Avwerage pitch: This feature is used as a basic speech descriptor. An autocor-
relation method is used to compute pitch period estimates of 64 ms wvoiced
frames. Average pitch is one of the distortion classifiers and is used mainly
to differentiate between unnatural male and female voices. It is also used by
ITU-T P.563 to formulate the initial estimate of quality.

46 A. Raja and C. Flanagan

— Final VTP average: VTP refers to an array that stores the cross sectional
areas of the emulated vocal tract tubes, as described in the first principle of
ITU-T P.563 in section [ZJl Final VTP average relates to the mean of the
area of last tube over the entire length of the signal.

— ART average: ART (articulators) are formed by aggregating the elements of
the VTP elements into three groups. These groups correspond to the front,
middle and rear cavities of the human vocal tract. This feature represents
the average size of the rear cavity.

— Basic voice quality: This feature is derived from the second principle of ITU-
T P.563 described in section 211

— LPC kurtosis, LPC skewness and absolute LPC skewness: These three fea-
tures represent statistics relevant to the 21 (LPC) linear predictive coeffi-
cients of the speech signal. The statistics are computed for the LPCs of each
frame and aggregated over all frames of the signal. Skewness and kurtosis
are the 3" and 4" moments about the mean and are considered to give
meaningful insights into the spectral characteristics of the signal.

— Spectral clarity: This feature is computed for voiced sections of the speech
signal to be analyzed. It corresponds to the difference between the values of
harmonics of pitch and the non-harmonic spectral components in the gaps
between the harmonics. First five harmonics of the pitch are used. FFT is
used for spectral estimation.

— FEstimated segmental SNR: This feature is used to detect the presence of
signal correlated noise.

5 Conclusion

In this paper we have presented a novel signal based method for non-intrusive
evaluation of speech quality. We employed the ITU-T P.563 algorithm for speech
feature extraction. Estimates of speech quality (MOS) from subjective tests have
been used as (reference) target values. Mapping between the various features and
the reference speech quality is obtained by GP based symbolic regression. Two
GP experiments were performed. The first was purely based on GP, with scaled
MSE as the fitness function. The second experiment additionally employed a
hybrid approach in which the coefficients of selected individuals were tuned using
a GA, during every generation of GP based evolution. Both experiments have
produced individuals that outperform the reference implementation of ITU-T
P.563. Although it was expected that the hybrid optimization approach would
produce better individuals, the obtained results were not significantly different
from the first experiment. However, the best individual was produced by the
second experiment.

The best individual, in terms of fitness over testing data, has been proposed
as a model for quality estimation. This model, being a function of only 9 fea-
tures, as opposed to 43 features of ITU-T P.563’s reference implementation, is
one of reduced dimensionality too. This is also a significant result of this re-
search. Our future goal is to benchmark the proposed model to investigate if
any computational performance gains can be achieved.

Real-Time, Non-intrusive Speech Quality Estimation 47

References

10.

11.

12.

13.

14.

15.

16.

. ITU-T.: Methods for subjective determination of transmission quality. Interna-

tional Telecommunications Union, Geneva, Switzerland, I'TU-T Recommendation
P.800 (1996)

ITU-T.: Perceptual evaluation of speech quality (PESQ), an objective method for
end-to-end speech quality assessment of narrowband telephone networks and speech
codecs. International Telecommunications Union, Geneva, Switzerland, ITU-T
Recommendation P.862 (2001)

ITU-T.: Single-ended method for objective speech quality assessment in narrow-
band telephony applications. International Telecommunications Union, Geneva,
Switzerland, ITU-T Recommendation P.563 (2005)

ITU-T.: The E-Model, a computational model for use in transmission planning. In-
ternational Telecommunications Union, Geneva, Switzerland, ITU-T Recommen-
dation G.107 (2005)

. Raja, A., Azad, R.M.A., Flanagan, C., Ryan, C.: Real-time, non-intrusive eval-

uation of VoIP. In: Ebner, M., O’Neill, M., Ekart, A., Vanneschi, L., Esparcia-
Alcdzar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 217-228. Springer, Heidel-
berg (2007)

Gray, P., Hollier, M.P., Massara, R.E.: Non-intrusive speech-quality assessment us-
ing vocal-tract models. In: IEE Proceedings of Vision, Image and Signal Processing,
vol. 147 (December 2000)

Hermansky, H.: Perceptual Linear Predictive (PLP) Analysis of Speech. Journal
of Acoustical Society of America 87(4), 1738-1752 (1990)

. ITU-T.: Subjective performance assessment of telephone-band and wideband digi-

tal codecs. International Telecommunications Union, Geneva, Switzerland, [TU-T
Recommendation P.830 (1996)

Gold, B., Morgan, N.: Speech and Audio Signal Processing: Processing and Per-
ception of Speech and Music. Wiley, New York (1999)

Jin, C., Kubichek, R.: Vector quantization techniques for output-based objective
speechquality. In: IEEE International Conference on Acoustic, Speech and Signal
Processing (ICASSP), vol. 1, pp. 1291-1294 (November 1996)

Picovici, D., Mahdi, A.E.: New output-based perceptual measure for predicting
subjective quality of speech. In: IEEE International Conference on Acoustic, Speech
and Signal Processing (ICASSP), vol. 5, pp. 17-21 (May 2004)

Tarraf, A., Meyers, M.: Neural network-based voice quality measurement technique.
In: IEEE international symposium on Computers and Communications, pp. 375—
381 (July 1999)

Falk, T.H., Chan, W.-Y.: Single-ended speech quality measurement using machine
learning methods. TEEE Transactions on Audio, Speech and Language Process-
ing 14(6), 1935-1947 (2006)

Grancharov, V., Zhao, D.Y., Lindblom, J., Kleijn, W.B.: Low-complexity, nonintru-
sive speech quality assessment. IEEE Transactions on Audio, Speech and Language
Processing 14(6), 1948-1956 (2006)

Li, W., Kubichek, R.: Output-based objective speech quality measurement using
continuous Hidden Markov Models. In: Seventh International Symposium on Signal
Processing and Its Applications, vol. 1, pp. 1-4 (July 2003)

Keijzer, M.: Scaled symbolic regression. Genetic Programming and Evolvable Ma-
chines 5(3), 259-269 (2004)

48

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Raja and C. Flanagan

ITU-T.: coded-speech database. International Telecommunications Union, Geneva,
Switzerland, ITU-T P.Supplement 23 (1998)

Thorpe, L., Yang, W.: Performance of current perceptual objective speech quality
measures. In: IEEE International Speech Coding, vol. 1, pp. 144-146 (May 1996)
ITU-T.: Pulse Code Modulation (PCM) of voice frequencies. International
Telecommunications Union, Geneva, Switzerland, I[TU-T Recommendation G.711
(November 1988)

ITU-T.: 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (AD-
PCM). International Telecommunications Union, Geneva, Switzerland, ITU-T Rec-
ommendation G.726 (1990)

Luke, S., Panait, L.: Lexicographic parsimony pressure. In: W.B.L. (ed.) GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference, New
York, pp. 829-836 (2002)

Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic programming for
symbolic regression. In: D.C., et al. (eds.) Proceedings of the 2005 IEEE Congress
on Evolutionary Computation, Edinburgh, UK, 2-5 September, vol. 1, pp. 912-919.
IEEE Press, Los Alamitos (2005)

Howard, L.M., D’Angelo, D.J.: The GA-P: A genetic algorithm and genetic pro-
gramming hybrid. IEEE Expert 10(3), 11-15 (1995)

Topchy, A., Punch, W.F.: Faster genetic programming based on local gra-
dient search of numeric leaf values. In: Spector, L., Goodman, E.D., Wu,
A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk,
S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), San Francisco, Califor-
nia, USA, july 7-11, pp. 155-162. Morgan Kaufmann, San Francisco (2001),
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d01.pdf

Mugambi, E.M., Hunter, A., Oatley, G., Kennedy, L.: Polynomial-fuzzy decision
tree structures for classifying medical data. Knowledge-Based Systems 17(2-4),
81-87 (2004)

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d01.pdf

Good News: Using News Feeds with Genetic
Programming to Predict Stock Prices

Fiacc Larkin and Conor Ryan

Biocomputing and Developmental Systems
Computer Science and Information Systems
University of Limerick, Ireland
{fiacc.larkin, conor.ryan}@ul.ie
http://bds.ul.ie

Abstract. This paper introduces a new data set for use in the financial
prediction domain, that of quantified News Sentiment. This data is auto-
matically generated in real time from the Dow Jones network with news
stories being classified as either Positive, Negative or Neutral in relation
to a particular market or sector of interest.

We show that with careful consideration to fitness function and data
representation, GP can be used effectively to find non-linear solutions
for predicting large intraday price jumps on the S&P 500 up to an hour
before they occur. The results show that GP was successfully able to
predict stock price movement using these news alone, that is, without
access to even current market price.

