

Lecture Notes in Artificial Intelligence 4911
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Luc De Raedt Paolo Frasconi
Kristian Kersting Stephen Muggleton (Eds.)

Probabilistic Inductive
Logic Programming

Theory and Applications

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Luc De Raedt
Katholieke Universiteit Leuven
Department of Computer Science, Belgium
E-mail: Luc.DeRaedt@cs.kuleuven.be

Paolo Frasconi
Università degli Studi di Firenze
Machine Learning and Neural Networks Group,
Dipartimento di Sistemi e Informatica, Italy
E-mail: p-f@dsi.unifi.it

Kristian Kersting
Massachusetts Institute of Technology, CSAIL
E-mail: kersting@csail.mit.edu

Stephen Muggleton
Imperial College London, Department of Computing
E-mail: shm@doc.ic.ac.uk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2.3, I.2.6, I.2, D.1.6, F.4.1, J.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-78651-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78651-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12239573 06/3180 5 4 3 2 1 0

Preface

One of the key open questions within artificial intelligence is how to combine
probability and logic with learning. This question is getting an increased at-
tention in several disciplines such as knowledge representation, reasoning about
uncertainty, data mining, and machine learning simulateously, resulting in the
newly emerging subfield known as statistical relational learning and probabilis-
tic inductive logic programming. A major driving force is the explosive growth
in the amount of heterogeneous data that is being collected in the business
and scientific world. Example domains include bioinformatics, chemoinformat-
ics, transportation systems, communication networks, social network analysis,
link analysis, robotics, among others. The structures encountered can be as sim-
ple as sequences and trees (such as those arising in protein secondary structure
prediction and natural language parsing) or as complex as citation graphs, the
World Wide Web, and relational databases.

This book provides an introduction to this field with an emphasis on those
methods based on logic programming principles. The book is also the main
result of the successful European IST FET project no. FP6-508861 on Applica-
tion of Probabilistic Inductive Logic Programming (APRIL II, 2004-2007). This
project was coordinated by the Albert Ludwigs University of Freiburg (Germany,
Luc De Raedt) and the partners were Imperial College London (UK, Stephen
Muggleton and Michael Sternberg), the Helsinki Institute of Information Tech-
nology (Finland, Heikki Mannila), the Università degli Studi di Florence (Italy,
Paolo Frasconi), and the Institut National de Recherche en Informatique et Au-
tomatique Rocquencourt (France, Francois Fages). It was concerned with theory,
implementations and applications of probabilistic inductive logic programming.
This structure is also reflected in the book.

The book starts with an introductory chapter to “Probabilistic Inductive
Logic Programming” by De Raedt and Kersting. In a second part, it provides a
detailed overview of the most important probabilistic logic learning formalisms
and systems. We are very pleased and proud that the scientists behind the
key probabilistic inductive logic programming systems (also those developed
outside the APRIL project) have kindly contributed a chapter providing an
overview of their contributions. This includes: relational sequence learning tech-
niques (Kersting et al.), using kernels with logical representations (Frasconi
and Passerini), Markov Logic (Domingos et al.), the PRISM system (Sato and
Kameya), CLP(BN) (Santos Costa et al.), Bayesian Logic Programs (Kersting
and De Raedt), and the Independent Choice Logic (Poole). The third part then
provides a detailed account of some show-case applications of probabilistic in-
ductive logic programming, more specifically: in protein fold discovery (Chen
et al.), haplotyping (Landwehr and Mielikäinen) and systems biology (Fages
and Soliman). The final part touches upon some theoretical investigations and

VI Preface

includes chapters on behavioral comparison of probabilistic logic programming
representations (Muggleton and Chen) and a model-theoretic expressivity anal-
ysis (Jaeger).

The editors would like to thank the EU (Future and Emerging Technology
branch of the FP6 IST programme) for supporting the April II project as well as
the partners in the consortium and all contributors to this book. We hope that
you will enjoy reading this book as much as we enjoyed the process of producing
it.

December 2007 Luc De Raedt
Paolo Frasconi

Kristian Kersting
Stephen H. Muggleton

Table of Contents

Introduction

Probabilistic Inductive Logic Programming . 1
Luc De Raedt and Kristian Kersting

Formalisms and Systems

Relational Sequence Learning . 28
Kristian Kersting, Luc De Raedt, Bernd Gutmann,
Andreas Karwath, and Niels Landwehr

Learning with Kernels and Logical Representations 56
Paolo Frasconi and Andrea Passerini

Markov Logic . 92
Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon,
Matthew Richardson, and Parag Singla

New Advances in Logic-Based Probabilistic Modeling by PRISM 118
Taisuke Sato and Yoshitaka Kameya

CLP(BN): Constraint Logic Programming for Probabilistic
Knowledge . 156

Vı́tor Santos Costa, David Page, and James Cussens

Basic Principles of Learning Bayesian Logic Programs 189
Kristian Kersting and Luc De Raedt

The Independent Choice Logic and Beyond . 222
David Poole

Applications

Protein Fold Discovery Using Stochastic Logic Programs 244
Jianzhong Chen, Lawrence Kelley, Stephen Muggleton, and
Michael Sternberg

Probabilistic Logic Learning from Haplotype Data 263
Niels Landwehr and Taneli Mielikäinen

Model Revision from Temporal Logic Properties in Computational
Systems Biology . 287

François Fages and Sylvain Soliman

VIII Table of Contents

Theory

A Behavioral Comparison of Some Probabilistic Logic Models 305
Stephen Muggleton and Jianzhong Chen

Model-Theoretic Expressivity Analysis . 325
Manfred Jaeger

Author Index . 341

Probabilistic Inductive Logic Programming

Luc De Raedt1 and Kristian Kersting2

1 Departement Computerwetenschappen, K.U. Leuven
Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

Luc.DeRaedt@cs.kuleuven.be
2 CSAIL, Massachusetts Institute of Technologie

32 Vassar Street, Cambridge, MA 02139-4307, USA
kersting@csail.mit.edu

Abstract. Probabilistic inductive logic programming aka. statistical relational
learning addresses one of the central questions of artificial intelligence: the inte-
gration of probabilistic reasoning with machine learning and first order and rela-
tional logic representations. A rich variety of different formalisms and learning
techniques have been developed. A unifying characterization of the underlying
learning settings, however, is missing so far.

In this chapter, we start from inductive logic programming and sketch how
the inductive logic programming formalisms, settings and techniques can be ex-
tended to the statistical case. More precisely, we outline three classical settings
for inductive logic programming, namely learning from entailment, learning from
interpretations, and learning from proofs or traces, and show how they can be
adapted to cover state-of-the-art statistical relational learning approaches.

1 Introduction

One of the central open questions of artificial intelligence is concerned with combining
expressive knowledge representation formalisms such as relational and first-order logic
with principled probabilistic and statistical approaches to inference and learning. Tra-
ditionally, relational and logical reasoning, probabilistic and statistical reasoning, and
machine learning are research fields in their own rights. Nowadays, they are becoming
increasingly intertwined. A major driving force is the explosive growth in the amount of
heterogeneous data that is being collected in the business and scientific world. Example
domains include bioinformatics, transportation systems, communication networks, so-
cial network analysis, citation analysis, and robotics. They provide uncertain informa-
tion about varying numbers of entities and relationships among the entities, i.e., about
relational domains. Traditional machine learning approaches are able to cope either
with uncertainty or with relational representations but typically not with both.

It is therefore not surprising that there has been a significant interest in integrat-
ing statistical learning with first order logic and relational representations. [14] has in-
troduced a probabilistic variant of Comprehensive Unification Formalism (CUF). In a
similar manner, Muggleton [38] and Cussens [4] have upgraded stochastic grammars
towards stochastic logic programs; Chapter 9 presents an application of them to pro-
tein fold discovery. Sato [53] has introduced probabilistic distributional semantics for

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 1–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L. De Raedt and K. Kersting

Statistical Relational Learning

Probability

Logic Learning

Fig. 1. Probabilistic inductive logic programming aka. statistical relational learning combines
probability, logic, and learning

logic programs; latest developments of this approach are presented in Chapter 5. Taskar
et al. [60] have upgraded Markov networks towards relational Markov networks, and
Domingos and Richardson [12] towards Markov logic networks (see also Chapter 4).
Another research stream includes Poole’s independent choice Logic [49] as reviewed
in Chapter 8, Ngo and Haddawy’s probabilistic-logic programs [45], Jäger’s relational
Bayesian networks [21], Pfeffer’s [47] and Getoor’s [17] probabilistic relational mod-
els, and Kersting and De Raedt’s Bayesian logic programs [26, see also Chapter 7],
and has investigated logical and relational extensions of Bayesian networks. Neville
and Jensen [44] developed relational dependency networks. This newly emerging re-
search field is known under the name of statistical relational learning or probabilistic
inductive logic programming, cf. Figure 1, and

Deals with machine learning and data mining in relational domains where
observations may be missing, partially observed, and/or noisy.

Employing relational and logical abstraction within statistical learning has two ad-
vantages. First, variables, i.e., placeholders for entities allow one to make abstraction
of specific entities. Second, unification allows one to share information among entities.
Thus, instead of learning regularities for each single entity independently, statistical
relational learning aims at finding general regularities among groups of entities. The
learned knowledge is declarative and compact, which makes it much easier for people
to understand and to validated. Although, the learned knowledge must be recombined
at run time using some reasoning mechanism such as backward chaining or resolution,
which bears additional computational costs, statistical relational models are more flex-
ible, context-aware, and offer — in principle — the full power of logical reasoning.
Moreover, in many applications, there is a rich background theory available, which can
efficiently and elegantly be represented as sets of general regularities. This is impor-
tant because background knowledge often improves the quality of learning as it focuses
learning on relevant patterns, i.e., restricts the search space. While learning, relational
and logical abstraction allow one to reuse experience: learning about one entity im-
proves the prediction for other entities; it might even generalize to objects, which have
never been observed before. Thus, relational and logical abstraction can make statistical
learning more robust and efficient. This has been proven beneficial in many fascinating
real-world applications in citation analysis, web mining, natural language processing,
robotics, bio- and chemo-informatics, electronic games, and activity recognition.

Probabilistic Inductive Logic Programming 3

Whereas most of the existing works on statistical relational learning have started
from a statistical and probabilistic learning perspective and extended probabilistic for-
malisms with relational aspects, we will take a different perspective, in which we will
start from inductive logic programming (ILP) [43], which is often also called multi-
relational data mining (MRDM) [13]. ILP is a research field at the intersection of
machine learning and logic programming. It aims at a formal framework as well as
practical algorithms for inductively learning relational descriptions (in the form of logic
programs) from examples and background knowledge. However, it does not explicitly
deal with uncertainty such as missing or noisy information. Therefore, we will study
how inductive logic programming formalisms, settings and techniques can be extended
to deal with probabilities. At the same time, it is not our intention to provide a complete
survey of statistical relational learning (as [9] does), but rather to focus on the principles
that underlay this new and exciting subfield of artificial intelligence.

We call the resulting framework probabilistic ILP. It aims at a formal framework for
statistical relational learning. Dealing explicitly with uncertainty makes probabilistic
ILP more powerful than ILP and, in turn, than traditional attribute-value approaches.
Moreover, there are several benefits of an ILP view on statistical relational learning.
First of all, classical ILP learning settings — as we will argue — naturally carry over
to the probabilistic case. The probabilistic ILP settings make abstraction of specific
probabilistic relational and first order logical representations and inference and learn-
ing algorithms yielding — for the first time — general statistical relational learning
settings. Second, many ILP concepts and techniques such as more–general–than, refine-
ment operators, least general generalization, and greatest lower bound can be reused.
Therefore, many ILP learning algorithms such as Quinlan’s FOIL and De Raedt and
Dehaspe’s CLAUDIEN can easily be adapted. Third, the ILP perspective highlights the
importance of background knowledge within statistical relational learning. The research
on ILP and on artificial intelligence in general has shown that background knowledge
is the key to success in many applications. Finally, an ILP approach should make sta-
tistical relational learning more intuitive to those coming from an ILP background and
should cross-fertilize ideas developed in ILP and statistical learning.

We will proceed as follows. After reviewing the basic concepts of logic program-
ming in Section 2 and of inductive logic programming in Section 3, we will extend
inductive logic programming to deal explicitly with uncertainty in Section 4. Based on
this foundation, we will introduce probabilistic variants of classical ILP settings for
learning from entailment, from interpretations and from proofs. Each of the resulting
settings will be exemplified with different probabilistic logic representations, examples
and probability distributions.

