
A Behavioral Comparison of Some Probabilistic

Logic Models

Stephen Muggleton and Jianzhong Chen

Department of Computing, Imperial College London, London SW7 2AZ, UK
{shm,cjz}@doc.ic.ac.uk

Abstract. Probabilistic Logic Models (PLMs) are efficient frameworks
that combine the expressive power of first-order logic as knowledge rep-
resentation and the capability to model uncertainty with probabilities.
Stochastic Logic Programs (SLPs) and Statistical Relational Models
(SRMs), which are considered as domain frequency approaches, and on
the other hand Bayesian Logic Programs (BLPs) and Probabilistic Rela-
tional Models (PRMs) (possible worlds approaches), are promising PLMs
in the categories. This paper is aimed at comparing the relative expres-
sive power of these frameworks and developing translations between them
based on a behavioral comparison of their semantics and probability com-
putation. We identify that SLPs augmented with combining functions
(namely extended SLPs) and BLPs can encode equivalent probability
distributions, and we show how BLPs can define the same semantics
as complete, range-restricted SLPs. We further demonstrate that BLPs
(resp. SLPs) can encode the relational semantics of PRMs (resp. SRMs).
Whenever applicable, we provide inter-translation algorithms, present
their soundness and give worked examples.

1 Introduction

Probabilistic Logic Models (PLMs) combine expressive knowledge representation
formalisms such as relational and first-order logic with principled probabilistic
and statistical approaches to inference and learning. This combination is needed
in order to face the challenge of real-world learning and data mining problems
in which data are complex and heterogeneous and we are interested in finding
useful predictive and/or descriptive patterns.

Probabilistic logic representations and PLMs have varying levels of expressiv-
ity. As yet more effort has been put into defining new variants of PLMs than
into characterising their relationships. Studying the relative expressive power of
various probabilistic logic representations is a challenging and interesting task.
On the one hand, there exist some theoretical study of the relations of two prob-
abilistic approaches, i.e., possible-worlds and domain-frequency. On the other
hand, it is interesting to see how both logic programming-based approaches and
relational model/database-based methods have converged and to analyze rela-
tions between them. Essentially the following questions at different levels can be
asked:

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 305–324, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 S. Muggleton and J. Chen

• From a semantical perspective: can we compare the semantics between PLMs
in terms of the definition of probability distributions?
• From a theoretical perspective: given an expert domain, can we encode the

same knowledge in different PLMs?
• More practically: can we find inter-translations between these PLMs?

This study is based on a behavioural approach: we analyze what the respec-
tive interests of these formulations are. In particular, how can we semantically
compare PLMs and if there exist inter-translations, do the translations have
the same features (computation of the probabilities, inference with or without
evidence)?

The chapter is organised as follows. In section 2, we shortly introduce logi-
cal/relational models and probabilistic models as well as their extension to first-
order probabilistic models. In section 3, we present a introduction to the four
PLMs we choose for the study. In section 4, we explain the behavioural com-
parison approach and compare the semanics of the four PLMs based on the
catigories of first-order probabilistic models. In the next three sections, we de-
tail probabilistic knowledge encoding and inter-translations between the PLMs
of interest. We deal with the concluding remarks and direction of future work in
the last section.

2 Preliminaries

2.1 Logical/Relational Models

Knowledge encoded in PLMs are mainly based on two representation languages
and their associated system of inference, namely the Definite Clause Logic used
in logic programming model and the Relational Algebra used in the relational
model.

Logic Programming Model. Definite Clause Logic (DCL), also known as
Horn clause logic, is the subset of first-order logic whose well formed formulas
are universally quantified conjunctions of disjunctions of literals. Each disjunct
is called a clause. DCL further requires that clauses are definite, which means
that they have exactly one positive literal each (the head of the clause). The
list of negative literals (if any) is called the body of the clause. A list of definite
clauses is called a logic program (LP). We assume our terminology discussed in
the paper are within DCL.

The semantics, ie. the knowledge that can be encoded by a logic program L,
can be defined with the least Herbrand model of L (noted LH(L)). There exists
several inference algorithms to compute LH(L) such as the SLD-resolution proof
procedure. The success set of L, ie. the set of statements that can be refuted
using SLD-resolution is exactly LH(L). It is interesting to note that the use
of functors and recursive clauses allows DCL programs to encode potentially
infinite semantics. However, the functor-free subset of DCL (called Datalog) has
a finite semantics since Datalog programs have finite least Herbrand models.

A Behavioral Comparison of Some Probabilistic Logic Models 307

The use of DCL or Horn clause logic is supported by the wide availability and
applicability of the programming language Prolog [1] and most Inductive Logic
Programming systems, such as Progol [17].

Relational Model. Knowledge is often stored in relational databases which are
formally defined by the so called relational model for data. We use the notations
of [4] and [6] to introduce the relational model setting. This setting uses the
abstract notion of relational schema to structure the data encoded in a database.
Formally, a relational schema is a set of classes (also called relations or tables)
R = {Ri}. Each class R is associated to a primary key R.K, a set of foreign
keys F(R) = {Fk} and a set of descriptive attributes A(R) = {Aj}. Primary
keys are unique identifiers for class instances. Descriptive attributes Aj take
their respective values in the finite domains V(Aj). Each foreign key Fk ∈ F(R)
establishes a directed relationship from its source class Dom[Fk] = R onto a
target class Range[Fk]. An instance of such a relational schema is a set of objects
(also called entities, records or tuples). Instances of relational schemas are also
called databases. Each object x is an instance of a class R: for each descriptive
attribute Aj ∈ A(R), x is associated to an attribute value x.Aj = aj ∈ V(Aj).
Furthermore, class level foreign keys define binary relationships between objects:
for each foreign key Fk ∈ F(R), x is associated an object y = x.Fk such that y is
an instance of the class Y = Range[ρk]. Databases that respect the constraints
implied by foreign keys are said to respect the referential integrity.

Relational Algebra (RA) is a procedural language to perform queries on rela-
tional databases. RA is a procedural equivalent to declarative calculi such as the
tuple calculus and the domain calculus that provides mathematical foundation
for relational databases. RA is built upon six fundamental operations on sets
of tuples: the selection, the projection, the Cartesian product, the set union,
the set difference and the renaming of attribute names. These operations can
be considered building blocks to define higher level operations such as joins, set
intersections and divisions. From a more practical perspective, RA corresponds
to SQL (Structured Query Language) without the aggregate and group opera-
tions. RA’s expressive power is equivalent to non-recursive Datalog’s (which is
not Turing complete).