1 Introduction

Stock market price prediction has long been an attractive area for research,
with techniques including everything from Neural Networks [I][3][2][4] to Ge-
netic Programming [B][6] being used to try and predict stock price movement.
These methods typically base their predictions on factors such as recent prices in
the market. This is despite the Efficient Market Hypothesis (EMH) [I1], which
states that financial markets are “informationally efficient”, that is, stock prices
immediately reflect all known pertinent information so that it is not possible to
outperform the market using information which is already known to the market.

While the EMH would write off any success to luck, effectively saying that
one is as likely to have the same success rolling chicken bones as running GP,
these predictive methods gamble on having access to high quality information
that no one else has. In particular, although the same raw information (typically
stock prices) is available to everyone, not everyone has the ability to analyse it
in useful ways, and so, there is opportunity to profit while the market adjusts
its prices, as an unused source of information may give investors an advantage.

This paper considers a different source of information, news stories. Although
the basic idea that there is a relationship between news events and stock market
price movements is not a new one [7] there has been very little work done to

M. O'Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 49160, 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://bds.ul.ie

50 F. Larkin and C. Ryan

incorporate news events into quantitative style models. This may be due to the
fact that the human interpretive element of news stories does not easily lend
itself to the quantitative scrutiny that is regularly applied to the so called hard
data such as employment numbers or interest rates.

However, if one could employ news stories/events in a quantitative and au-
tomatic way, then this could give one an enormous advantage in the market, in
the sense that it would be possible to react more quickly than the market.

Recently, a research company (RavenPack International, S.L.) has developed
means for quantifying news stories; and our goal was to search for a model
based on news sentiment (i.e. whether a news story is relevant to the particular
market or sector, and if it is positive, neutral or negative) that exhibited pre-
dictive behaviour for intraday price movements. We wish to find if there is a
relatively straightforward way of combining only inputs from news sentiment to
give predictions on future intraday price movement.

We start with a description of the kind of data that we are dealing with and
the sort of data pre-processing we performed. Next, in section [we build up an
experimental approach that uses only news stories as inputs, before demonstrat-
ing in sections Bl and G that we can successfully predict stock price movement in
the S&P 500 index statistically significantly better than a standard benchmark
approach.

2 Background

Understanding how to utilise news is a difficult task even when in a pre-quantified
form. The data are noisy, containing strong oscillating cycles based around cul-
tural work practises. Two distinct functions are at play within the same data;
speculative and reflective reporting, those that happen before and after events
respectively and they have very different characteristics from each other.

Despite the huge search space that has to be covered to find equations for the
complex interactions at play, this problem has only a relatively small number of
inputs, those being the raw news stories released at each time point.

Just as complicated metrics can be derived from simple price, such as the beta
coefficient used in the financial analysis of a company compared to a sector or
portfolio, so too should it be possible to construct more descriptive terms from
raw news inputs. Evidence that a small number of simple inputs can manifest
into non-linear behaviours indicative of financial time series’ was demonstrated
by Lawrenz & Westerhoff [10] who constructed an artificial exchange traded on
by a few Genetic Algorithms who learnt to dynamically adjust the coefficients
of basic technical analysis strategies in relation to the stochastic influx of news
flows and the reactions of the other trading agents. From this basic system a
time series was produced that exhibited a number of the unusual artifacts well
documented in the financial literature [7] such as the tendency for the extremities
of the distributions of price return to be more dense than a Gaussian curve would
explain and the clustering of volatility and trading volume.

Good News: Using News Feeds with Genetic Programming 51

3 The Data

Stories published electronically over the Dow Jones network are classified by
RavenPack as being either Positive, Negative or Neutral for a particular market
or sector. No other information is given, nor are stories within a particular
class ranked, i.e. a story is either in a class or no. It is necessary to make the
contextual distinction as the same story can have very different interpretations
from different points of view - consider the difference in effect that reports of
political turmoil in a region would have on the price of oil vs an indigenous
technology company.

The classification procedure is done with a propriety technology in real time,
the details of which are beyond the scope of this paper. Upon initially inspecting
the three time series a number of things become very evident;

1. All three series of news stories seem to maintain a stable ratio with a tight
variation between them even though the total numbers of news stories fluc-
tuates from year to year and week to week.

2. There is always a bias toward more positive stories than negative ones. The
well known slight upward bias [I3] observed in the markets over time would
not appear to explain the magnitude of the difference between positive and
negative stories which usually averages at around two to one.

3. Viewed from different time scales news has strong periodic tendencies, the
most notable of which have cycles spiking every 91 days; with the quarterly
earnings season (Fig[ll), 7 days; bulging at midweek with virtually no news at
the weekends and intraday spikes occurring at around 7:30 and 16:30 daily.

4. Visual inspection (Figure 2l dispels any naive notion that a simple correla-
tion exists between current news sentiment and market movement.
Pearson’s correlation tests done between the number of positive, neutral,
negative news stories vs the S&P itself, show the absence of a straight linear
correlation (Table [I). Tt is simply not the case to expect that increases in
positive news stories will instantly be reflected in market movement, any
present relationship is far more complicated than that.

Table 1. The Pearson’s correlations between three news sets and the S&P 500 Index

Correlation Story Sets
-0.0058 All Stories
-0.0046 Positive Stories
-0.0177 Negative Stories

3.1 Pre-processing

Like all experiments dealing with financial data, a number of pre-processing
steps had to be applied to the data with great care given to avoid inadvertently
contaminating prior data points with future information. We used data from
January to September of 2007 at one minute’s resolution. The Standard & Poor’s

52 F. Larkin and C. Ryan

Autocorrelation for daily negative news stories

-8,2 H 4

-84 F 4

-8.6

Fig. 1. Auto correlation with lags from 1 to 365 days. The time series is the daily totals
of negative news story. note the quarterly peaks every 91 days.

500 index was chosen as our target market. The above mentioned periodicity
must be removed for each of the time scales, the financial literature contains
many ways to achieve this with exotic filters [9] most of which suffer from being
black boxes where it is hard to verify if future information has been brought
backwards in time. Fortunately, the very simple technique of subtracting the
value = points behind (where z is the cycle period) works effectively. With this
in mind we make three passes over the data one removing the 91 day cycle, one
removing the 7 day cycle and one removing the 24 hour cycle. Only after this
is done to the 24/7 data series, can all data points representing times outside of
the New York trading hours be removed.

To do this we merge the news series with the S&P data which is also neces-
sary to ensure date and time congruence, any points that do not match up are
dropped. Points lying significantly outside a series’ passed observed range are re-
moved using Data Clipping and the values must then be normalised in some way
to make them amenable to the GP operators. The average number of stories per
minute conveniently brings the values to manageable levels avoiding the need for
a rolling window normalisation. For price itself some form of differencing must
be done to detrend the data. Getting the log difference can then help curtail the
extremes but we are particularly interested in such movements and so we avoid
doing this. Great care must be taken to remove the trans-day data as not to
confuse the model into believing for example, that the first minute of Monday
morning comes immediately after the closing bell on Friday evening; this would
subject the model to sudden price shocks that don’t actually exist.

Good News: Using News Feeds with Genetic Programming 53

5&P 500 and Hews flows
el A

WW”W’";

Price
1500
1 1

All
10 15 200 10 20 30 40 50 1400
1

5
1

a

02 4+ 6 & 10
I I T B B B |

MNegative Positive

2007

Fig. 2. S&P 500 index along side the raw numbers of All,Positive and Negative stories
that should effect it

4 Experiments

Initially we attempted a GP hits based symbolic regression approach to predict
raw A price movement 20 minutes ahead of the S&P 500 index from a large
collection of news inputs. RavenPack’s sentiment series (PEQ, BMQ) were used,
these are created with proprietary phrase-list and Bayesian algorithms respec-
tively. Both have been designed to classify the effect individual stories will have
on the US domestic stock market. Dow Jones supply tags with each story giv-
ing information on the topics the story touches upon, these tags are assigned
manually by the stories author. Only stories with a specific combination of tags
deemed relevant to the US Domestic Market are fed to the classifiers to compile
the PEQ and BMQ series. The specific list of relevant filtering tags along with
the training examples for the classifiers were arrived at by a group of domain
experts. From each series we made six inputs: the three raw Pos, Neu, Neg
counts, All the sum of all stories and two manually constructed series, £ and ¢
which are created using the cumulative daily sums.

D B=) N

daily daily

- Z Py — Z Ni_1

daily daily

&

54 F. Larkin and C. Ryan

> A= U

¢ daily daily
t:
E Ap1 — E Ui—1
daily daily

Where (P,N,A,U) = (Positive,Negative,All,Neutral) number of stories respectively
and the sums are daily running accumulators that reset at the start of each day.

The original 8 RavenPack inputs All, Pos, Neu, Neg for BMQ and PEQ were
subjected to the preprocessing regime detailed above, and then the additional
two columns of ¢ and ¥ were added for each making 12 columns of data. These
12 columns taken at time (T), (T-30)minutes and (T-60)minutes make up an
input vector of 36 columns. The desired output is the 20 minute A price column
20 minutes in the future. This all gives a matrix totalling 37 columns in which
every row represents a single GP fitness case with three sets of past news inputs
and one future price movement target.

