
Markov Logic

Pedro Domingos1, Stanley Kok1, Daniel Lowd1, Hoifung Poon1,
Matthew Richardson2, and Parag Singla1

1 Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195-2350, USA
{pedrod,koks,lowd,hoifung,parag}@cs.washington.edu

2 Microsoft Research
Redmond, WA 98052
mattri@microsoft.com

Abstract. Most real-world machine learning problems have both sta-
tistical and relational aspects. Thus learners need representations that
combine probability and relational logic. Markov logic accomplishes this
by attaching weights to first-order formulas and viewing them as tem-
plates for features of Markov networks. Inference algorithms for Markov
logic draw on ideas from satisfiability, Markov chain Monte Carlo and
knowledge-based model construction. Learning algorithms are based on
the conjugate gradient algorithm, pseudo-likelihood and inductive logic
programming. Markov logic has been successfully applied to problems in
entity resolution, link prediction, information extraction and others, and
is the basis of the open-source Alchemy system.

1 Introduction

Two key challenges in most machine learning applications are uncertainty and
complexity. The standard framework for handling uncertainty is probability; for
complexity, it is first-order logic. Thus we would like to be able to learn and
perform inference in representation languages that combine the two. This is
the focus of the burgeoning field of statistical relational learning [11]. Many ap-
proaches have been proposed in recent years, including stochastic logic programs
[33], probabilistic relational models [9], Bayesian logic programs [17], relational
dependency networks [34], and others. These approaches typically combine prob-
abilistic graphical models with a subset of first-order logic (e.g., Horn clauses),
and can be quite complex. Recently, we introduced Markov logic, a language that
is conceptually simple, yet provides the full expressiveness of graphical models
and first-order logic in finite domains, and remains well-defined in many infi-
nite domains [44,53]. Markov logic extends first-order logic by attaching weights
to formulas. Semantically, weighted formulas are viewed as templates for con-
structing Markov networks. In the infinite-weight limit, Markov logic reduces
to standard first-order logic. Markov logic avoids the assumption of i.i.d. (in-
dependent and identically distributed) data made by most statistical learners

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 92–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Markov Logic 93

by leveraging the power of first-order logic to compactly represent dependencies
among objects and relations. In this chapter, we describe the Markov logic rep-
resentation and give an overview of current inference and learning algorithms for
it. We begin with some background on Markov networks and first-order logic.

2 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X [37]. It is composed
of an undirected graph G and a set of potential functions φk. The graph has a
node for each variable, and the model has a potential function for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by

P (X =x) =
1
Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by Z =∑

x∈X
∏

k φk(x{k}). Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an exponentiated weighted
sum of features of the state, leading to

P (X =x) =
1
Z

exp

⎛

⎝
∑

j

wjfj(x)

⎞

⎠ (2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, fj(x) ∈ {0, 1}. In the most direct translation from the potential-
function form (Equation 1), there is one feature corresponding to each possible
state x{k} of each clique, with its weight being log φk(x{k}). This representation
is exponential in the size of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the state of the clique), al-
lowing for a more compact representation than the potential-function form, par-
ticularly when large cliques are present. Markov logic will take advantage of this.

Inference in Markov networks is #P-complete [47]. The most widely used
method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [12], and in particular Gibbs sampling, which proceeds by sam-
pling each variable in turn given its Markov blanket. (The Markov blanket of a
node is the minimal set of nodes that renders it independent of the remaining
network; in a Markov network, this is simply the node’s neighbors in the graph.)
Marginal probabilities are computed by counting over these samples; conditional
probabilities are computed by running the Gibbs sampler with the conditioning
variables clamped to their given values. Another popular method for inference
in Markov networks is belief propagation [59].

Maximum-likelihood or MAP estimates of Markov network weights cannot be
computed in closed form but, because the log-likelihood is a concave function

94 P. Domingos et al.

of the weights, they can be found efficiently (modulo inference) using standard
gradient-based or quasi-Newton optimization methods [35]. Another alternative
is iterative scaling [7]. Features can also be learned from data, for example by
greedily constructing conjunctions of atomic features [7].

3 First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-order
logic [10]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the do-
main of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g., MotherOf) represent
mappings from tuples of objects to objects. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or attributes of objects (e.g.,
Smokes). An interpretation specifies which objects, functions and relations in the
domain are represented by which symbols. Variables and constants may be typed,
in which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For example, the
variable x might range over people (e.g., Anna, Bob, etc.), and the constant C
might represent a city (e.g, Seattle, Tokyo, etc.).

A term is any expression representing an object in the domain. It can be a
constant, a variable, or a function applied to a tuple of terms. For example, Anna,
x, and GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F1 and F2 are formulas, the following are also formulas:
¬F1 (negation), which is true iff F1 is false; F1 ∧ F2 (conjunction), which is
true iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is true iff F1 or
F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true;
F1 ⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value;
∀x F1 (universal quantification), which is true iff F1 is true for every object x
in the domain; and ∃x F1 (existential quantification), which is true iff F1 is true
for at least one object x in the domain. Parentheses may be used to enforce
precedence. A positive literal is an atomic formula; a negative literal is a negated
atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB
can be viewed as a single large formula. A ground term is a term containing no
variables. A ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. A possible world (along with an interpretation)
assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true. The
basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F , i.e., if F is true in all worlds where KB is true
(denoted by KB |= F). This is often done by refutation: KB entails F iff KB ∪
¬F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas trivially
follow from it, which makes painstaking knowledge engineering a necessity.) For

Markov Logic 95

Table 1. Example of a first-order knowledge base and MLN. Fr() is short for Friends(),
Sm() for Smokes(), and Ca() for Cancer().

First-Order Logic Clausal Form Weight

“Friends of friends are friends.”
∀x∀y∀z Fr(x, y) ∧ Fr(y, z)⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

“Friendless people smoke.”
∀x (¬(∃y Fr(x, y))⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3

“Smoking causes cancer.”
∀x Sm(x)⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

“If two people are friends, then either
both smoke or neither does.” ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1
∀x∀y Fr(x, y)⇒ (Sm(x)⇔ Sm(y)) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

automated inference, it is often convenient to convert formulas to a more regular
form, typically clausal form (also known as conjunctive normal form (CNF)). A
KB in clausal form is a conjunction of clauses, a clause being a disjunction of
literals. Every KB in first-order logic can be converted to clausal form using a
mechanical sequence of steps.1 Clausal form is used in resolution, a sound and
refutation-complete inference procedure for first-order logic [46].

Inference in first-order logic is only semidecidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The most widely-used restriction is to Horn clauses, which
are clauses containing at most one positive literal. The Prolog programming
language is based on Horn clause logic [25]. Prolog programs can be learned
from databases by searching for Horn clauses that (approximately) hold in the
data; this is studied in the field of inductive logic programming (ILP) [22].

Table 1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas
that are always true, and such formulas capture only a fraction of the relevant
knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical AI problems. Many ad hoc extensions to address this
have been proposed. In the more limited case of propositional logic, the problem
is well solved by probabilistic graphical models. The next section describes a
way to generalize these models to the first-order case.

4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic
idea in Markov logic is to soften these constraints: when a world violates one
1 This conversion includes the removal of existential quantifiers by Skolemization,

which is not sound in general. However, in finite domains an existentially quantified
formula can simply be replaced by a disjunction of its groundings.