2 Logic Programming Concepts

To introduce logic programs, consider Figure 2, containing two programs, grandpar-
ent and nat. Formally speaking, we have that grandparent/2, parent/2, and nat/1
are predicates (with their arity, i.e., number of arguments listed explicitly) jef, paul
and ann are constants and X, Y and Z are variables All constants and variables are
also terms In addition, there exist structured terms such as s(X), which contains the

4 L. De Raedt and K. Kersting

parent(jef,paul). nat(0).
parent(paul,ann). nat(s(X)) :- nat(X).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

Fig. 2. Two logic programs, grandparent and nat

functor s/1 of arity 1 and the term X. Constants are often considered as functors of ar-
ity 0. A first order alphabet Σ is a set of predicate symbols, constant symbols and func-
tor symbols. Atoms are predicate symbols followed by the necessary number of terms,
e.g., parent(jef, paul), nat(s(X)), parent(X, Z), etc. Literals are atoms nat(s(X))
(positive literal) and their negations not nat(s(X)) (negative literals). We are now able
to define the key concept of a definite clause. Definite clauses are formulas of the form

A :−B1, . . . , Bm

where A and the Bi are logical atoms and all variables are understood to be universally
quantified. For instance, the clause c

c ≡ grandparent(X, Y) :−parent(X, Z), parent(Z, Y)

can be read as X is the grandparent of Y if X is a parent of Z and Z
is a parent of Y. We call grandparent(X, Y) the head(c) of this clause, and
parent(X, Z), parent(Z, Y) the body(c). Clauses with an empty body such as
parent(jef, paul) are facts. A (definite) clause program (or logic program for short)
consists of a set of clauses. In Figure 2, there are thus two logic programs, one defining
grandparent/2 and one defining nat/1. The set of variables in a term, atom, conjunc-
tion or clause E, is denoted as Var(E), e.g., Var(c) = {X, Y, Z}. A term, atom or clause
E is ground when there is no variable occurring in E, i.e. Var(E) = ∅. A clause c is
range-restricted when all variables in the head of the clause also appear in the body of
the clause, i.e., Var(head(c)) ⊆ |V ars(body(c)).

A substitution θ = {V1/t1, . . . , Vn/tn}, e.g. {Y/ann}, is an assignment of terms ti
to variables Vi. Applying a substitution θ to a term, atom or clause e yields the instan-
tiated term, atom, or clause eθ where all occurrences of the variables Vi are simultane-
ously replaced by the term ti, e.g. cθ is

c′ ≡ grandparent(X, ann) :−parent(X, Z), parent(Z, ann).

A clause c1 θ-subsumes1 {head(c2)θ} ∪ body(c2)θ ⊂ {head(c1)} ∪ body(c1). The
Herbrand base of a logic program P , denoted as hb(P), is the set of all ground atoms
constructed with the predicate, constant and function symbols in the alphabet of P .

Example 1. The Herbrand bases of the nat and grandparent logic programs are

hb(nat) = {nat(0), nat(s(0)), nat(s(s(0))), ...}
and hb(grandparent) = {parent(ann, ann), parent(jef, jef),

parent(paul, paul), parent(ann, jef), parent(jef, ann), ...,

grandparent(ann, ann), grandparent(jef, jef), ...}.
1 The definition of θ-subsumption also applies to conjunctions of literals, as these can also be

defined as set of literals.

Probabilistic Inductive Logic Programming 5

A Herbrand interpretation for a logic program P is a subset of hb(P). A Herbrand
interpretation I is a model if and only if for all substitutions θ such that body(c)θ ⊆ I
holds, it also holds that head(c)θ ∈ I . The interpretation I is a model of a logic program
P if I is a model of all clauses in P . A clause c (logic program P) entails another clause
c′ (logic program P ′), denoted as c |= c′ (P |= P ′), if and only if, each model of c (P) is
also a model of c′ (P ′). Clearly, if clause c (program P) θ-subsumes clause c′ (program
P ′) then c (P) entails c′ (P ′), but the reverse is not true.

The least Herbrand model LH(P), which constitutes the semantics of the logic
program P , consists of all facts f ∈ hb(P) such that P logically entails f , i.e. P |=
f . All ground atoms in the least Herbrand model are provable. Proofs are typically
constructed using the SLD-resolution procedure: given a goal :-G1, G2 . . . , Gn and a
clause G:-L1, . . . , Lm such that G1θ = Gθ, applying SLD resolution yields the new goal
:-L1θ, . . . , Lmθ, G2θ . . . , Gnθ. A successful refutation, i.e., a proof of a goal is then a
sequence of resolution steps yielding the empty goal, i.e. :- . Failed proofs do not end
in the empty goal.

Example 2. The atom grandparent(jeff, ann) is true because of

:-grandparent(jeff, ann)
:-parent(jeff, Z), parent(Z, ann)
:-parent(paul, ann)
:-

Resolution is employed by many theorem provers (such as Prolog). Indeed, when given
the goal grandparent(jeff, ann), Prolog would compute the above successful reso-
lution refutation and answer that the goal is true.

For a detailed introduction to logic programming, we refer to [33], for a more gentle
introduction, we refer to [15], and for a detailed discussion of Prolog, see [58].

3 Inductive Logic Programming (ILP) and Its Settings

Inductive logic programming is concerned with finding a hypothesis H (a logic pro-
gram, i.e. a definite clause program) from a set of positive and negative examples Pos
and Neg.

Example 3 (Adapted from Example 1.1 in [32]). Consider learning a definition for the
daughter/2 predicate, i.e., a set of clauses with head predicates over daughter/2,
given the following facts as learning examples

Pos daughter(dorothy, ann).
daughter(dorothy, brian).

Neg daughter(rex, ann).
daughter(rex, brian).

Additionally, we have some general knowledge called background knowledge B, which
describes the family relationships and sex of each person:

mother(ann, dorothy). female(dorothy). female(ann).
mother(ann, rex). father(brian, dorothy). father(brian, rex).

6 L. De Raedt and K. Kersting

From this information, we could induce H

daughter(C, P) : − female(C), mother(P, C).
daughter(C, P) : − female(C), father(P, C).

which perfectly explains the examples in terms of the background knowledge, i.e., Pos
are entailed by H together with B, but Neg are not entailed.

More formally, ILP is concerned with the following learning problem.

Definition 1 (ILP Learning Problem). Given a set of positive and negative examples
Pos and Neg over some language LE , a background theory B, in the form of a set of
definite clauses, a hypothesis languageLH , which specifies the clauses that are allowed
in hypotheses, and a covers relation covers(e, H, B) ∈ {0, 1}, which basically returns
the classification of an example e with respect to H and B, find a hypothesis H in
H that covers (with respect to the background theory B) all positive examples in Pos
(completeness) and none of the negative examples in Neg (consistency).

The language LE chosen for representing the examples together with the covers re-
lation determines the inductive logic programming setting. Various settings have been
considered in the literature [7]. In the following, we will formalize learning from entail-
ment [48] and from interpretations [20,8]. We further introduce a novel, intermediate
setting, which we call learning from proofs. It is inspired on the seminal work by [55].

3.1 Learning from Entailment

Learning from entailment is by far the most popular ILP setting and it is addressed
by a wide variety of well-known ILP systems such as FOIL [50], PROGOL [37], and
ALEPH [56].

Definition 2 (Covers Relation for Learning from Entailment). When learning from
entailment, the examples are definite clauses and a hypothesis H covers an example e
with respect to the background theory B if and only if B ∪ H |= e, i.e., each model of
B ∪ H is also a model of e.

In many well-known systems, such as FOIL, one requires that the examples are ground
facts, a special form of clauses. To illustrate the above setting, consider the following
example inspired on the well-known mutagenicity application [57].

Example 4. Consider the following facts in the background theory B, which describe
part of molecule 225.

molecule(225). bond(225, f1 1, f1 2, 7).
logmutag(225, 0.64). bond(225, f1 2, f1 3, 7).
lumo(225,−1.785). bond(225, f1 3, f1 4, 7).
logp(225, 1.01). bond(225, f1 4, f1 5, 7).
nitro(225, [f1 4, f1 8, f1 10, f1 9]). bond(225, f1 5, f1 1, 7).
atom(225, f1 1, c, 21, 0.187). bond(225, f1 8, f1 9, 2).
atom(225, f1 2, c, 21,−0.143). bond(225, f1 8, f1 10, 2).
atom(225, f1 3, c, 21,−0.143). bond(225, f1 1, f1 11, 1).

Probabilistic Inductive Logic Programming 7

atom(225, f1 4, c, 21,−0.013). bond(225, f1 11, f1 12, 2).
atom(225, f1 5, o, 52,−0.043). bond(225, f1 11, f1 13, 1).
. . .

ring size 5(225, [f1 5, f1 1, f1 2, f1 3, f1 4]).
hetero aromatic 5 ring(225, [f1 5, f1 1, f1 2, f1 3, f1 4]).
. . .

Consider now the positive example mutagenic(225). It is covered by H

mutagenic(M) : − nitro(M, R1), logp(M, C), C> 1.

together with the background knowledge B, because H ∪B entails the example. To see
this, we unify mutagenic(225) with the clause’s head. This yields

mutagenic(225) : − nitro(225, R1), logp(225, C), C> 1.

Now, nitro(225, R1) unifies with the fifth ground atom (left-hand side column) in
B, and logp(225, C) with the fourth one. Because 1.01 > 1, we found a proof of
mutagenic(225).

3.2 Learning from Interpretations

The learning from interpretations setting [8] upgrades boolean concept-learning in com-
putational learning theory [61].

Definition 3 (Covers Relational for Learning from Interpretations). When learning
from interpretations, the examples are Herbrand interpretations and a hypothesis H
covers an example e with respect to the background theory B if and only if e is a model
of B ∪ H .

Recall that Herbrand interpretations are sets of true ground facts and they completely
describe a possible situation.

Example 5. Consider the interpretation I , which is the union of B

B = {father(henry, bill), father(alan, betsy), father(alan, benny),
father(brian, bonnie), father(bill, carl), father(benny, cecily),
father(carl, dennis), mother(ann, bill), mother(ann, betsy),
mother(ann, bonnie), mother(alice, benny), mother(betsy, carl),
mother(bonnie, cecily), mother(cecily, dennis), founder(henry),
founder(alan), founder(ann), founder(brian), founder(alice)}

and
C = {carrier(alan), carrier(ann), carrier(betsy)}.

The interpretation I is covered by the clause c

carrier(X) : − mother(M, X), carrier(M), father(F, X), carrier(F).

because I is a model of c, i.e., for all substitutions θ such that body(c)θ ⊆ I , it holds
that head(c)θ ∈ I .

8 L. De Raedt and K. Kersting

The key difference between learning from interpretations and learning from entail-
ment is that interpretations carry much more — even complete — information. Indeed,
when learning from entailment, an example can consist of a single fact, whereas when
learning from interpretations, all facts that hold in the example are known. Therefore,
learning from interpretations is typically easier and computationally more tractable than
learning from entailment, cf. [7].

3.3 Learning from Proofs

Because learning from entailment (with ground facts as examples) and interpretations
occupy extreme positions with respect to the information the examples carry, it is in-
teresting to investigate intermediate positions. Shapiro’s [55] Model Inference System
(MIS) fits nicely within the learning from entailment setting where examples are facts.
However, to deal with missing information, Shapiro employs a clever strategy: MIS
queries the users for missing information by asking them for the truth-value of facts.
The answers to these queries allow MIS to reconstruct the trace or the proof of the
positive examples. Inspired by Shapiro, we define the learning from proofs setting.

Definition 4 (Covers Relation for Learning from Proofs). When learning from
proofs, the examples are ground proof-trees and an example e is covered by a hypothesis
H with respect to the background theory B if and only if e is a proof-tree for H ∪ B.

At this point, there exist various possible forms of proof-trees. Here, we will — for
reasons that will become clear later — assume that the proof-tree is given in the form
of a ground and-tree where the nodes contain ground atoms. More formally:

Definition 5 (Proof Tree). A tree t is a proof-tree for a logic program T if and only
if t is a rooted tree where for every node n ∈ t with children(n) satisfies the property
that there exists a substitution θ and a clause c ∈ T such that n = head(c)θ and
children(n) = body(c)θ.

s([the,turtles,sleep],[])

np(pl,[the,turtles,sleep],[sleep]) vp(pl,[sleep],[])

iv(pl,[sleep],[])

t([sleep],sleep,[])

{}

n(pl,[turtles,sleep],[sleep])

t([turtles,sleep],turtles,[sleep])

{}

s(pl,[the,turtles,sleep],[turtles,sleep])

t([the,turtles,sleep],the,[turtles,sleep])

{}

Fig. 3. A proof tree, which is covered by the definite clause grammar in Example 6. Symbols are
abbreviated.

Probabilistic Inductive Logic Programming 9

Example 6. Consider the following definite clause grammar.

sentence(A, B): −noun phrase(C, A, D), verb phrase(C, D, B).

noun phrase(A, B, C): −article(A, B, D), noun(A, D, C).
verb phrase(A, B, C): −intransitive verb(A, B, C).

article(singular, A, B): −terminal(A, a, B).
article(singular, A, B): −terminal(A, the, B).
article(plural, A, B): −terminal(A, the, B).
noun(singular, A, B): −terminal(A, turtle, B).

noun(plural, A, B): −terminal(A, turtles, B).
intransitive verb(singular, A, B): −terminal(A, sleeps, B).
intransitive verb(plural, A, B): −terminal(A, sleep, B).

terminal([A|B], A, B).