2.2 Probabilistic Models

Uncertainty is commonly modelled by defining a probability distribution over
the domain Dom(V) = {vi} of a random variable V . We assume all random
variables are discrete in the paper. We note P (V = vi) = pi. A set {vi, pi} defines
a probability distribution if and only if the {pi} are normalized (

∑
i pi = 1).

Bayesian networks (BNs) [19,10] are introduced to make additional indepen-
dency assumptions between random variables and to calculate the probabili-
ties of the conjunctions. A BN is a Directed Acyclic Graph (DAG) where each
vertex/node represents a random variable. Independency assumptions are en-
coded in the edges between chance nodes. Each variable is independent of its
non-descendants given its parents. The parameters of the Bayesian networks

308 S. Muggleton and J. Chen

are embedded in Conditional Probability Tables (CPTs) which specify, for each
variable Vi, the probability that Vi = v (v ∈ Dom(Vi)) given the values of the
parents Pa(Vi). Given these and based on the Bayes theorem, a joint probability
distribution of a set of n random variables can be defined using the following
chain rule formula:

P (V1, V2, . . . , Vn) =
n∏

i=1

P (Vi|Pa(Vi))

There exists a variety of algorithms to efficiently compute this probability
distribution, such as Pearl’s message passing, Variable Elimination, graph based
Junction Tree, etc.

2.3 First-Order Probabilistic Models

First-Order Probabilistic Reasoning. First-order logic alone is not suitable
to handle uncertainty, while this is often required to model non-deterministic
domains with noisy or incomplete data. On the other hand, propositional prob-
abilistic models (such as BNs) can’t express relations between probabilistic vari-
ables; such frameworks suffer from a lack of structure over the domain, and the
knowledge they can encode is fairly limited.

First-order probabilistic models are models which integrate logics and proba-
bilities; they overcome the limits of traditional models by taking the advantages
of both logics and probabilities.

Categories of First-Order Probabilistic Models. A well-known categoriza-
tion of first-order probabilistic models was introduced by Halpern [7], in which
two types of first-order probabilistic logic are categorized, ie. probabilities on the
domain (or type 1 probability structure) and probabilities on possible worlds (or
type 2 probability structure).

Type 1 probability structure can represent statements like “The probability
that a randomly chosen bird will fly is greater than .9”. It provides a type
of domain-frequency approaches, which semantically illustrates objective and
‘sampling’ probabilities of domains. Precisely, a type 1 probability structure is a
tuple (D,π, μ), where D is a domain, π maps predicate and function symbols in
alphabet to predicates and functions of the right arity over D, and μ is a discrete
probability function on D. The probability here is taken over the domain D. In
the logic programming setting, it is reasonable to consider the Herbrand base
over a given signature to have the same function as the domain.

On the other hand, type 2 probability structure may represent statements like
“The probability that Tweety (a particular bird) flies is greater than .9”. It is a
kind of possible-world approaches and illustrates the subjective and ‘degree-of-
belief’ semantics of the probabilities of domains. Formally, a type 2 probability
structure is a tuple (D,W, π, μ), where D is a domain, W is a set of states
or possible worlds, for each state w ∈ W , π(w) maps predicate and function
symbols in alphabet to predicates and functions of the right arity over D, and μ

A Behavioral Comparison of Some Probabilistic Logic Models 309

is a discrete probability function on W . The probability here is taken over W ,
the set of states (or possible worlds or logic models). BNs and related models
are type 2 approaches.

One of the differences between the two models is that there seems to assume
only one possible world in type 1 case, saying that “any bird has a probability of
flying greater than 0.9” is like giving the result of some statistical analysis (by
counting domain frequency) in the real world.

3 Presentation of PLMs

We choose four promising PLMs to do the comparison.

3.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) were first introduced in [14] as a generalization
of stochastic grammars.

Syntax. An SLP consists of a set of labelled clauses p : C, where p is from the
interval [0, 1], and C is a range-restricted1 definite clause. Later in this report,
the labelled clauses p : C will be named parameterized clauses or stochastic
clauses. This original SLP definition requires that for each predicate symbol q,
the probability labels for all clauses with q in the head sum to 1. However, this
can be a restrictive definition of SLPs. In other articles ([2] for instance), SLPs
having this property are called complete SLPs, while in uncomplete SLPs, the
probability labels for all clauses with a same predicate symbol in the head sum
to less than 1. Pure SLPs are introduced in [2], whose clauses are all parameter-
ized (whereas impure SLPs can have non-parameterized clauses, that is, definite
logical clauses). Furthermore, normalized SLPs are like complete SLPs, but in
unnormalised SLPs, the probability labels for all clauses with a same predicate
symbol in the head can sum to any positive value other than 1.

Semantics. An SLP S has a distributional semantics, that is one which assigns
a probability distribution to the atoms of each predicate in the Herbrand base
of the clauses in S. The probabilities are assigned to atoms according to an
SLD-resolution strategy that employs a stochastic selection rule2.

Three different related distributions are defined in [2], over derivations, refu-
tations and atoms. Given an SLP S with n parameterized clauses and a goal G,
it is easy to define a log-linear probability distribution over the set of derivations

ψλ(x) = eλ.ν(x) =
n∏

i=1

l
νi(x)
i

1 C is said to be range-restricted iff every variable in the head of C is found in the
body of C.

2 The selection rule is not deterministic but stochastic; the probability that a clause
is selected depends on the values of the labels (details can be found in [15]).

310 S. Muggleton and J. Chen

where x is a derivation of goal G; λ = (λ1, λ2, ..., λn) ∈ �n is a vector of
log-parameters where λi = log(li), li being the label of the clause Ci; ν =
(ν1, ν2, ..., νn) ∈ Nn is a vector of clause counts s.t. νi(x) is the number of times
Ci is used in the derivation x. If we assign the probability 0 to all derivations
that are not refutations of the goal G, and normalize the remaining probabilities
with a normalization factor Z, we obtain the probability distribution fλ(r) over
the set R of the refutations of G

fλ(r) = Z−1
λ,G eλ.ν(r)

The computed answer in the SLD-tree is the most general instance of the goal
G that is refuted by r, which is also named the yield atom. Let X(y) be the set
of refutations which lead to the yield atom y, we can finally define a distribution
of probabilities over the set of yield atoms

pλ,G(y) =
∑

r∈X(y)

fλ(r) = Z−1
λ,G

∑

r∈X(y)

(
n∏

i=1

l
νi(r)
i

)

Given an SLP S, a query G and a (possibly partial) instantiation of G noted
Ga, if λ is the vector of log-parameters associated to S and Y the set of yield
atoms appearing in the refutations of Ga, we define PSLP

S (Ga) =
∑

y∈Y pλ,G(y).