To compensate for the large search space created from the 36 input repertoire
GP had to choose from, we ran numerous experiments with large populations of
5000 for 51 generations. The standard way to test the performance of a system
such as this is to compare it with a trivial speculation method, that is, one that
simply guesses the values. If the evolved system is not statistically significantly
(a P-value < 0.05) then the solution is of low quality.

These initial experiments did not yield solutions that were significantly bet-
ter, and analysis showed that there were simply too many inputs, with little
improvement being shown as the populations evolved.

4.1 Revised Experiments

While one possible remedy to the situation above is to simply increase the pop-
ulation size and resources being thrown at the problem, we instead designed a
second round of experiments that were more in keeping with the original ques-
tion, which was is there a predictive relationship between news and price? rather
than can we predict exact price over fized time frames? A number of changes
were made to the set up:

First, rather than predicting raw price A at a fixed point away we switched
the target series to the maximum value A from the subsequent hour for every
point. Second, we switched from using single point news values at different time
lags to using average values per minute over the last 20 minutes, 60 minutes
and 1 week. The idea here is to use the general news flow levels over different
time periods rather than specific impulses at exact times. With a wider net to
sense changes for each data point we hope to leave some leeway in how long it
takes traders to react to the release of daily information. The third change in
keeping with (Tetlocks [I4]) findings on extreme value news involvement was to
change to a classifier fitness function with a simpler task of predicting if at any
point in the next hour the price would move up beyond two standard deviations
of the mean, both of which are calculated from the previous week so as not to
use future knowledge. Two standard deviations were chosen as this represents a
significant jump in price.

Good News: Using News Feeds with Genetic Programming 55

There are over sixty thousand data points of S&P 500 minute values in the
data set with only around three thousand positive cases where the subsequent
hour held a price move greater then two standard deviations of the past week.
This large bias of negative to positive cases would be spotted by GP easily and
undoubtedly result in premature solutions that only ever guessed negative.

The training, testing and validating sets were constructed as to give each a
representative ratio of the markets positive to negative distribution of cases. This
left us with three data sets all of size 13627, all containing 613 positive cases
and the rest negative. A modified fitness function was then created to discourage
costly false positives but also avoid overly conservative solutions.

(a=(B+7)
(6+1)

Where: a=total number of fitness cases, f=number of true positives, y= number
of true negatives and Standardised Fitness is the term we wish to minimise.

False positives represent long market positions (buy orders) that fail to in-
crease by the specified amount and may cause losses especially with trading costs
considered. We wish to avoid these false positives above all else. However any
attempt to add a punishment term to the fitness function that would exacerbate
the effects of false positives resulted in overly conservative models that would
always bet negatively for fear of getting a positive wrong. Experience showed
that better results came from rewarding a combination of both correct positive
classifications and overall correctness but with an exaggerated bias toward the
correct positives. There are far more negative cases, and so such a function serves
as encouragement enough to err on the side of caution without the need for pun-
ishment terms. It was also necessary to include a condition that gave solutions
with zero correct positives the worst (maximum standardised fitness) score. Such
solutions would invariable be in the initial population and erroneously appear to
score well under our fitness criteria, ruining the run with premature convergence.

The input set was cut to a total of nine time series, the Positive, Negative and
All average news stories per minutes at each of the above mentioned look back
periods (20 minutes, 60 minutes and one week). 31 runs of 500 individuals were
used for 51 generations in a steady state GP algorithm with tournament selec-
tion and ramped half and half initialisation. Two ephemeral random constants
{both greater than 0 but less than 1} and three statics constants {2.0,
0.5, 0.01} where also included as terminals. The function set was made of the
basic arithmetic {4, -, *, p/}, three modified logic operator {nAND, nOR,
nINOT} which operate on real floating point values and finally three conditional
structures {IF-less-than-half, nGT, nLT }.

Standardised Fitness =

(defmacro IF-less-than-half
(first-argument then-argument else-argument)
“(if (< (eval ’,first-argument) 0.5)
(eval ,then-argument)
(eval ,else-argument)))

56 F. Larkin and C. Ryan

(defun nGT (a b)
(if (>=a b) 1.0 0.0))

(defun nLT (a b)
(if (< ab) 1.0 0.0))

(defun nAND (a b)
(if (and (>= a 0.5) (>=b 0.5)) 1.0 0.0))

(defun nOR (a b)
(if (or (>=a 0.5) (>=b 0.5)) 1.0 0.0))

(defun nNOT (a)
(- 1.0 a))

5 Results

The best solution was found in one of the runs at generation 38. It had 136 nodes
with a depth of 17 and utilises all of the news inputs available. Even though there
are only two prediction classes, positive and negative, a base case comparison
using a simple coin toss would be very unfair as this would inevitably just reflect
that the vast majority of the set contains negative cases. For this reason we
use a base case comparison model that makes a random prediction base on a
probability distribution bootstrapped from the data, that is to say only one in
every 22.23 times is the base case likely to predict a positive. Table 2] compares
the best evolved solution against this base case model.

The overall hits (correct predictions; positive or negative) are higher with the
distribution aware random predictor but this is not a concern for us as 95% of
the set comprises of negatives and so a conservative model will attain most of

Table 2. Comparison of result between the GP found solution and the distribution
aware random predictor. Hits are out of 13627 while True Positives are out of 613
leaving 13014 negative cases.

GP Found Solution
TP/FP ratio Standardised Fitness Hits TP FP

Training 3.54 6.38 12612 158 560
Testing 3.14 5.39 12614 187 587
Validation 3.60 6.39 12598 160 576

Comparison Solution

TP/FP ratio Standardised Fitness Hits TP FP
Training 25.21 47.76 12433 24 605
Testing 22.71 45.36 12493 24 545
Validation 24.46 47.04 12451 24 587

Good News: Using News Feeds with Genetic Programming 57

these hits. We wish the ratio between the true positives and false positives to be
as low as possible. This number serves as the trust (or lack of it) we would have
for a positive prediction made by our model. One divided by this number would
be the probability value we would use for a Kelly [12] style bet.

The validating data for our model were found to be statistically significant
at the (P < 0.001) level showing that news certainly does have predictive power
over intraday price movement although such movement as was predicted by our
model only represents about 1.1% of the cumulative movement which occurred
though out this period.

The base case achieves one correctly predicted positive in every 24.46 positive
prediction’s made. Our GP solution gets one in every 3.6 positive predictions
correct. Such a score may not sound like a lot but one must considers that
a correct positive classification means the markets upward movement within
the next hour will go beyond a very large threshold whereas the 2.6 remaining
incorrect predictions simply mean that this huge jump doesn’t occur, but not
necessarily that the market will fall in value. One could still end up making
money on an incorrect positive classification.

Using the two standard deviations of the previous rolling week could have an
unanticipated effect on the model as markets in a phase of gradual volatility
change move the expectation of what the target price jumps should be. This
may result in more conservative predicting during higher volatility and a more
progressive style in smoother times. We did not notice any great effect of this
kind. Using a static value would ensure this did not happen although it would
be wise to revise this number periodically to keep up with market conditions.

Figure [B] shows the distribution of times when the model gets true positive
and false positives. It is interesting to note the tendency for correct predictions
to occur in the last hour of trading while the false positives have their median
toward the centre. This is unsurprising when we consider the times of the day
when the event we are trying to predict actually occur. Even though it is gener-
ally known that more volatility occurs just after market open, It would appear
the specific behaviour we are looking for (upward movement beyond two stan-
dard deviation within an hour) are more likely to happen towards the end of the
day. GP without being given any direct time input is not able to pick up on this.

The best GP solution described here was structurally very complex, and un-
readable as were all solutions in this run beyond generation 10. Early on in
another run when a tree depth restriction of 5 was used an interesting parsimo-
nious solution was found. This simple little solution takes the number of negative
divided by positive Average Stories Per Minute (ASPM) over the last hour and
multiplies by the positive ASPM over the last week, if the result is greater or
equal to 0.5 it will predict a market jump. The performance of this strategy falls
between that of our complex GP solution discussed above and the base case pre-
dictor. The simplicity of this model affords us the opportunity to analyse why
such a model should do any better than average.

Bi

Vi

Primitive Solution; = ((a; *) >=0.5)

58 F. Larkin and C. Ryan

where a= Positive ASPM over the last week, 5= Negative ASPM over the
last hour and v= Positive ASPM over the last hour.

True Positives False Positives distribution of positives

5
200

150

100

s0

Z
o
o

0 100 200 300 400 S00 600

r T T T T
1" 12 13 14 15

EsT EsT EsT

1

Fig. 3. The times of the day when the system gets True Positives (left), false positives
(centre) and the times when the jumps we are trying to predict actually occur (right)

Table 3. Results for the primitive solution. Hits are out of 13854, True Positives are
out of 640, leaving 13214 negative cases.

