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Preface

This volume contains the post-proceedings of the third edition of the Inter-
national Symposium on Trustworthy Global Computing (TGC 2007), held in
Sophia-Antipolis, France, November 5–6, 2007, and tutorial papers of the follow-
ing Workshop on the Interplay of Programming Languages and Cryptography,
held in Sophia Antipolis, November 7, 2007.

The Symposium on Trustworthy Global Computing is an international annual
venue dedicated to safe and reliable computation in global computers. It focuses
on providing tools and frameworks for constructing well-behaved applications
and for reasoning about their behavior and properties in models of computation
that incorporate code and data mobility over distributed networks with highly
dynamic topologies and heterogeneous devices.

This volume starts with an invited paper from Martin Hofmann. It then in-
cludes the revised versions of the 19 contributed papers; these versions take into
account both the referee’s reports and the discussions that took place during the
symposium. The Program Committee selected 19 papers from 48 submissions.
Every submission was reviewed by at least three members of the Program Com-
mittee. In addition, the Program Committee sought the opinions of additional
referees, selected because of their expertise on particular topics. We are grateful
to Andrei Voronkov for his EasyChair system that helped us to manage these
discussions. We would like to thank the authors who submitted papers to the
conference, the members of the Program Committee, and the additional review-
ers for their excellent work. We would also like to thank the invited speakers to
TGC 2007, Andrew D. Gordon, Martin Hofmann, and Jeff Magee.

The proceedings also include three tutorial papers. These papers were pre-
sented at the Workshop on the Interplay of Programming Languages and Cryp-
tography, organized by Ricardo Corin (INRIA, Rocquencourt) and Tamara Rezk
(INRIA, Sophia-Antipolis).

We gratefully acknowledge support from INRIA Sophia-Antipolis, Microsoft
Research, and the MSR-INRIA Joint Centre, as well as the European Global
Computing Initiative through the FET program.

November 2007 Gilles Barthe
Cédric Fournet
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Elimination of Ghost Variables in Program Logics

Martin Hofmann1 and Mariela Pavlova2

1 Institut für Informatik LMU München, Germany
2 Trusted Labs, Sophia-Antipolis, France

hofmann@ifi.lmu.de, Mariela.Pavlova@trusted-labs.fr

Abstract. Ghost variables are assignable variables that appear in pro-
gram annotations but do not correspond to physical entities. They are
used to facilitate specification and verification, e.g., by using a ghost
variable to count the number of iterations of a loop, and also to express
extra-functional behaviours. In this paper we give a formal model of
ghost variables and show how they can be eliminated from specifications
and proofs in a compositional and automatic way. Thus, with the results
of this paper ghost variables can be seen as a specification pattern rather
than a primitive notion.

1 Introduction

With the fast development of programming systems, the requirements for soft-
ware quality also become more complex. In reply to this, the techniques for
program verification also evolve. This is the case also for modern specification
languages which must support a variety of features in order to be expressive
enough to deal with such complex program properties. A typical example is
JML (short for Java Modeling Language), a design by contract specification lan-
guage tailored to Java programs. JML has proved its utility in several industrial
case studies [1,2]. Other examples are ESC/Java [3], the Larch methodology [4]
and Spec# [5]. JML syntax is very close to the syntax of Java. JML has also
other specification constructs which do not have a counterpart in the Java lan-
guage. While program logics and specification languages help in the development
of correct code they have also been proposed as a vehicle for proof-carrying code
[6,7,8,9] where clients are willing to run code supplied by untrusted and possibly
malicious code producers provided the code comes equipped with a certificate
in the form of a logical proof that certain security policies are respected. In this
case, the underlying logical formalism must have a very solid semantic basis so
as to prevent inadvertent or malicious exploitation. On the one hand, the logic
must be shown sound with respect to some well-defined semantics; on the other
hand, the meaning of specifications must be as clear as possible so as to min-
imise the risk of formally correct proofs which nevertheless establish not quite
the intuitively intended property. This calls for a rigorous assessment of all the
features employed in a specification language; in this paper we do this for JML’s
ghost variables.

G. Barthe and C. Fournet (Eds.): TGC 2007, LNCS 4912, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Hofmann and M. Pavlova

Coq development. All definitions, theorems, proofs have been carried out within
the Coq theorem prover and are available for download at www.tcs.ifi.lmu.de/
~mhofmann/ghostcoq.tgz.

2 Ghost Variables and Their Use

In brief, a ghost variable is an assignable variable that does not appear in the ex-
ecutable code but only in assertions and specifications. Accordingly, annotated
code is allowed to contain ghost statements that assign into ghost variables.
These ghost statements are not actually executed but specifications and asser-
tions involving ghost variables are understood “as if” the ghost statements were
executed whenever reached. Note that ghost variables should not interfere with
the values of normal program variables or the control flow of a program.

Ghost variables appear to ease proof automation in automatic theorem provers
like Simplify as they instantiate existential quantification by pointing the object
which satisfies the otherwise existentially quantified proposition. On the other
hand, they are intuitive and thus, helpful in the specification process.

2.1 Ghost Variables in Internal Assertions

First, they can be used for an internal method annotation in order to facilitate
the program verification process. For instance, in JML ghost variables can be
used in an assertion to refer to the value of a program variable at some particular
program point different from the point where the assertion is declared and must
hold. Thus, we can use a ghost variable to express that a program variable
is not changed by a loop execution by assigning to it prior to the loop or in
order to count the number of loop iterations. Such use of ghost variables usually
makes them appear in intra-method assertions like loop invariants or assertions
at a particular program point but does not introduce them in the contract of a
method (i.e. the pre- and postcondition). For illustration, we consider an example
which doubles the value of the variable x and stores it in the variable y:
//@ensures 2∗\ o ld (x ) = y
y=0;
//@ghost i n t z ;
//@set z = 0 ;
// @loop invar iant 2∗ z = y && z = \ o ld (x ) − x
whi l e (x > 0) {

x = x − 1 ;
y = y + 2 ;
//@set z = z + 1;}

The desired property of this code fragment is introduced by the keyword ensures
and states that y has accumulated the double of the initial value of x, i.e. \old(x).
In the specification, we have used the ghost variable z. We may notice that z
is declared in Java comments as is the case for any kind of JML specification.
Its value at the beginning of every iteration corresponds to the number of loop
iterations done so far. Thus, before the loop, z is initialised to be 0 and at

file:www.tcs.ifi.lmu.de/~mhofmann/ghostcoq.tgz
file:www.tcs.ifi.lmu.de/~mhofmann/ghostcoq.tgz


Elimination of Ghost Variables in Program Logics 3

the end of the loop body, it is incremented. Note that z does not appear in
the postcondition, i.e., the end-to-end specification of the program fragment. Its
purely ancillary role is to facilitate the verification process by allowing the loop
invariant to refer to the number of iterations even though no physical variable
counts them.

2.2 Expressing Extra-Functional Code Properties

Secondly, ghost variables may be used to express extra-functional properties
about program behavior. In such cases, ghost variables may become part of the
method contract. For example, they may serve to model the memory consump-
tion of a program. To illustrate this, let us consider a fragment of a Java class
with two ghost variables - MEM which counts the number of allocated heap
cells and MAX which models the maximal amount of heap space that can be
allocated by the program:
//@ pub l i c s t a t i c ghost i n t MEM;
//@ pub l i c s t a t i c f i n a l ghost i n t MAX;

//@ r equ i r e s MEM + s i z e (A) <= MAX
//@ ensures MEM <= MAX
pub l i c void m ( ) {

A a = new A ()
//@ se t MEM = MEM + s i z e (A)}

The postcondition asserts that MEM is bounded by MAX which ensures
bounded memory allocation provided that MEM accurately tracks the num-
ber of allocations made. In the example this is ensured by the assignment to
MEM.

We notice that this relationship between the value of the ghost variable MEM
and the actual memory consumption of the method is implicit in the annotation
policy, i.e., lies in the fact that MEM is incremented precisely when memory is
being allocated and nowhere else and not modified in any other way either.

Therefore, ghost variables are particularly suitable when the code annotation
is completely transparent, for example, for software auditing performed inter-
actively over the source code, i.e. in the process where a code producer verifies
if the written code respects their initial intentions. In such situations the good
intuitions that ghost variables provide as opposed, perhaps, to more functional
or abstract ways of specification are fully brought to bear.

Ghost variables have also been used to indicate when class invariants are re-
quired to hold and may be relied upon [10] and as a means to enforce a particular
order in which API methods should be invoked [11].

3 Problems with Ghost Variables

In this section we describe why we feel that ghost variables as currently used
and modelled might be harmful in a proof carrying code scenario where formal
proofs are provided as certificates by untrusted and possibly even malicious code
producers.
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3.1 Semantics of Ghost Variables

Usually, program semantics is expressed as a transition between states where
states represent the values related to program variables. For the case of JML,
verification tools like ESC/Java [3] and Jack [12] treat ghost variables as ordinary
program variables. While this works in order to generate verification conditions
and justify proof rules, it is not entirely satisfactory if we treat program seman-
tics as primary and program verification as a means to an end. To appreciate
this point notice that the formal operational semantics of a language, e.g. Java
Bytecode, can in principle not be proven adequate. One can compare it to other
formalisations of the semantics, e.g. as a virtual machine, but adequacy of the
last formalised semantics in such a chain of translations always remains an un-
provable axiom. For this reason, we feel that program semantics should be as
simple as possible and certainly not be modelled to suit a particular verification
methodology. Its primary aim should be to make the correspondence with the
real world as evident as possible. Thus, we find that one should give meaning to
ghost variables without altering the operational semantics of the language not
even by adding non-existent variables to its memory model.

One may argue that one could prove a semantics adequate by formally relat-
ing it to assembly language level formalizations of hardware architectures. As
argued above this only shifts the “semantic gap” somewhere else. What remains
unproven in that case is that the assembly language level formalization does
indeed adequately reflect what’s going on in the hardware and also that the
assumed translation of bytecode to assembly code is what is really done by the
compiler and the JVM implementation.

3.2 Modelling Extra-Functional Properties

There is a second problem with ghost variables that shows up only when they
are used to track extra-functional program properties like memory consumption
above, which is to do with the fact that the intended as opposed to the formal
meaning of a contract then is contingent on respecting a particular code annota-
tion policy. For the sake of a concrete example, suppose that someone advertises
a Java card game to be run on a mobile phone and claims that it definitely
runs within 10M of memory by providing a formal proof that its main-method
satisfies the postcondition

ensur e s MEM <= 10485760

Unfortunately, such a formal proof only guarantees that the ghost variable MEM
has a value ≤ 10M after the execution of the program; the fact that it relates to
memory allocation remains unproved. Thus, n order to be really sure that the
program really does not use more than 10M the recipient would have to carefully
study the code to make sure that indeed the ghost variable MEM has been
appropriately incremented at every allocation site and not been tempered with
anywhere else. Not only does this place an awkward burden on code recipients;
it also opens to door to all kinds of exploits by malicious code producers based
on somehow hiding assignments to MEM in obcure library functions or similar.
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One could argue that this could be fixed by decreeing that a “certificate” of
the resource property in question comprises not only the formal proof of the
contract but also a successful run of some automatic analysis which checks that
ghost assignments are inserted next to all memory allocating instructions and
only there.

Note, however, that arguing that such a policy does capture the intended re-
source property is again part of the semantic gap outside the realm of formal
verification and must be left to human inspection and ultimately belief. In situa-
tions where we assume the existence of malicious code producers who try to fool
the code consumer with faked certificates we would prefer to reduce resorting to
such non-rigorous methods to a bare minimum. Of course, if we are interested in
extra-functional code properties we have to at some point formally define what
the observable extra-functional effects of a program are, such as memory us-
age, time consumptions, consumption of other resources, etc. However, we argue
that this formalisation should be done openly by a trusted body of experts, and
carefully argued by means of examples, test cases, etc. In brief, it is a proce-
dure that should not be done over and over again for each verification tool or
method.

We therefore argue that once we have a program semantics and program logic
that can speak about extra-functional prperties it will no longer be necessary to
make reference to ghost variables in contracts so that we are thus brought back
to essentially the first usage of ghost variables, namely as an auxiliary device
employed to facilitate a verification.

Before continuing, we emphasize again that there is nothing wrong with ghost
variables in a verification tool or formalism. It is only in the scenario of proof-
carrying code where we intend to use proofs in formalised program logic as
unforgeable certificates that our discussion applies and our results are of value.

4 Contributions of This Paper

In this paper we demonstrate that ghost variables can be eliminated from formal
proofs in a program logic in such a way that on the one hand the same outside
contracts will be proved and on the other hand the intuitive ease that ghost
variables afford is retained.

We do this by showing that proofs in a program logic with ghost variables
can be translated automatically and compositionally into proofs of the same
specifications in a logic that does not use ghost variables. In other words, ghost
variables become a conservative extension of ordinary program logics.

In order to focus on salient aspects we study the problem of ghost variables
using first a simple, unstructured while language specified by a big-step op-
erational semantics and reasoned about in a VDM-style program logic using
I/O-relations as assertions. The proof rules of the program logic are such that
whenever C : P is provable then whenever S, T are initial, respectively final
states of a terminating run of program C then P (S, T ) holds.
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4.1 Elimination of Ghost Variables

We then consider programs Cg annotated with assignments to ghost variables
and introduce ad-hoc proof rules for deducing statements of the form Cg : Pg

where, now, Pg is a relations between pairs of states: (initial state, initial ghost
state) and (final state, final ghost state). The proof rules are motivated by
the intuitive meaning of ghost variables but are not formally validated against
any kind of operational semantics of ghost variables. Instead, our first result
shows that if we have a derivation of Cg : Pg then we can effectively find a
derivation of C : P where C is the program Cg with all ghost instructions re-
moved and where P (S, T ) ⇐⇒ ∀Sg.∃Tg.Pg((S, Sg), (T, Tg)). In particular, when
Pg((S, Sg), (T, Tg)) ⇐⇒ Q(S, T ) for some I/O-relation Q then P ⇐⇒ Q. This
models the case where ghost variables do not appear in the outside contract,
but possible in internal assertions, e.g., as invariants in invocations of the proof
rule for while-loops. The qualification “effective” of the announced proof trans-
formation means that the transformation is by induction on proofs and does
not require inventing of new invariants, assertions, mathematical proofs of side
condition or similar, and is thus fully automatic. Without this extra qualifica-
tion a result like the one we announced could be trivially true by appealing to a
completeness result for the program logic.

4.2 Extension to Extra-Functional Properties

We then extend our approach to encompass extra-functional properties. In order
to model these we extend our language by external procedures that have no effect
on the store but do cause an event to occur that is visible from the outside.
Formally, we assume a set Extern of external functions and decree that for
f ∈ Extern and e an integer expression we can form the command f(e) which has
the same effect as Skip but causes the event (f, n) to occur where n is the current
value of expression e. Thus, an event is an element of Event := Extern×Z.

Now that programs can cause observable effects already during their execution
we can no longer semantically identify all nonterminating programs as is typically
done by big-step operational semantics. Instead we define for each program C as
relation C→ where S

C,ev→ S′ means that when we start program C in initial state
S then during its execution there is a point at which we have reached state S′

and up to that point the events ev ∈ Event∗ have occurred.
We then consider a program logic that in addition to VDM-style assertions

(which now, of course, may also mention the trace of events occurred) also has

a judgement C : I with the intention that whenever S
C,ev→ S′ then I(S, ev) will

hold. The rules for the definition of this judgement have premises referring to
the usual assertions.

In this extension of the program logic we can thus assert extra-functional
properties without using ghost variables. We show that, again, ghost variables
can be eliminated from proofs of specifications that do not themselves mention
ghost variables.
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Suppose now that we have a proof that program C satisifies the invariant
“MEM = \old(MEM)” where MEM is a ghost variable purportedly counting the
number of memory allocations made. As argued above such a proof ought to be
accompanied by a formal argument explaining that the ghost variable MEM really
does reflect the number allocations made. In our resource-enhanced logic this
could be formalised as a proof of the invariant MEM = mem(ev) where mem(ev)
is the number of allocation events in execution trace tr. Combining the two
proofs then yields a proof of the invariant mem(ev) = 0 to which elimination of
ghost variables applies.

5 Language and Program Logic

In this section we define a simple programming language and a VDM style
program logic as a vehicle for a formalisation of our results. The language has
neither local variables nor objects, yet the salient features of our modelling of
ghost variables can be sufficiently well illustrated therein without introducing
unnecessary clutter.

5.1 Simple Programming Language

We consider a simple programming language with assignment, conditional, loop,
sequence, and skip statements:

Inductive stmt : Type :=
| Assign : var → expr → stmt
| If : expr → stmt → stmt → stmt
| While : expr → stmt → stmt
| Sseq : stmt → stmt → stmt
| Skip : stmt.

Here and in the rest of the paper, we use a Coq syntax for introducing def-
initions. The Coq code above is an inductive type with several constructors
corresponding to the different statements of the language. This definition thus
corresponds to the following more common notation:

stmt :=
| Assign (var expr)
| If (expr stmt stmt)
. . .

We elide the syntax of arithmetic expressions. Values in our language are
integers. Our formal Coq development comprises recursive methods; we omit
them here for the sake of simplicity. We give a standard big-step operational
semantics which characterises the terminating executions of program statements.
It is defined as a relation between initial and final states of statement execution
where states are mappings from variables to values:

exec : state → stmt → state → Prop
The inductive definition of exec is given in the Appendix.
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5.2 Logic for a Simple Language

The partial correctness logic is formulated in a VDM style [13]. This differs from
the perhaps more common Hoare style rules, where assertions are predicates on
the current state; in VDM, program assertions are functions of the initial and
final state of a program statement:

Definition assertion := state → state → Prop.

This choice avoids the use of auxiliary variables which is necessary in Hoare
logic used for relating the values of variables in different states, see [14]. The
logic is encoded in Coq as an inductive predicate with one constructor for each
proof rule, see Appendix:

Inductive RULET : stmt → assertion → Prop

The soundness theorem is standard and establishes that a derivation over
program and judgement implies that every execution of the program satisfies
the judgement:

Proposition 1 (Soundness of partial logic)
∀ (st: stmt) (s1 s2 : state),
exec s1 st s2 →∀ (post : assertion), RULET st post → post s1 s2.

6 Introducing Ghost Variables

We now consider an extension of the simple language with ghost variables. To
that end, we assume a set of ghost variables gVar disjoint from the set of
program variables var.

The language, formalised as an inductive type Gstmt (see Appendix) then has
the same constructs as the original language (Stmt) plus a new construct, GAs-
sign, allowing one to assign to ghost variables. Ghost variables are not allowed
to appear in guards of loops or case distinctions nor may they be written into
ordinary variables so as not to influence the flow of control in any way.

Properties of programs with ghost variables should certainly talk about the
values of ghost variables. Thus, assertions with ghost variables (“ghost asser-
tions” for short) Gassertion are mappings from the initial and final program
states and also from the initial and final ghost states to a truth value:

Definition Gassertion := state → gState → state → gState → Prop.

Now we define inductively a logic for ghost assertions:

Inductive GRULET : Gstmt → Gassertion → Prop

The rules for this logic are quite the same as the rules for the standard simple
language except that those are defined for assertions with ghost variables. Con-
sider e.g. the assignment rule which differs from the ordinary assignment rule
only in that ghost states are threaded through and required not to change.



Elimination of Ghost Variables in Program Logics 9

GAssignRule: ∀ x e (post : Gassertion),
(∀ (s1 s2 : state) (g1 g2 : gState),
g1 = g2 → s2 = update s1 x (eval expr s1 e) → post s1 g1 s2 g2 ) →
GRULET (GAssign x e) post

The only substantial difference between the logic for standard simple language
and its ghost extension is the rule for ghost assignment (which does not have an
analogue in the standard logic):

GSetRule : ∀ x (e : gExpr) (post : Gassertion),
(∀ (s1 s2 : state ) (g1 g2 : gState),

g2 = gUpdate g1 x (gEval expr s1 g1 e) → s1 = s2 →
post s1 g1 s2 g2 ) → GRULET (GSet x e) post.

We do not prove the soundness of this logic w.r.t. an operational semantics
instrumented with ghost variables. As we pointed out in the introductory part
ghost variables lack a physical meaning and thus, should not be present in the
program semantics. Actually, the relation between the ghost and standard logic
presented in the following justifies the ghost logic w.r.t. standard operational
semantics exec presented in the Appendix.

6.1 Relation between Ghost and Standard Logic

In the sequel we use a function transform : Gstmt → Stmt that returns the un-
derlying standard program by replacing all ghost assignments with skips. Next,
with each ghost assertion ψ (of type Gassertion) we associate a standard asser-
tion transform(ψ) (of type assertion) by

transform(ψ) := λσ0, σ1.∀σg
0 , ∃σg

1 , ψ σ0 σ
g
0 σ1 σ

g
1

Notice that if ψ does not mention ghost variables then transform(ψ) is equivalent
to ψ itself. The formal statement about the relation of the two logical systems
then says that a proof in the ghost logic (GRULET ) that a statement stmt of
the ghost language meets the ghost assertion ψ can be transformed into a proof
in the standard logic (RULET ) that the statement transform(stmt) meets the
assertion transform(ψ):

Theorem 1 (Elimination of ghosts)
∀ (gst: Gstmt) (Gpost: Gassertion),
let st := transform gst in
let post:= (fun s1 s2 ⇒ ∀ (sg1: gState),∃ sg2:gState, Gpost s1 sg1 s2 sg2) in
GRULET gst Gpost → RULET st (fun s1 s2 ⇒ post s1 s2).

The proof of this statement is done by induction over the the ghost logical rules
(GRULET ). The curious part of this result is that the respective proof in the
standard logic uses the same loop invariants with the respective quantifications
(universal for the values in the initial state and existential for the values in
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the final state) over the ghost variables. Moreover, the established relation be-
tween the ghost and standard logic proposes an algorithm for transformation of
“ghost” specifications into standard specification constructs without ghost vari-
ables. Since the proof is conducted by induction over proof rules it contains an
algorithm that effectively performs the transformation on the level of proofs.

Returning back to our example which is actually provable with the program
logic GRULET, the respective program and annotation provable in the logic
RULET are the following:
//@ensures y = 2∗\ o ld (x )

y=0;

// @loop invar iant \ e x i s t s z , y = 2 ∗ z && x = \ o ld ( x ) − z
whi l e (x > 0) {

x = x − 1 ;
y = y + 2 ;

}

The new specification does not only quantify the loop invariant over the
ghost variable, but the ghost variable has been completely removed from it.
Of course, it would have been possible to use such existentially quantified in-
variant in the first place or even cleverly guess the logically equivalent invariant
y=2∗(x−\old(x)). Many people find this confusing and cumbersome and prefer
to use ghost variables. Our result shows that this is perfectly rigorous and can
be understood as a shorthand comparable, e.g., to the use of named variables as
opposed to combinators.

We remark that if a specification does not contain ghost variables but its proof
does then that same specfication is provable in the ordinary program logic using
the above correspondence followed by an instance of the consequence rule thus
establishing conservativity of ghost variables.

Corollary 1 (Conservativity of ghosts). ∀ (s: Gstmt) ( post : assertion),
GRULETstmt (fun (s1:state)(g1:gState)(s2:state)(g2:gState) ⇒ post s1 s2)→
RULET(transform stmt) post.

Remark on terminology. What we (and the JML community) call ghost variables
is in other situations known as auxiliary variables, in particular in the context of
Jones’ rely-guarantee methodology and also in Reynolds’ standard reference [15].
There, the term ghost parameter is reserved for what we call auxiliary variables,
namely universally quantified parameters used to fix old values of variables. In
a Hoare-style logic such auxiliary variables (in our sense) are crucial to express
that certain program variables are not modified. In our VDM-style version where
assertions have explicit access to pre-states such auxiliary variables or ghost
parameters in Reynolds’ sense are not needed as pointed out by Kleymann [14]
and thus not considered in this paper.

It is on the other hand not possible to use ghost variables to get rid of explicit
access to pre-states (or auxiliary variables when using Hoare-style logic). Of
course, one can use a ghost variable to store the old value of some variable, but
then we cannot — in the absence of \old that is — stipulate in the contract that
this ghost variable remains itself unmodified.
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7 Ghost Variables for Extra-Functional Properties

So far, we have seen the meaning of ghost variables w.r.t. a standard partial cor-
rectness. Such formulation describes the functional relation between input/out-
put. In the following sections we show how to extend our results to reasoning
about extra-functional properties such as “a program should not allocate more
than X memory cells”, “a program should not open nested transactions”, “a pro-
gram should not open more than X number of files” etc. Indeed, the practical
interest of being able to reason over such extra-functional properties is evident,
especially for critical applications tailored to PDAs or smart cards [16,11] or in
mobile code scenarios.

An important new feature brought about here is that one can no longer se-
mantically identify all non-terminating programs which we address by axioma-
tising reachable states and adding invariants to specifications as explained in
the Introduction. Formally, we specify the semantics of reachable states of the
thus extended language with the following inductive predicate. Recall that we
assume a set event modelling observable events, e.g., calls to API methods.

Inductive reach: state → stmt → list event → state → Prop

The proposition reach(σ0, stmt, evs, σ1) means that the execution of stmt
started in state σ0 reaches the state σ1 and produces the list of events evs. The
definition of the predicate reach relies on the notion of terminating executions
which is defined with the following predicate:

Inductive t exec:state → stmt → list event → state → Prop

The predicate t exec is defined in the usual big step style but this time keeps
track not only of the initial and final state but also of the list of events produced
during the execution. The defining clauses for both predicates reach and t exec
are given in the Appendix. These two definitions delineate the behaviour of extra-
functional properties of programs. It is they that must be “openly reviewd by a
trusted body experts” so as to ensure that they adequately model the physical
behaviour of programs.

Next, we define a logic that allows us to reason about and certify properties
of this extra-functional behaviour. The format of the logic relies on relations
between pre- and post states for terminating programs and invariants delineating
the behaviour of possibly nonterminating programs.

Definition invariant := state → list event → Prop.

The logic which allows to reason over trace properties is defined in Coq as the
inductive type RULER(see Appendix). The trace logic uses the logic for partial
correctness RULET presented in the previous Section 6 but which is suitably
modified to deal with event traces. In particular, the assertions that RULET
manipulates now depend not only on the initial and final state but also on the
trace of events produced during execution:

Definition assertion := state → list event → state → Prop.
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The soundness statement of the logic requires that if satisfaction of an in-
variant by a statement is derivable in RULER then every reachable state of the
execution of that statement satisfies the invariant:

Proposition 2 (Soundness of trace logic). ∀ stmt (s1 s2 : state) events,
(reach s1 stmt events s2) →∀ inv, RULER stmt inv → inv s1 events .

The proof of that lemma is done by induction over RULER. Note that because
RULER uses the logic RULET for partial correctness its soundness proof exploits
the soundness of RULET .

7.1 Program Logic for Trace Properties and Ghost Variables

The logic for trace properties tailored to a language with ghost variables is
analogous to the logic for trace properties for a standard language presented
in the previous subsection. The only difference is that the ghost trace logic
manipulates assertions with ghost variables and the assertion for trace properties
talk about the initial and current values of ghost variables. Thus, the signature
of ghost trace invariants is as follows:

Definition Ginvariant := state → gState → list event → gState → Prop.

Definition Gassertion := state → gState → list event → state → gState →
Prop

We now have the following relationship allowing us to effectively eliminate all
reference to ghost variables from a proof in the trace logic.

Theorem 2 (Elimination of ghosts from trace logic). ∀ (gstmt:Gstmt)
(ginv: Ginvariant),

let stmt := transform gstmt in
let inv := (fun s1 event ⇒ ∀ g1, ∃ g2, ginv s1 g1 event g2) in
RULERG gstmt ginv → RULER stmt inv.

7.2 Example Application

In the example of a mobile phone application purportedly using at most 10M of
memory we would insist on the invariant

meminv aState evs = mem evs ≤ 10485760

where mem : list event → nat is a Coq function extracting the number of allo-
cations from a list of events.

Suppose now that someone has already established the following ghost in-
variant for the program enriched with assignments to a ghost variable MEM
purportedly tracking memory allocations thus expressing that at all times the
ghost variable MEM is at most 10M.

gmeminv aState aGState evs aGState = aGState.MEM ≤ 10485760
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If indeed the program has been appropriately decorated with assignments to
MEM at allocation sites and MEM has not been tampered with elsewhere then
one can automatically produce proof of the invariant

gcorrinv aState aGState evs aGState = aGState.MEM = mem evs

Thus, we obtain a proof of the combined invariant

ginv aState aGState evs aGState = gcorrinv aState aGState evs aGState ∧
gmeminv aState aGState evs aGState

Applying the above lemma relating standard and ghost logic we obtain a
standard invariant from which meminv readily follows.

8 Ghost Variables for Object Invariants

In object oriented languages like Java, it is useful to talk about an object invari-
ant, i.e. a property that must hold in all visible states of an object and on which
other objects may rely. For instance, an invariant of objects of class representing
a list data structure is that the field length should be always greater or equal 0.
Intuitively, the visible states for an object are the initial and final state of every
method in the program, see [17] and the object invariant is usually a relation
between the components of the object, i.e. the instance fields of the object. In
particular, this means that the invariant of an object can be broken during the
execution of a method of this object. In order to verify that an object invariant
holds it must be proven to hold at the borders of every method in the program,
i.e. it is desugared as part of the pre and postcondition of every method in the
program. This implies that an object invariant must be ”revealed” to all classes
in the program and yields the problem of representation exposure. To remedy
this, in [10] Barnett et al. describe a modular and sound verification scheme for
object invariants based on ghost variables. To do so, a boolean ghost variable
valid is attached to every object o. The correctness of the methodology relies on
the following invariant property INV 1 in every execution state:

INV = If o.valid is true then the property o.I holds (1)

Now, the clients of an object o can be informed about the validity of o.I just
by revealing to them the value of the ghost field o.valid and avoiding thus repre-
sentation exposure. In order to enforce this invariant, the specification language
is extended with two more constructs - o.pack and o.unpack which basically set
the object state variable o.valid and thus mark the region in the program where
the object invariant can be broken or not. We have shown that a proof in such
verification scheme can be translated in a standard programming logic and in
the following, we sketch this.

1 We focus here on the first part of the article where the authors consider that an
object invariant may talk only about the fields of the object.



14 M. Hofmann and M. Pavlova

Let us consider without losing the generality of the problem that we have
a simple imperative program provided with an invariant I and a ghost logic
formalised in Coq with the inductive type GHRULE (see Appendix) based on
the principle described in [10]. Because we limit ourselves to a simple language
INV will look rather like this:

INV = If valid is true then the property I holds (2)

The rule for assignment should establish that if the invariant INV holds in
the prestate of the assignment then it will hold after the assignment and the rule
will look like this in the Coq system:

Inductive GHRULE INV :=
| GHAssignRule: ∀ x e (pre: Gpreassertion)(post : Gassertion),

(∀ (s1 s2 : state) (g1 g2 : gState), pre s1 g1 →INV s1 g1 →
g1 = g2 → s2 = update s1 x (eval expr s1 e) →
INV s2 g2 ∧ post s1 g1 s2 g2 ) → GHRULE INV pre (GAssign x e) post.

No proof obligations pertaining to invariants arise in the other rules; see e.g.
the rule GHWhileRule in Appendix C. However, at all times the invariant can
be invoked as formalised by rule GHInvRule. This system thus formalises the
reasoning scheme proposed in [10].

We have formalised in Coq how a proof in such a verification scheme can be
transformed in a proof over a language without ghost variables. The key lemma
establishes that a proof in a logic which supports the invariant relation (2) can
be transformed into a proof in a partial VDM logic with ghost variables which
establishes that the invariant I is preserved:

Theorem 3 (Invariants). ∀ gstmt pre post INV,
GHRULE INV pre gstmt post →
GRULETgstmt (fun s1 g1 s2 g2 ⇒ pre s1 g1 ∧ INV s1 g1 →

post s1 g1 s2 g2 ∧ INV s2 g2 ).

The lemma is proved by induction over GHRULE. Combined with the result
described in Section 6, we can conclude that we can transform a proof in a logic
with invariants into a standard one.

9 Conclusion and Further Work

We have given a rigorous semantics of ghost variables in terms of a VDM-style
program logic without altering in any way the operational semantics of the lan-
guage which, as we have argued, is a source of vulnerability for proof-carrying
code architectures since it escapes formal validation. We have also argued that
ghost variables can be avoided in end-to-end specifications of extra-functional
properties provided the program logic is given the ability to speak about traces
of observable events.

Dynamic logic also offers some of the features that we propose: asserting that
some extra-functional property holds throughout the execution [18] and the use
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of existential quantification in situations where ghost variables might appear
[19]. The fact that proofs involving ghost variables (of terminating and non-
terminating programs) can always and automatically be translated into proofs
without ghost variables appears here for the first time and is the main technical
contribution of this paper. We found our approach to be very robust and did
not experience obstacles with the inclusion of recursive methods. We also find
that translation into a standard program logic is in general a useful method for
giving meaning to the fancier features of specification languages.

Although orthogonal to the idea of transformation of ghost proofs, our work
raises the question if high level specification languages like JML should use
ghost variables to model extrafunctional properties. An application of our result
can be the extension of JML with special non assignable constructs to denote
extrafunctional properties which will benefit of a clear semantics and sound
verification framework described in the present article.

In this article we have not covered the use of ghost variables in specifica-
tion and verification of shared-variable concurrency. Indeed, formalisms such as
Owicki-Gries [20] are incomplete without ghost variables. We found that this is
due to the fact that in the standard formulation of, e.g., Owicki-Gries, given ac-
cess to the entire state of the system which includes local variables and program
counters of all processes. If such access is provided, ghost variables can, again,
be eliminated using the methods from this paper. It is, however, questionable
whether assertions should be allowed to mention the global state; indeed, we find
that the real issue behind the phenomena around ghost variables in concurrency
is the question of how one should specify a stateful component without revealing
its internal implementation. We leave a detailed investigation of these questions
for future work.
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A Functional Behaviours

A.1 Big Step Operational Semantics for a Simple Language

Inductive exec stmt: state → stmt → state → Prop :=
| ExecAssign: ∀ s x e,

exec stmt s (Assign x e)(update s x (eval expr s e))
| ExecIf true: ∀ s1 s2 e stmtT stmtF,
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eval expr s1 e �= 0 → exec stmt s1 stmtT s2 →
exec stmt s1 (If e stmtT stmtF) s2

| ExecIf false: ∀ s1 s2 e stmtT stmtF,
eval expr s1 e = 0 → exec stmt s1 stmtF s2 →
exec stmt s1 (If e stmtT stmtF) s2

| ExecWhile true: ∀ s1 s2 s3 e stmt,
eval expr s1 e �= 0 → exec stmt s1 stmt s2 →
exec stmt s2 (While e stmt) s3 →
exec stmt s1 (While e stmt) s3

| ExecWhile false : ∀ s1 e stmt,
eval expr s1 e = 0 → exec stmt s1 (While e stmt) s1

| ExecSseq: ∀ s1 s2 s3 i stmt,
exec stmt s1 i s2 → exec stmt s2 stmt s3 →
exec stmt s1 (Sseq i stmt) s3

| ExecSkip: ∀ s, exec stmt s Skip s.

A.2 Logic for Partial Correctness

Inductive RULET : stmt → assertion → Prop :=
| AssignRule:∀ x e (post: assertion),

(∀ (s1 s2 : state), s2 = update s1 x (eval expr s1 e) → post s1 s2 ) →
RULET (Assign x e) post
| IfRule:∀ e (stmtT stmtF : stmt ) (post1 post2 post : assertion),

(∀ (s1 s2 : state),
(eval expr s1 e �= 0 → post1 s1 s2 ) →
(eval expr s1 e = 0 → post2 s1 s2 ) → post s1 s2 ) →

RULET stmtT post1 → RULET stmtF post2 →
RULET (If e stmtT stmtF) post
| WhileRule:∀ (st: stmt)(post b post1 : assertion) e,

(∀ s1 s2, eval expr s2 e = 0 → post1 s1 s2 → post s1 s2 ) →
(∀ s p t, eval expr s e �= 0 → b s p → post1 p t → post1 s t) →
(∀ s, eval expr s e = 0 → post1 s s) →
RULET st b→ RULET (While e st) post
| SeqRule:∀ (stmt1 stmt2 : stmt ) (post1 post2 post: assertion),

(∀ s1 s2,(∃ p, post1 s1 p ∧ post2 p s2 ) → post s1 s2 ) →
RULET stmt1 post1 → RULET stmt2 post2 →
RULET (Sseq stmt1 stmt2) post
| SkipRule:∀ (post: assertion),

(∀ (s1 s2 : state), s1 = s2 → post s1 s2 ) → RULET Skip post.

A.3 Syntax of Language with Ghost Variables

Inductive Gstmt: Type :=
| GAssign: var → expr → Gstmt
| GIf : expr → Gstmt → Gstmt → Gstmt
| GWhile: expr → Gstmt → Gstmt
| GSseq: Gstmt → Gstmt → Gstmt
| GSkip: Gstmt
| GSet: gVar → gExpr → Gstmt.

B Extra-Functional Behaviours with Traces

B.1 Semantics of Terminating Executions in the Presence of Traces

Inductive t exec (P : program)(B : body): state → stmt → list event → state → Prop :=
| ExecAssign: ∀ s x e,

t exec P B s (Assign x e) nil (update s x (eval expr s e))
| ExecIf true: ∀ s1 s2 e stmtT stmtF eventsT,

eval expr s1 e �= 0 → t exec P B s1 stmtT eventsT s2 →
t exec P B s1 (If e stmtT stmtF) eventsT s2



18 M. Hofmann and M. Pavlova

| ExecIf false: ∀ s1 s2 e stmtT stmtF eventsF,
eval expr s1 e = 0 → t exec P B s1 stmtF eventsF s2 →
t exec P B s1 (If e stmtT stmtF) eventsF s2

| ExecWhile true: ∀ s1 s2 s3 e stmt eventsI eventsC,
eval expr s1 e �= 0 →
t exec P B s1 stmt eventsI s2 → t exec P B s2 (While e stmt) eventsC s3 →
t exec P B s1 (While e stmt)(app eventsI eventsC ) s3

| ExecWhile false: ∀ s1 e stmt,
eval expr s1 e = 0 → t exec P B s1 (While e stmt) nil s1

| ExecSseq: ∀ s1 s2 s3 stmt1 stmt2 events1 events2,
t exec P B s1 stmt1 events1 s2 → t exec P B s2 stmt2 events2 s3 →
t exec P B s1 (Sseq stmt1 stmt2)(app events1 events2 ) s3

| ExecSkip: ∀ s, t exec P B s Skip nil s
| ExecSignal: ∀ s event, t exec P B s (Signal event)(event::nil)s.

B.2 Semantics of Reachable States in the Presence of Traces

Inductive reach: state → stmt → list event → state → Prop :=
| ReachAssign: ∀ s x e,

reach s (Assign x e) nil (update s x (eval expr s e))
| ReachIf true: ∀ s1 s2 e stmtT stmtF eventsT ,

eval expr s1 e �= 0 → reach s1 stmtT eventsT s2 →
reach s1 (If e stmtT stmtF) eventsT s2
| ReachIf false: ∀ s1 s2 e stmtT stmtF eventsF,

eval expr s1 e = 0 → reach s1 stmtF eventsF s2 →
reach s1 (If e stmtT stmtF) eventsF s2
| ReachWhile false: ∀ s1 e stmt,

eval expr s1 e = 0 → reach s1 (While e stmt) nil s1
| ReachWhile true1 : ∀ s1 s2 e stmt eventsB,

eval expr s1 e �= 0 → reach s1 stmt eventsB s2 →
reach s1 (While e stmt) eventsB s2
| ReachWhile true2 : ∀ s1 s2 s3 e stmt eventsB eventsW,

eval expr s1 e �= 0 → t exec s1 stmt eventsB s2 →
reach s2 (While e stmt) eventsW s3 →
reach s1 (While e stmt)(eventsB ::eventsW ) s3
| ReachSseq1 : ∀ s1 s2 stmt1 stmt2 events1,

reach s1 stmt1 events1 s2 → reach s1 (Sseq stmt1 stmt2) events1 s2
| ReachSseq2 : ∀ s1 s2 s3 stmt1 stmt2 events1 events2,

t exec s1 stmt1 events1 s2 →
reach s2 stmt2 events2 s3 → reach s1 (Sseq stmt1 stmt2) (events1 ::events2 ) s3
| ReachSkip: ∀ s, reach s Skip nil s
| ReachRefl : ∀ s stmt, reach P B s stmt nil s
| ReachSignal: ∀ s event, reach s (Signal event) (event::nil) s.

B.3 Logic for Partial Correctness in the Presence of Traces for the
Extended Language

Inductive RULET : stmt → assertion → Prop :=
| AssignRule : ∀ x e (post : assertion) ,

(∀ (s1 s2 : state), s2 = update s1 x (eval expr s1 e) → post s1 nil s2) →
RULET (Assign x e) post
| IfRule : ∀ e (stmtT stmtF : stmt)(post1 post2 post : assertion) ,

(∀ ( s1 s2 : state) event,
((eval expr s1 e �= 0)) → post1 s1 event s2 ) ∧
(eval expr s1 e = 0 → post2 s1 event s2 ) → post s1 event s2 ) →

RULET stmtT post1 →RULET stmtF post2 →
RULET (If e stmtT stmtF) post
| WhileRule : ∀ (st : stmt ) ( post post1 posti : assertion) e,

(∀ s1 s2 event, post1 s1 event s2 ∧ eval expr s2 e = 0→
post s1 event s2 ) →

(∀ s p t event1 event2, eval expr s e �= 0 → posti s event1 p →
post1 p event2 t → post1 s (app event1 event2 ) t) →
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(∀ s, eval expr s e = 0 → post1 s nil s ) →
RULET st posti →RULET (While e st) post
| SeqRule: ∀ (stmt1 stmt2 : stmt ) ( post1 post2 post: assertion),

(∀ s1 s2 event1 event2, (∃ p , post1 s1 event1 p ∧ post2 p event2 s2 ) →
post s1 (app event1 event2 ) s2 ) →

RULET stmt1 post1 → RULET stmt2 post2 →
RULET (Sseq stmt1 stmt2) post
| SkipRule: ∀ (post: assertion),

(∀ (s1 s2 : state), s1 = s2 → post s1 nil s2) → RULET Skip post
| SignalRule : ∀ (post: assertion) event,

(∀ s1 s2 event, s1 = s2 → post s1 (event :: nil) s2 ) → RULET (Signal event) post.

B.4 Logic for Trace Properties for the Extended Language

Inductive RULER: stmt → invariant → Prop :=
| AssignRuleR: ∀ x e (post: invariant),

(∀ (s1 : state) l, l = nil → post s1 l) → RULER (Assign x e) post
| IfRuleR: ∀ e stmtT stmtF (post1 post2 post: invariant),

(∀ ( s1 : state) event,
((not eval expr s1 e = 0) → post1 s1 event) →
(eval expr s1 e = 0 → post2 s1 event) → post s1 event) →
(∀ (s1 : state) event, event = nil → post s1 event) →
RULER stmtT post1 → RULER stmtF post2 →
RULER (If e stmtT stmtF) post

| WhileRuleR: ∀ (st: stmt)(post post1 : invariant) e (inv : assertion),
(∀ s1 event, post1 s1 event → post s1 event) →
(∀ (s1 : state) l, l = nil → post1 s1 l) →
(∀ s, eval expr s e = 0 → post1 s nil) →
RULER st post1 → RULET st inv →
(∀ s1 s2 e1 e2, (inv s1 e1 s2 → eval expr s1 e �= 0 →

post1 s2 e2 → post1 s1 (app e1 e2 ) ) ) →
RULER (While e st) post

| SeqRuleR: ∀ (stmt1 stmt2 : stmt)(post post1 postRst2 : invariant)
(postT : assertion),
(∀ s1 e, post1 s1 e → post s1 e) →
(∀ s1 s2 e1 e2, postT s1 e1 s2 → postRst2 s2 e2 →

post1 s1 (app e1 e2 )) →
RULER stmt1 post1 → RULET stmt1 postT →
RULER stmt2 postRst2 → (∀ (s1 : state) l, l=nil → post s1 l) →
RULER (Sseq stmt1 stmt2) post

| SkipRuleR: ∀ (post: invariant),
(∀ (s1 : state) l, l = nil → post s1 l) → RULER Skip post

| SignalRuleR: ∀ (post: invariant) event,
(∀ s1 l, l = nil → post s1 (event::l)) →
(∀ s1 l, l = nil → post s1 l) → RULER (Signal event) post.

C Logic for Dealing with Invariants

Inductive GHRULE(I : Invariant): Gpreassertion → Gstmt → Gassertion → Prop :=
| GHAssignRule: ∀ x e (pre: Gpreassertion)(post: Gassertion),

(∀ (s1 s2 : state)(g1 g2 : gState), pre s1 g1 → I s1 g1 →
g1 = g2 → s2 = update s1 x (eval expr s1 e) → I s2 g2 ∧ post s1 g1 s2 g2 ) →
¡¡¡¡¡¡¡ .mine GHRULE I pre (GAssign x e) post

======= GHRULE I pre (GAssign x e) post
¿¿¿¿¿¿¿ .r240 | GHIfRule: ∀ e (stmtT stmtF : Gstmt)(pre pre1 pre2 : Gpreassertion)
(post1 post2 post: Gassertion),
(∀ s gs, pre s gs → pre1 s gs) → (∀ s gs, pre s gs → pre2 s gs) →
(∀ (s1 s2 : state ) (g1 g2 : gState),
(not (eval expr s1 e = 0) → post1 s1 g1 s2 g2 ) ∧
(eval expr s1 e = 0 → post2 s1 g1 s2 g2 ) → post s1 g1 s2 g2 ) →

GHRULE I pre1 stmtT post1 →
GHRULE I pre2 stmtF post2 →
GHRULE I pre (GIf e stmtT stmtF) post
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| GHWhileRule: ∀ (stmt: Gstmt)(pre inv : Gpreassertion)
(post1 post : Gassertion) e ,
(∀ s gs, pre s gs → inv s gs) →
(∀ (s1 s2 : state)(g1 g2 : gState), post1 s1 g1 s2 g2 → post s1 g1 s2 g2 ) →
(∀ (s1 s2 : state)(g1 g2 : gState),
((inv s1 g1 → inv s2 g2 ) ∧ eval expr s2 e = 0 → post1 s1 g1 s2 g2 )) →

GHRULE I (fun s1 g1 ⇒ eval expr s1 e �= 0) stmt
(fun s1 g1 s2 g2 ⇒ inv s1 g1 → inv s2 g2 ) →

GHRULE I pre (GWhile e stmt) post
| GHSeqRule: ∀ (stmt1 stmt2 : Gstmt)(pre pre1 pre2 : Gpreassertion)

(post1 post2 post: Gassertion),
(∀ s gs, pre s gs → pre1 s gs) →
(∀ s1 s2 g1 g2, (∃ p, ∃ gp, post1 s1 g1 p gp ∧ post2 p gp s2 g2 ) →
post s1 g1 s2 g2 ) →

GHRULE I pre1 stmt1 (fun s1 g1 s2 g2 ⇒ pre2 s2 g2 ∧ post1 s1 g1 s2 g2 ) →
GHRULE I pre2 stmt2 post2 →
GHRULE I pre (GSseq stmt1 stmt2 ) post

| GHSkipRule: ∀ (pre pre1 : Gpreassertion)(post1 post: Gassertion),
(∀ s gs, pre s gs → pre1 s gs) →
(∀ (s1 s2 : state)(g1 g2 : gState), post1 s1 g1 s2 g2 → post s1 g1 s2 g2 ) →
(∀ (s1 s2 : state)(g1 g2 : gState), g1 = g2 ∧ s1 = s2 → post s1 g1 s2 g2 ) →
GHRULE I pre GSkip post

| GHSetRule: ∀ x (e: gExpr)(pre: Gpreassertion)(post: Gassertion),
(∀ (s1 s2 : state)(g1 g2 : gState), pre s1 g1 → I s1 g1 →

g2 = gUpdate g1 x (gEval expr s1 g1 e) ∧ s1 = s2 → I s2 g2 ∧ post s1 g1 s2 g2 ) →
GHRULE I pre (GSet x e) post

| GHInvRule : ∀ stmt (pre : Gpreassertion) (post : Gassertion) ,
GHRULE I (fun s1 g1 ⇒ I s1 g1 ∧ pre s1 g1 ) stmt post →
GHRULE I pre stmt post .
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Abstract. In Proof-Carrying Code, the verification condition generator
(VCgen) generates a set of formulas whose validity implies that the code
satisfies the consumer policy. Applying a VCgen to a bytecode language
with exceptions (such as Java bytecode) can result in a large number
of proof obligations, due to the amount of branching instructions. We
present a VCgen for Java bytecode that uses static analyses to reduce
the number of proof obligations. As a result, the task of producing a
proof is simpler, and the subsequent proof terms smaller. We formalize
the VCgen as a deep embedding in Coq and prove soundness with respect
to the Bicolano formalization of the Java bytecode semantics.

1 Introduction

Proof-Carrying Code (PCC) [8] has been developed as a framework to guarantee
safety in mobile scenarios. The code that is to be executed by a consumer needs to
be accompanied with a proof (certificate) that it satisfies a required safety policy.
The consumer checks that the certificate corresponds with a proof of safety of
the code. Once the certificate is checked, the code can be safely executed. The
task of generating such certificate, which can be a complex task depending on
the safety policy, is delegated to the producer. The task of the consumer reduces
to checking the certificate, which is in general much simpler.

A verification condition generator (VCgen) is used to generate the proof obli-
gations that will ensure that the code satisfies the given safety policy. The VCgen
is usually applied to annotated bytecode. It ensures, no matter which path in the
control flow graph of the code is taken at runtime, that the safety policy is satis-
fied. Programs written in bytecode languages such as Java, that includes objects
creation, dynamic method calls, and exception mechanism, have a high degree
of branching code, due to the instructions that can throw runtime exceptions.
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information contained therein.
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Consider the following excerpt of Java bytecode:

pc1 istore x
pc2 getfield f
pc3 . . .

A VCgen (denoted by VC ) generates two proof obligations for the program
point pc2:

lv(x) �= null⇒ VC (pc3)
∧ lv(x) = null⇒ VC (pcexc),

where lv access the local variable array, and pcexc is the program point cor-
responding to the exception handler. For every instruction that can throw a
runtime exception, the VCgen returns two proof obligations: one corresponding
to normal execution, and another corresponding to exceptional execution. Usu-
ally a program contains many of these instructions, which results in an explosion
in the number of proof obligations.

The use of static analyses, such as null-pointer analysis, can ensure that the
reference above is non-null and, therefore, it is not necessary to generate a proof
obligation for the exceptional execution. In such case, the VCgen will generate
the following condition:

lv(x) �= null⇒ VC (pc3) .

Static analyses can provide the required information to reduce many proof
obligations that are generated from instructions that may throw exceptions, as
in the example above.

We show, in Sect. 3, a way to combine a VCgen with static analyses, to
reduce the control flow graph of the program, and hence, the number of proof
obligations. We will exemplify the approach using a simple null-pointer analysis,
and sketch the proof of soundness of the VCgen.

We have formalized the VCgen as a deep embedding in Coq based on the
Bicolano formalization of the Java bytecode semantics, which is described in
Sect. 2.

The certificates for our VCgen need to include, besides the proofs of safety,
the information collected from the static analyses. We discuss the generation
and checking of these certificates in Sect. 4.

2 Preliminaries

We will base our development on the Bicolano formalization [10]. Bicolano is a
formalization in Coq of the Java Virtual Machine (JVM), which includes object
creation, virtual methods, exception handling, and arrays. We will describe only
a small and reduced fragment of the formalization, needed for our purposes.

A program consists of a set of classes, each containing a set of fields and meth-
ods. A method is composed by a body (sequence of instructions) and a specifica-
tion (this component will be described later, when describing the VCgen). The
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instructions considered in this paper are: getfield FieldId , putfield FieldId ,
iload Z, istore Z, invokevirtual Method , athrow ClassName, ireturn.

For each method m, PC m denotes the set of program points corresponding to
the instructions of m. Most of our definitions refer to a single method, therefore,
for simplicity, we will omit the reference to the method when is clear from the
context. State denotes the type of program states; each s : State is a triple,
s = (h, os , l), where h is the heap, os is the operand stack, and l is the local
variables. The type of values is defined as Value = Int + Loc, where Int is the
type of integers, and Loc the type of reference values. The operand stack is
modeled by a list, Stack = list Value. The local variables are modeled by a
function LocalVar = Z→ Value. The heap is modeled by an abstract data type,
Heap, with operations for creating objects (newObj ) and accessing their fields
(get , update). The type of initial states for a method is Statei = Heap×LocalVar ,
and the type of final states is Stater = Heap × ReturnVal, where ReturnVal =
Value + Loc, representing normal termination of a method with a value, or
abnormal termination with the location of an exception object. Exc is the type
of possible exceptions (e.g. NullPointer, ArrayBound, . . . ).

Operational Semantics. The operational semantics is defined only for well-
typed programs, so we will assume that all programs considered are well-typed.

The semantics is defined by two relations −→ : Method → PC × State →
PC × State → Prop and ↓ : Method → PC × State → Stater → Prop, where
m � (pc, s)−→(pc′, s′) represents execution of one instruction in a method, and
m � (pc, s)↓s′ represents execution of one instruction that reaches a final state.
We will write −→∗ to mean the reflexive, transitive closure of −→, and ↓∗ to
mean the relation −→∗ ◦ ↓ (i.e., many steps of −→ followed by one step of ↓).

To make the presentation clearer, we define two auxiliary relations: →JVM :
Method → PC × State → Exc → Prop and →EXC : Method → PC × State →
Heap × Loc → Prop, where m � (pc, s)→JVMe indicates that executing the
instruction at pc in state s results in the JVM exception e being thrown (e.g.,
the exception NullPointer is thrown when accessing a null reference), and m �
(pc, s)→EXC(h, loc) indicates that the exception pointed by loc in heap h was
thrown when executing the instruction at pc in state s, and we need to look for an
exception handler. To search for the handler code corresponding to an exception,
we have a function excHandler : Method → PC × Heap × Loc → PC +⊥, that
returns ⊥ when no handler is found in the current method.

Figure 1 shows a few rules of the big-step operational semantics. The function
instructionAt returns the instruction corresponding to a given program point.
The function initArgs : Value × list Value → LocalVar builds the initial local
variables for a method call, where the first argument is a reference to the ob-
ject, and the second argument is the list of arguments of the method. The infix
operators :: and ++ represent the cons function for lists and the concatenation
of lists, respectively.

In the rules for the instruction invokevirtual, there is the implicit assump-
tion that the length of args is the same as the number of arguments of the
method m′. The first rule for invokevirtual corresponds to the case where the
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instructionAt(pc) = athrow loc �= null

(pc, (h, loc :: os, l))→EXC(h, loc)

instructionAt(pc) = athrow loc = null

(pc, (h, loc :: os, l))→JVMNullPointer

instructionAt(pc) = getfield f get(h, loc, f) = v loc �= null

(pc, (h, loc :: os, l))−→(pc + 1, (h, v :: os, l))

instructionAt(pc) = getfield f loc = null

(pc, (h, loc :: os, l))→JVMNullPointer

instructionAt(pc) = putfield f update(h, (loc, f), v) = h′ loc �= null

(pc, (h, v :: loc :: os, l))−→(pc + 1, (h′, os, l))

instructionAt(pc) = iload x l(x) = v

(pc, (h, os, l))−→(pc + 1, (h, v :: os, l))

instructionAt(pc) = ireturn

(pc, (h, v :: os, l))↓(h, v)

instructionAt(pc) = istore x l [x �→ v] = l′

(pc, (h, v :: os, l))−→(pc + 1, (h, os, l′))

instructionAt(pc) = invokevirtual m′

l′ = initArgs(loc, args) loc �= null m′ � (pc0, (h, [], l′)↓∗(h′, v)

(pc, (h, args ++ loc :: os, l))−→(pc + 1, (h′, v :: os, l))

instructionAt(pc) = invokevirtual m′

l′ = initArgs(loc, args) loc �= null m′ � (pc0, (h, [], l′)↓∗(h′, loc′)

(pc, (h, args ++ loc :: os, l))→EXC(h′, loc′)

instructionAt(pc) = invokevirtual m′ loc = null

(pc, (h, args ++ loc :: os, l))→JVMNullPointer

(pc, (h, os, l))→JVMe (h′, loc) = newObj (h, e)

(pc, (h, os, l))→EXC(h′, loc)

(pc, (h, os, l))→EXC(h′, loc) excHandler(pc, h′, loc) = pc′

(pc, (h, os, l))−→(pc′, (h′, loc :: [], l))

(pc, (h, os, l))→EXC(h′, loc) excHandler(pc, h′, loc) = ⊥
(pc, (h, os, l))↓(h′, loc)

Fig. 1. Operational semantics (excerpt)

called method returns successfully a value, the second one corresponds to the
case where the called method throws an exception (so we need to find a handler
in the current method), and the third one corresponds to the case where the
object is null.

The control flow graph of method m, denoted Gm is the set of edges (pairs of
program points) (pc, pc′) such that the program can go from pc to pc′ in one step.
This means, for instance, that instructions like getfield and putfield have an
edge to the null-pointer exception handler (if there is one), and instructions
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athrow and invokevirtual have edges to all handlers in their range, since we
cannot (statically) determine which exceptions will be thrown.

VCgen. We consider a deep embedding of the VCgen in Coq. As shown in
[13], deep embeddings have several advantages over shallow embeddings, such
as, smaller proof terms, and the possibility to manipulate the generated proof
obligation (e.g. by structural analysis).

The language for expressing assertions, Assrt, used by the VCgen is the fol-
lowing (excerpt):

Assrt ::= Assrt ∧ Assrt | Assrt ∨ Assrt | ¬Assrt | Assrt⇒ Assrt
| V CompOp V . . . (* assertions *)

V ::= Lv Z | Hget H V FieldId | St Z | Vvar Value | Old V | result
| null | V BinOp V . . . (* values *)

H ::= Hupd H V FieldId V | Hvar Heap | CurrHeap (* heap *)
Si ::= H× (Z→ V) (* initial states *)
S ::= H× (Z→ V) × (Z→ V) (* local states *)
Sr ::= H× V (* final states *)

BinOp ::= + | − . . . CompOp ::== | �= | < | ≤ . . .
In Assrt we have the usual logical operators (∧, ∨, ⇒, . . . ), including equality

and comparison. The operators are underlined to differentiate them from the
operators of Coq. The type of values, V, allows to access the local variables (Lv),
the stack (St), the heap (Hget(h, loc, f) access the field f of object loc in h),
values in the initial state of a method (Old), the result of a method (result),
and permits to express binary operations between values. The heap, represented
by H, allows to update values (Hupd(h, loc, f, v) updates the field f of object loc
with the value v), and access to the current heap (CurrHeap). Note that using
Vvar and Hvar we can define a lift function that takes a State (resp. Statei,
Stater) and returns a S (resp. Si, Sr), so we will consider an element s : State as
having also type S (and similarly with Statei and Stater).

The specification of a method is a tuple, Sm = (Pre,PostNrml ,PostExc ,A),
where Pre : Assrt is the precondition; PostNrml ,PostExc : Assrt are the postcon-
ditions corresponding to normal termination, and abnormal termination (due to
an uncaught exception), respectively; and A : PC �→ Assrt is a partial mapping
called the annotation table containing assertions that are used by the VCgen to
construct the proof obligations. We assume that all cycles in the control flow
graph contain at least one annotated point.

The precondition states properties of the initial state, the postcondition re-
lates the initial state with the final state, and the annotations relate the initial
state with the local state. We also assume a well-formedness condition for spec-
ifications: accesses to the local variables or to the stack are in bound, only the
postconditions can refer to result, expressions are well-typed, and preconditions
do not use the Old construct.

The VCgen is based on weakest precondition calculus, defined by two mutually
recursive functions: wpinstr : Method → PC → Assertion, and wpannot : Method →
PC → Assertion, where Assertion = Si → S→ Assrt.
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wpinstr(pc) computes the weakest precondition (WP) corresponding to the in-
struction at pc, while wpannot(pc) returns the annotation of pc, or calls wpinstr(pc)
if pc is not annotated. To simplify the presentation, we define the functions
wpJVM : Method → PC → Statei → Heap × LocalVar → Exc → Assrt, and
wpEXC : Method → PC → Statei → Heap × LocalVar → Loc → Assrt, that
roughly corresponds to relations→JVM and→EXC, and returns the WP when an
exception is thrown. They look for the exception handler and return the WP
of the first point of the handler, or return the postcondition corresponding to
abnormal termination if no handler is found in the method.

The general form of wpinstr(pc) contains a conjunction for each branch of G:
wpinstr(pc, s0, s) =

∧

(pc,pc′)∈G
C(pc,pc′)(s)⇒ P(pc,pc′)(wpannot(pc′), s0, s), (1)

where C(pc,pc′)(s) is a necessary condition that needs to be satisfied in order for
the program to go from pc to pc′ in one step, and P(pc,pc′)(wpannot(pc′), s0, s) is a
predicate transformer that updates s in correspondence with the instruction at
pc and applies it to wpannot(pc′). To compute wpinstr(pc, s0, s) we proceed by case
analysis on the instruction at pc, and state s. We show a few cases in Fig. 2. For
readability, we change the first parameter, pc, for the corresponding instruction.
For instance, the condition C(pc,pc′) for the instructions getfield and putfield
is that the top of the stack contains a null or non-null value depending on the
branch. For iload and ireturn, the condition is simply true.

The function wpannot is defined as follows:

wpannot(pc, s0, s) =

{
subst(s0, s,A(pc)) if pc ∈ dom(A),
wpinstr(pc, s0, s) otherwise .

The function subst : Si → S → Assrt → Assrt, performs a substitution on an
expression; subst(s0, (h, os, lv), a) traverses a replacing CurrHeap by h, St n by
os(n), and Lv x by lv(x). The values protected by Old are substituted using the
initial state. The function substPost : Si → Sr → Assrt → Assrt does the same as
subst, but also replacing result.

We need an interpretation function, interp : Assrt → Statei → State → Prop
to transform an expression into a Coq proposition. interp(a, s0, s) traverses a
replacing the constructors for the corresponding functions in the Bicolano for-
malization, and replacing the references to the state with the values in s and s0.
The function interpPost : Assrt → Statei → Stater → Prop is the same as interp
except that it also replaces result. This function are defined for well-formed spec-
ifications, returning an undefined value otherwise.

We say an assertion a : Assrt is valid in state s and initial state s0, and
write it s0, s |= a, if interp(a, s0, s) is valid in Coq. Similarly with interpPost.
We say an assertion a : Assertion is valid in state s and initial state s0, and
write it s0, s |= a, if (s0, s |= a(si, s)), where si = (CurrHeap, λx.Lv x) and s =
(CurrHeap, λx.St x, λx.Lv x). We will write |= a to mean ∀s0, s, (s0, s |= a).

The following definition states the proof obligations needed to verify that a
method complies with its specification.
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wpinstr(athrow f, s0, (h, loc :: os, l)) =

loc �= null ⇒ wpEXC(pc, s0, (h, l), loc)

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

wpinstr(getfield f, s0, (h, loc :: os, l)) =

loc �= null ⇒ wpannot(pc + 1, s0, (h, Hget(h, loc, f) :: os, l))

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

wpinstr(iload x, s0, (h, os, l)) = wpannot(pc + 1, s0, (h, l(x) :: os, l))

wpinstr(ireturn, s0, (h, v :: os, l)) = substPost(s0, (h, v),PostNrml)

wpinstr(istore x, s0, (h, v :: os, l)) = wpannot(pc + 1, s0, (h, os, l [x �→ v]))

wpinstr(putfield f, s0, (h, v :: loc :: os, l)) =

loc �= null ⇒ wpannot(pc + 1, s0, (Hupd(h, loc, f, v), os, l))

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

wpinstr(invokevirtual m, s0, (h, args ++ loc :: os, l) =

loc �= null ⇒

�
��

subst((h, li), (h, [], li),Pre(m))

∧ PostNormal

∧ PostExc

�
��

∧ loc = null ⇒ wpJVM(pc, s0, (h, l), NullPointer)

li = initArgs(loc, args)

PostNormal =

�
∀ r,∀ h′, substPost((h, li), (h′, r),PostNrml(m)) ⇒
wpannot(pc + 1, s0, (h

′, r :: os, l))

PostExc =

�
∀ loc′ ∀ h′, substPost((h, li), (h′, loc′),PostExc(m)) ⇒
wpEXC(pc, s0, (h, l), loc′)

Fig. 2. Weakest precondition for instructions (excerpt)

Definition 1. Given a program p and a method m, certifiedMethod(m) stands
for the following proposition:

∀s0, (s0, s0 |= Pre(m)⇒ wpannot(pc0, si, s))

∧
∧

pc∈dom(A)

∀s0 s, (s0, s |= A(pc)⇒ wpinstr(pc, si, s)) ,
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where s0 = (h, [], l) if s0 = (h, l), i.e. s0 is the state obtained by extending the
initial state s0 with an empty operand stack.

To verify a method, we need to check that the precondition implies the WP of
the first instruction, and for each annotated point pc, the annotation implies the
WP of the instruction at pc.

The soundness is proved with respect to the operational semantics.

Theorem 1 (Soundness of the VCgen). Let p be a program and m a method.
Assume we have a proof of certifiedMethod(m′), for all methods m′ in the pro-
gram, and a state (pc, s) such that s0, s |= wpannot(m, pc). Then the following
holds:

– if (pc, s)−→(pc′, s′), then s0, s
′ |= wpannot(m, pc′),

– if (pc, s)↓(h, r), with r ∈ Value, then s0, (h, r) |= PostNrml(m),
– if (pc, s)↓(h, loc), with loc ∈ Loc, then s0, (h, loc) |= PostExc(m).

The proof is divided in the following lemmas.

Lemma 1. If (pc, s)−→(pc′, s′), then s |= C(pc,pc′)(s).

Lemma 2. If (pc, s)−→(pc′, s′), where instructionAt(pc) �= invokevirtual,
and s0, s |= wpinstr(m, pc), then s0, s

′ |= wpannot(m, pc′).

Proof. By case analysis on the current instruction, using Lemma 1.

Lemma 3. If we have a proof of certifiedMethod(m), and s0, s |= wpannot(m, pc),
then s0, s |= wpinstr(m, pc).

Proof. If pc is not annotated it is trivial, since wpannot(m, pc) is the same as
wpinstr(m, pc). Otherwise, we have wpannot(m, pc, s0, s) = subst(s0, s,A(pc)), and
we conclude using the fact that we have a proof of certifiedMethod(m). ��
Lemma 4. Let p be a program and m a method. Assume we have a proof of
certifiedMethod(m′), for all methods m′ in the program, and a state (pc, s) such
that s0, s |= wpannot(m, pc). Then the following holds:

– if (pc, s) ↪→ (pc′, s′), then s0, s
′ |= wpannot(m, pc

′),
– if (pc, s) ↪→ (h, r), with r ∈ Value, then s0, (h, r) |= PostNrml(m),
– if (pc, s) ↪→ (h, loc), with loc ∈ Loc, then s0, (h, loc) |= PostExc(m),

where the relation ↪→: Method → PC × State → PC × State + Stater → Prop is
defined in Fig. 3.

Proof. The proof proceeds by induction in the relation ↪→. The relation call :
Method → PC × State → Stater → Method → PC × State → PC × State +
Stater → Prop determines the connection between the states of execution when
calling a method. If call (m, (pc, s), r,m′, (pc0(m

′), s′), t) is valid, then it means
that in method m, instructionAt(pc) = invokevirtual m′, (pc0(m′), s′) is the
initial state of execution in m′ (i.e. it has an empty operand stack and the local
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(pc, s) ↪→ (pc, s)

(pc, s)↓r
(pc, s) ↪→ r

instructionAt(pc) �= invokevirtual

(pc, s)−→(pc′, s′) (pc′, s′) ↪→ t

(pc, s) ↪→ t

m′ � (pc0(m
′), s′) ↪→ (h, loc) call(m, (pc, s), (h, loc), m′, (pc0(m

′), s′), (h, loc))

m � (pc, s) ↪→ (h, loc)

m′ � (pc0(m
′), s′) ↪→ r

m � (pc′′, s′′) ↪→ t call(m, (pc, s), r, m′, (pc0(m
′), s′), (pc′′, s′′))

m � (pc, s) ↪→ t

Fig. 3. Alternative big-step relation

variables are built from the arguments in the stack of s), and if r is the final
state in m′, then t is the next state of execution in m. If t is a final state, then it
means that m′ has thrown an exception that is uncaught in m. If t is a normal
state, it means that, either m′ has returned successfully (and the return value
of r is in the top of the stack of t), or that has thrown an exception that was
caught in m (and t contains the location of the exception handler). Note that
call does not enforce any relation between the initial state s′ and the final state
r in m′, which will be enforced by ↪→.

The relation ↪→ gives us the right induction principle for the invokevirtual
instruction that was not addressed in Lemma 2. ��
Finally, using Lemma 4 we can prove Theorem 1, by proving that the relation
↪→ is equivalent to the reflexive, transitive closure of the operational semantics.

3 Reducing Proof Obligations

In this section, we show a way to use static analysis to reduce the number of proof
obligations generated by the VCgen described in the previous section. Roughly,
the analysis is applied to the program, and the results are given to the VCgen. The
VCgen can use this information to remove the proof obligations corresponding to
paths in the code that cannot be taken at runtime. For example, if a null-pointer
analysis can prove the absence of null-pointer exceptions, then the VCgen does
not generate proof obligations corresponding to null-pointer exception handlers.

3.1 Preliminary Definitions

We consider a fixed program p and a method m with specification S. pc0 denotes
the first instruction. We will make a small modification to the control flow graph
and the semantics. To the set of program points we add two nodes: pcN that
represents normal termination, and pcE that represents abnormal termination.
The control flow graph G is augmented with edges of the form (pc, pcN) for each
pc that corresponds to a ireturn instruction, and (pc, pcE) for each pc that
corresponds to an instruction that can throw an exception that is not caught inm
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(this includes athrow and invokevirtual). We make a small modification to the
rules of the operational semantics. We change the relation ↓, so that, instead of
(pc, s)↓(h, v) we have (pc, s)−→(pcN, (h, v :: [], lv)), and instead of (pc, s)↓(h, loc)
we have (pc, s)−→(pcE, (h, loc :: [], lv)). The state considered at the nodes pcN

and pcE consist of a heap, an operand stack with just one element (the return
value, or location of the exception object, respectively), and undefined local
variables (since a return state does not contain a local variable array).

Definition 2. A static analysis A is a tuple (D, t, I, f ), where

– D = (D,�,⊥,�,�,�) is a complete lattice that denotes the domain of the
analysis,

– t : G → (D → D) is the transfer function, such that for each (pc, pc′) ∈ G,
t(pc,pc′) is a monotone function in D,

– I : PC → D is the initial value, and
– f ∈ {↑, ↓} denotes the direction of the analysis. If f = ↑ we say the analysis

is backward, and if f = ↓ we say is forward.

Definition 3. A solution (or table) for a forward analysis A = (D, t, I, ↓) is a
function S : PC → D, such that I(pc0) � S (pc0), and

∀pc ∈ PC ,
⊔

(pc′,pc)∈G
t(pc′,pc)(S (pc′)) � S (pc) .

A solution (or table) for a backward analysis A = (D, t, I, ↑) is a function
S : PC → D, such that S (pcN) � I(pcN), S (pcE) � I(pcE), and

∀pc ∈ PC ,S (pc) �
�

(pc,pc′)∈G
t(pc,pc′)(S (pc′)) .

To find a solution for a given analysis, one needs to find a post-fixpoint to a
specific function defined using the transfer function. We will not delve in this,
see, e.g., [9] for more details.

To illustrate the combination of analysis and the VCgen, we will define a
simple null-pointer analysis. We use a technique described in [3,12] for defining
domains for bytecode analysis, where the values stored in the stack are related
to their meaning.

Example 1. The null-pointer analysis ANP = (DNP, tNP, INP, ↓) is defined as fol-
lows. The domain DNP represents the operand stack and the local variables, and
is defined by:

DNP = (list E)�⊥ × (Z→ NP),
NP = {null ,nonnull}�⊥,
E ::= const NP | localvar Z .

The transfer functions, tNP(pc,pc′)(d) is defined by case analysis in the instruction
at pc and in d. Some of the rules are:
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– if instructionAt(pc) = getfield

tNP(pc,pc+1)(e :: s, l) = (const � :: s, �e = nonnull�(l)),
tNP(pc,pcexc)

(e :: s, l) = (const nonnull :: [], �e = null�(l));

– if instructionAt(pc) = ireturn, tNP(pc,pcN )(v :: s, l) = (v :: s, l);
– if instructionAt(pc) = invokevirtual,

tNP(pc,pc+1)(args ++ loc :: s, l) = (const � :: s, �e = nonnull�(l)),
tNP(pc,pcE)(args ++ loc :: s, l) = (const nonnull :: [], l);

– if instructionAt(pc) = iload, tNP(pc,pc+1)(s, l) = (localvar x :: s, l).

Given e : E, the expression �e�(l) : NP evaluates e using the map l. Given
e : E, n : NP , and l : Z→ NP , the expression �e = n�(l) : Z→ NP is a mapping
that updates l using the fact that e = n. Note the way this expression is used for
the getfield instruction: in the transfer for normal execution we can update
the local variables, knowing that the reference is non-null, and for exceptional
execution, we know the reference is null. The second rule for invokevirtual
indicates that it may throw an uncaught exception.

Another example of a static analysis is provided by the weakest precondition
defined for the VCgen.

Example 2. The weakest precondition can be viewed as a backward analysis (see
[7]), AWP = (DWP, tWP, IWP, ↑), where DWP = Assertion. We have

d1 � d2 = (|= d1 ⇒ d2),

and �, ⊥, �, � correspond with true, false, ∧, ∨, respectively.
The transfer function is defined by:

tWP(pc,pc′)(e) = λs0.λs.C(pc,pc′)(s)⇒ P(pc,pc′)(e, s0, s),

and finally the initial value IWP(pcN) = λs0.λs.substPost(PostNrml , s0, s) and
IWP(pcE) = λs0.λs.substPost(PostExc, s0, s).

The function wpannot computes a solution for this analysis. To check that is
in fact a solution, we need to prove that for all pc,

wpannot(pc) �
∧

(pc,pc′)∈G
tWP(pc,pc′)(wpannot(pc′)) =

λs0.λs.
∧

(pc,pc′)∈G
C(pc,pc′)(s)⇒ P(pc,pc′)(wpannot(pc′), s0, s) = wpinstr(pc) .

Note that this is stated in Lemma 3.

A static analysis simulates the execution of a program in its domain. To prove
that an analysis is sound, we need to prove that a step in the operational seman-
tics, correspond to a transfer function in the domain. We define a correctness
relation that relates states, with the elements of the domain of the analysis.
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Definition 4. A correctness relation for an analysis A = (D, t, I, f ) is a relation
�⊆ State ×D, such that the following holds:

– for all d1, d2 ∈ D, if s � d1 and d1 � d2, then s � d2, and
– if (∀d ∈ D′ ⊆ D, s � d), then s � (

�
D′).

The relation s � d should be read as: d is a safe approximation of s.

Definition 5. A static analysis A = (D, t, I, f ) with correctness relation �, is
sound if for every solution S, the following holds: (pc, s)−→(pc ′, s′) and s �
S (pc), implies s′ � S (pc′).

The usual way to prove that an analysis is sound is to prove that the trans-
fer functions preserve the semantics. For a forward analysis, this means that if
(pc, s)−→(pc′, s′) and s � d, then s′ � t(pc,pc′)(d). For a backward analysis, the
transfer functions preserve the semantics if (pc, s)−→(pc′, s′) and s � t(pc,pc′)(d)
implies s′ � d.

If we prove for a given analysis that the transfers functions preserve the se-
mantics, then the soundness of the analysis follows from the properties of the
correctness relation, and the definition of a solution.

Continuing with the examples, we define a correctness relation for the null-
pointer analysis and the weakest precondition.

Example 3. For the analysis defined in Example 1, we define a correctness re-
lation, �NP, by translating the elements of DNP to Assrt, and using the validity
relation of Assrt. First, we define the function tr : V × NP → Assrt, where
tr(e,⊥) = false, tr(e,�) = true, tr(e,null) = (e = null), and tr(e,nonnull) =
(e �= null).

This function is extended to tr : DNP → Assrt. For example, tr(localvar 0 ::
[], [0 �→ nonnull , 1 �→ �]) = tr(St 0,nonnull) ∧ tr(Lv 0,nonnull) ∧ tr(Lv 1,�).

The correctness relation is defined as (s �NP d) = (s |= tr(d)) (note that we
do not need an initial state). It can be shown that the transfer functions for this
analysis preserve the semantics, and therefore, that the analysis is sound.

Example 4. A correctness relation for the analysis defined in Example 2 is:

(s0, s �WP d) = (s0, s |= d) .

This definition depends on a fixed initial state s0. Note that the soundness of
this analysis is stated in Theorem 1.

3.2 Combining a Static Analysis with the VCgen

We show how the VCgen can use the results of the analysis to reduce the proof
obligations. The main idea is to use the solution of the analysis as a parameter
for the VCgen. When computing the function wpinstr at a particular point pc,
we can use the information given by the analysis at pc to remove some branch.
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Assume we have an analysis A = (D, t, I, f ) with correctness relation �, and
a solution S : PC → D. Further, assume we have a function γ : D → Assrt that
translates the results of the analysis to assertions in the VCgen language that
reference to the local state, with the following property: if s � d, then s |= γ(d).

We redefine the function wpinstr. The general form is now

wpinstr(pc, s0, s) =
∧

(pc,pc′)∈G
F(pc,pc′)(s0, s), (2)

where the F is defined as

F(pc,pc′)(s0, s) =

{
true if |= subst(s, γ(S (pc)))⇒ ¬C(pc,pc′)(s),
WP(pc, pc′, s0, s) otherwise,

and WP(pc, pc′, s0, s) =
(
C(pc,pc′)(s)⇒ P(pc,pc′)(wpannot(pc

′), s0, s)
)
.

Intuitively, if we can infer ¬C(pc,pc′)(s) from S (pc), then the path going from
pc to pc′ cannot be taken at runtime, since taking this path would imply that the
condition C(pc,pc′)(s) is valid. In that case, the proof obligation corresponding
to this branch can be removed, replacing it by true.

The condition |= subst(s, γ(S (pc))) ⇒ ¬C(pc,pc′)(s) may not be decidable; in
that case we have to replace it with a decidable test, test(S (pc), C(pc,pc′)(s)),
that is a sound approximation, i.e. if test(S (pc), C(pc,pc′)(s)), it implies that
|= subst(s, γ(S (pc)))⇒ ¬C(pc,pc′)(s).

The definition of F depends on the domain of the analysis, so we will illustrate
with the null-pointer analysis defined above.

Example 5. To remove proof obligations using the null-pointer analysis, we look
on the instructions that could generate a null-pointer exception. For instance,
let us take getfield. If instructionAt(pc) = getfield, and S (pc) = (e :: s, l),
then F(pc,pcexc)

is defined by:

F(pc,pcexc)
(s0, s) =

{
true if �e�(l) = nonnull ,
WP(pc, pcexc, s0, s) otherwise;

This says that if the analysis guarantees that the top of the stack will contain
a non-null pointer, then we do not need to check the branch corresponding to
the null-pointer exception handler. In the same way, we can remove the proof
obligation corresponding to normal execution if the analysis guarantees that the
pointer is null.

A similar definition applies to other instructions such as putfield, and
invokevirtual, i.e. all instructions that take a pointer parameter from the stack,
and throw a NullPointer if the pointer is null.

3.3 Combining Static Analyses and Specifications

The VCgen presented above generates fewer proof obligations by using static
analysis to reduce the control flow graph. However, there are situations where
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the analysis cannot ensure enough information to make some reduction possible.
Consider the following excerpt of Java bytecode:

pc1 . . . A(pc1) = Lv x �= null ∧ . . .
. . .

pc2 iload x

pc3 getfield f

Assume that the local variable x does not change between pc1 and pc2, and
that the annotation table contains the assertion that x is not null at pc1. There-
fore, at pc3, the getfield instruction is accessing a non-null pointer. If the anal-
ysis is not able to ensure this, then the VCgen will generate two proof obligations.
The one corresponding to exceptional execution is proved by contradiction using
the assertion at pc1. If there is more that one access to x such as the one at pc3,
the VCgen will generate two proof obligations for each access.

In this section, we propose a way to transfer the assertions contained in the
specification to the domain of the analysis, so that the analysis can produce more
accurate results. In the example above, if the information contained in A(pc1)
is transferred, the analysis can propagate it to point pc3, where it can ensure
that the object accessed is non-null. Then, only one proof obligation would have
been generated.

We will assume an annotated method m with specification S and an analysis
A = (D, t, I, f ). In order to translate the assertions contained in the specification
to the domain of the analysis, we assume a function α : Assrt → D, with the
following property: s0, s |= e⇒ s � α(e).

We extend the annotation table A into a total function A : PC → Assrt,
where we complete with the value true the elements that are not in the domain.

We redefine the meaning of a solution for the analysis, to use the specification.
To differentiate from the previous definition, we call this combined solution, and
refer to the previous as simple solution.

Definition 6. A combined solution (or combined table) for a forward analysis
A = (D, t, I, ↓) is a function S : PC → D, such that I(pc0) � α(Pre) � S (pc0)
and

∀pc ∈ PC ,
⊔

(pc,pc′)∈G
t(pc,pc′)(S (pc) � α(A(pc))) � S (pc′) .

A combined solution (or combined table) for a backward analysis A = (D, t, I, ↑)
is a function A : PC → D, such that S (pcN) � α(PostNrml ) � I(pcN), S (pcE) �
α(PostExc) � I(pcE) and

∀pc ∈ PC , α(A(pc)) � S (pc) �
�

(pc,pc′)∈G
t(pc,pc′)(S (pc ′)) .

Note that, since transfer functions and the meet operator (�) are monotone, any
simple solution for the analysis is also a combined solution. To find combined
solutions, we can use the same methods used to find simple solutions.

Again, we will exemplify the approach using the null-pointer analysis.
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Example 6. To define the function α for the analysis ANP, we first define the
function split : Assrt → list Assrt such that split(e1 ∧ e2) = split(e1) ++
split(e2), and split(e) = e if e is not of the form e1 ∧ e2.

Then α is defined as: α(e) = filter(split(e)), where filter looks in the list
produced by split for expressions of the form St k = null, St k �= null, Lv k = null,
Lv k �= null, or their symmetric, and translate them to the domain DNP. For
instance, α(Lv 0 �= null ∧ null = St 1) = (const � :: const null :: [], [0 �→
nonnull ]).

Soundness of the VCgen Revisited. Now we focus on the proof of sound-
ness for the VCgen described in this section. We assume an analysis A with
correctness relation � and a combined solution S . Stated in the terms defined in
this section, to prove the soundness of the VCgen we need to prove:

(pc, s)−→(pc′, s′) ∧ (s0, s �WP wpannot(pc))⇒ (s0, s′ �WP wpannot(pc
′)) . (3)

However, since the WP of an instruction depends on the combined solution
for the analysis, and the solution depends on the validity of the specification, to
prove (3) we have to prove the following:

(pc, s)−→(pc′, s′) ∧ (s0, s �WP wpannot(pc)) ∧ (s � S (pc))⇒
(s0, s′ �WP wpannot(pc ′)) ∧ (s′ � S (pc′)) . (4)

The proof of (4) is divided in two parts. We need to prove that for all
(pc, s)−→(pc′, s′) we have:

(s � S (pc)) ∧ (s0, s �WP A(pc))⇒ (s′ � S (pc′)), (5)

(s � S (pc)) ∧ (s0, s �WP wpannot(pc))⇒ (s0, s′ �WP wpannot(pc
′)) . (6)

Equation (5) states that the analysis is sound (for combined solutions) as-
suming that the specification is verified. The proof is similar to the soundness
proof for simple solutions. We first prove that the transfer functions preserve
the semantics (this does not depend on any type of solution), and then conclude
using properties of the correctness, and monotony of the transfer function and
meet (�) and join (�) operators.

Equation (6) states that the VCgen is sound assuming that the analysis is
sound. The proof follows the lines of Theorem 1, however, in this case we cannot
prove that (pc, s)−→(pc′, s′) and s0, s |= wpinstr(pc) implies

P(pc,pc′)(wpannot(pc
′), s0, s)),

since the proof obligation corresponding to the branch (pc, pc′) may have been
removed (changed to true) because of S (pc). However, in that case, we can prove
that s |= ¬C(pc,pc′)(s). On the other hand, from Lemma 1 we know that s |=
C(pc,pc′)(s), therefore we have a contradiction and the result follows.
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4 Certificate Generation and Checking

In the typical PCC architecture, the producer runs the VCgen on the annotated
code. This generates proof obligations, whose proof provides the certificate that
is packaged along with the code and sent to the consumer.

For the VCgen described in the previous section, this framework largely ap-
plies. The difference lies in the generation of proof obligations. The analyses are
performed on the code, using the specification of the methods. For this stage,
any fixpoint algorithm can be used to generate the results of the analysis. The
algorithm itself does not need to be verified, since we can check that the results
given are correct.

The results of these analyses are then given to the VCgen, that returns the
proof obligations. These can be proven by automatic methods or in a proof
assistant (Coq in our case). The certificate given to the consumer consists on
the proofs obtained and the results of the analysis.

Checking the certificate, on the consumer side, consists of three stages. First,
the results of the analyses are checked. This involves a simple procedure that can
be done very efficiently in one pass through the code [2]. Second, once the results
are checked, they are given to the VCgen that generates the proof obligations.
Third, the proofs given as part of the certificate are checked to correspond with
the obligations generated by the VCgen. If all the checking goes well, the code
can be safely executed.

5 Related Work

The use of abstract interpretation as a tool to verify safety policies in PCC
has been proposed by Albert, Puebla and Hermenegildo in their Abstraction-
Carrying Code (ACC) framework [2], where abstract interpretation is used to
represent safety policies. The abstraction of a program is the certificate sent
to the consumer alongside the code. We do not use analysis to express safety
policies, but to reduce the control flow graph of a program. In [1], Albert et al.
develop a technique to compress certificates for ACC. The main idea is to remove
redundant information that can be easily reconstructed in one pass through the
code. Their work can be readily applied to our case for compressing the results
of the analyses.

Another compression technique is presented by Besson, Jensen and Pichardie
in [3]. They develop an extensible PCC framework based on abstract interpre-
tation. The compression is done through a set of commands that allows the
reconstruction of the solution from partial information. Using these commands,
different strategies for reconstruction can be encoded and adapted to each par-
ticular program. This can also be directly applied to our case.

Nipkow et al. developed the VeryPCC framework in Isabelle/HOL. They de-
fine a generic VCgen that can be instantiated with different programming lan-
guages, safety logics and safety policies. In [12], Wildmoser, Chaieb and Nipkow
use trusted and untrusted analyses to verify a safety policy incrementally. A
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VCgen is used to verify the results of the untrusted analyses, using the results
of the trusted analyses as hypothesis.

Proof-producing program analysis (PPPA) [5,11] is a technique to generate
Hoare-logic proof derivations from program analyses solutions. The advantage of
this approach is that the consumer does not need to have a special procedure to
check the results of the analysis. On the other hand, the size of the proofs (even
if small compared with the program) can be bigger than using compression
techniques mentioned above. Nevertheless, it should be possible to use PPPA
techniques in our approach to combine the results of the analysis and the proof
terms, into a proof term that ensures both properties.

6 Conclusions and Future Work

We have presented a technique based on static analysis to reduce the number
of proof obligations generated by a VCgen for Java bytecode, by reducing the
control flow graph of a program. The reduction and simplification of the proof
obligations have the advantage that leaves the developer with fewer goals left to
prove, which as a consequence, generate smaller proof term that can be more
rapidly checked. We have exemplified the approach with a simple null-pointer
analysis. We have chosen this type of analysis, because many instructions in the
JVM can throw null-pointer exceptions, which allows for large reductions in the
proof obligations. A recent study by Chalin and James [6] shows that in 2/3 of
the cases, reference variables are meant to be non-null (based on design intent).

We have formalized in Coq the VCgen described in Sect. 2 including the
proof of soundness (Theorem 1).1 We plan to complete the formalization (null-
pointer analysis and combination), and apply other type of analyses to our ap-
proach. Obvious candidates are interval analysis used for array-bound checking
and escaping-exception analysis.

The VCgen does not use the complete solution of the analysis to reduce proof
obligations. Removing unused parts could help to further compress the certifi-
cates. A good starting point should be [4].

Acknowledgments. We would like to thank David Pichardie for his insightful
suggestions and for the help he provided with the formalization in Coq.
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Extracting Control from Data:

User Interfaces of MIDP Applications
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Abstract. A midlet is a small Java program using the MIDP library
that can be executed on a mobile phone. Midlets are developed by soft-
ware houses and traded on portals often run by operators. Midlets can
access powerful APIs, sometimes silently, especially if they are digitally
signed by operators and can cause harm to the end-user assets.

We formalize the notion of navigation graph, an abstraction of the
behaviour of the graphical user interface of the midlet augmented with
security relevant information and we describe an algorithm to extract
automatically such a graph from the bytecode of a midlet. Most of the
structure of a graph is described by data structures built by the appli-
cation, not by the static structure of the code.

1 Introduction

A midlet is a small Java program that can be executed on a mobile phone. As
the set of libraries necessary to execute those applications, the MIDP profile [9],
is available on over 1.2 billion phones worldwide, it is the most portable way to
add applications to a mobile phone.

Midlets are usually developed by independent software houses and traded on
WAP portals operated by other companies, notably mobile operators. Mobile
operators can also sign midlets they trust to give them access to more powerful
and more dangerous APIs on the customer handset, or to reduce the number of
security alert screens popped up during normal operation.

Mobile operators are facing the responsibility of certifying software without
having the source code. We have already developed a tool to analyse the critical
calls a midlet may perform [6], we try now to characterize the context of those
calls, and typically, which events on which screen may trigger the dangerous
actions.

We present a way to extract automatically a graph representing the structure
of the graphical user interface of a midlet from its code using static analysis.
The nodes are abstractions of the contents of the display. The edges of the
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graph represent potential transitions between screen contents and can be an-
notated with the most dangerous actions that may be performed during the
transition.

This case study is an instance of a more generic problem: how to deal with ap-
plication frameworks that introduce an overlay of control structures described by
objects built dynamically by the program. We use program points as an abstrac-
tion for different kind of control structures and live data and we use relational
algebra to compose elementary relations between data structures, obtained with
static analysis techniques.

The paper is organized as follows. Section 2.1 presents the MIDP library as
a combination of small application frameworks. Section 3 presents an axioma-
tized semantics of the user interface library and combines it with a standard
description of the operational semantics of the virtual machine executing the
application specific code. Navigation graphs that describe a set of authorized
behaviours and the notion of compliance with a navigation graph are defined in
Sect. 4. Section 5 lists possible uses and extensions for navigation graphs. An
algorithm to extract a navigation graph from a midlet is given in Sect. 6. The
last section concludes with new research directions.

2 MIDP

2.1 Application Frameworks

Application frameworks are pervasive in modern object oriented programming.
An application framework can be defined informally as a library of collaborating
classes used to build a specific part of an application (e.g. concurrency, persistence,
user interface). From a syntactic point of view, it structures the source code as it
defines where some parts of the control must be implemented. The framework also
acts as a real meta-language for the system: an important part of the behaviour
of the application is not specified by the control statements in the code any more
but are now described by live data structures built with the primitive components
provided by the library and interpreted by the application framework.

The system is partly under the control of the framework engine that succes-
sively calls callbacks defined in the application code depending on interactions
with the environment, its internal state and the framework data defined by the
application. Proving a temporal property of a global execution of the program
requires understanding the structure of these data because they control the pos-
sible sequences of callback calls.

2.2 A Java Variant for Mobile Phones

MIDP [9] is a set of libraries on top of a CLDC [10] compliant runtime environ-
ment. CLDC is a simple variant of JAVA that fits in the hardware constraints
of mobile phones. Compared to JavaSE, it also offers better sand-boxing prop-
erties: reflection, dynamic code downloading and direct access to C extensions
by application code (JNI) are not available.
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MIDP offers an interface to the most commonly available resources on mobile
handsets: the user interface with a set of high level widgets and a canvas object
for direct access to the screen, a small database system for persistence called
RMS and a framework to open network connections where all connections are
described by a URL. MIDP also offers a framework to access various multimedia
players and to record video or audio clips.

Handling the midlet life-cycle, managing the user interface, launching threads,
controlling the evolution of RMS or using the player API to access a multimedia
content are simple instances of the application framework pattern in the MIDP
profile. We will limit our study to user interfaces.

2.3 MIDP User Interface

Object-oriented User Interface. GUI libraries are typical examples of appli-
cation frameworks and user interfaces are coded as objects representing displayed
elements such as screens, forms, buttons, etc. Those objects build a model of the
interface from which some of them are selected at a given point and represent the
current view. Control defines how to react to a user interaction (the keyboard)
and modifies the view or the model: a generic part is in the scheduler imple-
mented in the framework, the application specific part is defined in callbacks.

User Interface in MIDP. The high-level GUI in MIDP follows this model.1

The interface is built as a set of screen contents objects (Screen2). Each screen
belongs to a specialized subclass that defines its behaviour (list of items (List),
alert screens (Alert), forms (Form), user editable text (TextBox)). Forms may
contain subcomponents such as labels (StringItem), sliders (Gauge), fields for
user input (TextField) etc.

There is a single Display object that represents the current handset screen.
To change what is displayed on the screen, the display object is associated to
a description of the current visible contents, a Screen object, with the method
<Display> void setCurrent(Screen) Each screen can contain soft buttons
usually associated to the top buttons on the phone keyboard. Each soft but-
ton is represented by a Command object. <Screen> void addCommand(Command)
adds a command to a screen. The behaviour associated to buttons is defined in
an object called a CommandListener object that contains a single callback. The
method <Screen>void setCommandListener(CommmandListener) associates a
listener to a screen and not directly to a button. When a button is pressed, the
callback <CommandListener>void commandAction(Screen,CommandAction) is
executed with the current contents of the display and the Command object repre-
senting the button pressed given as arguments. A similar mechanism exists for
selectable elements in a form.
1 Canvas objects are not considered here but the same principles apply as long as one

does not try to analyse the contents of the canvas.
2 Package names in class names are omitted (usually javax.microedition.lcdui) to

keep names short.
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3 An Axiomatized Semantics of MIDP User Interface

To be able to formalize the algorithm, we need a formalization of the behaviour
of the midlet. We will give an operational semantics of the execution of the mi-
dlet application code, but we will keep the execution of the MIDP runtime ab-
stract. Both executions will be kept separate and will cooperate (synchronously)
through events. This framework could be extended to handle other MIDP li-
braries (media players, database event handlers, etc.).

We will use the following notations:

1. [X ] denotes finite sequences over X . x : s denotes the sequence obtained by
shifting s and adding x as its head (standard cons operation on lists).

2. ℘(X) is the set of subsets of X . X ×Y is the cartesian product of X and Y .
X → Y is the function space with domain X and range Y .

3. ε is an overloaded symbol representing an undefined value but should not be
confused with ⊥ used for domains. is used as a place-holder.

4. If t is a tuple (t1, . . . , tn) t�i denotes the element ti (as in Standard ML). We
will also introduce the record notation t.lab where lab is a label as a more
readable shorthand notation for t�i for some well-identified index i.

Operational Semantics of a JVM. The operational semantics of the Java
virtual machine (JVM) used is a simplified version of Bicolano semantics [14].
For the sake of simplicity, exception handlers and the thread stack are not
represented 3.

Let C be a set of methods addresses. L is the set of program points. A program
point l is a pair of a method address (written l.meth and an integer (written
l.instr) representing the instruction index in the method or a special element,
coded as ε, that denotes there is no more code to execute.
L = (C× IN)∪{ε}. The function next : L→ L computes the next instruction

address after its argument. We will also write l1 �→ l2 if there is a valid transition
of the machine from program point l1 to program point l2.

A program P is defined by a tuple (CN,≺, cl, code). CN denotes the set of
class names ordered by the subtype relation ≺. Classes are characterized by
the methods they define: meth : CN × SS → C where SS are local unique
field or method identifiers (sub-signatures taking types into account to handle
overloading). MN = CN × SS is the set of methods or fields names (elements
written mn = (mn.class,mn.sig)) Finally code : L → I is a partial function
defining the code of methods where I is the set of instructions. newOf : L →
CN is a partial function which associates to a location l a class-name cn if
code(l) = new cn.

Let A be an infinite set of object addresses. A value v ∈ V is coded as either
an object address in A or a primitive value in PR (V = A ∪ PR). An object
o ∈ O is defined as a pair (cn, f) ∈ CN × (SS → V ) where o.class = cn defines

3 Exceptions and threads are handled by the tool but with limitations for threads as
explained in Sect. 6.6.
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the class of the object and o.def = f is a partial function defining the value of
each field.

A state of the virtual machine is coded as a triple: (h, f, fs) ∈ H × F × [F ]).
The heap h is defined as a function from addresses to object representation:
H = A → O. The current frame f codes the current address, and the operand
and local variables stacks: F = L × [V ] × [V ]. Finally the last element of the
JVM state is a frame stack.

m◦ and d◦ are some special addresses coding the addresses of respectively the
current midlet and the unique display object.

Some transitions in application code interacting with the user interface sched-
uler in the MIDP code may have side effects e. The syntax for a subset of effects,
using ML style syntax for named sum types, is the following:

E = CR(A,L) | D(A) | ACL(A,A) | ACO(A,A) | EV (A,A,A) | DG(D)

CR denotes a creation of an object, D, a change of current screen, ACL, an
association between a command listener and a screen, ACO, an association of a
command and a screen, EV , a user event involving a screen, a command and a
listener and DG a dangerous event (D is left unspecified).

A transition is written st e−→ st′. Let st = (h, (pc, s, l), f) be the current state
and st′ = (h, (next(pc), s′, l), f) be its successor. The rules generating effects are
the following:

1. If code(pc) = invokevirtual(m) and m is one of the following primitives, then
there is a side effect:
(a) m = setCurrent and s = d : sc : s0 then s′ = s0 and e = D(sc) (d is the

address of the Display object and is always d◦).
(b) m = setCommandListener and s = sc : cl : s0 then s′ = s0 and e =

ACL(sc, cl).
(c) m = addCommand and s = sc : co : s0 then s′ = s0 and e = ACO(sc, co).

2. If code(pc) = new(cn) then s′ = a : s with a fresh and if cn ≺ Command of
cn ≺ Screen or cn ≺ CommandListener then e = CR(a, pc).

3. If pc = ε then there exists (cl, sc, co) ∈ A×A×A such that e = EV (cl, sc, co)
and pc′ = (c′, 0) where c′ = meth(h(cl).class, commandAction) and s′ = sc :
co : s. This definition is non deterministic, the valid choices of the triple are
defined by the GUI state presented below.

Graphical User Interface (GUI). The axiomatic model defined in this sec-
tion has been built from the official MIDP specification [9]. A state of the GUI g ∈
G is coded as a four tuple: (ge, sc, aco, acl) ∈ ℘(()A×L)×A×℘(A×A)×℘(A×A).
ge (notation g.genv) is the graphical environment and defines all the available
objects. sc (notation g.screen)is the current display. aco (notation g.coms) is a
relation describing the set of commands associated to a given screen. Each el-
ement in aco is a pair of addresses (sc, co) such that, if h is a heap structure
as defined above, h(sc) is a screen object and h(co) is a command object. This
requirement will be formalized in theorem 1. acl (notation g.list)is a relation de-
scribing the set of command listeners associated to a given screen. Each element
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in acl is a pair of addresses (sc, cl) such that h(sc) is a screen object and h(cl)
is a command listener object.

As the JVM state, the GUI state evolves and uses the same set of effects.

(ge, sc, aco, acl)
CR(a,l)−→ (ge ∪ {(a, l)}, sc, aco, acl)

(ge, sc, aco, acl)
D(sc′)−→ (ge, sc′, aco, acl)

(ge, sc, aco, acl)
ACO(sc,co)−→ (ge, sc, aco ∪ {(sc, co)}, acl)

(ge, sc, aco, acl)
ACL(sc,cl)−→ (ge, sc, aco, acl ∪ {(sc, co)})

(ge, sc, aco, acl)
EV (cl,sc,co)−→ (ge, sc, aco, acl) if (sc, co) ∈ aco and (sc, cl) ∈ acl

(ge, sc, aco, acl)
DG(d)−→ (ge, sc, aco, acl)

Execution Traces. The following rules define the combined evolution of the
JVM and the GUI machines as:

st
e−→ st′ g

e−→ g′

(st, g) e−→ (st′, g′)

st −→ st′

(st, g) −→ (st′, g)

As a convention, we will associate a null effect ε to steps without effect. An
execution trace is a sequence (sti, gi, ei)i verifying (sti, gi)

ei−→ (sti+1, gi+1) and
g0 = (∅, ε, ∅, ∅) and st0 is a correct initial state. It records the states of the virtual
machine and of the user interface but also the effects exchanged between them.
We will often use only one of the projections: (sti, ei)i or (gi, ei)i giving a view
of the execution from either the JVM side or from the GUI side.

(sti)i (resp. (gi)i) is well-formed if and only if there exists (gi)i (resp.(sti)i)
and (ei)i such that (sti, gi, ei)i is an execution trace. A GUI or JVM state is
well-formed if and only if it is an element of a well-formed sequence.

Theorem 1. Let (gi)i be a well-formed sequence and g = gi an element:

{a | ∃x. (a, x) ∈ (g.coms∪ g.list)} ⊂ {a | ∃l. (a, l) ∈ g.genv∧newOf(l) ≺ Screen}
{a | ∃x. (x, a) ∈ g.coms} ⊂ {a | ∃l. (a, l) ∈ g.genv ∧ newOf(l) ≺ Command}

{a | ∃x. (x, a) ∈ g.list} ⊂ {a | ∃l. (a, l) ∈ g.genv∧newOf(l) ≺ CommandListener}
By induction on i. The property is in fact a property of the heap (existence of
the object) and of the correct typing of actions generating events.

Theorem 2. Let (sti)i be a well-formed sequence. sti = ( , (ε, , ), ) and
sti+1 = ( , (pc, (cl : sc : co : ), ), ) implies there exists k < i and l < i such
that stk = ( , (pck, sc : co : , ), ) and code(pck) = invokevirtual(addCommand)
stl = ( , (pcl, sc : cl : , ), ) and code(pcl) = invokevirtual(setCommandListener)

We use the fact that a command or a listener is registered in the GUI state only
if there has been an associated event. The corresponding steps in the JVM trace
are the one we are looking for.
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4 Navigation Graphs

Definition 1. A navigation graph (N,T, ext, IN , IT , ID) is an oriented multi-
graph where N is an abstract set of nodes, T is a set of transitions, ext : T →
N × N describes the source and target of a transition and IN and IT are the
interpretation function IN : N → G → ℘(A) and IT : T → G → ℘(A). They
satisfy:

∀n, g. IN (n)(g) ⊂ {a | ∃x.(a, x) ∈ g.coms ∪ g.list}
∀t, g. IT (t)(g) ⊂ {a | ∃x.(x, a) ∈ g.coms}

ID : T → ℘(D) is an optional interpretation for critical operations allowed
during the transition.

Nodes represent sets of displayable screens and transitions are labelled with
sets of events. Interpretation functions are defined with respect to a GUI state
and should be viewed as predicates defining which nodes or transitions of the
state are compliant.

Navigation graphs only describe safety properties and are a specialization of
security automata [15] in the context of user interfaces.

Compliance of a Midlet with Respect to a Navigation Graph. An
execution trace (gi, ei) complies with NG if and only if there exists sequences
(nsi)i , (evi)i and (ni)i (ti)i such that:

∀i. ext(ti) = (ni, ni+1)

∀i. nsi ≤ evi < nsi+1

∀i. (∃SC. ei = EV (sc, co, cl))⇔ (∃k. i = evk)

∀i. ∃SC. ∀k. nsi ≤ k < nsi+1 ⇒ gk.screen = SC ∧ SC ∈ IN (gi)(ni)

∀i. eevi = EV (sc, co, cl)⇒ co ∈ I(gi)(ti)

∀k ∈ [nsi..nsi+1]. evk = DG(d)⇒ d ∈ ID(ti)

(nsi) extracts a sub-sequence of states where a screen change occurs (or in fact
may occur). (evi) is the sub-sequence of the trace where a user event is taken
into account. (ni, ti)i describes the path followed in the graph.

A midlet complies with a navigation graph, if and only if for all well-formed
execution trace of the midlet, the GUI projection of the trace complies with the
navigation graph.

Although this paper only considers the extraction of GUI graph for MIDP
applications, this definition is somewhat independent of the virtual machine
technology as long as a notion of effect generating trace can be defined for it.

5 Use of Navigation Graphs

We present four potential use for navigation graphs. The first two are currently
the main use of the tool presented in the previous section. The last two are more
prospective and use navigation graphs to complement other analyses.



