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Abstract. In Proof-Carrying Code, the verification condition generator
(VCgen) generates a set of formulas whose validity implies that the code
satisfies the consumer policy. Applying a VCgen to a bytecode language
with exceptions (such as Java bytecode) can result in a large number
of proof obligations, due to the amount of branching instructions. We
present a VCgen for Java bytecode that uses static analyses to reduce
the number of proof obligations. As a result, the task of producing a
proof is simpler, and the subsequent proof terms smaller. We formalize
the VCgen as a deep embedding in Coq and prove soundness with respect
to the Bicolano formalization of the Java bytecode semantics.

1 Introduction

Proof-Carrying Code (PCC) [8] has been developed as a framework to guarantee
safety in mobile scenarios. The code that is to be executed by a consumer needs to
be accompanied with a proof (certificate) that it satisfies a required safety policy.
The consumer checks that the certificate corresponds with a proof of safety of
the code. Once the certificate is checked, the code can be safely executed. The
task of generating such certificate, which can be a complex task depending on
the safety policy, is delegated to the producer. The task of the consumer reduces
to checking the certificate, which is in general much simpler.

A verification condition generator (VCgen) is used to generate the proof obli-
gations that will ensure that the code satisfies the given safety policy. The VCgen
is usually applied to annotated bytecode. It ensures, no matter which path in the
control flow graph of the code is taken at runtime, that the safety policy is satis-
fied. Programs written in bytecode languages such as Java, that includes objects
creation, dynamic method calls, and exception mechanism, have a high degree
of branching code, due to the instructions that can throw runtime exceptions.
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Consider the following excerpt of Java bytecode:

pc1 istore x
pc2 getfield f
pc3 . . .

A VCgen (denoted by VC ) generates two proof obligations for the program
point pc2:

lv(x) �= null ⇒ VC (pc3)
∧ lv(x) = null ⇒ VC (pcexc),

where lv access the local variable array, and pcexc is the program point cor-
responding to the exception handler. For every instruction that can throw a
runtime exception, the VCgen returns two proof obligations: one corresponding
to normal execution, and another corresponding to exceptional execution. Usu-
ally a program contains many of these instructions, which results in an explosion
in the number of proof obligations.

The use of static analyses, such as null-pointer analysis, can ensure that the
reference above is non-null and, therefore, it is not necessary to generate a proof
obligation for the exceptional execution. In such case, the VCgen will generate
the following condition:

lv(x) �= null ⇒ VC (pc3) .

Static analyses can provide the required information to reduce many proof
obligations that are generated from instructions that may throw exceptions, as
in the example above.

We show, in Sect. 3, a way to combine a VCgen with static analyses, to
reduce the control flow graph of the program, and hence, the number of proof
obligations. We will exemplify the approach using a simple null-pointer analysis,
and sketch the proof of soundness of the VCgen.

We have formalized the VCgen as a deep embedding in Coq based on the
Bicolano formalization of the Java bytecode semantics, which is described in
Sect. 2.

The certificates for our VCgen need to include, besides the proofs of safety,
the information collected from the static analyses. We discuss the generation
and checking of these certificates in Sect. 4.

2 Preliminaries

We will base our development on the Bicolano formalization [10]. Bicolano is a
formalization in Coq of the Java Virtual Machine (JVM), which includes object
creation, virtual methods, exception handling, and arrays. We will describe only
a small and reduced fragment of the formalization, needed for our purposes.

A program consists of a set of classes, each containing a set of fields and meth-
ods. A method is composed by a body (sequence of instructions) and a specifica-
tion (this component will be described later, when describing the VCgen). The
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instructions considered in this paper are: getfield FieldId , putfield FieldId ,
iload Z, istore Z, invokevirtual Method , athrow ClassName, ireturn.

For each method m, PC m denotes the set of program points corresponding to
the instructions of m. Most of our definitions refer to a single method, therefore,
for simplicity, we will omit the reference to the method when is clear from the
context. State denotes the type of program states; each s : State is a triple,
s = (h, os , l), where h is the heap, os is the operand stack, and l is the local
variables. The type of values is defined as Value = Int + Loc, where Int is the
type of integers, and Loc the type of reference values. The operand stack is
modeled by a list, Stack = list Value. The local variables are modeled by a
function LocalVar = Z → Value. The heap is modeled by an abstract data type,
Heap, with operations for creating objects (newObj ) and accessing their fields
(get , update). The type of initial states for a method is Statei = Heap×LocalVar ,
and the type of final states is Stater = Heap × ReturnVal, where ReturnVal =
Value + Loc, representing normal termination of a method with a value, or
abnormal termination with the location of an exception object. Exc is the type
of possible exceptions (e.g. NullPointer, ArrayBound, . . . ).

Operational Semantics. The operational semantics is defined only for well-
typed programs, so we will assume that all programs considered are well-typed.

The semantics is defined by two relations −→ : Method → PC × State →
PC × State → Prop and ↓ : Method → PC × State → Stater → Prop, where
m � (pc, s)−→(pc′, s′) represents execution of one instruction in a method, and
m � (pc, s)↓s′ represents execution of one instruction that reaches a final state.
We will write −→∗ to mean the reflexive, transitive closure of −→, and ↓∗ to
mean the relation −→∗ ◦ ↓ (i.e., many steps of −→ followed by one step of ↓).