Data TP/FP ratio Standardised Fitness Hits TP FP
Training 8.23 14.94 12628 81 639
Testing 9.02 15.46 12540 84 758
Validating 8.21 14.10 12557 91 748

Unsurprisingly the rare events we are attempting to predict (jumps beyond
two standard deviations) occur at times when volatility is high. One should
be able to produce better predictions than the random solution by limiting
positives classifications to times of high volatility. We believe this little solution
is doing just that and in doing so highlights the link between news and market
volatility. This relationship between news and price volatility is a known one.
Vukic [8] shows how the analysis of news split into categories over a year reveals
an explicative relationship against the intraday volatility variances of individual
components of the French CAC 40. It is probably fair to assume this is a common
property of news and markets worldwide.

When we used the Viz volatility index as a model input we are unable to
replicate the success of the complicated GP solution using news inputs suggesting
that the information contribution of news flow data goes beyond that of simple
market uncertainty.

6 Conclusion

We have demonstrated that a new and untested data source can give a better
prediction of stock price movement than randomness can explain. This is the
first published work using this kind of data and we have shown that GP is an
appropriate tool to exploit it.

Good News: Using News Feeds with Genetic Programming 59

Predictive systems attempt to react to (certain types of) new information
faster than the market can. The time it takes for this diffusion of new information
is where profit can be make. However an approach that tries to predict movement
with fixed times for the look back and look ahead periods is too brittle. As
demonstrated, using inputs and outputs that represent larger regions of time,
we can give the algorithm a better awareness of the market at each data point
and “soften” any inherit assumptions about the news assimilation rate.

From our experiments we believe that this assimilation rate (of news into
current price) has a degree of variance to it. Allowing the evolutionary process
the freedom to select this rate may be a beneficial avenue of future research. This
extra parameter would of course increase the search space exponentially, perhaps
the separate input of time data into a Strongly typed GP or GE algorithm could
mitigate some of this problem and still achieve the desired goals.

This paper is not concerned with profitability, however it seems feasible that
a GP constructed model fed on quantitative news as demonstrated could be
coupled with traditional price and volatility inputs to give a market participant
a sizable advantage. Further improvements could be made by using advanced
trading techniques such as delta hedging and the selective use of the model
under conditions when its performance has been shown to exhibit better ratios
of true to false positive predictions.

References

1. Kaastra, 1., Boyd, M.: Designing a neural network for forecasting financial and
economic time series. Neurocomputing 10, 215-236 (1994/1996)

2. Kohzadi, N., Boyd, M.S., Kermanshahi, B., Kaastra, I.: A comparison of artificial
neural network and time series models for forecasting commodity prices. Neuro-
computing 10, 169-181 (1993/1996)

3. Yao, J., Tan, C.L.: A case study on using neural networks to perform technical
forecasting of forex. Neurocomputing 34, 79-98 (1997/2000)

4. Yao, J., Tan, C.L., Poh, H.: Neural Networks for technical analysis: a study
on klci. International Journal of Theoretical and Applied Finance 2(2), 221-
241(1998,/1999)

5. Kaboudan, M.A.: Genetic Programming Prediction of Stock Prices. Computational
Economics 16, 207-236 (1999/2000)

6. Becker, Y., Fei, P., Lester, A.M.: Stock Selection - An Innovative application of
Genetic Programming Methodology’. In: US Active Equity Research, State Street
Global Advisers,

7. Samanta, LeBaron.: Extreme Value Theory and Fat Tails in Equity Markets. In:
Computing in Economics and Finance 140, Society for Computational Economics
(2005)

8. Vukic, A.: Intraday Public Information The Frence Evidence Thesis (PhD). Uni-
versity of Fribourg (2004)

9. Hodrick and PrescotHodrick, Robert, and E.C. Prescott, Postwar U.S. Business
Cycles: An Empirical Investiga-tion, Journal of Money, Credit, and Banking (1997)

10. Lawrenz, C., Westerhoff, D.: Modeling Exchange Rate Behavior with a Genetic
Algorithm. Computational Economics 21, 209-229 (2000/2003)

60

11.

12.

13.

14.

F. Larkin and C. Ryan

Fama, E.: Efficient Capital Markets: A Review of Theory and Empirical Work.
Journal of Finance 25, 383-417 (1970)

Kelly Jr, J.L.: A New Interpretation of Information Rate, Bell System Technical
Journal, vol. 35, pp. 917-926 (1956)

Wilmott, P.: Paul Wilmott Introduces Quantitative Finance, 2nd edn. Wiley, John
& Sons, Chichester (2006)

Tetlock, P.C.: Giving Content to Investor Sentiment: The Role of Media in the
Stock Market. Journal of Finance 62, 1139-1168 (2007)

A Genetic Programming Approach to Deriving
the Spectral Sensitivity of an Optical System

Marc Ebner

Universitat Wiirzburg, Lehrstuhl fiir Informatik IT
Am Hubland, 97074 Wiirzburg, Germany
ebner@informatik.uni-wuerzburg.de
http://wwwi2.informatik.uni-wuerzburg.de/staff/ebner/welcome.html

Abstract. In color image processing, several sensors are used which re-
spond to the light in the red, green and blue parts of the spectrum.
When working with color images taken by an optical system it is very
important to know the sensitivity of the entire optical system. The op-
tical system consists of the sensor, lens and any filters which may be
used. The response characteristics of the lens and filters can be mea-
sured inside the laboratory. However, for many digital cameras it is not
clear how the sensors contained inside the camera respond to light. This
information may not be available from the manufacturer of the camera.
Even if we knew the response characteristics of the sensor, it may not
be clear what algorithms are employed by the manufacturer before the
data is finally stored as an image file. We show how genetic programming
may be used to obtain the sensor response functions using a single image
from a calibration target as input together with the reflectance data of
this calibration target.

1 DMotivation

The sensor array contained inside a digital camera measures the incident light.
For many digital cameras, data about how the sensor responds to light is not
publicly available because this data may not be released by the manufacturer.
Knowing how the RGB values stored inside the image depend on the irradiance
entering the lens of the camera is very important for colorimetry [1I2] and the
research area of color constancy [BII5I6IT]. We show how genetic programming
[SI9IT0] can be used to obtain the sensor response functions using an image from
a calibration target as input.

A standard sensor consists of a single type of light sensitive sensor and differ-
ently colored filters which are placed in front of the sensor to make it respond
to light in the red, green and blue parts of the spectrum. These sub-pixel sen-
sors are often arranged in a pattern which is called a Bayer pattern [I1]. A full
color image is obtained by interpolating the data from adjacent sensors. Other
types of sensors where all three components of the incident light are measured at
the same position also exist. Imaging chips which measure more than the three
components red, green, and blue have also been developed.

M. O'Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 61[72] 2008.
© Springer-Verlag Berlin Heidelberg 2008

62 M. Ebner

The response of a sensor for a given wavelength is proportional to the irra-
diance falling onto the sensor times the sensitivity of the sensor for that given
wavelength. The energy measured by the sensor is obtained by integrating over
all wavelengths. If we know the irradiance falling onto the optical system and
also know the energy measured by the sensor, then we can formulate an opti-
mization problem in order to find the sensitivities of the optical system. Data
is typically measured at intervals of 10nm. Therefore, we have 32 data points
inside the visible range from 390nm to 700nm. Finding the sensitivity of an op-
tical system is basically an optimization problem where the 32 sensitivities at
positions {390nm, 400nm, ..., 700nm} have to be found.

A number of different problems in image processing have been addressed by
the evolutionary computation community. Zhang and Ji [I2] as well as Rode-
horst and Hellwich [I3], have used a genetic algorithm for camera calibration.
An evolutionary strategy was used by Cerveri et al. [I4] to obtain the internal or
external parameters of a camera. Johnson et al. [I5] used a genetic algorithm for
projector calibration. Carvalho et al. [I6] has used a least squares approach to
obtain the response function of a sensor. A genetic algorithm was used to maxi-
mize the prediction ability of an extended generalized cross-validation measure.

Ebner [I7] was the first to apply an evolutionary strategy [I8/I9] to obtain
the sensor response curves of an optical system. Due to the type of problem,
constraints have to be enforced in order to solve it. Ebner has shown that best
results were obtained by enforcing the constraints directly on the genotype. We
will show how genetic programming can be used to find a solution to this type
of problem. By properly choosing the set of terminal symbols and the set of
elementary functions, constraints are enforced naturally.

This article is structured as follows. First, we describe the model of color image
formation. We then explain how finding the response curves of an optical sensor
can be defined as an optimization problem. Next, we show how genetic program-
ming can be used to find a solution to this problem. We performed experiments
on simulated data where the ground truth is known and also obtained the sensor
response curves for two commercially available digital cameras. Conclusions are
given at the end of the paper.

2 Theory of Color Image Formation

Suppose that we use our optical system to take an image of a calibration target
illuminated by a light source of known spectral power distribution. A calibration
target consists of many differently colored patched of known reflectances. The
optical system measures the light which is reflected from the calibration target.
Let N, be the number of colored patches on the calibration target. Let E(p, \)
be the irradiance which is falling onto patch p at wavelength A. Some of the
irradiance is absorbed by the patch, the remainder is reflected and may enter
the lens of the camera. Let R(p, \) be the reflectance of patch p at wavelength
A. We will assume that the optical system is using three sensors which measure
the light in the red, green and blue parts of the spectrum. Let S;(\) be the

A Genetic Programming Approach 63

sensitivity of the sensor i € {r, g,b}. Then the energy I;(p) measured by sensor
1 for patch p is modeled as

mmz/&@mm»Emmw. (1)

The integration is performed over all wavelengths to which the sensor responds.
This model of color image formation is used by many algorithms in colorimetry
and color constancy [2002T22).