3.2 Bayesian Logic Programs

Bayesian Logic Programs (BLPs) were first introduced in [13], as a generalization
of Bayesian networks (BNs) and Logic Programs.

Syntax. A Bayesian logic program has two components – a logical one, which
is a set of Bayesian clauses), and a quantitative one, which is a set of condi-
tional probability distributions and combining rules corresponding to that log-
ical structure. A Bayesian clause is an expression of the form: A | A1, ..., An
where n ≥ 0 and the Ai are Bayesian atoms which are (implicitly) universally
quantified. The difference between a logical definite clause and a Bayesian clause
is that: the sign | is employed instead of : −; Bayesian atoms are assigned a (fi-
nite) domain, whereas first order logic atoms have binary values. Following the
definitions in [13], we assume that atom domains in BLPs are discrete.

In order to represent a probabilistic model, each Bayesian clause c is associated
with a conditional probability distribution cpd(c) which encodes the probability
that head(c) takes some value, given the values of the Bayesian atoms in body(c),
ie. P (head(c)|body(c)). This conditional probability distribution is represented
with a conditional probability table. As there can be many clauses with the
same head (or non-ground heads that can be unified), combining rules are intro-
duced to obtain the distribution required, i.e. functions which map finite sets of
conditional probability distributions onto one combined conditional probability
distribution. Common combining rules include the noisy-or rule, when domains
are boolean, and the max rule, which is defined on finite domains.

A Behavioral Comparison of Some Probabilistic Logic Models 311

Semantics. The link of BLPs to BNs is straightforward: each ground Bayesian
atom can be associated to a chance node (a standard random variable), whose
set of states is the domain of the Bayesian atom. The links (influence relations)
between chance nodes are given by the Bayesian clauses, and the link matrices
by the conditional probability distributions associated to these Bayesian clauses.
The set of ground Bayesian atoms in the least Herbrand model together with the
structure defined by the set of ground instances of the Bayesian clauses define a
global (possibly infinite) dependency graph.

The semantics of BLPs can be discussed in a well-defined BLP. A range re-
stricted BLP B is well-defined if:

1. Its least Herbrand model not empty: LH(B) �= ∅. There must be at least
one ground fact in B.

2. The induced dependency graph is acyclic;
3. Each random variable is only influenced by finite set of random variables.

Any such well-defined BLP B defines a unique probability distribution over
the possible valuations of a ground queryGa ∈ LH(B) [13]. The query-answering
procedure actually consists of two parts: first, given a ground query and some
evidence, the Bayesian network (namely the support network) containing all rel-
evant atoms is computed, using Knowledge Based Model Construction (KBMC).
Then the resulting Bayesian network can be queried using any available infer-
ence algorithm, the results we were looking for being the probability of the initial
ground query over its domain.

Let B be a well-defined BLP and Ga a ground query. The Bayesian network
constructed with KBMC is denoted by BNB,Ga . The probability of a chance
node Q taking the value v in BNB,Ga (i.e. the probability of the set of possible
worlds of BNB,Ga in which Q has the value v) is denoted PBLP

B,Ga
(Q = v).

3.3 Statistical Relational Models

Statistical Relational Models (SRMs) were introduced in [6] in order to provide
ways to infer statements over the success of some relational databases queries.

Syntax. SRMs are defined with respect to a given relational schema R. Fur-
thermore, SRMs requireR to be table stratified, that is there must exist a partial
ordering ≺ over classes in R such that for any R.F ∈ F(R) and S = Dom[R.F],
S ≺ R holds. Given such a table stratified relational schema R, an SRM ψ is a
pair (S, θ) that defines a local probability model over a set of variables {R.A}
(for each class R and each descriptive attribute A ∈ A(R)) and a set of boolean
join indicator {R.JF } (for each foreign key F ∈ F(R) with S = Dom[R.F]).
For each random variable of the form R.V , S specifies a set of parents Pa(R.V)
where each parents has the form R.B or R.F.B, and θ specifies a CPT θR.V =
P (R.V |Pa(R.V)). S is further required to be a directed acyclic graph.

Semantics. Any SRM ψ defines a unique probability distribution PSRM
ψ over

the class of so called inverted-tree-foreign-key-join queries (or legal queries) of a
table stratified relational schema R.

312 S. Muggleton and J. Chen

A legal query Q has form: �	Q (σQ(R1 × R2 × . . . × Rn)). The set T =
{t1, . . . , tn} of tuple variables occurring in Q must be closed with respect to the
universal foreign key closure of R as defined in [6] so that:

�	Q= {t.F �	 s.K | t ∈ T, s ∈ T is associated to t.F}
The select part of Q occurs on some subset of A(T), σQ = {Ai = ai | Ai ∈ A(T)}

Given an SRM ψ = (S, θ), S induces a Bayesian network B over the attributes
of tuples variables in T (joint indicators included). The parameters of B are set
according to θ. PSRM

ψ is then defined as the probability distribution induced by
B over possible instantiations of attributes of T that correspond to σQ of any
legal query Q over T :

PSRM
ψ (Q) =

∏

t.Vi∈Q
θ(t.Vi|PaB(t.Vi))

SRMs can thus be used to estimate the probability PD of success of legal
queries against a database D that implements the relational schema R. For any
select-join query Q over D, PD is defined as follows:

PD(Q) =
| �	Q (σQ(R1 ×R2 × . . .×Rn))|
|R1| × |R2| × . . .× |Rn|

A table stratified database D is said to be a model of an SRM ψ if ψ’s esti-
mations are correct, ie. for any legal query Q, PSRM

ψ (Q) = PD(Q). In this case,
we note D |= ψ.

3.4 Probabilistic Relational Models

Probabilistic Relational Models (PRMs) were introduced in [4], which extends
the relational model presented in section 2.1 by introducing reference slots and
relational skeletons. For a given class R, the set of reference slots �(R) = {ρk} is
the union of R’s foreign keys F(R) with the set of foreign keys R′.F that point
to R.K (ie. reverse foreign keys). Such a reference slot ρ may thus establish
a one-to-many relationship between R and R′ = R.ρ. A relational skeleton σ
is a set of objects respecting the constraints of a given relational schema. The
difference between a relational skeleton σ and a complete instance is that the
values of some descriptive attributes of objects in σ are unknown. However σ
specifies the values for the foreign keys.