It covers the proof tree shown in Figure 3.

Proof-trees contain — as interpretations — a lot of information. Indeed, they contain
instances of the clauses that were used in the proofs. Therefore, it may be hard for the
user to provide this type of examples. Even though this is generally true, there exist
specific situations for which this is feasible. Indeed, consider tree banks such as the
UPenn Wall Street Journal corpus [35], which contain parse trees. These trees directly
correspond to the proof-trees we talk about.

4 Probabilistic ILP Settings

Indeed, ILP has been developed for coping with relational data. It does not, however,
handle uncertainty in a principled way. In the reminder of this paper, we will show how
to extend the ILP settings to the probabilistic case. To do so, we shall quickly review
some of the key concepts and notation that will be used2.

Let X be a random variable with a finite domain domain(X) = {x1, x2, . . . , xn} of
possible states. We use the notation P(X) to denote the probability distribution over
domain(X), and P (X = xi) or P (xi) to denote the probability that the random vari-
able X takes the value xi ∈ domain X. For instance, consider the random variable (or
proposition) earthquake with domain {true, false}. Then, P(earthquake) denotes
the probability distribution, and P (earthquake = false) (or, in shorthand notation,
P (¬earthquake)) denotes the probability that earthquake is false. The distribution
P(X1, · · · , Xn) over a set of random variables {X1, · · · , Xn}, n > 1, is called joint
probability distributions. For instance, we may be interested in the joint probabil-
ity that earthquake = true and burglary = true at the same time. Generaliz-
ing the above notation, we will be using the notation P(earthquake, burglary) and
P (earthquake = true, burglary = true) respectively.

2 The reader not familiar with the basics of probability theory is encouraged to consult [52] for
an excellent overview from an artificial intelligence perspective.

10 L. De Raedt and K. Kersting

Some useful definitions and properties of probability theory can now be listed. The
conditional probability is defined as P(X|Y) = P(X, Y)/P(Y) if P(Y) > 0. Note
that the use of P in equalities is a short hand notation that denotes that the equality
is valid for all possible states of the involved random variables. The chain rule says
that P(X1, · · · , Xn) = P(X1)

∏n
i=2 P(Xi|Xi−1, · · · , X1). The law of Bayes states that

P(X|Y) = P(Y|X) · P(X)/P(Y). The distribution of X is related to the joint distribution
P(X, Y) by P(X) =

∑
y∈domain(Y) P(X, y), which is called marginalization. Finally,

two random variables X and Y are conditionally independent given a third random
variable Z if and only if P(X, Y|Z) = P(X|Z) · P(Y|Z). In case that the property holds
without needing to condition on variables Z, we say that X and Y are independent.

When working with probabilistic ILP representations, there are essentially two
changes:

1. Clauses are annotated with probabilistic information such as conditional probabili-
ties, and

2. The covers relation becomes probabilistic.

A probabilistic covers relation softens the hard covers relation employed in traditional
ILP and is defined as the probability of an example given the hypothesis and the
background theory.

Definition 6 (Probabilistic Covers Relation). A probabilistic covers relation takes as
arguments an example e, a hypothesis H and possibly the background theory B, and
returns the probability value P(e | H, B) between 0 and 1 of the example e given H
and B, i.e., covers(e, H, B) = P(e | H, B).

Using the probabilistic covers relation of Definition 6, our first attempt at a definition
of the probabilistic ILP learning problem is as follows.

Preliminary Definition 1 (Probabilistic ILP Learning Problem)
Given a probabilistic-logical language LH and a set E of examples over some lan-
guage LE , find the hypothesis H∗ in LH that maximizes P(E | H∗, B).

Under the usual i.i.d. assumption, i.e., examples are sampled independently from
identical distributions, this results in the maximization of

P(E | H∗, B) =
∏

e∈E

P(e | H∗, B) =
∏

e∈E

covers(e, H∗, B).

Similar to the ILP learning problem, the language LE selected for representing the
examples together with the probabilistic covers relation determines different learning
setting. In ILP, this lead to learning from interpretations, from proofs, and from en-
tailment. It should therefore be no surprise that this very same distinction also applies
to probabilistic knowledge representation formalisms. Indeed, Bayesian networks [46]
essentially define a probability distribution over interpretations or possible worlds, and
stochastic grammars [34] define a distribution over proofs, derivations or traces.

Guided by Definition 1, we will now introduce three probabilistic ILP settings, which
extend the purely logical ones sketched before. Afterwards, we will refine Definition 1
in Definition 7.

Probabilistic Inductive Logic Programming 11

4.1 Probabilistic Learning from Interpretations

In order to integrate probabilities in the learning from interpretations setting, we need
to find a way to assign probabilities to interpretations covered by an annotated logic
program. In the past decade, this issue has received a lot of attention and various dif-
ferent approaches have been developed. The most popular propositional frameworks
are Bayesian network and Markov networks. Later on, these propositional frameworks
have been extended to the relational case such probabilistic-logic programs [45], prob-
abilistic relational models [47], relational Bayesian networks [21], and Bayesian logic
programs [24,25].

In this book, the two most popular propositional formalisms, namely Bayesian net-
works and Markov networks, are considered, as well as their relational versions. The
present chapter focuses on Bayesian networks, and their extension towards Bayesian
logic programs [27, more details in Chapter 7], whereas Chapter 6 by Santos Costas et
al. discusses an integration of Bayesian networks and logic programs called CLP(BN)
and Chapter 9 by Domingos et al. focuses on Markov networks and their extension to
Markov Logic [12].

Bayesian Networks. The most popular formalism for defining probabilities on possi-
ble worlds is that of Bayesian networks. As an example of a Bayesian network, consider
Judea Pearl’s famous alarm network graphically illustrated in Figure 4. Formally speak-
ing, a Bayesian network is an augmented, directed acyclic graph, where each node
corresponds to a random variable Xi and each edge indicates a direct influence among
the random variables. It represents the joint probability distribution P(X1, . . . , Xn). The
influence is quantified with a conditional probability distribution cpd(Xi) associated to
each node Xi. It is defined in terms of the parents of the node X , which we denote by
Pa(Xi), and specifies cpd(Xi) = P(Xi | Pa(Xi)).

Example 7. Consider the Bayesian network in Figure 4. It contains the random vari-
ables alarm, earthquake, marycalls, johncalls and alarm. The CPDs associ-
ated to each of the nodes are specified in Table 1. They include the CPDs P(alarm |
earthquake, burglary), and P(earthquake), etc.

The Bayesian network thus has two components: a qualitative one, i.e. the directed
acyclic graph, and a quantitative one, i.e. the conditional probability distributions. To-
gether they specify the joint probability distribution.

As we will – for simplicity – assume that the random variables are all boolean, i.e.,
they can have the domain {true, false}, this actually amounts to specifying a proba-
bility distribution on the set of all possible interpretations. Indeed, in our alarm exam-
ple, the Bayesian network defines a probability distribution over truth-assignments to
{alarm, earthquake, marycalls, johncalls, burglary}.

The qualitative component specifies a set of conditional independence assumptions.
More formally, it stipulates the following conditional independency assumption:

Assumption 1. Each node Xi in the graph is conditionally independent of any sub-
set A of nodes that are not descendants of Xi given a joint state of Pa(Xi), i.e.
P(Xi | A,Pa(Xi)) = P(Xi | Pa(Xi)).

12 L. De Raedt and K. Kersting

alarm

burglary earthquake

johnCalls maryCalls

Fig. 4. The Bayesian alarm network. Nodes denote random variables and edges denote direct
influences among the random variables.

Table 1. The conditional probability distributions associated with the nodes in the alarm network,
cf. Figure 4

P(burglary)

(0.001, 0.999)

P(earthquake)

(0.002, 0.998)

burglary earthquake P(alarm)
true true (0.95, 0.05)
true false (0.94, 0.06)
false true (0.29, 0.71)
false false (0.001, 0.999)

alarm P(johncalls)
true (0.90, 0.10)
false (0.05, 0.95)

alarm P(marycalls)
true (0.70, 0.30)
false (0.01, 0.99)

For example, alarm is conditionally independent of marycalls) given a joint state of its
parents {earthquake, burglary}. Because of the conditional independence assumption,
we can write down the joint probability density as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi | Pa(Xi)) (1)

by applying the independency assumption and the chain rule to the joint probability
distribution.

Bayesian Logic Programs. The idea underlying Bayesian logic programs is to view
ground atoms as random variables that are defined by the underlying definite clause
programs. Furthermore, two types of predicates are distinguished: deterministic and
probabilistic ones. The former are called logical, the latter Bayesian. Likewise we will
also speak of Bayesian and logical atoms. A Bayesian logic program now consists of a
set of of Bayesian (definite) clauses, which are expressions of the form A | A1, . . . , An

where A is a Bayesian atom, A1, . . . , An, n ≥ 0, are Bayesian and logical atoms and
all variables are (implicitly) universally quantified. To quantify probabilistic dependen-
cies, each Bayesian clause c is annotated with its conditional probability distribution

Probabilistic Inductive Logic Programming 13

cpd(c) = P(A | A1, . . . , An), which quantifies as a macro the probabilistic depen-
dency among ground instances of the clause.

Let us illustrate Bayesian logic programs on an example inspired on Jensen’s stud
farm example [22], which describes the processes underlying a life threatening heredi-
tary disease.

Example 8. Consider the following Bayesian clauses:

carrier(X) | founder(X). (2)

carrier(X) | mother(M, X), carrier(M), father(F, X), carrier(F). (3)

suffers(X) | carrier(X). (4)

They specify the probabilistic dependencies governing the inheritance process. For in-
stance, clause (3) says that the probability for a horse being a carrier of the disease
depends on its parents being carriers. In this example, the mother, father, and founder
are logical, whereas the other ones, such as carrier and suffers, are Bayesian. The log-
ical predicates are then defined by a classical definite clause program which constitute
the background theory for this example. It is listed as interpretation B in Example 5.
Furthermore, the conditional probability distributions for the Bayesian clauses are

P (carrier(X) = true)

0.6

carrier(X) P (suffers(X) = true)

true 0.7
false 0.01

carrier(M) carrier(F) P (carrier(X) = true)

true true 0.6
true false 0.5
false true 0.5
false false 0.0

Observe that logical atoms, such as mother(M, X), do not affect the distribution of
Bayesian atoms, such as carrier(X), and are therefore not considered in the conditional
probability distribution. They only provide variable bindings, e.g., between carrier(X)
and carrier(M).

By now, we are able to define the covers relation for Bayesian logic programs. A
Bayesian logic program together with the background theory induces a Bayesian net-
work. The random variables A of the Bayesian network are the Bayesian ground atoms
in the least Herbrand model I of the annotated logic program. A Bayesian ground atom,
say carrier(alan), influences another Bayesian ground atom, say carrier(betsy), if and
only if there exists a Bayesian clause c such that

1. carrier(alan) ∈ body(c)θ ⊆ I , and
2. carrier(betsy) ≡ head(c)θ ∈ I .

Each node A has cpd(cθ) as associated conditional probability distribution. If there are
multiple ground instances in I with the same head, a combining rule combine{·} is
used to quantified the combined effect. A combining rule is a function that maps finite

14 L. De Raedt and K. Kersting

sets of conditional probability distributions onto one (combined) conditional probability
distribution. Examples of combining rules are noisy-or, and noisy-and, see e.g. [22].

Note that we assume that the induced network is acyclic and has a finite branching
factor. The probability distribution induced is now

P(I|H) =
∏

Bayesian atom A∈I

combine{cpd(cθ) |body(c)θ ⊆ I, head(c)θ ≡ A}. (5)

Let us illustrate this fro the stud farm example.

Example 9. Using the above definition, the probability of the interpretation

{carrier(henry) = false, suffers(henry) = false, carrier(ann) = true,
suffers(ann) = false, carrier(brian) = false, suffers(brian) = false,
carrier(alan) = false, suffers(alan) = false, carrier(alice) = false,
suffers(alice) = false, . . .}

can be computed using a standard Bayesian network inference engine because the
facts together with the program induce the Bayesian network shown in Figure 5. Thus
(5) defines a probabilistic coverage relation. In addition, various types of inference
would be possible. One might, for instance, ask for the probability P (suffers(henry)|

carrier(bonnie) suffers(bonnie)

carrier(cecily) suffers(cecily)

carrier(brian)

suffers(brian)

carrier(alice)

suffers(alice)

carrier(alan)

suffers(alan)

carrier(benny)

suffers(benny)

carrier(dennis) suffers(dennis)

carrier(carl)

suffers(carl)

carrier(bill)

suffers(bill)

carrier(ann)

suffers(ann)

carrier(henry)

suffers(henry)

carrier(betsy)

suffers(betsy)

Fig. 5. The structure of the Bayesian network induced by the Stud farm Bayesian logic program.
For the ease of comprehensibility, we have omitted the logical Bayesian atoms over founder/1,
father/2, and mother/2.

Probabilistic Inductive Logic Programming 15

carrier(henry) = true), which can again be computed using a standard Bayesian net-
work inference engine.