96 P. Domingos et al.

formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
(e.g., see Table 1) that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

Definition 1. [44] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

(Equations 1 and 2) as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding ground
atoms appear together in at least one grounding of one formula in L. For ex-
ample, an MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x) (smoking
causes cancer) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Figure 1. Its features include
Smokes(Anna) ⇒ Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in fact represent a
standard social network model [55].

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network ML,C is given by

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Fig. 1. Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x)⇒ Cancer(x) and ∀x∀y Friends(x, y)⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B)

Markov Logic 97

P (X =x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
(3)

where F is the number of formulas in the MLN and ni(x) is the number of
true groundings of Fi in x. As formula weights increase, an MLN increasingly
resembles a purely logical KB, becoming equivalent to one in the limit of all
infinite weights. When the weights are positive and finite, and all formulas are
simultaneously satisfiable, the satisfying solutions are the modes of the distri-
bution represented by the ground Markov network. Most importantly, Markov
logic allows contradictions between formulas, which it resolves simply by weigh-
ing the evidence on both sides. This makes it well suited for merging multiple
KBs. Markov logic also provides a natural and powerful approach to the prob-
lem of merging knowledge and data in different representations that do not align
perfectly, as will be illustrated in the application section.

It is interesting to see a simple example of how Markov logic generalizes first-
order logic. Consider an MLN containing the single formula ∀x R(x) ⇒ S(x)
with weight w, and C = {A}. This leads to four possible worlds: {¬R(A),¬S(A)},
{¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From Equation 3 we obtain that
P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each of the other three
worlds is ew/(3ew + 1). (The denominator is the partition function Z; see Sec-
tion 2.) Thus, if w > 0, the effect of the MLN is to make the world that is
inconsistent with ∀x R(x) ⇒ S(x) less likely than the other three. From the
probabilities above we obtain that P (S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P (S(A)|R(A)) → 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in AI can be
stated quite concisely as MLNs, and combined and extended simply by adding
the corresponding formulas. Most significantly, Markov logic facilitates the con-
struction of non-i.i.d. models (i.e., models where objects are not independent
and identically distributed).

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the con-
stant and function symbols (domain closure), and the value of each function for
each tuple of arguments is always a known constant (known functions). These
assumptions ensure that the number of possible worlds is finite and that the
Markov logic network will give a well-defined probability distribution. These
assumptions are quite reasonable in most practical applications, and greatly
simplify the use of MLNs. We will make these assumptions for the remainder of
the chapter. See Richardson and Domingos [44] for further details on the Markov
logic representation.

Markov logic can also be applied to a number of interesting infinite domains
where some of these assumptions do not hold. See Singla and Domingos [53] for
details on Markov logic in infinite domains.

98 P. Domingos et al.

5 Inference

5.1 MAP/MPE Inference

In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs
as well. A basic inference task is finding the most probable state of the world
given some evidence. (This is known as MAP inference in the Markov network
literature, and MPE inference in the Bayesian network literature.) Because of the
form of Equation 3, in Markov logic this reduces to finding the truth assignment
that maximizes the sum of weights of satisfied clauses. This can be done using
any weighted satisfiability solver, and (remarkably) need not be more expensive
than standard logical inference by model checking. (In fact, it can be faster, if
some hard constraints are softened.) We have successfully used MaxWalkSAT,
a weighted variant of the WalkSAT local-search satisfiability solver, which can
solve hard problems with hundreds of thousands of variables in minutes [16].
MaxWalkSAT performs this stochastic search by picking an unsatisfied clause
at random and flipping the truth value of one of the atoms in it. With a cer-
tain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local
optima while searching. Pseudocode for MaxWalkSAT is shown in Algorithm 1.

Algorithm 1. MaxWalkSAT(weighted clauses, max flips, max tries, target, p)
vars ← variables in weighted clauses
for i ← 1 to max tries do

soln ← a random truth assignment to vars
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then
return “Success, solution is”, soln

end if
c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do
compute DeltaCost(v)

end for
vf ← v with lowest DeltaCost(v)

end if
soln ← soln with vf flipped
cost ← cost + DeltaCost(vf)

end for
end for
return “Failure, best assignment is”, best soln found

Markov Logic 99

DeltaCost(v) computes the change in the sum of weights of unsatisfied clauses
that results from flipping variable v in the current solution. Uniform(0,1) returns
a uniform deviate from the interval [0, 1].

One problem with this approach is that it requires propositionalizing
the domain (i.e., grounding all atoms and clauses in all possible ways), which
consumes memory exponential in the arity of the clauses. We have overcome
this by developing LazySAT, a lazy version of MaxWalkSAT which grounds
atoms and clauses only as needed [52]. This takes advantage of the sparseness
of relational domains, where most atoms are false and most clauses are triv-
ially satisfied. For example, in the domain of scientific research, most ground-
ings of the atom Author(person, paper) are false, and most groundings of the
clause Author(person1, paper)∧Author(person2, paper)⇒Coauthor(person1,
person2) are satisfied. In LazySAT, the memory cost does not scale with the
number of possible clause groundings, but only with the number of groundings
that are potentially unsatisfied at some point in the search.

Algorithm 2. LazySAT(weighted KB, DB, max flips, max tries, target, p)

for i ← 1 to max tries do
active atoms ← atoms in clauses not satisfied by DB

active clauses ← clauses activated by active atoms

soln ← a random truth assignment to active atoms
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then
return “Success, solution is”, soln

end if
c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do
compute DeltaCost(v), using weighted KB if v
∈ active atoms

end for
vf ← v with lowest DeltaCost(v)

end if
if vf
∈ active atoms then

add vf to active atoms

add clauses activated by vf to active clauses

end if
soln ← soln with vf flipped
cost ← cost + DeltaCost(vf)

end for
end for
return “Failure, best assignment is”, best soln found

100 P. Domingos et al.

Algorithm 2 gives pseudo-code for LazySAT, highlighting the places where
it differs from MaxWalkSAT. LazySAT maintains a set of active atoms and a
set of active clauses. A clause is active if it can be made unsatisfied by flipping
zero or more of its active atoms. (Thus, by definition, an unsatisfied clause is
always active.) An atom is active if it is in the initial set of active atoms, or if
it was flipped at some point in the search. The initial active atoms are all those
appearing in clauses that are unsatisfied if only the atoms in the database are
true, and all others are false. The unsatisfied clauses are obtained by simply going
through each possible grounding of all the first-order clauses and materializing
the groundings that are unsatisfied; search is pruned as soon as the partial
grounding of a clause is satisfied. Given the initial active atoms, the definition
of active clause requires that some clauses become active, and these are found
using a similar process (with the difference that, instead of checking whether a
ground clause is unsatisfied, we check whether it should be active). Each run of
LazySAT is initialized by assigning random truth values to the active atoms. This
differs from MaxWalkSAT, which assigns random values to all atoms. However,
the LazySAT initialization is a valid MaxWalkSAT initialization, and we have
verified experimentally that the two give very similar results. Given the same
initialization, the two algorithms will produce exactly the same results.

