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Abstract. In Datalog, missing values are represented by Skolem con-
stants. More generally, in logic programming missing values, or existen-
tially quantified variables, are represented by terms built from Skolem
functors. The CLP(BN ) language represents the joint probability dis-
tribution over missing values in a database or logic program by using
constraints to represent Skolem functions. Algorithms from inductive
logic programming (ILP) can be used with only minor modification to
learn CLP(BN ) programs. An implementation of CLP(BN ) is publicly
available as part of YAP Prolog at http://www.ncc.up.pt/∼vsc/Yap.

1 Introduction

One of the major issues in knowledge representation is how to deal with incom-
plete information. One approach to this problem is to use probability theory in
order to represent the likelihood of an event. More specifically, advances in rep-
resentation and inference with Bayesian networks have generated much interest
and resulted in practical systems, with significant industrial applications [1]. A
Bayesian network represents a joint distribution over a set of random variables
where the network structure encapsulates conditional independence relations be-
tween the variables.

A Bayesian network may be seen as establishing a set of relations between
events. This presents a clear analogy with propositional calculus, as widely dis-
cussed in the literature [2], and raises the question of whether one could move
one step forward towards a Bayesian network system based on the more pow-
erful predicate calculus. Arguably, a more concise representation of Bayesian
Networks would avoid wasted work and possible mistakes. Moreover, it would
make it easier to learn interesting patterns in data. Work such as Koller’s Prob-
abilistic Relational Models (PRMs) [3], Sato’s PRISM [4], Ngo and Haddawy’s
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Probabilistic Logic Programs [5], Muggleton and Cussens’ Stochastic Logic Pro-
grams [6], and Kersting and De Raedt’s Bayesian Logic Programs [7] have shown
that such a goal is indeed attainable.

The purpose of probabilistic first order languages is to propose a concise
encoding of probability distributions for unobserved variables. Note that manip-
ulating and reasoning on unknown values is a well-known problem in first-order
representations. As an example, First-Order Logic is often used to express exis-
tential properties, such as:

∀x∃y, Make(x)→ OwnsCar(y, x)

A natural interpretation of this formula is that every make of car has at least
one owner. In other words, for every make x there is an individual y that owns
a car of this make. Notice that the formula does not state who the owner(s)
may be, just that one exists. In some cases, e.g., for inference purposes, it would
be useful to refer to the individual, even if we do not know its actual name.
A process called skolemization can replace the original formula by a formula
without existential quantifiers:

∀x, Make(x)→ OwnsCar(y, s(x))

where y = s(x) and s(x) is called a Skolem function: we know the function
describes an individual for each x, but we do not know which individual.

Skolem functions have an interesting analogy in probabilistic relational mod-
els (PRMs) [3]. PRMs express probability distributions of a field in the database
by considering related fields, thus encoding a Bayesian network that represents
the joint probability distribution over all the fields in a relational database. The
Bayes network constructed by PRMs can then be used to infer probabilities
about missing values in the database. We know that the field must take one
value, we know that the value will depend on related fields, and we know the
values for at least some of these related fields. As for Skolem functions, PRMs
refer to fields that are unknown function of other fields. But, in contrast with
First Order Logic, PRMs do allow us to estimate probabilities for the differ-
ent outcomes of the function: they allow us to represent partial information on
Skolem functions.

Can we take this process a step further and use a Bayesian network to repre-
sent the joint probability distribution over terms constructed from the Skolem
functors in a logic program? We extend the language of logic programs to make
this possible. Our extension is based on the idea of defining a language of Skolem
functions where we can express properties of these functions. Because Skolem
functions benefit from a special interpretation, we use Constraint Logic Pro-
gramming (CLP), so we call the extended language CLP(BN ). We show that
any PRM can be represented as a CLP(BN ) program.

Our work in CLP(BN ) has been motivated by our interest in multi-relational
data mining, and more specifically in inductive logic programming (ILP). Be-
cause CLP(BN ) programs are a kind of logic program, we can use existing ILP
systems to learn them, with only simple modifications to the ILP systems. In-
duction of clauses can be seen as model generation, and parameter fitting can
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be seen as generating the CPTs for the constraint of a clause. We show that the
ILP system aleph [8] is able to learn CLP(BN ) programs.

Next, we present the design of CLP(BN ) through examples. We then discuss
the foundations of CLP(BN ), including detailed syntax, proof theory (or oper-
ational semantics), and model-theoretic semantics. We next discuss important
features of CLP(BN ), namely its ability to support aggregation and recursion.
Finally, we present the results of experiments in learning CLP(BN ) programs
using ILP. Lastly, we relate CLP(BN ) with PRMs and with other related work.

2 CLP(BN ) Goes to School

We introduce CLP(BN ) through a simplified version of the school database
originally used to explain Probabilistic Relational Models [3] (PRMs). We chose
this example because it stems from a familiar background and because it clearly
illustrates how CLP(BN ) relates to prior work on PRMs. Figure 2 shows a sim-
plified fragment of the school database. The schema consists of three relations:
students, courses, and grades. For each student, we have a primary key, Student,
and its Skill. To simplify, the value for skill is the expected final grade of the
student: an A student would thus be a top student. For each course, Course is the
primary key and Difficulty gives the course’s difficulty: an A difficulty course
would be a course where we would expect even the average student to do very
well. Lastly, the Registration records actual student participation in a course.
This table’s key is a registration key. Both Student and Course are foreign keys
giving student and course data. The last field in the table gives the grade for
that registration.

Figure 1 shows an example database with these 3 tables. Notice that some
non-key data is missing in the database. For example, we do not know what was
mary’s grade on c0, maybe because the grade has not been input yet. Also, we

r0
r1
r2
r3
r4

Student Course   Grade

John      c0       B
Mary      c0
Mary      c2       A
John      c2
Mary      c3       A

Course Difficulty

c0       A
c2
c3       C

Student Skill

John      A
Mary

?

?

?

?

Reg

Fig. 1. A Simplified School Database with Tables on Students, Courses and Grades
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r0
r1
r2
r3
r4

Student Course   Grade

John      c0       B
Mary      c0
Mary      c2       A
John      c2
Mary      c3       A

?

?

Reg

Course Difficulty

c0       A
c2
c3       C

Student Skill

John      A
Mary ?

?

Fig. 2. Direct Dependency Between Random Variables in Simplified School Database

do have john’s skill, but we could not obtain data on mary. This is a common
problem in databases: often, the database only contains partial data for some
items. A fundamental observation in the PRM design is that such missing data
can be represented as random variables. The idea is that columns for which there
is missing data should be seen as sets of random variables. If a specific value is
known, we say that the database includes evidence on this item. For example,
we may say that the Skill attribute in the Student table is a set of random
variables, and that we have evidence for the skill variable corresponding to key
john. Other sets of random variables are for Difficulty and Grade.

An immediate step in the PRMs is that we can estimate probabilities on the
missing values through considering other items in the database. Such items may
be on the same relation, or may also be found at a different relations. In our
database example, for instance, it would make sense to assume that better skilled
students would have better grades, e.g., an A level student would have an higher
probability of achieving an A. Moreover, it makes sense to assume that a grade
will also depend on the course’s difficulty: the easier the course, the better the
grades. We can go one step further and argue that given course and student
information, a grade should be conditionally independent on the other elements
on the database. This reasoning suggests that all the random variables in our
PRM-extended database should form a Bayesian network.

Figure 2 shows a fragment of the Bayesian network induced by this rule. At
first sight, our expectations for mary’s grade on course c0 depend on data we
have on mary and course c0.