Syntax. PRMs with attribute uncertainty consider each class-level descriptive
attribute as a random variable. PRMs make some independency assumptions in
order to shrink the model size. As with BNs, these independency assumptions
are encoded in an dependency structure S where the vertices represent the de-
scriptive attributes. S is defined with respect to a given relational structure R.
For each descriptive attribute R.A in R, S specifies a set of parents Pa(R.A).
A parent takes either the form R.A′ (another descriptive attribute of the same
class) or γ(R.τ.A′) where τ = ρk1 .ρk2ρkn is a chain of n reference slots and

A Behavioral Comparison of Some Probabilistic Logic Models 313

γ is an aggregate function. Indeed, for a given object r ∈ R, r.τ is potentially a
multi-set of objects of class R.τ . In such a case S uses an aggregate function γ to
map the different values in r.τ.A′ to a single value in the domain V(γ). Aggregate
functions can be any of those traditionally used in SQL: min, max, average, etc.
A dependency structure S is said to be legal with respect to a given relational
skeleton if it is guaranteed-acyclic at the object-level: an object’s descriptive
attribute cannot be its own ancestor.

A PRM quantifies the probabilistic dependencies encoded in S through a set of
parameters θS . For each attribute r.A, θS(r.A) = P (r.A|Pa(r.A)). The CPTs are
identical for every objects of the same class. However, as the aggregate functions
might compute different values for two different objects, the resulting probability
can change from an object to another. A PRMΠ is fully defined by a dependency
structure S and its associated CPTs θS (parameters), Π = (S, θS).

Semantics. Given a relational skeleton σ, every PRM Π = (S, θS), with S legal
w.r.t. σ, defines a coherent probability distribution over Iσ, the set of possible
instances of σ, by the following chain-rule formula

PPRM
Π,σ (i) =

∏

x∈σ

∏

A∈A(x)

P (i(x.A)|i(Pa(x.A)))

where i(x.A) and i(Pa(x.A)) are the respective representations of the random
variables x.A and Pa(x.A) in the instance i.

4 Behavioural Comparison of Expressive Knowledge
Representations

Suppose that A,B represent two Herbrand bases3 over given signatures Σ,Ω
and that p, q represent probability functions over sets. Halpern’s two types of
probabilistic logic can be characterised as classes of probability functions with
the following forms: p : A → [0, 1] (type 1) and q : 2B → [0, 1] (type 2). Here
2B represents the set of all possible worlds over the Herbrand base B. In this
paper the approach taken to establishing relationships between type 1 and type
2 probabilistic logics involves demonstrating the existence of mappings between
the logics. Suppose R1, R2 denote particular type 1, 2 logics respectively.

We say that R1 is behaviourally weaker than R2, or simply R1 	b R2 in
the case that for every probability function p in R1 with Herbrand base A there
exists a probability function q in R2 with Herbrand base B and a function f such
that f : A → 2B where ∀a ∈ A· q(f(a)) = p(a). Similarly, R2 is behaviourally
weaker than R1, or simply R2 	b R1 when for every q in R2 with Herbrand
base B there exists a probability function p in R1 with Herbrand base A and a
function g such that g : 2B → A where ∀b ∈ 2B· p(g(b)) = q(b). As usual we say
that R1 is behaviourally equivalent to R2, or simply R1 ≡b R2, in the case that
R1 	b R2 and R2 	b R1.
3 As stated before, we treat the Herbrand base of a logic model as its domain.

314 S. Muggleton and J. Chen

Halpern’s work [7] provides good clarifications about what respective kinds
of knowledge can be captured with probabilities on the domain (such as those
defined by SLPs and SRMs) and probabilities on possible worlds (BLPs and
PRMs). Links between these probabilities are also provided. However, the con-
clusions that can be drawn from a behavioral approach differ from the results
obtained in previous model-theoretical studies (such as that of [7]): our aim is to
provide ways in which knowledge encoded in one framework can be transferred
into another framework. We focus on inter-translations, their features and limits.

We have adopted the following methodology:

– We first demonstrate relations between semantics: for a pair of frameworks
(say, SLPs and BLPs), we define equivalent programs and equivalent set of
queries. For instance, the fact that a k-ary Bayesian atom Ga takes the value
v in a BLP can be represented in an equivalent SLP with a (k+1)-ary logical
atom G having the same predicate and k first arguments asGa, and the value
v as last argument. We then say that a k-ary atomic BLP query is equivalent
to the associated (k + 1)-ary atomic SLP query.

– We say that the semantics are equivalent when equivalent (set of) queries
on equivalent programs infer the same (set of) probability distributions.

– Hence our goal is eventually to provide algorithms that transform a pro-
gram into an equivalent program in another framework, (such algorithms
are referred to as inter-translations) and to analyze their features and their
limits.

From the semantics perspective, we compare the four PLMs in terms of the
following categories (as presented in section 2)

– Logic programming (LP) vs. relational models (RM): SLPs and BLPs are
LP-based, while SRMs and PRMs are RM-based.

– Possible-world vs. domain-frequency: SLPs and SRMs are type 1 / domain-
frequency approaches, in contrast type 2 / possible-world perspective is dom-
inant in BLPs and PRMs.

In addition, SLPs are considered to be grammar-based models, while BLPs,
PRMs and SRMs are classified to be graph-based models. In the rest sections, we
detail the inter-translations between the PLMs of interests: SLPs-BLPs, SLPs-
SRMs and BLPs-PRMs respectively.

5 A Behavioral Comparison of SLPs and BLPs

We first claim that a BLP B and an SLP S define equivalent semantics if the
probability that any ground Bayesian atom Ga in the Herbrand model of the
BLP takes some value v is identical to the probability of the associated logi-
cal atom G in S, ie. PSLP

S (Ga) ≡b PBLP
B,Ga

(Ga = v). There is an intuitive and
global approach to find an inter-translation: any BLP B can be represented by

A Behavioral Comparison of Some Probabilistic Logic Models 315

a (possibly infinite) Bayesian network BNB, and the KBMC stage consists in
finding the Bayesian variables relevant to the query (hence leading to a finite BN
-a subpart ofBNB- that can be queried). Provided that the least Herbrand model
of the BLP is finite, BNB will be finite, and it is possible to use the method
in [2] to translate BNB into SLPs. But this approach cannot be extended to
general BLPs.

To solve the problem, we need either restrict BLPs or extend SLPs. Therefore
we developed a standard translation [20], which exists in two versions: one trans-
lates restricted BLPs (which do not make use of combining rules) into SLPs; and
the other one translates general BLPs into extended SLPs (which are augmented
with combining functions). One remaining drawback is that the standard trans-
lations do not handle evidence, that is, some prior knowledge about the domain
in BNs. The reason is that SLPs and e-SLPs define semantics on tree structure,
whereas KBMC in BLPs permits the union of several trees and the computation
of probabilities in singly connected networks.

