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Abstract. Ghost variables are assignable variables that appear in pro-
gram annotations but do not correspond to physical entities. They are
used to facilitate specification and verification, e.g., by using a ghost
variable to count the number of iterations of a loop, and also to express
extra-functional behaviours. In this paper we give a formal model of
ghost variables and show how they can be eliminated from specifications
and proofs in a compositional and automatic way. Thus, with the results
of this paper ghost variables can be seen as a specification pattern rather
than a primitive notion.

1 Introduction

With the fast development of programming systems, the requirements for soft-
ware quality also become more complex. In reply to this, the techniques for
program verification also evolve. This is the case also for modern specification
languages which must support a variety of features in order to be expressive
enough to deal with such complex program properties. A typical example is
JML (short for Java Modeling Language), a design by contract specification lan-
guage tailored to Java programs. JML has proved its utility in several industrial
case studies [1,2]. Other examples are ESC/Java [3], the Larch methodology [4]
and Spec# [5]. JML syntax is very close to the syntax of Java. JML has also
other specification constructs which do not have a counterpart in the Java lan-
guage. While program logics and specification languages help in the development
of correct code they have also been proposed as a vehicle for proof-carrying code
[6,7,8,9] where clients are willing to run code supplied by untrusted and possibly
malicious code producers provided the code comes equipped with a certificate
in the form of a logical proof that certain security policies are respected. In this
case, the underlying logical formalism must have a very solid semantic basis so
as to prevent inadvertent or malicious exploitation. On the one hand, the logic
must be shown sound with respect to some well-defined semantics; on the other
hand, the meaning of specifications must be as clear as possible so as to min-
imise the risk of formally correct proofs which nevertheless establish not quite
the intuitively intended property. This calls for a rigorous assessment of all the
features employed in a specification language; in this paper we do this for JML’s
ghost variables.
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Coq development. All definitions, theorems, proofs have been carried out within
the Coq theorem prover and are available for download at www.tcs.ifi.lmu.de/
~mhofmann/ghostcoq.tgz.

2 Ghost Variables and Their Use

In brief, a ghost variable is an assignable variable that does not appear in the ex-
ecutable code but only in assertions and specifications. Accordingly, annotated
code is allowed to contain ghost statements that assign into ghost variables.
These ghost statements are not actually executed but specifications and asser-
tions involving ghost variables are understood “as if” the ghost statements were
executed whenever reached. Note that ghost variables should not interfere with
the values of normal program variables or the control flow of a program.

Ghost variables appear to ease proof automation in automatic theorem provers
like Simplify as they instantiate existential quantification by pointing the object
which satisfies the otherwise existentially quantified proposition. On the other
hand, they are intuitive and thus, helpful in the specification process.

2.1 Ghost Variables in Internal Assertions

First, they can be used for an internal method annotation in order to facilitate
the program verification process. For instance, in JML ghost variables can be
used in an assertion to refer to the value of a program variable at some particular
program point different from the point where the assertion is declared and must
hold. Thus, we can use a ghost variable to express that a program variable
is not changed by a loop execution by assigning to it prior to the loop or in
order to count the number of loop iterations. Such use of ghost variables usually
makes them appear in intra-method assertions like loop invariants or assertions
at a particular program point but does not introduce them in the contract of a
method (i.e. the pre- and postcondition). For illustration, we consider an example
which doubles the value of the variable x and stores it in the variable y:
//@ensures 2∗\ o ld (x ) = y
y=0;
//@ghost i n t z ;
//@set z = 0 ;
// @loop invar iant 2∗ z = y && z = \ o ld (x ) − x
whi l e (x > 0) {

x = x − 1 ;
y = y + 2 ;
//@set z = z + 1;}

The desired property of this code fragment is introduced by the keyword ensures
and states that y has accumulated the double of the initial value of x, i.e. \old(x).
In the specification, we have used the ghost variable z. We may notice that z
is declared in Java comments as is the case for any kind of JML specification.
Its value at the beginning of every iteration corresponds to the number of loop
iterations done so far. Thus, before the loop, z is initialised to be 0 and at
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the end of the loop body, it is incremented. Note that z does not appear in
the postcondition, i.e., the end-to-end specification of the program fragment. Its
purely ancillary role is to facilitate the verification process by allowing the loop
invariant to refer to the number of iterations even though no physical variable
counts them.

2.2 Expressing Extra-Functional Code Properties

Secondly, ghost variables may be used to express extra-functional properties
about program behavior. In such cases, ghost variables may become part of the
method contract. For example, they may serve to model the memory consump-
tion of a program. To illustrate this, let us consider a fragment of a Java class
with two ghost variables - MEM which counts the number of allocated heap
cells and MAX which models the maximal amount of heap space that can be
allocated by the program:
//@ pub l i c s t a t i c ghost i n t MEM;
//@ pub l i c s t a t i c f i n a l ghost i n t MAX;

//@ r equ i r e s MEM + s i z e (A) <= MAX
//@ ensures MEM <= MAX
pub l i c void m ( ) {

A a = new A ()
//@ se t MEM = MEM + s i z e (A)}

The postcondition asserts that MEM is bounded by MAX which ensures
bounded memory allocation provided that MEM accurately tracks the num-
ber of allocations made. In the example this is ensured by the assignment to
MEM.

We notice that this relationship between the value of the ghost variable MEM
and the actual memory consumption of the method is implicit in the annotation
policy, i.e., lies in the fact that MEM is incremented precisely when memory is
being allocated and nowhere else and not modified in any other way either.

Therefore, ghost variables are particularly suitable when the code annotation
is completely transparent, for example, for software auditing performed inter-
actively over the source code, i.e. in the process where a code producer verifies
if the written code respects their initial intentions. In such situations the good
intuitions that ghost variables provide as opposed, perhaps, to more functional
or abstract ways of specification are fully brought to bear.

Ghost variables have also been used to indicate when class invariants are re-
quired to hold and may be relied upon [10] and as a means to enforce a particular
order in which API methods should be invoked [11].

