
Model Revision from Temporal Logic Properties

in Computational Systems Biology

François Fages and Sylvain Soliman

INRIA Rocquencourt, France
Francois.Fages@inria.fr, Sylvain.Soliman@inria.fr

Abstract. Systems biologists build models of bio-molecular processes
from knowledge acquired both at the gene and protein levels, and at
the phenotype level through experiments done in wild-life and mutated
organisms. In this chapter, we present qualitative and quantitative logic
learning tools, and illustrate how they can be useful to the modeler. We
focus on biochemical reaction models written in the Systems Biology
Markup Language SBML, and interpreted in the Biochemical Abstract
Machine BIOCHAM. We first present a model revision algorithm for in-
ferring reaction rules from biological properties expressed in temporal
logic. Then we discuss the representations of kinetic models with ordi-
nary differential equations (ODEs) and with stochastic logic programs
(SLPs), and describe a parameter search algorithm for finding param-
eter values satisfying quantitative temporal properties. These methods
are illustrated by a simple model of the cell cycle control, and by an ap-
plication to the modelling of the conditions of synchronization in period
of the cell cycle by the circadian cycle.

1 Introduction

One promise of computational systems biology is to model biochemical processes
at a sufficiently large scale so that complex system behaviors can be predicted
under various conditions. The biochemical reaction systems involved in these
processes may contain many cycles and exhibit complex multistationarity and
oscillating behaviors. While usually neglected in metabolic networks, these char-
acteristics are preponderant in models of signal transduction and cell control.
They thus provide a challenge to representation and inference methods, and the
issue of representing complex biochemical systems and their behavior at different
levels of abstraction is a central one in systems biology.

The pioneering use in [1] of the π-calculus process algebra for modeling cell
signalling pathways, has been the source of inspiration of numerous works in
the line of process calculi [2,3,4] and their stochastic extensions [5]. Recently,
the question of formalizing the biological properties of the system has also been
raised, and formal languages have been proposed for this task, most notably using
temporal logics in either boolean [6,7], discrete [8,9,10] or continuous models
[11,12].

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 287–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 F. Fages and S. Soliman

The biochemical abstract machine BIOCHAM1 [13,14] has been designed
as a simplification of the process calculi approach using a logic programming
setting and a language of reaction rules compatible with the Systems Biol-
ogy Markup Language SBML [15] (http://www.sbml.org/). This opens up the
whole domain of mathematical biology, through repositories like BioModels.net
(http://www.biomodels.net), CMBSlib (http://contraintes.inria.fr/
CMBSlib/), PWS (http://jjj.biochem.sun.ac.za/), etc. This rule-based lan-
guage is used in BIOCHAM for modeling biochemical networks at three abstrac-
tion levels:

– The boolean semantics, where one reasons on the presence/absence of
molecules,

– The differential semantics, where one reasons on molecular concentrations,
– The stochastic semantics, where one reasons on molecule numbers and reac-

tion probabilities.

A second language is used to formalize the biological properties known from
experiments in temporal logic (the Computation Tree Logic CTL, Linear Time
Logic LTL or Probabilistic LTL with constraints, according to the qualitative,
quantitative or stochastic nature of the properties). Such a formalization is a first
step toward the use of logic learning tools to help the modeler in his tasks [16].
When a model does not satisfy all the expected properties, the purpose of the
machine learning system of BIOCHAM is to propose rules or kinetic parameter
values in order to curate the model w.r.t. a given specification [12]. This novel
approach to biological modeling has been applied to a data set of models about
the cell cycle control in different organisms, and signal transduction network (see
http://contraintes.inria.fr/APrIL2/).

There has been work on the use of machine learning techniques, such as in-
ductive logic programming (ILP, see Chapter 1 or [17]), to infer gene functions
[18], metabolic pathway descriptions [19,20] or gene interactions [8]. However
learning biochemical reactions from temporal properties is quite new, both from
the machine learning perspective and from the systems biology perspective. A
precursor system of this type was the system KARDIO used in drug target dis-
covery [21]. The novelty in our approach is the use of the temporal logic setting
to express semi-qualitative semi-quantitative properties of the behaviour of the
system to be captured by the model.

In the following, we present successively:

– The boolean semantics of reaction models in Datalog, the representation
of biological properties in temporal logic CTL, the application of ILP and
model revision from temporal properties,

– The representation of kinetic models, of quantitative properties in temporal
logic LTL with constraints, and a parameter search algorithm,

– The evaluation on an application: the modelling of the synchronization in
period of the cell cycle by the circadian cycle.

