
Logical Networks: Towards Foundations

for Programmable Overlay Networks
and Overlay Computing Systems

Luigi Liquori and Michel Cosnard

INRIA, France
{Luigi.Liquori,Michel.Cosnard}@inria.fr

Abstract. We propose and discuss foundations for programmable over-
lay networks and overlay computing systems. Such overlays are built
over a large number of distributed computational individuals, virtually
organized in colonies, and ruled by a leader (broker) who is elected or
imposed by system administrators. Every individual asks the broker to
log in the colony by declaring the resources that can be offered (with
variable guarantees). Once logged in, an individual can ask the broker
for other resources. Colonies can recursively be considered as evolved
individuals who can log in an outermost colony governed by another
(super)-broker. Communications and routing intra-colonies goes through
a broker-2-broker PKI-based negotiation. Every broker routes intra- and
inter- service requests by filtering its resource routing table, and then
by forwarding the request first inside its colony, and second outside, via
the proper super-broker (thus applying an endogenous-first-estrogen-last
strategy). Theoretically, queries are formulæ in first-order logic equipped
with a small program used to orchestrate and synchronize atomic for-
mulæ. When the client individual receives notification of all (or part of)
the requested resources, then the real resource exchange is performed di-
rectly by the server(s) individuals, without any further mediation of the
broker, in a pure peer-to-peer fashion. The proposed overlay promotes an
intermittent participation in the colony, since peers can appear, disap-
pear, and organize themselves dynamically. This implies that the routing
process may lead to failures, because some individuals have quit, or are
temporarily unavailable, or they were logged out manu militari by the
broker due to their poor performance or greediness. We design, validate
through simulation, and implement these foundations in a programmable
overlay computer system, called Arigatoni.

“Computer is moving on the edge of the Network...”
[Jan Bosch, Nokia Labs, Keynote ARCS, LNCS 4415, 2007]

1 Introduction

The explosive growth of the Internet gives rise to the possibility of designing
large overlay networks and virtual organizations consisting of Internet-connected

G. Barthe and C. Fournet (Eds.): TGC 2007, LNCS 4912, pp. 90–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Logical Networks 91

computers units, able to provide a rich functionality of services that makes use of
aggregated computational power, storage, information resources, etc. We would
like to start this paper with the standard definition of Computer System (we
emphasize some text using underline).

Definition 1 (Computer System)
A computer system is composed by a computer hardware and a computer software.

– A Computer Hardware is the physical part of a computer, including the digi-
tal circuitry, as distinguished from the computer software that executes within
the hardware. The hardware of a computer is infrequently changed, in com-
parison with software and data.

– A Computer Software is composed by three parts, namely, system software,
program software, and application software.
• The System Software helps run the computer hardware and computer

system. Examples are operating systems (OS), device drivers, diagnostic
tools, servers, windowing systems. . .

• The Program Software usually provides tools to assist a programmer in
writing computer programs and software using different programming
languages. Examples are text editors, compilers, interpreters, linkers, de-
buggers for general purpose languages. . .

• The Application Software allows end users to accomplish one or more spe-
cific (non computer related) tasks industrial automation, business software,
educational software, medical software, databases, computer games. . .

Starting from the previous basic skeleton definition, we elaborate our vision of
what an Overlay Computer System is. The reader can focus on the tiny but
crucial differences between the above and below definitions.

Definition 2 (Overlay Computer System)
An overlay computer system is composed by an overlay computer hardware and
an overlay computer software.

– An Overlay Computer Hardware is the physical part of an overlay computer,
including the digital circuitry, as distinguished from the overlay computer
software that executes within the hardware. The hardware of an overlay com-
puter changes frequently and it is distributed in space and in time. Hardware
is organized in a network of collaborative computing individuals connected via
IP or ad-hoc networks; hardware must be negotiated before being used.

– An Overlay Computer Software is composed by three parts, namely, overlay
system software, overlay program software, and overlay application software.
• The Overlay System Software helps run the overlay computer hardware

and overlay computer system. Examples are network middlewares play-
ing as a distributed operating systems(dOS), resource discovery protocols,
virtual intermittent protocols, security protocols, reputation protocols. . .

• The Overlay Program Software usually provides tools to assist a program-
mer in writing overlay computer programs and software using different
overlay programming languages. Examples are compilers, interpreters,
linkers, debuggers for workflow-, coordination-, and query-languages.

92 L. Liquori and M. Cosnard

• The Overlay Application Software allows end users to accomplish one or
more specific (non-computer related) tasks industrial automation, busi-
ness software, educational software, medical software, databases, and
computer games. . .Those class of applications deals with computational
power (Grid), file and storage retrieval (P2P), web services (Web2.0),
band-services (VoIP), computation migrations. . .

The Arigatoni overlay network computer, designed and developed since 2006 at
INRIA, is a structured multi-layer overlay network which provides resource dis-
covery with variable guarantees in a virtual organization where peers can appear,
disappear, and organize themselves dynamically. Arigatoni is mainly concerned
with how and where resources are declared and discovered in the overlay, al-
lowing agent computers to make secure use of agent aggregated computational
power, storage, information resources etc. We anticipate, in a nutshell, the key
functional units of Arigatoni (discussed in details later on).

– An Agent Computer (AC) is the basic computational entity of the overlay: it
is typically a device, like a PDA, a laptop, a PC, or smaller devices, connected
through IP or other ad hoc communication protocols in different fashions
(wired, wireless, etc.).

