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Abstract. Probabilistic inductive logic programming aka. statistical relational
learning addresses one of the central questions of artificial intelligence: the inte-
gration of probabilistic reasoning with machine learning and first order and rela-
tional logic representations. A rich variety of different formalisms and learning
techniques have been developed. A unifying characterization of the underlying
learning settings, however, is missing so far.

In this chapter, we start from inductive logic programming and sketch how
the inductive logic programming formalisms, settings and techniques can be ex-
tended to the statistical case. More precisely, we outline three classical settings
for inductive logic programming, namely learning from entailment, learning from
interpretations, and learning from proofs or traces, and show how they can be
adapted to cover state-of-the-art statistical relational learning approaches.

1 Introduction

One of the central open questions of artificial intelligence is concerned with combining
expressive knowledge representation formalisms such as relational and first-order logic
with principled probabilistic and statistical approaches to inference and learning. Tra-
ditionally, relational and logical reasoning, probabilistic and statistical reasoning, and
machine learning are research fields in their own rights. Nowadays, they are becoming
increasingly intertwined. A major driving force is the explosive growth in the amount of
heterogeneous data that is being collected in the business and scientific world. Example
domains include bioinformatics, transportation systems, communication networks, so-
cial network analysis, citation analysis, and robotics. They provide uncertain informa-
tion about varying numbers of entities and relationships among the entities, i.e., about
relational domains. Traditional machine learning approaches are able to cope either
with uncertainty or with relational representations but typically not with both.

It is therefore not surprising that there has been a significant interest in integrat-
ing statistical learning with first order logic and relational representations. [14] has in-
troduced a probabilistic variant of Comprehensive Unification Formalism (CUF). In a
similar manner, Muggleton [38] and Cussens [4] have upgraded stochastic grammars
towards stochastic logic programs; Chapter 9 presents an application of them to pro-
tein fold discovery. Sato [53] has introduced probabilistic distributional semantics for
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Statistical Relational Learning 

Probability

Logic Learning

Fig. 1. Probabilistic inductive logic programming aka. statistical relational learning combines
probability, logic, and learning

logic programs; latest developments of this approach are presented in Chapter 5. Taskar
et al. [60] have upgraded Markov networks towards relational Markov networks, and
Domingos and Richardson [12] towards Markov logic networks (see also Chapter 4).
Another research stream includes Poole’s independent choice Logic [49] as reviewed
in Chapter 8, Ngo and Haddawy’s probabilistic-logic programs [45], Jäger’s relational
Bayesian networks [21], Pfeffer’s [47] and Getoor’s [17] probabilistic relational mod-
els, and Kersting and De Raedt’s Bayesian logic programs [26, see also Chapter 7],
and has investigated logical and relational extensions of Bayesian networks. Neville
and Jensen [44] developed relational dependency networks. This newly emerging re-
search field is known under the name of statistical relational learning or probabilistic
inductive logic programming, cf. Figure 1, and

Deals with machine learning and data mining in relational domains where
observations may be missing, partially observed, and/or noisy.

Employing relational and logical abstraction within statistical learning has two ad-
vantages. First, variables, i.e., placeholders for entities allow one to make abstraction
of specific entities. Second, unification allows one to share information among entities.
Thus, instead of learning regularities for each single entity independently, statistical
relational learning aims at finding general regularities among groups of entities. The
learned knowledge is declarative and compact, which makes it much easier for people
to understand and to validated. Although, the learned knowledge must be recombined
at run time using some reasoning mechanism such as backward chaining or resolution,
which bears additional computational costs, statistical relational models are more flex-
ible, context-aware, and offer — in principle — the full power of logical reasoning.
Moreover, in many applications, there is a rich background theory available, which can
efficiently and elegantly be represented as sets of general regularities. This is impor-
tant because background knowledge often improves the quality of learning as it focuses
learning on relevant patterns, i.e., restricts the search space. While learning, relational
and logical abstraction allow one to reuse experience: learning about one entity im-
proves the prediction for other entities; it might even generalize to objects, which have
never been observed before. Thus, relational and logical abstraction can make statistical
learning more robust and efficient. This has been proven beneficial in many fascinating
real-world applications in citation analysis, web mining, natural language processing,
robotics, bio- and chemo-informatics, electronic games, and activity recognition.



Probabilistic Inductive Logic Programming 3

Whereas most of the existing works on statistical relational learning have started
from a statistical and probabilistic learning perspective and extended probabilistic for-
malisms with relational aspects, we will take a different perspective, in which we will
start from inductive logic programming (ILP) [43], which is often also called multi-
relational data mining (MRDM) [13]. ILP is a research field at the intersection of
machine learning and logic programming. It aims at a formal framework as well as
practical algorithms for inductively learning relational descriptions (in the form of logic
programs) from examples and background knowledge. However, it does not explicitly
deal with uncertainty such as missing or noisy information. Therefore, we will study
how inductive logic programming formalisms, settings and techniques can be extended
to deal with probabilities. At the same time, it is not our intention to provide a complete
survey of statistical relational learning (as [9] does), but rather to focus on the principles
that underlay this new and exciting subfield of artificial intelligence.

We call the resulting framework probabilistic ILP. It aims at a formal framework for
statistical relational learning. Dealing explicitly with uncertainty makes probabilistic
ILP more powerful than ILP and, in turn, than traditional attribute-value approaches.
Moreover, there are several benefits of an ILP view on statistical relational learning.
First of all, classical ILP learning settings — as we will argue — naturally carry over
to the probabilistic case. The probabilistic ILP settings make abstraction of specific
probabilistic relational and first order logical representations and inference and learn-
ing algorithms yielding — for the first time — general statistical relational learning
settings. Second, many ILP concepts and techniques such as more–general–than, refine-
ment operators, least general generalization, and greatest lower bound can be reused.
Therefore, many ILP learning algorithms such as Quinlan’s FOIL and De Raedt and
Dehaspe’s CLAUDIEN can easily be adapted. Third, the ILP perspective highlights the
importance of background knowledge within statistical relational learning. The research
on ILP and on artificial intelligence in general has shown that background knowledge
is the key to success in many applications. Finally, an ILP approach should make sta-
tistical relational learning more intuitive to those coming from an ILP background and
should cross-fertilize ideas developed in ILP and statistical learning.

We will proceed as follows. After reviewing the basic concepts of logic program-
ming in Section 2 and of inductive logic programming in Section 3, we will extend
inductive logic programming to deal explicitly with uncertainty in Section 4. Based on
this foundation, we will introduce probabilistic variants of classical ILP settings for
learning from entailment, from interpretations and from proofs. Each of the resulting
settings will be exemplified with different probabilistic logic representations, examples
and probability distributions.