48 Pierre Crégut

5.1 MIDP Security Principles

Actions performed by midlet could have been launched manually by the user.
The underlying principle of MIDP security policy is to ask the end-user if he
authorizes each use of a dangerous API.

This security scheme has several drawbacks. The main short-coming of the
dynamic security policy is the risk of social engineering attacks. One reason is
the lack of knowledge by the end-user of what the midlet will perform in the
future. Another is that the number of security screens can affect the end-user
watchfulness: he may not notice small changes in displayed parameters such
as a small change in a phone number that transforms a regular call into an
overcharged one.

Two mechanisms have been designed to avoid an overwhelming number of
security screens:

1. One can tune the level of granularity of security screens between one warning
screen for the first use (e.g. taking pictures) to one screen per method call
for critical APIs (sending an SMS).

2. A trusted authority (usually the mobile operator) can sign the midlet. A
signed midlet will open less security screens and will perform more operations
silently (operator midlet even completely turn off the dynamic enforcement
of the security policy).

Unfortunately, midlet signature only shifts the burden of checking the innocu-
ousness of a midlet from the end-user when he use it to the trusted authority
prior to any use but it does not provide any clue for deciding which midlets
should be signed. Static analysis provides elements to solve this problem:

1. Calls to dangerous methods can be identified (with devirtualization tech-
niques).

2. Their parameters can be approximated to evaluate their real risk [6].
3. The number of calls in a given user interaction can be bounded to check that

there is no dangerous loop repeating a charged action.
4. Finally, the analysis presented here can identify the context of the call.

As an example of the usefulness of the last step, a lot of games send the
highest score back to a centralized server as a single SMS. This is considered as
an acceptable usage. But sending an SMS each time a game step is performed
would not be acceptable. To distinguish those two uses it is necessary to have an
overview of the user interface underlying automaton with transitions annotated
with the dangerous calls they perform.

5.2 Other Uses

Supporting documentation for evaluation teams: JavaVerified4 requires
that developers provide a schema of the different screens of a submitted

4 The main test program for MIDP applications supported by SUN, phone manufac-
turers and operators.
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application (see page 8 of [16]). It is mainly used as a kind of lean specifica-
tion that guides testing. These drawings are similar to the concept of screen
mock-up used to design an application [4]. A navigation graph is a formal
version of such drawings and can be used to estimate the coverage of a test
campaign.

Temporal properties of midlets: Resource analysis such as permission
checking [3] may require a precise knowledge of the potential sequences
of user events to trim impossible execution paths that would violate the
resource constraints if they existed. The knowledge on the global con-
trol flow embedded in navigation graphs is then mandatory to check such
properties.

Identification of data sources: navigation graph can be used to isolate fields
in forms where sensitive information can be typed in by the user and relate
them with the method calls in the code that will extract this information
from the user interface and put it in program variables. Information flow
algorithms [2] can then be used to check that the uses of those data comply
with the established security policy.

6 Extraction of a Navigation Graph

We present an algorithm to extract a compliant navigation graph from the byte-
code of an application. Navigation graphs can also be generated independently
and one can check that a midlet complies with a given5.

6.1 Pointer Analysis

Points-to analysis [1,7] relates each location where a pointer is used to the loca-
tions in the program where the structure pointed by the pointer at that program
point may have been allocated. Points-to analysis is a basic technique used in
more complex analysis such as class analysis or escape analysis. In this section,
we will use it to abstract sets of live objects by the set of instructions that
allocated the memory space they use.

Points-to analysis can be viewed as the result of an analysis where the collect-
ing semantics records the potential value of each object and where the abstrac-
tion used for each object is the location where this object has been declared.

In Java, pointers are variables containing object reference and pointer analysis
can be viewed as a function from program points and variables to sets of program
points. Variables may be static or instance fields, array cells (usually coalesced to
a single cell by most analysis), local variables or operand on the stack (arguments
and return value at the level of source code).
ppi : L → ℘(L) is the partial function that associates to a program point

an upper approximation of the set of program points that may have allocated
(“new” opcodes) the contents of the ith operand on the operand stack when this
program point is executed.
5 This path is explored in project mobius following ideas from [8].
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ppm
i : L → ℘(L) is the function that coincides with ppi when the instruction

at that point is invokevirtual m′ with m ≺ m′ (ie. m.class ≺ m′.class and
m.sig = m′.sig), and is undefined otherwise.

Class analysis can be implemented as a points-to analysis of the base object
of the virtual invocation combined newOf.

The call graph of an application is defined as a function cg : MN → ℘(C ×
MN) where (l′,mn′) ∈ cg(mn) iff:

l′.meth = meth(mn) ∧ ∃l, cn. l ∈ pp(cn,mn′.sig)
0 (l′) ∧ newOf(l) = mn′.class

mn′.class ≺ cn because the program is well-typed. Each pair contains the index of
a call instruction and the name of the method called. Static virtual call resolution
may yield several pairs with the same index.
cg∗(mn) as the smallest set satisfying:

cg(mn) ⊂ cg∗(mn) ∀l′,mn′. (l′,mn′) ∈ cg∗(mn)⇒ cg(mn′) ∈ cg∗(mn)

6.2 Relational Algebra Notations

A function f : A → B can be viewed as a binary relation on A × B defined as
{(x, y) | y = f(x)}. r1 ��I/J r2 denotes the join of two relations r1 and r2 on
respectively the set of columns I and J .�� is used as a left-associative operator.

r1 ��i1,...ip/j1,...jp
r2 =

{(x�1, . . . x�n, y�1, . . . y�m) | x ∈ r1 ∧ y ∈ r2 ∧ ∀k. x�ik = y�jk}
The projection operator pi1,....in defines the projection of a relation as:

πi1,....im(r) = {(x�i1 . . . x�im) | x ∈ r}

6.3 Compound Dependencies

The potential command listener association relation is defined as:

pcl = π24(ppsetCommandListener
0 ��1/1 pp

setCommandListener
1 )

and the potential command association relation as:

pco = π24(ppaddCommand
0 ��1/1 pp

setCommandListener
1 )

Those relations link screen abstractions to respectively CommandListener ab-
stractions and Command abstractions. As an example, if at program point pp a
call to setCommandListener binds a screen declared at sc to a command listener
declared at cl, then

pcl= π24({(pp, sc), . . .} ��1/1 {(pp, cl), . . .})= π1,3{(pp, sc, pp, cl)}= {(sc, cl), . . .}
getAction : L → C is a function that associates to an abstraction of a

CommandListener object the code of the callback it contains.
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getAction(l) = cl(newOf(l), commandAction)

The set of displays potentially directly set by a method at address c is defined
as dirDispSet(cn,m) = {ppsetDisplay

1 (c, i) | i ∈ IN}. The definition is extended to
the set of displays potentially set by a method m ∈ C:

DispSet(m) =
⋃

m′∈cg∗(m)

DirDispSet(m′)

We define the set of nodes NP as: {l ∈ L | newOf(l) ≺ Screen} and the set of
transitions TP ⊂ L× L× L as:

TP = π1,2,8(pco ��1/1 pcl ��4/1 getAction ��6/1 DispSet)

As an example, a screen declared at program point sc is associated to a command
declared at co and command listener declared at cl. This object is of class C
whose definition contains a commandAction method at addressm. Callingm may
lead to the execution of pp that invokes setCurrent and may take as argument a
screen object declared at program point sc′. Then

TP=π1,2,8({(sc, co), . . .} ��1/1 {(sc, cl), . . .} ��4/1{(cl,m) . . .} ��6/1 {(m, sc′) . . .})
= π1,2,8(sc, co, sc, cl, cl,m,m, sc′) = (sc, co, sc′)

The auxiliary functions are defined as:

extP ((sc, co, sc′)) = (sc, sc′)
IP
N (n)(g) = {a | (a, n) ∈ g.genv}

IP
T ((sc, co, sc′))(g) = {a | (a, co) ∈ g.com}

Theorem 3. P complies with (NP , TP , extP , IP
N , I

P
T ).

The proof is done by induction on the size of the execution traces. Theorem 2
is important to establish that some important events have occurred before a
user event is registered in the trace. Then the correctness of pco and pcl as
abstractions of those events helps to conclude.

6.4 Path Selection Algorithm

The graph obtained so far is only a very crude upper-approximation of the midlet
behaviour as its construction ignores the control flow of the midlet. We remove
transitions corresponding to invalid execution paths in the code of callbacks,
using approximations on the value of the arguments of commandAction.

In the previous definition of T , the original definition of DispSet is re-
placed with a four tuple relation DispSet2 over C × A × A × A. An element
(c, next, old, co) states that the callback identified by its address c executed when
coming from a screen old with the button corresponding to co pressed can result
in a screen change to display next.
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TP
2 = π1,2,8(pco ��1/1 pcl ��4/1 getAction ��6,1,2/1,3,4 DispSet2)

V T is a simple forward data flow analysis that computes an upper approxi-
mation of valid transitions that is more precise than the initial value. The aim
of this section is to show the existence of such a function rather than building
a state of the art analysis. We use a classical dataflow analysis framework (see
[13] for example).

The elements of our analysis domain are sets of abstract states F = ℘(S).
Each abstract state is represented as a pair g ∗ f ∈ S where f is an abstract
representation of the current frame and g is the collected information on the
potential GUI state.

(F ,∪) is a complete lattice and satisfies the ascending chain condition as the
cardinal of S is finite. Transfer functions tl will be chosen as monotone. The
analysis is classically defined by the set of equations:

V T (c, 0) = s0 V T (l) =
⋃

l′ �→l

t′l(V T (l′))

The analysis is inter-procedural but in this simple version, no information is
kept in f between calls. So this amounts to consider the cumulative effect of all
the methods in the transitive closure of the call-graph associated to l when the
instruction at l is an invoke instruction in the potential sequential orders.

DispSet2 = {(c, n, o, b) | ∃g ∗ f ∈ V T (ε). g.screen = n ∧ (o, b) ∈ g.pot} ∪
{(c, o, o, b) | ∃g ∗ f ∈ V T (ε). g.screen = ε ∧ (o, b) ∈ g.pot}

An element g is a pair (g.screen, g.pot) ∈ (L ∪ ε) × ℘(L × L). g.screen is the
next screen and ε denotes no screen change. g.pot is the set of potential value for
the arguments of the callback that may lead to this program point. pot values
are ordered by ⊃. The most precise element is the empty set.

The goal of f is to track the initial arguments to extract new constraints when
a test is performed on those arguments. f is a pair in [A]× [A] representing the
abstraction of the operand stack and the locals. The abstract domain A states
that a frame variable is either one of the initial arguments, or anything else6

A = {α1, α2,⊥}

The stacks are bounded by construction (it is a property of preverified bytecode).
The initial value at the entry point is s0 = g0 ∗ f0:

g0 = (ε, {(x, y) ∈ L× L | newOf(x) ≺ Screen∧ newOf(y) ≺ Command})

f0 = ([α0, α1], [⊥, . . .⊥])

6 The implementation also approximate the value of some string labels (e.g. command
names) associated to them. Those labels are usually immutable.
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We do not detail the transfer functions and just give examples of the most
significant ones. Transfer function tl : S → S are defined on individual states
and must be extended to sets of states by taking the union of the results for all
the elements of the argument set:

code(l) = ifeq ∧ op = αi :: op′ ⇒
tTl ((sc, pot) ∗ (op, loc)) = {((sc, {a | a ∈ pot ∧ a�i ∈ pp2(l)}) ∗ (op′, loc)}
code(l) = virtualinvoke setCurrent⇒
tl((sc, pot) ∗ (:op, loc)) = {(sc, pot) ∗ (op, loc) | sc ∈ pp1(l)}

The transfer functions are clearly monotone.

Theorem 4. P complies with (NP , TP
2 , ext

P , IP
N , I

P
T ).

6.5 Adding Critical Actions

The previous analysis is modified to record information on which dangerous
actions can be performed in callbacks. A method call is dangerous iff the method
called m ∈MN belongs to a predefined set Crit of dangerous MIDP APIs.

We state D = L and modify V T to add a field containing subsets of D to g
which is now an element of (g.screen, g.pot, g.crit) ∈ (L ∪ ε)× ℘(L× L)× ℘(L).

code(l) = virtualinvoke m ∧m ∈ Crit⇒
tl((sc, pot, dg) ∗ ( : . . . : : op, loc)) = {(sc, pot, dg ∪ {l}) ∗ (op, loc)}

This new field is propagated in the definition of transitions:

DispSet3 =
{(c, n, o, b, d) | ∃g ∗ f ∈ V T (ε). g.screen = n ∧ (o, b) ∈ g.pot ∧ d = g.crit} ∪
{(c, o, o, b, d) | ∃g ∗ f ∈ V T (ε). g.screen = ε ∧ (o, b) ∈ g.pot ∧ d = g.crit}

TP
3 = π1,2,12,8(pco ��1/1 pcl ��4/1 getAction ��6,1,2/1,3,4 DispSet3)

The MIDP standard requires that the scheduler for events is called only when
the previous action has been treated and the callback has returned. There is
no guarantee that intermediate screens are displayed. This is also why it is safe
to accumulate all the actions performed on the execution path, they will be
performed, if ever, before the user interface is reactive again.

6.6 Implementation and Assessment

A prototype of the algorithm has been implemented on top of our analyser
MATOS [6]. Soot libraries [17,12] provide a simplified representation of code,
the points-to analysis, the class hierarchy, the complete call graph, the control-
flow graph of each method, and a framework for data-flow analysis.

Modularity in the composition of basic links is important as the actual specifi-
cation of MIDP is in fact more complex than the fragment used here: 32 callbacks
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Fig. 1. A navigation graph of a simple midlet

(see Sect 8.1.2 of [9]) have been identified only for the UI and not all of them
follow exactly the same pattern. Threads and callbacks for the midlet life cycle
must also be handled.

Figure 1 shows the navigation graph of a simple midlet in the prototype. Edge
labels are the command names. Numbers refer to the critical actions performed
and whether they are executed in a loop (arity *) or not (arity 1). This analysis is
done for each call to a critical action using a variant of the algorithm developed
by Inria Lande team and described in [5].

Using this drawing, a reviewer can check that dangerous actions such as send-
ing SMS are linked with well-identified commands and are not triggered each
time a button is pressed and the most dangerous transition is clearly identified.

Screen labels identify their class. The node labelled MIDlet is the entry point
and the edge corresponds to the constructor and the MIDlet.start method.
Small yellow nodes are just intermediate nodes. The top window on the right
describes the subcomponents and attributes of each screen. The bottom window
describes the critical actions.

Because the points-to analysis is control-flow insensitive, our analysis is correct
even in a multi-threaded context. Moreover our level of abstraction guarantees
that the result is correct for every handsets although there are many different
implementations with various interpretation of the MIDP standard (known as
device fragmentation).

The tool represents threads as separate automata triggered by the main UI but
we need a finer specification than a two states automaton: at least, a treatment
of synchronization events is required for the handling of the “worker-thread”
programming pattern [11].

The result of the analysis is a correct but uninformative graph if the path
followed to react to an event in the midlet is not defined by the arguments of
the commandAction callback. Based on experiments conducted with midlets
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available on midlet.org, a lot of midlets follow the right pattern. Moreover
operators can easily dictate it as a rule developers must follow if they want a
cheap and almost automatic validation of their code. On the other hand, it is
difficult to give informative result for UI relying only on the low-level Canvas
object.

7 Conclusion

The extraction of navigation graphs is split in a set of generic local static anal-
ysis and a more algebraic framework based on relational algebra to combine
results using program points as common abstractions. The second part is spe-
cific to the applicative field. This separation of concerns is important to keep the
analysis adaptable and scalable with respect to the complexity of the execution
environment.

Modern application frameworks introduce complex programming patterns in
mundane applications, but their initial goal is to hide the complexity of the
execution platform to the developer and they can also hide it to reviewers if we
stay at the right level of abstraction. We expect that the promising results for
GUI can be generalized to more complex frameworks (component frameworks
for example).

Finally, the semantics of navigation graphs and of the GUI behaviour pre-
sented in Sect. 3 and 4 contributes to the security of mobile applications by
providing a formal specification of the part of their behaviour related to security
sensitive operations.

Acknowledgements. Cuihtlauac Alvarado provided many inputs during the
definition of navigation graphs and comments on early version of this paper.
Jeffry Christiandy developed substantial parts of the first prototype of the tool.
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Abstract. A proof-carrying code infrastructure can ensure safety of
global computers. Such an infrastructure requires sound and complete
semantics of the global computing platform. Bicolano is an operational
semantics of the major part of the Java bytecode language. We present
here two extension frameworks for the semantics and discuss their dif-
ferent features. Both frameworks are made in a modular fashion. The
first one, so called horizontal, allows to extend states with additional
information that traces a running program behaviour (e.g. memory con-
sumption). The second one, so called vertical, additionally allows an ex-
tension to supplement the behaviour specified in the original semantics.
A comparison of these frameworks is presented. In particular, we prove
that the horizontal framework can be simulated by the vertical one and
show an example of an extension which cannot be realised in the hori-
zontal one, but can be realised in the vertical one. However, extensions in
the horizontal framework are less memory consuming and conceptually
simpler. In this light, the choice of the framework to use should depend
on a particular application.

1 Introduction

The existence of widely deployable global computing framework requires the
presence of mechanisms to guarantee the safety of users’ assets even though the
executed software is obtained through insecure means. The proof-carrying code
(PCC) [Nec97] is a powerful concept that allows to verify the properties of the
programs in the executable form and in this way ensure their safety indepen-
dently of the path the code travelled through. A PCC system which is able to
guarantee complicated features of programs should be based on the foundational
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PCC introduced by Appel and Felty [AF00]. In this case, the verification is pos-
sible as the semantics of the programs can be expressed in a logical formalism.
The formulae in such a formalism express the desired properties of programs.

One of the possibilities to provide a framework of the foundational proof-
carrying code for the Java platform is to formalise the semantics of the Java
Virtual Machine (JVM) and the Java bytecode language in a proof checker. The
logic of the proof checker can be then used as a formalism to express the program
properties. One of the existing JVM formalisations is Bicolano [Pic06]. It is a
formalisation of JVM in the Coq proof assistant [Coq04, BC04] which covers
considerable subset of the bytecode instructions (72 out of 142) and handles the
aspects such as existence of multiple classes, inheritance, method invocation and
exceptions [Con06]. This approach is not comfortable as far as the verification of
meta-properties of JVM is concerned since every proof of such a property is quite
tedious. However, Bicolano was designed to serve as a possible element of a PCC
architecture for mobile devices in which the program properties are expressed
in the Coq logic and the certificates are Coq proof scripts. In this light, the
semantics should rather explicitly formalise all the instructions than to provide
their abstraction like in the work by Klein and Nipkow [KN06]. This approach
allows to directly translate the bytecode programs into Coq values while the
program properties and proofs are expressed directly within the Coq format.
This allows to provide a strong trusted computing base which relies on the Coq
typechecker (which is relatively small), Bicolano, and a small set of simple utilities
to translate the bytecode program representation to a Coq based one.

The current version of Bicolano covers a set of JVM features which enables
certification of a wide range of programs. Still, it is not easy to reason about
properties which are of interest for various bytecode programs even when pro-
grams running on the restricted CLDC/MIDP mobile platform [Sun03] are only
concerned. The existing formalisation is in certain ways idealised, for instance
the available heap memory or method stack are unlimited. Moreover, it is not
easy to express properties in terms of the actual program runs e.g. it is not
straightforward to trace the memory usage throughout the program runs. In
this light, it is very likely that Bicolano semantics will have to be adjusted in
certain ways to accommodate better the particular verification needs.

Extending semantics with additional features is not straightforward. The re-
liability of Bicolano semantics was checked in two ways. First, the semantics was
developed by one group of people in two flavours: small step and big step, and
the big step semantics was proved to be sound with regard to the small step one.
Thanks to this effort the semantics gained a good deal of reliability as it is diffi-
cult to make the same mistake twice. Second, a separate group of people checked
that the code of Bicolano indeed obeys the descriptions in the JVM specification
[LY99]. This independent review process increased further the reliability of the
informally written Sun specification and the formalisation in Coq. It must be
noted that the size of the formalisation and soundness proofs is considerable
(over 11 thousand lines) as for the trusted code base. Therefore, the changes
to Bicolano formalisation must be done with significant caution. In order to
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guarantee that the additions do not destroy the already achieved guarantees
we tried not to modify the existing Bicolano sources, but rather used the Coq
modules mechanism [Chr04] to supplement the existing definitions (this was not
possible for big step formalisation). This also led us to define two different kinds
of extension frameworks for Bicolano semantics: the horizontal extension frame-
work and the vertical extension framework. The former allows to augment the
state of the computation with an additional field where an information which
describes some abstract property of the state may be accumulated along a pro-
gram run while the latter allows to change the behaviour of semantical steps.
Someone who wants to extend Bicolano can take either the simpler framework
(the horizontal one) with less overhead and the confidence that the original se-
mantics is left intact or the more complicated one (the vertical one) when its use
is unavoidable. We use the term extension framework to describe one of the two
(horizontal and vertical) general frameworks we provide, while the term exten-
sion is used for particular semantics extensions, e.g. the memory extension that
supports heap memory tracking.

The horizontal extension framework is an extension framework the primary goal
of which is to provide a natural basis for reasoning about the traces of the
bytecode program runs. The idea of the framework is based on the concept of
the types with effects (see e.g. the overview by Nielson and Nielson [NN99]). In
this scheme, an original typing discipline can be augmented with an additional
property called effect. Each function signature, except from the usual typing
information concerning the arguments and the result, comes equipped with an
information which abstract effect the execution of the function has on the execut-
ing environment (e.g. which variables are assigned [Tof90], what is the memory
consumption [TT97], what are the I/O operations, what are the traces of the
invoked methods, etc.). In an extreme case, the effect can contain the full history
of a computation that is run by a particular piece of code (see e.g. [SS04]). Con-
sequently, this framework can naturally serve as a way to express and specify
the properties of program runs. At the same time, this framework is not suitable
for extending the behaviour of the semantics since the collecting of the effects is
defined so that it is impossible to affect the state manipulated by the program
instructions.

The vertical extension framework is an extension framework the primary goal
of which is to provide a natural basis for introducing additional behaviours that
were omitted from the original semantics. We assume that the additions are
incremental in their nature—they usually concern a limited number of instruc-
tions (for instance in order to add the memory counting we have to modify
the new and newarray instructions only). Consequently, we assume also that
in most cases the original Bicolano semantics is sufficient. These postulates led
us to a design in which we retain the original state and admit additional state
components which allow to formalise the supplementary behaviours that cannot
be expressed in terms of the original heap and stack (e.g. when the heap and
stack have limited size, when the multithreaded runs must be considered etc.).
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Furthermore, we refer to the original semantics to obtain the state transfor-
mation as in the original Bicolano (together with the previous extensions) or
to modify the transformation when needed. This arrangement is different from
other approaches to the modular semantics such as the modular monadic seman-
tics [LH96] or action semantics [Mos92] since the other frameworks assume that
the original semantics is right from the beginning designed to be extended in one
of them. These modular semantics express the programming language concepts
in terms of atomic operations that are inherent to their construction. Adoption
of the approaches would make necessary to rewrite the existing formalisation
and this is in our case a very costly operation.

In order to demonstrate the usability of the extensions, we provided a few
extensions in both of the frameworks. In particular, we developed in both frame-
works an extension that counts the instructions executed in a run of a program
and an extension that tracks the memory usage in a run of this kind. Throughout
this paper, we use the memory usage tracking extension as an example which
illustrates the concepts and the design of the extension frameworks.

Both extension frameworks are formalised in case of the small step semantics.
However, the horizontal extension framework is formalised in big step semantic
flavour as well. The choice to formalise the small step semantics results from the
fact that certain extensions are very difficult to formalise by means of the big step
semantics. This concerns, in particular, the extension with the multithreaded
execution or the extension which formalises the non-deterministic errors of the
virtual machine. Still, we decided to formalise the horizontal framework in the
big step flavour as this kind of semantics is required in order to provide the basis
for extension of the MOBIUS base logic.

Overview. The paper is organised as follows. Section 2 presents Bicolano ar-
chitecture and the details of the semantics which are further used in the rest
of the paper. Section 3 presents the horizontal extension framework and Sec-
tion 4 presents the vertical extension framework. In Section 5 we present the
comparison of the frameworks and we conclude in Section 6.

2 Preliminaries

In this section we present an overview of Bicolano necessary to understand the
details of the formalisation of the extension frameworks we propose.

2.1 Bicolano Architecture

Bicolano consists of three main parts. They are presented as grey rectangles
on Figure 1. The implementation part contains implementations of signatures
specified in the axiomatic base and our extension does not refer to that part at
all. We present below the axiomatic base and the semantics in more detail as
they are directly used by our extension frameworks.
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Fig. 1. The relation of the extension frameworks (white boxes) to main parts of Bi-
colano (grey boxes)

Axiomatic Base. The axiomatic base of Bicolano defines the basic terms used
in the formalisation, in particular terms specific for the JVM and bytecode pro-
grams. The extension frameworks directly refer to module signatures PROGRAM
and SEMANTIC_DOMAIN.

The PROGRAM signature provides the abstract syntax of Java bytecode pro-
grams in Coq. Most of the definitions here take up the form of abstract types
and are equipped with operations and axioms specifying their properties. The
definitions describe, among others, class and method names, the program counter
(instruction addressing), local variable indices. They let decompose a given
program into classes, a class into methods and a method into subsequent
instructions.

The JVM instructions are declared as an inductive type definition. Many
JVM instructions were parametrised and in some cases one constructor in Bi-
colano represents many JVM instructions (e.g. If_icmp, parametrised with a
comparison operator, represents many conditional jump JVM instructions).

The SEMANTIC_DOMAIN signature defines the domain of the semantics, that is
the values needed to describe a state of a running JVM. As in PROGRAM, many val-
ues are declared as abstract types supplied with operations and axioms. Among
these values there are types that model local variables, arrays of local variables,
the heap and locations. More complex structures are defined via inductive type
definitions. These structures include:

– values of JVM primitive types,
– operand stack (a list of values),
– frames (normal or exceptional),
– call stack (a list of normal frames),
– the whole state (normal or exceptional).

A normal state is of the form St h (Fr m pc s l) sf where h is a heap,
and sf is a call stack. Fr m pc os l is the current frame composed of the cur-
rent method m, the current program point pc, the local variables array l, and
the operand stack s. An exceptional state is of the form StE h (FrE m pc loc
l) sf where all elements are similar as before except the location loc repre-
senting the location of the exception object. Exceptional states appear when an
exception is thrown but not yet managed by the exception handler mechanism.
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It is worth to underline that a state contains the current instruction address
and, indirectly through m, the current method code.

Operational Semantics. The operational semantics is provided in two
flavours: as the small step semantics and as the big step semantics.

The main objective for the small step semantics is to be as close to the original
JVM specification as possible. In principle, one step of the semantics corresponds
to the execution of a single JVM instruction, as described in the JVM specifi-
cation [LY99]. This pattern is violated in case an exception is thrown but not
caught within the currently executed method. When this happens a semantical
step which exceptionally exits the method has no corresponding instruction.

The step relation has the type Program → State.t → State.t → Prop.
It holds for a program p and states st1 and st2 if and only if st1 and st2 are
consecutive states when the program p is run.

It is worth stressing that for a given state st1, there may be no state st2
such that step holds. A relation of this type can also be non-deterministic (when
many states are in relation with st1), however in the current version of Bicolano
(without multithreading and error handling) it is not the case.

The big step semantics was provided for two main reasons: as a kind of internal
verification of the semantics formalisation and for the use in the MOBIUS base
logic.

The big step semantics defines several kinds of states and steps used in dif-
ferent cases: IntraNormalState and NormalStep, IntraExceptionState and
ExceptionStep, InitCallState and CallStep, ReturnState and ReturnStep.
Beside these steps, defined as the basic ones, there are several transitive closures
defined, with the most general Reachable at the end.

This formalisation of the semantics is more complicated and does not allow
to easily formalise certain behaviours (e.g. the interleaving of multiple threads).
Moreover, the management of the multitude of states and steps may be difficult.

3 The Horizontal Extension Framework

The primary motivation for this extension framework was to enable an easy way
of tracing the resource usage in the actual runs of programs. This is achieved
here by adding Coq definitions which parametrise the steps with the additional
effect component that allows to trace runs of programs.

The addition of the effect information to the Bicolano semantics enables the
possibility to extend the MOBIUS base logic [BH06] with primitives to reason
about the resource consumption of programs. This is possible as the framework
was developed in the big step flavour as well.

3.1 How to Use the Framework?

Small Step Semantics. In order to exploit the extension framework one has
to define a Coq module for the following module type:
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Module Type SS_EFFECT.
Declare Module Dom: SEMANTIC_DOMAIN.
Import Dom Prog.
Parameter ACT: Set.
Parameter bookkeepSmall: Program → State.t → State.t →

ACT → ACT.
End SS_EFFECT.

The parameter ACT (short for ACtion Trace) determines which information is
collected along a run of a bytecode program. It keeps track of the actions we
are interested in that were executed in the program in question. An arbitrary
type can be assigned to it, depending on the actual need. In case of the memory
extension, the parameter may be instantiated to the natural numbers nat.

The parameter bookkeepSmall is a function the arguments of which are in
sequence

– an abstract program identifier,
– a state before the execution of the current instruction,
– a state after the execution of the current instruction,
– the value of ACT before the execution of the current instruction.

The bookkeepSmall returns the resulting value of ACT. The role of the function is
to specify the effect on ACT values depending on changes in the ordinary Bicolano
state. Note that a state contains the program counter, so the instruction to be
invoked is known.

In case of the memory extension, bookkeepSmall returns a new value of the
memory counter. The instruction to be invoked is determined based on the state
before the step which enables the update of the memory consumption for the
allocation instructions new and newarray.

Big Step Semantics. In order to exploit the extension framework in case of the
big step semantics, one has to provide definitions for a module type BS_EFFECT
the idea of which is the same as in the case of the small step semantics, but
instead of a single bookkeepSmall one has to define many bookkeeping param-
eters, one for each of the basic kinds of steps:

– bookkeepNormal (for normal internal steps),
– bookkeepException (for exception steps),
– bookkeepCall (for method call steps),
– bookkeepReturn (for return steps).

The bookkeeping functions should be used to specify the changes in the ACT part
of the state that happen in a semantics step. Their types are similar to the type
of bookkeepSmall. For example the type of bookkeepException is as follows:

Parameter bookkeepException: Program → Method →
_IntraNormalState → _IntraExceptionState → ACT → ACT.
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Note that the returned value of ACT depends not only on the program, but also
on the method in which the program is executed, the state before the execution of
an instruction (_IntraNormalState) and the state after the execution of the in-
struction (_IntraExceptionState; note that the resulting state is exceptional).

In order to define the extension which traces the memory usage, one has to
again instantiate ACT with nat and define all the bookkeeping functions above.
However, only bookkeepNormal and bookkeepException should do non-trivial
work as the allocation may occur only in case of the normal allocation instruc-
tions or in case of runtime errors.

3.2 The Realisation of the Framework

Small Step. In case of the small step semantics there was no need to change the
existing Coq code. The new definitions were placed in new files. The main part
of the framework is a functor that takes two parameters: an effect (an instance
of the SS_EFFECT signature) and an implementation of the ordinary small step
semantics. The functor defines the EffState module which encapsulates the old
State combined with the action traces in ACT (from SS_EFFECT).

The functor also defines the step relation which takes into account the book-
keeping. The definition of the step looks as follows:

Inductive step (p:Program): EffState.t → EffState.t → Prop :=
| ESS_ : ∀ s t S T, SmallStep.step p s t →

T = bookkeepSmall p s t S →
step p (s,S) (t,T).

SmallStep.step is the step of the original Bicolano semantics. In order to check
if the new step relation holds, we have to check whether the original relation
takes place and compute the value of the bookkeeping function (bookkeepSmall).
Then the original states (s and t) are combined with the ACT effects (S and T,
respectively) to form the values of the new state type EffState.t.

Big Step. In case of the big step semantics we made changes in the existing
Bicolano code. This was caused by module dependencies and the need to provide
accompanying definitions and lemmas for the changed semantics which were
deeply interwoven in the existing semantics.

The type of the state was extended with the ACT component while the orig-
inal state types was renamed by adding the underscore _ as a prefix. For ex-
ample the old IntraNormalState is now _IntraNormalState while the current
IntraNormalState is defined to be _IntraNormalState * ACT.

The reformulation of the semantics is very similar to the one of the small step
semantics. Here is an example of a redefined step:

Inductive ExceptionStep(p:Program):
Method → IntraNormalState → IntraExceptionState → Prop :=

| EES_ : ∀ m s t S T, _ExceptionStep p m s t →
T = bookkeepException p m s t S →
ExceptionStep p m (s,S) (t,T).
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This new ExceptionStep first checks if the original exceptional step relation
holds (_ExceptionStep) then it generates the result of the bookkeeping (using
bookkeepException) to finally establish the required ExceptionStep relation.

Additionally several definitions and lemmas existing for the original semantics
were updated so that they now concern the new states and steps. The definitions
and lemmas are used by the current version of the MOBIUS base logic.

We would like to point out here that the way the semantics is designed the
bookkeeping functions cannot influence the original Bicolano state. They can
only influence the ACT values.

4 The Vertical Extension Framework

This extension framework is build as an aggregation of the extensions. Each of
the extensions can add supplementary behaviour to the existing semantics and
the extensions may be combined in a stack-based fashion. The general idea of
the stack of extensions is presented on Figure 2.

...

Fig. 2. The schema of the vertical extension
framework

The bottom of the extension
stack is the Bicolano semantics. We
refer to the semantics as the bot-
tom semantics. Another kind of se-
mantics which we take into account
here is the semantics just below
the currently extended one. This
semantics aggregates all the be-
haviours starting from the bottom
semantics till the last already de-
fined one. The semantics just below
the currently defined one is called
the support semantics. Each se-
mantics in extensions between the
bottom semantics and support se-
mantics, excluding the former and
including the latter, is called inter-
mediate semantics.

We assume that each extension
may define behaviour which cannot
be easily modelled with the use of the original Bicolano state definition. For
instance the memory usage extension requires an additional field: the current
size of the allocated memory (the maximum size is a parameter of the module).
That is why, along with the semantics extensions, we define state extensions.
The state on which the program operates in the bottom semantics is called the
bottom state. The support state is the state that corresponds to the support
semantics.

As Figure 2 suggests, the subsequent extensions are composed with the help
of three relations: step, get_bottom_state, and additional_step. The most
important relation is the step relation which determines the behaviour of the
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small semantical steps. This relation takes into account the behaviours described
in all the extensions below the current one and the one defined by the current
extension. It is worth mentioning that the extensions may influence the bottom
state. Also, the semantical steps in the extensions below may influence the step in
the current extension (e.g. in case the current extension traces the memory usage,
the intermediate extensions may allocate silently in the bottom semantics some
objects and this must be taken into account by the memory tracing extension).

We assume that the current extension is constructed in such a way that the
extension developers understand Bicolano semantics, but have limited under-
standing of the intermediate extensions. That is why, we allow to directly refer
to Bicolano state with the help of get_bottom_state. This relation describes
how to strip off all the state information which is defined by the intermediate
extensions and obtain the component of the state which is directly operated
by the bottom semantics. Certain extensions may have the bottom semantics
undefined (e.g. an extension which supplements the semantics with a kind of
error that is absent from the original formalisation) or have many possible bot-
tom states (e.g. an extension which formalises garbage collection). Therefore, we
decided to formalise get_bottom_state as a relation rather than as a function.

At last, the relation additional_step complements get_bottom_state and
allows to recognise which behaviour is added by the intermediate extensions and
the current one, provided that we know how the state is modified by a step in
the bottom semantics. Again, in order to achieve a more general framework we
decided to define additional_step as a relation.

4.1 How to Use the Framework?

In order to use the extension framework in a particular situation, one has to
provide a Coq module that realises the module type SS_SEM. The module type
is defined as follows (we omit axioms):

Module Type SS_SEM.
Declare Module Dom: SEMANTIC_DOMAIN.
Import Dom Dom.Prog.
Parameter state_t : Type.
Definition bottom_state_t := State.t.
Parameter get_bottom_state: state_t → bottom_state_t → Prop.
Parameter step: Program → state_t → state_t → Prop.
Parameter additional_step: Program →
state_t → bottom_state_t → state_t → Prop.

End SS_SEM.

It declares the module Dom which contains the semantic domain over which
the state is build. The extended state is defined as state_t while the state com-
ponent, which is defined and manipulated with the use of the original Bicolano
semantics, is accessible through get_bottom_state. The signature defines also
a shorthand for the type of the bottom state as bottom_state_t.
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State. The type representing states will usually be the support state type ex-
tended with additional fields, depending on the actual needs.

The state_t type in case of the memory extension is just a product of the
support state and an integer component. The component keeps track of the
memory usage. In order to define get_bottom_state, we have to just project
the state to the support state component and then use get_bottom_state in
the support semantics to obtain the required relation.

Step. The parameter step is the semantics provided by the given module. It
relates the subsequent steps of the semantics in such a way that step p st1
st2 holds when in the extended semantics there is a possible step in the program
p from the state st1 to the state st2.

In case of the memory extension, the step relation must, as in the horizontal
case, count the amount of used memory. To achieve this the relation must check
if the instruction to be invoked allocates memory. This can be determined based
on the state before the step with the help of get_bottom_state. When the
size of the heap memory would exceed the maximum allowed size, the extension
changes the bottom semantics behaviour so that the OutOfMemoryError error
is thrown. This, however, must take into account the additional_step of the
support semantics as described below.

Additional step. The relation additional_step p st1 bst st2 in an extension
SEM connects the state st1 in SEM with the state bst from the bottom semantics
and st2 again in SEM where all these states are interpreted in a program p. It
holds when st2 is the state in SEM that takes into account a hypothetical move
from the bottom part of st1 to bst. In the simplest situation, the bottom part
of st2 is just bst. However, this is not obligatory.

The additional_step relation is provided for use by a potential extension
built above the current one. Consider a case when SEM2 extends (is above) SEM1,
we describe now how it can exploit additional_step from SEM1. The semantics
of SEM2 may want to supplement the original behaviour with a new transforma-
tion. It knows the state st1 from SEM1 before the current step and knows how
to transform the bottom part of st1 for its own purposes. Let the result of the
transformation be bst. Now, it can use additional_step to find out how SEM1
reacts to this transformation and obtain st2.

Let us illustrate this with an example. Suppose, SEM2 is the memory extension.
When a JVM instruction new is invoked and there is enough memory, we simply
refer to step in the support semantics and change only the memory field in the
state. However, if SEM2 introduces an additional state transformation we can ask
SEM1 to take it into account using additional_step from a support semantics
SEM1. For instance in the memory extension we can have the following case:

| step_new_OutOfMemory: ∀ ..., current_ins sust1 (New c) → ...
(∗ size is the amount of the object being created ∗)
ch + size > max_heap_size →
(∗ h’ − heap after creation of the exception ( stored in loc ’) ∗)
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Support.get_bottom_state sust1 (St h (Fr m pc s l) sf) →
Support.additional_step p sust1

(StE h’ (FrE m pc loc’ l) sf) sust2 →
step_mem p (mem_state sust1 ch)

(mem_state sust2 (ch + esize))

When there is too little memory, the memory extension should raise an exception
which is indicated in the state (StE h’ (FrE m pc loc’ l) sf). We can now
ask additional_step in the support semantics SEM1 to react to a change from
sust1 to this exceptional state. In this way, we can obtain sust2 which can
either accept that exception or change it in its own way.

On the other hand when the memory extension plays the role of the sup-
port semantics, its additional_step may be used by the extension above. The
additional_step relation can be defined in such a way that it checks if an addi-
tional JVM exception is being thrown in a step from the extension above. If so,
it counts the size of the exception object and either adds the size to the mem-
ory counter or throws OutOfMemoryError. In other cases the memory counter is
unchanged. In this way, the memory extension overrides the exception about to
be thrown by the semantics above.

Axioms. The additional_step relation should be compatible with the step
relation on the same pairs of states. Therefore the SS_SEM signature declares the
axiom:

Axiom add_step_step_compat: ∀ ..., step p st1 st2 →
get_bottom_state st2 bost2 → additional_step p st1 bost2 st2.

This axiom says that for a given pair of states st1 and st2 if the relation step
holds, then additional_step should also hold for the pair and the projection
of st2 to the bottom state type. All extensions should provide a proof of this
property.

4.2 The Realisation of the Framework

The semantics modules form a stack. At the bottom, there is always the bottom
semantics. The actual extensions must be provided as a functor that takes the
support semantics as its parameter and returns the resulting semantics of the
extension. Therefore, a typical extension module header looks as follows:

Module SemExtension (SupportSem: SS_SEM) <: SS_SEM.

The module BottomSem is the bottom extension module. It has the mentioned
above SS_SEM module type and provides its instantiation with the primary Bi-
colano semantics. The type state_t is defined here to be the state in the mod-
ule type SEMANTIC_DOMAIN used in Bicolano. The relation get_bottom_state
is defined here as the identity on the state from SEMANTIC_DOMAIN. The state
relation is defined to be the small step relation of the original Bicolano as this
is the basic semantical step. The relation additional_step is just the identity
on the state type as this extension does not add any additional behaviour to the
original semantics.
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5 The Frameworks Compared

The relation between the frameworks. The vertical framework is strictly more
expressive than the horizontal one. In particular, it allows to define a memory
tracking extension which is able to throw the OutOfMemoryError in case the
memory limit is exceeded. This kind of behaviour is impossible to model with
the help of the horizontal framework as the bookkeeping functions do not modify
the state. However, an important property of the horizontal extension is that it
does not change the semantics—every step of the extended semantics has a
corresponding step in the Bicolano semantics and vice-versa. This property can
be expressed in the vertical framework, but at additional cost of defining and
proving the following lemmas:

Lemma support_step_implies_step:
∀ p t s’, SupportSem.step p (get_support_state t) s’ →
∃ t’: state_t, step p t t’ ∧(get_support_state t’) = s’.

Lemma step_implies_support_step:
∀ p t t’, step p t t’ →
SupportSem.step p (get_support_state t) (get_support_state t’).

The properties hold in particular for an extension that counts the number of ex-
ecuted instructions and for the EffectExtensionwhich simulates the horizontal
extension framework. This holds as the extensions do not change the original be-
haviour. However, the proofs require additional assumption on the intermediate
states stack:

Parameter fget_bottom_state: SupportState.state_t →
bottom_state_t.

Axiom get_bottom_state_ok:
∀ sust bost, SupportState.get_bottom_state sust bost ↔

fget_bottom_state sust = bost.

The axiom get_bottom_state_ok says that the projection to the bottom state
is a function. The assumption holds for the bottom (not extended) state and is
preserved by the mentioned other extensions.

Another interesting property of the extensions that do not change the state
concerns additional_step:

Lemma additional_step_proj: ∀ ...,
additional_step p st1 bost2 st2 → get_bottom_state st2 bost2.

This property says that the bottom state of the result of the additional step is
exactly the same as the one proposed as a transformation from the bottom state
of st1 to bost2.

As expected, these properties do not hold for extensions which change the
behaviour, in particular for the memory extension we presented in the paper.

Except from these properties, we also provided a functor EffectExtension
that allows to realise any extension in the horizontal extension framework by
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means of our vertical one. We additionally proved in Coq a theorem which ex-
presses that the original horizontal framework is equivalent to the one defined
in terms of the vertical one.

Theorem EffectExtensionEquiv:
∀ p st1 st2, EffSmallStep.step p st1 st2 ↔

EffectSem.step p st1 st2.

In this theorem, EffSmallStep is the result of the application of the horizontal
extension framework to any effect while EffectSem is the result of the application
of EffectExtension to the same effect. This theorem says that each step in the
horizontal extension framework implies an analogous step in the extension in the
vertical framework and vice-versa.

The cost of the vertical framework. When talking about the cost of a framework
we can distinguish two points of view: extension developer’s one and code con-
sumer’s one. The cost for an extension developer can be roughly measured as
the size of the extension source code. Such a comparison shows that the vertical
framework is much more expensive. For instance the memory extension in the
vertical framework has 204 lines while in the horizontal extension framework only
50 lines. In this case one could argue that the vertical version describes richer
behaviour and this is the reason of the size increase, but the extension that
counts instructions, which indeed does not add any supplementary behaviour,
has 173 lines in case of the vertical framework while only 26 lines in case of the
horizontal one. Moreover, defining the bookkeepSmall function is conceptually
simpler than defining the step and additional_step relations when one wants
to affect only the extended part of the state. A code consumer pays attention
to the size of the certificates attached to the code and the certificates include
compiled Bicolano extensions. The size of compiled extensions in the vertical and
the horizontal frameworks are, respectively, 181 KB and 148 KB for the memory
extension, 158 KB and 135 KB for the instruction counting extension. As we can
see, the difference is not so explicit as in the source code, but again the verti-
cal framework seems to be more expensive. In this light, the vertical framework
should be rather used to supplement the original semantics with an additional
behaviour which is necessary to be modelled while the horizontal one in all the
extensions which only trace the history of program runs.

6 Conclusions

We showed two frameworks for extending an existing semantics definition with-
out making any changes in the existing code, in case of the small step semantics,
and with very limited changes preserving all previously existing properties in
case of the big step semantics in the horizontal framework.

The horizontal framework guarantees the preservation of the original seman-
tics behaviour while the vertical framework allows to change it. The need of
changing the behaviour may arise in particular when one needs a semantics in
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which the lack of resources should trigger an error, which was omitted from the
original Bicolano semantics.

We presented here a comparison of the frameworks—the vertical framework is
strictly more expressive than the horizontal one. In particular, we proved in Coq
that the horizontal framework can be simulated by the vertical one. Moreover,
the memory extension can throw the OutOfMemoryError only in case of the
vertical framework.

However, taking into account that the horizontal framework is less memory-
consuming and that the bookkeeping functions are simpler to devise than the
step relation, the choice of the framework to use should rely on a particular
application.

Acknowledgements. We would like to thank Lennart Beringer, Jacek
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the two extension frameworks.
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Abstract. Many techniques exist for statically computing properties of
the evolution of processes expressed in process algebras. Static analysis
has shown how to obtain useful results that can both be checked and
computed in polynomial time. In this paper we develop a static analy-
sis in relational form which substantially improves the precision of the
results obtained while being able to deal with the full generality of the
syntax of processes. The analysis reveals a feasible complexity for practi-
cal examples and gives rise to a fast prototype. We use this prototype to
automatically prove the correct delivery of messages for the implementa-
tion of an accident service, which is based on multiplexed communication,
a crucial feature of global computing applications.

1 Introduction

Process algebras facilitate abstract models of a number of features of concurrent
and distributed computation. Many use the notion of channel to provide end-to-
end guarantees ensuring secure communications taking place. A prime example
is the π-calculus [10] where channels can be freely created and guarantee that a
message sent along the channel can only be received by a process listening on
that channel. Indeed, processes not having access to the channel cannot observe
or influence any properties of the values being sent along the channel. Hence
end-to-end guarantees of proper delivery of messages is almost automatic.

Moving closer to the actual implementation level there is no direct counterpart
of the notion of channels as used in the π-calculus although symmetric cryptosys-
tems can be used to encode some of their properties. Practical techniques often
include limiting the number of channels used and instead use multiplexing of
several communications over a fixed set of channels. It is then a requirement
on the transporting processes that they correctly implement the intended end-
to-end communication. In this paper we use a running example, a version of
the accident service taken from the automotive case study of the SENSORIA
EU-project, where this problem arises.

This paper shows how to use static analysis for demonstrating that the ser-
vice requests of the system are correctly distributed by the multiplexer process.
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It turns out that so-called independent attribute analyses [11], as developed in
e.g. [1], are unable to deliver the guarantees needed. A static analysis for mul-
tiplexing must be relational, that is, it must be able to capture precisely the
dependence between various names. As an example, if a process contains output
operations a〈b, b〉 and a〈c, c〉 then the analysis must be able to show the absence
of the output operations a〈b, c〉 and a〈c, b〉.

There are strong relational analyses around to prove multiplexing correct,
most successful among them the abstract interpretations of Venet [16] and Feret
[5]. In contrast to our proposed analyses, they are even able to distinguish dif-
ferent recursive instances of a process.

However, where our analysis is presented for standard π-calculus (with pat-
tern matching) with the standard reduction semantics based on congruence, the
analyses of [16,5] rely on heavily customised versions of the language that include
input-guarded replication, an instrumented semantics and explicit substitution
environments. Thus, these customisations enable strong analyses, but are of dis-
advantage in the context of global computing where many calculi emerge, for
instance [8] and [3], that all use the standard constructs of classical π, in partic-
ular congruence and reduction semantics. In contrast, our analysis, being based
on these standards, can be easily transferred to new emerging languages, while
[16,5] would need to be completely re-designed. Beyond re-usability, which is
of utmost importance for global computing, our proposal is implemented and
enjoys a correctness result in terms of a subject reduction result, which is the
standard proof technique. In contrast, [16,5] settle for a very general soundness
result of their abstract interpretation.

Our contribution is thus the development of a relational analysis that can be
specified almost as naturally as the simpler (and in fact too simple) indepen-
dent attribute analyses [1], that is easily extendable to new, emerging global
computing calculi, because it relies on standard syntax, semantics, and proof
technique. Indeed, our correctness results relies on the invariance of a correct-
ness predicate under subject reduction, where the correctness predicate takes
care of the implicit substitutions that need to be made very explicit—and hence
deviating from standard reduction semantics—in the approaches of Venet [16]
and Feret [5]. The analysis is implemented, and provides results that are suffi-
ciently precise to validate our running example. While the worst case complexity
is (necessarily) exponential we show that for realistic programs, e.g. for our run-
ning example, we are polynomial in solving the associated constraints. We should
also point out that, due to our use of Alternation-free Least Fixed Point Logic
(ALFP), the time needed for computing the best solution is asymptotically equal
to the time needed for validating a solution (unlike approaches where validation
is polynomial time but inference is nondeterministic polynomial time, the latter
being exponential in practice).

Outline. We continue by presenting our running example, an accident service
from the automotive case study of the SENSORIA EU-project. In Section 2, we
present syntax and semantics of pπ, our extension of the π-calculus with pattern



Relational Analysis for Delivery of Services 75

alarm emergency

pos

loggps

status
Monitor

Service CentreCar

Black Box

GPS Device

DEMUXMUX

Sensor

GPS Logger

Fig. 1. The overall architecture of the accident service

matching. The analysis itself is specified in Section 3, while its properties are
reported in Section 4. Section 5 concludes.

1.1 The Accident Service

A typical service-centred application is the accident service. The overall architec-
ture of this service is depicted in Figure 1. In order to subscribe to this service,
a car needs to be equipped with a GPS device and a black box. The black box
frequently polls internal sensors for abnormal events. In such a case, it will start
sending alarm messages containing the car’s and the driver’s identity. The service
centre has two objectives: It logs the GPS data received from the car and moni-
tors whether any alarm occurs. In that case, it gets the location of the car and the
identity of its driver from the GPS logger and sends an SOS message to a rescue
service (not modelled here). The somewhat intricate specification of the logger
ensures that the most recently sent position is actually attached to the SOS.

Table 1. The pπ specification of the accident service. The process Pacc is the parallel
composition of the components stated here.

GPS device: ! (νloc) gps〈cari, loc〉1
Sensor: ! (status〈cari, ok〉2 + status〈cari, crit〉3)
Black Box: ! status(cari; x)4.[x = crit]5. ! alarm〈cari, driveri〉6

GPS Logger: (νk)(! k(; )7.log(; ycar , ypos)
8.

(pos(ycar ; )
9.pos〈ycar , ypos〉10.k〈〉11 + k〈〉12)

| k〈〉13)
Monitor: ! emergency(; zcar , zd)

14.pos〈zcar 〉15.pos(zcar ; zpos)
16.SOS〈zcar , zpos , zd〉17

Mux: ! gps(; zcar , zpos)
18.wifi〈log, zcar , zpos〉19

| ! alarm(; zcar , zd)
20.wifi〈emergency, zcar , zd〉21

Demux: ! wifi(; z1, z2, z3)
22.z1〈z2, z3〉23
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All messages between the car and the service centre are communicated over a
multiplexed, wireless channel— a feature typical of service oriented architectures.
The multiplexer takes care of distributing messages correctly while providing
optimal use of bandwidth.

We use a polyadic π-calculus, pπ, extended with pattern matching in input
prefixes (as in [2]) in order to write down the accident service formally (Table 1).
For analysis purposes, action prefixes are annotated with labels. The usual prece-
dence rules—parallelisation< summation < prefix, restriction, replication—hold
for pπ as well. An input prefix x(ȳ; ū), receives a tuple z̄ over channel x if the first
| ȳ | elements of z̄ equal ȳ, thus binding the remaining elements to ū. The com-
plete syntax and semantics are presented in Section 2. Our analysis presented in
Section 3 will be able to find out that the MUX distributes messages correctly,
that is, messages over the emergency channel will contain car and driver identity
information only, whereas messages sent over the log channel will always contain
car identities and position information.

2 The pπ-Calculus

2.1 Syntax

The syntax of the π-calculus extended with pattern matching, pπ, can be seen
in Table 2. As in the π-calculus we have channels that facilitate synchronous
name passing communication. We use names picked from the denumerable set
Name to denote channels and we shall use the notation n,m, p for elements of
this set. Similarly, we shall assume a denumerable set Var of variables and let
u, v range over this set. When necessary, we shall use x, y, z to range over the
disjoint union Name ∪ Var. However, as we shall see below names and variables
are bound in different manners. The calculus is polyadic and we shall use bars
to denote polyadic entities, e.g. n̄, ū, x̄ etc.

The intuition behind the set of primitives is as follows: The inactive or ter-
minal process, 0, denotes the end of a process, a point from where no further
progress can be made. The parallel composition construct, P1 | P2, represents the

Table 2. Processes; P

P ::= 0 Terminated Process

| !P Replication

| P1 | P2 Parallel

| P1 + P2 Choice

| (νn)P Restriction

| [x = y]�P Match

| x〈ȳ〉�.P Output

| x(ȳ; ū)�.P Input
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process that is a concurrent composition of two processes P1 and P2. The choice
construct, P1 +P2, is used to model non-deterministic behaviour. The replication
construct, !P , describes a process that is the parallel composition of as many
occurrences of P as necessary; in the scope of name passing this is adequate for
expressing recursive behaviour. The name restriction construct, (νn)P , binds a
name, n, that may be used freely in P , but is not free in (νn)P , i.e. the scope
of n is restricted to P . The guarded process, [x = y]P , has a simple ’if-then’
behaviour - the execution of P can only commence if x and y denote the same
name. The polyadic output prefix construct, x〈ȳ〉.P , represents a process that
desires to engage, as sender, in a synchronous exchange of information on the
channel denoted by x and then proceed as described by P . However, the output
can be completed only if a concurrent subprocess is simultaneously willing to
participate, as receiver, in a matching communication on the same channel. The
polyadic input prefix construct, x(ȳ; ū).P , represents a process that desires to
engage, as receiver, in a synchronous exchange of information on the channel
denoted by x and then proceed as P . The input can complete if:

1. a concurrent subprocess is simultaneously willing to engage, as sender, in a
communication on the same channel, and

2. the output offered by this remote process matches the expectations expressed
by the input pattern, i.e. the output and input vectors are both of length
|ȳ|+ |ū| and they agree on the names in the first |ȳ| positions.

If these conditions are satisfied the communication can commence binding each
variable in ū to the name mentioned in the corresponding position of the output
vector.

Syntactic conventions. As customary for the π-calculus we shall abstain from
writing the terminal 0 at the end of example processes. Furthermore, we shall
assume that well-formed programs do not contain free variables. However, for
the convenience of writing examples we do allow free names. We use � ∈ {|,+}
for brevity when parallel composition and choice are treated in the same way.

Label Annotations. To aid expressing the analysis in Section 3 we shall annotate
the actions of the processes with labels � ∈ Lab as in x〈ȳ〉�, x(ȳ; ū)� and [x = y]�.
For simplicity we shall assume that the labels are unique in the process P� to be
analysed. The labels play no role whatsoever in the semantics; they only serve
as pointers into the syntax.

2.2 Semantics

We now give an operational semantics of the pπ calculus based on a structural
congruence, ≡, and a reduction relation, →. This is a semantics in the style of
Milner’s reaction relation [9] for the original π-calculus. The resulting semantics
clearly expresses an intuitive understanding of concurrency and interaction. The
processes of pπ are grouped into congruence classes by the structural congruence
relation, which is defined in Table 3. This definition ensures that the members
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Table 3. Structural congruence, P ≡ Q, is the smallest congruence relation on pro-
cesses satisfying the axioms above. We use � ∈ {|, +} for brevity.

(Nam1) (νn)(νm)P ≡ (νm)(νn)P (Nam2) (νn)0 ≡ 0

(Nam3) (νn)(P | Q) ≡ (νn)P | Q if n /∈ fn(Q)

(Assoc) (P � Q) � R ≡ P � (Q � R) (Com) P � Q ≡ Q � P

(Nil) P | 0 ≡ P (Rep) !P ≡ P | !P

(Aeq) P ≡α Q ⇒ P ≡ Q

Table 4. Disciplined α-equivalence; P ≡α Q

(Alpha) (νn)P ≡α (νm)P [m/n] if m �∈ fn(P ) ∧ 	n
 = 	m


of each class are congruent up to trivial syntactic restructuring. In the definition
- and the following - we use fn(P ) and fv(P ) to denote the free names and free
variables of the process P , respectively.

As usual the congruence includes α-equivalence (Table 4) - asserting that pro-
cesses are equivalent if they differ only in their choice of bound names. However,
as we distinguish between names and variables and shall never substitute a vari-
able for a name or variable we choose to define α-equivalence only for names.
Also, we write P [m/n] to denote the process that is as P except that every free
occurrence of name n is replaced by name m; the notion of substitution is for-
mally defined in Table 5. Finally, we use the notion of canonical names (�n	 as
motivated and defined below) and demand that α-equivalence only holds when
the bound names have the same canonical name.

In the definition of substitution over a name restriction, α-renaming is used
to avoid name capture. This means that constants do not have representations
that are stable under evaluation. However, syntactically unstable entities are
not suitable for carrying static analysis information. Therefore we associate each
constant n with a stable canonical name �n	 and demand that α-renaming be
disciplined, such that canonical names are preserved, even when the syntactical
representations change. Technically, the canonicalisation of names partitions the
name-space into equivalence classes. Each canonical name uniquely identifies
the defining syntactic occurrence giving rise to the associated class. Then
α-renaming (Rule (Sres) of Table 5) demands that new names be picked from
appropriate classes.

The reductions of processes are given by the binary reduction relation, which
is defined inductively as the least binary relation described by the axioms and
rules of Table 6.

When the reduction relation holds between a pair of processes, written P →
P ′, it means that P can evolve into P ′ by a single input/output reduction (Com)
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Table 5. Substitution; P [m/z]

(Snil) 0[m/z] = 0

(Srep) (!P )[m/z] = !P [m/z]

(Spar) (P1 � P2)[
m/z] = P1[

m/z] � P2[
m/z ]

(Sres) ((νn)P )[m/z ] =

�����
����

(νn)P if z = n

(νn′)(P [n
′
/n][m/z ]) if z �= n ∧ m = n ∧

n′ �∈ fn(P ) ∧ 	n
 = 	n′

(νn)P [m/z] otherwise

(Smatch) ([x = y]P )[m/z] = [x[m/z] = y[m/z]]P [m/z]

(Sout) (x〈ȳ〉.P )[m/z] = x[m/z]〈ȳ[m/z ]〉.P [m/z]

(Sin) (x(ȳ; ū).P )[m/z] =

�
x[m/z ](ȳ[m/z]; ū).P if z ∈ {ū}
x[m/z ](ȳ[m/z]; ū).P [m/z] otherwise

Table 6. Reduction Semantics; P → P ′

(Match) [n = n]P → P (Par)
P → P ′

P | Q → P ′ | Q
(Cho)

P → P ′

P + Q → P ′

(Com) m〈n1, . . . , nk〉.P | m(n1, . . . , nj ; uj+1, . . . , uk).Q →
P | Q[nj+1/uj+1 ] · · · [nk/uk ]

(Var)
P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′ (Res)
P → P ′

(νn)P → (νn)P ′

or a successful guard (Match) within some subprocess of P . The rule (Com)
requires radices to be on a certain normal form and the rule (Var) allows the use
of the structural congruence for obtaining this form. The remaining rules, (Par)
and (Res), simply propagate reductions across parallel composition and name
restrictions respectively, while (Cho) lets one process in a summation proceed.

3 Relational Analysis

We set the stage for the analysis by defining some auxiliary information. First,
a label environment L is defined as a mapping

L : Lab ↪→ Var∗

that to each label � associates a sequence ū of variables that have been introduced
before this point in the process. More formally, we shall take L = Lε[[P�]] where
Lū (for ū ∈ Var∗) is defined in Table 7. Here we write 
 for joining two mappings
with disjoint domains and [ ] for the mapping with empty domain. The notation
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Table 7. Label environment

Lū[[P1 � P2]] = Lū[[P1]] � Lū[[P2]] Lū[[!P ]] = Lū[[P ]]

Lū[[(νn)P ]] = Lū[[P ]] Lū[[0]] = [ ]

Lū[[x〈ȳ〉�.P ]] = Lū[[P ]][� → ū] Lū[[x(ȳ; v̄)�.P ]] = Lūv̄[[P ]][� → ū]

Lū[[[x = y]�P ]] = Lū[[P ]][� → ū]

Table 8. Flow information; F [[P ]]

F [[P1 � P2]] = let (F1, E1) = F [[P1]]

(F2, E2) = F [[P2]]

in (F1 � F2, E1 ∪ E2)

F [[!P ]] = F [[P ]]

F [[(νn)P ]] = F [[P ]]

F [[0]] = ([ ], ∅)
F [[x〈y1, . . . , yk〉�.P ]] = let (F, E) = F [[P ]]

in (F [� → E], {�})
F [[x(y1, . . . , yj ; uj+1, . . . , uk)�.P ]] = let (F, E) = F [[P ]]

in (F [� → E], {�})
F [[[x = y]�P ]] = let (F, E) = F [[P ]]

in (F [� → E], {�})

ūv̄ stands for the concatenation of ū and v̄. We will use the notation 〈x1, . . . , xr〉
to write down vectors.

In the analysis we shall also need a representation of the flow of control in
the process P� of interest. We shall represent this by a flow mapping F that to
each label � associates the set of labels that will become exposed once the action
labelled � has been executed; thus

F : Lab ↪→ P(Lab)

The function F defined in Table 8 will for each process P define such a mapping
together with the set of exposed labels of the process itself and we shall define
(F,E) = F [[P�]].

Example 1. The annotated running example, Pacc, was given in Table 1. Using
the functions L and F we obtain E = {1, 2, 3, 4, 7, 13, 14, 18, 20, 22} and the
following samples for flow F and label environment L.

� 1 4 8 14 15 16 17
F.� ∅ {5} {9, 12} {15} {16} {17} ∅
L.� ε ε ε ε 〈zcar , zd 〉 〈zcar , zd〉 〈zcar , zd , zpos〉
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3.1 Analysis Domains

The abstract environments R̂ of the analysis will, given a label �, return a set of
sequences of names; the structure of these sequences will equal that of L.� and
will determine the potential values of the variables. Thus we shall take:

R̂ : Lab→ P(Name∗)

Note that this is exactly the point, where the analysis becomes relational. We
record sets of tuples of names, which are received at the same time, rather than
tuples of sets as it would be the case for an independent attribute analysis.

If R̂.� = ∅ it means that the program point � is not reachable; if R̂.� = {ε} it
means that no variables are bound at that program point.

We use the following auxiliary function to determine the potential values of
a variable u at the label �: Πu@L.�(w̄), where w̄ has the same length as L.� and
u ∈ {L.�}. We shall use w̄ to denote elements of R̂.�, that is, vectors of names.
In the cases where more than one occurrence of u occurs in L.� we always select
the rightmost—corresponding to the most recently bound one.

Given an element w̄ ∈ R̂.� we can now determine the value Πx@L.�(w̄) of x.
We have two cases depending on whether x is a name or a variable:

Πn@L.�(w̄) = n (for n being a name)

Πu@L.�(w̄) = ns where w̄ = 〈n1, . . . , nr〉, L.� = 〈u1, . . . , ur〉
and s = max{i | ui = u}

This operation is extended to sets R of sequences of names and to sequences x̄
of names and variables as in Πx̄@L.�(R).

3.2 The Relational Analysis

The judgements of the analysis have the form R̂, K̂ �L,F P where L, F and R̂ are
as above and

K̂ ⊆ Name×Name∗

records the tuples that potentially are communicated over the channels. Table
9 defines the judgements. Intuitively, they define, whether a given pair R̂, K̂ is a
valid analysis result. Hence, Table 9 specifies a set of solutions. As discussed in
Section 4.2, we are interested in and able to compute the most precise one.

The rules (Rpar), (Rrep) and (Rres) are straightforward as they only re-
quire that the subprocesses can be analysed using the same analysis information.
The rule (Rnil) expresses that any analysis information will be correct for 0.

In the rule (Rout) we write X for the set of sequences of names that take part
in the communication; this set is obtained by extracting the names corresponding
to xy1 . . . yk from R̂.� using L.� as expressed by Πxȳ@L.�(R̂.�). The condition
X ⊆ K̂ ensures that the output is recorded in K̂ and the premise of the rule
expresses a reachability test in that the analysis information is only required
to be valid for the continuation if something might be communicated over the
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Table 9. Relational Analysis; R̂, K̂ �L,F P

(Rpar)
R̂, K̂ �L,F P1 R̂, K̂ �L,F P2

R̂, K̂ �L,F P1 � P2

(Rrep)
R̂, K̂ �L,F P

R̂, K̂ �L,F !P

(Rres)
R̂, K̂ �L,F P

R̂, K̂ �L,F (νn)P
(Rnil) R̂, K̂ �L,F 0

(Rout)
X �= ∅ ⇒ R̂, K̂ �L,F P

R̂, K̂ �L,F x〈ȳ〉�.P
if X ⊆ K̂ ∧ ∀�′ ∈ F.� : X �= ∅ ⇒ R̂.� ⊆ R̂.�′

where X = Πxȳ@L.�(R̂.�)

(Rin)
X �= ∅ ⇒ R̂, K̂ �L,F P

R̂, K̂ �L,F x(ȳ; ū)�.P

if ∀�′ ∈ F.� : X ⊆ R̂.�′

where X = {w̄p̄ | w̄ ∈ R̂.� ∧ m̄ = Πxȳ@L.�(w̄) ∧ m̄ p̄ ∈ K̂ ∧ |p̄| = |ū|}

(Rmatch)
X �= ∅ ⇒ R̂, K̂ �L,F P

R̂, K̂ �L,F [x = y]�P

if ∀�′ ∈ F.� : X ⊆ R̂.�′

where X = {w̄ ∈ R̂.� | Πx@L.�(w̄) = Πy@L.�(w̄)}

channel. Finally, the side condition ∀�′ ∈ F.� : R̂.� ⊆ R̂.�′ requires that the
information of R̂.� flows to all the program points that follow directly after �.

In the rule (Rin) we use the set X to capture how the environment R̂.� is
extended to contain the bindings of the new variables ū. The set is constructed
by first selecting those sequences m̄p̄ from K̂ that match the potential values of
x and ȳ in some w̄ of R̂.� and then extending those w̄ sequences with p̄. The
sequences X constructed in this way will then be the possible environments at
all the program points that follow directly after �. Note that the continuation P
is only analysed if X is non-empty, that is if there actually are some sequences
in K̂ that satisfy the conditions expressed in the definition of X .

Finally, in the rule (Rmatch) the set X is defined to be those sequences from
R̂.� that agree on the values of x and y as obtained using the positions obtained
from L.�. Only these sequences are required to be recorded as possible environ-
ments in the program points that follow directly after � and the continuation P
will only be analysed if X is non-empty, that is, when the test might indeed be
passed.

Example 2. For the running example Pacc the following choice of R̂ and K̂
satisfies R̂, K̂ �L,F Pacc (and is indeed the most precise solution). Note that this
results holds for an arbitrary but fixed number n > 0 of identically defined cars.

K̂ = { 〈pos, cari, loc〉, 〈emergency, cari, driver〉, 〈log, cari, loc〉, 〈alarm, cari, driver〉,
〈status, cari, crit〉, 〈status, cari, ok〉, 〈gps, cari, loc〉, 〈k〉, 〈pos, car〉,
〈SOS, cari, loc, driver〉, 〈wifi, emergency, cari, driver〉, 〈wifi, log, cari, loc〉
| i = 1, .., n}



Relational Analysis for Delivery of Services 83

R̂.5: {〈ok〉, 〈crit〉} R̂.6: {〈crit〉} R̂.9: {〈cari, loc〉} R̂.10: {〈cari, loc〉}
R̂.11: {〈cari, loc〉} R̂.12: {〈cari, loc〉} R̂.15: {〈cari, driver〉}
R̂.16: {〈cari, driver〉} R̂.17: {〈cari, driver, loc〉} R̂.19: {〈cari, loc〉}
R̂.21: {〈cari, driver〉} R̂.23: {〈log, cari, loc〉, 〈emergency, cari, driver〉}

For all labels � ∈ {1, 2, 3, 4, 7, 8, 13, 14, 18, 20, 22} we take R̂.� = {ε}. For brevity,
we left out the condition i = 1, .., n, when stating the R̂.� sets.

As stated in the introduction, we see from K̂ that only car and driver identity
are communicated over the emergency channel and that messages sent over log
only contain car and position information. Moreover, information from different
cars is not mixed up. This can be inferred regardless of the number of cars in-
volved, which would be impossible given a non-relational analysis. If we changed
the specification of the black box to separately send car and driver information,
then our analysis would detect the (real) error, that car and driver information
from different cars may be mixed up in the multiplexer.

4 Properties of the Analysis

4.1 Correctness

The correctness of the analysis is formulated in terms of a correctness predicate
which is shown invariant under subject reduction in Theorem 1. In contrast, mere
analysability is not preserved under subject reduction (c.f. Appendix A). The
correctness predicate is defined in Definition 1 and relates a process syntactically
to the process initially analysed thus taking care of the implicit substitutions
prevalent in standard reduction semantics.

In the following we will use small Greek letters to denote input, output, and
match prefixes. Moreover, we shall assume that P� is a uniquely labelled process,
and we shall fix L = Lε[[P�]] and (F,E) = F [[P�]] as information derived from P�.
Additionally, assume a subexpression α�.P ′ of P�, an analysis result R̂, K̂ �L,F P�

and an element w̄ ∈ R̂.�. We define the instantiation of α�.P ′ with w̄, written
α�.P ′[w̄] to be the process1

α�.P ′[Πur@L.�(w̄)/ur] · · · [Πu1@L.�(w̄)/u1]

where u1, . . . , ur are the variables in L.�. We define the correctness predicate for
a process Q as follows.

Definition 1 (Correctness Predicate). Correctness predicate R̂, K̂ |=P� Q
holds if and only if:

1. R̂, K̂ �L,F P�

1 The instantiation applies the cumulative effect of all implicit substitutions
[Πur@L.�(w̄)/ur] · · · [Πu1@L.�(w̄)/u1] that have taken place during reduction—hence
unlike the approaches of Venet [16] and Feret [5] we do not need to modify the stan-
dard reduction semantics to use explicit substitutions (nor to rely on a customised
version of the semantics).
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2. ∀� ∈ E : ε ∈ R̂.�
3. For all β�.Q′ exposed in Q, there exists a subexpression α�.P ′ of P� and a

w̄ ∈ R̂.�, such that R̂, K̂ �L,F α
�.P ′ and α�.P ′[w̄] ≡ β�.Q′.

First, we observe some auxiliary properties, whose proofs are omitted. Note that
conditions (1) and (2) of Definition 1 imply (3) when reasoning about P�.

Lemma 1 (Initial Process). For all processes P� with L, F, and E as above
we have: If R̂, K̂ �L,F P� and ε ∈ R̂.� for all � ∈ E, then R̂, K̂ |=P� P�.

Together with Theorem 1, which states the invariance of the correctness pred-
icate under the reduction relation, this lemma can be used to show that any
process derived from the initial process P� by the transitive closure of the re-
duction relation is structurally congruent to a subprocess P ′ of P�, where each
variable of P ′ is substituted by one name predicted by the analysis. This consti-
tutes the correctness of our relational analysis.

Before getting to the correctness theorem, we state some lemmas about ex-
posed subexpressions with respect to structural congruence and valid analysis
results.

Lemma 2. Let P ≡ Q be two processes. For all α�.P ′ exposed in P , there exists
a β�.Q′ exposed in Q such that α�.P ′ ≡ β�.Q′.

Lemma 3. If α�.P ′ is exposed in P and R̂, K̂ �L,F P , then R̂, K̂ �L,F α
�.P ′.

The validity of the correctness predicate is invariant under structural congruence
as formalised by the following lemma.

Lemma 4. Let P�, Q, and R be processes. If Q ≡ R and R̂, K̂ |=P� Q, then
R̂, K̂ |=P� R.

Proof. Let γ�.R′ be exposed in R. As Q ≡ R, there exists β�.Q′ exposed in Q.
As R̂, K̂ |=P� Q, we know that there exists a α�.P ′ subexpression of P� and a
w̄ ∈ R̂.� such that R̂, K̂ �L,F α

�.P ′ and α�.P ′[w̄] ≡ β�.Q′. By transitivity of ≡,
we obtain α�.P ′[w̄] ≡ γ�.R′ and thus R̂, K̂ |=P� R. This concludes the proof of
Lemma 4.

The validity of the correctness predicate is preserved under reduction as for-
malised by the following theorem.

Theorem 1 (Subject Reduction). Let P� be a process. If Q → R and
R̂, K̂ |=P� Q then R̂, K̂ |=P� R.

Proof. The proof is by induction on the inference of Q → R. First consider the
rule (Com)

m〈n̄p̄〉�0 .Q0 | m(n̄; ū)�1 .Q1 → Q0 | Q1[p̄/ū]

and assume that there exists α�0
0 .P0, α�1

1 .P1 subprocesses of P� as well as w̄i ∈
R̂.�i for i = 0, 1 such that

R̂, K̂ �L,F α
�0
0 .P0 (1)
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R̂, K̂ �L,F α
�1
1 .P1 (2)

(αl0
0 .P0)[w̄0] ≡ m〈n̄p̄〉�0 .Q0 (3)

(αl1
1 .P1)[w̄1] ≡ m(n̄; ū)�1 .Q1 (4)

We need to prove that for all β�.Q′ exposed in Q0 | Q1[p̄/ū], there exists a
α�.P ′ subexpression of P� and a w̄ ∈ R̂.�, such that (a) R̂, K̂ �L,F α

�.P ′ and (b)
α�.P ′[w̄] ≡ β�.Q′.
Case 1. Let β�.Q′ be exposed in Q0 and let α�0

0 = x0〈ȳ0z̄0〉. By the definition
of F, we get

� ∈ F.�0 (5)

From (3) we obtain Πx0ȳ0z̄0@L.�0(w̄0) = mn̄p̄. Together with (1), the definition
of (Rout), and (5) this yields:

mn̄p̄ ∈ K̂ (6)

R̂, K̂ �L,F P0 (7)

w̄0 ∈ R̂.� (8)

Choose w̄ = w̄0. Requirement (a) is then proven using (7) with Lemma 3. Re-
quirement (b) follows from (3), (8) using Lemma 2.
Case 2. Let β�.Q′ be exposed in Q1[p̄/ū] and let α�1

1 = x1(ȳ1; ū)�1 . Let β�.Q′ be
exposed in Q1[p̄/ū] implying

� ∈ F.�1 (9)

From (4) we obtain Πx1ȳ1@L.�1(w̄1) = mn̄. Using this fact together with (9) and
(6) we can apply rule (Rin) and obtain:

w̄1p̄ ∈ R̂.� (10)

R̂, K̂ �L,F P1 (11)

We choose w̄ = w̄1p̄ which adheres to requirement (b) by (10). Requirement (a) is
clear using Lemma 3 and (11). For requirement (b), we deduce P1[w̄1] ≡ Q1 from
(4). By the definition of F, we obtain L.� = (L.�1)ū. Together with the definition
of instantiating an expression with an analysis result we get P1[w̄] ≡ Q1[p̄/ū].
An application of Lemma 2 to this concludes the proof of the case for (Com).

We shall now consider the application of the rule (Match), that is,

[n = n]�0 .Q0 → Q0

We know that there exists [x0 = y0]�0 .P0 subexpression of P� and w̄0 ∈ R̂.�0
such that

R̂, K̂ �L,F [x0 = y0]�0 .P0 (12)
([x0 = y0]�0 .P0)[w̄0] ≡ [n = n]�0 .Q0 (13)
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Let β�.Q′ be exposed in Q0. We need to show that there exists a w̄ ∈ R̂.� and
a subexpression α�.P ′ of P� such that (c) R̂, K̂ �L,F α

�.P ′ and (d) (α�.P ′)[w̄] ≡
β�.Q′. As β�.Q′ is exposed in Q0, we deduce

� ∈ F.�0 (14)

By (13), we may deduce

Πx0@�0(w̄0) = Πy0@�0(w̄0) (15)
P0[w̄0] ≡ Q0 (16)

We can apply rule (Rmatch) with (15), (14), and (12) to obtain w̄0 ∈ R̂.� and
R̂, K̂ �L,F P0. If we choose w̄ = w̄0, we obtain (c) and (d) from R̂, K̂ �L,F P0 and
(16) using Lemma 3 and Lemma 2.

The result for an application of (Var) is an immediate consequence of the
induction hypothesis and Lemma 4. Let us now consider rule (Par), that is,

Q→ Q′

Q | R→ Q′ | R
and assume R̂, K̂ |=P� Q | R. Obviously, this implies R̂, K̂ |=P� Q and R̂, K̂ |=P�

R separately. By the induction hypothesis, we obtain R̂, K̂ |=P� Q′ and hence
R̂, K̂ |=P� Q′ | R. This argumentation can be applied analogously to rule (Res),
because the exposed expressions of (νn)Q are just those of Q. Also, the case
(Cho) is completely analogous. This concludes the proof of Theorem 1.

4.2 Implementation

We have implemented our relational analysis in the Succinct Solver [13], which
is able to efficiently compute the stable model of an expressive fragment of
predicate logic. From the analysis specification for a program P�, we generate a
clause ϕP� such that R̂, K̂ �L,F P� if and only if � ϕP� . Each model of the clause
corresponds to an analysis solution. The generated clauses belong to the class
of Alternation-free Least Fixpoint Logic (ALFP) described in [15]. Proposition
1 of [15] states that the set of all solutions of an ALFP clause always has a
least element corresponding to the least analysis result we aim for. The Succinct
Solver computes this least solution.

Example 3. Consider the specification of the Black Box in Table 1:

! status(cari;x)4.[x = crit]5. ! alarm〈cari〉6

The clause generated for this excerpt according to rules (Rin), (Rmatch) and
(Rout) will essentially look as follows:

∃u.K̂(status, cari, u) ⇒ (
(∀u.K̂(status, cari, u)⇒ R̂.5(u)) ∧
∃u′.(R̂.5(u′) ∧ u′ = crit)⇒ (

(∀u′.R̂.5(u) ∧ u′ = crit⇒ R̂.6(u′)) ∧
K̂(alarm, cari)))
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Each (canonical) name corresponds to a constant in the clause. For each label �
in the program there is a |L.� |-ary relation R̂.�. Furthermore, for each message
length m, there is an m + 1-ary relation K̂. The existential parts of the clause
take care of the various reachability conditions of the form X �= ∅, whereas the
universal parts take care of letting the information gathered in X flow to the
right places. As an aid to readability we have assumed that R̂.4 = {ε} thus not
generated any formula involving R̂.4.

4.3 Complexity

There are mainly three quantities determining the complexity of solving the
ALFP clause that is generated for a program P�. First, the size n of P�; sec-
ond, the maximal nesting depth of variables bounded by m = max�∈Lab | L.� |;
third, the length of messages bounded by k = maxx〈ȳ〉∈P�

| ȳ |. Quantities m
and k determine the maximal arity of relations, whereas n bounds the size of
the universe over which the clause is evaluated. The maximal nesting depth of
quantifiers is bounded by m. Altogether, we can apply Proposition 1 of [14],
which itself makes use of the algorithm presented in [4], to obtain a complexity
bound of O(n3+k+m) for solving the clause generated from P�.

This complexity may be exponential in the worst-case. However, the worst-
case is only realised for programs, where the number of sequenced input prefixes
(each one binding new variables) and/or the arity of sent tuples grows linearly
with the program. In contrast, we may observe that for typical programs, where
processes often consist of reception-processing-reply,m and k may be considered
constants rendering the complexity polynomial in the size of the program (with
a rather large exponent, though). For the running example and other examples
of similar size, the least solution to the analysis problem could be computed in
less than a second.

5 Conclusion

The proper modelling of services for global computing necessitates the ability
to model services in process algebras without using primitives (like the dynamic
creation of very flexible channels as in the π-calculus) that have no direct coun-
terpart in actual systems. We used a running example based on a multiplexing
device part of the accident service used in the automotive case study of the SEN-
SORIA EU-project. This increases the difficulty of validating that the models
enjoy the desired properties and at the same time calls for the use of automatic
analysis techniques to deal with the scalability issues of “realistic” models.

In this paper we have developed a new relational analysis for a π-calculus
extended with pattern matching. The core benefit of a relational analysis (in
contrast to an independent attribute analysis) is that sets of tuples of names
being received at the same time are tracked (in contrast to tuples of sets). If a
process contains output operations a〈b, b〉 and a〈c, c〉 then a relational analysis
is able to show the absence of the output operations a〈b, c〉 and a〈c, b〉—while
an independent attribute analysis is not.
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We have shown that semantic correctness amounts to the invariance of a
correctness predicate under subject reduction. Furthermore, we have shown that
the analysis has polynomial time complexity on realistic programs. We have used
the analysis to validate the correct delivery of services in our running example.

In future work we plan to transfer the analysis technology to the richer set of
process calculi being developed in the SENSORIA EU-project for describing the
behaviour of services. Examples are likely to include variations of the constructs
presented in [8,6,3] and [7]. For that work, we will benefit from the fact that
we rely on full standard syntax and reduction semantics of π, on which [8,6,3,7]
are all based. We also plan to investigate the feasibility of using annotations to
indicate which binding occurrences demand a relational treatment. This could
lead to developing a mixed independent-attribute and relational analysis. The
advantage of such an analysis would be that essentially cubic-time [12] methods
for independent-attribute analyses could be used except for those cases where a
truly relational analysis (of higher time complexity) is needed. Finally, we plan
to incorporate techniques that can tell distinct recursive instances, e.g. several
cars having an accident at the same time, apart, i.e., allow the analysis to find
out that the SOS messages contain the correct position of each car (and not the
position of another car).
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A Analysability and Subject Reduction

We have shown the correctness of our analysis in terms of a subject reduction
result in Theorem 1. In order to obtain invariance under subject reduction, a
correctness predicate needed to take care of the implicit substitution prevalent in
standard reduction semantics. This is indeed necessary, because mere analysabil-
ity is not preserved by subject reduction:

Proposition 1. If P → Q and R̂, K̂ �L,F P then R̂, K̂ �L,F Q does not hold
necessarily.

To see this consider the following excerpt from our running example presented
in Table 1. The following computation step of the operational semantics is due
to an application of rule (Com) describing the reception of a critical message by
the black box process.

. . . | status(cari;x)4.[x = crit]5. ! alarm〈cari〉6 → [crit = crit]5. ! alarm〈cari〉6

As shown above in Example 2, an acceptable analysis result (R̂, K̂) for the
process before the application of (Com) comprises R̂.5 = {〈ok〉, 〈crit〉} and
R̂.6 = {〈crit〉}. However, we can now observe that this cannot be part of an
acceptable analysis result for the derived process. The clause for matching,
(Rmatch), will require R̂.5 ⊆ R̂.6 since the test will hold for all the bindings of
the variables of R̂.5. But this does not hold and hence we cannot have a subject
reduction result of the form suggested above.

The stronger correctness predicate of Definition 1 does hold for the derived
process:

R̂, K̂ |=Pacc [crit = crit]5. ! alarm〈cari〉6
This is proven by choosing w̄ ∈ R̂.5 of Definition 1 to be 〈crit〉.
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Abstract. We propose and discuss foundations for programmable over-
lay networks and overlay computing systems. Such overlays are built
over a large number of distributed computational individuals, virtually
organized in colonies, and ruled by a leader (broker) who is elected or
imposed by system administrators. Every individual asks the broker to
log in the colony by declaring the resources that can be offered (with
variable guarantees). Once logged in, an individual can ask the broker
for other resources. Colonies can recursively be considered as evolved
individuals who can log in an outermost colony governed by another
(super)-broker. Communications and routing intra-colonies goes through
a broker-2-broker PKI-based negotiation. Every broker routes intra- and
inter- service requests by filtering its resource routing table, and then
by forwarding the request first inside its colony, and second outside, via
the proper super-broker (thus applying an endogenous-first-estrogen-last
strategy). Theoretically, queries are formulæ in first-order logic equipped
with a small program used to orchestrate and synchronize atomic for-
mulæ. When the client individual receives notification of all (or part of)
the requested resources, then the real resource exchange is performed di-
rectly by the server(s) individuals, without any further mediation of the
broker, in a pure peer-to-peer fashion. The proposed overlay promotes an
intermittent participation in the colony, since peers can appear, disap-
pear, and organize themselves dynamically. This implies that the routing
process may lead to failures, because some individuals have quit, or are
temporarily unavailable, or they were logged out manu militari by the
broker due to their poor performance or greediness. We design, validate
through simulation, and implement these foundations in a programmable
overlay computer system, called Arigatoni.

“Computer is moving on the edge of the Network...”
[Jan Bosch, Nokia Labs, Keynote ARCS, LNCS 4415, 2007]

1 Introduction

The explosive growth of the Internet gives rise to the possibility of designing
large overlay networks and virtual organizations consisting of Internet-connected
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computers units, able to provide a rich functionality of services that makes use of
aggregated computational power, storage, information resources, etc. We would
like to start this paper with the standard definition of Computer System (we
emphasize some text using underline).

Definition 1 (Computer System)
A computer system is composed by a computer hardware and a computer software.

– A Computer Hardware is the physical part of a computer, including the digi-
tal circuitry, as distinguished from the computer software that executes within
the hardware. The hardware of a computer is infrequently changed, in com-
parison with software and data.

– A Computer Software is composed by three parts, namely, system software,
program software, and application software.
• The System Software helps run the computer hardware and computer

system. Examples are operating systems (OS), device drivers, diagnostic
tools, servers, windowing systems. . .
• The Program Software usually provides tools to assist a programmer in

writing computer programs and software using different programming
languages. Examples are text editors, compilers, interpreters, linkers, de-
buggers for general purpose languages. . .
• The Application Software allows end users to accomplish one or more spe-

cific (non computer related) tasks industrial automation, business software,
educational software, medical software, databases, computer games. . .

Starting from the previous basic skeleton definition, we elaborate our vision of
what an Overlay Computer System is. The reader can focus on the tiny but
crucial differences between the above and below definitions.

Definition 2 (Overlay Computer System)
An overlay computer system is composed by an overlay computer hardware and
an overlay computer software.

– An Overlay Computer Hardware is the physical part of an overlay computer,
including the digital circuitry, as distinguished from the overlay computer
software that executes within the hardware. The hardware of an overlay com-
puter changes frequently and it is distributed in space and in time. Hardware
is organized in a network of collaborative computing individuals connected via
IP or ad-hoc networks; hardware must be negotiated before being used.

– An Overlay Computer Software is composed by three parts, namely, overlay
system software, overlay program software, and overlay application software.
• The Overlay System Software helps run the overlay computer hardware

and overlay computer system. Examples are network middlewares play-
ing as a distributed operating systems(dOS), resource discovery protocols,
virtual intermittent protocols, security protocols, reputation protocols. . .
• The Overlay Program Software usually provides tools to assist a program-

mer in writing overlay computer programs and software using different
overlay programming languages. Examples are compilers, interpreters,
linkers, debuggers for workflow-, coordination-, and query-languages.
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• The Overlay Application Software allows end users to accomplish one or
more specific (non-computer related) tasks industrial automation, busi-
ness software, educational software, medical software, databases, and
computer games. . . Those class of applications deals with computational
power (Grid), file and storage retrieval (P2P), web services (Web2.0),
band-services (VoIP), computation migrations. . .

The Arigatoni overlay network computer, designed and developed since 2006 at
INRIA, is a structured multi-layer overlay network which provides resource dis-
covery with variable guarantees in a virtual organization where peers can appear,
disappear, and organize themselves dynamically. Arigatoni is mainly concerned
with how and where resources are declared and discovered in the overlay, al-
lowing agent computers to make secure use of agent aggregated computational
power, storage, information resources etc. We anticipate, in a nutshell, the key
functional units of Arigatoni (discussed in details later on).

– An Agent Computer (AC) is the basic computational entity of the overlay: it
is typically a device, like a PDA, a laptop, a PC, or smaller devices, connected
through IP or other ad hoc communication protocols in different fashions
(wired, wireless, etc.).

– An Agent Broker (AB) is devoted to (un)subscribing ACs, to receiving service
queries from clients, to contacting and negotiating with potential servers, to
authenticating clients and servers, and to routing requests. An AB is the
leader of the colony of the ACs and of the sub-colonies that is manages.
Intra-colony communication is initiated through the leader AB, while inter-
colonies communication is initiated through a chain of (PKI-based) AB-2-AB
message exchanges. The rationale ensuring scalability is that every request
is handled first inside its colony, and then forwarded through the proper
super-leader (thus applying an endogenous-first-estrogen-last strategy). In
both cases, when a client AC receives an acknowledgment of a service request
from the direct leader AB, then the AC is served directly by the server(s),
i.e. without a further mediation of the AB, in a pure P2P fashion. Logically,
an AC can be seen as a collapsed colony, or a broker managing itself.

– An Agent Router (AR) is the basic unit close to ACs and ABs that is devoted
to sending and receiving packets of the resource discovery and the virtual
intermittent protocols (see below) and to forwarding the “payload” to the
units which are connected with this router. The connection AB-AR-AC is
ensured via a suitable API.

The total decoupling between peers in space (peers do not know other peers’
locations), time (peers do not participate in the interaction at the same time),
synchronization (peers can issue service requests and do something else, or may
be doing something else when being asked for services), and encapsulation (peers
do not know each other) are key features of Arigatoni’s scalability.

Summarizing, the main challenges in Arigatoni lie in the management of an
overlay network with a dynamic topology, the routing of queries, and the discov-
ery of resources in the overlay. In particular, resource discovery is a non-trivial
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problem for large distributed systems featuring a discontinuous amount of re-
sources offered by agent computers and their intermittent participation in the
overlay. For more technical details on the Arigatoni overlay network, the inter-
ested reader can have a look on [CLC07b, CCL06, CLC07a, CCL08].

Therefore, the main contributions of this paper are:

– to provide adequate notions and definitions of a programmable overlay net-
work computer;

– on the basis of these definitions, to propose a precise architecture of a pro-
grammable network computer;

– to provide insight of the architecture by putting emphasis on technical prob-
lems, security, social, implementations, and related issues;

– to summarize and collect previous efforts by the authors on Arigatoni into
one reference paper easy to read.

1.1 Virtual Organizations

Computational units in Arigatoni are organized in Colonies. A colony is a simple
virtual organization composed by exactly one leader, offering some broker-like
services, and some set of individuals. Individuals are agent computers, or sub-
colonies. Every colony has exactly one leader and at least one individual (the
leader itself), and a colony contains only individuals.

Agent computers communicate by first registering to the colony and then
by asking and offering services. The leader agent broker analyzes service re-
quests/responses, coming from its own colony or arriving from a surrounding
colony, and routes requests/responses to other individuals. Individuals get in
touch with each other without any further intervention from the system, in a
P2P fashion. Peers’ coordination is achieved by a simple program written in an
orchestration/business language à la BPEL [IBM], or JOpera [Pau].

Symmetrically, the leader of a colony can arbitrarily unregister an individual
from its colony, e.g., because of its bad performance when dealing with some re-
quests or because of its high number of “embarrassing” requests for the colony.
This strategy, reminiscent of the Roman do ut des, is nowadays called, in Game
Theory, Rapoport’s tit-for-tat strategy [Rap63] of cooperation based on reci-
procity. Tit-for-tat is commonly used in economics, social sciences, and it has
been implemented by a computer program as a winning strategy in a chess-play
challenge against humans (see also the well known prisoner dilemma). In com-
puter science, the tit-for-tat strategy is the stability (i.e. balanced uploads and
downloads) policy of the Bittorrent P2P protocol [Bit].

Once an agent computer has issued a request for some services, the system
finds some agent computers (or, recursively, some sub-colonies) that can offer
the resources needed, and communicates their identities to the (client) agent
computer as soon as they are found.

The model also offers some mechanisms to dynamically adapt to dynamic
topology changes of the overlay network, by allowing an individual (agent com-
puter or sub-colony) to login/logout in/from a colony. This essentially means
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that the process of routing request/responses may lead to failure, because some
individuals logged out or because they are temporarily unavailable (recall that
individuals are not slaves). This may also lead to temporary denials of service
or, more drastically, to the complete “delogging” of an individual from a given
colony in the case where the former does not provide enough services to the
latter.

Trees vs. graphs: a conflict without a cause. In the first versions of Arigatoni, the
network topology was tree- or forest-based. But since AC are not slaves, multiple
registrations are in principle possible and unavoidable. This weaves the network
topology to a dynamic graph. As an immediate consequence, Arigatoni’s protocols
deal with multiple registrations of the same individual in different colonies, with
the natural consequence of resource overbooking, routing table update loops, and
resource discovery loops (when a resource request comes back to the individual
that generates the request itself), see [LC07].

As an example of resource overbooking, suppose an AC registers to two
colonies, by declaring and offering the same resource S twice, i.e. once for each
colony. This phenomenon is well known in the telecommunications industry, such
as in the “frame-relay” world. For the record, overbooking in telecommunications
means that a telephone company has sold access to too many customers which
basically flood the telephone company lines, resulting in an inability for some
customers to use what they purchased. Other examples of overbooking can be
found in the domain of transportation and hotel reservations.

1.2 User Application Independence, Parametricity, Universality

Dealing only with resource discovery has one important advantage: the complete
generality and independence of any offered and requested resource. Thus, Ariga-
toni can fit with various scenarios in the agent computing arena, from classical
P2P applications, like file- or band-sharing, to more sophisticated Grid applica-
tions, like remote and distributed big (and small) computations, until possible,
futuristic migration computations, i.e. transfer of a non completed local run in
another agent computer, the latter being useful in case of catastrophic scenar-
ios, like fire, terrorist attack, earthquake, etc., in the vein of agent programming
languages à la Obliq [Car95] or Telescript [Whi94]. We could envisage at least
the following scenarios to be a tight fit for our model (list not exhaustive):

– Ask for computational power (i.e. the Grid);
– Ask for memory space (i.e. distributed storage);
– Ask for bandwidth (i.e. VoIP);
– Ask for a distributed file retrieving (i.e. standard P2P applications);
– Ask for a (possibly) distributed web service (i.e. query à la Google or any

service available via web-oriented protocols);
– Orchestration of a distributed execution of an algorithm;
– Ask for a computation migration (i.e. transfer one partial run in another

agent computer, saving the partial results;
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– Ask for a human computer interaction (the human playing the role of an
individual);

– . . .

Thus, Arigatoni is parametric or universal in the sense of universal Turing ma-
chine, or generic as the von Neumann computer architecture. In one sentence:
“Arigatoni is the first fully programmable overlay network computer”.

2 Functional Units and Protocols in Arigatoni

2.1 Functional Units

The Agent Computer (AC). This unit can be, e.g., a cheap computer device
composed by a small RAM-ROM-HD memory capacity, a modest CPU, a ≤ 40
keystrokes keyboard (or touchscreen), a tiny screen (≤ 4 inch), an IP or ad
hoc connection (via DHCP, BLUETOOTH, WIFI, WIMAX. . . ), an USB port, and
very few programs installed inside (one simple editor, one or two compilers, a
mail client, a mini browser. . . )1. Of course an AC can be a supercomputer, or
an high performance PC-cluster, a large database server, an high performance
visualizer (e.g. connected to a virtual reality center), or any particular resource
provider, even a smart-dust. The operating system (if any) installed in the AC
is not important. The computer should be able to work in local mode for all the
tasks that it could do locally, or in global mode, by first registering itself to one
or many colonies of the overlay, and then by asking and serving global requests
via the colony leaders. In a nutshell, the tasks of an AC are:

– Discover the address of one or many ABs, playing as colony leaders, upon
its arrival in a “connected area”;

– Register on one or many ABs, so entering de facto the Arigatoni’s virtual
organization;

– Ask and offer some services to others ACs, via the leaders ABs;
– Connect directly with others AC in a P2P fashion, and offer/receive some

services. Note that an AC can also be a resource provider. This symmetry is
one of the key features of Arigatoni. For security reasons, we assume that all
AC come with their proper PKI certificate.

The Agent Broker (AB). This unit can be, e.g., a computer device made by an
high speed CPU, an IP or ad hoc connection (via DHCP, BLUETOOTH, WIFI,
WIMAX. . . ), an high speed hard-disk with a resource routing table to route
queries, and an efficient program to match and filter the routing table. The
computer should be able to work in global mode, by first registering itself in
the overlay and then receiving, filtering and dispatching global requests through
the network. The tasks of an AB are:

1 Our favorite device actually is the Internet terminal Nokia N810 [Nok].
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– Discover the address of another super -AB, representing the super-leader of
the super-colony, where the AB colony is embedded. We assume that every
AB comes with its proper PKI certificate. The policy to accept or refuse the
registration of an individual with a different PKI is left open to the level of
security requested by the colony;

– Register/unregister the proper colony on the leader AB which manages the
super-colony;

– Register/unregister clients and servants AC in its colony, and update the
internal resource routing table, accordingly;

– Receive the request of service of the client AC;
– Discover the resources that satisfy an AC request in its local colony, according

to its resource routing table;
– Delegate the request to an AB leader of the direct super-colony in case the

resource cannot be satisfied in its proper colony. Prior to this, it must register
itself (and byproduct its colony) to another super-colony;

– Perform a combination of the above last two actions;
– Deal with all PKI intra- and inter-colony policies;
– Notify, after a fixed timeout period, or when all individuals failed to satisfy

the delegated request, to the AC client the denial of service requested by the
AC client;

– Send all the information necessary to make the AC client able to communi-
cate with the AC servants. This notification is encoded using the resource
discovery protocol. (Finally, the AC client will directly talk with the ACs
servants).

The Agent Router (AR). This unit implements all the low-level overlay network
routines, providing access to the underlay network. In a nutshell, an AR is a
shared library dynamically linked with an AC or an AB. The AR is devoted to
the following tasks:

– Upon the initial start-up of an AC (resp. AB) it helps to register the unit
with one or many AB that it knows or discovers;

– Checks the well-formedness and forwards packets of the two Arigatoni’s pro-
tocols across the overlay toward their destinations;

2.2 The Resource Discovery Protocol (RDP)

Kind of resource discovery. The are mostly three mechanisms of resource dis-
covery in Arigatoni, namely:

– The process of an AB to find and negotiate resources to serve an AC request
in its own colony;

– The process of an AC (resp. AB) to discover an AB, upon physical/logical
insertion in a colony;

The first discovery is processed by the resource discovery protocol, while the
second is processed out of the Arigatoni overlay, using well known network tech-
nologies like DHCP [AD97], DNS [GVE00], BLUETOOTH, WIFI, WIMAX. . .
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The current RDP protocol version allows the request for multiple services and
service conjunctions. Adding service conjunctions allows an AC to offer several
services at the same time. Multiple services requests can be also asked to an
AB; each service is processed sequentially and independently of others. As an
example of multiple instances, an AC may ask for three CPUs, or one chunk of
10GB of HD, or one gcc compiler. As an example of a service conjunction, an AC
may ask for another AC offering at the same time one CPUs, and one chunk of
1GB of RAM, and one chunk of 10GB of HD, and one gcc compiler. If a request
succeeds, then, using a simple orchestration language, the AC client can use all
resources offered by the servers ACs.

The RDP protocol proceeds as follows: suppose an AC X registers – using the
intermittent protocol VIP presented below – to an AB and declares its avail-
ability to offer a service S, while another AC Y, already registered, issues a
request for a service S′. Then, the AB looks in its routing table and filters S′

against S. If there exists a solution to this filter equation, then X can provide
a resource to Y. For example, the resource S = [CPU=Intel,Time≤10sec] filters
against S′ = [CPU=Intel,Time≥5sec], with attribute values Intel and Time be-
tween 5 and 10 seconds.

2.3 Inside Routing Tables for Resource Discovery

Each AB maintains a routing table T locating the services that are registered
in its colony. The table is updated according to the dynamic registration and
unregistration of ACs in the overlay; thus, each AB maintains a partition of the
data space. When an AC asks for a resource (service request), then the query is
filtered against the routing tables of the ABs where the query is arrived and the
AC is registered; in case of a filter-failure, the ABs forward the query to their
direct super-ABs. Any answer of the query must follow the reverse path.

Thus, resource look-up overhead reduces when a query is satisfied in the cur-
rent colony. Most structured overlays guarantee look-up operations that are log-
arithmic in the number of nodes. To improve routing performance, caching and
replication of data and search paths can be adopted. Replication also improves
load balancing, fault tolerance, and the durability of data items.

Every AC registers in the colony with a tuple of (services,instances), like
SREG:[(Si, ni)]i=1...h, and asks for a another tuple of (service,instances), like
SREQ:[(Sj , nj)]j=1...k. Each service is looked-up sequentially and independently
of others, by wrapping a unitary resource discovery inside a for-loop:

for each j = 1 . . . k do −find service Sj− end foreach

An atomic service request may also have the shape SREQ:[((
∧

i=1...n Si),m)], i.e.
the system is no longer asked to find m occurrences of a single service, but rather
m occurrences of a conjunction of n services. That is, the system has to look for
m distinct ACs, each AC being able to provide all the services in

∧
i=1...n Si.

For a given resource S, one entry in the routing table has the form T [S] =
[(Pj ,mj)]j=1...k, where (Pj)j=1...k are the addresses of the direct children in the
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AB’s colony, and (mj)j=1...k are the instances of S available at Pj . Intuitively
and for an atomic service request SREQ:[(S, n)], the most economic resource
discovery routing steps performed by an AB are:

1. Look in the table T for all distinct q ACs able to provide S in the local AB’s
colony;

2. If n ≤ q, then search n resources first inside the current colony (and, recur-
sively, in sub-colonies), and finally delegate to the AB’s super-leaders all the
denied resources.

3. If n ≥ q, then search q resources inside the colony (and, recursively, in sub-
colonies), and finally delegate all the n−q remaining instances to the AB’s
super-leader.

Pragmatically speaking this strategy, reminiscent of the object-oriented
“method-lookup algorithm”, pushes always first queries on the leafs of the over-
lay in order to avoid, if possible, routing bottlenecks.

An AC receiving a service request first chooses the services that it accepts or
denies to serve; then, it generates a SRESP message containing the lists of ac-
cepted or rejected services, and finally sends it to its AB. The response messages
are then propagated back in the overlay, following the reverse path.

2.4 The Virtual Intermittent Protocol (VIP)

Peers’ participation in Arigatoni’s colonies is managed by the Virtual Intermittent
Protocol (VIP); the protocol deals with the dynamic topology of the overlay, by
allowing individuals to login/logout to/from a colony (using the SREG message).
Due to this high node churn, the routing process may lead to failures, because
some individuals have logged out, or because they are temporarily unavailable,
or because they have logged out manu militari by the broker for their poor
performance or greediness. In the VIP protocol, there are two ways an individual
can register to an AB (sensible to its physical position in the network topology),
the latter being not enforced in Arigatoni:

1. Registration of an individual to an AB belonging to the same current ad-
ministrative domain;

2. Registration, via tunneling, of an individual to another AB belonging to a
different administrative domain.

If both registrations apply, then the individual is working de facto both in local
mode in the current administrative domain, and in global mode in another ad-
ministrative domain. Symmetrically, an individual can unregister according to
the following simple rules “d’étiquette”:

– Unregistration of an individual is allowed only when there are no pending
services demanded or requested to the leader AB of the colony: individual
must always wait for an answer of the AB or for a direct connection of the AC
requesting or offering the promised service, or wait for an internal timeout
(the time-frame must be negotiated with the AB);
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– (As a corollary of the above) an AB cannot unregister from its own colony,
i.e. it cannot discharge itself. However, for fault tolerance purposes, an AB
can be faulty. In that case, the ACs unregister one after the other and the
colony disappear;

– Once an AC has been disconnected from a colony, it can physically migrate
in another colony belonging to any other administrative domain;

– Selfish nodes in P2P networks, called “free riders”, that only utilize other
peers’ resources without providing any contribution in return, can be fired by
a leader; if the leader of a colony finds that an individual ratio of fairness is
too small (≤ ε, for a given ε), it can arbitrarily decide to fire that individual
without notice. Here, the VIP protocol also checks that the individual has
no pending services to offer, or that the timeout of some promised services
has expired, the latter case means that the free rider promised some services
but finally did not provide any service at all (not trustfulness).