1 BIOCHAM is available for download at http://contraintes.inria.fr/BIOCHAM

http://www.sbml.org/
http://www.biomodels.net
http://jjj.biochem.sun.ac.za/
http://contraintes.inria.fr/APrIL2/

Model Revision from Temporal Logic Properties 289

2 Reaction Rule Learning from Temporal Properties

2.1 Biochemical Reaction Models in Datalog

From a syntactical point of view, SBML and BIOCHAM models basically con-
sists in a set of reaction rules between molecules, protein complexes and modified
proteins such as by phosphorylation. Each reaction rule for synthesis, degrada-
tion, complexation, phosphorylation, etc. can be given with a kinetic expression.

Example 1. Here is for instance a simple model of the cell cycle control after
Tyson (1991). Each rule is given here with an arithmetic expression (its rate)
followed by the keyword for and then a list of reactants separated by + on the
left side of the reaction arrow => and a list of products on the right side. The
notation represents the empty list.

k1 for _=>Cyclin.

k2*[Cyclin] for Cyclin=>_.

k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=> Cdc2~{p1}-Cyclin~{p1}.

k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=> Cdc2-Cyclin~{p1}.

k4*([Cdc2-Cyclin~{p1}])^2*[Cdc2~{p1}-Cyclin~{p1}]

for Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=> Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=> Cyclin~{p1}+Cdc2.

k7*[Cyclin~{p1}] for Cyclin~{p1}=>_.

k8*[Cdc2] for Cdc2=> Cdc2~{p1}.

k9*[Cdc2~{p1}] for Cdc2~{p1}=> Cdc2.

The first rule represents the synthesis of a cyclin with a constant rate k1. The
second rule represents the degradation of the cyclin with a reaction rate propor-
tional to the cyclin concentration. The third rule represents the phosphorylation
of the cyclin when it gets complexed with the kinase Cdc2~{p1}. The fourth rule
is an autocatalyzed dephosphorylation of the complex, etc. For a more complete
account of BIOCHAM syntax see for instance [12].

From a semantical point of view, reaction rules can be interpreted under differ-
ent semantics corresponding to different abstraction levels. The most abstract
semantics of BIOCHAM rules is the boolean semantics that associates to each
molecule a boolean variable representing its presence or absence in the system,
and ignores the kinetic expressions. Reaction rules are then interpreted as an
asynchronous transition system2 over states defined by the vector of boolean
variables. A rule such as A+B=>C+D defines four possible transitions correspond-
ing to the complete or incomplete consumption of the reactants A and B. Such
a rule can only be applied when both A and B are present in the current state.
In the next state, C and D are then present, while A and B can either be present
(partial consumption) or absent (complete consumption).

2 In this context asynchronous refers to the fact that only one transition is fired at
a time, even if several are possible. This choice is justified by the fundamental bio-
chemical phenomena of competition and masking between reaction rules.

290 F. Fages and S. Soliman

The boolean semantics can be straightforwardly represented in Datalog. We
use Prolog here for convenience. A state is represented by a Prolog term
state(mol1,...,molN) where the molecule variable mol is 0 if absent, 1 if
present, and a variable if it can take any value. Transitions are represented by
facts transition(predecessor state, successor state) with variables link-
ing successor and predecessor values.

Example 2. The boolean semantics of the previous cell cycle model can be rep-
resented in Prolog as follows:

dimension(6).

names(’Cyclin’,’Cdc2~{p1}’,’Cdc2-Cyclin~{p1,p2}’,

’Cdc2-Cyclin~{p1}’,’Cdc2’,’Cyclin~{p1}’).

transition(state(_,A,B,C,D,E),state(1,A,B,C,D,E)).

transition(state(1,A,B,C,D,E),state(_,A,B,C,D,E)).

transition(state(1,1,_,A,B,C),state(_,_,1,A,B,C)).

transition(state(A,B,1,_,C,D),state(A,B,_,1,C,D)).

transition(state(A,B,1,1,C,D),state(A,B,_,1,C,D)).

transition(state(A,B,_,1,C,D),state(A,B,1,_,C,D)).

transition(state(A,B,C,1,_,_),state(A,B,C,_,1,1)).

transition(state(A,B,C,D,E,1),state(A,B,C,D,E,_)).

transition(state(A,_,B,C,1,D),state(A,1,B,C,_,D)).

transition(state(A,1,B,C,_,D),state(A,_,B,C,1,D)).

Formally, the boolean semantics of a reaction model is a Kripke structure (see
for instance [22]) K = (S,R) where S is the set of states defined by the vector
of boolean variables, and R ⊆ S × S is the transition relation between states,
supposed to be total (i.e. ∀s ∈ S, ∃s′ ∈ S s.t. (s, s′) ∈ R). A path in K, starting
from state s0 is an infinite sequence of states π = s0, s1, · · · such that (si, si+1) ∈
R for all i ≥ 0. We denote by πk the path sk, sk+1, · · ·.

