
Basic Principles of Learning Bayesian Logic

Programs�

Kristian Kersting1 and Luc De Raedt2

1 CSAIL, Massachusetts Institute of Technologie,
32 Vassar Street, Cambridge, MA 02139-4307, USA

kersting@csail.mit.edu
2 Departement Computerwetenschappen, K.U. Leuven,

Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium
Luc.DeRaedt@cs.kuleuven.be

Abstract. Bayesian logic programs tightly integrate definite logic pro-
grams with Bayesian networks in order to incorporate the notions of
objects and relations into Bayesian networks. They establish a one-to-
one mapping between ground atoms and random variables, and between
the immediate consequence operator and the directly influenced by rela-
tion. In doing so, they nicely separate the qualitative (i.e. logical) compo-
nent from the quantitative (i.e. the probabilistic) one providing a natural
framework to describe general, probabilistic dependencies among sets of
random variables. In this chapter, we present results on combining Induc-
tive Logic Programming with Bayesian networks to learn both the quali-
tative and the quantitative components of Bayesian logic programs from
data. More precisely, we show how the qualitative components can be
learned by combining the inductive logic programming setting learning
from interpretations with score-based techniques for learning Bayesian
networks. The estimation of the quantitative components is reduced to
the corresponding problem of (dynamic) Bayesian networks.

1 Introduction

In recent years, there has been an increasing interest in integrating probability
theory with first order logic. One of the research streams [42,40,24,19,29] con-
centrates on first order extensions of Bayesian networks [41]. The reason why
this has attracted attention is, that even though Bayesian networks are one of
the most important, efficient and elegant frameworks for representing and rea-
soning with probabilistic models, they suffer from an inherently propositional
character. A single Bayesian network specifies a joint probability density over a
finite set of random variables and consists of two components:
� The is a slightly modified version of Basic Principles of Learning Bayesian Logic

Programs, Technical Report No. 174, Institute for Computer Science, University of
Freiburg, Germany, June 2002. The major change is an improved section on param-
eter estimation. For historical reasons, all other parts are left unchanged (next to
minor editorial changes).

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 189–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

190 K. Kersting and L. De Raedt

– a qualitative one that encodes the local influences among the random vari-
ables using a directed acyclic graph, and

– a quantitative one that encodes the probability densities over these local
influences.

Imagine a Bayesian network modelling the localization of genes/proteins. Every
gene would be a single random variable. There is no way of formulating general
probabilistic regularities among the localizations of the genes such as the protein
P encoded by gene G has localization L if P interacts with another protein P’
that has localization L.

Bayesian logic programs are a language that overcomes this propositional
character by tightly integrating definite logic programs with Bayesian networks
to incorporate the notions of objects and relations. In doing so, they can nat-
urally be used to do first order classification, clustering, and regression. Their
underlying idea is to establish a one-to-one mapping between ground atoms and
random variables, and between the immediate consequence operator and the di-
rectly influences by relation. In doing so, they nicely separate the qualitative (i.e.
logical) component from the quantitative (i.e. the probabilistic) one providing a
natural framework to describe general, probabilistic dependencies among sets of
random variables such as the rule stated above.

It is, however, well-known that determining the structure of a Bayesian
network, and therefore also of a Bayesian logic program, can be difficult and
expensive. In 1997, Koller and Pfeffer [33] addressed the question “where do
the numbers come from?” for similar frameworks. So far, this issue has not yet
attracted much attention in the context of first order extensions of Bayesian net-
works (with the exception of [33,19]). In this context, we present for the first time
how to calculate the gradient for a maximum likelihood estimation of the param-
eters of Bayesian logic programs. Together with the EM algorithm which we will
present, this gives one a rich class of optimization techniques such as conjugate
gradient and the possibility to speed up the EM algorithm, see e.g. [38].

Moreover, Koller and Pfeffer [33] rose the question whether techniques from
inductive logic programming (ILP) could help to learn the logical component
of first order probabilistic models. In [30], we suggested that the ILP setting
learning from interpretations [13,14,6] is a good candidate for investigating this
question. In this chapter we would like to make our suggestions more concrete.
We present a novel scheme to learn intensional clauses within Bayesian logic
programs [28,29]. It combines techniques from inductive logic programming with
techniques for learning Bayesian networks. More precisely, we will show that
learning from interpretations can indeed be integrated with score-based Bayesian
network learning techniques in order to learn Bayesian logic programs. Thus, we
answer Koller and Pfeffer’s question affirmatively.

We proceed as follows. After briefly reviewing the framework of Bayesian logic
programs in Section 2, we define the learning problem in Section 3. Based on
this, we then present a score-based greedy algorithm called Scooby solving the
learning problem. More precisely, Section 4 presents Scooby first in the context
of a special class of propositional Bayesian logic programs, i.e. Bayesian networks,

Basic Principles of Learning Bayesian Logic Programs 191

and then on general Bayesian logic programs. In Section 5, we formulate the
likelihood of the parameters of a Bayesian logic program given some data and,
based on this, we present a gradient-based and an EM method to find that
parameters which maximize the likelihood. Section 6 reports on first experiments.
Before concluding the paper, we touch upon related work.

We assume some familiarity with logic programming or Prolog (see e.g. [45,37])
as well as with Bayesian networks (see e.g. [41,10,27]).

2 Bayesian Logic Programs

Throughout the paper we will use an example from genetics which is inspired
by Friedman et al. [19]: “it is a genetic model of the inheritance of a single gene
that determines a person’s X blood type bt(X). Each person X has two copies
of the chromosome containing this gene, one, mc(Y), inherited from her mother
m(Y,X), and one, pc(Z), inherited from her father f(Z,X).” We will use P to
denote a probability distribution, e.g. P(x), and the normal letter P to denote
a probability value, e.g. P (x = v), where v is a state of x.

2.1 Representation Language

The basic idea underlying our framework is that each Bayesian logic program
specifies a (possibly infinite) Bayesian network, with one node for each (Bayesian)
ground atom (see below). A Bayesian logic program B consist of two components:

– a qualitative or logical one, a set of Bayesian clauses (cf. below), and
– a quantitative one, a set of conditional probability distributions and combin-

ing rules (cf. below) corresponding to that logical structure.

Definition 1 (Bayesian Clause). A Bayesian (definite) clause c is an expression
of the form

A | A1, . . . , An

where n ≥ 0, the A, A1, . . . , An are Bayesian atoms and all Bayesian atoms
are (implicitly) universally quantified. We define head(c) = A and body(c) =
{A1, . . . , An}.
So, the differences between a Bayesian clause and a logical one are:

1. The atoms p(t1, ..., tn) and predicates p arising are Bayesian, which means
that they have an associated (finite) domain1 S(p), and

2. We use “ | ” instead of “:-”.

For instance, consider the Bayesian clause c

bt(X) | mc(X), pc(X).

where S(bt) = {a, b, ab, 0} and S(mc) = S(pc) = {a, b, 0}. It says that the blood
type of a person X depends on the inherited genetical information of X . Note
1 For the sake of simplicity we consider finite random variables, i.e. random variables

having a finite set S of states. However, the ideas generalize to discrete and contin-
uous random variables.

192 K. Kersting and L. De Raedt

that the domain S(p) has nothing to do with the notion of a domain in the log-
ical sense. The domain S(p) defines the states of random variables. Intuitively,
a Bayesian predicate p generically represents a set of (finite) random variables.
More precisely, each Bayesian ground atom g over p represents a (finite) random
variable over the states S(g) := S(p). E.g. bt(ann) represents the blood type of a
person named Ann as a random variable over the states {a, b, ab, 0}. Apart from
that, most other logical notions carry over to Bayesian logic programs. So, we will
speak of Bayesian predicates, terms, constants, substitutions, ground Bayesian
clauses, Bayesian Herbrand interpretations etc. We will assume that all Bayesian
clauses are range-restricted. A clause is range-restricted iff all variables occur-
ring in the head also occur in the body. Range restriction is often imposed in the
database literature; it allows one to avoid derivation of non-ground true facts.

In order to represent a probabilistic model we associate with each Bayesian
clause c a conditional probability distribution cpd(c) encoding P(head(c) |
body(c)). To keep the expositions simple, we will assume that cpd(c) is repre-
sented as table, see Figure 1. More elaborate representations like decision trees
or rules are also possible. The distribution cpd(c) generically represents the con-
ditional probability distributions of all ground instances cθ of the clause c. In
general, one may have many clauses, e.g. clauses c1 and the c2

bt(X) | mc(X).
bt(X) | pc(X).

and corresponding substitutions θi that ground the clauses ci such that
head(c1θ1) = head(c2θ2). They specify cpd(c1θ1) and cpd(c2θ2), but not the
distribution required: P(head(c1θ1) | body(c1)∪ body(c2)). The standard solution
to obtain the distribution required are so called combining rules.

Definition 2 (Combining Rule). A combining rule is a functions which maps
finite sets of conditional probability distributions {P(A | Ai1, . . . , Aini) | i =
1, . . . , m} onto one (combined) conditional probability distribution P(A | B1, . . . ,
Bk) with {B1, . . . , Bk} ⊆

⋃m
i=1{Ai1, . . . , Aini}.

We assume that for each Bayesian predicate p there is a corresponding combining
rule cr, such as noisy or (see e.g. [27]) or average. The latter assumes n1 = . . . =
nm and S(Aij) = S(Akj), and computes the average of the distributions over
S(A) for each joint state over

⊗
j S(Aij).

To summarize, we could define Bayesian logic program in the following way:

Definition 3 (Bayesian Logic Program). A Bayesian logic program B consists
of a (finite) set of Bayesian clauses. To each Bayesian clause c there is exactly
one conditional probability distribution cpd(c) associated, and for each Bayesian
predicate p there is exactly one associated combining rule cr(p).

2.2 Declarative Semantics

The declarative semantics of Bayesian logic programs is given by the annotated de-
pendency graph. The dependency graph DG(B) is that directed graph whose nodes

Basic Principles of Learning Bayesian Logic Programs 193

m(ann,dorothy).
f(brian,dorothy).
pc(ann).
pc(brian).
mc(ann).
mc(brian).

mc(X) | m(Y,X),mc(Y),pc(Y).
pc(X) | f(Y,X),mc(Y),pc(Y).
bt(X) | mc(X),pc(X).