To make the presentation clearer, we define two auxiliary relations: →JVM :
Method → PC × State → Exc → Prop and →EXC : Method → PC × State →
Heap × Loc → Prop, where m � (pc, s)→JVMe indicates that executing the
instruction at pc in state s results in the JVM exception e being thrown (e.g.,
the exception NullPointer is thrown when accessing a null reference), and m �
(pc, s)→EXC(h, loc) indicates that the exception pointed by loc in heap h was
thrown when executing the instruction at pc in state s, and we need to look for an
exception handler. To search for the handler code corresponding to an exception,
we have a function excHandler : Method → PC × Heap × Loc → PC + ⊥, that
returns ⊥ when no handler is found in the current method.

Figure 1 shows a few rules of the big-step operational semantics. The function
instructionAt returns the instruction corresponding to a given program point.
The function initArgs : Value × list Value → LocalVar builds the initial local
variables for a method call, where the first argument is a reference to the ob-
ject, and the second argument is the list of arguments of the method. The infix
operators :: and ++ represent the cons function for lists and the concatenation
of lists, respectively.

In the rules for the instruction invokevirtual, there is the implicit assump-
tion that the length of args is the same as the number of arguments of the
method m′. The first rule for invokevirtual corresponds to the case where the
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instructionAt(pc) = athrow loc �= null

(pc, (h, loc :: os, l))→EXC(h, loc)

instructionAt(pc) = athrow loc = null

(pc, (h, loc :: os, l))→JVMNullPointer

instructionAt(pc) = getfield f get(h, loc, f) = v loc �= null

(pc, (h, loc :: os, l))−→(pc + 1, (h, v :: os, l))

instructionAt(pc) = getfield f loc = null

(pc, (h, loc :: os, l))→JVMNullPointer

instructionAt(pc) = putfield f update(h, (loc, f), v) = h′ loc �= null

(pc, (h, v :: loc :: os, l))−→(pc + 1, (h′, os, l))

instructionAt(pc) = iload x l(x) = v

(pc, (h, os, l))−→(pc + 1, (h, v :: os, l))

instructionAt(pc) = ireturn

(pc, (h, v :: os, l))↓(h, v)

instructionAt(pc) = istore x l [x �→ v] = l′

(pc, (h, v :: os, l))−→(pc + 1, (h, os, l′))

instructionAt(pc) = invokevirtual m′

l′ = initArgs(loc, args) loc �= null m′ � (pc0, (h, [], l′)↓∗(h′, v)

(pc, (h, args ++ loc :: os, l))−→(pc + 1, (h′, v :: os, l))

instructionAt(pc) = invokevirtual m′

l′ = initArgs(loc, args) loc �= null m′ � (pc0, (h, [], l′)↓∗(h′, loc′)

(pc, (h, args ++ loc :: os, l))→EXC(h′, loc′)

instructionAt(pc) = invokevirtual m′ loc = null

(pc, (h, args ++ loc :: os, l))→JVMNullPointer

(pc, (h, os, l))→JVMe (h′, loc) = newObj (h, e)

(pc, (h, os, l))→EXC(h′, loc)

(pc, (h, os, l))→EXC(h′, loc) excHandler(pc, h′, loc) = pc′

(pc, (h, os, l))−→(pc′, (h′, loc :: [], l))

(pc, (h, os, l))→EXC(h′, loc) excHandler(pc, h′, loc) = ⊥
(pc, (h, os, l))↓(h′, loc)

Fig. 1. Operational semantics (excerpt)

called method returns successfully a value, the second one corresponds to the
case where the called method throws an exception (so we need to find a handler
in the current method), and the third one corresponds to the case where the
object is null.

The control flow graph of method m, denoted Gm is the set of edges (pairs of
program points) (pc, pc′) such that the program can go from pc to pc′ in one step.
This means, for instance, that instructions like getfield and putfield have an
edge to the null-pointer exception handler (if there is one), and instructions
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athrow and invokevirtual have edges to all handlers in their range, since we
cannot (statically) determine which exceptions will be thrown.

VCgen. We consider a deep embedding of the VCgen in Coq. As shown in
[13], deep embeddings have several advantages over shallow embeddings, such
as, smaller proof terms, and the possibility to manipulate the generated proof
obligation (e.g. by structural analysis).

The language for expressing assertions, Assrt, used by the VCgen is the fol-
lowing (excerpt):

Assrt ::= Assrt ∧ Assrt | Assrt ∨ Assrt | ¬Assrt | Assrt ⇒ Assrt
| V CompOp V . . . (* assertions *)

V ::= Lv Z | Hget H V FieldId | St Z | Vvar Value | Old V | result
| null | V BinOp V . . . (* values *)

H ::= Hupd H V FieldId V | Hvar Heap | CurrHeap (* heap *)
Si ::= H × (Z → V) (* initial states *)
S ::= H × (Z → V) × (Z → V) (* local states *)
Sr ::= H × V (* final states *)

BinOp ::= + | − . . . CompOp ::== | �= | < | ≤ . . .