3 Problems with Ghost Variables

In this section we describe why we feel that ghost variables as currently used
and modelled might be harmful in a proof carrying code scenario where formal
proofs are provided as certificates by untrusted and possibly even malicious code
producers.
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3.1 Semantics of Ghost Variables

Usually, program semantics is expressed as a transition between states where
states represent the values related to program variables. For the case of JML,
verification tools like ESC/Java [3] and Jack [12] treat ghost variables as ordinary
program variables. While this works in order to generate verification conditions
and justify proof rules, it is not entirely satisfactory if we treat program seman-
tics as primary and program verification as a means to an end. To appreciate
this point notice that the formal operational semantics of a language, e.g. Java
Bytecode, can in principle not be proven adequate. One can compare it to other
formalisations of the semantics, e.g. as a virtual machine, but adequacy of the
last formalised semantics in such a chain of translations always remains an un-
provable axiom. For this reason, we feel that program semantics should be as
simple as possible and certainly not be modelled to suit a particular verification
methodology. Its primary aim should be to make the correspondence with the
real world as evident as possible. Thus, we find that one should give meaning to
ghost variables without altering the operational semantics of the language not
even by adding non-existent variables to its memory model.

One may argue that one could prove a semantics adequate by formally relat-
ing it to assembly language level formalizations of hardware architectures. As
argued above this only shifts the “semantic gap” somewhere else. What remains
unproven in that case is that the assembly language level formalization does
indeed adequately reflect what’s going on in the hardware and also that the
assumed translation of bytecode to assembly code is what is really done by the
compiler and the JVM implementation.

3.2 Modelling Extra-Functional Properties

There is a second problem with ghost variables that shows up only when they
are used to track extra-functional program properties like memory consumption
above, which is to do with the fact that the intended as opposed to the formal
meaning of a contract then is contingent on respecting a particular code annota-
tion policy. For the sake of a concrete example, suppose that someone advertises
a Java card game to be run on a mobile phone and claims that it definitely
runs within 10M of memory by providing a formal proof that its main-method
satisfies the postcondition

ensur e s MEM <= 10485760

Unfortunately, such a formal proof only guarantees that the ghost variable MEM
has a value ≤ 10M after the execution of the program; the fact that it relates to
memory allocation remains unproved. Thus, n order to be really sure that the
program really does not use more than 10M the recipient would have to carefully
study the code to make sure that indeed the ghost variable MEM has been
appropriately incremented at every allocation site and not been tempered with
anywhere else. Not only does this place an awkward burden on code recipients;
it also opens to door to all kinds of exploits by malicious code producers based
on somehow hiding assignments to MEM in obcure library functions or similar.
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One could argue that this could be fixed by decreeing that a “certificate” of
the resource property in question comprises not only the formal proof of the
contract but also a successful run of some automatic analysis which checks that
ghost assignments are inserted next to all memory allocating instructions and
only there.

Note, however, that arguing that such a policy does capture the intended re-
source property is again part of the semantic gap outside the realm of formal
verification and must be left to human inspection and ultimately belief. In situa-
tions where we assume the existence of malicious code producers who try to fool
the code consumer with faked certificates we would prefer to reduce resorting to
such non-rigorous methods to a bare minimum. Of course, if we are interested in
extra-functional code properties we have to at some point formally define what
the observable extra-functional effects of a program are, such as memory us-
age, time consumptions, consumption of other resources, etc. However, we argue
that this formalisation should be done openly by a trusted body of experts, and
carefully argued by means of examples, test cases, etc. In brief, it is a proce-
dure that should not be done over and over again for each verification tool or
method.

We therefore argue that once we have a program semantics and program logic
that can speak about extra-functional prperties it will no longer be necessary to
make reference to ghost variables in contracts so that we are thus brought back
to essentially the first usage of ghost variables, namely as an auxiliary device
employed to facilitate a verification.

Before continuing, we emphasize again that there is nothing wrong with ghost
variables in a verification tool or formalism. It is only in the scenario of proof-
carrying code where we intend to use proofs in formalised program logic as
unforgeable certificates that our discussion applies and our results are of value.

4 Contributions of This Paper

In this paper we demonstrate that ghost variables can be eliminated from formal
proofs in a program logic in such a way that on the one hand the same outside
contracts will be proved and on the other hand the intuitive ease that ghost
variables afford is retained.

We do this by showing that proofs in a program logic with ghost variables
can be translated automatically and compositionally into proofs of the same
specifications in a logic that does not use ghost variables. In other words, ghost
variables become a conservative extension of ordinary program logics.

In order to focus on salient aspects we study the problem of ghost variables
using first a simple, unstructured while language specified by a big-step op-
erational semantics and reasoned about in a VDM-style program logic using
I/O-relations as assertions. The proof rules of the program logic are such that
whenever C : P is provable then whenever S, T are initial, respectively final
states of a terminating run of program C then P (S, T ) holds.
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4.1 Elimination of Ghost Variables

We then consider programs Cg annotated with assignments to ghost variables
and introduce ad-hoc proof rules for deducing statements of the form Cg : Pg

where, now, Pg is a relations between pairs of states: (initial state, initial ghost
state) and (final state, final ghost state). The proof rules are motivated by
the intuitive meaning of ghost variables but are not formally validated against
any kind of operational semantics of ghost variables. Instead, our first result
shows that if we have a derivation of Cg : Pg then we can effectively find a
derivation of C : P where C is the program Cg with all ghost instructions re-
moved and where P (S, T ) ⇐⇒ ∀Sg.∃Tg.Pg((S, Sg), (T, Tg)). In particular, when
Pg((S, Sg), (T, Tg)) ⇐⇒ Q(S, T ) for some I/O-relation Q then P ⇐⇒ Q. This
models the case where ghost variables do not appear in the outside contract,
but possible in internal assertions, e.g., as invariants in invocations of the proof
rule for while-loops. The qualification “effective” of the announced proof trans-
formation means that the transformation is by induction on proofs and does
not require inventing of new invariants, assertions, mathematical proofs of side
condition or similar, and is thus fully automatic. Without this extra qualifica-
tion a result like the one we announced could be trivially true by appealing to a
completeness result for the program logic.