CLP(BN ) is grounded on the idea that such beliefs can easily be expressed
in Logic. Namely, the previous example can be expressed in a variety of ways,
but one approach (using Prolog Notation) would be as follows:
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grade(r1,Grade) :-
skill(mary,Mskill),
difficulty(c0,C0Difficulty),
Grade = ‘G’(MSkill,C0Difficulty).

Grade is as an attribute of registration r1. We know that its actual value
will depend on mary’s skill and course c0’s difficulty. The clause says exactly
that: Grade is a random variable that can also be described as an unknown
function, G(), of r1, mary’s skill, Mskill, and c0’s difficulty, C0Difficulty.
Such unknown functions are often used in Logic, where they are usually called
Skolem functions : thus, in our formalism we shall say that a random variable is
given by a Skolem function of its arguments.

Note that we do have some expectations on G(). Such data can be expressed
in a variety of ways, say through the fact:

random_variable(‘G’(_,_),[‘A’,‘B’,‘C’,‘D’],[0.4,0.3,0.2,0.1]).

that states that the random variable has domain A,B,C,D and a discrete con-
ditional probability table that we represent as a Prolog list with a number of
floating point values between 0 and 1.

Of course, one of the main advantages of the PRMs (and of using first-order
representations), is that we can generalize. In this case, we could write a single
rule for Grade by lifting the constants in our grade clause and making the indi-
vidual registration an argument to the Skolem function. We will need to access
the foreign keys, giving the following clause:

grade(Registration,Grade) :-
registration_student(Registration, Student),
registration_course(Registration, Course),
difficulty(Course,Difficulty),
skill(Student,Skill),
Grade = ‘S’(Registration,Skill,Difficulty).

random_variable(‘S’(_,_,_),[‘A’,‘B’,‘C’,‘D’],[0.4,0.3,0.2,0.1]).

Next, we need rules for difficulty and skill. In our model, we do not have helpful
dependencies for Skill and Difficulty, so the two columns should be given
from priors. We thus just write:

skill(Student,‘S1’(Student)).
difficulty(Course,‘S2’(Course)).

random_variable(‘S1’(_),[‘A’,‘B’,‘C’,‘D’],[0.25,0.25,0.25,0.25]).
random_variable(‘S2’(_),[‘A’,‘B’,‘C’,‘D’],[0.25,0.25,0.25,0.25]).

At this point we have a small nice little logic program that fully explains the
database. We believe this representation is very attractive (indeed, a similar
approach was proposed independently by Blockeel [9]), but it does have one
major limitation: it hides the difference between doing inference in first order
logic and in Bayesian network, as we discuss next.
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Evidence. We have observed that mary’s grade on c0 depends on two factors:
course c0’s difficulty, and mary’s skill. In practice, the actual database does have
some extra information that can help in refining the probabilities for this grade.

First, we have actual data on an item. Consider c0’s difficulty: we actually
know that c0 is an easy course. We thus have two sources of information about
c0’s difficulty: we know that it is a random function, ‘S1’(c0); but we also know
that it takes the value A. Logically, this evidence can be seen as setting up the
equation S1(c0) = ‘A’. Unfortunately, unification cannot be easily redefined in
Prolog.

One simple solution would be to add evidence through an extra fact:

evidence(‘S1’(c0),‘A’).

We assume that somehow this evidence is going to be used when we actually run
the program. This solution is not entirely satisfactory, as we now have two sepa-
rate sources of data on skill: the skill/2 relation and some facts for evidence/2.

Evidence plays indeed a very important role in Bayesian networks. Imagine
we want to know the probability distribution for mary’s grade on course c0.
We have more accurate probabilities knowing c0 is an easy course. And, even
though we do not have actual evidence on mary’s skill, Mskill, we can achieve
a better estimate for its probability distribution if we consider evidence relevant
to Mskill. Namely, mary has attended two other courses, c2 and c3, and that
she had good grades on both. In fact, course c3 should be quite a good indicator,
as we know grades tend to be bad (a C). We do not know the difficulty of course
c2, but we can again make an estimate by investigating evidence on the students
that attended this course. Following all sources of evidence in a network can be
quite complex [10], even for such simple examples. In this case, the result is the
network shown in Figure 3. Bayesian networks have developed a number of both
exact and approximate methods to estimate the probabilities for Grade given all
the evidence we have on this graph [1].

Evaluating all the relevant evidence is a complex process: first, we need to
track down all relevant sources of evidence, through algorithms such as knowl-
edge based model construction [11]. Next, we need to perform probabilistic in-
ference on this graph and marginalize the probabilities on the query variables.
To do so would require an extra program, which would have to process both the
original query and every source of evidence.

Constraints. The previous approach suggests that a Prolog only approach can
be used to represent all the properties of Bayesian networks, but that it does
expose the user to the mechanisms used by the Bayesian network to accept and
propagate evidence. The user would have the burden of knowing which random
variables have evidence, and she would be responsible to call a procedure for
probabilistic inference.

Such difficulties suggest that we may want to work at an higher abstraction
level. Constraint Logic Programming is an important framework that was de-
signed in order to allow specific interpretations on some predicates of interest.
These interpretations can then be used to implement specialized algorithms over
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Reg   Student Course   Grade

r0    John      c0       B
r1    Mary      c0
r2    Mary      c2       A
r3    John      c2
r4    Mary      c3       A

?

?

Course Difficulty

c0       A
c2
c3       C

?

Student Skill

John      A
Mary ?

Fig. 3. Full Bayesian Network Induced by Random Variables in the Network

the standard Prolog inference. For example, CLP(R) defines constraints over
reals: it redefines equality and arithmetic operations to create constraints, or
equations, that are manipulated by a separate constraint solver. The constraint
solver maintains a Store of all active arithmetic constraints, and calls specialized
algorithms to process the equations into some canonical form.

We believe the constraint framework is a natural answer to the problems
mentioned above. First, through constraints we can extend equality to support
evidence. More precisely we can redefine the equality:

{ S1(c0) = ‘A’ }

to state that random variable S1(c0) has received evidence A. In constraint
programming, we are not forced to bind S1(c0) to A. Instead, we can add S1(c0)
= ‘A’ to a store for later evaluation.

The second advantage of using constraint programming is that it is natural to
see a Bayesian Network as a store: both constraints stores and Bayesian networks
are graphs; in fact, it is well known that there is a strong connection between
both [12]. It is natural to see the last step of probabilistic inference as constraint
solving. And it is natural to see marginalization as projection.

Moreover, because constraint stores are opaque to the actual inference process,
it is possible to have a global constraint store that accommodates all evidence so
far. In other words, any time we add evidence to the database we can add this
evidence to a global constraint store. Probabilistic inference will then be called
having this global Bayesian network as a backdrop.

We have presented the key ideas of CLP(BN ). Next, we discuss the CLP(BN )
language in some more detail.



CLP(BN ): Constraint Logic Programming for Probabilistic Knowledge 163

3 The CLP(BN ) Language

A CLP(BN ) program is a constraint logic program that can encode Bayesian
constraints. Thus, CLP(BN ) programs are sets of Prolog clauses, where some
clauses may contain BN constraints. BN constraints are of the form {X = F
with P}, where X must be a Prolog variable, F a term, and P a probability
distribution.

As an example, consider the following clause:

skill(S,Skill) :-
{Skill = skill(S) with p([ ‘A’, ‘B’, ‘C’, ‘D’],

[0.25,0.25,0.25,0.25],[])}.