2.2 Biological Properties in Temporal Logic CTL

In the boolean semantics of reaction models, the biological properties of interest
are reachability properties, i.e. whether a particular protein can be produced
from an initial state; checkpoints, i.e. whether a particular protein or state is
compulsory to reach another state; stability, i.e. whether the system can (or
will) always verify some property; etc.

Such properties can be expressed in the Computation Tree Logic CTL∗ [22]
that is an extension of propositional logic for reasoning about an infinite tree
of state transitions. CTL∗ uses operators about branches (non-deterministic
choices) and time (state transitions). Two path quantifiers A and E are in-
troduced to handle non-determinism: Aφ meaning that φ is true on all branches,
and Eφ that it is true on at least one branch. The time operators are F,G,X,U
and W ; Xφ meaning φ is true at the next transition, Gφ that φ is always true,
Fφ that φ is eventually true, φ U ψ meaning φ is always true until ψ becomes
true, and φ W ψ meaning φ is either always true or until and when ψ becomes
true. Table 1 recalls the truth value of a formula in a given Kripke structure.

Model Revision from Temporal Logic Properties 291

Table 1. Inductive definition of the truth value of a CTL∗ formula in a state s or a
path π, in a given Kripke structure K

s |= α iff α is a propositional formula true in the state s,
s |= Eψ iff there exists a path π starting from s s.t. π |= ψ,
s |= Aψ iff for all paths π starting from s, π |= ψ,
s |=!ψ iff s �|= ψ,
s |= ψ & ψ′ iff s |= ψ and s |= ψ′,
s |= ψ | ψ′ iff s |= ψ or s |= ψ′,
s |= ψ ⇒ ψ′ iff s |= ψ′ or s �|= ψ,

π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.
π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.

or there exists k ≥ 0 s.t. πk |= ψ&ψ′ and for all 0 ≤ j < k, πj |= ψ.
π |=!ψ iff π �|= ψ,
π |= ψ & ψ′ iff π |= ψ and π |= ψ′,
π |= ψ | ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π �|= ψ,

In this logic, Fφ is equivalent to true U φ, Gφ to φ W false, and the fol-
lowing duality properties hold: !(Eφ) = A(!φ), !(Xφ) = X(!φ), !(Fφ) = G(!φ),
!(φ U ψ) =!ψ W !φ and !(φ W ψ) =!ψ U !φ, where ! denotes negation. The
following abbreviation are used in BIOCHAM:

– reachable(P) stands for EF (P);
– steady(P) stands for EG(P);
– stable(P) stands for AG(P);
– checkpoint(Q,P) stands for !E(!Q U P);
– oscillates(P) stands for EG((F !P) ∧ (F P)).

These temporal properties can be checked in the Prolog representation of reac-
tion rules, by using a symbolic model-checker written in Prolog. The BIOCHAM
model checker in Prolog proceeds by computing both backward and forward fron-
tiers of states, starting from the initial states (resp. the goal states) leading to a
goal state (resp. an initial state). These sets of states are represented by Prolog
facts with variables. Their cardinalities are reduced by subsumption checks in
this representation. In its simplest form, the forward reachability analysis pro-
ceeds by computing the transitive closure of the transition relation, starting from
the initial state, up to the reaching of a state in the query. The simplest case in
such a model checker is thus a standard transitive closure algorithm in Prolog.

For performance reasons in large reaction models however, the symbolic model
checker NuSMV [23] based on ordered binary decision diagram (OBDD) is pre-
ferred and is used by default in BIOCHAM, through an interface. NuSMV is
restricted to the fragment CTL of CTL∗ in which each time operator must be
immediately preceded by a path quantifier. This restriction causes a difficulty

292 F. Fages and S. Soliman

for the oscillation properties only, since they cannot be expressed in CTL. In
CTL, oscillation properties are thus approximated by the necessary but not suf-
ficient formula EG((EF !P) ∧ (EF P)). We refer to [7,24] for the expressivity
and scalability of this approach in reaction models containing several hundreds
of variables and rules.

2.3 Model Revision from Temporal Properties

Having the model and the properties defined by a Prolog program, ILP tech-
niques can in principle be used for learning reaction rules from temporal prop-
erties, i.e. structure learning of the underlying logic program (see Chapter 1).
Here the positive and negative examples are uniformly given as a list of tempo-
ral properties to satisfy (expressed in a language closed by negation), instead of
by positive and negative facts. Because of the relative complexity of the model
checker in Prolog, this approach is currently limited to reachability properties.
For learning from more general temporal properties, the NuSMV model checker
is used in BIOCHAM as a black box, within an enumeration algorithm of all
possible rule instances of some given rule pattern.