4.2 Extension to Extra-Functional Properties

We then extend our approach to encompass extra-functional properties. In order
to model these we extend our language by external procedures that have no effect
on the store but do cause an event to occur that is visible from the outside.
Formally, we assume a set Extern of external functions and decree that for
f ∈ Extern and e an integer expression we can form the command f(e) which has
the same effect as Skip but causes the event (f, n) to occur where n is the current
value of expression e. Thus, an event is an element of Event := Extern×Z.

Now that programs can cause observable effects already during their execution
we can no longer semantically identify all nonterminating programs as is typically
done by big-step operational semantics. Instead we define for each program C as
relation C→ where S

C,ev→ S′ means that when we start program C in initial state
S then during its execution there is a point at which we have reached state S′

and up to that point the events ev ∈ Event∗ have occurred.
We then consider a program logic that in addition to VDM-style assertions

(which now, of course, may also mention the trace of events occurred) also has

a judgement C : I with the intention that whenever S
C,ev→ S′ then I(S, ev) will

hold. The rules for the definition of this judgement have premises referring to
the usual assertions.

In this extension of the program logic we can thus assert extra-functional
properties without using ghost variables. We show that, again, ghost variables
can be eliminated from proofs of specifications that do not themselves mention
ghost variables.
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Suppose now that we have a proof that program C satisifies the invariant
“MEM = \old(MEM)” where MEM is a ghost variable purportedly counting the
number of memory allocations made. As argued above such a proof ought to be
accompanied by a formal argument explaining that the ghost variable MEM really
does reflect the number allocations made. In our resource-enhanced logic this
could be formalised as a proof of the invariant MEM = mem(ev) where mem(ev)
is the number of allocation events in execution trace tr. Combining the two
proofs then yields a proof of the invariant mem(ev) = 0 to which elimination of
ghost variables applies.

5 Language and Program Logic

In this section we define a simple programming language and a VDM style
program logic as a vehicle for a formalisation of our results. The language has
neither local variables nor objects, yet the salient features of our modelling of
ghost variables can be sufficiently well illustrated therein without introducing
unnecessary clutter.

5.1 Simple Programming Language

We consider a simple programming language with assignment, conditional, loop,
sequence, and skip statements:

Inductive stmt : Type :=
| Assign : var → expr → stmt
| If : expr → stmt → stmt → stmt
| While : expr → stmt → stmt
| Sseq : stmt → stmt → stmt
| Skip : stmt.

Here and in the rest of the paper, we use a Coq syntax for introducing def-
initions. The Coq code above is an inductive type with several constructors
corresponding to the different statements of the language. This definition thus
corresponds to the following more common notation:

stmt :=
| Assign (var expr)
| If (expr stmt stmt)
. . .

We elide the syntax of arithmetic expressions. Values in our language are
integers. Our formal Coq development comprises recursive methods; we omit
them here for the sake of simplicity. We give a standard big-step operational
semantics which characterises the terminating executions of program statements.
It is defined as a relation between initial and final states of statement execution
where states are mappings from variables to values:

exec : state → stmt → state → Prop
The inductive definition of exec is given in the Appendix.
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5.2 Logic for a Simple Language

The partial correctness logic is formulated in a VDM style [13]. This differs from
the perhaps more common Hoare style rules, where assertions are predicates on
the current state; in VDM, program assertions are functions of the initial and
final state of a program statement:

Definition assertion := state → state → Prop.

This choice avoids the use of auxiliary variables which is necessary in Hoare
logic used for relating the values of variables in different states, see [14]. The
logic is encoded in Coq as an inductive predicate with one constructor for each
proof rule, see Appendix:

Inductive RULET : stmt → assertion → Prop

The soundness theorem is standard and establishes that a derivation over
program and judgement implies that every execution of the program satisfies
the judgement:

Proposition 1 (Soundness of partial logic)
∀ (st: stmt) (s1 s2 : state),
exec s1 st s2 →∀ (post : assertion), RULET st post → post s1 s2.

6 Introducing Ghost Variables

We now consider an extension of the simple language with ghost variables. To
that end, we assume a set of ghost variables gVar disjoint from the set of
program variables var.

The language, formalised as an inductive type Gstmt (see Appendix) then has
the same constructs as the original language (Stmt) plus a new construct, GAs-
sign, allowing one to assign to ghost variables. Ghost variables are not allowed
to appear in guards of loops or case distinctions nor may they be written into
ordinary variables so as not to influence the flow of control in any way.

Properties of programs with ghost variables should certainly talk about the
values of ghost variables. Thus, assertions with ghost variables (“ghost asser-
tions” for short) Gassertion are mappings from the initial and final program
states and also from the initial and final ghost states to a truth value:

Definition Gassertion := state → gState → state → gState → Prop.

Now we define inductively a logic for ghost assertions:

Inductive GRULET : Gstmt → Gassertion → Prop

The rules for this logic are quite the same as the rules for the standard simple
language except that those are defined for assertions with ghost variables. Con-
sider e.g. the assignment rule which differs from the ordinary assignment rule
only in that ghost states are threaded through and required not to change.
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GAssignRule: ∀ x e (post : Gassertion),
(∀ (s1 s2 : state) (g1 g2 : gState),
g1 = g2 → s2 = update s1 x (eval expr s1 e) → post s1 g1 s2 g2 ) →
GRULET (GAssign x e) post

The only substantial difference between the logic for standard simple language
and its ghost extension is the rule for ghost assignment (which does not have an
analogue in the standard logic):

GSetRule : ∀ x (e : gExpr) (post : Gassertion),
(∀ (s1 s2 : state ) (g1 g2 : gState),

g2 = gUpdate g1 x (gEval expr s1 g1 e) → s1 = s2 →
post s1 g1 s2 g2 ) → GRULET (GSet x e) post.