At each step in the search, the variable that is flipped is activated, as are any
clauses that by definition should become active as a result. When evaluating the
effect on cost of flipping a variable v, if v is active then all of the relevant clauses
are already active, and DeltaCost(v) can be computed as in MaxWalkSAT. If v
is inactive, DeltaCost(v) needs to be computed using the knowledge base. This is
done by retrieving from the KB all first-order clauses containing the atom that
v is a grounding of, and grounding each such clause with the constants in v and
all possible groundings of the remaining variables. As before, we prune search as
soon as a partial grounding is satisfied, and add the appropriate multiple of the
clause weight to DeltaCost(v). (A similar process is used to activate clauses.)
While this process is costlier than using pre-grounded clauses, it is amortized
over many tests of active variables. In typical satisfiability problems, a small core
of “problem” clauses is repeatedly tested, and when this is the case LazySAT
will be quite efficient.

At each step, LazySAT flips the same variable that MaxWalkSAT would, and
hence the result of the search is the same. The memory cost of LazySAT is on
the order of the maximum number of clauses active at the end of a run of flips.
(The memory required to store the active atoms is dominated by the memory
required to store the active clauses, since each active atom appears in at least
one active clause).

Experiments on entity resolution and planning problems show that this can
yield very large memory reductions, and these reductions increase with domain
size [52]. For domains whose full instantiations fit in memory, running time
is comparable; as problems become larger, full instantiation for MaxWalkSAT
becomes impossible.

Markov Logic 101

5.2 Marginal and Conditional Probabilities

Another key inference task is computing the probability that a formula holds,
given an MLN and set of constants, and possibly other formulas as evidence.
By definition, the probability of a formula is the sum of the probabilities of the
worlds where it holds, and computing it by brute force requires time exponential
in the number of possible ground atoms. An approximate but more efficient
alternative is to use Markov chain Monte Carlo (MCMC) inference [12], which
samples a sequence of states according to their probabilities, and counting the
fraction of sampled states where the formula holds. This can be extended to
conditioning on other formulas by rejecting any state that violates one of them.

For the remainder of the chapter, we focus on the typical case where the evi-
dence is a conjunction of ground atoms. In this scenario, further efficiency can be
gained by applying a generalization of knowledge-based model construction [57].
This constructs only the minimal subset of the ground network required to answer
the query, and runsMCMC(or any other probabilistic inferencemethod) on it.The
network is constructed by checking if the atoms that the query formula directly de-
pends on are in the evidence. If they are, the construction is complete. Those that
are not are added to the network, and we in turn check the atoms they depend on.
This process is repeated until all relevant atoms have been retrieved. While in the
worst case it yields no savings, in practice it can vastly reduce the time and memory
required for inference. See Richardson and Domingos [44] for details.

One problem with applying MCMC to MLNs is that it breaks down in the
presence of deterministic or near-deterministic dependencies (as do other prob-
abilistic inference methods, e.g., belief propagation [59]). Deterministic depen-
dencies break up the space of possible worlds into regions that are not reachable
from each other, violating a basic requirement of MCMC. Near-deterministic
dependencies greatly slow down inference, by creating regions of low probability
that are very difficult to traverse. Running multiple chains with random starting
points does not solve this problem, because it does not guarantee that different
regions will be sampled with frequency proportional to their probability, and
there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with sat-
isfiability testing in the MC-SAT algorithm [40]. MC-SAT is a slice sampling
MCMC algorithm. It uses a combination of satisfiability testing and simulated
annealing to sample from the slice. The advantage of using a satisfiability solver
(WalkSAT) is that it efficiently finds isolated modes in the distribution, and as
a result the Markov chain mixes very rapidly. The slice sampling scheme ensures
that detailed balance is (approximately) preserved.

MC-SAT is orders of magnitude faster than standard MCMC methods such
as Gibbs sampling and simulated tempering, and is applicable to any model that
can be expressed in Markov logic, including many standard models in statisti-
cal physics, vision, natural language processing, social network analysis, spatial
statistics, etc.

Slice sampling [5] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed

102 P. Domingos et al.

Algorithm 3. MC-SAT(clauses, weights, num samples)
x(0) ← Satisfy(hard clauses)
for i← 1 to num samples do

M ← ∅
for all ck ∈ clauses satisfied by x(i−1) do

With probability 1− e−wk add ck to M
end for
Sample x(i) ∼ USAT (M)

end for

variables. For example, to sample from P (X = x) = (1/Z)
∏

k φk(x{k}), we
can define P (X = x, U = u) = (1/Z)

∏
k I[0,φk(x{k})](uk), where φk is the kth

potential function, uk is the kth auxiliary variable, I[a,b](uk) = 1 if a ≤ uk ≤ b,
and I[a,b](uk) = 0 otherwise. The marginal distribution of X under this joint is
P (X =x), so to sample from the original distribution it suffices to sample from
P (x, u) and ignore the u values. P (uk|x) is uniform in [0, φk(x{k})], and thus
easy to sample from. The main challenge is to sample x given u, which is uniform
among all X that satisfies φk(x{k}) ≥ uk for all k. MC-SAT uses SampleSAT [56]
to do this. In each sampling step, MC-SAT takes the set of all ground clauses
satisfied by the current state of the world and constructs a subset, M , that
must be satisfied by the next sampled state of the world. (For the moment we
will assume that all clauses have positive weight.) Specifically, a satisfied ground
clause is included in M with probability 1−e−w, where w is the clause’s weight.
We then take as the next state a uniform sample from the set of states SAT (M)
that satisfy M . (Notice that SAT (M) is never empty, because it always contains
at least the current state.) Algorithm 3 gives pseudo-code for MC-SAT. US is the
uniform distribution over set S. At each step, all hard clauses are selected with
probability 1, and thus all sampled states satisfy them. Negative weights are
handled by noting that a clause with weight w < 0 is equivalent to its negation
with weight −w, and a clause’s negation is the conjunction of the negations of
all of its literals. Thus, instead of checking whether the clause is satisfied, we
check whether its negation is satisfied; if it is, with probability 1 − ew we select
all of its negated literals, and with probability ew we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [40], assuming a perfect uniform sampler. In general, uniform
sampling is #P-hard and SampleSAT [56] only yields approximately uniform
samples. However, experiments show that MC-SAT is still able to produce very
accurate probability estimates, and its performance is not very sensitive to the
parameter setting of SampleSAT.

We have applied the ideas of LazySAT to implement a lazy version of MC-
SAT that avoids grounding unnecessary atoms and clauses. A working version
of this algorithm is present in the open-source Alchemy system [20].

It is also possible to carry out lifted first-order probabilistic inference (akin to
resolution) in Markov logic [3]. These methods speed up inference by reasoning
at the first-order level about groups of indistinguishable objects rather than

Markov Logic 103

propositionalizing the entire domain. This is particularly applicable when the
population size is given but little is known about most individual members.