4.2 Probabilistic Proofs

To define probabilities on proofs, ICL [49, Chapter 8], PRISMs [53,54, Chapter 5], and
stochastic logic programs [14,38,5, an application can be found in Chapter 9] attach
probabilities to facts (respectively clauses) and treat them as stochastic choices within
resolution. Relational Markov models [2] and logical hidden Markov models [28],
which we will briefly review in Chapter 2, can be viewed as a simple fragment of them,
where heads and bodies of clauses are singletons only, so-called iterative clauses. We
will illustrate probabilistic learning from proofs using stochastic logic programs. For a
discussion of the close relationship among stochastic logic programs, ICL, and PRISM,
we refer to [6].

Stochastic logic programs are inspired on stochastic context free grammars [1,34].
The analogy between context free grammars and logic programs is that

– Grammar rules correspond to definite clauses,
– Sentences (or strings) to atoms, and
– Productions to derivations.

Furthermore, in stochastic context-free grammars, the rules are annotated with prob-
ability labels in such a way that the sum of the probabilities associated to the rules
defining a non-terminal is 1.0.

Eisele and Muggleton have exploited this analogy to define stochastic logic pro-
grams. These are essentially definite clause programs, where each clause c has an asso-
ciated probability label pc such that the sum of the probabilities associated to the rules
defining any predicate is 1.0 (though [4] considered less restricted versions as well).

This framework allows ones to assign probabilities to proofs for a given predicate q
given a stochastic logic program H ∪B in the following manner. Let Dq denote the set
of all possible ground proofs for atoms over the predicate q. For simplicity reasons, it
will be assumed that there is a finite number of such proofs and that all proofs are finite
(but again see [4] for the more general case). Now associate to each proof tq ∈ Dq the
probability

vt =
∏

c

pnc,t
c

where the product ranges over all clauses c and nc,t denotes the number of times clause
c has been used in the proof tq . For stochastic context free grammars, the values vt

correspond to the probabilities of the production. However, the difference between
context free grammars and logic programs is that in grammars two rules of the form
n → q, n1, ..., nm and q → q1, ..., qk always ’resolve’ to give n → q1, ..., qk, n1, ..., nm
whereas resolution may fail due to unification. Therefore, the probability of a proof tree
t in Dq, i.e., a successful derivation is

P (t | H, B) =
vt∑

s∈Dq
vs

. (6)

The probability of a ground atom a is then defined as the sum of all the probabilities of
all the proofs for that ground atom.

16 L. De Raedt and K. Kersting

P (a | H, B) =
∑

s∈Dq
s is a proof for a

vs. (7)

Example 10. Consider a stochastic variant of the definite clause grammar in Example 6
with uniform probability values for each predicate. The value vu of the proof (tree) u in
Example 6 is vu = 1

3 · 1
2 · 1

2 = 1
12 . The only other ground proofs s1, s2 of atoms over

the predicate sentence are those of

sentence([a, turtle, sleeps], [])
and sentence([the, turtle, sleeps], []).

Both get the value vs1 = vs2 = 1
12 . Because there is only one proof for each of the

sentences,

P (sentence([the, turtles, sleep], [])) = vu =
1
3
.

For stochastic logic programs, there are at least two natural learning settings.
Motivated by Equation (6), we can learn them from proofs. This makes structure

learning for stochastic logic programs relatively easy, because proofs carry a lot infor-
mation about the structure of the underlying stochastic logic program. Furthermore, the
learning setting can be considered as an extension of the work on learning stochastic
grammars from proof-banks. It should therefore also be applicable to learning unifica-
tion based grammars. We will present a probabilistic ILP approach within the learning
from proofs setting in Section 5.4.

On the other hand, we can use Equation (7) as covers relation and, hence, employ the
learning from entailment setting. Here, the examples are ground atoms entailed by the
target stochastic logic program. Learning stochastic logic programs from atoms only is
much harder than learning them from proofs because atoms carry much less information
than proofs. Nevertheless, this setting has been studied by [5] and by [54], who solves
the parameter estimation problem for stochastic logic programs respectively PRISM
programs, and by [39,41], who presents an approach to structure learning of stochastic
logic programs: adding one clause at a time to an existing stochastic logic program.
In the following section, we will introduce the probabilistic learning from entailment.
Instead of considering stochastic logic programs, however, we will study a Naı̈ve Bayes
framework, which has a much lower computational complexity.

4.3 Probabilistic Learning from Entailment

In order to integrate probabilities in the entailment setting, we need to find a way to
assign probabilities to clauses that are entailed by an annotated logic program. Since
most ILP systems working under entailment employ ground facts for a single predicate
as examples, and the authors are unaware of any existing probabilistic ILP formalisms
that implement a probabilistic covers relation for definite clauses as examples in gen-
eral, we will restrict our attention to assign probabilities to facts for a single predicate.
It remains an open question as how to formulate more general frameworks for working
with entailment.

More formally, let us annotate a logic program H consisting of a set of clauses of
the form p ← bi, where p is an atom of the form p(V1, ..., Vn) with the Vi different

Probabilistic Inductive Logic Programming 17

variables, and the bi are different bodies of clauses. Furthermore, we associate to each
clause in H the probability values P(bi | p); they constitute the conditional probability
distribution that for a random substitution θ for which pθ is ground and true (resp. false),
the query biθ succeeds (resp. fails) in the knowledge base B.3 Furthermore, we assume
the prior probability of p is given as P(p), it denotes the probability that for a random
substitution θ, pθ is true (resp. false). This can then be used to define the covers relation
P(pθ | H, B) as follows (we delete the B as it is fixed):

P(pθ | H) = P(pθ | b1θ, ..., bkθ) =
P(b1θ, ..., bkθ | pθ) × P(pθ)

P(b1θ, ..., bkθ)
(8)

For instance, applying the naı̈ve Bayes assumption yields

P(pθ | H) =
∏

i P(biθ | pθ) × P(pθ)
P(b1θ, ..., bkθ)

(9)

Finally, since P (pθ | H) + P (¬pθ | H) = 1, we can compute P (pθ | H) without
P (b1θ, ..., bkθ) through normalization.

Example 11. Consider again the mutagenicity domain and the following annotated
logic program:

(0.01, 0.21) : mutagenetic(M) ← atom(M, , , 8,)
(0.38, 0.99) : mutagenetic(M) ← bond(M,, A, 1), atom(M, A, c, 22,), bond(M, A,, 2)

We denote the first clause by b1 and the second one by b2. The vectors on the left-hand
side of the clauses specify P (biθ = true | pθ = true) and P (biθ = true | pθ = false)
respectively. The covers relation (assuming the Naı̈ve Bayes assumption) assigns prob-
ability 0.97 to example 225 because both features fail for θ = {M ← 225}. Hence,

P (mutagenetic(225) = true,b1θ = false, b2θ = false)
= P (b1θ = false | mutagenetic(225) = true)
· P (b2θ = false | mutagenetic(225) = true)
· P (mutagenetic(225) = true)

= 0.99 · 0.62 · 0.31 ≈ 0.19

and P (mutagenetic(225) = false, b1θ = false, b2θ = false) = 0.79 · 0.01 ·
0.68 ≈ 0.005. This yields

P (muta(225) = true | b1θ = false, b2θ = false}) =
0.19

0.19 + 0.005
≈ 0.97.

5 Probabilistic ILP: A Definition and Example Algorithms

Guided by Definition 1, we have introduced several probabilistic ILP settings for statis-
tical relational learning. The main idea was to lift traditional ILP settings by associating

3 The query q succeeds in B if there is a substitution σ such that B |= qσ.

18 L. De Raedt and K. Kersting

probabilistic information with clauses and interpretations and by replacing ILP’s deter-
ministic covers relation by a probabilistic one. In the discussion, we made one trivial
but important observation:

Observation 1. Derivations might fail.

The probability of a failure is zero and, consequently, failures are never observable.
Only succeeding derivations are observable, i.e., the probabilities of such derivations
are greater zero. As an extreme case, recall the negative examples Neg employed
in the ILP learning problem definition 1. They are supposed to be not covered, i.e.,
P (Neg|H, B) = 0.

Example 12. Reconsider Example 3. Rex is a male person; he cannot be the
daughter of ann. Thus, daughter(rex, ann) was listed as a negative example.

Negative examples conflict with the usual view on learning examples in statistical learn-
ing. In statistical learning, we seek to find that hypothesis H∗, which is most likely given
the learning examples:

H∗ = argmax
H

P (H |E) = arg max
H

P (E|H) · P (F)
P (E)

with P (E) > 0.

Thus, examples E are observable, i.e., P (E) > 0. Therefore, we refine the preliminary
probabilistic ILP learning problem definition 1. In contrast to the purely logical case of
ILP, we do not speak of positive and negative examples anymore but of observed and
unobserved ones.

Definition 7 (Probabilistic ILP Problem). Given a set E = Ep ∪Ei of observed and
unobserved examples Ep and Ei (with Ep ∩ Ei = ∅) over some example language
LE , a probabilistic covers relation covers(e, H, B) = P (e | H, B), a probabilistic
logical language LH for hypotheses, and a background theory B, find a hypothesis H∗

in LH such that H∗ = arg maxH score(E, H, B) and the following constraints hold:
∀ ep ∈ Ep : covers(ep, H

∗, B) > 0 and ∀ ei ∈ Ei : covers(ei, H
∗, B) = 0. The

score is some objective function,usually involving the probabilistic covers relation of
the observed examples such as the observed likelihood

∏
ep∈Ep

covers(ep, H
∗, B) or

some penalized variant thereof.

The probabilistic ILP learning problem of Definition 7 unifies ILP and statistical learn-
ing in the following sense: using a deterministic covers relation (,which is either 1
or 0) yields the classical ILP learning problem, see Definition 1, whereas sticking to
propositional logic and learning from observed examples, i.e., P (E) > 0, only yields
traditional statistical learning.

To come up with algorithms solving probabilistic ILP learning problems, say for
density estimation, one typically distinguishes two subtasks because H = (L, λ) is
essentially a logic program L annotated with probabilistic parameters λ:

1. Parameter estimation where it is assumed that the underlying logic program L is
fixed, and the learning task consists of estimating the parameters λ that maximize
the likelihood.

2. Structure learning where both L and λ have to be learned from the data.

Probabilistic Inductive Logic Programming 19

Below, we will sketch basic parameter estimation and structure learning techniques,
and illustrate them for each setting. In the remainder of the thesis, we will then discuss
selected probabilistic ILP approaches for learning from interpretations and probabilistic
learning from traces in detail. A more complete survey of learning probabilistic logic
representations can be found in [9] and in the related work sections of this thesis.

5.1 Parameter Estimation

The problem of parameter estimation is thus concerned with estimating the values of
the parameters λ of a fixed probabilistic program H = (L, λ) that best explains the
examples E. So, λ is a set of parameters and can be represented as a vector. As already
indicated above, to measure the extent to which a model fits the data, one usually em-
ploys the likelihood of the data, i.e. P (E | L, λ), though other scores or variants could
be used as well.

When all examples are fully observable, maximum likelihood reduces to frequency
counting. In the presence of missing data, however, the maximum likelihood estimate
typically cannot be written in closed form. It is a numerical optimization problem,
and all known algorithms involve nonlinear optimization The most commonly adapted
technique for probabilistic logic learning is the Expectation-Maximization (EM)
algorithm [11,36]. EM is based on the observation that learning would be easy (i.e.,
correspond to frequency counting), if the values of all the random variables would be
known. Therefore, it estimates these values, maximizes the likelihood based on the
estimates, and then iterates. More specifically, EM assumes that the parameters have
been initialized (e.g., at random) and then iteratively performs the following two steps
until convergence:

(E-Step). On the basis of the observed data and the present parameters of the model,
it computes a distribution over all possible completions of each partially observed
data case.

(M-Step). Treating each completion as a fully observed data case weighted by its
probability, it computes the improved parameter values using (weighted) frequency
counting.

The frequencies over the completions are called the expected counts. Examples for
parameter estimation of probabilistic relational models in general can be found in
Chapters 2 and 10 for sequential relational models, in Chapter 4 for Markov logic,
in Chapter 5 for PRISM, in Chapter 6 for CLP(BN), in Chapter 7 for Bayesian logic
programs, and in Chapters 9 and 11 for stochastic logic programs and variants.

5.2 Structure Learning

The problem is now to learn both the structure L and the parameters λ of the proba-
bilistic program H = (L, λ) from data. Often, further information is given as well. As
in ILP, the additional knowledge can take various different forms, including a language
bias that imposes restrictions on the syntax of L, and an initial hypothesis (L, λ) from
which the learning process can start.

Nearly all (score-based) approaches to structure learning perform a heuristic search
through the space of possible hypotheses. Typically, hill-climbing or beam-search is

20 L. De Raedt and K. Kersting

applied until the hypothesis satisfies the logical constraints and the score(H, E) is no
longer improving. The steps in the search-space are typically made using refinement
operators, which make small, syntactic modification to the (underlying) logic program.