2 Logic Programming Concepts

To introduce logic programs, consider Figure 2, containing two programs, grandpar-
ent and nat. Formally speaking, we have that grandparent/2, parent/2, and nat/1
are predicates (with their arity, i.e., number of arguments listed explicitly) jef, paul
and ann are constants and X, Y and Z are variables All constants and variables are
also terms In addition, there exist structured terms such as s(X), which contains the
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parent(jef,paul). nat(0).
parent(paul,ann). nat(s(X)) :- nat(X).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

Fig. 2. Two logic programs, grandparent and nat

functor s/1 of arity 1 and the term X. Constants are often considered as functors of ar-
ity 0. A first order alphabet Σ is a set of predicate symbols, constant symbols and func-
tor symbols. Atoms are predicate symbols followed by the necessary number of terms,
e.g., parent(jef, paul), nat(s(X)), parent(X, Z), etc. Literals are atoms nat(s(X))
(positive literal) and their negations not nat(s(X)) (negative literals). We are now able
to define the key concept of a definite clause. Definite clauses are formulas of the form

A :−B1, . . . , Bm
where A and the Bi are logical atoms and all variables are understood to be universally
quantified. For instance, the clause c

c ≡ grandparent(X, Y) :−parent(X, Z), parent(Z, Y)
can be read as X is the grandparent of Y if X is a parent of Z and Z
is a parent of Y. We call grandparent(X, Y) the head(c) of this clause, and
parent(X, Z), parent(Z, Y) the body(c). Clauses with an empty body such as
parent(jef, paul) are facts. A (definite) clause program (or logic program for short)
consists of a set of clauses. In Figure 2, there are thus two logic programs, one defining
grandparent/2 and one defining nat/1. The set of variables in a term, atom, conjunc-
tion or clause E, is denoted as Var(E), e.g., Var(c) = {X, Y, Z}. A term, atom or clause
E is ground when there is no variable occurring in E, i.e. Var(E) = ∅. A clause c is
range-restricted when all variables in the head of the clause also appear in the body of
the clause, i.e., Var(head(c)) ⊆ |V ars(body(c)).

A substitution θ = {V1/t1, . . . , Vn/tn}, e.g. {Y/ann}, is an assignment of terms ti
to variables Vi. Applying a substitution θ to a term, atom or clause e yields the instan-
tiated term, atom, or clause eθ where all occurrences of the variables Vi are simultane-
ously replaced by the term ti, e.g. cθ is

c′ ≡ grandparent(X, ann) :−parent(X, Z), parent(Z, ann).
A clause c1 θ-subsumes1 {head(c2)θ} ∪ body(c2)θ ⊂ {head(c1)} ∪ body(c1). The
Herbrand base of a logic program P , denoted as hb(P ), is the set of all ground atoms
constructed with the predicate, constant and function symbols in the alphabet of P .

Example 1. The Herbrand bases of the nat and grandparent logic programs are

hb(nat) = {nat(0), nat(s(0)), nat(s(s(0))), ...}
and hb(grandparent) = {parent(ann, ann), parent(jef, jef),

parent(paul, paul), parent(ann, jef), parent(jef, ann), ...,

grandparent(ann, ann), grandparent(jef, jef), ...}.
1 The definition of θ-subsumption also applies to conjunctions of literals, as these can also be

defined as set of literals.
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A Herbrand interpretation for a logic program P is a subset of hb(P ). A Herbrand
interpretation I is a model if and only if for all substitutions θ such that body(c)θ ⊆ I
holds, it also holds that head(c)θ ∈ I . The interpretation I is a model of a logic program
P if I is a model of all clauses in P . A clause c (logic program P ) entails another clause
c′ (logic program P ′), denoted as c |= c′ (P |= P ′), if and only if, each model of c (P ) is
also a model of c′ (P ′). Clearly, if clause c (program P ) θ-subsumes clause c′ (program
P ′) then c (P ) entails c′ (P ′), but the reverse is not true.

The least Herbrand model LH(P ), which constitutes the semantics of the logic
program P , consists of all facts f ∈ hb(P ) such that P logically entails f , i.e. P |=
f . All ground atoms in the least Herbrand model are provable. Proofs are typically
constructed using the SLD-resolution procedure: given a goal :-G1, G2 . . . , Gn and a
clause G:-L1, . . . , Lm such that G1θ = Gθ, applying SLD resolution yields the new goal
:-L1θ, . . . , Lmθ, G2θ . . . , Gnθ. A successful refutation, i.e., a proof of a goal is then a
sequence of resolution steps yielding the empty goal, i.e. :- . Failed proofs do not end
in the empty goal.

Example 2. The atom grandparent(jeff, ann) is true because of

:-grandparent(jeff, ann)
:-parent(jeff, Z), parent(Z, ann)
:-parent(paul, ann)
:-

Resolution is employed by many theorem provers (such as Prolog). Indeed, when given
the goal grandparent(jeff, ann), Prolog would compute the above successful reso-
lution refutation and answer that the goal is true.

For a detailed introduction to logic programming, we refer to [33], for a more gentle
introduction, we refer to [15], and for a detailed discussion of Prolog, see [58].

3 Inductive Logic Programming (ILP) and Its Settings

Inductive logic programming is concerned with finding a hypothesis H (a logic pro-
gram, i.e. a definite clause program) from a set of positive and negative examples Pos
and Neg.

Example 3 (Adapted from Example 1.1 in [32]). Consider learning a definition for the
daughter/2 predicate, i.e., a set of clauses with head predicates over daughter/2,
given the following facts as learning examples

Pos daughter(dorothy, ann).
daughter(dorothy, brian).

Neg daughter(rex, ann).
daughter(rex, brian).

Additionally, we have some general knowledge called background knowledge B, which
describes the family relationships and sex of each person:

mother(ann, dorothy). female(dorothy). female(ann).
mother(ann, rex). father(brian, dorothy). father(brian, rex).
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From this information, we could induce H

daughter(C, P) : − female(C), mother(P, C).
daughter(C, P) : − female(C), father(P, C).

which perfectly explains the examples in terms of the background knowledge, i.e., Pos
are entailed by H together with B, but Neg are not entailed.

More formally, ILP is concerned with the following learning problem.

Definition 1 (ILP Learning Problem). Given a set of positive and negative examples
Pos and Neg over some language LE , a background theory B, in the form of a set of
definite clauses, a hypothesis languageLH , which specifies the clauses that are allowed
in hypotheses, and a covers relation covers(e, H, B) ∈ {0, 1}, which basically returns
the classification of an example e with respect to H and B, find a hypothesis H in
H that covers (with respect to the background theory B) all positive examples in Pos
(completeness) and none of the negative examples in Neg (consistency).

The language LE chosen for representing the examples together with the covers re-
lation determines the inductive logic programming setting. Various settings have been
considered in the literature [7]. In the following, we will formalize learning from entail-
ment [48] and from interpretations [20,8]. We further introduce a novel, intermediate
setting, which we call learning from proofs. It is inspired on the seminal work by [55].

3.1 Learning from Entailment

Learning from entailment is by far the most popular ILP setting and it is addressed
by a wide variety of well-known ILP systems such as FOIL [50], PROGOL [37], and
ALEPH [56].

Definition 2 (Covers Relation for Learning from Entailment). When learning from
entailment, the examples are definite clauses and a hypothesis H covers an example e
with respect to the background theory B if and only if B ∪H |= e, i.e., each model of
B ∪H is also a model of e.

In many well-known systems, such as FOIL, one requires that the examples are ground
facts, a special form of clauses. To illustrate the above setting, consider the following
example inspired on the well-known mutagenicity application [57].