– An Agent Broker (AB) is devoted to (un)subscribing ACs, to receiving service
queries from clients, to contacting and negotiating with potential servers, to
authenticating clients and servers, and to routing requests. An AB is the
leader of the colony of the ACs and of the sub-colonies that is manages.
Intra-colony communication is initiated through the leader AB, while inter-
colonies communication is initiated through a chain of (PKI-based) AB-2-AB
message exchanges. The rationale ensuring scalability is that every request
is handled first inside its colony, and then forwarded through the proper
super-leader (thus applying an endogenous-first-estrogen-last strategy). In
both cases, when a client AC receives an acknowledgment of a service request
from the direct leader AB, then the AC is served directly by the server(s),
i.e. without a further mediation of the AB, in a pure P2P fashion. Logically,
an AC can be seen as a collapsed colony, or a broker managing itself.

– An Agent Router (AR) is the basic unit close to ACs and ABs that is devoted
to sending and receiving packets of the resource discovery and the virtual
intermittent protocols (see below) and to forwarding the “payload” to the
units which are connected with this router. The connection AB-AR-AC is
ensured via a suitable API.

The total decoupling between peers in space (peers do not know other peers’
locations), time (peers do not participate in the interaction at the same time),
synchronization (peers can issue service requests and do something else, or may
be doing something else when being asked for services), and encapsulation (peers
do not know each other) are key features of Arigatoni’s scalability.

Summarizing, the main challenges in Arigatoni lie in the management of an
overlay network with a dynamic topology, the routing of queries, and the discov-
ery of resources in the overlay. In particular, resource discovery is a non-trivial

Logical Networks 93

problem for large distributed systems featuring a discontinuous amount of re-
sources offered by agent computers and their intermittent participation in the
overlay. For more technical details on the Arigatoni overlay network, the inter-
ested reader can have a look on [CLC07b, CCL06, CLC07a, CCL08].

Therefore, the main contributions of this paper are:

– to provide adequate notions and definitions of a programmable overlay net-
work computer;

– on the basis of these definitions, to propose a precise architecture of a pro-
grammable network computer;

– to provide insight of the architecture by putting emphasis on technical prob-
lems, security, social, implementations, and related issues;

– to summarize and collect previous efforts by the authors on Arigatoni into
one reference paper easy to read.

1.1 Virtual Organizations

Computational units in Arigatoni are organized in Colonies. A colony is a simple
virtual organization composed by exactly one leader, offering some broker-like
services, and some set of individuals. Individuals are agent computers, or sub-
colonies. Every colony has exactly one leader and at least one individual (the
leader itself), and a colony contains only individuals.

Agent computers communicate by first registering to the colony and then
by asking and offering services. The leader agent broker analyzes service re-
quests/responses, coming from its own colony or arriving from a surrounding
colony, and routes requests/responses to other individuals. Individuals get in
touch with each other without any further intervention from the system, in a
P2P fashion. Peers’ coordination is achieved by a simple program written in an
orchestration/business language à la BPEL [IBM], or JOpera [Pau].

Symmetrically, the leader of a colony can arbitrarily unregister an individual
from its colony, e.g., because of its bad performance when dealing with some re-
quests or because of its high number of “embarrassing” requests for the colony.
This strategy, reminiscent of the Roman do ut des, is nowadays called, in Game
Theory, Rapoport’s tit-for-tat strategy [Rap63] of cooperation based on reci-
procity. Tit-for-tat is commonly used in economics, social sciences, and it has
been implemented by a computer program as a winning strategy in a chess-play
challenge against humans (see also the well known prisoner dilemma). In com-
puter science, the tit-for-tat strategy is the stability (i.e. balanced uploads and
downloads) policy of the Bittorrent P2P protocol [Bit].

Once an agent computer has issued a request for some services, the system
finds some agent computers (or, recursively, some sub-colonies) that can offer
the resources needed, and communicates their identities to the (client) agent
computer as soon as they are found.

The model also offers some mechanisms to dynamically adapt to dynamic
topology changes of the overlay network, by allowing an individual (agent com-
puter or sub-colony) to login/logout in/from a colony. This essentially means

94 L. Liquori and M. Cosnard

that the process of routing request/responses may lead to failure, because some
individuals logged out or because they are temporarily unavailable (recall that
individuals are not slaves). This may also lead to temporary denials of service
or, more drastically, to the complete “delogging” of an individual from a given
colony in the case where the former does not provide enough services to the
latter.

Trees vs. graphs: a conflict without a cause. In the first versions of Arigatoni, the
network topology was tree- or forest-based. But since AC are not slaves, multiple
registrations are in principle possible and unavoidable. This weaves the network
topology to a dynamic graph. As an immediate consequence, Arigatoni’s protocols
deal with multiple registrations of the same individual in different colonies, with
the natural consequence of resource overbooking, routing table update loops, and
resource discovery loops (when a resource request comes back to the individual
that generates the request itself), see [LC07].

As an example of resource overbooking, suppose an AC registers to two
colonies, by declaring and offering the same resource S twice, i.e. once for each
colony. This phenomenon is well known in the telecommunications industry, such
as in the “frame-relay” world. For the record, overbooking in telecommunications
means that a telephone company has sold access to too many customers which
basically flood the telephone company lines, resulting in an inability for some
customers to use what they purchased. Other examples of overbooking can be
found in the domain of transportation and hotel reservations.

1.2 User Application Independence, Parametricity, Universality

Dealing only with resource discovery has one important advantage: the complete
generality and independence of any offered and requested resource. Thus, Ariga-
toni can fit with various scenarios in the agent computing arena, from classical
P2P applications, like file- or band-sharing, to more sophisticated Grid applica-
tions, like remote and distributed big (and small) computations, until possible,
futuristic migration computations, i.e. transfer of a non completed local run in
another agent computer, the latter being useful in case of catastrophic scenar-
ios, like fire, terrorist attack, earthquake, etc., in the vein of agent programming
languages à la Obliq [Car95] or Telescript [Whi94]. We could envisage at least
the following scenarios to be a tight fit for our model (list not exhaustive):

– Ask for computational power (i.e. the Grid);
– Ask for memory space (i.e. distributed storage);
– Ask for bandwidth (i.e. VoIP);
– Ask for a distributed file retrieving (i.e. standard P2P applications);
– Ask for a (possibly) distributed web service (i.e. query à la Google or any

service available via web-oriented protocols);
– Orchestration of a distributed execution of an algorithm;
– Ask for a computation migration (i.e. transfer one partial run in another

agent computer, saving the partial results;

Logical Networks 95

– Ask for a human computer interaction (the human playing the role of an
individual);

– . . .