(1)

mc(X) pc(X) P(bt(X))
a a (0.97, 0.01, 0.01, 0.01)
b a (0.01, 0.01, 0.97, 0.01)

· · · · · · · · ·
0 0 (0.01, 0.01, 0.01, 0.97)

(2)

Fig. 1. (1) The Bayesian logic program bloodtype encoding our genetic domain. To
each Bayesian predicate, the identity is associated as combining rule. (2) A conditional
probability distribution associated to the Bayesian clause bt(X) | mc(X), pc(X) rep-
resented as a table.

correspond to the ground atoms in the least Herbrand model LH(B) (cf. below).
It encodes the directly influenced by relation over the random variables in LH(B):

there is an edge from a node x to a node y if and only if there exists a
clause c ∈ B and a substitution θ, s.t. y = head(cθ), x ∈ body(cθ) and
for all atoms z in cθ : z ∈ LH(B).

The direct predecessors of a graph node x are called its parents, Pa(x). The
Herbrand base HB(B) is the set of all random variables we can talk about. It
is defined as if B were a logic program (cf. [37]). The least Herbrand model
LH(B) ⊆ HB(B) consists of all relevant random variables, the random variables
over which a probability distribution is well-defined by B, as we will see. It is
the least fix point of the immediate consequence operator applied on the empty
interpretation. Therefore, a ground atom which is true in the logical sense cor-
responds to a relevant random variables. Now, to each node x in DG(B) we
associate the combined conditional probability distribution which is the result
of the combining rule cr(p) of the corresponding Bayesian predicate p applied
to the set of cpd(cθ)’s where head(cθ) = x and {x}∪ body(cθ) ⊆ LH(B). Thus, if
DG(B) is acyclic and not empty then it encodes a (possibly infinite) Bayesian
network, because the least Herbrand model always exists and is unique. There-
fore, the following independence assumption holds:

Independence Assumption 1. Each node x is independent of its non-
descendants given a joint state of its parents Pa(x) in the dependency graph.

E.g. in the program in Figure 1, the random variable bt(dorothy) is indepen-
dent from pc(brian) given a joint state of pc(dorothy), mc(dorothy). Using this
assumption the following proposition holds:

Proposition 1. Let B be a Bayesian logic program. If

1. LH(B) �= ∅,
2. DG(B) is acyclic, and
3. each node in DG(B) is influenced by a finite set of random variables

then B specifies a unique probability distribution PB over LH(B).

194 K. Kersting and L. De Raedt

m(ann,dorothy).

f(brian,dorothy).

pc(ann).

pc(brian).

mc(ann).

mc(brian).

mc(dorothy) | m(ann, dorothy),mc(ann),pc(ann).

pc(dorothy) | f(brian, dorothy),mc(brian),pc(brian).

bt(ann) | mc(ann), pc(ann).

bt(brian) | mc(brian), pc(brian).

bt(dorothy) | mc(dorothy),pc(dorothy).

Fig. 2. The grounded version of the Bayesian logic program of Figure 1. It (directly)
encodes a Bayesian network.

The proof of the proposition can be sketched as follows (for a detailed proof
see [29]). The least Herbrand LH(B) always exists, is unique and countable.
Thus, DG(B) exists and is unique, and due to condition (3) the combined prob-
ability distribution for each node of DG(B) is computable. Furthermore, because
of condition (1) a total order π on DG(B) exists, so that one can see B together
with π as a stochastic process over LH(B). An induction “along” π together
with condition 2 shows that the family of finite-dimensional distribution of the
process is projective (cf. [2]), i.e the joint probability density over each finite
subset s ⊆ LH(B) is uniquely defined and

∫
y p(s, x = y) dy = p(s). Thus, the

preconditions of Kolmogorov’s theorem [2, page 307] hold, and it follows that B
given π specifies a probability density function p over LH(B). This proves the
proposition because the total order π used for the induction is arbitrary.

A program B satisfying the conditions (1), (2) and (3) of proposition 1 is called
well-defined. The program bloodtype in Figure 1 is an example of a well-defined
Bayesian logic program. It encodes the regularities in our genetic example. Its
grounded version, which is a Bayesian network, is shown in Figure 2. This illus-
trates that Bayesian networks [41] are well-defined propositional Bayesian logic
programs. Each node-parents pair uniquely specifies a propositional Bayesian
clause; we associate the identity as combining rule to each predicate; the condi-
tional probability distributions are those of the Bayesian network.

Some interesting insights follow from the proof sketch. We interpreted a
Bayesian logic program as a stochastic process. This places them in a wider
context of what Cowell et al. call highly structured stochastic systems (HSSS),
cf. [10], because Bayesian logic programs represent discrete-time stochastic pro-
cesses in a more flexible manner. Well-known probabilistic frameworks such as
dynamic Bayesian networks, first order hidden Markov models or Kalman filters
are special cases of Bayesian logic programs. Moreover, the proof in [29] indi-
cates the important support network concept. Support networks are a graphical
representation of the finite-dimensional distribution, cf. [2], and are needed for
the formulation of the likelihood function (see below) as well as for answering
probabilistic queries in Bayesian logic programs.

Basic Principles of Learning Bayesian Logic Programs 195

Definition 4 (Support Network). The support network N of a variable x ∈
LH(B) is defined as the induced subnetwork of S = {x}∪{y | y ∈ LH(B) and y is
influencing x}. The support network of a finite set {x1, . . . , xk} ⊆ LH(B) is the
union of the networks of each single xi.

Because we consider well-defined Bayesian logic programs, each x ∈ LH(B) is
influenced by a finite subset of LH(B). So, the support network N of a finite
set {x1, . . . , xk} ⊆ LH(B) of random variables is always a finite Bayesian net-
work and computable in finite time. The distribution factorizes in the usual
way, i.e. PN (x1 . . . , xn) =

∏n
i=1 PN (xi | Pa xi), where {x1 . . . , xn} = S, and

P(xi | Pa xi) is the combined conditional probability distribution associated to
xi. Because N models the finite-dimensional distribution specified by S, any
interesting probability value over subsets of S is specified by N . For the proofs
and an effective inference procedure (together with a Prolog implementation) we
refer to [29].

3 The Learning Problem

So far, we have assumed that there is an expert who provides both the structure
and the conditional probability distributions of the Bayesian logic program. This
is not always easy. Often, there is no-one possessing necessary the expertise or
knowledge. However, instead of an expert we may have access to data. In this
section, we investigate and formally define the problem of learning Bayesian logic
programs. While doing so, we exploit analogies with Bayesian network learning
as well as with inductive logic programming.

3.1 Data Cases

In the last section, we have introduced Bayesian logic programs and argued
that they contain two components, the quantitative (the combining rules and
the conditional probability distributions) and the qualitative ones (the Bayesian
clauses). Now, if we want to learn Bayesian logic programs, we need to employ
data. Hence, we need to formally define the notions of a data case.

Let B be a Bayesian logic program consisting of the Bayesian clauses
c1, . . . , cn, and let D = {D1, . . . , Dm} be a set of data cases.

Definition 5 (Data Case). A data case Di ∈ D for a Bayesian logic program
B consists of a

Logical part: Which is a Herbrand interpretation V ar(Di) such that V ar(Di)
= LH(B ∪ V ar(Di)), and a

Probabilistic part: Which is a partially observed joint state of some variables,
i.e. an assignment of values to some of the facts in V ar(Di).

Examples of data cases are

D1 = {m(cecily, fred) = true, f(henry, fred) =?, pc(cecily) = a,

pc(henry) = b, pc(fred) =?,mc(cecily) = b,mc(henry) = b,

mc(fred) =?, bt(cecily) = ab, bt(henry) = b, bt(fred) =?},

196 K. Kersting and L. De Raedt

D2 = {m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = b,

mc(ann) =?,mc(brian) = a,mc(dorothy) = a,

pc(dorothy) = a, pc(brian) =?, bt(ann) = ab, bt(brian) =?,
bt(dorothy) = a},

where ‘?’ stands for an unobserved state. Notice that – for ease of writing – we
merged the two components of a data case into one. Indeed, the logical part of
a data case Di ∈ D, denoted as Var(Di), is a Herbrand interpretation, such as

Var(D1) = {m(cecily, fred), f(henry, fred), pc(cecily), pc(henry),
pc(fred),mc(cecily),mc(henry),mc(fred), bt(cecily),
bt(henry), bt(fred)},

Var(D2) = {m(ann, dorothy), f(brian, dorothy), pc(ann),
mc(ann),mc(brian),mc(dorothy), pc(dorothy),
pc(brian), bt(ann), bt(brian), bt(dorothy)},

satisfy this logical property w.r.t. the target Bayesian logic program B

mc(X) | m(Y,X),mc(Y),pc(Y).
pc(X) | f(Y,X),mc(Y),pc(Y).
bt(X) | mc(X),pc(X).

Indeed, Var(B ∪ Var(Di)) = Var(Di) for all Di ∈ D.
So, the logical components of the data cases should be seen as the least Her-

brand models of the target Bayesian logic program. They specify different sets of
relevant random variables, depending on the given “extensional context”. If we
accept that the genetic laws are the same for both families then a learning algo-
rithm should find regularities among the Herbrand interpretations that can be
to compress the interpretations. The key assumption underlying any inductive
technique is that the rules that are valid in one interpretation are likely to hold
for any interpretation. This is exactly what the learning from interpretations in
inductive logic programming [14,6] is doing. Thus, we will adapt this setting for
learning the structure of the Bayesian logic program, cf. Section 4.

There is one further logical constraints to take into account while learning
Bayesian logic programs. It is concerned with the acyclicity requirement (cf.
property 2 in proposition 1) imposed on Bayesian logic programs. Thus, we
require that for each Di ∈ D the induced Bayesian network over LH(B∪Var(Di))
has to be acyclic.