Example 4. Consider the following facts in the background theory B, which describe
part of molecule 225.

molecule(225). bond(225, f1 1, f1 2, 7).
logmutag(225, 0.64). bond(225, f1 2, f1 3, 7).
lumo(225,−1.785). bond(225, f1 3, f1 4, 7).
logp(225, 1.01). bond(225, f1 4, f1 5, 7).
nitro(225, [f1 4, f1 8, f1 10, f1 9]). bond(225, f1 5, f1 1, 7).
atom(225, f1 1, c, 21, 0.187). bond(225, f1 8, f1 9, 2).
atom(225, f1 2, c, 21,−0.143). bond(225, f1 8, f1 10, 2).
atom(225, f1 3, c, 21,−0.143). bond(225, f1 1, f1 11, 1).
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atom(225, f1 4, c, 21,−0.013). bond(225, f1 11, f1 12, 2).
atom(225, f1 5, o, 52,−0.043). bond(225, f1 11, f1 13, 1).
. . .

ring size 5(225, [f1 5, f1 1, f1 2, f1 3, f1 4]).
hetero aromatic 5 ring(225, [f1 5, f1 1, f1 2, f1 3, f1 4]).
. . .

Consider now the positive example mutagenic(225). It is covered by H

mutagenic(M) : − nitro(M, R1), logp(M, C), C> 1.

together with the background knowledge B, because H ∪B entails the example. To see
this, we unify mutagenic(225) with the clause’s head. This yields

mutagenic(225) : − nitro(225, R1), logp(225, C), C> 1.

Now, nitro(225, R1) unifies with the fifth ground atom (left-hand side column) in
B, and logp(225, C) with the fourth one. Because 1.01 > 1, we found a proof of
mutagenic(225).

3.2 Learning from Interpretations

The learning from interpretations setting [8] upgrades boolean concept-learning in com-
putational learning theory [61].

Definition 3 (Covers Relational for Learning from Interpretations). When learning
from interpretations, the examples are Herbrand interpretations and a hypothesis H
covers an example e with respect to the background theory B if and only if e is a model
of B ∪H .

Recall that Herbrand interpretations are sets of true ground facts and they completely
describe a possible situation.

Example 5. Consider the interpretation I , which is the union of B

B = {father(henry, bill), father(alan, betsy), father(alan, benny),
father(brian, bonnie), father(bill, carl), father(benny, cecily),
father(carl, dennis), mother(ann, bill), mother(ann, betsy),
mother(ann, bonnie), mother(alice, benny), mother(betsy, carl),
mother(bonnie, cecily), mother(cecily, dennis), founder(henry),
founder(alan), founder(ann), founder(brian), founder(alice)}

and
C = {carrier(alan), carrier(ann), carrier(betsy)}.

The interpretation I is covered by the clause c

carrier(X) : − mother(M, X), carrier(M), father(F, X), carrier(F).

because I is a model of c, i.e., for all substitutions θ such that body(c)θ ⊆ I , it holds
that head(c)θ ∈ I .
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The key difference between learning from interpretations and learning from entail-
ment is that interpretations carry much more — even complete — information. Indeed,
when learning from entailment, an example can consist of a single fact, whereas when
learning from interpretations, all facts that hold in the example are known. Therefore,
learning from interpretations is typically easier and computationally more tractable than
learning from entailment, cf. [7].

3.3 Learning from Proofs

Because learning from entailment (with ground facts as examples) and interpretations
occupy extreme positions with respect to the information the examples carry, it is in-
teresting to investigate intermediate positions. Shapiro’s [55] Model Inference System
(MIS) fits nicely within the learning from entailment setting where examples are facts.
However, to deal with missing information, Shapiro employs a clever strategy: MIS
queries the users for missing information by asking them for the truth-value of facts.
The answers to these queries allow MIS to reconstruct the trace or the proof of the
positive examples. Inspired by Shapiro, we define the learning from proofs setting.

Definition 4 (Covers Relation for Learning from Proofs). When learning from
proofs, the examples are ground proof-trees and an example e is covered by a hypothesis
H with respect to the background theory B if and only if e is a proof-tree for H ∪B.

At this point, there exist various possible forms of proof-trees. Here, we will — for
reasons that will become clear later — assume that the proof-tree is given in the form
of a ground and-tree where the nodes contain ground atoms. More formally:

Definition 5 (Proof Tree). A tree t is a proof-tree for a logic program T if and only
if t is a rooted tree where for every node n ∈ t with children(n) satisfies the property
that there exists a substitution θ and a clause c ∈ T such that n = head(c)θ and
children(n) = body(c)θ.

s([the,turtles,sleep],[])

np(pl,[the,turtles,sleep],[sleep]) vp(pl,[sleep],[])

iv(pl,[sleep],[])

t([sleep],sleep,[])

{}

n(pl,[turtles,sleep],[sleep])

t([turtles,sleep],turtles,[sleep])

{}

s(pl,[the,turtles,sleep],[turtles,sleep])

t([the,turtles,sleep],the,[turtles,sleep])

{}

Fig. 3. A proof tree, which is covered by the definite clause grammar in Example 6. Symbols are
abbreviated.
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Example 6. Consider the following definite clause grammar.

sentence(A, B): −noun phrase(C, A, D), verb phrase(C, D, B).

noun phrase(A, B, C): −article(A, B, D), noun(A, D, C).

verb phrase(A, B, C): −intransitive verb(A, B, C).

article(singular, A, B): −terminal(A, a, B).

article(singular, A, B): −terminal(A, the, B).

article(plural, A, B): −terminal(A, the, B).

noun(singular, A, B): −terminal(A, turtle, B).

noun(plural, A, B): −terminal(A, turtles, B).

intransitive verb(singular, A, B): −terminal(A, sleeps, B).

intransitive verb(plural, A, B): −terminal(A, sleep, B).

terminal([A|B], A, B).

It covers the proof tree shown in Figure 3.

Proof-trees contain — as interpretations — a lot of information. Indeed, they contain
instances of the clauses that were used in the proofs. Therefore, it may be hard for the
user to provide this type of examples. Even though this is generally true, there exist
specific situations for which this is feasible. Indeed, consider tree banks such as the
UPenn Wall Street Journal corpus [35], which contain parse trees. These trees directly
correspond to the proof-trees we talk about.

4 Probabilistic ILP Settings

Indeed, ILP has been developed for coping with relational data. It does not, however,
handle uncertainty in a principled way. In the reminder of this paper, we will show how
to extend the ILP settings to the probabilistic case. To do so, we shall quickly review
some of the key concepts and notation that will be used2.

Let X be a random variable with a finite domain domain(X) = {x1, x2, . . . , xn} of
possible states. We use the notation P(X) to denote the probability distribution over
domain(X), and P (X = xi) or P (xi) to denote the probability that the random vari-
able X takes the value xi ∈ domain X. For instance, consider the random variable (or
proposition) earthquake with domain {true, false}. Then, P(earthquake) denotes
the probability distribution, and P (earthquake = false) (or, in shorthand notation,
P (¬earthquake)) denotes the probability that earthquake is false. The distribution
P(X1, · · · , Xn) over a set of random variables {X1, · · · , Xn}, n > 1, is called joint
probability distributions. For instance, we may be interested in the joint probabil-
ity that earthquake = true and burglary = true at the same time. Generaliz-
ing the above notation, we will be using the notation P(earthquake, burglary) and
P (earthquake = true, burglary = true) respectively.