We summarize the translation approaches and theorems presented in [20]
without examples and proofs, and provide some revisions with examples.

5.1 Restricted BLPs and Extended SLPs

If S is an SLP, the subset Sh of clauses in S with predicate symbol h in the
head is called the definition of h. A restricted BLP is a BLP whose predicate
definitions contain one single stochastic clause each. A ground query Ga is said
to be safe with regards to a BLP B if the and-or tree rooted at Ga does not
contain 2 identical nodes (no merging of nodes takes place during KBMC). Nn
is the set of natural numbers from 1 to n.

An extended SLP (e-SLP) is an SLP S augmented with a set of combining
functions {CRh}, for all predicates h appearing in the head of some stochastic
clause in S. A combining function is a function that maps a set of possible
resolvents of h (obtained using one clause in Sh) and associated real numbers in
[0, 1] to a real number in [0, 1], CRh : ((r1, p1), ..., (rn, pn)) �→ r ∈ [0, 1].

Given an e-SLP Se consisting of the SLP S and the combining functions
{CRh}, and a query Q (consisting of a predicate h), the probability PeSLP

Se
(Q)

is the probability of the pruned and-or tree T rooted at the or-node Q. The
probability of a pruned and-or tree is defined by structural induction:

– Base case: if T is a single or-node, PeSLP
Se

(Q) is PSLP
S (Q), the probability

of S at query Q.
– If the root of T is an or-node with n branches leading to the resolvents

(and-nodes) (ri)i∈Nn , then PeSLP
Se

(Q) = CRh((ri, pi)i∈Nn), where pi is the
probability of the pruned and-or subtree rooted at the and-node ri.

– If the root of T is an and-node leading to the resolvents (or-nodes) (ri)i∈Nn ,
then PeSLP

Se
(Q) =

∏n
i=1 pi, where pi is the probability of the pruned and-or

subtree rooted at the or-node ri.

316 S. Muggleton and J. Chen

5.2 Standard Translation from Restricted BLPs to SLPs

Let B denote a restricted BLP.

– Identify each k-ary Bayesian atom b, which appears in B and has the value
domain V , to the (k + 1)-ary (logical) atom b(vb) having the same k first
arguments and a value vb of V as last argument.

– For each Bayesian clause head|b1, ..., bn in B, for each value in the associ-
ated CPT, which indicates the probability pvh,vb1,...,vbn

that the Bayesian
atom head takes the value vh given that the {bi : i ∈ Nn} take the val-
ues (vb1, ..., vbn), construct the stochastic clause consisting of the parameter
pvh,vb1,...,vbn

, and the definite clause head(vh) ← b1(vb1), ..., bn(vbn).
– The standard translation of B consists of the n stochastic clauses con-

structible in that way, n being the sum of the numbers of coefficients in the
CPTs. This SLP is pure and unnormalised (the parameters of the clauses in
Sh ⊆ S sum to the product of the domain sizes of the Bayesian atoms in the
body of the Bayesian clause with head h).

Theorem. Given a restricted BLP B, its standard translation S obtained as de-
fined above, and a ground Bayesian query Ga which is safe with regards to B. Let
us associate to Ga the logical query G(v), v ∈ dom(Ga). Then PSLP

S (G(v)) ≡b
PBLP

B,Ga
(Ga = v).

5.3 Standard Translation from BLPs to e-SLPs

Let B denote a BLP. The standard translation of B is the extended SLP Se
defined by the following stochastic clauses and combining functions:

– The stochastic clauses (which form the set S) are obtained in the same way
as the stochastic clauses obtained from a restricted BLP.

– Let us take a ground predicate h in the head of some clause in S and assume
that it can be unified with the heads of some clauses in Sh, leading to the
resolvents {ri,j} with probabilities in S equal to {pi,j}. A resolvent can
contain several atoms. The clauses in Sh come from z different Bayesian
clauses with the same predicate in the head. These original clauses can be
indexed with a number that corresponds to the first index i ∈ Nz in the
name of the resolvents. The second index j ∈ Nni refers to one of the ni
different distributions of values over the Bayesian atoms in the body of the
Bayesian clause i. We define CRh by:

CRh =
∑

j1∈Nn1 ,...,jz∈Nnz

CR(h, r1,j1 , ..., rz,jz)×
z∏

t=1

pt,jt

where CR is the combining rule defined in B.

Theorem. Given any BLP B, its standard translation Se obtained as defined
above, and a ground Bayesian query Ga which is safe with regards to B. Let us
associate to Ga the logical query G(v), v ∈ dom(Ga). Then PeSLP

Se
(G(v)) ≡b

PBLP
B,Ga

(Ga = v).

A Behavioral Comparison of Some Probabilistic Logic Models 317

5.4 Translation from SLPs to BLPs

Let S denote a complete, range-restricted and non-recursive SLP4.

– For each stochastic clause p : head← b1, ..., bn in S, identify each atom to
a Bayesian atom whose domain is {true, false}.

– Construct the Bayesian clause having the same head, the same body, and
the following conditional probability table:

head
b1 ... bn true false

true true true p 1− p
true true false 0 1
� � � 0 1

false false false 0 1

– To complete the definition of the BLP, we need to define a combining rule
CR. Suppose that we have to combine n conditional probability tables CPTi
(1 ≤ i ≤ n). Each CPTi defines the probabilities P (head | Bi), where Bi is
the set of ground Bayesian atoms in the body of the associated clause. Thus
to define CR((CPTi)1≤i≤n), and by using normalization, we only have to
set the values of P (head = true | ∪ni=1 Bi) for all possible instantiations of the
ground Bayesian atoms in (∪ni=1 Bi). The value of P (head = false|∪ni=1Bi) =
1− P (head = true| ∪ni=1 Bi) can then be deduced.

– For each possible instantiation (∪ni=1 Insti) of (∪ni=1 Bi), we take the sum∑n
i=1 P (head = true | Bi = Insti) and assign it to P (head = true | ∪ni=1 Bi).

Since the SLP is complete, this sum will never be greater than 1, and the
CR is well defined.

Theorem. Given a complete, range-restricted and non-recursive SLP S, its
translation into a BLP B obtained as defined above , and a ground query G.
Let us associate to G the Bayesian atom Ga, whose domain is {true, false},
and which is itself associated to a chance node in the Bayesian net BNB,Ga . If
Ga is safe with regards to B then PSLP

S (G) ≡b PBLP
B,Ga

(Ga = true).