Thus, Arigatoni is parametric or universal in the sense of universal Turing ma-
chine, or generic as the von Neumann computer architecture. In one sentence:
“Arigatoni is the first fully programmable overlay network computer”.

2 Functional Units and Protocols in Arigatoni

2.1 Functional Units

The Agent Computer (AC). This unit can be, e.g., a cheap computer device
composed by a small RAM-ROM-HD memory capacity, a modest CPU, a ≤ 40
keystrokes keyboard (or touchscreen), a tiny screen (≤ 4 inch), an IP or ad
hoc connection (via DHCP, BLUETOOTH, WIFI, WIMAX. . .), an USB port, and
very few programs installed inside (one simple editor, one or two compilers, a
mail client, a mini browser. . .)1. Of course an AC can be a supercomputer, or
an high performance PC-cluster, a large database server, an high performance
visualizer (e.g. connected to a virtual reality center), or any particular resource
provider, even a smart-dust. The operating system (if any) installed in the AC
is not important. The computer should be able to work in local mode for all the
tasks that it could do locally, or in global mode, by first registering itself to one
or many colonies of the overlay, and then by asking and serving global requests
via the colony leaders. In a nutshell, the tasks of an AC are:

– Discover the address of one or many ABs, playing as colony leaders, upon
its arrival in a “connected area”;

– Register on one or many ABs, so entering de facto the Arigatoni’s virtual
organization;

– Ask and offer some services to others ACs, via the leaders ABs;
– Connect directly with others AC in a P2P fashion, and offer/receive some

services. Note that an AC can also be a resource provider. This symmetry is
one of the key features of Arigatoni. For security reasons, we assume that all
AC come with their proper PKI certificate.

The Agent Broker (AB). This unit can be, e.g., a computer device made by an
high speed CPU, an IP or ad hoc connection (via DHCP, BLUETOOTH, WIFI,
WIMAX. . .), an high speed hard-disk with a resource routing table to route
queries, and an efficient program to match and filter the routing table. The
computer should be able to work in global mode, by first registering itself in
the overlay and then receiving, filtering and dispatching global requests through
the network. The tasks of an AB are:

1 Our favorite device actually is the Internet terminal Nokia N810 [Nok].

96 L. Liquori and M. Cosnard

– Discover the address of another super -AB, representing the super-leader of
the super-colony, where the AB colony is embedded. We assume that every
AB comes with its proper PKI certificate. The policy to accept or refuse the
registration of an individual with a different PKI is left open to the level of
security requested by the colony;

– Register/unregister the proper colony on the leader AB which manages the
super-colony;

– Register/unregister clients and servants AC in its colony, and update the
internal resource routing table, accordingly;

– Receive the request of service of the client AC;
– Discover the resources that satisfy an AC request in its local colony, according

to its resource routing table;
– Delegate the request to an AB leader of the direct super-colony in case the

resource cannot be satisfied in its proper colony. Prior to this, it must register
itself (and byproduct its colony) to another super-colony;

– Perform a combination of the above last two actions;
– Deal with all PKI intra- and inter-colony policies;
– Notify, after a fixed timeout period, or when all individuals failed to satisfy

the delegated request, to the AC client the denial of service requested by the
AC client;

– Send all the information necessary to make the AC client able to communi-
cate with the AC servants. This notification is encoded using the resource
discovery protocol. (Finally, the AC client will directly talk with the ACs
servants).

The Agent Router (AR). This unit implements all the low-level overlay network
routines, providing access to the underlay network. In a nutshell, an AR is a
shared library dynamically linked with an AC or an AB. The AR is devoted to
the following tasks:

– Upon the initial start-up of an AC (resp. AB) it helps to register the unit
with one or many AB that it knows or discovers;

– Checks the well-formedness and forwards packets of the two Arigatoni’s pro-
tocols across the overlay toward their destinations;

2.2 The Resource Discovery Protocol (RDP)

Kind of resource discovery. The are mostly three mechanisms of resource dis-
covery in Arigatoni, namely:

– The process of an AB to find and negotiate resources to serve an AC request
in its own colony;

– The process of an AC (resp. AB) to discover an AB, upon physical/logical
insertion in a colony;

The first discovery is processed by the resource discovery protocol, while the
second is processed out of the Arigatoni overlay, using well known network tech-
nologies like DHCP [AD97], DNS [GVE00], BLUETOOTH, WIFI, WIMAX. . .

Logical Networks 97

The current RDP protocol version allows the request for multiple services and
service conjunctions. Adding service conjunctions allows an AC to offer several
services at the same time. Multiple services requests can be also asked to an
AB; each service is processed sequentially and independently of others. As an
example of multiple instances, an AC may ask for three CPUs, or one chunk of
10GB of HD, or one gcc compiler. As an example of a service conjunction, an AC
may ask for another AC offering at the same time one CPUs, and one chunk of
1GB of RAM, and one chunk of 10GB of HD, and one gcc compiler. If a request
succeeds, then, using a simple orchestration language, the AC client can use all
resources offered by the servers ACs.