2 The reader not familiar with the basics of probability theory is encouraged to consult [52] for
an excellent overview from an artificial intelligence perspective.
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Some useful definitions and properties of probability theory can now be listed. The
conditional probability is defined as P(X|Y) = P(X, Y)/P(Y) if P(Y) > 0. Note
that the use of P in equalities is a short hand notation that denotes that the equality
is valid for all possible states of the involved random variables. The chain rule says
that P(X1, · · · , Xn) = P(X1)

∏n
i=2 P(Xi|Xi−1, · · · , X1). The law of Bayes states that

P(X|Y) = P(Y|X) ·P(X)/P(Y). The distribution of X is related to the joint distribution
P(X, Y) by P(X) =

∑
y∈domain(Y) P(X, y), which is called marginalization. Finally,

two random variables X and Y are conditionally independent given a third random
variable Z if and only if P(X, Y|Z) = P(X|Z) · P(Y|Z). In case that the property holds
without needing to condition on variables Z, we say that X and Y are independent.

When working with probabilistic ILP representations, there are essentially two
changes:

1. Clauses are annotated with probabilistic information such as conditional probabili-
ties, and

2. The covers relation becomes probabilistic.

A probabilistic covers relation softens the hard covers relation employed in traditional
ILP and is defined as the probability of an example given the hypothesis and the
background theory.

Definition 6 (Probabilistic Covers Relation). A probabilistic covers relation takes as
arguments an example e, a hypothesis H and possibly the background theory B, and
returns the probability value P(e | H, B) between 0 and 1 of the example e given H
and B, i.e., covers(e, H, B) = P(e | H, B).

Using the probabilistic covers relation of Definition 6, our first attempt at a definition
of the probabilistic ILP learning problem is as follows.

Preliminary Definition 1 (Probabilistic ILP Learning Problem)
Given a probabilistic-logical language LH and a set E of examples over some lan-
guage LE , find the hypothesis H∗ in LH that maximizes P(E | H∗, B).

Under the usual i.i.d. assumption, i.e., examples are sampled independently from
identical distributions, this results in the maximization of

P(E | H∗, B) =
∏

e∈E

P(e | H∗, B) =
∏

e∈E

covers(e, H∗, B).

Similar to the ILP learning problem, the language LE selected for representing the
examples together with the probabilistic covers relation determines different learning
setting. In ILP, this lead to learning from interpretations, from proofs, and from en-
tailment. It should therefore be no surprise that this very same distinction also applies
to probabilistic knowledge representation formalisms. Indeed, Bayesian networks [46]
essentially define a probability distribution over interpretations or possible worlds, and
stochastic grammars [34] define a distribution over proofs, derivations or traces.

Guided by Definition 1, we will now introduce three probabilistic ILP settings, which
extend the purely logical ones sketched before. Afterwards, we will refine Definition 1
in Definition 7.
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4.1 Probabilistic Learning from Interpretations

In order to integrate probabilities in the learning from interpretations setting, we need
to find a way to assign probabilities to interpretations covered by an annotated logic
program. In the past decade, this issue has received a lot of attention and various dif-
ferent approaches have been developed. The most popular propositional frameworks
are Bayesian network and Markov networks. Later on, these propositional frameworks
have been extended to the relational case such probabilistic-logic programs [45], prob-
abilistic relational models [47], relational Bayesian networks [21], and Bayesian logic
programs [24,25].

In this book, the two most popular propositional formalisms, namely Bayesian net-
works and Markov networks, are considered, as well as their relational versions. The
present chapter focuses on Bayesian networks, and their extension towards Bayesian
logic programs [27, more details in Chapter 7], whereas Chapter 6 by Santos Costas et
al. discusses an integration of Bayesian networks and logic programs called CLP(BN )
and Chapter 9 by Domingos et al. focuses on Markov networks and their extension to
Markov Logic [12].

Bayesian Networks. The most popular formalism for defining probabilities on possi-
ble worlds is that of Bayesian networks. As an example of a Bayesian network, consider
Judea Pearl’s famous alarm network graphically illustrated in Figure 4. Formally speak-
ing, a Bayesian network is an augmented, directed acyclic graph, where each node
corresponds to a random variable Xi and each edge indicates a direct influence among
the random variables. It represents the joint probability distribution P(X1, . . . , Xn). The
influence is quantified with a conditional probability distribution cpd(Xi) associated to
each node Xi. It is defined in terms of the parents of the node X , which we denote by
Pa(Xi), and specifies cpd(Xi) = P(Xi | Pa(Xi)).

Example 7. Consider the Bayesian network in Figure 4. It contains the random vari-
ables alarm, earthquake, marycalls, johncalls and alarm. The CPDs associ-
ated to each of the nodes are specified in Table 1. They include the CPDs P(alarm |
earthquake, burglary), and P(earthquake), etc.

The Bayesian network thus has two components: a qualitative one, i.e. the directed
acyclic graph, and a quantitative one, i.e. the conditional probability distributions. To-
gether they specify the joint probability distribution.

As we will – for simplicity – assume that the random variables are all boolean, i.e.,
they can have the domain {true, false}, this actually amounts to specifying a proba-
bility distribution on the set of all possible interpretations. Indeed, in our alarm exam-
ple, the Bayesian network defines a probability distribution over truth-assignments to
{alarm, earthquake, marycalls, johncalls, burglary}.

The qualitative component specifies a set of conditional independence assumptions.
More formally, it stipulates the following conditional independency assumption:

Assumption 1. Each node Xi in the graph is conditionally independent of any sub-
set A of nodes that are not descendants of Xi given a joint state of Pa(Xi), i.e.
P(Xi | A,Pa(Xi)) = P(Xi | Pa(Xi)).
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alarm

burglary earthquake

johnCalls maryCalls

Fig. 4. The Bayesian alarm network. Nodes denote random variables and edges denote direct
influences among the random variables.

Table 1. The conditional probability distributions associated with the nodes in the alarm network,
cf. Figure 4

P(burglary)

(0.001, 0.999)

P(earthquake)

(0.002, 0.998)

burglary earthquake P(alarm)
true true (0.95, 0.05)
true false (0.94, 0.06)
false true (0.29, 0.71)
false false (0.001, 0.999)

alarm P(johncalls)
true (0.90, 0.10)
false (0.05, 0.95)

alarm P(marycalls)
true (0.70, 0.30)
false (0.01, 0.99)

For example, alarm is conditionally independent of marycalls) given a joint state of its
parents {earthquake, burglary}. Because of the conditional independence assumption,
we can write down the joint probability density as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi | Pa(Xi)) (1)

by applying the independency assumption and the chain rule to the joint probability
distribution.

Bayesian Logic Programs. The idea underlying Bayesian logic programs is to view
ground atoms as random variables that are defined by the underlying definite clause
programs. Furthermore, two types of predicates are distinguished: deterministic and
probabilistic ones. The former are called logical, the latter Bayesian. Likewise we will
also speak of Bayesian and logical atoms. A Bayesian logic program now consists of a
set of of Bayesian (definite) clauses, which are expressions of the form A | A1, . . . , An

where A is a Bayesian atom, A1, . . . , An, n ≥ 0, are Bayesian and logical atoms and
all variables are (implicitly) universally quantified. To quantify probabilistic dependen-
cies, each Bayesian clause c is annotated with its conditional probability distribution
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cpd(c) = P(A | A1, . . . , An), which quantifies as a macro the probabilistic depen-
dency among ground instances of the clause.