This clause sets a constraint on Skill. The constraint declares that Skill should
be constrained to the term skill(S), an unknown function, or Skolem function,
of S. Throughout the paper we refer to this term that uniquely identifies a
random variable as the Skolem term. The constraint declares some further in-
formation on skill(S) through the with construct. In this case, the right hand
side of with declares that skill(S) is a discrete random variable with 4 possible
values and a prior distribution:

1. skill(S) has domain A, B, C and D;
2. it has an uniform probability distribution over those values;
3. and that skill(S) has no parent nodes.

The right-hand-side of the with is a Prolog term. Thus, the same constraint
could be written as:

skill(S,Skill) :-
cpt(skill(S), CPT),
{Skill = skill(S) with CPT }.

cpt(skill(_), p([ ‘A’, ‘B’, ‘C’, ‘D’],
[0.25,0.25,0.25,0.25],[])).

One advantage of this approach is that it makes it straightforward to represent
different CPTs for different students with a single constraint. Imagine we have
extra information on student’s academic story: in this case, we could expect
senior students to have better skills than first-year students.

skill(S,Skill) :-
cpt(skill(S), CPT),
{Skill = skill(S) with CPT }.

cpt(skill(S), p([‘A’,‘B’,‘C’,‘D’],[PA, PB, PC, PD],[])) :-
skill_table(S, PA, PB, PC, PD).
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skill_table(S, 0.25, 0.25, 0.25, 0.25) :-
freshman(S).

skill_table(S, 0.35, 0.30, 0.20, 0.15) :-
sophomore(S).

skill_table(S, 0.38, 0.35, 0.17, 0.10) :-
junior(S).

skill_table(S, 0.40, 0.45, 0.15,0.00) :-
senior(S).

In general, all CLP(BN ) objects are first class objects. They can be specified
as compile-time constants, but they can also be computed through arbitrary
logic programs. And they can be fully specified before or after setting up the
constraint, so

skill(S,Skill) :-
{Skill = skill(S) with CPT },
cpt(skill(S), CPT).

is a legal program, and so is:

skill(S,CPT,Skill) :-
{Skill = skill(S) with CPT }.

Conditional Probabilities. Let us next consider an example of a conditional prob-
ability distribution (CPT). We may remember from Figure 2 that a registration’s
grade depends on the course’s difficulty and on the student’s intelligence. This
is encoded in the following clause:

grade(Registration, Grade) :-
registration_student(Registration, Student),
registration_course(Registration, Course),
difficulty(Course,Dif),
intelligence(Student,Skill),
grade_table(TABLE),
{

Grade = grade(Course, Dif, Skill) with
p([‘A’,‘B’,‘C’,‘D’],TABLE,[Dif,Skill])

}.

The constraint says that Grade is a Skolem function of Reg, Dif , and Skill. We
know that Grade must be unique for each Reg, and we know that the probability
distribution for the possible values of Grade depend on the random variables
Dif and Skill. These variables are thus the parents in Grades’s CPT, i.e., the
third argument in the with term. The actual table must include 43 cases: we
save some room in the text by assuming it was given by an auxiliary predicate
grade table/1.

Figure 4 shows an alternative, pictorial, representation for a CLP(BN ) clause
in this example. The representation clearly shows the clause as having two com-
ponents: the logical component sets all variables of interest, and the Bayesian
constraint connects them in a sub-graph.
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       reg(Reg, Course, Student),
       difficulty(Course, Dif),
        intelligence(Student, Int).

Dif Intgrade(Reg, grade(Reg)):−

grade(Reg)

Fig. 4. Pictorial representation of a grade clause

3.1 Execution

The evaluation of a CLP(BN ) program results in a network of constraints. In
the previous example, the evaluation of

?- grade(r1,Grade).

will set up a constraint network with grade(r2) depending on dif(course) and
int(student). CLP(BN ) will output the marginal probability distribution on
grade(r2).

Table 1 shows in some detail the actual execution steps for this query in the
absence of prior evidence. The binding store and the query store grow along
as we execute a query on grade r1. The leftmost column shows the step num-
ber, the middle column shows new bindings, and the rightmost column shows
new constraints. We represent each binding as an equality, and we represent a
constraint as the corresponding Skolem term. For space considerations, we ab-
breviate names of constants and variables, and we do not write the full CPTs,
only the main functor and arguments for each Skolem term.

Table 1. A Query on Grade

Step Bindings Skolem Terms

0 {R = r1} {}
1 ∪{S = mary}
2 ∪{C = c0}
3 ∪{D(c0)}
4 ∪{S(mary)}
5 ∪{G(r1, D(c0), I(mary))}

Each step in the computation introduces new bindings or BN constraints. In
step 1 the call to registration student/2 obtains a student, mary. In step 2
the call to registration course/2 obtains a course, c0. The course’s difficulty
is obtained from c0 in step 3. Step 4 gives mary’s skill. We then link the two
variables together to obtain the CPT for Grade.
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Reg   Student Course   Grade   Satisf

r0    John      c0
r1    Mary      c0
r2    Mary      c2
r3    John      c2
r4    Mary      c3

Course   Prof   Difficulty

c0      Bayes
c2      Moivre 
c3      Bayes

?

Student Skill

John
Mary ?

Professor  Ability

Bayes
Moivre

?

h?

Fig. 5. School Database Extended to Include Satisfaction and Professor Data

Execution: Conditioning on Evidence. One major application of Bayesian net-
work systems is conditioning on evidence. To give this next example, we will
add some extra information to the database, as shown in Fig 5. First, we assume
that now we have some information on the professors that actually taught the
course. We shall need an extra table for professors, and an extra column on
courses saying which professor teaches each course. Second, we are interested in
how happy students were in our courses. Thus, we add an extra field for courses
saying how happy, or Satisfied, the student was.

Satisfaction is a random variable. We do not always know it. We do know that
it depends on grade and that it even with bad grades, students will be happy
to attend courses taught by very good professors. Notice that in order to obtain
a professor’s ability, we need to navigate in the database: we find the course
associated with the registration, the professor who taught the course, and finally
the professor’s ability. The corresponding program is shown next:

satisfaction(Reg, Sat) :-
registration_course(Reg, Course),
professor(Course, Prof),
ability(Prof, Abi),
grade(Reg, Grade),
sat_table(Abi, Grade, Table),
{ Sat = satisfaction(Reg) with Table }.

Next, imagine that mary was the only student who actually gave her satis-
faction, and that she was highly satisfied with registration r1. Given this extra
evidence on satisfaction for r1, can we compute the new marginal for grade?

We need to be able to query for Grade, given that r2’s satisfaction is bound to
h. In CLP(BN ) the random variable for satisfaction can be obtained by asking a
query,and evidence can be introduced by unifying the answer to the query. The
full query would thus be:

?- grade(r1,X), satisfaction(r1,h).
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Table 2. A Query on Grade and Satisfaction

Step Bindings Skolem Terms

0 {R = r1} {}
1 ∪{S = mary}
2 ∪{C = c0}
3 ∪{D(c0)}
4 ∪{S(mary)}
5 ∪{G(r1, D(c0), S(mary))}
6 {C′ = c0}
7 ∪{P ′ = Bayes}
8 ∪{A(Bayes)}
9 − 13
14 ∪{S(r1, A(Bayes), G(r1, . . .))}
15 ∪{S(r1, . . .) = h}

Table 2 shows how the execution steps update the stores in this case.
The first five steps repeat the computation for grade. Step 5 and 6 find the

professor for the course. Step 8 finds its ability. Next, we recompute Grade.
The computation will in fact be redundant, as the Skolem term for Grade was
already in the store. The final step introduces evidence. Unification in CLP(BN )
implements evidence through updating the original constraint in the store. The
full store is then marginalized against the query variables by the constraint
solver.