The RDP protocol proceeds as follows: suppose an AC X registers – using the
intermittent protocol VIP presented below – to an AB and declares its avail-
ability to offer a service S, while another AC Y, already registered, issues a
request for a service S′. Then, the AB looks in its routing table and filters S′

against S. If there exists a solution to this filter equation, then X can provide
a resource to Y. For example, the resource S = [CPU=Intel, Time≤10sec] filters
against S′ = [CPU=Intel, Time≥5sec], with attribute values Intel and Time be-
tween 5 and 10 seconds.

2.3 Inside Routing Tables for Resource Discovery

Each AB maintains a routing table T locating the services that are registered
in its colony. The table is updated according to the dynamic registration and
unregistration of ACs in the overlay; thus, each AB maintains a partition of the
data space. When an AC asks for a resource (service request), then the query is
filtered against the routing tables of the ABs where the query is arrived and the
AC is registered; in case of a filter-failure, the ABs forward the query to their
direct super-ABs. Any answer of the query must follow the reverse path.

Thus, resource look-up overhead reduces when a query is satisfied in the cur-
rent colony. Most structured overlays guarantee look-up operations that are log-
arithmic in the number of nodes. To improve routing performance, caching and
replication of data and search paths can be adopted. Replication also improves
load balancing, fault tolerance, and the durability of data items.

Every AC registers in the colony with a tuple of (services,instances), like
SREG:[(Si, ni)]i=1...h, and asks for a another tuple of (service,instances), like
SREQ:[(Sj , nj)]j=1...k. Each service is looked-up sequentially and independently
of others, by wrapping a unitary resource discovery inside a for-loop:

for each j = 1 . . . k do −find service Sj− end foreach

An atomic service request may also have the shape SREQ:[((
∧

i=1...n Si), m)], i.e.
the system is no longer asked to find m occurrences of a single service, but rather
m occurrences of a conjunction of n services. That is, the system has to look for
m distinct ACs, each AC being able to provide all the services in

∧
i=1...n Si.

For a given resource S, one entry in the routing table has the form T [S] =
[(Pj , mj)]j=1...k, where (Pj)j=1...k are the addresses of the direct children in the

98 L. Liquori and M. Cosnard

AB’s colony, and (mj)j=1...k are the instances of S available at Pj . Intuitively
and for an atomic service request SREQ:[(S, n)], the most economic resource
discovery routing steps performed by an AB are:

1. Look in the table T for all distinct q ACs able to provide S in the local AB’s
colony;

2. If n ≤ q, then search n resources first inside the current colony (and, recur-
sively, in sub-colonies), and finally delegate to the AB’s super-leaders all the
denied resources.

3. If n ≥ q, then search q resources inside the colony (and, recursively, in sub-
colonies), and finally delegate all the n−q remaining instances to the AB’s
super-leader.

Pragmatically speaking this strategy, reminiscent of the object-oriented
“method-lookup algorithm”, pushes always first queries on the leafs of the over-
lay in order to avoid, if possible, routing bottlenecks.

An AC receiving a service request first chooses the services that it accepts or
denies to serve; then, it generates a SRESP message containing the lists of ac-
cepted or rejected services, and finally sends it to its AB. The response messages
are then propagated back in the overlay, following the reverse path.

2.4 The Virtual Intermittent Protocol (VIP)

Peers’ participation in Arigatoni’s colonies is managed by the Virtual Intermittent
Protocol (VIP); the protocol deals with the dynamic topology of the overlay, by
allowing individuals to login/logout to/from a colony (using the SREG message).
Due to this high node churn, the routing process may lead to failures, because
some individuals have logged out, or because they are temporarily unavailable,
or because they have logged out manu militari by the broker for their poor
performance or greediness. In the VIP protocol, there are two ways an individual
can register to an AB (sensible to its physical position in the network topology),
the latter being not enforced in Arigatoni:

1. Registration of an individual to an AB belonging to the same current ad-
ministrative domain;

2. Registration, via tunneling, of an individual to another AB belonging to a
different administrative domain.

If both registrations apply, then the individual is working de facto both in local
mode in the current administrative domain, and in global mode in another ad-
ministrative domain. Symmetrically, an individual can unregister according to
the following simple rules “d’étiquette”:

– Unregistration of an individual is allowed only when there are no pending
services demanded or requested to the leader AB of the colony: individual
must always wait for an answer of the AB or for a direct connection of the AC
requesting or offering the promised service, or wait for an internal timeout
(the time-frame must be negotiated with the AB);

Logical Networks 99

– (As a corollary of the above) an AB cannot unregister from its own colony,
i.e. it cannot discharge itself. However, for fault tolerance purposes, an AB
can be faulty. In that case, the ACs unregister one after the other and the
colony disappear;

– Once an AC has been disconnected from a colony, it can physically migrate
in another colony belonging to any other administrative domain;

– Selfish nodes in P2P networks, called “free riders”, that only utilize other
peers’ resources without providing any contribution in return, can be fired by
a leader; if the leader of a colony finds that an individual ratio of fairness is
too small (≤ ε, for a given ε), it can arbitrarily decide to fire that individual
without notice. Here, the VIP protocol also checks that the individual has
no pending services to offer, or that the timeout of some promised services
has expired, the latter case means that the free rider promised some services
but finally did not provide any service at all (not trustfulness).

In both cases of node (un)registration, a service update SUPD message will be
flooded in the brokers’ network in order to keep resource tables as much updated
as possible; thus, high node churn leads to message overhead in the overlay.

2.5 Inside Routing Tables for Intermittent Participation

As said before, routing tables denoting the set of resources are stored in AB’s. An
individual (AC or AB representing a sub-colony) registers to a colony with a tuple
of (services,instances), like in SREG:[(Si, ni)]i=1...h. If a broker AB accepts an in-
dividual in its colony, then it sends a service update, written SUPD:[(Si, ni)]i=1...h,
to its direct super-broker AB′ in order to communicate the availability of the new
resources in its colony, by an update of the routing table T ′ of AB′. This message
is then propagated from broker to broker until the root (if any) of the multi-
layer overlay is reached. This means a high node churn forces routing tables
to be faulty until all service updates are properly propagated. As such, service
registration in an overlay network computer is an activity that must be taken
seriously into account [CLC07b].