In Assrt we have the usual logical operators (∧, ∨, ⇒, . . . ), including equality
and comparison. The operators are underlined to differentiate them from the
operators of Coq. The type of values, V, allows to access the local variables (Lv),
the stack (St), the heap (Hget(h, loc, f) access the field f of object loc in h),
values in the initial state of a method (Old), the result of a method (result),
and permits to express binary operations between values. The heap, represented
by H, allows to update values (Hupd(h, loc, f, v) updates the field f of object loc
with the value v), and access to the current heap (CurrHeap). Note that using
Vvar and Hvar we can define a lift function that takes a State (resp. Statei,
Stater) and returns a S (resp. Si, Sr), so we will consider an element s : State as
having also type S (and similarly with Statei and Stater).

The specification of a method is a tuple, Sm = (Pre,PostNrml ,PostExc ,A),
where Pre : Assrt is the precondition; PostNrml ,PostExc : Assrt are the postcon-
ditions corresponding to normal termination, and abnormal termination (due to
an uncaught exception), respectively; and A : PC �→ Assrt is a partial mapping
called the annotation table containing assertions that are used by the VCgen to
construct the proof obligations. We assume that all cycles in the control flow
graph contain at least one annotated point.

The precondition states properties of the initial state, the postcondition re-
lates the initial state with the final state, and the annotations relate the initial
state with the local state. We also assume a well-formedness condition for spec-
ifications: accesses to the local variables or to the stack are in bound, only the
postconditions can refer to result, expressions are well-typed, and preconditions
do not use the Old construct.

The VCgen is based on weakest precondition calculus, defined by two mutually
recursive functions: wpinstr : Method → PC → Assertion, and wpannot : Method →
PC → Assertion, where Assertion = Si → S → Assrt.
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wpinstr(pc) computes the weakest precondition (WP) corresponding to the in-
struction at pc, while wpannot(pc) returns the annotation of pc, or calls wpinstr(pc)
if pc is not annotated. To simplify the presentation, we define the functions
wpJVM : Method → PC → Statei → Heap × LocalVar → Exc → Assrt, and
wpEXC : Method → PC → Statei → Heap × LocalVar → Loc → Assrt, that
roughly corresponds to relations →JVM and →EXC, and returns the WP when an
exception is thrown. They look for the exception handler and return the WP
of the first point of the handler, or return the postcondition corresponding to
abnormal termination if no handler is found in the method.

The general form of wpinstr(pc) contains a conjunction for each branch of G:

wpinstr(pc, s0, s) =
∧

(pc,pc′)∈G
C(pc,pc′)(s) ⇒ P(pc,pc′)(wpannot(pc

′), s0, s), (1)

where C(pc,pc′)(s) is a necessary condition that needs to be satisfied in order for
the program to go from pc to pc′ in one step, and P(pc,pc′)(wpannot(pc

′), s0, s) is a
predicate transformer that updates s in correspondence with the instruction at
pc and applies it to wpannot(pc

′). To compute wpinstr(pc, s0, s) we proceed by case
analysis on the instruction at pc, and state s. We show a few cases in Fig. 2. For
readability, we change the first parameter, pc, for the corresponding instruction.
For instance, the condition C(pc,pc′) for the instructions getfield and putfield
is that the top of the stack contains a null or non-null value depending on the
branch. For iload and ireturn, the condition is simply true.

The function wpannot is defined as follows:

wpannot(pc, s0, s) =

{
subst(s0, s,A(pc)) if pc ∈ dom(A),
wpinstr(pc, s0, s) otherwise .

The function subst : Si → S → Assrt → Assrt, performs a substitution on an
expression; subst(s0, (h, os, lv), a) traverses a replacing CurrHeap by h, St n by
os(n), and Lv x by lv(x). The values protected by Old are substituted using the
initial state. The function substPost : Si → Sr → Assrt → Assrt does the same as
subst, but also replacing result.

We need an interpretation function, interp : Assrt → Statei → State → Prop
to transform an expression into a Coq proposition. interp(a, s0, s) traverses a
replacing the constructors for the corresponding functions in the Bicolano for-
malization, and replacing the references to the state with the values in s and s0.
The function interpPost : Assrt → Statei → Stater → Prop is the same as interp
except that it also replaces result. This function are defined for well-formed spec-
ifications, returning an undefined value otherwise.

We say an assertion a : Assrt is valid in state s and initial state s0, and
write it s0, s |= a, if interp(a, s0, s) is valid in Coq. Similarly with interpPost.
We say an assertion a : Assertion is valid in state s and initial state s0, and
write it s0, s |= a, if (s0, s |= a(si, s)), where si = (CurrHeap, λx.Lv x) and s =
(CurrHeap, λx.St x, λx.Lv x). We will write |= a to mean ∀s0, s, (s0, s |= a).

The following definition states the proof obligations needed to verify that a
method complies with its specification.
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wpinstr(athrow f, s0, (h, loc :: os, l)) =

loc �= null ⇒ wpEXC(pc, s0, (h, l), loc)

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

wpinstr(getfield f, s0, (h, loc :: os, l)) =

loc �= null ⇒ wpannot(pc + 1, s0, (h, Hget(h, loc, f) :: os, l))

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

wpinstr(iload x, s0, (h, os, l)) = wpannot(pc + 1, s0, (h, l(x) :: os, l))

wpinstr(ireturn, s0, (h, v :: os, l)) = substPost(s0, (h, v),PostNrml)

wpinstr(istore x, s0, (h, v :: os, l)) = wpannot(pc + 1, s0, (h, os, l [x �→ v]))

wpinstr(putfield f, s0, (h, v :: loc :: os, l)) =

loc �= null ⇒ wpannot(pc + 1, s0, (Hupd(h, loc, f, v), os, l))