Evidence in Store. Imagine again we ask grade(r1, X) but now given the
database shown in Figure 1. The actual query should now be:

?- grade(r1,X),
grade(r0,‘B’), grade(r2,‘A’), grade(r4, ‘A’),
difficulty(c0, ‘A’), difficulty(c3, ‘C’),
skill(john, ‘A’).

Writing such long queries is cumbersome, to say the least. It may be unclear
which evidence is relevant, whereas giving all the evidence in a database may be
extremely expensive computationally.

Table 3. A Query on Grade

Step Bindings Skolem Terms

0 {R = r1} {G(r0, D(c0), S(john)), D(c0), S(john), . . .}
1 ∪{S = mary}
2 ∪{C = c0}
3 ∪{D(c0)}
4 ∪{S(mary)}
5 ∪{G(r1, D(c0), S(mary))}



168 V. Santos Costa, D. Page, and J. Cussens

CLP(BN ) allows the user to declare evidence in the program. This is simply
performed by stating evidence as a fact for the predicate. Currently, we use the
construct {} to inform CLP(BN ) that a fact introduces evidence:

grade(r0, ‘B’) :- {}.
grade(r2, ‘A’) :- {}.
grade(r4, ‘A’) :- {}.

This global evidence is processed at compile-time, by running the evidence data
as goals and adding the resulting constraints to the Global Store. Execution of
grade(1,X) would thus be as shown in Table 3.

4 Foundations

We next present the basic ideas of CLP(BN ) more formally. For brevity, this
section necessarily assumes prior knowledge of first-order logic, model theory,
and resolution.

First, we remark that CLP(BN ) programs are constraint logic programs, and
thus inherit the well-known properties of logic programs. We further interpret a
CLP(BN ) program as defining a set of probability distributions over the models
of the underlying logic program. Any Skolem function sk of variables X1, ..., Xn,
has an associated CPT specifying a probability distribution over the possible
denotations of sk(X1, ..., Xn) given the values, or bindings, of X1, ..., Xn. The
CPTs associated with a clause may be thought of as a Bayes net fragment, where
each node is labeled by either a variable or a term built from a Skolem function.
Figure 4 illustrates this view using a clause that relates a registration’s grade to
the course’s difficulty and to the student’s intelligence.

4.1 Detailed Syntax

The alphabet of CLP(BN ) is the alphabet of logic programs. We shall take a set
of functors and call these functors Skolem functors ; Skolem constants are simply
Skolem functors of arity 0. A Skolem term is a term whose primary functor is
a Skolem functor. We assume that Skolem terms have been introduced into the
program during a Skolemization process to replace the existentially-quantified
variables in the program. It follows from the Skolemization process that any
Skolem functor sk appears in only one Skolem term, which appears in only one
clause, though that Skolem term may have multiple occurrences in that one
clause. Where the Skolem functor sk has arity n, its Skolem term has the form
sk(W1, ..., Wn), where W1, ..., Wn are variables that also appear outside of any
Skolem term in the same clause.

A CLP(BN ) program in canonical form is a set of clauses of the form H ←
A/B. We call H the head of the clause. H is a literal and A is a (possibly empty)
conjunction of literals. Together they form the logical portion of the clause, C.
The probabilistic portion, B, is a (possibly empty) conjunction of atoms of the
form: {V = Sk with CPT }. We shall name these atoms constraints. Within
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a constraint, we refer to Sk as the Skolem term and CPT as the conditional
probability table. We focus on discrete variables in this paper. In this case,
CPT may be an unbound variable or a term or the form p(D, T, P ). We refer
to D as the domain, T as the table, and P as the parent nodes.

A CLP(BN ) constraint Bi is well-formed if and only if:

1. All variables in Bi appear in C;
2. Sk′s functor is unique in the program; and,
3. There is at least one substitution σ such that CPTσ = p(Dσ, Tσ, Pσ), and

(a) Dσ is a ground list, all members of the list are different, and no sub-term
of a term in the list is a Skolem term; (b) Pσ is a ground list, all members of
the list are different, and all members of the list are Skolem terms; and (c)
Tσ is a ground list, all members of Tσ are numbers p such that 0 ≤ p ≤ 1,
and the size of Tσ is a multiple of the size of Dσ.

If the probabilistic portion of a clause is empty, we also call the clause a
Prolog clause. According to this definition, every Prolog program is a CLP(BN )
program.

4.2 Operational Semantics

A query for CLP(BN ) is an ordinary Prolog query, which is a conjunction of
positive literals. In logic programming, a query is answered by one or more proofs
constructed through resolution. At each resolution step, terms from two different
clauses may be unified. If both of the terms being unified also participate in
CPTs, or Bayes net constraints, then the corresponding nodes in the Bayes net

       reg(Reg, Course, Student),
Dif Int

       difficulty(Course, Dif),
        intelligence(Student, Int).

 

from first clause with

grade(Reg, grade(Reg)):−

Resolve grade(Reg, grade(Reg))

grade(Reg’, Grade’) from second

satisfaction(Reg’, sat(Reg’)):−
       course(Reg’, Course’),
       professor(Course’, Prof’),
       ability(Prof’, Abi’),
       grade(Reg’, Grade’).

Abi’ Grade’

satisfaction(Reg’)

clause.  Note that the ’ symbol
is simply to rename all variables 
when standardizing apart.

satisfaction(Reg’, sat(Reg’)):−
       course(Reg’, Course’), 
       professor(Course’, Prof’),
       ability(Prof’, Abi’),
       reg(Reg’, Course, Student),
       difficulty(Course, Dif),
       intelligence(Student, Int). satisfaction(Reg)

Abi’

IntDif

grade(Reg)

grade(Reg)

Fig. 6. Resolution
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constraints must be unified as illustrated in Figure 6. In this way we construct
a large Bayes net consisting of all the smaller Bayes nets that have been unified
during resolution.

A cycle may arise in the Bayes Net if we introduce a constraint such that
Y is a parent of X , and X is an ancestor of Y . In this case, when unifying Y
to an argument of the CPT constraint for X , X would be a sub-term of the
CPT constraint for Y which causes unification failure. To detect this failure it
is necessary to do a proper unification test using the ‘occur-check’, something
standard Prolog does not do (for efficiency reasons).

To be rigorous in our definition of the distribution defined by a Bayes net
constraint, let Ci/Bi, 1 ≤ i ≤ n, be the clauses participating in the proof, where
Ci is the ordinary logical portion of the clause and Bi is the attached Bayes net,
in which each node is labeled by a term. Let θ be the answer substitution, that is,
the composition of the most general unifiers used in the proof. Note that during
resolution a clause may be used more than once but its variables always are
renamed, or standardized apart from variables used earlier. We take each such
renamed clause used in the proof to be a distinct member of {Ci/Bi|1 ≤ i ≤ n}.
We define the application of a substitution θ to a Bayes net as follows. For each
node in the Bayes net, we apply θ to the label of that node to get a new label.
If some possible values for that node (according to its CPT) are not instances
of that new label, then we marginalize away those values from the CPT.

4.3 Model-Theoretic Semantics

A CLP(BN ) program denotes a set of probability distributions over models.
We begin by defining the probability distribution over ground Skolem terms
that is specified by the probabilistic portion of a CLP(BN ) program. We then
specify the probability distribution over models, consistent with this probability
distribution over ground Skolem terms, that the full CLP(BN ) program denotes.