The first Arigatoni network topology was tree-based. In [LC07], the authors
make a significant step by moving from a tree-based network topology to a
more general graph-based one. As an immediate consequence of this move, the
Arigatoni VIP protocol must be reconsidered in order to take into accounts routing
loops when updating routing tables.

3 Social Model, Security, Trust and Implementation
Issues

3.1 The Social Model Underneath Arigatoni

The Arigatoni overlay network computer defines mechanisms for devices to inter-
operate by offering services, in a way that is reminiscent to Rapoport’s tit-for-tat
strategy of co-operation based on reciprocity. This way to understand common

100 L. Liquori and M. Cosnard

behavior of virtual organizations has some theoretical basis on Game Theory
[Rap63]. Classical results from game theory are based on the assumption that
a shared amount of resources is available, and then users have an incentive
to collaborate. The very first design of Arigatoni forced each AC to register to
only one AB, but the architecture can be smoothly scaled up to a more general
topology where each AC may simultaneously be registered to several AB, and
where a colony is just one possible social scheme.

This means that Arigatoni fits with motivations and cooperation behavior of
different communities. It tries to be policy neutral, leaving policy choices for
each node at the implementation or configuration level, or at the community
or organization level. Policy domains can overlap (one node can define itself as
belonging “much” to colony foo and “a little bit” to colony bar). This denotes
a decentralized non-exclusive policy model.

One question can arise: who is Arigatoni designed for? We believe the overlay
is flexible enough to serve a mix of different “social structures” and “end-users”:

– Independent end-user connecting through his ISP or migrating from hot-spot
to hot-spot;

– Cooperative communities of disseminated individuals;
– More regulated or hierarchical communities (maybe a better picture of a

corporate network);
– Cooperative or competitive resource providers and resource brokers.

The Arigatoni overlay network computer is suitable to support various extended
trust models. Moreover, reputation score could be expanded to a multi-dimensio-
nal value, for example adding a score for the quality of the service offered by an
individual. Moreover, Arigatoni encourages cooperation and enables gratuitous
resource offering. But it may also suit for business extensions, e.g.:

– An individual can sell resource usage, creating a resource business;
– An AB can sell a resource discovery service, creating a brokering business

(“I point you to the best resources, more quickly than anyone else”).

The Arigatoni overlay network computer is suitable of a number of service ex-
tensions: among others, e.g.:

– How to create and call third party services for on-line payment of services;
– How to exchange digital cash for payment of services;
– How to negotiate service conditions between client and servant, including

price and quality of service.

The one-to-many nature of the RDP protocol service request (SREQ) are of
particular interest in this case.

Another possible Arigatoni extension may define how to join a third party
auction server. Candidate servants for a SREQ would contact the auction server
and make their bid. The trusted auction server chooses the elected candidate
and service conditions based on auction terms. The individual client would then
contact the auction server and get this information. Those extensions may take
advantage of the RDP optional fields [BCLV06], for example, to transmit location
and parameter information to call a third party system.

Logical Networks 101

3.2 Trust, Security, and Implementation Issues

In order to work securely, the Arigatoni overlay network computer needs to be
able to offer the following guarantees to its components:

– The communication between two individuals must be secured;
– The role played by a node (i.e. client AC, servant AC or AB) must be certified

by a third party trusted by the nodes which have to communicate with
this particular node. A way to implement those constraints is to use PKI
certificates. A Certification Authority delivers certificates, and couples of
private and public keys for ACs and ABs which attest of their distinctive
roles. The whole mechanisms involved by a PKI is out of the scope of this
paper, but good use of PKIs and an implementation compliant with RFC2743
[Lin00] can provide all the necessary security, namely the trustfulness on the
identity of the peers, and the trustfulness of all the transmitted data, i.e.
secrecy, authenticity, and integrity.

– In addition to PKIs, a more “liquid” trust model could be built, based on
reputation mechanisms [WV03]. Reputation represents the amount of trust
an individual in the overlay has in another individual based on its partial
view. In a nutshell:
• Each individual maintains a reputation score for each individual it knows;
• Each individual maintains a reputation score for each resource it serves;
• Exchanges between individuals update dynamically each other’s scores;
• Conflict between two or many individuals are resolved by the brokers

leaders of the colonies to which individuals belong;
• The computation of the reputation score (a trust metrics) and the way

individuals exchange scores is left free to each single implementation.

A last word on implementation issues of the Arigatoni overlay network com-
puter: it is well known that two technical barriers are commonly used to block
transmission over IP network in overlays, namely:

– Firewalls to drop UDP flows (usually considered as suspects);
– NAT techniques to mask to the outside world the real IP addresses of inside

hosts; a NAT equipment changes the IP source address when a packet goes
to outside, and it changes the IP destination address when a packet comes
from outside.

The usage of these mechanisms is very frequent on the Internet, and barriers
exist to prevent connections between inside and outside nodes in the Arigatoni
overlay. RFC3489 [RWHM03] can be used to overcome such obstacles.

4 Related Work, Applications, and Conclusions

4.1 Discussion on Overlay Topologies

Many technologies, algorithms, and protocols have been proposed recently for
resource discovery . Some of them focus on Grid or P2P oriented applications, but

102 L. Liquori and M. Cosnard

none of those targets the full generality as the Arigatoni overlay network computer
does. Indeed, Arigatoni deals with generic resource discovery for building an
overlay network of ABs and ACs, structured in a virtual organization of variable
topology, with clear distinct roles between leader ABs and individuals.