We do not prove the soundness of this logic w.r.t. an operational semantics
instrumented with ghost variables. As we pointed out in the introductory part
ghost variables lack a physical meaning and thus, should not be present in the
program semantics. Actually, the relation between the ghost and standard logic
presented in the following justifies the ghost logic w.r.t. standard operational
semantics exec presented in the Appendix.

6.1 Relation between Ghost and Standard Logic

In the sequel we use a function transform : Gstmt → Stmt that returns the un-
derlying standard program by replacing all ghost assignments with skips. Next,
with each ghost assertion ψ (of type Gassertion) we associate a standard asser-
tion transform(ψ) (of type assertion) by

transform(ψ) := λσ0, σ1.∀σg
0 , ∃σg

1 , ψ σ0 σ
g
0 σ1 σ

g
1

Notice that if ψ does not mention ghost variables then transform(ψ) is equivalent
to ψ itself. The formal statement about the relation of the two logical systems
then says that a proof in the ghost logic (GRULET ) that a statement stmt of
the ghost language meets the ghost assertion ψ can be transformed into a proof
in the standard logic (RULET ) that the statement transform(stmt) meets the
assertion transform(ψ):

Theorem 1 (Elimination of ghosts)
∀ (gst: Gstmt) (Gpost: Gassertion),
let st := transform gst in
let post:= (fun s1 s2 ⇒ ∀ (sg1: gState),∃ sg2:gState, Gpost s1 sg1 s2 sg2) in
GRULET gst Gpost → RULET st (fun s1 s2 ⇒ post s1 s2).

The proof of this statement is done by induction over the the ghost logical rules
(GRULET ). The curious part of this result is that the respective proof in the
standard logic uses the same loop invariants with the respective quantifications
(universal for the values in the initial state and existential for the values in
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the final state) over the ghost variables. Moreover, the established relation be-
tween the ghost and standard logic proposes an algorithm for transformation of
“ghost” specifications into standard specification constructs without ghost vari-
ables. Since the proof is conducted by induction over proof rules it contains an
algorithm that effectively performs the transformation on the level of proofs.

Returning back to our example which is actually provable with the program
logic GRULET, the respective program and annotation provable in the logic
RULET are the following:
//@ensures y = 2∗\ o ld (x )

y=0;

// @loop invar iant \ e x i s t s z , y = 2 ∗ z && x = \ o ld ( x ) − z
whi l e (x > 0) {

x = x − 1 ;
y = y + 2 ;

}

The new specification does not only quantify the loop invariant over the
ghost variable, but the ghost variable has been completely removed from it.
Of course, it would have been possible to use such existentially quantified in-
variant in the first place or even cleverly guess the logically equivalent invariant
y=2∗(x−\old(x)). Many people find this confusing and cumbersome and prefer
to use ghost variables. Our result shows that this is perfectly rigorous and can
be understood as a shorthand comparable, e.g., to the use of named variables as
opposed to combinators.

We remark that if a specification does not contain ghost variables but its proof
does then that same specfication is provable in the ordinary program logic using
the above correspondence followed by an instance of the consequence rule thus
establishing conservativity of ghost variables.

Corollary 1 (Conservativity of ghosts). ∀ (s: Gstmt) ( post : assertion),
GRULETstmt (fun (s1:state)(g1:gState)(s2:state)(g2:gState) ⇒ post s1 s2)→
RULET(transform stmt) post.

Remark on terminology. What we (and the JML community) call ghost variables
is in other situations known as auxiliary variables, in particular in the context of
Jones’ rely-guarantee methodology and also in Reynolds’ standard reference [15].
There, the term ghost parameter is reserved for what we call auxiliary variables,
namely universally quantified parameters used to fix old values of variables. In
a Hoare-style logic such auxiliary variables (in our sense) are crucial to express
that certain program variables are not modified. In our VDM-style version where
assertions have explicit access to pre-states such auxiliary variables or ghost
parameters in Reynolds’ sense are not needed as pointed out by Kleymann [14]
and thus not considered in this paper.

It is on the other hand not possible to use ghost variables to get rid of explicit
access to pre-states (or auxiliary variables when using Hoare-style logic). Of
course, one can use a ghost variable to store the old value of some variable, but
then we cannot — in the absence of \old that is — stipulate in the contract that
this ghost variable remains itself unmodified.
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7 Ghost Variables for Extra-Functional Properties

So far, we have seen the meaning of ghost variables w.r.t. a standard partial cor-
rectness. Such formulation describes the functional relation between input/out-
put. In the following sections we show how to extend our results to reasoning
about extra-functional properties such as “a program should not allocate more
than X memory cells”, “a program should not open nested transactions”, “a pro-
gram should not open more than X number of files” etc. Indeed, the practical
interest of being able to reason over such extra-functional properties is evident,
especially for critical applications tailored to PDAs or smart cards [16,11] or in
mobile code scenarios.

An important new feature brought about here is that one can no longer se-
mantically identify all non-terminating programs which we address by axioma-
tising reachable states and adding invariants to specifications as explained in
the Introduction. Formally, we specify the semantics of reachable states of the
thus extended language with the following inductive predicate. Recall that we
assume a set event modelling observable events, e.g., calls to API methods.

Inductive reach: state → stmt → list event → state → Prop

The proposition reach(σ0, stmt, evs, σ1) means that the execution of stmt
started in state σ0 reaches the state σ1 and produces the list of events evs. The
definition of the predicate reach relies on the notion of terminating executions
which is defined with the following predicate:

Inductive t exec:state → stmt → list event → state → Prop

The predicate t exec is defined in the usual big step style but this time keeps
track not only of the initial and final state but also of the list of events produced
during the execution. The defining clauses for both predicates reach and t exec
are given in the Appendix. These two definitions delineate the behaviour of extra-
functional properties of programs. It is they that must be “openly reviewd by a
trusted body experts” so as to ensure that they adequately model the physical
behaviour of programs.