At this point, the reader should also observe that we require that the logical
part of a data case is a complete model of the target Bayesian logic program
and not a partial one2. This is motivated by 1) Bayesian network learning and 2)
the problems with learning from partial models in inductive logic programming.
First, data cases as they have been used in Bayesian network learning are the
2 Partial models specify the truth-value (false or true) of some of the elements in the

Herbrand Base.

Basic Principles of Learning Bayesian Logic Programs 197

propositional equivalent of the data cases that we introduced above. Indeed, if we
have a Bayesian network B over the propositional Bayesian predicates {p1, ..., pk}
then LH(B) = {p1, ..., pk} and a data case would assign values to some of the
predicates in B. This also shows that the second component of a data case is
pretty standard in the Bayesian network literature. Second, it is well-known that
learning from partial models is harder than learning from complete models (cf.
[12]). More specifically, learning from partial models is akin to multiple predicate
learning, which is a very hard problem in general. These two points also clarify
why the semantics of the set of relevant random variables coincided with the
least Herbrand domain and at the same time why we do not restrict the domain
of Bayesian predicates to {true, false}.

Before we are able to fully specify the problem of learning Bayesian logic
programs, let us introduce the hypothesis space and scoring functions.

3.2 The Hypothesis Space

The hypothesis spaceH explored consists of Bayesian logic programs, i.e. finite set
of Bayesian clauses to which conditional probability distributions are associated.
More formally, let L be the language, which determines the set C of clauses that
can be part of a hypothesis. It is common to impose syntactic restrictions on the
space H of hypotheses.

Language Assumption: In this paper, we assume that the alphabet of L
only contains constant and predicate symbols that occur in one of the
data cases, and we restrict C to range-restricted, constant-free clauses
containing maximum k = 3 atoms in the body. Furthermore, we assume
that the combining rules associated to the Bayesian predicates are given.

E.g. given the data cases D1 and D2, C looks like

mc(X) | m(Y,X).
mc(X) | mc(X).
mc(X) | pc(X).
mc(X) | m(Y,X),mc(Y).
...
pc(X) | f(Y,X),mc(Y),pc(Y).
...
bt(X) | mc(X),pc(X).

Not every element H ∈ H has to be a candidate. The logical parts of the data
cases constraint the set of possible candidates. To be a candidate, H has to be

– (logically) valid on the data, and
– acyclic on the data i.e. the induced Bayesian network over LH(H ∪Var(Di))

has to be acyclic.

E.g. given the data cases D1 and D2, the Bayesian clause

mc(X) | mc(X)

is not included in any candidate, because the Bayesian network induced over the
data cases would be cyclic.

198 K. Kersting and L. De Raedt

3.3 Scoring Function

So far, we mainly exploit the logical part of the data cases. The probabilistic
part of the data cases are partially observed joint states. They induce a joint
distribution over the random variables of the logical parts of the data cases. A
candidate H ∈ H should reflect this distribution. We assume that there is a
scoring function scoreD : H �→ R which expresses how well a given candidate H
fits the data D. Examples of scoring functions are the likelihood (see Section 5)
or the minimum description length score (which bases on the likelihood).

Putting all together, we can define the basic learning problem as follows:

Definition 6 (Learning Problem). Given a set D = {D1, . . . , Dm} of data
cases, a set H of sets of Bayesian clauses according to some language bias, and
a scoring function scoreD : H �→ R, find a hypothesis H∗ ∈ H such that for
all Di ∈ D : LH(H∗ ∪ Var(Di)) = Var(Di), H∗ is acyclic on the data, and H∗

maximizes scoreD.

As usual, we assume the all data cases are independently sampled from identical
distributions. In the following section we will present an algorithm solving the
learning problem.

4 Scooby: An Algorithm for Learning Intensional
Bayesian Logic Programs

In this section, we introduce Scooby (structural learning of intensional Bayesian
logic programs), cf. Algorithm 1. Roughly speaking, Scooby performs a heuris-
tic search using traditional inductive logic programming refinement operators on
clauses. The hypothesis currently under consideration is evaluated using some
score as heuristic. The hypothesis that scores best is selected as the final hy-
pothesis.

First, we will illustrate how Scooby works for the special case of Bayesian
networks. As it will turn out, Scooby coincides in this case with well-known
and effective score-based techniques for learning Bayesian networks [22]. Then,
we will show that Scooby works for first-order Bayesian logic programs, too.
For the sake of readability, we assume the existence of a method to compute the
parameters maximizing the score given a candidate and data cases. Methods to
do this will be discussed in Section 5. They assume that the combining rules are
decomposable, a concept which we will introduce below. Furthermore we will
discuss the basic framework only; extensions are possible.

4.1 The Propositional Case: Bayesian Networks

Let us first explain how Scooby works on Bayesian networks. and show that
well-known score-based methods for structural learning of Bayesian networks are
special cases of Scooby.

Let x = {x1, . . . , xn} be a fixed set of random variables. The set x corresponds
to a least Herbrand model of an unknown propositional Bayesian logic program

Basic Principles of Learning Bayesian Logic Programs 199

Algorithm 1. A simplified skeleton of a greedy algorithm for structural
learning of intensional Bayesian logic programs (Scooby). Note that we have
omitted the initialization of the conditional probability distributions associ-
ated with Bayesian clauses with random values. The operators ρg and ρs are
generalization and specialization operators.
Let H be an initial (valid) hypothesis;
S(H) := scoreD(H);
repeat

H ′ := H ;
S(H ′) := S(H);
foreach H ′′ ∈ ρg(H

′) ∪ ρs(H
′) do

if H ′′ is (logically) valid on D then
if the Bayesian networks induced by H ′′ on the data are acyclic then

if scoreD(H ′′) > S(H) then
H := H ′′;
S(H) := S(H ′′);

until S(H ′) = S(H) ;
Return H ;

representing a Bayesian network. The probabilistic dependencies among the rel-
evant random variables are not known, i.e. the propositional Bayesian clauses
are unknown. Therefore, we have to select such a propositional Bayesian logic
program as a candidate and estimate its parameters. Assume the data cases
D = {D1, . . . , Dm} look like

{m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = a,

mc(ann) =?,mc(brian) =?,mc(dorothy) = a,mc(dorothy) = a,

pc(brian) = b, bt(ann) = a, bt(brian) =?, bt(dorothy) = a}
which is a data case for the Bayesian network in Figure 2. Note, that the atoms
have to be interpreted as propositions. Each H in the hypothesis space H is a
Bayesian logic program consisting of n propositional clauses: for each xi ∈ x a
single clause c with head(c) = xi and body(c) ⊆ x\{xi}. To traverseH we specify
two refinement operators ρg : H �→ 2H and ρs : H �→ 2H, that take a hypothesis
and modify it to produce a set of possible candidates. In the case of Bayesian
networks the operator ρg(H) deletes a Bayesian proposition from the body of
a Bayesian clause ci ∈ H , and the operator ρs(H) adds a Bayesian proposition
to the body of ci ∈ H (cf Figure 3). The search algorithm performs an greedy,
informed search in H based on scoreD.

As a simple illustration we consider a greedy hill-climbing algorithm incorpo-
rating scoreD(H) := LL(D, H), the log-likelihood of the data D given a candi-
date structure H with the best parameters. We pick an initial candidate S ∈ H

200 K. Kersting and L. De Raedt

g

s

s

)2()1(

g

s

s

Fig. 3. (1) The use of refinement operators during structural search for Bayesian net-
works. We can add (ρs) a proposition to the body of a clause or delete (ρg) it from the
body. (2) The use of refinement operators during structural search within the frame-
work of Bayesian logic programs. We can add (ρs denoted as ‘s′) an atom to the body
of a clause or delete (ρg denoted as ‘g’) it from the body. Candidates crossed out in
(1) and (2) are illegal because they are cyclic.

as starting point (e.g. the set of all propositions) and compute the likelihood
LL(D, S) with the best parameters. Then, we use ρ(S) to compute the legal
“neighbors” (candidates being acyclic) of S in H and score them. All neighbors
are valid (see below for a definition of validity). E.g. replacing pc(dorothy)with
pc(dorothy) | pc(brian) gives such a “neighbor”. We take that S′ ∈ ρ(S)
with the best improvements in the score. The process is continued until no im-
provements in score are obtained.

4.2 The First Order Case: Bayesian Logic Programs

Let us now explain how Scooby works in the first order case. The key differ-
ences with the propositional case are The key difference to the propositional
case are

1. That some Bayesian logic programs will be logically invalid (see below for
an example), and

2. That the traditional first order refinement operators must be used.

Difference 1 is the most important one, because it determines the hypotheses
that are candidate Bayesian logic programs. To account for this difference, two
modifications of the traditional Bayesian network algorithm are needed.

The first modification concerns the initialization phase where we have to
choose a logically valid, acyclic Bayesian logic program. Such a program can
be computed using a CLAUDIEN like procedure ([13,14,6]). CLAUDIEN is
an ILP-program that computes a logically valid hypothesis H from a set of
data cases. Furthermore, all clauses in H will be maximally general (w.r.t.
θ-subsumption), and CLAUDIEN will compute all such clauses (within L).
This means none of the clauses in H can be generalized without violating the
logical validity requirement (or leaving L). Consider again the data cases

Basic Principles of Learning Bayesian Logic Programs 201

D1 = {m(cecily, fred) = true, f(henry, fred) =?, pc(cecily) = a,

pc(henry) = b, pc(fred) =?,mc(cecily) = b,mc(henry) = b,

mc(fred) =?, bt(cecily) = ab, bt(henry) = b, bt(fred) =?},
D2 = {m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = b,

mc(ann) =?,mc(brian) = a,mc(dorothy) = a,

pc(dorothy) = a, pc(brian) =?, bt(ann) = ab, bt(brian) =?,
bt(dorothy) = a},

The clause bt(X) is not a member of L. The clause bt(X) | mc(X),pc(X) is
valid but not maximally general because the literal pc(X) can be deleted without
violating the logical validity requirement. Any hypothesis including m(X,Y) |
mc(X),pc(Y)would be logically invalid because cecily is not the mother of henry.
Examples of maximally general clauses are

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).
bt(X) | pc(X).
...