6 Learning

6.1 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a
relational database (Equation 3). This relational database consists of one or
more “possible worlds” that form our training examples. Note that we can learn
to generalize from even a single example because the clause weights are shared
across their many respective groundings. We assume that the set of constants of
each type is known. We also make a closed-world assumption: all ground atoms
not in the database are false. This assumption can be removed by using an
EM algorithm to learn from the resulting incomplete data. The gradient of the
log-likelihood with respect to the weights is

∂

∂wi
log Pw(X =x) = ni(x) −

∑

x′
Pw(X =x′) ni(x′) (4)

where the sum is over all possible databases x′, and Pw(X = x′) is P (X =
x′) computed using the current weight vector w = (w1, . . . , wi, . . .). In other
words, the ith component of the gradient is simply the difference between the
number of true groundings of the ith formula in the data and its expectation
according to the current model. Unfortunately, computing these expectations
requires inference over the model, which can be very expensive. Most fast numeric
optimization methods (e.g., conjugate gradient with line search, L-BFGS) also
require computing the likelihood itself and hence the partition function Z, which
is also intractable. Although inference can be done approximately using MCMC,
we have found this to be too slow. Instead, we maximize the pseudo-likelihood
of the data, a widely-used alternative [2]. If x is a possible world (relational
database) and xl is the lth ground atom’s truth value, the pseudo-log-likelihood
of x given weights w is

log P ∗
w(X =x) =

n∑

l=1

log Pw(Xl =xl|MBx(Xl)) (5)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth
values of the ground atoms it appears in some ground formula with). Computing
the pseudo-likelihood and its gradient does not require inference, and is therefore
much faster. Combined with the L-BFGS optimizer [24], pseudo-likelihood yields
efficient learning of MLN weights even in domains with millions of ground atoms
[44]. However, the pseudo-likelihood parameters may lead to poor results when
long chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior.
We apply this strategy not only to generative learning, but to all of our weight
learning methods, even those embedded within structure learning.

104 P. Domingos et al.

6.2 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will
be queried, and the goal is to correctly predict the latter given the former. If
we partition the ground atoms in the domain into a set of evidence atoms X
and a set of query atoms Y , the conditional likelihood (CLL) of Y given X

is P (y|x) = (1/Zx) exp
(∑

i∈FY
wini(x, y)

)
= (1/Zx) exp

(∑
j∈GY

wjgj(x, y)
)
,

where FY is the set of all MLN clauses with at least one grounding involving a
query atom, ni(x, y) is the number of true groundings of the ith clause involving
query atoms, GY is the set of ground clauses in ML,C involving query atoms,
and gj(x, y) = 1 if the jth ground clause is true in the data and 0 otherwise.
The gradient of the CLL is

∂

∂wi
log Pw(y|x) = ni(x, y) −

∑

y′
Pw(y′|x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (6)

As before, computing the expected counts Ew[ni(x, y)] is intractable. However,
they can be approximated by the counts ni(x, y∗

w) in the MAP state y∗
w(x) (i.e.,

the most probable state of y given x). This will be a good approximation if most
of the probability mass of Pw(y|x) is concentrated around y∗

w(x). Computing
the gradient of the CLL now requires only MAP inference to find y∗

w(x), which
is much faster than the full conditional inference for Ew[ni(x, y)]. This is the
essence of the voted perceptron algorithm, initially proposed by Collins [4] for
discriminatively learning hidden Markov models. Because HMMs have a very
simple linear structure, their MAP states can be found in polynomial time using
the Viterbi algorithm, a form of dynamic programming [43]. The voted percep-
tron initializes all weights to zero, performs T iterations of gradient ascent using
the approximation above, and returns the parameters averaged over all itera-
tions, wi =

∑T
t=1 wi,t/T . The parameter averaging helps to combat overfitting.

T is chosen using a validation subset of the training data. We have extended the
voted perceptron to Markov logic simply by replacing Viterbi with MaxWalkSAT
to find the MAP state [50].

In practice, the voted perceptron algorithm can exhibit extremely slow con-
vergence when applied to MLNs. One cause of this is that the gradient can
easily vary by several orders of magnitude among the different clauses. For
example, consider a transitivity rule such as Friends(x, y) ∧ Friends(y, z) ⇒
Friends(x, z) compared to a simple attribute relationship such as Smokes(x) ⇒
Cancer(x). In a social network domain of 1000 people, the former clause has one
billion groundings while the latter has only 1000. Since each dimension of the
gradient is a difference of clause counts and these can vary by orders of magni-
tude from one clause to another, a learning rate that is small enough to avoid
divergence in some weights is too small for fast convergence in others.

This is an instance of the well-known problem of ill-conditioning in numerical
optimization, and many candidate solutions for it exist [35]. However, the most

Markov Logic 105

common ones are not easily applicable to MLNs because of the nature of the
function being optimized. As in Markov networks, computing the likelihood in
MLNs requires computing the partition function, which is generally intractable.
This makes it difficult to apply methods that require performing line searches,
which involve computing the function as well as its gradient. These include most
conjugate gradient and quasi-Newton methods (e.g., L-BFGS). Two exceptions
to this are scaled conjugate gradient [32] and Newton’s method with a diagonal-
ized Hessian [1]. In the remainder of this subsection, we focus on scaled conjugate
gradient, since we found it to be the best-performing method for discriminative
weight learning.

In many optimization problems, gradient descent can be sped up by per-
forming a line search to find the optimum along the chosen descent direction
instead of taking a small step of constant size at each iteration. However, on
ill-conditioned problems this is still inefficient, because line searches along suc-
cessive directions tend to partly undo the effect of each other: each line search
makes the gradient along its direction zero, but the next line search will gener-
ally make it non-zero again. In long narrow valleys, instead of moving quickly
to the optimum, gradient descent zigzags.

A solution to this is to impose at each step the condition that the gradient
along previous directions remain zero. The directions chosen in this way are
called conjugate, and the method conjugate gradient [49]. Conjugate gradient
methods are some of the most efficient available, on a par with quasi-Newton
ones. While the standard conjugate gradient algorithm uses line searches to
choose step sizes, we can use the Hessian (matrix of second derivatives of the
function) instead. This method is known as scaled conjugate gradient (SCG),
and was originally proposed by Møller [32] for training neural networks.

In a Markov logic network, the Hessian is simply the negative covariance
matrix of the clause counts:

∂

∂wi∂wj
log P (Y =y|X =x) = Ew[ni]Ew[nj] − Ew[ninj]

Both the gradient and the Hessian matrix can be estimated using samples col-
lected with the MC-SAT algorithm, described earlier. While full convergence
could require many samples, we find that as few as five samples are often suffi-
cient for estimating the gradient and Hessian. This is due in part to the efficiency
of MC-SAT as a sampler, and in part to the tied weights: the many groundings
of each clause can act to reduce the variance.

Given a conjugate gradient search direction d and Hessian matrix H, we
compute the step size α as follows:

α =
dTg

dT Hd + λdT d

For a quadratic function and λ = 0, this step size would move to the minimum
function value along d. Since our function is not quadratic, a non-zero λ term
serves to limit the size of the step to a region in which our quadratic approxi-
mation is good. After each step, we adjust λ to increase or decrease the size of

106 P. Domingos et al.

the so-called model trust region based on how well the approximation matched
the function. We cannot evaluate the function directly, but the dot product of
the step we just took and the gradient after taking it is a lower bound on the
improvement in the actual log-likelihood. This works because the log-likelihood
of an MLN is convex.

In models with thousands of weights or more, storing the entire Hessian matrix
becomes impractical. However, when the Hessian appears only inside a quadratic
form, as above, the value of this form can be computed simply as:

dTHd = (Ew [
∑

idini])2 − Ew[(
∑

idini)2]

The product of the Hessian by a vector can also be computed compactly [38].
Conjugate gradient is usually more effective with a preconditioner, a linear

transformation that attempts to reduce the condition number of the problem
(e.g., [48]). Good preconditioners approximate the inverse Hessian. We use the
inverse diagonal Hessian as our preconditioner. Performance with the precondi-
tioner is much better than without.