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

wpinstr(invokevirtual m, s0, (h, args ++ loc :: os, l) =

loc �= null ⇒

�
��

subst((h, li), (h, [], li),Pre(m))

∧ PostNormal

∧ PostExc

�
��

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

li = initArgs(loc, args)

PostNormal =

�
∀ r,∀ h′, substPost((h, li), (h′, r),PostNrml(m)) ⇒
wpannot(pc + 1, s0, (h

′, r :: os, l))

PostExc =

�
∀ loc′ ∀ h′, substPost((h, li), (h′, loc′),PostExc(m)) ⇒
wpEXC(pc, s0, (h, l), loc′)

Fig. 2. Weakest precondition for instructions (excerpt)

Definition 1. Given a program p and a method m, certifiedMethod(m) stands
for the following proposition:

∀s0, (s0, s0 |= Pre(m) ⇒ wpannot(pc0, si, s))

∧
∧

pc∈dom(A)

∀s0 s, (s0, s |= A(pc) ⇒ wpinstr(pc, si, s)) ,
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where s0 = (h, [], l) if s0 = (h, l), i.e. s0 is the state obtained by extending the
initial state s0 with an empty operand stack.

To verify a method, we need to check that the precondition implies the WP of
the first instruction, and for each annotated point pc, the annotation implies the
WP of the instruction at pc.

The soundness is proved with respect to the operational semantics.

Theorem 1 (Soundness of the VCgen). Let p be a program and m a method.
Assume we have a proof of certifiedMethod(m′), for all methods m′ in the pro-
gram, and a state (pc, s) such that s0, s |= wpannot(m, pc). Then the following
holds:

– if (pc, s)−→(pc′, s′), then s0, s
′ |= wpannot(m, pc′),

– if (pc, s)↓(h, r), with r ∈ Value, then s0, (h, r) |= PostNrml(m),
– if (pc, s)↓(h, loc), with loc ∈ Loc, then s0, (h, loc) |= PostExc(m).

The proof is divided in the following lemmas.

Lemma 1. If (pc, s)−→(pc′, s′), then s |= C(pc,pc′)(s).

Lemma 2. If (pc, s)−→(pc′, s′), where instructionAt(pc) �= invokevirtual,
and s0, s |= wpinstr(m, pc), then s0, s

′ |= wpannot(m, pc′).

Proof. By case analysis on the current instruction, using Lemma 1.

Lemma 3. If we have a proof of certifiedMethod(m), and s0, s |= wpannot(m, pc),
then s0, s |= wpinstr(m, pc).

Proof. If pc is not annotated it is trivial, since wpannot(m, pc) is the same as
wpinstr(m, pc). Otherwise, we have wpannot(m, pc, s0, s) = subst(s0, s,A(pc)), and
we conclude using the fact that we have a proof of certifiedMethod(m). ��
Lemma 4. Let p be a program and m a method. Assume we have a proof of
certifiedMethod(m′), for all methods m′ in the program, and a state (pc, s) such
that s0, s |= wpannot(m, pc). Then the following holds:

– if (pc, s) ↪→ (pc′, s′), then s0, s
′ |= wpannot(m, pc′),

– if (pc, s) ↪→ (h, r), with r ∈ Value, then s0, (h, r) |= PostNrml(m),
– if (pc, s) ↪→ (h, loc), with loc ∈ Loc, then s0, (h, loc) |= PostExc(m),

where the relation ↪→: Method → PC × State → PC × State + Stater → Prop is
defined in Fig. 3.

Proof. The proof proceeds by induction in the relation ↪→. The relation call :
Method → PC × State → Stater → Method → PC × State → PC × State +
Stater → Prop determines the connection between the states of execution when
calling a method. If call (m, (pc, s), r, m′, (pc0(m

′), s′), t) is valid, then it means
that in method m, instructionAt(pc) = invokevirtual m′, (pc0(m′), s′) is the
initial state of execution in m′ (i.e. it has an empty operand stack and the local
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(pc, s) ↪→ (pc, s)

(pc, s)↓r
(pc, s) ↪→ r

instructionAt(pc) �= invokevirtual

(pc, s)−→(pc′, s′) (pc′, s′) ↪→ t

(pc, s) ↪→ t

m′ � (pc0(m
′), s′) ↪→ (h, loc) call(m, (pc, s), (h, loc), m′, (pc0(m

′), s′), (h, loc))

m � (pc, s) ↪→ (h, loc)

m′ � (pc0(m
′), s′) ↪→ r

m � (pc′′, s′′) ↪→ t call(m, (pc, s), r, m′, (pc0(m
′), s′), (pc′′, s′′))

m � (pc, s) ↪→ t

Fig. 3. Alternative big-step relation

variables are built from the arguments in the stack of s), and if r is the final
state in m′, then t is the next state of execution in m. If t is a final state, then it
means that m′ has thrown an exception that is uncaught in m. If t is a normal
state, it means that, either m′ has returned successfully (and the return value
of r is in the top of the stack of t), or that has thrown an exception that was
caught in m (and t contains the location of the exception handler). Note that
call does not enforce any relation between the initial state s′ and the final state
r in m′, which will be enforced by ↪→.