We now assume that the calibration target is a Lambertian reflector, i.e. an
object which reflects the incident light in all directions. Let the radiance given
off by the light source which illuminates the calibration target be L(X). Then
the irradiance falling onto the calibration target is simply F(p, \) = L(\) cos «
where « is the angle between the normal vector ng describing the orientation
of the calibration target and the unit vector ny pointing into the direction of
the light source from the object patch. Hence, the energy I;(p) measured by the
sensor ¢ for object patch p is given by

um:mm/&@mmmumw @)

where G(p) = nsn’ (p) = cosa is a geometry factor. The geometry factor scales
all channels equally.

Digital cameras usually do not save the energy data measured by the sensors.
Most produce an output image using the sRGB color space [23]. If the sRGB
color space is used, then the measured data is stored in a non-linear way such
that the non-linearity of the output device is compensated for. This is called
a gamma correction. If we process such images of our calibration target, then
this gamma correction needs to be undone such that the processed color data
depends linearly on the measured data. Some digital cameras also allow the user
to select that the raw measured data be stored in an image file. In this case, the
raw data can be processed directly. From now on, we will assume that our optical
system produces RGB color triplets ¢; as output and that we have ¢; = I;.

3 Evolving the Sensitivities of an Optical System

We now show how evolutionary computation can be used to estimate the sensi-
tivities of an optical system. Figure [Il shows the data flow which is used by our
system. First an image of a calibration target is taken with the optical system.
For our experiments we will be using a standard IT8 calibration target made by
Wolf Faust. Such targets are frequently used for calibration of scanners or other
optical systems. This calibration target consists of 22 x 12 colored patches at the
top and 24 different gray patches at the bottom. It comes with a complete set
of reflectances for each of the patches for wavelengths 390nm to 700nm in steps
of 10nm.

Once an image of the calibration target has been taken, the pixel values
of each patch are averaged in order to obtain a single color measurement

64 M. Ebner

Image of IT8 Target Evolutionary Algorithm
Comier

Known Reflectance Data Q

Sensor Response Curves

<

Sensitivity
oo
RN

0 _
400 450 500 550 600 650 700
ARRRRRRRARNRNRRRRRANNY Wavelengh (om)

Fig. 1. Data flow of the method to obtain the sensitivities of an optical system. First,
the optical system is used to take an image of the calibration target with known
reflectances. The reflectance data is used by the evolutionary algorithm to compute
the fitness of possible solutions to this problem. After several generations, the optimal
sensitivities found by the evolutionary algorithm are output.

c(p) = [er(p), cg(p), cv(p)] for each patch p. Pixels close to the border of a patch
are not included in the average as they are assumed to be linear combinations
of the adjacent colors. Thus, we now have a virtually noise free measurement
c(p) = I(p) for each patch p. The calibration target comes with known reflectance
data R(p, \) for each patch p for each wavelength \. Before we can solve Equa-
tion [for S(A) = [S-(N), Sg(A), Sp(A)], we also need an estimate of the radiance
L(\) which is emitted by the light source. One way to obtain the radiance is to
measure it using a spectrometer. Another way is to use a light source which has
a known spectral power distribution.

Digital cameras usually perform some kind of white balancing. They correct
the image colors for the spectral power distribution of the illuminant. Most
consumer cameras either perform automatic white balancing or allow the user
to set one of several possible illuminants, such as sun, cloudy sky, neon light,
light bulb or flash. Given such a camera, it is best to set the white balance to sun
and then take an image of the calibration target on a sunny day. Professional
cameras allow the user to choose a particular color temperature. In most cases, it
is not known what processing is actually performed inside the camera to obtain
the RGB color triplets from the measured data.

A Genetic Programming Approach 65

Since we have assumed that we took appropriate measures to control the
illuminant and that the camera corrects for the type off illuminant used, we now
have to solve the following equation to obtain S(A).

c=G / SOR(A)dA 3)

Note that the geometry factor G scales all color channels equally. It can be
removed by computing chromaticities €.
¢ = ! c (4)
Cr + Cqg + ¢

We will be coding the sensor response curves S(\) as the individuals of our
evolutionary algorithm. Given an individual which represents a particular set
of sensor response curves, we can then compute how well this set describes the
actual set of response curves. In order to determine the fitness of an individual,
we compare the measured chromaticities &y7(p) which were obtained from the
image of the calibration target with the theoretical chromaticities &r(p) which
are computed using the known reflectances for all patches p.

The known reflectances R,(\) are used to compute the theoretical chromatic-
ities &7 (p) for patch p. Let S(\) be the sensor response curve represented by a
particular individual. Then the theoretical response is given as

cr(p)= Y, SR,N). (5)

Ae{390,...,700}

Let ¢7(p) be the corresponding chromaticity, i.e.

P T
er(p) = S cr(p) 7(p). (6)

The deviation Egy between the theoretical and the measured response is our

error measure

B =Y (er(p) —em(p)’. (7)

P

In other words, we compute the sum of the squared differences between ¢ and
¢y over all 288 image patches of the calibration target. The error measure Fgy
describes how well the sensitivities of any given individual match those of the
optical system. We want to minimize this error measure. A perfect individual
would have Fgy = 0.

4 Obtaining the Sensitivities of an Optical System Using
Genetic Programming

Ebner [17] has previously used an evolutionary strategy to obtain the sensor re-
sponse curves S;(\) which closely match the sensor response curves of an optical

~ ~ ~

S, S, Sy

Red Green Blue
1.4 1.4 1.4
1.2 1.2 1.2
£ 0.8 £ 0.8 s 0.8
= 06 = 06 = 06
S 04 5 04 5 04
@ 02 @ 02 ~ @ 02
0 0f ‘* 0
0.2 -0.2 0.2
0.4 0.4 0.4

400 450 500 550 600 650 700 400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm) Wavelength (nm)

Fig. 2. Evolutionary strategy representation. The sensitivity of the three sub-sensors
is stored consecutively inside the genotype. The drawback of this representation is
that two adjacent sensitivities are independent from each other leading to a response
function which may not necessarily be a smooth response function.

system. An evolutionary strategy is usually used for parameter optimization. For
this type of problem, an individual is simply a vector of floating point values which
represents the sensitivities of the three sub-sensors at positions {390nm, 400nm,
.., 700nm}. Such an individual is shown in Figure[2l Due to the type of problem,
the search space has to be constrained in order to guide evolution into the correct
part of the search space. Here, we have several constraints. The first constraint is
that the real sensor response curves are positive for all wavelengths A, i.e. we have
Si(\) > 0. Another constraint is that the sensor response curve is smooth with-
out any discontinuities. Due to the computation of chromaticities, we also have
the constraint that a uniform scaling of all parameters will not change the result.
These constraints can be enforced either through the fitness function or through a
repair mechanism on the genotype. Ebner [I7] showed that enforcing all the con-
straints directly on the genotype produced best results.

Instead of encoding an individual as a floating point vector and then enforcing
the constraints on the genotype, one may also use a more natural representa-
tion for this type of problem. The sensitivity of a sensor is usually Gaussian
shaped. One can consider the sensitivity as a combination of Gaussians. This
leads us to a genetic programming representation where the terminal symbols
are Gaussians which have a particular position and standard deviation inside
the visible spectrum and the set of elementary functions simply consists of the
addition function. This representation is shown in FigureBl The nodes are Gaus-
sian functions which depend on the wavelength A. The internal nodes are used
to combine these Gaussian functions.

The set of elementary functions and terminal symbols is shown in Table [
The terminal symbol sG(u, o) computes the following function.

Red Sensor

A Genetic Programming Approach 67

Green Sensor

Blue Sensor

[sGawor] [sGtms 0]
[sou 0] [s6o] 600 | [sGn o) |

> s 1 -
k] 3 o8 B
j 08 ;’:, '% 08

06 oo 06

04 04 04

02 02 02

© 400 450 500 550 600 650 700 ° 400 450 500 550 600 650 700 ° 400 450 500 550 600 650 700

Fig. 3. Genetic programming representation. The response function of a sensor con-
sisting of three sub-sensors responding to light in the red, green, and blue part of the
spectrum is represented by three trees.

Table 1. Set of elementary functions and terminal symbols

Name Symbol Arity Internal Variables
Gaussian G 0 (s,u,0)

Addition + 2 none

_(=pw)?
sGlp,0) = s adh (8)
The three variables s, © and o are stored inside each node. The internal param-
eter s specifies the strength of the Gaussian, p specifies its position within the
visual spectrum and o specifies the standard deviation of the Gaussian. Addi-
tion is used as the only elementary function. This representation allows us to
naturally enforce the constraints. The evolved sensor response curves are simply
added Gaussians. Therefore, the evolved sensor response curves are smooth and
also fulfill the constraint that the curves are positive for each wavelength A.
Individuals of the first generation are generated randomly. We then select one
of the genetic operators at random. The list of genetic operators are shown in
Table 2l Several operators change the structure of the individual, i.e. the trees,
while one evolutionary strategy type of mutation operator modifies the internal
parameters of all nodes. Offspring are generated until the new population is
filled. This process is then iterated for several generations.