Next, we define a logic that allows us to reason about and certify properties
of this extra-functional behaviour. The format of the logic relies on relations
between pre- and post states for terminating programs and invariants delineating
the behaviour of possibly nonterminating programs.

Definition invariant := state → list event → Prop.

The logic which allows to reason over trace properties is defined in Coq as the
inductive type RULER(see Appendix). The trace logic uses the logic for partial
correctness RULET presented in the previous Section 6 but which is suitably
modified to deal with event traces. In particular, the assertions that RULET
manipulates now depend not only on the initial and final state but also on the
trace of events produced during execution:

Definition assertion := state → list event → state → Prop.
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The soundness statement of the logic requires that if satisfaction of an in-
variant by a statement is derivable in RULER then every reachable state of the
execution of that statement satisfies the invariant:

Proposition 2 (Soundness of trace logic). ∀ stmt (s1 s2 : state) events,
(reach s1 stmt events s2) →∀ inv, RULER stmt inv → inv s1 events .

The proof of that lemma is done by induction over RULER. Note that because
RULER uses the logic RULET for partial correctness its soundness proof exploits
the soundness of RULET .

7.1 Program Logic for Trace Properties and Ghost Variables

The logic for trace properties tailored to a language with ghost variables is
analogous to the logic for trace properties for a standard language presented
in the previous subsection. The only difference is that the ghost trace logic
manipulates assertions with ghost variables and the assertion for trace properties
talk about the initial and current values of ghost variables. Thus, the signature
of ghost trace invariants is as follows:

Definition Ginvariant := state → gState → list event → gState → Prop.

Definition Gassertion := state → gState → list event → state → gState →
Prop

We now have the following relationship allowing us to effectively eliminate all
reference to ghost variables from a proof in the trace logic.

Theorem 2 (Elimination of ghosts from trace logic). ∀ (gstmt:Gstmt)
(ginv: Ginvariant),

let stmt := transform gstmt in
let inv := (fun s1 event ⇒ ∀ g1, ∃ g2, ginv s1 g1 event g2) in
RULERG gstmt ginv → RULER stmt inv.

7.2 Example Application

In the example of a mobile phone application purportedly using at most 10M of
memory we would insist on the invariant

meminv aState evs = mem evs ≤ 10485760

where mem : list event → nat is a Coq function extracting the number of allo-
cations from a list of events.

Suppose now that someone has already established the following ghost in-
variant for the program enriched with assignments to a ghost variable MEM
purportedly tracking memory allocations thus expressing that at all times the
ghost variable MEM is at most 10M.

gmeminv aState aGState evs aGState = aGState.MEM ≤ 10485760
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If indeed the program has been appropriately decorated with assignments to
MEM at allocation sites and MEM has not been tampered with elsewhere then
one can automatically produce proof of the invariant

gcorrinv aState aGState evs aGState = aGState.MEM = mem evs

Thus, we obtain a proof of the combined invariant

ginv aState aGState evs aGState = gcorrinv aState aGState evs aGState ∧
gmeminv aState aGState evs aGState

Applying the above lemma relating standard and ghost logic we obtain a
standard invariant from which meminv readily follows.

8 Ghost Variables for Object Invariants

In object oriented languages like Java, it is useful to talk about an object invari-
ant, i.e. a property that must hold in all visible states of an object and on which
other objects may rely. For instance, an invariant of objects of class representing
a list data structure is that the field length should be always greater or equal 0.
Intuitively, the visible states for an object are the initial and final state of every
method in the program, see [17] and the object invariant is usually a relation
between the components of the object, i.e. the instance fields of the object. In
particular, this means that the invariant of an object can be broken during the
execution of a method of this object. In order to verify that an object invariant
holds it must be proven to hold at the borders of every method in the program,
i.e. it is desugared as part of the pre and postcondition of every method in the
program. This implies that an object invariant must be ”revealed” to all classes
in the program and yields the problem of representation exposure. To remedy
this, in [10] Barnett et al. describe a modular and sound verification scheme for
object invariants based on ghost variables. To do so, a boolean ghost variable
valid is attached to every object o. The correctness of the methodology relies on
the following invariant property INV 1 in every execution state:

INV = If o.valid is true then the property o.I holds (1)

Now, the clients of an object o can be informed about the validity of o.I just
by revealing to them the value of the ghost field o.valid and avoiding thus repre-
sentation exposure. In order to enforce this invariant, the specification language
is extended with two more constructs - o.pack and o.unpack which basically set
the object state variable o.valid and thus mark the region in the program where
the object invariant can be broken or not. We have shown that a proof in such
verification scheme can be translated in a standard programming logic and in
the following, we sketch this.

1 We focus here on the first part of the article where the authors consider that an
object invariant may talk only about the fields of the object.
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Let us consider without losing the generality of the problem that we have
a simple imperative program provided with an invariant I and a ghost logic
formalised in Coq with the inductive type GHRULE (see Appendix) based on
the principle described in [10]. Because we limit ourselves to a simple language
INV will look rather like this:

INV = If valid is true then the property I holds (2)

The rule for assignment should establish that if the invariant INV holds in
the prestate of the assignment then it will hold after the assignment and the rule
will look like this in the Coq system:

Inductive GHRULE INV :=
| GHAssignRule: ∀ x e (pre: Gpreassertion)(post : Gassertion),

(∀ (s1 s2 : state) (g1 g2 : gState), pre s1 g1 →INV s1 g1 →
g1 = g2 → s2 = update s1 x (eval expr s1 e) →
INV s2 g2 ∧ post s1 g1 s2 g2 ) → GHRULE INV pre (GAssign x e) post.

No proof obligations pertaining to invariants arise in the other rules; see e.g.
the rule GHWhileRule in Appendix C. However, at all times the invariant can
be invoked as formalised by rule GHInvRule. This system thus formalises the
reasoning scheme proposed in [10].