5.5 A Revised Translation from BLPs to SLPs

There exists a potential ‘contradictory refutation’ problem in BLPs-SLPs trans-
lation, which is illustrated in Figures 1, 2 and 3 for an example. The error lies
in the potential inconsistent value settings (or substitutions) between atoms in
a clause, eg. in clause d(tom,y)← b(tom,y),c(tom,y), b(tom,y) may be set
to a(tom,y) while c(tom,y) might be set to a contradictory value a(tom,n)
simultaneously. To solve the problem, we introduce an extra data structure of list
to ‘set and remember’ values instead of just setting values. Translations from the

4 A clause C is said to be non-recursive iff the head of C is not found in the body
of C.

318 S. Muggleton and J. Chen

(a)a first-order BN

(b)corresponding BLP

A (tom)
B (tom) | A (tom)
C (tom) | A (tom)
D (tom) | B (tom), C (tom)

A={y,n}

B={y,n} C={y,n}

D={y,n}

Fig. 1. An example of a first-order BN and corresponding BLP representation

←a(tom,y),c(tom,y).

← a(tom, y).

refutation

p2 p1

p8

← d(tom, y).

← b(tom, y), c(tom, y). ……

←a(tom,n),c(tom,y).

……

← a(tom, n).

contradictory refutation

p11 p12

p3 p4

p1

p7
← c(tom, y).

← d(tom, [A,y,y,y]).

← b(tom, [A,y,y,y]), c(tom, [A,y,y,y]). ……

←a(tom,[y,y,y,y]),c(tom,[y,y,y,y]).

← c(tom, [y,y,y,y]).

←a(tom,[n,y,y,y]),c(tom,[n,y,y,y]).

……

refutation

p11 p12

p3 p4

p1

p7

p1

← a(tom, [y,y,y,y]).

Fig. 2. (a) Stochastic SLD-tree with contradictory refutation (shown in dash lines) and
(b) Resolved SSLD-tree without contradictory refutation

p1 : a(tom, y) ← .
p2 : a(tom, n) ← .
p3 : b(T, y) ← a(T, y).
p4 : b(T, y) ← a(T, n).
p5 : b(T, n) ← a(T, y).
p6 : b(T, n) ← a(T, n).
p7 : c(T, y) ← a(T, y).
p8 : c(T, y) ← a(T, n).
p9 : c(T, n) ← a(T, y).
p10: c(T, n) ← a(T, n).
p11: d(T, y) ← b(T, y), c(T, y).
p12: d(T, y) ← b(T, y), c(T, n).
p13: d(T, y) ← b(T, n), c(T, y).
p14: d(T, y) ← b(T, n), c(T, n).
p15: d(T, n) ← b(T, y), c(T, y).
p16: d(T, n) ← b(T, y), c(T, n).
p17: d(T, n) ← b(T, n), c(T, y).
p18: d(T, n) ← b(T, n), c(T, n).

p1 : a(tom, [y,B,C,D]) ← .
p2 : a(tom, [n,B,C,D]) ← .
p3 : b(T, [y,y,C,D]) ← a(T, [y,y,C,D]).
p4 : b(T, [n,y,C,D]) ← a(T, [n,y,C,D]).
p5 : b(T, [y,n,C,D]) ← a(T, [y,n,C,D]).
p6 : b(T, [n,n,C,D]) ← a(T, [n,n,C,D]).
p7 : c(T, [y,B,y,D]) ← a(T, [y,B,y,D]).
p8 : c(T, [n,B,y,D]) ← a(T, [n,B,y,D]).
p9 : c(T, [y,B,n,D]) ← a(T, [y,B,n,D]).
p10: c(T, [n,B,n,D]) ← a(T, [n,B,n,D]).
p11: d(T, [A,y,y,y]) ← b(T, [A,y,y,y]), c(T, [A,y,y,y]).
p12: d(T, [A,y,n,y]) ← b(T, [A,y,n,y]), c(T, [A,y,n,y]).
p13: d(T, [A,n,y,y]) ← b(T, [A,n,y,y]), c(T, [A,n,y,y]).
p14: d(T, [A,n,n,y]) ← b(T, [A,n,n,y]), c(T, [A,n,n,y]).
p15: d(T, [A,y,y,n]) ← b(T, [A,y,y,n]), c(T, [A,y,y,n]).
p16: d(T, [A,y,n,n]) ← b(T, [A,y,n,n]), c(T, [A,y,n,n]).
p17: d(T, [A,n,y,n]) ← b(T, [A,n,y,n]), c(T, [A,n,y,n]).
p18: d(T, [A,n,n,n]) ← b(T, [A,n,n,n]), c(T, [A,n,n,n]).

Fig. 3. Previous and revised translations from the above BLP to an SLP

A Behavioral Comparison of Some Probabilistic Logic Models 319

BLP to an SLP by applying previous method (in [20]) and a revised method (this
paper) are shown in Fig. 3(a) and (b) respectively, and the resolved stochastic
SLD-tree can be seen in Fig.2(b). More precisely, a revised BLP-SLP translation
algorithm is shown in the following steps. Let B denote a restricted BLP and S
denote its translation SLP.

– Identify each k-ary Bayesian atom b, which appears in B and has the value
domain Vb, to the (k + 1)-ary (logical) atom b(vb) having the same k first
arguments and a value vb ∈ Vb as last argument.

– Construct a list lvb to replace vb. The length of lvb is the number of all
Bayesian atoms. Each element of lvb corresponds to an arbitrary Bayesian
atom b′ and is set to a fresh variable if b′ �= b or a value vb′ ∈ Vb′ if b′ = b.

– For each Bayesian clause head | b1, ..., bn in B, for each value in the asso-
ciated CPD, which indicates the probability pvh,vb1,...,vbn

that the Bayesian
atom head takes the value vh given that the {bi : i ∈ Nn} take the values
(vb1, ..., vbn), construct a list lvh for head as done in step 2, then construct the
stochastic clause consisting of the parameter pvh,vb1,...,vbn

, and the definite
clause: head(lvh)← b1(lvb1), ..., bn(lvbn).

– For lvh, lvb1, ..., lvbn, update the value for each element in lists with respect
to vh, vb1, ..., vbn respectively.

– The standard translation of B consists of the n stochastic clauses con-
structible in that way, n being the sum of the numbers of coefficients in
the CPD tables. This SLP is pure and unnormalised (the parameters of the
clauses in Sh ⊆ S sum to the product of the domain sizes of the Bayesian
atoms in the body of the Bayesian clause with head h).