A CLP(BN ) program P defines a unique joint probability distribution over
ground Skolem terms as follows. Consider each ground Skolem term to be a
random variable whose domain is a finite set of non-Skolem constants.1 We
now specify a Bayes net BN whose variables are these ground Skolem terms.
Each ground Skolem term s is an instance of exactly one Skolem term t in the
program P . To see this recall that, from the definition of Skolemization, any
Skolem functor appears in only one term in the program P , and this one term
appears in only one clause of P , though it may appear multiple times in that
clause. Also from the definition of Skolemization, t has the form sk(W1, ..., Wm),
where sk is a Skolem functor and W1, ..., Wm are distinct variables. Because s is
a ground instance of t, s = tσ for some substitution σ that grounds t. Because
t = sk(W1, ..., Wn) appears in only one clause, t has exactly one associated
(generalized) CPT, T , conditional on the Skolem terms in W1, ..., Wn. Let the

1 This can be extended to a finite subset of the set of ground terms not contain-
ing Skolem symbols (functors or constants). We restrict ourselves to constants here
merely to simplify the presentation.
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parents of s in BN be the Skolem terms in W1σ, ..., Wmσ, and let the CPT
be Tσ. Note that for any node in BN its parents are sub-terms of that node.
It follows that the graph structure is acyclic and hence that BN is a properly
defined Bayes net, though possibly infinite. Therefore BN uniquely defines a
joint distribution over ground Skolem terms; we take this to be the distribution
over ground Skolem terms defined by the program P .

The meaning of an ordinary logic program typically is taken to be its least
Herbrand model. Recall that the individuals in a Herbrand model are them-
selves ground terms, and every ground term denotes itself. Because we wish to
consider cases where ground Skolem terms denote (non-Skolem) constants, we
instead consider Herbrand quotient models [13]. In a Herbrand quotient model,
the individuals are equivalence classes of ground terms, and any ground term
denotes the equivalence class to which it belongs. Then two ground terms are
equal according to the model if and only if they are in the same equivalence class.
We take the set of minimal Herbrand quotient models for P to be those derived
as follows.2 Take the least Herbrand model of the logical portion of P , and for
each non-Skolem constant, merge zero or more ground Skolem terms into an
equivalence class with that constant. This equivalence class is a new individual,
replacing the merged ground terms, and it participates in exactly the relations
that at least one of its members participated in, in the same manner. It follows
that each resulting model also is a model of P . The set of models that can be
constructed in this way is the set S of minimal Herbrand quotient models of P .
Let D be any probability distribution over S that is consistent with the distri-
bution over ground Skolem terms defined by P . By consistent, we mean that
for any ground Skolem term t and any constant c, the probability that t = c
according to the distribution defined by P is exactly the sum of the probabilities
according to D of the models in which t = c. At least one such distribution D
exists, since S contains one model for each possible combination of equivalences.
We take such 〈D, S〉 pairs to be the models of P .

4.4 Agreement Between Operational and Model-Theoretic
Semantics

Following ordinary logic programming terminology, the negation of a query is
called the “goal,” and is a clause in which every literal is negated. Given a pro-
gram and a goal, the CLP(BN ) operational semantics will yield a derivation of
the empty clause if and only if every model 〈D, S〉 of the CLP(BN ) program
falsifies the goal and hence satisfies the query for some substitution to the vari-
ables in the query. This follows from the soundness and refutation-completeness
of SLD-resolution. But in contrast to ordinary Prolog, the proof will be accom-
panied by a Bayes net whose nodes are labeled by Skolem terms appearing in
the query or proof. The following theorem states that the answer to any query of
2 For brevity, we simply define these minimal Herbrand quotient models directly. Al-

ternatively, we can define an ordering based on homomorphisms between models and
prove that what we are calling the minimal models are indeed minimal with respect
to this ordering.
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this attached Bayes net will agree with the answer that would be obtained from
the distribution D, or in other words, from the distribution over ground Skolem
terms defined by the program P . Therefore the operational and model-theoretic
semantics of CLP(BN ) agree in a precise manner.

Theorem 1. For any CLP(BN ) program P , any derivation from that program,
any grounding of the attached Bayes net, and any query to this ground Bayes
net,3 the answer to the query is the same as if it were asked of the joint distri-
bution over ground Skolem terms defined by P .

Proof. Assume there exists some program P , some derivation from P and as-
sociated ground Bayes net B, and some query Pr(q|E) such that the answer
from B is not the same as the answer from the full Bayes net BN defined by
P . For every node in B the parents and CPTs are the same as for that same
node in BN . Therefore there must be some path through which evidence flows
to q in BN , such that evidence cannot flow through that path to q in B. But by
Lemma 1, below, this is not possible.

Lemma 1. Let B be any grounding of any Bayes net returned with any deriva-
tion from a CLP(BN ) program P . For every query to B, the paths through which
evidence can flow are the same in B and in the full Bayes net BN defined by P .

Proof. Suppose there exists a path through which evidence can flow in BN but
not in B. Consider the shortest such path; call the query node q and call the
evidence node e. The path must reach q through either a parent of q or a child of
q in BN . Consider both cases. Case 1: the path goes through a parent p of q in
BN . Note that p is a parent of q in B as well. Whether evidence flows through
p in a linear or diverging connection in BN , p cannot itself have evidence—
otherwise, evidence could not flow through p in BN . Then the path from e to p
is a shorter path through which evidence flows in BN but not B, contradicting
our assumption of the shortest path. Case 2: the path from e to q flows through
some child c of q in BN . Evidence must flow through c in either a linear or
converging connection. If a linear connection, then c must not have evidence;
otherwise, evidence could not flow through c to q in a linear connection. Then
the path from e to c is a shorter path through which evidence flows in BN
but not B, again contradicting our assumption of the shortest path. Therefore,
evidence must flow through c in a converging connection in BN . Hence either c
or one of its descendants in BN must have evidence; call this additional evidence
node n. Since n has evidence in the query, it must appear in B. Therefore its
parents appear in B, and their parents, up to q. Because evidence can reach c
from e in B (otherwise, we contradict our shortest path assumption again), and
a descendant of c in B (possibly c itself) has evidence, evidence can flow through
c to q in B.

3 For simplicity of presentation, we assume queries of the form Pr(q|E) where q is one
variable in the Bayes net and the evidence E specifies the values of zero or more
other variables in the Bayes net.
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5 Non-determinism and Aggregates

One important property of relational databases is that they allow users to query
for properties of sets of elements, or aggregates. Aggregates are also particularly
important in the application of Probabilistic Relational Models, as they allow
one to state that the value of a random variable depends on a set of elements
that share some properties [14].

To clarify this concept, imagine that we run a private school, and we want
to find out which courses are most attractive. To do so, we would want one
extra attribute on the Courses table giving how popular the course is, as shown
in Figure 7. Ideally, one would ask students who have attended the course and
average the results. On the other hand, if we cannot obtain a representative
sample, we can try to estimate popularity from the average of student satisfaction
for that course.

Towards this goal, an extension to the Bayesian network is shown in Figure 8.
We need an operator to aggregate on the set of satisfactions for a course, and
then we can estimate the field’s value from the aggregate.