In both cases of node (un)registration, a service update SUPD message will be
flooded in the brokers’ network in order to keep resource tables as much updated
as possible; thus, high node churn leads to message overhead in the overlay.

2.5 Inside Routing Tables for Intermittent Participation

As said before, routing tables denoting the set of resources are stored in AB’s. An
individual (AC or AB representing a sub-colony) registers to a colony with a tuple
of (services,instances), like in SREG:[(Si, ni)]i=1...h. If a broker AB accepts an in-
dividual in its colony, then it sends a service update, written SUPD:[(Si, ni)]i=1...h,
to its direct super-broker AB′ in order to communicate the availability of the new
resources in its colony, by an update of the routing table T ′ of AB′. This message
is then propagated from broker to broker until the root (if any) of the multi-
layer overlay is reached. This means a high node churn forces routing tables
to be faulty until all service updates are properly propagated. As such, service
registration in an overlay network computer is an activity that must be taken
seriously into account [CLC07b].

The first Arigatoni network topology was tree-based. In [LC07], the authors
make a significant step by moving from a tree-based network topology to a
more general graph-based one. As an immediate consequence of this move, the
Arigatoni VIP protocol must be reconsidered in order to take into accounts routing
loops when updating routing tables.

3 Social Model, Security, Trust and Implementation
Issues

3.1 The Social Model Underneath Arigatoni

The Arigatoni overlay network computer defines mechanisms for devices to inter-
operate by offering services, in a way that is reminiscent to Rapoport’s tit-for-tat
strategy of co-operation based on reciprocity. This way to understand common
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behavior of virtual organizations has some theoretical basis on Game Theory
[Rap63]. Classical results from game theory are based on the assumption that
a shared amount of resources is available, and then users have an incentive
to collaborate. The very first design of Arigatoni forced each AC to register to
only one AB, but the architecture can be smoothly scaled up to a more general
topology where each AC may simultaneously be registered to several AB, and
where a colony is just one possible social scheme.

This means that Arigatoni fits with motivations and cooperation behavior of
different communities. It tries to be policy neutral, leaving policy choices for
each node at the implementation or configuration level, or at the community
or organization level. Policy domains can overlap (one node can define itself as
belonging “much” to colony foo and “a little bit” to colony bar). This denotes
a decentralized non-exclusive policy model.

One question can arise: who is Arigatoni designed for? We believe the overlay
is flexible enough to serve a mix of different “social structures” and “end-users”:

– Independent end-user connecting through his ISP or migrating from hot-spot
to hot-spot;

– Cooperative communities of disseminated individuals;
– More regulated or hierarchical communities (maybe a better picture of a

corporate network);
– Cooperative or competitive resource providers and resource brokers.

The Arigatoni overlay network computer is suitable to support various extended
trust models. Moreover, reputation score could be expanded to a multi-dimensio-
nal value, for example adding a score for the quality of the service offered by an
individual. Moreover, Arigatoni encourages cooperation and enables gratuitous
resource offering. But it may also suit for business extensions, e.g.:

– An individual can sell resource usage, creating a resource business;
– An AB can sell a resource discovery service, creating a brokering business

(“I point you to the best resources, more quickly than anyone else”).

The Arigatoni overlay network computer is suitable of a number of service ex-
tensions: among others, e.g.:

– How to create and call third party services for on-line payment of services;
– How to exchange digital cash for payment of services;
– How to negotiate service conditions between client and servant, including

price and quality of service.

The one-to-many nature of the RDP protocol service request (SREQ) are of
particular interest in this case.

Another possible Arigatoni extension may define how to join a third party
auction server. Candidate servants for a SREQ would contact the auction server
and make their bid. The trusted auction server chooses the elected candidate
and service conditions based on auction terms. The individual client would then
contact the auction server and get this information. Those extensions may take
advantage of the RDP optional fields [BCLV06], for example, to transmit location
and parameter information to call a third party system.
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3.2 Trust, Security, and Implementation Issues

In order to work securely, the Arigatoni overlay network computer needs to be
able to offer the following guarantees to its components:

– The communication between two individuals must be secured;
– The role played by a node (i.e. client AC, servant AC or AB) must be certified

by a third party trusted by the nodes which have to communicate with
this particular node. A way to implement those constraints is to use PKI
certificates. A Certification Authority delivers certificates, and couples of
private and public keys for ACs and ABs which attest of their distinctive
roles. The whole mechanisms involved by a PKI is out of the scope of this
paper, but good use of PKIs and an implementation compliant with RFC2743
[Lin00] can provide all the necessary security, namely the trustfulness on the
identity of the peers, and the trustfulness of all the transmitted data, i.e.
secrecy, authenticity, and integrity.

– In addition to PKIs, a more “liquid” trust model could be built, based on
reputation mechanisms [WV03]. Reputation represents the amount of trust
an individual in the overlay has in another individual based on its partial
view. In a nutshell:
• Each individual maintains a reputation score for each individual it knows;
• Each individual maintains a reputation score for each resource it serves;
• Exchanges between individuals update dynamically each other’s scores;
• Conflict between two or many individuals are resolved by the brokers

leaders of the colonies to which individuals belong;
• The computation of the reputation score (a trust metrics) and the way

individuals exchange scores is left free to each single implementation.

A last word on implementation issues of the Arigatoni overlay network com-
puter: it is well known that two technical barriers are commonly used to block
transmission over IP network in overlays, namely:

– Firewalls to drop UDP flows (usually considered as suspects);
– NAT techniques to mask to the outside world the real IP addresses of inside

hosts; a NAT equipment changes the IP source address when a packet goes
to outside, and it changes the IP destination address when a packet comes
from outside.

The usage of these mechanisms is very frequent on the Internet, and barriers
exist to prevent connections between inside and outside nodes in the Arigatoni
overlay. RFC3489 [RWHM03] can be used to overcome such obstacles.

4 Related Work, Applications, and Conclusions

4.1 Discussion on Overlay Topologies

Many technologies, algorithms, and protocols have been proposed recently for
resource discovery . Some of them focus on Grid or P2P oriented applications, but
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none of those targets the full generality as the Arigatoni overlay network computer
does. Indeed, Arigatoni deals with generic resource discovery for building an
overlay network of ABs and ACs, structured in a virtual organization of variable
topology, with clear distinct roles between leader ABs and individuals.

In an overlay network, any message is routed through the full overlay; as
such, the topology adopted in the overlay strongly affects routing protocols and
their complexity. The overlay is built on top of the physical one, and, thus, two
neighbor nodes in the overlay network may be many links apart in the physical
network. The first Arigatoni network topology was a dynamic hierarchical n-layer
tree, but a recent work raise Arigatoni to a graph topology [LC07].

To implement resource look-up, structured overlays map (key of) data item
to nodes (our ABs). Hence, the mapping is usually done through hashing the
key space of the data item to the id in the node space. In the literature, e.g.
[AEO06], there are essentially the following types of overlays: structured (tree,
ring, or grid), unstructured (graphs), hybrid overlays (a combination of the two
above), and multi-layer (or n-layer) overlays.

Arigatoni falls mostly in the category of multi-layer. In a nutshell, in a n-layer
overlay network, the responsibility assigned to individuals differs (think of the
different roles between ABs and ACs), since super-peers (ABs) serve as a server
for a subset of all peers. Ordinary peers (ACs) submit queries to their super-peers
and receive results from it. Super-peers are also connected to each others; they
route messages over the overlay network, submit, delegate, and answer queries
on behalf of their sub-peers. This structure is replicated recursively, creating a n-
layer topology, where peers become super-peers with decreasing responsibilities.
The possibility of having a graph of super-peers complicates routing, registration
protocols and resource table update.

Typical issues in n-layer overlays are the size of each colony (load balancing
of the colony), and the internal coherence of the resources offered and requested
by each colony (homogeneity of the colony). Typical bottlenecks of n-layers are
reliability, service availability (related to few points of failure), and load bal-
ancing. Classical solutions to cope with these problems are adding redundancy
at the broker-layer. Historically, the most related tree topologies are BATON
[JV05] and P-GRID [Abe01], whereas the closest n-layer topologies are the one
of CANON [GKGM04] and CORAL [FM03].

– (BATON) is a balanced binary tree that features a left and a right routing
table, both contained in each node (denoted by a single logical id). Nodes
may join or leave the network at any time, provided the tree remains bal-
anced. The node receiving a join can forward the join towards a node which
has less children or which is a leaf node. This implies that an AC can become
an AB. Leaving the network is constrained to not breaking the balanced tree
unless finding a substitute. As such, load balancing can be costly.

– (P-GRID) is a distributed dynamic binary search tree, such that the search
space is partitioned between peers. The salient feature of P-GRID is the sep-
aration of concerns between id and its position in the network. All peers
maintain a partial routing table of the search space, that is negotiated
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beteen the closest peers. Multiple peers can be responsible for the same path,
resulting in non uniqueness of routing and robustness under peer failure.

– (CANON) is a multi-layer overlay where routing is based on a hierarchical
distributed hash tables (DHT). As in Arigatoni, the search space is parti-
tioned into domains ; in contrast, routing inside a domain is DHT-based, and
topology is static.

– (CORAL) is another hierarchical DHT. The search space is partitioned into
three clusters, based on latency; a regional cluster, a continental cluster and a
planet-wide cluster. It also comes with algorithm for self-organizing, merging
and splitting clusters, to ensure acceptable diameters.

4.2 Discussion on Closest Technologies

The GLOBUS toolkit [Glo], is an open-source set of technology, protocols and
middleware, used for building Grid applications (sharing computing power, dis-
tributed databases, etc.). The toolkit includes stand-alone software for security,
information infrastructure, resource management, data management, communi-
cation, fault detection, and portability. The analogies with the Arigatoni over-
lay network computer are in the Community Scheduler Framework component
and the Web Service Grid Resource Allocation and Management, concerning
the resource discovery, and the Teleoperations Control Protocol concerning the
way units cooperate (in analogy with the RDP protocol and with orchestration
languages). Hovewer, GLOBUS does not target the full generality of the Ariga-
toni overlay network computer, that, thanks to its generic resource discovery,
is suitable for pervasive, ubiquitous overlay computations in addition to pure
Grid-oriented applications.

Promoted by Sun, the JXTA [JXT] technology is a set of open peer-to-peer
protocols enabling device to communicate, collaborate and share resources. Af-
ter a peer discovery process, any peer can interact directly with other peers.
Hence, the overlay network of peers induced by the JXTA technology is flat.
Moreover, the main concern of Arigatoni is the design of protocols for generic
resource discovery and intermittent participation, while the main concern of the
JXTA technology is to offer some tools to implement a P2P model. In addition,
Arigatoni focuses on the evolution/devolution of colonies, while JXTA technology
allows peers to communicate using an already existing overlay network of peers.
Further, Arigatoni’s aim is the dynamicity of the overlay network, while JXTA’s
is the freedom of connectivity between peers. Finally, JXTA-peers come with
their proper JXTA-id (logical JXTA peers addressing), while Arigatoni relies on
the more conventional IP addresses.

Publish/subscribe (pub/sub) [EFGK03] is a communication paradigm for
asynchronous dissemination of information. Consumers subscribe to the system
(typically called the Notification Service) to specify the type of information that
they are interested in. Producers publish data to the system. The notification
service disseminates the data to all (if possible) the consumers that are inter-
ested in receiving it, according to the data and the interests declared by the
consumers. Many pub/sub systems have been developed recently, such as XNET
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[CF04], SIENA [CRW01] or GRYPHON [BCM+99]. Banavar et al., in [Hei01],
propose to adapt the SIENA publish/subscribe system to achieve GNUTELLA-
like resource discovery. Their work resembles ours in the sense that Arigatoni is
also inspired by the pub/sub paradigm. However, resource discovery in pub/sub
is achieved by publishing queries to the notification service. In contrast, Arigatoni
implements its own resource discovery algorithm, especially designed for generic
and scalable resource look-up.

Worthy also to notice the OSGi technology [OSG], a component integration
platform with a service-oriented architecture and life cycle capabilities that en-
able dynamic delivery of services. These capabilities greatly increase the value
of a wide range of computers and devices that use the Java platform. The OSGi
specifications provide a platform for an universal middleware.

4.3 Challenges

We envision a long term meta-application anda medium-term specific-application.

Challenge 1: From Large-Scale Computing Machines to Large-Scale
Overlay Network Computing Machines

This challenge is inspired by the seminal talk by John von Neumann, given in
May 1946, “Principles of Large-Scale Computing Machines”, reprinted in [vN88].
At that time, “large-scale” meant the ENIAC computer, i.e., 17,468 vacuum
tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors, 5
million joint, 30 short tons, 2.4m x 0.9m x 30m, stored in a 167 m2 room, and
150 kW to operate. Today, thanks to the Moore’s law and to the Internet, “large
scale” means “planetary scale”, i.e. the computer hardware is distributed in
space and in time and must be negotiated before being used. The authors think
that the main inspirations of our Arigatoni overlay network computer are still
contained in that historical paper.

As such, we plan to design and implement a pervasive, programmable, over-
lay network computer, i.e. a colony of communicating computer individuals that
exchange resources and services with various guarantees, execute sequential or
parallel algorithms on one or more computer individuals, or perform tasks writ-
ten in a workflow&dataflow language. An overlay program will be a combination
of an overlay network connectivity dealing with virtual organizations and a com-
putation of an algorithm resulting of the summa of all algorithms running on
different computer individuals, and the coordination of all computer individuals
using an ad hoc language. The metalanguage used to program the overlay net-
work computer is often called (terminology often overlaps), workflow- dataflow-
orchestration- composition- metaprogramming- language. We could better call
such metalanguage a distributed assembler, since there is a strong similarity with
machine code. As examples, the pseudo machine code instruction à la Backus
[Bac54] move R0 R1 can be “refreshed” as

move dataR0 from ipR0:portR0 to ipR1:portR1
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(where of course latency is an non-trivial issue), and the pseudo machine code
instruction op R0 R1 R2 can be recasted as

op on ipR0 with
ipR0:portR0:dataR0 and
ipR1:portR1:dataR1 and stockin
ipR2:portR2:dataR2

Challenge 2: Developing a Vehicular Infrastructure

We plan to develop algorithmic methods and adapt Arigatoni protocols for build-
ing an ad hoc vehicular network infrastructure, called Ariwheels [Ari]. That net-
work must enable efficient and transparent access to the resources of on-board
and roadside nodes. Commercial services and access to public information will
be available to vehicles transiting in specific areas where such information is
broadcast by roadside wireless gateways or by other vehicles. Data retrieved can
be stored on the on-board vehicle computer; then, they can be used and rebroad-
cast at a later time without the need of persistent connectivity. We envision that
these new features will offer innovative functions and services, such as:

– Distribution, from infrastructure to vehicles (I2V), and among vehicles (V2V),
of safety and/or traffic-related information;

– Collection, from vehicles to infrastructures (V2I), of datas useful to perform
traffic management operations;

– Information exchange between private vehicles and public transportation
systems (buses, vehicles, road side equipments, etc.) to support and, thus,
foster inter-modality in urban areas;

– Distribution of real-time information to enable dynamic navigation services.

4.4 Conclusions and Future Work

The design of our programmable overlay network computer is far to be complete.
We are working on a more complete mathematical study of our system, based
on more elaborate statistical and stochastic models and realistic assumptions
[NCL07], as well as the possibility to include hierarchical DHT in addition to the
routing tables. We have already implemented an efficient simulator to validate
our design choice [Log]. We are currently working on the implementation of
a real client to be deployed on a real size experiments and platforms, like, e.g.
PLANETLAB, and GRID5000 [Gri]. We hope that Arigatoni could represent a step
toward a natural integration of different scenarios under the common paradigm
of Overlay and Pervasive Computing (see the Grand UK Challenges [Cha], or
the new INRIA strategic plan [INR]).
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Abstract. We present ML5, a high level programming language for spa-
tially distributed computing. The language, a variant of ML, allows an
entire distributed application to be developed and reasoned about as a
unified program. The language supports transparent mobility of any kind
of code or data, but its type system, based on modal logic, statically ex-
cludes programs that use mobile resources unsafely. The ML5 compiler
produces code for all of the hosts that may be involved in the com-
putation. These hosts may be heterogeneous, with different resources
and even different architectures. Currently, our compiler and runtime
are specialized to the particular case of web programming: a distributed
computation with two sites, the web browser and the web server.

1 Introduction

ML5 is a high-level programming language for distributed computing. The lan-
guage is designed particularly for those programs that are spatially distributed;
where parts of the program must run in physically or logically distinct places.
Typically such programs must be distributed because of local resources (such
as databases or consoles for interacting with a user) that can only be accessed
at those places. ML5’s type system permits the programmer to describe the
available local resources, and then excludes all programs that use them unsafely.

Distributed applications are often developed by writing a set of programs, one
for each host, that communicate via a protocol on network sockets. In contrast,
ML5 allows an entire distributed application to be developed as a unified pro-
gram. This has several benefits: The application may share rich, higher-order
data structures, including abstract types, between different hosts. It can even
maintain references to arbitrary remote resources, as long as those resources
are not used remotely. More importantly, the program can be reasoned about
as a single semantic entity. Reasoning about the behavior of a set of programs
communicating via a network can be awkward, particularly when the programs
are written in different languages. ML5’s dynamic semantics is a straightforward
extension of ML’s. The compiler can type check the code to statically verify that
certain kinds of runtime failure are impossible. ML5’s type system is based on
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modal logic, a kind of logic that permits simultaneous reasoning from multiple
perspectives. This logical basis means that the features for distributed com-
puting integrate naturally into ML’s type system, retaining (for example) type
inference.

From the source program the compiler produces code for all of the hosts that
may be involved in the computation. These hosts may be heterogeneous, with
different sets of available resources and even different architectures.

ML5 is the subject of Murphy’s Ph.D. thesis and is still in development—
the language does not incorporate some desirable features such as a module
system or high-level database integration. Some planned features (such as mutual
exclusion) are not yet implemented in the compiler. However, the implementation
works well enough to run useful demo applications, which are available online.
Our current prototype is specialized to the particular case of web programming:
a heterogeneous distributed computation with exactly two sites, the web browser
and web server.

We will begin with a brief review of the modal logic IS5 and the particular
formulation we use for ML5 (Section 2). We then present ML5’s core features
using web programming as a source of examples (Section 3). The remainder of the
paper discusses the interesting facets of how ML5 is implemented: our marshaling
strategy based on type representations and the complications of typed closure
conversion in a modal setting (Section 4.1), and the particulars of producing
distributed applications for web browsers (Section 4.2). We conclude with a
discussion of related, ongoing, and future work (Section 6).

2 Modal Logic IS5

IS5 is a modal logic with the ability to reason about truth from multiple simul-
taneous perspectives, which are called “possible worlds.” These possible worlds
arise from contingent assumptions that differ from world to world. In our ap-
plication of modal logic to distributed computing, the logical worlds correspond
to the hosts involved in a computation, and the contingent assumptions to the
local resources particular to these hosts.

Various related logics are distinguished by the way in which the possible worlds
can access one another; IS5 is a simple degenerate case where every pair of worlds
can access one another. Of the several ways to define a modal logic, we find an
explicit worlds formulation [18] to be most suitable for our type system [13]. This
formulation uses a judgment Γ � A@w which states that under the assumptions
in Γ , the proposition A is true at the world w. Γ holds assumptions of the
form B@w′ (positing B is true at w′), and ω (assuming the existence of a world
ω). World expressions w include only these bound world variables ω and world
constants, written w. We can only use an assumption A@w to conclude that
fact at the same world. The standard connectives from intuitionistic logic are
expressed by attaching “@w” everywhere; for instance, implication is

Γ,A@w � B@w
Γ � A ⊃ B@w

⊃-I
Γ � A ⊃ B@w Γ � A@w

Γ � B@w
⊃-E
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Modal logic often focuses on two connectives, �A and �B (“A is true in all
worlds;” “B is true in some world”). We find that an explicit worlds formulation
gives us the ability to define � and � in terms of finer connectives. The most
important of these is the at modality (following Jia [7]), which internalizes the
@ judgment into a proposition. It is defined by

Γ � A@w
Γ � A atw@w′

at-I
Γ � A atw′@w Γ,A@w′ � C@w

Γ � C@w
at-E

A modal logic where propositions can mention worlds is known as a “hy-
brid logic” [5]; contrary to its name we find the connective to be central to our
logic. For instance, �A is definable as ∀ω.A atω. Typed closure conversion (Sec-
tion 4.1) makes heavy use of the at modality. In contrast, we do not use the �

or � connectives in any of our examples.
The final feature of our logic that distinguishes it from other formulations of

S5 is our perspective-shifting rule get. This rule allows for reasoning at a world
w1 to be nested within reasoning at a world w2.

Γ � A@w′ A mobile
Γ � A@w

get

This rule would be nonsense for arbitrary A: all worlds would then conclude
exactly the same facts. The judgment mobile that restricts this rule to certain
propositions is better explained in terms of the values of the programming lan-
guage that characterize those propositions, so we leave that for Section 3. As
examples, A atw is mobile for any A, and A ⊃ B is never mobile.

The get rule exists for the benefit of the dynamic semantics. It allows us to
isolate all of the communication between hosts into this one rule, ensuring that
the other rules avoid any “action at a distance” [13]. For example, without get,
the at-E rule would have to allow the proof of A atw′ to come from an arbitrary
third world. With our decomposition, if we want to use a proof from another
world, we explicitly move it first.

Our decompositions preserve the meaning of the logic while allowing for a
more natural programming language and implementation. In the next section
we describe this programming language.

3 ML5

ML5’s syntax and semantics are based on core Standard ML [8]. The largest
difference is that ML5’s typing judgment is stratified by world, like the truth
judgment of IS5. Here, a world is a place in which a computation might run. We
type check an expression M using the judgment Γ � M : A@w, which means
that under variable bindings Γ , the expressionM has type A in the world w. It is
best to think of the judgmentM :A@w as meaning thatM is for w, rather than at
w. Although M can only be evaluated at w, at runtime it may be moved around
between worlds and placed in data structures at other worlds. World expressions
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can be either variables ω or constants w. Every program must begin execution
somewhere; in ML5 this world is the constant home. The entire program is
therefore also typechecked starting at home.

An ML5 program begins by describing what it knows about the universe. This
includes the declaration of world constants and the local resources available to
them. Here is a working example:1

extern javascript world home

extern val alert : string -> unit @ home

do alert [Hello, home!]

This first line is unnecessary (because the constant home is already provided
by the compiler) but serves to show how worlds can be declared. The world-
kind javascript dictates that this world (which will be the web browser) runs
JavaScript [4] code; this is used only by the backend when generating code for
the hosts involved in a program. We can support other worldkinds by implement-
ing a code generator and runtime for them; currently, we support javascript
and bytecode (Section 4.2). The declaration extern val asserts the existence
of a local resource, in this case, a function called alert. The compiled program
will expect to find a symbol called alert at the world home, and a program
variable alert is bound in the code that follows. It is also possible to declare
external abstract types, and global resources (Section 3.1). (Note that although
we declare what we know about the universe statically, this does not preclude
us from learning about resources dynamically, as long as we can give ML types
to the resource discovery facilities.) The do declaration evaluates an expression
for effect, in this case calling the alert function on the supplied string constant.
This application type checks because all of these declarations are checked at the
world home; if alert were declared to be at a different world server we would
not be able to call it without first traveling to the server.

To write distributed programs we also need dynamic tokens with which to
refer to worlds. A token for the world w has type w addr, and can be thought
of as the address of that world. A world can compute its own address with the
localhost() expression, whose typing rule appears in Figure 1. Typically, a
program also expects to know the addresses of other worlds when it begins and
imports them with extern val. We use an address by traveling to the world it
indicates, using the get construct. For example, here is a program that involves
two worlds, the web browser and server:

extern bytecode world server

extern val server : server addr @ home

extern val version : unit -> string @ server

extern val alert : string -> unit @ home

do alert (from server

get version ())

1 Our examples omit the required syntax for wrapping declarations as compilation
units, since the implementation currently only supports a single compilation unit.
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Γ � localhost() : w addr @w
A mobile Γ � M : w′ addr @w Γ � N : A@w′

Γ � from M get N : A@w

Γ, ω′ � v : A@ω′

Γ � sham ω′.v : ω′A@w

A mobile Γ � M : A@w

Γ � put u = M
w� u∼A

Γ � M : ωA@w

Γ � valid u = M
w� u∼ω.A

Γ, x:A@w, Γ ′ � x : A@w Γ, u∼ω.A, Γ ′ � u : [ w/ω ]A@w

Γ � v : A@w

Γ � hold v : A atw@w′

Γ � d
w� Γ ′ Γ, Γ ′ � M : C @w

Γ � let d in M : C @w

Γ � M : A atw′
@w

Γ � drop x = M
w� x:A@w′

Fig. 1. Some rules from the ML5 internal language, which have been simplified for
presentation purposes. The judgment Γ � d

w� Γ ′ states that the declaration d,
checked at w, produces new hypotheses Γ ′.

A mobile A atw mobile

b ∈ {string, int, . . .}
b mobile α mobile..

A mobile
μα.A mobile

w addr mobile
A mobile B mobile

A × B mobile
A mobile B mobile

A + B mobile

A mobile
∀α.A mobile

A mobile
∀ω.A mobile

Fig. 2. Definition of the mobile judgment. Not all types are mobile: local resources like
arrays and file descriptors are not, nor are function types or abstract types.

This program asserts the existence of a world server with a function that
returns its version. On the home world, we display an alert whose argument
is a subexpression (the call to version) that is evaluated at the server. The
typing rule for get appears in Figure 1; it takes the address of a remote world
and an expression well-typed at that world. The type of the expression must
be mobile (Figure 2). A type is mobile if all values of that type are portable
among worlds. string is mobile, so this code is well-typed. Function types are
not mobile, because for example it would not make sense to move the function
version—a resource local to server—to the world home. Even though not all
functions are mobile, we will be able to demonstrate the mobility of particular
functions with the modality, which is discussed in the next section.

3.1 Validity

It turns out that a large fraction of the code and data in a distributed applica-
tion is not particular to any one world. We say that such values are “valid” and
introduce a new kind of hypothesis for valid values. It takes the form u∼ω.A,
meaning that the variable u is bound to a valid value which has type A at
any world. The world variable ω is bound within A and is instantiated with the
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world(s) at which u is used. This variable is rarely needed, so we write u∼A when
it does not occur in A. Valid hypotheses appear in Γ like the other hypotheses.

Note that we cannot achieve this same effect by adding new types or using
polymorphism. For example, if we had a function f that we want to be able to
use anywhere, we cannot simply bind it as f : ∀ω.int ⊃ int@ω. This judgment
is ill-formed because the scope of the quantifier does not include @ω, which is
part of the judgment, not the type.

One way to introduce a valid hypothesis is with the put declaration. The code
put x = 2 + 3 binds a valid variable x∼int. The typing rule for put appears
in Figure 1; it requires that the type of the expression be mobile. Unlike get, put
does not cause any communication to occur; it simply binds the variable such
that it can be used in any world. There can also be global resources that are
known to be available at all worlds. For example, extern val server ~ server
addr declares that the address of the server is globally available.

The modality (pronounced “shamrock”) is the internalization of the validity
judgment as a type. A value of type A is a value that can be used at any world at
type A. It is introduced by checking that a value is well-typed at a hypothetical
world about which nothing else is known (Figure 1). This hypothetical world can
in general appear in the type; when it does, we write ωA. Elimination of the
modality with the valid declaration produces a valid hypothesis. Our treatment
of validity and the modality are inspired by Park’s � modality [14]. Note that
the body of a sham (and also hold) must be a value. ML5 has several constructs
that are syntactically restricted to values; in these positions we would not be
able to safely evaluate an expression because it is typed at some other world.

The modality is useful because it analyzes a particular value for portability
(compare the mobile judgment, which is judgment on types). Therefore it can be
used to demonstrate the portability of a function value. For example, the ML5
expression sham (fn x => x + 1) has type {}(int -> int). ({} is the ASCII
syntax for .) Because A is mobile for any A, we can now get this wrapped
function or place it inside other mobile data structures.

The programmer does not usually need to use the modality manually, be-
cause type inference will automatically generalize declarations to be valid when
possible. This is described in the next section.

3.2 Polymorphism and Type Inference

Like Standard ML, ML5 supports Hindley-Milner style type inference. When the
right hand side of a val declaration is a value (this includes any fun declaration),
the compiler will generalize the free type variables to produce a polymorphic
binding. ML5 also infers and generalizes worlds in the same manner. For instance,

val f = fn a => from a get 1234

produces a polymorphic binding of f at type ∀ω.(ω addr ⊃ int). In ML5 world
variables also appear in the judgment (the @w part), which is not in scope of the
∀ type operator and so cannot be generalized this way. If this world is uncon-
strained, the declaration is generalized to produce a valid binding by introducing
and immediately eliminating the modality. The above code elaborates into
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valid f = sham (allw w. fn (a : w addr) => from a get 1234)

which binds f∼∀ω.(ω addr ⊃ int).
Validity inference allows declarations of library code (such as the ML Basis

library) to precede the program and then be used as desired, without the need
to explicitly move the code between worlds or instantiate it. Thus, when not
using the distributed features of the language, ML5 looks just like ML, and
type inference generally assigns the same (valid) types that the code would have
there.

3.3 Web Features

The current ML5 prototype is specialized to web programming, and has a few
features that are specific to this domain. Let us look at a tiny application that
illustrates these. This program will make use of a simple persistent database
on the server that associates string values with string keys. It will allow us to
modify those keys, and will asynchronously show the value of the key whenever
it is modified (in this or any other session). We begin by importing libraries and
declaring the worlds and addresses.

import "std.mlh"

import "dom.mlh"

import "trivialdb.mlh"

extern bytecode world server

extern val home ~ home addr

extern val server ~ server addr

The Document Object Model (DOM) is JavaScript’s interface to the web
page [6]. It allows the reading and setting of properties of the page’s elements, and
the creation of new elements. The dom.mlh library provides a simple interface to
the DOM. The trivialdb.mlh library provides access to the persistent database.
Both consist mainly of extern declarations.

put k = [tdb-test]

fun getkey () =

let val v = from server get trivialdb.read k

in dom.setstring (dom.getbyid [showbox], [innerHTML], v) end

fun setkey () =

let put s = dom.getstring (dom.getbyid [inbox], [value])

in from server get trivialdb.update (k, s) end

The valid variable k holds the name of the key we’re concerned with (ML5
string constants are written with square brackets; see below). The function
getkey fetches the current value of the key from the server. It then finds the
DOM element with id showbox and sets its HTML contents to be the value of
the key. The function setkey reads the value of the DOM element inbox (a text
input box), travels to the server and sets that as the value of the key. Both
functions have type unit -> unit @ home.
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do dom.setstring (dom.getbyid [page], [innerHTML],

[[k]’s value: <div id="showbox">&nbsp;</div> <br />

<input type="text" id="inbox" /> <br />

<div onclick="[say setkey ()]"

style="cursor:pointer">set key</div> ])

do from server

get trivialdb.addhook (k, cont (fn () => from home get getkey ()))

We then create the web page that the functions above interact with. We do
this by updating the element called page (provided by the ML5 runtime) with an
HTML string. This string contains the elements showbox and inbox referenced
by name above. There are two things to note here: One is ML5’s syntax for
strings, which uses square brackets. Within a string, square brackets allow an
ML5 expression of type string to be embedded (it may contain further strings,
etc.). The other is the say keyword. It takes an ML5 expression (here setkey
()) and, at runtime, returns a JavaScript expression (as a string) that when run
will evaluate that expression.2 In this example we set the onclick property of
the <div> so that it triggers setkey () when the user clicks it. Finally, we add
a hook on the key that travels to the client and calls getkey whenever the key
is changed. The hook is expected to be a first-class continuation; cont is a valid
function from the standard library of type (unit -> unit) -> unit cont.

When this program is compiled, it produces a JavaScript source file to run on
the client, and a bytecode file to run on the server. To run the application, the
user visits a URL on the web server, which creates a new session and returns
the JavaScript code along with the runtime to his web browser. The server also
launches an instance of its code. The program runs until the client leaves the
web page, at which point the session is destroyed on the server. This example
and others, including a chat server, Wiki and spreadsheet, can be run online at
http://tom7.org/ml5/.

Having given a tour of the language, we now describe how it is implemented.

4 Implementation

The ML5 implementation consists of a CPS-based type directed compiler, a
simple web server, and two runtimes: one for the client and one for the server.
For reasons of space we concentrate on only the most interesting aspects of these,
which tend to arise as a result of ML5’s modal typing judgment.

We first discuss our strategy for marshaling, which pervasively affects the way
we compile. We then discuss the phases of compilation in the same order they
occur in the compiler. We finish with a brief discussion of the runtime system.

Marshaling. The design of ML5 maintains a conceptual separation between mar-
shaling and mobility. Marshaling is an implementation technique used to represent
2 We can not provide any type guarantees about JavaScript once it is in string form.

An improvement would be to use a richer language for embedded XML documents
(like Links; see Section 6) so that we can type check them, and then to have say

return a JavaScript function object rather than a string.

http://tom7.org/ml5/
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values in a form suitable for transmission over the network. Mobility is a semantic
quality of values determined at the language level. In ML5, any well-typed value
can be marshaled, but only some values are mobile. We are able to make this dis-
tinction because of the modal typing judgment: when a value of type A@w1 is
marshaled and then unmarshaled at w2, it still has type A@w1 and therefore can-
not be consumed at w2. The notion of mobility allows us to coerce some values of
type A@w1 to A@w2.

In order to marshal and unmarshal values, we need dynamic information about
their types and worlds. For example, to compile a polymorphic function, we
might need to generate code that marshals a value of an arbitrary type. To do
this uniformly, the low-level marshal primitive takes a value (of type A) and a
representation of its type. The type of the dynamic representation of A is A rep.
(We also have w wrep, the type of a representation of the world w.) The marshal
primitive analyzes the type representation in order to know how to create mar-
shaled bytes from the value. Recursively, the behavior of marshal is guided by
both the type and world of the value. Because marshal is a primitive—not user-
defined code—we do not need to support general type analysis constructs like
typecase.

To make sure that we have the appropriate type representation available when
we invoke marshal, we establish an invariant in the compiler that whenever a
type variable α is in scope, so is a valid variable with type α rep. Similarly, for
every world variable ω in scope, there will be a valid variable with type ω wrep.
Once we have generated all of the uses of these representations, we discard the
invariant and can optimize away any type representations that are not needed.

4.1 Compiler

After the program is elaborated into the intermediate language (IL), the first
step is to CPS convert it. CPS conversion is central to the implementation of
threads and tail recursion in JavaScript, because JavaScript does not have any
native thread support or tail call support, and has an extremely limited call
stack. We give a sample of the CPS language in Figure 3. CPS conversion of
most constructs is standard [1]; IL expressions are converted to CPS expressions
via a function convert, which is itself continuation-based. In addition to the IL
expression argument, it takes a (meta-level) function K that produces a CPS
expression from a CPS value (the result value of M). It may be illuminating to
see the case for get:

convert (from Ma′ get Mr) K = convert Ma′ K1

where K1(va′ ) = let a = localhost() in
put ua = a in
go[va′ ] convert Mr Kr

where Kr(vr) = put ur = vr in
go[ua] K(ur)

We first convert Ma′ , the address of the destination, and then compute our own
address and make it valid so that we can use it at our destination to return. We
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values v ::= x | u | sham ω.v | λx.c | v1〈w; A; v〉 | Λ〈ω; α; x:A〉.v |
wrepfor w | repfor A

conts c ::= halt | go[v]c | letsham u = v in c | leta x = v in c | call vf va

Γ � wrepfor w : w wrep@w′
Γ, ω, α, x:A � v : B@w

Γ � Λ〈ω; α; x:A〉.v : 〈ω; α; A〉.B@w

Γ � repfor A : A rep@w

Γ � vf : 〈ω; α; A〉.B@w0 Γ � v : A@w0

Γ � vf 〈w; C; v〉 : [ w/ω ][ C/α]B@w0

Γ � v : A@w′

Γ � hold v : A atw′
@w Γ, x:A@w, Γ ′ � x : A@w Γ, u∼ω.A, Γ ′ � u : [ w/ω]A@w

Γ � va : w′ addr @w Γ � c@w′

Γ � go[va]c@w

A cmobile Γ � v : A@w Γ, u∼A � c@w

Γ � put u = v in c@w

Γ � v : ωA@w Γ, u∼ω.A � c@w

Γ � letsham u = v in c@w

Γ � v : A atw′
@w Γ, x:A@w′ � c@w

Γ � leta x = v in c@w

Fig. 3. Some of the CPS language. The judgment Γ � v : A@w checks that the value v
has type A at w. Continuation expressions c are checked with the judgment Γ � e@w;
they do not return and so do not have any type. The judgment cmobile is analogous
to the IL judgment mobile, but for CPS types. In an abuse of notation, we use an
overbar to indicate a vector of values, vector of typing judgments, or simultaneous
substitutions.

then go to the destination, evaluate the body Mr, and make it valid so that we
can use it when we return. To return, we go back to the original world.

The CPS abstract syntax is implemented in the compiler using a “wizard”
interface [10], where binding and substitution are implemented behind an ab-
straction boundary rather than exposing a concrete SML datatype and relying
on compiler passes to respect its binding structure. This interface guarantees that
every time a binder is “opened,” the client code sees a new freshly alpha-varied
variable. In our experience this is successful in eliminating alpha-conversion bugs,
a major source of mistakes in compilers we have written previously.

Because the compiler is type-directed, all of the transformations are defined
over typing derivations rather than the raw syntax. In order to recover these
derivations (particularly, the types of bound variables) each transformation must
essentially also be a type checker. We do not want to repeat the code to type
check and rebuild every construct in every pass. Instead, we define an identity
pass that uses open recursion, and then write each transformation by supplying
only the cases that it actually cares about. This does have some drawbacks (for
instance, we lose some useful exhaustiveness checking usually performed by the
SML compiler), but it drastically reduces the amount of duplicated code that
must be maintained in parallel.
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Representation Insertion. The first such pass establishes the representation in-
variant mentioned above. A number of constructs must be transformed: con-
structs that bind type or world variables must be augmented to additionally
take representations, and uses must provide them. The CPS language uses a
“fat lambda” (written Λ〈ω;α;x:A〉.v) for values that take world, type, and
value arguments. It is converted by adding an additional value argument (of
type ω wrep or α rep) for each world and type argument. As examples, the value
Λ〈ω1, ω2;α;x:int〉.x converts to

Λ〈ω1, ω2;α;x1:ω1 wrep, x2:ω2 wrep, x3:α rep, x:int〉.x

and the application y〈home, ω3; (int× α); 0〉 converts to

y〈home, ω3; (int× α); wrepfor home, wrepfor ω3, repfor (int× α), 0〉.

The value repfor A is a placeholder for the representation of A. It is only a
placeholder because it may contain free type variables. In a later phase, repfor
is replaced with a concrete representation, and the free type variables become
free valid variables.

We also perform a similar translation for the sham ω.v and letsham constructs.
For the introduction form, we lambda-abstract the required world representation.
We do not change the elimination site, which binds a valid variable that can be
used at many different worlds. Instead, at each use we apply the variable to the
representation of the world at which it is used.

In this phase we also insist that every extern type declaration is accompanied
by a extern val declaration for a valid representation of that type.

Closure Conversion. Closure conversion implements higher-order, nested func-
tions by transforming them to closed functions that take an explicit environment.
The environment must contain all of the free variables of the function. Closure
conversion is interesting in the ML5 implementation because a function may
have free variables typed at several different worlds, or that are valid.

To closure convert a lambda, we compute the free variables of its typing deriva-
tion. This consists of world, type, and value variables. After closure conversion
the lambda must be closed to all dynamic variables, including the representa-
tions of types and worlds. This means that in order to maintain our type rep-
resentation invariant, the set of free variables must additionally include a valid
representation variable for any occurring world or type variable. Ultimately, the
free variables xi:Ai @wi are the actually occurring free variables, and the free
valid variables ui∼ω.Bi come from three sources: (1) actually occurring valid
variables; (2) the world representation variable uωk

∼ωk wrep for any free world
variable ωk; (3) the type representation variable uαl

∼αl rep for any free type
variable αl.

The environment will consist of a tuple containing the values of all of the free
variables. Some of these values are typed at other worlds, so they need to be
encapsulated with the at modality. We must preserve the validity of the valid
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ones using . The environment and its type are thus

(hold x1, . . . , sham ω.u1, . . .) : (A1 atw1, . . . , ω.B1, . . .)

Inside the body of the converted function we rebind these variables using
leta and letsham on components of the tuple. As usual [9], the pair of the
closed lambda and its environment are packed into an existential, so that all
function types are converted independently of the instance’s free variable set.
Since unpacking an existential binds a type variable, we must also include a
type representation inside each existential package so that we can maintain our
invariant.

The design of closure conversion is what originally informed our addition of
the at and modalities to ML5. A general lesson can be derived: In order to type
closure conversion, the language must have constructs to internalize as types any
judgments that appear as (dynamic) hypotheses. The elimination forms must be
able to restore these hypotheses from the internalized values.

In addition to closure converting the regular λ construct, we must convert Λ
since it takes value arguments. We closure convert the body of go as well, since
we send that continuation as a marshaled value to the remote host.

After closure conversion we will never need to insert another repfor, so a pass
replaces these with the actual values that form the runtime representations of
types and worlds. We then discard our representation invariant and can optimize
away unused representations.

Hoisting. A separate process of hoisting pulls closed lambdas out of the program
and assigns them global labels. The hoisted code must be abstracted over all of
its free type and world variables, but these are now purely static. Hoisted code
can either be fixed to a specific world (when it is typed at a world constant), or
it can be generic in its world (when it is typed at a world variable). When we
generate code for each world in the back-end, we produce code for those labels
that are known to be at that world, and also for any label generic in its world.
Any other label is omitted—it will not be invoked here and we might not even be
able to generate the code if it makes use of resources particular to its true world.
The form of code generated for each world depends on the declared worldkind
(Section 3); currently we assume that we know statically the architectures of the
hosts involved.

4.2 Runtime

The runtime system is responsible for providing communication between the
server and client. It also contains the implementation of marshaling and threads.

When the web server returns a compiled ML5 program for the client, it begins
a session of the program that runs on the server as well. This session contains a
queue of server threads and a marshaling table (see below). Via the go construct,
threads can transfer control from client to server or vice versa. A client thread
transfers control to the server by making an HTTP request whose body is a
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marshaled continuation for the server to execute. Starting a thread on the client
is trickier: For security reasons JavaScript cannot accept incoming network con-
nections. Instead, the client is responsible for maintaining a devoted connection
to the server, fetching a URL and asynchronously waiting on that request. When
the server wishes to start a thread on the client, it sends a response; the client
begins that thread and reinstates the connection. (This mode of interaction is
now fairly standard in web applications.)

With type representations available, marshaling is a straightforward matter.
One interesting aspect is how we use the representations of worlds; as we marshal,
we recursively keep track of the world of the value (for instance, as we descend
into a value of type A atw2, we record w2). We can then specialize the marshaled
representation of a value based on where it comes from. This is how we can
marshal local resources: A JavaScript DOM handle is represented natively at
home, but when we marshal it, we place it into a local table and marshal the index
into that table. At any other world, the handle is represented and marshaled as
this index. When it arrives back at home, we know to reconstitute the actual
handle by looking it up in the table. Other than the fact that we must be able
to marshal any well-formed value, there is nothing special about the language or
implementation that limits the range of marshaling strategies we could adopt.

5 Theory

We have formalized several of the calculi on which ML5 is based in Twelf [16]
and proved properties about them. For example, we prove that ML5 without
the validity judgment is equivalent to Intuitionistic S5, and that ML5’s dynamic
semantics is type safe. In addition, we have formalized a few of the first stages of
compilation, including CPS and closure conversion. (These languages are some-
what simplified; for example we omit recursion and type representations.) For
these we prove that every well-typed program can be converted, and that the
resulting program is well-typed. All of the proofs are machine checkable. Some
of the proofs appear in Murphy’s thesis proposal [11] and the remainder will
appear in his dissertation.

6 Related and Future Work

Related Work. ML5 is in a class of new web programming languages that Wadler
deems “tierless,” that is, they allow the development of applications that nor-
mally span several tiers (database, server logic, client scripts) in a uniform lan-
guage. Links [3] is such a programming language. Functions may be annotated
as “client” or “server,” and Links allows calls between client and server code.
However, their type system does no more to indicate what code and data can be
safely mobile, and marshaling can fail at runtime. On the other hand, Links has
many features (such as a facility for embedding and checking XML documents
and database queries) that make typeful web programming easier. It addition-
ally supports a mode of page-oriented application where all of the session state
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is stored on the client, as marshaled data inside of hyperlinks and forms. In
contrast, ML5 only supports AJAX style web applications (i.e., a single page
that the user never leaves), because our computational model requires that the
server be able to contact the client at any time.

Hop [17] is another tierless web programming language, using Scheme as the
unifying language. Hop has constructs for embedding a client side expression
within a server expression and vice-versa, analogous to get in ML5 (but specific
to the two-world case). The chief difference is simply that Hop is untyped, and
thus subject to dynamic failures.

Our modal calculus is closely related to λrpc, a hybrid variant of IS5 by Jia and
Walker [7]. They give their dynamic semantics in a process calculus style. Our
chief innovation over λrpc is the use of the mobile judgment and the get construct
to enable a simple call-by-value semantics compatible with existing compilation
technology for ML. Moreover, we have developed such an implementation. Others
have used modal logic for distributed computing as well; for a complete discussion
see our previous papers on Lambda 5 [13] and C5 [12], as well as Murphy’s thesis
proposal [11] and dissertation.

Future Work. There is much potential for future work on ML5 and related lan-
guages. In the short term, we wish to develop larger applications and implement
the language support necessary to do so. This will probably include support
for structured databases and mutual exclusion between threads. We will need
to improve the performance of the compiler, particularly by implementing op-
timizations that undo our simplistic closure conversion (for instance, when all
calls are direct) and type representation passing (when the representations are
not used). There is also some opportunity for optimizations particular to the
ML5 primitives (such as when a get is from a world to itself).

A more serious performance issue is resource leaks caused by mobile data
structures. Garbage that is purely local is collected by the server and JavaScript
collectors, but once a local resource is marshaled by inserting it in a table and
sending that index remotely, we can never reclaim it. Web programming systems
typically deal with this by assuming that sessions are short-lived, but it would be
preferable to allow for long-running programs through some form of distributed
garbage collection [15].

Our type theory naturally supports an arbitrary number of worlds, and most
of the compiler does, as well. Adding the ability for a program to access many
different servers would just be a matter of adding runtime support for it. Unfor-
tunately, JavaScript’s security model prevents outgoing connections to any server
other than the one that originally sent the JavaScript code. To get around this,
we would need to build an overlay network where the original server acts as a
proxy for the others. Supporting multiple clients in the same application instance
is trickier still. This is mainly because we consider the thread of control to begin
on the (one) client; it would instead need to start on the server, which would
then need to be able to discover new connecting clients at runtime.

Another concern is security. JavaScript code intended to run on the client is
actually under the complete control of an attacker. He can inspect its source
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and cause it to behave arbitrarily, and invoke any continuation on the server for
which he is able to craft acceptable arguments. This is true of any distributed
system where some hosts are controlled by attackers, and the programmer must
defend against this by not trusting (and explicitly checking) data and code it
receives from the client. In some ways this problem is exacerbated in ML5: The
process of compilation from the high-level language is not fully abstract, in that
it introduces the possibility for more behaviors in the presence of an attacker
than can be explained at the source level. For example, depending on how closure
conversion and optimizations are performed, a client may be able to modify a
marshaled closure in order to swap the values of two of the server’s variables! We
believe a solution to this problem would take the form of an “attack semantics”
provided by the language and implemented by the compiler through a series
of countermeasures. The semantics would describe the range of behaviors that
a program might have in the presence of an attacker, so that the programmer
can ensure that these behaviors do not include security breaches on the server.
(The client will always be able to format his own hard drive, if he desires.)
One example of such a semantics is the Swift web programming language [2],
where data are annotated with information flow policies that guide how the
program is compiled. (This language is somewhat different from ML5 in that
the assignment of code to hosts is performed implicitly by the compiler, via
program partitioning.) In any case, such properties are inherently in terms of
the principals (places) involved in the computation, and therefore we believe that
our type system and semantics is an important first step in being able express
and prove properties of programs in the presence of an attacker, and to develop
mechanisms for building secure programs.

Conclusion. We have presented ML5, a new programming language for dis-
tributed computing. ML5’s current prototype is specialized to web programming,
a domain for which its programming model is well suited—it joins a collection
of other languages with similar design goals and principles. Many of the ideas
from these languages are compatible with all three systems. ML5’s main con-
tribution to this is its type system, which permits the programmer to describe
local resources and prevent unsafe access to them. Being based on logic, the
type system is elegant and is compatible with the design of ML-like languages,
including polymorphic type inference.
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Abstract. Several models based on process calculi have addressed the definition
of linguistic primitives for handling long running transactions and Service Level
Agreement (SLA) in service oriented applications. Nevertheless, the approaches
appeared in the literature deal with these aspects as independent features. We
claim that transactional mechanisms are relevant for programming multi-step
SLA negotiations and, hence, it is worth investigating the interplay among such
formal approaches. In this paper we propose a process calculus, the committed
cc-pi, that combines two proposals: (i) cc-pi calculus accounting for SLA nego-
tiation and (ii) cJoin as a model of long running transactions. We provide both a
small- and a big-step operational semantics of committed cc-pi as labelled tran-
sition systems, and we prove a correspondence result.

1 Introduction

Service Oriented Computing (SOC) is an emerging paradigm in distributed computing.
Services are autonomous computational entities that can be described, published, and
dynamically discovered for developing distributed, interoperable applications. Along
with functional properties, services may expose non-functional properties including
Quality of Service (QoS), cost, and adherence to standards. Non-functional parame-
ters play an important role in service discovery and binding as, e.g., multiple services
able to fulfill the same user request (because they provide the same functionality) can
still be differentiated according to their non-functional properties. Service Level Agree-
ments (SLAs) capture the mutual responsibilities of the provider of a service and of its
client with respect to non-functional properties, with emphasis on QoS values.

The terms and conditions appearing in a SLA contract can be negotiated among
the contracting parties prior to service execution. In the simplest case, one of the two
parties exposes a contract template that the other party must fill in with values in a
given range; in case of failure, no agreement is reached and a new negotiation must be
initiated. However, in general, arbitrary complex scenarios involving distributed trans-
actions may occur: (i) third parties may take part to or just exert some influence on a
negotiation, (ii) negotiations can be nested, (iii) if a commit cannot be achieved, com-
pensation mechanisms may be activated, e.g. clients may relax their own SLA require-
ments and providers may add further service guarantees until an agreement is reached.

Several approaches have appeared in the literature for specifying and enforcing SLA
contracts [14,10,7,2] and for modelling and analysing long running transactions in the
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context of name passing calculi [5,11,4]. However, such theories treat these two issues
as independent features. By contrast, we claim that transactions can be conveniently
employed for programming SLA negotiation scenarios. In this paper, we propose the
committed cc-pi calculus (committed cc-pi), a language for specifying SLAs that also
features coordination primitives tailored to multi-party negotiations. More specifically,
committed cc-pi extends cc-pi [7] with the transactional mechanism of cJoin[5] for han-
dling commits and aborts of negotiations along with possible activations of compensa-
tions. We remind that, unlike compensatable flows [8,6], the approaches in [5,11,4] rely
on a notion of compensation that is essentially an exception handling mechanism.

The cc-pi calculus [7] is a simple model for SLA contracts inspired by two basic
programming paradigms: name-passing calculi (see e.g. [12]) and concurrent constraint
programming [13]. More in detail, cc-pi combines synchronous communication and a
restriction operation à la process calculi with operations for creating, removing and
making logical checks on constraints. The constraint systems employed in cc-pi are
based on the c-semiring structures [3], which are able to model networks of constraints
for defining constraint satisfaction problems and to express fuzzy, hierarchical, or prob-
abilistic values.

cJoin [5] is an extension of the Join calculus [9] with primitives for distributed nested
commits. The two key operations of cJoin are: the “abort with compensation”, to stop
a negotiation and activate a compensating process; and the “commit”, to store a partial
agreement among the parties before moving to the next negotiation phase.

Before introducing committed cc-pi, we single out the transactional primitives of
cJoin and add them to the pi-calculus. This intermediate step highlights the interplay of
compensating transactions with a channel-based interaction mechanism that is different
from Join and it is intended to make the treatment of constraints easier to understand.

Synopsis. In §2 we highlight the main features of cc-pi, and in §3 we briefly recall cJoin
and we present a transactional extension of the pi-calculus inspired by cJoin. In §4 we
introduce the committed cc-pi calculus by giving its syntax and operational semantics
in terms of labelled transition system and we show some examples of modelling trans-
actional SLA negotiations. In §5 we define a big-step semantics of committed cc-pi and
we prove a correspondence result.

2 Constrained-Based SLA Negotations

The cc-pi calculus integrates the Pi-F calculus [15] with a constraint handling mecha-
nism. The Pi-F calculus is a variant of the pi-calculus whose synchronisation mecha-
nism is global and, instead of binding formal names to actual names, it yields an explicit
fusion, i.e., a simple constraint expressing the equalities of the transmitted parameters.
cc-pi extends Pi-F by generalising explicit fusions to arbitrary constraints and by adding
primitives like tell and ask, which are inspired by the constraint-based computing
paradigms. We defer a technical treatment of the syntax and semantics of the cc-pi to
§4, where we will give a formal presentation of an extended version of cc-pi including
transactional features. Here, we simply overview the main principles of the calculus.
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Underlying constraint system. The cc-pi calculus is parametric with respect to named
constraints, which are meant to model different SLA domains. Consequently, it is not
necessary to develop ad hoc primitives for each different kind of SLA to be modelled.
A named constraint c is defined in terms of c-semiring structures and comes equipped
with a notion of support supp(c) that specifies the set of “relevant” names of c, i.e. the
names that are affected by c. The notation c(x,y) indicates that supp(c) = {x,y}. In
this work, we leave such underlying theory implicit and we refer the interested reader
to [7,3]. For our purposes, we simply assume usual notions of entailment relation (� ), of
combination of constraints (×) and of consistency predicate (see e.g. [13]). Moreover,
we will only consider crisp constraints (instead of the more general soft constraints), i.e.
we will assume a constraint system leading to solutions consisting of a set of tuples of
legal domain values. As an example the constraint c(x,y) = (7≤ x≤ 9)×(15≤ y≤ 18)
specifies that the names x and y can only assume domain values in the range [7, . . . ,9]
and [15, . . . ,18]. Assuming a constraint d(x,y) = (6≤ x≤ 8)×(17≤ y≤ 19), the result
of combining c and d is the intersection of their respective possible values, i.e. the
constraint e(x,y) = c(x,y)×d(x,y) = (7≤ x≤ 8)× (17≤ y≤ 18). We say a constraint
to be inconsistent when it has no tuples, and we write 0 for the inconsistent constraint.

In cc-pi, the parties involved in a negotiation are modelled as communicating pro-
cesses and the SLA guarantees and requirements are expressed as constraints that can
be generated either by a single process or as a result of the synchronisation of two pro-
cesses. Moreover, the restriction operator of the cc-pi calculus can limit the scope of
names thus allowing for local stores of constraints, which may become global after a
synchronisation. A single process P = tell c.Q can place a constraint c corresponding
to a certain requirement/guarantee and then evolve to process Q. Alternatively, two pro-
cesses P = p〈x̃〉.P′ and Q = p〈ỹ〉.Q′ that are running in parallel (P |Q) can synchronise
with each other on the port p by performing the output action p〈x̃〉 and the input action
p〈ỹ〉, respectively, where x̃ and ỹ stand for sequences of names. Such a synchronisation
creates a constraint induced by the identification of the communicated parameters x̃ and
ỹ, if the store of constraints obtained by adding this new constraint is consistent, other-
wise the system has to wait that a process removes some constraint (action retract c).

Example 1. Consider a user that is looking for a web hosting solution with certain
guarantees about the supplied bandwidth and cost. We assume the client and the
provider to communicate over channel r the information about the requested band-
width, and over channel p the information about the price of the service. The constant
rb stands for the minimal bandwidth accepted by the client, while ob represents the
maximal bandwidth offered by the provider. Moreover, the provider fixes the price uc
as the cost for any unit of bandwidth, and the client the maximal cost c it is intended
to pay for the service. Then, the whole system can be modelled by the following two
processes: one describing the behaviour of the client Clientrb,c(r, p) and the other the
provider Providerob,uc(r, p).

Clientrb,c(r, p)≡ (bw)(cost)(tell (bw≥ rb).r〈bw〉.tell (cost ≤ c).p〈cost〉)
Providerob,uc(r, p)≡ (bw′)(cost′)(tell (bw′ ≤ ob).r〈bw′〉.tell (bw′ ∗uc = cost ′).

p〈cost′〉)
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The client starts by fixing the constraint about the minimal requested bandwidth,
then it contacts the provider by communicating on channel r and, after that, it fixes the
maximal cost it can afford and synchronises on p. The provider behaves similarly, by
fixing an upper bound ob on the offered bandwidth, accepting a request from the client
over r and, then, fixing the cost of the service and synchronising with the client.

Consider the following system composed of a client and two providers.

S ≡ (r)(p)Client4Gb,$100 | Provider6Gb,$20 | Provider3Gb,$15

The client requests at least 4 Gigabytes (Gb), while one provider offers at most 6Gb
and the other 3Gb. As expected, after each party has placed its own constraint on
the required/offered bandwidth, the client can synchronize only with the first provider
(the interaction with the second one is not possible since the constraints bw ≥ 4Gb,
bw′ ≤ 3Gb, bw = bw′ are inconsistent). As a next step, the first provider and the
client fix the constraints about the cost of the service, the synchronisation over p takes
place, and the negotiation succeeds. The released constraints are the agreed parame-
ters of the contract. If we consider a domain of integer solutions, the contract is ei-
ther the solution bw = bw′ = 4Gb and cost = cost ′ = $80, or bw = bw′ = 5Gb and
cost = cost ′ = $100. Note that tell prefixes handle local stores of constraints, while
synchronisations allow to identify variables belonging to different stores, thus yielding
a global store.

3 Compensating Transactions

cJoin is a process calculus that provides programming primitives for handling transac-
tions among interacting processes. The communication primitives of cJoin are inherited
from the Join calculus [9], which is a process calculus with asynchronous name-passing
communication, while the transactional mechanism is based on compensations, i.e., par-
tial execution of transactions are recovered by executing user-defined programs instead
of providing automatic roll-back. So, in addition to the usual primitives of Join, cJoin
provides a new kind of terms of the form [P : Q], denoting a process P that is required to
execute until completion. In case P cannot successfully complete, i.e., when P reaches
the special process abort, the corresponding compensation Q is executed.

The main idea in cJoin is that transaction boundaries are not permeable to ordinary
messages, so that a transactional process [P : Q] can only compute locally. However, a
limited form of interaction is allowed with other transactional processes: in this case,
after the interaction, the transactional processes become part of the same larger trans-
action, and hence all parties should reach the same agreed outcome, i.e., if some party
commits (resp. aborts) then all of them commit (resp. aborts).

Rather than providing the formal definition of cJoin, below we focus on its trans-
actional primitives. To this purpose, we present committed pi, an extension of the pi-
calculus with the transaction mechanism introduced in cJoin. This choice aims to show
the interplay of compensating transactions with the channel-based process communi-
cation of pi-calculus (and of cc-pi), thus making the transactional extension of cc-pi
presented in §4 more straightforward.
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3.1 From Cjoin to committed pi

Assume an infinite, countable set of names N , ranged over by a,b,x,y,z, . . . and a set
of process identifiers, ranged over by D. The syntax of committed pi processes is given
in Figure 1(a). As in the pi-calculus, a process is either the inert process 0, the parallel
composition P|P′ of two processes, a guarded choice Σiαi.Pi where αi.Pi is either (i)
an agent x(ỹ).P that accepts a message on channel x and then continues as P, (ii) the
synchronous emission of a message x〈ỹ〉 with continuation P, or (iii) the internal choice
τ.P. The process (νx)P defines the private channel x. A defining equation for a process

identifier D is of the form D(x̃) def= P where the free names of P are included in x̃.
Then, for any process D(ỹ) we require |x̃|= |ỹ|. In addition, committed pi provides two
primitives for handling transactions: [P : Q] for defining a transactional process P with
compensation Q, and abort for indicating an aborted transaction.

We write (νx1 . . .xn)P as an abbreviation for (νx1) . . . (νxn)P. When x̃ = x1 . . .xn and
n = 0, (νx̃)P stands for P. We abbreviate z〈ỹ〉.0 by z〈ỹ〉 and we write M for a process
consisting only on sent messages, i.e. M = x1〈ỹ1〉| . . . |xn〈ỹn〉. M is 0 when n = 0. The
reduction semantics is the least relation satisfying the rules in Figure 1(c) (modulo the
the usual structural equivalence rules in Figure 1(b)). Free and bound names (written
f n(P) and bn(P)) are defined as usual.

Rules (COMM), (TAU), (PAR), and (RES) are the standard ones for the synchronous
pi-calculus. Rule (TRANS) describes the internal computations of a transactional pro-
cess, in which the compensation Q is kept frozen. Rule (TR-COMP) handles the case of
a transaction that aborts, which causes the remaining part of the transactional process
to be removed and the associated compensation Q to be activated. Instead, rule (COM-
MIT) defines the behaviour of a transaction that commits. A transaction commits when
it produces a set of output messages M, each of them followed by 0, i.e., there are no
remaining computation inside the transaction. At this point, all produced messages M
are released and the associated compensation is discarded. Last rule (TR-COMM) de-
scribes the interaction among two transactions. In particular, when one transactional
process sends a message that is received by another transactional process both transac-
tional scopes are merged into a larger one containing the remaining parts of the original
transactions and its compensation is the parallel composition of the original ones.

Example 2. Consider the typical scenario in which a user books a room through a hotel
reservation service. The ideal protocol can be sketched as below.

C≡ request〈data〉.offer(price).accept〈cc〉
H≡ request(details).offer〈rate〉.accept(card)

The client starts by sending a booking request to the hotel, which answers it with a
rate offer. After receiving the offer, the client accepts it. Nevertheless, there are several
situations in which parties may be forced/inclined not to complete the execution of the
protocol (e.g., the hotel has no available rooms for the requested day, or the client does
not obtain convenient rates).

Client≡ [request〈data〉.offer(price).(accept〈cc〉+ τ.abort) : alt(h).Q]
Hotel≡ [request(details).(offer〈rate〉.accept(card)+ τ.abort) : alt〈hotel〉]
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P ::= 0 | P|P | Σiαi.Pi | (νx)P | D(ỹ) | [P : Q] | abort
α ::= x(ỹ) | x〈ỹ〉 | τ

(a) Syntax

P | 0≡ P P≡ Q if P≡α Q
P | Q≡Q | P (νx)(νy)P≡ (νy)(νx)P

(P | Q) | R≡ P | (Q | R) (νx)P | Q≡ (νx)(P|Q) if x �∈ f n(Q)
P+Q≡Q+P (P+Q)+R≡ P+(Q+R)

(νx)0 ≡ 0 D(ỹ)≡ P{ỹ/x̃} if D(x̃) def= P
(b) Structural equivalence

(COMM)

x(ỹ).P+P′ | x〈z̃〉.Q+Q′ → P{z̃/̃y}|Q
(TAU)

τ.P+Q → P

(PAR)

P → P′

P|Q → P′|Q
(RES)

P → P′

(νx)P → (νx)P′

(TRANS)

P → P′

[P : Q] → [P′ : Q]

(TR-COMP)

[abort|P : Q] → Q
(COMMIT)

[M : Q] → M

(TR-COMM)

[(νx̃)y(ṽ).P1 +R1 |P′1 : Q1] | [(νz̃)y〈w̃〉.P2 +R2 |P′2 : Q2]→ [(νx̃z̃)P1{w̃/̃v}|P′1 |P2 |P′2 : Q1 |Q2]
if y �∈ x̃∪ z̃ and x̃∩ f n(P2|P′2)= /0 and z̃∩ f n(P1|P′1) = /0

(c) Reduction Semantics

Fig. 1. Syntax and Semantics of the committed pi calculus

The above protocol allows the client to abort the transaction after receiving an offer
(for instance when the offer does not satisfy her expectations). Alternatively, the hotel
may abort after receiving a request (for instance when no rooms are available). We
illustrate the use of compensations by making the component Hotel to generate the
single message alt〈hotel〉 to provide the client with an alternative hotel to contact. The
compensation of Client is a process that receives a message on the port alt and then
behaves like Q, which stands for the process that contacts the alternative hotel h.

The process Client|Hotel behaves in committed pi as follows. When both transac-
tions communicate through the port request for the first time they are merged in a
unique larger transaction, whose transactional process and compensation correspond
respectively to the parallel composition of the residuals of the original transactions and
to the parallel composition of the original compensations, as shown below

Client|Hotel→ [offer(price).(accept〈cc〉+ τ.abort)
| (offer〈rate〉.accept(card)+ τ.abort) : alt(h).Q | alt〈hotel〉]

From this moment the system may evolve as usual. Assuming the hotel sends an offer
and the client replies with a confirmation, the system commits the transaction as follows

→ [(accept〈cc〉 + τ.abort) | accept(card) : alt(h).Q | alt〈hotel〉]
→ [0 : alt(h).Q | alt〈hotel〉]
→ 0
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Otherwise, if we assume that the client refuses the offer then the system evolves as
follows and activates the compensation of both parties.

→ [(accept〈cc〉 + τ.abort) | accept(card) : alt(h).Q | alt〈hotel〉]
→ alt(h).Q | alt〈hotel〉

4 Committed cc-pi

In this section we enrich cc-pi with the transactional mechanism described above. Be-
fore introducing the extended calculus, we show an example that motivates the addition
of compensating transactions for modelling SLA negotiations.

Example 3. Consider the system shown in Example 1. Suppose that the client is in-
tended to pay a maximal cost $60 instead of $100. The new system is as follows.

S′ ≡ (r)(p)Client4Gb,$60 | Provider6Gb,$20 | Provider3Gb,$15

The evolution of S′ is as in the original system until the first provider and the client place
their own constraints on the cost (as before the client cannot synchronise with the other
provider). Then, the negotiation between the client and the first provider fails, because
the constraints cost ≤ c, bw′ ≤ ob and cost = cost′ are inconsistent, and the system
is stuck. Later in §4.3, we will see how to model this scenario using the transactional
mechanism of committed cc-pi.

4.1 Syntax

The syntax of committed cc-pi processes is specified in Figure 2(a). Assume the infinite
set of names N , ranged over by x,y,z, . . . and a set of process identifiers, ranged over
by D. We let c range over the set of constraints of an arbitrary named c-semiring C .

The syntax of the calculus is the same as for the cc-pi except for the inclusion of
a transactional primitive which is inspired by committed pi. The τ prefix stands for a
silent action, output x〈ỹ〉 and input x〈ỹ〉 are complementary prefixes used for commu-
nications. Unlike other calculi, the input prefix is not binding, hence input and output
operations are fully symmetric and the synchronisation of two complementary prefixes
x〈ỹ〉 and x〈z̃〉, rather than binding ỹ to z̃, yields the name fusion ỹ = z̃. Prefix tell c
generates a constraint c and puts it in parallel with the other constraints, if the resulting
parallel composition of constraints is consistent; tell c aborts otherwise. Prefix ask c
is enabled if c is entailed by the set of constraints in parallel. Prefix retract c removes
a constraint c, if c is present. Unconstrained processes U are essentially processes that
can only contain constraints c in prefixes tell c, ask c, and retract c. As usual,
0 stands for the inert process and U |U for the parallel composition. ∑i πi.Ui denotes
a mixed choice in which some guarded unconstrained process Ui is chosen when the
corresponding guard πi is enabled. Restriction (x)U makes the name x local in U . A

defining equation for a process D(ỹ) is of the form D(x̃) def= U where |x̃| = |ỹ| and the
free names of U must be included in x̃. The transaction primitive [P : Q].U defines a



Transactional Service Level Agreement 131

Prefixes π ::= τ
∣∣ x〈ỹ〉 ∣∣ x〈ỹ〉 ∣∣ tell c

∣∣ ask c
∣∣ retract c

Unconstrained Processes U ::= 0
∣∣ U |U ∣∣ ∑i πi.Ui

∣∣ (x)U
∣∣ D(ỹ)

∣∣ [P : Q].U

Constrained Processes P ::= U
∣∣ c

∣∣ P|P ∣∣ (x)P

(a) Syntax

P|0≡ P P+Q≡Q+P (x)(y)P≡ (y)(x)P

P|Q≡ Q|P (P+Q)+R ≡ P+(Q+R) P|(x)Q≡(x)(P|Q) if x �∈ fn(P)

(P|Q)|R≡ P|(Q|R) D(ỹ)≡U{ỹ/x̃} if D(x̃) def= U (x)0≡ 0

[(x)P : Q].U ≡ (x)[P : Q].U if x �∈ fn(Q,U)

(b) Structural equivalence

(TAU)

C |τ.U τ−→C |U
(OUT)

C |x〈ỹ〉.U x〈ỹ〉−→C |U
(INP)

C |x〈ỹ〉.U x〈ỹ〉−→C |U
(TELL)

C |tell c.U
τ−→C |c |U if C |c consistent

(ABT-TELL)

C |tell c.U
abr−→ 0 if C |c not consistent

(ASK)

C |ask c.U
τ−→C |U if C � c

(RETRACT)

C |retract c.U
τ−→ (C− c) |U

(COMM)

C |U x〈ỹ〉−→C |U ′ C |V z〈w̃〉−→C |V ′

C |U |V τ−→C | ỹ = w̃ |U ′ |V ′
if |ỹ|= |w̃| and C | ỹ = w̃ consistent and C � x = z

(ABT-COMM)

C |U x〈ỹ〉−→ P C |V z〈w̃〉−→ Q

C |U |V abr−→ 0

if |ỹ|= |w̃| and C | ỹ = w̃ not consistent and C � x = z

(PAR)

P
α−→ P′ α �= abr

P |U α−→ P′ |U

(ABT-PAR)

P
abr−→ 0

P |Q abr−→ 0

(SUM)

C |πi.Ui
α−→U ′

C | ∑πi.Ui
α−→U ′

(RES )

P
τ−→ P′

(x)P
τ−→ (x)P′

(TRANS)

P
τ−→ P′

[P : Q].U τ−→ [P′ : Q].U

(TR-COMP)

P
abr−→ P′

[P : Q].U τ−→ Q

(TR-COMMIT)

[C : Q].U τ−→C |U

(TR-PAR)

[P : Q].U τ−→ P′

C | [P : Q].U τ−→C |P′

(TR-COMM)

C1 |U1
x〈ỹ〉−→ R1 C2 |U2

z〈w̃〉−→ R2 |ỹ|= |w̃| and C1 |C2 | ỹ = w̃ consistent and C |C1 |C2 � x = z

C | [C1 |U1 : Q1].V1 | [C2 |U2 : Q2].V2
τ−→C | [R1 |R2 | ỹ = w̃ : Q1 |Q2].(V1 |V2)

(c) Labelled Semantics

Fig. 2. Syntax and Small-Step Semantics of the committed cc-pi calculus
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transactional process P which evolves to U in case of a commit, while otherwise ac-
tivates the compensation Q. Constrained processes P are defined like unconstrained
processes U but for the fact that P may have constraints c in parallel with processes. We
simply write processes to refer to constrained processes.

4.2 Operational Semantics

The structural equivalence relation≡ is defined as the least equivalence over processes
closed with respect to α-conversion and satisfying the rules in Figure 2(b). Note that the
notion of free names fn(P) of a process P is extended to handle constraints by stating
that the set of free names of a constraint c is the support supp(c) of c. The structural
axioms can be applied for reducing every process P into a normal form (x̃)(C |U),
where C is a parallel composition of constraints and U can only contain restrictions
under prefixes, i.e. U �≡ (ỹ)U ′.

Well-formedness. Let Ch⊆N be a set of channel names that can only be fused among
each other and let chn(P) be the set of channel names occurring free in P. P is well-
formed if there exists a process Q≡P such that every occurrence of transaction in Q has
the form (x1, . . . ,xn)[P′ : Q′].U , where (fn(P′,Q′)\ chn(P′,Q′)) ⊆ {x1, . . . ,xn}. For ex-
ample, P≡ (x)(tell (x = z) |(w)[y〈w〉.0 : Q].U) is well-formed, but R≡ (x)(tell (x =
y) | [y〈x〉.0 : Q].U) is not. Hereafter, we assume all processes to be well-formed.

Let A = {τ, x〈ỹ〉, x〈ỹ〉, abr |x,yi ∈ N for ỹ = 〈y1, . . . ,yn〉 } be a set of labels and
let α range over A. The labelled transition semantics of processes (taken up to struc-
tural equivalence ≡) is the smallest relation P

α−→ Q, defined by the inference rules
in Figure 2(c), where: C stands for the parallel composition of constraints c1 | . . . |cn;
C consistent means (c1× . . .× cn) �= 0; C � c if (c1× . . .× cn) � c; C− c stands for
c1 | . . . |ci−1 |ci+1 | . . . |cn if c = ci for some i, while C− c = C otherwise.

The choice of giving a labelled transition semantics rather than a reduction semantics
is stylistic and not relevant for our treatment. After this remark, the rules in Figure 2(c)
essentially include the original rules of cc-pi plus the rules concerning the transac-
tional mechanism. Roughly, the idea behind this operational semantics is to proceed
as follows. First, rearranging processes into the normal form (x1) . . . (xn)(C |U) by ap-
plying the structural axioms. Next, applying the rules (TELL), (ASK), (RETRACT) for
primitives on constraints and the rule (OUT), (INP), possibly (SUM) and (COMM) for
synchronising processes. Finally, closing with respect to parallel composition and re-
striction ((PAR), (RES)). More in detail, rule (TELL) states that if C |c is consistent then
a process can place c in parallel with C, the process aborts otherwise. Rule (ASK) spec-
ifies that a process starting with an ask c prefix evolves to its continuation when c is
entailed by C and it is stuck otherwise. By rule (RETRACT) a process can remove c if c is
one of the syntactic constraints of C. In rules (COMM), we write ỹ = w̃ to denote the par-
allel composition of fusions y1 = w1 | . . . |yn = wn. Intuitively, two processes x〈ỹ〉.P and
z〈w̃〉.Q can synchronise when the equality of the names x and z is entailed by C and the
parallel composition C | ỹ = w̃ is consistent. Note that it is legal to treat name equalities
as constraints c over C , because named c-semirings contain fusions. Rule (PAR) allows
for the closure with respect to unconstrained processes in parallel. This rule disallows
computations that consider only partial stores of constraints and, consequently, it makes
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necessary to add the parallel composition of constraints C in several operational rules,
such as (TAU) and (SUM), even though this might seem superfluous. The remaining
rules deal with transactions. Rules (TRANS), (TR-COMP), (COMMIT), and (TR-COMM)
serve the same purpose as the homologous rules of the committed pi. Note that the
well-formedness assumption ensures that C, C1 and C2 can only share channel names.
Rules (ABT-TELL) and (ABT-COMM) force an abort in case a process tries to place a
constraint that is not consistent with the parallel composition of constraints C. Rules
(ABT-PAR) extends the effect of an abort to the sibling processes. Unlike rule (PAR),
rule (TR-PAR) allows closure with respect to constraints running in parallel. Note that
such composition is legal in virtue of the well-formedness assumption which ensures
fn(C)∩ f n(P,Q) = /0.

4.3 Example: A Transactional SLA

We now model in committed cc-pi the scenario depicted in Example 1. The client and
the server can be sketched as follows.

Clientrb,c(r, p)≡(bw)(cost)[tell (bw≥ rb).r〈bw〉.tell (cost≤c).p〈cost〉.0 :Q].
U(bw,cost)

Providerob,uc(r, p)≡ (bw′)(cost′)[tell (bw′ ≤ ob).r〈bw′〉.
tell (bw′ ∗uc = cost ′).p〈cost′〉.0 : Q′].U ′(bw′,cost′)

The specification above is the same as the one given in Example 1 using cc-pi, apart
from the fact that here the sequences of actions taken by each party are within a trans-
actional scope and that they include compensating processes Q and Q′. Assume the
following system composed of a client and two providers.

S ≡ (r)(p)Client4Gb,$100 | Provider6Gb,$20 | Provider3Gb,$15

By executing the tell prefixes in all transactions we obtain the following derivation
(we abbreviate U(bw,cost) and U ′(bw′,cost′) with U and U ′ respectively).

S
τ−→∗ (r)(p)(bw)(cost)[bw≥ 4Gb | r〈bw〉.tell (cost ≤ $100).p〈cost〉.0 : Q].U

| (bw′)(cost′)[bw′ ≤6Gb | r〈bw′〉.tell (bw′ ∗ $20=cost ′).p〈cost′〉.0 :Q′].U ′
| (bw′)(cost′)[bw′ ≤3Gb | r〈bw′〉.tell (bw′ ∗ $15=cost ′).p〈cost′〉.0 :Q′].U ′

As in the non-transactional case, the client can synchronise only with the first provider.
Hence, the only possible reduction is

τ−→ (r)(p)(bw)(cost)(bw′)(cost′)
[bw≥ 4Gb | bw = bw′ | bw′ ≤ 6Gb
| tell (cost ≤ $100).p〈cost〉.0 | tell (bw′ ∗ $20=cost ′).p〈cost′〉.0 :Q|Q′].(U |U ′)
| (bw′)(cost′)[bw′ ≤ 3Gb | r〈bw′〉.tell (bw′ ∗ $15 = cost ′).p〈cost′〉.0 : Q′].U ′
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Next, the provider and the client fix their constraints on the cost of the service, the
communication over p takes place, and the transaction can commit:

τ−→∗ (r)(p)(bw)(cost)(bw′)(cost′)
bw≥ 4Gb | bw = bw′ | bw′ ≤ 6Gb | bw′ ∗ $20 = cost ′ | cost ≤ $100 |U |U ′

| (bw′)(cost′)[bw′ ≤ 3Gb | r〈bw′〉.tell (bw′ ∗ $15 = cost ′).p〈cost′〉.0 : Q′].U ′

Consider now the variant shown in Example 3 in which the client is Client4Gb,$60 instead
of Client4Gb,$100. In this case, the system may evolve as before until the client and
the provider fix the constraint about variables cost and cost ′. Afterwards, when they
synchronise on p, the transaction aborts since the constraints are now not consistent.
In such case the compensations Q and Q′ are activated. Note that the precise definition
of the compensations may dictate the strategy followed by each participant during the
negotiation. For instance, for the client the compensation could be Clientrb,c+$10. That
is it may offer to pay more for the requested bandwidth, or alternatively Clientrb−1Gb,c

to request less bandwidth by offering the same price. Similarly, the provider may fix its
own negotiation strategy.

5 Big-Step Operational Semantics

In this section we introduce an alternative definition for the semantics of committed
cc-pi, which allows us to reason about transactional computations at different levels
of abstraction. In particular, the big-step semantics is intended to single out the com-
putations of a system that are not transient, or in other words, the states containing
no running transactions. Therefore, the big-step semantics provides a description of
the possible evolution of a system through stable states. Processes associated to sta-
ble states of the system are said stable processes. Formally, a process P is stable if
P �≡ (x̃) [P1 : Q1].U1 |P2, i.e. P does not contain active transactions. We remark that
our definition of stable process is intentionally not preserved by weak bisimulation. In
case such property is required, an alternative characterization of stable process could
be given by slightly adapting the original semantics in order to make the beginning of
transaction executions observable.

A committed cc-pi process P is a shallow process if every subterm of the form
[P′ : Q′] occurs under a prefix τ. Moreover, we require U shallow for any definition

D(x̃) def= U . The main idea behind shallow processes is that of syntactically distinguish
transactional terms that have not been activated yet (i.e., those occurring after τ prefixes)
from those that are already active (i.e., non stable processes). For instance, the process
τ.[U : U ′] denotes a transaction that has not been activated, while the term [U : U ′] stands
for a transaction that is in execution.

Hereafter we assume all processes to be shallow. Moreover, we let PS and US range
over stable processes and stable unconstrained processes, respectively. We remark that
any process P can be straightforwardly rewritten as a shallow process by adding τ pre-
fixes before any transactions, without changing the meaning of the program.

The big-step or high-level semantics of processes is the smallest relation P
τ⇒ Q

induced by the rules in Figure 3. Most rules are analogous to the small-step semantics.
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(TAU)

C |τ.U τ� C |U
(OUT)

C |x〈ỹ〉.U x〈ỹ〉
� C |U

(INP)

C |x〈ỹ〉.U x〈ỹ〉
� C |U

(TELL)

C |tell c.U
τ� C |c |U if C |c consistent

(ABT-TELL)

C |tell c.U
abr� 0 if C |c not consistent

(ASK)

C |ask c.U
τ� C |U if C � c

(RETRACT)

C |retract c.U
τ� (C− c) |U

(COMM)

C |U x〈ỹ〉
� C |U ′ C |V z〈w̃〉

� C |V ′

C |U |V τ� C | ỹ = w̃ |U ′ |V ′
if |ỹ|= |w̃| and C | ỹ = w̃ consistent and C � x = z

(ABT-COMM)

C |U x〈ỹ〉
� P C |V z〈w̃〉

� Q

C |U |V abr� 0

if |ỹ|= |w̃| and C | ỹ = w̃ not consistent and C � x = z

(PAR)

P
α
� P′ α �= abr

P |U α
� P′ |U

(ABT-PAR)

P
abr
� 0

P |Q abr� 0

(SUM)

C |πi.Ui
α
� U ′

C | ∑πi.Ui
α
� U ′

(RES )

P
τ

� P′

(x)P
τ

� (x)P′

(TRANS’)

PS
τ⇒ P′S

[PS : QS].US
τ

� [P′S : QS].US

(TR-COMP)

P
abr� P′

[P : Q].U
τ� Q

(TR-COMMIT)

[C : Q].U
τ� C |U

(TR-PAR)

[P : Q].U
τ� P′

C | [P : Q].U
τ

� C |P′

(TR-COMM’)

C1 |US1

x〈ỹ〉
� RS1 C2 |US2

z〈w̃〉
� RS2 |ỹ|= |w̃| and C1 |C2 | ỹ = w̃ consistent and C |C1 |C2 �x = z

C | [C1 |US1 : QS1 ].V1 | [C2 |US2 : QS2 ].V2
τ� C | [RS1 |RS2 | ỹ = w̃ : QS1 |QS2 ].(V1 |V2)

(SEQ)

P
τ� P′ P′

τ� P′′

P
τ

� P′′

(UP)

PS
τ� P′S

PS
τ⇒ P′S

Fig. 3. Big step semantics

The only rules that have been redefined are (TRANS) and (TR-COMM). In particular,
the new (TR-COMM’) allows the merge of transactions only when the synchronising
processes US1 and US2 are stable. Similarly, rule (TRANS’) requires internal reductions
to be high-level steps, i.e., reductions from stable processes to stable processes. Hence,

the reduction [PS : QS].US
τ� [P′S : QS].US is not a high-level step, since it does not

relate stable processes. In addition, rule (SEQ) stands for the sequential composition of
low-level steps, and rule (UP) states that a low-level step is a high-level step when the
involved processes are stable.
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Example 4. We show the big-step reductions for the example given in Section 4.3. In
particular, we consider the shallow version of the processes Clientrb,c and Providerob,uc

(i.e., by adding the prefixes τ before transactional scopes). For instance, the following
system

S′ ≡ (r)(p)Client4Gb,$100 | Provider6Gb,$20 | Provider5Gb,$30

has the following two big-step reductions

S′ τ⇒ (r)(p)(bw)(cost)(bw′)(cost′)
bw≥ 4Gb | bw = bw′ | bw′ ≤ 6Gb | bw′ ∗ $20 = cost ′ | cost ≤ $100 |U |U ′
| Provider5Gb,$30

and
S′ τ⇒ (r)(p)(bw)(cost)(bw′)(cost′) Q |Q′ | Provider6Gb,$20

The first one describes the successful negotiation between the provider Provider6Gb,$20

and the client, while the the second one describes the failed negotiation between the
client and Provider5Gb,$30.

The remaining of this section is devoted to show that the small- and the big-step seman-
tics coincide for shallow processes. Next propositions are auxiliary results that will be
used for proving the main theorem.

Proposition 1. If PS
α−→ P and α = x〈ỹ〉,x〈ỹ〉, then P is stable.

Proof. By rule induction (using the fact that transactions occur only under τ prefixes in
shallow processes).

The following result assures that a derivation from a stable process PS that reduces to a
non stable process, which is able to perform an input, an output, or an abort action, can
be rewritten as a computation that executes the respective action first, and then starts all
the transactions.

Proposition 2. Let PS be a stable process. If PS
τ−→∗ (x̃)RS|T and RS

α−→ R′ for α =
y〈z̃〉,y〈z̃〉,abr, then, there exists a stable process TS s.t. PS

τ−→∗ (x̃)RS|TS
α−→ (x̃)R′|TS

τ−→∗
(x̃)R′|T .

Proof (sketch). Proof follows by induction on the length of the derivation PS
τ−→n

(x̃)RS|T . The base case (n = 0) is immediate by considering TS ≡ T (note that PS ≡
(x̃)RS|T and, hence, T is stable). Inductive step follows by considering PS

τ−→ P. There
are two main possibilities: if P is stable, then the proof is immediate by inductive hy-
pothesis. If P is not stable, the only possibility for PS

τ−→ P is PS ≡ (z̃)τ.[Q : Q′].U |OS

(by shallowness, transactions occur only under τ prefixes). Consequently, P ≡ (z̃)[Q :

Q′].U |OS. There are three possibilities: (i) when OS
τ−→∗ α−→ O′S, then the proof follows

by using inductive hypothesis; (ii) when [Q : Q′].U τ−→∗ α−→ O, then α occurs after the

commit of the transaction and U
τ−→∗ α−→ O, it follows by inductive hypothesis (since U

is stable); (iii) [Q : Q′].U |OS
τ−→∗ α−→O by applying at least once rule (TR-COMM). Also

in this case α may occur only after the commit of all joint transactions, which releases
only stable processes. Hence, the proof follows by inductive hypothesis.
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Next proposition assures that all the possible states reached by the execution of a pair of
transactions that have no active subtransactions can be obtained by computations that
never merge transactions containing subtransactions.

Proposition 3. For any two shallow non nested transactions [PS1 : Q].U and [PS2 :
Q′].U ′, the following holds

C|[PS1 : Q].U |[PS2 : Q′].U ′ τ−→∗ C|[P1 : Q].U |[P2 : Q′].U ′ τ−→C|[P : Q|Q′].(U |U ′)

implies

C|[PS1 : Q].U |[PS2 : Q′].U ′
τ�
∗

C|[P′S1
: Q].U |[P′S2

: Q′].U ′
τ� C|[PS : Q|Q′].(U |U ′) τ�

∗

C|[P : Q|Q′].(U |U ′)

Proof (sketch). The reduction step C|[P1 : Q].U |[P2 : Q′].U ′ τ−→C|[P : Q|Q′].(U |U ′) im-

plies that ∃x,z s.t. P1
x〈ỹ〉−→ P′1, P2

z〈w̃〉−→ P′2, C � x = z, and P = P′1|P′2|ỹ = w̃. Note that P1
x〈ỹ〉−→

P′1 implies P1 ≡ (ṽ)RS1 |T1 and RS1

x〈ỹ〉−→ R′S1
. By Proposition 2, there exists a stable pro-

cess P′S1
s.t. PS1

τ−→∗ P′S1

x〈ỹ〉−→ P′′1
τ−→∗ P′1. By Proposition 1, P′′1 is stable. Similarly, for PS2 .

Hence, both transactions can be merged, obtaining C|[(ṽ)P′′1 |P′′2 |ỹ = w̃ : Q|Q′].(U |U ′).
Note P′′1 |P′′2 is stable and therefore the proof follows by taking PS ≡ (ṽ)P′′1 |P′′2 |ỹ = w̃.

Lemma 1. PS
τ−→+

P′S implies PS
τ� P′S.

Proof (sketch). Follows by induction on the length of the derivation PS
τ−→n

P′S.
Base case (n = 1) is immediate by rule analysis. Inductive step (n = k) considers

PS
τ−→ P

τ−→k
P′S. If P is stable, the proof is completed by applying inductive hypoth-

esis. Otherwise, the only possibility is P≡ (x̃)[QS : Q′S].US|PS1 and PS
τ� P (proved by

structural induction over PS). Since P
τ−→k

P′S, there are three possibilities for completing
the computation:

1. The transaction commits by itself, then QS
τ−→∗ (ỹ)C. By inductive hypothesis QS

τ�
(ỹ)C. By rule (UP) QS

τ⇒ (ỹ)C, by (TRANS’) [QS : Q′S].US
τ� [(ỹ)C : Q′S].US, by

(COMMIT) [(ỹ)C : Q′S].US
τ� (ỹ)C|US, by (TR-PAR) and (PAR) [QS : Q′S].US|PS1

τ�
(ỹ)C|US|PS1 , and finally by (RES) (x̃)[QS : Q′S].US|PS1

τ� (x̃)(ỹ)C|US|PS1 . The proof

is completed by inductive hypothesis on (x̃)(ỹ)C|US|PS1

τ−→ P′S and rule (STEP).

2. The transaction aborts by itself, then QS
τ−→∗ Q

abr−→Q′. Then, by Proposition 2 there

exists Q′′ and Q′′′ stable s.t. QS
τ−→∗ Q′′ abr−→Q′′′. By, inductive hypothesis QS

τ�
∗

Q′′.
By (TRANS’) [QS : Q′S].US

τ� [Q′′ : Q′S].US. By structural induction we can prove

that Q′′ abr−→Q′′′ implies Q′′
abr� Q′′′, and then by (TR-COMP) [Q′′ : Q′S].US

τ� Q′S. The
proof is completed as in the previous case.
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3. The transaction merges with some transaction activated by PS1 . The proof fol-
lows by using repeatedly Proposition 3 for proving that merge of transactions can
be done with non nested transactions, and inductive hypothesis for proving that
reductions inside transactions from stable to stable processes correspond to �
reductions.

Theorem 1. PS
τ−→+

P′S implies PS
τ⇒ P′S.

Lemma 2. P
τ� P′ implies P

τ−→+
P′.

Proof (sketch). Proof follows by rule induction. Rules (TAU), (TELL), (ASK), (RE-
TRACT), are immediate. Cases (PAR), (SUM), (RES), (TR-PAR) follows by inductive
hypothesis. Cases (COMM) and (TR-COMM) follow by proving using rule induction

that P
α� P′ for α = x〈ỹ〉,x〈ỹ〉 implies P

α−→ P′. If the last applied rule is (TRANS ), then
P≡ [PS : QS].US. Consequently, the proof has the following shape:

PS
τ� P′S

PS
τ⇒ P′S

(UP)

[PS : QS].US
τ� [PS : QS].US

(TRANS)

By inductive hypothesis on PS
τ� P′S we have that PS

τ−→+
P′S. Then, it can be proved by

induction on the length of the derivation that PS
τ−→+

P′S implies [PS : QS].US
τ−→+

[P′S :
QS].US

Theorem 2. P
τ⇒ P′ implies P

τ−→+
P′.

Theorem 3. P
τ⇒ P′ iff P

τ−→+
P′.

Proof. Immediate by Theorems 1 and 2.

6 Concluding Remarks
We have presented a constraint-based model of transactional SLAs. In our language,
the mutual responsibilities of service providers and clients are expressed in terms of
constraints, which are placed by each party during the negotiation. If the combination
of such constraints is consistent, then they form the SLA contract. On the contrary, if
the negotiation fails, each party can activate a programmable compensation aimed e.g.
at relaxing client requirements or increasing service guarantees.

The proposed approach seems promising for studying more complex negotiation sce-
narios that, for instance, include third parties applications or feature arbitrarily nested
transactions. We also plan to investigate different compensation mechanisms in which,
e.g., the constraints placed until the failure are not discarded when the transaction aborts
and allowing the compensating process to take advantage of them. Similarly, it would
be interesting to consider an optimistic approach to transactions along the lines of [1].
This could be achieved by relaxing the well-formedness assumption and by allowing
global constraints to be copied inside transactional scopes upon transaction activation.
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Abstract. We study type systems for termination in the π-calculus from
the point of view of type inference. We analyse four systems by Deng and
Sangiorgi. We show that inference can be done in polynomial time for two
of these, but that this is not the case for the two most expressive systems.
To remedy this, we study two modifications of these type systems that
allow us to recover a polynomial type inference.

1 Introduction

Termination of concurrent systems is an important property. Even if some con-
current systems, like servers, are designed to offer continuously some interaction,
subsystems are often expected to terminate. Typical examples include guaran-
teeing that interaction with a resource will eventually end (in order to avoid
denial of service situations), insuring that the participants in a transaction will
reach an agreement, or relying on termination to guarantee other properties
(such as, e.g., lock freedom [3,9]). Such example applications are important for
distributed frameworks exploiting various forms of mobility. Being able to assert
termination for (part of) a system whose topology can change dynamically is
challenging. It can be particularly useful if the method includes some form of
automation.

In this paper, we focus on the π-calculus, a model of mobile computing based
on name passing, and revisit the work by Deng and Sangiorgi [4] from the point
of view of type inference. As we explain below, this can in particular be useful
in relation with the work on TyPiCal reported in [9]. [4] introduces four type
systems for the π-calculus with replicated inputs, which we will call System
1, 2, 3 and 4, in short S1, S2, S3 and S4. These systems have an increasing
expressiveness, in the sense that every process typable in Si is typable in Si+1.
The main idea behind these systems is to associate an integer level to each name,
and to enforce that, for each replicated process, the computation that ‘fires’ the
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replication has a bigger weight than the computation which is triggered by this
firing step.

In system S1, the point of view is that a term of the form !a(x̃).P is triggered
by offering an output on a. Hence, the weight of P (which is defined as the total
weight of outputs that occur in P without occurring under a replication) has to
be strictly smaller than the weight of the output on a, i.e., the level associated
to a. Weights are compared lexicographically, which entails that several outputs
can occur in P , provided they all happen on names whose level is strictly smaller
than the level associated to a.

We show (Sec. 2) that type inference for S1 can be done in polynomial time
w.r.t. the size of the process being type checked. This entails that S2, a mild
adaptation of S1, enjoys the same property. S2 adds to S1 the possibility to
analyse the values being communicated on channels, when these are first order.
Provided we have a polynomial time procedure to handle constraints about first
order expressions, type inference for S2 is polynomial.

We then move to more expressive type systems from [4]. In system S3, repli-
cated processes are written !κ.P , where κ is a maximal sequence of input prefixes
(i.e., P is not an input process). To typecheck such a process, the weight of out-
puts in P must be smaller than the total weight of κ (weights are computed
as vectors of weights for any level, and vectors are compared lexicographically).
System S4 extends S3 with the possibility to use a partial order between names
in order to typecheck replications whenever the weight of κ and the weight of
the continuation P are equal. For instance, even if a and b have the same level,
process P0 =!p.a.(p | b) can be typed provided a dominates b in the partial order
(here κ = p.a).

Our first main result is to show that for systems S3 and S4, the type inference
problem is NP complete. Our proof relies on a reduction from 3SAT. More
precisely, we prove that an instance of 3SAT determines a CCS process such
that the existence of a typing derivation for the induced process is equivalent to
the existence of a solution of the original instance of 3SAT.

To remedy the NP-completeness of S3 and S4, we propose two type systems.
In the first type system, called S3’, we renounce the lexicographic ordering on
levels, and simply add the weight (that is, the level) associated to each name to
compute the weights of κ and P . We establish that for this system, type inference
amounts to solve linear programming on rational numbers without constants,
which can be done in polynomial time. We moreover show that system S3’ is
strictly more expressive than S3. This constitutes the second main contribution
of this paper.

The main improvement of system S4 w.r.t. S3 in terms of expressiveness is the
possibility to type replicated processes in which the triggered continuation has
the same weight as the outputs needed to trigger it, such as process P0 above.
In system S4’, we retain the partial order ingredient inherent to S4, and simplify
type checking for replicated inputs. We show soundness of S4’ (every typable
process terminates), and describe a sound and complete inference procedure for
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it. We prove that the type inference problem is polynomial for system S4’, and
illustrate the expressiveness of S4’ by revisiting an example from [4] that cannot
be directly typed in that system. The definition and analysis of S4’ is the third
main contribution we present in this paper.

Related Work. There are many works on type systems for the π-calculus. In
addition to [4], type systems to ensure termination of π-calculus processes have
been studied in [11,13]. In these works, the technique of logical relations is used
to isolate a class of terminating processes.

After the seminal work of [6] for Milner’s sorts, several studies of type inference
in the π-calculus have been conducted, addressing richer type systems or variants
of the calculus, such as [12,5,7]. To our knowledge, type systems for termination
in the π-calculus have not been studied from the perspective of type inference
so far.

Our results are connected with the work on the TyPiCal tool [8], which im-
plements various type-based analyses of π-calculus processes. Other recent de-
velopments on the question of termination are presented in [9]. The focus is
different: [9] extends the termination type systems to guarantee a stronger prop-
erty called robust termination. Robust termination is then used to insure lock-
freedom (which means that certain communications will eventually succeed).
The present work can be useful for refining the verification proposed in [9].

Another relevant reference is the work on Terminator [1], and its recent ex-
tension to prove thread termination [2]. While the general objectives are similar
to ours, the approaches are technically rather different. [2] deals with a fixed
number of threads (without dynamic thread creation), and proves termination
by detecting some variance of states, while in this paper, we deal with programs
that create threads and channels dynamically.

Paper outline. In Sec. 2, we introduce the π-calculus and recall the type systems
from [4]. Sec. 3 is devoted to the complexity of type inference for these systems.
We present two systems for which type inference is polynomial: S3’ in Sec. 4,
and S4’ in Sec. 5. Final remarks are given in Sec. 6.

2 Processes and Type Systems

We let a, b, c, . . . , p, q, . . . , x, y, z range over an infinite set of names. Processes,
ranged over using P,Q, . . ., are defined by the following syntax:

P ::= 0 | (νc)P | P1|P2 | a(x̃).P | !a(x̃).P | a〈ñ〉.P | P1 + P2 .

The constructs of input, replicated input and restriction are binding; we shall
often use x, y, z, . . . for variables – names bound by input – and c for channels –
names bound by restriction. a is called the subject of the prefixes in the grammar
above. We shall sometimes extend the calculus with first-order values (integers,
booleans, . . . ). This kind of extension is standard (the reader can refer e.g.
to [4]), and we shall use it implicitly when necessary. We let os(P ) stand for
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the multiset of subjects of outputs that occur in P and do not occur under a
replication. Similarly, rs(P ) stands for the multiset of names that are restricted
in P and such that the restriction does not occur under a replication.

The standard operational semantics of the calculus is omitted. The reduction
relation is written P −→ P ′.

Type systems. We recall here briefly the definitions of systems S1 to S4. We
refer to [4] for detailed explanations and motivating examples accompanying the
definitions. To remain close to [4], we give a presentation of the type systems à
la Church: each name has a given type a priori, and hence we could also omit
mentioning the typing context (ranged over using Γ ) in the typing rules. [9]
proposes a version à la Curry of these type systems. We keep typing contexts
in typing rules in order to ease reading. All systems assign levels to names: a
typing hypothesis has the form a : #kT̃ , to specify that name a transmits tuples
of type T̃ , and that the level of a is k, which we write lvl(a) = k (k is a natural
number).

System S1. Below are the typing rules for S1. With respect to simple types,
the differences worth mentioning are that level information decorates types, and
that the rule for replicated inputs is adapted to control termination.

Γ (a) = #kx̃ Γ � P
Γ � a(x̃).P

Γ (a) = #kT̃ Γ (p̃) = T̃ Γ � P
Γ � a〈p̃〉.P

Γ � P1 Γ � P2

Γ � P1|P2

Γ � P1 Γ � P2

Γ � P1 + P2 Γ � 0
Γ � P

Γ � (νa)P

Γ (a) = #kx̃ Γ � a(x̃).P ∀n ∈ os(P ). lvl(n) < k

Γ �!a(x̃).P
As explained in the introduction, the control on replications consists in verifying
that all names in os(P ) (the multiset of subjects of outputs that occur in P
without being guarded by a replication) have a level strictly smaller than lvl(a).

System S2. System S2 is of minor interest for the purposes of this paper, because
type inference can be done almost as for system S1. The only typing rule that
differs w.r.t. S1 is the rule for replication:

Γ � a(x̃).P ∀b〈ṽ〉 ∈ out(P ). b〈ṽ〉 � a(x̃)
Γ �!a(x̃).P

b〈ṽ〉 � a(x̃) holds if either lvl(b) < lvl(a), or lvl(b) = lvl(a) and ṽ, x̃ are
tuples of first-order expressions that can be compared according to some well-
founded order. For instance, this is the case if x̃ = 〈x1, x2〉, ṽ = 〈x1 − 1, x2 + 2〉,
and if tuples of expressions are compared lexicographically (the xis are natural
numbers, and we suppose we can prove x1 > 0).
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S2 makes it possible to allow outputs on a in a term of the form !a(x̃).P : a
process like !a(x).if x > 0 then a〈x − 1〉 else b〈x〉 is typable in S2 provided
lvl(b) < lvl(a) (x is a natural number), despite the emission on a.

System S3. The typing rule for replication in S3 is:

Γ � κ.P wt(κ) � wt(P )
Γ �!κ.P

κ is a maximal sequence of input prefixes (i.e., in κ.P , P is not an input). The
meaning of condition wt(κ) � wt(P ) is the following: wt(κ) is defined as a vector
of natural numbers (Ik, . . . , I1), where Ij is equal to the number of occurrences
of names at level j occurring in subject position in κ (k is the level of biggest
weight). Similarly, wt(P ) is (Ok, . . . , O1), and Oj is the number of occurrences
of names at level j in os(P ). Relation � is defined as the lexicographical com-
parison of the weight vectors. For instance, !p.q.(p | p) is well-typed if lvl(p) = 1,
lvl(q) = 2 (the vectors corresponding to κ and P are (1, 1) and (0, 2) respec-
tively).

In [4], S3 additionally imposes that the name being used as last input subject
in κ should be asynchronous, that is, no continuation can appear after outputs
on this name. This constraint, which is present mostly for technical reasons in [4],
can actually be removed, and the proof of soundness can be adapted rather easily
— we therefore omit it here.

System S4. The typing judgement for S4 is of the form Γ �R P , where R is a
strict partial order on the free names of P . Only names having the same simple
type can be compared using R.

The syntax of types is extended to include partial order information. If S is
a set of pairs of natural numbers, p : #k

S T̃ specifies that p is of level k, carries a
tuple of names of type T̃ , and imposes that whenever (k, l) ∈ S, (i) the kth and
lth components of T̃ exist and have the same simple type; and (ii) for any tuple
of names emitted on p, the kth component of the tuple must dominate the lth
component according to the partial order. For instance, if p : #k

{(2,3)}〈T1, T2, T2〉
and if the process contains a subterm of the form p〈u, v, w〉.0, where u, v, w
are free names, then typability imposes that v and w have type T2 and vRw.
Checking this kind of constraints is enforced by the typing rule for outputs. The
typing rules for restriction and input are modified w.r.t. S3 in order to extend
R appropriately in the premise (see [4]).

Intuitively, the role of R is to insure termination in replicated processes for
which wt(κ) = wt(P ). In such situations, there is a risk to generate infinite
computations by extending relation R via newly created names. S4 therefore
imposes a form of control over restricted names. An occurrence of a restriction
is unguarded if it does not occur under an input or output prefix. RN stands
for the set of names n such that if n appears in prefix subject position, then the
continuation process has no unguarded restrictions.
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In S4, the condition of S3 in the rule for replication is replaced with κ :� P .
κ :� P holds iff either (i) wt(κ) � wt(P ) (as in S3), or (ii) wt(κ) = wt(P ),
κR̂κP and the last input subject of κ belongs to RN . For the needs of this
paper, we can avoid entering the technical details of the definition of R̂κ, as
we shall use a simplified version of this relation in S4’ (and, in analysing the
complexity of S4, we shall not resort to (ii) above). Let us just say that this
relation is based on a multiset extension of the order R on free names.

The problem of type inference. In the sequel, we shall always implicitly
consider a process P , from which we want to infer an explicitly typed process,
where inputs and restrictions are decorated with type information. We suppose
that P obeys the Barendregt convention, i.e., all its bound names are pairwise
distinct and distinct from all the free names of P . Typing constraints between
(bound or free) names of P will be generated regardless of scope – we will of
course then take scope into account to assert whether a process is typable.

We shall say that a type inference procedure is polynomial to mean that it
can be executed in polynomial time w.r.t. the size of P . We shall sometimes
simply call a type system ‘polynomial’ to mean that it admits a polynomial
time inference procedure.