68 M. Ebner

Table 2. Genetic programming operators

Name of Operator Method to generate offspring

Mutation-ES Evolutionary strategy type of mutation. All nodes of the in-
dividual are mutated by adding Gaussian distributed random
numbers to the internal parameters. Each internal parameter
x has an associated standard deviation § which is mutated
using 6 := ¢V (®7) The parameter z is then mutated using
x:=x+ N(0,6). N(u,0) denotes a random number having
a normal distribution with mean p and standard deviation
o.

Mutation-GP An individual is selected from the parent population. A ran-
dom node of a random tree of this individual is chosen. In-
ternal nodes are chosen with a probability of 90%. External
nodes are chosen with a probability of 10%. A new sub-tree
is generated and replaces the chosen node.

Extend-Mutation An individual is selected from the parent population. A ran-
dom terminal node of a random tree of this individual is cho-
sen. The chosen terminal node is replaced by the elementary
function “Addition”. A new terminal node is generated. The
new terminal node and the node that was previously chosen
become the child nodes of the newly generated elementary
function.

Prune-Mutation An individual is selected from the parent population. A ran-
dom terminal node of a random tree of this individual is
chosen. The parent node of the chosen terminal node is re-
placed by the other sub-tree of the parent node. If the tree
only consists of a single terminal node then a new terminal
node is generated replacing the old one.

Crossover Two individuals are selected from the parent population. A
random sub-tree is selected within the same random tree of
both individuals. The two sub-trees are then exchanged be-
tween the two individuals. For each crossover, we only gen-
erate a single offspring. The second offspring is discarded.

Tree-Crossover Two individuals are selected from the parent population. We
generate one offspring selecting the trees for the offspring
from either the first or the second parent.

5 Experiments

A population size of 1000 individuals was used. It was evolved for 1000 gener-
ations. Thus, a total of 10° fitness evaluations were performed. All individuals
from the first generation consisted of three Gaussians (one for each tree) with
random positions along the range from [390,700] and standard deviations from
the range [1,100]. An evolutionary strategy type of mutation was used to opti-
mize the strength, the position as well as the standard deviations of all Gaussians
of an individual. We are using a standard evolutionary strategy mutation oper-
ation with automatic step size adaptation, i.e. each internal parameter has an

A Genetic Programming Approach 69

associated standard deviation. The mutation step size was initialized to o = 0.01
and the variation of the step size was set to 5%, i.e. 7 = 0.05. The remaining
genetic operators modify the structure of the individual.

The best individual was always reproduced once into the next generation. The
remaining individuals of the population were filled using the following percent-
ages: Mutation-ES (90%), Mutation-GP (2%), Extend-Mutation (2%), Prune-
Mutation (2%), Crossover (2%), Tree-Crossover (2%). Tournament selection with
a tournament size of 5 was used to select individuals. A human would probably
approach the problem by first adapting the position and standard deviation of
the single Gaussian for each tree and then refining this solution using additional
Gaussians as needed. That’s why we applied the evolutionary strategy type of
mutation much more frequently than the other operators.

Test 1 Test 2
Sensor Response Curves Sensor Response Curves
12 T T 1.2 T T
Red Sensor Red Sensor
Green Sensor -~ Green Sensor -
1r lue |G 1r .~ Blue Sensor -
08 0.8
2 2
2 =
% 06 3 06
c / <
[y [}
»n »
04 r 0.4
02t 02}
Q e -l L r L Ty, L B Q Lobessems """'\ n Mo e
400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Fig. 4. Three different sensor response functions which are used to evaluate the evolu-
tionary algorithm

We first evaluated the proposed method on two sample problems where the
ground truth data is known. We generated synthetic response functions by over-
laying Gaussians. These two synthetic response functions are shown in Figure
[l A virtual calibration target with known reflectances was also created. The
synthetic response functions were then used to compute the response of the sim-
ulated sensor using EquationBl The evolutionary algorithm evaluates the fitness
of an individual using Equation [[l Since we know the actual response function
S()), we can evaluate how well the evolved response function S()\) matches this
data. For this evaluation, the evolved response function is normalized such that
the maximum response is 1.0. The fit to the actual data is then evaluated by
computing

1 ~
Eactual = 96 Z Z (S’L()\) - SZ(A))Q (9)
Ae{390,...,700} ie{r,g,b}

The results obtained for both synthetic response functions are shown in Table[3l
A total of 10 runs were performed for each sample problem. The table shows the

70 M. Ebner

Table 3. Experimental results obtained during 10 different runs. The standard devia-
tion is shown in round brackets.

EXp Eﬁt Eactual

Test 1 0.0024(0.0030) 0.0033(0.0092)
Test 2 0.0517(0.0226) 0.0057(0.0024)

Test 1 Test 2
Sensor Response Curves Exp. A Sensor Response Curves Exp. A
0.8 T T T T T 1.4 T T
e ~.. _RedS Red Sensor
07 | ~Green Zenson -] 12 ~Green Sensor -]
* Blug’Sensor - “Blue Sensor -
06 | \ 1r y
> 05 ; > o08f
2 / =
T 04y B 06
2 2 ;
o) 7} P
®? 03 ® 04 [
02 r 02l
01t [
0 ke . L Ty L T L0.2 Lt L L L L L
400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Fig. 5. Best evolved sensor response curves during all 10 runs for the two experiments

Canon 10D FujiFilm FinePix F30
Sensor Response Curves Exp. A Sensor Response Curves Exp. A
1 T T 1 T T
Red Sensor Red Sensor
0.9 r 4 Green Sensor -] 0.9 - Green Sensor -]
08 | { Blue Sensor -~y | 08 Blue Sensor -
0.7 r 0.7
E 06 | ES 06
2 05¢r 2 05
2 o4f 2 o4t
D 03t @ 03}
02 02t
0.1} - 0.1 f
0F 0
01 01 L
400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Fig. 6. Best evolved sensor response curves for two commercially available cameras: a
Canon 10D with an EF 28-135mm 1:3.5-5.6 IS USM Canon lens and an UV filter and
a FujiFilm FinePix F30

average minimum error measure Egy and also the average deviation between the
evolved solution and the actual sensor response function F,ctya. The standard
deviations are also shown. The best of the evolved individuals during all 10
runs is shown in Figure Bl The best individuals approximate the actual sensor
response curves quite well. However, a problem of this approach is also apparent.
Gaussians with a small standard deviation may be introduced which only have
a small impact on the fitness of the individual and hence are only eventually
removed. At present, it is not clear whether the approach of Ebner [I7] or the

A Genetic Programming Approach 71

approach presented here is better suited to this problem. This will be evaluated
in future research.

Apart from testing the proposed method on artificial data, we also used it to
obtain the sensitivities of two commercially available digital cameras: a Canon
10D and a FujiFilm FinePix F30. The results obtained are shown in Figure [Gl

6 Conclusion

Knowing the spectral sensitivity of an optical system is very important for color
vision research. The spectral sensitivities are a result of the type of sensor used
and are also influenced by the type of lens and filters which are placed in front
of the sensor. We have shown how genetic programming may be applied to this
type of problem. The method uses a calibration target with known reflectances.
The optical system is used to take an image of the calibration target. Evolution
then searches for sensor response curves which reproduce the colors shown in the
image of the calibration target. Previously, evolutionary strategies were used to
address this problem. Constraints have to be enforced in order to produce a
physically plausible sensitivity. This is because the energy measured by a sensor
is given by integrating over a range of wavelengths. With our approach the
constraints are naturally fulfilled by the type of representation used. We simply
represent a sensor response curve as the sum over several Gaussians represented
as a tree. The shape of this tree is evolved using genetic programming. Internal
parameters which define the position and standard deviations of the Gaussians
are evolved using an evolution strategy. We have used two sample problems
where the ground truth data is available to evaluate the approach. We then
applied this method to obtain the sensor response curves of two commercially
available digital cameras.

References

1. Wyszecki, G., Stiles, W.S.: Color Science. Concepts and Methods, Quantitative
Data and Formulae, 2nd edn. John Wiley & Sons, Inc, New York (2000)

2. International Commission on Illumination: Colorimetry, 2nd edition, corrected
reprint. Technical Report 15.2, International Commission on Illumination (1996)

3. Ebner, M.: Color Constancy. John Wiley & Sons, England (2007)

4. Wandell, B.A.: The synthesis and analysis of color images. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-9(1), 2-13 (1987)

5. Finlayson, G.D., Drew, M.S., Funt, B.V.: Color constancy: generalized diagonal
transforms suffice. Journal of the Optical Society of America A 11(11), 3011-3019
(1994)

6. Finlayson, G.D., Hordley, S.D.: Color constancy at a pixel. Journal of the Optical
Society of America A 18(2), 253-264 (2001)

7. Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images.
In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS,
vol. 2353, pp. 823-836. Springer, Heidelberg (2002)

72

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Ebner

. Koza, J.R.: Genetic Programming. On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)

. Koza, J.R.: Genetic Programming II. Automatic Discovery of Reusable Programs.