The relation ↪→ gives us the right induction principle for the invokevirtual
instruction that was not addressed in Lemma 2. ��
Finally, using Lemma 4 we can prove Theorem 1, by proving that the relation
↪→ is equivalent to the reflexive, transitive closure of the operational semantics.

3 Reducing Proof Obligations

In this section, we show a way to use static analysis to reduce the number of proof
obligations generated by the VCgen described in the previous section. Roughly,
the analysis is applied to the program, and the results are given to the VCgen. The
VCgen can use this information to remove the proof obligations corresponding to
paths in the code that cannot be taken at runtime. For example, if a null-pointer
analysis can prove the absence of null-pointer exceptions, then the VCgen does
not generate proof obligations corresponding to null-pointer exception handlers.

3.1 Preliminary Definitions

We consider a fixed program p and a method m with specification S. pc0 denotes
the first instruction. We will make a small modification to the control flow graph
and the semantics. To the set of program points we add two nodes: pcN that
represents normal termination, and pcE that represents abnormal termination.
The control flow graph G is augmented with edges of the form (pc, pcN) for each
pc that corresponds to a ireturn instruction, and (pc, pcE) for each pc that
corresponds to an instruction that can throw an exception that is not caught in m
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(this includes athrow and invokevirtual). We make a small modification to the
rules of the operational semantics. We change the relation ↓, so that, instead of
(pc, s)↓(h, v) we have (pc, s)−→(pcN, (h, v :: [], lv)), and instead of (pc, s)↓(h, loc)
we have (pc, s)−→(pcE, (h, loc :: [], lv)). The state considered at the nodes pcN

and pcE consist of a heap, an operand stack with just one element (the return
value, or location of the exception object, respectively), and undefined local
variables (since a return state does not contain a local variable array).

Definition 2. A static analysis A is a tuple (D, t, I, f ), where

– D = (D,�,⊥,�,�,�) is a complete lattice that denotes the domain of the
analysis,

– t : G → (D → D) is the transfer function, such that for each (pc, pc′) ∈ G,
t(pc,pc′) is a monotone function in D,

– I : PC → D is the initial value, and
– f ∈ {↑, ↓} denotes the direction of the analysis. If f = ↑ we say the analysis

is backward, and if f = ↓ we say is forward.

Definition 3. A solution (or table) for a forward analysis A = (D, t, I, ↓) is a
function S : PC → D, such that I(pc0) � S (pc0), and

∀pc ∈ PC ,
⊔

(pc′,pc)∈G
t(pc′,pc)(S (pc′)) � S (pc) .

A solution (or table) for a backward analysis A = (D, t, I, ↑) is a function
S : PC → D, such that S (pcN) � I(pcN), S (pcE) � I(pcE), and

∀pc ∈ PC ,S (pc) �
�

(pc,pc′)∈G
t(pc,pc′)(S (pc′)) .

To find a solution for a given analysis, one needs to find a post-fixpoint to a
specific function defined using the transfer function. We will not delve in this,
see, e.g., [9] for more details.

To illustrate the combination of analysis and the VCgen, we will define a
simple null-pointer analysis. We use a technique described in [3,12] for defining
domains for bytecode analysis, where the values stored in the stack are related
to their meaning.

Example 1. The null-pointer analysis ANP = (DNP, tNP, INP, ↓) is defined as fol-
lows. The domain DNP represents the operand stack and the local variables, and
is defined by:

DNP = (list E)�⊥ × (Z → NP),
NP = {null ,nonnull}�⊥,

E ::= const NP | localvar Z .

The transfer functions, tNP(pc,pc′)(d) is defined by case analysis in the instruction
at pc and in d. Some of the rules are:
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– if instructionAt(pc) = getfield

tNP(pc,pc+1)(e :: s, l) = (const � :: s, �e = nonnull�(l)),
tNP(pc,pcexc)

(e :: s, l) = (const nonnull :: [], �e = null�(l));

– if instructionAt(pc) = ireturn, tNP(pc,pcN )(v :: s, l) = (v :: s, l);
– if instructionAt(pc) = invokevirtual,

tNP(pc,pc+1)(args ++ loc :: s, l) = (const � :: s, �e = nonnull�(l)),
tNP(pc,pcE)(args ++ loc :: s, l) = (const nonnull :: [], l);

– if instructionAt(pc) = iload, tNP(pc,pc+1)(s, l) = (localvar x :: s, l).

Given e : E, the expression �e�(l) : NP evaluates e using the map l. Given
e : E, n : NP , and l : Z → NP , the expression �e = n�(l) : Z → NP is a mapping
that updates l using the fact that e = n. Note the way this expression is used for
the getfield instruction: in the transfer for normal execution we can update
the local variables, knowing that the reference is non-null, and for exceptional
execution, we know the reference is null. The second rule for invokevirtual
indicates that it may throw an uncaught exception.

Another example of a static analysis is provided by the weakest precondition
defined for the VCgen.

Example 2. The weakest precondition can be viewed as a backward analysis (see
[7]), AWP = (DWP, tWP, IWP, ↑), where DWP = Assertion. We have

d1 � d2 = (|= d1 ⇒ d2),

and �, ⊥, �, � correspond with true, false, ∧, ∨, respectively.
The transfer function is defined by:

tWP(pc,pc′)(e) = λs0.λs.C(pc,pc′)(s) ⇒ P(pc,pc′)(e, s0, s),

and finally the initial value IWP(pcN) = λs0.λs.substPost(PostNrml , s0, s) and
IWP(pcE) = λs0.λs.substPost(PostExc, s0, s).