Let us illustrate Bayesian logic programs on an example inspired on Jensen’s stud
farm example [22], which describes the processes underlying a life threatening heredi-
tary disease.

Example 8. Consider the following Bayesian clauses:

carrier(X) | founder(X). (2)

carrier(X) | mother(M, X), carrier(M), father(F, X), carrier(F). (3)

suffers(X) | carrier(X). (4)

They specify the probabilistic dependencies governing the inheritance process. For in-
stance, clause (3) says that the probability for a horse being a carrier of the disease
depends on its parents being carriers. In this example, the mother, father, and founder
are logical, whereas the other ones, such as carrier and suffers, are Bayesian. The log-
ical predicates are then defined by a classical definite clause program which constitute
the background theory for this example. It is listed as interpretation B in Example 5.
Furthermore, the conditional probability distributions for the Bayesian clauses are

P (carrier(X) = true)

0.6

carrier(X) P (suffers(X) = true)

true 0.7
false 0.01

carrier(M) carrier(F) P (carrier(X) = true)

true true 0.6
true false 0.5
false true 0.5
false false 0.0

Observe that logical atoms, such as mother(M, X), do not affect the distribution of
Bayesian atoms, such as carrier(X), and are therefore not considered in the conditional
probability distribution. They only provide variable bindings, e.g., between carrier(X)
and carrier(M).

By now, we are able to define the covers relation for Bayesian logic programs. A
Bayesian logic program together with the background theory induces a Bayesian net-
work. The random variables A of the Bayesian network are the Bayesian ground atoms
in the least Herbrand model I of the annotated logic program. A Bayesian ground atom,
say carrier(alan), influences another Bayesian ground atom, say carrier(betsy), if and
only if there exists a Bayesian clause c such that

1. carrier(alan) ∈ body(c)θ ⊆ I , and
2. carrier(betsy) ≡ head(c)θ ∈ I .

Each node A has cpd(cθ) as associated conditional probability distribution. If there are
multiple ground instances in I with the same head, a combining rule combine{·} is
used to quantified the combined effect. A combining rule is a function that maps finite
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sets of conditional probability distributions onto one (combined) conditional probability
distribution. Examples of combining rules are noisy-or, and noisy-and, see e.g. [22].

Note that we assume that the induced network is acyclic and has a finite branching
factor. The probability distribution induced is now

P(I|H) =
∏

Bayesian atom A∈I

combine{cpd(cθ) |body(c)θ ⊆ I, head(c)θ ≡ A}. (5)

Let us illustrate this fro the stud farm example.

Example 9. Using the above definition, the probability of the interpretation

{carrier(henry) = false, suffers(henry) = false, carrier(ann) = true,
suffers(ann) = false, carrier(brian) = false, suffers(brian) = false,
carrier(alan) = false, suffers(alan) = false, carrier(alice) = false,
suffers(alice) = false, . . .}

can be computed using a standard Bayesian network inference engine because the
facts together with the program induce the Bayesian network shown in Figure 5. Thus
(5) defines a probabilistic coverage relation. In addition, various types of inference
would be possible. One might, for instance, ask for the probability P (suffers(henry)|

carrier(bonnie) suffers(bonnie)

carrier(cecily) suffers(cecily)

carrier(brian)

suffers(brian)

carrier(alice)

suffers(alice)

carrier(alan)

suffers(alan)

carrier(benny)

suffers(benny)

carrier(dennis) suffers(dennis)

carrier(carl)

suffers(carl)

carrier(bill)

suffers(bill)

carrier(ann)

suffers(ann)

carrier(henry)

suffers(henry)

carrier(betsy)

suffers(betsy)

Fig. 5. The structure of the Bayesian network induced by the Stud farm Bayesian logic program.
For the ease of comprehensibility, we have omitted the logical Bayesian atoms over founder/1,
father/2, and mother/2.
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carrier(henry) = true), which can again be computed using a standard Bayesian net-
work inference engine.

4.2 Probabilistic Proofs

To define probabilities on proofs, ICL [49, Chapter 8], PRISMs [53,54, Chapter 5], and
stochastic logic programs [14,38,5, an application can be found in Chapter 9] attach
probabilities to facts (respectively clauses) and treat them as stochastic choices within
resolution. Relational Markov models [2] and logical hidden Markov models [28],
which we will briefly review in Chapter 2, can be viewed as a simple fragment of them,
where heads and bodies of clauses are singletons only, so-called iterative clauses. We
will illustrate probabilistic learning from proofs using stochastic logic programs. For a
discussion of the close relationship among stochastic logic programs, ICL, and PRISM,
we refer to [6].

Stochastic logic programs are inspired on stochastic context free grammars [1,34].
The analogy between context free grammars and logic programs is that

– Grammar rules correspond to definite clauses,
– Sentences (or strings) to atoms, and
– Productions to derivations.

Furthermore, in stochastic context-free grammars, the rules are annotated with prob-
ability labels in such a way that the sum of the probabilities associated to the rules
defining a non-terminal is 1.0.

Eisele and Muggleton have exploited this analogy to define stochastic logic pro-
grams. These are essentially definite clause programs, where each clause c has an asso-
ciated probability label pc such that the sum of the probabilities associated to the rules
defining any predicate is 1.0 (though [4] considered less restricted versions as well).

This framework allows ones to assign probabilities to proofs for a given predicate q
given a stochastic logic program H ∪B in the following manner. Let Dq denote the set
of all possible ground proofs for atoms over the predicate q. For simplicity reasons, it
will be assumed that there is a finite number of such proofs and that all proofs are finite
(but again see [4] for the more general case). Now associate to each proof tq ∈ Dq the
probability

vt =
∏

c

pnc,t
c

where the product ranges over all clauses c and nc,t denotes the number of times clause
c has been used in the proof tq . For stochastic context free grammars, the values vt

correspond to the probabilities of the production. However, the difference between
context free grammars and logic programs is that in grammars two rules of the form
n→ q, n1, ..., nm and q→ q1, ..., qk always ’resolve’ to give n→ q1, ..., qk, n1, ..., nm
whereas resolution may fail due to unification. Therefore, the probability of a proof tree
t in Dq, i.e., a successful derivation is

P (t | H, B) =
vt∑

s∈Dq
vs

. (6)

The probability of a ground atom a is then defined as the sum of all the probabilities of
all the proofs for that ground atom.
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P (a | H, B) =
∑

s∈Dq
s is a proof for a

vs. (7)

Example 10. Consider a stochastic variant of the definite clause grammar in Example 6
with uniform probability values for each predicate. The value vu of the proof (tree) u in
Example 6 is vu = 1

3 · 1
2 · 1

2 = 1
12 . The only other ground proofs s1, s2 of atoms over

the predicate sentence are those of

sentence([a, turtle, sleeps], [])
and sentence([the, turtle, sleeps], []).

Both get the value vs1 = vs2 = 1
12 . Because there is only one proof for each of the

sentences,

P (sentence([the, turtles, sleep], [])) = vu =
1
3
.

For stochastic logic programs, there are at least two natural learning settings.
Motivated by Equation (6), we can learn them from proofs. This makes structure

learning for stochastic logic programs relatively easy, because proofs carry a lot infor-
mation about the structure of the underlying stochastic logic program. Furthermore, the
learning setting can be considered as an extension of the work on learning stochastic
grammars from proof-banks. It should therefore also be applicable to learning unifica-
tion based grammars. We will present a probabilistic ILP approach within the learning
from proofs setting in Section 5.4.