Note that, in a definite clause (eg. b(tom,[n,y,C,D]) ← a(tom,[n,y,C,D])),
all atoms have the same list values (eg. [n,y,C,D]), in which the elements cor-
responding to the atoms occurred in the clause are value set (eg. [n,y, ,] cor-
responds to atoms a,b) and other elements are assigned to be variables (eg.
[, ,C,D] correspond to atoms c,d). The introduction of lists with variables will
guarantee atoms to propagate consistent values to their predecessors in stochas-
tic SLD-trees.

6 A Behavioral Comparison of SRMs and SLPs

SRMs naturally have a type 1 semantics with domain frequency over the rows
of a database. This section will show how to build SLPs that encode the same
class of semantics. Our approach is to find for any SRM ψ, a SLP S whose least
Herbrand model is a contraction of a minimal table stratified database D such
that ψ |= D and such that the probabilities of success of legal queries against D
or ψ match the probabilities induced by S on a set of corresponding SLP queries.

Let R be a table stratified relational schema and ψ an associated SRM. In
order to translate ψ into an equivalent SLP S, we need to translate the model
itself on one hand and the associated set of legal queries on the other hand.

320 S. Muggleton and J. Chen

For every descriptive attribute Ri.Aj and for each ground instantiation with−→
k as tuple of indices, we assert the parameterised ground fact:

θ
−→
k
Ri.Aj

: ri,j(ak1i,j ,
−→pa(Ri, Aj)

−→
k)

where θ
−→
k
Ri.Aj

is the corresponding ψ parameter in which all joint indicator vari-
ables in the parents are set to true.

For each class Ri, we recursively define the key-validator predicate gi as
follows:

1 : gi(ki(
−→
Ai1 ,
−→
Fi,
−→
Ji)) ←

gi1(Fi1), . . . , gi1(Fin),
gai,1(Ai,1), . . . , gai,ni(Ai,ni),
gji,1(Ji,1), . . . , gji,mi(Ji,mi).

For each class Ri in ψ we can build a clause that defines the predicate ri/ni
by using the above predicates and by introducing additional helper predicates5.

1 : ri(ki(
−→
Ai, kj(

−→
Aj1 ,
−→
Fj , true(

−→
Ai|Jj,i

),
−→
Jj),
−→
Ai,
−→
Fi,
−→
Ji),
−→
Ai,
−→
Fi) ←

gj(kj(
−→
Aj1 ,
−→
Fj , true(

−→
Ai|Jj,i

),
−→
Jj)),

ri,1(Ai,1,
−→
Pa(Ai,1)), . . . , ri,n(Ai,n,

−→
Pa(Ai,n)),

ji,1(Ji,1,
−→
Ai|Ji,1), . . . , ji,m(Ji,m,

−→
Ai|Ji,m

).

Let Q be a legal query with respect to ψ. The following shows how to build a
corresponding SLP query GQ. Initialise GQ to an empty formula. For each tuple
variable tj in of classRi occurring inQ, add a literal toGQ with predicate symbol
ri and the free variable Kj as primary key. Descriptive attributes arguments are
set to the constants ali,k corresponding to the values tj .alk specified in σQ or to
some new free variable if no value is specified. Foreign key arguments are set
bound variables K ′

j according to the join �	Q.

Theorem. The previous procedure translates any SRM ψ into a SLP S that
computes the same probability distribution over legal queries; that is, for any legal
query Q, the corresponding SLP query GQ, such that PSRM

ψ (Q) ≡b PSLP
S (GQ).

7 A Behavioral Comparison of PRMs and BLPs

PRMs naturally have a type 2 semantics with possible worlds which correspond
to possible instances of a given relational skeleton. This section will show how to
build BLPs that can capture the same class of semantics where unary Bayesian
predicates represent descriptive attributes and aggregate functions, binary pred-
icates represent reference slots and constants represent objects of the relational
skeleton.

Given a relational skeleton σ and a PRM Π = (S, θS), Table 1 defines a
translation procedure prm2blp that builds a BLP B inferring a probabilistic
distribution on Iσ, the set of complete instances of the relational skeleton σ.
5 Definition and translation of helper predicates are omitted.

A Behavioral Comparison of Some Probabilistic Logic Models 321

Table 1. The prm2blp translation procedure from PRMs to BLPs

proc prm2blp(σ, S, θS):

1. for each class Ri:

(a) for each descriptive attribute Aj ∈ A(Ri) :

define the unary Bayesian predicate pi,j/1 with

dom(pi,j/1) = V(Aj)
(b) for each reference slot ρk ∈ R(Ri) :

define the binary Bayesian predicate ri,k/2 with

dom(ri,k/2) = {true, false}
(c) for each aggregate function γi in θS:

define the unary Bayesian predicate gi/1 with

dom(gi/1) = V(γi)
2. let B be an empty BLP

3. for each class Ri:

(a) for each object o ∈ Oσ(Ri):
i. for each reference slot ρk ∈ �(Ri) and each

o′ ∈ ρk(o):
assert in B the ground Bayesian fact ri,k(o, o

′). with associated

(instantiated) CPT: [1, 0]
(b) for each descriptive attribute Aj ∈ A(Ri):

– if (Pa(Ri.Aj) = ∅) according to S then:

for each object o ∈ Oσ(Ri):
i. assert in B the ground Bayesian fact pi,j(o). with

associated CPT: θS(Ri.Aj)
– else:

i. let C be a Bayesian clause with head pi,j(V)
ii. for each Ul ∈ U = Pa(Ri.Aj)

• if Ul = Ri.Am then:

add the literal pi,m(V) to the body of C
• else Ul = γk(Ri.τ.Am) where τ a chain of

reference slots of the form τ = ρk1 , ρk2 , . . . , ρkn:

∗ add the literal gk(V) to the body of C
∗ let Ri′ = Ri.τ
∗ assert in B the following helper Bayesian clause :

gk(V) | ri,k1 (V, V1), . . . , rkn−1,kn(Vn−1, Vn), pi′,m(Vn).
iii. let CPTC be θS(Ri.Aj |Pa(Ri.Aj))
iv. assert C in B

4. build the Combining Rules for each predicate in B by applying the

build cr procedure

5. return B

Theorem. For any PRM Π that is guaranteed-acyclic w.r.t. some non-empty
relational skeleton σ:

∀i ∈ Iσ : PPRM
(σ,Π) (i) ≡b PBLP

prm2blp(σ,Π)(i
′),

where i′ is the ground Bayesian query corresponding to the database instance i.