Roughly speaking, CLAUDIEN works as follows (for a detailed discussion we
refer to [14]). It keeps track of a list of candidate clauses Q, which is initialized
to the maximally general clause (in L). It repeatedly deletes a clause c from Q,
and tests whether c is valid on the data. If it is, c is added to the final hypothesis,
otherwise, all maximally general specializations of c (in L) are computed (using
a so-called refinement operator ρ, see below) and added back to Q. This process
continues until Q is empty and all relevant parts of the search space have been
considered. The clauses generated by CLAUDIEN can be used as an initial
hypothesis.

In the experiments, for each predicate, we selected one of the clause gener-
ated by CLAUDIEN for inclusion in the initial hypothesis such that the valid
Bayesian logic program was also acyclic on the data cases (see below). An initial
hypothesis is e.g.

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).

The second modification concerns filtering out those Bayesian logic programs
that are logically invalid during search. This is realized by the first if-condition in
the loop. The second if-condition tests whether cyclic dependencies are induced
on the data cases. This can be done in time O(s · r3) where r is the number of
random variables of the largest data case in D and s is the number of clauses in
H . To do so, we build the Bayesian networks induced by H over each Var(Di)
by computing the ground instances for each clause c ∈ H where the ground
atoms are members of Var(Di). Thus, ground atoms, which are not appearing

202 K. Kersting and L. De Raedt

m(ann,dorothy). m(cecily,fred).

f(brian,dorothy). f(henry,fred).

pc(ann). pc(brian). pc(cecily). pc(henry).

mc(ann). mc(brian). mc(cecily). mc(henry).

mc(dorothy) | m(ann,dorothy). mc(fred) | m(cecily,fred).

pc(dorothy) | f(brian,dorothy). pc(fred) | f(cecily,fred).

bt(ann) | mc(ann). bt(brian) | mc(brian).

bt(dorothy) | mc(dorothy). bt(cecily) | mc(cecily).

bt(henry) | mc(henry). bt(fred) | mc(fred).

Fig. 4. The support network induced by the initial hypothesis S (see text) over the
the data cases D1 and D2

as a head atom of a valid ground instance, are apriori nodes, i.e. nodes with an
empty parent set. This takes O(s · r3

i). Then, we test in O(ri) for a topological
order of the nodes in the induced Bayesian network. If it exists, then the Bayesian
network is acyclic. Otherwise, it is cyclic. Figure 4 shows the support network
induced by the initial hypothesis over D1 and D2.

For Difference 2, i.e. the refinements operators, we employ the traditional
ILP refinement operators. In our approach we use the two refinement operators
ρs : 2H �→ H and ρg : 2H �→ H. The operator ρs(H) adds constant-free atoms
to the body of a single clause c ∈ H , and ρg(H) deletes constant-free atoms
from the body of a single clause c ∈ H . Figure 3 shows the different refinement
operators for the first order case and the propositional case for learning Bayesian
networks. Instead of adding (deleting) propositions to (from) the body of a
clause, they add (delete) according to our language assumption constant-free
atoms. Furthermore, Figure 3 shows that using the refinement operators each
hypothesis can in principle be reached.

Finally, we need to mention that whereas the maximal general clauses are the
most interesting ones from the logical point of view, this is not necessarily the
case from the probabilistic point of view. E.g. having data cases D1 and D2 (see
Section 3.1), the initial candidate S

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).

is likely not to score maximally on the data cases. E.g. the blood type does not
depend on the fatherly genetical information.

As a simple instantiation of Algorithm 1, we consider a greedy hill-climbing
algorithm incorporating scoreD(H) := LL(D, H) with D = {D1, D2}. It takes
S ∈ H (see above) as starting point and computes LL(D, S) with the best
parameters. Then, we use ρs(S) and ρg(S) to compute the legal “neighbors” of
S in H and score them. E.g. one such a “neighbor” is given by replacing bt(X) |
mc(X) with bt(X) | mc(X), pc(X). Let S′ be that valid and acyclic neighbor
which scores best. If LL(D, S) < LL(D, S′), then we take S′ as new hypothesis.
The process is continued until no improvements in score are obtained.

Basic Principles of Learning Bayesian Logic Programs 203

4.3 Discussion

The algorithm presented serves as a basic, unifying framework. Several exten-
sions and modifications based on ideas developed in both fields, inductive logic
programming and Bayesian networks are possible. These include: lookaheads,
background knowledge, mode declarations and improved scoring functions. Let
us briefly address some of these.

Lookahead: In some cases, an atom might never be chosen by our algorithm
because it will not – in itself – result in a better score. However, such an atom,
while not useful in itself, might introduce new variables that make a better score
possible by adding another atom later on. Within inductive logic programming
this is solved by allowing the algorithm to look ahead in the search space. Im-
mediately after refining a clause by putting some atom A into the body, the
algorithm checks whether any other atom involving some variable of A results
in a better score [5]. The same problem is encountered when learning Bayesian
networks [47].

Background Knowledge: Inductive logic programming emphasizes
background knowledge, i.e. predefined, fixed regularities which are common to
all examples. Background knowledge can be incorporated into our approach in
the following way. It is expressed as a fixed Bayesian logic program BK. Now,
we search for a candidate H∗ which is together with BK acyclic on the data
such that for all Di ∈ D : LH(BK ∪ H∗ ∪ Var(Di)) = Var(Di), and BK ∪ H∗

matches the data D best according to scoreD. Therefore, all the Bayesian facts
that can be derived from the background knowledge and an example are part of
the corresponding “extended” example. This is particularly interesting to specify
deterministic knowledge as in inductive logic programming. In [29], we showed
how pure Prolog programs can be represented as Bayesian logic programs w.r.t.
the conditions 1,2 and 3 of Proposition 1.

Improved Scoring Function: Using the likelihood directly as scoring func-
tion, score-based algorithm to learn Bayesian networks prefer fully connected
networks. To overcome the problem advanced scoring functions were developed.
On of these is the minimum description length (MDL) score which trades off the
fit to the data with complexity. In the context of learning Bayesian networks,
the whole Bayesian network is encoded to measure the compression [34]. In the
context of learning clause programs, other compression measure were investi-
gated such as the average length of proofs [44]. For Bayesian logic programs, a
combination of both seems to be appropriate.

Finally, an extension for learning predicate definitions consisting of more than
one clause is in principle possible. The refinement operators could be modified
in such a way that for a clause c ∈ H ′ with head predicate p another (valid)
clause c′ (e.g. computed by CLAUDIEN) with head predicate p is added or
deleted.

204 K. Kersting and L. De Raedt

5 Learning Probabilities in a Bayesian Logic Program

So far, we have assumed that there is a method estimating the parameters of
an candidate program given data. In this section, we show how to learn the
quantitative component of a Bayesian logic program, i.e. the conditional proba-
bility distributions. The learning problem can be stated as follows:

Definition 7 (Parameter Estimation). Given a set D = {D1, . . . , Dm} of data
cases3, a set H of Bayesian clauses according to some language bias, which is
logically valid and acyclic on the data, and a scoring function scoreD : H �→ R,
find the parameters of H maximizing scoreD.

We will concentrate on maximum likelihood estimation (MLE).

5.1 Maximum Likelihood Estimation

Maximum likelihood is a classical method for parameter estimation. The likeli-
hood is the probability of the observed data as a function of the unknown pa-
rameters with respect to the current model. Let B be a Bayesian logic program
consisting of the Bayesian clauses c1, . . . , cn, and let D = {D1, . . . , Dm} be a set
of data cases. The parameters cpd(ci)jk = P (uj | uk), where uj ∈ S(head(ci))
and uk ∈ S(body(ci)), affecting the associated conditional probability distribu-
tions cpd(ci) constitute the set λ =

⋃n
i=1 cpd(ci). The version of B where the

parameters are set to λ is denoted by B(λ), and as long as no ambiguities occur
we will not distinguish between the parameters λ themselves and a particular
instance of them.

Now, the likelihood L(D, λ) is the probability of the data D as a function of
the unknown parameters λ:

L(D, λ) := PB(D | λ) = PB(λ)(D). (1)

Thus, the search space H is spanned by the product space over the possible
values of λ(ci) and we seek to find the parameter values λ∗ that maximize the
likelihood, i.e.

λ∗ = max
λ∈H

PB(λ)(D).

Usually, B specifies a distribution over a (countably) infinite set of random
variables namely LH(B) and hence we cannot compute PB(λ)(D) by considering
the whole dependency graph. But as we have argued it is sufficient to consider
the support network N(λ) of the random variables occurring in D to compute
PB(λ)(D). Thus, using the monotonicity of the logarithm, we seek to find

λ∗ = max
λ∈H

log PN(λ)(D) (2)

3 Given a well-defined Bayesian network B, the logical part of a data case Di can also
be a partial model only if we only estimate the parameters and do not learn the
structure, i.e. RandVar(Di) ⊆ LH(B). The given Bayesian logic program will fill in
the missing random variables.

Basic Principles of Learning Bayesian Logic Programs 205

where PN(λ) is the probability distribution specified by the support network
N(λ) of the random variables occurring in D. Equation (2) expresses the original
problem in terms of the maximum likelihood parameter estimation problem of
Bayesian networks:

A Bayesian logic program together with data cases induces a Bayesian
network over the variables of the data cases.

This is not surprising because the learning setting is an instance of the proba-
bilistic learning from interpretations. More important, due to the reduction, all
techniques for maximum likelihood parameter estimation within Bayesian net-
works are in principle applicable. We only need to take the following issues into
account:

1. Some of the nodes in N(λ) are hidden, i.e., their values are not observed
in D.

2. We are not interested in the conditional probability distributions associ-
ated to ground instances of Bayesian clauses, but in those associated to the
Bayesian clauses themselves.

3. Not only L(D, λ) but also N(λ) itself depends on the data, i.e. the data
cases determine the subnetwork of DG(B) that is sufficient to calculate the
likelihood.