MIT Press, Cambridge (1994)

Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming -
An Introduction: On The Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann Publishers, San Francisco (1998)

Bayer, B.E.: Color imaging array. United States Patent No. 3,971,065 (1976)
Zhang, Y., Ji, Q.: Camera calibration with gentic algorithms. In: Proceedings of
the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea,
May 21-26, TEEE, Los Alamitos (2001)

Rodehorst, V., Hellwich, O.: Genetic algorithm sample consensus (gasac) - a paral-
lel strategy for robust parameter estimation. In: International Workshop 25 Years
of RANSAC, New York, USA, IEEE, Los Alamitos (2006)

Cerveri, P., Pedotti, A., Borghese, N.A.: Combined evolution strategies for dynamic
calibration of video-based measurement systems. IEEE Transactions on Evolution-
ary Computation 5(3), 271-282 (2001)

Johnson, C.M., Bhat, A., Thibault, W.C.: An evolutionary approach to camera-
based projector calibration. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference 2006, Seattle, Washington, July 8-12, pp. 1871-1872. ACM,
New York (2006)

Carvalho, P., Santos, A., Dourado, A., Ribeiro, B.: On the estimation of spectral
data: a genetic algorithm approach. In: Proceedings of the IEEE International
Conference on Image Processing, Thessaloniki, Greece, October 7-10, pp. 866—869.
IEEE, Los Alamitos (2001)

Ebner, M.: Estimating the spectral sensitivity of a digital sensor using calibration
targets. In: Proceedings of the Genetic and Evolutionary Computation Conference,
London, England, July 7-11, pp. 642-649. ACM, New York (2007)

Rechenberg, 1.: Evolutionsstrategie 1994. In: frommann-holzboog, Stuttgart (1994)
Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, New York
(1995)

Buchsbaum, G.: A spatial processor model for object colour perception. Journal of
the Franklin Institute 310(1), 337-350 (1980)

Finlayson, G.D.: Color in perspective. IEEE Transactions on Pattern Analysis and
Machine Intelligence 18(10), 1034-1038 (1996)

Forsyth, D.A.: A novel approach to colour constancy. In: Second International
Conference on Computer Vision (Tampa, FL), December 5-8, pp. 9-18. IEEE Press,
Los Alamitos (1988)

Stokes, M., Anderson, M., Chandrasekar, S., Motta, R.: A standard default color
space for the internet - sSRGB. Technical report, Version 1.10 (1996)

A SIMD Interpreter for Genetic Programming
on GPU Graphics Cards

W.B. Langdon and Wolfgang Banzhaf

Mathematical and Biological Sciences University of Essex, UK

Computer Science, Memorial University of Newfoundland, Canada

Abstract. Mackey-Glass chaotic time series prediction and nuclear pro-
tein classification show the feasibility of evaluating genetic programming
populations directly on parallel consumer gaming graphics processing
units. Using a Linux KDE computer equipped with an nVidia GeForce
8800 GTX graphics processing unit card the C4++ SPMD interpretter
evolves programs at Giga GP operations per second (895 million GPops).
We use the RapidMind general processing on GPU (GPGPU) framework
to evaluate an entire population of a quarter of a million individual pro-
grams on a non-trivial problem in 4 seconds. An efficient reverse polish
notation (RPN) tree based GP is given.

1 Introduction

Whilst modern computer graphics cards deliver extremely high floating point
performance for personal computer gaming, the same low cost consumer elec-
tronics hardware can be used for desktop (and even laptop) scientific appli-
cations [Owens et al., 2007]. However today’s GPUs are optimised for a single
program multiple data (usually abbreviated Single Instruction Multiple Data
SIMD) mode of operation. GPU also place severe limits on data flow. Port-
ing existing applications is non-trivial. Nevertheless [Fok e al., 2007] were able
to show speed ups from 0.62 to 5.02 when they ported evolutionary program-
ming to a GPU. They ran EP mutation, selection and fitness calculation on
their GPU. Each stage being done by fixed specially hand written GPU pro-
grams. [Harding and Banzhaf, 2007] were able to show far higher (peak) speed
ups when they ran the fitness evaluation of cartesian genetic programming on a
GPU. used Cg to precompile tree GP programs on the host CPU
before transferring them one at a time to a GPU for fitness evaluation. Both
groups obtained impressive speed ups by running many test cases in parallel.
We demonstrate a SIMD interpreter which runs 204 800 programs simultane-
ously on the GPU on one or more test cases.

A decade ago [Juille and Pollack, 1996] demonstrated a SIMD GP system for
a Maspar MP-2 super computer on a number of problems. The MP-2 was a
general purpose supercomputer, costing in the region of $10° in the mid 1990s.
Its peak theoretical performance came from its many thousands of processing

M. O'Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 73 2008.
© Springer-Verlag Berlin Heidelberg 2008

74 W.B. Langdon and W. Banzhaf

IF Leaf
/ Push onto individuals stacks

'

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop—Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

No< All programs finished? > Yes

Result is on top of each stack

Fig. 1. The SIMD interpreter loops continuously through the whole genetic program-
ming terminal and function sets for everyone in the population. GP individuals select
which operations they want as they go past and apply them to their own data and
their own stacks.

elements (PE) and the rapid bidirectional 2D data mesh interconnecting them.
Jullie’s coevolutionary problems were able to exploit the rapid transfer between
neighbouring PEs. Less than 200 MP-2 were sold whereas a successful GPU
typically has up to 128 independent processors and can be found in literally
millions of homes. Even a top of the range GPU can be had for about £350.
In GPUs data describing scenes are imagined to flow into the processors,
which transform them and transmit them onto the next processing stage (or
to the user’s screen). Typically recursion is not used. Part of the GPUs speed
comes from specialising this data stream and avoiding the possibility of expen-
sive side-to-side interaction. This restriction enables the GPU to schedule work
freely without user intervention between the available processors. Indeed adding
more processors can improve performance immediately without redesigning the
application. However it makes it difficult to do some operations. The GPU should
not be regarded as a “general purpose” computer. Instead it appears to be best
to leave some (low overhead) operations to the CPU of the host computer.
Previously the parallelism of GPUs has been exploited by evaluating an indi-
vidual’s fitness by running it simultaneously on multiple training examples. Here
we evaluate the entire GP population in parallel. Multiple training examples are
not needed. How is this possible on a Single Instruction Multiple Data com-
puter? Essentially the trick is to use one interpreter as the “single instruction”

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 75

stream and treat the programs it interprets as “multiple data” items. Figure [l
shows the essential inner loop of the SIMD interpreter. The loop runs on every
computing element in the GPU. One complete cycle around the loop is used to
evaluate each leaf and function in the GP tree. E.g. five instructions (push +— x
and =) are needed for each primitive. In the SIMD interpreter, the role of the
interpreted data item is to select which of the five is used. (The results of other
four are discarded.) Effectively each GP individual acts as a sieve saying which
operation it wants performed next. Whilst this introduces a new overhead, use
of cond instructions to skip the four unwanted instructions and the speed of the
GPU makes our approach viable. The SIMD interpreter can support more than
four functions, but, in principle, the overhead increases with the size of the func-
tion set. While multi-ops, conditionals, loops, jumps, subroutines and recursion
are possible, they are not included in these benchmarks.

The next section discusses some other previous parallel GP systems. The sec-
tion following it discusses possible implementation avenues and why we chose
RapidMind. This is followed by descriptions of our two benchmarks (Sections @l
and [l). Whilst Section [6 describes the performance of the interpreter in prac-
tise and relates it to other work. This is followed by a discussion, future work
(Section [7) and our conclusions (Section []).

2 Parallel Genetic Programming

While most GP work is conducted on sequential computers, the algorithm typi-
cally shares with other evolutionary computation techniques at least three com-
putationally intensive features, which make it well suited to parallel hardware.
1) Individuals are run on multiple independent training examples. 2) The fit-
ness of each individual could be calculated on independent hardware in parallel.
3) Lastly sometimes experimenters wish to assign statistical confidence to the
stochastic element of their results. This typically requires multiple independent
runs of the GP. The, comparative, ease with which EC can exploit parallel ar-
chitectures has lead to the expression “embarrassingly parallel”.

Early work includes Ian Turton’s use of a GP written in Fortran running on
a Cray super computer |Turton et al., 1996|. Koza popularised the use of Be-
owulf workstation clusters where the population is split into separately evolving
demes with limited emigration between compute nodes [Andre and Koza, 1996;
[Bennett III et al., 1999] or workstations |Page et al., 1999]. Indeed as
[Chong and Langdon, 1999;|Gross et al., 2002] showed by using Java and the In-
ternet, the GP population can be literally spread globally. Alternatively JavaScript
can be used to move interactive fitness evaluation to the user’s own home but
retain elements of a centralised population [Langdon, 2004].