Type inference for simple types is standard (see, e.g., [12]), and can be done
in polynomial time. In the remainder of the paper, we shall implicitly assume
that each process we want to type admits a simple typing, and we will concen-
trate on the question of finding annotations (levels, and, possibly, partial order
information) that allow us to ensure typability for the systems we study.

3 Type Inference for Deng and Sangiorgi’s Type Systems

3.1 Inference for Systems S1 and S2 Is in P

Proposition 1. Type inference for system S1 is polynomial.

Proof. We adapt the standard type inference procedure for simple types [12].
We associate to each type a level variable. Based on the typing rules, we can
generate a set C of constraints consisting of unification constraints on types and
inequality constraints (of the form l1 < l2) on level variables, such that C is
satisfiable if and only if P is typable, and the size of C is linear in the size of
P . Using the standard unification algorithm, we can transform C into a set C′

of inequality constraints on level variables in polynomial time. The satisfiability
of C′ is equivalent to the acyclicity of the graph induced from C′, which can
again be checked in polynomial time. Thus, the type inference problem for S1 is
polynomial. 	

We can adapt this proof to derive a similar result for S2: whenever we find a
cycle in the graph, if the cycle only contain names carrying first-order values,
instead of failing, we invoke � to check for typability (otherwise, we fail).

Proposition 2. Suppose we are given relation � together with a procedure to
decide � in polynomial time. Then type inference for S2 is polynomial.
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3.2 Hardness of Systems S3 and S4

Theorem 3. The type inference problem for system S3 is NP-complete.

Proof. Let z be the number of names occurring in P . The problem is in NP
because trying one of the zz different ways of distributing names into z levels
can be done in polynomial time w.r.t. the size of the process and the number of
names. It is easy to prove that no more than z levels are required.

We now show that we can reduce 3SAT to the problem of finding a mapping
of levels. We consider an instance I of 3SAT: we have n clauses (Ci)i≤n of three
literals each, Ci = l1i , l

2
i , l

3
i . Literals are possibly negated propositional variables

taken from a set V = {v1, . . . , vm}. The problem is to find a mapping from V to
{True, False} such that, in each clause, at least one literal is set to True.

All names we use to build the processes below will be CCS names. We fix a
name true. To each variable vk ∈ V , we associate two names xk and x′k, and
define the process

Pk
def= !true.true.xk.x′k | !xk.x

′
k.true .

We then consider a clause Ci = {l1i , l2i , l3i } from I. For j ∈ {1, 2, 3} we let nj
i = xk

if lji is vk, and nj
i = x′k if lji is ¬vk. We then define the process

Qi
def= !n1

i .n
2
i .n

3
i .true .

We call It the problem of finding a typing derivation in S3 for the process
P

def= P1 | . . . |Pm | Q1 | . . . |Qn. Note that the construction of P is polynomial
in the size of I.

We now analyse the constraints induced by the processes we have defined.
The level associated to name true is noted t.

– The constraint associated to !true.true.xk.x′k is equivalent to

(
t ≥ lvl(xk) ∧ t ≥ lvl(x′k)

) ∧ (
t > lvl(xk) ∨ t > lvl(x′k)

)
.

The constraint associated to !xk.x
′
k.true is equivalent to

t ≤ lvl(xk) ∨ t ≤ lvl(x′k) .

Hence, the constraint determined by Pk is equivalent to

(
lvl(xk) = t ∧ lvl(x′k) < t

) ∨ (
lvl(x′k) = t ∧ lvl(xk) < t

)
. (1)

– The constraint associated to !ni1 .ni2 .ni3 .true is equivalent to

t ≤ lvl(n1
i ) ∨ t ≤ lvl(n2

i ) ∨ t ≤ lvl(n3
i ) . (2)
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We now prove that ’It has a solution’ is equivalent to ‘I has a solution’.
First, if I has a solution S : V → {True, False} then fix t = 2, and set

lvl(xk) = 2, lvl(x′k) = 1 if vk is set to True, and lvl(xk) = 1, lvl(x′k) = 2
otherwise. We check easily that condition (1) is satisfied; condition (2) also holds
because S is a solution of I.

Conversely, if It has a solution, then we deduce a boolean mapping for the
literals in the original 3SAT problem. Since constraint (1) is satisfied, we can set
vk to True if lvl(xk) = t, and False otherwise. We thus have that vk is set to
True iff lvl(xk) = t, iff lvl(x′k) < t. Hence, because constraint (2) is satisfied,
we have that in each clause Ci, at least one of the literals is set to True, which
shows that we have a solution to I. 	


This proof can be easily adapted to establish the same result for S4: the idea
is to ‘disable’ the use of the partial order, e.g. by adopting a different type for
true. We thus get:

Corollary 4. The type inference problem for System S4 is NP-complete.

The cause of NP-difficulty. The crux in the proof of Thm. 3 is to use the ‘κ
component’ of S3 to introduce a form of choice: to type process !a.a′.P , we cannot
know a priori, for b ∈ os(P ), whether to set lvl(a) ≥ lvl(b) or lvl(a′) ≥ lvl(b).
Intuitively, we exploit this to encode the possibility for booleans to have two
values, as well as the choice of the literal being set to True in a clause. By
removing the κ component from S3, we get system S1, which is polynomial.

However, it appears that NP-completeness is not due only to κ: indeed, it
is possible to define a polynomial restriction of S3 where the choice related to
the κ component is present. Let us call S3” the type system obtained from S3
by imposing distinctness of levels: two names can have the same level only if
in the inference process, their types are unified when resolving the unification
constraints. Note that this is more demanding than simply having the same
simple type: in process p | q, names p and q have the same simple type, but,
since their types are not unified during inference, they must be given different
levels in system S3”.

Although typing a process of the form !a(x).a′(y, z).P seems to introduce the
same kind of choice as in S3, it can be shown that type inference is polynomial
in S3”. Intuitively, the reason for this is that there exists a level variable, say
α, such that for every constraint on weight vectors of the shape wt(κ) � wt(P )
induced along type inference, the cardinal of α in wt(P ) is not greater than the
cardinal in wt(κ). It can be shown that if no such α exists, then the process is
not typable.

This gives a strategy to compute a level assignment for names, and do so in
polynomial time: assign the maximum level to α, and consider a weight vector
constraint wt(κ) � wt(P ): if there are as many αs in wt(κ) as in wt(P ), re-
place the constraint with the equivalent constraint where the αs are removed.
Otherwise, the number of αs strictly decreases, which means that we can simply
remove this constraint. We thus obtain an equivalent, smaller problem, and we
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can iterate this reasoning (if there are no more constraints to satisfy, we pick a
random assignment for the remaining levels).

System S3” retains the lexicographical comparison and the κ component from
S3, but is polynomial. By Prop. 7 below, since S3” is a restriction of S3, it is less
expressive than S3’. In some sense, S3” ‘respects the identity of names’ : while in
S3’ levels are added, and we rely on algebraic calculations on natural numbers,
only comparisons between levels are used in S3”; this means that, intuitively, we
cannot trade a name a for one or several names whose role in the given process
is completely unrelated to the role of a.

4 Summing the Levels Assigned to Names

We now study system S3’, in which we renounce the lexicographical comparison
between names through levels, and instead add levels to compute the weight of
κ and P in a term of the form !κ.P .

Definition 5 (System S3’). We let subj(κ) stand for the multiset of names
occurring in subject position in κ.

System S3’ is defined by the same rules as system S3, except that the condition
for the replication rule is Σn∈subj(κ)lvl(n) > Σn∈os(P )lvl(n) (for all n, lvl(n)
is a natural number).

Note that subj(κ) and os(P ) are multisets, so that the weight of names having
multiple occurrences is counted several times.

Soundness of S3’ can be established by adapting the proof for S3 in [4]:

Proposition 6. System S3’ ensures termination.

Proposition 7. System S3’ is strictly more expressive than S3.

Proof. We first show that S3’ is at least as expressive as S3. We consider a
process of the form P0 =!κ.P , that can be typed in S3 (κ is a maximal input
prefix). We write (Ik, . . . , I1) and (Ok, . . . , O1) for the vectors of levels associated
to κ and os(P ) respectively (the Ijs are natural numbers, and Ij is the number
of subject occurrences of names of level j in κ — and similarly for the Ojs). We
fix an integer b such that ∀j ∈ [1 . . . k]. |Oj − Ij | < b, and build a S3’ typing
context for P0 by assigning level bL(n) to name n, where L(n) denotes the level
of n according to the S3-typing of P0.

Let us show that this induces a correct typing for P0 in S3’. Because P0 is
typed in S3, there exists u such that Ik = Ok, Ik−1 = Ok−1, . . . , Iu+1 = Ou+1

and Iu > Ou +1. We compute the difference of weights between κ in P according
to S3’: wt(κ)−wt(P ) = Σ1≤j≤k(Ij−Oj)bj ≥ bu +Σ1≤j<u(Ij−Oj)bj . The latter
quantity is strictly positive by definition of b, which shows that P0 is S3’-typable.

We can generalise this reasoning by remarking that an arbitrary process Q
has a finite number of replications, which allows us to fix a b which is suitable
for all replicated subterms of Q.
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To show that there are processes which can be typed by system S3’ but not by
S3, consider P1

def= !a.b | !b.b.a. P1 is ill-typed according to S3: the first subterm
imposes lvl(a) > lvl(b), and the vectors associated to the second subterm are
hence of the form (0, 2) and (1, 0), and we do not have (0, 2) � (1, 0). By setting
lvl(a) = 3 and lvl(b) = 2, we can check that P1 is typable for S3’. 	

Theorem 8. Type inference for system S3’ is polynomial.

Proof. By inspecting the process to be typed, type inference amounts to find a
solution to a system of inequalities of the form Σjai,j .uj > 0, where the ai,js are
integers and the solution is the vector of the ujs, which are natural numbers.
This system has a solution if and only if the system consisting of the inequalities
Σjai,j .uj ≥ 1 has one. We resort to linear programming in rationals to solve
the latter problem (we can choose to minimise Σjuj), which can be done in
polynomial time. Because of the shape of inequalities generated by the typing
problem (there are no constant factors), there exists a rational number solution
to the inequalities if and only if there exists an integer solution. 	


5 Exploiting Partial Orders on Names

5.1 System S4’: Definition and Properties

System S4 from [4] is built on top of S3, and improves its expressiveness by
allowing the use of partial orders. To define S4’, we restrict ourselves to the
partial order component of S4, and do not analyse sequences of input prefixes
(κ) as in S3: in a term of the form !a(x̃).P , name a must dominate every name
in os(P ), either because it is of higher level, or via the partial order relation.

We now introduce S4’. Let R be a relation on names, S a relation on natural
numbers, and x̃ a tuple of names. We define two operators / and ∗ as follows:

R / x̃ =

⎧
⎨

⎩

∅ if n(R) ∩ x̃ = ∅
{(i, j) | xiRxj} if n(R) ⊆ x̃
undefined otherwise

S ∗ x̃ = {(xi, xj) | iSj}
if max(n(S)) ≤ |x̃|

Above, n(R) = {a. ∃b. aRb∨bRa}, n(S) = {i. ∃j. iSj∨ jSi}, and |x̃| denotes the
number of names in x̃. We also define
R⇓

�x = {(a, b) | a, b �∈ x̃ and aRc1R· · ·RcnRb for some c̃ ⊆ x̃ and n ≥ 0}.
The typing rules for S4’ are given on Fig. 1. Again, although the type system

is defined à la Church, we mention the typing context to ease readability. When
writing a judgement of the form Γ �R P , we implicitly require that R does not
contain a cycle. Note that w.r.t. system S4 in [4], we relax the constraint that
R should only relate names having the same simple type.

As explained above (Sec. 2), given a name a, S captures the relation between
types communicated along a: to typecheck an emission of names x̃ on a, we
compute S ∗ x̃, which is the order on names in x̃ induced from S by their index
position in x̃. Conversely, R / x̃ is the ‘S’ one can extract from a relation R by
focusing on a tuple of names x̃.
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Γ �R 0

Γ �R1 P Γ �R2 Q

Γ �R1+R2 P |Q
Γ �R1 P Γ �R2 Q

Γ �R1+R2 P + Q

Γ (a) = �n
SΓ (�x) Γ �R P S ⊇ R / �x

Γ �R⇓
�x

a(�x).P

Γ (a) = �n
SΓ (�v) Γ �R P R ⊇ S ∗ �v

Γ �R a〈�v〉.P
Γ (c) = �n

S �T Γ �R P

Γ �R⇓c (νc)P

Γ (a) = �n
SΓ (�x) Γ �R P S ⊇ R / �x Γ �R a :� (os(P ),rs(P ))

Γ �R⇓
�x

!a(�x).P

Γ �R′ P R′ ⊆ R
Γ �R P

Fig. 1. System S4’: Typing Rules

In the rule for replication, Γ �R a :� (N1, N2) holds if either of the following
conditions holds:

(i) ∀v ∈ N1.lvl(v) < lvl(a) ∧ ∀v ∈ N2.lvl(v) ≤ lvl(a)
(ii) ∀v ∈ N2.lvl(v) < lvl(a)
∧∃b ∈ N1.lvl(b) = lvl(a) ∧ aRb ∧ ∀v ∈ N1 − {b}.lvl(v) < lvl(a).

(notice that N1 is a multiset).
The last rule in Fig. 1 is optional; it does not change typability, but makes

the correspondence with the constraint generation algorithm more clear. Ac-
cordingly, in the rules for parallel composition and choice, we could mention the
same relation R in both premises and in the conclusion — the version of the
rules we present is closer to the type inference procedure (see Sec. 5.2).

Notice that the partial order can be used for at most one output in the con-
tinuation process to typecheck a replication. Indeed, by omitting this constraint
in case (ii) above, we could typecheck the following divergent process:

P2
def= !p(a, b, c, d).(!a.c.d | !b.(νe, f) p〈c, d, e, f〉) | p〈u, v, w, t〉.(u | v),

by setting aRc and aRd. In P2, the subterm replicated at b makes a recursive
call to p with two new fresh names; the subterm replicated at a is typed using the
partial order twice, and the outputs it triggers feed the loop (a similar example
can be constructed to show that we must also forbid using R twice with the
same pair of names).

Proposition 9. System S4’ ensures termination.

Proof. We suppose that there exists a process P admitting a diverging sequence
D: P = P1 −→ P2 −→ P3 −→ . . ., and that P is well-typed according to S4’.
Let k be the maximum level assigned to names in the typing of P .
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We call I the set of integers i such that the reduction step from Pi to Pi+1

is obtained by triggering a replicated input whose subject is of level k. We let
Si

def= {n ∈ os(Pi). lvl(n) = k} (Si is a multiset).
We remark that the size of Si cannot grow. Indeed, if the reduction from Pi to

Pi+1 does not trigger a replicated input, this obviously holds. If on the contrary
the reduction does, there are two cases: either i /∈ I, and by maximality of k, no
output at level k can be unleashed by triggering an input at level strictly smaller
than k; or i ∈ I, and there are two cases again. If the replicated input has been
typed using clause (i) of the definition of :�, then Si+1 has one element less
than Si. If clause (ii) has been used, then Si+1 has been obtained from Si by
removing an element a and replacing it with b, with aRb (by abuse of notation,
we write this SiRSi+1).

Let us now show that I is finite. The above reasoning implies that I contains
only a finite number of reductions corresponding to a replicated input that has
been typed using clause (i). Hence there exists an index after which all reductions
of D on a name of level k involve a replicated input typed using clause (ii). We
observe that between two such reductions, no name of level k can be created,
and none can be created either by such a reduction. This means that we have
an infinite sequence SjRSj+1R . . . (using the notation introduced above): this
is impossible, as R is acyclic, and the support of R at level k cannot grow.

Since I is finite, D has a suffix such that the resulting infinite sequence does
not contain any reduction involving a replicated input at a name of level k. We
can reason as above for k − 1, and finally obtain a contradiction. 	


5.2 Type Inference for S4’

We now present the type inference procedure for S4’, which has two phases: in
the first part, we generate constraints, that are solved in the second part.

Constraint generation algorithm. The rules of Fig. 2 define the constraint
generation phase of type inference. The output of this procedure is a pair (r, C)
where r is a relation variable and C consists of:

– unification constraints T1 = T2

– order constraints Γ �r a :� (N1, N2)
– relation constraints r ⊇ R, where R is made of relation variables, pairs of

names, operations such as +, ∗, ⇓, and / .

The size of C is polynomial in the size of the process. Note that relation variables
range over relations between names, or between integers (when they correspond
to ‘S’ components). They are hence ‘intrinsically typed’, as is the case for oper-
ators ∗ and / .

The following lemma can be proved easily. (Here, by solution of C, we mean an
assignment of type variables to valid types, level variables to levels, and relation
variables to strict partial orders that satisfy all the constraints in C).
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Tinf(Γ, 0) = (r, ∅) (r fresh)
Tinf(Γ, a(�x).P ) =

let (r, C1) = Tinf(Γ, P )

C2 = {Γ (a) = �l
r1Γ (�x)} (l, r1 fresh)

in (r2, C1 ∪ C2 ∪ {r1 ⊇ r / �x, r2 ⊇ r ⇓
�x}) (r2 fresh)

Tinf(Γ, !a(�x).P ) =
let (r, C1) = Tinf(Γ, P )

C2 = {Γ (a) = �l
r1Γ (�x)} (l, r1 fresh)

C3 = {r1 ⊇ r / �x, r2 ⊇ r ⇓
�x} (r2 fresh)

in (r2, C1 ∪ C2 ∪ C3 ∪ {Γ �r a :� (os(P ),rs(P ))}))
Tinf(Γ, a〈�v〉.P ) =

let (r, C1) = Tinf(Γ, P )
C2 = {Γ (a) = �l

r1Γ (�v)} (l, r1 fresh)
in (r, C1 ∪ C2 ∪ {r ⊇ r1 ∗ �v})

Tinf(Γ, (νc)P ) =
let (r1, C) = Tinf(Γ, P )
in (r, C ∪ {r ⊇ r1 ⇓c}) (r fresh)

Tinf(Γ, P1|P2) =
let (r1, C1) = Tinf(Γ, P1)

(r2, C2) = Tinf(Γ, P2)
in (r, C1 ∪ C2 ∪ {r ⊇ r1 + r2}) (r fresh)

Tinf(Γ, P1 + P2) = Tinf(Γ, P1|P2)

Fig. 2. Constraint Generation

Lemma 10 Let {v1, . . . , vn} be the set of all the names occurring in P , and
Γ = v1 :α1, . . . , vn :αn. If Tinf(Γ, P ) = (r, C), then θ is a solution of C if and
only if θΓ �θr P .

Constraint solving. Constraints are solved through several constraint trans-
formation steps, that we now describe.

– Step 1: By solving the unification constraints in C, we obtain a set C1 of
order constraints and relation constraints.

– Step 2: Eliminate level variables
For each order constraint Γ �r a :� (N1, N2), generate necessary conditions

{lvl(v) ≤ lvl(a) | v ∈ N1 ∪N2}.
Thus, we obtain a set of level constraints C2 = {l1 ≤ l′1, . . . , lk ≤ l′k}. Com-
pute a solution of C2 that is optimal in the sense that whenever possible, dif-
ferent levels are assigned to different level variables. (That can be computed
as follows. Construct a directed graph G whose node set is {l1, l′1, . . . , lk, l′k},
and whose edge set is {(li, l′i)}. Compute strongly connected components of
G, and unify all the level variables in the same component. Then, perform a
topological sort on the strongly connected components, and assign a level to
each component.) Then, substitute the solution for each Γ �r a :� (N1, N2).
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– Step 3: Eliminate order constraints Γ �r a :� (N1, N2)
Γ �r a :�(N1, N2) can be reduced as follows. Check whether ∀v ∈ N1.lvl(v)
< lvl(a) holds. If so, then just remove the constraint. Otherwise, check that
for only one b ∈ N1, lvl(b) = lvl(a) holds, and that ∀v ∈ N2.lvl(v) <
lvl(a) holds. If this is the case, replace Γ �r a :� (N1, N2) with r ⊇ {(a, b)}.
Otherwise, report that the constraints are unsatisfiable.

– Step 4: Solve relation constraints:
We are now left with a set of relation constraints:

{r1 ⊇ f1(r1, . . . , rk), . . . rk ⊇ fk(r1, . . . , rk)} .
(We assume here that {r1, . . . , rk} contains all the relation variables intro-
duced by Tinf; otherwise add a trivial constraint r ⊇ r.) Here, f1, . . . , fk

are monotonic functions on relations (in particular, R⇓
�x is monotonic if

we treat ‘undefined’ as the biggest element). Thus, we can obtain the least
solution in a standard manner [10].

Finally, we check that the transitive closure of the solution for each re-
lation variable r is irreflexive. When this is the case, we have a level assign-
ment and a definition of partial orders (between free names, and to decorate
types) which are sufficient to deduce a typing derivation for the process being
analysed.

Comments about the constraint solving procedure. Step 1 in the procedure above
is standard. In Step 2, each order constraint of the form Γ �r a :� (N1, N2)
generates a set of necessary inequalities between level variables. Cycles in the
graph that is constructed in this step correspond to level variables that are
necessarily identified. The purpose of Step 3 is to get rid of order constraints
by determining whether each corresponding subterm is typed using clause (i) or
clause (ii) of the definition of :�. If all inequalities corresponding to the order
constraint are satisfied in a strict sense by the level assignment, by clause (i),
there is nothing to do. When this is not the case, we necessarily rely on clause
(ii): we check that the corresponding hypotheses are satisfied, and generate a
relation constraint. Relation constraints are handled in Step 4.

It can be remarked that type inference gives priority to clause (i) to type
replicated terms. For instance, consider process P3 = p〈a, b〉 | p(x, y)!x.y. Type
inference assigns a type of the form #1〈#2T,#1T ′〉 to p. Alternatively, we can
choose to set p : #1

{(1,2)}〈#1T,#1T ′〉, i.e., use clause (ii). By construction, Step 2
assigns different levels whenever possible, and hence chooses the former typing.

Theorem 11. The type inference procedure for S4’ is sound and complete w.r.t.
the typing rules, and runs in polynomial time.

Soundness and completeness follow from Lemma 10 and the fact that each of the
above steps preserves the satisfiability of constraints. For the complexity result,
Tinf runs in polynomial time and generates constraints of polynomial size. In
turn, each step of the constraint solving part runs in time polynomial in the size
of the constraints.
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6 Conclusion

We have studied the complexity of type inference for the type systems of [4],
and shown how the NP complete type systems can be simplified in order to get
a polynomial type inference procedure.

A question that remains to be addressed is how to enrich system S3’ with the
possibility to use partial orders, in order to get closer to systems S4 or S4’ in
terms of expressiveness. In S4, the partial order can be used when the vector of
weights remains the same, while in S4’ the vector of weights can even increase
when the partial order is used. How to adapt S4 or S4’ to a system where weights
are summed (as natural numbers) is not clear to us at the moment.

A natural extension of this work is to experiment with the results we have
presented. TyPiCal already implements a type inference algorithm for a type
system obtained by combining systems S1 to S4, as reported in [9]. The parts
of this combined type system that are related to S3 and S4 are treated using
a heuristic, incomplete, polynomial algorithm, because of the NP-completeness
result we have shown in Sec. 3. It is left for future work to implement S3’ and
S4’ discussed in the paper. For that purpose, a main remaining issue is how to
integrate S3’ and S4’ with S2. As hinted above, our results could also be useful
for the developments presented in [9].

Acknowledgements. We thank Alain Darte for his help in finding the reduction
used for Thm. 3.

References

1. The Terminator Project: proof tools for termination and liveness (2007),
http://research.microsoft.com/terminator/

2. Cook, B., Podelski, A., Rybalchenko, A.: Proving Thread Termination. In: Proc.
of PLDI 2007, pp. 320–330. ACM Press, New York (2007)

3. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good, pp. 265–276 (2007)

4. Deng, Y., Sangiorgi, D.: Ensuring Termination by Typability. Information and
Computation 204(7), 1045–1082 (2006)

5. Fournet, C., Laneve, C., Maranget, L., Rémy, D.: Implicit Typing à la ML for the
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Abstract. Over the past years, many different approaches and con-
cepts in order to increase computer security have been presented. One
of the most promising of these concepts is Trusted Computing which of-
fers various services and functionalities like reporting and verifying the
integrity and the configuration of a platform (attestation). The idea of
reporting a platform’s state and configuration to a challenger opens new
and innovative ways of establishing trust relationships between entities.
However, common applications are not aware of Trusted Computing fa-
cilities and are therefore not able to utilise Trusted Computing services
at the moment. Hence, this article proposes an architecture that enables
arbitrary applications to perform remote platform attestation, allowing
them to establish trust based on their current configuration. The archi-
tecture’s components discussed in this article are also essential parts of
the OpenTC proof-of-concept prototype. It demonstrates applications
and techniques of the Trusted Computing Group’s proposed attestation
mechanism in the area of personal electronic transactions.

1 Introduction

Trusted Computing (TC) is constantly gaining ground in industry and the public
perception of Trusted Computing is starting to improve [6]. A central role is
played by the Trusted Computing Group (TCG) [18] which is specifying the
core components, namely the Trusted Platform Modules (TPM) and surrounding
software architectures like the TCG Software Stack (TSS) [15]. Based on these
components, security and trust related services like remote attestation, sealing
or binding are defined.

Hence, in the first contribution the question how trust relationships between
remote platforms can be established by using TC is addressed. The approach
presented in this paper allows to establish trusted communication channels by
means of the TCG’s specified remote attestation. The approach introduces a
so-called attestation proxy that is placed in front of the actual application and
performs a mutual platform attestation of the two communication parties. The

G. Barthe and C. Fournet (Eds.): TGC 2007, LNCS 4912, pp. 156–168, 2008.
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actual communication channel is only established if the attestation succeeded.
This approach allows legacy applications to benefit from attested communication
channels without the need to modify the application code.

As the proof-of-concept implementation is done in Java, the second contri-
bution deals with the problem how TC concepts can be integrated into virtual
machine based runtime environments such as JavaTM. Questions to be answered
are how to measure loaded class and jar files, how to deal with external resources
or how to handle calls to native code.

The basis for all TC related services is the TPM. The TPM is a hardware
chip providing essential functionality for a TC enabled system like a RSA engine,
a true random number generator or mechanisms to securely store and report
the state of a system. While TPMs are produced and shipped by a variety of
manufacturers, important software components like the trusted software stack
are not widely available yet. The presented IAIK TSS for the Java Platform
(jTSS [14]) provides TC services to applications and manages the communication
with the TPM. The jTSS provides the foundations for the two main contributions
of this work.

1.1 Related Work

The idea of remote attestation has been pursued by various research groups.
Hence, many different approaches discussing this research area have been pub-
lished. The most important are introduced in the following paragraphs.

The concept of Property-Based Attestation (PBA) [11] provides an alterna-
tive to the attestation mechanisms specified by the TCG henceforth called binary
attestation. A Trusted Third Party (TTP) translates the actual system configu-
ration into a set of properties and issues certificates for those properties. During
the attestation process a (remote) verifier can decide whether or not the platform
security properties meet the requirements of the respective use case. In litera-
ture, using TTPs for certification of properties is called delegation. This scenario
avoids several (undesired) drawbacks of binary attestation. For instance, pre-
senting the concrete system configuration to a verifier is not desirable from a
privacy perspective and management of all possible configurations is a difficult
task.

Alternatively, Semantic Remote Attestation (SRA) [12] uses language-based
techniques to attest high level properties of an application. The proposal is based
on the Java Virtual Machine (JVM) environment which is attested by binary at-
testation itself. The JVM can enforce a security policy on the running code based
on data flow control and taint propagation mechanisms. Hence, this approach is
a hybrid approach between binary attestation and attesting properties.

Moreover, the Trusted Computing Group - as the leading group for TC spec-
ifications - has published a concept for trusted network access also known as
Trusted Network Connect (TNC) [22]. TNC enforces a policy based access and
integrity control by measuring the state and configuration of a platform accord-
ing to specified policies. Furthermore, TNC introduces the concept of isolation.
Platforms that cannot be attested correctly are isolated. This means that they
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are not allowed to access the network unless they can successfully report that
their integrity has been restored (remediation). The usage of a TPM is optional
in order to make this technology available on a variety of platforms. Neverthe-
less, if a TPM is present it is used for extended integrity checking and binding
of access credentials to the platform.

Other approaches focus on improving established protocols like SSL. The main
problem these approaches deal with is that there is no linkage between the
attestation information (i.e. the signed quote and the AIK certificate) and the
SSL authentication information. Stumpf et al. [21] discuss a concept for a robust
integrity reporting protocol by combining it with a key agreement protocol.
The same problem is addressed by Sailer et al. [20]. In their paper a solution
for linking SSL tunnel endpoints to attestation information by adding the SSL
public key to the event log and PCRs is discussed. Furthermore, they introduce
a new certificate type, the so-called platform property certificate that links an
AIK to a SSL private key. Binding the keys with the certificate should prevent
the misuse of a compromised SSL key.

1.2 Outline of the Paper

The remainder of this paper is organised as follows: Section 2 gives details about
the overall architecture. Section 2.1 describes the attestation proxy and illus-
trates the use of the concept of remote attestation to establish and validate
trusted relationships between two entities. Section 2.2 presents an outline of the
IAIK jTSS, discussing the overall structure as well as implementation concepts.
Section 2.3 deals with aspects of adapting the Java virtual machine to be fully
integrated into TC environments. Section 2.4 explains the link between TPM
based keys and public key infrastructure concepts. Finally, Section 3 concludes
the paper.

2 The Proof of Concept Architecture

In this section, the overall architecture and actions of the proposed approach are
briefly discussed. As shown in Figure 1 the architecture includes a proxy that
provides an attestation service to applications, a trusted software stack (jTSS)
and the trusted Java VM. The integrity of all components of the architecture is
measured as defined by [23] in order to establish a chain-of-trust starting from the
platform’s BIOS up to the proxy service (see Figure 1). However, in order to build
the full chain, the architecture requires further components. These components
include a core-root-of-trust for measurement (CRTM)1 that is included in the
BIOS, a trusted boot loader (e.g. Trusted Grub [19]) and a trusted operating
system. They are out of scope for this implementation and are therefore not
discussed in this paper. Nevertheless, the architecture assumes that the platform
performs an authenticated boot as defined by [18].

1 Modern computer systems use a dynamic-root-of-trust for measurement (DRTM).
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Fig. 1. Attestation Service Architecture and Chain-of-Trust

The scenario depicted in Figure 2 is as follows: A client application wants
to establish a connection to a server based service. The application could be a
web-browser or any application that requires a network connection2. However,
the application is only allowed to connect if the trust state of the client and the
server meet specified requirements that are defined by policies. The trust state
in the context of TC is derived from the software components that are running
on a platform and the hardware the platform is equipped with. Consequently,
the policies include certain sets of allowed hardware and software configurations.

Fig. 2. Attestation Process Scenario

The platform state has to be reported to the remote platform which is then
verified by it. To allow this, the presented architecture is embedded in the context
of a trusted computing enhanced Public Key Infrastructure (PKI).

Each component of the proposed approach is discussed in detail in the follow-
ing sub-sections.

2 The scenario focused on within OpenTC uses a web browser as application and a
bank server as back-end service, nevertheless the architecture can be used with any
arbitrary application and service.
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2.1 The Attestation Proxy

The attestation-proxies are responsible for attesting the platforms and routing
the network traffic between the platforms, the client application and the back-
end service (Figure 2). Additionally, the proxies exchange measurement- and
attestation values of the platforms. Consequently, they are also responsible for
validating the measurement values according to preset policies.

The platform attestation with the proxy is as follows: the client-proxy receives
a connection request from a local application and opens a channel to the server-
proxy. Prior to forwarding the data received from the application, the proxy
initiates the attestation sequence. This sequence includes the following steps:

Depending on the proxy policy, the proxy may use a previously generated
attested identity key (AIK) or may create a new one. Reusing of the AIK from
a previous proxy connection saves the time for creating a new one. However this
potentially lowers the level of privacy. When a new identity key is created in the
TPM, the key has to be attested by a Privacy CA which issues a corresponding
AIK certificate. The key is then used to sign the content of the PCR register.

The state of the system is reflected in the Platform Configuration Registers
(PCR) of a TPM. The client-proxy proves to the server-proxy that the system is
running in a desired trusted configuration by running the special TPM ”quote”
operation. It reports the content of a selected set of PCR registers and signs this
information with an identity key.

As shown in Figure 2 the proxy sends the following items: the quote blob,
the AIK certificate and the Stored Measurement Log (SML). The verification
component of the proxy is now able to determine the state of the remote platform
by evaluating the quote blob and the SML. The SML contains a list of all
software components that have been loaded on the remote platform including
their hashes. By recalculating the hashes and comparing them with the hash
from the quote blob, the proxy has evidence of the remote platforms state.
Furthermore, the signature on the quote blob is verified with the help of the
included AIK certificate. If required, the Privacy CA is contacted for additional
data (i.e. CRLs, OCSP requests) for verification of the certificate itself.

Only after all attestation steps have been successfully completed and both
platforms have validated and accepted each other’s state and configuration the
connection between the application and the back-end service is permitted.

The attestation process in the depicted scenario is done in both directions.
Other scenarios might require only the server or the client to be attested.

In order to access TC services and the TPM, the proxy relies on the trusted
Java stack. It provides TC services to application like the proxy and manages
the communication with the TPM. The trusted Java stack is discussed in the
following section.

2.2 The Trusted Software Stack

The TCG not only specifies TPM hardware but also defines an accompany-
ing software infrastructure called the TCG Software Stack (TSS) [15]. The stack
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Fig. 3. Overview of jTSS Stack Layered Architecture

consists of different modules: the Trusted Service Provider, the Trusted Core
Services and the Trusted Device Driver Library. The exact requirements of these
modules can be found in [15]. A Java specific discussion is provided in the next
sections.

Architecture. The TCG chose a layered architecture, which specifies inter-
faces in the C programming language, thus allowing applications to access the
Trusted Computing functionality in a standard way. At the time of writing, sev-
eral implementations for specific operating systems are available [2] or under
development [5]. Up to now, aside from the TrouSerS TSS stack [9], the here
presented IAIK TSS for the Java Platform (jTSS) is the only TCG software
stack available as open source. All other known implementations are proprietary
meaning that they only support TPMs from specific manufacturers .

The architecture presented in this paper allows operating system indepen-
dence by providing the TC functionality within the Java programming language.
At the same time, different TPM implementations, including a software based
emulator, are supported. Thus actual platform-independent trusted services can
be built on top of the presented TCG Software Stack for the Java Platform
(jTSS). In contrast to other projects [7] that implement only sub-sets of the
functionality, this stack closely follows the specification and includes both, high
and low level APIs as proposed by the TCG. The different layers of the stack
architecture are presented in Figure 3 and discussed in the following paragraphs.

The application level Trusted Service Provider. Java applications can ac-
cess Trusted Computing functionality by using a derivate of the Trusted Service
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Provider (TSP) interface. By providing an object oriented interface, the appli-
cation developer is relieved from internal handle and memory management. A
context object serves as entry point to all other functionality such as TPM spe-
cific commands, policy and key handling, data hashing and encryption and PCR
composition. In addition, command authorisation and validation is provided and
user owned cryptographic keys can be held in a per-user persistent storage.

Each application has an instance of the TSP library running on its own. This
TSP communicates with the underlying Trusted Core Services (TCS). Different
means of communication are possible. For small set-ups and for testing, a local
binding using standard java function calls is used. However, the TCS may also
run on another machine. In this case, Java Remote Method Invocation (RMI)
may be used. Here, the communication between the two modules can be pro-
tected with Secure Socket Layers (SSL).

In addition to this implementation specific interface, the TSS standard also
calls for an alternative interface utilising the Simple Object Access Protocol
(SOAP) [16], which is implementation and platform independent.

The Trusted Core Services. The Trusted Core Services (TCS) are imple-
mented as a system service, with a single instance for a TPM. By ensuring
proper synchronisation, it is designed to handle requests from multiple TSPs.
Among the main functionalities implemented in the TCS are key management,
key cache management, TPM command generation and communication
mechanisms.

Since the hardware resources of the TPM are limited, the loading, eviction
and swapping of keys and authorisation sessions needs to be managed. Keys can
be permanently stored in and retrieved from the system persistent storage using
globally unique UUIDs [13]. With these mechanisms, complex key hierarchies
can be defined, allowing to implement domain (i.e. enterprise) wide policies.
The TCS event manager handles the SML, where PCR extension operations are
tracked. For low level access, commands and data are assembled.

Low Level Integration. The TCS communicate with the TPM via the TSS
Device Driver Library (TDDL). For hardware access, the Java objects need to
be mapped to the standardized C-structures. Primitive data types need to be
converted as well, considering the byte order of the host platform. These struc-
tures are then processed as byte streams. Since all commands and data are sent
as such plain byte streams, this allows for an OS and hardware-independent
implementation.

In the Linux operating system, hardware-vendor specific driver modules and a
generic driver are integrated in recent kernel releases. The TPM can be accessed
through the /dev/tpm device. With Microsoft Windows Vista, a generic system
driver for version 1.2 TPMs is supplied. With the so called Trusted Base Services
(TBS) [8], basic functionality like resetting or taking ownership is provided and
TSS implementations can be supported. To integrate this Windows interface in
the Java environment, a small native C helper library is accessed via the Java
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Native Interface (JNI). The already pre-assembled byte stream is passed on as a
command to the TPM via the TBS, and the response stream is returned to the
Java interface.

2.3 The Trusted Java Virtual Machine

All currently proposed attestation mechanisms rely on integrity measurement
of the software stack running on a platform. This holds also true for all forms
of property-based attestation. In our work, we extended the trust chain to the
Java VM as shown in Figure 4. We describe the additions to the Java VM in
this section starting with trusted class loading.

Trusted Class Loading. Dynamic class loading is a feature of the Java VM
specification. Classes are loaded during run time from any location pointed to
by the class path. The class loaders form a tree structure to enable a delegation
model. A class loader can delegate the loading of classes to a parent classloader
and, if the loading fails, try to locate and load classes for itself. The root of the
tree is the so-called bootstrap (or primordial) class loader. The loaded classes are
assigned to so-called protection domains which prevent leakage of information
between trusted code and application-specific code. Note that the term trusted
code in this case merely refers to the class library shipped with the Java VM.
However, this separation between different classes can be exploited for the func-
tionality of our Trusted Java VM as well. The security mechanisms of the Java
VM rely on the activation of the security manager which is enabled by default
in our implementation.

The proposed approach extends class loading by measurement of executable
contents which is, in the case of the Java environment, restricted to class files.
Before the actual bytecode is present in the VM, the files are hashed and a PCR
is extended. For the case of a secure boot functionality, the VM has the ability
to terminate execution if a class file is not previously known. A special case for
class loading is the reflection API of the Java language. Using qualified names,
the application designer can dynamically load classes. For trusted class loading,
this has no impact as those classes are loaded through the usual class loading
mechanism and are measured as well.
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JAR-files contain a collection of class files and their measurement offers the
possibility to reduce the PCR extend calls to the TPM. Our experiments with
the measurement architecture show that measurement of single class files can
significantly affect the performance of class loading if the number of class files
of the application grows large. If JAR-files are measured on the other hand,
this overhead can be reduced to a minimum. As JAR-files are a usual way to
distribute Java applications, this approach is the most practical one.

Other files that affect the security of Java applications and the Java VM
itself are configuration files such as the Java security policy. For measurement,
configuration files (and hence the subsequent configuration) are equal if and only
if their hashes are equal. However, innumerous possibilities of formatting leading
to the same configuration exist. As this provides no robust means to determine
security, we decided to skip their measurement altogether.

Java Native Interface. The Java Native Interface (JNI) allows the application
designer to use programming languages such as C/C++ or assembly to interact
with Java applications. The interface is two-way, which means that the native
code can also access Java objects, i.e. create, inspect and update them, call Java
methods, catch and throw exceptions, load classes and obtain class information.
Whereas there are applications where this proves to be useful, from a security
perspective native libraries pose potential threats.

IBM designed an integrity measurement architecture on a Linux environ-
ment [1]. In their design, they intercept a set of system calls where files (ex-
ecutables, libraries, etc.) are loaded and measured into a PCR. Hence, as the
VM loads the libraries dynamically, this measurement architecture would take
care of the measurement and we can omit further discussion of this issue.

An alternative view on the problem is taken from an application perspective.
A native library is part of the application it is used by. Hence, despite some re-
strictions, it might still be useful to include loaded libraries in the measurement.
If there is also a measurement hook on OS level, one has to take care that the
measurement is not taken twice. The general problem with this approach lies in
the fact that loading of shared libraries on a Linux/GNU like environment can be
followed by loading further shared libraries which is taken care of by the operat-
ing system. From the perspective of the VM, these libraries cannot be measured.

Components. In this section we give a component level description of our Java
VM design. To keep the design simple and the code changes to the class loader
as small as possible, we chose to implement a single interface for interaction with
the measurement architecture which is called Integrity Service Provider (ISP).
It manages the integrity measurement and provides methods necessary to en-
force the integrity measurement policy. The Measurement Agent (MA) offers an
interface to measure data that is crucial for the state of the platform. For the
Java VM this would be class- and JAR-files. The Verification Agent (VA) per-
forms the task of verifying the measurements taken by the MA against reference
values. The Storage Manager class abstracts operations necessary to load and
store Reference Integrity Measurements (RIMs) from a location.
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In general, the storage of RIMs is a non-trivial task. Two possibilities have
been proposed so far: storage inside a shielded location and the usage of RIM
certificates. If the Java VM running on a device is using only a restricted number
of applications the storage inside a shielded location is possible. On a general
purpose computer the number of RIMs may become large which could introduce
storage problems. A more practical solution would be to use cryptographic means
to ensure the integrity and authenticity of RIMs which then can be kept on any
type of storage [17].

Usage Model for PCRs. The Integrity Measurement Architecture (IMA) pro-
posed by IBM [1] is attached to the Linux kernel. If we compare it to our Trusted
Java VM the operating system has more power to manage measurements. Obvi-
ously, the operating system never gets unloaded and hence the data structures
introduced in IMA can hold links to already measured files. If a file is opened
a second time, IMA hashes it and compares this hash to the value in its data
structures. If the hashes are equal, everything is fine and no PCR is extended.
If the hashes differ, the number of PCR is extended with the new hash value.
This allows IMA to only report a file twice if it is really necessary and changes
(malicious or not) of files are detected.

This mechanism cannot be adapted to the VM measurement architecture for
the obvious reason that, if the VM terminates, the data structures get reset and
the measurement history is no longer available.

Those facts impose several restrictions on the architecture. At first, there
need to be separate registers for extending the virtual machine itself, and the
applications that run on this VM. Otherwise it will not be possible to seal
any Java application to this VM configuration. If we suppose the operating
system takes care of the measurement of the VM, it can also detect changes in
the executable and core libraries of the VM as outlined in the IMA approach.
Furthermore, as files are usually not measured twice, the value in the PCR for
the VM represents a unique value to which applications can be sealed to.

2.4 Trusted PKI Support

The proposed approach strongly relies on a public key infrastructure. Hence,
this section discusses the components required for establishing a trusted PKI.

A trusted PKI or trusted computing enhanced public key infrastructure is a
framework enabling authentication, confidentiality and integrity services by us-
ing public key cryptography with support of trusted computing technology. It
assists entities of (public) networks to establish levels of trust and/or secure
communication channels. In the following two paragraphs we describe the trust
enabling components required for our architecture.

Attested (Trusted) Identity. The TPM Endorsement Key (EK) uniquely
identifies a TPM and hence a specific platform. Therefore, the privacy of a user
is at risk if the EK would be used directly for transactions. As a countermeasure,
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the TCG introduced Attestation Identity Keys (AIKs) and associated AIK cer-
tificates (standard X.509 Public Key Certificates that include private extensions
defined by TCG[17]), which cannot be backtracked directly to a specific plat-
form. Still, they contain sufficient proof that the Trusted Computing supported
hardware is hosting the certified key.

A trusted identity comprises two data objects: a non-migratable identity key-
pair hosted by a TPM and an associated certificate proving that the keypair
belongs to a valid TPM, vouched for by a Privacy CA entity.

An identity key can only be used to operate upon data created by the TPM
itself and not for signing arbitrary data.

Privacy CA. As depicted in Figure 2, the certification of AIKs is done by a
dedicated and trusted third party, the so-called Privacy CA (PCA). A PCA is
a CA with the requirement of hiding the platform specific EK credential. In
order to obtain an AIK certificate, a specific protocol between trusted platform
and Privacy CA takes place: The TPM creates a request package containing
identity public key, AIK certificate label and platform specific certificates. The
Privacy CA checks the included information and if all pieces conform to the CA
policy, an AIK certificate is issued. The response is encrypted so that only the
TPM indicated in the request can extract the AIK certificate.

The mode of operation of a Privacy CA is regulated by policy. It clearly
describes how the relationship between EK certificates and the issued AIK cer-
tificates is managed. The policy options for a Privacy CA cover the spectrum
from ”remember everything” to ”know enough for the specific operation, forget
everything after completion of operation”. Thus, the usage of a specific Pri-
vacy CA is scenario dependent and has to consider the intended level of privacy.
In a restricted deployment scenario the Privacy CA - as a central authority -
issues and validates AIK certificates only from well-known clients. This requires
an initial registration step of each client’s EK certificate.

3 Conclusion

This paper proposes an architecture for enhancing arbitrary applications with
Trusted Computing functionality. With this architecture, legacy applications
can now benefit from Trusted Computing services - in this special scenario from
remote attestation - without being modified. Furthermore, they are now able
to derive a trust state based on the remote platforms software configuration. In
order to demonstrate the feasibility of the approach a proof-of-concept prototype
has been developed by implementing the architecture.

Moreover, by adapting a Java Virtual Machine, we showed that it is possible to
create a chain-of-trust starting from the BIOS up to a virtualised execution envi-
ronment like Java. The adapted Java VM allows user applications to execute in a
trusted environment. By integrating measurement mechanisms directly into the
run time environment, high flexibility for these applications can be maintained,
even within tight security requirements when building a trustworthy system.
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Abstract. In computing systems, trust is an expectation on the dynamic behavior
of an agent; static analysis is a collection of techniques for establishing static
bounds on the dynamic behavior of an agent. We study the relationship between
code identity, static analysis and trust in open distributed systems. Our primary
result is a robust safety theorem expressed in terms of a distributed higher-order
pi-calculus with code identity and a primitive for remote attestation; types in the
language make use of a rich specification language for access control policies.
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1 Introduction

Trust is an important concept in computer security. One may think of trust as an expec-
tation on the behavior of some agent. We say that an agent is trusted if the achievement
of a security goal is dependent on the agent behaving in the expected way. An agent is
trustworthy if it behaves in the expected way in all circumstances.

An effective way to determine that an agent is trustworthy is to establish bounds
on its behavior through static analysis of its software components. Many important
security-related behavioral properties can be usefully established statically, including
memory and type safety, non-interference, compliance with mandatory and discre-
tionary access control policies and adherence to an ad-hoc logical policy specification.

An open system is one in which software components are under the control of mul-
tiple parties whose interests do not necessarily coincide. The use of static analysis in
these systems is more complicated than in closed systems, where all components are
under the control of a single party.

To discuss the issues involved, we find it useful to distinguish software components
according to their relative roles. Given a particular unit of code and a statically derivable
property, we distinguish four primary roles: the producer is the original author of the
code; a host is a system that executes, or is considering executing, the code; a certifier
is a third party capable of performing an analysis directly on the code that determines
whether the property holds; and a relying party is the entity whose safe operation de-
pends on the property holding for the code.
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When code is distributed in a compiled format, it may be the case that only the
producer, who has the original source, is able to tractably certify many important prop-
erties. A host for the compiled code, if it is a relying party, may not able to establish the
properties it needs.

This problem is well studied, and at least two solutions have been developed. By
distributing the executable as intermediate-level bytecode, the analysis may be made
tractable; in this case many useful analyses may remain intractable, or at least imprac-
tical. With proof-carrying code [1] the producer uses a certifying compiler to generate
a proof of the desired property that can be checked efficiently by the host; this allows a
greater range of analyses, but with the limitation that properties have to be agreed upon
in advance.

A second issue arises when the relying party and host systems are physically distinct.
For example, a server may hold sensitive data that it is only willing to release to remote
clients that are known to be running certifiably safe code. The certification could be done
by the client, but on what grounds can the server trust the results? The certification can
instead be done by the server, but only if it can authenticate the code running on the client.

In conventional authentication protocols, remote parties authenticate themselves by
demonstrating knowledge of a secret. When executables are distributed over public
channels, however, embedded secrets are vulnerable to extraction and misuse by at-
tackers so code cannot in general be relied upon to authenticate itself. This problem is
addressed in part by trusted computing, where a trusted host authenticates the code it is
running, and when necessary attests to the identity of the code to remote parties.

Remote code authentication, or attestation, is based on measurements of static ex-
ecutables. Therefore, trusted computing platforms only attest to initial states of pro-
cesses. This makes static analysis particularly important for reasoning in systems using
attestation. Code identity is a degenerate example of a static property; more abstract
properties can be defined as sets of executables that satisfy the property. Knowing that
the executable running on a host satisfies a certain property may allow a relying party
to determine something about the dynamic state of the host.

Even weak static properties may be useful in validating trust. For example, knowing
that a server has the latest patches applied may ease the mind of an e-commerce client.
Similarly, a bounded model checker or test suite may give some assurance of memory
safety without proving absolute trustworthiness.

For concreteness, we concentrate here on access control properties established via a
type system, leaving the general case to future work. This focus allows us to establish
absolute guarantees of trustworthiness and thus to prove a robust safety theorem. We
do so in the context of a higher-order π-calculus enhanced with process identity and
primitive operations for remote attestation.

The contributions of this paper are twofold. First, we illustrate how the trusted com-
puting paradigm can be used to enforce an access control model based on static prop-
erties of code. Second, we demonstrate the importance of higher-order languages in
studying policies and protocols that make use of remote attestation.

Organization. In the remainder of this introduction, we provide some intuitions about
our formalism and results. In Section 2 we present the syntax and operational semantics
of our language. Detailed examples follow in Section 3. Section 4 summarizes the type
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system and the main safety theorem; details are elided here for lack of space. Related
work is discussed in Section 5.

Background: Remote Attestation. Remote attestation is a technique that allows pro-
cesses to prove their identity to remote systems through the use of a trusted third party
that is physically collocated with the process. In the Trusted Computing Group (TCG)
specification [2] this comes in the form of a Trusted Platform Module (TPM) – an em-
bedded co-processor that has the ability to measure the integrity of the boot sequence
and securely store cryptographic keys. Each TPM is created with a unique keypair and
a certificate from a trusted certificate authority.

The TPM serves as the root of trust for a Trusted Software Stack (TSS) [3], which in
turn serves a trusted operating system which hosts user programs. As the software stack
progresses, a measurement (cryptographic hash) of the next item to be loaded is placed
in a secure register before it executes. Upon request, the TPM will produce a signature
for the contents of the secure register bank using a private key. An attestation is a list
of measurements plus a payload, signed by a TPM key.

Measurements of program executables, in this case, serve as a form of code identity.
Modifying an executable changes its measurement, so attestation effectively identifies
the remote process, and also demonstrates that the software running on the remote sys-
tem has not been compromised.

We do not, in this paper, attempt to model the underlying protocol of remote at-
testation using explicit cryptographic primitives [4] nor do we attempt to translate our
calculus into a lower level calculus with cryptographic primitives [5]. Instead, we take
it for granted that the following capabilities are available and treat attestation as a prim-
itive operation. We assume that executables can be measured in a globally consistent
fashion (e.g., using an SHA-1 hash), and that the keys embedded in each TPM are issued
by a globally trusted (and trustworthy) certificate authority. We also assume that, when
multitasking, trustworthy operating systems enforce strong memory isolation between
processes. Attestation protocols [6] are designed to be anonymous, so we do not assume
any capability for distinguishing between different instances of a program nor do we as-
sume that any information is available regarding the physical location of a process.1

Access Control with Remote Attestation. Remote attestation enables a model of access
control in which executables, as identified by their cryptographic hashes, assume the
role of principal. In its most basic form, it allows an attesting system to demonstrate to
remote parties exactly what executables it has loaded. The remote party may exercise
a simple form of access control by choosing to continue interacting with the attesting
system only if all of its loaded executables are known and trusted. For example, an on-
line media server may refuse access to clients not running its digital rights management
(DRM) software.

While this simple approach may be sufficient in a limited context where only a small
number of well-known executables need be trusted, such as in the proprietary DRM

1 While attestations are anonymous in the sense that an individual user or machine cannot be
identified, the recipient does get precise information about the software and hardware running
on the attesting system that could be considered sensitive. Sadeghi and Stüble [7] cite this as a
shortcoming of the TCG specification in their argument for property-based attestation.
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example above, it is low-level, inefficient and inflexible. A common criticism [8] of
trusted computing cautions that this lack of flexibility could be used by industry leaders
to lock out open-source software and products from smaller competitors.

A more robust design is necessary to broaden the applicability of trusted comput-
ing, and indeed a number of extensions to the existing specification have already been
proposed [7,9,10].

Overview of Our Solution. Modeling systems that operate on static units of executable
code is a suitable task for a higher-order π-calculus [11,12,13], where processes can
be abstracted and treated as data. Thus, we develop a higher-order π-calculus, dubbed
HOπ-rat, enhanced with process identity and primitives for creating and using attesta-
tions. Process identity is implemented in the form of configurations, which are located
processes where location is a representation of the identity (measurement) of the soft-
ware stack that spawned the process.

Access control in HOπ-rat is based on a notion of principal that is tied to code iden-
tity. Static properties of code also play a role. We model these qualities as membership
in a security class. Security classes are the basis for our access control policies, and a
single executable may belong to multiple security classes. Complex principals are spec-
ified by a language of compound principals that includes both primitive identities and
security classes.

There are two aspects to access control policy. First, read and write authorizations
are specified explicitly in type annotations on channels in the form of expressions in
the language of compound principals. Second, the sort of trust that a process places in
particular identities is represented as a mapping of identities to security classes.

Our security classes are flexible, and can accommodate a wide range of security
expectations, however one expectation is distinguished: each participant in a trusted
software stack must maintain the expectations of the trusted system as a whole. In par-
ticular, they must not do anything to compromise the integrity of an attestation, and
they must not leak secret data on insecure channels. We designate this behavior with
the security class cert. We also develop a notion of robust safety and present a sketch
of a type system that ensures robust safety in the presence of arbitrary attackers. We
discriminate between typechecked and non-typechecked identities via membership in
cert, and refer to typechecked processes as certified.

2 The Language

In this section we describe the syntax and operational semantics of the HOπ-rat calcu-
lus. We first define a sub-calculus of compound principals that will serve as the basis
for access control in our system. We then define the syntax of terms, types, processes
and configurations, followed by the operational semantics.

2.1 A Calculus of Compound Principals

To support the creation of sophisticated access control policies, we develop a calculus
of compound principals in the style of Abadi et al. [14]. Primitive principals include
identities and classes (including the distinguished class cert) drawn from an infinite set
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(N ) of atomic principal names. The principal constant 0 represents the inert process –
always trustworthy by virtue of its inertness – and any represents an arbitrary process.

Compound principals are constructed using conjunction (∧), disjunction (∨) and
quoting (|) operators. Of these, quoting is essential because it is used to represent one
process running in the context of another. For example, the principal tss|myos|widget
might represent a user application running on an operating system running on a trusted
software stack. The other combinators are provided only to add expressiveness to the
policy language.

A policy environment (Σ) maps identities to classes. For example, Σ(a,α) indicates
that a is a member of α. Class membership is many-to-many; an identity may be a
member of multiple classes, and a class may have multiple members. We write a⇒α
for a policy environment consisting of a single pair.

PRINCIPALS AND POLICY ENVIRONMENTS

a,b,c ∈Nid α−ω ∈Ncls (including cert) identities/classes

A,B,C ::= any
∣∣ 0

∣∣ a
∣∣ α

∣∣ A∧B
∣∣ A∨B

∣∣ A|B principals

Σ,Φ⊆Nid×Ncls policy environment

We define a partial order (⇒), ranking principals in terms of trustedness. When
A⇒B, A is trusted at least as much as B. Derivations are defined in terms of a pol-
icy environment so that Σ � A⇒B if Σ(A,B), or A = 0, or B = any, so that ∧,∨ are
commutative, associative, idempotent, absorptive and distribute over each other, so that
| is monotone and idempotent, and so that⇒ is reflexive, transitive and antisymmetric.
Thus defined,⇒ forms a distributive lattice with ∧,∨ as meet and join operators, and
any,0 as top and bottom elements. If Σ and Φ are policy environments, we write Σ �Φ
if for every a,α such that Φ(a,α), we have that Σ � a⇒α.

Our treatment of compound principals builds on existing work [14,15]. In the inter-
est of minimality, we use only a calculus of principals and do not incorporate a full
modal authorization logic, which would include a “says” construct. Existing techniques
[16,17,18] for using authorization logics in π-calculi could be applied here as well.

2.2 Syntax

In addition to principals, the main syntactic categories of HOπ-rat are terms, types,
processes and configurations. As usual in π, we assume an infinite set (N ) of names, but
we distinguish channels (n,m) from variables (x,y,z). We use a local syntax [19,20,21]
in the sense that only output capabilities may be communicated as it is syntactically
disallowed to read from a variable.

TERMS

n,m ∈Nch x,y,z ∈Nvar channels/variables

M,N ::= n
∣∣ x

∣∣ unit
∣∣ (x : T )P

∣∣ (M,N)
∣∣ [M : T ]

∣∣ {M : T @ A}∗ terms

Terms include channel names, variables, a unit term and process abstractions from
higher-order π, pairs, and two novel constructs. The term [M : T ], where M is a pro-
cess abstraction and T is an abstraction type, represents an executable. We assume that
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the identity of an executable can be taken directly using a well-known measurement
algorithm, which we represent as a function (#) taking executable terms to primitive
identities. Since otherwise trustworthy programs can sometimes be coerced to misbe-
have if they are initialized incorrectly, executables include a type annotation to ensure
that the identity function takes the type of the program arguments into account.

The term {M : T @ A}∗ represents an attestation – the payload M tagged with type
T and the principal A, where A stands for a list of the measurements of the executables
that were running when the attestation was requested.

TYPES

S,T ::= Ch〈A,B〉(T)
∣∣ Wr〈A,B〉(T)

∣∣ Unit
∣∣ T → 〈A〉Proc

∣∣ S×T
∣∣ Tnt

∣∣ Un
∣∣ Prv

∣∣ Pub

Types include constructs for read/write and write-only channels, unit, abstractions, pairs
and four top types. The unit and pair types are standard; we discuss the others below.

Channel types include annotations for specifying policy. For example, the type
Ch〈A,B〉(T ) is given to channels that communicate values of type T , and may be
used for input by processes authorized at principal B with the expectation that it will
only be used for output by processes authorized at principal A. As in Sangiorgi’s local-
ized pi [19], we syntactically restrict input to channels, disallowing input on variables.
Therefore, channel types may only be used with names. Write types are similar, but
only allow output and therefore may be used to type variables.

The security annotations allow for fine-grained specifications of access control pol-
icy. For example, a channel annotated with type Ch〈α∧β,B〉(T ) can only be written on
by processes that are members of both α and β. Conversely, Ch〈α∨β,B〉(T ) requires
membership in either α or β. Other policies can place restrictions on the software stack,
as in Ch〈myos|any,B〉(T ), which permits any process running on the myos operating
system.

Types for abstractions take the form S→ 〈A〉Proc, where S is the type of the argu-
ment and A is a security annotation representing a principal that the process may expect
to run at (discussed in Section 4). We sometimes write S→ Proc when the security
annotation is not of interest.

Attestations and executables are typed at one of the four top types (Tnt,Un,Prv,Pub)
which are used to classify data by secrecy and integrity properties. The top types are used
in the kinding judgment mentioned in section 4.

PROCESSES AND CONFIGURATIONS

P,Q ::= 0
∣∣ n?N

∣∣ repeat n?N
∣∣ M!N

∣∣ M N
∣∣ new n : T ; P

∣∣ P | Q∣∣ split (x : S,y : T ) = M; P
∣∣ let x = attest(M : T ); P∣∣ check {x : T}= M; P

∣∣ load M as [T ] N∣∣ Σ
∣∣ wr-scope n is A

∣∣ rd-scopeM is A∣∣ spoof A;P
∣∣ let�x = fn(M); P

G,H ::= 0
∣∣ A

[
P
] ∣∣ G | H ∣∣ newA n : T ; G

Processes include the usual constructs for HOπ: the inert process; input and replicated
input; output; higher-order application, as in M N, which applies the argument N to the
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abstraction M; restriction; and parallel composition. The form split (x : S,y : T ) =
M; P is used to split a pair into its constituent parts.

The main security extensions are attest, check and load. The form let x =
attest(M : T ); P represents a call to trusted hardware to create a new attested mes-
sage with payload M and attested type T . The form check {x : T} = M; P tests and
conditionally destructs an attestation. The form load M as [T ] N dynamically tests
the identity and argument type of an executable prior to running it. The inclusion of Σ
in the process language allows processes to carry knowledge about other processes at
runtime. The expectations wr-scope n is A and rd-scope M is A are only used
in the definition of runtime error and are discussed further below.

The final two forms are reserved for attackers, and therefore cannot appear in any
well-typed term. The form spoof A;P allows the process to change its identity and the
form let�x = fn(M); P extracts the free names of a term.

Configurations (G,H) are composed of processes located at principals (e.g., A
[
P
]
).

Our treatment of configurations is mostly standard for located π-calculi [22,23] with
one exception: our locations expand as new code is loaded. For example, we use the
compound principal (a|b|c) to represent the sequence of a having loaded b having
loaded c.

2.3 Operational Semantics

Evaluation is defined on configurations. We elide the structural equivalence rules which
are mostly standard for located calculi [22] (for example “A

[
P | Q] ≡ A

[
P
] | A[

Q
]
”).

The one novelty is the rule, “Σ | Φ ≡ Σ,Φ”, which allows policy environments to be
combined.

EVALUATION

(R-COMM) A
[
n?M

] | B[
n!N

] −→ A
[
M N

]
(R-STRUC)

G≡G ′ H ′≡ H G ′−→ H ′

G−→ H

(R-APP) A
[
(x : T )P N

]−→ A
[
P{x := N}] (R-RES)

G−→ G′

new n : T ; G−→ new n : T ; G′

(R-ATT) A
[
let x = attest(M : T ); P

]−→ A
[
P{x := {M : T @ A}∗}

]
(R-PAR)

G−→ G′

G | H −→ G′ | H
(R-SPLIT) A

[
split (x : S,y : T ) = (M,N); P

]−→ A
[
P{x := M}{y := N}]

(R-CAST)
Σ � S <: T Σ � B⇒cert

A
[
Σ
] | A[

check {x : T}= {M : S @ B}∗; P
]−→ A

[
Σ
] | A[

P{x := M}]

(R-CASTUN) A
[
check {x : Tnt}= {M : S @ B}∗; P

]−→ A
[
P{x := M}]

(R-LOAD)
Σ � S <: T → 〈B〉Proc Σ � a⇒cert

A
[
Σ
] | A[

load [M : S] as [T → 〈B〉Proc] N
]−→ A

[
Σ
] | (A|a)

[
M N

] a = #([M : S])

(R-LOADUN)
� S <: T → 〈B〉Proc � T <: Un b = #([M : S])

A
[
load [M : S] as [T → 〈B〉Proc] N

]−→ (A|b)
[
M N

]

(R-SPOOF) A
[
spoof B;P

]−→ (A|B)
[
P
]

(R-PEEK)
A

[
let�x = fn([M : T ]); P

]−→ A
[
P{�x := f n(M)} ]if |�x|= | f n(M)|
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The rule for communication (R-COMM) passes a value along a channel in the standard
way. When a value is communicated from one identity to another, the resulting process
takes on the identity of the receiving process. The rule for splitting pairs (R-SPLIT) is
standard.

In the rule for the creation of attestations (R-ATT) a term is tagged with a type and the
pair is signed with the identity of the creating process. In the first rule for destruction (R-
CAST), the identity of the generating process is recovered and tested against the local
policy of the receiving process. The receiver must believe that the generating process
is certified before it can trust the contents of the message. If the necessary facts are not
present the destructor blocks, so for example these two configurations in parallel will
reduce whereas the latter on its own would not.

A
[
b⇒cert

] | A[
check {x : T}= {N : T @ b}∗; P

]−→ A
[
b⇒cert

] | A[
P{x := N}]

In order to safely unpack {N : T @ B}∗ one must be able to establish that B is certified,
that is that B⇒cert holds in the lattice of principals derived from the receiver’s local
policy. Note that from the idempotency and monotonicity of | one can derive a|b⇒cert
if a⇒cert and b⇒cert. The principals used in attestations always have this form, so an
attestation will be trusted if each of its component identities are certified. The receiving
process need not know of all certified processes, only those with which it interacts,
however a process may be unable to unpack a perfectly safe message if any identity in
the sequence is unknown.

The second rule for destruction (R-CASTUN) allows a process to skip the dynamic
checks if there are no type requirements for the extracted data (the type Tnt is at the top
of the subtype hierarchy).

The rule for application (R-APP) converts an abstraction into a running process by
substituting the argument for the bound variable. R-LOAD allows parent processes to
run abstractions that they have received from untrusted sources after completing two
dynamic checks. First, it tests the hash of M for certification. If M is known to be
certified, then the type assertion can be trusted. Second, it tests that the asserted type
is a subtype of the expected type. If both tests are successful, it extracts the enclosed
abstraction and applies it to the argument.

As with attestations a second version (R-LOADUN) allows the dynamic checks to
be skipped, in this case if the argument is of a safe type (i.e., contains no secrets). For
example, suppose b = #([M : T ]). The following process located at A loads M.

A
[
b⇒cert

] | A[
load [M : T ] as [T ] N

]−→ A
[
b⇒cert

] | (A|b)
[
M N

]

A’s local mapping (b⇒cert) indicates that [M : T ] is known to be certified, which
enables the loading. Note that the residual is located at A|b.

The final two rules are reserved for uncertified systems and are necessary to model
realistic attacks on higher-order code. R-SPOOF allows a process to impersonate an
arbitrary principal as long as the root is preserved and R-PEEK allows a process to
extract the free names of a higher-order term. Spying on, or “debugging,” a child process
can be modeled using a combination of these operations as follows: the attacker first
extracts the free names of an executable, then builds a new executable identical to the
original except that all bound names are replaced with names in the attacker’s scope,
and finally loads the modified executable and spoofs the identity of the original process.
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3 Examples

In this section we illustrate the use of HOπ-rat in two detailed examples. Throughout
this section we use the following notational conveniences: we elide trivial type annota-
tions, we abbreviate load M as [Un→ 〈0〉Proc] N as load M N, and we abbreviate
(x : Unit)P as ()P when x �∈ f n(P).

3.1 Example: A Trusted Software Stack

Our first example shows how the integrity of the software stack can be preserved in
a trusted system, from the booting of the operating system to the execution of a user
application. We start with a simple computer system composed of a BIOS (BIOS),
disk drive (DSKDRV), user interface (UI) and operating system (OS). The first three
components are loaded by hardware, thus they are represented as pre-existing processes.
The operating system, however, must be booted from code stored on the disk drive.

We assume that the disk drive is untrusted. (Unencrypted storage devices are easily
tampered with while the computer is switched off, so anything loaded from the disk
drive must be treated as if it came from a public source.) The process representing the
drive listens for file requests on a series of channels, one for each file, and responds by
writing the file on the request channel. Some of these files will be executable programs;
in particular, a request on the distinguished channel mbr (for master boot record) will
return the operating system kernel code.

DSKDRV � repeat mbr?(x)x!OS | repeat fi?(x)x!FILEi | . . .
The BIOS is responsible for locating and loading the operating system, which it does

by sending a request on mbr and loading the returned executable. The BIOS does not
need to verify the safety or identity of the executable because the load command stores
the hash of the loaded program in the PCR, ensuring that it is reflected in the identity
of the resulting process.

BIOS � new n; mbr!n | n?(y)load y unit

Let dskdrv = #([()DISKDRV ]), bios = #([()BIOS]), and os = #([()OS]). At startup
the BIOS process will be located at bios and the disk process at dskdrv. The boot
sequence proceeds as follows.

BOOTING WITH INTEGRITY

bios
[
new n; mbr!n | n?(y)load y unit

] | dskdrv
[
repeatmbr?(x)x![()OS] | . . .]

−→4 bios
[
load [()OS] unit

] | dskdrv
[
repeat mbr?(x)x![()OS] | . . .]

−→2 (bios|os)
[
OS

] | dskdrv
[
repeat mbr?(x)x![()OS] | . . .]

By the end of the boot process, the operating system code is running at the identity
bios|os. The BIOS code has terminated, but its identity is reflected in the identity of the
operating system process. This ensures that a malicious BIOS cannot compromise or
impersonate a trusted operating system without detection.
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Note that no access control checks are required for the boot process. We consider
it to be perfectly acceptable for a trusted system to load untrusted code as long as the
identity of that code is recorded. This distinguishes this boot sequence from a secure
boot, which only executes trusted code.

Once loaded, the operating system code enters a loop listening for requests to start
user programs. Requests come in the form of a channel name that corresponds to a file
on disk, and an argument term. The operating system fetches the corresponding file
from the disk drive and loads it, passing it the argument term.

OS � repeat req?(x)split ( f ,arg) = x; new n; ( f !n | n?(y)load y arg)

The type of the argument term is not checked. If the executable were initialized with an
argument of the wrong type it could cause the security of the resulting process to fail,
therefore the evaluation rule (R-LOADUN) requires that the executable be annotated
to accept arguments of type Un. Any certified executable with such an annotation will
have been proven to operate safely with arbitrary arguments.

Now we can consider how the system responds to a user request to run a program.
Let ui represent part of the user interface hardware (keyboard, mouse, etc.) for some
system, and assume that the user has indicated a request to load the program PROG by
keying in “prog args” to the interface.

LOADING A USER PROGRAM

dskdrv
[
. . . | repeat prog?(x)x![(z)PROG] | . . .]

| (bios|os)
[
repeat req?(x)split ( f ,arg) = x; new n; ( f !n | n?(y)load y arg)

]

| ui
[
req!(prog,args)

]

−→4 dskdrv
[
. . . | repeat prog?(x)x![(z)PROG] | . . .]

| (bios|os)
[
repeat req?(x)split ( f ,arg) = x; new n; ( f !n | n?(y)load y arg)

]

| (bios|os)
[
load [(z)PROG] args

]

−→2 dskdrv
[
. . . | repeat prog?(x)x![(z)PROG] | . . .]

| (bios|os)
[
repeat req?(x)split ( f ,arg) = x; new n; ( f !n | n?(y)load y arg)

]

| (bios|os|prog)
[
PROG{z := args}]

After several reduction steps, the user program (PROG) is running at the identity
bios|os|prog, and the operating system is back in its original state, awaiting a new
command.

A user program can also load another user program through the operating system
functionality. The new identity of this program will be bios|os|newprog; it does not re-
flect the identity of the calling program as it would if the calling program had invoked
the load command directly. The operating system loop only loads programs that are ex-
pecting arbitrary arguments, so there is no chance that a malicious program can use this
functionality to misconfigure a trusted program while excluding its own measurement
from the identity sequence.

This illustrates an important difference between stand-alone executables started
through operating system functionality, as in the example above, and dynamically loaded
modules, such as shared libraries and browser plugins. In the former case the operating
system is solely responsible for the safe initialization of the code; in the latter, the call-
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ing process is relied upon to initialize the new module correctly, therefore its identity is
reflected in the identity of the resulting process.

3.2 Example: Secure E-Commerce

In this example, remote attestation is used to facilitate secure communication between
a vendor and customer. Each party has different security requirements. In order to com-
plete the transaction the customer has to provide sensitive personal information – a
credit card number and delivery address – and therefore requires that the vendor be
secure and comply with an electronic privacy policy.

On the other side, because the vendor may have to cover the cost of fraudulent
charges, it has an interest in ensuring that the request is coming from an actual user,
and not a trojan horse or virus running on the customer’s machine. They can accom-
plish this by requiring that the request come from an actual web browser (as opposed to
a script, or other program) and that the browser be free from security holes.

The two main parties are the customer (cust) and vendor (vend) executables; but
there are also the customer (c_host) and vendor (v_host) hosts. We represent the re-
quirements that the customer has of the vendor with the security class ok_vend, and
that the vendor has of the customer with ok_cust. These properties are established by
two independent certifiers, vendcc and custcc.

The code for the customer certifier (custcc) is shown below, the vendor certifier is
similar. It listens for requests on a well-known public channel (getCustIsOk), and re-
sponds with a certificate mapping the cust identity to the ok_cust security class. Recall
that policy environments are part of the process language, so we communicate them as
thunked processes. A certificate therefore has the form of a thunked policy environment
wrapped in an attestation.

CUSTOMER CERTIFIER

(. . . |custcc)
[
repeat getCustIsOk?(c)
let msg = attest(()#(cust)⇒ok_cust : Unit→ 〈cert〉Proc); c!msg

]

The location of custcc is not important. It is the vendor process that requires the
customer certifier, so they could be running on the same host, however the use of an
attestation to sign the certificate means that the processes could just as easily be dis-
tributed. Trust is placed in the program doing the certification, not the physical node
running it, so any node equipped with a TPM running the correct software – even the
customer node itself – can host a certifier process.

At the start of the protocol, cust (1) trusts only the vendor certifier. It first consults
a trusted certifier (2-3) and obtains a certificate listing some trustworthy vendors; vend
(11-13) does the same but for trustworthy customers. The customer then initiates the
protocol by creating (5) a partially secure (only the customer can read, but anyone can
write) callback channel, wrapping it (6) in an attestation and forwarding it (7) to the
vendor on a well-known public channel. At this point the attested message will have
the form {cch : Wr〈any,ok_cust〉(Tnt) @ c_host|cust}∗. After receiving the message,
the vendor performs a dynamic check (15) to ensure that the message is from a trusted
source, and that the contents are of the expected type. Succeeding at that, it continues
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by creating its own secure callback (16), wrapping it in an attestation (17) and sending
it back to the customer (18). At this point the parties have established bidirectional
secure communications, and the customer data can be sent (10) safely with all security
requirements met.

Note that in order for the dynamic checks (3,9,15,13) to pass, the process must ex-
plicitly trust the attestors. The trust required to allow the first checks (3,13) to pass is
already hard-coded (1,11) in the executables. The trust required for the other checks
(9,15) are acquired at runtime from the trusted certifiers.

CUSTOMER AND VENDOR EXECUTABLES

(c_host|cust)
[

1 vendcc⇒cert | v_host⇒cert |
2 new c; getVendIsOk!c | c?(x : Un)
3 check {y : Unit→ 〈cert〉Proc}= x; x unit |
4 new address,credit_card : Ch〈cert,ok_cust〉(Prv);
5 new cch : Ch〈any,ok_cust〉(Tnt);
6 let amsg = attest(cch : Wr〈any,ok_cust〉(Tnt));
7 vpub!amsg |
8 cch?(x : Tnt)
9 check {y : Wr〈ok_cust,ok_vend〉(Prv)}= x;

10 y!(address,credit_card)
]

(v_host|vend)
[

11 custcc⇒cert | c_host⇒cert |
12 new c; getCustIsOk!c | c?(x : Un)
13 check {y : Unit→ 〈cert〉Proc}= x; x unit |
14 vpub?(x : Un)
15 check {y : Wr〈any,ok_cust〉(Tnt)}= x;
16 new vch : Ch〈ok_cust,ok_vend〉(Prv);
17 let vmsg = attest(vch : Wr〈ok_cust,ok_vend〉(Prv));
18 y!vmsg
19 vch?(data : Prv)(. . .continue processing transaction . . .)

]

4 A Type System for Certified Processes

We have developed a type system that ensures that typed processes meet the behavioral
requirements for certified processes, even in the presence of arbitrary attackers. For
space reasons, most of the details are elided.

We begin by formalizing the requirements as a definition of robust safety. Attackers
come in two forms: as any software stack running on a system without a TPM, and as
an untrusted process running on an otherwise trusted system. Our assumptions about
attackers are as liberal as possible. The only requirements are that they be located at an
uncertified identity, and that any attestations they possess must be acquired at runtime.
In addition, we allow attackers to do the following: (1) if they are of the latter form,
they may create attestations that extend the measurement sequence arbitrarily, provided
that the measurements up to and including the untrusted process are accurate, (2) they
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may extract the contents of executables, including any embedded keys, and (3) they
may peek at the memory of (i.e., debug) running child processes.

DEFINITION 1 (INITIAL ATTACKER). Let H be a configuration and Σ a policy envi-
ronment. H is considered a Σ-initial attacker if it is of the form A1

[
P1

]
. . .An

[
Pn

]
where

(∀i)Σ � Ai⇒cert, and it has no subterms of the form {M : T @ B}∗
Robust Safety. Safety is defined in terms of runtime error. The full system includes
shape errors in addition to the access control errors presented here.

RUNTIME ERROR (PARTIAL)

(E-WRSCP)

Σ�A
[
wr-scope n isC

] | B[
n!N

] error−→
if Σ � A⇒cert and Σ � B⇒C

(E-RDSCP)

Σ�A
[
rd-scope n isC

] | B[
n?N

] error−→
if Σ � A⇒cert and Σ � B⇒C

A configuration is in error, for example, if a certified configuration is expecting the
write scope of a channel to be restricted to one principal, and the channel is written on
by a process located at another principal that does not carry that level of authorization
in the lattice of principals.

Robust safety requires that no certified process can lead to a runtime error even in
the presence of arbitrary attackers. It is defined relative to a policy environment, so it is
perfectly reasonable to have policies that disagree on the safety of a given process. Our
main result is that well-typed configurations are robustly safe.

DEFINITION 2 (ROBUST SAFETY). Let G be a configuration and G′ a Σ-initial at-
tacker. If G | G′ −→∗ H implies that Σ �H �error−→ for an arbitrary G′ then we say that
G is robustly Σ-safe.

THEOREM 3 (ROBUST SAFETY). Let G be a configuration, Σ a policy and Γ a global
environment. If all of the the type assignments in Γ are of the form Ch〈any,any〉(Un),
and Σ;Γ � G, then G is robustly Σ-safe.

Typing Rules. Types are constrained by kinding rules which prevent secret data from
leaking to uncertified processes, or typed data from being read from an uncertified
source. Subtyping allows integrity guarantees to be relaxed and write authorization re-
quirements to be constrained. Our development of kinds and subtyping borrows heavily
from Jeffrey and Gordon [24] and Haack and Jeffrey [25], and is similar to the system
presented in [23].

The rules for terms and processes tag abstractions with the principal that it imper-
sonates. For example, a process that uses a channel reserved for α will type as 〈α〉Proc,
and one that uses both α and β channels will type as 〈α∧β〉Proc. If M is an abstraction
that takes an argument of type T and makes use of α and β channels, it will type as
T → 〈α∧β〉Proc. Our technique for typing processes and process abstractions is simi-
lar to that of Yoshida and Hennessy [26], although our types are less precise than theirs
in that we only record the authorizations required rather than the exact channels used.

Rules ensure that processes located at certified principals typecheck at a type com-
patible with that principal. For example, a process that types at 〈α〉Proc can be located
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at a principal A only if Σ � A⇒α. There are, on the other hand, no constraints on locat-
ing processes at uncertified principals.

Consistency requirements for enforceable policies ensure that 1) only typechecked
executables are assigned to class cert, and 2) typechecked executables that are assigned
to cert are also assigned to other classes they require. For example, suppose M types at
T → 〈α∧β〉Proc. If a policy assigns #([M : T → 〈α∧β〉Proc]) to cert, then it must
also assign it to α and β to be considered enforceable.

5 Related Work

This paper expands on our prior work [23] in two ways. First, the use of a higher-order
calculus allows us to describe code distribution and loading. Second, the incorporation
of security classes and a calculus of principals allow for rich specification of policy.

Abadi [27] outlines a broad range of trusted hardware applications that use remote
attestation to convey trust assertions from one process to another. Our work can be seen
as a detailed formal study of a specific kind of trust assertion, namely information about
the type and access control policy for communicated code.

The NGSCB [28] remote attestation mechanism, and the TCG [29] hardware that un-
derpins it, are more complex than the HOπ-rat remote attestation mechanism. We have
omitted much of the complexity in order to focus on the core policy issues. For a logical
description of NGSCB’s mechanism, see [30]. For a concrete account of implementing
NGSCB-like remote attestation on top of TCG hardware see [31].

Haldar, Chandra, and Franz [32,33] use a virtual machine to build a more flexible
remote attestation mechanism on top of the primitive remote attestation mechanism
that uses hashes of executables. Sadeghi and Stüble [7] observe that systems using
remote attestation may be fragile, and discuss a range of options for implementing more
flexible remote attestation mechanisms based upon system properties (left unspecified,
as the focus is upon implementation strategies). Sandhu and Zhang [9] consider the use
of remote attestation to protect disseminated information.

Our formal development builds upon existing work [34,24] with symmetric-key and
asymmetric-key cryptographic primitives in pi-calculi. Notably, the kinding system is
heavily influenced by the pattern-matching spi-calculus [25]. Our setting is quite dif-
ferent, however. In particular, processes establish their own secure channels and corre-
sponding policies, as opposed to relying upon a mutually-trusted authority to distribute
initial keys and policies. In addition, the access control policies used here are not im-
mediately expressible in spi, since processes do not have associated identity. The tech-
niques used to verify authenticity and other properties as in [35,36] should be applicable
to HOπ-rat, though we make no attempt to address authenticity or replay attacks here.
Finally, our primitive for checking attestations includes an implicit notion of authoriza-
tion, which is made explicit in [25]. Scaling up to explicit authorizations would allow the
possibility of enforcing policies that require multiple authorizations for certain actions.

Authorization based on code identity is also used by Wobber et al. in the context
of the Singularity operating system [37], as well as in stack inspection [38] and other
history-based access control policies [39]. Remote attestation can be used to implement
similar policies in a distributed environment, but we leave this for future work.
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The HOπ-rat type system allows executables to be typechecked independently and
subsequently linked together. Separate compilation and linkability is not a new idea in
programming languages, see, for example, [40], but is uncommon in spi-like calculi
because there is usually a need to reliably distribute some shared secret or untainted
data between separate processes in accordance with a type (policy). Recently Bugliesi,
Focardi, and Maffei [41,42] have considered separate typechecking in the context of a
spi-like calculus.

We assume that trusted hardware is trustworthy. For accounts of the difficulties in-
volved in creating such trusted hardware, see [43,44] for an attacker’s perspective and
[45,46] for a defender’s perspective. Irvine and Levin [47] provide a warning about
placing too much trust in the integrity of COTS.

6 Conclusions

We defined a new extension to the higher-order π-calculus for analyzing protocols that
rely on remote attestation. Our system extends our previous work [23] by incorporating
higher-order processes and using a logic of principals to specify policy. This develop-
ment allows parties to establish the identity and integrity of a remote process even if its
executable has been exposed to attackers, but also allows us to expand the access con-
trol model from one based only on specific executables to one that incorporates abstract
properties of code. This is an important advancement over existing capacities because
these properties can include static analyses that establish bounds on the dynamic state
of a remote host. We also provide a static analysis technique for ensuring robust safety
in the presence of arbitrary attackers.

For future work, we are interested in internalizing program analysis, such as trusted
compilers, typecheckers or code verifiers. This would allow us to model systems in
which analysis tools are applied to programs at an enterprise boundary, then freely
communicated and used within the enterprise without further analysis. We believe that
such systems are very desirable, in that an enterprise may require that all code to be
run in its systems must pass certain requirements. These requirements can be expressed
as membership in a HOπ-rat security class. Analysis may be performed once, leading
to a certificate (attestation) that the code belongs to the security class. The certificates
may be communicated with the code, or independently, and verified through an efficient
check of the hash of the code itself. We intend that these certificates be signed by the
analysis tool itself, running on trusted hardware, rather than by an entity (such as a cor-
poration) that vouches for the analysis. The use of hashes and rich policy specifications
brings us close to being able to reason about such systems; HOπ-rat, as presented here,
lacks only the ability to dynamically analyze abstractions.
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Abstract. We propose Architectural Design Rewriting (ADR), an ap-
proach to formalise the development and reconfiguration of software ar-
chitectures based on term-rewriting. An architectural style consists of
a set of architectural elements and operations called productions which
define the well-formed compositions of architectures. Roughly, a term
built out of such ingredients constitutes the proof that a design was
constructed according to the style, and the value of the term is the con-
structed software architecture. A main advantage of ADR is that it nat-
urally supports style-preserving reconfigurations. The usefulness of our
approach is shown by applying ADR to SRML, an emergent paradigm
inspired by the Service Component Architecture. We model the com-
plex operation that composes several SRML modules in a single one
by means of suitable rewrite rules. Our approach guarantees that the
resulting module respects SRML’s metamodel.

1 Introduction

Service orientation is becoming a standard paradigm in the development of soft-
ware applications. The paradigm is centred around the notion of service, i.e. a
computational entity whose functional and non-functional aspects can be de-
scribed in a standard document to be advertised in some service registries and
made available for discovery. Contrary to traditional applications, service ori-
ented ones are not just statically assembled. Instead, they have the potentialities
for allowing dynamic assembly via publication, discovery, selection and binding.

SENSORIA [10] (Software Engineering for Service-Oriented Overlay Com-
puters) is a research project that aims to develop a novel and comprehensive
approach for engineering service oriented computations. Key issues of SENSO-
RIA concern the early stage and development of service specification, like design
and reconfiguration of service-based architectures. In this setting, the configu-
ration of a system consists of the present components and interconnections (i.e.
the architecture), together with their current state. Architectural styles can be
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applied to reuse existing design patterns and thus facilitate software develop-
ment. In addition, they offer a further benefit when architectural information is
carried over the execution of the system, since one can control whether changes
in the system imply changes in the architecture. During run-time, changes in
the configuration like dynamic binding require reconfigurations of the architec-
ture. Static reconfiguration of an architecture may also be necessary, e.g. when
deploying an existing architecture on a platform it was not originally designed
for. Often, the architectural style must be preserved or consistently changed.

In this paper, we propose Architectural Design Rewriting (ADR) [5] as a novel
formal approach to tackle some of the aforementioned issues of service-oriented
software development. A formal metamodel for static and dynamic aspects of
the SENSORIA Reference Modelling Language (SRML) [13] is given in order to
demonstrate the expressiveness and flexibility of ADR. SRML has been inspired
by various formalisms: orchestration languages such as ORC [24], transactional
process calculi such as Sagas [6], Web service conversation models [4] and, most
notably, IBM’s Service Component Architecture (SCA) which has become part
of the Open Service Oriented Application [25] initiative involving many major
industrial partners (IBM, Sun and Oracle, among others). SCA and SRML are
complementary approaches. Indeed, SRML is aimed at the definition of mathe-
matical semantics for modules while SCA focuses on implementation.

Though some aspects of architectural reconfiguration can be captured within
other type-theoretic frameworks e.g., the calculus of constructions [9], we argue
that ADR is very intuitive and more flexible with respect to other approaches.
Indeed, ADR gives software architects the possibility to avoid style-preserving
reconfigurations when necessary while usually type-theoretic frameworks impose
it or require a complex machinery to get around it.

SRML Overview. When designing an architecture, it is desirable to consider
the concept of architectural style [26], i.e. some set of rules indicating which
components can be part of the architecture and how they can be legally inter-
connected. Traditional architectural styles include client-server and pipelines.
Some of such styles have been also defined in the realm of service oriented ap-
plications, going from abstract client-server styles [21] to more concrete and
complex architectures [2]. The basic ingredients of a style are architectural el-
ements and structural constraints. For instance, the architectural elements of
SRML are drawn in Fig. 1 (borrowed from [13]) and include service modules
(square boxes), components (rounded boxes), wires (straight lines) and inter-
faces (concave and convex polygons). This graphical notation is in the line of
the traditional boxes-and-lines or component-and-connectors [8] notations and
much more inspired by the graphical notation of SCA. The structural constraints,
in their turn, require modules to be interconnected via external wires such that
one of the require interfaces (EX-R) of a module is connected to the provide in-
terface (EX-P) of another one. Inside a module, components and interfaces are
connected via internal wires (IW). An SRML architecture is given at the highest
level of abstraction by an assembly of modules with possibly some discovered
but not bound service modules interconnected via external wires. For instance,
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Fig. 1. An SRML diagram before (left) and after (right) composition

Fig. 1 depicts an architecture with a service module (the leftmost square) which
requires two additional services to be attached to the external interfaces EX-R1
and EX-R2. The one corresponding to EX-R1 has been discovered and connected
via an external wire (EW).

An example of a reconfiguration in SRML is the composition of (already
discovered) interconnected modules into a single module [12]. SRML provides
a mechanism to achieve this static reconfiguration, by means of an algorithm
that manipulates SRML specifications. As an example, the assembly of Fig. 1
(left) can be composed into the service module depicted in Fig. 1 (right), where
wire IW6 is derived according to certain composition rules. Such reconfigurations
require a proof of correctness w.r.t. style preservation.

ADR Overview. ADR [5] is a recent proposal for the style-consistent design and
reconfiguration of software architectures, conceived in the spirit of initiatives
(e.g. [20]) that promote the conciliation of software architectures and process
calculi by means of graphical methods. Although not discussed here, ADR can
also represent the normal behaviour of systems (i.e., the evolution of compo-
nents). For example, a representation of π-calculus [23] based on a graphical en-
coding [15] is currently under development. ADR offers a unified setting where
design development, ordinary execution and reconfiguration are defined on the
same foot. The key features of ADR are: (i) rule-based approach; (ii) hierarchi-
cal and graphical design; (iii) algebraic presentation; and (iii) inductively-defined
reconfigurations. Architectures are suitable modelled by so-called designs : a kind
of graphs whose items suitably represent the architectural components and their
interconnections. Architectures are designed hierarchically by a set of composi-
tion operators called design productions which enable: (i) top-down design by
refinement, (ii) bottom-up typing of actual architectures, and (iii) well-formed
composition of architectures. An architectural style is defined as a set of design
productions such that a design is style-consistent whenever it can be defined by
a design term which makes use of the corresponding design productions. Recon-
figuration and behaviour are given as rewrite rules that are defined over design
terms rather than over designs. The main advantages of ADR are that: (i) in-
stead of reasoning on flat architectures (designs), ADR specifications provide
a convenient hierarchical structure (design terms), by exploiting the architec-
tural classes introduced by the style, (ii) complex reconfiguration schemes can be
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Fig. 2. Two SRML diagrams in the graphical representation of ADR

defined inductively at any level of abstraction, and (iii) style-guarantees during
reconfiguration or execution are ensured by construction.

Contribution. Our main goal is to define an ADR-based architectural style to
support the development and reconfiguration of SRML diagrams according to the
SRML metamodel. We shall define an architectural style given by a vocabulary
of architectural elements and a set of operations for the construction of SRML
diagrams. More precisely, we build an algebra where the evaluation of a design
term is a design representing an SRML diagram. It is worth mentioning that
any SRML diagram can be represented by a design. For instance, Fig. 2 depicts
ADR designs for the SRML diagrams of Fig. 1: the correspondence is explained
in § 3. SRML reconfigurations are then modelled as ADR rewrite rules over the
design terms rather than over plain designs, guaranteeing style preservation and,
thus, metamodel conformance.

Structure of the Paper. § 2 overviews ADR. § 3 describes an ADR style for
SRML. § 4 addresses the problem of reconfiguration of SRML diagrams, fo-
cusing on module composition. § 5 summarises our work, draws conclusions and
sketches interesting research avenues. For reader’s convenience the graphical rep-
resentation of the most complex reconfiguration rule is included in appendix A.

2 Architectural Design Rewriting

In this section we summarise the key features of ADR. We refer the reader
to [5] for a detailed technical presentation. Roughly, ADR adheres to three main
principles: (i) architectural designs are modelled by suitable graphs called designs
and come equipped with their proofs of construction called design terms ; (ii)
architectures are designed hierarchically by a set of composition operations called
productions out of which design terms are built and architectural styles are
basically given by sets of such productions such that an architectural design is
compliant with a style if its design term uses the corresponding productions only;
(iii) reconfigurations are powerful, expressive, hierarchical and style-consistent
rewrite rules defined over design terms instead of designs.

We illustrate the principles of ADR with a simple example where a local
network architecture admits two styles where each network hub has respectively
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two and three degrees of connectivity. Connections between hubs are also driven
by the style, so that, for instance, the only legal 2-degree networks are rings.

Principle i), i.e. modelling architectural designs by suitable graphs, has been
widely exploited in the literature (e.g. [2,22]). For instance, in the well established
component and connector view, software architectures are modelled by graphs of
components and connectors. In ADR one can represent such graphs as follows.
A component is modelled by a hyperedge whose outgoing tentacles represent
the components interface, i.e. its ports. Similarly, a connector is modelled by a
hyperedge whose outgoing tentacles represent the connector’s interface, i.e. its
roles. Attaching a port to a role is done by connecting the respective tentacles
to the same node. The main actor of ADR are designs (see Definition 2), which
are used to model components, connectors and architectural configurations.

The choice of graphs as the domain of our algebra is inherited from the pre-
viously mentioned approaches, but it is well justified by the immediate user-
friendly visual representation and the expressive power of graphs and their
rewritings which have been used for years as a model, not only of software
architectures, but of many other things ranging from data structures to process
calculi.

Definition 1. A graph is tuple G = 〈V,E, θ〉 where V is the set of nodes, E is
the set of edges and θ : E → V ∗ is the tentacle function.

The different classes of edges used in the network example are drawn in Fig. 3
where an explicit numbering or naming of tentacles is avoided in favour of an im-
plicit convention that assumes that the order of tentacles exiting from each edge
is given by considering the leftward tentacle as the first one and the remaining
tentacles as clockwise ordered.

More generally, we could consider the association of semantic information to
graph items. For example, nodes can represent variables taking values over a
finite domain and edges can express suitable constraints over them. Another
example is the association of theories to nodes and theory morphisms to edges
(e.g. a theory of interaction signatures). Then, this additional information can
be exploited to drive the development and reconfiguration phases. We shall not
give special emphasis to such aspects. However, we shall return to this issue
along with the paper suggesting how we could capture semantical aspects of
SRML in addition to the structural ones, on which we shall focus.

Principle ii), i.e the hierarchical design of architectures, is also not particularly
original in itself [18], but it is here enhanced by a novel algebraic presentation. An
architectural style consists of a vocabulary of architectural elements (represented
by a type graph), and a set of production rules indicating how they can be legally
interconnected. We distinguish two kinds of edges in the type graph: terminals
T and non-terminals NT . Likewise string grammars, terminal edges represent
basic, non-refinable, concrete components of the architecture, while non-terminal
edges, represent complex, refinable, abstract components.

In the network example we have T = {2hub, 3hub} and NT = {2N, 3N,NET}.
Our graphical notation uses single-framed and double-framed boxes for terminals
and non-terminals, respectively (see Fig. 3).
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Fig. 3. Architectural elements of the network example

In ADR, software architectures are not just specified by graphs. Instead, they
are represented by designs. A design is a well-formed architecture with a typed
interface (represented by a non-terminal edge) and an internal structure (repre-
sented by a graph). The interface is an abstract view of the design as a single
component, thus hiding the internal representation except for those nodes that
are exposed in the interface.

Definition 2. A design is a triple d = 〈Ld, Rd, id〉, where Ld is the interface
graph consisting a single non-terminal edge (called interface) whose tentacles are
attached to distinct nodes; Rd is the body graph; and id : VLd

→ VRd
is the total

function associating body nodes to interface nodes.

A design d is partial (resp. concrete) if Rd contains (resp. does not contain)
non-terminal edges. In service-oriented applications dealing with partial designs
is natural and essential: the architecture of services is only instantiated when
needed after a proper discovery, selection and binding.

Designs are assembled by means of composition operations, called design pro-
ductions.

Definition 3. A production is a tuple p = 〈Lp, Rp, ip, lp〉 where 〈Lp, Rp, ip〉 is
a design with np occurrences of non-terminal edges in Rp that are mapped by the
bijection lp on segment [1, 2, . . . , np].

Each production p has a functional reading p : A1 × A2 × . . . × An → Anp ,
where × has precedence on →, Ap is the type of the interface and Ak is the
type of the k-th non-terminal edge ek of Rp (i.e. ek = l−1

p (k)). In fact, p can
be considered as the obvious graph pasting that, when applied to a tuple of
designs 〈d1, d2, . . . , dnp〉 (of types A1, A2, . . . Anp , respectively), returns a design
p(d1, d2, . . . , dnp) of type Ap obtained by replacing each non-terminal edge ek in
Rp with the graph Rdk

(preserving the correspondence of tentacles).
Our network example uses production link2 = 〈Llink2, Rlink2, ilink2, llink2〉

whose functionality is link2 : 2N1 × 2N2 → 2N. Intuitively, link2 specify an
operator of the algebra that arranges two designs of type 2N into a new 2N design.
In hyperedge replacement style (see [16] for details) link2 can be written as

•u1 e:2N�� �� •u2 �������� •u1 e1:2N�� �� •v e2:2N�� �� •u2

where the left-hand side graph can be replaced by the right-hand side one. A
compact and elegant graphical representation of link2 is drawn in Fig. 4 where
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Fig. 4. Graphical representation of production link2

the left-hand side (i.e., the interface edge) is represented by the outermost dot-
ted box whose nodes u1 and u2 are outside the dotted box. The right-hand
side graph of link2 is depicted in the dotted box and the nodes v1 and v2 are
exposed in the interface through waved lines. Finally, the order of arguments
of each production is implicit: from top to bottom, and left to right if on the
same row, e.g. llink2 = {e1 �→ 1, e2 �→ 2}. In the rest of the paper we will ne-
glect the textual representation of productions as well as the identities graph
items in their visual representation. The rest of the productions of our example
are depicted in Fig. 5. For example, a 2-network is either a network with just
one 2-hub (basic2) or the chaining of two 2-networks (link2). For 3-degree
networks the composition involves three arguments of type 3N. For instance,
production link3 has type 3N × 3N × 3N → 3N. Finally, a network is either a
2-network (net2) or a 3-network (net3), whose interface nodes are merged to-
gether. To illustrate the operations associated to productions, consider the term
net2(link2(link2(basic2, basic2), basic2)). Subterm link2(basic2, basic2)
evaluates to a 2-network made of two concatenated 2-hubs. Such value is used in
the subterm link2(link2(basic2, basic2), basic2) to obtain a 2-network made
of three 2-hubs. Finally the whole term evaluates to the design on the right of
Fig. 6. Similarly, the term net3(link3(basic3, basic3, basic3)) evaluates to
the design on the left of Fig. 6. Instead an expression like net2(basic3) is not
valid, because types mismatch.

The use of productions offers a mechanism that supports the construction
of architectural designs both in a top-down way by refinement of terms and a
bottom-up way by composition of terms. A typing mechanism can be used as a
reverse engineering method to obtain a design term for a given design.

A crucial benefit of the use of productions regards the concept of architectural
style, i.e. a certain set of architectural designs considered to be valid or in con-
formance with some design pattern. In fact, while changes in the architecture
are acceptable and even necessary, the architectural style should be preserved in
most cases. For instance, in a system with client-server architectural style clients
connecting and disconnecting from the server are permitted, while a client con-
necting to a client is not. Changes in style are also interesting, take for instance,
a token ring architecture configuring into a star-shaped one to achieve a most ef-
ficient communication. Typical architecture description languages define a style
in terms of architectural constraints to be checked after or during the construc-
tion of a design. Instead in ADR, an architectural design is defined by a set of
productions. Any design term that uses those productions defines an architec-
tural design that is consistent with the corresponding style. As a consequence, no
proof of style-consistency is needed. Designs are style-consistent by construction.

e:2N

•u1 �������� •v1 e1:2N�� �� •v3 e2:2N�� �� •v2 •u2�� �� ��
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Fig. 5. Design productions of the network example

Fig. 6. Two network designs: with three-degrees (left) and two-degrees (right) hubs

We say that a design d is well-formed if there is a well-typed design term whose
value is d, while we say that d is consistent w.r.t. to a style (or style-consistent) if
the design term uses design productions of the style. Note that style-conformance
implies well-formedness, but the contrary is not true. For instance, one could
construct an architecture mixing productions of two different styles. However,
for the sake of simplicity we assume that mixing styles is not possible. This is
achieved by requiring the set of types used in each pair of styles to be disjoint,
in which case the style of a design term is automatically given by its type and
thus well-formedness and style-consistency coincide.

Principle iii), i.e. reconfigurations defined over design terms instead of ac-
tual architectures, exploits the algebraic presentation of ADR. This enables a
straightforward definition of hierarchical and inductive reconfigurations as ordi-
nary term rewriting and conditional SOS rules. The main guarantee offered by
ADR is that reconfigurations are style-preserving by construction.

A reconfiguration rule is seen as a rewrite rule L→ R. There is a very simple
sufficient condition for enforcing style preservation, namely that both L and R
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basic3to2 : basic3
3to2−→ basic2 net3to2 :

x
3to2−→ x′

net3(x) −→ net2(x′)

link3to2 :
x1

3to2−→ x′
1 x2

3to2−→ x′
2 x3

3to2−→ x′
3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x

′
3)

Fig. 7. Conditional reconfigurations of the network example

are terms of the same type. Then, it is possible to apply the rule in any larger
architecture t(Lη), where η assigns design terms to variables and where t is
any term with one hole with the same type as L. After the reconfiguration, the
well-typed architecture t(Rη) is obtained.

For example, the rule link2(x1, x2) → link2(x2, x1) where x1 and x2 have
type 2N, reconfigures any 2N chain by switching the order of its two components.

In case certain local changes in the architecture are subordinated to the cor-
responding adaptation of the adjacent environment, we can use conditional re-
configuration rules, expressing that a composed architecture can be rewritten
only if its sub-components are suitably transformed first. This step makes the
formalism very powerful. Simple conditional rewrites take the form:

t1 → t′1 . . . tn → t′n
L→ R

meaning that, given an assignment η, the architecture Lη can be reconfigured
according to Rη only if each tiη can be reconfigured to t′iη.

The reconfiguration rules needed to downgrade the hubs of any 3-network are
defined in Fig. 7. Note that types are not preserved by rewrites labelled 3to2,
which change the type from 3N to 2N. But this is not a problem because rules
are intended to be applied in appropriate (inductively defined) contexts. This is
particularly clear in the rule net3to2 where the conclusion actually transforms
a network into a network: the silent label makes it applicable in any larger
context. The rule link3to2 is graphically represented in Fig. 8. By applying
net3to2 (once), link3to2 (once) and basic3to2 (three times), we obtain a
style-preserving rewrite from the leftmost design in Fig. 6 to the rightmost one.

For another simple but illustrative example of the ADR modelling of a road
assistance scenario we refer the reader to [5].

3 Design of SRML Diagrams

The metamodel of SRML is defined in terms of some class diagrams. Roughly,
a module is an abstraction of a business entity that can either perform a task
(in which case it is called an activity module) or provide a service (called a
service module). Modules consist of components and external interfaces, possi-
bly linked via internal wires. Components abstract the computational aspects of



Service Oriented Architectural Design 195

Fig. 8. Graphical representation of rule link3to2

modules, while interfaces model the interaction with the external world. There
are two kinds of external interfaces: provide and require. The former are present
in service modules and indeed they specify the service provided by modules.
Require interfaces, instead, specify the services needed. A needed service can be
identified during static- or run-time. The latter being the open-frontier of the
service-oriented paradigm, but static binding is interesting too as we shall see.

In this section we define an ADR architectural style that is compliant with the
SRML metamodel. The encoding of SRML composition as ADR reconfiguration
is deferred until § 4.

3.1 Architectural Elements of SRML

Service components, wires and interfaces are concrete architectural elements that
we represent as terminal edges (see Fig. 2, for instance). A service component is
represented by an edge of type c with a unique tentacle representing its interac-
tion port attached to a node of type ◦ (a component port). Require and provide
interfaces are edges of type r and p, respectively, whose tentacles are attached to
nodes of type � (required port) and � (provided port), respectively. Internal and
external wires are represented with edges respectively typed by i and e. Internal
wires must be attached to a node of type ◦ or � and another node of type ◦ or
�. This means that the left (resp. right) tentacle of an internal wire cannot be of
type � (resp. �). External wires are attached to one node of type � via its left
tentacle and another one of type � via its right tentacle.

Typing imposes syntactical restrictions not present in the (less-accurate) UML
metamodel (e.g., it does not make sense to connect two require interfaces via an
internal wire). Further syntactical and semantic aspects are enforced by suitable
mechanisms that impose restrictions on the actual use of wires in a diagram.
For instance, the ports of components and interfaces and the roles of wires have
associated suitable interaction signatures. Then, a component or interface can
share a node with an internal wire only if their respective ports and roles have

∀i∈¶1↪2↪3♦ •
��

3N •

• ���������� • xi:3N�� ��

��

•• •�� �� ��
3to2

?