The available data cases may not be complete, i.e., some values may not be ob-
served. For instance in medical domains, a patient rarely gets all of the possible
tests. In presence of missing data, the maximum likelihood estimate typically
cannot be written in closed form. Unfortunately, it is a numerical optimiza-
tion problem, and all known algorithms involve nonlinear, iterative optimization
and multiple calls to a Bayesian inference procedures as subroutines, which are
typically computationally infeasible. For instance the inference within Bayesian
network has been proven to be NP-hard [9]. Typical ML parameter estimation
techniques (in the presence of missing data) are the Expectation-Maximization
(EM) algorithm and gradient-based approaches. We will now discuss both ap-
proaches in turn.

5.2 Gradient-Based Approach

We will adapt Binder et al.’s solution for dynamic Bayesian networks based on
the chain rule of differentiation [3]. For simplicity, we fix the current instantiation
of the parameters λ and, hence, we write B and N(D). Applying the chain rule
to (2) yields

∂ log PN (D)
∂ cpd(ci)jk

=
∑

subst. θ s.t.
sn(ciθ)

∂ log PN (D)
∂ cpd(ciθ)jk (3)

where θ refers to grounding substitutions and sn(ciθ) is true iff {head(ciθ)} ∪
body(ciθ) ⊂ N . Assuming that the data cases Dl ∈ D are independently sampled
from the same distribution we can separate the contribution of the different data
cases to the partial derivative of a single ground instance cθ:

206 K. Kersting and L. De Raedt

∂ log PN (D)
∂ cpd(ciθ)jk

=
∂ log

∏m
l=1 PN (Dl)

∂ cpd(ciθ)jk
by independence

=
m∑

l=1

∂ log PN (Dl)
∂ cpd(ciθ)jk

by log
∏

=
∑

log

=
m∑

l=1

∂PN (Dl)/∂ cpd(ciθ)jk

PN (Dl)
. (4)

In order to obtain computations local to the parameter cpd(ciθ)jk we introduce
the variables head(ciθ) and body(ciθ) into the numerator of the summand of (4)
and average over their possible values, i.e.,

∂PN (Dl)
∂ cpd(ciθ)jk

=
∂

∂ cpd(ciθ)jk

(∑
j′,k′

PN (Dl, head(ciθ) = uj′ , body(ciθ) = uk′)
)

Applying the chain rule yields

∂PN (Dl)
∂ cpd(ciθ)jk

=
∂

∂ cpd(ciθ)jk

(∑
j′,k′

PN (Dl | head(ciθ) = uj′ , body(ciθ) = uk′)

·PN (head(ciθ) = uj′ , body(ciθ) = uk′)
)

=
∂

∂ cpd(ciθ)jk

(∑
j′,k′

PN (Dl | head(ciθ) = uj′ , body(ciθ) = uk′)

·PN (head(ciθ) = uj′ | body(ciθ) = uk′)

·PN (body(ciθ) = uk′)
)

(5)

where uj ∈ S(head(ci)), uk ∈ S(body(ci)) and j, k refer to the corresponding
entries in cpd(ci), respectively cpd(ciθ). In (5), cpd(ciθ)jk appears only in linear
form. Moreover, it appears only when j′ = j, and k′ = k. Therefore, (5) simplifies
two

∂PN (Dl)
∂ cpd(ciθ)jk

= PN (Dl | head(ciθ) = uj, body(ciθ) = uk) · PN (body(ciθ) = uk).

(6)
Substituting (6) back into (4) yields

m∑
l=1

∂ log PN (Dl)/∂ cpd(ciθ)jk

PN (Dl)

=
m∑

l=1

PN (Dl | head(ciθ) = uj , body(ciθ) = uk) · PN (body(ciθ) = uk)
PN (Dl)

Basic Principles of Learning Bayesian Logic Programs 207

=
m∑

l=1

PN (head(ciθ) = uj , body(ciθ) = uk | Dl) · PN (Dl) · PN (body(ciθ) = uk)
PN (head(ciθ) = uj, body(ciθ) = uk) · PN (Dl)

=
m∑

l=1

PN (head(ciθ) = uj , body(ciθ) = uk | Dl)
PN (head(ciθ) = uj | body(ciθ) = uk)

=
m∑

l=1

PN (head(ciθ) = uj , body(ciθ) = uk | Dl)
cpd(ciθ)jk

.

Combining all these, (3) can be rewritten as

∂ log PN (D)
∂ cpd(ci)jk

=
∑

subst. θ with
sn(ciθ)

en(cijk | θ,D)
cpd(ciθ)jk

(7)

where

en(cijk | θ,D) := en(head(ciθ) = uj, body(ciθ) = uk | D)

:=
m∑

l=1

PN (head(ciθ) = uj, body(ciθ) = uk | Dl)
(8)

are the so-called expected counts of the joint state head(ciθ) = uj , body(ciθ) = uk

given the data D.
Equation (7) shows that PN (head(ciθ) = uj, body(ciθ) = uk | Dl) is all

what is needed. This can essentially be computed using any standard Bayesian
network inference engine. This is not surprising because (7) differs from the one
for Bayesian networks given in [3] only in that we sum over all ground instances
of a Bayesian clause holding in the data. To stress this close relationship, we
rewrite (7) in terms of expected counts of clauses instead of ground clauses.
They are defined as follows:

Definition 8 (Expected Counts of Bayesian Clauses). The expected
counts of a Bayesian clauses c of a Bayesian logic program B for a data set
D are defined as

en(cijk | D) := en(head(ci) = uj , body(ci) = uk | D)

:=
∑

subst. θ with
sn(ciθ)

en(head(ciθ) = uj , body(ciθ) = uk | D) . (9)

Reading (7) in terms of Definition 8 proves the following proposition:

Proposition 1 (Partial Derivative of Log-Likelihood). Let B be a
Bayesian logic program with parameter vector λ. The partial derivative of the
log-likelihood of B with respect to cpd(ci)jk for a given data set D is

∂LL(D, λ)
∂ cpd(ci)jk

=
en(cijk | D)
cpd(ci)jk

. (10)

208 K. Kersting and L. De Raedt

Algorithm 2. A simplified skeleton of the algorithm for adaptive Bayesian
logic programs estimating the parameters of a Bayesian logic program
input : B, a Bayesian logic program; associated cpds are parameterized by λ;

D, a finite set of data cases
output: a modified Bayesian logic program

λ←InitialParameters
N ←SupportNetwork(B, D)
repeat

∆λ← 0
set associated conditional probability distribution of N according to λ
foreach Dl ∈ D do

set the evidence in N from Dl

foreach Bayesian clause c ∈ B do
foreach ground instance cθ s.t. {head(cθ)} ∪ body(cθ) ⊂ N do

foreach single parameter cpd(cθ)jk do
∆ cpd(c)jk ← ∆ cpd(c)jk + (∂ log PN (Dl)/∂ cpd(cθ)jk)

∆λ←ProjectionOntoConstraintSurface(∆λ)
λ← λ + α ·∆λ

until ∆λ ≈ 0
return B

Equation (10) can be viewed as the first-order logical equivalent of the Bayesian
network formula. A simplified skeleton of a gradient-based algorithm employing
(10) is shown in Algorithm 2.

Before showing how to adapt the EM algorithm, we have to explain two points,
which we have left out so far for the sake of simplicity: Constraint satisfaction
and decomposable combining rules.

In the problem at hand, the gradient ascent has to be modified to take into
account the constraint that the parameter vector λ consists of probability values,
i.e. cpd(ci)jk ∈ [0, 1] and

∑
j cpd(ci)jk = 1. Following [3], there are two ways to

enforce this:

1. Projecting the gradient onto the constraint surface (as used to formulate the
Algorithm 2), and

2. Reparameterizing the problem.

In the experiments, we chose the reparameterization approach because the new
parameters automatically respect the constraints on cpd(ci)jk no matter what
their values are. More precisely, we define the parameters β with βijk ∈ R such
that

cpd(ci)jk =
eβijk∑
l e

βilk
(11)

where the βijk are indexed like cpd(ci)jk. This enforces the constraints given
above, and a local maximum with respect to the β is also a local maximum with

Basic Principles of Learning Bayesian Logic Programs 209

respect to λ, and vice versa. The gradient with respect to β can be found by
computing the gradient with respect to λ and then deriving the gradient with
respect to β using the chain rule of derivatives. More precisely, the chain rule of
derivatives yields

∂LL(D, λ)
∂βijk

=
∑
i′j′k′

∂LL(D, λ)
∂ cpd(ci′)j′k′

· ∂ cpd(ci′)j′k′

∂βijk
(12)

Since ∂ cpd(ci′)j′k′/∂βijk = 0 for all i �= i′, and k �= k′, (12) simplifies to

∂LL(D, λ)
∂βijk

=
∑
j′

∂LL(D, λ)
∂ cpd(ci)j′k

· ∂ cpd(ci)j′k

∂βijk

The quotient rule yields

∂LL(D, λ)

∂βijk
=

∑
j′

{
∂LL(D, λ)

∂ cpd(ci)j′k
·
(

∂e
β

ij′k

∂βijk
·∑l eβilk

)
−

(
eβij′k · ∂

∑
l eβilk

∂βijk

)
(∑

l eβilk

)2

}

=

{∑
j′

(
∂LL(D,λ)

∂ cpd(ci)j′k
· ∂e

β
ij′k

∂βijk
·∑l eβilk

)}
(∑

l eβilk

)2 −

{∑
j′

(
∂LL(D,λ)

∂ cpd(ci)j′k
· eβij′k · ∂

∑
l eβilk

∂βijk

)}
(∑

l eβilk

)2

Because ∂eβij′k/∂βijk = 0 for j′ �= j and ∂eβijk/∂βijk = eβ
ijk, this simplifies to

∂LL(D, λ)

∂βijk
=

(
∂LL(D,λ)
∂ cpd(ci)jk

· eβijk ·∑l eβilk

)
(∑

l eβilk

)2
−

∑
j′

(
∂LL(D,λ)

∂ cpd(ci)j′k
· eβij′k · eβilk

)
(∑

l eβilk

)2

=
eβijk(∑
l eβilk

)2 ·
{

∂LL(D, λ)

∂ cpd(ci)jk
·
(∑

l
eβilk

)
−

∑
j′

∂LL(D, λ)

∂ cpd(ci)j′k
· eβij′k

}
(13)

To further simplify the partial derivative, we note that ∂LL(D, λ)/∂ cpd(ci)jk

can be rewritten as

∂LL(D, λ

∂ cpd(ci)jk
=

en(cijk | D)
cpd(ci)jk

=
en(cijk | D)

eijk∑
l eβijk

=
en(cijk | D)

eβijk
·
(∑

l
eβijk

)

by substituting (11) in (9). Using the last equation, (13) simplifies to

∂LL(D, λ)

∂βijk

=
eβijk (∑

l
eβilk

)2 ·
{

en(cijk | D)

eβijk
·
(∑

l
eβilk

)2 −
∑

j′
en(cij′k | D)

e
β

ij′k
·
(∑

l
eβilk

)
· e

β
ij′k

}

=en(cijk | D) − eβijk∑
l
eβilk

·
∑

j′
en(cij′k | D).