The function wpannot computes a solution for this analysis. To check that is
in fact a solution, we need to prove that for all pc,

wpannot(pc) �
∧

(pc,pc′)∈G
tWP(pc,pc′)(wpannot(pc

′)) =

λs0.λs.
∧

(pc,pc′)∈G
C(pc,pc′)(s) ⇒ P(pc,pc′)(wpannot(pc

′), s0, s) = wpinstr(pc) .

Note that this is stated in Lemma 3.

A static analysis simulates the execution of a program in its domain. To prove
that an analysis is sound, we need to prove that a step in the operational seman-
tics, correspond to a transfer function in the domain. We define a correctness
relation that relates states, with the elements of the domain of the analysis.
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Definition 4. A correctness relation for an analysis A = (D, t, I, f ) is a relation
�⊆ State × D, such that the following holds:

– for all d1, d2 ∈ D, if s � d1 and d1 � d2, then s � d2, and
– if (∀d ∈ D′ ⊆ D, s � d), then s � (

�
D′).

The relation s � d should be read as: d is a safe approximation of s.

Definition 5. A static analysis A = (D, t, I, f ) with correctness relation �, is
sound if for every solution S, the following holds: (pc, s)−→(pc ′, s′) and s �
S (pc), implies s′ � S (pc′).

The usual way to prove that an analysis is sound is to prove that the trans-
fer functions preserve the semantics. For a forward analysis, this means that if
(pc, s)−→(pc′, s′) and s � d, then s′ � t(pc,pc′)(d). For a backward analysis, the
transfer functions preserve the semantics if (pc, s)−→(pc′, s′) and s � t(pc,pc′)(d)
implies s′ � d.

If we prove for a given analysis that the transfers functions preserve the se-
mantics, then the soundness of the analysis follows from the properties of the
correctness relation, and the definition of a solution.

Continuing with the examples, we define a correctness relation for the null-
pointer analysis and the weakest precondition.

Example 3. For the analysis defined in Example 1, we define a correctness re-
lation, �NP, by translating the elements of DNP to Assrt, and using the validity
relation of Assrt. First, we define the function tr : V × NP → Assrt, where
tr(e,⊥) = false, tr(e,�) = true, tr(e,null) = (e = null), and tr(e,nonnull) =
(e �= null).

This function is extended to tr : DNP → Assrt. For example, tr(localvar 0 ::
[], [0 �→ nonnull , 1 �→ �]) = tr(St 0,nonnull) ∧ tr(Lv 0,nonnull) ∧ tr(Lv 1,�).

The correctness relation is defined as (s �NP d) = (s |= tr(d)) (note that we
do not need an initial state). It can be shown that the transfer functions for this
analysis preserve the semantics, and therefore, that the analysis is sound.

Example 4. A correctness relation for the analysis defined in Example 2 is:

(s0, s �WP d) = (s0, s |= d) .

This definition depends on a fixed initial state s0. Note that the soundness of
this analysis is stated in Theorem 1.

3.2 Combining a Static Analysis with the VCgen

We show how the VCgen can use the results of the analysis to reduce the proof
obligations. The main idea is to use the solution of the analysis as a parameter
for the VCgen. When computing the function wpinstr at a particular point pc,
we can use the information given by the analysis at pc to remove some branch.
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Assume we have an analysis A = (D, t, I, f ) with correctness relation �, and
a solution S : PC → D. Further, assume we have a function γ : D → Assrt that
translates the results of the analysis to assertions in the VCgen language that
reference to the local state, with the following property: if s � d, then s |= γ(d).

We redefine the function wpinstr. The general form is now

wpinstr(pc, s0, s) =
∧

(pc,pc′)∈G
F(pc,pc′)(s0, s), (2)

where the F is defined as

F(pc,pc′)(s0, s) =

{
true if |= subst(s, γ(S (pc))) ⇒ ¬C(pc,pc′)(s),
WP(pc, pc′, s0, s) otherwise,

and WP(pc, pc′, s0, s) =
(
C(pc,pc′)(s) ⇒ P(pc,pc′)(wpannot(pc′), s0, s)

)
.

Intuitively, if we can infer ¬C(pc,pc′)(s) from S (pc), then the path going from
pc to pc′ cannot be taken at runtime, since taking this path would imply that the
condition C(pc,pc′)(s) is valid. In that case, the proof obligation corresponding
to this branch can be removed, replacing it by true.

The condition |= subst(s, γ(S (pc))) ⇒ ¬C(pc,pc′)(s) may not be decidable; in
that case we have to replace it with a decidable test, test(S (pc), C(pc,pc′)(s)),
that is a sound approximation, i.e. if test(S (pc), C(pc,pc′)(s)), it implies that
|= subst(s, γ(S (pc))) ⇒ ¬C(pc,pc′)(s).

The definition of F depends on the domain of the analysis, so we will illustrate
with the null-pointer analysis defined above.