2N

• ������ • x′
i:2N�� �� • •�� �� ��

•��

3N •

• x1:3N�� ��

��

•

• �� • x2:3N�� ��

��

• x3:3N�� ��

��

• •��

3to2

?

2N

• x′
1:2N�� �� •

• �� • x′
2:2N��

��

x′
3:2N ��

��

• •��



196 R. Bruni et al.

Fig. 9. An activity (left), a service (center) and a wrapped service (right)

the same signature. External wires, instead require both attached signatures
to be compatible and the behaviour of the required service to be entailed from
the provided one. We deal only with the most abstract structural aspects of
SRML; insights on aforementioned restrictions are in [13] where suitable models
of interaction signatures and service behaviour entailment are fully detailed.

The non-terminal architectural elements of the SRML style are present in
the various figures of this section where families of architectural elements are
actually represented. In fact, designs and productions are parametrised by the
rank of their constituents. For simplicity, our graphical notation abstracts away
from ranks and a dotted line between two nodes for representing any number of
them. In other words, we overload the name of (ranked) productions and assume
the application of production exploits polymorphism in a suitable way.

The presented architectural elements are the basic ingredients to build graphs
that represent SRML diagrams such as those in Fig. 2.

3.2 Design Productions for SRML

We follow a top-down presentation of the ADR productions for SRML (from
modules to wires and components).

Service and activity Modules. An SRML module consists of a body (to be identi-
fied during development) and some wrapped services (to be refined at run-time).
Productions smod and amod in Fig. 9 model this structure. For instance, we could
have amod(t, x1, x2), t being a concrete design of type AB (the complete speci-
fication of the body of the activity), while x1 and x2 are variables of type W .

Remarkably, the ADR modelling of SRML binding is performed in two steps.
First, the selected service is wrapped in the module via an external wire and
then the internal wires of both the activity and the service are rearranged to
internalise the connection (cf. Section 4). Here, the wrapping step is modelled
by production wrap : E ×M → W in Fig. 9, that wraps a service module by
means of a binding wrapper that connects the require interface port with the
interface port provided by the service. The only binding considered here is a
single external wire (see production ewire).
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Fig. 10. The body of an activity module (left) and a service module (right)

Module Bodies. The body of a module consists of a collection of service com-
ponents and interfaces connected via internal wires. The difference between the
body of an activity and a service module is that the former does not have a
provide interface. In the body of a service module it is convenient to distinguish
three collections of internal wires connecting, respectively, the provide interface
with the require interfaces, the provide interface with the service components
and the service components with the require interfaces. This distinction leads to
three arguments of type I, that partition internal wires depending on the types
of the ports their tentacles are attached to. Correspondingly, production sbod
has type I × C × I × I → B (see Fig. 10). Production abod is very similar, but
requires only a collection of internal wires. Its type is C × I → AB.

Again, suitable restrictions should be imposed on connecting wires when fur-
ther aspects are in order. For instance, assume/guarantee relations between a
require and a provide interfaces can be given as an entailment of the provide
interface from the require one.

Service Components and Internal Wires. Service components are the main com-
putational entities of SRML modules. We define two design productions to con-
struct collections of such, possibly interconnected, service components: comp (of
type → C) to create a single component, and comps (of type C × C × I → C)
to compose two collections of components via internal wires (see Fig. 11).

Productions iwire :→ I and wires : I × I → I respectively build a single
wire and a collection of wires (out of two collections of wires). Regarding iwire,
observe that Fig. 12 actually represents all the productions obtained by attaching
the leftward and rightward tentacles of the edge of type i to any of the exposed
nodes. Production nowire accounts for empty wire collections.

The ADR designs in Fig. 2 that encode the SRML diagrams in Fig. 1 are
well-formed by the design terms m1 = smod(b1, w1, x) and m2 = smod(b2, x),
where x is a variable of type W that models the non-discovered service, and:

b1 = sbod( nowire, comps(comp, iwire, comp), iwire, wires(iwire, iwire) )
w1 = wrap( ewire, smod(sbod(nowire, comp, iwire, nowire)) )
b2 = sbod( nowire, comps(comps(comp, iwire, comp), iwire, comp), iwire, iwire ).

dobsdoba

AB

C

��

��

r

��
◦ � ��� �� ��

◦ I��

�� ��

��

r

��
� ��� �� ��

B

p

��

I

�� ��

		

r




� ������ � C

��

��

� ��� �� ��

◦

I

��

��

�� ◦ I��

��



��

� ��� �� ��

r

��



198 R. Bruni et al.

Fig. 11. An interconnection of service components

Fig. 12. Internal wires

4 Reconfiguration of SRML Diagrams

Rewriting of architectural designs can be used to define interesting reconfigura-
tion mechanisms in SRML, like turning an assembly of modules into a composite
module. The reconfiguration of an assembly into a module is called composition.
It is typically applied during run-time while needed services are discovered and
bound, but it can be applied at static time too, in order to avoid the run-time
computational effort required for service discovery, selection and binding in dy-
namic composition.

The composition operation has already been sketched in § 1, where the assem-
bly of the two modules on the left of Fig. 1 yields the single module on the right.
The only external wire EW has been internalised : the linked interfaces disappear
and the components of both modules that were previously connected via those
interfaces and the external wire are now directly connected via internal wires.
SRML defines an algorithm that performs the composition by manipulating the
involved SRML diagrams. The main idea is that each pair of internal wires con-
nected via an external wire becomes an internal wire. However, no formal proof
of compliance w.r.t. SRML’s metamodel is provided.
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Fig. 13. Base rule that internalises a wires

Here, we encode internalisation of wrapped modules as proper ADR reconfig-
urations. The corresponding ADR rewrite rules transform a term representing
any SRML diagram with a wrapped service into a term representing the dia-
gram where the wrapped service has been internalised. We exploit an auxiliary
design production link, which is very simple: it connects two collections of wires
via an external wire (see, e.g. its use in Figure 14). Production link was not
presented in § 3 because it is not really used to construct SRML diagrams and
modules, but just needed in some rule premises to compute the internal wires
to be inserted in the module.

The basic rule transforms the indirect connection of two ports into a direct,
internal connection (see Fig. 13): link(iwire, iwire) int−→ iwire.

Recall that we are dealing with the most abstract structural aspects, but
SRML imposes further syntactical restriction on these rule as well semantic re-
strictions in binding services. Indeed, the interaction signature of the internal
wire obtained by the rule should be the result of properly combining the inter-
action signatures of the wires appearing in the left-hand side of the rewrite.

The premises of the second rule (see Fig. 14) require each possible combination
of internal wires to be properly internalised. If this is possible separately, then
the overall internalisation is performed.

link(u1, v1)
int−→ w1

1 link(u1, v2)
int−→ w2

1 link(u2, v1)
int−→ w1

2 link(u2, v2)
int−→ w2

2

link(wires(u1, u2), wires(v1, v2))
int−→ wires(wires(w1

1 , w1
2), wires(w

2
1, w

2
2))

Once we have presented the rule for internalising wires, we are ready to give
the general rule for internalising a wrapped service (see Appendix A for the
graphical representation). The rule takes into account the more general form of
a design term with a wrapped service to be internalised:

link(w3, w4)
int−→ w4

3 link(w2, w4)
int−→ w4

2 link(w3, w5)
int−→ w5

3 link(w2, w4)
int−→ w5

2

smod(sbod(c1, w1, wires(w2, w
′
2), wires(w3, w

′
3)),

wrap(smod(sbod(c2, w5, w6, w4), sn+1, . . . , sm), s1, . . . , sn))
−→ smod(sbod(comps(c1, w

5
2 , c2), wires(w1, w

4
2), wires(wires(w

′
2, w6), w

5
3),

wires(w′
3, w

4
3), s1, . . . , sn, sn+1, . . . , sm)

As an example of reconfiguration, it can be verified that m1 is reconfigured
into m2 (cf. end of § 3 and Fig. 2) in one rewrite step by applying the above
rule, where the only required premise is link(iwire, iwire) int−→ iwire (which
is trivially satisfied).

It is worth noting that the composition rule can be applied in any context
thus ensuring well-typedness and style-preservation.

I

◦ ������ ◦ i�� �� � e�� �� � i�� �� ◦ ◦�� �� �� int

?

I

◦ ������ ◦ i�� �� ◦ ◦�� �� ��



200 R. Bruni et al.

Fig. 14. Rule that internalises a wires: recursive case

5 Conclusion

We have proposed Architectural Design Rewriting as a framework for hierarchical
style-based reconfigurations of software architectures. The approach is based
on algebras of typed graphs with interfaces, yielding a unifying treatment of
style-based design and reconfiguration. Its hierarchical and inductive features
allows us to compactly represent complex reconfiguration rules. While in other
approaches (e.g. [22]) correctness of each reconfiguration rule must be formally
proved, in ADR correctness is automatically given by the fact that rewrites
act on design terms, rather than on designs. Comparing ADR to architectural
description languages, ADR offers a unifying model to represent architectural
design, reconfiguration, and ordinary behaviour too. A deeper comparison of
ADR against similar approaches can be found in [5].

In this paper we have defined an ADR style to support the design and reconfig-
uration of service-oriented specifications given in SRML whose choice is justified
by the fact that it aims at providing a formal approach to service-oriented mod-
elling that is close to SCA [25]. The model of SRML consists of an ADR-based
architectural style that is compliant with the SRML metamodel so that it can
suitably define SRML complex reconfigurations with the main benefit they are
compliant with the metamodel by construction.

We plan to analyse and eventually enrich our approach to support further
issues inherent to the design and management of service-oriented architectures,
like the treatment of modes [17] or the semantical information of SRML [14].
In addition we plan to perform a deeper comparative analysis of ADR against
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similar approaches like process calculi to deal with reconfigurable component
based architectures [1], architectural metaprogramming initiatives [3] that pro-
mote the unifying treatment of software refactoring, synthesis and development
as algebras over programs, and graphical representation of concurrent systems
such as those based on process calculi encodings [15], Synchronized Hyperedge
Replacement [11], and bigraphs [19]. An implementation of ADR in Maude [7]
is also under development.
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Replicating Web Services for Scalability
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Abstract. Web service instances are often replicated to allow service
provision to scale to support larger population sizes of users. However,
such systems are difficult to analyse because the scale and complexity
inherent in the system itself poses challenges for accurate qualitative or
quantitative modelling. We use two process calculi cooperatively in the
analysis of an example Web service replicated across many servers. The
SOCK calculus is used to model service-oriented aspects closely and the
PEPA calculus is used to analyse the performance of the system under
increasing load.

1 Introduction

Web Services expose applications on the Internet for open, accessible use. The
computational dynamics of such a distribution are that the resources of a server
hosting a service endpoint are shared among its many, geographically distributed,
clients. Evidently such a single-server design cannot scale to accommodate very
large numbers of clients so when scalability is identified as a concern a crucial
enhancement to this deployment architecture is to replicate the service across
many, usually geographically distributed, servers. This deployment leads to a
scalable design where more clients can be accommodated by adding more servers.
The resources of the replicated services are federated to serve many clients.

Clients of such a distributed service will usually need to become more compli-
cated because they will first need to discover service endpoints before binding to
a particular service instance. Service providers must also register with a registry
of services, so that they may later be discovered by the clients. Some services are
sufficiently specialised that their locations are known and this knowledge is built
into the service composition, and exploited. We consider such a scenario here.

Web Services provide all of the necessary infrastructure for services to be
deployed in this way, with formal statements of the service provided, a formal
notion of registration with the registry and a procedure for service discovery in
registries. In the present paper we are concerned with the analysis of the high-
level design of a replicated service, based on measurements of individual service
instances and probabilistic estimates of likely bindings chosen by clients.

We are concerned here with using process calculus models to investigate how
well a distributed system can balance load in order to provide a scalable service
for larger pools of users downloading content over a shared network. The specific

G. Barthe and C. Fournet (Eds.): TGC 2007, LNCS 4912, pp. 204–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Both the students and the university sites are geographically distributed. Ser-
vices are replicated across sites to allow the system to scale to support larger popula-
tions of student users.

scenario which we consider as an illustration of this class of systems is a Dis-
tributed E-Learning and Course Management System (DCMS) which provides
management of courses and degrees offered at several co-operating universities,
implemented as a collection of services. The system encompases services to pro-
vide e-learning courses which can be shared between universities and services
which enable several universities to jointly provide e-learning courses, thus fed-
erating resources and providing a wider programme of courses of study than
would be found at any of the universities individually. Lightweight federation
of resources in this way to form a “virtual university” is exactly the type of
interaction envisaged by the architects of the Web Service vision.

One of the difficulties of modelling such a design is capturing behaviour cor-
rectly, and assuring oneself and others that this has been achieved. We model
the behaviour of the system in the SOCK calculus [1,2]. We have exercised this
model using the JOLIE interpreter [3] in order to increase our confidence that
the model describes the behaviour which we intended to capture.

Another challenge of this type of work is the well-known state-space explosion
problem whereby a formal model of a system to which the algebraic methods and
tools of concurrency theory can be applied would be very likely to be resistant
to effective formal analysis. State-space explosion arises because the size of the
system as a whole is bounded by the product of the individual state-spaces of the
components which are composed in parallel. Evidently, this grows very quickly
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even when the components used are high-level abstact models of services which
incorporate only the essential details needed for the modelling study. Due to the
state-space explosion problem models might be require either an infeasibly long
time to analyse, or an infeasibly large amount of storage.

To address this challenge, and be able to model the scalability problem of
interest, we adopt a continuous-space representation of the process algebra model
in contrast to the usual discrete-state representation of process algebra mod-
els via labelled transition systems. The process algebra used, PEPA, and the
continuous-state representation are both due to Hillston [4,5]. The continuous-
state representation avoids the requirement to represent each possible state of the
system, making this analysis method applicable to systems of vastly greater scale
and complexity than those analysable using the explicit, discrete-state represen-
tations which are usually based on Continuous-Time Markov Chains (CTMCs).
In contrast the continuous-state representation maps the process algebra model
to a system of coupled Ordinary Differential Equations (ODEs). Because of this
an entirely different arsenal of numerical analysis procedures are available which
can efficiently compute valuable analysis results for large-scale systems such as
the one considered here.

By using SOCK and PEPA together in this way we have a federation of the
resources of the two calculi as a “virtual process calculus” (in the same way that
real organisations federate their resources to become a virtual organisation).
In the present paper we use this virtual process calculus to model a virtual
university.

Structure of this paper. In Section 2 we describe related work. In Section 3
we present the Service Oriented Computing Kernel (SOCK) calculus used in
Section 4 to model our example Web Service. Following this we introduce Per-
formance Evaluation Process Algebra (PEPA) in Section 5 which we use to
analyse the non-functional aspects of the example in Section 6. We present our
conclusions in Section 8.

2 Related Work

There are now many papers where stochastic process calculus models are mapped
to Continuous-Time Markov Chains, semi-Markov processes or generalised semi-
Markov processes for performance analysis [6,7]. Hillston’s method of mapping
process calculus models to ordinary differential equations is a more recent devel-
opment [5] but has already been used to analyse multi-stage job execution on
Grid compute clusters [8], peer-to-peer systems [9] and internet-scale spread of
computer viruses such as worms [10]. An earlier paper by two of the present
authors used Hillston’s ODE method to show the failure of a centralised server
model for the DCMS e-learning system to scale with increasing load [11]. The
present paper is the first to show the potential for ODEs, however they are
obtained, to be used as a modelling tool for replicated services as found in the
Web Services paradigm.
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3 The SOCK Calculus

SOCK (Service Oriented Computing Kernel) [1] is a formal calculus developed
for reasoning about the main Service Oriented Computing issues. SOCK is
divided into three different calculi which addresses different aspects of service
design. The three SOCK calculi are called: service behaviour calculus, service
engine calculus and services system calculus. The first one allows for the design
of service behaviours by supplying computation and external communication
primitives inspired by Web Services operations and workflow operators (e.g.
sequence, parallel and choice). The service engine calculus is built on top of
the former and allows for the specification of the service declaration where it is
possible to design in an orthogonal way three main features: execution modality,
persistent state flag and correlation sets. The execution modality deals with the
possibility of executing a service in a sequential order or in a concurrent one; the
persistent state flag allows the designer to declare if each session (of the service
engine) has its own independent state or if the state is shared among all the
sessions of the same service engine; correlation sets is a mechanism for distin-
guishing sessions initiated by different invokers by means of the values received
within some specified variables. Finally, the services system calculus allows for
the composition of service engines into a system.

The term syntax of the calculus includes numerical values and (possibly
empty) tuples of variables x = 〈x0, x1, . . . , xn〉 and values v = 〈v0, v1, . . . , vn〉.
The null process is 0. Operations are single message (O) or involve two mes-
sages (Or). Outputs can be a signal s, a notification o@k(x ) or a solicit-response
or@k(x ,y) where o is an operation in O, or in Or, k the receiver location, x the
tuple of variables sent and y the received information. The process term x := e
denotes an assignment. χ?P : Q is the if-then-else process. P ; P is sequential
composition and P | P is parallel. Guarded choice is P + P . χ � P is guarded
iteration. For a complete description the reader is referred to [1].

A brief discussion of the SOCK operators for service engine description and
execution is given below:

Persistence. The flags × and • are used to distinguish persistent and non-
persistent state. Where P is a service behaviour then P× is equipped with a
non-persistent state whereas P• is equipped with a persistent state.

Guards. The execution of sessions may be guarded by correlation sets. In the
term c�P• the correlation set c guards the execution of the persistent service
P . Correlation sets may be empty (∅).

Sessions. !W denotes a concurrent execution of the sessions in W whereas W ∗

denotes that sessions are executed in sequential order. For example !(∅ � P•)
indicates the concurrent execution of uncorrelated persistent service P .

Engines. A service engine Y is the composition of a service declaration D and
an execution environment H , denoted D[H ]. H represents the actual sessions
which are running on the engine coupled with a state (P, S).

Locations. A service engine system E can be a located service engine YLOC or
a parallel composition of them E ‖ E.
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4 Modelling Behaviour with SOCK

In an e-learning system the teaching material prepared by the teaching staff of
each university is made available as learning objects which students must obtain
by download from the content servers of the universities involved. The learning
objects contain electronic versions of course notes and presentation material
such as lecture slides. In addition many learning objects contain digital audio or
digital video recordings of lecture presentations given by teaching staff. Learning
objects are compressed archives of teaching material which vary in size and scale
from collections of material for a single lecture in a course to a complete record of
an entire lecture course. The lecture presentations of the course are downloaded
instead of being streamed because they may require repeated review in order to
digest the content.

Universities which host e-learning content are concerned with providing ser-
vices which ensure good availability of the content and limited download times
for the learning objects. Both of these are considered to be important metrics
and are addressed in different ways. A high level of availability of the content
is ensured by replicating the content distribution services (and the associated
learning objects) across the content servers of many of the universities involved.
Download times are reduced where possible by binding content requestors at the
point of download to the content server which is most likely to be able to serve
them well at that time.

The dynamic choice of content server is made using a metric which takes into
account the geographical location of the content requestor and the content server,
available bandwidth between the hosts, and the current load on the content
server. Some of these factors can be known or bounded in advance (e.g. the
maximum possible bandwidth between two endpoints) but some values must
be obtained at the time that the service is invoked (e.g. the current load on a
server).

It might seem that the best choice of server should always be the one which is
geographically closest however it is possible that a lightly-loaded server further
away from the content requestor might be able to serve them more quickly than
a heavily-loaded server which is nearby. When considering home download it
is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
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Fig. 2. The configuration of servers and services at the five sites

name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 2.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request to
the service of the University of Bologna by exploiting the Solicit-Response get-
Server@UNIBO and, as a reply, it receives the address of the service to invoke
for retrieving the e-learning object it is looking for. If the response message con-
tains a valid address (here we model a fault reply message with the value -1), the
client downloads the e-learning object by invoking the getObject operation of the
service whose location has been stored within the variable ServerAddress. Here,
we exploit the value id value, assigned to the variable ObjectID, for modelling
the reference of the object to download and we suppose that all the servers are
able to provide the same e-learning objects.

clientBehaviour ::= getServer@UNIBO(〈〉, ServerAddress);
ServerAddress == −1?0 :

(objectID := id value
; getObject@ServerAddress(objectID, object))
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The UniBoBehaviour models the behaviour of the service provided by the
University of Bologna and it supplies two different operations: getServer and
getObject.

UniBoBehaviour ::= getServer(〈〉, addr, search)
+getObject(id, obj, obj := retrieve obj(id))

The former allows for the individual identification of the downloading service by
following a policy that takes into account the load of each server, whereas the
latter allows the service user to download an e-learning object directly from the
UNIBO service.

It is worth noting that the load of the other servers is retrieved by exploit-
ing the Solicit-Response operation getLoad whereas the functions loadhere()
and retrieve obj() model the internal computations for calculating the actual
load of the UniBo server and retrieving the requested object from the internal
database of the server, respectively.

search ::= load := loadhere(); load < 75?addr := UNIBO
: getLoad@UNIFI (〈〉, load); load < 60?addr := UNIFI
: getLoad@UPISA(〈〉, load); load < 60?addr := UPISA
: getLoad@LMU(〈〉, load); load < 40?addr := LMU
: getLoad@UEDIN(〈〉, load); load < 20?addr := UEDIN
: load := loadhere(); load < 95?addr := UNIBO
: addr := −1

Finally, the ObjServerBehaviour models the behaviour of each downloading ser-
vice by providing two different Request-Response operations: getLoad and get-
Object. The former allows for the returning of the load of the server whereas the
latter provides a means for downloading the requested e-learning object.

ObjServerBehaviour ::= getLoad (〈〉, load, load := loadhere())
+getObject(id, obj, obj := retrieve obj(id))

As far as the deployment of the services is concerned, below six service engines
are composed within a process called System.

For the sake of precision, the client is not a service because it does not start
with a receiving operation thus, its service engine provides only an execution
environment, without any declaration, where the service behaviour can be exe-
cuted once.

The UniBoServer is the service engine which executes the UniBoBehaviour
whereas UPisaServer, UniFiServer, LmuServer and UEdinServer are the ser-
vice engines of the downloading servers which all execute the same behaviour
ObjServerBehaviour but at different locations.
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client ::= [clientBehaviour ]CLIENT

UniBoServer ::= !(∅ � UniBoBehaviour•)[∅ � (0, S)]UNIBO

UniF iServer ::= !(∅ � ObjServerBehaviour•)[∅ � (0, S)]UNIFI

UPisaServer ::= !(∅ � ObjServerBehaviour•)[∅ � (0, S)]UPISA

LmuServer ::= !(∅ � ObjServerBehaviour•)[∅ � (0, S)]LMU

UEdinServer ::= !(∅ � ObjServerBehaviour•)[∅ � (0, S)]UEDIN

System ::= client ‖ UniBoServer ‖ UPisaServer ‖ UniF iServer
‖ LmuServer ‖ UEdinServer

5 The PEPA Stochastic Process Algebra

Systems are represented in PEPA as the composition of components which under-
take actions. In PEPA the actions are assumed to have a duration, or delay. Thus
the expression (α, r).P denotes a component which can undertake an α action,
at rate r to evolve into a component P . Here α ∈ A where A is the set of action
types and P ∈ C where C is the set of component types. The rate r models
a delay of variable duration. Delays are samples from an exponential random
variable with parameter r, where this parameter is most often constant. In this
paper we will make use of functional rates [12] which allow the rate at which an
activity is performed to depend on the current state of the model. (In Petri nets
terms, a “marking-dependent” rate.)

For example, a server might offer its computing resources at a rate which
depended on the current state, (compute, fSERVER) where the function fSERVER

is defined as follows:

fSERVER =
{

0, if Serverdown

λ, if Serverup

A full description of the PEPA language can be found in [4]. To briefly sum-
marise, PEPA has a small set of combinators, prefix (.), choice (+), co-operation
(��, when co-operating over a set of activities, or ‖ when there is no co-operation)
and hiding (which we will not use here). Because we will be working with large
populations of replicated processes we write P [n] to denote n copies of compo-
nent P executing in parallel. For example,

P [5] ≡ (P ‖ P ‖ P ‖ P ‖ P ).

The total capacity of a component P to carry out activities of type α is termed
the apparent rate of α in P , denoted rα(P ). For example, rcompute(Serverup[2]) =
2λ, rcompute(Serverup ‖ Serverdown) = λ, and rcompute(Serverdown[2]) = 0.



212 M. Bravetti et al.

5.1 Relating Markov Chains and ODEs

In performance modelling based on continuous-time Markov chains, measures of
system performance are often derived by a calculation which uses the steady-
state probability distribution. To help us to compare modelling with ODEs and
CTMCs in this section we consider the simpler example of a queue in PEPA.

Q0
def= (arrive , λ).Q1

Qi
def= (arrive , λ).Qi+1 + (serve, μ).Qi−1 (0 < i < N)

QN
def= (serve, μ).QN−1

A typical performance measure for a model based on queues is the average
queue length, which is computed in different ways, depending on the observations
offered by the chosen semantics for the interpretation of the model.

When modelling in the Markovian interpretation we obtain the steady-state
probability distribution, π. For a given queue bound, say N = 8, the average
queue length is computed by weighting the probability of a state (Qi denotes the
state where the queue is of length i) by the number of customers in the queue
at that point.

a =
8∑

i=0

iπ(i)

When the state-space of the model grows in size any analysis which is based
on an interleaving semantics (as in CTMCs) becomes prohibitively expensive.
We turn then to a continuous approximation and solve the initial value problem
for the ODEs to see how the numbers of each type of component change from
initial (known) values at time t = 0, as time progresses forwards. We cannot
compute the average queue length in the same way as for the CTMC because
we do not have the stationary probability distribution. Instead we calculate it
by considering a collection of 90 (say) independent queues all of capacity 8. The
average queue length at time t is

a =
8∑

i=0

i
[Qi(t)]

90

where the term [Qi(t)] is understood to mean “the number of instances of Qi

at time t”. We divide by 90 because that is the number which we have in our
collection in this example.

We compute the average queue length numerically using both CTMC-based
and ODE-based approaches, up to a specified accuracy of the numerical solution
procedures (that is, a specified number of decimal places of accuracy). When
we compare these we find good agreement in the results, up to the specified
accuracy of the calculation of the solutions (see Figure 3). The solutions are
computed using two entirely different numerical procedures. For the Markov
chain, Jacobian over-relaxation, and for the differential equations, fifth-order
Runge-Kutta with an adaptive step size.
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Av. queue length Av. queue length Difference
λ μ (CTMCs at equilibrium) (ODEs at t = 200)

1 4 0.333299009029 0.333298753978 2.5 × 10−7

1 2 0.982387959648 0.982386995556 9.6 × 10−7

1 1 4.000000000000 4.000000266670 −2.6 × 10−7

2 1 7.017612040350 7.017613704440 −1.6 × 10−6

4 1 7.666700990970 7.666701306580 −3.2 × 10−7

Fig. 3. Solutions computed using CTMCs and ODEs

It is pleasing to have such good agreement in the results but it might be some-
thing of a mystery to the reader as to why the agreement is so good. In order to
illuminate further the relationship between the CTMC and ODE interpretations
we consider a simpler instance of the model above, a single sequential component
with only three states defining a two-place queue.

Q0
def= (arrive , λ).Q1

Q1
def= (arrive , λ).Q2 + (serve, μ).Q0

Q2
def= (serve, μ).Q1

The continuous-time view. This process is at least enough to contain a
use of a choice (in Q1). When interpreted against the operational semantics
of Markovian PEPA [4] this generates the following generator matrix for the
underlying Markov chain. (By convention this matrix is called Q, but it is not
to be confused with our process variables Q0, Q1 and Q2).

Q =

⎡

⎣
−λ λ 0
μ −λ − μ λ
0 μ −μ

⎤

⎦

The stationary probability distribution of this Markov chain, π, is obtained by
solving the equation

πQ = 0

subject to the requirement that the distribution is a good probability distribution
(i.e. sums to 1). ∑

π = 1

The symbolic solution of the above set of simultaneous linear equations is

π =
[

μ2

λ2 + μ λ + μ2
,

μ λ

λ2 + μ λ + μ2
,

λ2

λ2 + μ λ + μ2

]
.
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The continuous-space view. When interpreted against the ODE semantics of
PEPA [5], the above model instead gives rise to the following system of ordinary
differential equations.

dQ0

dt
= −λQ0 + μQ1

dQ1

dt
= λQ0 − λQ1 − μQ1 + μQ2

dQ2

dt
= λQ1 − μQ2

A system of differential equations has a stationary solution, which occurs, as you
might expect, when nothing is changing. That is, for our queue:

0 = −λQ0 + μQ1

0 = λQ0 − λQ1 − μQ1 + μQ2

0 = λQ1 − μQ2

If we re-write the above system of linear equations in vector-matrix form, we
find that it is:

0 = [Q0 Q1 Q2]Q

If we then solve this initial value problem for the above system of differential
equations for initial values of Q0 = 1, Q1 = 0, Q2 = 0 then, because of con-
servation of mass, the equilibrium points will coincide with the steady-state
distribution of the CTMC model. Therefore all measures calculated from the
steady-state probability distribution (such as average queue length) will coin-
cide. We argued this agreement only by considering one simple example here
but a formal correspondence between the two semantic descriptions has been
proven by Hillston by reference to Kurtz’s theorem.

6 Modelling Performance with PEPA

The distributed system in PEPA is based on the cooperation between a popula-
tion of clients and instances of server threads at each mirror site. Let m be the
number of classes of clients in the system and k the number of mirror sites. In
this modelling framework, the distributed system is completely characterised by
the following entities:

– Connection Setup Matrix C ∈ R
+m,k

, whose element ci,j is the rate at which
a class-i client connects to mirror j.

– End-to-End Available Bandwidth Matrix D ∈ R
+m,k

, whose element di,j is
the rate at which a class-i client downloads from mirror j.

– Idle Vector t ∈ R
+m

, whose element ridle,i is a class-i client’s thinking time.
– Population Vector p ∈ N

+m

, whose element pi is the population of class-i
clients.
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– System Deployment Vector q ∈ N
+k

, whose element qj denotes the number
of threads available at mirror j.

The model of a client is as follows.

Client i
def= (connect1, ci,1).(download 1, di,1).Idle i

+ (connect2, ci,2).(download 2, di,2).Idle i

. . .
+ (connectk, ci,k).(download k, di,k).Idlei

+ (overload , �).Client i

Idlei
def= (idle , ridle,i).Client i

(1 ≤ i ≤ m)

Although the clients attempt connections to all the mirrors, we will model the
mirrors in such a way that only one connection is granted as determined by the
policy expressed below. For each mirror Mirrorj , 1 ≤ j ≤ m, we have:

Mirror j
def=

(
connectj , fj(s)

)
.MirrorUploading j

MirrorUploading j
def=

(
download j , �

)
.Mirror j

This description features a functional rate for the connect action, fj(s) : C →
{0, �} where s is a PEPA component denoting the current state of the system.
When fj evaluates to 0, the activity is not enabled by the sequential component.
We have determined that in any state at most one such function evaluates to
�, i.e.:

∀s, �fi, fj : fi(s) = �, fj(s) = �, j �= i

By defining the functional rates for the connect action we encode the load bal-
ancer’s policy into the model, as we shall see later. Note that no mirror performs
any overload action. This is accomplished by another sequential component as
follows:

Overload def=
(
overload , o(s)

)
.Overload

o(s) =
{

� fi(s) = 0, 1 ≤ i ≤ m
0 otherwise

That is, Overload is enabled if all the mirrors’ functional rates evaluate to 0.
This ensures that no state is deadlocked. The initial state of the system is:

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientm[pm]

)

��
L

(
Mirror1[q1] ‖ Mirror2[q2] ‖ . . . ‖ Mirrork[qk]

)

L = {connect1, connect2, . . . connectk,
download1, download2, . . . downloadk, overload}

Let Loc be a k-tuple assigning labels to mirrors, so that we can use Mirror j and
MirrorLocj interchangeably. We now provide the model using the framework
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described above. In this case study, let Loc = (UNIBO, UNIFI, UPISA, LMU,
UEDIN). In this example, we consider a single class of clients located at UNIBO,
i.e. m = 1. In the definitions of the functional rates fUNIBO–fUEDIN, we use
process terms to indicate the number of copies of sequential components that
behave as those terms in the system’s state. The functional rates are defined
thus.

fUNIBO =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if MirrorUploadingUNIBO < 75
� if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,
MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise

fUNIFI =

⎧
⎨

⎩

� if MirrorUploadingUNIBO ≥ 75,
MirrorUploadingUNIFI < 60

0 otherwise

fUPISA =

⎧
⎪⎪⎨

⎪⎪⎩

� if MirrorUploadingUNIBO ≥ 75,
MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA < 60

0 otherwise

fLMU =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� if MirrorUploadingUNIBO ≥ 75,
MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,
MirrorUploadingLMU < 40

0 otherwise

fUEDIN =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� if MirrorUploadingUNIBO ≥ 75,
MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,
MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN < 20

0 otherwise

This model can be analysed through the underlying CTMC, stochastic simula-
tion or ODEs. As far as Markovian analysis is concerned, the model allows us
to fully take advantage of state space reduction by aggregation [13]. For instance,
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the state [MirrorUNIBO = 74,MirrorUploadingUNIBO = 1] aggregates 75 states.
However, basic combinatorics suggests that the state space size of the underlying
Markov chain, even with aggregation, is at least the product of the maximum
number of incoming connections in each site. With this model’s parameters,
that would mean a Markov chain with over 273 million states, which is at the
limit of the state-of-the-art in Markov chain solution technology. On the other
hand, the model can be represented by a system of 17 coupled ODEs. This is
the mathematical representation that we use to evaluate the performance of this
system [5].

In this section we carry out time series analysis which allows us to see how the
number of each type of component in the model varies as a function of time. This
can provide the modeller with insights into the utilisation of the mirrors in both
the transient and the steady state (as time increases and the transient behaviour
tends to the equilibrium behaviour). In particular, we studied the impact that the
client’s behaviour has on such a performance index. The model parameters are
as follows. The initial population of clients is 400. The deployment vector is the
maximum number of available threads at each site as inferred from the definitions
of the functional rates. Connection rate to all the mirror sites is 20.0. Available
bandwidth per thread is 1/60 at LMU and UNIFI and 1/30 at UNIBO, UEDIN,
and UPISA. We conducted sensitivity analysis of the idle activity by solving the
system for the following values of ridle: 0.001, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06.
The graphs in Fig. 4 show time-series plots of the number of threads at each site
in the 0–400 s time interval for such values of ridle. The results were obtained
by running the model through the adaptive step-size 5th-order Dormand Prince
solver with default settings in our software tool, the “PEPAto” library [14] (100
data points, 0.001 step size, 1E-4 absolute error, 1E-4 relative error).

We compared the results from the numerical integration of the differential
equations against stochastic simulation. Figure 5 shows good agreement between
the deterministic trajectory (black line) and four independent runs of Gillespie’s
stochastic simulation algorithm (grey lines). The plot shows the evolution of the
number of active threads at UNIFI for ridle = 0.01. Similar fitting has been
observed in the other cases under study.

6.1 Commentary on the Results

From these analysis results we are able to see how the load on each server
varies as a function of time and see how the speed with which all servers reach
saturation varies as a function of variation in idle time. In Figures 4(b)–4(h)
we see how the load on the servers is balanced out in response to increasing
client demand. In our model increasing client demand is achieved by decreasing
client idle time (going from ridle = 0.001 to ridle = 0.06). At the system initi-
ation all clients stand ready to connect and so the load on the Bologna server
(UNIBO) rises rapidly. Thus we are considering here a difficult case for the sys-
tem, but one which is likely to occur in practice. In systems with large numbers of



218 M. Bravetti et al.

(a) Legend (b) ridle = 0.001

(c) ridle = 0.01 (d) ridle = 0.02

(e) ridle = 0.03 (f) ridle = 0.04

(g) ridle = 0.05 (h) ridle = 0.06

Fig. 4. Utilisation of the mirror sites
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Fig. 5. Comparison between ODE analysis and stochastic simulation of the evolution
of the number of active threads at UNIFI for ridle = 0.01

clients one often observes the well-known “flashcrowd effect” where large num-
bers of clients attempt to connect at the system initiation. This phenomenon is
widely observed in peer-to-peer systems [9].

When the system is lightly loaded (Figure 4(b)) then after the initial flurry
of work we find that from time 200 onwards the Bologna server is processing all
requests itself and passing nothing on to the other servers. As the load increases
(Figure 4(c) and (d)) we observe that the Bologna server is passing work on to
the other servers in Italy (UNIFI and UNIPI). Small increases in load beyond
this point cause work to be passed to the further-away Munich server (LMU)
until it saturates (Figure 4(f)), and the Edinburgh server similarly (Figure 4(g)).
Finally, the Bologna server must bear the remaining load itself (Figure 4(h)).
These results show the load-balancing function at work in practice.

7 Software Tools

We used the Jolie interpreter [3] to execute our SOCK language model of the
DCMS e-learning system and the PEPA Eclipse Plugin [14] to compile our PEPA
model to a system of coupled ODEs and to solve these numerically.

We are interested in the solution of initial value problems (IVPs) where the
initial quantities of the components of the problem are known and we wish to
find out how these change over time. Compared with modelling with CTMCs,
modelling with ODEs resembles most strongly transient analysis of CTMCs:
there is no implicit assumption that the system reaches steady-state equilibrium
and we observe states of the system as time progresses, working forwards from
their initial values at time t = 0.

ODEs can be solved numerically using solvers which implement the Runge-
Kutta method, or Rosenbrock’s algorithm, or others. Numerical computing plat-
forms offer high-level support for the solution of ODEs [15]. The PEPA Eclipse
Plugin uses an adaptive step-size 5th-order Runge-Kutta solver.
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Fig. 6. The PEPA Eclipse Plugin provides a sophisticated modelling environment for
quantitative modelling work with the PEPA process algebra. The screenshot above
shows the workspace navigator displaying projects and model files on the filesystem
together with a syntax-highlighting editor for the PEPA language. Performance results
are shown in the performance evaluation view or in the graph view.

8 Conclusions

By federating the resources of the SOCK and PEPA process calculi we have
been able to consider our case study of a replicated Web Service from both
the functional and the non-functional (performance) perspectives. In a previous
study we used analysis of a process calculus model using differential equations [5]
to show that an architecture based on a centralised single server would not scale
in the way desired [11]. In the present paper we use these methods to show
that a replicated design does scale adequately. We have been able to use the
continuous-space methods of [5] to analyse a model of a size which would defeat
discrete-state analysis. The method is illustrated on the example of an e-learning
system here but is generally applicable to analyse the scalability of replicated
Web Services.

Acknowledgements. The authors are supported by the EC-funded FET-IST GC2
project number 016004 SENSORIA (Software Engineering for Service-Oriented
Overlay Computers). The Jolie interpreter and the example considered here
are available for download from http://jolie.sourceforge.net. The authors

http://jolie.sourceforge.net


Replicating Web Services for Scalability 221

thank the anonymous reviewers for their insightful remarks which helped us to
improve the paper for this version. Thanks to Adam Duguid for many helpful
suggestions on model analysis.

References

1. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: Sock: A calculus for
service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

2. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, Springer, Heidelberg (2006)

3. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java Orchestration
Language Interpreter Engine. In: Proceedings of CoOrd 2006, ENTCS (2006)

4. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

5. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

6. Holton, D.: A PEPA specification of an industrial production cell. The Computer
Journal 38(7), 542–551 (1995)

7. Forneau, J., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular
networks using PEPA. Performance Evaluation 50(2–3), 83–99 (2002)

8. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Enhancing the effective utilisation
of Grid clusters by exploiting on-line performability analysis. In: Proceedings of
CCGrid workshop on Grid Performability (CCGrid Performability 2005), Cardiff,
Wales, IEEE Computer Society Press, Los Alamitos (2005)

9. Duguid, A.: Coping with the parallelism of BitTorrent: Conversion of PEPA to
ODEs in dealing with state space explosion. In: Asarin, E., Bouyer, P. (eds.) FOR-
MATS 2006. LNCS, vol. 4202, pp. 156–170. Springer, Heidelberg (2006)

10. Bradley, J., Gilmore, S., Hillston, J.: Analysing distributed Internet worm attacks
using continuous state-space approximation of process algebra models. J. Comput.
System Sci. (to appear, 2007), doi:10.1016/j.jcss.2007.07.005

11. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based dis-
tributed e-learning and course management system. In: Bravetti, M., Núñez, M.,
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Abstract. We add specifications of location-aware measurements to
performance models in a compositional fashion, promoting precision in
performance measurement design. Using immediate actions to send con-
trol signals between measurement components we are able to obtain more
accurate measurements from our stochastic models without disturbing
their structure. A software tool processes both the model and the mea-
surement specifications to give response time distributions and quan-
tiles, an essential calculation in determining satisfaction of service-level
agreements (SLAs).

1 Introduction

Accurate performance analysis is essential to the system design process. A system
which does not meet its performance and dependability requirements – crucial
parts of its trustworthiness or performability [1] – is, in practical terms, as unac-
ceptable as a system which does not meet its correctness requirements. Modern
engineered systems are vast and complex and so high-level modelling of these
systems is a vital step in determining that they satisfy necessary service-level
agreements (SLAs). Our attention here is on the quantitative core of such an
SLA, which will typically claim that some percentage of incoming requests will
receive a response from the system within a specified time bound.

Computing performance results is a subtle matter. The location of perfor-
mance measurements in a model can have a dramatic effect on the resulting
performance measurement. In this paper, we show how performance measure-
ments, known as stochastic probes, can be installed in performance models with
increased precision. We show how both the positioning of these probes in the
performance model, and the translation of these probes using immediate transi-
tions, improves the reliability of the measurement which results.

Good practice in performance modelling suggests the use of a compositional
approach [2]. Models are structured by building up co-operations between model
components, defining complex models as the composition of smaller sub-models.
The leading exemplars of languages supporting compositional performance mod-
elling are stochastic process algebras (such as PEPA [2], EMPA [3], the Stochastic
π-calculus [4] and SPADES [5]). In these languages model components are sepa-
rate units of functionality which perform stochastically timed activities and can
be composed. One way to compose model components P and Q is to require
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them to co-operate on the activities in the set K, allowing them to proceed
independently with any activities not listed in K.

P ��
K Q

Models can be hierarchically structured in this way. Below, we require P and
Q to co-operate on K as before, and we also require R and S to co-operate
on M. Further, we require the composition of P and Q to co-operate with the
composition of R and S on any activities in the set L.

(P ��
K Q) ��

L (R ��
M S)

In process algebras with multi-way synchronisation this hierarchical co-operation
over L can express co-operation between one of P and Q and one of R and S;
or three of these components; or even all four (for activities in K ∩ L ∩M).

Here model components P , Q, R and S represent parts of the system being
modelled and activity sets K, L, and M list the activities performed by these
components in co-operation with others. Compositionality facilitates re-use. In
our schematic example above P and S might even be instances of the same
class of model component (although configured differently by having different
partners to co-operate with, and different co-operation sets to operate under).

Given a hierarchically structured model such as this we can define perfor-
mance measures of interest by adding measurement components which seek to
expose important activity sequences so that they may be conveniently measured.
One use of these would be to compute response time quantiles used in service-
level agreements of the form “97.5% of message sends see an acknowledgement
within 600 milliseconds.”

Such a measurement component is a stochastic probe [6] which can be de-
scribed directly, as model components are, or more conveniently can be generated
from a higher-level description language.

(
(P ��

K Q) ��
L (R ��

M S)
) ��

N Probe

The intention is that a model is not disturbed by the addition of a probe in the
sense that all of the activities which could happen previously can still happen,
and at the same rate as before. Thus if archiving models and results in an
organised store for sharing and re-use [7], models can be stored in a canonical
form and measurement components and their associated results can be stored
separately from these. The relationship between the model and the probe can
also be formally recorded, and made available for later inspection and review.

It is intended that several different probes can be applied to a single model
without needing to alter the model and it is even possible that probes are re-used,
where a single probe is applied to several different models.

In a modelling language which supports multi-way synchronisation (such as
PEPA [2]) probes may observe activities even if those activities are performed
by model components in co-operation (for example, an activity from the set K
performed by both P and Q).



224 A. Argent-Katwala et al.

As introduced in [6], probes are stateful components which can observe ac-
tivities, can count, and can change state to remember that an activity has been
performed. Using these a modeller can check complex service level agreements
such as “97.5% of message sends need two retransmissions or fewer to see an
acknowledgement within 600 milliseconds.”

However, the position of a probe is that of an external observer. The exter-
nal observer has a location-ignorant viewpoint. He is unable to distinguish an
activity α emanating from P ’s location from an activity α emanating from S’s lo-
cation. This impedes the expression of many service level agreements which arise
naturally. For example, “97.5% of sensor message sends need two retransmissions
or fewer to see an acknowledgement from the relay within 600 milliseconds.”

In the case where we are interested in the activities of P and not those of S
one solution could be to move the probe inside the model so that we can focus
on P . (

((P ��
N ProbeP ) ��

K Q) ��
L (R ��

M S)
)

This would be effective in this case but if instead any of the activities performed
by other components (say, S) influence the state of the probe then the probe is
at the wrong place in the composed model to observe them. To remedy this we
could add another probe to S and have both of these slave probes report to a
master which combines their reports appropriately.

(
((P ��

N ProbeP ) ��
K Q) ��

L (R ��
M (S ��

O ProbeS))
) ��

T
ProbeMaster

The addition of these probes is an automated procedure performed on an input
model without probes. The modeller need not see the version of the model ex-
panded by the addition of the measurement components and can consider this
just to be an intermediate form produced before state-space derivation (in a
manner similar to unfolding a coloured Petri net).

The position of ProbeP allows it to send to the ProbeMaster the control message
“P performed α” on seeing an activity α performed by P . Similarly the position
of ProbeS allows it to send to the ProbeMaster the control message “S performed
α” on seeing an activity α performed by S. Model components Q and R could
be probed in exactly the same way.

In a purely Markovian process algebra such as PEPA there is a fundamental
difficulty with the above design; all activities are timed, and so a rate must be
associated with the control messages. The duration of these control messages
would then be added to the duration of the model activities occurring in the
passage from the start state to the final state. This would interfere with the
passage time calculation being made and lead to inaccurate numerical results
being produced. We could try to repair this by assigning control messages a rate
several orders of magnitude higher than any already in the model but this would
not entirely solve the problem because the infinite support of the exponential
distribution means that there is a possibility that “fast” control messages are
occasionally beaten by “slow” model activities, leading to the master probe being
out-of-step with the model description. Even if this problem does not arise the
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widely-separated values for the rate constants would very likely lead to stiffness
problems in the numerical solution of the underlying Markov chain.

We address this problem by using high-priority immediate actions for the
control messages (whereas the process algebra model being probed contains only
low-priority exponentially timed activities). Instantaneous control messages flow
from the slave probes to the master probe, sending the control signal needed
without perturbing the passage-time measurement taking place.

The idea of extending high-level Markovian modelling languages with imme-
diate actions is not new. Stochastic Petri nets were extended to Generalised
Stochastic Petri nets in [8] by incorporating immediate transitions and distin-
guishing between tangible and vanishing states. Neither is the use of immediate
actions with stochastic process algebras new. The languages EMPA [3], MoD-
eST [9], SM-PEPA [10] and SPADES [5] all support immediate actions.

The novelty in the present paper is the introduction of immediate actions in a
structured way which facilitates the development of a powerful query language
for Markovian models which is an extension of the language proposed in [11]. We
first present the ideas from the existing query language then show the location-
aware extension together with an example. We have implemented the query
language in a new software tool.

The query language which we propose for Markovian models can be used
as an alternative to logics such as CSL used in the stochastic model-checking
approach [12]. One feature which may be of benefit to users is that our query lan-
guage offers features such as activity counting and location-identification which
cannot be expressed directly in a CSL formula. The technology which underpins
both styles is the same: transient analysis of a continuous-time Markov chain.

2 Stochastic Probes

In assessing service level agreements it is often convenient to measure from the
observation of one of a set of “start” activities to an occurrence of one of a further
set of “stop” activities. For example, (a:start | b:start), c+, (x :stop | y:stop). From
this a master probe is generated with two distinct states for running and for
stopped as described in [6]. The probe begins stopped and moves to running if it
observes any of the start activities. Since the master probe must cooperate with
the model over the start and stop activities it must be capable of performing
these in both states. (“(a,�)” passively observes the timed activity a.)

ProbeMaster
stopped

def= (a,�).ProbeMaster
running + (b,�).ProbeMaster

running

+ (x,�).ProbeMaster
stopped + (y,�).ProbeMaster

stopped

ProbeMaster
running

def= (x,�).ProbeMaster
stopped + (y,�).ProbeMaster

stopped

+ (a,�).ProbeMaster
running + (b,�).ProbeMaster

running

The master probe synchronises with the whole model (including the observation
probe) over the start and stop activities but not any other activities which the
probe may perform, in our case c.
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(Model ��
{a,b,c,x,y} ProbeObs

1 ) ��
{a,b,x,y} ProbeMaster

stopped

The start and stop activities are used as communications from the observation
probe to the master probe. Whenever an a or b activity is performed the obser-
vation probe signals to the master probe to begin measurement and conversely
for stop activities.

This will not work for a location-aware probe. The purpose of applying the
probe to only a part of the larger model was that the probe could then ignore
any of the “start” or “stop” activities performed by other parts of the model
with which the current measurement is unconcerned. Instead of cooperating with
the master probes over the “start” activities (a and b) and the “stop” activities
(x and y), the probe can instead send immediate control messages (start and
stop) to the master probe to say that the activities of interest have been observed.
By using immediate actions as the control messages the observation probe may
communicate with the master probe in a private manner which also does not
affect the model being observed.

ProbeObs
1

def= (a,�).start.ProbeObs
2 + (b,�).start.ProbeObs

2

+ (c,�).ProbeObs
1

+ (x,�).ProbeObs
1 + (y,�).ProbeObs

1

ProbeObs
2

def= (a,�).ProbeObs
2 + (b,�).ProbeObs

2

+ (c,�).ProbeObs
3

+ (x,�).ProbeObs
2 + (y,�).ProbeObs

2

ProbeObs
3

def= (a,�).ProbeObs
3 + (b,�).ProbeObs

3

+ (c,�).ProbeObs
3

+ (x,�).stop.ProbeObs
1 + (y,�).stop.ProbeObs

1

The master probe is altered so that instead of observing the model (including
the observation probe) performing a, b, x and y actions it observes only start
and stop communication events.

ProbeMaster
stopped

def= start.ProbeMaster
running + stop.ProbeMaster

stopped

ProbeMaster
running

def= stop.ProbeMaster
stopped + start.ProbeMaster

running

The names start and stop are labels in the regular expression syntax of probes.
Because these now turn into communication signals, the labels can be generalised
to include any names that the user wishes. In this way multiple observation
probes may be attached to various portions of the model. Their communication
signals are distinct labels so these probes avoid name clashes. Generally a control
probe will cooperate over the whole model and interpret all of the communication
signals from localised observation probes.
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3 Location-Aware Stochastic Probes

This example illustrates the need for location-aware probes. The model is that of
a simple client server system. The key point is that there are two indistinguish-
able servers available to respond to each of the three indistinguishable clients
and the problem is correctly matching requests and responses.

Client idle
def= (request , λ).Clientwaiting

Clientwaiting
def= (response,�).Client idle

Server idle
def= (request ,�).Servercomputing

Servercomputing
def= (compute, π).Server responding

Server responding
def= (response, ρ).Server idle

System def= Client idle [3] ��L Server idle [2]
where L = {request , response}

Suppose one wishes to measure the expected response time, that is the time taken
from a particular client making a request to that client receiving a response. A
probe component is added to the model which passively observes all request and
response activities flipping between running and stopped states appropriately.
The desired measurement can then be taken to be the expected time for the
probe component to be in the running state. So for our model a first attempt at
a measurement of response time may be to add the probe in this fashion:

System def= (Client idle [3] ��L Server idle [2]) ��
L Probe (3.1)

This global probe over-estimates the performance of the system because it mea-
sures the time from some client’s request to whenever either of the servers re-
sponds. In particular it may measure the time between one client’s request and
the response which corresponds to an earlier request performed by another client.

The reason that the global probe does not work as we would expect it is due
to the fact that it cannot distinguish between identical actions performed by
separate components. Additionally the probe only observes start actions when it
is in the stopped state. For this reason when the model performs more than one
start action before a stop action is encountered, the probe will still be running.

Figure 1 depicts the error that the response from Server [2] to Client [2] is
paired with the request from Client [3] to Server [1]. This measurement error
occurs due to the use of a location unaware probe.

To fix this problem, the probe can be location-aware. Instead of cooperating
with the entire system, the probe cooperates only with a single Client process.
Writing (‖) to denote cooperation over the empty set the system is:

System def=
(
(Client idle ��

L Probe) ‖ Client idle [2]
) ��

L Server idle [2] (3.2)

The graph in Figure 2 shows the difference in measurement between the local
probe from (3.2) and the global probe from (3.1). The graph plots the measured
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Fig. 1. Diagram showing the trace of a run with a faulty global probe

time since a request action against the probability that the probe has cooperated
over a response action. From this graph the error of the global probe is apparent.
The line plotted for the probe is above that of the local probe indicating that
the probability of observing a response activity is higher.
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Fig. 2. Graph showing the flawed measurement taken from a global probe versus the
true measurement obtained from a local probe

4 Impact on Aggregation

Modelling formalisms founded on Continuous-Time Markov Chains (CTMCs)
suffer from the well-known problem of state-space explosion whereby the number
of states of the model as a whole may be as large as the product of the number
of states of each of the model components. Model aggregation [13] battles this
state-space growth by exploiting symmetries in the model to reduce the number
of states in the state-space. This is done by replacing several strongly equivalent
states with a canonical representative of them, and adjusting the outgoing rates
accordingly. Aggregation based on strong equivalence induces a lumpable [14]



Location-Aware Quality of Service Measurements for SLAs 229

partition of the state-space which preserves performance measures. The proof of
this result appears in [2]. The definition of the strong equivalence relation is also
found there.

Aggregation depends on replication of components in that each component C
in an array of N copies of C, C[N ], is considered to be interchangeable. With
a location-aware measurement component we are able to isolate one of these
copies and make it no longer interchangeable with the others. An inevitable
consequence of this is that aggregation will now be less productive (because
there are now effectively only N −1 copies of the component, and so symmetries
which existed before have now been broken).

In the worst case, isolating a model component in this way may decrease
the profit from aggregation to the point where the model is no longer solvable
because its memory requirements exceed those of the machine on which the
analysis is taking place. We view this as an inescapable cost of the more accu-
rate identification of model components afforded by location-aware measurement
components.

5 Communicating Stochastic Probes

This example expands upon the first to show the need for immediate commu-
nication between location-aware probes. We wish to analyse the impact of the
breakdown of a server on the response time. In order to measure this our model
from before is enhanced with the possibility for servers to break down. Once
a server has broken down it must be repaired before it can continue to service
client requests.

Server idle
def= (request ,�).Server responding

+ (break , κ).Serverbroken

Server responding
def= (response, ρ).Server idle

Serverbroken
def= (repair , ν).Server idle

System def= Client idle [3] ��L Server idle [2]
where L = {request, response}

In this example the Client processes include a local working activity.

Client idle
def= (work , μ).Client requesting

Clientrequesting
def= (request , λ).Clientwaiting

Clientwaiting
def= (response,�).Client idle

Suppose we wish to determine the response time if the client is ready to make
the request when at least one of the servers is currently broken. One way to do
this is to insist that the probe observes the work activity from the probed client
after observing a break activity from one of the servers and without observing a
repair activity. Note that a repair activity may take place after the work activity
has been observed by the probe and the measurement begun.
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We require one probe which is attached to a single client, a further probe
which is attached to one of the servers, and a master probe which combines the
communication messages from the two local probes.

Clients def=
(
(Client idle ��

L ProbeClient
stopped) ‖ Client idle [2]

)

Servers def=
(
(Server idle ��

M ProbeServer
stopped) ‖ Server idle

)

System def=
(
(Clients ��

L Servers) ��
N ProbeMaster

stopped

)

where L = {work , response}
M = {break , repair}
N = {clientWork , clientRes , in, out}

The local server probe is attached to one of the servers and sends a signal to the
master probe whenever the local server breaks down or is repaired.

ProbeServer
stopped

def= (break ,�).in .ProbeServer
broken

+ (repair ,�).out .ProbeServer
stopped

ProbeServer
broken

def= (repair ,�).out .ProbeServer
stopped

+ (break ,�).in .ProbeServer
broken

When the local client probe passively observes a work activity in one of the
clients it sends a communication message to the master probe. Upon observing
a response activity it sends a message again.

ProbeClient
stopped

def= (work ,�).clientWork .ProbeClient
run

ProbeClient
run

def= (response,�).clientRes.ProbeClient
stopped

The master probe then receives the communication from the two local probes
and connects together the logic to determine whether or not the measurement
should begin. It has three states. In the first state, ProbeMaster

stopped , it waits for
a communication message indicating that one of the servers is broken. When
this occurs it moves on to the second state. In the second state, ProbeMaster

waiting ,
there is at least one server broken hence should the probe local to the client
send a message indicating that a measurement may begin (that is, the client has
performed a work action) then the master probe will indeed begin measurement
by entering the third state ProbeMaster

running . In this state the only message of interest
is one from the client probe to indicate that it has observed a response activity
which causes the measurement to terminate. Note that it is not the case that
every clientWork activity will cause measurement to start and neither is it the
case that every clientRes activity will cause measurement to stop.

ProbeMaster
stopped

def= in.ProbeMaster
waiting

+ clientWork .ProbeMaster
stopped

+ clientRes.ProbeMaster
stopped

ProbeMaster
waiting

def= clientWork .start .ProbeMaster
running



Location-Aware Quality of Service Measurements for SLAs 231

+ out .ProbeMaster
stopped

+ clientRes.ProbeMaster
waiting

ProbeMaster
running

def= clientRes.stop.ProbeMaster
stopped

+ out .ProbeMaster
running

For the purposes of explanation the probes defined here have been given as
though directly written by the user. However in general such probes are specified
using a regular expression-like syntax. They are then automatically attached to
the model at the appropriate place. To reproduce the full model with the probes
attached the following three probe specifications would be given:

1. Client :: (work : clientWork , response : clientReq)
2. Server :: (break : in , repair : out)
3. (in , clientWork : start)/out , clientRes : stop

The first two probes specify a location to which the probe should be attached,
Client and Server respectively. The final probe is the master probe and will
be attached to the whole model and hence does not require a location. The
syntax /out specifies that the whole of the probe to the left must be observed
without observing an out signal. Should one occur during the sequence then
the probe is reset. We analysed this model with the probes given and with
two other configurations. The results are shown in the graph in Figure 3. The
line labelled “maybe” is the model analysing from a clientWork message to a
clientRes message regardless of the state of the servers at that time.
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Fig. 3. Graph showing the change of completion of a client’s request depending on the
state of the servers

6 Worked Example: Wireless Sensor Network

As a worked example, we present a model of a lossy wireless sensor network.
The network consists of a set of SensorBots which monitor the environment and
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report key events across the network. The bots both take measurements and
route traffic from other bots in the network. In routing traffic either from other
bots or itself, a bot has a simple send-acknowledge mechanism for sending traffic
to a nearest-receiving bot. If an ack is not received, the bot enters a backoff
phase before retrying, and repeats this until an ack is received.

SensorBot def= (monitor , rmon).SensorBot
+ (monitorActive, rmonA).SensorBotSend
+ (messageIn ,�).SensorBotRelay
+ (messageIn ,�).SensorBotProcess

SensorBotProcess def= (ackOut , rack ).(think , rthink ).SensorBot
SensorBotSend def= (messageOut , rmsgOut).SensorBotWait
SensorBotWait def= (ackIn ,�).SensorBot

+ (timeout , rtimeout).SensorBotRetrySend
SensorBotRetrySend def= (backoff , rbackoff ).SensorBotSend

+ (giveup, rgiveup).SensorBot
SensorBotRelay def= (ackOut , rack ).SensorBotSend

Each SensorBot is symmetrically described and is either involved in: monitoring
events, SensorBot ; processing a received event notification from another bot,
SensorBotProcess ; sending a message, SensorBotSend ; waiting for an ack from
another bot that received its message, SensorBotWait ; resending a message after
a backoff period, SensorBotRetrySend ; or relaying a message across the sensor
network, SensorBotRelay .

The SensorBots communicate over an unreliable wireless network that com-
prises a number of channels:

UnreliableChannel def= (messageOut ,�).UnreliableChannelMsg
+ (ackOut ,�).UnreliableChannelAck

UnreliableChannelMsg def= (messageIn , rnetDelay).UnreliableChannel
+ (messageLose , rmsgLose).UnreliableChannel

UnreliableChannelAck def= (ackIn , rnetDelay).UnreliableChannel
+ (messageLose , rmsgLose).UnreliableChannel

A channel can relay a message from one bot to another bot, by picking up a
messageOut action and transmitting a messageIn action to a receiver bot. A
similar process transmits acknowledgement messages. What makes this network
unreliable is that there is a probability that any given message may be lost,
where the probability of loss is determined by:

rmsgLose

rmsgLose + rnetDelay

Finally, the whole sensor network comprises B bots connected by the unreli-
able wireless network of C channels, as described by;
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SensorNet def= SensorBot [B] ��
L

UnreliableChannel [C]

where L = {ackIn , ackOut ,messageIn ,messageOut}.
This is a simplistic protocol, where it is for instance possible for one bot to

acknowledge the message that another bot received. The system probabilisti-
cally guards against this, by incorporating a quick timeout mechanism. If the
sending bot does not hear an acknowledgement within a short window, it backs
off and retries later. If it does hear an acknowledgement, it assumes that this
was the response for its message. Given the power constraints involved in sensor
networks, this type of simplistic mechanism is not an unreasonable way to con-
serve sensor battery-life. If guaranteed message sending is required, then a more
sophisticated protocol could be deployed.

6.1 Location Probe Measurements

In this model the measurement in which we may be interested is the length of
time a sensor can expect to wait for an acknowledgement. This model is distinct
from the earlier “Client–Server” style of model in that each sensor acts as both a
“Client” and a “Server”. Since in this case the response is the acknowledgement
that the message has been routed onwards and the sender can continue its mon-
itoring operations. In the traditional “Client–Server” style of model it is clear
that as we increase the number of “Client” components without increasing the
number of “Server” components the response-time for each individual “Client”
should worsen. In the distributed setting of the sensor net, because each addi-
tional “Client” (or SensorBot) also becomes a “Server” it is less clear how the
addition of SensorBot components will affect the response-time for each indi-
vidual SensorBot . With each additional SensorBot there is a further “Server”
which may respond to the individual measured SensorBot . However in addition
there is an additional “Client” component which may compete not only for the
“Server” components but also for the resource components modelled here by the
unreliable network channels.

To measure the response-time for a single SensorBot component we wish to
measure between occurrences of the activity messageOut – the SensorBot has
sent a message to be delivered – and the activity ackIn – the SensorBot has
received an acknowledgement that the message has been relayed/accepted. To
achieve this we cannot attach a global-probe component to the entire model as
this will not distinguish the occurrences of messageOut activity and the ackIn
activity performed by separate SensorBot components. We therefore attach a
probe to a single SensorBot component. The probe itself waits for an occurence
of the messageOut activity to start the measurement and an occurrence of the
ackIn activity to end it. This is written down in our probe language as:

SensorBot :: (messageOut : start, ackIn : stop)

Figure 4 shows the cumulative distribution functions for the model as we
vary the number of SensorBot and UnreliableChannel components. These
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results suggest that increasing the number of SensorBot components always
improves the response-time. The number of channels may act as a bottleneck in
the network and hence increasing the number of channels likewise improves the
response-time. Therefore in the “Client–Server” style of model increasing the
number of “Servers” is the only way to increase the performance of the system.
However in the distributed network increasing either the “peers” or the resources
(channels) leads to an improvement in the number of messages relayed.
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Fig. 4. Graph showing the cdf from ’msgOut’ to ’ackIn’ for the sensor net model varying
the numbers of sensors and channels

7 Design

An extended Markovian process algebra with immediate actions is a step on
the way towards the more ambitious goal of an extended process algebra with
general distributions. We first explain the relationship between this algebra and
immediate actions and then explain the relationship between immediate actions
and probes.

7.1 Immediate Actions and SM-PEPA

Semi-Markov PEPA [10] (SM-PEPA), is a version of PEPA that allows general
distributions as well as exponential distributions from the standard PEPA model.
The syntax for SM-PEPA is given below:

P ::= (a[n], D).P P + P P ��
L
P P/L A (7.3)

where:
D ::= λ ω : L(s) (7.4)

where λ is the standard PEPA exponential rate parameter:

λ ∈ IR+ ∪ {r� | r ∈ Q, r > 0}
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The action a is annotated with a priority n ∈ IN (where a larger n indicates a
higher priority). SM-PEPA introduces a notion of priority-enabling where an ac-
tion is priority-enabled only if it is enabled in the normal PEPA sense and there
are no higher priority actions that are enabled at the same time. The D variable
indicates a duration, either an exponential rate or a weighted general distri-
bution. The general distribution is specified in terms of its Laplace transform
for numerical convenience. The weights, ω, are used to select probabilistically
between concurrently priority-enabled generally-distributed actions.

The use of priorities in activities (action-duration pairs) is restricted so that
within a particular priority level, either Markovian activities are available (con-
taining standard PEPA) or generally-distributed activities are. This prevents
the simultaneous racing of exponential and generally-distributed distributions.
A detailed semantics for SM-PEPA can be found in [10].

The immediate transition model required for use with stochastic probes can
be derived from a subset of SM-PEPA; it uses a similar approach as that
used in generalised stochastic Petri nets (GSPNs) [15]. For this purpose only
two priority levels are required, level 1 for Markovian activities and level 2
for immediate actions. We use the standard PEPA prefix notation (a, λ).P
to mean (a[1], λ).P in SM-PEPA and the enhanced immediate prefix notation
(a, immediate).P to mean (a[2], 1 : 1).P . This gives each immediate transition
equal weight (although we avoid simultaneous enabling of immediate actions in
our use of probes here). Where user-defined weighting of immediate transitions
is useful, (a, ω : immediate).P is translated to (a[2], ω : 1).P . The immediate
transition aspect is represented by the Laplace transform, L(s) = 1.

7.2 Immediate Actions and Probes

In working with immediate actions together with timed activities we need to
clarify how these interact. The first design decision to resolve is with respect to
the relative priority of actions and activities.

Priority: Immediate actions have priority over timed activities.

It is necessary to impose this requirement, as in GSPNs, so as to avoid potential
problems associated with infinite re-enabling of timed and immediate activities.
The priorities are obtained from the mapping to SM-PEPA, described earlier.

The second design decision relates to the names of immediate actions and
timed activities.

Separation: Actions and activities have different names.

Concretely, we never have (α, r) and α in the same model. Similarly we never
find (α,�) and α in the same model. Co-operation in PEPA is based on the
matching of names and so we have the following consequence from this design
decision.

Homogeneity: Actions and activities do not co-operate.
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That is, from the semantics of SM-PEPA, we disallow co-operation between
immediate actions and timed activities. We use different terms for the two kinds
of name-matching, saying that components co-operate on timed activities and
synchronise on immediate actions.

We use immediate actions to report on the occurrence of a timed activity. For
this reason timed activities must precede immediate actions.

Pursuit: In each model component every immediate action must be preceded
by a timed activity.

We consider Markovmodels with non-deterministic choice not to be well-specified.
This concern has been thoroughly studied previously with generalised stochastic
Petri nets and stochastic activity nets [16]. Immediate actions have a default
weight (of 1) thus α.P + β.Q expresses a weighted probabilistic choice between
performing action α and continuing as P or performing action β and continuing
as Q where each of these outcomes is equally likely. Syntactically α.P +β.Q is an
abbreviation for (α, immediate).P +(β, immediate).Q and a 3:2 weighted choice
is written as (α, 3 : immediate).P + (β, 2 : immediate).Q.

Finally, the purpose of immediate actions in this context of stochastic probes
is to send control signals between measurement components in the model. For
this reason, we disallow individual occurrences of immediate actions; these must
form a synchronisation point between measurement components.

Synchronisation: Each immediate action must be performed as a synchroni-
sation event between two (or more) components.

Immediate actions may not be performed by one component individually. Thus,
for example, we will never see (τ, immediate) in a model, because components
cannot synchronise on the silent τ action.

It would be possible to avoid the need to use immediate actions, or indeed
measurement components entirely, if we altered or rewrote the model to allow a
particular passage-time calculation. We are not willing to do this. Customising
the model in this way would injure its potential for re-use. Further, making visible
at the top level particular start and stop activities at the beginning and end of
the passage of interest may require context-sensitive renaming of activities and
the introduction of choices between distinguished names, with a corresponding
adjustment in the rates at which these activities are performed. Clearly there is
great potential for human error here, even assuming that the modeller is willing
to customise the model for just the measure of current interest.

Instead of handing the problem of adjusting the model to the modeller, we
would rather automate the process to allow instrumentation of the model for
location-aware service-level calculations. Introducing immediate actions allows
us to do this.

8 Implementation

We have implemented the facility to describe location-aware probes as a com-
panion to the software tool ipc, The Imperial PEPA Compiler [17]. This tool
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probe := location :: R A local probe
| R A global probe

location := processId Attach to a single process
| processId[n] Attach to an array of processes
| Component Detailed component location description
| Cooperation Detailed cooperation location description

R := action Observe an action
| R : label Send a signal on matching R
| R1, R2 R1 followed by R2

| R1 | R2 R1 or R2

| R∗ zero or more R
| R+ one or more R
| R{n} n R sequences
| R{m, n} between m and n R sequences
| R? one or zero R
| R/a R without observing an a

Fig. 5. The grammar for probe specification in ipc

generates compiled representations of PEPA models in a form suitable for in-
put to the Hydra response-time analyser, the most recent release of the DNA-
maca Markov chain analyser [18]. Although we have concentrated here mostly
on passage-time computation, ipc also supports the computation of steady-state,
transient and counting measures as described in [11].

The new software tool developed for this work is part of the ipclib suite, a
collection of tools for the specification and evaluation of complex performance
measures over Markovian process algebra models. These, and other software
tools required, can be downloaded from http://www.dcs.ed.ac.uk/pepa.

Probes are defined using a regular-expression-like syntax fully explained in [6].
A probe specification is given by the grammar in Figure 5. The location part
specifies where to attach the probe to the model system equation. The processId
and processId [n] terms specify the location of the probe where that uniquely de-
fines the location, otherwise the Component and Cooperation syntax are defined
in Figure 6.

Where there are a number of choices for a given location, we can pick an
individual component or cooperation using the syntax in Figure 6, for instance,
by its numeric position. For example, the “third component called P” in the
following system is underlined:

(P ��
K P ) ��

L (P ��
M P ).

The “offering” keyword means that the component, or one of its derivatives,
offers the action. We can place a probe at the “component offering go, stop” to
measure the component using some actions the probe expects to see. This lets
us use the same measurement description across a range of models.



238 A. Argent-Katwala et al.

Component := [nth ] component Choosing a particular component
[named ] [offering ] [coop]

Cooperation := [nth ] cooperation Choosing a particular cooperation
[overactions ] [involving]

nth := nth Select a particular numbered match
| nth to last
| last

named := called ProcessID With a particular name
offering := offering [only] Actions Performing certain actions

| not offering Actions
coop := cooperatingoveractions In a particular cooperation

[with Component]
overactions := over Actions Cooperating over certain actions
involving := involving Component Partner component description

Fig. 6. The grammar for probe placement

We can also distinguish between different instances of a component, based on
how it cooperates with its neighbours. For example, the “component called P co-
operating over b with component calledQ” is underlined: (P ��

{a} Q) ��
L

(Q ��
{b} P ).

9 Conclusions

By adding location-awareness to probe specifications, we give the performance
modeller the flexibility to identify model components within the model for selec-
tive instrumentation. We have shown that this can have a marked effect on the
results produced when compared with an approach using only a single external
observer, as used in previous work. By enhancing the probe translation to use
immediate transitions, we can capture the response time of interest exactly with
no introduction of error from the measurement activities of the probe.

In adding these features we have found it necessary to increase the expres-
siveness of the probe specification language. In doing this we have endeavoured
to maintain a simple language syntax. The more straightforward the language
which can be used to describe service-level agreements, the lower the barrier
to entry to their use, allowing practitioners to access sophisticated performance
evaluation technology and apply it at low cost. Our efforts here have been to
design a concise, yet clear, mechanism for adding measurement components to
model components in a way that improves the precision of the measurement
specification and the accuracy of the result.
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Abstract. Session types are a means of statically encoding patterns
of interaction between two communicating parties. This paper explores
a distributed calculus with session types in which a number of fixed
sites interact. The reduction schemes describing the operational seman-
tics satisfy the locality principle: at most one site is involved. Both ses-
sion engagement and data communication are local and asynchronous.
Furthermore, our setting is a natural one in which the novel notion of
multipoint session types, sessions in which more than two parties may
be involved, can be introduced.

1 Introduction

We study a type based approach to structuring interaction between multiple
distributed parties. A natural way of specifying interactions is to describe them
in terms of sequences of types of the entities being sent or received. This is
the idea behind session types [Hon93, HKT94, HVK98]. We develop a theory of
session types for a core distributed calculus called DCMS (distributed calculus
with multipoint session types). Regarding the distributed nature of DCMS we
take, as fundamental working hypothesis, that the schemes defining its semantics
follow the locality principle [Bou03]: all such schemes should involve at most one
site.

In DCMS a site is an expression of the form n�e� where n is the name of the
site and e is a thread expression. In order for sites to communicate we assume they
share some set of global names which we refer to as ports given their similarity in
nature to TCP/IP port numbers. Before exchanging information, however, sites
must first establish a private channel through such a port. In all extant calculi
with session types this is achieved via some variation of the following reduction
scheme [HVK98]:

request a(k : s) {P} | accepta(k : s) {Q} −→ (νk)(P |Q)

Here a is the aforementioned port and s a session type indicating the commu-
nication pattern to be followed on the fresh private channel k. For example, s
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c© Springer-Verlag Berlin Heidelberg 2008
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could be !int.!int.?int.end if the process to the left of the pipe were connecting to
an adding server (the process to the right) that receives two numbers and sends
back their sum. The output type !int is read as “send an int” and the input type
?int as “receive an int”. The session type s is the dual of s, in this case reading
?int.?int.!int.end and establishes the pattern to be followed by the server at its
own endpoint of the channel. Duality guarantees the absence of communication
errors.

If we assume these primitives are executed at different sites, then the locality
principle is seen to fail. We introduce an asynchronous connection mechanism
whereby the connection request on a is buffered at the local sites of all the parties
participating (as described below) in the session s. A similar treatment is given
to language expressions for sending/receiving values and selection/branching.
Before providing further details on how asynchronous connection is established,
we discuss what form session types take in DCMS.

Session types in DCMS are multipoint : a channel has one positive or master
endpoint and one or more negative or slave endpoints. Each input/output or
branch/select type (see Sec. 3) in the sequence that makes up a session type
is decorated with a label (a site name or site name variable) indicating the
referenced site. As an example, consider the system cl�e1� ‖ atm�e2� ‖ bk�e3�,
adapted from [BCG05], where cl , atm and bk stand for client, ATM and bank,
resp. Consider the following session type s for a:

?clint.&cl{
withdraw : ?clint.!bkint.⊕bk {withdraw : !bkint.?bkint.!clint.end,

� balance : end},
� balance : !bkint.⊕bk {balance : ?bkint.!clint.end,

� withdraw : end}
}

It reflects the pattern from the view of the atm and is the type assigned to the
master endpoint (the types of the other endpoints are discussed below). The
ATM first expects an integer from the client (an id) and then an indication as to
whether a withdrawal or a balance request is required. In the case of the former
(the latter is described similarly), the amount is expected from the client after
which this amount is sent to the bank followed by an indication that the client
has requested a withdrawal. Note that the type end for balance indicates that
this branch is not available for selection here. Other occurrences of the balance
branch may have a type different from end, however all different uses of this
branch should be compatible: any two non-end types should be the same. This
encoding of multiple uses of branches in multipoint session types allows a higher
degree of expressiveness not readily available in standard (binary) session types
without adding new features (cf.[BCG05]): indeed, although this example could
be presented using binary session types, it is at a loss in precision (for example,
after receiving a withdraw request from the client, the ATM could issue multiple
withdrawl requests from the bank without violating the patterns described by
the binary session types).
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� !bkint. ⊕bk {withdraw : !bk int.?bkint.end,
� balance : end} ,

!bk int. ⊕bk {balance : ?bk int.end,
� withdraw : end}

�

?atm int.&atm{withdraw : ?atm int.!atm int.end,
� balance : !atm int.end}

Fig. 1. Compatible session types

Returning to the discussion on connecting through ports, recall that the
request primitive buffers a request on port a at each of the participating sites
of the session type s. Each of these sites may agree to participate by issuing a
accept primitive on a with some session type s′. It should be mentioned that
we do not require that all participating sites issue an accept before engaging in
communication. This reduces the possibility of stuck systems due to the absence
or reluctance of a participating site to engage.

Suppose n is one of these participating sites (in our example, apart from atm ,
they are cl and bk as may be read off from s). In order to guarantee the absence
of communication errors, the part of s that pertains to n (called the restriction of
s to n) should be compared for duality with s′. This requires that all uses of the
same branch be compatible, as mentioned above. In our example the restriction
of s to bk yields the set of session types in Fig. 1(top) which, if compatible,
allows the desired restriction to be obtained (Fig. 1(bottom)). These concepts
are precised below.

Finally, the main ingredient in the proof of Communication Safety (Prop. 3)
and Subject Reduction (Prop. 1) is the notion of duality invariant. As execution
progresses session types pending consumption together with the values already
sent out and residing in buffers distributed over the system are synthesized into
sequences of types and values which we dub trace types. Trace types are com-
pared using a binary relation that takes into account the asynchronous nature
of communication. Subject Reduction is then formulated as the property that
this invariant is upheld during reduction.

Structure of the paper. Sec. 2 introduces the syntax of DCMS together with
its operational semantics. Types and typing rules are presented in Sec. 3. Here we
also discuss compatibility and duality. Sec. 4 introduces the duality invariant and
addresses Subject Reduction and Safety. Finally, we conclude and offer avenues
for further research.

2 Syntax and Operational Semantics

2.1 Syntax

The syntax of DCMS is presented in Fig. 2. A site n�e� has a name n which
ranges over a set of site names m,n, . . . and a thread expression e which is said
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to run at n. A system is a set of sites. For simplicity we assume all sites in a
system to have different site names. Expressions may be one of the following. An
identifier x; a value v (described below); a let expression let x = e1 in e2 with
the usual interpretation; a connection, communication or branching expression.
A connection expression can be of one of two kinds: request a(u : s){e} or
accept a(u : s, d){e}. The former requests asynchronously on port a that a new
multipoint channel be established for communication following pattern s. The
latter accepts such a request and replaces u with its corresponding endpoint
and d with the name of the requesting site. A communication expression can
be either send(u, λ, e) or receive(u, λ). The former sends the value resulting from
e over u to location λ, whereas the latter reads from its local buffer u a value
expected from λ. A branching expression can either be a select 〈u, λ〉� l in {e}
or branch 〈u, λ〉�{l1 : e1 � . . .� ln : en} (abbreviated 〈u, λ〉�i=1,n {li = ei}). The
former selects a branch by sending (asynchronously) a label over u to site λ. The
latter reads a label from its local buffer u to see if λ has selected a branch. In
the case that the buffer is empty, execution is blocked until a label is received.

A value is the result of a computation. It can be either true, false or null,
the null expression. The additional run-time value ( shaded in the figure) l is
also possible. This value is not part of the user syntax but arises as a conse-
quence of the definition of the operational semantics. Connection request values
are discussed in Sec. 2.2. We write v (resp. r) for a sequence of values (resp.
connection request values) and ε for the empty such sequence. Also, vR is the
reverse sequence of v.

We write fv(e) for the free variables of e. In particular, let binds the declared
variable; in both request and accept u is bound in e, in accept d is also bound in
s and e. Also, e1; e2 is shorthand for let x = e1 in e2 with x /∈ fv(e2). We write
e{x 	→ v} for the capture-free substitution of all free occurrences of x in e by v.
Expressions are identified modulo renaming of bound variables.

2.2 Operational Semantics

The operational semantics of DCMS is described in terms of a global buffer. A
global buffer (written h) associates a mapping describing the contents of its local
port and local channel buffers to each location. We write hn for the mapping for
site n. A port buffer for a, denoted hn(a), is a sequence of connection request val-
ues k+@n. The expression k+@n in the port buffer indicates the request by a for-
eign party n to establish a session of type s. A channel buffer for kp

Fm, denoted
hn(kp

Fm), is a sequence of values received so far from location m via channel kp.
Reduction schemes are presented in two groups: Fig. 3 presents those for

expressions and Fig. 4 those for sites. A request expression adds a request to
the buffer for port a at each of the sites participating in session type s. This
set of sites is written Participants(s) and simply collects the set of all site
names occurring in s. Additionally, a new empty channel buffer is locally cre-
ated for each of the participating parties in preparation for receiving values
from them. Finally, note that k+ is required to be locally fresh in the sense
that it has not been used as the master endpoint of a previously established
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System S ::= n�e� site
| S ‖ S distributed sites

Thread Expression e ::= x | v | let x = e in e
| request a(u : s){e}
| accept a(u : s, d){e}
| send(u, λ, e)
| receive(u, λ)
| 〈u, λ〉 � l in {e}
| 〈u, λ〉 � {l1 : e1 � . . . � ln : en}

Site Name λ ::= m |n | . . . site name
| d site variable

Port a, b, . . .
Polarity p ::= + | −
(Polarized) Channel u ::= kp channel

| x | y | . . . channel variable

Value v ::= true | false | null | l

Conn. Request Value r ::= k+@n

Heap h ::= [] | h · [(m)(a) �→ r]

| h · [(m)(kp
Fn) �→ v]

Fig. 2. Syntax

connection at that site. We write h · [(mi)(a) 	→ ri]i∈1..o as a shorthand for
h · [(m1)(a) 	→ r1] . . . [(mo)(a) 	→ ro]. Likewise h · [(n)(kp

Fmi) 	→ ε]i∈1..o stands
for h · [(n)(kp

Fm1) 	→ ε] · . . . · [(n)(kp
Fmo) 	→ ε].

The accept expression requires a pending connection request to be available at
its local buffer for port a. It then creates a new local channel buffer for commu-
nication with the master endpoint and updates its local port buffer by removing
the request. The k− endpoint is assumed to be locally fresh for otherwise re-
duction blocks. The asynchronous send expression adds the value v to the local
channel buffer of the corresponding endpoint. The result of executing a send
expression is null. The receive expression blocks until a value is available at the
appropriate local buffer and then reads it. The schemes for select and branch
are similar to send and receive except that labels are sent or received rather than
arbitrary values (and the appropriate branch is selected). Finally, there are two
congruence schemes for reducing in the declaration part of a let expression and
inside the last argument of a send expression.

Reduction schemes for sites are standard. Note that, as usual, reduction is
modulo structural congruence (≡) rules.

3 Type System

Typing judgements for thread expressions and sites are Γ ;Σ �n e : t;Σ′ and
Γ ;Σ � S : Σ′, resp. The standard environment Γ maps standard types to
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[Request-R]
request a(u : s){e}, h · [(mi)(a) �→ ri]i∈1..k

−→n

e{u �→ k+}, h · [(mi)(a) �→ k+@n · ri]i∈1..k · [(n)(k+
Fmi) �→ ε]i∈1..k

where Participants(s) = {m1, . . . , mk} and k+ /∈ hn.

[Accept-R]
accept a(u : s, d){e}, h · [(n)(a) �→ r · k+@m]

−→n

e{u �→ k−}{d �→ m}, h · [(n)(a) �→ r] · [(n)(k−
Fm) �→ ε]

where k− /∈ hn.

[Send-R]
send(kp, m, v), h · [(m)(kp

Fn) �→ v]
−→n

null, h · [(m)(kp
Fn) �→ v · v]

[Rcv-R]
receive(kp, m), h · [(n)(kp

Fm) �→ v · v]
−→n

v, h · [(n)(kp
Fm) �→ v]

[Select-r]
kp@m � li in {e}, h · [(m)(kp

Fn) �→ v]
−→n

e, h · [(m)(kp
Fn) �→ li · v]

[Branch-R]
kp@m � {�i=1,nli : ei}, h · [(n)(kp

Fm) �→ v · li]
−→n

ei, h · [(n)(kp
Fm) �→ v]

[Let-R]
let x = v in e, h

−→n

e{x �→ v}, h

[CongLet-R]
e1, h −→n e′1, h

′

let x = e1 in e2, h −→n let x = e′1 in e2, h
′

[CongSend-R]
e, h −→n e′, h′

send(kp, m, e), h −→n send(kp, m, e′), h′

Fig. 3. Expression Reduction Schemes

term variables and ports and the session environment Σ maps located channels
(i.e. expressions of the form kp@m) to session types. Fig. 5 defines types and
environments. We assume a /∈ Dom(Γ ), x /∈ Dom(Γ ) and u /∈ Dom(Σ) (i.e.
u@m /∈ Dom(Σ) for any m). We write Σ{u 	→ kp} for substitution of channel
variable u by a channel kp in environment Σ. Likewise, Σ{d 	→ m} stands for
substitution of site variable d by a site name m in environment Σ. These notions
are standard and hence their definitions omitted.

The aforementioned judgements are defined in terms of typing rules (Fig. 7
and 6). We only describe the interesting ones. However, before doing so, we need
to provide a precise meaning to the part of a session type that pertains to a
specific site. As mentioned, this part can only be computed if different uses of
branches are compatible. Thus we first make this notion precise (Def. 2).
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S1 ‖ S2 ≡ S2 ‖ S1

S1 ‖ (S2 ‖ S3) ≡ (S1 ‖ S2) ‖ S3

S1 ≡ S2 ⇒ S ‖ S1 ≡ S ‖ S2

[Site-R]
e, h −→n e′, h′

n�e�, h −→ n�e′�, h′

[Par-R]
S, h −→ S′, h′

S ‖ S1, h −→ S′ ‖ S1, h
′

[Str-R]
S′

1 ≡ S1 S1, h −→ S2, h
′ S2 ≡ S′

2

S′
1, h −→ S′

2, h
′

Fig. 4. Site Reduction Schemes

Direction † ::= ? | !
Partial Session Type π ::= ε | †λ t.π

| &λ{l1 : s, . . . , ln : s}
| ⊕λ{l1 : s, . . . , ln : s}

Session Type s ::= π.end
Standard Type t ::= bool | cmd | s

Standard Env. Γ ::= ε |Γ, a : s |Γ, x : t
Channel Env. Σ ::= ε |Σ, u@n : s

Fig. 5. Types

Definition 1 (Compatible Set). A set of session types {s1, . . . , sn} is com-
patible if s1 � s2 � . . . � sn is defined, where � is the following commutative,
associative operation:

s � s = s
end � s = s
s � end = s

π.end � π′.end = (π � π′).end

π � π = π

?λt.π1 � ?λt.π2 = ?λt.(π1 � π2)
!λt.π1 � !λt.π2 = !λt.(π1 � π2)

&λ
i=1,n{li : si} �&λ

i=1,n{li : s′i} = &λ
i=1,n{li : si � s′i}

⊕λ
i=1,n{li : si} � ⊕λ

i=1,n{li : s′i} = ⊕λ
i=1,n{li : si � s′i}

A session type is compatible when it is compatible from the viewpoint of all
participating sites.

Definition 2 (Compatible session type). A session type s is compatible if
for all m ∈ Participants(s), Simplify(s ↓ m) is compatible, where
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Typing Rules for Values

[null]
Γ ;Σ �n null : cmd; Σ

e ∈ {true, false}
[True/False]

Γ ; Σ �n e : bool; Σ

Typing Rules for Sites

Γ ;Σ �n e : t; Σ′
[StartSite]

Γ ;Σ � n�e� : Σ′

Γ ; Σ � S1 : Σ′ Γ ;Σ′ � S2 : Σ′′
[ParSite]

Γ ; Σ � S1 ‖ S2 : Σ′′

Fig. 6. Typing Rules for Values and Sites

(π.end) ↓ m = (π ↓ m).end

(†λt.π) ↓ m =
{ †λt.(π ↓ m) if λ = m
π ↓ m otherwise

&λ
i=1,n{li : si} ↓ m =

{
&λ

i=1,n{li : si ↓ m} if λ = m
{s1 ↓ m, . . . , sn ↓ m} otherwise

⊕λ
i=1,n{li : si} ↓ m =

{⊕λ
i=1,n{li : si ↓ m} if λ = m
{s1 ↓ m, . . . , sn ↓ m} otherwise

where Simplify( ) rewrites its argument, in all subterms, using the following
term rewrite rule until a normal form is reached1.

†λt.{s1, . . . , sn} −→ {†λt.s1, . . . , †λt.sn}
Under the assumption of compatibility we can define the restriction of a ses-

sion type s to a site name m, for m ∈ Participants(s), as �(Simplify(s ↓ m))
and write s � m. Finally, we introduce the notion of dual session types, used to
type the accept expression. It is the standard notion that may be found in the
extant literature on the subject: session types s and s′ are dual (or (m,n)-dual
to be more precise) if the predicate Dual(s, s′) holds:

Dual(ε, ε) holds
Dual(π.end , π′.end) = Dual(π, π′)
Dual(?nt.π, !mt.π′) = Dual(π, π′)
Dual(!nt.π, ?mt.π′) = Dual(π, π′)

Dual(&n
i=1,p{li : si},⊕m

i=1,p{li : s′i}) =
∧

i=1,p Dual(si, s
′
i)

Dual(⊕n
i=1,p{li : si},&m

i=1,p{li : si}) =
∧

i=1,p Dual(si, s
′
i)

The typing rules for values are standard, as are those for variables and let
expressions. Note that the session environment remains unmodified in the case
of values and variables given that these expressions themselves do not perform
operations involving channels. A request on port a requires the type of a to be

1 Uniqueness of normal forms follows from orthogonality and termination.
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[Var]
Γ, x : t; Σ �n x : t; Σ

Γ ; Σ �n e : t;Σ′ Γ, x : t; Σ′ �n e′ : t′; Σ′′

[Let]
Γ ; Σ �n let x = e in e′ : t′; Σ′′

Γ, a : s; Σ, u@n : s �n e : t;Σ′, u@n : end
[Request]

Γ, a : s; Σ �n request a(u : s){e} : t; Σ′

Dual(s � n, s′{d �→ m})
m fresh

Γ, a : s; Σ, u@n : s′ � e : t; Σ′, u@n : end
[Accept]

Γ, a : s; Σ �n accept a(u : s′, d){e} : t;Σ′

Γ ; Σ �n e : t; Σ′, u@n :!λt.s
[Send]

Γ ; Σ �n send(u, λ, e) : cmd; Σ′, u@n : s

[Receive]
Γ ; Σ, u@n :?λt.s �n receive(u, λ) : t; Σ, u@n : s

Γ ;Σ, u@n : si �n e : t; Σ′

[Select]
Γ ;Σ, u@n : ⊕λ

i=1,n{li : si}} �n 〈u, λ〉 � l in {e} : t; Σ′

Γ ; Σ, u@n : si �n ei : t; Σ′
[Branch]

Γ ; Σ, u@n : &λ
i=1,n{li : si} �n 〈u, λ〉 � {�i=1,nli = ei} : t;Σ′

Fig. 7. Typing Rules for Expressions

declared globally with some session type s. The session environment is aug-
mented with a new located channel (i.e. expression of the form u@n) before
typing the body e. The type of the request expression is that of its body. Finally,
the located channel is assumed to be completely consumed within this body. A
accept also augments the session environment before typing its body, however
it uses the declared type s′. A check is performed to verify whether the session
type of a restricted to n, the site hosting the accept expression, is dual to s′

(prior application of the substitution {d 	→ m}). Given that the name of the site
requesting the request is unknown, a fresh name is substituted for all occurrences
of the site name variable d in s′. A send(u, λ, e) expression requires that we first
type e. The resulting session environment should include a session type for u@n
with a output type expression at the head. The type of e and the one declared
in the output type should agree. Also, the label of the output type should agree
with the destination declared in the send expression. The remaining typing rules
may be understood along similar lines.

We conclude this section with a standard property of type systems also shared
by DCMS.
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Lemma 1 (Substitution Preserves Typing)

1. Γ ;Σ1 �n e : t;Σ2 and kp /∈ Σ1 implies Γ ;Σ1{u 	→ kp} �n e{u 	→ kp} :
t;Σ2{u 	→ kp}.

2. Γ ;Σ1 �n e : t;Σ2 and m = n implies Γ ;Σ1{d 	→ m} �n e{d 	→ m} :
t;Σ2{d 	→ m}.

4 Subject Reduction and Safety

This section addresses Subject Reduction (SR) and Safety. The latter states that
the type system guarantees the absence of communication errors while the former
ensures that reduction preserves this state of affairs. We consider a communica-
tion error to be an execution state where a site attempts to read a value from its
local buffer with the wrong type. In order to prove the absence of such errors,
we must take into consideration how the system evolves during computation.
During the course of reduction, values are sent out to local buffers distributed
throughout the system. Accordingly, the types of channels are consumed. There-
fore, both session types and the contents of buffers must be taken into account
in order to determine safety. Trace types merge session types and values and are
defined by the grammar on the left:

τ ::= end
| ε
| †t.τ
| v.τ
| &i=1,n{li : τi}
| ⊕i=1,n{li : τi}

O ::= �n∈N

| !t.O
| v.O
| ⊕i=1,n{li : Oi}

The absence of site names in †, & and ⊕ allows for a conciser presentation (cor-
respondence between site names is guaranteed by the typing rule for accept).
The grammar on the right defines trace-output contexts. In an asynchronous set-
ting sending a value is a non-blocking operation and hence trace-output contexts
represent the activity that could take place before a blocking operation is exe-
cuted. An example trace-output context is O = 3.⊕ {l1 : �1, l2 : lj.�2, l3 : �3}
(assuming we may send integers): a 3 may be sent followed by one of l1, l2, l3,
followed by lj in the case that l2 was selected. Note that output-trace contexts
may have more than one occurrence of a hole. Holes are indexed with a unique
index indicated with a natural number as subscript. We write O[τ1, . . . , τn] or
simply O[τ ]k=1,n for the result of filling in holes �1 to �n with τ1 to τn, resp. We
often omit the subscript in O[τ ]k=1,n (and write O[τ ]) for the sake of readability.

Both trace types and trace-output contexts are used for stating the duality
invariant, as motivated above. A further word on notation: v : t is a shorthand
for ∅; ∅ �n v : t; ∅, for any n.

Definition 3 (A-Duality of trace types). The binary relation on trace types
called a(synchronous)-duality is defined inductively as follows:
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[end/end-D]
end �� end

[ε/ε-D]
ε �� ε

σ �� τ v : t
[?/v-D]

?t.σ �� v.τ

σ �� τ
[?/!-D]

?t.σ �� !t.τ

σ �� O[τ ] v : t
[v/?-D]

v.σ �� O[?t.τ ]

σ �� O[τ ]
[!/?-D]

!t.σ �� O[?t.τ ]

σj �� τ j ∈ 1..n
[&/l-D]

&i=1,n{li : σi} �� lj .τ

σi �� τi for each i ∈ 1..n
[&/⊕-D]

&i=1,n{li : σi} �� ⊕i=1,n{li : τi}

σ �� O[τj ]k=1,o j ∈ 1..nk
[l/&-D]

lj .σ �� O[&i=1,n{li : τi}]k=1,o

σi �� O[τi]k=1,o for each i ∈ 1..n
[⊕/&-D]⊕i=1,n{li : σi} �� O[&i=1,n{li : τi}]k=1,o

If σ �� τ , then we say σ is a-dual to τ . The intuition behind σ �� τ is that σ is
the session type of one endpoint of a session including the values this endpoint
already sent out and likewise for the other endpoint τ . If they are both end or
ε, then they are said to agree. If σ expects to receive a value of type t, then
either it has already been sent ([?/v-D]) or the send operation is next in line
according to the session type of τ ([?/!-D]). If σ has sent out a value ([v/?-D]),
then τ must be prepared to read but not necessarily immediately. Indeed, first
it may send out some other values (represented by the trace-output context O).
Note that O[?t.τ ]k=1,o in [v/?-D] and [!/?-D] means O[?t.τ1, . . . , ?t.τo]. The
remaining rules follow similar arguments.

Let |s| stand for the trace type resulting from erasing all site name information
from session type s. Note that dual session types are a-dual, as may be verified
by induction on s:

Lemma 2. Let s, s′ be session types. Then Dual(s, s′) implies |s| �� |s′|.
There are, of course, a-dual session types that are not dual. For example, we have
!t.?t′.end �� !t′.?t.end, for any t, t′, however for no decoration of site names shall
these types become dual. A-duality shares another property of duality, namely
symmetry.

Lemma 3 (Symmetry of ��)

1. O[σ]k=1,o �� τ implies
(a) O[?t.σ]k=1,o �� v.τ , if v : t.
(b) O[?t.σ]k=1,o ��!t.τ ,
(c) O[&i=1,n{li : ρi}]k=1,o �� lj .τ , where ρjk

= σk for each k ∈ 1..o, if
j ∈ 1..n.

2. σ �� τ implies τ �� σ.
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Proof. The first item is by induction on the structure of O and the second by
induction on the derivation of σ �� τ and resorts to the first one.

Some further properties of �� shall be useful. Items (1) and (2) below are used in
the proof of Subject Reduction to show that the duality invariant (stated below)
is upheld after a send and receive expression has been executed. Items (3) and
(4) are required for the case of select and branch. The proof of all items is by
induction on the length of v.

Lemma 4. 1. v.!t.τ1 �� τ2 and v : t imply v.v.τ1 �� τ2.
2. v.?t.τ1 �� v.τ2 implies v : t and v.τ1 �� τ2.
3. v.⊕i=1,n {l1 : τi} �� σ and j ∈ 1..n imply v.lj .τj �� σ.
4. v.&i=1,n{li : τi} �� lj .σ implies j ∈ 1..n and v.τj �� σ.

Let us illustrate the first item with a concrete example. Consider the reduction
of the expression send(kp,m, v) at site n. The trace type v.!t.τ1 �� τ2 will be
interpreted as the view of kp at n as follows:

– v is the sequence of values already sent out by n on kp to m and not con-
sumed, and

– !t.τ1 is the channel type of kp at n (with its site names erased).

Assuming this view is a-dual to that of m (represented by τ2), Lemma 4(1) states
that replacing !t by v (the value sent by n on kp) preserves a-duality.

Definition 4 (Duality Invariant). A pair of session environment and global
buffer satisfy the duality invariant, written DualityInv(Σ;h), if k+@n : sn ∈ Σ
and k−@m : sm ∈ Σ implies

vR.|sn � m| �� wR.|sm|
where hn(k+

Fm) = w and hm(k−Fn) = v.

One final ingredient is required before formulating our main result. Given that
request and accept expressions create new communication channels, session en-
vironments may grow as reduction proceeds. Therefore, we define Σ ≤ Σ′ as the
smallest partial order that contains Σ, u@λ : end ≥ Σ. The following property
relating this partial order and typability is seen to hold.

Lemma 5 (Weakening)

1. Γ ;Σ1 �n e : t;Σ2 and Σ′1 ≥ Σ1 imply Γ ;Σ′1 �n e : t;Σ′2, for some Σ′2 ≥ Σ2.
2. Γ ;Σ1 � S : Σ2 and Σ′1 ≥ Σ1 imply Γ ;Σ′1 � S : Σ′2, for some Σ′2 ≥ Σ2.

Proposition 1 (SR for Expressions). Γ ;Σ1 �n e : t;Σ2 and DualityInv(Σ1;h)
and e, h −→n e′, h′ implies Γ ;Σ′1 �n e′ : t;Σ′2 and DualityInv(Σ′1;h′), for
some Σ′1 and Σ′2 ≥ Σ2.

Proof. By induction on the derivation of e, h −→n e′, h′. We include a sample
case, namely that of a [Send-R] reduction step.
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– e = send(kp,m, v) and h = h′′ · [(m)(kp
Fn) 	→ v],

– e′ = null and h′ = h′′ · [(m)(kp
Fn) 	→ v · v].

From Γ ;Σ1 �n send(kp,m, v) : cmd;Σ2 we deduce

1. Σ1 = Σ11, k
p@n : !mt.s and

2. Σ2 = Σ11, k
p@n : s.

Set Σ′1 = Σ11, k
p@n : s and Σ′2 = Σ2(= Σ′1). Then note that

3. Γ ;Σ11, k
p@n : s �n null : cmd;Σ11, k

p@n : s is immediate and also
4. DualityInv(Σ11, k

p@n : s;h′).

We develop (4). Suppose p = + and k−@m : sm ∈ Σ′1. Then also k−@m : sm ∈
Σ1 and from DualityInv(Σ1;h):

vR.|!mt.s � m| �� wR.|sm|
where hn(k+

Fm) = w. By Lemma 4(1),

vR.v.|s � m| �� wR.|sm|
Suppose now that p = − and k+@m : sm ∈ Σ′1. Then also k+@m : sm ∈ Σ1 and
from DualityInv(Σ1;h):

wR.|sm � n| �� vR.|!mt.s|
where hn(k−Fm) = w. We resort to symmetry of �� (Lemma 3), followed by
Lemma 4(1), and finally symmetry again.

Prop. 1 holds for sites too. This requires first showing that:

Lemma 6 (Structural Congruence Preserves Typability). Γ ;Σ1 � S :
Σ2 and S ≡ S′ implies Γ ;Σ1 � S′ : Σ2.

We can then obtain the desired extension.

Proposition 2 (SR for Sites). Γ ;Σ1 � S : Σ2 and DualityInv(Σ1;h) and
S, h −→ S′, h′ implies Γ ;Σ′1 � S′ : Σ′2 and DualityInv(Σ′1;h′), for some Σ′1
and Σ′2 ≥ Σ2.

Proof. By induction on the derivation of S, h −→ S′, h′.

– [Site-R]. Then S = n�e�, S′ = n�e′� and e, h −→n e′, h′. Also, Γ ;Σ1 �n

e : t;Σ2 for some t. We conclude by resorting to Subject Reduction for
Expressions.

– [Par-R]. Then S = S1 ‖ S2, S′ = S′1 ‖ S2 and S1, h −→ S′1, h
′. Also,

there exists Σ3 such that Γ ;Σ1 � S1 : Σ3 and Γ ;Σ3 � S2 : Σ2. By
the IH there exists Σ′1, Σ′3 such that Σ′3 ≥ Σ3 and Γ ;Σ′1 � S1 : Σ′3 and
DualityInv(Σ′1;h

′). We conclude by Lemma 5.
– [Str-R]. Then there exist S1, S2 such that

1. S ≡ S1,
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2. S1, h −→ S2, h
′ and

3. S2 ≡ S′.
From Lemma 6, Γ ;Σ1 � S1 : Σ2. By IH, there exist Σ′1 and Σ′2 such that
4. Σ′2 ≥ Σ2,
5. Γ ;Σ′1 � S2 : Σ′2 and
6. DualityInv(Σ′1;h′).

We conclude from (3) and Lemma 6.

In order to formally state Communication Safety we first introduce the conve-
nient notion of evaluation context E:

E ::= � | let x = E in e | send(kp,m,E)

The hole in an evaluation environment singles out the part of the context where
the redex involved in the next reduction step is located. Communication Safety
says that if receive is the next expression to be reduced at some site n, then
either the value expected has not been sent by the expected party yet and the
channel type of this party coincides with the one expected by the receive, or the
value is located in n’s local buffer and has the expected type. Similarly for a
branch expression.

Proposition 3 (Communication Safety). Suppose Γ ;Σ1 �n e : t;Σ2 and
DualityInv(Σ1;h).

1. If e = E[receive(kp,m)] and kp@m ∈ Σ1, then Σ1(kp@n) =?mt.sn and
Σ1(kp@n) = sm, for some session types sn, sm, and

vR.|?mt.sn � m| �� wR.|sm|
where hn(kp

Fm) = w and hm(kp
Fn) = v, and one of two cases holds

(a) either wR = ε and sm =!nt.s′m, for some s′m,
(b) or wR = w.w′ and w : t, for some w and w′.

2. If e = E[〈kp,m〉 �i=1,o {li = ei}] and kp@m ∈ Σ1, then Σ1(kp@n) =
&m

i=1,o{li : s′i} and Σ1(kp@n) = sm, for some session types s′i, sm, and

vR.|&m
i=1,o{li : s′i} � m| �� wR.|sm|

where hn(kp
Fm) = w and hm(kp

Fn) = v, and one of two cases holds
(a) either wR = ε and sm = ⊕n

i=1,o{li : s′i}, for s′i with i ∈ 1..o,
(b) or wR = lj .w

′ and j ∈ 1..o, for some w′.

The proof is by induction on E and relies on the following lemma:

Lemma 7. 1. v.?t.σ1 �� w.σ2 implies
(a) either v = ε and σ2 =!t.σ′2, for some σ′2,
(b) or w = w.w′ and w : t, for some w′.