210 K. Kersting and L. De Raedt

...

...

...

hnh1

b11 b1k1 blklbl1

h

Fig. 5. The scheme of decomposable combining rules. Each rectangle corresponds to a
ground instance cθ ≡ hi|b1i, . . . , bki of a Bayesian clause c ≡ h|b1, . . . , bk. The node h is
a deterministic node, i.e., its state is deterministic function of the parents joint state.

Using once more (11), the following proposition is proven:

Proposition 2 (Partial Derivative of Log-Likelihood of an Reparame-
terized BLP). Let B be a Bayesian logic program reparameterized according
to (11). The partial derivative of the log-likelihood of B with respect to βijk for
a given data set D is

∂LL(D, λ)
∂βijk

= en(cijk | D)− cpd(ci)jk

∑
j′

en(cij′k | D) . (14)

Equation (14) shows that the partial derivative can be expressed solely in terms
of expected counts and original parameters. Consequently, its computational
complexity is linear in (10).

We assumed decomposable combining rules.

Definition 9 (Decomposable Combining Rule). Decomposable combining
rules can be expressed using a set of separate, deterministic nodes in the support
network such that the family of every non-deterministic node uniquely corre-
sponds to a ground Bayesian clause, as shown in Figure 5.

Most combining rules commonly employed in Bayesian networks such as noisy or
or linear regression are decomposable (cp. [23]). The definition of decomposable
combining rules directly imply the following proposition.

Proposition 3. For each node x in the support network n there exist at most
one clause c and a substitution θ such that body(cθ) ⊂ LH(B) and head(cθ) = x.

Thus, while the same clause c can induce more than one node in N , all of
these nodes have identical local structure: the associated conditional probability
distributions (and so the parameters) have to be identical, i.e.,

∀ substitutions θ : cpd(cθ) = cpd(c) .

Example 1. Consider the nodes bt(ann), mc(ann), pc(ann) and bt(brain),
mc(brain), pc(brian). Both families contribute to the conditional probability
distribution associated with the clause defining bt(X).

Basic Principles of Learning Bayesian Logic Programs 211

This is the same situation as for dynamic Bayesian networks where the param-
eters that encode the stochastic model of state evolution appear many times in
the network. However, gradient methods might be applied to non-decomposable
combining functions as well. In the general case, the partial derivatives of an in-
ner function has to be computed. For instance, [3] derive the gradient for noisy or
when it is not expressed in the structure. This seems to be more difficult in the
case of the EM algorithm, which we will now devise.

5.3 Expectation-Maximization (EM)

The Expectation-Maximization (EM) algorithm [15] is another classical ap-
proach to maximum likelihood parameter estimation in the presence of miss-
ing values. The basic observation of the Expectation-Maximization algorithm is
as that if the states of all random variables are observed, then learning would
be easy. Assuming that no value is missing, Lauritzen [36] showed that maxi-
mum likelihood estimation of Bayesian network parameters simply corresponds
to frequency counting in the following way. Let n(a | D) denote the counts for
a particular joint state a of variables A in the data, i.e. the number of cases
in which the variables in A are assigned the evidence a. Then the maximum
likelihood value for the conditional probability value P (X = x|Pa(X) = u) is
the ratio

n(X = x,Pa(X) = uk | Dl)
n(Pa(X) = uk | Dl)

. (15)

However, in the presence of missing values, the maximum likelihood estimates
typically cannot be written in closed form. Therefore, the Expectation-
Maximization algorithm iteratively performs the following two steps:

(E-Step) Based on the current parameters λ and the observed data D the algo-
rithm computes a distribution over all possible completions of each partially
observed data case. Each completion is then treated as a fully-observed data
case weighted by its probability.

(M-Step) A new set of parameters is then computed based on Equation (15)
taking the weights into accounts.

[36] showed that this idea leads to a modified Equation (15) where the expected
counts

en(a|D) :=
m∑

l=1

PN (a | Dl) (16)

are used instead of counts. Again, essentially any Bayesian network engine can
be used to compute P (a|Dl).

To apply the EM algorithm to parameter estimation of Bayesian logic pro-
grams, we assume decomposable combining rules. Thus,

– Each node in the support network was “produced” by exactly one Bayesian
clause c, and

– Each node derived from c can be seen as a separate “experiment” for the
conditional probability distribution cpd(c).

212 K. Kersting and L. De Raedt

Formally, due to the reduction of our problem at hand to parameter estimation
within the support network N , the update rule becomes

cpd(ci)jk ← en(ci|D)
en(body(ci)|D)

=
en(head(ci), body(ci)|D)

en(body(ci)|D)
(17)

where en(·|D) refers to the first order expected counts as defined in Equation (9).
Note that the summation over data cases and ground instances is hidden in
en(·|D). Equation (17) is similar to the one already encountered in Equation (10)
for computing the gradient.

5.4 Gradient vs. EM

As one can see, the EM update rule in equation (17) and the corresponding
equation (7) for the gradient ascent are very similar. Both rely on computing
expected counts. The comparison between EM and (advanced) gradient tech-
niques like conjugate gradient is not yet well understood. Both methods perform
a greedy local search, which is guaranteed to converge to stationary points. They
both exploit expected counts, i.e., sufficient statistics as their primary computa-
tion step. However, there are important differences.

The EM is easier to implement because it does not have to enforce the con-
straint that the parameters are probability distributions. It converges much
faster (at least initially) than simple gradient, and is somewhat less sensitive to
starting points. (Conjugate) gradients estimate the step size with a line search
involving several additional Bayesian network inferences compared to EM. On
the other hand, gradients are more flexible than EM, as they allow one to learn
non-multinomial parameterizations using the chain rule for derivatives [3] or to
choose other scoring functions than the likelihood [26]. Furthermore, although
the EM algorithm is quite successful in practice due to its simplicity and fast ini-
tial progress, it has been argued (see e.g. [25,38] and references in there) that the
EM convergence can be extremely slow in particular close to the solution, and
that more advanced second-order methods should in general be favored to EM
or one should switch to gradient-based method after a small number of initial
iterations.

Finally, though we focused here on parameter estimation, methods for com-
puting the gradient of the log-likelihood with respect to the parameters of a
probabilistic model can also be used to employ generative models within discrim-
inative learners such as SVMs. In the context of probabilistic ILP, this yields
relational kernel methods [31,16].

6 Experiments

The presented learning algorithm for Bayesian logic programs is mainly meant
as an overall and general framework. Indeed, it leaves several aspects open such
as scoring functions. Nevertheless in this section, we report on experiments that
show that the algorithm and its underlying principles work.

Basic Principles of Learning Bayesian Logic Programs 213

We implemented the score-based algorithm in Sicstus Prolog 3.9.0 on a
Pentium-III 700 MHz Linux machine. The implementation has an interface to
the Netica API (http://www.norsys.com) for Bayesian network inference and
maximum likelihood estimation. To do the maximum likelihood estimation, we
adapted the scaled conjugate gradient (SCG) as implemented in Bishop and
Nabney’s Netlab library (http://www.ncrg.aston.ac.uk/netlab/, see also [4])
with an upper bound on the scale parameter of 2·106. Parameters were initialized
randomly. To avoid zero entries in the conditional probability tables, m-estimates
were used.

6.1 Genetic Domain

The goal was to learn a global, descriptive model for our genetic domain, i.e.
to learn the program bloodtype. We considered two totally independent families
using the predicates given by bloodtype having 12 respectively 15 family mem-
bers. For each least Herbrand model 1000 data cases from the induced Bayesian
network were sampled with a fraction of 0.4 of missing at random values of the
observed nodes making in total 2000 data cases.

Therefore, we first had a look at the (logical) hypotheses space. The space
could be seen as the first order equivalent of the space for learning the structure
of Bayesian networks (see Figure 3). The generating hypothesis is a member of it.
In a further experiment, we fixed the definitions for m/2 and f/2. The hypothesis
scored best included bt(X) | mc(X), pc(X), i.e. the algorithm re-discovered
the intensional definition which was originally used to build the data cases.
However, the definitions of mc/1 and pc/1 considered genetic information of the
grandparents to be important. It failed to re-discover the original definitions
for reasons explained above. The predicates m/2 and f/2 were not part of the
learned model rendering them to be extensionally defined. Nevertheless, the
founded global model had a slightly better likelihood than the original one.

6.2 Bongard Domain

The Bongard problems (due to the Russian scientist M. Bongard) are well-known
problems within inductive logic programming. Consider Figure 6. Each example
or scene consists of

– A variable number of geometrical objects such as triangles, rectangles and
circles etc (predicate obj/2 with S(obj) = {triangle, circle})., each having a
number of different properties such as color, orientation, size etc., and

– A variable number of relations between objects such as in (predicate in/3
having states true, false), leftof, above etc.