See Lowd and Domingos [26] for more details and results.

6.3 Structure Learning

The structure of a Markov logic network is the set of formulas or clauses to
which we attach weights. In principle, this structure can be learned or revised
using any inductive logic programming (ILP) technique. However, since an MLN
represents a probability distribution, much better results are obtained by using
an evaluation function based on pseudo-likelihood, rather than typical ILP ones
like accuracy and coverage [18]. Log-likelihood or conditional log-likelihood are
potentially better evaluation functions, but are vastly more expensive to com-
pute. In experiments on two real-world datasets, our MLN structure learning
algorithm found better MLN rules than CLAUDIEN [6], FOIL [42], Aleph [54],
and even a hand-written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses
(single atoms) to the MLN. The weights of these capture (roughly speaking)
the marginal distributions of the atoms, allowing the longer clauses to focus on
modeling atom dependencies. To extend this initial model, we either repeatedly
find the best clause using beam search and add it to the MLN, or add all “good”
clauses of length l before trying clauses of length l + 1. Candidate clauses are
formed by adding each predicate (negated or otherwise) to each current clause,
with all possible combinations of variables, subject to the constraint that at least
one variable in the new predicate must appear in the current clause. Hand-coded
clauses are also modified by removing predicates.

We now discuss the evaluation measure, clause construction operators, search
strategy, and speedup methods in greater detail.

As an evaluation measure, pseudo-likelihood (Equation 5) tends to give undue
weight to the largest-arity predicates, resulting in poor modeling of the rest. We
thus define the weighted pseudo-log-likelihood (WPLL) as

Markov Logic 107

log P •
w(X =x) =

∑

r∈R

cr

gr∑

k=1

log Pw(Xr,k =xr,k|MBx(Xr,k)) (7)

where R is the set of first-order atoms, gr is the number of groundings of first-
order atom r, and xr,k is the truth value (0 or 1) of the kth grounding of r. The
choice of atom weights cr depends on the user’s goals. In our experiments, we
simply set cr = 1/gr, which has the effect of weighting all first-order predicates
equally. If modeling a predicate is not important (e.g., because it will always be
part of the evidence), we set its weight to zero. To combat overfitting, we penalize
the WPLL with a structure prior of e−α

�F
i=1 di , where di is the number of literals

that differ between the current version of the clause and the original one. (If the
clause is new, this is simply its length.) This is similar to the approach used in
learning Bayesian networks [14].

A potentially serious problem that arises when evaluating candidate clauses
using WPLL is that the optimal (maximum WPLL) weights need to be com-
puted for each candidate. Given that this involves numerical optimization, and
may need to be done thousands or millions of times, it could easily make the al-
gorithm too slow to be practical. We avoid this bottleneck by simply initializing
L-BFGS with the current weights (and zero weight for a new clause). Second-
order, quadratic-convergence methods like L-BFGS are known to be very fast if
started near the optimum. This is what happens in our case; L-BFGS typically
converges in just a few iterations, sometimes one. The time required to evaluate
a clause is in fact dominated by the time required to compute the number of its
true groundings in the data. This time can be greatly reduced using sampling
and other techniques [18].

When learning an MLN from scratch (i.e., from a set of unit clauses), the
natural operator to use is the addition of a literal to a clause. When refining a
hand-coded KB, the goal is to correct the errors made by the human experts.
These errors include omitting conditions from rules and including spurious ones,
and can be corrected by operators that add and remove literals from a clause.
These are the basic operators that we use. In addition, we have found that many
common errors (wrong direction of implication, wrong use of connectives with
quantifiers, etc.) can be corrected at the clause level by flipping the signs of
atoms, and we also allow this. When adding a literal to a clause, we consider all
possible ways in which the literal’s variables can be shared with existing ones,
subject to the constraint that the new literal must contain at least one variable
that appears in an existing one. To control the size of the search space, we set a
limit on the number of distinct variables in a clause. We only try removing literals
from the original hand-coded clauses or their descendants, and we only consider
removing a literal if it leaves at least one path of shared variables between each
pair of remaining literals.

We have implemented two search strategies, one faster and one more complete.
The first approach adds clauses to the MLN one at a time, using beam search
to find the best clause to add: starting with the unit clauses and the expert-
supplied ones, we apply each legal literal addition and deletion to each clause,

108 P. Domingos et al.

keep the b best ones, apply the operators to those, and repeat until no new clause
improves the WPLL. The chosen clause is the one with highest WPLL found in
any iteration of the search. If the new clause is a refinement of a hand-coded
one, it replaces it. (Notice that, even though we both add and delete literals, no
loops can occur because each change must improve WPLL to be accepted.)

The second approach adds k clauses at a time to the MLN, and is similar to
that of McCallum [30]. In contrast to beam search, which adds the best clause
of any length found, this approach adds all “good” clauses of length l before
attempting any of length l + 1. We call it shortest-first search.

The algorithms described in the previous section may be very slow, particu-
larly in large domains. However, they can be greatly sped up using a combination
of techniques described in Kok and Domingos [18]. These include looser conver-
gence thresholds, subsampling atoms and clauses, caching results, and ordering
clauses to avoid evaluating the same candidate clause twice.

Recently, Mihalkova and Mooney [31] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly con-
structing candidate clauses one literal at a time, they let the training data guide
and constrain clause construction. First, they use a propositional Markov net-
work structure learner to generate a graph of relationships among atoms. Then
they generate clauses from paths in this graph. In this way, BUSL focuses on
clauses that have support in the training data. In experiments on three datasets,
BUSL evaluated many fewer candidate clauses than our top-down algorithm,
ran more quickly, and learned more accurate models.

We are currently investigating further approaches to learning MLNs, includ-
ing automatically inventing new predicates (or, in statistical terms, discovering
hidden variables) [19].

7 Applications

Markov logic has been successfully applied in a variety of areas. A system based
on it recently won a competition on information extraction for biology [45]. Cy-
corp has used it to make parts of the Cyc knowledge base probabilistic [29].
The CALO project is using it to integrate probabilistic predictions from many
components [8]. We have applied it to link prediction, collective classification,
entity resolution, information extraction, social network analysis and other prob-
lems [44,50,18,51,40,41]. Applications to Web mining, activity recognition, natu-
ral language processing, computational biology, robot mapping and navigation,
game playing and others are under way.

7.1 Entity Resolution

The application to entity resolution illustrates well the power of Markov logic
[51]. Entity resolution is the problem of determining which observations (e.g.,
database records, noun phrases, video regions, etc.) correspond to the same real-
world objects, and is of crucial importance in many areas. Typically, it is solved

Markov Logic 109

by forming a vector of properties for each pair of observations, using a learned
classifier (such as logistic regression) to predict whether they match, and ap-
plying transitive closure. Markov logic yields an improved solution simply by
applying the standard logical approach of removing the unique names assump-
tion and introducing the equality predicate and its axioms: equality is reflexive,
symmetric and transitive; groundings of a predicate with equal constants have
the same truth values; and constants appearing in a ground predicate with equal
constants are equal. This last axiom is not valid in logic, but captures a useful sta-
tistical tendency. For example, if two papers are the same, their authors are the
same; and if two authors are the same, papers by them are more likely to be the
same. Weights for different instances of these axioms can be learned from data.
Inference over the resulting MLN, with entity properties and relations as the
evidence and equality atoms as the query, naturally combines logistic regression
and transitive closure. Most importantly, it performs collective entity resolution,
where resolving one pair of entities helps to resolve pairs of related entities.