In an overlay network, any message is routed through the full overlay; as
such, the topology adopted in the overlay strongly affects routing protocols and
their complexity. The overlay is built on top of the physical one, and, thus, two
neighbor nodes in the overlay network may be many links apart in the physical
network. The first Arigatoni network topology was a dynamic hierarchical n-layer
tree, but a recent work raise Arigatoni to a graph topology [LC07].

To implement resource look-up, structured overlays map (key of) data item
to nodes (our ABs). Hence, the mapping is usually done through hashing the
key space of the data item to the id in the node space. In the literature, e.g.
[AEO06], there are essentially the following types of overlays: structured (tree,
ring, or grid), unstructured (graphs), hybrid overlays (a combination of the two
above), and multi-layer (or n-layer) overlays.

Arigatoni falls mostly in the category of multi-layer. In a nutshell, in a n-layer
overlay network, the responsibility assigned to individuals differs (think of the
different roles between ABs and ACs), since super-peers (ABs) serve as a server
for a subset of all peers. Ordinary peers (ACs) submit queries to their super-peers
and receive results from it. Super-peers are also connected to each others; they
route messages over the overlay network, submit, delegate, and answer queries
on behalf of their sub-peers. This structure is replicated recursively, creating a n-
layer topology, where peers become super-peers with decreasing responsibilities.
The possibility of having a graph of super-peers complicates routing, registration
protocols and resource table update.

Typical issues in n-layer overlays are the size of each colony (load balancing
of the colony), and the internal coherence of the resources offered and requested
by each colony (homogeneity of the colony). Typical bottlenecks of n-layers are
reliability, service availability (related to few points of failure), and load bal-
ancing. Classical solutions to cope with these problems are adding redundancy
at the broker-layer. Historically, the most related tree topologies are BATON
[JV05] and P-GRID [Abe01], whereas the closest n-layer topologies are the one
of CANON [GKGM04] and CORAL [FM03].

– (BATON) is a balanced binary tree that features a left and a right routing
table, both contained in each node (denoted by a single logical id). Nodes
may join or leave the network at any time, provided the tree remains bal-
anced. The node receiving a join can forward the join towards a node which
has less children or which is a leaf node. This implies that an AC can become
an AB. Leaving the network is constrained to not breaking the balanced tree
unless finding a substitute. As such, load balancing can be costly.

– (P-GRID) is a distributed dynamic binary search tree, such that the search
space is partitioned between peers. The salient feature of P-GRID is the sep-
aration of concerns between id and its position in the network. All peers
maintain a partial routing table of the search space, that is negotiated

Logical Networks 103

beteen the closest peers. Multiple peers can be responsible for the same path,
resulting in non uniqueness of routing and robustness under peer failure.

– (CANON) is a multi-layer overlay where routing is based on a hierarchical
distributed hash tables (DHT). As in Arigatoni, the search space is parti-
tioned into domains ; in contrast, routing inside a domain is DHT-based, and
topology is static.

– (CORAL) is another hierarchical DHT. The search space is partitioned into
three clusters, based on latency; a regional cluster, a continental cluster and a
planet-wide cluster. It also comes with algorithm for self-organizing, merging
and splitting clusters, to ensure acceptable diameters.

4.2 Discussion on Closest Technologies

The GLOBUS toolkit [Glo], is an open-source set of technology, protocols and
middleware, used for building Grid applications (sharing computing power, dis-
tributed databases, etc.). The toolkit includes stand-alone software for security,
information infrastructure, resource management, data management, communi-
cation, fault detection, and portability. The analogies with the Arigatoni over-
lay network computer are in the Community Scheduler Framework component
and the Web Service Grid Resource Allocation and Management, concerning
the resource discovery, and the Teleoperations Control Protocol concerning the
way units cooperate (in analogy with the RDP protocol and with orchestration
languages). Hovewer, GLOBUS does not target the full generality of the Ariga-
toni overlay network computer, that, thanks to its generic resource discovery,
is suitable for pervasive, ubiquitous overlay computations in addition to pure
Grid-oriented applications.

Promoted by Sun, the JXTA [JXT] technology is a set of open peer-to-peer
protocols enabling device to communicate, collaborate and share resources. Af-
ter a peer discovery process, any peer can interact directly with other peers.
Hence, the overlay network of peers induced by the JXTA technology is flat.
Moreover, the main concern of Arigatoni is the design of protocols for generic
resource discovery and intermittent participation, while the main concern of the
JXTA technology is to offer some tools to implement a P2P model. In addition,
Arigatoni focuses on the evolution/devolution of colonies, while JXTA technology
allows peers to communicate using an already existing overlay network of peers.
Further, Arigatoni’s aim is the dynamicity of the overlay network, while JXTA’s
is the freedom of connectivity between peers. Finally, JXTA-peers come with
their proper JXTA-id (logical JXTA peers addressing), while Arigatoni relies on
the more conventional IP addresses.

Publish/subscribe (pub/sub) [EFGK03] is a communication paradigm for
asynchronous dissemination of information. Consumers subscribe to the system
(typically called the Notification Service) to specify the type of information that
they are interested in. Producers publish data to the system. The notification
service disseminates the data to all (if possible) the consumers that are inter-
ested in receiving it, according to the data and the interests declared by the
consumers. Many pub/sub systems have been developed recently, such as XNET

104 L. Liquori and M. Cosnard

[CF04], SIENA [CRW01] or GRYPHON [BCM+99]. Banavar et al., in [Hei01],
propose to adapt the SIENA publish/subscribe system to achieve GNUTELLA-
like resource discovery. Their work resembles ours in the sense that Arigatoni is
also inspired by the pub/sub paradigm. However, resource discovery in pub/sub
is achieved by publishing queries to the notification service. In contrast, Arigatoni
implements its own resource discovery algorithm, especially designed for generic
and scalable resource look-up.