Furthermore, in the general framework of model revision, one wants to dis-
cover deletions as well as additions of reaction rules (of some pattern given as
a bias) in order to satisfy a set of CTL formulas given as positive and negative
examples. CTL properties can be classified into ECTL and ACTL formulas (i.e.
formulas containing only E or A path quantifiers respectively) in order to an-
ticipate whether reaction rules need be added or deleted. Indeed if an ECTL
(resp. ACTL) formula is false in a Kripke structure, it remains false in a Kripke
structure with less (resp. more) transitions. We refer to [12] for the details of the
model revision algorithm implemented in BIOCHAM along these lines.

We show here our results on the model of example 1. For the structure learn-
ing phase, some CTL formulae are entered as a specification, expressing here
reachability, oscillation and checkpoint properties:

add_specs({

reachable(Cdc2~{p1}),

reachable(Cdc2),

reachable(Cyclin),

reachable(Cyclin~{p1}),

reachable(Cdc2-Cyclin~{p1}),

reachable(Cdc2~{p1}-Cyclin~{p1})}).

add_specs({

oscil(Cdc2,

oscil(Cdc2~{p1})),

oscil(Cdc2~{p1}-Cyclin~{p1}),

oscil(Cdc2-Cyclin~{p1}),

oscil(Cyclin),

checkpoint(Cdc2~{p1}-Cyclin~{p1}, Cdc2-Cyclin~{p1})}).

These properties are satisfied by the model and can be automatically checked
by the model-checker. The simplest example to illustrate the structural learning

Model Revision from Temporal Logic Properties 293

method is to delete one rule in the model and let the learning system revise the
model in order to satisfy the specification.

biocham: delete_rules(Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}).

Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}

biocham: check_all.

The specification is not satisfied.

This formula is the first not verified: Ai(oscil(Cdc2~{p1}-Cyclin~{p1}))

biocham: revise_model(more_elementary_interaction_rules).

Success

Modifications found:

Deletion(s):

Addition(s):

Cyclin+Cdc2~{p1}=[Cdc2]=>Cdc2~{p1}-Cyclin~{p1}.

The first solution found is correct, even though it does not correspond to the
deleted rule. In fact, there are four solutions consisting in adding one rule, the
third one corresponds to the original model:

biocham: learn_one_addition(elementary_interaction_rules).

(1) Cyclin+Cdc2~{p1}=[Cdc2]=>Cdc2~{p1}-Cyclin~{p1}

(2) Cyclin+Cdc2~{p1}=[Cyclin]=>Cdc2~{p1}-Cyclin~{p1}

(3) Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}

(4) Cyclin+Cdc2~{p1}=[Cdc2~{p1}]=>Cdc2~{p1}-Cyclin~{p1}

It is worth noting that in these algorithms, the use of types [25] specifying
the protein functions for instance, has the effect of reducing the number of pos-
sibilities and improving the performances in terms of both adequacy of results
and computation time.

3 Parameter Search from Quantitative Temporal
Properties

For relatively small networks of less than a hundred of proteins, kinetic models
have been proved successful to perform quantitative analyses and predictions.
Since the models of most datasets are in SBML, it is quite natural to handle
the kinetic expressions provided in those models, especially for relating them to
quantitative biological properties. In this section, we recal the two most usual
semantics for those expressions, the differential semantics and the stochastic
semantics, and relate them to PILP representations. We then show that the
Linear Time Logic LTL with numerical constraints provides the expressive power
necessary to represent both qualitative and quantitative properties of biological
systems. Similarly to what is done in the boolean case, a model-checker is then
used as basis for a learning process allowing here to find parameter values fitting
a given LTL specification of the biological properties that the model is supposed
to reproduce. This is shown on example 1 and is developed in an application in
the next section.

294 F. Fages and S. Soliman

3.1 Continuous Semantics with ODE’s

The concentration semantics of BIOCHAM associates to each molecule a real
number representing its concentration. Reaction rules are in fact interpreted
with their kinetic expressions by a set of nonlinear ordinary differential
equations (ODE)3. Formally, to a set of BIOCHAM reaction rules E = {ei for
Si => S′

i}i=1,...,n with variables {x1, ..., xm}, one associates the system of ODEs:

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

Given an initial state, i.e. initial concentrations for each of the objects, the
evolution of the system is deterministic, and numerical integration algorithms
compute a time series describing the temporal evolution of the system variables.
The integration methods actually implemented in BIOCHAM are the adaptive
step-size Runge-Kutta method and the Rosenbrock implicit method for stiff
systems, which both produce simulation traces with variable time steps and are
implemented in Prolog.