Example 5. To remove proof obligations using the null-pointer analysis, we look
on the instructions that could generate a null-pointer exception. For instance,
let us take getfield. If instructionAt(pc) = getfield, and S (pc) = (e :: s, l),
then F(pc,pcexc)

is defined by:

F(pc,pcexc)
(s0, s) =

{
true if �e�(l) = nonnull ,
WP(pc, pcexc, s0, s) otherwise;

This says that if the analysis guarantees that the top of the stack will contain
a non-null pointer, then we do not need to check the branch corresponding to
the null-pointer exception handler. In the same way, we can remove the proof
obligation corresponding to normal execution if the analysis guarantees that the
pointer is null.

A similar definition applies to other instructions such as putfield, and
invokevirtual, i.e. all instructions that take a pointer parameter from the stack,
and throw a NullPointer if the pointer is null.

3.3 Combining Static Analyses and Specifications

The VCgen presented above generates fewer proof obligations by using static
analysis to reduce the control flow graph. However, there are situations where
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the analysis cannot ensure enough information to make some reduction possible.
Consider the following excerpt of Java bytecode:

pc1 . . . A(pc1) = Lv x �= null ∧ . . .

. . .

pc2 iload x

pc3 getfield f

Assume that the local variable x does not change between pc1 and pc2, and
that the annotation table contains the assertion that x is not null at pc1. There-
fore, at pc3, the getfield instruction is accessing a non-null pointer. If the anal-
ysis is not able to ensure this, then the VCgen will generate two proof obligations.
The one corresponding to exceptional execution is proved by contradiction using
the assertion at pc1. If there is more that one access to x such as the one at pc3,
the VCgen will generate two proof obligations for each access.

In this section, we propose a way to transfer the assertions contained in the
specification to the domain of the analysis, so that the analysis can produce more
accurate results. In the example above, if the information contained in A(pc1)
is transferred, the analysis can propagate it to point pc3, where it can ensure
that the object accessed is non-null. Then, only one proof obligation would have
been generated.

We will assume an annotated method m with specification S and an analysis
A = (D, t, I, f ). In order to translate the assertions contained in the specification
to the domain of the analysis, we assume a function α : Assrt → D, with the
following property: s0, s |= e ⇒ s � α(e).

We extend the annotation table A into a total function A : PC → Assrt,
where we complete with the value true the elements that are not in the domain.

We redefine the meaning of a solution for the analysis, to use the specification.
To differentiate from the previous definition, we call this combined solution, and
refer to the previous as simple solution.

Definition 6. A combined solution (or combined table) for a forward analysis
A = (D, t, I, ↓) is a function S : PC → D, such that I(pc0) � α(Pre) � S (pc0)
and

∀pc ∈ PC ,
⊔

(pc,pc′)∈G
t(pc,pc′)(S (pc) � α(A(pc))) � S (pc′) .

A combined solution (or combined table) for a backward analysis A = (D, t, I, ↑)
is a function A : PC → D, such that S (pcN) � α(PostNrml ) � I(pcN), S (pcE) �
α(PostExc) � I(pcE) and

∀pc ∈ PC , α(A(pc)) � S (pc) �
�

(pc,pc′)∈G
t(pc,pc′)(S (pc ′)) .

Note that, since transfer functions and the meet operator (�) are monotone, any
simple solution for the analysis is also a combined solution. To find combined
solutions, we can use the same methods used to find simple solutions.

Again, we will exemplify the approach using the null-pointer analysis.
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Example 6. To define the function α for the analysis ANP, we first define the
function split : Assrt → list Assrt such that split(e1 ∧ e2) = split(e1) ++
split(e2), and split(e) = e if e is not of the form e1 ∧ e2.

Then α is defined as: α(e) = filter(split(e)), where filter looks in the list
produced by split for expressions of the form St k = null, St k �= null, Lv k = null,
Lv k �= null, or their symmetric, and translate them to the domain DNP. For
instance, α(Lv 0 �= null ∧ null = St 1) = (const � :: const null :: [], [0 �→
nonnull ]).

Soundness of the VCgen Revisited. Now we focus on the proof of sound-
ness for the VCgen described in this section. We assume an analysis A with
correctness relation � and a combined solution S . Stated in the terms defined in
this section, to prove the soundness of the VCgen we need to prove:

(pc, s)−→(pc′, s′) ∧ (s0, s �WP wpannot(pc)) ⇒ (s0, s
′ �WP wpannot(pc′)) . (3)

However, since the WP of an instruction depends on the combined solution
for the analysis, and the solution depends on the validity of the specification, to
prove (3) we have to prove the following:

(pc, s)−→(pc′, s′) ∧ (s0, s �WP wpannot(pc)) ∧ (s � S (pc)) ⇒
(s0, s

′ �WP wpannot(pc
′)) ∧ (s′ � S (pc′)) . (4)

The proof of (4) is divided in two parts. We need to prove that for all
(pc, s)−→(pc′, s′) we have:

(s � S (pc)) ∧ (s0, s �WP A(pc)) ⇒ (s′ � S (pc′)), (5)

(s � S (pc)) ∧ (s0, s �WP wpannot(pc)) ⇒ (s0, s
′ �WP wpannot(pc′)) . (6)

Equation (5) states that the analysis is sound (for combined solutions) as-
suming that the specification is verified. The proof is similar to the soundness
proof for simple solutions. We first prove that the transfer functions preserve
the semantics (this does not depend on any type of solution), and then conclude
using properties of the correctness, and monotony of the transfer function and
meet (�) and join (�) operators.