Worthy also to notice the OSGi technology [OSG], a component integration
platform with a service-oriented architecture and life cycle capabilities that en-
able dynamic delivery of services. These capabilities greatly increase the value
of a wide range of computers and devices that use the Java platform. The OSGi
specifications provide a platform for an universal middleware.

4.3 Challenges

We envision a long term meta-application anda medium-term specific-application.

Challenge 1: From Large-Scale Computing Machines to Large-Scale
Overlay Network Computing Machines

This challenge is inspired by the seminal talk by John von Neumann, given in
May 1946, “Principles of Large-Scale Computing Machines”, reprinted in [vN88].
At that time, “large-scale” meant the ENIAC computer, i.e., 17,468 vacuum
tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors, 5
million joint, 30 short tons, 2.4m x 0.9m x 30m, stored in a 167 m2 room, and
150 kW to operate. Today, thanks to the Moore’s law and to the Internet, “large
scale” means “planetary scale”, i.e. the computer hardware is distributed in
space and in time and must be negotiated before being used. The authors think
that the main inspirations of our Arigatoni overlay network computer are still
contained in that historical paper.

As such, we plan to design and implement a pervasive, programmable, over-
lay network computer, i.e. a colony of communicating computer individuals that
exchange resources and services with various guarantees, execute sequential or
parallel algorithms on one or more computer individuals, or perform tasks writ-
ten in a workflow&dataflow language. An overlay program will be a combination
of an overlay network connectivity dealing with virtual organizations and a com-
putation of an algorithm resulting of the summa of all algorithms running on
different computer individuals, and the coordination of all computer individuals
using an ad hoc language. The metalanguage used to program the overlay net-
work computer is often called (terminology often overlaps), workflow- dataflow-
orchestration- composition- metaprogramming- language. We could better call
such metalanguage a distributed assembler, since there is a strong similarity with
machine code. As examples, the pseudo machine code instruction à la Backus
[Bac54] move R0 R1 can be “refreshed” as

move dataR0 from ipR0:portR0 to ipR1:portR1

Logical Networks 105

(where of course latency is an non-trivial issue), and the pseudo machine code
instruction op R0 R1 R2 can be recasted as

op on ipR0 with
ipR0:portR0:dataR0 and
ipR1:portR1:dataR1 and stockin
ipR2:portR2:dataR2

Challenge 2: Developing a Vehicular Infrastructure

We plan to develop algorithmic methods and adapt Arigatoni protocols for build-
ing an ad hoc vehicular network infrastructure, called Ariwheels [Ari]. That net-
work must enable efficient and transparent access to the resources of on-board
and roadside nodes. Commercial services and access to public information will
be available to vehicles transiting in specific areas where such information is
broadcast by roadside wireless gateways or by other vehicles. Data retrieved can
be stored on the on-board vehicle computer; then, they can be used and rebroad-
cast at a later time without the need of persistent connectivity. We envision that
these new features will offer innovative functions and services, such as:

– Distribution, from infrastructure to vehicles (I2V), and among vehicles (V2V),
of safety and/or traffic-related information;

– Collection, from vehicles to infrastructures (V2I), of datas useful to perform
traffic management operations;

– Information exchange between private vehicles and public transportation
systems (buses, vehicles, road side equipments, etc.) to support and, thus,
foster inter-modality in urban areas;

– Distribution of real-time information to enable dynamic navigation services.

4.4 Conclusions and Future Work

The design of our programmable overlay network computer is far to be complete.
We are working on a more complete mathematical study of our system, based
on more elaborate statistical and stochastic models and realistic assumptions
[NCL07], as well as the possibility to include hierarchical DHT in addition to the
routing tables. We have already implemented an efficient simulator to validate
our design choice [Log]. We are currently working on the implementation of
a real client to be deployed on a real size experiments and platforms, like, e.g.
PLANETLAB, and GRID5000 [Gri]. We hope that Arigatoni could represent a step
toward a natural integration of different scenarios under the common paradigm
of Overlay and Pervasive Computing (see the Grand UK Challenges [Cha], or
the new INRIA strategic plan [INR]).

Acknowledgment. The authors would warmly like to thank Didier Benza and
Marc Vesin on all issues related to trust, security and social networks, and
Philippe Nain for its invaluable comments and interactions on the Arigatoni
performance model. This work is supported by Aeolus IST-015964.

106 L. Liquori and M. Cosnard

References

[Abe01] Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Infor-
mation Systems. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M.
(eds.) CoopIS 2001. LNCS, vol. 2172, pp. 179–194. Springer, Heidelberg
(2001)

[AD97] Alexander, S., Droms, R.: RFC2132, DHCP Options and BOOTP Ven-
dor Extensions. Technical report, IETF (1997)

[AEO06] AEOLUS. Deliverable D2.1.1: Resource Discovery: State of the Art Sur-
vey and Algorithmic Solutions (2006)

[Ari] Ariwheels. Arigatoni on wheels, http://www-sop.inria.fr/mascotte/
Luigi.Liquori/ARIGATONI/Ariwheels.htm

[Bac54] Backus, J.W.: The IBM 701 Speedcoding System. J. ACM 1(1), 4–6
(1954)

[BCLV06] Benza, D., Cosnard, M., Liquori, L., Vesin, M.: Arigatoni: Overlaying
Internet via Low Level Network Protocols. In: JVA, John Vincent Atana-
soff International Symposium on Modern Computing, pp. 82–91. IEEE,
Los Alamitos (2006)

[BCM+99] Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom,
R.E., Sturman, D.C.: An efficient multicast protocol for content-based
publish-subscribe systems. In: Proc. of ICDCS (1999)

[Bit] BitTorrent, Inc., http://www.bittorrent.com/

[Car95] Cardelli, L.: A language with distributed scope. Computing Sys-
tems 8(1), 27–59 (1995)