3.2 Stochastic Semantics with SLPs

The stochastic semantics is the most realistic semantics but also the most difficult
to compute. This semantics associates to each BIOCHAM object an integer
representing the number of molecules in the system. Rules are interpreted as a
continuous time Markov chain where transition probabilities are defined by the
kinetic expressions of reaction rules.

Stochastic simulation techniques [26] compute realizations of the process. The
results are generally noisy versions of those obtained with the concentration
semantics. However, in models with, for instance, very few molecules of some
kind, qualitatively different behaviors may appear in the stochastic simulation,
and thus justify the recourse to that semantics in such cases. A classical example
is the model of the lambda phage virus [27] in which a small number of molecules,
promotion factors of two genes, can generate an explosive multiplication (lysis)
after a more or less long period of passive wait (lysogeny).

In the stochastic semantics, for a given volume V of the location where a com-
pound is situated, its concentration C is translated into a number of molecules
N = C × V × K, where K is Avogadro’s number. The kinetic expression ei

for the reaction i is converted into a transition rate τi by replacing all concen-
trations by the corresponding number of molecules multiplied by volume. After
normalization on all possible transitions, this gives the transition probability
pi = τi�n

j=1 τj
.

3 The kinetic expressions in BIOCHAM can actually contain conditional expressions,
in which case the reaction rules are interpreted by a deterministic hybrid automaton.

Model Revision from Temporal Logic Properties 295

This semantics is close to SLPs. Two points however render unusable the
classical learning techniques, and suggest an extension of the SLP framework:

– Kinetic expressions, and thus the corresponding transition probabilities τi,
can contain variables representing the molecular concentrations (resp. num-
ber) of the reactants in each rule. A faithful translation of those models into
SLP would thus involve dynamic probabilities according to variables values,
like in the stochastic semantics of BIOCHAM by continuous time Markov
chains [12]. On the other hand, SLPs as defined in Section 3 of Chapter 2,
are restricted to constant probabilities on each rule.

– In stochastic simulation and Gillespie algorithms [26], the time is a random
variable over reals, which cannot be mixed with SLPs in the current version
of the formalism.

3.3 Biological Properties in LTL with Numerical Constraints

The Linear Time Logic, LTL is the fragment of CTL∗ that uses only temporal
operators. A first-order version of LTL is used to express temporal properties
about the molecular concentrations in the simulation trace. A similar approach
is used in the DARPA BioSpice project [11]. The choice of LTL is motivated by
the fact that the concentration semantics given by ODEs is deterministic, and
there is thus no point in considering path quantifiers. The version of LTL with
arithmetic constraints we use, considers first-order atomic formulae with equal-
ity, inequality and arithmetic operators ranging over real values of concentrations
and of their derivatives.

For instance F([A]>10) expresses that the concentration of A eventually gets
above the threshold value 10. G([A]+[B]<[C]) expresses that the concentration
of C is always greater than the sum of the concentrations of A and B. Oscillation
properties, abbreviated as oscil(M,K), are defined as a change of sign of the
derivative of M at least K times:

F((d[M]/dt>0) & F((d[M]/dt<0) & F((d[M]/dt>0)...))). The abbreviated
formula oscil(M,K,V) adds the constraint that the maximum concentration of
M must be above the threshold V in at least K oscillations.

For practical purposes, some limited forms of quantified first-order LTL for-
mulae are also allowed. As an example of this, constraints on the periods of
oscillations can be expressed with a formula such as period(A,75), defined as
∃t ∃v F (T ime = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0) & F (T ime =
t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0))) where T ime is the
time variable. This very formula is used extensively in the example of the next
section.

Note that the notion of next state (operator X) refers to the state of the
following time point computed by the (variable step-size) simulation, and thus
does not necessarily imply real-time neighborhood. Nevertheless, for computing
local maxima as in the formula above for instance, the numerical integration
methods do compute the relevant time points with a very good accuracy.

296 F. Fages and S. Soliman

3.4 Parameter Search from Temporal Properties

We implemented a dedicated LTL model checker for biochemical properties over
simulation traces and proceeded, as in the boolean case, to use it for a learning
method. Actually, it is mostly a search method automatically evaluating the
fitness of a given parameter set w.r.t. an LTL specification.

The same method could theoretically be used to sample for a probability
of satisfaction of an LTL specification for the stochastic semantics, however
experimental trials proved to be too computationally expensive.