We have formalised in Coq how a proof in such a verification scheme can be
transformed in a proof over a language without ghost variables. The key lemma
establishes that a proof in a logic which supports the invariant relation (2) can
be transformed into a proof in a partial VDM logic with ghost variables which
establishes that the invariant I is preserved:

Theorem 3 (Invariants). ∀ gstmt pre post INV,
GHRULE INV pre gstmt post →
GRULETgstmt (fun s1 g1 s2 g2 ⇒ pre s1 g1 ∧ INV s1 g1 →

post s1 g1 s2 g2 ∧ INV s2 g2 ).

The lemma is proved by induction over GHRULE. Combined with the result
described in Section 6, we can conclude that we can transform a proof in a logic
with invariants into a standard one.

9 Conclusion and Further Work

We have given a rigorous semantics of ghost variables in terms of a VDM-style
program logic without altering in any way the operational semantics of the lan-
guage which, as we have argued, is a source of vulnerability for proof-carrying
code architectures since it escapes formal validation. We have also argued that
ghost variables can be avoided in end-to-end specifications of extra-functional
properties provided the program logic is given the ability to speak about traces
of observable events.

Dynamic logic also offers some of the features that we propose: asserting that
some extra-functional property holds throughout the execution [18] and the use
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of existential quantification in situations where ghost variables might appear
[19]. The fact that proofs involving ghost variables (of terminating and non-
terminating programs) can always and automatically be translated into proofs
without ghost variables appears here for the first time and is the main technical
contribution of this paper. We found our approach to be very robust and did
not experience obstacles with the inclusion of recursive methods. We also find
that translation into a standard program logic is in general a useful method for
giving meaning to the fancier features of specification languages.

Although orthogonal to the idea of transformation of ghost proofs, our work
raises the question if high level specification languages like JML should use
ghost variables to model extrafunctional properties. An application of our result
can be the extension of JML with special non assignable constructs to denote
extrafunctional properties which will benefit of a clear semantics and sound
verification framework described in the present article.

In this article we have not covered the use of ghost variables in specifica-
tion and verification of shared-variable concurrency. Indeed, formalisms such as
Owicki-Gries [20] are incomplete without ghost variables. We found that this is
due to the fact that in the standard formulation of, e.g., Owicki-Gries, given ac-
cess to the entire state of the system which includes local variables and program
counters of all processes. If such access is provided, ghost variables can, again,
be eliminated using the methods from this paper. It is, however, questionable
whether assertions should be allowed to mention the global state; indeed, we find
that the real issue behind the phenomena around ghost variables in concurrency
is the question of how one should specify a stateful component without revealing
its internal implementation. We leave a detailed investigation of these questions
for future work.

Acknowledgement. We acknowledge support by the EU integrated project MO-
BIUS IST 15905.
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A Functional Behaviours

A.1 Big Step Operational Semantics for a Simple Language

Inductive exec stmt: state → stmt → state → Prop :=
| ExecAssign: ∀ s x e,

exec stmt s (Assign x e)(update s x (eval expr s e))
| ExecIf true: ∀ s1 s2 e stmtT stmtF,
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eval expr s1 e �= 0 → exec stmt s1 stmtT s2 →
exec stmt s1 (If e stmtT stmtF) s2

| ExecIf false: ∀ s1 s2 e stmtT stmtF,
eval expr s1 e = 0 → exec stmt s1 stmtF s2 →
exec stmt s1 (If e stmtT stmtF) s2

| ExecWhile true: ∀ s1 s2 s3 e stmt,
eval expr s1 e �= 0 → exec stmt s1 stmt s2 →
exec stmt s2 (While e stmt) s3 →
exec stmt s1 (While e stmt) s3

| ExecWhile false : ∀ s1 e stmt,
eval expr s1 e = 0 → exec stmt s1 (While e stmt) s1

| ExecSseq: ∀ s1 s2 s3 i stmt,
exec stmt s1 i s2 → exec stmt s2 stmt s3 →
exec stmt s1 (Sseq i stmt) s3

| ExecSkip: ∀ s, exec stmt s Skip s.

A.2 Logic for Partial Correctness

Inductive RULET : stmt → assertion → Prop :=
| AssignRule:∀ x e (post: assertion),

(∀ (s1 s2 : state), s2 = update s1 x (eval expr s1 e) → post s1 s2 ) →
RULET (Assign x e) post

| IfRule:∀ e (stmtT stmtF : stmt ) (post1 post2 post : assertion),
(∀ (s1 s2 : state),

(eval expr s1 e �= 0 → post1 s1 s2 ) →
(eval expr s1 e = 0 → post2 s1 s2 ) → post s1 s2 ) →

RULET stmtT post1 → RULET stmtF post2 →
RULET (If e stmtT stmtF) post

| WhileRule:∀ (st: stmt)(post b post1 : assertion) e,
(∀ s1 s2, eval expr s2 e = 0 → post1 s1 s2 → post s1 s2 ) →
(∀ s p t, eval expr s e �= 0 → b s p → post1 p t → post1 s t) →
(∀ s, eval expr s e = 0 → post1 s s) →
RULET st b→ RULET (While e st) post

| SeqRule:∀ (stmt1 stmt2 : stmt ) (post1 post2 post: assertion),
(∀ s1 s2,(∃ p, post1 s1 p ∧ post2 p s2 ) → post s1 s2 ) →
RULET stmt1 post1 → RULET stmt2 post2 →
RULET (Sseq stmt1 stmt2) post

| SkipRule:∀ (post: assertion),
(∀ (s1 s2 : state), s1 = s2 → post s1 s2 ) → RULET Skip post.

A.3 Syntax of Language with Ghost Variables

Inductive Gstmt: Type :=
| GAssign: var → expr → Gstmt
| GIf : expr → Gstmt → Gstmt → Gstmt
| GWhile: expr → Gstmt → Gstmt
| GSseq: Gstmt → Gstmt → Gstmt
| GSkip: Gstmt
| GSet: gVar → gExpr → Gstmt.