At this points, it is interesting to observe that the logical constraints often require
that the observed examples are covered in the logical sense. For instance, when learn-
ing stochastic logic programs from entailment, the observed example clauses must
be entailed by the logic program, and when learning Markov logic networks, the ob-
served interpretations must be models of the underlying logic program. Thus, for
a probabilistic program H = (LH , λH) and a background theory B = (LB, λB)
it holds that ∀ep ∈ Ep : P (e|H, B) > 0 if and only if covers(e, LH , LB) = 1, where
LH (respectively LB) is the underlying logic program (logical background theory) and
covers(e, LH , LB) is the purely logical covers relation, which is either 0 or 1.

Let us now sketch for each probabilistic ILP setting one learning approach.

5.3 Learning from Probabilistic Interpretations

The large majority of statistical relational learning techniques proposed so far fall into
the learning from interpretations setting including parameter estimation of probabilis-
tic logic programs [30], learning of probabilistic relational models [18], parameter
estimation of relational Markov models [60], learning of object-oriented Bayesian net-
works [3], learning relational dependency networks [44], and learning logic programs
with annotated disjunctions [62,51]. This book provides details on learning sequential
relational models in Chapter 2 and 10, on learning Markov logic programs in Chapter 4,
and on learning CLP(BN) in Chapter 6.

As an example, which will be discussed in detail in Chapter 7, consider learning
Bayesian logic programs. SCOOBY [26] is a greedy hill-climbing approach for learning
Bayesian logic programs. SCOOBY takes the initial Bayesian logic program H = (L, λ)
as starting point and computes the parameters maximizing score(L, λ, E). Then, re-
finement operators generalizing respectively specializing H are used to to compute all
legal neighbors of H in the hypothesis space, see Figure 6. Each neighbor is scored. Let

c(X) | f(X).
c(X) | m(M,X), c(M).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X), c(M),s(X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X), c(M),f(F,X).
s(X) | c(X).

delete
add

add

Fig. 6. The use of refinement operators during structural search within the framework of Bayesian
logic programs. We can add an atom or delete an atom from the body of a clause. Candidates
crossed out are illegal because they are cyclic. Other refinement operators are reasonable such as
adding or deleting logically valid clauses.

Probabilistic Inductive Logic Programming 21

H ′ = (L′, λ′) be the legal neighbor scoring best. If score(L, λ, E) < score(L′, λ′, E)
then SCOOBY takes H ′ as new hypothesis. The process is continued until no improve-
ments in score are obtained.

SCOOBY is akin to theory revision approaches in inductive logic programming,
which also form the basis for learning biochemical reaction models in Chapter 11. In
case that only propositional clauses are considered, SCOOBY coincides with greedy
hill-climbing approaches for learning Bayesian networks [19].

5.4 Learning from Probabilistic Proofs

Given a training set E containing ground proofs as examples, one possible approach
to learning from observed proofs only combines ideas from the early ILP system
GOLEM [42] that employs Plotkin’s [48] least general generalization (LGG) with
bottom-up generalization of grammars and hidden Markov models [59]. The resulting
algorithm employs the likelihood of the proofs score(L, λ, E) as the scoring function.
It starts by taking as L0 the set of ground clauses that have been used in the proofs in
the training set and scores it to obtain λ0. After initialization, the algorithm will then
repeatedly select a pair of clauses in Li, and replace the pair by their LGG to yield
a candidate L′. The candidate that scores best is then taken as Hi+1 = (Li+1, λi+1),
and the process iterates until the score no longer improves. One interesting issue is that
strong logical constraints can be imposed on the LGG. These logical constraints directly
follow from the fact that the example proofs should still be valid proofs for the logical
component L of all hypotheses considered. Therefore, it makes sense to apply the LGG
only to clauses that define the same predicate, that contain the same predicates, and
whose (reduced) LGG also has the same length as the original clauses.

Preliminary results with a prototype implementation are promising. In one experi-
ment, we generated from the target stochastic logic program

1 : s(A, B) ← np(Number, A, C), vp(Number, C, B).
1/2 : np(Number, A, B) ← det(A, C), n(Number, C, B).
1/2 : np(Number, A, B) ← pronom(Number, A, B).
1/2 : vp(Number, A, B) ← v(Number, A, B).
1/2 : vp(Number, A, B) ← v(Number, A, C), np(D, C, B).
1 : det(A, B) ← term(A, the, B).
1/4 : n(s, A, B) ← term(A, man, B).
1/4 : n(s, A, B) ← term(A, apple, B).
1/4 : n(pl, A, B) ← term(A, men, B).
1/4 : n(pl, A, B) ← term(A, apples, B).
1/4 : v(s, A, B) ← term(A, eats, B).
1/4 : v(s, A, B) ← term(A, sings, B).
1/4 : v(pl, A, B) ← term(A, eat, B).
1/4 : v(pl, A, B) ← term(A, sing, B).
1 : pronom(pl, A, B) ← term(A, you, B).
1 : term([A|B], A, B) ←

(independent) training sets of 50, 100, 200, and 500 proofs. For each training set, 4
different random initial sets of parameters were tried. We ran the learning algorithm on

22 L. De Raedt and K. Kersting

-40

-30

-20

-10

 0

 0 2 4 6 8 10

lo
g-

lik
el

ho
od

 (a) iterations

2

0

-2

-4

-6
50020010050

lo
g-

lik
el

ho
od

(b) # samples

Fig. 7. Experimental results on learning stochastic logic programs from proofs. (a) A typical
learning curve. (b) Final log-likelihood averaged over 4 runs. The error bars show the standard
deviations.

each data set starting from each of the initial sets of parameters. The algorithm stopped
when a limit of 200 iterations was exceeded or a change in log-likelihood between two
successive iterations was smaller than 0.0001.

Figure 7 (a) shows a typical learning curve, and Figure 7 (b) summarizes the overall
results. In all runs, the original structure was induced from the proof-trees. Moreover,
already 50 proof-trees suffice to rediscover the structure of the original stochastic logic
program. Further experiments with 20 and 10 samples respectively show that even 20
samples suffice to learn the given structure. Sampling 10 proofs, the original structure
is rediscovered in one of five experiments. This supports that the learning from proof
trees setting carries a lot information. Furthermore, our methods scales well. Runs on
two independently sampled sets of 1000 training proofs yield similar results: −4.77
and −3.17, and the original structure was learned in both cases. More details can be
found in [10].

Other statistical relational learning frameworks that have been developed within
the learning from proofs setting are relational Markov models [2] and logical hidden
Markov models [28,29, see also Chapters 2 and 10].

5.5 Probabilistic Learning from Entailment

This setting has been investigated for learning stochastic logic programs [39,40,5,41]
and for parameter estimation of PRISM programs [54,23] from observed examples only,
cf. Chapters 5 and 11. Here, we will illustrate a promising, alternative approach with
less computational complexity, which adapts FOIL [50] with the conditional likelihood
as described in Equation (9) as the scoring function score(L, λ, E). This idea has been
followed with NFOIL, see [31] for more details.

Given a training set E containing positive and negative examples (i.e. true and
false ground facts), this algorithm stays in the learning from observed examples
only to induce a probabilistic logical model to distinguish between the positive and
negative examples. It computes Horn clause features b1, b2, . . . in an outer loop.
It terminates when no further improvements in the score are obtained, i.e, when
score({b1, . . . , bi}, λi, E) < score({b1, . . . , bi+1}, λi+1, E), where λ denotes the
maximum likelihood parameters. A major difference with FOIL is, however, that the

Probabilistic Inductive Logic Programming 23

7
8

,3
0

6
8

,6
0 7

2
,8

0
7

9
,3

0

7
8

,6
0

7
8

,6
0

8
8

,1
0

7
3

,8
0

8
3

,1
7

0
,4

7
0

,1
7

0
,6

9
0

8
1

,4
9

0
,8

8
0

7
8

,3
7

3
,5

6
9

,2 7
4

,1

6
6

,7
6

0
,1

6
6

,7
6

6
,8

8
4

,2 8
5

8
1

,9

50,00

60,00

70,00

80,00

90,00

100,00

P
re

d
ic

ti
v

e
A

cc
u

ra
cy

M
u

ta
g

e
n

e
si

s
r.

f.

M
u

ta
g

e
n

e
si

s
r.

u
.

A
lz

h
e

im
e

r
a

m
in

e

A
lz

h
e

im
e

r
to

x
ic

A
lz

h
e

im
e

r
a

ce
ty

l

A
lz

h
e

im
e

r
m

e
m

o
ry

D
it

e
rp

e
n

e

nFOIL
mFOIL
Aleph
1BC2

Fig. 8. Cross-validated accuracy results of NFOIL on ILP benchmark data sets. For Mutagenesis
r.u., leave-one-out cross-validated accuracies are reported because of the small size of the data
set. For all other domains, 10-fold cross-validated results are given. mFOIL [32] and Aleph [56]
are standard ILP algorithms. 1BC2 [16] is a first order logical variant of Naı̈ve Bayes. For 1BC2,
we do not test significance because the results on Mutagenesis are taken from [16]. Diterpene
is a multiclass problem but mFOIL has been developed for two-class problems only. Therefore,
we do not report results for mFOIL on Diterpene.

Probabilistic learning from ...

... entailment. ... interpretations. ... proofs or traces.

Fig. 9. The level of information on the target probabilistic program provided by probabilistic
ILP settings: shaded parts denote unobserved information. Learning from entailment provides
the least information. Only roots of proof tree are observed. In contrast, learning from proofs or
traces provides the most information. All ground clauses and atoms used in proofs are observed.
Learning from interpretations provides an intermediate level of information. All ground atoms
but not the clauses are observed.

covered positive examples are not removed. The inner loop is concerned with induc-
ing the next feature bi+1 top-down, i.e., from general to specific. To this aim it starts
with a clause with an empty body, e.g., muta(M) ←. This clause is then specialized

24 L. De Raedt and K. Kersting

by repeatedly adding atoms to the body, e.g., muta(M) ← bond(M, A, 1), muta(M) ←
bond(M, A, 1), atom(M, A, c, 22,), etc. For each refinement b′i+1 we then com-
pute the maximum-likelihood parameters λ′

i+1 and score({b1, . . . , b
′
i+1}, λ′

i+1, E).
The refinement that scores best, say b′′i+1, is then considered for further refine-
ment and the refinement process terminates when score({b1, . . . , bi+1}, λi+1, E) <
score({b1, . . . , b

′′
i+1}, λ′′

i+1, E). As Figure 8 shows, NFOIL performs well compared
to other ILP systems on traditional ILP benchmark data sets. MFOIL and ALEPH,
two standard ILP systems, were never significantly better than NFOIL (paired sam-
pled t-test, p = 0.05). NFOIL achieved significantly higher predictive accuracies than
MFOIL on Alzheimer amine, toxic, and acetyl. Compared to ALEPH, NFOIL achieved
significantly higher accuracies on Alzheimer amine and acetyl (paired sampled t-test,
p = 0.05). For more details, we refer to [31].

6 Conclusions

This chapter has defined the formal framework of probabilistic ILP for statistical re-
lational learning and presented three learning setting settings: probabilistic learning
from entailment, from interpretations, and from proofs. They differ in their representa-
tion of examples and the corresponding covers relation. The probabilistic ILP settings
and learning approaches are by no means the only possible settings for probabilistic
ILP. Nevertheless, two of the settings have – to the best of our knowledge – not been
introduced before. Furthermore, we have sketched how the settings combine and gen-
eralize ILP and statistical learning. Finally, we have shown how state-of-the-art SRL
frameworks fit into these learning settings

At present, it is still an open question as to what the relation among these different
settings is. It is, however, apparent that they provide different levels of information
about the target probabilistic program, cf. Figure 9. Learning from entailment provides
the least information, whereas learning from proofs or traces the most. Learning from
interpretations occupies an intermediate position. This is interesting because learning is
expected to be even more difficult as the less information is observed. Furthermore, the
presented learning settings are by no means the only possible settings. Examples might
be weighted and proofs might be partially observed.

Acknowledgements

This work was supported by the European Union, contract number FP6-508861, Appli-
cations of Probabilistic Inductive Logic Programming II.