On the other hand, we can use Equation (7) as covers relation and, hence, employ the
learning from entailment setting. Here, the examples are ground atoms entailed by the
target stochastic logic program. Learning stochastic logic programs from atoms only is
much harder than learning them from proofs because atoms carry much less information
than proofs. Nevertheless, this setting has been studied by [5] and by [54], who solves
the parameter estimation problem for stochastic logic programs respectively PRISM
programs, and by [39,41], who presents an approach to structure learning of stochastic
logic programs: adding one clause at a time to an existing stochastic logic program.
In the following section, we will introduce the probabilistic learning from entailment.
Instead of considering stochastic logic programs, however, we will study a Naı̈ve Bayes
framework, which has a much lower computational complexity.

4.3 Probabilistic Learning from Entailment

In order to integrate probabilities in the entailment setting, we need to find a way to
assign probabilities to clauses that are entailed by an annotated logic program. Since
most ILP systems working under entailment employ ground facts for a single predicate
as examples, and the authors are unaware of any existing probabilistic ILP formalisms
that implement a probabilistic covers relation for definite clauses as examples in gen-
eral, we will restrict our attention to assign probabilities to facts for a single predicate.
It remains an open question as how to formulate more general frameworks for working
with entailment.

More formally, let us annotate a logic program H consisting of a set of clauses of
the form p ← bi, where p is an atom of the form p(V1, ..., Vn) with the Vi different
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variables, and the bi are different bodies of clauses. Furthermore, we associate to each
clause in H the probability values P(bi | p); they constitute the conditional probability
distribution that for a random substitution θ for which pθ is ground and true (resp. false),
the query biθ succeeds (resp. fails) in the knowledge base B.3 Furthermore, we assume
the prior probability of p is given as P(p), it denotes the probability that for a random
substitution θ, pθ is true (resp. false). This can then be used to define the covers relation
P(pθ | H, B) as follows (we delete the B as it is fixed):

P(pθ | H) = P(pθ | b1θ, ..., bkθ) =
P(b1θ, ..., bkθ | pθ)×P(pθ)

P(b1θ, ..., bkθ)
(8)

For instance, applying the naı̈ve Bayes assumption yields

P(pθ | H) =
∏

i P(biθ | pθ)×P(pθ)
P(b1θ, ..., bkθ)

(9)

Finally, since P (pθ | H) + P (¬pθ | H) = 1, we can compute P (pθ | H) without
P (b1θ, ..., bkθ) through normalization.

Example 11. Consider again the mutagenicity domain and the following annotated
logic program:

(0.01, 0.21) : mutagenetic(M)← atom(M, , , 8, )
(0.38, 0.99) : mutagenetic(M)← bond(M,, A, 1), atom(M, A, c, 22, ), bond(M, A,, 2)

We denote the first clause by b1 and the second one by b2. The vectors on the left-hand
side of the clauses specify P (biθ = true | pθ = true) and P (biθ = true | pθ = false)
respectively. The covers relation (assuming the Naı̈ve Bayes assumption) assigns prob-
ability 0.97 to example 225 because both features fail for θ = {M← 225}. Hence,

P ( mutagenetic(225) = true,b1θ = false, b2θ = false)
= P ( b1θ = false | mutagenetic(225) = true )
· P ( b2θ = false | mutagenetic(225) = true )
· P ( mutagenetic(225) = true )

= 0.99 · 0.62 · 0.31 ≈ 0.19

and P ( mutagenetic(225) = false, b1θ = false, b2θ = false) = 0.79 · 0.01 ·
0.68 ≈ 0.005. This yields

P ( muta(225) = true | b1θ = false, b2θ = false}) =
0.19

0.19 + 0.005
≈ 0.97.

5 Probabilistic ILP: A Definition and Example Algorithms

Guided by Definition 1, we have introduced several probabilistic ILP settings for statis-
tical relational learning. The main idea was to lift traditional ILP settings by associating

3 The query q succeeds in B if there is a substitution σ such that B |= qσ.
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probabilistic information with clauses and interpretations and by replacing ILP’s deter-
ministic covers relation by a probabilistic one. In the discussion, we made one trivial
but important observation:

Observation 1. Derivations might fail.

The probability of a failure is zero and, consequently, failures are never observable.
Only succeeding derivations are observable, i.e., the probabilities of such derivations
are greater zero. As an extreme case, recall the negative examples Neg employed
in the ILP learning problem definition 1. They are supposed to be not covered, i.e.,
P (Neg|H, B) = 0.

Example 12. Reconsider Example 3. Rex is a male person; he cannot be the
daughter of ann. Thus, daughter(rex, ann) was listed as a negative example.

Negative examples conflict with the usual view on learning examples in statistical learn-
ing. In statistical learning, we seek to find that hypothesis H∗, which is most likely given
the learning examples:

H∗ = argmax
H

P (H |E) = arg max
H

P (E|H) · P (F )
P (E)

with P (E) > 0.

Thus, examples E are observable, i.e., P (E) > 0. Therefore, we refine the preliminary
probabilistic ILP learning problem definition 1. In contrast to the purely logical case of
ILP, we do not speak of positive and negative examples anymore but of observed and
unobserved ones.

Definition 7 (Probabilistic ILP Problem). Given a set E = Ep ∪Ei of observed and
unobserved examples Ep and Ei (with Ep ∩ Ei = ∅) over some example language
LE , a probabilistic covers relation covers(e, H, B) = P (e | H, B), a probabilistic
logical languageLH for hypotheses, and a background theory B, find a hypothesis H∗

in LH such that H∗ = arg maxH score(E, H, B) and the following constraints hold:
∀ ep ∈ Ep : covers(ep, H

∗, B) > 0 and ∀ ei ∈ Ei : covers(ei, H
∗, B) = 0. The

score is some objective function,usually involving the probabilistic covers relation of
the observed examples such as the observed likelihood

∏
ep∈Ep

covers(ep, H
∗, B) or

some penalized variant thereof.

The probabilistic ILP learning problem of Definition 7 unifies ILP and statistical learn-
ing in the following sense: using a deterministic covers relation (,which is either 1
or 0) yields the classical ILP learning problem, see Definition 1, whereas sticking to
propositional logic and learning from observed examples, i.e., P (E) > 0, only yields
traditional statistical learning.

To come up with algorithms solving probabilistic ILP learning problems, say for
density estimation, one typically distinguishes two subtasks because H = (L, λ) is
essentially a logic program L annotated with probabilistic parameters λ:

1. Parameter estimation where it is assumed that the underlying logic program L is
fixed, and the learning task consists of estimating the parameters λ that maximize
the likelihood.

2. Structure learning where both L and λ have to be learned from the data.
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Below, we will sketch basic parameter estimation and structure learning techniques,
and illustrate them for each setting. In the remainder of the thesis, we will then discuss
selected probabilistic ILP approaches for learning from interpretations and probabilistic
learning from traces in detail. A more complete survey of learning probabilistic logic
representations can be found in [9] and in the related work sections of this thesis.

5.1 Parameter Estimation

The problem of parameter estimation is thus concerned with estimating the values of
the parameters λ of a fixed probabilistic program H = (L, λ) that best explains the
examples E. So, λ is a set of parameters and can be represented as a vector. As already
indicated above, to measure the extent to which a model fits the data, one usually em-
ploys the likelihood of the data, i.e. P (E | L, λ), though other scores or variants could
be used as well.