Fig. 1. Broken cell cycle model with parameter k4 = 0

The parameter learning method can be illustrated by changing the value of
some parameter like k4 for instance. Figure 1 shows that the model is not oscil-
lating as it should when k4 is set to zero.

The property of oscillation can be added as a temporal logic constraint to the
parameter value search system as follows:

learn_parameters([k4],[(0,200)],20,oscil(Cdc2-Cyclin~{p1},3),100).

First values found that make oscil(Cdc2-Cyclin~{p1},3) true:

parameter(k4,200).

The value 200 found for k4 is close to the original value (180) and satisfies
the experimental results formalized in LTL, as depicted in Figure 2.

Note that beacuase of the highly non-linear nature of the kinetics used in
most biological models of the literature it is not possible to rely on usual tools of
control theory for this kind of parameter estimation. The other available tech-
niques are mostly local optimization based (simulated annealing and derivatives)
but require to optimize with respect to a precise quantitative objective function,
whereas the presented technique allows to mix qualitative and quantitative data.

Model Revision from Temporal Logic Properties 297

Fig. 2. Curated cell cycle model showing oscillations with the inferred parameter value
k4 = 200

4 Application to Modelling the Synchronization in
Period of the Cell Cycle by the Circadian Cycle

Cancer treatments based on the administration of medicines at different times
of the day have been shown to be more efficient against malign cells and less
damaging towards healthy ones. These results might be related to the recent
discovery of links between the circadian clock (controlled by the light/dark cycle
of a day) and the cell cycle. However, if many models have been developed
to describe both of these cycles, to our knowledge none has described a real
interaction between them.

In the perspective of the European Union project TEMPO4 on temporal ge-
nomics for patient tailored chronotherapies, we developed a coupled model at the
molecular level and studied the conditions of synchronization in period of these
cycles, by using the parameter learning features of the modeling environment
BIOCHAM. More specifically, the learning of parameter values from temporal
properties with numerical constraints has been used to search how and where in
the parameter space of our model the two cycles get synchronized. The technical
report [28] describes the conditions of synchronization (i.e. synchronization by
forcing the period of the target oscillator to be the same as that of the forcing
oscillator) of the cell cycle by the circadian cycle via a common protein kinase
WEE1 (see Figure 3).

4 http://www.chrono-tempo.org

298 F. Fages and S. Soliman

Fig. 3. Linking the circadian and the cell cycles via WEE1

The proteins chosen to illustrate the cell cycle are MPF, preMPF, the degra-
dation factor of the cyclins, APC, the WEE1 kinase and the CDC25 phosphatase
(Figure 3). Early in the cycle, MPF is kept inactive because the cyclin is not
synthesized and WEE1 is present. As the cyclin is slowly synthesized, MPF acti-
vates and reaches a threshold that both inactivates WEE1 and activates CDC25
which maintains MPF in its active state. The cell enters mitosis. With a short
delay, APC is activated and degrades the cyclin component of MPF. The cell
exits mitosis and repeats its cycle. The model is composed of two positive feed-
back loops (CDC25 activates MPF which in turn activates CDC25, and WEE1
inactivates MPF which in turn inactivates WEE1) and a negative feedback loop
(MPF activates APC through an intermediary enzyme X and APC degrades the
cyclin component of the complex MPF). See Figure 4.

The two models describing the cell and circadian cycles are linked through
the transcription of WEE1. In the model of the cell cycle alone, wee1 mRNA
was a parameter equal to 1. In the coupled model, the production of Wee1m is
a function of the nuclear form of the complex BMAL1/CLOCK (BN) and the
unphosphorylated nuclear form of the complex PER/CRY (PCN).

To find values for which synchronization occurs, the parameter space for each
parameter has been explored using the BIOCHAM learning features from tem-
poral properties. The values of three parameters appeared to be more significant
than others: ksweem, kswee and kimpf. The two parameters ksweem and kswee
both control the level of the WEE1 protein and show such similarities that in
the following discussion, we will only report on kswee. The parameter values
are varied in a given interval and reveal domains of synchronization reported in
Figure 5. The parameters are plotted as a function of the period of three proteins
that account for the behavior of the two cycles, BN (BMAL1/CLOCK nuclear)
for the circadian cycle, MPF for the cell cycle, and their link, WEE1. For low

Model Revision from Temporal Logic Properties 299

Fig. 4. Temporal simulation of a generic cell cycle

values of the parameters (region 1), MPF and BN have independent periods of
oscillations of 22.4h and 23.85h respectively and no sustained oscillations are ob-
served for WEE1. The reason for the perturbation in WEE1 oscillations in this
region is that WEE1 receives simultaneously two influences: from the circadian
cycle that controls the transcription of the protein mediated by the circadian
transcription factors BMAL1/CLOCK and PER/CRY; and from the cell cycle
that controls the activity of the protein via phosphorylation by MPF. WEE1 is
produced but as soon as MPF activates, it is inactivated because WEE1 has no
or little effect on MPF activation and MPF inhibits WEE1 protein. The two in-
fluences operate on WEE1 at different times as they both have different periods,
perturbing WEE1 period.