The task is to find a set of rules which discriminates positive from negative ex-
amples (represented by class/1 over the states pos,neg) by looking at the kind
of objects they consists of. Though the Bongard problems are toy problems,
they are very similar to real-world problems in e.g. the field of molecular biol-
ogy where essentially the same representational problems arise. Data consists of

214 K. Kersting and L. De Raedt

positive negative

Fig. 6. A Bongard problem consisting of 12 scenes, six positive ones and six negative
ones. The goal is to discriminate between the two classes.

molecules, each of which is composed of several atoms with specific properties
such as charge. There exists a number of relations between atoms like e.g. bonds,
structure etc.

In most real-world applications, the data is noisy. Class labels or object prop-
erties might be wrong or missing in the data cases. One extreme case concerns
clustering where no class labels are given. Furthermore, we might be uncertain
about relations among objects. Some positive examples might state that a tri-
angle is not in a circle due to noise. In such cases, Bayesian logic programs are
a natural method of choice. We conducted the following experiments.

First, we generated 20 positive and 20 negative examples of the concept “there
is a triangle in a circle.” The number of objects varied from 2 to 8. We conducted
three different experiments. We assumed the in relation to be deterministic and
given as background knowledge in(Example,Obj1,Obj2), i.e. we assumed that
there is no uncertainty about it. Due to that, no conditional probability distri-
bution has to take in/3 into account. Because each scene is independent of the
other, we represented the whole training data as one data case

{class(e1) = pos, obj(e1, o1) = triangle, obj(e1, o2) = circle,
class(e2) = neg, obj(e2, o1) = triangle, size(e2, o1) = large,
obj(e2, o2) = ‘?′, . . .}

with the background knowledge in(e1, o1, o2), . . . where e1, e2, . . . are identifiers
for examples and o1, o2, . . . for objects. A fraction of 0.2 of the random variables
were not observed. Our algorithm scored the hypothesis

class(Ex) | obj(Ex,O1),in(Ex,O1,O2),obj(Ex,O2).

best after specifying obj(Ex,O2) as a lookahead for in(Ex,O1,O2). The condi-
tional probability distribution assigned pos a probability higher than 0.6 only
if object O1 was a triangle and O2 a circle. Without the lookahead, adding
in(Ex,O1,O2) yield no improvement in score, and the correct hypothesis was
not considered. The hypothesis is not a well-defined Bayesian networks, but it

Basic Principles of Learning Bayesian Logic Programs 215

says that ground atoms over obj/2 extensional defined. Therefore, we estimated
the maximum likelihood parameters of

obj(Ex,O) | dom(Ex,O).
class(Ex) | obj(Ex,O1),in(Ex,O1,O2),obj(Ex,O2).

where dom/2 ensured range-restriction and was part of the deterministic back-
ground knowledge. Using 0.6 as threshold, the learned Bayesian logic program
had accuracy 1.0 on the training set and on an independently generated valida-
tion set consisting of 10 positive and 10 negative examples.

In a second experiments, we fixed the structure of the program learned in
the first experiment, and estimated its parameters on a data set consisting of 20
positive and 20 negative examples of the disjunctive concept “there is a (triangle
or a circle) in a circle.” The estimated conditional probability distribution gave
almost equal probability for the object O1 to be a triangle or circle.

In third experiment, we assumed uncertainty about the in relation. We en-
riched the data case used for the first experiment in the following way

{class(e1) = pos, obj(e1, o1) = triangle, obj(e1, o2) = circle,
in(e1, o1, o2) = true, class(e2) = neg, obj(e2, o1) = triangle,
size(e2, o1) = large, obj(e2, o2) = ‘?′, in(e2, o1, o2) = false, . . .},

i.e. for each pair of objects that could be related by in a ground atom over in
was included. Note that the state need not to be observed. Here, the algorithm
did not re-discovered the correct rule but

class(X) | obj(X,Y)
obj(X,Y) | in(X,Y,Z), obj(Z).

This is interesting, because when these rules are used to classify examples, only
the first rule is needed. The class is independent of any information about in/3
given full knowledge about the objects. The likelihood of the founded solution
was close to the one of class(Ex) | obj(Ex,O1),in(Ex,O1,O2),obj(Ex,O2)
on the data (absolute difference less than 0.001). However, the accuracy de-
creased (about 0.6 on an independently generated training set (10 pos / 10
neg)) for the reasons explained above: We learned a global model not focus-
ing on the classification error. [18] showed for Bayesian network classifier that
maximizing the conditional likelihood of the class variable comes close to mini-
mizing the classification error. In all experiments we assumed noisy or as
combining rule.

Finally, we conducted a simple clustering experiments. We generated 20 pos-
itive and 20 negative examples of the disjunctive concept “there is a triangle.”
There were triangles, circles and squares. The number of objects varied from 2 to
8. All class labels were said to be observed, and 20% of the remaining stated were
missing at random. The learned hypothesis was class(X) | obj(X,Y) totally
separating the two classes.

216 K. Kersting and L. De Raedt

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

#

Rank of correct localization

Fig. 7. An histogram of the ranks of the correct localization computed by an Bayesian
logic program on the KDD Cup 2001 test set

6.3 KDD Cup 2001

We also started to conduct experiments on large scale data sets namely the KDD
Cup 20014 data sets, cf. [8]. Task 3 is to predict the localizations local(G) of pro-
teins encoded by the genes G. This is a multi-class problem because there are 16
possible localizations. The training set consisted of 862 genes, the test set of 381
genes. The information we used included whether organisms with an mutation
in this gene can survive ess(G) (3 states), the class class(G) of a gene/protein
G (24 states), the complex compl(G) (56 states), and the other proteins G with
which each protein G is known to interact encoded by inter(G1,G2). To avoid a
large interaction table, we considered only those interactions with a correlation
higher than 0.85. Furthermore, we introduced a hidden predicate hidden/1 with
domain 0, 1, 2 to compress the representation size because e.g. the conditional
probability table of local(G1) | inter(G1,G2),local(G2) would consists of
225 entries (instead of 45 using hidden(G1)). The ground atoms over hidden/1
were never observed in the data. Nevertheless, the naive Prolog representation of
the support networks induced by some hypothesis (more than 4.400 random vari-
ables with more than 60.000 parameters) in our current implementation broke
the memory capabilities of Sicstus Prolog. Due to that, we can only report on
preliminary results. We only considered maximum likelihood parameter estima-
tion on the training set. The (logical) structure is based on naive Bayes taking
relational information into account:

local(G1) | gene(G1).
hidden(G1) | local(G1).
hidden(G1) | inter(G1,G2),local(G2).

4 For details see http://www.cs.wisc.edu/~dpage/kddcup2001/

Basic Principles of Learning Bayesian Logic Programs 217

class(G1) | hidden(G1).
compl(G1) | local(G1).
ess(G1) | local(G1).

As combining rule, we used for all predicates average. The given ground atoms
over inter/2 were used as pure logical background knowledge. Therefore, the
conditional probability distribution associated to hidden(G1) | inter(G1,G2),
local(G2) had not to take it into account. The parameters were randomly ini-
tialized. Again, the training set was represented as one data case, so that no
artificial independencies among genes were postulated. Estimate the parameters
took 12 iteration (about 30 min). The learned Bayesian logic program achieved
an accuracy of 0.57 (top 50% level of submitted models was 0.61, best predictive
accuracy was 0.72). A learner predicting always the majority class would achieve
an predictive accuracy of 0.44. Furthermore, when we rank for each test gene
its possible localizations according to the probability computed by the program,
then the correct localization was among the three highest ranked localizations
in 293 out of 381 cases (77%) (cf. Figure 7). Not that it took 40 iterations to
learn the corresponding grounded Bayesian logic program.

7 Related Work

The learning of Bayesian networks has been thoroughly investigated in the Un-
certainty in AI community, see e.g. [22,7]. Binder et al. [3], whose approach we
have adapted, present results for a gradient-based method. But so far – to the
best of our knowledge – there has not been much work on learning within first
order extensions of Bayesian networks. Koller and Pfeffer [33] adapt the EM
algorithm for probabilistic logic programs [40], a framework which in contrast
to Bayesian logic programs sees ground atoms as states of random variables.
Although the framework seems to theoretically allow for continuous random
variables there exists no (practical) query-answering procedure for this case; to
the best of our knowledge, Ngo and Haddawy [40] give only a procedure for vari-
ables having finite domains. Furthermore, Koller and Pfeffer’s approach utilizes
support networks, too, but requires the intersection of the support networks of
the data cases to be empty. This could be in our opinion in some cases too re-
strictive, e.g. in the case of dynamic Bayesian networks. Friedman et al. [19,20]
adapted the Structural-EM to learn the structure of probabilistic relational mod-
els. It applies the idea of the standard EM algorithm for maximum likelihood
parameter estimation to the problem of learning the structure. If we know the
values for all random variables, then the maximum likelihood estimate can be
written in closed from. Based on the current hypothesis a distribution over all
possible completions of each partially observed data case is computed. Then, new
hypotheses are computed using a score-based method. However, the algorithm
does not consider logical constraints on the space of hypotheses. Indeed, the con-
sidered clauses need not be logically valid on the data. Therefore, combining our
approach with the structural EM seems to be reasonable and straightforward.
Finally, there is work on learning object-oriented Bayesian networks [35,1].

218 K. Kersting and L. De Raedt

There exist also methods for learning within first order probabilistic frame-
works which do not build on Bayesian networks. Sato and Kameya [43] introduce
an EM method for parameter estimation of PRISM programs, see also Chapter 5.
Cussens [11] investigates EM like methods for estimating the parameters of
stochastic logic programs (SLPs). As a reminder, SLPs lift probabilistic context-
free grammars to the first order case by replacing production rules with prob-
ability values with clauses labeled with probability values. In turn, they define
probability distributions over proofs. As discussed in Chapter 1, this is quite
different from Bayesian logic programs, which lift Bayesian networks by defin-
ing probability distributions over an interpretation. Nevertheless, mappings be-
tween the two approaches exist as shown by Muggleton and Chen in Chapter 12.
Cussens’ EM approach for SLPs has been successfully applied to protein fold
discovery by Chen et. al as reported in Chapter 9. Muggleton [39] uses ILP
techniques to learn the logical structure/program of stochastic logic programs.
The used ILP setting is different to learning from interpretations, it is not based
on learning Bayesian networks, and so far considers only for single predicates
definitions.