When all examples are fully observable, maximum likelihood reduces to frequency
counting. In the presence of missing data, however, the maximum likelihood estimate
typically cannot be written in closed form. It is a numerical optimization problem,
and all known algorithms involve nonlinear optimization The most commonly adapted
technique for probabilistic logic learning is the Expectation-Maximization (EM)
algorithm [11,36]. EM is based on the observation that learning would be easy (i.e.,
correspond to frequency counting), if the values of all the random variables would be
known. Therefore, it estimates these values, maximizes the likelihood based on the
estimates, and then iterates. More specifically, EM assumes that the parameters have
been initialized (e.g., at random) and then iteratively performs the following two steps
until convergence:

(E-Step). On the basis of the observed data and the present parameters of the model,
it computes a distribution over all possible completions of each partially observed
data case.

(M-Step). Treating each completion as a fully observed data case weighted by its
probability, it computes the improved parameter values using (weighted) frequency
counting.

The frequencies over the completions are called the expected counts. Examples for
parameter estimation of probabilistic relational models in general can be found in
Chapters 2 and 10 for sequential relational models, in Chapter 4 for Markov logic,
in Chapter 5 for PRISM, in Chapter 6 for CLP(BN ), in Chapter 7 for Bayesian logic
programs, and in Chapters 9 and 11 for stochastic logic programs and variants.

5.2 Structure Learning

The problem is now to learn both the structure L and the parameters λ of the proba-
bilistic program H = (L, λ) from data. Often, further information is given as well. As
in ILP, the additional knowledge can take various different forms, including a language
bias that imposes restrictions on the syntax of L, and an initial hypothesis (L, λ) from
which the learning process can start.

Nearly all (score-based) approaches to structure learning perform a heuristic search
through the space of possible hypotheses. Typically, hill-climbing or beam-search is
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applied until the hypothesis satisfies the logical constraints and the score(H, E) is no
longer improving. The steps in the search-space are typically made using refinement
operators, which make small, syntactic modification to the (underlying) logic program.

At this points, it is interesting to observe that the logical constraints often require
that the observed examples are covered in the logical sense. For instance, when learn-
ing stochastic logic programs from entailment, the observed example clauses must
be entailed by the logic program, and when learning Markov logic networks, the ob-
served interpretations must be models of the underlying logic program. Thus, for
a probabilistic program H = (LH , λH) and a background theory B = (LB, λB)
it holds that ∀ep ∈ Ep : P (e|H, B) > 0 if and only if covers(e, LH , LB) = 1, where
LH (respectively LB) is the underlying logic program (logical background theory) and
covers(e, LH , LB) is the purely logical covers relation, which is either 0 or 1.

Let us now sketch for each probabilistic ILP setting one learning approach.

5.3 Learning from Probabilistic Interpretations

The large majority of statistical relational learning techniques proposed so far fall into
the learning from interpretations setting including parameter estimation of probabilis-
tic logic programs [30], learning of probabilistic relational models [18], parameter
estimation of relational Markov models [60], learning of object-oriented Bayesian net-
works [3], learning relational dependency networks [44], and learning logic programs
with annotated disjunctions [62,51]. This book provides details on learning sequential
relational models in Chapter 2 and 10, on learning Markov logic programs in Chapter 4,
and on learning CLP(BN ) in Chapter 6.

As an example, which will be discussed in detail in Chapter 7, consider learning
Bayesian logic programs. SCOOBY [26] is a greedy hill-climbing approach for learning
Bayesian logic programs. SCOOBY takes the initial Bayesian logic program H = (L, λ)
as starting point and computes the parameters maximizing score(L, λ, E). Then, re-
finement operators generalizing respectively specializing H are used to to compute all
legal neighbors of H in the hypothesis space, see Figure 6. Each neighbor is scored. Let

c(X) | f(X).
c(X) | m(M,X), c(M).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X), c(M),s(X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X), c(M),f(F,X).
s(X) | c(X).

delete
add

add

Fig. 6. The use of refinement operators during structural search within the framework of Bayesian
logic programs. We can add an atom or delete an atom from the body of a clause. Candidates
crossed out are illegal because they are cyclic. Other refinement operators are reasonable such as
adding or deleting logically valid clauses.
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H ′ = (L′, λ′) be the legal neighbor scoring best. If score(L, λ, E) < score(L′, λ′, E)
then SCOOBY takes H ′ as new hypothesis. The process is continued until no improve-
ments in score are obtained.

SCOOBY is akin to theory revision approaches in inductive logic programming,
which also form the basis for learning biochemical reaction models in Chapter 11. In
case that only propositional clauses are considered, SCOOBY coincides with greedy
hill-climbing approaches for learning Bayesian networks [19].

5.4 Learning from Probabilistic Proofs

Given a training set E containing ground proofs as examples, one possible approach
to learning from observed proofs only combines ideas from the early ILP system
GOLEM [42] that employs Plotkin’s [48] least general generalization (LGG) with
bottom-up generalization of grammars and hidden Markov models [59]. The resulting
algorithm employs the likelihood of the proofs score(L, λ, E) as the scoring function.
It starts by taking as L0 the set of ground clauses that have been used in the proofs in
the training set and scores it to obtain λ0. After initialization, the algorithm will then
repeatedly select a pair of clauses in Li, and replace the pair by their LGG to yield
a candidate L′. The candidate that scores best is then taken as Hi+1 = (Li+1, λi+1),
and the process iterates until the score no longer improves. One interesting issue is that
strong logical constraints can be imposed on the LGG. These logical constraints directly
follow from the fact that the example proofs should still be valid proofs for the logical
component L of all hypotheses considered. Therefore, it makes sense to apply the LGG
only to clauses that define the same predicate, that contain the same predicates, and
whose (reduced) LGG also has the same length as the original clauses.

Preliminary results with a prototype implementation are promising. In one experi-
ment, we generated from the target stochastic logic program

1 : s(A, B)← np(Number, A, C), vp(Number, C, B).
1/2 : np(Number, A, B)← det(A, C), n(Number, C, B).
1/2 : np(Number, A, B)← pronom(Number, A, B).
1/2 : vp(Number, A, B)← v(Number, A, B).
1/2 : vp(Number, A, B)← v(Number, A, C), np(D, C, B).
1 : det(A, B)← term(A, the, B).
1/4 : n(s, A, B)← term(A, man, B).
1/4 : n(s, A, B)← term(A, apple, B).
1/4 : n(pl, A, B)← term(A, men, B).
1/4 : n(pl, A, B)← term(A, apples, B).
1/4 : v(s, A, B)← term(A, eats, B).
1/4 : v(s, A, B)← term(A, sings, B).
1/4 : v(pl, A, B)← term(A, eat, B).
1/4 : v(pl, A, B)← term(A, sing, B).
1 : pronom(pl, A, B)← term(A, you, B).
1 : term([A|B], A, B) ←

(independent) training sets of 50, 100, 200, and 500 proofs. For each training set, 4
different random initial sets of parameters were tried. We ran the learning algorithm on



22 L. De Raedt and K. Kersting

-40

-30

-20

-10

 0

 0  2  4  6  8  10

lo
g-

lik
el

ho
od

 (a) iterations

2

0

-2

-4

-6
50020010050

lo
g-

lik
el

ho
od

(b) # samples

Fig. 7. Experimental results on learning stochastic logic programs from proofs. (a) A typical
learning curve. (b) Final log-likelihood averaged over 4 runs. The error bars show the standard
deviations.

each data set starting from each of the initial sets of parameters. The algorithm stopped
when a limit of 200 iterations was exceeded or a change in log-likelihood between two
successive iterations was smaller than 0.0001.