B Extra-Functional Behaviours with Traces

B.1 Semantics of Terminating Executions in the Presence of Traces

Inductive t exec (P : program)(B : body): state → stmt → list event → state → Prop :=
| ExecAssign: ∀ s x e,

t exec P B s (Assign x e) nil (update s x (eval expr s e))
| ExecIf true: ∀ s1 s2 e stmtT stmtF eventsT,

eval expr s1 e �= 0 → t exec P B s1 stmtT eventsT s2 →
t exec P B s1 (If e stmtT stmtF) eventsT s2
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| ExecIf false: ∀ s1 s2 e stmtT stmtF eventsF,
eval expr s1 e = 0 → t exec P B s1 stmtF eventsF s2 →
t exec P B s1 (If e stmtT stmtF) eventsF s2

| ExecWhile true: ∀ s1 s2 s3 e stmt eventsI eventsC,
eval expr s1 e �= 0 →
t exec P B s1 stmt eventsI s2 → t exec P B s2 (While e stmt) eventsC s3 →
t exec P B s1 (While e stmt)(app eventsI eventsC ) s3

| ExecWhile false: ∀ s1 e stmt,
eval expr s1 e = 0 → t exec P B s1 (While e stmt) nil s1

| ExecSseq: ∀ s1 s2 s3 stmt1 stmt2 events1 events2,
t exec P B s1 stmt1 events1 s2 → t exec P B s2 stmt2 events2 s3 →
t exec P B s1 (Sseq stmt1 stmt2)(app events1 events2 ) s3

| ExecSkip: ∀ s, t exec P B s Skip nil s
| ExecSignal: ∀ s event, t exec P B s (Signal event)(event::nil)s.

B.2 Semantics of Reachable States in the Presence of Traces

Inductive reach: state → stmt → list event → state → Prop :=
| ReachAssign: ∀ s x e,

reach s (Assign x e) nil (update s x (eval expr s e))
| ReachIf true: ∀ s1 s2 e stmtT stmtF eventsT ,

eval expr s1 e �= 0 → reach s1 stmtT eventsT s2 →
reach s1 (If e stmtT stmtF) eventsT s2

| ReachIf false: ∀ s1 s2 e stmtT stmtF eventsF,
eval expr s1 e = 0 → reach s1 stmtF eventsF s2 →
reach s1 (If e stmtT stmtF) eventsF s2

| ReachWhile false: ∀ s1 e stmt,
eval expr s1 e = 0 → reach s1 (While e stmt) nil s1

| ReachWhile true1 : ∀ s1 s2 e stmt eventsB,
eval expr s1 e �= 0 → reach s1 stmt eventsB s2 →
reach s1 (While e stmt) eventsB s2

| ReachWhile true2 : ∀ s1 s2 s3 e stmt eventsB eventsW,
eval expr s1 e �= 0 → t exec s1 stmt eventsB s2 →
reach s2 (While e stmt) eventsW s3 →
reach s1 (While e stmt)(eventsB ::eventsW ) s3

| ReachSseq1 : ∀ s1 s2 stmt1 stmt2 events1,
reach s1 stmt1 events1 s2 → reach s1 (Sseq stmt1 stmt2) events1 s2

| ReachSseq2 : ∀ s1 s2 s3 stmt1 stmt2 events1 events2,
t exec s1 stmt1 events1 s2 →
reach s2 stmt2 events2 s3 → reach s1 (Sseq stmt1 stmt2) (events1 ::events2 ) s3

| ReachSkip: ∀ s, reach s Skip nil s
| ReachRefl : ∀ s stmt, reach P B s stmt nil s
| ReachSignal: ∀ s event, reach s (Signal event) (event::nil) s.

B.3 Logic for Partial Correctness in the Presence of Traces for the
Extended Language

Inductive RULET : stmt → assertion → Prop :=
| AssignRule : ∀ x e (post : assertion) ,

(∀ (s1 s2 : state), s2 = update s1 x (eval expr s1 e) → post s1 nil s2) →
RULET (Assign x e) post

| IfRule : ∀ e (stmtT stmtF : stmt)(post1 post2 post : assertion) ,
(∀ ( s1 s2 : state) event,

((eval expr s1 e �= 0)) → post1 s1 event s2 ) ∧
(eval expr s1 e = 0 → post2 s1 event s2 ) → post s1 event s2 ) →

RULET stmtT post1 →RULET stmtF post2 →
RULET (If e stmtT stmtF) post

| WhileRule : ∀ (st : stmt ) ( post post1 posti : assertion) e,
(∀ s1 s2 event, post1 s1 event s2 ∧ eval expr s2 e = 0→

post s1 event s2 ) →
(∀ s p t event1 event2, eval expr s e �= 0 → posti s event1 p →

post1 p event2 t → post1 s (app event1 event2 ) t) →
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(∀ s, eval expr s e = 0 → post1 s nil s ) →
RULET st posti →RULET (While e st) post

| SeqRule: ∀ (stmt1 stmt2 : stmt ) ( post1 post2 post: assertion),
(∀ s1 s2 event1 event2, (∃ p , post1 s1 event1 p ∧ post2 p event2 s2 ) →

post s1 (app event1 event2 ) s2 ) →
RULET stmt1 post1 → RULET stmt2 post2 →
RULET (Sseq stmt1 stmt2) post

| SkipRule: ∀ (post: assertion),
(∀ (s1 s2 : state), s1 = s2 → post s1 nil s2) → RULET Skip post

| SignalRule : ∀ (post: assertion) event,
(∀ s1 s2 event, s1 = s2 → post s1 (event :: nil) s2 ) → RULET (Signal event) post.