As a concrete example, consider the task of deduplicating a citation database
in which each citation has author, title, and venue fields. We can represent the
domain structure with eight relations: Author(bib, author), Title(bib, title),
and Venue(bib, venue) relate citations to their fields; HasWord(author/title/
venue, word) indicates which words are present in each field; SameAuthor
(author, author), SameTitle(title, title), and SameVenue(venue, venue)
represent field equivalence; and SameBib(bib, bib) represents citation equiva-
lence. The truth values of all relations except for the equivalence relations are
provided as background theory. The objective is to predict the SameBib relation.

We begin with a logistic regression model to predict citation equivalence based
on the words in the fields. This is easily expressed in Markov logic by rules such
as the following:

Title(b1, t1) ∧ Title(b2, t2) ∧ HasWord(t1, +word)
∧ HasWord(t2, +word) ⇒ SameBib(b1, b2)

The ‘+’ operator here generates a separate rule (and with it, a separate learnable
weight) for each constant of the appropriate type. When given a positive weight,
each of these rules increases the probability that two citations with a particular
title word in common are equivalent. We can construct similar rules for other
fields. Note that we may learn negative weights for some of these rules, just as
logistic regression may learn negative feature weights. Transitive closure consists
of a single rule:

SameBib(b1, b2)∧ SameBib(b2, b3) ⇒ SameBib(b1, b3)

This model is similar to the standard solution, but has the advantage that the
classifier is learned in the context of the transitive closure operation.

We can construct similar rules to predict the equivalence of two fields as well.
The usefulness of Markov logic is shown further when we link field equivalence
to citation equivalence:

Author(b1, a1) ∧ Author(b2, a2) ∧ SameBib(b1, b2) ⇒ SameAuthor(a1, a2)
Author(b1, a1) ∧ Author(b2, a2) ∧ SameAuthor(a1, a2) ⇒ SameBib(b1, b2)

110 P. Domingos et al.

The above rules state that if two citations are the same, their authors should be
the same, and that citations with the same author are more likely to be the same.
The last rule is not valid in logic, but captures a useful statistical tendency.

Most importantly, the resulting model can now perform collective entity res-
olution, where resolving one pair of entities helps to resolve pairs of related
entities. For example, inferring that a pair of citations are equivalent can pro-
vide evidence that the names AAAI-06 and 21st Natl. Conf. on AI refer to the
same venue, even though they are superficially very different. This equivalence
can then aid in resolving other entities.

Experiments on citation databases like Cora and BibServ.org show that these
methods can greatly improve accuracy, particularly for entity types that are
difficult to resolve in isolation as in the above example [51]. Due to the large
number of words and the high arity of the transitive closure formula, these models
have thousands of weights and ground millions of clauses during learning, even
after using canopies to limit the number of comparisons considered. Learning at
this scale is still reasonably efficient: preconditioned scaled conjugate gradient
with MC-SAT for inference converges within a few hours [26].

7.2 Information Extraction

In this citation example, it was assumed that the fields were manually segmented
in advance. The goal of information extraction is to extract database records
starting from raw text or semi-structured data sources. Traditionally, informa-
tion extraction proceeds by first segmenting each candidate record separately,
and then merging records that refer to the same entities. Such a pipeline achi-
tecture is adopted by many AI systems in natural language processing, speech
recognition, vision, robotics, etc. Markov logic allows us to perform the two
tasks jointly [41]. While computationally efficient, this approach is suboptimal,
because it ignores the fact that segmenting one candidate record can help to
segment similar ones. This allows us to use the segmentation of one candidate
record to help segment similar ones. For example, resolving a well-segmented
field with a less-clear one can disambiguate the latter’s boundaries. We will con-
tinue with the example of citations, but similar ideas could be applied to other
data sources, such as Web pages or emails.

The main evidence predicate in the information extraction MLN is Token(t, i,
c), which is true iff token t appears in the ith position of the cth citation. A token
can be a word, date, number, etc. Punctuation marks are not treated as separate
tokens; rather, the predicate HasPunc(c, i) is true iff a punctuation mark appears
immediately after the ith position in the cth citation. The query predicates are
InField(i, f, c) and SameCitation(c, c′). InField(i, f, c) is true iff the ith
position of the cth citation is part of field f, where f ∈ {Title, Author, Venue},
and inferring it performs segmentation. SameCitation(c, c′) is true iff citations c
and c′ represent the same publication, and inferring it performs entity resolution.

Our segmentation model is essentially a hidden Markov model (HMM) with
enhanced ability to detect field boundaries. The observation matrix of the HMM
correlates tokens with fields, and is represented by the simple rule

Markov Logic 111

Token(+t, i, c) ⇒ InField(i, +f, c)

If this rule was learned in isolation, the weight of the (t, f)th instance would be
log(ptf/(1−ptf)), where ptf is the corresponding entry in the HMM observation
matrix. In general, the transition matrix of the HMM is represented by a rule of
the form

InField(i, +f, c) ⇒ InField(i+ 1, +f′, c)

However, we (and others, e.g., [13]) have found that for segmentation it suffices
to capture the basic regularity that consecutive positions tend to be part of the
same field. Thus we replace f′ by f in the formula above. We also impose the
condition that a position in a citation string can be part of at most one field; it
may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field
boundaries. Detecting these is key for information extraction, and a number of
approaches use rules designed specifically for this purpose (e.g., [21]). In citation
matching, boundaries are usually marked by punctuation symbols. This can be
incorporated into the MLN by modifying the rule above to

InField(i, +f, c)∧ ¬HasPunc(c, i) ⇒ InField(i+ 1, +f, c)

The ¬HasPunc(c, i) precondition prevents propagation of fields across punctu-
ation marks. Because propagation can occur differentially to the left and right,
the MLN also contains the reverse form of the rule. In addition, to account
for commas being weaker separators than other punctuation, the MLN includes
versions of these rules with HasComma() instead of HasPunc().

Finally, the MLN contains rules capturing a variety of knowledge about ci-
tations: the first two positions of a citation are usually in the author field, and
the middle one in the title; initials (e.g., “J.”) tend to appear in either the au-
thor or the venue field; positions preceding the last non-venue initial are usually
not part of the title or venue; and positions after the first venue keyword (e.g.,
“Proceedings”, “Journal”) are usually not part of the author or title.

By combining this segmentation model with our entity resolution model from
before, we can exploit relational information as part of the segmentation pro-
cess. In practice, something a little more sophisticated is necessary to get good
results on real data. In Poon and Domingos [41], we define predicates and rules
specifically for passing information between the stages, as opposed to just using
the existing InField() outputs. This leads to a “higher bandwidth” of commu-
nication between segmentation and entity resolution, without letting excessive
segmentation noise through. We also define an additional predicate and modify
rules to better exploit information from similar citations during the segmentation
process. See [41] for further details.