Others have used special purpose hardware. For example, while
used a simulator, he was able to show how a linear machine code GP might be
run very quickly on a field programmable gate array using VHDL to model sun
spot data. However his FPGA architecture is distant from a GPU.

76 W.B. Langdon and W. Banzhaf

128+1200 floats

Zeros time series 2048 texture
[zeros] F—— —

Population Population

512x400 (16byte per program) 2048x2048 texture —w

stack (204800 copies)
k, J, i, PC (204800)

Population Fitness

512x400 floats error (204800 copies)

Interpreter

Run 204800
programs

Fig. 2. Major data structures for Mackey-Glass. At the start of the run the interpreter
is compiled on the CPU (left hand side). It and the training data are loaded onto
the GPU (righthand side). Every generation the whole population is transfered to the
GPU. Each individual is interpreted using its own stack and local variables (k, J, i,
PC) and its RMS error is calculated. The error is is used as the programs’ fitness. All
transfers are made automatically by RapidMind.

In summary GP can and has been parallelised in multiple ways to take ad-
vantage both of different types of parallel hardware and of different features
of particular problem domains. We propose a new way to exploit the inherent
parallelism available in modern low cost mass market graphics hardware. Towit
a GP SIMD interpreter for GPUs.

3 Programming Graphics Cards

Perhaps unsurprisingly the first uses of graphics processing units (GPUs) with
genetic programming were for image generation [Ebner et al., 2005] & its refs.
[Harding and Banzhaf, 2007, Section 3] described the various major high level
language tools for programming GPUs (Sh, Brook, PyGPU and microsoft Ac-
celerator). nVidia has two additional tools: CUDA and Cg (C for graphics
Fernando and Kilgard, 2003|). CUDA is specific to nVidia’s GPUs. While Sh
McCool and Du Toit, 2004] is still available from SourceForge, its development
is effectively frozen at Sh 0.8.0 and McCool recommends using its replacement
from RapidMind. Unlike Sh, RapidMind is not free, however www.rapidmind.net
issues licences, code, tutorials and documentation to developers. They host a de-
velopers’ forum and offer prompt and effective support. Like Sh, RapidMind is
available for both microsoft directX and unix OpenGL worlds and is not tied to
a particular manufacturer’s GPU hardware. Indeed recently they started to sup-
port parallel programming on the cell processor. However C++ code written for
RapidMind’s libraries is not portable to other systems. Another nice feature of

http://libsh.org/
http://graphics.stanford.edu/projects/brookgpu/

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 7

RapidMind is that it frees the C++ programmer from the need to learn graphics
jargon and conceals many hardware limitations.

4 Mackey-Glass

The Mackey-Glass chaotic time series is described in |[Langdon and Banzhaf, 2005b;
[Langdon and Banzhaf, . Briefly the GP is given historical data from a series of
1200 points one time step apart and asked to predict the next value. It is allowed
to see data up to 128 time steps in the past. Figure@land Table[describe our im-
plementation.

Table 1. GPU GP Parameters for Mackey-Glass time series prediction

Function set: ADD SUB MUL DIV operating on floats

Terminal set: Registers are initialised with historical values of time series. D128 128
time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally D1
with the previous value. Time points before the start of the series are set
to zero (cf. zeros top of Figure). Constants 0, 0.01, 0.02, ... 1.27

Fitness: RMS error

Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-
ulation size 512 x 400

Initial pop: ramped half-and-half 1:3 (depth 1 to 3. 50% of terminals are constants)

Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-
tree 5%). Max tree size 15, Max tree depth 4.

Termination: 50 generations

Fig. 3. The GP population is spread one per grid square in two dimensions. If North
is better than Origin, it is copied over it. But if Origin is better, O is copied over N.
(No change if equally fit.) After selection, crossover may occur between O and X. To
promote mixing, 50% of crossovers swap which parent supplies the root node, so a child
produced by crossover is equally likely to inherit its root from either parent. Also the
neighbourhood pairing rotates 90° every generation. E.g. next generation, crossover
will be between O and S.

4.1 Fine Grained Diffusion Model of Overlapping Demes

While it is not needed for operation with GPU, we used a fine grained diffusion

model of overlapping demes [Langdon, 1998], see Figure [Bl This allows a low

selection pressure and ready visualisation, cf. Figure [l

78 W.B. Langdon and W. Banzhaf

" GPU Genetic Programming

Fig.4. Screen shot of 512 x 400 GP population after 100 generations. Colour
indicates fitness (left) and syntax (right). Below are two histograms (log scale)
showing distribution of population by fitness and genotypic distance from the
first optimal solution. (Colour scales below each histograms.) Crossover is produc-
ing large numbers of unfit leafs (vertical lines at 540 and 600) [Poli et al., 2007
Local convergence and the production of species is visible (esp. right). See
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html and Google videos for ani-
mation and more explanation.

4.2 Subtree Crossover and Mutation

In these experiments, the crossover and mutation rates were chosen so that all
of the next population are produced either by crossover or mutation (but not
both). This ensures almost all children are different from their parents.

Koza’s crossover was implemented for linearised reverse polish
notation. However there is no bias towards using functions rather than terminals
as crossover points. If a pair of crossover points would cause either offspring to
be too big or too deep, both are rejected and a new pair chosen again.

One of three types of mutation are used: subtree mutation, point mutation
and constant creep mutation. In subtree mutation a subtree is chosen uniformly
at random and replaced with a subtree created by the ramped half-and-half
(depth 0:1, i.e. leaf or 1 function+2 leafs) algorithm used to create the initial
population. If the mutation point is already at the maximum depth, then the
subtree is replaced by a randomly chose leaf. If the mutant tree is too big it is
rejected and the mutation process restarted with a newly chosen mutation point.

Point mutation does not change the size or shape of the parent tree. A muta-
tion point is uniformly chosen and replaced by a function or leaf with the same
arity using the same random selection technique as was used in the initial pop-
ulation. Repeated mutations are applied until, the mutated tree is syntactically
different from its parent.

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 79

Table 2. Mackey-Glass prediction error after 50 generations in ten runs (multiplied
by 128 as was used in [Langdon and Banzhaf, 2005a])

Mean
RMS errorx128 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69
Solution size 9 11 9 9 13 9 9 9 9 9 9.6

Run time secs 167.3 168.0 167.5 167.5 167.3 167.4 167.5 167.5 167.5 167.6 167.5

In constant creep mutation, one of the constant leafs in the tree is chosen
at random. (If there are no constants, point mutation is used instead.) It is
changed by just enough to give the next constant’s value. (L.e. by £0.01 in the
Mackey-Glass experiments).

4.3 Mackey-Glass Model Accuracy

The results of ten independent GP runs on the GPU are summarised in Table[2l
The tight limit on tree size (15) and depth (4) lead to similar but smaller solu-
tions than those reported for tree GP [Langdon and Banzhaf, 2005al, , Table 2].
In 4 of 10 cases the results are better than the ten FXO (i.e. the smallest and
fastest) subtree runs. The GPU GP runs are faster than all but two CPU runs
despite having a population more than 400 times as big and performing full
floating point calculations rather than 8 bit integer ones.

Table 3. GPU SIMD GP Parameters for protein localisation

Function set: ADD SUB MUL DIV operating on floats

Terminal set: Number (integer) of each of the 20 amino acids in the protein. (Codes
B and Z are ambiguous. Counts for code B were split evenly between
aspartic acid D and asparagine N. Those for Z, between glutamic acid E
and glutamine Q.) 128 unique constants chosen from tangent distribution
(50% between -10.0 and 10.0)

Fitness: 5 True Positive rate + } True Negative rate [Langdon and Barrett, 2004]

Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-
ulation size 1024 x 1024

Initial pop: ramped half-and-half 2:5 (50% of terminals are constants)

Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-
tree 5%). Max tree size 63, Max tree depth 8.

Termination: 1000 generations

5 Evolving a Million Individuals for 1000 Generations
Protein Location Prediction

The system was expanded to cope with: 1) a population of a million pro-
grams. 2) bigger trees. 3) deeper trees. 4) Randomised sub-selection of train-
ing cases. (See TableBl) The task chosen was to predict the location of proteins
within the cell given only their amino acid composition [Langdon and Banzhatf, -}

80 W.B. Langdon and W. Banzhaf

[Harding and Banzhaf, 2007]. A 1024 by 1024 population of programs of up to 63
tree elements and maximum depth of 8 was run on 200 of 1213 randomly chosen
proteins selected for training. Compared to [Langdon and Banzhaf, -, , Table 5],
in terms of predictive accuracy on unseen proteins (cf. Figure []) this run pro-
duced better results than one technique (FXO) and the same accuracy but a
smaller solution than the other technique (two point crossover, 2X0O). However
the main point is a graphics card can readily evolve millions of GP programs
over thousands of generations.

0.9

MeaanP and 'IFN

0.7

05

1200 Test examples

03 |

01 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

200 Training examples (gen 1000)

Fig. 5. Fitness on 200 randomly chosen training cases in generation 1000, versus fitness
on 1200 unseen prote