322 S. Muggleton and J. Chen

8 Discussion and Conclusions

The first result we achieved in the study is BLPs ≡b e-SLPs. We argue that
SLPs augmented with combining functions (namely extended SLPs) and BLPs
can encode the same knowledge, in that they encode equivalent probability dis-
tributions for equivalent set of queries. Since SLPs need to be augmented with
combining rules in order to be as expressive as BLPs, and BLPs are able to
encode complete, range-restricted and non-recursive SLPs, we are tempted to
conclude that BLPs are more expressive than strict SLPs. However, SLPs’ and
BLPs’ formalisms are more or less intuitive, depending on the kind of knowledge
we want to model. It should be noted that BLP’s query-answering procedure
benefits from different frameworks, say logic programming and Bayesian net-
works, while inference mechanisms in SLPs are straightforward using only logic
programming.

Another finding is also shown in the study, denoting as PRMs 	b BLPs and
SRMs 	b SLPs. When considering models within the same probabilistic model
category (type 1 or type 2), BLPs (resp. SLPs) can naturally express PRMs
(resp. SRMs), i.e., translated models and queries can be forged, which compute
the same probability distributions.

We believe this study to be a formal basis for further research. Several learning
algorithms have been devised for SLPs [2,15,16], BLPs [11,12], PRMs [4,5] and
SRMs [5,6]. Further work thus includes the study of how inter-translations be-
tween those frameworks can help devising better learning algorithms for PLMs
depending on the kind of knowledge we want to model. For instance, inter-
translations of e-SLPs and BLPs can be used to extend learning techniques
designed for BLPs to the learning of e-SLPs (and vice-versa). Investigating such
extensions could be interesting. We also hope this study provide a bridge to
developing an integrated theory of probabilistic logic learning.

As the related studies, one may find an intuitive approach of translating SLPs
into BNs, Markov networks and stochastic context free grammars in [2]; a simpler
scheme for mapping PRMs to BLPs is contained in [3]; a theoretical comparison
of BLPs and Relational Markov Models (RMMs) is presented in [18]; and an-
other approach of analysing the expressive power of different probabilistic logic
languages could be found in [9,8] as well as in this volume.

Acknowledgement

We are very grateful to Aymeric Puech and Olivier Grisel for their initial contri-
butions on the topic when they were studying in Imperial College London. This
work was supported by the Royal Academy of Engineering/Microsoft Research
Chair on ‘Automated Microfluidic Experimentation using Probabilistic Inductive
Logic Programming’; the BBSRC grant supporting the Centre for Integrative
Systems Biology at Imperial College, Grant Reference BB/C519670/1; the BB-
SRC grant on ‘Protein Function Prediction using Machine Learning by Enhanced
Novel Support Vector Logic-based Approach’, Grant Reference BB/E000940/1;

A Behavioral Comparison of Some Probabilistic Logic Models 323

ESPRIT IST project ‘Application of Probabilistic Inductive Logic Programming
II (APRIL II)’, Grant reference FP-508861.

References

1. Bratko, I.: Prolog for artificial intelligence. Addison-Wesley, London (1986)
2. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn-

ing 44(3), 245–271 (2001)
3. De Raedt, L., Kersting, K.: Probabilistic Logic Learning. ACM-SIGKDD Explo-

rations: Special issue on Multi-Relational Data Mining 5(1), 31–48 (2003)
4. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational

models. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Confer-
ences on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 1300–1309.
Morgan Kaufmann, San Francisco (1999)

5. Getoor, L.: Learning Statistical Models from Relational Data. PhD thesis, Stanford
University (2001)

6. Getoor, L., Koller, D., Taskar, B.: Statistical models for relational data. In: Wrobel,
S. (ed.) MRDM 2002, University of Alberta, Edmonton, Canada, July 2002, pp.
36–55 (2002)

7. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelli-
gence 46, 311–350 (1989)

8. Jaeger, M.: Type extension trees: A unified framework for relational feature con-
struction. In: Gärtner, T., Garriga, G.C., Meinl, T. (eds.) Working Notes of the
ECML 2006 Workshop on Mining and Learning with Graphs (MLG 2006), Berlin,
Germany (September 2006)

9. Jaeger, M., Kersting, K., De Raedt, L.: Expressivity analysis for pl-languages. In:
Fern, A., Getoor, L., Milch, B. (eds.) Working Notes of the ICML 2006 Workshop
Open Problems in Statistial Relational Learning (SRL 2006), Pittsburgh, USA,
June 29 (2006)

10. Jensen, F.V.: Introduction to Bayesian Networks. Springer, New York (1996)
11. Kersting, K., De Raedt, L.: Adaptive Bayesian Logic Programs. In: Rouveirol, C.,

Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, Springer, Heidelberg (2001)
12. Kersting, K., De Raedt, L.: Towards Combining Inductive Logic Programming and

Bayesian Networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI),
vol. 2157, Springer, Heidelberg (2001)

13. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A.
(eds.) Proceedings of the Work-in-Progress Track at the 10th International Con-
ference on Inductive Logic Programming, pp. 138–155 (2000)

14. Muggleton, S.H.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in
Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

15. Muggleton, S.H.: Learning stochastic logic programs. Electronic Transactions in
Artificial Intelligence 4(041) (2000)

16. Muggleton, S.H.: Learning structure and parameters of stochastic logic programs.
In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, Springer,
Heidelberg (2003)

17. Muggleton, S.H., Firth, J.: CProgol4.4: a tutorial introduction. In: Dzeroski, S.,
Lavrac, N. (eds.) Relational Data Mining, pp. 160–188. Springer, Heidelberg (2001)

324 S. Muggleton and J. Chen

18. Muggleton, S.H., Pahlavi, N.: The complexity of translating blps to rmms. In:
Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 351–365. Springer, Heidelberg (2007)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Los Altos (1988)

20. Puech, A., Muggleton, S.H.: A comparison of stochastic logic programs and
Bayesian logic programs. In: IJCAI 2003 Workshop on Learning Statistical Models
from Relational Data, IJCAI (2003)

	A Behavioral Comparison of Some Probabilistic Logic Models
	Introduction
	Preliminaries
	Logical/Relational Models
	Probabilistic Models
	First-Order Probabilistic Models

	Presentation of PLMs
	Stochastic Logic Programs
	Bayesian Logic Programs
	Statistical Relational Models
	Probabilistic Relational Models

	Behavioural Comparison of Expressive Knowledge Representations
	A Behavioral Comparison of SLPs and BLPs
	Restricted BLPs and Extended SLPs
	Standard Translation from Restricted BLPs to SLPs
	Standard Translation from BLPs to e-SLPs
	Translation from SLPs to BLPs
	A Revised Translation from BLPs to SLPs

	A Behavioral Comparison of SRMs and SLPs
	A Behavioral Comparison of PRMs and BLPs
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