2. v.&i=1,o{li : si} �� w.σ2 implies
(a) either w = ε and σ2 = ⊕i=1,o{li : s′i}, for s′i with i ∈ 1..o,
(b) or w = lj.w

′ and j ∈ 1..o, for some w′.



254 E. Bonelli and A. Compagnoni

5 Related Work

Session types were introduced in work of Honda et al [Hon93, HKT94, HVK98].
Since then it has been studied in various programming language paradigms:
π-calculus like [GH99, HG03, GVR03, BCG05, BCG04], mobile ambients
[GCDC06], CORBA [VVR03], functional threads [VRG04] and for object-oriented
programming [DCYAD05, DCMYD06]. Recent work [YV06] revisits Subject Re-
duction for session types in view of some subtle issues related with naming.

Dezani-Ciancaglini et al [DCYAD05] present a distributed object-oriented lan-
guage with session types. Although they also deal with a system of named sites,
they use synchronous communication. In later work [DCMYD06] they considered
higher-order sessions for roughly the same language and study a progress prop-
erty. Also, they introduce buffers to model the operational semantics. However,
connection is still synchronous and no notion of multipoint session types is stud-
ied. The work of Neubauer and Thiemann [NT04] seems to be the first work on
session types for asynchronous communication. They consider a functional pro-
gramming language which, although lacks a notion of multipoint session type nor
is distributed, introduces an interesting relation on values similar to a-duality.
Session types for asynchronous communication in the setting of operating sys-
tem services [FAH+06] and object-oriented languages [CDCY07] has also been
studied.

In recent [Yos07], independent work Honda, Yoshida and Carbone [HYC08]
have developed a similar calculus of multiparty asynchronous session types. In-
teraction between participants is described by means of a “global type”, essen-
tially sequences of expressions of the form p → p′ : k < U > expressing that
“participant p sends a message of type U to channel k received by participant
p′” (constructs for branching/selection and recursive types are also considered).
Thus participants may share any number of channels, in contrast to our more
restricted setting where only the master endpoint of a multipoint session type is
shared. Since sharing gives rise to conflicts, a causality condition (dubbed “lin-
earity” of global types) is required to ensure that global types are conflict-free.
The remaining development is close to the one presented here: our notion of
compatible session types corresponds to “coherence” of global types (Def. 4.2. in
op. cit.), our duality invariant corresponds to “rollback of a message” (Sec. 5.2.
in op. cit.). It should also be mentioned that Honda et al consider, in addition
to Communication Safety, a progress property [DCMYD06]: roughly that, un-
der certain conditions, a well-typed process that is ready to communicate shall
always do so (Sec. 5.6. in op. cit.). We feel such a property should also hold for
DCMS, although the details should be worked out.

6 Conclusions

We have presented a theory of session types for a core distributed calculus called
DCMS. Distributed systems are represented as sets of named sites running
threads. These sites communicate with each other by either sending/receiving
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values or selecting/branching on alternative code branches. The type system is
built on the notion of session type: sequences of types of the entities being sent
or received. The resulting session types are multipoint in the sense that they
encode the interaction protocol to be followed by two or more parties. One such
party is selected as a master and is the one that initiates a connection; multi-
ple other parties are designated as slaves and each follow their own interaction
scheme with the master. All communication expressions in DCMS are asyn-
chronous: its semantics is described in terms of connection and communication
buffers local to each site. Correctness of DCMS is proved in the form of a sub-
ject reduction theorem. This result consists in showing that a predicate on all
buffers and the type assigned to each open connection called duality invariant is
upheld at all times. This invariant roughly synthesizes run-time types, consisting
of sequences of standard types and values, for channels and checks that any two
endpoints have asynchronous dual such types. Asynchronous dual types is an
extended notion of dual types that takes asynchronicity into account.

In order to bring out the fundamentals of combining session types and dis-
tributedness we have reduced our calculus to a minimal core. In particular,
we have not included features such as run-time session type creation, send-
ing/receiving session types, delegation of channels or spawning of new threads.
This is left to future work. Type checking and inference based on the more
lax notion of a-duality and an appropriate notion of subtyping should also be
interesting avenues for further work.
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Abstract. We propose a new typing system for the π-calculus with sessions,
which ensures the progress property, i.e. once a session has been initiated, typable
processes will never starve at session channels. In the current literature progress
for session types has been guaranteed only in the case of nested sessions, disal-
lowing more than two session channels interfered in a single thread. This was a
severe restriction since many structured communications need combinations of
sessions. We overcome this restriction by inferring the order of channel usage,
but avoiding any tagging of channels and names, neither explicit nor inferred.
The simplicity of the typing system essentially relies on the session typing disci-
pline, where sequencing and branching of communications are already structured
by types. The resulting typing enjoys a stronger progress property than that one in
the literature: it assures that for each well-typed process P which contains an open
session there is an irreducible process Q such that the parallel composition P|Q
is well-typed too and it always reduces, also in presence of interfered sessions.

1 Introduction

Structuring communication to ensure safe interaction of concurrent systems is a central
issue in the theory and practice of concurrent and mobile computing. Communication
has indeed evolved into a growing number of complex activities, including several kinds
of transactions as well as the offer and fruition of services through a large gamma of
systems and networks. In this scenario computation consists in exchanging messages
between loosely coupled parties, whose number and identity might also change dy-
namically. A case in point is delegation of activities to third parties in a client/server
interaction, which often occurs transparently to the client.

Existing programming languages and standards, while adding communication prim-
itives and syntactical tools to rule interaction, still leave to the programmer much of the
responsibility in guarantying that the sequence of messages is well structured and that
e.g. the client of a service will complete all needed transactions without getting into
some unwanted state. The lack of structuring principles is also a defect of theoretical
calculi such as the π-calculus: the economy of its syntax and semantics is an advantage
for the elegance of the theory, but a drawback when controlling and disciplining specific
kinds of behaviour.
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A solution proposed by [22,12,10,2,9] consists in adding primitives to creat sessions
to the π-calculus. A session is an abstraction of a series of communications through
a private channel between two processes. It is created by a connection over a session
channel (we call shared), that binds a channel name which, after connection, is sub-
stituted by a fresh private name (the live channel) in such a way that both privacy and
duality are guaranteed, in the sense of the presence of input/output, branching/selection
and delegation actions with the same live channel as subject (as it is checked by basic
session type systems).

A central motivation for developing sessions and related type systems is to model
safe hand-shake communications. In such a context privacy is not the unique desirable
property of sessions, whereas compliance should be also guaranteed, namely that any
session does not get stuck into some blocking state. To explain this safety issue, let us
consider the following simple process with sessions, written in a π-calculus dialect that
admits sequential composition (the semicolon):

P1 = a(x).(x!〈3〉;x?(z).x!〈Apple〉;P′
1)

This is a server process that first accepts the session communication through a shared
channel a, and then performs a series of communication via the live channel which will
replace x: it first outputs an integer, second inputs an integer, then outputs a string, and
continue as P′

1. This behaviour is abstracted in the type system of [12] as the session
type !int.?int.!string.

A client process intended to interact with the server above will have the following
communication pattern:

Q1 = a(x).(x?(z).x!〈5 + z〉;x?(z′).Q′
1)

This process requests the session communication through a and then performs the dual
actions through x, typed by ?int.!int.?string. Once the session is established, and pro-
vided that only the two connected parties interact together, the communication over the
live channel replacing x always proceeds at least up to the transmission of the string
(and to the end of the session if x does not occur in P′

1 nor in Q′
1), since their communi-

cation patterns are dual and private.
The main limitation of the approach is that two parties are assumed to interact in

one session, and that these should not overlap. On the contrary in the case of e.g. Web
Services communications [23], we need to establish more than one session between two
or even multiple peers. In such a case, the safety is easily destroyed by the interleaving
of two or more sessions. The simplest example is as follows:

P2 = a(x).b(y).(x!〈3〉;x?(z).y!〈Apple〉;P′
2) Q2 = a(x).b(y).(y?(z′).x?(z′′).x!〈5〉;Q′

2)

where the live channels replacing x and y create a circular dependency, causing dead-
lock. However in the session type systems from the literature, the latter processes are
typable since the two sessions, one for x and the other for y, are correctly structured if
taken in isolation. Thus progress of communications on live channels cannot be guar-
anteed when two or more sessions are mixed.

In the present work, we enhance existing session type systems to check progress with
respect to live channels belonging to several sessions, while keeping the full session
constructions, such as branching/selection, delegation and replication. The calculusis
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equipped with the construct for sequencing by which complex synchronisation be-
haviours such as joining and forking processes can be modelled. In spite of this ex-
tension, we show that a great simplification w.r.t. existing type systems for partial
deadlock-freedom is achieved by relativising progress to session structured processes,
avoiding any tagging of channels and names, neither explicit nor inferred. Our type
system enjoys a progress property tailored to the soundness of session execution: for
each well-typed process P which contains live channels there is an irreducible pro-
cess Q such that the parallel composition P|Q is well-typed too and it always
reduces. The main technical difficulties for progress come from the two central fea-
tures of the π-calculus: one is name hiding and passing, which can stop communica-
tions forever, and the other is process replication, which can destroy the bilinearity of
communications.

Related work. The present paper moved from the desire to remove the limitations aris-
ing from strictly nested sessions in [8,6], where a similar progress property has been
established in the case of an object-oriented, class-based language with communication
primitives for sessions and with concurrency disciplined by the use of spawning com-
mands. That result has been obtained under the condition that overlapping sessions can
only be nested and that the inner sessions have been ended before the outer ones may
proceed. Such a restriction is abandoned here; moreover we leave aside any particular
paradigm of programming languages, and consider an extension of the full π-calculus
with the session primitives of [12].

A tight relation exists with work by Kobayashi and his colleagues on partial
deadlock-freedom. We were inspired by [15,17,24,19,18] in considering the relation
between channel names induced by their use. However there are both technical and
conceptual differences.

First we do not decorate types by multiplicities, namely we do not record levels of
capabilities/obligations. Usages e.g. in [19], as well as “types” in the general frame-
work of [14], are far more concrete behavioral descriptions than session types; hence
the usages make sense as internal machinery of an automatic testing procedure, not as
interfaces or abstract protocols for the user, we are looking for.

Second the structure of session types allows us to get a significant analysis without
any form of tagging (neither by the user, nor by the typing system) and by means of a
syntax directed type system, where the number of rules only depends on the richness
of the language syntax. This is coherent with the aim of using session primitives and
session types directly as the basis for programming language design, rather than as a
tool to perform some form of static analysis. We leave for a future work to analyse rela-
tionships with the encodings of session types into functional and process linear typing
systems [11,20].

Paper structure. Section 2 describes the syntax and the reduction rules of our calculus,
and Section 3 discusses the type system. The features of well-typed processes are the
subject of Section 4. The full definitions and proofs can be found at http://www.di.
unito.it/˜dezani/dly.pdf.

http://www.di.unito.it/~dezani/dly.pdf
http://www.di.unito.it/~dezani/dly.pdf


260 M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida

2 A Calculus for Structured Communications

2.1 Process Syntax

The π-calculus with sessions we consider is an extension of the calculus studied in [12],
by means of sequencing, which allows to get forks and joins of processes [1]. The syn-
tax is reported in Table 1.

For channels we use names and variables, the latter in place of bound names in ac-
cept/request and receive guarded processes. We further distinguish among two sorts
of channel names: shared and live. Shared channels (called simply “names” in [12]),
ranged over by a,b, . . . are used to open sessions, so that they can be either public or
private; live channels (the “channels” of [12]), written as kp,kq

1, . . . are instead used only
within open sessions, as it becomes clear in the definition of the operational semantics,
so that their intended use (enforced by the reduction relation and the type system) is
within the scope of the ν operator. The polarity p ∈ {+,−} in apices of kp represents
the two end points created by the session initialisation. This notion is originally intro-
duced in [10] to assure subject reduction (see [25] for the detailed discussion).

We write a(x).P and a(x).P for the accept and request primitives of [12]. Instead of
the recursive agents, we use permanent accept, written �a(x).P, and for shared channels
only, to model a server providing for a service to an unbounded number of clients. In
case of a(x).P, �a(x).P and a(x).P the identifier a represents the public interaction point
over which a session may commence. We say that a is the subject of the (permanent)

Table 1. Syntax

(Shared Channels) (Live Channels)
c ::= x,y,z variable

|| a,b name
κ ::= x,y,z variable

|| kp polarised name

(Values) (Expressions)

v ::= a shared channel name
|| true,false boolean
|| n integer

e ::= v value
|| x,y,z variable
|| e+e sum
|| not(e) not
|| . . .

(Processes) (Prefixed processes)

P ::= 0 inaction
|| T prefixed process
|| P ; Q sequencing
|| P |Q parallel
|| (νa)P shared channel hiding
|| (νk)P live channel hiding

T ::= c(x).P accept
|| �c(x).P permanent accept
|| c(x).P request
|| κ!〈e〉 data send
|| κ?(x).P data receive
|| κ� l.P selection
|| κ�{l1 : P1[] . . . []ln : Pn} branching
|| κ!〈〈κ′〉〉 session send
|| κ?((x)).P session receive
|| if e then P else Q if-then-else
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accept/request process. The bound variable x represents the actual channel over which
the session communications will take place, to be replaced by a live channel when the
session has been opened and the connection established.

Constants and expressions of ground types (booleans and integers) are also added to
model data, which are sent and received by means of the prefixes κ!〈e〉 and κ?(x).P. We
write κ � l.P for selection, which chooses an available branch, and κ�{l1 : P1[] . . . []ln : Pn}
for branching, which offers alternative interaction patterns; these are the same as
in [12].

We use κ!〈〈κ′〉〉 (session send) and κ?((x)).P (session receive) for throw and catch
primitives of [12] respectively. These are called higher-order session communication
primitives since live channel κ′ is passed via live channel κ. This mechanism enables to
represent complex but safe delegations without interference by any third party.

In data and session sending, data and session receive, branching and selection, we
call the channel κ the subject of the prefixed process.

The essential difference with the calculus in [12] is the adding of sequencing, written
P ;Q, meaning that P is executed before Q. This syntax allows for complex forms of
synchronisation as P can include any parallel composition of arbitrary processes.

The precedence of the operators building processes is (from the strongest) “�,�,{}”,
“.”, “;” and “ | ”. Moreover we convene that “.” associates to the right. For exam-
ple, κ � l.κ?(x).P;Q | R means ((κ � l.(κ?(x).P));Q) | R . We often omit 0 and write
(νab)(P) for (νa)((νb)(P)), etc. The bindings for channels and variables are standard
and we write fn(P), fv(P) and bn(P) for free channels, free variables and bound channels
respectively.

We say that the following pairs of prefixed processes are dual: {a(x).P, a(x).Q},
{�a(x).P, a(x).P}, {kp!〈e〉, kp?(x).P}, {kp � li.P, kp � {l1 : Q1[] . . . []ln : Qn}} where
i ∈ {1, . . . ,n}, and {kp!〈〈κ〉〉, kp?((x)).Q}.

2.2 Operational Semantics

We formalise the operational semantics of the calculus by a one-step reduction rela-
tion → , defined in Table 2, up to the standard structural equivalence ≡ plus the rule
0;P ≡ P.

The reduction rules are based on those of the π-calculus with the session primitives
[12,10], taking into account the behaviour of sequencing. By the interplay between
parallel composition and sequencing it is handy to introduce evaluation contexts.

Evaluation contexts are defined by:

E [ ] := [ ] || E [ ];P || E [ ] |P || (νa)E [ ] || (νk)E [ ]

We say that a processes P is a head subprocess of a process Q if Q ≡ E [P] for some
evaluation context E [ ]. Examining the reduction rules it is easy to check that all prefixed
processes (but in case of if-branching) in head positions reduce only if a dual subprocess
is in head position too.

Rules [CON] and [CONR] are session initiation rules where two polarised fresh
names are created, then restricted because the leading parts P{k+/x} and Q{k−/y}
now share the channel k to start private interactions via k. In rule [CONR], we write
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Table 2. Reduction

[CON] E1[a(x).P] | E2[a(y).Q] → (νk)(E1[P{k+/x}] | E2[Q{k−/y}]) (k fresh)

[CONR] E1[�a(x).P] | E2[a(y).Q] → (νk)(E1[P{k+/x}| �a(x).P] | E2[Q{k−/y}])
(k fresh)

[COMV] E1[kp!〈e〉] | E2[kp?(x).Q] → E1[0] | E2[Q{v/x}] (e ↓ v)

[LABEL] E1[kp � li.P] | E2[kp �{l1 : Q1[] . . . []ln : Qn}] → E1[P] | E2[Qi] (1 ≤ i ≤ n)

[COMS] E1[kp!〈〈kq
1〉〉] | E2[kp?((x)).Q] → Q{kq

1/x}|E1[0] | E2[0] (k1 
∈ bn(E1[ ]) &

bn(E2[ ])∩ fn(Q) = /0)

[IF1] if e then P1 else P2 → P1 (e ↓ true)
[IF2] if e then P1 else P2 → P2 (e ↓ false)

[EVAL] P → P′ ⇒ E [P] → E [P′]

[STR] P ≡ P′ P′ → Q′ Q′ ≡ Q ⇒ P → Q

directly the effect of the replication of the accept/request action, and we do not postulate
�a(x).P ≡ �a(x).P |a(x).P: hence replication is triggered only in presence of a dual
session request, a property which simplifies the soundness of the typing system.

Rule [COMV] sends data (e ↓ v means that the expression e evaluates to the value v).
Rule [LABEL] selects the i-th branch.

In rule [COMS] the process which receives the live channel is put in parallel with
the evaluation contexts. Notice that this does not happen in the other rules. This rule
allows for a safe form of delegation: indeed the process that receives the live channel
must proceed, even if it is put in a context of overlapping sessions, as it happens e.g. in
Example 4.3 of [12] (Fpt server). This is not guaranteed by the “standard” version of
the rule below:

E1[kp!〈〈kq
1〉〉] | E2[kp?((x)).Q] → E1[0] | E2[Q{kq

1/x}] (kq
1 
∈ bn(E1[ ])

In fact by using this rule the process

a(x).b(y).(y?((z)).z!〈5〉);x?(t).0 |a(x′).b(y′).y′!〈〈x′〉〉

reduces to (νk)(k−!〈5〉;k+?(t).0) which is stuck, while its intended meaning should be
that y?((z)).z!〈5〉 completes and eventually 5 is communicated along k and replaced to t.

Notice that “;” is essential in order to identify which process must be executed in
parallel with the contexts. The example above shows that – without the sequencing
operator – we would be not able both to preserve progress and to require that a live
channel is received before a communication on other live channels is executed. This is
necessary e.g. for modelling a real estate agent who wants to be delegated by the owner
before showing the house to potential buyers.

Rule [COMS] subsumes the channel passing rule named [PASS] in [12], since the
standard version of this rule and [PASS] coincide if we ignore the sequencing. All other
reduction rules are as usual.
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3 Typing System for Progress Communication

The type system discussed in this section is designed to guarantee linearity of live chan-
nels, communication error freedom and progress.

3.1 Types

The full syntax of types is given in Table 3. Partial session types, ranged over by σ, rep-
resent sequences of communications, where ε is the empty communication, and σ1.σ2

consists of the communications in σ1 followed by those in σ2. We put ε.σ = σ.ε = σ
and we consider partial session types modulo this equality. The types !t and ?t express
respectively the sending and reception of a value of type t. The types !s and ?s repre-
sent the exchange of a live channel, and therefore of an active session, with remaining
communications determined by the ended session type s.

Table 3. Types

(direction) † ::= ! || ?

(select/branch) ‡ ::= ⊕ || &

(partial session type) σ ::= ε || † t || † s || σ.σ || ‡{l1 : σ1, . . . , ln : σn}
(ended session type) s ::= σ.end || ‡{l1 : s1, . . . , ln : sn}
(running session type) τ ::= σ || s

(standard type) t ::= [s] || bool || int || . . .

The selection type ⊕{l1 : σ1, . . . , ln : σn} represents the transmission of a label li
chosen in the set {l1, . . . , ln} followed by the communications described by σi. The
branching type &{l1 : σ1, . . . , ln : σn} represents the reception of a label li chosen in
the set {l1, . . . , ln} followed by the communications described by σi.

An ended session type s is a partial session type concatenated either with end or with
a selection or branching whose branches in turn are both ended session types. It ex-
presses a sequence of communications with its termination, i.e. no further communica-
tions on that channel are allowed at the end.

A running session type, τ, ranges over both partial and ended session types.
A shared session type [s] is the type of shared channels, and has one or more end-

points, denoted by end. Standard types t are either shared session types or ground types.
Each running session type τ has a corresponding dual, denoted τ, which is obtained

as follows:

– ? =! ! =? ⊕ = & & = ⊕ ε = ε
– †t = †t †s = †s σ1.σ2 = σ1.σ2 ‡{l1 : σ1, . . . , ln : σn} = ‡{l1 : σ1, . . . , ln : σn}
– σ.end = σ.end ‡{l1 : s1, . . . , ln : sn} = ‡{l1 : s1, . . . , ln : sn}.

Note that duality is an involution: τ = τ.
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3.2 Motivating the Design of the Type System

This subsection discusses the key ideas behind the type system introduced in § 3.4 with
some examples, focusing on progress.

Example 3.1 (Circularity of channels). As we explained in the Introduction, the order
of session channels should be taken into account. Recall the processes P2 and Q2 from
the Introduction:

P2 = a(x).b(y).(x!〈3〉;x?(z).y!〈Apple〉;P′
2) Q2 = a(x).b(y).(y?(z′).x?(z′′).x!〈5〉;Q′

2)

These processes use the channels bound by a and b in reverse order, hence they lead to
a deadlock. This is prevented by the type systems, which allows instead to compose P2

e.g. with
Q′′

2 ≡ a(x).b(y).(x?(z′).x!〈5〉;y?(z′′).Q′
2)

For a similar reason, we prohibit processes which have self-circularity of a shared chan-
nel like:

P3 ≡ a(x).a(y).(x!〈3〉;y!〈5〉) |a(z).a(t).(t?(t ′).z?(w).0)

which reduces to the deadlock process (νkk1)(k+!〈3〉;k+
1 !〈5〉|k−

1 ?(t ′).k−?(w).0).
On the other hand, we want to allow self-circularity of live channels. Fortunately we

can profit of the expressiveness of the session types to simplify our type system: since
sequences of communications are already structured by types, we do not have to con-
sider the ordering between the same live channels. For example P4 ≡ kp!〈3〉;kp?(y).0
and P5 ≡ a(x).(x!〈3〉;x?(y).0) shall be typable according to our system.

Example 3.2 (Sequencing and live channels). It is a well known constraint for the
linearly typed π-calculi to disallow live channels that occur in repeated processes.
For example, P6 ≡ �a(x).k+!〈3〉 in parallel with P7 ≡ a(y).0 |a(z).0 reduces to
P6 |k+!〈3〉 |k+!〈3〉. This can be easily avoided using a standard technique. However,
the sequencing operator requires more careful analysis for preserving progress. Let us
consider a slightly different process P8 ≡ �a(x).0;k+!〈3〉 which does not destroy lin-
earity, but progress. For example, P7 | P8 reduces to P8 where the linearity of k+ is
preserved, but k+!〈3〉 is blocked forever.

Example 3.3 (Bound shared channels). A bound shared channel which does not
have a dual to start a session can block the communication on live channels forever,
as in P9 ≡ (νa)(a(x).k+!〈3〉) |k−?(y).0. The problem does not arise if the shared
channel a is free, since we can always compose with a dual process, as in P10 ≡
a(x).k+!〈3〉 |k−?(y).0 |a(z).0.

Example 3.4 (Shared channel passing). Shared channels can be sent only if their dual
processes can communicate without waiting other communications to succeed. For ex-
ample, consider the processes:

P11 ≡ a(t).t!〈b〉|a(x).c(y).x?(z).z(q).q?(w).y?(w′).0 P12 ≡ c(s).b(r).(s!〈3〉; r!〈4〉)

Then P11 | P12 reduces to (νkbkc)(k+
b ?(w).k+

c ?(t).0 |k−
c !〈3〉;k−

b !〈4〉) which is a dead-
lock. A safe process is the parallel composition of P11 and P′

12 ≡ c(s).b(r).(r!〈4〉;s!〈3〉).
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Example 3.5 (Session channel passing). Live channels can be sent only if the receiv-
ing process does not contain live channels, as shown by the process:

P13 ≡ a(x).b(y).x!〈〈y〉〉 |a(t).b(z).t?((t ′)).(t ′!〈3〉;z?(w).0)

which reduces to the deadlock process (νkb)(k+
b !〈3〉;k−

b ?(w).0). A similar, but sound
process is P′

13 ≡ a(x).b(y).x!〈〈y〉〉 |a(t).b(z).(t?((t ′)).t ′!〈3〉;z?(w).0), where z?(w).0 is not
in the body of t?((t ′)).

3.3 Typing Judgements

The typing judgements for expressions and processes are of the shape:

Γ � e :t Γ;S ;B � P : Δ []C

where we define:
Γ ::= /0 || Γ,x :t || Γ,a : [s] S ::= /0 || S ,a B ::= /0 || B ,a
Δ ::= /0 || Δ,κ :τ || Δ,� C ::= /0 || C ,λ || C ,λ ≺ λ′

Γ is the standard environment which associates variables to types and shared channel
names to shared session types; S (resp. B) is the set of shared channel names which
can be sent (resp. bound); Δ is the session environment which associates live channels
to running session types, and it can also contain the special symbol �. The session en-
vironment Δ represents the open communication protocols of a process; the occurrence
of � in Δ is used to prevent that any process sequentially composed with the term to
which � has been assigned, might contain any occurrence of free live channels (see the
definition of Δ · Δ′ in Table 5). C is the channel relation, which is intended to give in-
formation about the ordering in the usage of channels. In C the metavariable λ ranges
over shared and live channels. A well-formed channel relation is irreflexive w.r.t. shared
channel names, and cannot contain cycles (see the next subsection).

3.4 Type System

Table 4 defines the type system. We omit the typing rules for expressions which are
standard and identical with [25]. For typing processes, we use the auxiliary operators
defined in Table 5. We list the key points of the typing rules for processes.

Session Initiation. As discussed in the examples, accept/request processes whose sub-
jects are going to be bound or sent require particular care. The most liberal typing rules
are Acc and Req where the shared channel can neither be bound nor sent. The resulting
session environment is obtained by erasing the type of the bound channel x and the re-
sulting channel relation is obtained by replacing x by a to prevent the circular ordering
between names.

If the shared channel is a permanent accept, or when it can be bound but not sent, we
cannot allow live channels in the continuation processes (see Examples 3.2 and 3.3). In
rules AccB, ReqB, and Acc�, the satisfaction of this condition is enforced by requiring
that the session environment of the body process only contains the current channel
and by typing the whole process with the session environment {�}. Notice that session
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environments containing � cannot be composed with session environments containing
channels by the definition of Δ ·Δ′ given in Table 5.

Table 4. Typing Rules

Γ � a : [s] Γ;S ;B � P : Δ,x :s []C a 
∈ S ∪B
Acc

Γ;S ;B � a(x).P : Δ []C{a/x}

Γ � a : [s] Γ;S ;B � P : Δ,x :s []C a 
∈ S ∪B
Req

Γ;S ;B � a(x).P : Δ []C{a/x}

Γ � a : [s] Γ;S ;B � P : {x :s} []C a 
∈ S
AccB

Γ;S ;B � a(x).P : {�} []C{a/x}

Γ � a : [s] Γ;S ;B � P : {x :s} []C a 
∈ S
ReqB

Γ;S ;B � a(x).P : {�} []C{a/x}

Γ � a : [s] Γ;S ;B � P : {x :s} []C a 
∈ S
Acc�

Γ;S ;B � �a(x).P : {�} []C{a/x}

Γ � c : [s] Γ;S ;B � P : {x :s} []C
Acc�S

Γ;S ;B � �c(x).P : {�} []C � x

Γ � a : [s] Γ;S ;B � P : Δ,x :s []C a 
∈ B
AccS

Γ;S ;B � a(x).P : Δ []C � x

Γ � a : [s] Γ;S ;B � P : Δ,x :s []C a 
∈ B
ReqS

Γ;S ;B � a(x).P : Δ []C � x

Γ � c : [s] Γ;S ;B � P : {x :s} []C
AccBS

Γ;S ;B � c(x).P : {�} []C � x

Γ � c : [s] Γ;S ;B � P : {x :s} []C
ReqBS

Γ;S ;B � c(x).P : {�} []C � x

Γ � e :t if e = a then a ∈ S
Snd

Γ;S ;B � κ!〈e〉 : {κ :!t} []{�(κ)}

Γ,x :t;S ;B � P : Δ []C
Rcv

Γ;S ;B � κ?(x).P : {κ :?t} ·Δ []pre({�(κ)},C )

Γ;S ;B � P : Δ,κ :τi []C (1 ≤ i ≤ n)
Sel

Γ;S ;B � κ� li.P : Δ,κ :⊕{l1 : τ1, . . . , ln : τn} []pre({�(κ)},C )

Γ;S ;B � Pi : Δ,κ :τi []Ci (i = 1, . . . ,n)
Bra

Γ;S ;B � l1 : P1[] . . . []ln : Pn : Δ,κ :&{l1 : τ1, . . . , ln : τn} []pre({�(κ)},∪1≤i≤nCi)

s 
= ε.end
CSnd

Γ;S ;B � κ!〈〈κ′〉〉 : {κ :!s,κ′ :s} []{�(κ), �(κ′), �(κ) ≺ �(κ′)}
Γ;S ;B � P : {x :s} []{x} s 
= ε.end

CRcv
Γ;S ;B � κ?((x)).P : {κ :?s} []{�(κ)}

Γ � e :bool Γ;S ;B � Pi : Δ []C (i = 1,2)
If

Γ;S ;B � if e then P1 else P2 : Δ []C

Γ;S ;B � P : Δ []C Γ;S ;B � Q : Δ′ []C ′

Seq
Γ;S ;B � P;Q : Δ ·Δ′ []pre(C ,C ′)

Γ;S ;B � P : Δ []C Γ;S ;B � Q : Δ′ []C ′

Par
Γ;S ;B � P |Q : Δ∪Δ′ []C ∪C ′

Γ,a : [s];S ;B � P : Δ []C a ∈ B
HidingS

Γ;S \a;B \a � (νa)P : Δ []C \a

Γ;S ;B � P : Δ,kp :τ,kp :τ []C
HidingL

Γ;S ;B � (νk)P : Δ []C \ k

Inact
Γ;S ;B � 0 : /0 [] /0

Γ;S ;B � P : Δ []C κ 
∈ dom(Δ)
Weak1

Γ;S ;B � P : Δ,κ :ε []C

Γ;S ;B � P : Δ,κ :ε []C
Weak2

Γ;S ;B � P : Δ,κ :ε.end []C



On Progress for Structured Communications 267

If the shared channel can be sent but it cannot be bound we need to require that
all communications on that channel can be executed without requiring other channels
to communicate (Examples 3.4). This can be achieved by asking that the channel is
minimal in the current channel relation, i.e. using C � x (defined in Table 5) in the
conclusion. We ask C � x to be the channel relation in the conclusion of rules AccS,
ReqS, and Acc�S, convening that the rules cannot be applied if it is undefined.

Rules AccBS and ReqBS put the above restrictions together, and are used to type
shared channels which can be both bound and sent. In rules Acc�S, AccBS and ReqBS
the subject can also be a variable, which will be replaced by a channel name which
surely can be sent and possibly can be bound.

Session Communication. These rules add relevant information to session environ-
ments and to channel relations. Rule Snd checks that only shared channels in the set
S are sent. The resulting session environment is {κ : t}, where κ is the subject of the
sent process and t is the type of the sent expression. The resulting channel relation con-
tains the name (without polarity) of the subject, where we define �(κ) = k if κ = kp and
�(κ) = κ otherwise.

Rule Rcv uses the composition operator defined in Table 5 between session envi-
ronments, which extends that one between running session types. In this way we can
prefix by ?t the possible communications on channel κ prescribed by Δ. In the obtained
channel relation all channels in C are bigger than �(κ) by the definition of pre(C ,C ′)
given in Table 5.

In rules Sel and Bra all τi are either partial session types or ended session types –
this is guaranteed by the syntax of conditional session types (see Table 3).

Table 5. Operators for Types and Environments

Composition for Running Session Types and Session Environments

τ · τ′ =
{

τ.τ′ if τ is a partial session type and τ′ is a running session type
⊥ otherwise.

Δ ·Δ′ =

⎧
⎪⎪⎨

⎪⎪⎩

Δ if � ∈ Δ and Δ′ ⊆ {�};
Δ\Δ′ ∪ Δ′ \Δ ∪ {κ :Δ(κ) · Δ′(κ) | κ∈dom(Δ)∩dom(Δ′)}∪{� || � ∈ Δ′}

if � 
∈ Δ and ∀κ∈dom(Δ)∩dom(Δ′) : Δ(κ) · Δ′(κ) 
= ⊥;
⊥ otherwise.

Operators for Channel Relations

C \λ = {λ1 ≺ λ2 || λ1 ≺ λ2 ∈ C & λ1 
= λ & λ2 
= λ}∪{λ′ || λ′ ∈ C & λ′ 
= λ}

C �x =

{
C \x if x is minimal in C
⊥ otherwise.

pre(C ,C ′) = (C ∪C ′ ∪{λ ≺ λ′ || λ ∈ C & λ′ ∈ C ′})∗

where C ∗ is the transitive closure of C and λ is minimal in C if 
 ∃λ′ ≺ λ ∈ C .
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The condition τ 
= ε.end in rules CSnd and CRcv allows to exchange only live chan-
nels which are not consumed, a reasonable requirement for a good programming disci-
pline. Example 3.5 justifies the requirement that x is the only live channel of P.

Compositional and Structural Rules. Rule Seq takes into account that all communi-
cations in P must be executed before the communications in Q. Instead in rule Par the
communications in P and Q can be executed in any order, and for this reason we take
the unions of session environments and channel relations, with the proviso that Δ ∪ Δ′

is defined only if dom(Δ)∩ dom(Δ′) = /0. In the rules for restrictions we use C \ λ de-
fined in Table 3, while S \ a is simply the set S without a and similarly for B \ a. The
weakening rules are standard and necessary to type branching processes.

We assume that the typing rules are applicable only if all channel relations in the
conclusion of typing rules do not contain cycles and do not relate a shared channel with
itself: such channel relations are said to be well-formed. The first condition disallows
a cycle between two names, while the second condition disallows a ≺ a, but it allows
both k ≺ k and x ≺ x in channel relations. These conditions are justified below through
Example 3.1.

3.5 Justifying Examples

We end this section by briefly explaining why the negative examples given in § 3.2
cannot be typed, while the positive ones are typable. For the channel relations, we only
write the order of the channels, omitting the set of channels.

Example 3.1: The channel relation of P2 and Q′′
2 is {a ≺ b}, while the channel relation

of Q2 is {b ≺ a}. Therefore P2 |Q2 creates a cyclic relation, which is not well-formed.
Hence it is untypable. On the other hand, P2 |Q′′

2 is typable. Similarly, P3 is not typable
since {a ≺ a} is not a well-formed channel relation, while P4 and P5 are typable since
{k ≺ k} and {x ≺ x} are well-formed channel relations.

Example 3.2: The process P6 cannot be typed since Rules Acc� and Acc�S require the
session environment of the body of the repeated accept to contain only x as subject,
while the session environment of k+!〈3〉 contains k+ as subject. The process P8 is unty-
pable since �a(x).0 must be typed by the session environment {�} (see rules Acc� and
Acc�S), and we cannot sequentially compose {�} with k+!〈3〉 by the definition of “·”
(used in rule Seq).

Example 3.3: The argument of Example 3.2 shows that a(x).k+!〈3〉 cannot be typed by
rules ReqB and ReqBS, hence P9 is untypable, while P10 is typable since we can apply
rules Req and ReqS.

Example 3.4: The process P12 cannot be typed by using rules ReqS and ReqBS, since r
is not minimal in its channel relation {s ≺ r}. Instead the process P′

12 is typable using
rules ReqS and ReqBS.

Example 3.5: The process t?((t ′)).(t ′!〈3〉; z?(w).0) in P13 cannot be typed, since rule
CRcv requires the session environment of the body of the receive to contain only t ′ as
subject. Rule CRcv allows to type t?((t ′)).t ′!〈3〉 instead, hence P′

13 is typable.



On Progress for Structured Communications 269

4 Subject Reduction and Progress

This section discusses the features of our type system. It naturally splits into two parts:
subject reduction and progress. Proofs are given in outline, by stating the needed
lemmas.

4.1 Subject Reduction

The basic property of substitutivity of values and live channels to variables within deriv-
able typing judgments is easily checked by induction on derivations:

Lemma 4.1 (Substitution Lemma)

1. If Γ,x :t;S ;B � P : Δ []C and Γ � v :t, then Γ;S ;B � P{v/x} : Δ []C .
2. If Γ;S ;B � P : Δ,x :τ []C and k fresh, then Γ;S ;B � P{kp/x} : Δ,kp :τ []C{kp/x}.

Subject Equivalence, namely the invariance of typing judgments w.r.t. structural equiv-
alence is proved straightforwardly by case analysis of the applied equivalence law.

Lemma 4.2 (Subject Equivalence). If Γ;S ;B � P : Δ []C and P ≡ Q, then Γ;S ;B � Q :
Δ []C .

Subject Reduction, namely the invariance of derivable typing judgments w.r.t. reduc-
tion, does not hold literally, since session types are shortened by reduction and the
channel relation becomes a subrelation of the original one. However a weaker state-
ment, which suffices for the present purposes, can be established modulo inclusion of
channel relations and of prefixing of session environments, called below evaluation
order.

Definition 4.3 (Inclusion). The inclusion between channel relations C � C ′ holds if
λ ∈ C implies λ ∈ C ′ and λ ≺ λ′ ∈ C implies λ ≺ λ′ ∈ C ′, for all λ,λ′.

One might think of an ordering C as a graph (V,E) where V is the set of channels in C ,
and E is just the relation ≺; therefore C � C ′ holds if and only if C is a subgraph of C ′.

The partial order among pairs of session environments defined next reflects the dif-
ference between two running session types before and after one step reduction.

Definition 4.4 (Evaluation Order)

1. � is defined as the smallest partial order on running session types such that: ε � τ;
ε.end � s; σi � ‡{l1 : σ1, . . . , ln : σn}; si � ‡{l1 : s1, . . . , ln : sn}; and σ � σ′ implies
σ · τ � σ′ · τ.

2. � is extended to session environments as follows: Δ � Δ′ if � ∈ Δ implies � ∈ Δ′;
and kp :τ ∈ Δ implies kp :τ′ ∈ Δ′ and τ � τ′.

Before stating Subject Reduction, we recall the important notion of balanced session
environments [10]. A session environment Δ is balanced if kp : τ and kp : τ′ ∈ Δ imply
τ′ = τ. The need of restricting to balanced session environments is illustrated by the
process kp

1 !〈true〉 | kp
1 ?(x).kp

2 !〈x + 1〉, which would be typable by unbalanced session
environments, whereas it reduces to kp

2 !〈true+ 1〉 leading to a run-time error.
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Theorem 4.5 (Subject Reduction)

1. If Γ � e :t and e ↓ v, then Γ � v :t.
2. If Γ;S ;B � P : Δ []C , where Δ is balanced, and P → Q, then Γ;S ;B � Q : Δ′ []C ′, for

some Δ′,C ′ such that Δ′ is balanced, Δ′ � Δ and C ′ � C .

The main part of the theorem, namely (2), says that after a session has begun the re-
quired communications are always executed in the expected order specified by channel
orderings C ′ � C and session environments Δ′ � Δ.

4.2 Progress

This subsection discusses the main result of this paper, i.e. that typable processes which
contain live channels can always execute, unless there are either accept or request head
subprocesses with free subjects waiting for the dual processes. We formalise this prop-
erty as follows:

Definition 4.6 (Progress). A process P has the progress property if P →∗ P′ implies
that either P′ does not contain live channels or P′ |Q → for some Q such that P′ |Q is
well-typed and Q 
→.

A process P has the progress property if it is not blocked, and a process is blocked
if it is some “bad” normal form. In our setting this means that some open session is
incomplete. This might happen because some internal communication cannot occur
and the obstacle cannot be removed either by internal or by external communications,
namely by communications relative to other sessions. This is why we do not consider
any irreducible process as blocked, rather we say that even an irreducible P has the
progress property whenever it is able to interact in parallel with some Q such that P |Q
is well-typed: we ask Q itself to be irreducible to ensure that P actually participates in
the reduction step.

The goal of this section is to show that any process representing a state in the running
of some well-typed “program”, has the progress property. Put together with Subject
Reduction, this implies the safety of well-typed programs w.r.t. execution. By analogy
with the theory of sequential languages, programs are closed processes; moreover they
do not contain live channels, since the latters only appear while running. We call closed
typable processes without live channels initial.

Definition 4.7 (Initial Processes). A process P is initial if Γ;S ;B � P : /0 []C for some
Γ not containing variables and some C , with a deduction which does not use rule
HidingL.

Notice that initial processes cannot contain free live channels since the session environ-
ment is empty, nor bound live channels since to type them rule HidingL is needed.

As in the case of type systems for partial deadlock-freedom, we have first to establish
a relation between the ordering in the usage of channels, especially the live ones, and
their formal counterpart in our system, namely channel relations. To make this precise
we define the auxiliary notion of precedence between prefixed subprocesses.
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Definition 4.8 (Precedence). The precedence relation between prefixed processes in-
side a process is defined by: T precedes T ′ in P if P contains either T = C′[T ′] or
C[T ];C′[T ′], where C[ ],C′[ ] denote arbitrary contexts.

The main lemma states that in a process obtained by reducing an initial process a live
channel which is minimal in the channel relation can only be preceded by an accept/re-
quest on a free channel.

Lemma 4.9. Let P0 be initial and P0 →∗ (ν�a�k)P and Γ;S ;B � P : Δ []C be derivable
and let T be a subprocess of P with subject kp and let k be minimal in C , then either P
contains as head subprocess an accept or request on a free channel, or P contains T as
head subprocess.

Proof. (Sketch) The proof is a consequence of the following properties:

(P1) If P0 is initial and P0 →∗ P and T precedes T ′ in P and kp is the subject of T , then
kp cannot be the subject of T ′.

(P2) If T precedes T ′ in a typable P and the subject of T ′ is a free live channel, then
the subject of T is neither an accept/request on a bound channel nor a permanent
accept.

(P3) Let P be typable with channel order C and let T precede T ′ in P. If kp is the
subject of T and kq

1 is the subject of T ′ and both k and k1 are free in P, then we
have k ≺ k1 ∈ C .

Property (P1) can be shown by induction on reduction.
Property (P2) is guaranteed by the use of � in the type system. If the subject of T ′ is

a free live channel, then the session environment for typing a process which contains T ′

cannot be empty. By the hypothesis P contains either T = C[T ′] or C[T ];C′[T ′]. In both
cases, if T is an accept/request on a bound channel or a permanent accept, then T must be
typed by one of the rules AccB, ReqB, Acc�, AccBS, ReqBS, Acc�S. These rules prescribe
the session environment of the body of T only contains the channel variable bound by
T and the session environment of T itself to be {�}. So if T = C[T ′] the thesis follows
immediately, otherwise it follows from the definition of “·” and the typing rule Seq.

For property (P3) notice that by the hypothesis P contains either T = C[T ′] or C[T ];
C′[T ′]. In the former case, since kp is the subject of T , we know that k ∈ C ; similarly,
since kq

1 is the subject of T ′, we know that k1 ∈ C ′, for some C ′ such that C = pre(k,C ′),
since C[T ′] is the conclusion of one rule among Rcv, Sel, Bra (not of Send or CSend
because no prefix could occur inside). This implies that k1 ≺ k ∈ C as desired. The case
P contains C[T ];C′[T ′] is similar and easier.

A key notion in showing progress is the natural correspondence between communica-
tion patterns and shapes of session types.

Definition 4.10. Define ∝ between prefixed processes and partial/ended session types,
as follows:

κ!〈e〉 ∝!t κ?(x).P ∝?t
κ � li.P ∝ ⊕{l1 : σ1, . . . , ln : σn} κ � {l1 : P1[] . . . []ln : Pn} ∝ &{l1 : σ1, . . . , ln : σn}
κ � li.P ∝ ⊕{l1 : s1, . . . , ln : sn} κ � {l1 : P1[] . . . []ln : Pn} ∝ &{l1 : s1, . . . , ln : sn}

κ!〈〈κ′〉〉 ∝!s κ?((x)).P ∝?s
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where i ∈ {1, . . . ,n}.

Then, by analysis of deductions using standard generation lemmas, we have:

Lemma 4.11. If P is typable with a session environment Δ such that Δ(kp) = τ 
∈
{ε,ε.end}, then P contains at least one prefix with subject kp. Moreover if T is the
prefix with subject kp which precedes in P all other prefixes with subject kp, then either
T ∝ τ or τ = σ.τ′ and T ∝ σ.

Since rule HidingL only restricts dual live channels with dual session types, we only
get session environments which are balanced if we start from initial processes.

Lemma 4.12. If P0 is initial and P0 →∗ (ν�a�k)P, then there exist Γ,S ,B ,Δ,C such that
Γ;S ;B � P : Δ []C and Δ is balanced.

We eventually come to the Progress Theorem: for each process P obtained by reducing
an initial process if P contains an open session, then there is an irreducible process Q
such that the parallel composition P|Q is well-typed too and it always reduces, also in
presence of interleaved sessions.

Theorem 4.13 (Progress). All initial processes have the progress property.

Proof. Let P0 be initial and P0 →∗ P. If P does not contain live channels or P → P′ there
is nothing to prove. No head prefixed process in P is an if-then-else statement: otherwise
P would reduce, since P is closed (being P0 closed) and any closed boolean value is
either true or false. If one head prefixed subprocess in P is an accept/request on a
free channel a, then a must be in the domain of the standard environment Γ used to type
P0 and P. Let Γ(a) = [s] and a head prefixed subprocess in P on a be an accept process.
Then we can build Q as a request process on a which offers in the given order all the
communications prescribed by s according to the relation ∝. Notice that if s prescribes
to send live channels, then the body of Q must contain pairs of accept/request which
produce these live channels. We can choose fresh names as subjects of these pairs of
accept/request and put them in parallel, the accepts followed by all the communications
prescribed by s. More precisely, first we define in Table 6 the mapping β from a session
type and a channel variable to a pair of a process and a session environment. Second we
define the mapping α from a session type and a channel variable to a process as follows:

α(s,x) = (νb1 . . .bn)(b1(y1). . . .bn(yn).p1(β(s,x)) |b1(y1).α(s1,y1) | . . . |bn(yn).α(sn,yn))
if p2(β(s,x)) = {y1 :s1, . . . ,yn :sn} and b1, . . . ,bn are fresh.

Let Γ(a) = [s]: then we can take Q = a(x).α(s,x) if P is an accept on the channel a, or
Q = a(x).α(s,x) if P is a request on the channel a. If P0 is initial then Γ;S ;B � P0 : /0 []C
for some Γ,S ,B ,C . By Theorem 4.5(2) we get Γ;S ;B � P : /0 []C ′ for some C ′ � C . It
is easy to verify by induction on the construction of Q that Γ;S ;B � Q : Δ []C ′′ for some
C ′′ � C ′ and Δ, where Δ = /0 if p2(β(s,x)) = /0 and Δ = {�} otherwise. Since C ′′ � C ′

implies that C ′ ∪C ′′ is well-formed, we conclude Γ;S ;B � P |Q : Δ []C ′ ∪C ′′.
Otherwise P does not contain as head subprocess an accept or a request on a free

shared channel, but P contains live channels. Let P ≡ (ν�a�k)Q, where �a includes the set
of all shared channels which are subjects of the head prefixed processes in P and�k is
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Table 6. Mapping β

β(ε,x) = (0, /0)
β(ε.end,x) = (0, /0)
β(!bool.τ,x) = (x!〈true〉;p1(β(τ,x)),p2(β(τ,x)))
. . .
β(![s].τ,x) = ((νb)x!〈b〉;p1(β(τ,x)),p2(β(τ,x))) b fresh
β(?t.τ,x) = (x?(y).p1(β(τ,x)),p2(β(τ,x))) y fresh
β(!s.τ,x) = (x!〈〈y〉〉;p1(β(τ,x)),p2(β(τ,x))∪{y :s}) y fresh
β(?s.τ,x) = (x?((y)).p1(β(τ,x)),p2(β(τ,x))) y fresh
β(⊕{l1 : σ1, . . . , ln : σn}.τ,x) = (x� l1.p1(β(σ1,x));p1(β(τ,x)),p2(β(σ1,x))∪p2(β(τ,x)))
β(&{l1 : σ1, . . . , ln : σn}.τ,x) = (x�{l1 : p1(β(σ1,x))[] . . . []ln : p1(β(σn,x))};p1(β(τ,x)),Δ)

where Δ =
S

1≤i≤n p2(β(σi,x))∪p2(β(τ,x))
β(⊕{l1 : s1, . . . , ln : sn},x) = (x� l1.p1(β(s1,x)),p2(β(s1,x)))
β(&{l1 : s1, . . . , ln : sn},x) = (x�{l1 : p1(β(s1,x))[] . . . []ln : p1(β(sn,x))},

S
1≤i≤n p2(β(si,x)))

where ( , ) is a pair constructor and p1( ), p2( ) are standard projections.

the set of all live channels which occur in P. By Lemma 4.12, we know that Γ;S ;B �
Q : Δ []C for some Γ,S ,B ,Δ and C . Let k be a minimal live channel in C . This implies
kp : τ ∈ Δ for some τ such that τ 
∈ {ε,ε.end}. By Lemma 4.12 Δ is balanced and then
kp :τ ∈ Δ. By Lemma 4.11 the channels kp and kp must occur in P. By Lemma 4.9 there
are two head prefixed processes in P with subjects kp and its kp, respectively. Notice
that kp and kp have dual types, so that by Lemma 4.11 they are the subject of dual
communication actions: it follows that P reduces.

5 Conclusion and Future Works

This paper proposed the first session typing system for the progress property on inter-
leaving sessions, which are not necessarily nested. The resulting typing system ensures
a strong progress property for a calculus allowing creation of new names and full con-
currency, significantly enlarging the approach taken in [8,6]. In spite of the richness
of the calculus, the typing system is based on the intuitive idea of channel causality
without additional information on the syntax of the original session types.

For simplicity, we use the replications rather than the recursive agents [12] for repre-
senting infinite behaviours. We conjecture that our approach can be smoothly extended
to recursive agents and recursive types. Since our typing system uses standard types,
it can be easily integrated with subtyping [10], bounded session polymorphism [9] and
correspondence assertions [2], guaranteeing the progress through the additional infor-
mation represented by the sets of sent and bound channels and the channel relations.
Challenging extensions are progress guarantees for choreographic (global) communi-
cation dependencies [5], combining more powerful means such as cryptography [7,3],
refinements [21] and logical approach [4], by which more advanced security properties
can be ensured.
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The main reason for including the sequencing constructor was to provide a basis for
the progress straightforwardly expendable to conventional imperative and Web Service
languages [8,5,13]. In our experience of implementations, the sequencing construct is
essential in writing optimal code for the branching structures. In particular, for our on-
going work on session types with advanced exception, we require explicit sequencing
to model escaping blocks during session communication and resuming an intermediate
session.

Without the sequencing constructor our calculus would only be slightly simpler. We
could not get rid of the evaluation contexts, since progress requires that the process
which receives a live channel is evaluated in parallel with the contexts, as shown in
the example at the end of Section 2. For the same reason we need a terminator for the
receiving process, role which is played by sequencing in the current calculus. To sum
up without the sequencing constructor we would loose expressivity with the only gain
of sparing one typing rule.

We plan to extend the current formulation and typing system for preserving the
progress property on live channels, and to apply it to the design of a type safe exception
handling for Java with session communication [13].

Acknowledgements. We thank Simon Gay, Naoki Kobayashi, Vasco Vasconcelos, the
TGC referees and participants for their comments and discussions. The final version of
the paper improved due to their suggestions.
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Abstract. Distributed applications can be structured using sessions that specify
flows of messages between roles. We design a small specific language to declare
sessions. We then build a compiler, called s2ml, that transforms these declara-
tions down to ML modules securely implementing the sessions. Every run of a
well-typed program executing a session through its generated module is guaran-
teed to follow the session specification, despite any low-level attempt by coali-
tions of remote peers to deviate from their roles. We detail the inner workings
of our compiler, along with our design choices, and illustrate the usage of s2ml
with two examples: a simple remote procedure call session, and a complex ses-
sion for a conference management system.

1 Sessions for Distributed Programming

Programming networked, independent systems is complex: when systems communicate
through an untrusted network, and do not trust each other, enforcing security properties
is hard. As a first step to simplify this task, programming languages and system libraries
offer abstractions for common communication patterns (such as private channels or
RPCs). Beyond simple abstractions for communications, distributed applications can
often be structured as parties that exchange messages according to some fixed, pre-
arranged patterns, called sessions (also named contracts, or workflows, or protocols).
Sessions simplify distributed programming by specifying the behaviour of each network
entity, or role: the parties can then resolve most of the programming complexity upfront.

Research on language-based support for sessions is active [5–7, 11, 14, 25, 26, 18].
Several of these works focus on developing type systems which statically ensure com-
pliance to session specifications. There, type safety implies that user code that instan-
tiates a session role always behaves as prescribed in the session. Thus, assuming that
every distributed program participating in a session is well-typed, any run of the session
follows its specification. There, being well-typed implies that every session participant
is benign, and therefore complies with the session specification. Moreover, the network
is also assumed to behave as expected, (e.g., delivering messages correctly).

However, in an adversarial setting, remote parties may not be trusted to play their
role. Moreover, they may collude to attack compliant participants, and may also control
the network, being able to eavesdrop, intercept, and modify en route messages. Hence,
defensive implementations also have to monitor one another, in order to prevent any
confusion between parallel sessions, to ensure authentication, correlation, and causal
dependencies between messages, and to detect any deviation from the assigned roles of
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a session. Left to the programmer, this task involves delicate low-level coding below
session abstractions, which defeats their purpose.

In order to keep sessions being useful and safe abstractions, we consider their se-
cure implementation in terms of cryptographic communication protocols, by develop-
ing s2ml. To our knowledge, our compiler s2ml is the first to systematically com-
pile session specifications to tailored cryptographic protocols, providing strong security
guarantees beyond simple functional properties.

In ongoing work [8], we explore language-based support for sessions. We design a
small language for specifying sessions, and identify a secure implementability condi-
tion. We present a formal language extending ML [20, 21] with distributed communi-
cation and sessions, designed in a way so that type safety yields functional guarantees:
any sent message is expected by its receiver, with matching payload types. Then, we
develop the s2ml compiler that translates sessions to cryptographic communication
protocols, and formally show, as main result, that programs are shielded from any low-
level attempt by coalitions of remote peers to deviate from their roles. In that work,
we are most concerned about establishing the correctness of the code generation, and
illustrate the approach with a small, simple toy example.

In this paper, we turn to present the details of our implementation. We focus on
presenting our compiler s2ml, along with its usage and inner workings. Furthermore,
we investigate the applicability and scalability of our approach to more realistic and
complex settings through the study of a RPC session and a conference management
system (CMS) session example.

Architecture. The basis of our work is a language for sessions with a CCS-like syn-
tax to describe the different roles in a session. The s2ml compiler reads the session
declarations, and works as follows: First, it checks correctness and security conditions
on every session declaration, using an internal graph-based, global representation of
the message flow. Then, it generates an ML module (along with its interface) for each
specified session. The interface provides the programmer with the functions and types
needed to execute every session role.

We rely on the ML language for several reasons. First, we take advantage of ML’s
typechecking to ensure functional correctness (i.e., that user code follows the session
as prescribed), as opposed to having a dedicated type system as in other session types
approaches. Second, our generated session role functions have (usually mutually re-
cursive) types which are driven by user code using a continuation passing style (CPS)
which allows for compact session programming. Finally, our generated types and cryp-
tographic protocols heavily use algebraic types and pattern matching to specify and
check the different allowed session paths. Our generated code uses the Ocaml syntax1

and can be run in both Ocaml and F# [23].
Programs using the generated session interfaces can be linked against networking

and cryptographic libraries, obtaining executable code. We provide three alternative
implementations for these libraries: two concrete implementations using either Ocam-
l/OpenSSL and F#/Microsoft .NET produce executable code supporting distributed
runs; a third, symbolic library implements cryptography using algebraic datatypes and
communication via a Pi calculus library, useful for correctness checks and debugging.

1 Although we use Ocaml syntax, our work can easily be adapted to other ML dialects.
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Related Work. Session types have been first investigated for process calculi [15, 17,
26], to organize interactions on single channels. Behavioral types [7, 19] support more
expressive sessions, typed as CCS processes possibly involving multiple channels. An-
other type system [4] also combines session types and correspondence assertions [16].
Recent works consider applications of session types to settings such as CORBA [24],
a multi-threaded functional language [25], and a distributed object-oriented language
[11]. In particular, the Singularity OS [14] explores the usage of typed contracts in op-
erating system design and implementation. In all these works, type systems are used to
ensure session compliance within fully trusted systems, excluding the presence of an
(active, untyped) attacker. Sessions for Web Services are considered for the WSDL and
WS-SecureConversation specification languages (see e.g. [1, 6]); Bhargavan et al. [1]
verify security guarantees for session establishment and for sequences of SOAP re-
quests and responses. In recent work, Carbone et al. [5] also present a language for de-
scribing Web interactions from a global viewpoint and describe their end-point projec-
tion to local roles. Their approach is similar to our treatment of session graphs and roles
in Section 2; however, their descriptions are executable programs, not types. Honda et
al. [18] subsequently consider multi-party session types and their local projections for
the pi-calculus. More generally, distributed languages such as Acute and HashCaml [22,
10, 3] also rely on types to provide general functional guarantees for networked pro-
grams, in particular type-safe marshalling and dynamic rebinding to local resources.

Contents. Section 2 presents the session language that serves as input to s2ml, and in-
troduces the examples. Section 3 illustrates the usage of sessions used by programmers
to develop secure distributed applications, by coding the roles the RPC and CMS exam-
ples. Section 4 presents our security property, called session integrity, along with several
threats our implementation needs to guard against. Section 5 focuses on the compiler
s2ml: first it describes its inner workings, then it illustrates generated output for exam-
ples, and finally, it presents some performance measurements. Section 6 concludes. The
project website [9] contains additional information, including a fully functional release
of s2mlincluding the examples presented in this paper.

2 Specifying Sessions

A session is a static description of the valid message flows between a fixed set of roles.
Every message is of the form f(v), where f is the message descriptor, or label, and v
is the payload. The label indicates the intent of the message and serves to disambiguate
between messages within a session. Labels are also used as ML type constructors (and
are thus expected to start with a capital letter).

We denote the roles of a session by R = {r0, . . . , rn−1} where n ≥ 2. By con-
vention, the first role (r0) sends the first message, thereby initiating the session. In any
state of the session, at most one role may send the next message—initially r0, then the
role that received the last message. The session specifies which labels and target roles
may be used for this next message, whereas the selection of a particular message and
payload is left to the role implementation.
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We define two interconvertible representations for sessions. A session is described
either globally, as a graph defining the message flow, or locally, as a process for each
role defining the schedule of message sends and receives:

Global graph. The graph describes the session as a whole and is convenient for dis-
cussing security properties and the secure implementability condition. Briefly, a
session graph consists of nodes representing global states that are annotated with
the corresponding active role (the role sending the next message), and edges be-
tween nodes labelled with message labels and the types of their payloads.

Local roles. Local role processes are the basis of our implementation: they describe the
session from each role’s point of view. They thus provide a direct typed interface
for programming roles, and constitute our language for sessions.

2.1 A Language for Sessions

Our language for sessions has a CCS-like grammar for expressing local roles processes:

τ ::= Payload types
unit | int | string base types

p ::= Role processes
!(fi :τi ; pi)i<k send
?(fi :τi ; pi)i<k receive
μχ.p recursion declaration
χ recursion
0 end

Σ ::= Sessions
(ri :Ti = pi)i<n initial role processes

Role processes can perform two communication operations: send (!) and receive (?).
When sending, the process performs an internal choice between the labels fi for i =
0, . . . , k − 1 and then sends a message fi(v) where the payload v is a value of types τi
(for convenience, we consider only the basic unit, int and string types which simplify
marshalling). Conversely, when receiving, the process accepts a message with any of
the receive labels fi (thus resolving an external choice). The μχ construction sets a
recursion point which may be reached by the process χ; this corresponds to cycles in
graphs. Finally, 0 represents a completion of the role for the session. On completion, a
session role produces a value whose type Ti is specified in the process role ri :Ti = pi.
For the return type Ti, we accept any ML type.

For convenience, we omit the trailing semicolon and 0 process at ending points. Also,
our concrete syntax uses the keyword ‘mu’ for μ and keywords ‘session’ and ‘role’ in
front of session and role definitions.

2.2 Example A: Remote Procedure Call

Figure 1 (top) shows a session graph for a simple RPC exchange, in which the client
role, called C, sends the server role S a Query message (of payload type string), who
answers with a Response message (of payload type int). The bottom part of the figure
specifies the RPC session in terms of local role processes, using the above grammar.
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After naming the session as Rpc, the two roles are defined with a return type and their
local message flows: the client sends a Query, then expects a Response and finally
returns an int; the server waits for a Query, then sends a Response and finally returns
unit. These three lines are the actual input of our compiler.

Query:string
C S C

Response:int

session Rpc =
role client:int = !Query:string; ?Response:int
role server:unit = ?Query:string; !Response:int

Fig. 1. Session graph and Local roles for an RPC (file rpc.session)

2.3 Example B: A Conference Management System

We now describe a session for a conference management system. Although this system
is rather simplified from a real life implementation, we believe it’s significantly large in
comparison with other case studies attempted in the session types literature.

Global description. Figure 2 shows the graph of a CMS session. There are three roles:
pc (the conference organizer), author, and confman (the submission manager). All
messages carry as a payload either a string value (which is used for the call for papers,
paper submissions, and so on), or a unit value, when no payload is necessary.

The session proceeds as follows. Initially, the program committee pc sends a call for
papers message, Cfp, to the prospective author 2. The author then uploads a draft by
sending an Upload message to the conference manager confman, who checks whether
the draft meets the conference format (e.g., style format or compliance with the size).
If the format is invalid, the confman replies to the author with a BadFormat message,
with an explanation; at this point we have a loop in which the author can fix the draft
and try again. Eventually the format is valid, and the confman replies with an Ok mes-
sage. Now the author can submit a paper by sending a Submit message to the confman.
Alternatively, it can choose to refrain from submitting a paper by sending a Withdraw
message, which the confman communicates to the pc by sending a Retract message. If
the author indeed submitted a paper, the confman forwards it to pc, who then will eval-
uate it. The pc can ask the author to revise the paper, by sending a ReqRevise message
to the confman which will in turn send a Revise message to the author. This phase can
loop until eventually the pc reaches a decision, and asks the confman to stop receiv-
ing revisions by sending a Close message. The confman answers with a Done message,
and then the pc can notify the result to the author, enclosing possibly reviews for the pa-
per. The notifications are either acceptance of the paper (sending an Accept message),
or rejection (sending a Reject message), or a decision to exceptionally ‘shepherd’ the

2 Our session specifications exclude broadcast, e.g. assuming here that the Cfp is sent to a sin-
gle author, already chosen by the program committee. We can anyways replicate easily the
program committee to start other sessions with other prospective authors.
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Cfp:string Upload:string

BadFormat:string

Ok:unit Submit:string

Paper:string

ReqRevise:string

Revise:string

Close:unit

Done:unit

Shepherd:string

Accept:string

Reject:string Rebuttal:string

Withdraw:unit

Retract:unit

FinalVersion:string

authorpc confman author confman

confman pc

pcconfman

confmanpcauthorpc

author author

Fig. 2. A Conference Management System (CMS): Global graph

paper (sending a Shepherd message), in which the author can support her submission
by sending a Rebuttal. This can again loop until the pc decides a final verdict, i.e. either
accepting or rejecting the paper. In the case of acceptance, the author sends the pc a final
version of the paper.

Local processes. Figure 3 presents the counterpart of the CMS graph from Figure 2 in
terms of local roles. We illustrate local roles by describing in detail the behaviour of
the author role. From the author’s point of view, the session starts by receiving a Cfp
message. A recursion point called reformat is created, and then the author checks the
paper by sending an Upload message. If a BadFormat message is received, execution
jumps back to the reformat point. If an Ok message is received, the author sets a recur-
sion point called submission and then choose to either send a Submit or a Withdrawal
message. For the latter, execution ends. For the former, another recursion step discuss
is set, and several messages can be expected: either an Accept, in which the author ends
by sending a FinalVersion, or a Reject which also ends execution, or a Shepherd mes-
sage to which the author replies with a Rebuttal and then jumps back to discuss; finally,
a Revise message may also be received, in which the author jumps back to submission.

3 Programming with Sessions

Once we know how to specify sessions, we are now ready to use them by instantiating
the different session roles by actual principals. We start by describing how principals



282 R. Corin and P.-M. Deniélou

session Conf =
role pc:string = !Cfp:string; mu start.

?(Paper:string; !(Close:unit; ?Done:unit; mu discuss.
!(Accept:string; ?FinalVersion:string
+ Reject:string
+ Shepherd:string; ?Rebuttal:string; discuss)

+ ReqRevise:string; start)
+ Retract:unit)

role author:string = ?Cfp:string; mu reformat. !Upload:string;
?(BadFormat:string; reformat
+ Ok:unit; mu submission.

!(Submit:string; mu discuss.
?(Accept:string; !FinalVersion:string
+ Reject:string
+ Shepherd:string; !Rebuttal:string; discuss
+ Revise:string; submission)

+ Withdraw:unit))
role confman:string = mu uploading. ?Upload:string;

!(Ok:unit; mu waiting.
?(Submit:string; !Paper:string;

?(Close:unit; !Done:unit
+ ReqRevise:string; !Revise:string; waiting)

+ Withdraw:unit; !Retract:unit)
+ BadFormat:string; uploading)

Fig. 3. A Conference Management System: Local role processes (file cms.session)

are defined. Then we program the simple RPC session from the previous section, and
finally we consider the more challenging case of the CMS session.

Principals. Principals are the network entities that instantiate session roles and specify
networking information (i.e., IP address and port) and cryptographic credentials (X.509
certificates and private keys), for message delivery and security. Hence, when a pro-
grammer wants to initiate or join a session, she must register the principals in a local
store used by our implementation. To this end, we provide a library for managing princi-
pals called Prins, with a register function, which when invoked as register id filename
inet port registers a principal called id, whose credentials are in the file filename, IP
address is inet and port is port.

For example, the programmer’s source code for the CMS example that involves three
participants includes the following calls:

let = Prins.register "alice" "alice.cer" "193.55.250.70" 8765
let = Prins.register "bob" "bob.cer" "193.55.250.71" 8765
let = Prins.register "charlie" "charlie.cer" "193.55.250.72" 8765

Files containing cryptographic credentials have to include an X.509 certificate, plus op-
tionally the corresponding private key. Thus, user code can register both the running
principal of a session role by including both keys (which the generated protocol will
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use to sign and verify messages) and other principals running the session, by registering
only their certificates (which are used to verify other principals’signatures).

3.1 Programming an RPC Session

Initially we invoke our compiler with file rpc.session from Figure 1. Two files,
called Rpc.ml and Rpc.mli, are created by s2ml. The former is the generated mod-
ule implementing the RPC session, while the latter is its interface:

type principal = string
type principals = {client:principal; server:principal}

type result client = int
type msg0 = Query of (string∗msg1) and msg1 = {hResponse:(principals→ int→ result client)}
val client : principals→msg0→ result client

type result server = unit
type msg3 = {hQuery: (principals→ string→msg4)} and msg4 = Response of (int∗result server)
val server : principal→msg3→ result server

The record type principals is used to instantiate roles with principals at runtime. Func-
tion client runs the session as the client role; when invoked, user code needs to provide:

1. a principals record populating the roles (since the client role is the session initiator,
it can choose the session participants); and

2. a continuation (of type msg0) which drives the client role (our programming disci-
pline relies on a CPS style, see below Section 3.2); here, it sends a Query message
consisting of a payload to be sent (of type string) and a continuation message han-
dler (of type msg1), which processes the answer Response message.

The server is symmetric, except that as responder it only needs to choose its identity.
We can easily program this RPC session; here’s the code for a client that runs as

alice, contacts bob, as the server, with a Query “Number?”, and prints the response
(we assume the principals registered as described above):

open Rpc
... (∗ register principals ∗)
let prins = {client = "alice"; server = "bob"}
let answer = client prins (Query("Number?",{hResponse = fun i → i}))
let = Printf.printf "Answer is %i\n" answer

A programmer runs a session (as role client) by calling function client providing a
record instantiating roles to principals, and a continuation that sends and processes in-
coming messages. The first message (of type msg0) has to be sent by client, modelled
by constructor Query which awaits for a payload and a continuation. Since the client
then waits for a reply, the programmer has to provide a function handler for each of
the possible incoming messages, those functions acting as continuations: here only one
continuation is required (since only a Response may arrive) and the record has thus
only one field labelled hResponse. The continuation has to be a function of two argu-
ments: the first is the vector of principals involved in the session and the second is the
payload of the corresponding message.
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The code for a server ignoring the query content and responding with ‘42’ is shown
next. Although this code implements a single instance of a server, it is easy to replicate
it, enabling several server instances.

open Rpc
... (∗ register principals ∗)
let = server "bob" {hQuery = fun →Response(42,())}

From the session programmer’s point of view, sending a message is as simple as return-
ing a constructed type with the right payload and continuation: Response(42,()). Here
the continuation is simply unit as the session ends and any value of type result server
(which is above defined as unit) will do. All the rest is taken care by the module Rpc
generated by s2ml, like message formatting, cryptographic signing, and routing.

Finally, in order to obtain an executable, we compile this user code with Rpc.ml
and libraries for implementing cryptographic operations (like hashing and signing) and
networking using the standard Ocaml compiler. Conveniently, if user code implements
a session incorrectly (i.e., not respecting the message flow), then a type error (indicating
the incompatible message) is given.

3.2 Session Programming and CMS Example

We runs2mlwith the CMS example of Figure 3 on file cms.session. This produces
files Conf.ml and Conf.mli. As in the RPC example, the interface Conf.mli
contains a specialized principals record plus generated types and functions for each
role (here we show only the ones for the author role):

type principal = string
type principals = {pc:principal; author:principal; confman:principal}
type msg9 = { hCfp : (principals → string →msg10)}
and msg10 = Upload of (string ∗ msg11)
and msg11 = { hBadFormat : (principals → unit →msg10) ;

hOk : (principals → unit →msg12)}
and msg12 = Submit of (string ∗ msg13) | Withdraw of (unit ∗ result author)
and msg13 = { hAccept : (principals → string → result author) ;

hReject : (principals → string → result author) ;
hShepherd : (principals → string →msg16) ;
hRevise : (principals → string →msg12)}

and msg16 = Rebuttal of (string ∗ msg13)
val author : principal →msg9 → result author

The principle behind session programming using CPS is that, whenever a message is
received by the role, the generated secure implementation calls back the continuation
provided by the user and resumes the protocol once user code returns the next mes-
sage to be sent. Taking advantage of this calling convention, with a separately-typed
user-code continuation for each state of each role of the session, we can thus entirely
rely on ordinary ML typing to enforce session compliance in user code. The program-
mer is then free to design the continuations that will be safely executed whenever the
chosen role is active. Programming with a session consists then in following the (pos-
sibly recursive) generated types by s2ml, by filling in the internal choices and payload
handling functions (i.e., the continuations).
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4 Session Security

At run time, a session is executed by processes running on hosts connected through
an untrusted network. Each process runs on behalf of a principal. In order to state our
security property, called session integrity, we first describe the threat model, and then
informally discuss session integrity and possible threats to it.

Threat model. We consider a variant of the standard Dolev-Yao threat model [12]:
the attacker can control corrupted principals (that may instantiate any of the roles in a
session, and do not necessarily run as specified by the session declaration nor use our
compiler), and perform network-based attacks: intercept, modify, and send messages
on public channels, and perform cryptographic computations. Moreover, the corrupted
principals may collude between themselves and the network during an attack. However,
the attacker cannot break cryptography, guess secrets belonging to compliant principals,
or tamper with communications on private channels.

Session Integrity. We say that a distributed session implementation preserves session
integrity if during every run, regardless of the behaviour of the attacker, the process
states at compliant principals (which use the generated cryptographic protocols as de-
tailed in the next section) are consistent with a run where all principals seem to comply
with all sessions. (This informal notion is made precise in [8]; see also below.)

Session integrity requires that all message sequences exchanged by compliant prin-
cipals are consistent and comply with the session graph, that is, every time a compliant
principal sends or accepts a message in a session run, such a message be allowed by the
session graph; conversely, every time a malicious principal tries to derail the session by
sending or replaying an incorrect message, this message is silently dropped, or reliably
detected as anomalous.

In order for our compiler s2ml to enforce session integrity, it must generate a cryp-
tographic protocol for each compliant principal that can guard against several possible
attacks. We illustrate next some of these attempts to break integrity, and how the gener-
ated cryptographic protocol prevents them.

Session identifier confusions. Each session instance needs to have a unique session
identifier, as otherwise there could be confusions between running sessions. The
generated protocols compute a unique session identifier as s = hash(DãN ), where
D ã N is the tagged concatenation of D = hash(Σ), a digest of the whole session
declaration, ã, the principals assigned to the session roles; and N , a nonce freshly
generated by the initiator. Including D prevents confusions about the specification
of the session being executed; including ã prevents confusions about which princi-
pal is executing which role; and includingN prevents confusion with other running
session instances of the same declaration Σ and principal assignment ã. Messages
sent by our generated cryptographic protocols always include as header the session
identifier s, plus, in initial messages, ã and N to allow receivers to recompute s
(we assume D is expected and known by receivers). For example, for our CMS
example, the generated protocol computes D as the hash of the session declaration
from Figure 3, ã = charlie alice bob (indicating that charlie plays the pc role,
alice the author and bob the confman), and N is a random nonce.
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Message integrity attacks. Whenever a principal playing a role in a session receives
a message corresponding to a path executed in the session graph, it needs to ensure
every label in the path has been sent by the presumed principal. Otherwise, an attack
is possible, where some principal is impersonated by the attacker: for example in
Figure 2, a malicious author could send the confman an Upload message even
though the pc never sent a Cfp; if the confman does not check the presence of
the pc, session integrity is violated. In order to prevent these attacks, the generated
protocols include in messages a series of cryptographic signatures3: one signature
from the message sender, plus one forwarded signature from each peer involved in
the session since the receiver’s last message (or the start of the session).

For our CMS example, consider the first time that the confman role gets con-
tacted with an Upload message in Figure 2. At that point, the generated protocol
needs to check signatures from the principals playing the roles author and pc; for
our running session with session identifier as above, an incoming message is ac-
cepted by bob as confman only if it includes a signature from charlie (as role
pc) of a Cfp message, and another signature from alice (as author) of an Upload
message. On the other hand, if bob as confman is at the same node contacted again
(e.g., because bob sent a BadFormat message and entered a loop), in the next in-
coming message bob needs to only check a (new) Upload message from alice,
and the Cfp message needs not be forwarded again, as bob already checked it. The
compiler accounts for both situations, and outputs accordingly specifically tailored
functions for message generation and verification.

Intra- and Inter-session replays. Message replays can also thwart session integrity.
Three situations can happen: (1) a message from one running session can be in-
jected into another running session; (2) an initial message involving a principal can
be replayed, trying to re-involve the same principal twice; and (3) a message from
one running session can be replayed in the same running session (e.g., messages
inside loops, which are particularly vulnerable).

Whilst (1) is directly prevented using a unique session identifier as detailed
above, (2) and (3) need special treatment. For the former, like any protocol with re-
sponder roles, our generated protocol relies on dynamic anti-replay protection for
the messages that may cause principals to join a session, that is, the first messages
they may receive in their roles. To prevent such replays, each principal maintains a
cache that records pairs of session identifiers and roles for all sessions it has joined
so far. For the latter, our generated protocol includes a logical timestamp for mes-
sages inside loops, that is incremented at each loop iteration; it thus disambiguates
messages occurring in cycles (messages not occurring in loops are not vulnerable,
as message labels are assumed to be unique, see below).

Valid Sessions. Not every session encodable using the language of Section 2 makes
sense: for example, a role sending a message that is never received is clearly unde-
sirable. Our compiler checks this and other syntactic conditions that a session has
to satisfy in order to be implementable (see Section 5). In particular, the compiler
checks the absence of ‘blind forks’, which are in fact a security threat to session

3 Cryptographic (or digital) signatures ensure the sender authenticity, as the signing private key
of a compliant principal is kept secret.
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Fig. 4. (a) A session graph with a ‘blind fork’ and (b) its safe counterpart

integrity. Consider for instance the session of Figure 4(a), where S may send ei-
ther a Reject to C or an Accept to O. Unless C and O exchange some information,
they cannot prevent a malicious S from sending both messages, thereby breaking
the session specification. (In fact, any graph containing the one in Figure 4(a) as
subgraph is vulnerable!)

Nevertheless, such vulnerable session graphs can be transformed to equivalent
ones without forks, at the cost of inserting additional messages. Figure 4(b) shows a
safe counterpart of the vulnerable session of Figure 4(a), in which message Accept
is split into two, Accept1 and Accept2, and S is obliged to contact C no matter
which branch is taken. (The general transformation is not difficult to build [8].)

Proving Session Integrity. The security of automatically-generated cryptographic pro-
tocol implementations crucially relies on formal verification. To this end, our language
design and prototype implementation build on the approach of Bhargavan et al. [2],
which narrows the gap between concrete executable code and its verified model. Our
generated code depends on libraries for networking, cryptography, and principals, with
dual implementations.

A concrete implementation uses standard cryptographic algorithms and networking
primitives; the produced code supports distributed execution (we have both
Ocaml/OpenSSL and F#/Microsoft .NET implementations). A second, symbolic im-
plementation defines cryptography using algebraic datatypes, in Dolev-Yao style; the
produced code supports concurrent execution, and is also our formal model.

In order to formally state and prove session integrity, we develop a high-level se-
mantics that enforces sessions following their specification [8]. Our compiler, in turn,
transforms session declarations to modules implementing them. Thus, we have two
possible semantics in which user code runs: either a high-level configuration (where
sessions execute as prescribed by definition) and a low-level configuration, in which
user code executes calling the session-implementation modules. Our main security re-
sult (Theorem 1 in [8]), stated in terms of may testing, expresses that any behaviour
of a low-level configuration can be simulated by a corresponding high-level configu-
ration. Hence, the cryptographic protocol implementing the session is not letting an
adversary gain anything, as any possible behaviour of session implementations using
our compiler interacting with an adversary (comprising of corrupted principals col-
luding with the network) can be also reproduced by an adversary that does not inter-
act with session implementations, and is subject to semantics where sessions run as
prescribed.
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5 Compiling Sessions to Modules

In Section 3 we present the interface generated by s2ml, so that programmers can use
sessions. In this section, in turn, we discuss the inner workings of the compiler, i.e.,
how s2ml generates a cryptographic protocol securely implementing the session, and
preventing possible threats to session integrity as detailed in the previous section. Our
compiler s2ml works as follows:

1. For each session definition using local roles, it transforms it to a global graph and
checks several well-formed and implementability conditions on it. From this graph,
it also generates visible sequence messages which are used by the code generation
phase.

2. Then, the compiler generates for each session its corresponding cryptographic pro-
tocol, and emits both its interface and its code as an ML module.

Checking validity conditions and generating visible sequences. As the session specifi-
cations are written in term of local role processes, and since a global view is required,
the compiler first tries to generate the graph version of the session. Following the flow
of the session (starting from the first role and messages), s2ml verifies that all the sent
messages are expected by someone (i.e., are among the messages declared to be pos-
sibly received by a different role). Each node of the graph thus corresponds to a given
active role and the edges are the messages sent to a different role which, after reception
of the message, becomes active.

This conversion checks the correctness and coherence of the session declaration. In
particular, we rule out invalid sessions in which messages are sent but not expected, and
self-sent messages. We also require that labels are unique: two different edges cannot
have the same label. This ensures the intent of each message label is unambiguous: the
label uniquely identifies the source and target session states.

As explained in the previous section, branching in itself can lead to a security risk.
The minimal condition to avoid this kind of attacks can be formulated in the following
way (see [8] for details): For any two paths in the graph starting at the same node and
ending with roles r1 and r2, we require that if neither r1 nor r2 are in the active roles
of the two paths (i.e., they don’t send any of the messages), then r1 = r2. Basically,
this means that paths that fork and lead to different roles are dangerous. Checking this
property is done in the s2ml implementation by a careful look at branching nodes:
lists of active roles are recorded on every path starting at these nodes, followed by a
comparison that ensures that the roles in different branches are related.

As an additional output, from this global graph s2ml generates the DOT [13] graph
of the session graph, which can be used to view the specified session.

Visibility. After checking that the graph is valid and safe, s2ml generates the visible
sequences, an essential part of the generation of the cryptographic protocol. Briefly, a
sequence of labels is visible at a given node in the session graph if it contains only the
last label sent by every other role. This notion is used in minimizing the number of sig-
natures checks at runtime in the generated implementation: it relies on the fact that only
the latest labels sent by every other role have to be checked to ensure session integrity.
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We compute the visible sequences at compile-time to avoid any graph computation
at runtime: the runtime signature checks which rely on visible sequences can thus be
efficiently performed. For example, in the CMS example of Figure 2, the node in which
the confman role is first contacted by an Upload message has two visible sequences,
Cfp-Upload (along the initial path) and just Upload (through the cycle).

Generating the session interface and implementation. The main difficulty in the in-
terface generation is to produce the set of recursive types that specify the alternation of
constructed messages and continuations required from the user.

The generation of these types is based on four principles: first, an internal choice is
translated into an algebraic sum type where message labels are used as constructors and
where the constructor expects a correct payload and a continuation corresponding to
the role’s next expected message; second, an external choice generates a record whose
labels are derived from message labels and whose data are functions handlers for the
incoming messages (those functions take as arguments the record of principals and the
payload of the message); third, mutual recursion reflects a recursive point in the local
role description; forth, when ending, the result type is used.

More formally, our algorithm first associate type names to each of the sub-processes
of a given role process: the names are of the form msgn (below we call this function
name). The 0 sub-process is a particular case and its associated type name is of the form
result rolename.

Then we have the following generating function that is applied successively to all
sub-processes:

[[!(fi :τi ; pi)i<k]] = and name(p) = { | fi of (τi∗name(pi))}i<k

[[?(fi :τi ; pi)i<k]] = and name(p) = {{hfi: principals → τi→ name(pi);}i<k}
This generates a collection of potentially mutually recursive types, which explains the

default use of the and keyword. A pretty-printing phase then completes the interface
generation. As shown in section 3, the result types have the following shape:

[...] and msg11 = {
hBadFormat : (principals → unit →msg10) ; hOk : (principals → unit →msg12)}

and msg12 =
| Submit of (string ∗ msg13) | Withdraw of (unit ∗ result author)

[...]

Wired types and messages generation. The low-level handling of messages in the gen-
erated protocols is done by a series of specialized types and functions. These functions
have also the task of maintaining a local store containing the necessary cryptographic
material for the session. Concretely, s2ml generates a family of sendWiredlabel func-
tions (one generated function for each message tagged with label of the session) that
perform the following operations:

1. build the session id (a digest of the session declaration, principals, and a nonce);
2. build the header (the session id plus the sender and receiver’s identities);
3. marshall the payload;
4. create a new signature of the label and logical time;
5. update the local signature store and logical clock;
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6. build the message from the header, the label, the payload and the transmitted sig-
natures (whose list is known from the previously computed visibility);

7. send the message on the network

Symmetrically, the receiving sequence of actions done by the family of receiveWiredn
functions (one function for each node n in the graph) is the following:

1. receive the message from the network;
2. unmarshall and decompose into parts (header, label, payload, signatures);
3. check the session id;
4. match the message label against possible incoming messages;
5. check the signatures’ correctness (using visibility) and logical time-stamps;
6. update the local signature store and logical clock;
7. check the message against the cache (if it is the first message of a run of the session)

Any check failure will either silently restart the function (to continue listening) or throw
an exception. Since initial messages require special treatment (e.g., cache checking),
s2ml creates specific versions of the low-level functions (named with the init suffix).

The types of the sendWiredlabel and receiveWiredn are of the form:

val sendWiredlabel : wiredn → state
val receiveWiredn : state → unit →wiredn

where the state corresponds to the local cryptographic store, and the wiredn types are
the sum types corresponding to messages that can be received in the state n of the role’s
process. The internals of the proxy, in charge of enforcing the session flow and user
interaction, critically relies on these types.

Proxy functions. The last part of the generated protocol implementation consists on
the proxy functions that the user can call from the interface. Their purpose is to follow
the flow of sent and received messages as specified by the session and to call back a
user-defined continuation at the correct moment.

Concretely, these functions have to be able to handle the users’ choices of messages
to send and call the appropriate low-level sendWiredlabel function. Then they have to
listen to incoming messages using the receiveWiredn functions and, when a message is
received, to call back the appropriate field of the user-specified record of continuations.

We illustrate these proxy functions by the author function from the CMS example:

let author (prin: principal) (user input : msg9) =
...
and author msg10 (st:state) : msg11 → result author = function
| Upload(x, next) → let newSt = sendWiredUpload host dest (WiredUpload(st, x)) in

author msg11 newSt next
and author msg9 init : msg9 → result author =
function handlers →
let (newSt, r) = receiveWired0 init host prin () in

match r with
| WiredCfp (newSt, x) → let next = handlers.hCfp newSt.prins x in
author msg10 newSt next

in
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Printf.printf "Executing role author with principal %s...\n" prin;
author msg9 init user input

Initially it calls the function author msg9 init which uses receiveWired0 init to re-
ceive a first message. It is checked to be a Cfp message, and if so, the payload x is ap-
plied to the user code continuation (handlers.hCfp), and then the function
author msg10 is invoked, which continues the session by sending a Upload message.

5.1 Concrete Implementation and Benchmarks

Our concrete implementation links the generated code against concrete cryptographic
implementations (as opposed to a symbolic model, used to formally prove security,
which uses algebraic datatypes). We provide two variants of concrete libraries: one
using Ocaml and wrappers for OpenSSL, and another using F#/Microsoft .NET cryp-
tography. (Unfortunately the two implementations do not yet interoperate, due to in-
compatibilities among certificates.) The data and cryptographic functions we use are
as follows. For cryptography, we use SHA1 for hashing, RSASHA1 for signing, and
the standard pseudorandom function for nonce generation. Signing uses certificates in
‘.key’ format for OpenSSL and ‘.cer’ for Microsoft .NET. As for data, we use Base64
for encoding the messages in a communicable format. We use UDP-based communica-
tion (although in the future we plan to move to TCP-based communications).

Benchmarks. We executed the CMS example using the Ocaml/OpenSSL concrete im-
plementation in a setting in which every loop is iterated 500 times. This table reports
the benchmarks for a Pentium D 3.0 GHz running linux-2.6.17-x86 64:

No crypto Signing, not Verifying Signing, Verifying Standard OpenSSL
first loop 0.231s 2.79s 2.95s

second loop 0.468s 5.62s 6.11s
third loop 0.243s 2.81s 2.98s

total 0.942s 11.22s 12.04s 8.38s

These results show that most execution time is devoted to cryptography, as expected:
the generated code s2ml consists of optimally compact, specialized message handlers.
The last column, labelled ’Standard OpenSSL’, compares our implementation to the
standard OpenSSL 0.9.8e by reporting the time it takes to send 4000 single character
messages using the command-line tool from the distribution. Our implementation, that
deals with much more complex messages, is comparable in speed.

6 Conclusions

We present a simple language for specifying sessions between roles, and we detail its
usage as a secure communication abstraction on top of ML. Our compiler s2ml gen-
erates custom cryptographic protocols that guarantee global compliance to the session
specification for the principals that use our implementation, with no trust assumptions
for the principals that do not.
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Whilst in previous work we focus on establishing (theoretical) security guarantees
for the generated code of s2ml, here we concentrate on describing the inner work-
ings of the compiler, and explore its applicability to the concrete examples of an RPC
exchange and a rather large conference management system. This latter case study is
treated smoothly by s2ml, providing confidence for its usability as a concrete tool for
structuring and securing distributed programming.

Future Work. We are exploring variants of our design to increase the expressiveness
of session specifications: session-scoped data bindings that ensure the same values are
passed in a series of messages, as well as more dynamic principal-joining mechanisms,
to enable new principals to enter a role subject to agreement among the current prin-
cipals. (Still, we remind the reader that sessions are at the level of message flow spec-
ifications, and user code implementing them can be arbitrary ML code.) We are also
interested on providing support for communicating richer payload types, by studying
the extension of s2ml with general and secure marshalling.
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Abstract. We present a computationally sound technique of static anal-
ysis for confidentiality in cryptographic protocols. The technique is a
combination of the dependency flow graphs presented by Beck and Pin-
gali and our earlier works – we start with the protocol representation as
a dependency graph indicating possible flows of data in all possible runs
of the protocol and replace the cryptographic operations with construc-
tions which are “obviously secure”. Transformations are made in such a
way that the semantics of the resulting graph remains computationally
indistinguishable from the semantics of the original graph. The trans-
formed graphs are analysed again; the transformations are applied until
no more transformations are possible. A protocol is deemed secure if its
transformed version is secure; the transformed versions are amenable to a
very simple security analysis. The framework is well-suited for producing
fully automated (with zero user input) proofs for protocol security.

1 Introduction

A protocol is a convention that enables the connection, communication, and data
exchange between several computing entities. A cryptographic protocol is a pro-
tocol, which performs some security-related function and applies cryptographic
methods. Naturally, the cryptographic protocol is expected to satisfy certain se-
curity properties. Examples of those properties could be confidentiality, integrity,
and so on. Therefore there is a need for methods for indicating whether the given
protocol satisfies the given security property or not. The latter is simpler than
the first – having an example of successful attack breaching the property of in-
terest is sufficient to show that the protocol does not satisfy it. Showing that
the protocol is secure with respect to certain properties is essentially convincing
that no attack (known or unknown) breaching these properties exist.

In this paper we propose a framework for examining the protocol security
properties based on the notion of computational indistinguishability, assuming
certain properties of cryptographic operations. Currently the framework is used
for checking the preservation of confidentiality and integrity properties in pro-
tocols. In principle, the framework should be suitable for verifying all properties
whose fulfilment can be observed by the protocol participants and/or the adver-
sary — the transformation process does not change the observable properties of
protocols.

G. Barthe and C. Fournet (Eds.): TGC 2007, LNCS 4912, pp. 294–311, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Application of Dependency Graphs to Security Protocol Analysis 295

The basis of the analysis – protocol semantics and the set of assumptions on
the cryptographic operations we used – is similar to [18,27], while the protocol
language is much more powerful, and the analysis methodology is significantly
different. Our contribution is the introduction of the support for the replication
to the analysed protocols, and using the approach based on the extensive usage
of the dependency graphs, similar to those introduced in [26], for the analysis of
the protocols’ security. The developed framework is suitable for producing the
automated, computationally sound proofs for the protocols’ security.

This paper has the following structure. After reviewing the previous work in
this field in Sec. 2, we go on with defining the protocol representation on which
the technique is based in Sec. 3. The criterion for considering the protocol cor-
responding to a given graph secure is defined in Sec. 4, followed by Sec. 5, where
more complex types of the dependency graphs, corresponding to the protocols
with replication, are considered. Sec. 6 contains key rules for graph transforma-
tion preserving the semantics of the graph. In Sec. 7 we explain how the integrity
properties can be verified in our framework.

2 Related Work

The research presented in this paper belongs to a body of work attempting to
bridge the gap between the two main approaches for modeling and analyzing
the cryptographic protocols — the Dolev-Yao model [15] and the complexity-
theory-based approach [28]. The most related, and also a source of inspiration
to the work reported in this paper has been the protocol analysis framework by
Blanchet [9,10,11]. The difference of our approaches is in the choice of the pro-
gram (protocol) representation. We believe that the use of dependency graphs
instead of a more conventional representation allows our analyser to better focus
on the important details of data and control flow. Both frameworks are based
on the view of cryptographic proofs as sequences of games [8,18]. In both frame-
works, in order to prove a protocol correct, the automated analyser constructs
such a sequence where the adversary’s advantage diminishes only negligibly from
one game to the next one, and where the adversary has obviously no advantage
in the final game. Another difference with [9,10,11] is the degree of automation
– the analyser from [9,10,11] still requires the human-produced hints on the set
and order of transformations to apply for some protocols; the analyser prototype
implemented based on our framework does not require any hints.

The work in this area has been started by Abadi and Rogaway [1], who
considered the relationship of formal and computational symmetric encryption
under passive attacks and provided a procedure to check whether two formal
messages have indistinguishable computational semantics. The same primitive
and class of attacks have been further considered in [2,23,17,22,3], in these pa-
pers the language has been expanded (the constraints have been weakened) and
the security definitions have been clarified. Further on, the active attacks with
the range of cryptographic primitives were considered in [13,16,21] (based on the
translation of protocol traces from the computational to the formal model) and
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[19,5] (based on the application of the universally composable [12,25] crypto-
graphic library [4]).

Another body of research the present work is based on is the static analysis on
the intermediate program representations. We use the protocol representation
close to [26]. Unlike some of the frameworks based on protocol rewriting – [18,27],
the protocol transformations we perform do not produce several sub-protocols
which are to be analyzed separately; the representation chosen is capable of hold-
ing all the possible information flows and execution variants, therefore having
better potential for analyzing the replication and data flows between different
protocol runs.

3 Dependency Graphs

The analysis is performed over a dependency graph, representing the protocol
inputs, outputs, operations performed during the execution of the protocol, and
the data flows between them. Dependency graph is one possible representation of
a protocol. It is universal – every protocol that can be specified in a WHILE-style
language [24] can be represented by a dependency graph as well.

The dependency graph is a directed graph defined by a set of operations
(vertices) and dependencies (edges). The operation is an equation with the left
side consisting of a dependency (acting as a short-term name for the result of
the operation), and the right side being the application of an operator to zero or
more dependencies. Each operation is uniquely identified by its label from the
Lab (set of operation labels). An operation is a source for the dependency on
the left side of the equation and a sink for dependencies listed on the right side.
A dependency has exactly one source but can have many sinks.

An operation, in general, is a deterministic computation from its inputs to the
output. Some of the operations (e.g. encryption) use randomness in computation,
but this randomness is taken as a data dependency, and the operation itself is
still deterministic. The following operations can occur in the dependency graph:
Constants (i ∈ N, true, false , error ), asymmetric encryption (keypair , pubkey ,
pubenc, pubdec), symmetric encryption (symkey , symenc, symdec), tupling and
projecting (tuplem, proj m

i ), conversion of random coins to numeric form (nonce),
boolean operations (andm, orm), condition check (isok , iseq), and selection of
one of the values (mux). Most operations’ names give the general idea on what
they do; additional details on some of the operations are provided throughout
the article. Operations andm, orm, and tuplem are actually families of opera-
tions; each instance in the family having m arguments (for instance, and2 is a
conjunction of two dependencies). The operations not falling into this model are:

– rs — returns random coins, secret — returns the (also randomly generated)
secret message. Let Lab∗ ⊆ Lab be the set of labels of all such operations; let
Lab• ⊆ Lab be the set of labels of all “normal” operations (i.e. those labels
that are not included in Lab← (introduced below) and Lab∗).

– send . The only output operation, making the information available to the
adversary, is send . It has two dependencies – control dependency and the
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value to be sent to the network. If the control dependency is true, the ad-
versary learns the value of the other dependency. There can be no outgoing
dependencies from send-nodes. Let Lab→ ⊆ Lab• be the labels of all send -
operations.

– receive, req - return values set by adversary. receive denotes the reception
of a message from the network (which is assumed to be under adversarial
control). req-nodes are flags associated with send -nodes; they can be set by
the adversary when it wants these send -nodes to produce a message. Let
Lab← ⊆ Lab be the set of labels of all such operations.

According to the way treated by operations, the dependencies (arguments)
can be divided into two groups — data and control dependencies. Data de-
pendency provides the operation with the argument required to perform the
computation (for example, encryption key for the encryption operation). Con-
trol dependency indicates whether the operation is to be performed or not. The
control dependency of an operation is true if it is necessary and possible to
perform it. Necessity follows from the adversary’s choice to evaluate the pub-
lic output (i.e. set req for the corresponding send operation to true), or from
necessity to evaluate an operation dependent from the given (all such chains
terminate with req). Possibility to evaluate an operation follows from the pos-
sibility to evaluate each operation the current operation is dependent on. For
operations having no data dependencies it is always possible to evaluate them
(so the control dependency is just the necessity); for operations having one or
more data dependencies, the control dependency is a conjunction of necessity
to evaluate the current operation and possibility to evaluate each operation the
current operation is dependent on. The if . . . then . . . construction introduces
additional control dependency from the result of the evaluation of the condition
to each operation under the then branch.

For example, let pubkey(keypair ), secret(), rs(), and pubenc(key , text , random)
be the operations returning public key, secret message, random coins, and en-
crypting the text using the key and random input, respectively. Let if (condition ,
statement) be the conditional execution construction. The dependencies for the
program fragment x := pubkey(. . .); y := secret(); if (a = b, z := rs();w :=
pubenc(x, y, z)); are illustrated in Fig. 1. The operation label is shown in the
right part of the node. Data dependencies are drawn as solid lines, control de-
pendencies – as dashed lines. Control dependency of the pubenc and rs opera-
tions specify that (among other conditions) the condition checked in if has to
be true in order for the operation to be executed. Circles represent the nodes
of the dependency graph connected to the fragment in question. In the follow-
ing we present the dependency graphs or their fragments as listings of nodes of
the form Operation l(l1 . . . lm). Here l is the label (identity) of the current node,
Operation is the operation performed in this node and l1, . . . , lm are the labels
of the nodes that are the dependencies of the current node l — that produce the
values consumed at the node l.

Note that some information on the execution order, not essential to the anal-
ysis, is lost. For instance, based on the data dependencies there’s no difference
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in which order the operations with labels 1 and 2 are computed; in the original
program, however, these 3 values are computed in a particular order. The eval-
uation of the operations on the graph could be made in any possible order, as
long as the constraints defined by the control dependencies are met. Due to the
properties of the graph evaluation semantics, every such evaluation will stop at
the same point and give the same final result.
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pubkey 1

 

secret 2

 

   

pubenc 4

 

rs 3

 

Fig. 1. Dependency graphs

The semantics of the dependency graphs are defined as follows. Let Σ be the
set of bit strings the computations are performed on. Let Σ⊥ be the Σ ∪ {⊥}.
Let ≤Σ be the order on the Σ⊥, defined as ∀x ∈ Σ⊥.⊥ ≤Σ x, and everything
else is incomparable. Let B = {true, false}, ordered by false ≤B true. Let Lab be
the set of labels.

The configuration is the state of the computation on a graph. It assigns the
values to all dependencies (including the adversary’s view), adversarial inputs,
and random coin tosses. Formally, it has the type:

Configuration : ((Lab• → Σ⊥ ∪ B)× (Lab← → Σ⊥ ∪ B)× (Lab∗ → Σ))�

For some 〈ρ, φ, ψ〉 ∈ Configuration, ρ[l] denotes the output value of the
operation with label l, φ[l′] – the value set by adversary at operation with label l′,
and ψ[l′′] – the value of the random coins generated by rs l′′ . The value ψ[secret ]
is the secret message being exchanged. The motivation behind putting all the
randomness used to one place is to be able to “replay” the run of the protocol in
“lock-step” with another, earlier completed run. Special configuration � denotes
that something inconsistent has happened during the computations.

Each operation with label l introduces a function from the dependencies used
as arguments to the operation to the result of the operation. This function has
type:
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f l : Configuration→ (Σ⊥ ∪ B)�

For example, the operation keypair l(l1, l2), generating the key pair using random
coins generated at l2, and l1 as the control dependency introduces the function:

f l(〈ρ, φ, ψ〉) =
{

Gpe(ρ[l2]) if ρ[l1] = true ∧ ρ[l2] = ⊥
⊥ otherwise

where Gpe is the cryptographic function computing the public-secret key pair
from the random coins. Semantics for the rest of the operations are defined in a
similar way. The operations using the random source (rs , secret) or adversarial
input (req, receive), use, instead of ρ, the configuration components φ (for ac-
cessing the adversarial input) or ψ (for getting the random source). The function
for mux l

n(lc, lc1, lv1 , . . . , lcn, lvn) is defined to return the value, the selector of which
is true, and ⊥ or � if less or more than one selector is true, respectively.

It can be verified that all the functions for evaluating operations’ result are
defined to be monotone. The graph evaluation function has the type

Eval : Configuration→ Configuration

and is defined as

Eval(〈ρ, φ, ψ〉) =
{� if ∃l ∈ Lab.f l(〈ρ, φ, ψ〉) = �
〈ρ′, φ, ψ〉 where ∀l ∈ Lab.ρ′[l] = f l(〈ρ, φ, ψ〉) otherwise

Eval(�) = �

The graph evaluation function is monotone, continuous and expanding
(∀C.Eval(C) ≥ C).

The execution of a dependency graph, in parallel with the adversary A, pro-
ceeds as follows:

1. ρ is set to map every dependency to ⊥. ψ is initialized with the (uniformly
generated) random coins used in the execution. φ (containing information
on which of the protocol outputs are to be evaluated and the values to be
fed to the graph from the network) is set to map every req operation to false
and every receive operation to ⊥.

2. The adversary produces a mapping φ′ : Lab← → Σ⊥ satisfying φ ≤ φ′. The
computational cost of outputting φ′ is defined to be the number of labels l
where φ(l) = φ′(l).

3. The graph is evaluated — let 〈ρ′, φ′, ψ〉 be the least fixed point of Eval that
is greater or equal to 〈ρ, φ′, ψ〉. The existence of such fixed point follows from
the properties of Eval .

4. Let Lab→ ⊆ Lab• be the labels of all send -operations. The adversary is given
the values of ρ on all points of Lab→.

5. The adversary decides whether the sequence should be repeated from the
step 2 (putting φ := φ′, ρ := ρ′) or terminated.
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4 Security Definition

Let the adversary be an algorithm operating in the Probabilistic Polynomial
Time (PPT), relative to the security parameter n (of the encryption system
used by the cryptographic operations in the graph). The same formal definition
of the security parameter as in [18] is used. The running time of the adversary
is its total running time for all iterations performed during the execution of the
graph.

For a given dependency graph, random coins ψ and the adversary A let the
adversary’s view viewψ(A) be the distribution of α = ρ|Lab→ after computing
the semantics of the graph with given random coins and adversary inputs. Let
D be the distribution of ψ. In order to consider the protocol secure, we require
that for all PPT adversaries, the adversary’s view is independent from the secret
message. Formally, the probability distribution of the pair of the secret message
and the adversary’s view produced while executing the protocol with this secret
message should be indistinguishable from the probability distribution of the pair
of the secret message and the adversary’s view corresponding to a different secret
message, taken according to the same distribution.

{|(ψ[secret ], α) : α = Exec(ψ);ψ ← [[D]]|} ≈
≈ {|(ψ′[secret ], α) : α = Exec(ψ);ψ, ψ′ ← [[D]]|}

The exact meaning of indistinguishability between two families of probability
distributions D = {Dn}n∈N and D′ = {D′n}n∈N, denoted D ≈ D′, is following:
for all PPT algorithms A, the difference of probabilities

P[b = 1 |x← Dn, b← A(1n, x)] −P[b = 1 |x← D′n, b← A(1n, x)]

is a negligible function of n.

Theorem. The protocol which does not include the operation secret l (the only
operation which returns the value of the ψ[secret ]), is secure (as the generated
value of the secret message is not used in it).

This theorem is the “very simple security analysis” mentioned in the abstract.

5 Dependency Graphs with Replication

Normally during the execution of the protocol some parts of it are executed
repeatedly (for instance, the execution of the participant could take place more
than once), and there is a possibility of data exchange between the different ex-
ecutions of the same operations (e.g. replay attacks, when the adversary records
the data exchanged during one run of the protocol, and uses this data to produce
values sent to the participants during the next run). To model multiple runs of
the protocol, the dependency graph must contain a node for each operation in
each possible run of the protocol.

For example, let us suppose that the inner part of the conditional statement
of the example program from Sec. 3 could be executed at most two times, using
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the same value of the conditional test, secret message and the public key. The
dependency graph corresponding to it is illustrated on the Fig. 2.a. As the same
conditional statement, public key, and secret message are used in both runs,
nodes, corresponding to them, are present in the dependency graph only once.
The rest of operations are executed two times, which is represented by two copies
of each node.

In general, each operation performed in the replicated part of the protocol
is represented by a number (equal to the number of runs) of nodes in the de-
pendency graph. The adversary can establish information exchange between the
different runs of the program by using the value of the send -node corresponding
to one run to calculate the value to set to req and receive-nodes corresponding
to another run.