Reg   Student Course   Grade   Satisf

r0    John      c0
r1    Mary      c0
r2    Mary      c2
r3    John      c2
r4    Mary      c3

Course   Prof  Difficulty   Popularity

c0      Bayes
c2      Moivre 
c3      Bayes

Student Skill

John
Mary

Professor Ability

Bayes
Moivre

Fig. 7. School Database Extended to Include a Field on Course Popularity

Reg   Student Course   Grade   Satisf

r0    John      c0
r1    Mary      c0
r2    Mary      c2
r3    John      c2
r4    Mary      c3

Course   Prof  Difficulty  Popularity

c0      Bayes
c2      Moivre 
c3      Bayes

Student Skill

John
Mary

Professor Ability

Bayes
Moivre

Fig. 8. School Database: Popularity is a random variable, and depends on the average
of student satisfaction
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CLP(BN ) can deal with such aggregates in a straightforward way, by taking
advantage of the second order features in Prolog, as shown in the next clause:

rating(C, Rat) :-
setof(S,R^(registration(R,C),

satisfaction(R,S)), Sats),
average(Sats, Average),
rating_table(Table),
{ Rat = rating(C) with prob([a,b,c,d],Table,[Average])

The call to setof obtains the satisfactions of all students registered in the course.
The procedure average/3 generates a the conditional probability of their average
as a new random variable, Average. The course’s rating, Rat, is assumed to be
highly dependent on Average.

5.1 Building Aggregates

Aggregates are deterministic functions. Given n discrete random variables that
range over k possible values, the aggregate value will take one well defined value.
Hence, the probability of that value will be 1, and 0 for the remaining k−1 values.
Writing the CPTs for aggregates should therefore be quite straightforward.

Unfortunately, aggregates create two problems. First, CPTs are most often
represented as tables, where the size of the table grows exponentially with the
number of dimensions. As the number of nodes n in the aggregate grows, table
size grows exponentially. The current implementation of CLP(BN ) uses divorc-
ing [1]. The idea is to introduce hidden nodes, also called mediating variables,
between a node and its parents, so that the total number of parents for every
node can be guaranteed to never exceed a small number. The current system
implements an aggregate node through a binary tree of mediating variables.

Figure 9 shows a fragment of an example network for an artificially generated
School database with 4096 students. The query node is the gray node below. The
gray node above is a evidence node for course rating. The node is an aggregate
of 68 student satisfaction nodes, hence building the full table would require
3 ∗ 368 entries. Figure 9 shows the hierarchy of mediating nodes constructed by
CLP(BN ): note that the value of each node is deterministic on the ancestor
nodes.

Figure 9 clearly shows the second problem we need to address in making
CLP(BN ) effective for real data-bases. The Bayes network shown here was cre-
ated to answer a query on course difficulty, shown as the gray node below.
Given the original query, the algorithm searches for related evidence (shown
as the other gray nodes). The knowledge-based model-construction algorithm
searches parents recursively, eventually finding a number of nodes with evidence.
Next, it needs to consider the Markov Blanket for these nodes, thus leading to
searching other nodes. In this case, eventually almost every random variable in
the database was included in the actual Bayes net (even though most of the
nodes will have little relevancy to the original query).
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Fig. 9. A Bayesian Network Generated for an Ability Query. The Artificial network
includes 4096 students, 128 professors, and 256 courses.

We observed that it is often the case that some nodes in a database are highly
connected and take a central position in the graph. If evidence reaches these
central nodes probabilistic inference will end up involving most of the network.

1. Exact inference is very expensive, and may not be possible at all.
2. Standard approximate inference such as Gibbs sampling may not always

converge as often these networks include deterministic operations, such as
average in current the example.

Processing such large networks effectively [15,16,17,18] and choosing the best
strategy for different networks is one of the major challenges in the development
of CLP(BN ).

6 Recursion and Sequences

Recursion in Logic provides an elegant framework for modeling sequences of
events, such as Markov Models. Next we discuss how the main ideas of CLP(BN )
can be used to represent Hidden Markov Models (HMMs) [19], which are used
for a number of applications ranging from Signal Processing, to Natural Lan-
guage Processing, to Bioinformatics, and Dynamic Bayes Networks (DBNs).
This was inspired by prior work on combining the advantages of multi-relational
approaches with HMMs and DBNs: evaluation and learning of HMMs is part
of PRISM [20,21], Dynamic Probabilistic Relational Models combine PRMs
and DBNs [22], Logical HMMs have been used to model protein structure
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Fig. 10. Plan7 (From the HMMer Manual)

data [23,24]. More recently, non-directed models such as LogCRFs have also
been proposed toward this goal [25].

Next, we discuss how to model HMMs and DBNs in CLP(BN ). We present
our experience in modeling profile-HMMs (pHMMs), an HMM structure widely
used in Bioinformatics for homology detection between a sequence and a family
of sequences. We chose pHMMs because they are extremely important in prac-
tice, and because they are not a trivial application. We focus on HMMer, an
open-source tool that implements the Plan7 model, and which is one of the most
widely used tools [26]. HMMer was used to build the well-known Pfam protein
database [27].

HMMer is based on the Plan7 model, shown in Figure 10. The model describes
a number of related sequences that share the same profile: a number of columns,
each one corresponding to a well-preserved amino-acid. The example shows a
relatively small profile, we can have profiles with hundreds of columns. A match
state corresponds to an amino-acid in the sequence being a good match to the
amino-acids found at the same position in the profile. Insert and delete states
correspond to gaps: inserts are new material inserted in the sequence, and deletes
removed material. There also three other character emitting-states: N, E, and J.
The N states corresponds to material preceding the match, the E states to mate-
rial after the match, and the J states allow several matches on the same sequence.

Fig. 11. M-State in Plan7
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We model a pHMM by writing rules for each type of state. First, each state
has two indexes: I refers to the current position in the sequence, and J to the
column we are at. Second, whereas in a standard Bayesian Network we write how
a variable depends on its parents, in an HMM we think in terms of transitions
between states. As an example, consider the case of a typical M state, shown in
Figure 11.

If we are at M state we can next move to an I state, (meaning a match is
followed by a gap), to a D state, meaning the sequence will skip the next match
state, or to the next M state. The model also makes it possible to jump directly
to the end of the match. The CLP(BN ) clause is as follows:

m_state(I,J,M) :-
I1 is I+1,
J1 is J+1,
i_state(I1,J,NI),
m_state(I1,J1,M1),
d_state(I1,J1,ND),
e_state(I1,NE),
m_i_prob(J,MIP),
m_m_prob(J,MMP),
m_d_prob(J,MDP),
m_e_prob(J,MEP),
{ M = m(I,J) with p([0,1],trans([MIP,MMP,MDP,MEP]),

[ NI, M1, ND, NE])) },
emitting_state(m, I, J, M).

The M variable refers to the random variable for the current state. The rule
is not very complex:

1. We can move from M(I, J) to I(I + 1, J), M(I + I, J + 1), D(I + 1, J + 1),
or E(I + 1);

2. The transition probabilities at column I are PM→I = MIP , PM→M =
MMP PM→D = MDP , PM→E = MEP , such that

MIP + MMP + MDP + MEP = 1

3. M is a binary random variable with the given transition probabilities;
4. trans indicates we are setting up a constraint with transition probabilities;

such constraints need specialized solvers, such as Viterbi or forward propa-
gation.

5. emitting state/3: if the state emits a symbol, access evidence for sequence
element I.

Implementation. One can observe that HMMs are highly-recursive programs,
and executing in the standard Prolog way would result in calling the same goal
repeatedly over and over again. This problem can be addressed by tabling calls
so that only the first one is actually executed, and repeated calls just need
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to lookup a data-base [28]. Tabled execution of these programs has the same
complexity as standard dynamic programming algorithms. To the best of our
knowledge, PRISM was the first language to use tabling for this task [20]. The
CLP(BN ) implementation originally relied on YAP’s tabling mechanism [29].
Unfortunately, the YAP implementation of tabling is optimized for efficient eval-
uation of non-deterministic goals; we have achieved better performance through
a simple program transformation.