We evaluated this model on the CiteSeer and Cora datasets. For entity resolu-
tion in CiteSeer, we measured cluster recall for comparison with previously pub-
lished results. Cluster recall is the fraction of clusters that are correctly output
by the system after taking transitive closure from pairwise decisions. For entity
resolution in Cora, we measured both cluster recall and pairwise recall/precision.

112 P. Domingos et al.

Table 2. CiteSeer entity resolution: cluster recall on each section

Approach Constr. Face Reason. Reinfor.

Fellegi-Sunter 84.3 81.4 71.3 50.6
Lawrence et al. (1999) 89 94 86 79
Pasula et al. (2002) 93 97 96 94
Wellner et al. (2004) 95.1 96.9 93.7 94.7
Joint MLN 96.0 97.1 95.1 96.7

Table 3. Cora entity resolution: pairwise recall/precision and cluster recall

Approach Pairwise Rec./Prec. Cluster Recall

Fellegi-Sunter 78.0 / 97.7 62.7
Joint MLN 94.3 / 97.0 78.1

In both datasets we also compared with a “standard” Fellegi-Sunter model (see
[51]), learned using logistic regression, and with oracle segmentation as the input.

In both datasets, joint inference improved accuracy and our approach out-
performed previous ones. Table 2 shows that our approach outperforms previous
ones on CiteSeer entity resolution. (Results for Lawrence et al. (1999) [23], Pasula
et al. (2002) [36] and Wellner et al. (2004) [58] are taken from the correspond-
ing papers.) This is particularly notable given that the models of [36] and [58]
involved considerably more knowledge engineering than ours, contained more
learnable parameters, and used additional training data.

Table 3 shows that our entity resolution approach easily outperforms Fellegi-
Sunter on Cora, and has very high pairwise recall/precision.

8 The Alchemy System

The inference and learning algorithms described in the previous sections are
publicly available in the open-source Alchemy system [20]. Alchemy makes it
possible to define sophisticated probabilistic models with a few formulas, and
to add probability to a first-order knowledge base by learning weights from a
relevant database. It can also be used for purely logical or purely statistical
applications, and for teaching AI. From the user’s point of view, Alchemy pro-
vides a full spectrum of AI tools in an easy-to-use, coherent form. From the
researcher’s point of view, Alchemy makes it possible to easily integrate a new
inference or learning algorithm, logical or statistical, with a full complement of
other algorithms that support it or make use of it.

Alchemy can be viewed as a declarative programming language akin to Pro-
log, but with a number of key differences: the underlying inference mecha-
nism is model checking instead of theorem proving; the full syntax of first-
order logic is allowed, rather than just Horn clauses; and, most importantly,
the ability to handle uncertainty and learn from data is already built in. Table 4

Markov Logic 113

Table 4. A comparison of Alchemy, Prolog and BUGS

Aspect Alchemy Prolog BUGS

Representation First-order logic + Markov nets Horn clauses Bayes nets
Inference Model checking, MCMC Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

compares Alchemy with Prolog and BUGS [28], one of the most popular toolkits
for Bayesian modeling and inference.

9 Current and Future Research Directions

We are actively researching better learning and inference methods for Markov
logic, as well as extensions of the representation that increase its generality and
power.

Exact methods for learning and inference are usually intractable in Markov
logic, but we would like to see better, more efficient approximations along with
the automatic application of exact methods when feasible.

One method of particular interest is lifted inference. In short, we would like
to reason with clusters of nodes for which we have exactly the same amount of
information. The inspiration is from lifted resolution in first order logic, but must
be extended to handle uncertainty. Prior work on lifted inference such as [39] and
[3] mainly focused on exact inference which can be quite slow. There has been
some recent work on lifted belief propagation in a Markov logic like setting [15],
but only for the case in which there is no evidence. We would like to extend this
body of work for approximate inference in the case where arbitrary evidence is
given, potentially speeding up inference in Markov logic by orders of magnitude.

Numerical attributes must be discretized to be used in Markov logic, but we
are working on extending the representation to handle continuous random vari-
ables and features. This is particularly important in domains like robot navigation,
where the coordinates of the robot and nearby obstacles are real-valued. Even do-
mains that are handled well by Markov logic, such as entity resolution, could still
benefit from this extension by incorporating numeric features into similarities.

Another extension of Markov logic is to support uncertainty at multiple levels
in the logical structure. A formula in first-order logic can be viewed as a tree, with
a logical connective at each node, and a knowledge base can be viewed as a tree
whose root is a conjunction. Markov logic makes this conjunction probabilistic,
as well as the universal quantifiers directly under it, but the rest of the tree
remains purely logical. Recursive random fields [27] overcome this by allowing
the features to be nested MLNs instead of clauses. Unfortunately, learning them
suffers from the limitations of backpropagation.

Statistical predicate invention is the problem of discovering new concepts,
properties, and relations in structured data, and generalizes hidden variable
discovery in statistical models and predicate invention in ILP. Rather than ex-
tending the model directly, statistical predicate invention enables richer models

114 P. Domingos et al.

by extending the domain with discovered predicates. Our initial work in this area
uses second-order Markov logic to generate multiple cross-cutting clusterings of
constants and predicates [19]. Formulas in second-order Markov logic could also
be used to add declarative bias to our structure learning algorithms.

Current work also includes semi-supervised learning, and learning with incom-
plete data in general. The large amount of unlabeled data on the Web is an excel-
lent resource that, properly exploited, could lead to many exciting applications.

Finally, we would like to develop a general framework for decision-making in
relational domains. This can be accomplished in Markov logic by adding utility
weights to formulas and finding the settings of all action predicates that jointly
maximize expected utility.

10 Conclusion

Markov logic is a simple yet powerful approach to combining logic and prob-
ability in a single representation. We have developed a series of learning and
inference algorithms for it, and successfully applied them in a number of do-
mains. These algorithms are available in the open-source Alchemy system. We
hope that Markov logic and its implementation in Alchemy will be of use to
researchers and practitioners who wish to have the full spectrum of logical and
statistical inference and learning techniques at their disposal, without having to
develop every piece themselves.

Acknowledgements

This research was partly supported by DARPA grant FA8750-05-2-0283 (man-
aged by AFRL), DARPA contract NBCH-D030010, NSF grant IIS-0534881,
ONR grants N00014-02-1-0408 and N00014-05-1-0313, a Sloan Fellowship and
NSF CAREER Award to the first author, and a Microsoft Research fellowship
awarded to the third author. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of DARPA, NSF,
ONR, or the United States Government.

References

1. Becker, S., Le Cun, Y.: Improving the convergence of back-propagation learning with
second order methods. In: Proceedings of the 1988 Connectionist Models Summer
School, San Mateo, CA, pp. 29–37. Morgan Kaufmann, San Francisco (1989)

2. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24, 179–195
(1975)

3. Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, UK, pp. 1319–1325. Morgan Kaufmann, San Francisco (2005)

4. Collins, M.: Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the 2002 Confer-
ence on Empirical Methods in Natural Language Processing, Philadelphia, PA, pp.
1–8. ACL (2002)

Markov Logic 115

5. Damien, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate
and hierarchical models by auxiliary variables. Journal of the Royal Statistical
Society, Series B 61 (1999)

6. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146 (1997)
7. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields.

IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380–392
(1997)

8. Dietterich, T.: Experience with Markov logic networks in a large AI system. In:
Probabilistic, Logical and Relational Learning - Towards a Synthesis, number 05051
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Dagstuhl, Germany (2007)

9. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence, Stockholm, Sweden, pp. 1300–1307. Morgan Kaufmann, San
Francisco (1999)

10. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, San Mateo (1987)

11. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

12. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in
Practice. Chapman and Hall, London, UK (1996)

13. Grenager, T., Klein, D., Manning, C.D.: Unsupervised learning of field segmenta-
tion models for information extraction. In: Proceedings of the Forty-Third Annual
Meeting on Association for Computational Linguistics, Ann Arbor, Michigan, pp.
371–378. Association for Computational Linguistics (2005)

14. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20, 197–243
(1995)

15. Jaimovich, A., Meshi, O., Friedman, N.: Template based inference in symmetric
relational markov random fields. In: Proceedings of the Twenty-Third Conference
on Uncertainty in Artificial Intelligence, Vancouver, Canada, AUAI Press (2007)

16. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems
with hard and soft constraints. In: Gu, D., Du, J., Pardalos, P. (eds.) The Satis-
fiability Problem: Theory and Applications, pp. 573–586. American Mathematical
Society, New York (1997)

17. Kersting, K., De Raedt, L.: Towards combining inductive logic programming with
Bayesian networks. In: Proceedings of the Eleventh International Conference on In-
ductive Logic Programming, Strasbourg, France, pp. 118–131. Springer, Heidelberg
(2001)

18. Kok, S., Domingos, P.: Learning the structure of Markov logic networks. In: Pro-
ceedings of the Twenty-Second International Conference on Machine Learning,
Bonn, Germany, pp. 441–448. ACM Press, New York (2005)

19. Kok, S., Domingos, P.: Statistical predicate invention. In: Proceedings of the
Twenty-Fourth International Conference on Machine Learning, Corvallis, OR, pp.
433–440. ACM Press, New York (2007)

20. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos, P.:
The Alchemy system for statistical relational AI. Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA (2007),
http://alchemy.cs.washington.edu

21. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence 118(1-2), 15–68 (2000)

 http://alchemy.cs.washington.edu

116 P. Domingos et al.

22. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, Chichester (1994)

23. Lawrence, S., Bollacker, K., Giles, C.L.: Autonomous citation matching. In: Pro-
ceedings of the Third International Conference on Autonomous Agents, ACM
Press, New York (1999)

24. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(3), 503–528 (1989)

25. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin, Germany (1987)
26. Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In:

Proceedings of the Eleventh European Conference on Principles and Practice of
Knowledge Discovery in Databases, Warsaw, Poland, pp. 200–211. Springer, Hei-
delberg (2007)

27. Lowd, D., Domingos, P.: Recursive random fields. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence, Hyderabad, India, AAAI
Press, Menlo Park (2007)

28. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS – a Bayesian model-
ing framework: Concepts, structure, and extensibility. Statistics and Computing 10,
325–337 (2000)

29. Matuszek, C., Witbrock, M.: Personal communication (2006)
30. McCallum, A.: Efficiently inducing features of conditional random fields. In: Pro-

ceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence,
Acapulco, Mexico, Morgan Kaufmann, San Francisco (2003)

31. Mihalkova, L., Mooney, R.: Bottom-up learning of Markov logic network struc-
ture. In: Proceedings of the Twenty-Fourth International Conference on Machine
Learning, Corvallis, OR, pp. 625–632. ACM Press, New York (2007)

32. Møller, M.: A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks 6, 525–533 (1993)

33. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 254–264. IOS Press, Amsterdam, Netherlands
(1996)

34. Neville, J., Jensen, D.: Dependency networks for relational data. In: Proceedings
of the Fourth IEEE International Conference on Data Mining, Brighton, UK, pp.
170–177. IEEE Computer Society Press, Los Alamitos (2004)

35. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)
36. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty

and citation matching. In: Advances in Neural Information Processing Systems 14,
MIT Press, Cambridge (2002)

37. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

38. Pearlmutter, B.: Fast exact multiplication by the Hessian. Neural Computa-
tion 6(1), 147–160 (1994)

39. Poole, D.: First-order probabilistic inference. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, pp.
985–991. Morgan Kaufmann, San Francisco (2003)

40. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deter-
ministic dependencies. In: Proceedings of the Twenty-First National Conference on
Artificial Intelligence, Boston, MA, pp. 458–463. AAAI Press, Menlo Park (2006)

41. Poon, H., Domingos, P.: Joint inference in information extraction. In: Proceedings
of the Twenty-Second National Conference on Artificial Intelligence, Vancouver,
Canada, pp. 913–918. AAAI Press, Menlo Park (2007)

Markov Logic 117

42. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990)

43. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

44. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–
136 (2006)

45. Riedel, S., Klein, E.: Genic interaction extraction with semantic and syntactic
chains. In: Proceedings of the Fourth Workshop on Learning Language in Logic,
Bonn, Germany, pp. 69–74. IMLS (2005)

46. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12, 23–41 (1965)

47. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82,
273–302 (1996)

48. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings
of the 2003 Human Language Technology Conference and North American Chapter
of the Association for Computational Linguistics, Association for Computational
Linguistics (2003)

49. Shewchuck, J.: An introduction to the conjugate gradient method without the
agonizing pain. Technical Report CMU-CS-94-125, School of Computer Science,
Carnegie Mellon University (1994)

50. Singla, P., Domingos, P.: Discriminative training of Markov logic networks. In:
aaai05, Pittsburgh, PA, pp. 868–873. AAAI Press, Menlo Park (2005)

51. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: Proceedings of
the Sixth IEEE International Conference on Data Mining, Hong Kong, pp. 572–
582. IEEE Computer Society Press, Los Alamitos (2006)

52. Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In: Pro-
ceedings of the Twenty-First National Conference on Artificial Intelligence, Boston,
MA, AAAI Press, Menlo Park (2006)

53. Singla, P., Domingos, P.: Markov logic in infinite domains. In: Proceedings of
the Twenty-Third Conference on Uncertainty in Artificial Intelligence, Vancouver,
Canada, pp. 368–375. AUAI Press (2007)

54. Srinivasan, A.: The Aleph manual. Technical report, Computing Laboratory, Ox-
ford University (2000)

55. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

56. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting random
walk strategies. In: aaai04, San Jose, CA, AAAI Press, Menlo Park (2004)

57. Wellman, M., Breese, J.S., Goldman, R.P.: From knowledge bases to decision mod-
els. Knowledge Engineering Review 7 (1992)

58. Wellner, B., McCallum, A., Peng, F., Hay, M.: An integrated, conditional model of
information extraction and coreference with application to citation matching. In:
Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence,
Banff, Canada, pp. 593–601. AUAI Press (2004)

59. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Leen,
T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing
Systems 13, pp. 689–695. MIT Press, Cambridge (2001)

	Markov Logic
	Introduction
	Markov Networks
	First-Order Logic
	Markov Logic
	Inference
	MAP/MPE Inference
	Marginal and Conditional Probabilities

	Learning
	Generative Weight Learning
	Discriminative Weight Learning
	Structure Learning

	Applications
	Entity Resolution
	Information Extraction

	The Alchemy System
	Current and Future Research Directions
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