Now let us consider the case when the number of the protocol runs is not
limited. Each operation in the replicated part of the program is still represented
by a set of nodes, the cardinality of which is equal to the number of possible
protocol runs; hence the dependency graph (built using the same principles as
the example with two runs) becomes infinite. Despite the fact that the graph is
infinite, the constraints put on the adversary’s execution time mean that only a
finite subset of the nodes of the graph are evaluated.

The structure of the (infinite) dependency graph with the replications is reg-
ular enough to be finitely represented. Fig. 2.b contains the representation of the
dependency graph from Fig. 2.a., but with an infinite number of replications.
Each node in the representation has an additional attribute (the rightmost part
of the node), showing whether it is replicated or not – the number of replication
dimensions. A replication dimension corresponds to a possibility to execute a
part of the protocol countable number of times. In the current example, some
nodes in the representation have zero dimensions and the rest have one dimen-
sion. A node in the representation having k dimensions corresponds to a set of
nodes in the actual dependency graph, the nodes in this set have a natural one-
to-one correspondence with the elements of the set N

k. Hence a zero-dimensional
node corresponds to a single node in the real graph, and a node with one or more
dimensions corresponds to countably many nodes in the real graph.

In this example we only saw nodes with at most one replication dimension.
Two- or more-dimensional nodes naturally arise if the protocol specification con-
tains nested replications. We see another case giving rise to more-dimensional
nodes in Sec. 6.2.

The representation also specifies the dependencies present in the replicated
dependency graph. If the source and the sink of a dependency edge have the
same number of dimensions, then this edge in the representation means that
each instance of the sink node depends on the the corresponding instance of
the source node (but if the number of dimensions is greater than one then the
dependency may permute the coordinates). If the dependency sink has more
coordinates than the source (it is the case with pubenc depending on secret
in our example) then the value of (a single instance of) dependency source
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Fig. 2. Dependency graph with replications

is used in all the instances of the dependency sink. The third possible case –
sink having less coordinates than the source – corresponds to each instance
of the sink consuming an infinite number of arguments (a single argument
from each instance of the source). In our dependency graph representations
there are only two operations where this may happen — at logical or -s or at
multiplexers.

6 Transformations

We use graph transformations to replace a potentially insecure graph with an-
other graph, the adversary’s view of which is computationally indistinguishable
from the first. The meaning of the computational indistinguishability of two de-
pendency graphs is analogous to the one specified in Sec. 4, with the difference
that now the task is to distinguish two dependency graph with equal inputs
(including secret value).

The transformations are designed in a way that each of them either reduces
the complexity of the graph, makes the implicit result of some operations ex-
plicit, or eliminates data flows due to the properties to certain cryptographic
operations. While performing possible transformations to the graph, it is grad-
ually transformed to a form that makes more explicit which data flows really
exist and which are “hidden” by the cryptographic operations. If at the end of
the transformation sequence a secure graph is obtained, the very first graph is
also secure.

The rest of the section contains the description of some of the transformations
preserving the adversary’s view on the graph.
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6.1 Dead Code Removal

One special transformation is removal of dead code. Despite being trivial, it is
important to consider, as it is the only transformation that makes the graph
smaller (other transformations only add additional operations to the graph.)

A node in a dependency graph is live if it is a send -node or if the value
produced by it is consumed by a live node. All nodes that are not live may be
removed from the graph.

6.2 The Replacement of Encryptions

First, let us consider the asymmetric encryption operation. We require the en-
cryption system to satisfy the IND-CCA2 property as defined in [6] – i.e. it
should be impossible to distinguish two ciphertexts produced by the encryption
oracle for two plaintexts given by the adversary with non-negligible probability
in polynomial time even if the adversary is given the ability to decrypt every-
thing except the challenge ciphertext. It means that encryption of the plaintext
with the given public key could be replaced with the encryption of the string
of zeroes (or any other constant) of equal length, and that latter ciphertext
will be indistinguishable from the first for anyone, except for the one having
the corresponding private key. On the decryption side we first check whether
the ciphertext matches one of the ciphertexts already produced, and if it does,
the corresponding plaintext is returned. If no match is found, the decryption
operation is performed.

In terms of equivalent dependency graph fragments, it can be presented as
follows. Suppose the graph contains the following operations.

rslvrs

(lcrs) keypair lvkp

(lckp, lvrs) pubkey lvpk

(lcpk, lvkp)

rslvrs
i (lcrs

i ) pubenclvect
i (lce

i , l
vpk, lvept

i , lvrs
i ) (where 1 ≤ i ≤ n)

pubdeclvdpt
j (lcd

j , l
vkp, lvdct

j ) (where 1 ≤ j ≤ m)

The operations used are: rs is the generation of random coins, keypair and pubkey
are the generation of the secret-public key pair and the extraction of the public
key component from the pair, pubenc is the encryption of the given plain text
using the given public key and random coins. All the operations have the control
dependency as their first argument, and are evaluated only if it becomes true.
The operation name is superscripted with the label of the operation (for instance,
lvrs). The abbreviations used in label names are: v stands for value, c for control,
kp for key pair, pk for public key, rs for random seed, e for encryption, d for
decryption, pt for plain text, and ct for cyphertext. The dependency is identified
by the label of its source. We require that the dependencies lvrs, lvrs

i and lvkp

are not used in any operations except for the ones listed above.
By the definition of IND-CCA2, the semantics of the graph are indistinguish-

able from the semantics of the graph where all occurrences of the dependencies
lvect
i and lvdpt

j in the graph are replaced with the l′vect
i and l′vdpt

j , respectively.
These new dependencies are defined as follows:
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pubencz l′vect
i (lce

i , l
vpk, lvrs

i ) (where 1 ≤ i ≤ n)

iseq lcvar
ji (lvdct

j , lvect
i ) isok lcdok

j (lvdpt
j ) (where 1 ≤ i ≤ n, 1 ≤ j ≤ m)

mux
l′vdpt
j

n+1 (lcd
j , l

cvar
j1 , lvept

1 , . . . , lcvar
jn , lvept

n , lcdok
j , lvdpt

j ) (where 1 ≤ j ≤ m)

There are two operations that need to be clarified here: pubencz and mux.
pubencz is the encryption of a special constant (“zero”) that cannot be pro-
duced by any of the nodes in the graph. Decryption of the ciphertext produced
by pubencz returns ⊥. muxn is the multiplexing operation. Beside the control
dependency it takes n pairs of control and data dependencies as inputs. If the
control dependency in exactly one of those pairs is true, the result of muxn is
the value of the data dependency. If none of the control dependencies are true,
the result is ⊥ (denoting error). If more than one of the control dependencies
are true, the result is � (denoting inconsistency of the dependency graph; in
this case the evaluation of the whole graph stops and this can be detected by
the adversary). Note that among the above dependencies lcvar

j1 , . . . , lcvar
jn , lcdok

j

there can indeed be at most one that is true — if lcdok
j is true then the cipher-

text lvdct
j cannot be created by a pubencz -operation and hence all comparisons

iseq(lvdct
j , lvect

i ) return false. If one of these comparisons returns true then the ci-
phertext lvdct

j was created by a pubencz -operation and its decryption lvdpt
j will be

false (by definition). Different pubencz -operations produce different values (the
opposite event has negligible probability), hence at most one of lcvar

j1 , . . . , lcvar
jn

can be true.
If infinite replications are present then we have to consider the dimensions of

the operations as well. Namely, the set of dimensions of the iseq-operation labeled
with lcvar

ji is the union of the sets of dimensions of the i-th encryption and the j-
th decryption operation. The representations of the dependencies to lcvar

ji include
coordinate mappings telling which dimensions of lvdct

j and lvect
i correspond to

which dimensions of lcvar
ji . The multiplexer labeled with l′vdpt

j has just the same
dimensions as the j-th decryption operation, hence it has to contract the rest of
the dimensions of lcvar

ji . In effect, the multiplexer will have an infinite number
of inputs. The semantics stays the same — something different from ⊥ or � is
produced only if exactly one of (infinitely many) selectors is true.

Symmetric encryption is handled in a similar way. The requirements put on
the symmetric encryption scheme are IND-CCA2, and ciphertext integrity (in-
ability to generate a “valid” ciphertext without knowing the secret key) [7]. Sim-
ilarly, based on these properties, the encryptions of the real text are replaced
with the encryptions of the constant, and the decryptions are replaced with a set
of comparisons with encrypted values. This can only be done if the encryption
key is not used anywhere except as a key in encryption and decryption oper-
ations, and the random coins used in key generation and encryptions are used
only there. The difference from the asymmetric decryption is that the decryption
of the ciphertext does not have to be considered (due to the ciphertext integrity
property). Formally, let the graph contain the following operations:
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rslvrs

(lcrs) symkey lvsk

(lcsk, lvrs)

rslvrs
i (lcrs

i ) symenclvect
i (lce

i , l
vsk, lvept

i , lvrs
i ) (where 1 ≤ i ≤ n)

symdeclvdpt
j (lcd

j , l
vsk, lvdct

j ) (where 1 ≤ j ≤ m)

All occurrences of lvect
i and lvdpt

i in the rest of the graph are replaced with the
l′vect
i and l′dpt

j , defined as following (symencz is defined in the same way as
pubencz , but uses the symmetric encryption primitive):

symencz l′vect
i (lce

i , l
vsk, lvrs

i ) (where 1 ≤ i ≤ n)

iseq lcvar
ji (lvdct

j , lvect
i ) (where 1 ≤ i ≤ n, 1 ≤ j ≤ m)

mux
l′vdpt
j

n (lcdj , lcvar
j1 , lvept

1 , . . . , lcvar
jn , lvept

n ) (where 1 ≤ j ≤ m)

6.3 The Movement of Multiplexers

After replacing the encryption and decryption operations with mux , it is usually
possible to simplify the resulting graph. As the mux does not perform a compu-
tation on its input dependencies, an operation performed on the output of the
mux can be “shifted” to all inputs. This movement may expose further simplifi-
cation possibilities by putting next to each other the operations that cancel each
other out. Formally if the graph contains the operations

mux l
n(lcmux, lcvar

1 , lvvar
1 , . . . , lcvar

n , lvvar
n )

Opl2(. . . , l, . . .)

then all occurrences of the dependency l2 in the graph may be replaced with l′2

after we have added the following operations to the graph:

Opl′vvar
i (. . . , lvvar

i , . . .) (where 1 ≤ i ≤ n)

mux l′2
n (lcmux, lcvar

1 , l′vvar
1 , . . . , lcvar

n , l′vvar
n )

If l′2 is a control dependency (meaning that l′vvar
1 , . . . , l′vvar

n are control depen-
dencies as well) then the resulting multiplexer can be replaced with a composition
of boolean operations expressing the semantics of multiplexers.

Another possible simplification is the replacment of a mux with always se-
lected option with that option. Suppose the graph has the operation:

muxl
n(lcmux, lcvar

1 , lvvar
1 , . . . , lcvar

n , lvvar
n )

If it can be derived that ρ[cmux] = true implies for some i ρ[lcvar
i ] = true, ∀j =

i.ρ[lcvar
j ] = false, then the only possible outcome of the mux is the i-th option

(or error (always returning ⊥), if the control dependency is not true). So, all the
references to l can be replaced with l′, defined as following: idl′(lcmux, lvvar

i ).
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6.4 Other Transformations

Due to space requirements less principal transformations cannot be described in
length – a brief overview on them is given instead.

Some of the transformations follow from the properties of the data operations.
Projection of a component from just constructed tuple can be replaced with the
dependency used in tuple construction; control dependency of that operation is a
conjunction of tuple and the original projection operation control dependencies.
The same simplification is also possible for other corresponding constructor-
destructor pairs. But if a constructor is followed by an incompatible destructor
(for example, projection from a ciphertext) then the destructor may be replaced
with the error -operation — we assume that all values produced in the graph are
tagged with their type, so the type confusion is impossible.

Most of the operations return ⊥ if the control dependency is false, or any of
the arguments is ⊥. If it is statically known that either of these cases is always
true, the corresponding operation could be replaced with the error .

Another set of transformations is based on the boolean logic: an and1 or or 1

(operation with a single dependency) can be replaced with its input dependency;
an and or or operation whose result is statically known (one of the dependencies
is true in case of or , and false in case of and) can be replaced with that result;
two sequential boolean operations of the same kind can be combined; if it can
be derived that one dependency implies (in the boolean logic sense) another,
then or and and of these two dependencies can be formulated using just one
of the dependencies. If it is possible to derive that at most one of two control
dependencies can be true at any time (for example, the results iseq(l1, l2) and
iseq(l1, l3) where l2 and l3 can be equal only with negligible probability — they
might be the results of different pubencz -operations) then their conjunction can
be replaced with false.

As the semantics of the operation depend only on the incoming dependencies
of the operation (except for the operations returning random coins or adversarial
input), two operations of the same kind with the same dependencies return the
same result, so in the graph the result of the second operation can be replaced
with the result of the first. If the cardinality of the operation is greater than
that of its input dependencies (except for the control dependency), then the
same values of the input dependencies are copied to each of the instances of
the operation; each instance returns the same result, so the “extra” dimensions
could be removed from the operation, and the result can be copied the required
number of times.

In some cases it is possible to explicitly reflect the result of the computation
in the graph. If two dependencies must always be equal at the input to some
operation, they are replaced (on the input to the operation in question) with the
special operation merge. It either returns the value of the dependencies if they
are equal or ⊥ if not. Two merge operations going in sequence can be replaced
with a single merge operation having the union of the original operations’ inputs.
The operation isok returns true if the value of the input dependency is different
from ⊥ and false otherwise. If the input to the isok is statically known, the
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result is also constant. Some operations (e.g. random coins generation) never fail.
The success of some of the operations performing computations only depends
on whether its arguments are valid (so isok of the result could be replaced
with a conjunction of isok of each argument). Similarly, if the arguments to the
comparison operation iseq are statically known, the results are also known and
the operation could be replaced with a constant true or false.

7 Proving Integrity Properties

While the secrecy property we defined in Sec. 4 stated the independence of
adversary’s view from the secret messages, the integrity properties state that only
runs satisfying a certain predicate are feasible (i.e. the probablity that a protocol
run does not satisfy this predicate is negligible). Correspondence assertions are
a well-known means for specifying integrity properties of protocols, and our
approach turns out to be well-suited for arguing about them as well.

To state a correspondence assertion, one inserts statements of the form
begin(E) and end(E) to the protocol text, where E is some expression. The
execution of such a statement means finding the value v of E and recording
that the statement begin(v) or end(v) has been executed. The correspondence
is satisfied if each execution of end(v) is preceeded by an execution of begin(v)
with the same value v. Moreover, the correspondence is injective if there is a
separate begin(v) for each end(v) [20].

Similarly, we can insert nodes begin l(lc, lv) and end l(lc, lv) to our protocol.
Here lc is the control dependency and lv carries the value that appears in the
executed begin- or end -statement. An execution of the dependency graph also
gives rise to a sequence of executed begin- and end -nodes (if several of those
nodes are executed simultaneously then we assume that begin-s happened before
the end -s), allowing us to define correspondence and injective correspondence
in the same way. The protocol modifications do no change the order of execu-
tion of those statements, hence the original protocol satisfies the correspondence
property iff the final protocol does.

Our experience shows that arguing about the order of executions of begin-
and end -nodes in the final, modified protocol is quite feasible. To show corre-
spondence we have to locate a node begin lb(lcb, lvb) for each node end le(lce, lve),
such that the values of dependencies lvb and lve are equal whenever both are
defined. If lvb = lve then the equality is trivial, but the dependency graph also
enables us to straightforwardly check their equality if lve is defined as a merge
of lvb and something else (or other similar patterns). We also have to show that
lce implies lcb. We have devised an analysis for determining the implications
between control dependencies (the results of this analysis are also used in trans-
formations described in Sec. 6.4) and this analysis turns out to be precise enough
for determining that lce ⇒ lcb. The injective correspondence can be proved by
showing that among several control dependencies, controlling several alterna-
tive end -statements, at most one can be true (the respective analysis of control
dependencies was also hinted in Sec. 6.4).
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8 Results Achieved

The dependency graphs-based approach, presented in this article, is a convenient
tool for investigating the data flows taking place in the distributed computing
systems. It is based on finding out the data and control flows on the protocol
representation, and modifying the representation based on the semantics of the
individual operations and connections between them.

The automatic protocol analyser has been implemented. The analyser has
been applied to several protocols from the secure protocols open repository
(http://www.lsv.ens-cachan.fr/spore/): Needham-Schroeder public key,
Lowe’s fixed version of Needham-Schroeder Public Key, Needham-Schroeder se-
cret key, Kao-Chow Authentication, and TMN. TMN and Needham-Schroeder
public key were not proved to be secure (corresponding graphs still contain se-
cret message even after all the transformations applied); for both protocols there
are known attacks. Graphs corresponding to Lowe’s fixed version of Needham-
Schroeder Public Key and Kao-Chow Authentication were transformed to a form
not containing the secret message, thus indicating that secrecy property holds.
The Needham-Schroeder secret key is considered secure under the condition that
previously exchanged key is not compromised; the Denning-Sacco key freshness
attack (if the adversary has obtained the key used in one of the previous sessions)
was also successfully detected. Analysis of the Needham-Schroeder-Lowe public
key protocol takes 10 minutes on Pentium M 1.60 GHz machine. The current
implementation of the protocol analyser has some room for optimization (mostly
– reusing the intermediate calculations between transformations), so the time of
the analysis could be significantly reduced.

The difference with CryptoVerif [9,10,11] is that the transformations defined
in our framework are not as sensitive to the order of applications as the Cryp-
toVerif ones. The CryptoVerif, while being mechanized, is not automatic while
operating on some protocols involving public key cryptography (e.g. Needham-
Schroeder-Lowe public key). At some point in proof several transformations are
“allowed”, but only one of them leads to the successful proof. The human sup-
port is required to decide which transformation is the proper one. An example of
transformations in question is SArename and the ones based on the properties
of the cryptographic primitives . The SArename is performed to split the single
variable defined multiple times (e.g. in different branches of if ) into several sep-
arate definitions. Each use of such variable is then analysed in branches - one
for each possible definition. Applying the transformation of the public key en-
cryption “too early” in the analysis transforms the protocol to the form, where
the SArename is no longer able to split the uses of the variable at the same
fine granularity. Some of the information flows revealing the secret, present in
the cases never executed, being combined with cases that are executed, are not
removed from the further analysis, and the proof fails. When performed in the
“right” order, same transformations separate the cases at sufficient granularity
to produce a successful proof.

The analyser prototype we implemented is able to prove the secrecy of
each secure protocol we tried it on by iterating the application of possible

http://www.lsv.ens-cachan.fr/spore/
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transformations until no more transformations are possible, without any hints
from the user. So far we haven’t observed the situation where the success of the
proof depends on the order of transformations applied. We suspect the reason
is in the usage of the “smaller-scale” transformations, and making all the con-
ditions present at the point of definition (of each sub-case) explicit at the point
of use, thus being able to delimit and remove the branches never executed with
satisfactory precision without external hints. Another possible reason is that
the multiplexer movement (described in sec. 6.3) is not present in CryptoVerif
[9,10,11], nor seems there to be an easy way to add it. The information collec-
tion phase of CryptoVerif is able to compensate this omission to some extent, by
propagating information about values through the multiplexer. This information
can be used for validating certain simplifications, but not for doing cryptographic
transformations.

The further research directions are quite “standard” — the application of the
framework for determining other security properties, enriching the programming
language with more cryptographic primitives, calculation of the exact (negligible)
probability of distinguishing the semantics of the resulting graph from the initial
one, and running the framework on more protocols. In particular, it would be
interesting to verify protocols that are not so easily expressible in the Dolev-Yao
model because of the cryptographic primitives they are using (e.g. verifyable
secret sharing) and the security properties we are trying to prove. Voting schemes
(for example, [14]) are obvious candidates for testing our framework.
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27. Tšahhirov, I., Laud, P.: Digital Signature in Automatic Analyses for Confidentiality
against Active Adversaries. In: Nordsec 2005 10th Nordic Workshop on Secure IT
Systems, Tartu, Estonia, October 20-21, 2005, pp. 29–41 (2005)

28. Yao, A.C.: Theory and Applications of Trapdoor Functions (extended abstract).
In: 23rd Annual Symposium on Foundations of Computer Science, November 1982,
pp. 80–91 (1982)



Formal Proofs of Cryptographic Security of

Diffie-Hellman-Based Protocols�

Arnab Roy1, Anupam Datta2, and John C. Mitchell1

1 Stanford University, Stanford, CA
{arnab, mitchell}@cs.stanford.edu

2 Carnegie Mellon University, Pittsburgh, PA
danupam@cmu.edu

Abstract. We present axioms and inference rules for reasoning about
Diffie-Hellman-based key exchange protocols and use these rules to prove
authentication and secrecy properties of two important protocol stan-
dards, the Diffie-Hellman variant of Kerberos, and IKEv2, the revised
standard key management protocol for IPSEC. The new proof system is
sound for an accepted semantics used in cryptographic studies. In the
process of applying our system, we uncover a deficiency in Diffie-Hellman
Kerberos that is easily repaired.

1 Introduction

Diffie-Hellman key exchange (DHKE) is one of the earliest public-key concepts
[28]. It allows two parties without a prior shared secret to jointly create one
that is independent of past and future keys, and is therefore widely used in
many network security protocols. In this paper, we develop axioms for reason-
ing about protocols that use Diffie-Hellman key exchange, prove these axioms
sound using cryptographic reduction arguments, and use the axiom system to
formally prove authentication and secrecy theorems for two significant standard-
ized protocols. The two protocols we consider are Diffie-Hellman Key Exchange
for initial authentication in Kerberos V5 [43] (which we refer to as DHINIT)
and IKEv2 [34], the IPSEC key exchange standard. Kerberos is widely used in
Microsoft Windows networking and other applications, while IKEv2 is part of
IPSEC which is widely used for virtual private networks. The authentication
and secrecy theorems, for probabilistic polynomial-time execution and standard
cryptographic protocol attacks, have not been proved before to the best of our
knowledge. In analyzing DHINIT, we also discover that the KAS is not authen-
ticated to the client after the first stage, but we are able to prove formally in
our logic that authentication is nonetheless achieved at a later stage; we also
suggest a change to the protocol to ensure authentication after the first stage.
In analyzing IKEv2, which replaces the seriously flawed Internet Key Exchange
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(IKEv1) protocol using concepts from an intermediate protocol called Just Fast
Keying (JFK) [3], we consider the IKEv2 mode in which signatures are used for
authentication and Diffie-Hellman exponentials are never reused.

The axioms presented in this paper are used in Protocol Composition Logic
(PCL) [24,26,41,25,39]. Our formalization uses the characterization of “good
key” from [27], but improves on previous work in several respects: (i) we fix
a bug in the DH axiom in [27] by using the “DHStrongSecretive” formulas
developed in the paper, (ii) we present a general inductive method for proving
secrecy conditions for Diffie-Hellman key exchange, and (iii) we present axioms
for reasoning from ciphertext integrity assumptions. These three innovations are
essential for the formal proofs for DHINIT and IKEv2, which could not be carried
out in the system of [27]. In addition, the present soundness proofs are based on
a new cryptographic definition and associated theorems about the joint security
of multiple encryption schemes keyed using random or DHKE-keys. This paper
complements [39] and completes the development of formal cryptographically
sound proofs for three modes of Kerberos V5 ([42] contains technical details).

Most demonstrated approaches for proving security of complex network pro-
tocols, of the scale that appear in IEEE and IETF standards, use a simplified
model of protocol execution based on symbolic computation and highly ideal-
ized cryptography [9,16,19,24]. However, proofs about symbolic computation do
not provide the same level of assurance as proofs about probabilistic polynomial-
time attacks. Several groups of researchers have therefore developed methods for
deriving cryptographic meaning from properties of symbolic protocol execution
[7,6,18,22,31,32,38]. These methods involve showing that the behavior of a sym-
bolic abstraction, under symbolic attacks, yields the same significant failures as
a finer-grained execution under finer-grained probabilistic polynomial-time at-
tack. However, such equivalence theorems rely on strong cryptographic assump-
tions, and there are no known suitable symbolic abstractions of Diffie-Hellman
exponentiation. In addition, there are theoretical negative results that suggest
that correspondence theorems may be impossible for symmetric encryption if a
protocol might reveal a secret key [17,23], or for hash functions or exclusive-or
[5,8]. In contrast, computational PCL reasons directly about properties of prob-
abilistic polynomial-time execution of protocols, under attack by a probabilistic
polynomial-time adversary, without explicit formal reasoning about probability
or complexity. In addition, different axioms depend on different cryptographic
assumptions, allowing us to consider which assumptions are actually necessary
for each property we establish. As currently formulated in the RFC, Kerberos
requires a party to sign only its own Diffie-Hellman exponential. We prove this
is sufficient, using axioms that depend on the random oracle assumption [12].
However, we are not able to give a formal proof using alternate axioms that
do not depend on random oracles. On the other hand, the alternate axioms are
sufficient to prove authentication if we modify the protocol slightly so that the
KAS signs both the Diffie-Hellman exponentials, as is done in IKEv2 and JFK.

Two related studies are a symbolic proof for Kerberos (without DHKE) [4]
and a cryptographic reduction proof for JFK [3]. In the Kerberos analysis, a
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correspondence between symbolic computation and cryptographic models [7] is
used to draw cryptographic conclusions. This requires a separate verification that
a “commitment problem” does not occur in the protocol (see [4]), and does not
extend to Diffie-Hellman. The JFK proof is interesting and informative, with
suggestions in [3] that “analysis based on formal methods would be a useful
complement,” but simpler than the proof of DHINIT since JFK digitally signs
Diffie-Hellman values differently. More generally, Abadi and Rogaway [1] initi-
ated computationally sound symbolic analysis of static equivalence, with exten-
sions and completeness explored in [37,2]; a recent extension to Diffie-Hellman
appears in [15], covering only passive adversaries, not the stronger active ad-
versaries used in the present paper. Protocol Composition Logic [24] was used
in a case study of 802.11i [29], has previous computational semantics [26], and
was used to study protocol composition and key exchange [27]. In other studies
of DHKE, [30] uses a symbolic model, while [36] imposes nonstandard protocol
assumptions. The cryptographic primitives used in Kerberos are analyzed in [14].

Section 2 summarizes Protocol Composition Logic (PCL), with section 3
presenting the proof system and computational soundness theorem. Kerberos
DHINIT and IKEv2 are analyzed in sections 4 and 5, respectively. Conclusions
are in section 6.

2 Background

This section contains a brief summary of aspects of Protocol Composition Logic
(PCL) used in the rest of this paper. Additional background appears in
[24,26,41,25,39].

Modelling protocols. A protocol is given by a set of roles, each specifying a se-
quence of actions to be executed by an honest agent. Protocol roles may be
written using a process language in which each role defines a sequential process,
and concurrency arises as a consequence of concurrent execution of any number
of instances of protocol roles. The set of role actions include generating a new
nonce, signing or encrypting a messages, communicating over the network, and
decrypting or verifying a signature through pattern matching. A role may depend
on so-called input parameters, such as the intended recipient of messages sent
by an instance of the role, or the recipient’s public encryption key. An example
protocol is presented in Section 4.

Protocol execution may be characterized using probabilistic polynomial-time
oracle Turing machines [13]. In this approach, an initial configuration is defined
by choosing a number of principals (agents), assigning one or more role instances
to each principal, designating some subset of the principals as honest, and choos-
ing encryption keys as needed. Protocol execution then proceeds by allowing a
probabilistic polynomial-time adversary to control protocol execution by inter-
acting with honest principals (as oracles). This gives the adversary complete
control over the network, but keys and random nonces associated with honest
parties are not given directly to the adversary unless they are revealed in the
course of protocol execution.
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Each protocol, initial configuration, and choice of probabilistic polynomial-time
adversary gives rise to a probability distribution on polynomial-length executions.
A trace records all actions executed by honest principals and the attacker during
one execution (run) of the protocol. Since honest principals execute roles defined
by symbolic programs, we may define traces so that they record symbolic descrip-
tions of the actions of honest parties and a mapping of symbolic variables to bit-
strings values manipulated by the associated Turing machine. Since an attacker
is not given by a symbolic program, a trace only records the send-receive actions
of the attacker, not its internal actions. Traces also include the random bits (used
by the honest parties, the adversary and available to an additional probabilistic
polynomial-time algorithm called the distinguisher), as well as a few other ele-
ments used in defining semantics of formulas over collections of traces [26].

Protocol logic, proof system, cryptographic soundness. The syntax of PCL and the
informal descriptions of the principal predicates are given in [25,39]. Most pro-
tocol proofs use formulas of the form θ[P ]Xφ, which are similar to Hoare triples.
Informally, θ[P ]Xφ means that after actions P are executed by the thread X ,
starting from any state where formula θ is true, formula φ is true about the
resulting state. Formulas θ and φ typically combine assertions about temporal
order of actions (useful for stating authentication) and assertions about knowl-
edge (useful for stating secrecy).

Intuitively, a formula is true about a protocol if, as we increase the security
parameter and look at the resulting probability distributions on traces, the prob-
ability of the formula failing is negligible (i.e., bounded above by the reciprocal
of any polynomial). We may define the meaning of a formula ϕ on a set T of
equi-probable computational traces as a subset T ′ ⊆ T that respects ϕ in some
specific way. For example, an action predicate such as Send selects a set of traces
in which a send occurs (by the indicated agent). More precisely, the semantics
�ϕ� (T,D, ε) of a formula ϕ is inductively defined on the set T of traces, with
distinguisher D and tolerance ε. The distinguisher and tolerance are only used
in the semantics of the secrecy predicates Indist and GoodKeyAgainst, where they
determine whether the distinguisher has more than a negligible chance of distin-
guishing the given value from random or winning an IND-CCA game (standard
in the cryptographic literature), respectively. We say a protocol Q satisfies a
formula ϕ, written Q |= ϕ if, for all adversaries and sufficiently large security
parameters, the probability that ϕ “holds” is asymptotically overwhelming. A
precise inductive semantics is given in [26].

Protocol proofs are written using a formal proof system, which includes ax-
ioms and proof rules that capture essential properties of cryptographic primitives
such as signature and encryption schemes. In addition, the proof system incorpo-
rates axioms and rules for first-order reasoning, temporal reasoning, knowledge,
and a form of inductive invariant rule called the “honesty” rule. The induction
rule is essential for combining facts about one role with inferred actions of other
roles. An axiom about a cryptographic primitive is generally proved sound by a
cryptographic reduction argument that relies on some cryptographic assumption
about that primitive. As a result, the mathematical import of a formal proof in
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PCL may depend on a set of cryptographic assumptions, namely those assump-
tions required to prove soundness of the actual axioms and rules that are used in
the proof. In some cases, there may be different ways to prove a single PCL for-
mula, some relying on one set of cryptographic assumptions, and another proof
relying on another set of cryptographic assumptions.

3 Proof System

Section 3.1 contains new axioms and rules for reasoning about Diffie-Hellman
key exchange. Section 3.2 summarizes the concept of secretive protocol and proof
rules taken from [39] that are used in this paper to establish secrecy properties.
However, we give new soundness proofs for these axioms, based on an exten-
sion of standard multiparty encryption schemes [10] to allow for multiple public
and symmetric encryption schemes keyed using random or Diffie-Hellman based
keys. The associated cryptographic definitions and theorems are presented in
Section 3.3.

3.1 Diffie-Hellman Axioms

In this section we formalize reasoning about how individual threads treat DH ex-
ponentials in an appropriate way. We introduce the predicate DHGood(X,m, x),
where x is a nonce used to compute a DH exponential, to capture the notion
that thread X only uses certain safe actions to compute m from values that
it has generated or received over the network. For example, axioms DH2 and
DH3 say that a message m is DHGood if it has just been received, or if it is
just computed by exponentiating the known group generator g with the nonce
x. Axiom DH4 states that the pair of two DHGood terms is also DHGood.

Note that unlike the symbolic model, it is not well defined in the computa-
tional model to say “m contains x”. That is why our proof systems for secrecy
in the symbolic model [41] and computational model [39] are different - the com-
putational system does induction on actions rather than structure of terms. The
need to look at the structure of m is obviated by the way the reduction to games
like IND-CCA works. The high level intuition is that a consistent simulation of
the protocol can be performed while doing the reduction, if the terms to be sent
to the adversary are “good”.

DH0 DHGood(X, a, x), for a of any atomic type, except nonce, viz. name or key

DH1 New(Y,n) ∧ n �= x ⊃ DHGood(X, n, x)

DH2 [receive m; ]X DHGood(X, m,x)

DH3 [m := expg x; ]X DHGood(X, m, x)

DH4 DHGood(X, m0, x) ∧ DHGood(X, m1, x) [m := m0.m1; ]X DHGood(X, m, x)

DH5 DHGood(X, m, x) [m′ := symenc m, k; ]X DHGood(X, m′, x)

DH6 DHGood(X, m, x) [m′ := hash m; ]X DHGood(X, m′, x)

The formula SendDHGood(X,x) indicates that thread X sent out only “DH-
Good” terms w.r.t. the nonce x. DHSecretive (X,Y, k) means that there exist
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nonces x, y such that threads X,Y respectively generated them, sent out “DH-
Good” terms and X generated the key k from gxy. DHStrongSecretive(X,Y, k)
asserts a stronger condition - that threads X and Y only used each other’s DH
exponentials to generate the shared secret (The predicate Exp(X, gx, y) means
thread X exponentiates gx to the power y). The formula SharedSecret(X,Y, k)
means that the key k satisfies IND-CCA key usability against any thread other
than X or Y , particularly against any adversary. Formally,

SendDHGood(X, x) ≡ ∀m. Send(X, m) ⊃ DHGood(X, m, x)

DHSecretive(X, Y, k) ≡ ∃x, y. New(X, x) ∧ SendDHGood(X, x)∧
New(Y, y) ∧ SendDHGood(Y, y) ∧ KeyGen(X, k, x, gy)

DHStrongSecretive(X, Y, k) ≡ ∃x, y. New(X, x) ∧ SendDHGood(X, x)∧
New(Y, y) ∧ SendDHGood(Y, y) ∧ KeyGen(X, k, x, gy)∧
(Exp(X, gy, x) ⊃ gy = gy) ∧ (Exp(Y, gx, y) ⊃ gx = gx)

SharedSecret(X, Y, k) ≡ ∀Z. GoodKeyAgainst(Z, k) ∨ Z = X ∨ Z = Y

The following axioms hold for the above definition of SendGood:

SDH0 Start(X) ⊃ SendDHGood(X, x)

SDH1 SendDHGood(X, x) [a]X SendDHGood(X, x), where a is not a send action

SDH2 SendDHGood(X, x) [send m; ]X DHGood(X, m,x) ⊃ SendDHGood(X, x)

The following axioms relate the DHStrongSecretive property, which is trace based,
to computational notions of security. The first axiom, which depends on the DDH
(Decisional Diffie-Hellman) assumption and IND-CCA security of the encryption
scheme, states a secrecy property - if threads X and Y are DHStrongSecretive
w.r.t. the key k, then k satisfies IND-CCA key usability. The second axiom, which
depends on the DDH assumption and INT-CTXT (ciphertext integrity [11,33])
security of the encryption scheme, states that with the same DHStrongSecretive
property, if someone decrypts a term with the key k successfully, then it must
have been encrypted with the key k by either X or Y . Both the axioms are
proved sound by cryptographic reductions to the primitive security games.

DH DHStrongSecretive(X, Y, k) ⇒ SharedKey(X, Y, k)

CTXGS DHStrongSecretive(X, Y, k) ∧ SymDec(Z, Esym[k](m), k) ⊃
SymEnc(X, m, k) ∨ SymEnc(Y, m, k)

If the weaker property DHSecretive(X,Y, k) holds then we can establish an axiom
similar to CTXGS, but we have to model the key generation function as a
random oracle and the soundness proof (presented in [42]) is very different. The
intuition behind this requirement is that if the threads do not use each other’s
intended DH exponentials then there could, in general, be related key attacks;
the random oracle obviates this possibility.

CTXG DHSecretive(X, Y, k) ∧ SymDec(Z, Esym[k](m), k) ⊃
SymEnc(X, m, k) ∨ SymEnc(Y, m, k)
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The earlier paper [27] overlooked the subtle difference between the
DHStrongSecretive and DHSecretive predicates. Specifically, in order to prove
the axiom DH sound without the random oracle model, it is necessary to ensure
that both parties use only each other’s DH exponentials to generate keys—a
condition guaranteed by DHStrongSecretive, but not DHSecretive or the variant
considered in [27].

To provide some sense of the soundness proofs, we sketch the proof for the
CTXGS axiom. The axiom is sound if the set (given by the semantics)
�DHStrongSecretive(X,Y, k) ∧ SymDec(Z,Esym[k](m), k) ⊃ SymEnc(X,m, k) ∨
SymEnc(Y,m, k)�(T,D, ε) includes almost all traces in the set T generated by
any probabilistic poly-time adversary A. Assume that this is not the case: Let
E be the event that an honest principal decrypts a ciphertext c with the key k
such that c was not produced by X or Y by encryption with the key k; there
exists an adversaryA who forces E to occur in a non-negligible number of traces.
Using A, we will construct an adversary A′ who breaks DDH, thereby arriving
at a contradiction.

Suppose A′ is given a DDH instance (ga, gb, gc). It has to determine whether
c = ab. Let the DH nonces used by X,Y be x, y respectively. A′ simulates exe-
cution of the protocol to A by using ga, gb as the computational representations
of gx, gy respectively. Whenever a symbolic step (k′ := dhkeygen m,x;) comes
up, A′ behaves in the following manner: since DHStrongSecretive(X,Y, k) holds,
m has to be equal to gb, then k′ is assigned the value gc; Likewise for the ac-
tion (k′ := dhkeygen m, y; ). After the protocol simulation, if the event E has
occurred then output “c = ab”, otherwise output “c �= ab”. The advantage of A′
in winning the DDH game is:

AdvDDH(A′) = Pr[E|c = ab]− Pr[E|c �= ab]

By the assumption about A, the first probability is non-negligible. The second
probability is negligible because the encryption scheme is INT-CTXT secure.
Hence the advantage of A′ in breaking DDH is non-negligible. The SendDHGood
predicate that DHStrongSecretive implies, ensures that the protocol simulation
can be carried out consistently. Intuitively, this is ensured as long as the protocol
simulator has to manipulate received messages, gx, gy (but not x, y directly) and
key messages with gxy to construct messages to be sent out. Axioms DH0− 6
are used to formally establish that the protocol has this property.

3.2 Secretive Protocols

In this section, we adapt the concept of secretive protocol, a trace-based condition
implying computational secrecy [40,39], to permit keys generated from DHKE.
While the proof rules remain identical, the soundness proofs are significantly
different and involve a reduction to a multi-scheme IND-CCA game that we in-
troduce in Section 3.3 of this paper. This definition allows the use of multiple
encryption schemes keyed using randomly generated keys or keys output from
a DHKE. A secretive protocol with respect to a nonce s and set of keys K is
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a protocol which generates secretive traces, defined below, with overwhelming
probability.

Definition 1 (Secretive Trace). A trace is a secretive trace with respect to
s and K if the following properties hold for every thread belonging to honest
principals:

– a thread which generates nonce s, ensures that it is encrypted with a key k
in the set K in any message sent out.

– whenever a thread decrypts a message with a key k in K, which was produced
by encryption with key k by an honest party, and parses the decryption, it
ensures that the results are encrypted with some key k′ with k′ ∈ K in any
message sent out.

To account for DH keys in the set K, we wish to establish that DH keys are
used in a “safe” manner by the protocol, formally captured by the predicate
DHStrongSecretive. Following [39], the predicate Good(X,m, s,K) asserts that
the thread X constructed the term m in accordance with the rules allowing a
secretive protocol with respect to nonce s and set of keys K to send out m.
The formula SendGood(X, s,K) asserts that all messages that thread X sends
out are good and Secretive(s,K) asserts that all honest threads only send out
good messages. The axioms characterizing these predicates are same as in [39]
and are omitted here. The induction rule INDGOOD states that if all honest
threads executing some basic sequence (i.e. a fragment of a role pausing before
the next receive, denoted P ) in the protocol (denoted Q) locally construct good
messages to be sent out, given that they earlier also did so, then we can conclude
Secretive(s,K). A set of basic sequences (BS) of a role is any partition of the
sequence of actions in a role such that if any element sequence has a receive
then its only at its begining.

INDGOOD ∀ρ ∈ Q.∀P ∈ BS(ρ).

SendGood(X, s,K) [P ]X Φ ⊃ SendGood(X, s,K)
Q � Φ ⊃ Secretive(s,K)

(∗)
(∗): [P ]X does not capture free variables in Φ, K, s,

and Φ is a prefix closed trace formula.

Now we relate the concept of a secretive protocol, which is trace-based, to
complexity theoretic notions of security. We define a level-0 key to be either
a pre-shared secret, a public key or a DH Key. To apply the results here the
DHStrongSecretive property has to hold for a DH key k for some pair of honest
threads. A nonce is established to be a level-1 key when the protocol is proved
to be a secretive protocol with respect to the nonce and a set of level-0 keys.
This concept is extended further to define level-2 keys and so on.

For a set of keys K of levels ≤ 1, C(K) is the union of all the level-0 keys in K
and the union of all the level-0 keys protecting the level-1 keys in K. The formula
InInitSet(X, s,K) asserts X is either the generator of nonce s or a possessor of
some key in C(K). GoodInit(s,K) asserts that all such threads belong to honest
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principals. The formula GoodKeyFor lets us state that secrets established by
secretive protocols, where possibly the secrets are also used as keys, are good
keys against everybody except the set of principals who either generated the
secret or are in possession of a key protecting the secret. For level-0 keys which
we want to claim as being possessed only by honest principals we use the formula
GoodKey. For protocols employing an IND-CCA secure encryption scheme, the
following axiom is sound:

GK Secretive(s,K) ∧ GoodInit(s,K) ⇒ GoodKeyFor(s,K)

If the encryption scheme is both IND-CCA and INT-CTXT secure then following
axioms are sound:

CTX0 GoodKey(k) ∧ SymDec(Z, Esym[k](m), k) ⊃
∃X. SymEnc(X, m, k), for level-0 key k.

CTXL Secretive(s,K) ∧ GoodInit(s,K) ∧ SymDec(Z, Esym[s](m), s) ⊃
∃X. SymEnc(X, m, s)

The following axiom states that if a protocol is secretive with respect to s and
K, then the only keys, under which a message containing s openly is found
encrypted in a “good” message, are in the set K:

SDEC Secretive(s,K) ∧ SymDec(X, Esym[k](m), k)∧
Good(X, Esym[k](m), s,K) ∧ ContainsOpen(m, s) ⊃ k ∈ K

The predicate ContainsOpen(m, a) asserts that a can be obtained from m by a
series of unpairings only.

The soundness theorem is proved by showing that every axiom is a valid
formula and that all proof rules preserve validity. The soundness proofs for the
four axioms above are sketched in [42]; they proceed by reduction to the multiple
encryption scheme game defined in the next section.

Theorem 1 (Soundness). ∀Q, ϕ. if Q 
 ϕ then Q � ϕ.

3.3 Joint Security of Multiple Encryption Schemes

A public-key encryption scheme ES is a triplet (KG, E ,D) such that KG(I) gen-
erates a pair of keys (ek, dk), where I is some initial information, ek is the public
key and dk is the private key, and E and D are the encryption and decryption
functions respectively. In [10], Bellare, Boldyreva and Micali analyzed the secu-
rity of a single public-key encryption scheme in a setting where more than one
independent keys are used. The security of an encryption scheme is defined in
terms of a game between an adversary and a challenger. In the chosen plain-
text (IND-CPA) setting, the adversary has access to a left-or-right encryption
oracle Eek(LR(·, ·, b)), which takes a pair of equal length messages m0,m1 from
the adversary and returns the encryption of mb with the key ek, the bit b be-
ing unknown to the adversary. In the chosen ciphertext (IND-CCA) setting, the
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adversary has, in addition, access to a decryption oracle Ddk(·), with the caveat
that it cannot query for the decryption of a ciphertext it received as an answer
to a previous encryption oracle query.

In this section, we extend their definition to settings involving multiple en-
cryption schemes. Consider a sequence of n, not necessarily distinct, encryption
schemes 〈ESi | 1 ≤ i ≤ n〉, possibly consisting of public-key and symmetric-key
encryption schemes with either pre-shared keys or setup by a Diffie-Hellman
exchange. For notational uniformity we define eki = dki for symmetric key
schemes, both equal to the secret key. For Diffie-Hellman schemes, eki = dki =
keygen(gxy) where gx and gy are the public DH values. Let DH be the set of
Diffie-Hellman public values (gx, gy) for those keys which are generated by a DH
exchange and PK be the set of public-keys among the eki’s. In the multi-scheme
setting we let the adversary have access to n encryption and decryption oracles
with their corresponding public informations (PK and DH), all using the same
challenger bit b for encryption. Security in this setting is defined below.

Definition 2 (Multi Scheme Indistinguishability). The experiment MS-
IND-CCA, for adversary A, is defined as:

Experiment ExpMS-IND-CCA
〈ES〉,I (A, b)

For i = 1, · · · , n do (eki, dki) ← KGi(I) EndFor

d ← A
E1

ek1
(LR(·,·,b)),...,En

ekn
(LR(·,·,b)),D1

dk1
(·),...,Dn

dkn
(·)

(I, PK,DH)

Return d

A query to any LR oracle consists of two messages of equal length and
that for each i = 1, . . . , n adversary A does not query Ddki(·) on an output
of E i

eki
(LR(·, ·, b)). The advantage of A is defined as:

AdvMS-IND-CCA
〈ES〉,I (A) = Pr[ExpMS-IND-CCA

〈ES〉,I (A, 0) = 0] − Pr[ExpMS-IND-CCA
〈ES〉,I (A, 1) = 0]

The sequence of encryption schemes 〈ESi |1 ≤ i ≤ n〉 is MS-IND-CCA secure
if the advantage of any probabilistic poly-time adversary A is negligible in the
security parameter.

The definition of MS-IND-CPA is similar, with the decryption oracles dropped.
We prove that individual security of the encryption schemes implies joint security.

Theorem 2 (IND-CPA(CCA) → MS-IND-CPA(CCA)). If encryption
schemes ES1, ES2, . . . , ESn are individually IND-CPA(CCA)secure, then the
sequence of schemes 〈ES1, ES2, . . . , ESn〉 is MS-IND-CPA(CCA) secure.

4 Kerberos with DHINIT

In this section, we formally model Kerberos with DHINIT and prove that it
satisfies computational authentication and secrecy properties under standard
assumptions about the cryptographic primitives. Authentication proofs for each
stage of Kerberos rely on the secrecy guarantees of keys set up in earlier stages,
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while the secrecy proofs similarly rely on previously proved authentication guar-
antees, an alternation first pointed out in [20]. Since the later stages of DHINIT
are the same as those of Basic Kerberos [35], we obtain proofs for the com-
plete protocol by appealing to security proofs and composition theorems in a
compatible setting [39].

We find, perhaps surprisingly, that the KAS is not authenticated to the client
after the first stage and suggest a fix to the protocol to avoid this problem.
Our counterexample is similar in flavor to the attack found on Kerberos V5
with public-key initialization by [19]. In addition, we use an axiom that relies on
random oracles to complete the proof of the security properties. We also develop
an alternative proof, using only axioms that hold in the standard model, for a
variant of the protocol that requires the KAS to sign both the Diffie-Hellman
exponentials. We leave open whether this discrepancy arises from a security flaw
in DHINIT or a limitation of our current proof.

4.1 Modelling the Protocol

The Kerberos protocol involves four roles—the Client, the Kerberos Authenti-
cation Server (KAS), the Ticket Granting Server (TGS), and the application
server. The KAS and the TGS share a long term symmetric key as do the TGS
and the application server. Mutual authentication and key establishment be-
tween the client and the application server is achieved by using this chain of
trust. We write ktype

X,Y to refer to long term symmetric keys, where X and Y
are the principals sharing the key and type indicates their roles, e.g. t → k for
TGS and KAS and s → t for application server and TGS. Kerberos runs in
three stages with the client role participating in all three. The client program
for the first stage and the KAS program are given below but the complete formal
description of the protocol is given in [42].

Client = (C, K̂, T̂ , Ŝ, t) [

new n1; new ñ1;

new x; gx := expg x;

chksum := hash Ĉ.T̂ .n1;

sigc := sign “Auth”.chksum.ñ1.gx, skC ;

send CertC .sigc.Ĉ.T̂ .n1;

receive CertK .sigk.Ĉ.tgt.enckc;

verify sigk, “DHKey”.gy.ñ1, vkK ;

k := dhkeygen gy, x;

textkc := symdec enckc, k;

match textkc as AKey.n1.T̂ ;

· · · stage boundary · · ·
]C

KAS = (K) [

receive CertC .sigc.Ĉ.T̂ .n1;

verify sigc, “Auth”.chksum.ñ1.gx, vkC ;

chk := hash Ĉ.T̂ .n1;

match chk as chksum;

new AKey;

new y; gy := expg y;

k := dhkeygen gx, y;

sigk := sign “DHKey”.gy.ñ1, skK ;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , k;

send CertK .sigk.Ĉ.tgt.enckc;

]K

The client C and KAS K carry out a Diffie-Hellman key exchange protocol
authenticated by digital signatures to set up a key AKey to be used as a session
key between the client and the TGS in the next stage. (In Basic Kerberos, this
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phase is simpler; it relies on a preshared key between C and K.) The first few
actions of the client are explained as follows: it generates three random numbers
n1, ñ1, x using new actions. It then generates the Diffie-Hellman exponential gx
and sends a message to the KAS K containing its signature over the exponential
and a few other fields including the identities of the TGS T̂ and itself. In the
second stage, the client gets a new session key (SKey - Service Key) and a
service ticket (st) to converse with the application server S which takes place
in the third stage. The control flow of Kerberos exhibits a staged architecture
where once one stage has been completed successfully, the subsequent stages can
be performed multiple times or aborted and started over for handling errors.

4.2 Security Properties and Proofs

Table 1 lists the authentication and secrecy properties of Kerberos with DHINIT
that we want to prove. The authentication properties are of the form that a mes-
sage of a certain format was indeed sent by some thread of the expected princi-
pal. The secrecy properties state that a putative secret is a good key for certain
principals. For example, AUTHclient

kas states that when C finishes executing the
Client role, some thread of K̂ indeed sent the expected message with probabil-
ity asymptotically close to one; SECclient

akey states that the authorization key is
“good” after execution of the Client role by C. The other security properties are
analogous. More specifically, GoodKeyAgainst(X, k) [27] intuitively means that if
k were used instead of a random key to key an IND-CCA encryption scheme,
then the advantage of X in the corresponding security game would be negligible.
The motivation for using this definition is that stronger conditions such as key
indistinguishability fail to hold as soon as the key is used; key indistinguishability
is also not necessary to establish reasonable security properties of practical pro-
tocols (see [27] for further discussion). We abbreviate the honesty assumptions
by defining Hon(X̂1, X̂2, · · · , X̂n) ≡ Honest(X̂1)∧Honest(X̂2)∧ · · ·Honest(X̂n).

The following protocol execution demonstrates that AUTHclient
kas does not

hold after the first stage of the client role.

C −→ K(I) : CertC .SIG[skC ](“Auth”.HASH(Ĉ.T̂ .n1).ñ1.gx).Ĉ.T̂ .n1

I −→ K : CertI .SIG[skI ](“Auth”.HASH(Î.T̂ .n1).ñ1.gx).Î.T̂ .n1

K −→ I −→ C : CertK .SIG[skK ](“DHKey”.gy.ñ1).

Esym[kt→k
T,K ](AKey.Î).Esym[k](AKey.n1.T̂ )

C cannot parse the incorrect tgt : Esym[kt→k
T,K ](AKey.Î), as it does not have

the key kt→k
T,K . Consequently, after interacting with the KAS the client is not

guaranteed that the KAS thinks it interacted with the client. This problem can
be easily fixed by requiring the KAS to include the client’s identity inside the
signature. However, the subsequent interaction with the TGS does ensure that
the KAS indeed intended communication with the given client.

Theorem 3 (KAS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
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Table 1. DHINIT Security Properties

SECk : Hon(Ĉ, K̂) ⊃ (GoodKeyAgainst(X, k) ∨ X̂ ∈ {Ĉ, K̂})
SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (GoodKeyAgainst(X, AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})
SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X, SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), CertK .SIG[skK ](“DHKey”.gy.ñ1).Esym[kt→k
T,K ](AKey.Ĉ).

Esym[k](AKey.n1.T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
k : [Client]C SECk SECkas

k : [KAS]K SECk

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂)

SECtgs
akey : [TGS]T SECakey ⊃ ∃n1, k, gy, ñ1. AUTHkas

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂ )

SEC
tgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

intended KAS indeed sent the expected response assuming that both the client
and the KAS are honest, the signature scheme is CMA-secure, the encryption
scheme is IND-CCA and INT-CTXT secure, and the Decisional Diffie-Hellman
(DDH) assumption holds. A similar result also holds for a principal executing
the TGS role. Formally, KERBEROS 
 AUTHclient

kas , AUTHtgs
kas.

The axiomatic proof is in [42]. The key steps of the proof are the following: (a)
the client C verifies the KAS K’s signature on its Diffie-Hellman public value
(gy) and the client’s nonce (ñ1) and infers using the SIG axiom that the KAS did
produce the signature; (b) a program invariant (proved using the honesty rule
HON) is used to infer that the KAS observed the client’s nonce and produced
the DH exponential gy by exponentiating some nonce y; (c) the next few proof
steps establish that the Diffie-Hellman key k can be used as an encryption key
only by C and K by proving that DHSecretive(X,Y, k) holds and then using the
axiom CTXG; note that this step requires the use of the random oracle model
since the soundness of CTXG depends on that; (d) since the client decrypted
the ciphertext Esym[k](AKey.n1.T̂ ) and the client did not produce it itself, we
therefore infer that it must have been produced by the KAS. At this point, we
are assured that the KAS agrees on T̂ , gx, n and AKey. However, it still does not
agree on the identity of the client. It turns out, as we will see in Theorem 4, that
this partial authentication is sufficient to prove the secrecy of the authentication
key (AKey) from the client’s perspective. Now, stronger authentication proper-
ties are proved from the second stage of the protocol once the client decrypts
the message Esym[AKey] (SKey.n2.Ŝ). We infer that some thread of Ĉ, K̂ or
T̂ must have produced the encryption because of ciphertext integrity. Using an
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invariant to reason about the special form of this ciphertext, we conclude that
the encrypting thread must have received a tgt containing AKey and meant for
itself. Since we have proved the secrecy of AKey already under the keys k and
kt→k

T,K , we infer that this tgt must be keyed with one of k and kt→k
T,K the holders

of which—Ĉ, T̂ and K̂—are honest. This reasoning is formally captured in the
axiom SDEC. Now we use the honesty rule to infer that if an honest thread
encrypted this message then it must have generated AKey; we know that thread
is K. At this point, we conclude that the TGS agrees on the identity of the KAS.
The proof that the TGS agrees on the identity of the client is similar.

Theorem 4 (Authentication Key Secrecy). On execution of the Client
role by a principal, the Authentication Key is guaranteed to be good, in the sense
of IND-CCA security, assuming that the client, the KAS and the TGS are all
honest, the signature scheme is CMA-secure, the encryption scheme is IND-
CCA and INT-CTXT secure, and the DDH assumption holds. Similar results
hold for principals executing the KAS and TGS roles. Formally, KERBEROS 

SECclient

akey , SECkas
akey , SEC

tgs
akey.

The axiomatic proof is in [42]. The main idea is to prove by induction over the
steps of the protocol that AKey occurs on the network only as an encryption
key or as a payload protected by encryption with the Diffie-Hellman key k or
the pre-shared key kt→k

T,K . Formally, this step is carried out using the secrecy
induction rule INDGOOD. We therefore infer that AKey is good for use as an
encryption key using the axiom GK.

Since AKey is protected by both the DH key k and the symmetric key kt→k
T,K ,

therefore, we had to formulate a reduction to a multi party IND-CCA game
where some of the keys can be symmetric, with either pre-shared keys or those
generated by DHKE in section 3.3. Although not required for this paper, we
considered the further generalization of also considering public keys, since that
didn’t involve additional innovation.

We prove additional authentication and secrecy properties about the later
stages of the protocol. Since the later stages of DHINIT are the same as those
in basic Kerberos, we leverage the composition theorems in prior work to reuse
existing proofs [39].

Theorem 5 (TGS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended TGS indeed sent the expected response assuming that the client, the
KAS and the TGS are all honest, the signature scheme is CMA-secure, the en-
cryption scheme is IND-CCA and INT-CTXT secure, and the DDH assumption
holds. Similar result holds for a principal executing the Server role. Formally,
KERBEROS 
 AUTHclient

tgs , AUTHserver
tgs .

Theorem 6 (Service Key Secrecy). On execution of the Client role by a
principal, the Service Key is guaranteed to be good, in the sense of IND-CCA
security, assuming that the client, the KAS, the TGS and the application server
are all honest, the signature scheme is CMA-secure, the encryption scheme is
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Table 2. IKEv2 Security Properties

SEC
init
sk : [Init]A Hon(Â, B̂) ⊃ (GoodKeyAgainst(X, ski) ∨ X̂ ∈ {Â, B̂})∧

(GoodKeyAgainst(X, skr) ∨ X̂ ∈ {Â, B̂})
SECresp

sk : [Resp]B Hon(Â, B̂) ⊃ (GoodKeyAgainst(X, ski) ∨ X̂ ∈ {Â, B̂})∧
(GoodKeyAgainst(X, skr) ∨ X̂ ∈ {Â, B̂})

AUTHinit
resp : [Init]A ∃η. B = (B̂, η) ∧ Receive(B, “I”.infoi1.gx.n) <

Send(B, “R”.infoi2.gy.m) < Receive(B, enci) < Send(B, encr)

AUTH
resp
init : [Resp]B ∃η. A = (Â, η) ∧ Send(A, “I”.infoi1.gx.n) <

Receive(A, “R”.infoi2.gy.m) < Send(A, enci)

IND-CCA and INT-CTXT secure, and the DDH assumption holds. Similar re-
sult holds for a principal executing the TGS role. Formally, KERBEROS 

SECclient

skey , SECtgs
skey .

5 IKEv2

IKEv2 [34] is a complex protocol used to negotiate a security association at the
beginning of an IPSec session. We consider the mode in which Diffie-Hellman ex-
ponentials are never reused and signatures are used for authentication. We for-
mally model this mode of IKEv2 and provide the first formal proof that it satis-
fies computational authentication and security guarantees in the standard model;
full details are in [42]. A significant difference from DHINIT is that the IKEv2
proofs do not require the random oracle model. At a high-level, this difference
arises because in IKEv2 honest parties authenticate their own as well as their
peer’s Diffie-Hellman exponential using signatures. This enables us to prove the
DHStrongSecretive(X,Y, k) property and use the CTXGS axiom in our proofs.
Recall that in the DHINIT proofs we could only prove the weaker
DHSecretive(X,Y, k) property and hence had to use the CTXG axiom, which is
sound only in the randomoraclemodel. However, the key derivation function needs
to satisfy certain properties (described in [42] based on issues identified in [21]).

The security properties of IKEv2, listed in Table 2, state that on completion
of a thread executing one of the roles, the shared keys ski and skr satisfy the
GoodKey property, i.e. they are suitable for use as encryption keys for an IND-
CCA scheme. The authentication properties state that on completion of a thread
executing either role, it is guaranteed with overwhelming probability that the
intended peer indeed received and sent the corresponding messages.

Theorem 7 (IKEv2 Key Secrecy). On execution of the Init role by a princi-
pal, the keys ski, skr are guaranteed to be good, in the sense of IND-CCA security,
assuming that the Iniatiator and the Responder are both honest, the signature
scheme is CMA-secure, the encryption scheme is IND-CCA and INT-CTXT
secure, and the DDH assumption holds. Similar result holds for a principal exe-
cuting the Resp role. Formally, IKEv2 
 SECinit

sk , SECresp
sk .



Formal Proofs of Cryptographic Security of Diffie-Hellman-Based Protocols 327

Theorem 8 (IKEv2 Authentication). On execution of the Init role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended Responder indeed received the intended messages and sent the expected
responses assuming that both the Initiator and the Responder are honest, the
signature scheme is CMA-secure, the encryption scheme is IND-CCA and INT-
CTXT secure, and the DDH assumption holds. A similar result also holds for a
principal executing the Resp role. Formally, IKEv2 
 AUTHinit

resp, AUTH
resp
init .

6 Conclusion

We develop axioms and rules for proving authentication and secrecy properties
of protocols that use Diffie-Hellman key exchange in combination with other
mechanisms. The resulting reasoning method, which reflects intuitive informal
direct arguments, is proved computationally sound by showing the existence of
conventional cryptographic reductions.

We prove security of Kerberos with DHINIT, as defined in the RFC [43],
in the random oracle model, and prove security in the standard model for a
modification in which the KAS signs both the Diffie-Hellman exponentials. We
also discover that the KAS is not authenticated to the client after the first stage
and suggest a fix to the protocol to avoid this problem. While IKEv2 [34] provides
for several cryptographic options, we focus on the mode in which Diffie-Hellman
exponentials are never reused and signatures are used for authentication. We
prove that IKEv2 satisfies computational authentication and secrecy guarantees
in the standard model. Intuitively, we do not need the random oracle assumption
because honest IKEv2 parties authenticate both their own and their peer’s Diffie-
Hellman exponentials, which we believe is a prudent engineering practice.
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ments and suggestions.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)

2. Adão, P., Bana, G., Scedrov, A.: Computational and information-theoretic sound-
ness and completeness of formal encryption. In: Proc. of the 18th IEEE Computer
Security Foudnations Workshop, pp. 170–184 (2005)

3. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just Fast Keying: Key agreement in a hostile internet. ACM Trans.
Inf. Syst. Security 7(4), 1–30 (2004)

4. Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Cryptograph-
ically sound security proofs for basic and public-key Kerberos. In: Proceedings of
11th European Symposium on Research in Computer Security (to appear, 2006)

5. Backes, M., Pfitzmann, B.: Limits of the cryptographic realization of XOR.
In: Proc. of the 10th European Symposium on Research in Computer Security,
Springer, Heidelberg (2005)



328 A. Roy, A. Datta, and J.C. Mitchell

6. Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic secrecy. In: Proc.
IEEE Symposium on Security and Privacy, pp. 171–182. IEEE Computer Society
Press, Los Alamitos (2005)

7. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic
library. Cryptology ePrint Archive, Report 2003/015 (2003)

8. Backes, M., Pfitzmann, B., Waidner, M.: Limits of the reactive simulatability/UC
of Dolev-Yao models with hashes. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.)
ESORICS 2006. LNCS, vol. 4189, pp. 404–423. Springer, Heidelberg (2006)

9. Bella, G., Paulson, L.C.: Kerberos version IV: Inductive analysis of the secrecy
goals. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ES-
ORICS 1998. LNCS, vol. 1485, pp. 361–375. Springer, Heidelberg (1998)

10. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

11. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

13. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

14. Boldyreva, A., Kumar, V.: Provable-security analysis of authenticated encryption
in Kerberos. In: Proc. IEEE Security and Privacy (2007)

15. Bresson, E., Lakhnech, Y., Mazare, L., Warinschi, B.: A Generalization of
DDH with Applications to Protocol Analysis and Computational Soundness. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (2007)

16. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: Verifying confidentiality and
authentication in Kerberos. In: ISSS, vol. 5, pp. 1–24 (2003)

17. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

18. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

19. Cervesato, I., Jaggard, A., Scedrov, A., Tsay, J.-K., Walstad, C.: Breaking and
fixing public-key Kerberos. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS,
vol. 4435, pp. 167–181. Springer, Heidelberg (2008)

20. Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for
reasoning about key distribution protocols. In: CSFW, pp. 48–61 (2005)

21. Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: Key derivation and
randomness extraction. Cryptology ePrint Archive, Report 2005/061 (2005),
http://eprint.iacr.org/

22. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

23. Datta, A., Derek, A., Mitchell, J., Ramanathan, A., Scedrov, A.: Games and the
impossibility of realizable ideal functionality. In: TCC, pp. 360–379 (2006)

24. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and composi-
tional logic for security protocols. Journal of Computer Security 13, 423–482 (2005)

25. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol Composition Logic (PCL).
Electronic Notes in Theoretical Computer Science 172, 311–358 (2007)

http://eprint.iacr.org/


Formal Proofs of Cryptographic Security of Diffie-Hellman-Based Protocols 329

26. Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic
polynomial-time semantics for a protocol security logic. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 16–29. Springer, Heidelberg (2005)

27. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound compo-
sitional logic for key exchange protocols. In: Proceedings of 19th IEEE Computer
Security Foundations Workshop, pp. 321–334. IEEE Computer Society Press, Los
Alamitos (2006)

28. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

29. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular cor-
rectness proof of IEEE 802.11i and TLS. In: ACM Conference on Computer and
Communications Security, pp. 2–15 (2005)

30. Herzog, J.: The Diffie-Hellman key-agreement scheme in the strand-space model.
In: Proceedings of 16th IEEE Computer Security Foundations Workshop, pp. 234–
247. IEEE Computer Society Press, Los Alamitos (2003)

31. Herzog, J.: Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, MIT (2004)

32. Janvier, R., Mazare, L., Lakhnech, Y.: Completing the picture: Soundness of formal
encryption in the presence of active adversaries. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, pp. 172–185. Springer, Heidelberg (2005)

33. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

34. Kaufman, C.: Internet Key Exchange (IKEv2) Protocol, RFC (2005)
35. Kohl, J., Neuman, B.: The kerberos network authentication service, RFC (1991)
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Abstract. Anonymity with identity escrow attempts to allow users of
a service to remain anonymous, while providing the possibility that the
service owner can break the anonymity if the service is misused. We
introduce a new protocol in which the user’s identity is distributed among
several token providers. Anonymity is assured provided at least one of
the token providers is honest (and the misuse has not occurred). We
analyse the protocol in the applied π-calculus.

1 Introduction

With the increasing sophistication and adoption of communication systems in
businesses and personal use, privacy and anonymity has become a concern among
users [2,7,1]. Service usages (such as usage of mobile phones, internet, financial
payments) are routinely logged, and those logs will allow organisations to build
sophisticated profiles of customers and their preferences and associates. Users
fear that this information could be abused. But while users may wish for complete
privacy and anonymity, the failure of digital cash to achieve widespread adoption
shows that society as a whole also requires security and accountability. Digital
cash failed because it would allow criminal behaviour to go undetected. An
appropriate balance between unrestricted anonymity and totalitarian security
needs to be found, and this is likely to be a major theme in security research for
some years.

Identity escrow attempts to provide such a balance for some applications. It al-
lows users to use services anonymously while guaranteeing that service providers
can break the anonymity in special circumstances; for example, to assist in a
criminal investigation. If Alice wishes to use the service from provider S, she
first puts her identity in escrow with a escrow agent T , from whom she obtains
a token. She presents the token to S as evidence that she has placed her identity
in escrow. S allows her to use the service anonymously. In the event of service
misuse, S can apply to T to obtain the identity of the user corresponding to the
token.

Identity escrow systems were first introduced by Kilian and Petrank in [9],
which was motivated by the ideas from key escrow encryption systems (e.g.
[10,13]). Group signature schemes and anonymous credential systems are two
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mechanisms which can be used to offer identity escrow [4,5,6,8]. In both cases,
a single agent (known as group manager or issuer) holds the escrowed identity.
Clearly, the system breaks down if the escrow agent is dishonest, and reveals
Alice’s identity even if the agreed conditions for doing so have not been met. To
address this problem Marshall and Molina-Jiminez [12] proposed a protocol in
which the escrow agent is implemented as a set of agents called token providers.
Neither S nor any token provider are supposed to know the identity behind
an escrowed certificate, but if it is proved necessary, all token providers can
cooperate in order to reveal it. This aims to provide a much stronger security
property than group signatures or credential systems. Alice can choose the set
of token providers she uses, and the idea is that her anonymity is preserved
provided at least one of them is honest. Another advantage of Marshall and
Molina-Jiminez’s scheme is that it is based on standard cryptographic primitives
(digital signatures and public-key encryption), which are better known than zero-
knowledge proofs and more widely implemented in APIs.

In [14], we showed some fundamental flaws in Marshall and Molina-Jiminez’s
protocol, and presented a new protocol which fixes the problems. In this paper,
we introduce a new protocol which is simpler and more efficient than the protocol
in [14]: it has half the message complexity of the previous protocol and replaces
half of the public key encryptions by symmetric key encryptions.

Our scheme offers several advantages over identity escrow schemes mentioned
above. The esrowed identity is distributed among several token providers chosen
by the user. Moreover, the user’s list (except for the last token provider in the
list) is not revealed when the user presents her token to the service provider.
Lastly, our scheme uses standard cryptographic primitives, which can be chosen
in a way as not to rely on esoteric hardness assumptions such as the strong RSA
assumption or the Lysyanskaya, Rivest, Sahai, and Wolf (LRSW) assumption
[11]. We model and analyze our protocol in the applied π-calculus, and show
that it satisfies the anonymity property.

The remainder of the paper is structured as follows. In section 2, we present
preliminaries, including our protocol from [14]. Section 3 presents the applied pi
calculus model of the protocol, and section 4 details our analysis of the anonymity
property. We conclude in section 5. Appendix A briefly summarises the applied
pi calculus, for the benefit of readers not familiar with it. Appendix B contains
the proofs of lemmas we rely upon for our analysis.

2 Preliminaries

2.1 Notation

The following labeling conventions are used throughout this paper:

– S denotes an anonymous service provider.
– T = {T1, T2, . . . Tn} is a set of identity token providers.
– Φi is an identity token issued by Tai . We also write ΦA for the identity token

obtained by A by using the protocol.
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– A,B are service users.
– KA is A’s public key. {m}K is the message m deterministically encrypted

with the public key K.
– [m]K− is the message m signed with a signing key K−.

2.2 The Protocol

The protocol consists of two parts. First, there is a sign-up protocol, which is
the main protocol that is executed by A to receive a token from the members
of T . The token permits A to use the service from S. Next, there is a complaint
resolution protocol, which is executed by S upon a misuse of its service, in order
to reveal the identity of the offending anonymous user.

Sign-up. Alice has a long-term certified public key KA. A creates a temporary
service public key K[A] which she will use to identify herself to S.

Alice starts by building up an onion Φn. At the end of this process (actions
1, 2 below), the onion consists of the service key K[A] in its centre, wrapped
with encryptions and signatures by the token providers. This is then paired with
Alice’s identity A, and by engaging in the protocol with token providers, it is
wrapped again by encryptions and signatures of the token providers. The formal
definition follows; an illustration in the case n = 4 is given in Figure 1.
A choses a sequence of token providers Ta1 , Ta2 , . . . , Tan from T (possibly with

duplications) and creates the following term:

1) Φ1 = { InitITKReq,K[A], Ka1 }KTa1

It is an encryption of a tag InitITKReq, public part of A’s service key K[A]

and the symmetric key Ka1 by Ta1 ’s public key, where Ka1 is freshly generated by
A. The goal of the protocol is to have the key K[A] associated with A’s identity
token in a way that does not reveal this link even if all but one Tai are dishonest.

Next A creates further terms from Φ1:

2) for i = 2 to n− 1 : Φi = { ITKReq, Φi−1, Kai }KTai

By the end of the sequence of encryptions (2) (n − 2 times), A will have
obtained the token Φn−1:

{ ITKReq, { . . .
{ ITKReq, {InitITKReq,K[A], Ka1}KTa1

, Ka2}KTa2

. . . }KTan−2
, Kan−1}KTan−1

The token Φn−1 serves as a disguise of the service key K[A]. The symmetric
keys Kai generated by A in the above steps are used in order to randomise the
ciphertexts and to encrypt messages from token providers in later stages.

Next, A signs the token Φn−1 and sends it to Tan , and then contacts Tan−1 ,
Tan−2, . . . , Ta1 anonymously as shown in Steps 3, 4, 3a, 4a. They reverse the
sequence of encryptions, and at the same time build up the identity token Φ̃n−1.
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The notation A |−→ B means that A anonymously sends a message to B. In this
case, B does not know A’s identity. Similarly, A −→| B means that B receives a
message anonymously, from A; A does not know B’s identity.

3) A |−→ Tan : { [ InitITKSig, Φn−1, A ]K−
A
}KTan

4) Tan −→| A : Φ̃1

where Φ̃1 = [ { [ InitITKSig, Φn−1, A ]K−
A
}KTan

, Φn−1 ]K−
Tan

For i = 1 to n− 2:

∗

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3a) A |−→ Tan−i : { ITKSig, Φ̃i, Kan−i
}KTan−i

where for i > 1 Φ̃i = [ { Φ̃i−1, Kan−i+1
}KTan−i+1

, Φn−i ]K−
Tan+1−i

4a) Tan−i −→| A : { [ { Φ̃i, Kan−i
}KTan−i

, Φn−i−1 ]K−
Tan−i

}Kan−i

After step 3a, before sending out a response, the token provider Tan−i checks
that the session key Kan−i

supplied in the request matches the one embedded
in Φn−i (cf. step 2 above). The same rule applies to Ta1 at step 5. In addition,
both token providers also check that Φ̃i contained in the request was signed by
a token provider.

5) A |−→ Ta1 : { ITKSig, Φ̃n−1, Ka1}KTa1

6) Ta1 −→| A : { Φ̃A }Ka1 ,
where Φ̃A = [ { Φ̃n−1, Ka1 }KTa1

,K[A] ]K−
Ta1

Upon reaching step 6, A has the following identity token:

Φ̃A = [ { . . . [ {Φ̃1, Kan−1
}KTan−1

, Φn−2 ]K−
Tan−1

. . . Ka1}KTa1
,K[A] ]K−

Ta1

The token Φ̃A associates the service key K[A] with A. He presents the token to
S when requesting its service.

7) A |−→ S : { Φ̃A, K[A] }KS

S checks that the token is signed by some token provider and the key K[A] is
embedded in it. In case of service misuse the token may be delayered to reveal
the identity of a user bound to it via the complaint resolution protocol.

Complaint Resolution. We assume that some misuse evidence Ψ̃K[A] is
uniquely associated with A’s service key K[A] and the service provider S. It
must be verifiable by each token provider (or endorsed by a third party accepted
by all token providers) and not forgeable by S.

The protocol is given as follows. As before, an illustration is given for the case
n = 4 in Figure 2.
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Alice T1 T2 T3 T4

[ InitITKSig, Φ3, A ]
K−

A

�Φ1 = [ { [ InitITKSig, Φ3, A ]
K−

A
}KT4

, Φ3 ]
K−

T4

ITKSig, �Φ1, K3

{�Φ2}K3 , where �Φ2 = [ { �Φ1, K3}KT3
, Φ2 ]

K−
T3

ITKSig, �Φ2, K2

{�Φ3}K2 , where �Φ3 = [ { �Φ2, K2}KT2
, Φ1 ]

K−
T2

ITKSig, �Φ3, K1

{�ΦA}K1 , where �ΦA = [ { �Φ3, K1}KT1
, K[A] ]

K−
T1

Fig. 1. Illustration of the sign-up protocol in the case n = 4. Messages from A are
encrypted with the public key of the receiver (this encryption is not shown).

1) S −→ Ta1 : { Reveal, Φ̃A, Ψ̃K[A] , S }KTa1

2) Ta1 −→ S : { [Φ̃n−1, Ka1 , Ψ̃K[A] ]K−
Ta1

}KS

For i = 1 to n− 2:

∗

⎧
⎪⎪⎨

⎪⎪⎩

3a) S −→ Tai+1 : { Reveal, ((Φ̃n−i, Kai), . . . , (Φ̃n−1, Ka1), Φ̃A),
Ψ̃K[A] , S }KTai+1

4a) Tai+1 −→ S : { [Φ̃n−i−1, Kai+1 , Ψ̃K[A] ]K−
Tai+1

}KS

5) S −→ Tan : {Reveal, ((Φ̃1, Kan−1), . . . , (Φ̃n−1, Ka1), Φ̃A), Ψ̃K[A] , S }KTan

6) Tan −→ S : { [[ ITKSig, Φn−1, A ]K−
A
, Ψ̃K[A] ]K−

Tan

}KS
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S T1 T2 T3 T4

Reveal, �ΦA, �ΨK[A] , S

[�Φ3, K1, �ΨK[A] ]K−
T1

Reveal, ((�Φ3, K1), �ΦA), �ΨK[A] , S

[�Φ2, K2, �ΨK[A] ]K−
T2

Reveal, ((�Φ2, K2), (�Φ3, K1), �ΦA), �ΨK[A] , S

[�Φ1, K3, �ΨK[A] ]K−
T3

Reveal, ((�Φ1, K3), (�Φ2, K2), (�Φ3, K1)), �ΦA), �ΨK[A]

[[ InitITKSig, Φ3, A ]
K−

A
, �ΨK[A] ]K−

T4

Fig. 2. Complaint resolution protocol for the case n = 4. All messages are encrypted
with the public key of the recepient (to avoid clutter this encryption is not shown).

In message 3a, the tuple of Φ̃is serves to prevent complaint resolution messages
in one session being used in another. Before sending a response each Tai checks
that the sequence he receives is correct, i.e. {Φ̃n−i, Kai}KTai−1

equals to the

second element in the signed tuple Φ̃n−i+1, and {Φ̃n−i+1, Kai−1
}KTai−2

equals to

the second element in the signed tuple Φ̃n−i+2, etc. , until Φ̃A is reached. This
check ensures that Tai will not decrypt a token that is not related to Φ̃A.

At the nth iteration S reveals the identity of the user when it receives
[ ITKSig, Φn−1, A ]K−

A
from Tan . Importantly, in the sequence of unfoldings

of Φ̃ais, S also keeps track of Φais inside them, using the session keys Kai , in
order to make sure that Φn−1 is formed from the session key she was given in
the service request step. That is to avoid rogue token providers disrupting or
misleading the identity recovery process.

3 Model in the Applied π

The protocol is modelled in the applied π-calculus. We do not put restrictions
on the number of sessions, or agents, and assume an active adversary (aka
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Dolev-Yao) that can inject as well as intercept messages from the network. Pub-
lic channels represent the network and they are the means of interacting with
the environment, whereas private channels are used for private communications
among processes. Channels by themselves do not reveal sender or recipient of
messages, and thus are anonymous. We present the model in the language of the
ProVerif tool extended with a for-loop construct.

3.1 Signature and Equations

The signature of our model includes function symbols for public key crypto-
graphic operations and universally verifiable signing, as well as other auxiliary
constants and functions used in the protocol. The purpose of the functions should
be clear from the comments in brackets. The equational theory is generated by
the equations shown in Figure 3.

fun pk/1. (* gets public key from a private key *)
fun enc/2. (* public key encryption *)
fun senc/2. (* symmetric key encryption *)
fun dec/2. (* and decryption *)
fun sdec/2.
fun sign/2. (* universally verifiable signature *)
fun getSigKey/1. (* retrieves public key of a signer *)
fun getSigMess/1. (* retrieves a message from a signature *)

equation dec(enc(m,pk(sk)),sk) = m.
equation sdec(senc(m,k),k) = m.
equation getSigKey(sign(m,sk)) = pk(sk).
equation getSigMess(sign(m,sk)) = m.

Fig. 3. Signature and equational theory

3.2 The Protocol Process

The protocol is encoded in the processes as shown in Figure 4 and 5, where
processT and processU denote token provider and user, respectively (defined
below).

The fresh name skTh represents the private decryption key of the honest to-
ken provider. In our model signing keys are different from the private decryption
keys and we allow intruder to access honest token providers signing key. In the
last four lines we define the protocol as the parallel composition of an arbi-
trary number of users and honest token provider processes. The dishonest token
providers are represented by the attacker that has an encryption key pk(skTd)
and a signing key signTd.

The expression of the form new n; P corresponds to the restriction νn.P of
the applied-π calculus. A construct of the form (=N,y)=M pattern matches the
left element of a tuple M against N, but assigns the right element of M to y.
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free c. (* public channel *)

free ITKReq, ITKSig, InitITKReq, InitITKSig.

free skTd,signTd. (* dishonest TP’s decryption and signing keys *)

free signTh (* honest TP’s signing key *)

process

new skTh; (* honest TP’s decryption key *)

out(c,pk(skTh)); new signA; new signB;

let (pkTh, pkTd) = (pk(skTh),pk(skTd)) in !processT |

(out(c,(pk(signA),A)); let (signU,n,pU) = (signA,nA,pA) in processU) |

(out(c,(pk(signB),B)); let (signU,n,pU) = (signB,nB,pB) in processU)

let processU=

(* pU is Th’s position in U’s request chain *)

for 0<j<n+1, j<>pU:

new sesK_j;

let (upkT_j,signT_j) = (pkTd,signTd) in

new sesK_pU;

let (upkT_pU,signT_pU) = (pkTh,signTh) in

new servK; out(c,pk(servK));

(* Step 1 *)

let phi_1=enc((InitITKReq,pk(servK),sesK_1),upkT_1) in

(* Step 2 *)

for 1<j<n:

let phi_j=enc((ITKReq,phi_(j-1),sesK_j),upkT_j) in

(* Step 3,4 *)

let commit = sign((InitITKSig,phi_(n-1),pk(signU)),signU) in

out(c,enc(commit,upkT_n));

in(c,m3);

let tphi_1=m3 in

if getSigKey(tphi_1)=pk(signT_n) then

let (x1, oldTphi) = getSigMess(tphi_1) in

if oldTphi = enc((sign((ITKSig,phi_(n-1),pk(signU)),signU)),upkT_n) then

(* Step 3a,4a *)

for 1<j<n:

out(c,enc((ITKSig,tphi_j,sesK_(n-j+1)),upkT_(n-j+1)));

in(c,m4);

let tphi_(j+1)=dec(m4,sesK_(n-j+1)) in

if getSigKey(tphi_(j+1))=pk(signT_(n-j+1)) then

(* Step 5,6 *)

out(c,enc((ITKSig,tphi_n,sesK_1),upkT_1));

in(c,m);

let token=dec(m,sesK_1) in

if getSigKey(token)=pk(signT_1) then

let (x2,key) = getSigMess(token) in

if key = servK then out(c,token)

Fig. 4. The Main and the user processes. We have extended ProVerif syntax with a
for-loop (used in steps 2 and 3a, 4a).
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let processT=
in(c,m);
let req=dec(m,skTh) in

let (=ITKSig,d4,k)=req in
(
let (x1,oldPhi) = getSigMess(d4) in
(
let (=InitITKReq,key,=k) = dec(oldPhi,skTh) in
out(c,senc(sign((enc((d4,k),pkTh),key),signTh),k))
else
let (=ITKReq,oldPhi1,=k) = dec(oldPhi,skTh) in
out(c,senc(sign((enc((d4,k),pkTh),oldPhi1),signTh),k))
)

)

else let (=InitITKSig,d3,upk)=getSigMess(req) in
(
if upk=getSigKey(req) then
out(c,sign((enc(req,pkTh),d3),signTh))

).

Fig. 5. The token provider process

4 Analysis of Anonymity Property

We prove that the protocol satisfies anonymity: the identity token produced by
the user cannot be linked to its identity, even if all but one of the token providers
are honest. We start with some general results which will be useful.

4.1 Auxiliary Results

In this section we present several results about the static equivalence of frames.
We will use the lemmas in our analysis of the anonymity property in the next
section. We omit proofs due to lack of space – the extended version of our paper
[15] includes the proofs in Appendix B.

We assume that the equational theory used in the lemmas is convergent, which
implies that all terms have a unique normal form. At any rate, most of our lem-
mas relate to the standard public key encryption equational theory Σpk, which
known to be convergent. Σpk comprises standard public and symmetric key en-
cryption and decryption operations, and message signing and tupling defined in
Fig. 3.

Assumption 1. Let E be an equational theory. We assume that the relation
equality modulo E on terms is closed under substitutions of arbitrary terms for
names and variables, and application of contexts.
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Definition 1. We write {M/N} for the syntactic substitution that replaces all
occurrences of the term N by the term M . Note that T1 =E T2 does not imply
that T1{M/N} =E T2{M/N}.
Definition 2. We say a frame νñ.σ is normalized if for all {M/x} in σ, M is
in normal form and fv(M) ∩ dom(σ) = ∅.
The first simple lemma shows that exporting nonces does not affect static equiv-
alence on frames.

Lemma 1. Let ϕ,ϕ′ be frames, ñ, ñ′ be sets of names and k a name s.t. k �∈
fn(ϕ,ϕ′) ∩ (n ∪ n′). If νñ.ϕ ≈s νñ

′.ϕ′ then νñ, k.({k/x} | ϕ) ≈s νñ
′, k.({k/x} |

ϕ′), where x �∈ dom(ϕ).

The following lemma establishes sufficient conditions under which parts of frames
can be simplified (substituted by fresh names). All further lemmas make use of
this result.

Lemma 2. Given a convergent equational theory Σ, a closed term L in normal
form, names ñ, s and a frame ϕ in normal form such that s �∈ fn(ϕ), suppose:

– L does not occur in ϕ, and νñ.ϕ �
 L.
– for any m̃, σ,M,N such that νñ.({L/x}|ϕ) ≡ νm̃.σ, (fn(M)∪fn(N))∩m̃ =
∅ and Mσ =E Nσ we have Mσ{z/L} =E Nσ{z/L}.

Then: νñ.({L/x}|ϕ) ≈s νñ, s.({s/x}|ϕ).

All subsequent lemmas are restricted to the equiational theory with standard
public and session key encryption, decryption and digital signing operations
(Σpk) defined in Figure 3.

Lemma 3. Let M,N and J be terms in normal form, s.t. M,N do not contain
dec(x, J) and M{{L}J/x} =E N{{L}J/x}, where L is in normal form. Then:

(M{{L}J/x}){z/{L}J
} =E (N{{L}J/x}){z/{L}J

}

Lemma 4. Given a frame νñ.σ in normal form that does not contain dec(x, k)
and νñ.σ �
 k, then for any M , s.t. ñ ∩ fn(M) = ∅, dec(x, k) does not occur in
Mσ↓.

Lemma 5. Given a frame νñ.σ in normal form, name k ∈ ñ, s.t. k occurs in σ
only as an encryption key argument, for any M , s.t. ñ ∩ fn(M) = ∅, dec(x, k)
does not occur in Mσ↓.

Lemma 6. Given a closed term L in normal form names ñ, s and a frame νñ.σ
in normal form, suppose νñ.σ �
 s and {s, L}pk(k) does not occur in σ. Then
νñ.σ �
 {s, L}pk(k).
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Lemma 7. Given a closed term L in normal form, names ñ, s and a frame νñ.σ
in normal form, suppose:

1. νñ.σ �
 k, νñ.σ �
 {s, L}pk(k) and m �∈ fn(σ)
2. {s, L}pk(k) does not occur in σ.
3. dec(x, k) does not occur in σ.

Then νñ, s.({{s,L}pk(k)/x}|σ) ≈s νñ,m.({m/x}|σ).

Lemma 8. Given a closed term L in normal form, names k, s ∈ ñ and a frame
νñ.σ also in normal form, suppose:

1. k occurs in σ only as an encryption key argument.
2. L does not occur in σ and s �∈ fn(σ).

Then: νñ.({{L}k/x}|σ) ≈s νñ, s.({s/x}|σ).

Lemma 9. Given a normalized frame νñ.σ and s, k ∈ ñ, where νñ.σ �
 k, sup-
pose for all occurences of s in σ:

1. either, there exists a term L such that {L}pk(k) occurs in σ and s is a subterm
of L.

2. or s occurs in σ as an encryption key argument.

Then νñ.σ �
 s.

4.2 Proof of the Anonymity Property

Notation and set-up:

– Th is the honest token provider and Td is one of the dishonest ones. Our
aim is to show the identity token produced by the user cannot be linked to
its identity, even if all but one of the token providers are honest.

– The property is shown to hold even if Th’s signing key is public. We model
it as a free name that intruder can use.

– We don’t model dishonest token providers Td, since they form part of the
attacker. Their decryption and signing keys are free names.

– Honest users A,B are instantiations of the process processU in Figure 4.
– ñA, ñB are sets of names that include A’s, B’s restricted values, i.e. signing

keys, service keys, and session keys generated by A,B during the run of the
protocol. ñA = {K−A ,K[A]} ∪ {KA1, . . . , KAnA−1} and ñB = {K−B ,K[B]} ∪
{KB1, . . . , KBnB−1}.

– Φ̃(A)j , Φ̃(B)j where j ∈ {l, r} denote identity tokens output by A and B,
respectively.

– A’s request chain is a sequence of token providers that A uses when building
a token for anonymous service usage. It is denoted by reqA with length nA;
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Th’s position in the chain is pA. Similarly, reqB , nB, pB refer to B’s request
chain.

– KTh stands for a public encryption key corresponding to the decryption key
sKTh, i.e. pk(sKTh) = KTh.

We make the following important assumption that avoids attacks on
anonymity based on simple traffic analysis:

Assumption 2. We assume that Th processes requests in batches such that each
batch contains at least two honest users. Hence, when Th receives a token request
it waits for a certain number of other token requests (so that it has at least two
requests from honest users) before responding. Furthermore, we assume that at
least two honest users from the batch successfully receive token replies from Th.

Let Al, Bl be A’s,B’s processes, such that A = νñA.A
l and B = νñB.B

l. We
define Ar, Br to be the same as Al, Bl, except that in the former users swap
their partial tokens over a private channel twice: i) during the construction of
Φ(i)r, before application of encryption function with Th’s public key, and ii)
after receiving a reply with a token from Th. So, the process Ar stands for
A’s execution of the protocol, except that A commits to B’s service key, and
Br stands for B’s execution of the protocol, except that B commits to A’s
service key. We use this data swapping to express an indistinguishability test for
unlinkability of user’s identity with her token: if the attacker can establish the
link than he can distinguish between Al, Bl and Ar, Br. We assume that Al, Bl

synchronize after receiving a reply from Th and similarly for Ar, Br.

Theorem 1. Suppose A and B are honest users of the protocol, and Th is an
honest token provider and the above assumption holds. Under these hypotheses,
the protocol guarantees user anonymity; that is,

ν sKTh, ñA, ñB. (Al; out(ch, Φ̃(A)l) | Bl; out(ch, Φ̃(B)l) | !Th)
≈ ν sKTh, ñA, ñB. (Ar; out(ch, Φ̃(A)r) | Br; out(ch, Φ̃(B)r) | !Th)

where sKTh is Th’s private decryption key and ch is a public channel.

Proof. We prove labelled bisimilarity between our processes, since observational
equivalence ≈ coincides with labelled bisimilarity ≈�, and the latter relation is
easier to reason about by hand. The definition of ≈� requires that every labelled
and internal transitions of a process on one side of the equivalence are matched
with those of a process on the other side. Furthermore, all the intermediate
processes need to be statically equivalent.

In our case the matching of labelled transitions is straightforward, since we
have essentially the same processes on both sides of the equivalence (only the
data they manipulate are different): the Out-Atom transition only permits
outputting terms by reference so we shall have the same such labels on both
sides of the equivalence; and in case of In rule, the same term M will be input
on both sides. We match labelled transitions as follows: for Al’s, Bl’s transitions
on the lhs with pick those of Ar, Br on the rhs, respectively (and vice versa);
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and we match the rest with the transitions of the identical process on the other
side of the equivalence. We just need to make sure that the lhs process blocks
iff the rhs one blocks.

There are only two interesting points in the execution of the processes to
consider for blocking. The first one is when Th tries to generate a reply that
needs to be encrypted with a session key incorporated inside the Φ(i) token in
the request – if it cannot extract the key then Th blocks. Since Aj and Bj check
that replies from the token providers are of the expected format, Th does not
block when replying to their requests. For all other terms M that attacker can
input to Th we note that the lhs blocks iff the rhs blocks.

The second interesting scenario is when the rhs blocks due to not receiving an
input on a private channel (used for exchanging tokens). That cannot happen
during the token construction phase since Aj , Bj do not interact with the envi-
ronment, but can occur during the token request phase if one of the processes
does not receive an expected token reply. By our synchronization assumption,
the lhs of the equivalence will also block. A further note, Ar’s and Br’s token
exchange via a private channel on the rhs of the equivalence is not captured
by labelled transitions, but expressed by an internal reduction that we do not
match to anything on the lhs.

Hence, the crux of the theorem is in proving the static equivalence of the
lhs and the rhs at each step. In fact, it is sufficient to show that the largest
possible frames are statically equivalent – then all subframes generated in the
intermediate steps are also statically equivalent. So for our theorem we need to
show the following holds:

ν sKTh, ñA, ñB.(φl
A | {�Φ(A)l

/za} | φl
B | {�Φ(B)l

/zb
} | (�i∈N φl

Thi
) |

{K[A]/avn
} | {K[B]/bvn

} | {KTh/z3})
≈s

ν sKTh, ñ
′
A, ñ

′
B.(φ

r
A | {�Φ(A)r

/za} | φr
B | {�Φ(B)r

/zb
} | (�i∈N φr

Thi
) |

{K[A]/avn
} | {K[B]/bvn

}{KTh/z3})

(1)

where for j ∈ {l, r}, φj
A, φ

j
B are A’s and B’s frames respectively, and Φ̃(A)j and

Φ̃(B)j represent the token output by A and by B respectively. We also have
sK[A], sK[B],K

−
A ,K

−
B ∈ ñA ∪ ñB, and honest agents’ session keys KAj

i , KB
j
i ∈

ñA ∪ ñB. N is a set of integers representing the number of times !Th has been
instantiated during the process evolution.

By inspection of the token provider process (Fig. 5), one sees that the
frames it generates in response to ITKSig requests are of the form

φj
Thi

= {
{[{[Mi,Li]

K
−
Ti

, Ki}KT h
,L′

i]K−
T h
}Ki
/ti}, where L′i = snd(dec(Li, sKTh)) and

Ki = thd(dec(Li, sKTh)). From these equations, it follows that Li = [{ITKReq,
L′i,Ki}KTh

]K−
Th

. The frames generated by Th in response to InitITKSig re-
quests are [{x}KTh

, y]K−
Th

, where x and y are derived from the input; since the
signing key K−Th is known to the attacker in this analysis, these frames can be
formed by the attacker and we need not consider them.



Anonymity Protocol with Identity Escrow and Analysis 343

Let ψl1 be the left-hand and ψr1 be the right-hand processes of the static
equivalence (1), and suppose C1(j)[ ] is a context such that C1(j)[

�
i∈N φj

Thi
)] =

ψj1 for j ∈ {l, r}. To prove (1), it is sufficient to prove

C1(l)[(
�

i∈N1

φl
Thi

) | (
�

i∈N2

dec-φThi)] ≈s C1(r)[(
�

i∈N1

φr
Thi

) | (
�

i∈N2

dec-φThi)] (2)

where dec-φThi = {dec(L,KTh)/ti1
} and N1 = {i ∈ N | Li = Φ(A)j

pA
∨ Li =

Φ(B)j
pB
} and N2 = N \ N1. To see this, note that (1) is obtained by applying

the context νti1 . | {
{[{[M,L]

K
−
T

,thd(ti1 )}xt3
,snd(ti1 )]

K
−
T h

}thd(ti1 )
/ti} to each side of

(2). A further step of this kind is also possible.
Let ψl1 be the left-hand and ψr1 be the right-hand processes of the static

equivalence (2), and for j ∈ {l.r} suppose C2(j) is a context such that
C2(j)[{�Φ(A)j

/za} | {�Φ(B)j

/zb
}] = ψj2. The terms Φ̃(A)j , Φ̃(B)j have applica-

tion of sign (by some token provider T ) at their outermost level. To prove (2),
it is sufficient to prove

C2(l)[
�
x∈{A,B}({{

�Φ(x)l
n−1,Kxl

n−1}KT /zx1
} | {K[x]/zxn

})]
≈s C2(r)[

�
x∈{A,B}({{�Φ(x)r

n−1,Kxr
n−1}KT /zx1

} | {K[x]/zxn
})] (3)

We have (3)⇒(2), because (2) is obtained by applying the context
νza1 , zan , zb1 , zbn .( | {[za1 ,zan ]K−/za} | {[zb1 ,zbn ]K− /zb

}, where K− is a signing
key, to each side of (3).

Intuitively, we delayered the term Φ̃(x)j by application of the closure property
of the static equivalence. We recursively repeat such delayering of all non-atomic
terms of the frames on both sides of the latter equivalence, except for the terms
exported by the honest token provider’s frames (we already dealt with Th’s
frames above). Delayering is performed until we reach either (i) atomic terms,
or (ii) non-atomic terms which are the result of applying encryption or signing
functions with a restricted name as the key argument (that intuitively represent a
message encrypted with the honest token provider’s public key, orA’s,B’s session
key, or alternatively a message signed by A or B). For example, removing one
layer from Φ̃(A)j

n−k for n− 2 > k > 0 results in terms Φ̃(A)j
n−k−1, Φ(A)j

k, KA
j
k+1

and delayering Φ(A)j
k in turn results in terms Φ(A)j

k−1, KA
j
k. Here is the resulting

equivalence, which assumes that the honest token provider Th is at the position
px of a request chain reqx of length nx:

C3(l)[
�
x∈{A,B}

(
(
�
0<i<px

{Kxl
i/xui

}) | {Φ(x)l
px/xup

} | (�px<i<n{Kx
l
i/xui

}) |

{[Φ(x)l
n−1]K−

x /xun
}|{{ITKSig,Kxl

px
,�Φ(x)l

n−px−1}KT h /xt5
}|{{Kxl

px
,�Φ(x)l

n−px−1}KT h/xt6
}
)

]

≈s

C3(r)[
�
x∈{A,B}

(
(
�
0<i<px

{Kxr
i /xui

}) | {Φ(x)r
px/xup

} | (�px<i<n{Kx
r
i /xui

}) |

{[Φ(x)r
n−1]K−

x /xun
}|{{ITKSig,Kxr

px
,�Φ(x)r

n−px−1}KT h /xt5
}|{{Kxr

px
,�Φ(x)r

n−px−1}KT h/xt6
}
)

]

(4)
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where C3[ ] is the context νsKTh, ñA, ñB. (
�
i∈N1

φr
Thi
| �i∈N2

dec-φThi | ).

Remark. In the special case when pA = nA or pB = nB (i.e. when Th is the last
one in A’s or B’s request chain) the resulting equivalence is slightly simpler and
is dealt with in a similar way as below omitting non-applicable steps.

Next, we by Lemma 1 we eliminate all substitutions that export session keys.
So, equivalence (4) holds if:

ν sKTh, ñ
′
l .(

�
x∈{A,B}

(
{[Φ(x)l

n−1]K−
x /xun

} | {{ITKSig,Kxl
px

,�Φ(x)l
n−px−1}KT h/xt5

} |

{{ITKReq, Kxl
px

,Φ(x)l
px−1}KT h /xt4

} | {{Kxl
px

,�Φ(x)l
n−px−1}KT h /xt6

} | {KTh/xt3
})

)
|

(
�
i∈N2

dec-φThi) | (
�
i∈N1

φl
Thi

) | {K[x]/xvn
}

≈s

ν sKTh, ñ
′
r .(

�
x∈{A,B}

(
{[Φ(x)r

n−1]K−
x /xun

} | {{ITKSig,Kxr
px

,�Φ(x)r
n−px−1}KT h /xt5

} |

{{ITKReq, Kxr
px

,Φ(x)r
px−1}KT h /xt4

} | {{Kxr
px

,�Φ(x)r
n−px−1}KT h /xt6

}
)
| {KTh/xt3

} |

(
�
i∈N2

dec-φThi) | (
�
i∈N1
{{[{Kx

j
px

,�Φ(x)j
n−px−1}KT h

,Φ(x)j
px−1]K−

T h

}
Kx

j
px /ti2

}) |
{K[x]/xvn

}
(5)

We have unfolded Φ(x)j
px

= {ITKReq, Kxj
px
, Φ(x)j

px−1}KTh
and φj

Thi
=

{[{Kxj
px
, Φ̃(x)j

n−px−1}KTh
, Φ(x)j

px−1]K−
T h
}Kxj

px
, which appear in (4), to elucidate

the difference between the lhs and the rhs frames.
Let ψl3 , ψr3 to be the lhs and the rhs of equivalence (5), respectively. We

normalize those frames and consider each of the substitutions of the resulting
equivalence in turn. In all of the cases, we start by replacing all occurrences of
the exported term in question in other frames by a reference to the exporting
variable:

– {{ITKReq,Kx
j
T h,Φ(x)j

px−1
}KT h/xt4

}. This term is the token Φ(x)j
px

that honest
agents produce in the construction phase of the protocol. For j ∈ {l, r},
ψj3 �
 sKTh and every occurence of Kxj

px
in ψj3 either is an encryption

key argument or is of the form {T, Kxj
px
, U}pk(k) for some T, U . Hence, by

Lemma 9 we have ψj3 �
 Kxj
px

. Since we replaced all occurences of the term in
question in other substituions by a reference to xt4 by Lemma 6 we have ψj3 �

{ITKReq, Kxj

px
, Φ(x)j

px−1}KTh
. So now using Lemma 7, we can replace the

substitution in question by a substitution of a fresh name on both sides of the
equivalence. Similarly, we replace substitutions {{Kxj

px
,�Φ(x)l

n−px−1}KT h /xt6
}

with fresh names.
– {{ITKSig,Kxj

px
,�Φ(x)j

n−px−1}KT h /xt5
}. This substitution had resulted from delay-

ering Φ̃(x)j
n−px

, which is a token that Th issues to an honest participant. As
above, for j ∈ {l, r}, ψj3 �
 sKTh and every occurence of Kxj

px
in ψj3 either

is an encryption key argument or is of the form {T, Kxj
px
, U}pk(k) for some

T, U . Hence, by Lemma 9 we have ψj3 �
 Kxj
px

, and then by Lemma 6 we
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have ψj3 �
 {ITKReq, Kxj
px
, Φ(x)j

px−1}KTh
. Finally by Lemma 7, we replace

the substitution in question by a substitution of a fresh name on both sides
of the equivalence.

–
�
i∈N1
{{[{Kx

j
px

,�Φ(x)j
n−px−1}KT h

,Φ(x)j
px−1]

K
−
Th
}
Kx

j
px /ti2

}. These are replies from Th
to an honest participant in the second stage of the protocol. For j ∈ {l, r},
we have Kxpx occurs in ψj3 only as an encryption key argument after two
transformations above, and the term encrypted by Kxj

px
does not occur in

the rest of ψj3 . Hence, by Lemma 8 we can replace the terms in question by
fresh names on both sides of the equivalence.

After the above transformations we note that the lhs of the equivalence is
α-equivalent to the rhs. Consequently, ψl3 ≈s ψr3 .

5 Conclusions

We introduced a protocol which allows users of a service to remain anonymous,
while providing the possibility that the service owner can break the anonymity
if the service is misused. In the protocol, the user’s identity is distributed among
a set of token providers; this set is chosen by the user from a pool of available
token providers. Anonymity is assured provided at least one of the chosen token
providers is honest (and the misuse has not occurred).

We provided an analysis of the anonymity property in the applied pi calculus.
The fact that the steps that the user takes is dependent on the number of
token providers she has chosen makes the analysis complicated. Such open-ended
protocols [3] are difficult to analyse in a formal setting. In future work, we intend
to automate our analysis of the protocol using a software tool, such as Isabelle.
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Abstract. In this survey paper we consider the class of protocols for information-
hiding which use randomization to obfuscate the link between the observables
and the information to be protected. We focus on the problem of formalizing the
notion of information hiding, and verifying that a given protocol achieves the in-
tended degree of protection. Without the pretense of being omni-comprehensive,
we review the main approaches that have been explored in literature: possibilistic,
probabilistic, information-theoretic, and statistical.

1 Introduction

During the last decade, internet activities have become an important part of many peo-
ple’s lives. As the number of these activities increases, there is a growing amount of
personal information about the users that is stored in electronic form and that is usu-
ally transferred using public electronic means. This makes it feasible and often easy to
collect, transfer and process a huge amount of information about a person. As a conse-
quence, the need for mechanisms to protect such information is compelling.

A recent example of such privacy concerns are the so-called “biometric” passports.
These passports, used by many countries and required by all visa waiver travelers to the
United States, include a RFID chip containing information about the passport’s owner.
These chips can be read wirelessly without any contact with the passport and without
the owner even knowing that his passport is being read. It is clear that such devices need
protection mechanisms to ensure that the contained information will not be revealed to
any non-authorized person.

In general, privacy can be defined as the ability of users to stop information about
themselves from becoming known to people other than those they choose to give the
information to. We can further categorize privacy properties based on the nature of the
hidden information. Data protection usually refers to confidential data like the credit
card number. Anonymity, on the other hand, concerns the identity of the user who per-
formed a certain action. Unlinkability refers to the link between the information and the
user, and unobservability regards the actions of a user.
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Information-hiding protocols aim at ensuring a privacy property during an electronic
transaction. For example, the voting protocol Foo 92 ([1]) allows a user to cast a vote
without revealing the link between the voter and the vote. The anonymity protocol
Crowds ([2]) allows a user to send a message on a public network without revealing
the identity of the sender.