Given this tabling mechanism, implementing algorithms such as Viterbi is just
a simple walk over the constraint store.

Experiments. We tried this model with a number of different examples. The
most interesting example was the Globin example from the standard HMMer
distribution. The example matches a Plan7 model of the Globin family of pro-
teins against an actual globin from Artemia. The Globin model has 159 columns,
and the protein has 1452 amino-acids. The run generates 692 k states (random
variables) and is about two orders of magnitude slower than the highly opti-
mized C-code in HMMer. HMMer uses a much more compact and specialized
representation than CLP(BN ). Also, CLP(BN ) actually creates the complete
graph; in contrast, HMMer only needs to work with a column at a time. On the
other hand, CLP(BN ) has some important advantages: it provides a very clear
model of the HMM, and it relatively straightforward to experiment and learn
different structures.

7 Learning with CLP(BN)

We have performed some experiments on learning with CLP(BN ). In both cases
the goal is learn a model of a database as a CLP(BN ) program.

The learning builds upon work performed for learning in Bayesian networks
and in Inductive Logic Programming. We leverage on the Aleph ILP system. Es-
sentially, we use Aleph to generate clauses which are then rewritten as CLP(BN )
clauses. The rewriting process is straightforward for deterministic goals. If non-
deterministic goal are allowed, we aggregate over the non-deterministic goals.
We assume full data in these experiments, hence the parameters can be learned
by maximum likelihood estimation. Next, we score the network with this new
clause. Note that the score is used to control search in Aleph.

7.1 The School Database

We have so far used the school database as a way to explain some basic concepts
in CLP(BN ), relating them to PRMs. The school database also provides a good
example of how to learn CLP(BN ) programs.

First, we use an interpreter to generate a sample from the CLP(BN ) program.
The smallest database has 16 professors, 32 courses, 256 students and 882 reg-
istrations; the numbers roughly double in each successively larger database. We
have no missing data. Can we, given this sample, relearn the original CLP(BN )
program?
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Professor

Student

Course
Registration

Teaching-Ability

Popularity

Rating

Difficulty
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Ranking

Satisfaction

Grade

Instructor
Course

Student

Fig. 12. Pictorial representation of the CLP(BN ) clauses learned from the largest
schools database, before removal of cycles
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Fig. 13. Graph of results of CLP(BN )-learning on the three sizes of schools databases.
Links are arcs with direction ignored. A Markov relation (MR) holds between two
nodes if one is in the Markov blanket of the other.

From the ILP point of view, this is an instance of multi-predicate learning.
To simplify the problem we assume each predicate would be defined by a sin-
gle clause. We use the Bayesian Information Criterion (BIC) score to compare
alternative clauses for the same predicate. Because aleph learns clauses inde-
pendently, cycles may appear in the resulting CLP(BN ) program. We therefore
augment aleph with a post-processing algorithm that simplifies clauses until no
cycles remain; the algorithm is greedy, choosing at each step the simplification
that will least affect the BIC score of the entire program.

The following is one of the learned CLP(BN ) clauses; to conserve space, we
do not show the full conditional probability table.
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registration_grade(A,B) :-
registration(A,C,D), course(C,E),
course_difficulty(C,F), student_intelligence(D,G),
{F = registration_grade(A,F,G) with

p([‘A’,‘B’,‘C’,‘D’],...,[F,G] }.

Figure 12 illustrates, as a PRM-style graph, the full set of clauses learned for
the largest of the databases before simplification; this would be the best network
according to BIC, if not for the cycles. Figure 13 plots various natural measures
of the match between the learned program after cycles have been removed and
the original program, as the size of the database increases. By the time we get
to the largest of the databases, the only measures of match that do not have a
perfect score are those that deal with the directions of arcs.

7.2 EachMovie

Next, we experiment our learning algorithm on the EachMovie data-set. This
data-set includes three tables: there is data on 1628 movies, including movie
type, store-info, and a link to the IMDB database. There is data on 72000 people
who voted on the movies. Input was voluntary, and may include age, gender and
ZIP code. From ZIP code it is possible to estimate geographical location and to
get a good approximation of average income. Lastly, there are 2.8 million votes.
Votes can be organized by class and range from 0 to 5. Our task is to predict how
every non-key column in the database depends on the other non-key fields. That
is we try to predict individual voting patterns, movie popularity, and people
information. Given that there is a large amount of data, we use log-likelihood to
score the network.

The data-set introduces a number of challenges. Firstly, there is missing data,
especially in the people table. Following Domingos, we cannot assume that the
individuals who refused to give their ZIP address or their age follow the same
distribution as the ones who do [30]. Instead, we introduce an unknown evidence
value, which says the individual refused to provide the information.

Aggregates are fundamental in these models because we often want to predict
characteristics of groups of entities. In the School work we build aggregates
dynamically during clause-construction by aggregating over non-deterministic
goals. but doing so is just too expensive for this larger database. In this work,
we use pre-computed aggregates:

– For each person, we compute how many votes and average score.
– For each movie, we compute how many people voted on this movie and

average score.

A first result on the full data-set is shown in Figure 14. As for the school data-
base, predicates are defined by a single clause. Learning proceeded greedily in this
experiment: we first learn the predicate that best improves global log-likelihood.
Next, we use this predicate plus the database to learn the other predicates. The
process repeats until every predicate has been learned.



CLP(BN ): Constraint Logic Programming for Probabilistic Knowledge 181

Fig. 14. EachMovie

Figure 14 was generated using the dot program. To the left it shows con-
nections between movies of the different types (e.g., being an animation movie
affects whether you are a family movie). The center/left of the network is about
people. The system inferred that the average person score affects the number
of movies seen per individual, and this in turn affects class. Last, the network
includes voting patterns for movies. As an example, votes on family movies seem
to depend on whether it is an action movie also, on whether it is also a drama,
and on the person’s average vote.

8 Relationship to PRMs

Clearly from the preceding discussion the CLP(BN ) representation owes an in-
tellectual debt to PRMs. As the reader might suspect at this point, any PRM can
be represented as a CLP(BN ) program. In this section we present an algorithm
to convert any PRM into a CLP(BN ) program. But before that, we address the
natural question, “given that we already have PRMs, of what possible utility is
the CLP(BN ) representation?”
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First, there has been much work on incorporating probabilities into first-order
logic (see Section 9). Hence while there is great interest in the relationship be-
tween PRMs and these various probabilistic logics [31,32,33,34], this relationship
is difficult to characterize. Approaches such as CLP(BN ) and BLPs are closely
related to PRMs, and can help us to better understand the relationship between
PRMs and various probabilistic logics. Second, because CLP(BN )s are an exten-
sion of logic programming, they permit recursion and the use of function symbols,
e.g., to construct data structures such as lists or trees. This expressivity may be
useful for a variety of probabilistic applications and is not available in PRMs. Of
course we must note that the uses of recursion and recursive data structures are
not unlimited. CLP(BN )s disallow resolution steps that introduce a cycle into
a Bayes net constraint. Third, and most importantly from the authors’ view-
point, the CLP(BN ) representation is amenable to learning using techniques
from inductive logic programming (ILP). Hence CLP(BN )s provide a way of
studying the incorporation of probabilistic methods into ILP, and they may well
give insight into novel learning algorithms for PRMs. The methods of learning
in PRMs [3] are based upon Bayes net structure learning algorithms and hence
are very different from ILP algorithms. The CLP(BN ) representation provides
a bridge through which useful ideas from ILP might be transferred to PRMs.

The remainder of this section presents an algorithm to convert any PRM into
a CLP(BN ) program. Because of space limits, we necessarily assume the reader
already is familiar with the terminology of PRMs.