B.4 Logic for Trace Properties for the Extended Language

Inductive RULER: stmt → invariant → Prop :=
| AssignRuleR: ∀ x e (post: invariant),

(∀ (s1 : state) l, l = nil → post s1 l) → RULER (Assign x e) post
| IfRuleR: ∀ e stmtT stmtF (post1 post2 post: invariant),

(∀ ( s1 : state) event,
((not eval expr s1 e = 0) → post1 s1 event) →
(eval expr s1 e = 0 → post2 s1 event) → post s1 event) →
(∀ (s1 : state) event, event = nil → post s1 event) →
RULER stmtT post1 → RULER stmtF post2 →
RULER (If e stmtT stmtF) post

| WhileRuleR: ∀ (st: stmt)(post post1 : invariant) e (inv : assertion),
(∀ s1 event, post1 s1 event → post s1 event) →
(∀ (s1 : state) l, l = nil → post1 s1 l) →
(∀ s, eval expr s e = 0 → post1 s nil) →
RULER st post1 → RULET st inv →
(∀ s1 s2 e1 e2, (inv s1 e1 s2 → eval expr s1 e �= 0 →

post1 s2 e2 → post1 s1 (app e1 e2 ) ) ) →
RULER (While e st) post

| SeqRuleR: ∀ (stmt1 stmt2 : stmt)(post post1 postRst2 : invariant)
(postT : assertion),
(∀ s1 e, post1 s1 e → post s1 e) →
(∀ s1 s2 e1 e2, postT s1 e1 s2 → postRst2 s2 e2 →

post1 s1 (app e1 e2 )) →
RULER stmt1 post1 → RULET stmt1 postT →
RULER stmt2 postRst2 → (∀ (s1 : state) l, l=nil → post s1 l) →
RULER (Sseq stmt1 stmt2) post

| SkipRuleR: ∀ (post: invariant),
(∀ (s1 : state) l, l = nil → post s1 l) → RULER Skip post

| SignalRuleR: ∀ (post: invariant) event,
(∀ s1 l, l = nil → post s1 (event::l)) →
(∀ s1 l, l = nil → post s1 l) → RULER (Signal event) post.

C Logic for Dealing with Invariants

Inductive GHRULE(I : Invariant): Gpreassertion → Gstmt → Gassertion → Prop :=
| GHAssignRule: ∀ x e (pre: Gpreassertion)(post: Gassertion),

(∀ (s1 s2 : state)(g1 g2 : gState), pre s1 g1 → I s1 g1 →
g1 = g2 → s2 = update s1 x (eval expr s1 e) → I s2 g2 ∧ post s1 g1 s2 g2 ) →
¡¡¡¡¡¡¡ .mine GHRULE I pre (GAssign x e) post

======= GHRULE I pre (GAssign x e) post
¿¿¿¿¿¿¿ .r240 | GHIfRule: ∀ e (stmtT stmtF : Gstmt)(pre pre1 pre2 : Gpreassertion)
(post1 post2 post: Gassertion),
(∀ s gs, pre s gs → pre1 s gs) → (∀ s gs, pre s gs → pre2 s gs) →
(∀ (s1 s2 : state ) (g1 g2 : gState),
(not (eval expr s1 e = 0) → post1 s1 g1 s2 g2 ) ∧
(eval expr s1 e = 0 → post2 s1 g1 s2 g2 ) → post s1 g1 s2 g2 ) →

GHRULE I pre1 stmtT post1 →
GHRULE I pre2 stmtF post2 →
GHRULE I pre (GIf e stmtT stmtF) post
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| GHWhileRule: ∀ (stmt: Gstmt)(pre inv : Gpreassertion)
(post1 post : Gassertion) e ,
(∀ s gs, pre s gs → inv s gs) →
(∀ (s1 s2 : state)(g1 g2 : gState), post1 s1 g1 s2 g2 → post s1 g1 s2 g2 ) →
(∀ (s1 s2 : state)(g1 g2 : gState),
((inv s1 g1 → inv s2 g2 ) ∧ eval expr s2 e = 0 → post1 s1 g1 s2 g2 )) →

GHRULE I (fun s1 g1 ⇒ eval expr s1 e �= 0) stmt
(fun s1 g1 s2 g2 ⇒ inv s1 g1 → inv s2 g2 ) →

GHRULE I pre (GWhile e stmt) post
| GHSeqRule: ∀ (stmt1 stmt2 : Gstmt)(pre pre1 pre2 : Gpreassertion)

(post1 post2 post: Gassertion),
(∀ s gs, pre s gs → pre1 s gs) →
(∀ s1 s2 g1 g2, (∃ p, ∃ gp, post1 s1 g1 p gp ∧ post2 p gp s2 g2 ) →
post s1 g1 s2 g2 ) →

GHRULE I pre1 stmt1 (fun s1 g1 s2 g2 ⇒ pre2 s2 g2 ∧ post1 s1 g1 s2 g2 ) →
GHRULE I pre2 stmt2 post2 →
GHRULE I pre (GSseq stmt1 stmt2 ) post

| GHSkipRule: ∀ (pre pre1 : Gpreassertion)(post1 post: Gassertion),
(∀ s gs, pre s gs → pre1 s gs) →
(∀ (s1 s2 : state)(g1 g2 : gState), post1 s1 g1 s2 g2 → post s1 g1 s2 g2 ) →
(∀ (s1 s2 : state)(g1 g2 : gState), g1 = g2 ∧ s1 = s2 → post s1 g1 s2 g2 ) →
GHRULE I pre GSkip post

| GHSetRule: ∀ x (e: gExpr)(pre: Gpreassertion)(post: Gassertion),
(∀ (s1 s2 : state)(g1 g2 : gState), pre s1 g1 → I s1 g1 →

g2 = gUpdate g1 x (gEval expr s1 g1 e) ∧ s1 = s2 → I s2 g2 ∧ post s1 g1 s2 g2 ) →
GHRULE I pre (GSet x e) post

| GHInvRule : ∀ stmt (pre : Gpreassertion) (post : Gassertion) ,
GHRULE I (fun s1 g1 ⇒ I s1 g1 ∧ pre s1 g1 ) stmt post →
GHRULE I pre stmt post .
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