[CCL06] Chand, R., Cosnard, M., Liquori, L.: Resource Discovery in the Ariga-
toni Overlay Network. In: I2CS, International Workshop on Innovative
Internet Community Systems. LNCS, Springer, Heidelberg (2006)

[CCL08] Chand, R., Cosnard, M., Liquori, L.: Powerful resource discovery for
Arigatoni overlay network. Future Generation Computer Systems 24(1),
31–38 (2008)

[CF04] Chand, R., Felber, P.: XNet: A Reliable Content-Based Pub-
lish/Subscribe System. In: Proc. of SRDS: Symposium on Reliable Dis-
tributed Systems (2004)

[Cha] Grand UK Challenge. Global Computing and Pervasive Computing,
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/

[CLC07a] Chand, R., Liquori, L., Cosnard, M.: Improving Resource Discovery in
the Arigatoni Overlay Network. In: Lukowicz, P., Thiele, L., Tröster, G.
(eds.) ARCS 2007. LNCS, vol. 4415, pp. 98–111. Springer, Heidelberg
(2007)

[CLC07b] Cosnard, M., Liquori, L., Chand, R.: Virtual Organizations in Ariga-
toni. DCM, International Workshop on Development in Computational
Models 171(3) (2007)

[CRW01] Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and Evaluation of
a Wide-Area Event Notification Service. ACM TOCS 19(3) (2001)

[EFGK03] Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.M.: The Many
Faces of Publish/Subscribe. Computing Survey 35(2), 114–131 (2003)

[FM03] Freedman, M.J., Mazières, D.: Sloppy Hashing and Self-Organizing Clus-
ters. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735,
pp. 45–55. Springer, Heidelberg (2003)

http://www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI/Ariwheels.htm
http://www.bittorrent.com/
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/

Logical Networks 107

[GKGM04] Ganesan, P., Krishna, P., Garcia-Molina, H.: Canon in G-major: Design-
ing DHTS with Hierarchical Structure. In: Proc. of ICDCS, pp. 263–272.
IEEE, Los Alamitos (2004)

[Glo] Globus Alliance, http://www.globus.org/
[Gri] Grid 5000 Consortium, http://www.grid5000.org
[GVE00] Gulbrandsen, A., Vixie, P., Esibov, L.: RFC2782, A DNS RR for speci-

fying the location of services (DNS SRV). Technical report, IETF (2000)
[Hei01] Heimbigner, D.: Adapting publish/subscribe middleware to achieve

gnutella-like functionality. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 176–181. Springer, Heidelberg (2001)

[IBM] IBM. Business Process Execution Language, http://www.ibm.com/

developerworks/library/specification/ws-bpel/

[INR] INRIA. Strategic Plan 2008-2012 (to appear)
[JV05] Jagadish, H.V., Ooiand, B.C., Vu, Q.H.: BATON: A Balanced Tree

Structure for Peer-to-Peer Networks. In: Proc. of VLDB, pp. 661–672.
ACM, New York (2005)

[JXT] JXTA Community, http://www.jxta.org/
[LC07] Liquori, L., Cosnard, M.: Weaving Arigatoni with a Graph Topology. In:

ADVCOMP, International Conference on Advanced Engineering Com-
puting and Applications in Sciences, IEEE Computer Society Press, Los
Alamitos (2007)

[Lin00] Linn, J.: RFC 2743, Generic Security Service Application Program In-
terface Version 2, Update 1. Technical report, IETF (2000)

[Log] LogNet. Arigamulator, http://www-sop.inria.fr/mascotte/Luigi.

Liquori/ARIGATONI/index.html

[NCL07] Nain, P., Casetti, C., Liquori, L.: A Stochastic Model of an Arigatoni
Overlay Computer. Research report, Politecnico di Torino (2007)

[Nok] Nokia. N810 Internet Terminal
[OSG] OSGi Alliance. Open Services Gateway Initiative,

http://www.osgi.org/

[Pau] Pautasso, C.: JOpera: Process Support for more than Web Services,
http://www.jopera.org/

[Rap63] Rapoport, A.: Mathematical models of social interaction. In: Handbook
of Mathematical Psychology, vol. II, pp. 493–579. John Wiley and Sons,
Chichester (1963)

[RWHM03] Rosenberg, J., Weinberger, J., Huitema, C., Mahy, R.: RFC3489, STUN
- Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). Technical report, IETF (2003)

[vN88] von Neumann, J.: The Principles of Large-Scale Computing Machines.
IEEE Ann. Hist. Comput. 10(4), 243–256 (1988)

[Whi94] White, J.E.: Telescript Technology: The Foundation for the Electronic
Marketplace. White Paper. General Magic, Inc. (1994)

[WV03] Wang, Y., Vassileva, J.: Trust and Reputation Model in Peer-to-Peer
Networks. In: Proc. of Peer-to-Peer Computing, IEEE Computer Soci-
ety, Los Alamitos (2003)

http://www.globus.org/
http://www.grid5000.org
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.jxta.org/
http://www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI/index.html
http://www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI/index.html
http://www.osgi.org/
http://www.jopera.org/

	Logical Networks: Towards Foundations for Programmable Overlay Networks and Overlay Computing Systems
	Introduction
	Virtual Organizations
	User Application Independence, Parametricity, Universality

	Functional Units and Protocols in Arigatoni
	Functional Units
	The Resource Discovery Protocol (RDP)
	Inside Routing Tables for Resource Discovery
	The Virtual Intermittent Protocol (VIP)
	Inside Routing Tables for Intermittent Participation

	Social Model, Security, Trust and Implementation Issues
	The Social Model Underneath Arigatoni
	Trust, Security, and Implementation Issues

	Related Work, Applications, and Conclusions
	Discussion on Overlay Topologies
	Discussion on Closest Technologies
	Challenges
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