Figure 7 (a) shows a typical learning curve, and Figure 7 (b) summarizes the overall
results. In all runs, the original structure was induced from the proof-trees. Moreover,
already 50 proof-trees suffice to rediscover the structure of the original stochastic logic
program. Further experiments with 20 and 10 samples respectively show that even 20
samples suffice to learn the given structure. Sampling 10 proofs, the original structure
is rediscovered in one of five experiments. This supports that the learning from proof
trees setting carries a lot information. Furthermore, our methods scales well. Runs on
two independently sampled sets of 1000 training proofs yield similar results: −4.77
and −3.17, and the original structure was learned in both cases. More details can be
found in [10].

Other statistical relational learning frameworks that have been developed within
the learning from proofs setting are relational Markov models [2] and logical hidden
Markov models [28,29, see also Chapters 2 and 10].

5.5 Probabilistic Learning from Entailment

This setting has been investigated for learning stochastic logic programs [39,40,5,41]
and for parameter estimation of PRISM programs [54,23] from observed examples only,
cf. Chapters 5 and 11. Here, we will illustrate a promising, alternative approach with
less computational complexity, which adapts FOIL [50] with the conditional likelihood
as described in Equation (9) as the scoring function score(L, λ, E). This idea has been
followed with NFOIL, see [31] for more details.

Given a training set E containing positive and negative examples (i.e. true and
false ground facts), this algorithm stays in the learning from observed examples
only to induce a probabilistic logical model to distinguish between the positive and
negative examples. It computes Horn clause features b1, b2, . . . in an outer loop.
It terminates when no further improvements in the score are obtained, i.e, when
score({b1, . . . , bi}, λi, E) < score({b1, . . . , bi+1}, λi+1, E), where λ denotes the
maximum likelihood parameters. A major difference with FOIL is, however, that the
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Fig. 8. Cross-validated accuracy results of NFOIL on ILP benchmark data sets. For Mutagenesis
r.u., leave-one-out cross-validated accuracies are reported because of the small size of the data
set. For all other domains, 10-fold cross-validated results are given. mFOIL [32] and Aleph [56]
are standard ILP algorithms. 1BC2 [16] is a first order logical variant of Naı̈ve Bayes. For 1BC2,
we do not test significance because the results on Mutagenesis are taken from [16]. Diterpene
is a multiclass problem but mFOIL has been developed for two-class problems only. Therefore,
we do not report results for mFOIL on Diterpene.

Probabilistic learning from ...

... entailment. ... interpretations. ... proofs or traces.

Fig. 9. The level of information on the target probabilistic program provided by probabilistic
ILP settings: shaded parts denote unobserved information. Learning from entailment provides
the least information. Only roots of proof tree are observed. In contrast, learning from proofs or
traces provides the most information. All ground clauses and atoms used in proofs are observed.
Learning from interpretations provides an intermediate level of information. All ground atoms
but not the clauses are observed.

covered positive examples are not removed. The inner loop is concerned with induc-
ing the next feature bi+1 top-down, i.e., from general to specific. To this aim it starts
with a clause with an empty body, e.g., muta(M) ←. This clause is then specialized
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by repeatedly adding atoms to the body, e.g., muta(M) ← bond(M, A, 1), muta(M) ←
bond(M, A, 1), atom(M, A, c, 22, ), etc. For each refinement b′i+1 we then com-
pute the maximum-likelihood parameters λ′

i+1 and score({b1, . . . , b
′
i+1}, λ′

i+1, E).
The refinement that scores best, say b′′i+1, is then considered for further refine-
ment and the refinement process terminates when score({b1, . . . , bi+1}, λi+1, E) <
score({b1, . . . , b

′′
i+1}, λ′′

i+1, E). As Figure 8 shows, NFOIL performs well compared
to other ILP systems on traditional ILP benchmark data sets. MFOIL and ALEPH,
two standard ILP systems, were never significantly better than NFOIL (paired sam-
pled t-test, p = 0.05). NFOIL achieved significantly higher predictive accuracies than
MFOIL on Alzheimer amine, toxic, and acetyl. Compared to ALEPH, NFOIL achieved
significantly higher accuracies on Alzheimer amine and acetyl (paired sampled t-test,
p = 0.05). For more details, we refer to [31].

6 Conclusions

This chapter has defined the formal framework of probabilistic ILP for statistical re-
lational learning and presented three learning setting settings: probabilistic learning
from entailment, from interpretations, and from proofs. They differ in their representa-
tion of examples and the corresponding covers relation. The probabilistic ILP settings
and learning approaches are by no means the only possible settings for probabilistic
ILP. Nevertheless, two of the settings have – to the best of our knowledge – not been
introduced before. Furthermore, we have sketched how the settings combine and gen-
eralize ILP and statistical learning. Finally, we have shown how state-of-the-art SRL
frameworks fit into these learning settings

At present, it is still an open question as to what the relation among these different
settings is. It is, however, apparent that they provide different levels of information
about the target probabilistic program, cf. Figure 9. Learning from entailment provides
the least information, whereas learning from proofs or traces the most. Learning from
interpretations occupies an intermediate position. This is interesting because learning is
expected to be even more difficult as the less information is observed. Furthermore, the
presented learning settings are by no means the only possible settings. Examples might
be weighted and proofs might be partially observed.

Acknowledgements

This work was supported by the European Union, contract number FP6-508861, Appli-
cations of Probabilistic Inductive Logic Programming II.

References

1. Abney, S.P.: Stochastic Attribute-Value Grammars. Computational Linguistics 23(4), 597–
618 (1997)

2. Anderson, C.R., Domingos, P., Weld, D.S.: Relational Markov Models and their Applica-
tion to Adaptive Web Navigation. In: Hand, D., Keim, D., Ng, R. (eds.) Proceedings of the
Eighth International Conference on Knowledge Discovery and Data Mining (KDD 2002),
Edmonton, Canada, July 2002, pp. 143–152. ACM Press, New York (2002)



Probabilistic Inductive Logic Programming 25

3. Bangsø, O., Langseth, H., Nielsen, T.D.: Structural learning in object oriented domains. In:
Russell, I., Kolen, J. (eds.) Proceedings of the Fourteenth International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2001), Key West, Florida, USA, pp.
340–344. AAAI Press, Menlo Park (2001)

4. Cussens, J.: Loglinear models for first-order probabilistic reasoning. In: Laskey, K.B., Prade,
H. (eds.) Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI 1999), Stockholm, Sweden, pp. 126–133. Morgan Kaufmann, San Francisco
(1999)

5. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning Jour-
nal 44(3), 245–271 (2001)

6. Cussens, J.: Integrating by separating: Combining probability and logic with ICL, PRISM
and SLPs. Technical report, APrIL Projetc (January 2005)

7. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence Journal 95(1),
197–201 (1997)
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