References

1. Abney, S.P.: Stochastic Attribute-Value Grammars. Computational Linguistics 23(4), 597–
618 (1997)

2. Anderson, C.R., Domingos, P., Weld, D.S.: Relational Markov Models and their Applica-
tion to Adaptive Web Navigation. In: Hand, D., Keim, D., Ng, R. (eds.) Proceedings of the
Eighth International Conference on Knowledge Discovery and Data Mining (KDD 2002),
Edmonton, Canada, July 2002, pp. 143–152. ACM Press, New York (2002)

Probabilistic Inductive Logic Programming 25

3. Bangsø, O., Langseth, H., Nielsen, T.D.: Structural learning in object oriented domains. In:
Russell, I., Kolen, J. (eds.) Proceedings of the Fourteenth International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2001), Key West, Florida, USA, pp.
340–344. AAAI Press, Menlo Park (2001)

4. Cussens, J.: Loglinear models for first-order probabilistic reasoning. In: Laskey, K.B., Prade,
H. (eds.) Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI 1999), Stockholm, Sweden, pp. 126–133. Morgan Kaufmann, San Francisco
(1999)

5. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning Jour-
nal 44(3), 245–271 (2001)

6. Cussens, J.: Integrating by separating: Combining probability and logic with ICL, PRISM
and SLPs. Technical report, APrIL Projetc (January 2005)

7. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence Journal 95(1),
197–201 (1997)

8. De Raedt, L., Džeroski, S.: First-Order jk-Clausal Theories are PAC-Learnable. Artificial
Intelligence Journal 70(1-2), 375–392 (1994)

9. De Raedt, L., Kersting, K.: Probabilistic Logic Learning. ACM-SIGKDD Explorations: Spe-
cial issue on Multi-Relational Data Mining 5(1), 31–48 (2003)

10. De Raedt, L., Kersting, K., Torge, S.: Towards learning stochastic logic programs from proof-
banks. In: Veloso, M., Kambhampati, S. (eds.) Proceedings of the Twentieth National Con-
ference on Artificial Intelligence (AAAI 2005), Pittsburgh, Pennsylvania, USA, July 9–13,
2005, pp. 752–757. AAAI (2005)

11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B 39, 1–39 (1977)

12. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statistical Rela-
tional Learning. In: Dietterich, T.G., Getoor, L., Murphy, K. (eds.) Proceedings of the ICML-
2004 Workshop on Statistical Relational Learning and its Connections to Other Fields (SRL
2004), Banff, Alberta, Canada, July 8, 2004, pp. 49–54 (2004)

13. Džeroski, S., Lavrač, N. (eds.): Relational data mining. Springer, Berlin (2001)
14. Eisele, A.: Towards Probabilistic Extensions of Contraint-based Grammars. In: Dörne, J.

(ed.) Computational Aspects of Constraint-Based Linguistics Decription-II, DYNA-2 deliv-
erable R1.2.B (1994)

15. Flach, P.: Simply Logical: Intelligent Reasoning by Example. John Wiley, Chichester (1994)
16. Flach, P.A., Lachiche, N.: Naive Bayesian classification of structured data. Machine Learning

Journal 57(3), 233–269 (2004)
17. Getoor, L.: Learning Statistical Models from Relational Data. PhD thesis, Stanford Univer-

sity, USA (June 2001)
18. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning Probabilistic Models of Link Struc-

ture. Journal of Machine Leaning Research (JMLR) 3, 679–707 (2002)
19. Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report MSR-

TR-95-06, Microsoft Research (1995)
20. Helft, N.: Induction as nonmonotonic inference. In: Brachman, R.J., Levesque, H.J. (eds.)

Proceedings of the First International Conference on Principles of Knowledge Representa-
tion and Reasoning(KR 1989), Toronto, Canada, May 15-18, 1989, pp. 149–156. Morgan
Kaufmann, San Francisco (1989)

21. Jäger, M.: Relational Bayesian Networks. In: Laskey, K.B., Prade, H. (eds.) Proceedings of
the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI 1997), Stockholm,
Sweden, July 30–August 1, 1997, pp. 266–273. Morgan Kaufmann, San Francisco (1997)

22. Jensen, F.V.: Bayesian networks and decision graphs. Springer, Heidelberg (2001)

26 L. De Raedt and K. Kersting

23. Kameya, Y., Sato, T., Zhou, N.-G.: Yet more efficient EM learning for parameterized logic
programs by inter goal sharing. In: de Mantaras, R.L., Saitta, L. (eds.) Proceedings of the
16th European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, August
22-27, 2004, pp. 490–494. IOS Press, Amsterdam (2004)

24. Kersting, K.: Bayes’sche-logische Programme. Master’s thesis, Institute for Computer Sci-
ence, University of Freiburg (2000)

25. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical Report 151, Institute for
Computer Science, University of Freiburg, Freiburg, Germany (April 2001)

26. Kersting, K., De Raedt, L.: Towards Combining Inductive Logic Programming with Bayesian
Networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 118–
131. Springer, Heidelberg (2001)

27. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and Tool. In: Getoor, L.,
Taskar, B. (eds.) An Introduction to Statistical Relational Learning, pp. 291–321. MIT Press,
Cambridge (2007)

28. Kersting, K., De Raedt, L., Raiko, T.: Logial Hidden Markov Models. Journal of Artificial
Intelligence Research (JAIR) 25, 425–456 (2006)

29. Kersting, K., Raiko, T.: ’Say EM’ for Selecting Probabilistic Models for Logical Sequences.
In: Bacchus, F., Jaakkola, T. (eds.) Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence (UAI 2005), Edinburgh, Scotland, July 26-29, 2005, pp. 300–
307 (2005)

30. Koller, D., Pfeffer, A.: Learning probabilities for noisy first order rules. In: Pollack, M. (ed.)
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI
1997), Nagoya, Japan, pp. 1316–1321. Morgan Kaufmann, San Francisco (1997)

31. Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Naı̈ve Bayes and Foil. In:
Veloso, M., Kambhampati, S. (eds.) Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI 2005), Pittsburgh, Pennsylvania, USA, July 9–13, 2005, pp.
795–800. AAAI Press, Menlo Park (2005)

32. Lavrač, N., Džeroski, S.: Inductive Logic Programming. Ellis Horwood (1994)
33. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1989)
34. Manning, C.H., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT

Press, Cambridge (1999)
35. Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre, R., Bies, A., Ferguson, M., Katz, K.,

Schasberger, B.: The Penn treebank: Annotating predicate argument structure. In: Weinstein,
C.J. (ed.) In ARPA Human Language Technology Workshop, Plainsboro, NJ, USA, March
8–11, 1994, pp. 114–119 (1994)

36. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York (1997)
37. Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing Journal, 245–

286 (1995)
38. Muggleton, S.H.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive

Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)
39. Muggleton, S.H.: Learning Stochastic Logic Programs. Electronic Transactions in Artificial

Intelligence 4(041) (2000)
40. Muggleton, S.H.: Learning stochastic logic programs. In: Getoor, L., Jensen, D. (eds.) Work-

ing Notes of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL 2000), Austin, Texas, July 31, 2000, pp. 36–41. AAAI Press, Menlo Park (2000)

41. Muggleton, S.H.: Learning Structure and Parameters of Stochastic Logic Programs. In:
Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, Springer, Heidelberg
(2003)

42. Muggleton, S.H., Feng, C.: Efficient Induction of Logic Programs. In: Muggleton, S.H. (ed.)
Inductive Logic Programming, Acadamic Press (1992)

Probabilistic Inductive Logic Programming 27

43. Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and Methods. Journal
of Logic Programming 19(20), 629–679 (1994)

44. Neville, J., Jensen, D.: Dependency Networks for Relational Data. In: Rastogi, R., Morik, K.,
Bramer, M., Wu, X. (eds.) Proceedings of The Fourth IEEE International Conference on Data
Mining (ICDM 2004), Brighton, UK, November 1–4, 2004, pp. 170–177. IEEE Computer
Society Press, Los Alamitos (2004)

45. Ngo, L., Haddawy, P.: Answering Queries from Context-Sensitive Probabilistic Knowledge
Bases. Theoretical Computer Science 171, 147–177 (1997)

46. Pearl, J.: Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Mor-
gan Kaufmann, San Francisco (1991)

47. Pfeffer, A.J.: Probabilistic Reasoning for Complex Systems. PhD thesis, Computer Science
Department, Stanford University (December 2000)

48. Plotkin, G.D.: A note on inductive generalization. In: Machine Intelligence, vol. 5, pp. 153–
163. Edinburgh University Press (1970)

49. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence Jour-
nal 64, 81–129 (1993)

50. Quinlan, J.R., Cameron-Jones, R.M.: Induction of logic programs: FOIL and related systems.
New Generation Computing, 287–312 (1995)

51. Riguzzi, F.: Learning logic programs with annotated disjunctions. In: Camacho, R., King, R.,
Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 270–287. Springer, Heidelberg
(2004)

52. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall,
Inc., Englewood Cliffs (2002)

53. Sato, T.: A Statistical Learning Method for Logic Programs with Distribution Semantics. In:
Sterling, L. (ed.) Proceedings of the Twelfth International Conference on Logic Programming
(ICLP 1995), Tokyo, Japan, pp. 715–729. MIT Press, Cambridge (1995)

54. Sato, T., Kameya, Y.: Parameter Learning of Logic Programs for Symbolic-Statistical Mod-
eling. Journal of Artificial Intelligence Research (JAIR) 15, 391–454 (2001)

55. Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
56. Srinivasan, A.: The Aleph Manual (1999), Available at: http://www.comlab.ox.ac.

uk/oucl/∼research/areas/machlearn/Aleph/
57. Srinivasan, A., Muggleton, S.H., King, R.D., Sternberg, M.J.E.: Theories for Mutagenicity:

A Study of First-Order and Feature based Induction. Artificial Intelligence Journal 85, 277–
299 (1996)

58. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge (1986)

59. Stolcke, A., Omohundro, S.: Hidden Markov model induction by Bayesian model merging.
In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Advances in Neural Information Processing
Systems, vol. 5, pp. 11–18. Morgan Kaufmann, San Francisco (1993); (Proceedings of NIPS-
92, Denver, Colorado, USA, November 30–December 3 (1992)

60. Taskar, B., Abbeel, P., Koller, D.: Discriminative Probabilistic Models for Relational Data.
In: Darwiche, A., Friedman, N. (eds.) Proceedings of the Eighteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI 2002), Edmonton, Alberta, Canada, August 1-4, 2002,
pp. 485–492 (2002)

61. Valiant, L.G.: A theory of the Learnable. Communications of the ACM 27(11), 1134–1142
(1984)

62. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs with Annotated Disjunctions.
In: Demoen, B., Lifschitz, V. (eds.) Proceedings of 20th International Conference on Logic
Programming (ICLP 2004), Saint-Malo, France, September 6-10, 2004, pp. 431–445 (2004)

http://www.comlab.ox.ac.uk/oucl/~research/areas/machlearn/Aleph/
http://www.comlab.ox.ac.uk/oucl/~research/areas/machlearn/Aleph/

Relational Sequence Learning

Kristian Kersting1, Luc De Raedt2, Bernd Gutmann2,
Andreas Karwath3, and Niels Landwehr3

1 CSAIL, Massachusetts Institute of Technology
32 Vassar Street, Cambridge, MA 02139-4307, USA

kersting@csail.mit.edu
2 Departement Computerwetenschappen, K.U. Leuven

Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium
{Luc.DeRaedt,Bernd.Gutmann}@cs.kuleuven.be

3 Machine Learning Lab, Institute for Computer Science, University of Freiburg
Georges-Koehler Allee, Building 079, 79110 Freiburg, Germany

{landwehr,karwath}@informatik.uni-freiburg.de

Abstract. Sequential behavior and sequence learning are essential to
intelligence. Often the elements of sequences exhibit an internal struc-
ture that can elegantly be represented using relational atoms. Applying
traditional sequential learning techniques to such relational sequences
requires one either to ignore the internal structure or to live with a com-
binatorial explosion of the model complexity. This chapter briefly reviews
relational sequence learning and describes several techniques tailored to-
wards realizing this, such as local pattern mining techniques, (hidden)
Markov models, conditional random fields, dynamic programming and
reinforcement learning.

1 Introduction

The activities humans perform are by their very nature sequential. Sequences
occur in many activities ranging from reasoning to language understanding, in
everyday skills as well as in complex problem solving. The ability to learn from
such sequences is therefore essential to artificial intelligence and sequence learn-
ing techniques can be applied in many domains such as planning, reasoning,
robotics, user modeling, natural language processing, speech recognition, adap-
tive control, activity recognition, information extraction, and computational bi-
ology. This explains why learning from sequences has received a lot of attention
in the past few decades. Learning tasks investigated include classification, pre-
diction, local pattern mining, labeling, alignment, transduction, and density and
policy estimation.

One major dimension along which to differentiate sequential learning tech-
niques is the complexity of the language they employ to describe sequences and
models. At one extreme are learning approaches that assume a propositional
language. The simplicity of a propositional language allows such methods to
represent the model in matrix form: cells typically denote the transition proba-
bilities among symbols. In turn, efficient matrix operations can be used to devise

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 28–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relational Sequence Learning 29

efficient algorithms. At the other end of the spectrum, (probabilistic) relational
systems accept descriptions of complex, structured sequence elements and gen-
erate relationally structured models. They typically have access to background
knowledge and allow for a more compact description of the entities, but often
have also a higher computational complexity. This chapter reviews several rela-
tional sequences learning techniques that build on ideas developed on both sides
of the spectrum. They fill an interesting, intermediate position on the expres-
siveness scale by using sequences of relational atoms. Such sequences are more
expressive than their propositional counter part, while at the same time they
are less expressive (and hence, often more efficient to deal with) than the fully
relational models discussed in the rest of this book.