We begin by representing the skeleton of the PRM, i.e., the database itself
with (possibly) missing values. For each relational table R of n fields, one field
of which is the key, we define n− 1 binary predicates r2, ..., rn. Without loss of
generality, we assume the first field is the key. For each tuple or record 〈t1, ..., tn〉
our CLP(BN ) program will contain the fact ri(t1, ti) for all 2 ≤ i ≤ n. If ti is
a missing value in the database, then the corresponding fact in the CLP(BN )
program is ri(t1, skri(t1)), where skri is a Skolem function symbol. It remains
to represent the Bayes net structure over this skeleton and the CPTs for this
structure.

For each field in the database, we construct a clause that represents the parents
and the CPT for that field within the PRM. The head (consequent) of the clause
has the form ri(Key,Field), where the field is the ith field of relational table R,
and Key and Field are variables. The body of the clause is constructed in three
stages, discussed in the following three paragraphs: the relational stage, the
aggregation stage, and the CPT stage.

The relational stage involves generating a translation into logic of each slot-
chain leading to a parent of the given field within the PRM. Recall that each
step in a slot chain takes us from the key field of a relational table R to another
field, i, in that table, or vice-versa. Each such step is translated simply to the
literal ri(X, Y ), where X is a variable that represents the key of R and Y is a
variable that represents field i of R, regardless of directionality. If the next step
in the slot chain uses field i of table R, then we re-use the variable Y ; if the next
step instead uses the key of table R then we instead re-use variable X . Suppose
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field i is the foreign key of another table S, and the slot chain next takes us
to field j of S. Then the slot chain is translated as ri(X, Y ), sj(Y, Z). We can
use the same translation to move from field j of S to the key of R, although we
would re-order the literals for efficiency. For example, suppose we are given a
student key StudentKey and want to follow the slot chain through registration
and course to find the teaching abilities of the student’s professor(s). Assuming
that the course key is the second field in the registration table and the student
key is the third field, while the professor key is the second field of the course
table, and ability is the second field of the professor table, the translation is as
below. Note that we use the first literal to take us from StudentKey to RegKey,
while we use the second literal to take us from RegKey to CourseKey.

registration3(RegKey,StudentKey),
registration2(RegKey,CourseKey),
course2(CourseKey,ProfKey),
professor2(ProfKey,Ability)

In the preceding example, the variable Ability may take several different bind-
ings. If this variable is a parent of a field, then the PRM will specify an aggre-
gation function over this variable, such as mean. Any such aggregation function
can be encoded in a CLP(BN ) program by a predicate definition, as in ordinary
logic programming, i.e. in Prolog. We can collect all bindings for Ability into a
list using the Prolog built-in function findall or bagof, and then aggregate this
list using the appropriate aggregation function such as mean. For the preceding
example, we would use the following pair of literals to bind the variable X to
the mean of the abilities of the student’s professors.

findall(Ability, ( registration2(RegKey,CourseKey),
course2(CourseKey,ProfKey),
professor2(ProfKey,Ability), L ),

mean(L, X)

At this point, we have constructed a clause body that will compute binding
for all the variables that correspond to parents of the field in question. It remains
only to add a literal that encodes the CPT for this field given these parents.

9 Other Related Work

The key idea in CLP(BN )s is that they provide joint probability distributions
over the variables in the answer to a query, i.e., in a single proof. Hence it is
not necessary to reconcile various probabilities obtained from different clauses
or through different proofs. We combine information using aggregation (see
Section 5), and the predicates for aggregation are part of the CLP(BN ) program.
This contrasts with the approach taken in both [35] and [7] where a combining
rule is added on top of the logical representation.

CLP(BN ) implements Knowledge-based model construction (KBMC) in that
it uses logic “as a basis for generating Bayesian networks tailored to particu-
lar problem instances” [11]. However, in contrast to many KBMC approaches
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[11,36], a probability in a CLP(BN ) program does not give the probability that
some first-order rule is true. Instead it is a (soft) constraint on possible instanti-
ations of a variable in a rule. This also distinguishes it from the work in [4,37]. In
these approaches instead of ground atomic formulas (atoms) being true or false
as in normal logic programming semantics, they are true with a certain proba-
bility. In PRISM programs [4] a basic distribution gives the probabilities for the
msw ground atoms mentioned in the PRISM program; this is then extended to
define probabilities for all atoms which can be derived using rules in the program.
In contrast, in a Bayesian logic program (BLP) [7] the distribution associated
with a ground atom is unrestricted; it need not be always be over the two values
{true, false}. In this respect BLPs are closer to CLP(BN ) than, say, PRISM
programs. The central difference is that BLPs represent random variables with
ground atoms—in CLP(BN ) they are represented by (Bayesian) variables.

In Angelopoulos’s probabilistic finite domain Pfd model [38] hard constraints
between variables and probability distributions over the same variables are kept
deliberately separate, thereby allowing a normal CLP constraint solver to find
variable instantiations permitted by the hard constraints. However, in addition
to normal CLP, each such instantiation is returned with its probability. The
main difference to our work is that we do not put hard constraints on Bayesian
variables. Also CLP(BN ) exploits conditional independence to permit efficient
inference, whereas currently computation within Pfd is exponential in the num-
ber of variables involved.

10 Conclusions and Future Work

We have presented CLP(BN ), a novel approach to integrating probabilistic infor-
mation in logic programs. Our approach is based on the key idea that constraints
can be used to represent information on undefined variables. Logical inference is
used to define a Bayesian network that can be processed by a Bayesian solver.
CLP(BN )s are closely related to PRMs, but they permit recursion, the use of
functor symbols, and the representation is amenable to learning using techniques
from inductive logic programming. Our first implementation of CLP(BN ) sys-
tem used Yap as the underlying Prolog system and the Kevin Murphy’s Bayesian
Network Toolbox as the Bayesian solver [39]. This allowed flexibility in choosing
different engines. The newer versions include specialized solvers written in Pro-
log. The solvers implement variable elimination, Gibbs sampling, and Viterbi.
We have successfully experimented the system with both database style and
recursive programs.

The main focus of our future work will be in learning with CLP(BN ) pro-
grams. Namely, we are now working with CLP(BN ) on inducing regulatory net-
works [40,41]. We are also looking forward at integrating CLP(BN ) with some
of recent work in generating statistical classifiers [42,43,44,45,46]. Last, it would
be interesting to study whether the ideas of CLP(BN ) also apply to undirected
models [47]. We are also considering directions to improve CLP((BN ). Regard-
ing implementation, most effort will focus on tabling [28,29] that avoids repeated
invocation of the same literal and can be quite useful in improving performance
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of logic programs, namely for database applications. As we have seen, CLP(BN )
will directly benefit from this work. At present a CLP(BN ) program generates a
query-specific BN, and then standard BN algorithms (e.g. junction tree propa-
gation) are used to compute the desired probabilities. Given the well-known con-
nections between constraint processing and probabilistic computations as given
by Dechter [12] it would be interesting to bring the probabilistic computations
inside CLP(BN ).

In common with many logical-probabilistic models [7,36,4,37], CLP(BN ) ex-
ploits its logical framework to quantify over random variables, thereby facili-
tating the definition of large and complex BNs. An alternative approach, not
explicitly based on first-order logic, is the BUGS language [48]. BUGS programs
permit Bayesian statistical inference by defining large BNs with one (instanti-
ated) node for each data point. It would be interesting to see if CLP(BN ) could
also be used for such statistical inference, particularly since CLP(BN ), unlike
BUGS, allows recursion.
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