Equation (6) states that the VCgen is sound assuming that the analysis is
sound. The proof follows the lines of Theorem 1, however, in this case we cannot
prove that (pc, s)−→(pc′, s′) and s0, s |= wpinstr(pc) implies

P(pc,pc′)(wpannot(pc′), s0, s)),

since the proof obligation corresponding to the branch (pc, pc′) may have been
removed (changed to true) because of S (pc). However, in that case, we can prove
that s |= ¬C(pc,pc′)(s). On the other hand, from Lemma 1 we know that s |=
C(pc,pc′)(s), therefore we have a contradiction and the result follows.
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4 Certificate Generation and Checking

In the typical PCC architecture, the producer runs the VCgen on the annotated
code. This generates proof obligations, whose proof provides the certificate that
is packaged along with the code and sent to the consumer.

For the VCgen described in the previous section, this framework largely ap-
plies. The difference lies in the generation of proof obligations. The analyses are
performed on the code, using the specification of the methods. For this stage,
any fixpoint algorithm can be used to generate the results of the analysis. The
algorithm itself does not need to be verified, since we can check that the results
given are correct.

The results of these analyses are then given to the VCgen, that returns the
proof obligations. These can be proven by automatic methods or in a proof
assistant (Coq in our case). The certificate given to the consumer consists on
the proofs obtained and the results of the analysis.

Checking the certificate, on the consumer side, consists of three stages. First,
the results of the analyses are checked. This involves a simple procedure that can
be done very efficiently in one pass through the code [2]. Second, once the results
are checked, they are given to the VCgen that generates the proof obligations.
Third, the proofs given as part of the certificate are checked to correspond with
the obligations generated by the VCgen. If all the checking goes well, the code
can be safely executed.

5 Related Work

The use of abstract interpretation as a tool to verify safety policies in PCC
has been proposed by Albert, Puebla and Hermenegildo in their Abstraction-
Carrying Code (ACC) framework [2], where abstract interpretation is used to
represent safety policies. The abstraction of a program is the certificate sent
to the consumer alongside the code. We do not use analysis to express safety
policies, but to reduce the control flow graph of a program. In [1], Albert et al.
develop a technique to compress certificates for ACC. The main idea is to remove
redundant information that can be easily reconstructed in one pass through the
code. Their work can be readily applied to our case for compressing the results
of the analyses.

Another compression technique is presented by Besson, Jensen and Pichardie
in [3]. They develop an extensible PCC framework based on abstract interpre-
tation. The compression is done through a set of commands that allows the
reconstruction of the solution from partial information. Using these commands,
different strategies for reconstruction can be encoded and adapted to each par-
ticular program. This can also be directly applied to our case.

Nipkow et al. developed the VeryPCC framework in Isabelle/HOL. They de-
fine a generic VCgen that can be instantiated with different programming lan-
guages, safety logics and safety policies. In [12], Wildmoser, Chaieb and Nipkow
use trusted and untrusted analyses to verify a safety policy incrementally. A
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VCgen is used to verify the results of the untrusted analyses, using the results
of the trusted analyses as hypothesis.

Proof-producing program analysis (PPPA) [5,11] is a technique to generate
Hoare-logic proof derivations from program analyses solutions. The advantage of
this approach is that the consumer does not need to have a special procedure to
check the results of the analysis. On the other hand, the size of the proofs (even
if small compared with the program) can be bigger than using compression
techniques mentioned above. Nevertheless, it should be possible to use PPPA
techniques in our approach to combine the results of the analysis and the proof
terms, into a proof term that ensures both properties.

6 Conclusions and Future Work

We have presented a technique based on static analysis to reduce the number
of proof obligations generated by a VCgen for Java bytecode, by reducing the
control flow graph of a program. The reduction and simplification of the proof
obligations have the advantage that leaves the developer with fewer goals left to
prove, which as a consequence, generate smaller proof term that can be more
rapidly checked. We have exemplified the approach with a simple null-pointer
analysis. We have chosen this type of analysis, because many instructions in the
JVM can throw null-pointer exceptions, which allows for large reductions in the
proof obligations. A recent study by Chalin and James [6] shows that in 2/3 of
the cases, reference variables are meant to be non-null (based on design intent).

We have formalized in Coq the VCgen described in Sect. 2 including the
proof of soundness (Theorem 1).1 We plan to complete the formalization (null-
pointer analysis and combination), and apply other type of analyses to our ap-
proach. Obvious candidates are interval analysis used for array-bound checking
and escaping-exception analysis.

The VCgen does not use the complete solution of the analysis to reduce proof
obligations. Removing unused parts could help to further compress the certifi-
cates. A good starting point should be [4].

Acknowledgments. We would like to thank David Pichardie for his insightful
suggestions and for the help he provided with the formalization in Coq.
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2006. LNCS, vol. 4079, pp. 163–178. Springer, Heidelberg (2006)

2. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 380–397.
Springer, Heidelberg (2005)

1 Available online at http://www-sop.inria.fr/everest/personnel/Benjamin.

Gregoire/Code/Certified vcgen.tgz

http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Code/Certified_vcgen.tgz
http://www-sop.inria.fr/everest/personnel/Benjamin.Gregoire/Code/Certified_vcgen.tgz
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