The following section briefly reviews sequential learning. After illustrating
the limitations of propositional languages, the chapter introduces the more com-
plex data model of relational sequences. In the remaining sections, we will then
present methods for dealing with relational sequences. This includes: local pat-
tern mining [22], relational alignment [14], r-grams [20] logical hidden Markov
models [16], logical conditional random fields [10] and relational Markov decision
processes [15].

2 Sequential Learning

Consider sequences of Unix commands. They typically tell a lot about the user’s
behavior since users tend to respond in a similar manner to similar situations,
leading to repeated sequences of actions.

Example 1. For instance, LATEX users frequently run Emacs to edit their LATEX
files and afterwards compile the edited file using LATEX:

emacs rsl.tex, ls, latex dvips.tex, dvips rsl . . . (1)

The existence of command alias mechanisms in many Unix command inter-
preters also supports the idea that users tend to enter many repeated sequences
of commands. Thus, Unix command sequences carry a lot information, which
can be used to automatically construct user profiles, which in turn can be used
to predict the next command, to identify the current user, etc.

In general, sequence learning considers essentially strings (command logs) s =
w1, w2, . . . , wT (T > 0) of symbols wi (Unix commands) over an alphabet Σ. We
now identify various sequence learning problems (in a somewhat simplified form):
In sequence prediction the aim is to predict elements (commands) of a sequence
based on preceding elements (commands), i.e., wt−k, wt−k+1, . . . , wt → wt+1. In
frequent sequence mining the aim is to compute the (sub)sequences frequently
occurring in a set of sequences. In sequence classification one aims at predicting
a single class label (user or user type) c that applies to an entire sequence s, i.e.,
s → c. In sequence labeling, the goal is to assign a (class) labels (shell sessions)
ci to each sequence element wi, i.e., w1, w2, . . . , wT → c1, c2, . . . , cT . Sequential
decision making involves selecting sequences of actions to accomplish a goal or

30 K. Kersting et al.

to maximize the future reward function (for instance to optimally organize email
folders). In addition, there are also other issues related to these sequence learning
tasks. For example, we may want to segment a sequence, cluster sequences,
align two or more sequences, or compute a general mapping between sequences
realizing transduction.

Another dimension along which sequential learning can be characterized is the
learning paradigm employed. Learning tasks can be supervised, unsupervised,
or reinforced. In all cases, however, sequence learning methods essentially rely
on models for “legitimate” sequences (in the form of production rules, Markov
chains, hidden Markov models, or some other form), which can typically be de-
veloped from data using grammar induction, expectation-maximization, gradient
descent, policy iteration or some other form of machine learning algorithm. The
motivation for this chapter is that all prominent types of models that have been
investigated over the last decades share a principal weakness stemming from a
lack of expressive power in the language used to described sequences and models,
as we shall show in the next Section.

3 Moving to More Complex Sequences

Prominent sequence learning techniques such as (hidden) Markov models assume
atomic representations, which essentially amounts to explicitly enumerating all
unique configurations or states. It might then be possible to learn, for example,
that state state234 follows (with high probability) state654321. Atomic rep-
resentations are simple and learning can be implemented using efficient matrix
operations. These matrices, however, can become intractably large as they scale
quadratically in the size of the language, i.e. the number of states.

In many applications, sequence elements are indeed structured and can ele-
gantly be represented as relational ground atoms.

Example 2. Using ground atoms, the UNIX command sequence of Example 1
can be represented as

emacs(rsl, tex), ls, latex(rsl, tex), dvips(rsl, dvi) . . .

Here, emacs/2, ls/0, latex/1, dvips/2 are predicates (of arity 2, 0 and 1 re-
spectively) that identify relations. Lower-case strings like rsl, tex, and dvi are
constants. Ground atoms are now predicates together with their arguments, for
example emacs(rsl, tex) and ls. In principle, symbols can even be described
propositionally, i.e., conjunctions of symbols (the ground atoms) that ignore the
structure in. Using a propositional representation, each of the possible ground
atoms becomes a symbol. For instance, the conjunction file(f1), name(f1, rsl),
suffix(f1, tex) describes that there is a file with name rsl and suffix tex.
Though this propositional representation allows for some opportunities for gen-
eralization, it ignores the structure exhibited in the domain, for instance, that
latex takes two arguments, and also, each of the symbols contains the names
and identifiers of specific entities such as f1. This prevents generalization over

Relational Sequence Learning 31

several entities such as emacs(X, tex). The abstract symbol emacs(X, tex) is —
by definition — a logical atom, i.e., a predicate together with it arguments,
where an argument can now be a placeholder X, Y, . . . for some constant. It is ab-
stract in that it represents the set of all ground, i.e., variable-free atoms such as
emacs(rsl, tex), emacs(rsl, dvi), emacs(april, tex) etc. Moreover, unification
allows one to share information between subsequent symbols. For example, the
(abstract) sub-sequence latex(X, tex), dvips(X, dvi) describes that a user, after
compiling a LATEXfile into a dvi file, turns the dvi into a PostScript file, with-
out stating the name of the file. This is especially important when generalizing
patterns across filenames as the objects referred to will typically be different,
and the precise identifiers do not matter but the relationships they occur in, do.

Having specified a more complex language to describe sequences, the next step
is to develop sequential learning methods capable of using these representations.
This is what relational sequence learning is about. In the remaining sections,
we will review several relational sequence learning and mining methods that
have been proven successful in applications. Their underlying idea is to make
use of relational abstraction: similar symbols are grouped together by means of
logical variables and knowledge is shared across abstract symbols by means of
unification. More precisely, we will discuss relational sequence mining, alignment,
Markov models, and reinforcement learning in turn.

4 Mining Logical Sequences

Many of the traditional data mining tasks can be phrased as that of finding the
set of patterns Th(L, D, q) = {φ ∈ L|q(φ, D) holds }, cf. [23]. Here, L is the
space or language of all possible patterns, D is a set of observations, and q is a
predicate or constraint that characterizes the solutions to the data mining task.

The MineSeqLog algorithm of [22] (see also [4]) is a constraint based pattern
mining system for logical sequences. The basic component is a frequent pattern
miner, which makes the following choices in Th(L, D, q):

– D is a set of ground logical sequences over an alphabet Σ
– L consists of the abstract sequences over Σ, (in which variables can occur)
– q is a constraint of the form freq(φ, D) ≥ t expressing that the pattern φ

must cover at least t of the sequences in D

This formulation makes some simplifications, in that MineSeqLog can also cope
with sequences with gaps as well as with other constraints than a minimum
frequency threshold, cf. [22].

The key constraint is the minimum frequency threshold. The frequency,
freq(φ, D), of a pattern (in the form of an abstract sequence) φ is the num-
ber of sequences s in D for which φ subsumes s. A sequence s = w1, w2, . . . , wT is
subsumed by a pattern φ = p1, . . . , pk if and only if there exists a substitution
θ and natural numbers i, j such that p1θ = wi, p2θ = wi+1, . . . , pkθ = wj . For in-
stance, the pattern latex(File, tex), dvipdf(File, dvi) subsumes the concrete
sequence cd(april), latex(par, tex), dvipdf(par, dvi), lpr(par, pdf) with sub-
stitution θ = {File/par}. We sometimes will say that φ is more general than s,

32 K. Kersting et al.

or vice versa, that s is more specific than φ. The subsumption relation induces
a partial order on the language L, which is used in order to structure the search
for frequent patterns. The subsumption ordering can be exploited because the
minimum frequency constraint is anti-monotonic. More formally, a constraint q
is anti-monotonic if and only if ∀ sequences x:

(
x subsumes y ∧ p(y) → p(x)

)
.

It is easy to see that this holds for frequency because the frequency can only
decrease when refining patterns. The anti-monotonicity property implies that
there is a border of maximally specific sequences satisfying the constraint.

The set Th(L, D, freq(φ, D)) can now be computed by instantiating the tra-
ditional level-wise algorithm of Mannila and Toivonen [23], which is essentially a
breadth-first general-to-specific search algorithm. To generate more specific pat-
terns from more general ones, a refinement operator ρ is employed. A refinement
operator ρ is an operator that maps each sequence s to a set of specializations
of it, i.e. ρ(s) ⊆ {s′ ∈ L | s subsumes s′}. Furthermore, to avoid generating the
same pattern more than once, the operator should be optimal, i.e.
Complete. By applying the operator ρ on ε, the empty sequence (possibly

with repetitions), it must be possible to generate all other queries in L. This
requirement guarantees that we will not miss any queries that may satisfy
the constraints.

Single path. Given pattern p, there should exist exactly one sequence of pat-
terns p0 = ε, p1, . . . , pT = p such that pi+1 ∈ ρ(pi) for all i. This requirement
helps ensuring that no query is generated more than once, i.e. there are no
duplicates.

The following operator satisfies these requirements. ρ(s1, . . . , sl) is obtained by
applying one of the following operations.
Add an atom sl+1 to the right of the query such that sl+1 is an atom whose

arguments are different variables not yet occurring in s1, . . . , sl

Apply a substitution of the form θ = {X/c}, where X is a variable, c a
constant such that there are no constants occurring to the right of X in
s1, . . . , sl, and all variables in s1, . . . , sl are different

Unify two variables X and Y such that X occurs only once, all variables to
the right of X occur only once, and X occurs to the right of Y .

This operator can then be integrated in the standard level-wise algorithm for fre-
quent pattern mining. This algorithm is sketched below. It starts from the empty
sequence and repeatedly generates candidates (on Ci) to determine afterwards
(using Fi) whether they are frequent. To generate candidates the refinement op-
erator ρ is applied. Furthermore, only frequent sequences are refined due to the
anti-monotonicity property. This process continues until no further candidates
are frequent.

The MineSeqLog algorithm as described by [22] cannot only cope with anti-
monotonic constraints, but also with monotonic ones, and even conjunctions of
the two. A maximum frequency threshold, which is of the form freq(φ, D) < f , is
a monotonic constraint. [22] also report on experiments with MineSeqLog using
the Unix-command data set of [9] and constraints of the form (freq(φ, ClassA)
≥ f1) ∧ (freq(φ, ClassB) < f2).

Relational Sequence Learning 33

Algorithm 1. Computing the frequent sequences
i := 0; C0 := {ε}; F0 := ∅
while Ci �= ∅ do

Fi := {p ∈ Ci | freq(p,D) ≥ t}
output Fi

Ci+1 := {p | p ∈ ρ(p′), p′ ∈ Fi}
i := i+ 1

5 Relational Alignments

The need to measure sequence similarity arises in many application domains
and often coincides with sequence alignment: the more similar two sequences
are, the better they can be aligned. Aligning sequences not only shows how sim-
ilar sequences are, it also shows where there are differences and correspondences
between the sequences. As an example, consider aligning proteins, which is the
major application area for sequence alignment in bioinformatics. One common
approach is, given the amino acid sequence of an unknown protein (query se-
quence) to scan an existing database of other amino acid sequences (containing
proteins with more or less known function) and extract the most similar ones
with regard to the query sequence. The result is usually a list, ordered by some
score, with the best hits at the top of this list. The common approach for bi-
ologists, is now to investigate these top scoring alignments or hits to conclude
about the function, shape, or other features of query sequence.

5.1 Sequence Alignment Algorithms

One of the earliest alignment algorithms, based on dynamic programming, is
that by Needleman and Wunsch [26] in 1970 for global alignment, i.e., an align-
ment that spans the entire length of sequences to be aligned. The algorithm, as
shown in algorithm 2, is based on dynamic programming, and is able to find the
alignment of two sequences A and B with the maximal overall similarity w.r.t.
a given pairwise similarity model. More precisely, the algorithm proceeds as fol-
lows: initially, for two sequences of length l and k, a matrix with l + 1 columns
and k + 1 rows is created. There is one column for each symbol in B and one
row for each symbol in sequence A. The matrix then is filled with the maximum
scores as follows:

Mi,j = max

⎧
⎪⎨

⎪⎩

Mi−1,j−1 + Si,j : a match or mismatch
Mi,j−1 + w : a gap in sequence B

Mi−1,j + w : a gap in sequence A

(2)

where Si,j is the pairwise similarity of amino acids and w reflects a linear gap
(insert or deletion step) penalty. So, as the algorithm proceeds, the Mi,j will
be assignedto the optimal score for the alignment of the first i symbols in A
and the first j symbols in B. After filling the matrix, the maximum score for

34 K. Kersting et al.

Algorithm 2. Core procedure of the Needleman and Wunsch algorithm for
global sequence alignment. The inputs are two sequences A and B and the
output is the M matrix. For more details, see text.
for i = 1 to length(A) − 1 do

M(0, i) = w · i;
for i = 1 to length(B) − 1 do

M(0, j) = w · j;
for i = 1 to length(A) do

for j = 1 to length(B) do
M(i, j) =

max

⎛

⎜⎝M(i− 1, j − 1) + S (A(i), B(j))
︸ ︷︷ ︸

(mis−)match

,M(i− 1, j) +w
︸ ︷︷ ︸

gap B

,M(i, j − 1) + w
︸ ︷︷ ︸

gap A

⎞

⎟⎠;

any alignment can be found in cell Ml,k. To compute which alignment actually
gives this score, one start from cell Ml,k, and compares the value with the three
possible sources ((mis-)match, gap in A, gap in B) to see which it came from.
If (mis)-match, then Ai and Bj are aligned. Otherwise, Ai resp. Bj are aligned
with a gap.