For intermediate values of the parameters (region 2), WEE1 starts to play
a more significant role in the cell cycle by inhibiting MPF activity, and as a
result, disturbing MPF oscillations. It is only when the parameters reach a high
value (either kimpf=1.2 or kswee=0.4) that the oscillations of MPF become stable
again but with a period similar to that of the circadian cycle (region 3) revealing
the synchronization of the cell cycle through WEE1 activity (through kimpf) or
protein level (through kswee).

However, the study of kimpf, the parameter controlling the activity of WEE1
on MPF inactivation, shows that the synchronization does not solely depend on
the value of the parameter but more particularly on the ratio kimpf/kampf since
both CDC25 and WEE1 are involved in the positive feedback loops that activate
MPF and therefore responsible for the G2-M transition. To investigate this dual
effect, the limit of synchronization is measured as the two parameters kimpf and

300 F. Fages and S. Soliman

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
er

io
d

kimpf

1 2 3

MPF
BN
Wee1

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

io
d

kswee

1 2 3

MPF
BN
Wee1

Fig. 5. Plot of the period as a function of the parameter kimpf from 0.01 to 1.6 and
kswee from 0.01 to 1. The system shows synchronization for values superior to 1.2 for
kimpf and 0.4 for kswee. For our purposes, constant periods are defined as follows: the
last 11 peaks of the simulation over 500 time units show no more than 4% difference in
their maxima and the length of the periods. MPF starts with an autonomous period
of 22.4h and BN a period of 23.85h. As kimpf and kswee increase, MPF oscillations
(accounting for cell cycle) lose stability and are entrained, along with WEE1, for higher
values of the parameter with a period of 23.85h.

Model Revision from Temporal Logic Properties 301

Fig. 6. BIOCHAM-generated plot of the synchronization in period of the cell cycle by
the circadian cycle for different values of kimpf (action of WEE1 on MPF) and kampf
(action of CDC25 on MPF). The limit of synchronization computed by BIOCHAM
(red crosses) is interpolated by the linear function kampf = 2.44832 · kimpf + 2.0071
(solid line).

kampf are varied simultaneously. A linear function of the form: kampf = 2.44832·
kimpf + 2.0071 is obtained, the region below the line being the synchronization
region (Figure 6).

These studies have been carried out thanks to the machine learning features of
BIOCHAM to express the condition of synchronization in period by a first-order
LTL formula with time constraints, and to explore the parameter values satisfy-
ing that formula. These methods are complementary to and have no counterpart
in traditional tools for the study of dynamical systems such as the computation
of bifurcation diagrams.

5 Discussion and Conclusions

Temporal logic is a powerful formalism for expressing the biological properties
of a living system, such as state reachability, checkpoints, stability, oscillations,
etc. This can be done both qualitatively and quantitatively, by considering re-
spectively propositional and first-order temporal logic formulae with numerical
constraints.

In the propositional case, we have given a Datalog representation of general
biochemical reaction models allowing the use of ILP techniques for discovering
reaction rules from given CTL properties. Because of the relative complexity
of the CTL model checker however, this approach was limited to reachability
properties. For general CTL properties, our approach was to use the symbolic
OBDD model checker NuSMV as a black box within a model revision algorithm

302 F. Fages and S. Soliman

that searches for rule additions and deletions in order to satisfy a CTL specifica-
tion. The first results are encouraging but also show some limitations concerning
the boolean abstraction that simply forgets the kinetic expressions. Less crude
abstractions are however possible and are currently under investigation. Fur-
thermore, when restricting to pure reachability properties between completely
defined states, ILP methods have been shown more efficient. There is thus a
perspective for combining the best of both methods in this general setting.

Kinetic models of biochemical systems have been considered too with their two
most usual interpretations, by ODEs, and by continuous time Markov chains.
The second interpretation has been related to PILP representations with a gen-
eralized notion of SLPs involving dynamic probabilities according to variable
values. However the stochastic interpretation of kinetic expressions is compu-
tationally too expensive, while the interpretation by differential equations does
scale up to real-size quantitative models. This is the reason why the contin-
uous semantics of BIOCHAM rules based on non-linear ordinary differential
equations, instead of the stochastic semantics based on continuous-time Markov
chains is used in these applications. We have shown that the inference of param-
eter values from a temporal logic specification is flexible enough to be easy to
use, and provides accurate results with reasonable execution times. These func-
tionalities are completely new and complement the other tools the modeler can
use to estimate the range of parameter values. This has been illustrated by an
original application to the modelling of the synchronization in period of the cell
cycle by the circadian cycle.