Several anonymity protocols use randomized primitives to obtain the obfuscation of
the information to be protected. This is the case, for instance, of the Dining Cryptog-
raphers [3], which use coin-flipping, Crowds [2] and Onion Routing [4], which select
randomly another user of the network to forward the message to, and Freenet [5]. In
this survey, we restrict our attention to the case in which the use of randomization is
critical to achieve the intended security properties.

2 The Possibilistic Approaches

These are by far the approaches which have been explored the most in literature. Various
formal definitions and frameworks for analyzing information-hiding have been devel-
oped. Some examples of these approaches are those based on epistemic logic ([6,7]), on
“function views” ([8]), and on process-calculi ([9,10]). Here we focus on the last kind
of approach.

Often possibilistic approaches rely on nondeterminism: a protocol provides protec-
tion if the set of possible observable outcomes is saturated with respect to the secrets.
More precisely, if in one computation the instance of the secret to protect is s and the
observable outcome is o, then for every other instance s′ there must be a computation
where, with secret s′, the observable is still o. Formally:

f−1(f(P )) ∼ P

where P is the protocol, and f is a relabeling function that maps all the secrets into a
dummy, and ∼ is a chosen equivalence relation [9].

A related approach is the one by [11,12], where the authors specify privacy in elec-
tronic voting (protection of the secrecy of the vote) as the property that if we swap the
way in which two users, A andB, vote, then the resulting system is weakly bisimilar to
the original one. Formally:

C[A[a/v]|B[b/v]] ≈ C[A[a/v]|B[b/v]]

where a, b represent the votes of A and B respectively, and the context C[ ] represents
the rest of the protocol.

This kind of approach is reasonable, as long as the protocols of interest do not in-
volve the use of randomization. In case they do, then we have a problem, because the
pure possibilistic approach is unable to cope with probabilities. So, the choice is either
to move to a probabilistic approach, or to try to abstract from probabilities. The sec-
ond choice is explored in [9]: In that paper, the authors replace probabilistic choice by
nondeterministic choice, and then apply the usual possibilistic definition.

We now illustrate the above idea on the example of the dining cryptographers.
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Fig. 1. Chaum’s protocol for the dining cryptographers [3]

2.1 The Dining Cryptographers’ Problem

This problem, described by Chaum in [3], involves a situation in which three cryptog-
raphers are dining together. At the end of the dinner, each of them is secretly informed
by the master whether he should pay the bill or not. So, either the master will pay,
or he will ask one of the cryptographers to pay. The cryptographers, or some external
observer, would like to find out whether the payer is one of them or the master. How-
ever, if the payer is one of them, the cryptographers wish to maintain anonymity over
the identity of the payer. Of course, we assume that the master himself will not reveal
this information, and also we want the solution to be distributed, i.e. communication
can be achieved only via message passing, and there is no central memory or central
‘coordinator’ which can be used to find out this information.

A possible solution to this problem, described in [3], is the following: Each cryp-
tographer tosses a coin, which is visible to himself and to his neighbor to the right.
Each cryptographer then observes the two coins that he can see, and announces agree
or disagree. If a cryptographer is not paying, he will announce agree if the two sides
are the same and disagree if they are not. However, if he is paying then he will say the
opposite. It can be proved that if the number of disagrees is even, then the master is
paying; otherwise, one of the cryptographers is paying. Furthermore, if one of the cryp-
tographers is paying, then neither an external observer nor the other two cryptographers
can identify, from their individual information, who exactly is paying.

In order to specify formally the protocol, we use a probabilistic version of the π-
calculus, πp, which is essentially the π-calculus enriched with a probabilistic choice
operator⊕p. For a precise definition of the semantics of πp we refer to [13].

The protocol can be described as the parallel composition of the master process
Master, the cryptographers processes Crypt i, of the coin processes Coinh, and of a
process Collect1 whose purpose is to collect all the declarations of the cryptographers,

1 The presence of the process Collect is due to technical reasons that have to do with the control
of the power of the scheduler, and are out of the scope of this paper.
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Table 1. The dining cryptographers protocol expressed in πp

Master = m0〈0〉 . m1〈0〉 . m2〈0〉 ⊕p

�2
0 pim0+i〈1〉 . m1+i〈0〉 . m2+i〈0〉

Crypt i = ci,i(x0) . ci,i+1(x1) .mi(x) . pay i〈x〉 . outi〈x0 + x1 + x〉
Coinh = ch−1,h〈0〉 . ch,h〈0〉 ⊕ph ch−1,h〈1〉 . ch,h〈1〉
Collect = out0(y0) . out1(y1) . out2(y2) . outall〈y0, y1, y2〉

DC = (ν�c)(ν �m)(ν �out)(Master |�i Crypt i |
�

h Coinh | Collect)

Table 2. The nondeterministic version of the dining cryptographers protocol expressed in π

Master = m0〈0〉 . m1〈0〉 . m2〈0〉 +
�2

0 pim0+i〈1〉 . m1+i〈0〉 . m2+i〈0〉
Crypt i = ci,i(x0) . ci,i+1(x1) .mi(x) . pay i〈x〉 . out i〈x0 + x1 + x〉
Coinh = ch−1,h〈0〉 . ch,h〈0〉 ⊕ph ch−1,h〈1〉 . ch,h〈1〉
Collect = out0(y0) . out1(y1) . out2(y2) . outall〈y0, y1, y2〉

DC = (ν�c)(ν �m)(ν �out)(Master |�i Crypt i |
�

h Coinh | Collect)

and output them in the form of a tuple. See Table 1. In this protocol, the secret actions
are payi〈x〉, and the observable actions are outall〈y0, y1, y2〉.

2.2 Nondeterministic Version of the Dining Cryptographers

In the approach of [9] the dining cryptographers are formalized as a purely nondeter-
ministic system: the coins are approximated by nondeterministic coins, and the choice
on who pays the bill is also nondeterministic. The specification of the solution can be
given in π-calculus as illustrated in Table 2 (in the original work [9] the authors used
CSP [14]).

Let f be the function f(pay i) = pay and f(α) = α for all the other actions. It
is possible to check that f−1(f(DC))) ∼T DC, where we recall that ∼T stands for
trace equivalence. Hence the nondeterministic notion of anonymity, as defined at the
beginning of this section, is satisfied.

As a consequence of approximating the coins by nondeterministic coins, we cannot
differentiate between a fair coin and a biased one. However, it is evident that the fairness
of the coins is essential to ensure the anonymity property in the system, as illustrated
by the following example.

Example 1. Assume that, whenever a cryptographer pays, an external observer obtains
almost always one of the three outcomes represented in Figure 2, where a stands for
agree and d for disagree. More precisely, assume that these three outcomes appear
with a frequency of 33% each, while the missing configuration, d, a, a, appears with a
frequency of only 1%. What can the observer deduce? By examining all possible cases,
it is easy to see that the coins must be biased, and more precisely, Coin0 and Coin1
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Fig. 2. Illustration of Example 1: The results that are observed with high frequency

must produce almost always head, and Coin2 must produce almost always tail (or vice-
versa). From this estimation, it is immediate to conclude that, in the first case, the payer
is almost for sure Crypt1, in the second case Crypt2, and in the third case Crypt0.

In the situation illustrated in the above example, clearly, the system does not provide
anonymity. However the nondeterministic definition of anonymity is still satisfied (and
it is satisfied in general, as long as “almost always” is not “always”, i.e. the fourth
configuration d, a, a also appears, from time to time). The problem is that the nonde-
terministic definition can only express whether or not it is possible to have a particular
outcome, but cannot express whether one outcome is more likely than the other.

3 The Probabilistic Approaches

The probabilistic approaches have been investigated in particular in the field of
anonymity, and almost exclusively in the strongest form, namely to express the prop-
erty that the observables reveal no (quantitative) information about the secrets (strong
anonymity).

There are essentially three probabilistic notions considered in literature: one based
on the equality of the a posteriori probabilities, one based on the equality between the
a posteriori probability and the a priori probability, and one based on the equality of
the likelyhoods. All of them involve the notion of conditional probability p(a|b), which
represents the probability of the event a, given the event b. We recall the equality known
as Bayes theorem:

p(a|b) =
p(b|a) p(a)

p(b)

These probabilistic notions also require that the secrets are mutually exclusive events,
and that

∑
s p(s) = 1. The same for the observables.

Equality of the a posteriori probabilities. The idea is to say that a system is strongly
secure if, for any observable o, the a posteriori probability of a secret s (namely p(s|o))
is the same as the a posteriori probability of any other secret s′. Formally:

p(s|o) = p(s′|o) for all observables o, and secrets s and s′ (1)
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This is similar to the definition of strong anonymity by Halpern and O’Neill [7], al-
though their setting is different, being based on a probabilistic version of epistemic
logic.

Equality of the a posteriori and a priori probabilities. The idea is to say that a system
is strongly secure if, for any observable o, the a posteriori probability of a secret s is
the same as its a priori one. In other words, the observation does not add anything to
the expectation that the secret is s. Formally:

p(s|o) = p(s) for all observables o, and secrets s (2)

This is the definition of anonymity adopted by Chaum in [3]. He also proved that the
DC satisfies it if the coins are fair. Halpern and O’Neill also consider a similar property
in their epistemological setting, and they call it conditional anonymity [7].

Equality of the likelihoods. The idea is to say that a system is strongly secure if, for
any observable o, the likelihood of a secret s given o (namely p(o|s)) is the same as the
same as the likelihood of any other secret s′. Formally:

p(o|s) = p(o|s′) for all observables o, and secrets s and s′ (3)

This was proposed as definition of strong anonymity by Bhargava and Palamidessi [15].

3.1 Comparison

It is easy to see that definitions (2) and (3) are equivalent. In fact:

(2)⇒ (3) )

p(o|s) = p(s|o) p(o)
p(s) by Bayes theorem

= p(o) by (2)

= p(s′|o) p(o)
p(s′)

by (2)

= p(o|s′) by Bayes theorem

(2)⇐ (3) ) We prove that p(o|s) = p(o) for all observables o, and secrets s. From this
it is immediate to derive (2) by applying Bayes theorem.

p(o) =
∑

s p(o and s) by the disjointness of the secrets

=
∑

s p(o|s) p(s) by definition of conditional probability

= p(o|s)∑
s p(s) by (3)

= p(o|s) since
∑

s p(s) = 1



Formal Approaches to Information-Hiding 353

Definition (3) has the advantage that it makes clear that depends only on the protocol,
not in the distribution on the secrets, and, more important, it does extend in a natural
way to the case in which the choice of the secret is done nondeterministically. See [15]
for more details.

Concerning definition (1), it probably looks at a first site the most natural, but it
actually turns out to be too strong. that one is strictly stronger than (2) and (3). In fact
it is equivalent to (2) and (3), plus the condition that the probability distribution of the
secrets is uniform, namely

p(s) = p(s′) for all secrets s and s′ (4)

(1)⇒ (4) )

p(s) =
∑

o p(s and o) by the disjointness of the secrets

=
∑

o p(s|o) p(o) by definition of conditional probability

=
∑

o p(s
′|o) p(o) by (1)

=
∑

o p(s
′ and o)

= p(s′)

(1)⇒ (3) )

p(o|s) = p(s|o) p(o)
p(s) by Bayes theorem

= p(s′|o) p(o)
p(s) by (1)

= p(s′|o) p(o)
p(s′)

by (4)

= p(o|s′) by Bayes theorem

(1)⇐ (3),(4))

p(s|o) = p(o|s) p(s)
p(o) by Bayes theorem

= p(o|s′) p(s)
p(o) by (3)

= p(o|s′) p(s′)
p(o) by (4)

= p(s′|o) by Bayes theorem

It is interesting to notice that (4) can be split in two orthogonal properties: one which
depends only in the protocol ( (3) ), and one which depends only in the distribution on
the secrets ( (4) ).

In our opinion condition (4) is not a suitable condition for defining the notion of
protection provided by a protocol, because it only depends on the distribution on the
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secret data, which can be influenced by the users, but not by the protocol. We believe
that a good notion of protection should abstract from such distribution. In this sense we
consider (1) too strong.

There are also weaker notions of protection, still based on the comparison between
conditional probabilities, which have been investigated in literature. In particular, Rubin
and Reiter proposed the concepts of possible innocence and of probable innocence [2].
See also [16] for a generalization of the latter.

The need for formalizing weaker forms of protection comes from the fact that the
strong properties discussed above are almost never achieved in practice. Hence the need
to express in a quantitative way the degree of protection. Researchers have been explor-
ing for suitable notions within the well-extablished fields of Information Theory and of
Statistics.

4 Information Theory

Recently it has been observed that at an abstract level information-hiding protocols can
be viewed as channels in the information-theoretic sense. A channel consists of a set of
input values S, a set of output valuesO (the observables) and a transition matrix which
gives the conditional probability p(o|s) of producing o as the output when s is the input.
In the case of protocols for information hiding, S contains the secret information that
we want to protect and O the facts that the attacker can observe.

Let us revise some of the basic concepts of Information Theory: Let X be a random
variable. The entropy H(X) of X is defined as

H(X) = −
∑

x∈X
p(x) log p(x)

The entropy measures the uncertainty of a random variable. It takes its maximum value
log |X | when X’s distribution is uniform and its minimum value 0 when X is constant.
We usually take the logarithm with a base 2 and measure entropy in bits. Roughly
speaking, m bits of entropy means that we have 2m values to choose from, assuming a
uniform distribution.

The relative entropy or Kullback–Leibler distance between two probability distribu-
tions p, q on the same set X is defined as

D(p ‖ q) =
∑

x∈X
p(x)log

p(x)
q(x)

It is possible to prove that D(p ‖ q) is always non-negative, and it is 0 if and only if
p = q.

Now let X,Y be random variables. The conditional entropy H(X |Y ) is

H(X |Y ) = −
∑

y∈Y
p(y)

∑

x∈X
p(x|y) log p(x|y)

Conditional entropy measures the amount of uncertainty of X when Y is known. It
can be shown that 0 ≤ H(X |Y ) ≤ H(X). It takes its maximum value H(X) when Y
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reveals no information about X , and its minimum value 0 when Y completely deter-
mines the value of X .

ComparingH(X) andH(X |Y ) gives us the concept of mutual information I(X ;Y ),
which is defined as

I(X ;Y ) = H(X)−H(X |Y )

Mutual information measures the amount of information that one random variable con-
tains about another random variable. In other words, it measures the amount of uncer-
tainty about X that we lose when observing Y . It can be shown that it is symmetric
(I(X ;Y ) = I(Y ;X)) and that 0 ≤ I(X ;Y ) ≤ H(X).

The maximum mutual information between X and Y over all possible distributions
p(x) is known as the channel’s capacity:

C = max
p(x)

I(X ;Y )

The capacity of a channel gives the maximum rate at which information can be trans-
mitted using this channel.

In the following we recall some of the notions of protection, based on information-
theoretic notions, which have been proposed in literature.

In [17,18] the authors propose a notion of anonymity based on the entropy of the
users. The idea is to represent the lack of information that an attacker has about the
secrets. Note that this is not in line with our point of view: in our opinion the interesting
thing is to model the capability of the protocol to conceal the secret information despite
of the observables that are made available to the attacker.

Zhu and Bettati propose in [19] a definition of anonymity based on mutual
information.

In [20,21] the authors study the ability to have covert communication as a result of
non-perfect anonymity. In [21] the authors suggest that the channel’s capacity can be
used as an asymptotic measure of the worst-case loss of anonymity.

In [22] we explore the implications of adopting the (converse of the) notion of capa-
city as measure of the degree of protection, and we introduce a more general concept
that we call conditional capacity.

Note that the capacity is an abstraction of mutual information obtained by maxi-
mizing over the possible input distributions. As a consequence, we get a measure that
depends only on the protocol and not on the input distribution, which is an advantage
with respect to the mutual-information approach because in general we don’t know the
input distribution, and it also may change over time. Of course, in case we know the in-
put distribution, then the mutual-information approach is more precise because it gives
the exact loss of anonymity for the specific situation.

In [23] the authors use the Kullback-Leibler distance to perform a metric analysis of
anonymity.

In [24] the authors define as information leakage the difference between the a priori
accuracy of the guess of the attacker, and the a posteriori one, after the attacker has
made his observation. The accuracy of the guess is defined as the Kullback-Leibler
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distance between the belief (which is a weight attributed by the attacker to each input
hypothesis) and the true distribution on the hypotheses.

In the field of information flow and non-interference there is a line of research
which is closely related. There have been various works [25,26,27,28,29,30] in which
the high information and the low information are seen as the input and output respec-
tively of a channel. From an abstract point of view, the setting is very similar; techni-
cally it does not matter what kind of information we are trying to conceal, what is rele-
vant for the analysis is only the probabilistic relation between the input and the output
information.

5 Hypothesis Testing

In information-hiding systems the attacker finds himself in the following scenario: he
cannot directly detect the information of interest, namely the actual value of the random
variable S ∈ S, but he can discover the value of another random variableO ∈ O which
depends on S according to a known conditional distribution. This kind of situation
is quite common also in other disciplines, like medicine, biology, and experimental
physics, to mention a few. The attempt to infer S fromO is called hypothesis testing (the
“hypothesis” to be validated is the actual value of S), and it has been widely investigated
in statistics.

In this section we discuss possible methods by which an adversary can try to infer the
secrets from the observables, and consider the corresponding probability of error, that it,
the probability that the adversary draws the wrong conclusion. We regard the probability
of error as a representative of the degree of protection provided by the protocol, and we
study its properties with respect to the associated matrix.

We start by recalling the notion of decision function, which represent the guess the
adversary makes about the secrets, for each observable: a decision function is simply
any function f : O → S.

The probability of error associated to a decision function f is the probability of
guessing the wrong hypothesis by using f , averaged on all possible observables. In
general the probability of error depends on the input distribution and on the channel’s
matrix. We will use the notation P(f,M, �p) to represent the probability of error asso-
ciated to the decision function f , the channel’s matrix M , and the input distribution
�p. The following characterization of P(f,M, �p) is well-known in literature, see for in-
stance [31].

P(f,M, �p) = 1−
∑

O
p(o|f(o))pf(o) (5)

Given a channel (S,O,M), the best decision function that the adversary can use,
namely the one that minimizes the probability of error, is the one associated to the
so-called MAP rule, which prescribes to choose the hypothesis s which has Maximum
Aposteriori Probability (for a given o ∈ O), namely the s for which p(s|o) is maximum.
The fact that the MAP rule represent the ‘best bet’ of the adversary is rather intuitive,
and well known in literature. We refer to [31] for a formal proof.
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The MAP rule is used in the so-called Bayesian approach to hypothesis testing, and
the corresponding probability of error is also known as Bayes risk. We will denote it by
PMAP(M,�p). The following characterization is an immediate consequence of (5) and of
the Bayes theorem p(s|o) = p(o|s)ps/p(o).

PMAP(M, �p) = 1−
∑

O
max

s
(p(o|s)ps)

In [32] we have proposed to express the degree of protection Pt provided by a pro-
tocol T in terms of the probability of error of the corresponding matrix M(T ):

PtMAP(T, �p) = PMAP(M(T ), �p)

The problem with the MAP rule is that it assumes that the input distribution is known
to the adversary. This is often not the case, so it is natural to try to approximate it with
some other rule. One such rule is the so-called ML rule, which prescribes to choose the
s which has Maximum Likelihood (for a given o ∈ O), namely the s for which p(o|s) is
maximum. The name comes from the fact that p(o|s) is called the likelihood of s given
o. We will denote the corresponding probability of error by PML(M, �p). The following
characterization is an immediate consequence of (5).

PML(M,�p) = 1−
∑

O
max

s
(p(o|s))ps

It has been shown (see for instance [22]) that under certain conditions on the matrix,
the ML rule approximates indeed the MAP rule, in the sense that by repeating the
protocol the adversary can make the probability of error arbitrarily close to 0, with
either rule.

We have also explored, in [32], the possibility of defining the degree of protection
provided by a term T under the ML rule as PML(M(T ), �p), but it did not seem reason-
able to give a definition that depends on the input distribution, since the main reason to
apply a non-Bayesian approach is that we do not know the input distribution. Instead,
we have defined the degree of protection associated to a process term as the average
probability of error with respect to all possible distributions �p:

PtML(T ) = (m− 1)!
∫

�p

PML(M(T ), �p) d�p

In previous definition, (m − 1)! represents a normalization function: 1
(m−1)! is the

hyper-volume of the domain of all possible distributions �p on S, namely the (m − 1)-
dimensional space of points �p such that 0 ≤ ps ≤ 1 and 0 ≤ ∑

s∈S ps = 1 (where m
is the cardinality of S).

Fortunately, it turns out that this definition is equivalent to a much simpler one: the
average value of the probability of error, under the Maximum Likelihood rule, can be
obtained simply by computing PML on the uniform distribution �pu = ( 1

m ,
1
m , . . . ,

1
m):

PtML(T ) = min
ζ∈A

PML(Mζ(T ), �pu)
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We believe that the probability of error is a central notion for information-hiding,
and we expect that it will be thoroughly explored in the next future.

In [33] we have characterized the Bayes risk in terms of the solution of certain sys-
tems of equations derived from the matrix of the channel. This has lead to an algorithm
to compute the maximum value of the Bayes risk. Furthermore, it has allowed us to
improve functional bounds on the Bayes risk.

In [32] we have studied how the operators of πp affect the probability of error. In
particular, we have characterized constructs that have the property of not decreasing the
degree of protection, and that can therefore be considered safe in the modular construc-
tion of protocols. As a case study, we apply these techniques to the Dining Cryptogra-
phers, and we are able to derive a generalization of Chaum’s strong anonymity result
for the Dining Criptographers. More precisely, we have shown that the Dining Cryptog-
raphers on an arbitrary graph (where the nodes are the cryptographers and the arcs are
the coins) is strongly anonymous if and only there is a spanning tree formed entirely of
fair coins.

6 Computing the Matrix Associated to a Protocol

In this section we show how to compute the matrix associated to a protocol specified in
πp, using our (very preliminary)πp model checker VAMP (http://vamp.gforge.
inria.fr/).

We consider the protocol for the DC represented in Table 1. Assume we want to
compute p(o|si), where si represents the fact that the cryptographer i is the payer, and
o is of the form outall 〈yo, y1, y2〉. We redefine the Master to be

mi〈1〉 .mi+1〈0〉 .mi+2〈0〉

Then, we run the resulting process DC in VAMP, with query o. VAMP gives as result
the (unconditional) probability of executing o in the new specification, which corre-
sponds to the conditional probability p(o|si) in the original specification.

We have computed various channel matrices, for different values of the probability
p that a coin gives heads (we assume that each coin is biased in the same way). The
results are shown in Fig. 3.

Finally, from the matrix, we can compute the capacity. This can be done, in general,
by using the Arimoto-Blahut approximation algorithm, or, under certain symmetry con-
ditions, we can apply a formula (see [22] for more details).

In this case we could apply the formula because the conditions are satisfied. The
resulting graph is displayed in Fig. 4. As expected, when p = 0.5 the protocol is
strongly anonymous and the relative loss of anonymity is 0. When p approaches 0
or 1, the attacker can deduce the identity of the payer with increasingly high proba-
bility, so the capacity increases. In the extreme case where the coins are totally biased
the attacker can be sure about the payer, and the capacity takes its maximum value of
log 3.

http://vamp.gforge.inria.fr/
http://vamp.gforge.inria.fr/
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daa ada aad ddd aaa dda dad add

c1 0.25 0.25 0.25 0.25 0 0 0 0

c2 0.25 0.25 0.25 0.25 0 0 0 0

c3 0.25 0.25 0.25 0.25 0 0 0 0

m 0 0 0 0 0.25 0.25 0.25 0.25

daa ada aad ddd aaa dda dad add

c1 0.28 0.24 0.24 0.24 0 0 0 0

c2 0.24 0.28 0.24 0.24 0 0 0 0

c3 0.24 0.24 0.28 0.24 0 0 0 0

m 0 0 0 0 0.28 0.24 0.24 0.24

daa ada aad ddd aaa dda dad add

c1 0.37 0.21 0.21 0.21 0 0 0 0

c2 0.21 0.37 0.21 0.21 0 0 0 0

c3 0.21 0.21 0.37 0.21 0 0 0 0

m 0 0 0 0 0.37 0.21 0.21 0.21

daa ada aad ddd aaa dda dad add

c1 0.52 0.16 0.16 0.16 0 0 0 0

c2 0.16 0.52 0.16 0.16 0 0 0 0

c3 0.16 0.16 0.52 0.16 0 0 0 0

m 0 0 0 0 0.52 0.16 0.16 0.16

daa ada aad ddd aaa dda dad add

c1 0.73 0.09 0.09 0.09 0 0 0 0

c2 0.09 0.73 0.09 0.09 0 0 0 0

c3 0.09 0.09 0.73 0.09 0 0 0 0

m 0 0 0 0 0.73 0.09 0.09 0.09

Fig. 3. The channel matrices for probability of heads p = 0.5, p = 0.6, p = 0.7, p = 0.8, and
p = 0.9
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Fig. 4. The degree of anonymity in the Dining Cryptographers as a function of the coins’ proba-
bility to yield heads
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Abstract. We study the link between formal and cryptographic models for se-
curity protocols in the presence of passive and adaptive adversaries. We first de-
scribe the seminal result by Abadi and Rogaway and shortly discuss some of its
extensions. Then we describe a general model for reasoning about the soundness
of implementations of equational theories. We illustrate this model on several
examples of computationally sound implementations of equational theories.

1 Introduction

Security protocols have been deployed massively during the last years. However, their
security is difficult to ensure and even small protocols are known to be error-prone.
Two different approaches for proving such protocols correct have been developed. On
the one hand, the symbolic or formal approach models messages and cryptographic
primitives by a term algebra. The adversary manipulates the terms only according to
a pre-defined set of rules. On the other hand, the computational approach considers
a more detailed execution and adversary model. Protocol messages are modelled as
bitstrings and cryptographic primitives as algorithms. The adversary is modelled to be
any probabilistic polynomial time Turing machine and the security of a protocol is
measured as the adversary’s success probability.

A considerable advantage of the symbolic model is that proofs can be (at least
partially) automated. Unfortunately, it is not clear whether the abstract symbolic model
captures all possible attacks. While the computational model provides much stronger
security guarantees, proofs are generally harder and difficult to automate. A recent
trend tries to get the best of both worlds: an abstract model which provides strong
computational guarantees. In their seminal paper, Abadi and Rogaway [4] have shown
a first such soundness result in the presence of a passive attacker for a simple ab-
stract algebra with symmetric encryption. However, many protocols rely on more com-
plex cryptographic primitives which may have algebraic properties (see [15] for a sur-
vey on algebraic properties). Such properties are naturally modelled using equational
theories.

In this tutorial paper, we first present the original Abadi and Rogaway result and
briefly discuss some of its extensions. Then we present a general framework for rea-
soning about the soundness of the implementation of an equational theory [10,19]. The
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formal indistinguishability relation we consider is static equivalence, a well-established
security notion coming from cryptographic pi calculi [3] whose verification can often
be automated [2,11]. A soundness result for an equational theory proves that indeed
“enough” equations have been considered in the symbolic model, with respect to a
given implementation. We first consider soundness in the presence of a passive adver-
sary and then extend the setting to an adaptive adversary. We present soundness results
for several equational theories.

There do also exist soundness results in the presence of an active adversary, notably
pioneered by Backes et al. [9] and Micciancio and Warinschi [23]. However, we are not
aware of a framework for reasoning about soundness of equational theories with active
adversaries which remains a challenging topic of research.

This tutorial is mainly based on joint work with Mathieu Baudet, Véronique Cortier
and Laurent Mazaré [10,19].

2 Preliminaries

Let f : N→ R be a function. We say that f is a negligible function of η if f(η) remains
eventually smaller than any η−n (n > 0) for sufficiently large η. Conversely, a function
f(η) is overwhelming if 1− f(η) is negligible.

We denote by AO the Turing machineA which has access to the oraclesO.

x
R←− D denotes the random drawing of x from a distribution D.

Let η > 0 be a complexity parameter and (Dη) a family of distributions, one for
each η. A family of distributions (Dη) is collision-free iff the probability of collision

between two random elements from Dη, that is, P[ e1, e2
R←− Dη : e1 = e2], is a neg-

ligible function of η.

3 The Abadi-Rogaway Result

In this section we summarize the seminal result of Abadi and Rogaway [4,5]. They show
the first soundness result for a simple equivalence on formal expressions. This paper has
given raise to many extensions in the passive case and has inspired the generalization
to the case of an adaptive and active adversary.

3.1 Formal Expressions and Equivalence

On the formal side, we consider a simple grammar of formal expressions or terms. The
expressions consider two base types for keys and Booleans which are taken from two
disjoint sets Keys and Bool. Keys and Booleans can be paired and encrypted.

M,N ::= expressions
K key (K ∈ Keys)
i bit (i ∈ Bool)
〈M,N〉 pair
{M}K encryption (K ∈ Keys)
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For example the formal expression 〈K1, {〈0,K2〉}K1〉 represents a pair: the first com-
ponent of this pair is the key K1, the second, the encryption with key K1 of the pair
consisting of the boolean constant 0 and the key K2.

Before defining the equivalence relation between terms we first need to define the
deducibility relation �. Intuitively,M � N , if the adversary can learn the expressionN
from the expression M . Formally, � is the smallest relation, such that

M �M M � 0 M � 1
if M � N1 and M � N2 then M � 〈N1, N2〉
if M � 〈N1, N2〉 then M � N1 and M � N2

if M � {N}K and M � K then M � N
if M � N and M � K then M � {N}K

For example, if M = 〈K1, {〈0,K2〉}K1〉, then we have that M � K2. Moreover,
M � 1, as the constants 0 and 1 are always known to the attacker.

The equivalence relation between terms is based on the equality of the patterns asso-
ciated to each term. A pattern represents the adversary’s view of a term. Patterns extend
the grammar defining terms by the special symbol �. The pattern of a term replaces en-
cryptions for which the key cannot be deduced by �. We define the function p, taking
as arguments a term and a set T of keys, inductively as follows.

p(K,T ) = K (K ∈ Keys)
p(i, T ) = i (i ∈ Bool)

p(〈M,N〉, T ) = 〈p(M,T ), p(N,T )〉
p({M}K , T ) =

{{p(M,T )}K if K ∈ T
� else

The pattern of an expression is defined as

pattern(M) = p(M, {K ∈ Keys |M � K}).
For instance pattern(〈K1, {〈0, {1}K2〉}K1〉) = 〈K1, {〈0,�〉}K1〉.

We say that M and N are formally indistinguishable, written M ≡ N if and only
if pattern(M) = pattern(N)σ, where σ is a bijection on keys (here interpreted as a
substitution applied on pattern(N)). As an illustration, we have that 0 	≡ 1, K0 ≡ K1,
〈K0,K0〉 	≡ 〈K0,K1〉 and {0}K1 ≡ {1}K0 . Bijective renaming of keys reflects the
intuition that two different randomly chosen keys are indistinguishable.

3.2 Computational Messages and Indistinguishability

In the computational setting, we reason on the level of bitstrings and algorithms ex-
ecuted on Turing Machines, rather than on abstract terms. An encryption scheme in
this setting is a triple of polynomial time algorithms SE = (KG, E ,D), which are
the key-generation, encryption and decryption algorithms. The key generation algo-
rithm is parametrized by a security, or complexity parameter η ∈ 1∗ and encryp-
tion is probabilistic. Intuitively, η defines the key length. As expected we require that
Dk(Ek(m, r)) = m for any k ∈ KG(η) and random bitstring r. Moreover, decryption
fails and returns ⊥ in all other cases.
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We say that an encryption scheme SE is type-0 secure, following the terminology
of [4], if for any security parameter η and any probabilistic polynomial time Turing
machineA (the adversary) the advantage Advtype-0(A, η,SE) =

P

[
k, k′ R←− KG(η) : AEk(·),Ek′(·) = 1

]
− P

[
k

R←− KG(η) : AEk(0),Ek(0) = 1
]

is a negligible function of η. By convention, we suppose that adversaries are given
access implicitly to as many fresh random coins as needed, as well as the complexity
parameter η.

Intuitively, we require that an adversary cannot distinguish the case where he is
given two encryption oracles encrypting with two different keys from the case where
he is given twice the same encryption oracle always encrypting the constant bitstring
representing 0 with the same key. Note that the answers of the second pair of ora-
cles will be distinct each time because encryption is probabilistic. Type-0 security is
a message-length and which-key concealing version of the standard semantic secu-
rity [18]. Message-length concealing means that the encryption hides the length of the
plaintext. Which-key concealing means that the fact that two ciphertexts have been en-
crypted with the same key is hidden.

It is important to note that an encryption scheme respecting the above security def-
inition may be insecure as soon as the adversary is given a key cycle. A key cycle
is a sequence of keys K1, . . . ,Kn such that Ki+1 encrypts (possibly indirectly) Ki

and Kn encrypts K1. An encryption of key K with itself, i.e., EK(K) is a key cy-
cle of length 1. An example of a key cycle of size 2 would be EK1(K2), EK2(K1). In
Abadi and Rogaway’s main result, key cycles are therefore forbidden. This condition
can be found in most soundness results1. To better understand the problem of key cy-
cles suppose that SE = (KG, E ,D) is a semantically secure encryption scheme and let
SE ′ = (KG′, E ′,D′) be defined as follows:

KG′ = KG, E ′k(m, r) =
{Ek(m, r) if m 	= k

const · k if m = k
, D′k(c) =

{Dk(c) if c 	= const · k
k if c = const · k

where const is a constant such that for any key k, the concatenation const · k does not
belong to the set of possible ciphertexts obtained by E . Obviously, if the attacker is
given a key cycle of length 1, e.g., E ′k(k, r), the attacker directly learns the key. It is
also easy to see that SE ′ is a semantic secure encryption scheme as it behaves as SE
in nearly all cases (in the security experiment the adversary could make a query for
encrypting k with itself only with negligible probability).

The notion of computational indistinguishability requires that an adversary cannot
distinguish two (families of) distributions, with better than negligible probability. Let
D = {Dη} and D′ = {D′η} be two families of probability distributions, also called
ensembles. D and D′ are compuationally indistinguishable, written D ≈ D′ if for any
η and any probabilistic polynomial time Turing machineA, the advantage

AdvIND(A, η,Dη,D′η) = P

[
x

R←− Dη : A(x) = 1
]
− P

[
x

R←− D′η : A(x) = 1
]

is a negligible function of η.
1 A notable exception is [6] where a stronger definition is considered: Key Dependent Message

(KDM) security.
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3.3 Interpretation of Formal Expressions and Soundness Result

To state Abadi and Rogaway’s soundness result we have to define an interpretation of
formal terms as bitstrings. Bitstrings are tagged using types “key”, “bool”, “pair” and
“ciphertext”. The initialize procedure, first draws all the keys using the key generation
algorithmKG; Keys(M) denotes the set of keys appearing in the termM . The convert
procedure implements encryption using algorithm E .

Initializeη(M)
for K ∈ Keys(M) do τ(K) R←− KG(η)

Convert(M)
if M = K (K ∈ Keys) then

return (τ(K),“key”)
if M = b (b ∈ Bool) then

return b,“bool”)
if M = 〈M1,M2〉 then

return (Convert(M1),Convert(M2), “pair”)
if M = {M1}K then

x
R←− Convert(M1)

y
R←− Eτ(K)(x)

return(y, “ciphertext”)

The initialize and convert procedures associate to a formal term M a family of proba-
bility distributions [[M ]] = {[[M ]]η}, one for each η. Abadi and Rogaway’s main result
is the following.

Theorem 1. For any formal expressions M and N that do not contain key cycles,
whenever the computational interpretation of the terms uses a type-0 secure encryp-
tion scheme, then M ≡ N implies that [[M ]] ≈ [[N ]].

3.4 Extensions

The above result has known many extensions. We mention some of them here. Laud and
Corin [20] allow the use of composed keys. Adão et al. [7] strengthen cryptographic
assumptions to allow key cycles. In [8], Adão et al. consider different implementations
of encryption allowing which-key and message-length revealing encryption and also
consider the case of one-time pad encryption and information-theoretic security. Garcia
and van Rossum [17] add (probabilistic) hash functions and Bresson et al. [12] consider
modular exponentiation. However, these extensions require to re-define each time a new
formal indistinguishability relation extending the classical notion of patterns.

Micciancio and Warinschi [22] also show a completeness result: whenever two
families of distributions, resulting from the interpretation of two formal terms, are in-
distinguishable, then the two formal terms are formally inditinguishable. This result
requires a stronger security requirement for encryption, which is authenticated encryp-
tion (see [22] for details). Such a completeness result ensures that no false attacks are
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reported by the formal model. Adão et al. [8] extend this result to different implemen-
tations of encryptions as for soundness.

4 Abstract and Computational Algebras

To avoid redefining a new model and a new indistinguishability relation for each exten-
sion, we define a general model [10,19] which relies on equational theories and static
equivalence.

4.1 Abstract Algebras

In the Abadi-Rogaway model symbolic terms were given by a simple grammar mod-
elling encryption with atomic keys, pairs and boolean constants. Here we introduce a
more general model—called abstract algebras— which consists of term algebras de-
fined over a many-sorted first-order signature and equipped with equational theories.

Specifically, a signature (S,F) is made of a set of sorts S = {s, s1 . . .} and a set of
symbols F = {f, f1 . . .} together with arities of the form ar(f) = s1 × . . .× sk → s,
k ≥ 0. Symbols that take k = 0 arguments are called constants; their arity is simply
written s. We fix a set of names N = {a, b . . .} and a set of variables X = {x, y . . .}.
We assume that names and variables are given with sorts. By default, we assume that
an infinite number of names and variables are available for each sort. The set of terms
of sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where for the last case, we further require that ti is a term of some sort si and ar(f) =
s1 × . . . × sk → s. We also allow subsorts: if s2 is a subsort of s1 we allow a term of
sort s2 whenever a term of sort s1 is expected. We write var(t) and names(t) for the
set of variables and names occurring in t, respectively. A term t is ground or closed iff
var(t) = ∅.

Substitutions are written σ = {x1 �→ t1, . . . , xn �→ tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-sorted, cycle-free substitutions. Such a σ is closed
iff all of the ti are closed. We let var(σ) =

⋃
i var(ti), names(σ) =

⋃
i names(ti), and

extend the notations var(.) and names(.) to tuples and sets of terms and substitutions
in the obvious way. The application of a substitution σ to a term t is written σ(t) = tσ
and is defined in the usual way.

Symbols in F are intended to model cryptographic primitives, whereas names in N
are used to model secrets, that is, for example random numbers or keys. The abstract se-
mantics of symbols is described by an equational theory E, i.e, an equivalence relation
(also written =E) which is stable by application of contexts and well-sorted substitu-
tions of variables. For instance, symmetric encryption is modeled by the theory Eenc

generated by the equation Eenc = {dec(enc(x, y), y) = x}.
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4.2 Deducibility and Static Equivalence

We use frames [3,2] to represent sequences of messages observed by an attacker, for
instance during the execution of a protocol. Formally, a frame is an expression ϕ =
νã.{x1 = t1, . . . , xn = tn} where ã is a set of bound (or restricted) names, and for
each i, ti is a closed term of the same sort as xi.

For simplicity, we only consider frames ϕ = νã.{x1 = t1, . . . , xn = tn} which
restrict every name in use, that is ã = names(t1, . . . , tn). A name a may still be dis-
closed explicitly by adding a mapping xa = a to the frame. Thus we tend to assimilate
such frames ϕ to their underlying substitutions σ = {x1 �→ t1, . . . , xn �→ tn}.

In the previous section, we introduced deducibility and formal indistinguishability
for the simple term algebra of encryption and pairing. We now define similar notions
with respect to an equational theory.

Definition 1 (Deducibility). A (closed) term t is deducible from a frame ϕ in an equa-
tional theoryE, written ϕ �E t, iff there exists a termM such that var(M) ⊆ dom(ϕ),
names(M) ∩ names(ϕ) = ∅, and Mϕ =E t.

In what follows, again for simplicity, we only consider deducibility problems ϕ �E t
such that names(t) ⊆ names(ϕ). Consider for instance the theory Eenc and the frame
ϕ1 = {x1 �→ enc(k1, k2), x2 �→ enc(k4, k3), x3 �→ k3}: the name k4 is deducible
from ϕ1 since dec(x2, x3)ϕ1 =Eenc k4 but neither are k1 nor k2. Deducibility is not al-
ways sufficient to account for the knowledge of an attacker. For instance, it lacks partial
information on secrets. We refer the reader to [2] for additional details and examples.
That is why another classical notion in formal methods is static equivalence, which will
be our formal indistinguishability relation.

Definition 2 (Static equivalence). Two frames ϕ1 and ϕ2 are statically equivalent in a
theoryE, written ϕ1 ≈E ϕ2, iff dom(ϕ1) = dom(ϕ2), and for all termsM andN such
that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩names(ϕ1, ϕ2) = ∅,Mϕ1 =E Nϕ1

is equivalent to Mϕ2 =E Nϕ2.

For instance, consider the equational theory Eenc of symmetric encryption. Let 0 and 1
be two constants (which are thus known by the attacker). Then the two frames {x �→
enc(0, k)} and {x �→ enc(1, k)} are statically equivalent with respect to Eenc. However
ϕ = {x �→ enc(0, k), y �→ k} and ϕ′ = {x �→ enc(1, k), y �→ k} are not statically
equivalent for Eenc: let M be the term dec(x, y) and N be the term 0. M and N use
only variables defined by ϕ and ϕ′ and do not use any names. MoreoverMϕ =Eenc Nϕ

but Mϕ′ 	=Eenc Nϕ
′. The test M ?

=N distinguishes ϕ from ϕ′.

4.3 Concrete Semantics

We now give terms and frames a concrete semantics, parameterized by an implemen-
tation of the primitives. Provided a set of sorts S and a set of symbols F as above, a
(S,F )-computational algebra A consists of

– a non-empty set of bitstrings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S; moreover, if s2 is
a subsort of s1 we require that [[s2]]A ⊆ [[s1]]A;
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– a computable function [[f ]]A : [[s1]]A × . . . × [[sk]]A → [[s]]A for each f ∈ F with
ar(f) = s1 × . . .× sk → s;

– a computable congruence =A,s for each sort s, in order to check the equality of
elements in [[s]]A (the same element may be represented by different bitstrings); by
congruence, we mean a reflexive, symmetric, transitive relation such that e1 =A,s1

e′1, . . . , ek =A,sk
e′k ⇒ [[f ]]A(e1, . . . , ek) =A,s [[f ]]A(e′1, . . . , e

′
k) (in the remaining

we often omit s and write =A for =A,s);
– an effective procedure to draw random elements from [[s]]A; we denote such a draw-

ing by x
R←− [[s]]A.

Assume a fixed (S,F )-computational algebra A. We associate to each frame ϕ =
{x1 �→ t1, . . . , xn �→ tn} a distribution ψ = [[ϕ]]A, of which the drawings ψ̂

R←− ψ are
computed as follows:

1. for each name a of sort s appearing in t1, . . . , tn, draw a value â
R←− [[s]]A;

2. for each xi (1 ≤ i ≤ n) of sort si, compute t̂i ∈ [[si]]A recursively on the structure

of terms: ̂f(t′1, . . . , t′m) = [[f ]]A(t̂′1, . . . , t̂′m);
3. return the value ψ̂ = {x1 �→ t̂1, . . . , xn �→ t̂n}.

Such values φ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [[.]]A to (tuples of) closed terms in the obvious way.

We focus on asymptotic notions of cryptographic security and consider families of
computational algebra (Aη) indexed by a complexity parameter η > 0. As in previous
section, the concrete semantics of a frame ϕ is a family of distributions over concrete
frames ([[ϕ]]Aη ). We only consider families of computational algebras (Aη) such that
each required operation on algebras is feasible by a (uniform, probabilistic) polynomial-
time algorithm in the complexity parameter η. This ensures that the concrete semantics
of terms and frames is efficiently computable (in the same sense).

5 Relating Abstract and Computational Algebras

In the previous section we have defined abstract and computational algebras. We now
relate formal notions such as equality, (non-)deducibility and static equivalence to their
computational counterparts, that is, equality, one-wayness and indistinguishability.

5.1 Soundness and Faithfulness

We introduce the notions of sound and faithful computational algebras with respect to
the formal relations studied here: equality, static equivalence and deducibility.

Let E be an equational theory. A family of computational algebras (Aη) is

– =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2 implies that

P[ e1, e2
R←− [[T1, T2]]Aη : e1 =Aη e2] is overwhelming;

– =E-faithful iff for every closed terms T1, T2 of the same sort, T1 	=E T2 implies

that P[ e1, e2
R←− [[T1, T2]]Aη : e1 =Aη e2] is negligible;
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– ≈E-sound iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 ≈E ϕ2 implies
that ([[ϕ1]]Aη ) ≈ ([[ϕ2]]Aη );

– ≈E-faithful iff for every frames ϕ1, ϕ2 of the same domain, ϕ1 	≈E ϕ2 implies
that there exists a polynomial-time adversaryA for distinguishing concrete frames,
such that AdvIND(A, η, [[ϕ1]]Aη , [[ϕ2]]Aη ) is overwhelming;

– 	�E-sound iff for every frameϕ and closed termT such that names(T )⊆names(ϕ),
ϕ 	�E T implies that for each polynomial-time adversaryA, we have that the prob-

ability P[φ, e R←− [[ϕ, T ]]Aη : A(φ) =Aη e] is negligible;
– 	�E-faithful iff for every frameϕ and closed termT such that names(T )⊆names(ϕ),
ϕ �E T implies that there exists a polynomial-time adversary A such that the

probability P[φ, e R←− [[ϕ, T ]]Aη : A(φ) =Aη e] is overwhelming.

We note that faithfullness is stronger than completeness as defined in [22]. It re-
quires that whenever static equivalence does not hold distributions can be distinguished
efficiently. Completeness could be defined by replacing “overwhelming” with “non-
negligible”. Sometimes, it is possible to prove stronger notions of soundness that hold
without restriction on the computational power of adversaries. In particular, (Aη) is

– unconditionally =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E

T2 implies that P[ e1, e2
R←− [[T1, T2]]Aη : e1 =Aη e2] = 1;

– unconditionally≈E-sound iff for every framesϕ1, ϕ2 with the same domain,ϕ1≈E

ϕ2 implies ([[ϕ1]]Aη ) = ([[ϕ2]]Aη );
– unconditionally 	�E-sound iff for every frame ϕ and closed term T such that

names(T ) ⊆ names(ϕ) and ϕ 	�E T , the drawings for ϕ and T are indepen-

dent: for all φ0, e0, P[φ0, e0
R←− [[ϕ, T ]]Aη ] = P[φ0

R←− [[ϕ]]Aη ] × P[e0
R←− [[T ]]Aη ],

and the drawing ( R←− [[T ]]Aη) is collision-free.

Generally, (unconditional) =E-soundness is given by construction. Indeed true for-
mal equations correspond to the expected behavior of primitives and should hold in
the concrete world with overwhelming probability. The other criteria are however more
difficult to fulfill. Therefore it is often interesting to restrict frames to well-formed ones
in order to achieve soundness or faithfulness: we have already encountered a typical
example of such a restriction which was to forbid key cycles.

It is worth noting that the notions of soundness and faithfulness introduced above are
not independent.

Proposition 1. Let (Aη) be a =E-sound family of computational algebras. Then

1. (Aη) is 	�E-faithful;
2. if (Aη) is also =E-faithful, (Aη) is ≈E-faithful.

For many theories, we have that ≈E-soundness implies all the other notions of sound-
ness and faithfulness. This emphasizes the importance of ≈E-soundness and provides
an additional motivation for its study. As an illustration, let us consider an arbitrary
theory which includes keyed hash functions.

A symbol f is free with respect to an equational theory E iff there exists a set of
equations F generatingE such that f does not occur in F . A sort s is degenerated in E
iff all terms of sort s are equal modulo E.
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Proposition 2. Let (Aη) be a family of≈E-sound computational algebras. Assume that
free binary symbols hs : s×Key → Hash are available for every sort s, where the sort
Key is not degenerated in E, and the drawing of random elements for the sort Hash ,

( R←− [[Hash ]]Aη ), is collision-free. Then

1. (Aη) is =E-faithful;
2. (Aη) is 	�E-sound;
3. Assume the implementations for the hs collision-resistant in the sense that for all
T1, T2 of sort s, given a fresh name k of sort Key , the quantity

P

[
e1, e2, e

′
1, e
′
2

R←− [[T1, T2, hs(T1, k), hs(T2, k)]]Aη : e1 	=Aη e2, e
′
1 =Aη e

′
2

]

is negligible. Then (Aη) is =E-sound, 	�E-faithful and ≈E-faithful.

6 Examples

We now illustrate the framework by several examples. Details and proofs can be found
in [10,19].

6.1 Exclusive OR

We study the soundness and faithfulness problems for the natural theory and implemen-
tation of the exclusive OR (XOR), together with constants and (pure) random numbers.

The formal model consists of a single sort Data⊕, an infinite number of names, the
infix symbol ⊕ : Data⊕ × Data⊕ → Data⊕ and two constants 0, 1 : Data⊕. Terms
are equipped with the equational theory E⊕ generated by:

(x ⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x x⊕ x = 0 x⊕ 0 = x

As an implementation, we define the computational algebras Aη , η ≥ 0:

– the concrete domain [[Data⊕]]Aη is the set of bitstrings of length η, {0, 1}η,
equipped with the uniform distribution;

– ⊕ is interpreted by the usual XOR function over {0, 1}η;
– [[0]]Aη = 0η and [[1]]Aη = 1η.

Theorem 2. The implementation of XOR for the considered signature, (Aη), is uncon-
ditionally =E⊕-, ≈E⊕- and 	�E⊕-sound. It is also =E⊕-, ≈E⊕- and 	�E⊕-faithful.

6.2 Modular Exponentiation

As another application, we study soundness of modular exponentiation. The crypto-
graphic assumption we make is that the Decisional Diffie-Hellman (DDH) problem is
difficult: even when given gx and gy, it is difficult for any feasible computation to dis-
tinguish between gxy and gr, when x, y and r are selected at random. The original
Diffie-Hellman protocol has been used as a building block for several key agreement
protocols that are widely used in practice (e.g. SSL/TLS and Kerberos V5).



Computational Soundness of Equational Theories 373

Symbolic model. The symbolic model consists of two sorts G (group elements) and R
(ring elements), an infinite number of names forR, no name for sortG and the symbols:

+, · : R×R→ R add, mult
− : R→ R inverse

0R, 1R : R constants

exp : R→ G exponentiation
∗ : G×G→ G mult in G

We consider the equational theory EDH generated by:

x+ y = y + x x · y = y · x (x+ y) + z = x+ (y + z)
x · (y + z) = x · y + x · z (x · y) · z = x · (y · z) x+ (−x) = 0R

0R + x = x 1R · x = x exp(x) ∗ exp(y) = exp(x+ y)

There exists a direct correspondence between terms of sort R and the set of poly-
nomials Z[NR] where NR is the set of names of sort R. An integer i simply corre-
sponds to 1R + . . .+ 1R︸ ︷︷ ︸

i times

if i > 0, to −(1R + . . .+ 1R︸ ︷︷ ︸
i times

) if i < 0 and to 0R if i = 0.

We also write xn for x · . . . · x︸ ︷︷ ︸
n times

. This correspondence can be exploited to decide static

equivalence [19].
We put two restrictions on formal terms: products have to be power-free, i.e., xn is

forbidden for n > 1, and products must not contain more than l elements for some
fixed bound l, i.e. x1 · ... · xn is forbidden for n > l. Both restrictions come from the
DDH assumption and seem difficult to avoid [12]. Furthermore we are only interested
in frames using terms of sort G.

Concrete model. An Instance Generator IG is a polynomial-time (in η) algorithm that
outputs a cyclic group G (defined by a generator g, an order q and a polynomial-time
multiplication algorithm) of prime order q. The family of computational algebras (Aη)
depends on an instance generator IG that generates a cyclic group G of generator g and
of order q: the concrete domain [[R]]Aη is Zq with the uniform distribution. Symbols +
and · are the classical addition and multiplication over Zq , exp is interpreted as modular
exponentiation of g. Constants 0R and 1R are respectively interpreted by integers 0 and
1 of Zq . The domain [[G]]Aη contains all the bitstrings representation of elements of G.

A family of computational algebras satisfies the DDH assumption if its instance gen-
erator satisfies the assumption, i.e. for every probabilistic polynomial-time adversary
A, we have that his advantageA, AdvDDH(A, η, IG), defined as

P
[
(g, q)← IG(η) : a, b← Zq : A(ga, gb, gab) = 1

]−
P

[
(g, q)← IG(η) : a, b, c← Zq : A(ga, gb, gc) = 1

]

is negligible in η. We suppose that for any η there is a unique group given by IG. We
show that the DDH assumption is necessary and sufficient to prove soundness of≈EDH

.

Theorem 3. Let (Aη) be a family of computational algebras. (Aη) is ≈EDH
-sound iff

(Aη) satisfies the DDH assumption.
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6.3 Ciphers and Lists

We now detail the example of symmetric, deterministic and length-preserving encryp-
tion schemes. Such schemes, also known as ciphers [24], are widely used in practice,
the most famous examples being DES and AES.

Symbolic model. Our formal model consists of a set of sorts S = {Data,List0,List1

. . .Listn . . .}, an infinite number of names for every sort Data and Listn, and the
following symbols (for every n ≥ 0):

encn, decn : Listn ×Data → Listn encryption, decryption
consn : Data × Listn → Listn+1 list constructor
headn : Listn+1 → Data head of a list
tailn : Listn+1 → Listn tail of a list

nil : List0 empty list
0, 1 : Data constants

We consider the equational theory Ecipher generated by the following equations (for
every n ≥ 0 and for every name a0 of sort List0):

decn(encn(x, y), y) = x
encn(decn(x, y), y) = x
headn(consn(x, y)) = x
tailn(consn(x, y)) = y

consn(headn(x), tailn(x)) = x

enc0(nil, x) = nil
dec0(nil, x) = nil

tail0(x) = nil
a0 = nil

where x, y are variables of the appropriate sorts. The effect of the last four equations is
that the sort List0 is degenerated in Ecipher (all terms of sort List0 are equal).

Notice that each well-sorted term has a unique sort. As the subscripts n of function
symbols are redundant with sorts, we tend to omit them in terms. For instance, if k, k′ :
Data, we may write enc(cons(k, nil), k′) instead of enc1(cons0(k, nil), k′).

The concrete meaning of sorts and symbols is given by the computational algebras
Aη , η > 0, defined as follows:

– the carrier sets are [[Data]]Aη = {0, 1}η and [[Listn]]Aη = {0, 1}nη equipped with
the uniform distribution and the usual equality relation;

– encn, decn are implemented by a cipher for data of size nη and keys of size η
(we discuss the required cryptographic assumptions later). Since they are length-
preserving they verify the equation encn(decn(x, y), y) = x;

– [[nil]]Aη is the empty bitstring, [[consn]]Aη is the usual concatenation, [[0]]Aη = 0η,
[[1]]Aη = 1η, [[headn]]Aη returns the η first digits of bitstrings (of size (n + 1)η)
whereas [[tailn]]Aη returns the last nη digits.

For simplicity we assume without loss of generality that encryption keys have the
same size η as blocks of data. We also assume that keys are generated according to
the uniform distribution. It is not difficult to prove that the above implementation is
unconditionally =Ecipher

-sound.
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Concrete model. We now study the ≈Ecipher
-soundness problem under classical cryp-

tographic assumptions. Standard assumptions on ciphers include the notions of super
pseudo-random permutation (SPRP) and several notions of indistinguishability. In par-
ticular, IND-P1-C1 denotes the indistinguishability against lunchtime chosen-plaintext
and chosen-ciphertext attacks. These notions and the relations between them have been
studied notably in [24].

Initially, the SPRP and IND-P1-C1 assumptions apply to (block) ciphers special-
ized to plaintexts of a given size. Interestingly, this is not sufficient to imply ≈Ecipher

-
soundness for frames which contain plaintexts of heterogeneous sizes, encrypted under
the same key. Thus we introduce a strengthened version of IND-P1-C1, applying to a
collection of ciphers (Eη,n,Dη,n), where η is the complexity parameter and n ≥ 0 is
the number of blocks of size η contained in plaintexts and ciphertexts.

We define the ω-IND-P1-C1 assumption by considering the following experiment
Gη with a 2-stage adversaryA = (A1,A2):

– first a key k is randomly chosen from {0, 1}η;
– (Stage 1)A1 is given access to the encryption oracles Eη,n(·, k) and the decryption

oracles Dη,n(·, k); it outputs two plaintexts m0,m1 ∈ {0, 1}n0η for some n0, and
possibly some data d;

– (Stage 2) a random bit b ∈ {0, 1} is drawn; A2 receives the data d, the challenge
ciphertext c = Eη,n0(mb, k) and outputs a bit b′;

– A is successful in Gη iff b = b′ and it has never submittedm0 orm1 to an encryption
oracle, nor c to a decryption oracle.

Define the advantage of A as

Advω-IND-P1-C1(A, η) = 2× P [A is successful in Gη]− 1 (1)

The ω-IND-P1-C1 assumption holds for (Eη,n,Dη,n) iff the advantage of any proba-
bilistic polynomial-time adversary is negligible. It holds for the inverse of the encryp-
tion scheme iff it holds for the collection of ciphers (Dη,n, Eη,n).

We now state our ≈Ecipher
-soundness theorem. To define well-formed frames we ori-

ent the equations ofEcipher from left to right which forms a convergent rewriting system
R. A closed frame is well-formed iff itsR-normal form has only atomic keys, contains
no encryption cycles and uses no head and tail symbols.

Theorem 4 (≈Ecipher
-soundness). Let ϕ1 and ϕ2 be two well-formed frames of the same

domain. Assume that the concrete implementations for the encryption and its inverse
satisfy both the ω-IND-P1-C1 assumption. If ϕ1 ≈Ecipher

ϕ2 then ([[ϕ1]]Aη ) ≈ ([[ϕ2]]Aη ).

Cryptographic assumptions of Theorem 4 may appear strong compared to existing work
on passive adversaries [4,22]. This seems unavoidable when we allow frames to contain
both encryption and decryption symbols.

6.4 A Theory for Guessing Attacks

In the context of password based protocols and guessing attacks, Abadi et al. [1] con-
sider a complex equational theory: it accounts for symmetric and asymmetric encryp-
tion, as well as ciphers that can use passwords as keys. Security against guessing attacks
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can be elegantly modelled using static equivalence [14]. The main result is soundness of
static equivalence for this equational theory. A direct corollary is soundness of security
against guessing attacks. Because of lack of space we will not detail this result.

7 Adaptive Soundness

In [19], we extend soundness of static equivalence to the adaptive setting from [21]. In
≈E-soundness the adversary observes the computational value of a fixed frame whereas
in this setting the adversary sees the computational value of a sequence of adaptively
chosen frames. Applications of this adaptive setting include the analysis of multicast
key distribution protocols [21] and dynamic group key exchange protocols [19].

The adaptive setting is formalized through a cryptographic game. Let (Aη) be a
family of computational algebras and A be an adversary. A has access to a left-right
evaluation oracleOLR: given a pair of terms (t0, t1) it outputs either the implementation
of t0 or t1. This oracle depends on a selection bit b and uses a local store to record
values generated for the different names (these values are used when processing further
queries). With a slight abuse of notation, we omit this store and write:

Ob
LR,Aη

(t0, t1) = [[tb]]Aη

AdversaryA plays an indistinguishability game and its objective is to find the value of
b. Formally the advantage of A is defined by:

AdvADPT(A, η, Aη) = P

[
AO1

LR,Aη = 1
]
− P

[
AO0

LR,Aη = 1
]

Without further restrictions on the queries made by the adversary, having a
non-negligible advantage is easy in most cases. For example the adversary could submit
a pair (0, 1) to his oracle. We therefore require the adversary to be legal.

Definition 3 (Adaptive soundness). An adversary A is legal if for any sequence of
queries (ti0, ti1)1≤i≤n made by A to its left-right oracle, queries are statically
equivalent:

{
x1 �→ t10, . . . , xn �→ tn0

} ≈E

{
x1 �→ t11, . . . , xn �→ tn1

}

A family of computational algebras (Aη) is

– ≈E-ad-sound iff the advantage AdvADPT(A, η, Aη) of any polynomial-time legal
adversary A is negligible.

– unconditionally ≈E-ad-sound iff the advantage AdvADPT(A, η, Aη) of any legal
adversary A is 0.

Note that as variables are typed, any query (ti0, t
i
1) of a legal adversary to the oracle is

such that ti0 and ti1 have the same sort. Adaptive soundness implies the original sound-
ness notion for static equivalence.

Proposition 3. Let (Aη) be a family of computational algebras. If Aη is ≈E-ad-sound
then Aη is also ≈E-sound but the converse is false in general.
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Interestingly, in the case of unconditional soundness, adaptive and non-adaptive sound-
ness coincide.

Proposition 4. Let (Aη) be a family of computational algebras. Aη is unconditionally
≈E-ad-sound iff Aη is unconditionally≈E-sound.

A direct corollary of this proposition is the following.

Corollary 1. The implementation of XOR for the signature considered in Section 6.1,
(Aη), is unconditionally≈E⊕-ad-sound.

8 Adaptively Sound Theories

We have already seen that the theory of XOR is unconditionally adaptively sound. We
now present additional adaptive soundness results for several equational theories: sym-
metric encryption (which is adaptively sound under IND-CPA) and modular exponenti-
ation (adaptively sound under DDH). We also consider composed theories: symmetric
encryption and modular exponentiation as well as symmetric encryption and XOR. For
these theories we allow keys to be computed, using respectively modular exponentiation
and XOR. Additional details and proofs can be found in [19].

8.1 Symmetric Encryption

We consider the case of probabilistic symmetric encryption which recasts the result
of [21] in our framework and illustrates well the difference between a purely passive
and an adaptive adversary.

Symbolic model. Our symbolic model consists of the set of sorts S = {Data}, an
infinite number of names for sort Data called keys and the function symbols:

enc, dec : Data ×Data → Data encrypt, decrypt
pair : Data ×Data → Data pair constructor
πl, πr : Data → Data projections

samekey : Data ×Data → Data key equalities test
tenc, tpair : Data → Data type testers

0, 1 : Data constants

A name k is used at a key position in a term t if there exists a sub-term enc(t′, k) of t.
Else k is used at a plaintext position. We consider the equational theory Esym generated
by:

dec(enc(x, y), y) = x πl(pair(x, y)) = x
πr(pair(x, y)) = y samekey(enc(x, y), enc(z, y)) = 1

tenc(enc(x, y)) = 1 tpair(pair(x, y)) = 1

As usual enc(t, k) is also written {t}k and pair(t, t′) is also written 〈t, t′〉.
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Well-formed frames and adversaries. As usual we forbid the formal terms to contain
such cycles. Let ≺ be a total order among keys. A frame ϕ is acyclic for ≺ if for any
subterm {t}k of ϕ, if k′ occurs in t then k′ ≺ k. Moreover as noted in [21], selective
decommitment [16] can be a problem. The classical solution to this problem is to require
keys to be sent before being used to encrypt a message or they must never appear as a
plaintext. A frame ϕ = {x1 �→ t1, . . . , xn �→ tn} is well-formed for ≺ if

– ϕ is acyclic for≺;
– the terms ti only use symbols enc, pair, 0 and 1, and only names are used at key

positions;
– if k is used as plaintext in ti, then k cannot be used at a key position in tj for j < i.

An adversary is well-formed for ≺ if the sequence of queries (ti0, ti1)1≤i≤n that he
makes to his oracle yields two well-formed frames {x1 �→ t10, . . . , xn �→ tn0} and
{x1 �→ t11, . . . , xn �→ tn1} for ≺.

Concrete model. The family of computational algebras (Aη) giving the concrete se-
mantics depends on a symmetric encryption scheme SE = (KG, E ,D). The concrete
domain [[Data]]Aη contains all the possible bitstrings and is equipped with the distribu-
tion induced by KG. Interpretation for constants 0 and 1 are respectively bitstrings 0η

and 1η. The enc and dec function are respectively interpreted using algorithm E and
D. We assume the existence in the concrete model of a concatenation operation which
is used to interpret the pair symbol. The corresponding left and right projections im-
plement πl and πr. Finally, as we are only interested in well-formed frames, we do not
provide any computational interpretation for tenc, tpair and samekey.

Semantic security. In this section we suppose a message-length, but not necessarily
which-key concealing semantically secure encryption scheme. The definition that we
recall below uses a left-right encryption oracle LRb

SE . This oracle first generates a key
k using KG. Then it answers queries of the form (bs0, bs1), where bs0 and bs1 are
bitstrings. The oracle returns ciphertext E(bsb, k). The goal of the adversary A is to
guess the value of bit b. His advantage is defined as:

Advcpa(A, η,SE) = P

[
ALR1

SE = 1
]
− P

[
ALR0

SE = 1
]

Encryption scheme SE is IND-CPA secure if the advantage of any adversaryA is negli-
gible in η. The standard definition of IND-CPA allows the scheme to be message-length
revealing. By abuse of notation we call the above scheme also IND-CPA secure.

We also describe a variant of IND-CPA security, IND-CPA′, which models non-
adaptive adversaries. The left-right encryption oracleLR′bSE takes as input a list of pairs
of bitstrings (bsi

0, bs
i
1) for i in [1, n] and returns the list of ciphertexts E(bsi

b, k) for i
in [1, n]. This oracle can only be queried once. The adversary can observe multiple en-
cryptions but he is not allowed to chose them adaptively. The advantage of an adversary
is defined in a similar way as above, replacing LRb

SE by LR′bSE . A symmetric encryp-
tion scheme is said to be IND-CPA′ if the advantage of any polynomial time adversary
A is negligible in η. These two notions of semantic security are related by the following
proposition.
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Proposition 5. Let SE be a symmetric encryption scheme. If SE is IND-CPA, then SE
is IND-CPA′. However SE can be IND-CPA′ without being IND-CPA.

We now state the soundness theorem for symmetric encryption.

Theorem 5. Let ≺ be a total order among keys. In the remainder of this proposition
we only consider well-formed adversaries for≺. Let (Aη) be a family of computational
algebras based on a symmetric encryption scheme SE .

– (Aη) is ≈Esym-ad-sound if SE is IND-CPA but the converse is false.
– (Aη) is ≈Esym-sound if SE is IND-CPA′ but the converse is false.

The proof uses a similar hybrid argument as the one used by Micciancio and Panjwani
in [21]. Results of this section are summed up in the following table. Note that the
relations between adaptive and non-adaptive soundness have not been detailed formally.

≈Esym-ad-sound
⇐
	⇒ IND-CPA

	⇑ ⇓ 	⇑ ⇓
≈Esym-sound

⇐
	⇒ IND-CPA′

8.2 Modular Exponentiation

We suppose the same symbolic and concrete model as in Section 6.2. The DDH as-
sumption is necessary and sufficient to prove adaptive soundness.

Theorem 6. Let (Aη) be a family of computational algebras. (Aη) is ≈EDH
-sound iff

(Aη) satisfies the DDH assumption. (Aη) is ≈EDH
-ad-sound iff (Aη) satisfies the DDH

assumption.

The proof of this result uses an adaptive variant of DDH called 3DH [12]: it generalizes
several previously used variants of DDH. The main difficulty in this proof consists in
relating DDH and 3DH.

Results for modular exponentiation are summed up in the following table. Note that
while adaptive soundness and (classical) soundness are not equivalent for symmetric
encryption, they coincide in this case.

≈EDH
-ad-sound⇐⇒ DDH⇐⇒ ≈EDH

-sound

8.3 Composing Encryption with Exponentiation

Symbolic model. We consider an equational theory E containing both EDH and Esym

and suppose that G is a subsort of Data .

Well-formed frames. Let≺ be a total order between keys and exponentiations. A frame
ϕ (on Σ) is well-formed for ≺ if:
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– ϕ does not contain any dec, tenc, tpair, πl, πr or ∗ symbol, only names and expo-
nentiations are used at key position.

– For any subterm exp(p) of ϕ used at a key position, p is linearly independent of
other polynomials p′ such that exp(p′) is a subterm of ϕ.

– For any subterm {t}t′ of ϕ, if t′′ is a name of sort Data or an exponentiation then
t′′ ≺ t′.

The second condition is similar to the conditions on key cycles. The last condition is to
avoid selective decommitment.

Concrete model. The concrete model is given by the models for symmetric encryption
and modular exponentiation. However, exponentiations can be used as symmetric keys
in our symbolic model. This needs to be reflected in the concrete model. The family of
computational algebras (Aη) giving the concrete semantics is parameterized by a sym-
metric encryption scheme SE and an instance generator IG. We require the key gener-
ation algorithm of SE to randomly sample an element of IG(η). Giving an IND-CPA
encryption scheme SE ′, we build another IND-CPA encryption scheme SE which in-
deed uses such a key generation algorithm. This is achieved by using a key extractor
algorithm Kex [13]. This algorithm (usually a universal hash function used with the en-
tropy smoothing theorem) is used to transform group elements into valid keys for SE ′.
Its main characteristic is that applying Kex to a randomly sampled element of a group
created by IG produces the same distribution as the one given by the key generation
algorithm of SE ′. Then the new encryption and decryption algorithms of SE apply the
Kex algorithm to the group element which is used as key. This produces a symmetric
key which can be used with the encryption and decryption algorithms of SE ′.

The family of computational algebras (Aη) implementing encryption with exponen-
tiation is EE-secure if the encryption scheme SE is secure against IND-CPA and uses a
key generation algorithm as described above and IG satisfies the DDH assumption.

Theorem 7. Let ≺ be a total order between keys and exponentiations. Let (Aη) be an
EE-secure family of computational algebras then (Aη) is≈E-ad-sound for well-formed
frames for ≺.

8.4 Composing Encryption with XOR

Symbolic model. We consider an equational theory E containing both E⊕ and Esym

and suppose that Data⊕ is a subsort of Data.

Well-formed frames. Let ≺ be a total order between keys and terms of sort Data⊕. A
frame ϕ = {x1 �→ t1, . . . xn �→ tn} is well-formed for ≺ if the following conditions
are verified. Let X be the set of maximal subterms of ϕ of sort Data⊕2.

– ϕ does not contain function symbols dec, tenc, tpair, πl or πr and only terms of
sort Data⊕ and names are used at key positions.

2 Using standard definitions for manipulating terms X is formally defined as follows: X =�
1≤i≤n {ti|p | p ∈ pos(ti), sort(ti|p) = Data⊕, p = p′ · k ⇒ sort(ti|p′) �= Data⊕}.
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– For any x ∈ X used at a key position, there does not exist a set {x1, . . . , xi} ⊆
X ∪ {1}, disjoint from {x}, such that x =E⊕ x1 ⊕ ...⊕ xi.

– For any subterm {t}t′ of ϕ, if t′′ is a subterm of t which is a name of sort Data or
an element of X then t′′ ≺ t′.

Concrete model. The concrete model is given by the models for symmetric encryption
and exclusive OR. However, as in the combination of encryption with exponentiation,
we need to reflect that nonces can be used as keys. The family of computational algebras
(Aη) giving the concrete semantics is parameterized by a symmetric encryption scheme
SE . The XOR part uses the same implementation as in Section 6.1. We require that the
key generation algorithm of SE consists in randomly sampling an element of [0, 1]η.
The family of computational algebras (Aη) is said EX-secure if the encryption scheme
SE is secure against IND-CPA and uses a key generation algorithm as described above.

Theorem 8. Let ≺ be a total order between keys and terms of sort Data⊕. Let (Aη)
be an EX-secure family of computational algebras then (Aη) is ≈E-ad-sound for well-
formed frames for ≺.

9 Conclusion

In this paper we have described computationally soundness results for a model relying
on equational theories and static equivalence. We consider the case of passive and adap-
tive adversaries and present several examples of sound equational theories to illustrate
this framework. Whether this framework can be generalized to an active attacker is still
a challenging research topic.

References

1. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational soundness of
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Abstract. Secure information flow analysis aims to prevent programs
from leaking their H (high) inputs to their L (low) outputs. A major
challenge in this area is to relax the standard noninterference properties
to allow “small” leaks, while still preserving security. In this tutorial
paper, we consider three instances of this theme. First, we consider a
type system that enforces the usual Denning restrictions, except that it
specifies that encrypting a H plaintext yields a L ciphertext. We argue
that this type system ensures security, assuming strong encryption, by
giving a reduction that maps a noninterference adversary (which tries
to guess which of two H inputs was used, given the L outputs) to an
IND-CPA adversary (which tries to guess which of two plaintexts are
encrypted, given the ciphertext). Second, we explore termination leaks in
probabilistic programs when typed under the Denning restrictions. Using
a notion of probabilistic simulation, we show that such programs satisfy
an approximate noninterference property, provided that their probability
of nontermination is small. Third, we consider quantitative information
flow, which aims to measure the amount of information leaked. We argue
that the common information-theoretic measures in the literature are
unsuitable, because these measures fail to distinguish between programs
that are wildly different from the point of view of an adversary trying to
guess the H input.

1 Introduction

Suppose that a program c processes some sensitive information. How do we know
that c will not leak the information, either accidentally or maliciously? How can
we ensure that c is trustworthy?

The approach of secure information flow analysis is to classify c’s variables
into different security levels, such as H (high) or L (low), and to do a static
analysis, often in the form of a type system, on c prior to executing it. The goal is
to prove that c conforms to some specified flow policy, which can encompass both
confidentiality and integrity concerns; in this paper, we will focus exclusively on
confidentiality. See [1] for a survey of this area.

It is important to recognize that the secure information flow problem involves
two adversaries : the program c itself, and also the observer O of c’s public output.
These two adversaries have distinct capabilities:
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– The program c has direct access to the sensitive information (the initial
values of H variables), but its behavior is constrained by the static analysis.

– The observer O has direct access only to c’s public output (the final values of
L variables, etc.), but its behavior is unconstrained, except for computational
resource bounds.

The decision as to what constitutes c’s public output is quite important, of
course; in particular secure information flow becomes far more difficult if we
consider c’s running time to be a public output.

A classic approach to secure information flow in imperative programs is based
on the Denning restrictions proposed in [2]:

– An expression is classified as H if it contains any H variables; otherwise, it
is classified as L.

– To prevent explicit flows, a H expression cannot be assigned to a L variable.
– To prevent implicit flows, an if or while command whose guard is H may

not make any assignments to L variables.

If c satisfies the Denning restrictions, then it can be proven [3] that c satisfies
noninterference, which says (assuming that c always terminates) that the final
values of the L variables are independent of the initial values of the H variables.
Hence observer O, seeing the final values of the L variables, can deduce nothing
about the initial values of the H variables.

Unfortunately, noninterference is often too strong in practice. This leads to
a major practical challenge: how can we relax noninterference to allow “small”
information leaks, while still preserving security? In the next three sections, we
consider three instances of this theme. In Sections 2 and 3, we consider secure
information flow analyses that are permissive about leaks caused by encryption
and nontermination, respectively; these sections summarize [4] and [5], where
additional details can be found. In Section 4, we present some preliminary ideas
about a general theory of quantitative information flow, which aims to measure
the “amount” of information leaked.

2 Secure Information Flow for a Language with
Encryption

Suppose that E and D denote encryption and decryption with a suitably-chosen
shared key K. We allow program c to call E and D, but we do not give it direct
access to K. Intuitively, we would like to extend the Denning restrictions with
the following rules:

– If expression e is H , then E(e) is L.
– If expression e is either L or H , then D(e) is H .

But are these rules sound? Note that they violate noninterference, since E(e)
depends on e.
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In fact these rules are unsound if encryption is deterministic. For example,
suppose that secret is a H n-bit variable and that leak and mask are L variables.
Consider the following program, in which “|” denotes bitwise-or, and “� 1”
denotes right shift by one bit:

leak := 0;
mask := 2n−1;
while mask �= 0 do (

if E(secret | mask) = E(secret) then
leak := leak | mask ;

mask := mask � 1
)

This program is allowed under the proposed rules. But if E is deterministic, then
the program efficiently copies secret into leak , because then the test in the if
command is true iff secret | mask = secret .

In fact it is well understood in the cryptographic community that deterministic
encryption cannot give good security properties.1 We recall the definitions of
symmetric encryption scheme and IND-CPA security from [6]:

Definition 1. A symmetric encryption scheme SE with security parameter k is
a triple of algorithms (K, E ,D), where

– K is a randomized key-generation algorithm that generates a k-bit key; we
write K ?← K

– E is a randomized encryption algorithm that takes a key and a plaintext and
returns a ciphertext; we write C ?← EK(M).

– D is a deterministic decryption algorithm that takes a key and a ciphertext
and returns the corresponding plaintext; we write M := DK(C).

We recall the notion of IND-CPA security, which stands for indistinguishability
under chosen-plaintext attack. An adversary A is given an LR oracle of the form

EK(LR(·, ·, b)),
where K is a randomly generated key and b is an internal selection bit, which is
either 0 or 1. When A sends a pair of equal-length messages (M0,M1) to the LR
oracle, it selects either M0 or M1 according to the value of b, encrypts it using
EK , and returns the ciphertext C to A. Thus when A sends a sequence of pairs
of messages to the LR oracle, it either gets back encryptions of the left messages
(if b = 0) or else encryptions of the right messages (if b = 1). A’s challenge is to
guess which of these two “worlds” it is in.
1 However, it is standard to implement strong encryption using a deterministic block

cipher (modeled as a pseudo-random permutation) and random vectors, using
techniques like cipher-block chaining with random initial vector [6]. Interestingly,
Courant, Ene, and Lakhnech [7] have considered secure information flow in that
lower implementation level, using an ingenious type system that tracks both the
security level as well as the randomness of expressions.
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Formally, A is executed in two different experiments, depending on the choice
of the selection bit b:

Experiment Expind-cpa-b
SE (A)

K
?← K;

d
?← AEK(LR(·,·,b));

return d

The IND-CPA advantage of A is defined as

Advind-cpa
SE (A) = Pr[Expind-cpa-1

SE (A) = 1]− Pr[Expind-cpa-0
SE (A) = 1].

Thus A’s IND-CPA advantage is its probability of (correctly) guessing 1 in world
1, minus its probability of (wrongly) guessing 1 in world 0. Finally, SE is IND-
CPA secure if no adversary A running in polynomial time in the security pa-
rameter k can achieve a non-negligible advantage. (As usual, s(k) is negligible if
for any positive polynomial p(k), there exists k0 such that s(k) ≤ 1

p(k) , for all
k ≥ k0.)

Now we define the programming language that we will consider. We use a
simple imperative language with the following syntax:

(expressions) e ::= x | m | e1 + e2 | . . . | D(e1, e2)

(commands) c ::= x := e |
x

?←R |
(x, y) ?← E(e) |
skip |
if e then c1 else c2 |
while e do c |
c1; c2

In the syntax, metavariables x and y range over identifiers and m over integer
literals. Integers are the only values; we use 0 for false and nonzero for true.
The command x

?←R is a random assignment; here R ranges over some set of
probability distributions on the integers.

The commands for encryption and decryption are slightly non-obvious. There
are two issues: first, encryption cannot conceal the length of the plaintext; second,
for IND-CPA security there must be many ciphertexts corresponding to a given
plaintext, so ciphertexts must be longer than plaintexts. We deal with these
issues in our language by assuming that all integer values are n bits long, for
some n, and that encryption always takes an n-bit plaintext and produces a
2n-bit ciphertext. Thus the encryption command has the form (x, y) ?← E(e); it
encrypts the n-bit value of expression e, putting the first n bits of the ciphertext
into x and the second n bits into y. Symmetrically, the decryption expression
D(e1, e2) takes two expressions, giving 2n bits of ciphertext, and produces the
corresponding n-bit plaintext.
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As shown in [3], the Denning restrictions can be enforced using a type system.
We extend such a type system with rules for the new constructs; we do not show
the rules here (they can be found in [4]), but they enforce the following rules:

– E(e) is L, even if e is H .
– D(e1, e2) is H , even if e1 and e2 are L.
– R (a random value) is L.

The reason for the last rule is that a random value is independent of the initial
values of H variables.

We now wish to argue that our type system is sound. To do this, we introduce
the idea of a leaking adversary. A leaking adversary B has a H variable h and
a L variable l, and other variables typed arbitrarily. It is run with h initialized
to either 0 or 1, each with probability 1/2. It can call E() and D(), and it tries
to copy the initial value of h into l. Formally, B is executed in the following
experiment:

Experiment Expleak
SE (B)

K
?← K;

h0
?← {0, 1};

h := h0;
initialize all other variables of B to 0;
run BEK(·),DK(·);
if l = h0 then return 1 else return 0

Here h0
?← {0, 1} assigns a random 1-bit integer to h0. Variable h0 must not occur

in B; it is used to record the initial value of h. Finally, the leaking advantage of
B is defined as

Advleak
SE (B) = 2 · Pr[Expleak

SE (B) = 1]− 1.

The leaking advantage is defined in this way to reflect the fact that B can trivially
succeed with probability 1/2.

We argue the soundness of our type system via a reduction; for the moment,
we drop decryption from our language:

Theorem 1. Given a well-typed leaking adversary B that does not call D() and
that runs in polynomial time p(k), there exists an IND-CPA adversary A such
that

Advind-cpa
SE (A) ≥ 1

2
·Advleak

SE (B).

Moreover, A runs in O(p(k)) time.

The theorem gives the following immediate corollary:

Corollary 1. If SE is IND-CPA secure, then there is no polynomial-time, well-
typed leaking adversary B that achieves a non-negligible advantage.
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The proof of Theorem 1 is by explicit construction. Given leaking adversary B,
we construct IND-CPA adversary A that runs B with a randomly-chosen 1-bit
value of h. Whenever B calls E(e), A passes (0n, e) to its oracle EK(LR(·, ·, b))
and returns the result to B. If B terminates within p(k) steps and succeeds in
leaking h to l, then A guesses 1; otherwise A guesses 0.

To understand this construction, the first thing to notice is that if the selection
bit b is 1, then B is run faithfully—whenever B calls E(e), it correctly receives
in reply EK(e). But if the selection bit b is 0, then B is run unfaithfully—now
whenever B calls E(e), it receives in reply EK(0n), which is a random value that
has nothing to do with e.

What is A’s IND-CPA advantage? When the selection bit b is 1, then B is
run faithfully and hence

Pr[Expind-cpa-1
SE (A) = 1] = Pr[Expleak

SE (B) = 1] =
1
2
·Advleak

SE (B) +
1
2
.

When the selection bit b is 0, then B is run as a well-typed program in a language
with random assignment but no encryption—in other words, B no longer can take
advantage of the leak associated with the typing rule for encryption. Hence we
would expect that standard noninterference results will prevent B from copying
h to l with probability better than 1/2. However, there is a subtlety here—when
B is run unfaithfully, it might fail to terminate. (For example, E(h) and E(h+1)
are always distinct if B is run faithfully, but they have a small probability of
being equal if B is run unfaithfully.) To deal with this possibility, we need a
careful analysis of the behavior of well-typed probabilistic programs that might
not terminate. Such an analysis is described in Section 3 of this paper; it allows
us to show that

Pr[Expind-cpa-0
SE (A) ≤ 1

2

as expected. (Details are given in [4].) In conclusion we get

Advind-cpa
SE (A) = Pr[Expind-cpa-1

SE (A) = 1]− Pr[Expind-cpa-0
SE (A) = 1]

≥ 1
2 ·Advleak

SE (B)

as claimed.
We have shown that our type system rules out well-typed, efficient leaking

adversaries. But can we get a result more like noninterference? To this end, let
c be a well-typed, polynomial-time program in our language, and let μ and ν be
memories that agree on L variables. Suppose we run c under either μ or ν, each
with probability 1/2, and show the final values of the L variables of c to observer
O, which we here refer to as a noninterference adversary. Could O guess which
initial memory was used?

More formally, a noninterference adversary O for c, μ, and ν is a program
that refers only to the L variables of c and outputs its guess into a new variable
g. O is run in the following experiment, where h0 is a new variable:
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Experiment ExpNI
SE,c,μ,ν(O)

K
?← K;

h0
?← {0, 1};

if h0 = 0 then initialize the variables of c to μ
else initialize the variables of c to ν;

c;
O;
if g = h0 then return 1 else return 0

The noninterference advantage of O is defined as

AdvNI
SE,c,μ,ν(O) = 2 · Pr[ExpNI

SE,c,μ,ν(O) = 1]− 1.

Now we have the following theorem:

Theorem 2. If c is a well-typed, polynomial-time program and μ and ν are
memories that agree on L variables, then no polynomial-time noninterference ad-
versary O for c, μ, and ν can achieve a non-negligible noninterference
advantage.

As in Theorem 1, the proof is by explicit construction. Given noninterference
adversary O, we can construct a well-typed leaking adversary B. An interesting
point here is thatO cannot be assumed to be well typed. But because O sees only
the L variables of c, we can give all its variables type L, making O automatically
well typed under our typing rules. Hence we can use O in constructing B:

Adversary B
initialize the L variables of c according to μ and ν;
if h = 0 then

initialize the H variables of c according to μ
else

initialize the H variables of c according to ν;
c;
O;
l := g

It is easy to see that B is well typed and that its leaking advantage is the same
as O’s noninterference advantage.

Thus we have shown that, on polynomial-time programs c, our type system
ensures a property that is essentially as good as noninterference—a polynomial-
time observerO is basically unable to determine anything about the initial values
of the H variables from the final values of the L variables.

Finally, we remark that Theorem 1 can be generalized to the full language
including decryption. A similar reduction can be done, except that from leaking
adversary B we now construct an IND-CCA adversary A [6], which has a de-
cryption oracle DK(·) in addition to its LR-oracle EK(LR(·, ·, b)). It is not clear
to us whether this is strictly necessary—see [4] for more discussion.
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We conclude this section by mentioning some related work. Peeter Laud has
pioneered the area of secure information flow analysis in the presence of en-
cryption; his works include [8,9,10]. The third of these papers treats a richer
language with primitives for generating and manipulating keys directly, though
not handling decryption explicitly, and necessitating more complex typing rules
and proofs. Other recent work in this area includes [11,12,13,14]; a major goal of
these works is to “scale up” the language to the point that practical applications
can be built.

More distantly related is the large body of recent work aimed at proving com-
putational security properties of cryptographic protocols; examples include the
work of Backes and Pfitzmann [15] and Laud [16]. Such work has a quite differ-
ent adversary model than what is used in secure information flow analysis—the
focus is on distributed systems in the presence of an active adversary which can
insert and modify messages without constraint by a type system, but which does
not have direct access to secrets.2 Also type systems for cryptographic protocols
seem to offer less support for general-purpose programming—for example, the
type system in [16] does not allow branching on secret data.

3 Termination Leaks in Probabilistic Programs

In Section 2, we assumed that all adversaries run in time polynomial in k, the
key size. This might seem to be “without loss of generality” (practically speak-
ing) since otherwise the adversary takes too long. But what if program c either
terminates quickly or else goes into an infinite loop? In that case, observer O
might quickly be able to observe whether c terminates.

Furthermore, the Denning restrictions allow H variables to appear in guards
of loops, because disallowing them would seem too restrictive in practice. This
means that H variables can affect termination, as in examples like

while secret = 0 do
skip;

leak := 1

It is for this reason that the noninterference property discussed in Section 1
includes the assumption that program c always terminates.

In this section, we try to quantify such termination leaks. The setting we
consider is probabilistic programs with random assignment, but no encryption or
decryption. We use the same type system as in Section 2, except that we no longer
need typing rules for encryption and decryption; thus we simply enforce the
Denning restrictions, extended with a rule that says that random values are L.
Semantically, our programs are modeled as Markov chains [17] of configurations
(c, μ), where c is the command remaining to be executed and μ is the memory.

2 However, a similar active adversary is considered in some recent work in secure
information flow, such as [14], that addresses integrity in addition to confidentiality.
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In this setting, perfect security is given by probabilistic noninterference, which
says that the final probability distribution on L variables is independent of the
initial values of the H variables.

Here is an example of a program that violates probabilistic noninterference:

t
?← {0, 1};

if t = 0 then (
while h = 1 do skip;
l := 0

)
else (

while h = 0 do skip;
l := 1

)

Note that t ?← {0, 1} is a random assignment that assigns either 0 or 1 to t, each
with probability 1/2. Assuming that h is H and t and l are L, this program
satisfies the extended Denning restrictions. But if h = 0, it terminates with
l = 0 with probability 1/2 and loops with probability 1/2. And if h = 1, then it
terminates with l = 1 with probability 1/2 and loops with probability 1/2.

However we can argue an approximate probabilistic noninterference property:

Theorem 3. If c satisfies the extended Denning restrictions and loops with prob-
ability at most p, then c’s deviation from probabilistic noninterference is at most
2p.

In our example program, p = 1/2, and the deviation is |1/2 − 0| + |0 − 1/2| =
1 = 2p, achieving the bound specified by the theorem. (The first term compares
the probability that l = 0 after h = 0 and after h = 1; the second compares the
probability that l = 1 after h = 0 and after h = 1.)

To prove this theorem, we introduce the idea of a stripped program, denoted
by �c�. We form �c� from c by stripping out all subcommands that do not assign
to L variables, replacing them with skip. (In terms of the type system, this is
equivalent to stripping out all subcommands of type H cmd .) For example, the
stripped version of our example program is the following:

t
?← {0, 1};

if t = 0 then (
skip;
l := 0

)
else (

skip;
l := 1

)

It turns out that if c satisfies the extended Denning restrictions, then �c�
contains no H variables. More interestingly, in this case c satisfies what we call
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the Bucket Property, which relates to behavior of c and �c�. To visualize this
property, imagine that the result of running c is shown as a sequence of buckets,
one for each possible final value of c’s L variables; also, we have a bucket to
represent looping. The probability of each outcome is indicated by the amount
of water in each bucket. Suppose that c’s buckets look like this:

l = 0 l = 1 l = 2

. . .

loop

Then the Bucket Property says that �c�’s buckets are gotten simply by pouring
some of the water from c’s loop bucket into some of the other buckets:

loop

. . .

l = 2l = 1l = 0

In other words, as we pass from c to �c�, the probabilities of L outcomes can
only increase or stay the same; they cannot decrease.

In prior work on secure information flow, probabilistic bisimulation has often
been a useful proof technique (see, for example, [18]). But in proving the Bucket
Property, we use a non-symmetric probabilistic simulation [19] instead. Specifi-
cally, we define a fast simulation, which is a modification of the weak simulation
considered by Baier, Katoen, Hermanns, and Wolf [20].

We develop the theory of fast simulation in the abstract setting of Markov
chains. Intuitively, state t simulates state s if t can simulate whatever s can do.
Thus if s can go to some state s′ with probability p, then t should be able to
match this by going to one or more states t′, t′′, t′′′, . . . , each of which simulates
s′, with total probability at least p. However we must not “double count” t’s
probabilities—for example, if s goes to s′ with probability 1/3 and t goes to
t′ with probability 1/2, then if we use t′ to simulate the move to s′ we must
remember that 1/3 of t′’s probability is “used up”, leaving just 1/6 to be used
in simulating other moves of s. These considerations lead to what is called a
weight function Δ that specifies how the probabilities are matched up. A further
consideration is that s might go to a state that is already simulated by t—in
this case s has made an “insignificant” move, which t should not need to match.
Thus in general we partition the states reachable in one step from s into two
sets, U and V , corresponding to the “significant” and “insignificant” moves,
respectively.

Formally, given a (discrete-time) Markov chain with state set S and transition
probabilities P, we define:
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Definition 2. Let R be a binary relation on S. R is a fast simulation if, when-
ever sRt, the states reachable in one step from s can be partitioned into two sets
U and V such that

1. vRt for every v ∈ V , and
2. letting K =

∑
u∈U P(s, u), if K > 0 then there exists Δ : S×S → [0, 1] such

that
(a) Δ(u,w) > 0 implies that uRw,
(b) P(s, u)/K =

∑
w∈S Δ(u,w) for all u ∈ U , and P(t, w) =

∑
u∈U Δ(u,w)

for all w ∈ S.

We now describe the key theory associated with fast simulation. First, given
binary relation R, we say that a set T of states is upwards closed if s ∈ T and
sRt implies that t ∈ T . Next, given state s, natural number n, and set T of
states, let us write Pr(s, n, T ) to denote the probability of reaching a state in T
from s in at most n steps.

Now we have the key theorem, which says that if t fast simulates s, then t
reaches any upwards closed set T with at least as great probability and at least
as quickly as s does:

Theorem 4. If R is a fast simulation, T is upwards closed, and sRt, then
Pr(s, n, T ) ≤ Pr(t, n, T ) for every n.

We remark that the universal relation RU = S × S is trivially a fast simulation.
But under RU the only upwards closed sets are ∅ and S itself, which means that
Theorem 4 is uninteresting in that case.

We now apply the theory of fast simulation to the setting of probabilistic
programs that satisfy the extended Denning restrictions. The key result is that
we can define a fast simulation RL such that (c, μ)RL(�c�, μ), for any well-typed
command c.

Definition 3. If c and d are well-typed commands, then we say that cRLd if
this can be proved from the following six rules:

1. c1RLskip, if c1 does not assign to L variables.
2. (x := e)RL(x := e).
3. (x ?← D)RL(x ?← D).
4. (if e then c1 else c2)RL(if e then d1 else d2), if e : L, c1RLd1, and

c2RLd2.
5. (while e do c1)RL(while e do d1), if e : L and c1RLd1.
6. (c1; c2)RL(d1; d2), if c1RLd1 and c2RLd2.

We extend RL to configurations with the following two rules:

1. μRLν, if μ and ν agree on L variables.
2. (c, μ)RL(d, ν), if cRLd and μ and ν agree on L variables.

It can be proved that RL is a fast simulation, and that for any well-typed c,
cRL�c�. This implies the Bucket Property. For given some L outcome (such as
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l = 17), let T be the set of memories that satisfy that outcome (for example,
T = {ν | ν(l) = 17}). Since T is upwards closed under RL, we can apply Theo-
rem 4 to deduce that Pr((c, μ), n, T ) ≤ Pr((�c�, μ), n, T ), for every n. Finally, we
can extend to the probability of eventually terminating in T , since this is just
limn→∞ Pr((c, μ), n, T ).

Given the Bucket Property, we can now prove the approximate probabilis-
tic noninterference property. Recall that �c� contains no H variables. Hence if
memories μ and ν agree on L variables, then the behavior of (�c�, μ) must be
identical to that of (�c�, ν). Thus we can build a “bridge” between (c, μ) and
(c, ν):

(c, μ)
Bucket Prop←−−→ (�c�, μ) ≡ (�c�, ν) Bucket Prop←−−→ (c, ν)

Since (c, μ)’s loop bucket contains at most p units of water, the sum of the
absolute value of the differences between the L outcome buckets of (c, μ) and of
(�c�, μ) is at most p. Similarly for (c, ν). Hence the sum of the absolute value of
the differences between the L outcome buckets of (c, μ) and of (c, ν) is at most
2p.

We conclude this section by remarking that observer O, given the final values
of c’s L variables, could try to distinguish between initial memories μ and ν
through statistical hypothesis testing. Assuming that the probability p of non-
termination is small, then the approximate noninterference property gives us a
way to bound O’s ability to do this, as in the work of Di Pierro, Hankin, and
Wiklicky [21]. Finally, we remark that the Bucket Property is used crucially in
the proof of Theorem 1 in Section 2 of this paper, to bound the advantage of
leaking adversary B when run unfaithfully.

4 Foundations for Quantitative Information Flow

In the two previous sections, we considered information leaks fromH to L associ-
ated with encryption and with nontermination, showing that secure information
flow analyses can be permissive about such flows, while still preserving security
guarantees. More generally, it would be valuable to develop a theory of “small”
information leaks that is independent of any particular programming mecha-
nism. To this end, in this section we consider the foundations of a quantitative
theory of information flows. Such a quantitative theory has long been recognized
as an important generalization of the theory of noninterference, and there has
been quite a lot of recent work in this area, including the works of Clark, Hunt,
and Malacaria [22,23,24], Köpf and Basin [25], Clarkson, Myers, and Schneider
[26], Lowe [27], and Di Pierro, Hankin, and Wiklicky [21]. Also related is work
in quantitative anonymity, such as that of Chatzikokolakis, Palamidessi, and
Panangaden [28].

We can identify four main research steps required to develop a useful theory
of quantitative information flow:

1. Define a quantitative notion of information flow.
2. Show that the notion gives appropriate security guarantees.
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3. Devise static analyses to enforce a given quantitative flow policy.
4. Prove the soundness of the analyses.

In this paper, we limit our discussion to Steps 1 and 2.
Moreover, rather than trying to tackle the problem in full generality, we will

consider important special cases in the hopes of better understanding what is
going on. We therefore adopt the following conceptual framework:

– We assume that there is a single secret h, which is chosen from some space
S according to some a priori, publicly-known probability distribution.

– We assume that c is a program that has only h as input and (maybe) leaks
information about h to its unique public output l.

– We assume that c is deterministic and total.

Having made these assumptions, we can now follow Köpf and Basin [25] and
observe that the public output l is a function of the secret h; thus there exists
a function f such that l = f(h). Furthermore, f induces an equivalence relation
∼ on S:

h1 ∼ h2 iff f(h1) = f(h2).

(In set theory, ∼ is called the kernel of f .) Hence the program c partitions S
into the equivalence classes of ∼.

So what information is leaked by c? The observer O sees the final value of l.
This tells O which equivalence class h belonged to. How bad is that? We can
first explore that question by considering two extreme situations:

Extreme 1. If f is a constant function, then there is just one equivalence class,
and noninterference holds.

Extreme 2. If f is one-to-one, then the equivalence classes are singletons, and
we have total leakage of h (in principle).

The reason that we say “in principle” in Extreme 2 is that O might be unable
to compute the value of h efficiently from the value of l; our framework here is
thus information-theoretic rather than computational.

To assess situations between the two extremes considered above, we need
appropriate quantitative measures. Here we review two common information-
theoretic measures. Let X be a discrete random variable whose values have
probabilities p1, p2, p3, . . . , pn, where we assume for convenience that pi ≥ pi+1,
for all i. The Shannon entropy of X is defined by

H(X) =
n∑

i=1

pi log
1
pi
.

The Shannon entropy can be viewed informally as the “uncertainty” about X ;
more precisely it can be understood as the expected number of bits required to
transmit X optimally. The Guessing entropy of X is defined by

G(X) =
n∑

i=1

ipi.
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The Guessing entropy can be understood as the expected number of guesses
required to guess X optimally.

Let us now apply Shannon entropy to the partitions induced by program c.
For simplicity, let us consider the case where h is uniformly distributed over space
S, and |S| = n. Suppose that the partition induced by c consists of r equivalence
classes C1, C2, . . . , Cr, where |Ci| = ni, for all i. Then the Shannon entropy of h
is

H(h) =
n∑

i=1

1
n

logn = logn.

This can be viewed as the “initial uncertainty about h”. And the Shannon en-
tropy of l is

H(l) =
r∑

i=1

ni

n
log

n

ni
.

Plausibly, this can be viewed as the “amount of information leaked”. This view
is supported by the two extreme cases discussed above. In Extreme 1, there is
just one equivalence class, of size n, so

H(l) =
1∑

i=1

n

n
log

n

n
= 0

and in Extreme 2, there are n equivalence classes, each of size 1, so

H(l) =
n∑

i=1

1
n

logn = logn.

We can also ask another question, which is more crucial from the point of view of
security: how much uncertainty about h remains after the attack? This quantity
can be calculated as a conditional Shannon entropy:

H(h|l) =
r∑

i=1

ni

n
H(Ci) =

r∑

i=1

ni

n
logni.

Quite reasonably, in Extreme 1 we get H(h|l) = logn and in Extreme 2 we get
H(h|l) = 0. Finally, there is a pretty equation relating these three quantities:

H(h) = H(l) +H(h|l)

which can be read as

“initial uncertainty = information leaked + remaining uncertainty”.

So is Step 1 (“Define a quantitative notion of information flow”) finished? In
the restricted framework that we are considering, it certainly seems promising
to define the amount of information leaked to be H(l), and the remaining un-
certainty to be H(h|l). And in fact this seems to be the literature consensus: it
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is the approach taken by Clarke, Hunt, and Malacaria [22,23,24] and by Köpf
and Basin [25] (although they also consider G(l) and G(h|l)). The approach of
Clarkson, Myers, and Schneider [26] is more general, because they consider the
case when the observer O has (possibly mistaken) beliefs about the probability
distribution of h. But in the special case when O’s beliefs match the a priori
distribution, and when the expected flow over all experiments is considered [26,
Section 4.4], their approach then reduces to using H(l) and H(h|l).

So we might turn our attention next to Step 2 (“Show that the notion gives
appropriate security guarantees”). A first step that can be taken here is to show
that H(l) (“the amount of information leaked”) is 0 iff c satisfies noninterference.
This is good, of course, but it is just a first step—it establishes only that the
zero/nonzero distinction is meaningful. A more interesting result is the Fano
Inequality, which gives lower bounds, in terms of H(h|l), on the probability that
observer O will fail to guess the value of h correctly, given l. Unfortunately these
bounds are extremely weak in many cases.

Really the key question for Step 2 is whether the value of H(h|l) (“the re-
maining uncertainty”) accurately reflects the threat to h. Let us consider some
example attacks to answer this question.

First consider a program c that simply copies 1/10 of the bits of h into l; this
could be done with a program like this:

l = h & 0177777;

Assuming as before that h is uniformly distributed over S, where |S| = n,
this attack partitions S into 20.1 log n = n0.1 equivalence classes, each of size
20.9 log n = n0.9. Hence we get H(l) = 0.1 logn and H(h|l) = 0.9 logn, which
seems quite reasonable since 9/10 of the bits of h are completely unknown to O
after the attack.

But now suppose that the possible values of h range from 0 to n − 1 and
consider the following program:

if (h < n/10)
l = h;

else
l = -1;

This program puts 90% of the possible values of h into one big equivalence class,
and puts each of the remaining 10% into singleton classes. Hence we get

H(l) = 0.9 log
1

0.9
+ 0.1 logn ≈ 0.1 logn+ 0.14

and
H(h|l) = 0.9 log(0.9n) ≈ 0.9 logn− 0.14

These quantities are essentially identical to those for the previous attack! But
now observer O can guess h with probability 1/10.

The conclusion is that if H(h|l) is used as the measure of remaining un-
certainty, then Step 2 cannot be done well, because H(h|l) fails to distinguish
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between two attacks that are completely different from the point of view of their
threat to the secrecy of h.

We might now revisit Step 1, in the hopes of finding a measure that works out
better with respect to Step 2. But why not use Step 2 to guide Step 1? Why not
define a measure of remaining uncertainty directly in terms of the desired security
guarantees? Here is a very simple and basic measure that we can consider: let us
define V (h|l), the vulnerability of h given l, to be the probability that observer
O can guess h correctly in one try, given l.

Let us now explore the value of V (h|l) in the case when h is uniformly dis-
tributed, with n possible values. If the partition induced by c consists of r equiv-
alence classes C1, C2, . . . , Cr, where |Ci| = ni for all i, then the probability of
ending in class Ci is ni/n and the probability that O can guess h in one try,
given that h is in Ci, is 1/ni. Remarkably, the ni’s cancel out and we get

V (h|l) =
r∑

i=1

ni

n

1
ni

=
r

n
.

So in this case all that matters is the number of equivalence classes, not their
sizes!

Let us now consider some examples to assess the reasonableness of V (h|l):
a. Noninterference case: r = 1, V (h|l) = 1/n
b. Total leakage case: r = n, V (h|l) = 1
c. Copy 1/10 of bits: r = n0.1, V (h|l) = 1/n0.9

d. Put 1/10 of h’s values into singleton classes: r = 1 + n/10, V (h|l) ≈ 1/10
e. Put h’s values into classes, each of size 10: r = n/10, V (h|l) = 1/10
f. A password checker, that tests whether h is equal to some particular value:

r = 2, V (h|l) = 2/n

All of these values seem reasonable, suggesting that maybe maybe V (h|l) is a
better foundation for quantitative information flow.

However it is clear that using a single number to represent a complex partition
is necessarily crude. Compare examples d and e, which both have V (h|l) ≈ 1/10.
In example d, 1/10 of the time O will know the value of h, since it ends up in
a singleton class, and 9/10 of the time O will have no idea about the value of
h, since it ends up in the big equivalence class. In contrast, in example e we
find that O never knows the exact value of h, but always knows it to within 10
possible values. Hence giving O a second guess would be essentially useless in
example d, but would double O’s chance of success in example e. Nevertheless,
it seems that V (h|l) ≈ 1/10 is a reasonable (though crude) measure of the threat
to the secrecy of h in both of these examples.

We conclude by remarking that V (h|l) is unfortunately not so good with
respect to compositionality. This will be important when Steps 3 and 4 are
considered—ideally, a static analysis should determine the threat associated with
a sequential composition c1; c2 from the threats associated with c1 and with
c2. But this does not seem possible for V (h|l). Another challenging question
is whether the information-theoretic approach of this section could somehow
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be integrated with the computational complexity approach of Section 2. These
remain topics for future study.
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