To summarize, the related work on learning probabilistic relational models
mainly differs in three points from ours:
– The underlying (logical) frameworks lack important knowledge representa-

tional features which Bayesian logic programs have.
– They adapt the EM algorithm to do parameter estimation which is particu-

larly easy to implement. However, there are problematic issues both regard-
ing speed of convergence as well as convergence towards a local (sub-optimal)
maximum of the likelihood function. Different accelerations based on the gra-
dient are discussed in [38]. Also, the EM algorithm is difficult to apply in the
case of general probability density functions because it relies on computing
the sufficient statistics (cf. [22]).

– No probabilistic extension of the learning from interpretations is established.

8 Conclusions

A new link between ILP and learning of Bayesian networks was established. We
have proposed a scheme for learning both the probabilities and the structure
of Bayesian logic programs. We addressed the question “where do the numbers
come from?” by showing how to compute the gradient of the likelihood based on
ideas known for (dynamic) Bayesian networks. The intensional representation
of Bayesian logic programs, i.e. their compact representation should speed up
learning and provide good generalization. The general learning setting built on
the ILP setting learning from interpretations. We have argued that by adapting
this setting score-based methods for structural learning of Bayesian networks
could be updated to the first order case. The ILP setting is used to define and
traverse the space of (logical) hypotheses.

The experiments proved the principle of the algorithm. Their results highlight
that future work on improved scoring functions is needed. We plan to conduct ex-
periments on real-world scale problems. The use of refinement operators adding

Basic Principles of Learning Bayesian Logic Programs 219

or deleting non constant-free atoms should be explored. Furthermore, it would be
interesting to weaken the assumption that a data case corresponds to a complete
interpretation. Not assuming all relevant random variables are known would be
interesting for learning intensional rules like nat(s(X)) | nat(X). Ideas for han-
dling this within inductive logic programming might be adapted [14,6]. Further-
more, instead of traditional score-based greedy algorithm more advanced UAI
methods such as Friedman’s Structural-EM or structure search among equiva-
lence classes of Bayesian logic programs may be adapted taking advantage of the
logical constraints implied by the data cases. In any case, we believe that the
proposed approach is a good point of departure for further research. The link
established between ILP and Bayesian networks seems to be bi-directional. Can
ideas developed in the UAI community be carried over to ILP?

Acknowledgements

The authors would like to thank Manfred Jaeger, Stefan Kramer and David Page
for helpful discussions on the ideas of the paper. Furthermore, the authors would
like to thank Jan Ramon and Hendrik Blockeel for making available their Bon-
gard problems generators. This research was partly supported by the European
Union IST programme under contract number IST-2001-33053 (Application of
Probabilistic Inductive Logic Programming – APRIL).

References

1. Bangsø, O., Langseth, H., Nielsen, T.D.: Structural learning in object oriented
domains. In: Russell, I., Kolen, J. (eds.) Proceedings of the Fourteenth International
Florida Artificial Intelligence Research Society Conference (FLAIRS 2001), Key
West, Florida, USA, pp. 340–344. AAAI Press, Menlo Park (2001)

2. Bauer, H.: Wahrscheinlichkeitstheorie, 4th edn., Walter de Gruyter, Berlin, New
York (1991)

3. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive Probabilistic Networks
with Hidden Variables. Machine Learning 29(2–3), 213–244 (1997)

4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Blockeel, H., De Raedt, L.: Lookahead and discretization in ilp. In: Džeroski, S.,
Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 77–85. Springer, Heidelberg (1997)

6. Blockeel, H., De Raedt, L.: ISIDD: An Interactive System for Inductive Database
Design. Applied Artificial Intelligence 12(5), 385 (1998)

7. Buntine, W.: A guide to the literature on learning probabilistic networks from data.
IEEE Transaction on Knowledge and Data Engineering 8, 195–210 (1996)

8. Cheng, J., Hatzis, C., Krogel, M.–A., Morishita, S., Page, D., Sese, J.: KDD Cup
2002 Report. SIGKDD Explorations 3(2), 47–64 (2002)

9. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

10. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic net-
works and expert systems. In: Statistics for engineering and information, Springer,
Heidelberg (1999)

220 K. Kersting and L. De Raedt

11. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn-
ing 44(3), 245–271 (2001)

12. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1),
197–201 (1997)

13. De Raedt, L., Bruynooghe, M.: A theory of clausal discovery. In: Bajcsy, R. (ed.)
Proceedings of the Thirteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 1993), Chambery, France, pp. 1058–1063. Morgan Kaufmann, San
Francisco (1993)

14. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146
(1997)

15. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Stat. Soc. B 39, 1–39 (1977)

16. Dick, U., Kersting, K.: Fisher Kernels for relational data. In: Fürnkranz, J., Schef-
fer, T., Spiliopoulou, M. (eds.) Proceedings of the 17th European Conference on
Machine Learning (ECML 2006), Berlin, Germany, pp. 112–125 (2006)

17. Flach, P.A., Lachiche, N.: 1BC: A first-order Bayesian classifier. In: Džeroski, S.,
Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Hei-
delberg (1999)

18. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29, 131–163 (1997)

19. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Confer-
ences on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 1300–1309.
Morgan Kaufmann, San Francisco (1999)

20. Getoor, L., Koller, D., Taskar, B., Friedman, N.: Learning probabilistic relational
models with structural uncertainty. In: Getoor, L., Jensen, D. (eds.) Proceedings
of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data,
AAAI Press, Menlo Park (2000)

21. Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for complex
bayesian modelling. The Statistician 43 (1994)

22. Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report
MSR-TR-95-06, Microsoft Research (1995)

23. Heckerman, D., Breese, J.: Causal Independence for Probability Assessment and
Inference Using Bayesian Networks. Technical Report MSR-TR-94-08, Microsoft
Research (1994)

24. Jaeger, M.: Relational Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Pro-
ceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI 1997), Providence, Rhode Island, USA, pp. 266–273. Morgan Kauf-
mann, San Francisco (1997)

25. Jamshidian, M., Jennrich, R.I.: Accleration of the EM Algorithm by using Quasi-
Newton Methods. Journal of the Royal Statistical Society B 59(3), 569–587 (1997)

26. Jensen, F.V.: Gradient descent training of bayesian networks. In: Hunter, A., Par-
sons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 190–200. Springer,
Heidelberg (1999)

27. Jensen, F.V.: Bayesian networks and decision graphs. Springer, Heidelberg (2001)
28. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A.

(eds.) Work-in-Progress Reports of the Tenth International Conference on Induc-
tive Logic Programming (ILP 2000) (2000),
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-35/

29. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical Report 151, Uni-
versity of Freiburg, Institute for Computer Science (submitted) (April 2001)

http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-35/

Basic Principles of Learning Bayesian Logic Programs 221

30. Kersting, K., De Raedt, L., Kramer, S.: Interpreting Bayesian Logic Programs.
In: Getoor, L., Jensen, D. (eds.) Working Notes of the AAAI-2000 Workshop on
Learning Statistical Models from Relational Data (SRL), Austin, Texas, AAAI
Press, Menlo Park (2000)

31. Kersting, K., Gärtner, T.: Fisher Kernels for Logical Sequences. In: Boulicaut, J.-
F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI),
vol. 3201, p. 205. Springer, Heidelberg (2004)

32. Koller, D.: Probabilistic relational models. In: Džeroski, S., Flach, P.A. (eds.) ILP
1999. LNCS (LNAI), vol. 1634, pp. 3–13. Springer, Heidelberg (1999)

33. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Pro-
ceedings of the Fifteenth Joint Conference on Artificial Intelligence (IJCAI 1997),
Nagoya, Japan, pp. 1316–1321 (1997)

34. Lam, W., Bacchus, F.: Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence 10(4) (1994)

35. Langseth, H., Bangsø, O.: Parameter learning in object oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence 32(1-2), 221–243 (2001)

36. Lauritzen, S.L.: The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis 19, 191–201 (1995)

37. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1989)
38. McKachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Eiley &

Sons, Inc. (1997)
39. Muggleton, S.H.: Learning stochastic logic programs. In: Getoor, L., Jensen, D.

(eds.) Working Notes of the AAAI-2000 Workshop on Learning Statistical Models
from Relational Data (SRL), Austin, Texas, AAAI Press, Menlo Park (2000)

40. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science 171, 147–177 (1997)

41. Pearl, J.: Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd
edn. Morgan Kaufmann, San Francisco (1991)

42. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64, 81–129 (1993)

43. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

44. Srinivasan, A., Muggleton, S., Bain, M.: The justification of logical theories based
on data compression. In: Furukawa, K., Michie, D., Muggleton, S. (eds.) Machine
Intelligence, vol. 13, Oxford University Press, Oxford (1994)

45. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques.
MIT Press, Cambridge (1986)

46. Taskar, B., Segal, E., Koller, D.: Probabilistic clustering in relational data. In:
Nebel, B. (ed.) Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI 2001), Seattle, Washington, USA, pp. 870–887. Morgan Kaufmann, San
Francisco (2001)

47. Xiang, Y., Wong, S.K.M., Cercone, N.: Critical remarks on single link search in
learning belief networks. In: Horvitz, E., Jensen, F.V. (eds.) Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996),
Portland, Oregon, USA, pp. 564–571. Morgan Kaufmann, San Francisco (1996)

	Basic Principles of Learning Bayesian Logic Programs
	Introduction
	Bayesian Logic Programs
	Representation Language
	Declarative Semantics

	The Learning Problem
	Data Cases
	The Hypothesis Space
	Scoring Function

	Scooby: An Algorithm for Learning Intensional Bayesian Logic Programs
	The Propositional Case: Bayesian Networks
	The First Order Case: Bayesian Logic Programs
	Discussion

	Learning Probabilities in a Bayesian Logic Program
	Maximum Likelihood Estimation
	Gradient-Based Approach
	Expectation-Maximization (EM)
	Gradient vs. EM

	Experiments
	Genetic Domain
	Bongard Domain
	KDD Cup 2001

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