Acknowledgements. The authors would like to thank Stephen Muggleton
and Luc de Raedt for extensive discussions on the topics of this paper, and
Nathalie Chabrier-Rivier and Laurence Calzone for their contributions. This
work has been partly supported by the EC Sixth Framework Project Applica-
tion of Probabilistic Inductive Logic Programming II (APrIL II) (Grant Ref:
FP-508861).

References

1. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. In: Proceedings of the
sixth Pacific Symposium of Biocomputing, pp. 459–470 (2001)

2. Cardelli, L.: Brane calculi - interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

3. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:
An abstraction for biological compartments. Theoretical Computer Science 325,
141–167 (2004)

4. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325, 69–110 (2004)

5. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
Transactions on Computational Systems Biology Special issue of BioConcur (to
appear, 2004)

Model Revision from Temporal Logic Properties 303

6. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.:
Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the
seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)

7. Chabrier, N., Fages, F.: Symbolic model cheking of biochemical networks. In: Pri-
ami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

8. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal
methods to biological regulatory networks: Extending thomas’ asynchronous logical
approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)

9. Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model checking
genetic regulatory networks using gna and cadp. In: Graf, S., Mounier, L. (eds.)
SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg (2004)

10. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using the prism model checker. In: Plotkin, G. (ed.) CMSB 2005: Proceedings
of the third international conference on Computational Methods in Systems Biol-
ogy (2005)

11. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-
ing for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

12. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)

13. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4, 64–73 (2004)

14. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling bio-
logical systems and formalizing experimental knowledge. BioInformatics 22, 1805–
1807 (2006)

15. Hucka, M., et al.: The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531 (2003)

16. Fages, F.: From syntax to semantics in systems biology - towards automated reason-
ing tools. Transactions on Computational Systems Biology IV 3939, 68–70 (2006)

17. Muggleton, S.H.: Inverse entailment and progol. New Generation Computing 13,
245–286 (1995)

18. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P.G.K., King, R.D.:
Combining inductive logic programming, active learning and robotics to discover
the function of genes. Electronic Transactions in Artificial Intelligence, 6 (2001)

19. Angelopoulos, N., Muggleton, S.H.: Machine learning metabolic pathway descrip-
tions using a probabilistic relational representation. Electronic Transactions in Ar-
tificial Intelligence 7 (2002) (also in Proceedings of Machine Intelligence 19)

20. Angelopoulos, N., Muggleton, S.H.: Slps for probabilistic pathways: Modeling and
parameter estimation. Technical Report TR 2002/12, Department of Computing,
Imperial College, London, UK (2002)

21. Bratko, I., Mozetic, I., Lavrac, N.: KARDIO: A study in Deep and Qualitative
Knowledge for Expert Systems. MIT Press, Cambridge (1989)

22. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

304 F. Fages and S. Soliman

23. Cimatti, A., Clarke, E., Enrico Giunchiglia, F.G., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Hei-
delberg (2002)

24. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biochemical interaction networks. Theoretical Computer Science 325,
25–44 (2004)

25. Fages, F., Soliman, S.: Type inference in systems biology. In: Priami, C. (ed.)
CMSB 2006. LNCS (LNBI), vol. 4210, Springer, Heidelberg (2006)

26. Gillespie, D.T.: General method for numerically simulating stochastic time evolu-
tion of coupled chemical-reactions. Journal of Computational Physics 22, 403–434
(1976)

27. Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its reg-
ulation. In: Bolouri, H., Bower, J. (eds.) Computational Methods in Molecular
Biology: From Genotype to Phenotype, MIT Press, Cambridge (2000)

28. Calzone, L., Soliman, S.: Coupling the cell cycle and the circadian cycle. Research
Report 5835, INRIA (2006)

	Model Revision from Temporal Logic Properties in Computational Systems Biology
	Introduction
	Reaction Rule Learning from Temporal Properties
	Biochemical Reaction Models in Datalog
	Biological Properties in Temporal Logic CTL
	Model Revision from Temporal Properties

	Parameter Search from Quantitative Temporal Properties
	Continuous Semantics with ODE's
	Stochastic Semantics with SLPs
	Biological Properties in LTL with Numerical Constraints
	Parameter Search from Temporal Properties

	Application to Modelling the Synchronization in Period of the Cell Cycle by the Circadian Cycle
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