In the biological domain, this similarity model Si,j is typically represented by
pair-wise similarity or dissimilarity scores of pairs of amino acids. These scores
are commonly specified by a so-called similarity matrix, like the PAM [5] or
BLOSUM [11] families of substitution matrices. The scores, or costs, associated
with a match or mismatch between two amino acids, are sometimes interpreted
as the probability that this change in amino acids might have occurred during
evolution.

The Needleman-Wunsch algorithm computes global alignments, i.e. it at-
tempts to align every element in one sequence with an element in the other one
By contrast, local alignments identify regions of similarity within long sequences
that are often widely divergent overall. To calculate the best local alignment
of two sequences, one often employs the Smith-Waterman local alignment algo-
rithm [33]. The main difference of this algorithm as compared to the Needleman-
Wunsch algorithm is that all negative scores are set to zero. To compute the
highest scoring local alignment, one now start with the maximal scoring ma-
trix cell and proceed as before until a cell with score zero is encountered. For
large data sets, the exhaustive Smith-Waterman approach is too computational
intensive. For this reason, the BLAST algorithm [1] uses a heuristic approach,
searching for small identical elements in both sequences and extending those
using a dynamic programming approach similar to the Smith-Waterman algo-
rithm. The BLAST family of algorithms is somewhat less accurate than the full
Smith-Waterman algorithm, but much more efficient.

In general, the alignments resulting from a global or local alignment show
the more conserved regions between two sequences. To enhance the detection

Relational Sequence Learning 35

of these conserved regions, multiple sequence alignments can be constructed.
Given a number of sequences belonging to the same class, i.e. in biological terms
believed to belong to the same family, fold, or other classes, so-called profiles
are constructed that align all sequences together. A common approach for the
construction of a multiple alignment proceeds in three steps: First, all pairwise
alignments are constructed. Second, using this information as starting point a
phylogenetic tree is created as guiding tree. Third, using this tree, sequences are
joined consecutively into one single alignment according to their similarity. This
approach is known as the neighbor joining approach [30].

5.2 Moving Towards the Alignment of Relational Sequences

The alignment algorithms discussed in the previous paragraphs assume a given
similarity measure Si,j . Typically, this similarity measure is a propositional one
as the considered sequences consist of propositional symbols. Many sequences
occurring in real-world problems, however, can elegantly be represented as rela-
tional sequences. A relational sequence alignment simply denotes the alignment
of sequences of such structured terms.

One attractive way to solve this problem is to use a standard alignment algo-
rithm but to replace the propositional similarity measure Si,j in Equation (2)
by a structured one. In [14] we proposed the use of one of the many distance
measures developed within the field of Inductive Logic Programming [25]. As
an example, consider one of the most basic measures proposed by Nienhuys-
Cheng [27]1. It treats ground structured terms as hierarchies, where the top
structure is most important and the deeper, nested sub-structures are less im-
portant. Let S denote the set of all symbols, then Nienhuys-Cheng’s distance d
is inductively defined as follows:

∀c/0 ∈ S : d(c, c) = 0
∀p/u, q/v ∈ S : p/u �= q/v : d(p(t1, . . . , tu), q(s1, . . . , sv)) = 1
∀p/u ∈ S : d(p(t1, . . . , tu), p(s1, . . . , su)) = 1

2u

∑u
i=1 d(ti, si)

For different symbols the distance is one; however, when the symbols are the
same, the distance linearly decreases with the number of arguments that have
different values and is at most 0.5. The intuition is that longer tuples are more
error-prone and that multiple errors in the same tuple are less likely. To solve the
corresponding relational alignment problem, one simply sets Si,j = 1− d(xi, yi)
in Equation (2).

5.3 Relational Information Content

Now that we have introduced relational sequence alignments, we will investi-
gate how informative they are. Following Gorodkin et al. [7], the information

1 For sequences of more complex logical objects such as interpretations and queries, a
different, appropriate similarity function could be chosen. We refer to Jan Ramon’s
PhD Thesis [29] for a nice review of them.

36 K. Kersting et al.

content Ii of position i of a relational sequence alignment is Ii =
∑

k∈G Iik =
∑

k∈G qik log2

(
qik

pk

)
, where G is the Herbrand base over the language of the

aligned sequences including gaps (denoted as ’−’) and qik is the fraction of
ground atoms k at position i. When k is not a gap, we interpret pk as the a pri-
ori distribution of the ground atom. Following Gorodkin et al., we set p− = 1.0,
since then qi− log2(qi−/p−) is zero for qi− equal to zero or one. We choose pk = 1/
(|G| − 1) when k �= −. The intuition is as follows: if Iik is negative, we observe
fewer copies of ground atom k at position i than expected, and vice versa, if Iik

is positive, we observe more that expected.
The total information content becomes I =

∑T
i=1 Ii (where T is the length

of the alignment) and can be used to evaluate relational sequence alignments.
So far, however, we have defined the information content at the most informa-
tive level only, namely the level of ground atoms. Relational sequences exhibit
a rich internal structure and, therefore, multiple abstraction levels can be ex-
plored by using variables to make abstraction of specific symbols. To compute
the information content at higher abstraction levels, i.e., of an atom a replacing
all covered ground atoms k at position i, we view qia (resp. pa) as the sum of qik

(resp. pk) of the ground atoms k covered by a. Figure 1 shows the (cumulative)

1 2 3 4 5 6 7
0

0.5

1

1.5

2

Alignment Position

In
fo

rm
at

io
n

 C
o

n
te

n
t

1 2 3 4 5 6 7
0

1

2

3

4

5

6

Alignment Position

C
u

m
u

la
ti

ve
 In

fo
rm

at
io

n
 C

o
n

te
n

t

Total Information Content

Fig. 1. Information content (IC) for the Unix command line example in table 1. The
bar graph on the left-hand side shows the IC at each position in the alignment. The
bar graph on the right-hand side shows the cumulative IC up to each position in the
alignment.

Table 1. The multiple alignment of five arbitrary Unix command line sequences using
gap opening cost 1.5, gap extension cost 0.5, and padding cost 0.25. The ‘-’ denotes
a gap in a sequence. Clearly one can see the aligned commands for xdvi, dvipdf, and
pdfview. In sequence four, the corresponding vi and latex commands are not properly
aligned due to the gap opening costs, as the proper alignment would require two gaps
instead of the single one employed here.

1: - vi(ch2,tex) ls latex(ch2,tex) xdvi(ch2,dvi) dvipdf(ch2,dvi) pdfview(ch2,pdf)
2: cd(thesis) vi(ch1,tex) bibtex(ch1) latex(ch1,tex) xdvi(ch1,dvi) dvipdf(ch1,dvi) pdfview(ch1,pdf)
3: - - - - xdvi(pap2,dvi) dvipdf(pap2,dvi) pdfview(pap2,pdf)
4: cd(pap1) - - vi(pap1,tex) latex(pap1,tex) dvipdf(pap1,dvi) pdfview(pap1,pdf)
5: - vi(rsl,tex) - latex(rsl,tex) dvips(rsl,dvi) - -

Relational Sequence Learning 37

information content for our running Unix command line example. As prior we
use the empirical frequencies over all five sequences.

The information content is a significant concept as it allows one to evalu-
ate alignments and to find common motifs in relational sequences. Moreover, it
allows one to represent alignments graphically by so-called relational sequence
logos.

5.4 Relational Sequence Logos

Reconsider the alignment in Table 1. It consists of several lines of information.
This makes it for longer sequences difficult – if not impossible – to read off infor-
mation such as the general consensus of the sequences, the order of predominance
of the symbols at every position, their relative frequencies, the amount of infor-
mation present at every position, and significant locations within the sequences.
In contrast, the corresponding sequence logo as shown in Figure 2 concentrates
all of this into a single graphical representation. In other words, ’a logo says
more than a thousand lines alignment’.

Each position i in a relational sequence logo is represented by a stack consisting
of the atoms at position i in the corresponding alignment. The height of the stack
at position i indicates the information content Ii. The height hik of each atom k
at position i is proportional to its frequency relative to the expected frequency,
i.e., hik = αi ·

(
qik

pk

)
· Ii , where αi is a normalization constant. The atoms are

sorted according to their heights. If Iik is negative, a simple bar is shown using
the absolute value of the Iik.

Fig. 2. Sequence logos for the Unix command line example in table 1 (from bottom
to top: ground, relational, and abstract). For positions 1 as well as positions 5 -7 the
abstract logo contributes substantially towards a conserved region.

38 K. Kersting et al.

Sequence logos at lower abstraction levels can become quite complex. Rela-
tional abstraction can be used to straighten them up. Reconsider Figure 2. It also
shows the logo at the highest abstraction level, where we considered as symbols
the least general generalization of all ground atoms over the same predicate at
each position in the alignment only. Because the prior probabilities change dra-
matically, the abstract logo looks very different from the ground one. It actually
highlights the more conserved region of the sequences at the end (positions 5-7).
Both views provide relevant information. Relational logos combine these views
by putting at each position the individual stack items together and sort them in
ascending order of heights.

To summarize, relational sequence logos illustrate that while relational align-
ments can be quite complex, they exhibit rich internal structures which, if ex-
ploited, can lead to new insights not present in flat alignments. For applications
to information extraction from MedLine abstracts and to protein fold descrip-
tion, we refer to [14].

Both frequent sequence mining and sequence alignment are nonparametric
methods in that they do not assume an underlying model. We will now turn
to probabilisitc model-based sequence learning methods, which are appealing as
they take uncertainty explicitly into account.

6 Relational Grams

Relational Grams extend n-gram models to sequences of logical atoms. In a
nutshell, n-gram models are smoothed Markov chains: they model the probability
of a sequence s = w1...wm as a mixture of Markov distributions of different
orders. For k ∈ N, a k-th order Markov chain estimates the probability for s as

Pk(w1...wm) =
m∏

i=1

Pk(wi | wi−k+1...wi−1) (3)

In the most basic case, the conditional probabilities are estimated from a set S
of training sequences in terms of “gram” counts, i.e., counts of short patterns of
symbols such as wi−k+1...wi−1:

Pk(wi | wi−k+1 . . . wi−1) =
C(wi−k+1 . . . wi)

C(wi−k+1 . . . wi−1)
(4)

where C(wi−k+1...wi−1) is the number of times wi−k+1...wi−1 appeared as a
subsequence in any s ∈ S. This is the maximum likelihood estimate for the
model described by Equation 3.

In this model, the gram order k defines the trade-off between reliability of
probability estimates and discriminatory power of the model. For larger k, many
probability estimates will be zero due to data sparseness, which can deteriorate
model accuracy. n-grams combine models of different order [24], and estimate
the conditional probabilities as

P (wi | wi−n+1 . . . wi−1) =
n∑

k=1

αkPk(wi | wi−k+1 . . . wi−1) (5)

Relational Sequence Learning 39

where the α1, ..., αn are suitable weights with
∑n

k=1 αk = 1, and the distributions
Pk(wi | wi−k+1 . . . wi−1) are estimated according to Equation 4. This effectively
smoothes the probability estimates of the higher-order models with the more
robust estimates of lower-order models and thereby avoids the data sparseness
problem. More advanced smoothing techniques have also been proposed (cf.
[24]), but are beyond the scope of this chapter. Despite their simplicity, n-grams
have proven to be a powerful tool for sequence classification and probability
estimation.

By generalizing the sequence elements wi to first-order logical atoms, rela-
tional grams (or r-grams) inherit the power and simplicity of the n-gram method.
However, they go beyond a simple relational upgrade of n-grams in two ways:

1. Relational Smoothing. In addition to smoothing by shorter histories
(as for n-grams), relational grams can smooth probability estimates by re-
lational generalization of grams. For example, the gram emacs(rsl, tex),
latex(rsl, tex) could be generalized by shortening it to emacs(rsl, tex), but
also by logical abstraction to emacs(F, tex), latex(F, tex). Both generaliza-
tions avoid the data sparseness problem by estimating probabilities from a
larger sample though they represent a different bias. In the second case, we
model a pattern indicating that a user first runs emacs and then latex on
the same file, independently of a particular filename.

2. Abstraction from Identifiers. Some arguments in the predicates used
to define sequence elements which should never be grounded. Consider, for
example, filenames in the Unix user modeling domain described above. File
names, in contrast to file extensions, are just names—except for some system
files, they are chosen more or less arbitrarily to describe the particular con-
tent of a file. Accordingly, it does not make sense to estimate distributions
over filenames, especially if we want the induced models to generalize across
different users, who typically name their files differently. Relational grams
therefore provide a mechanism to abstract from such identifiers, and define
distributions over ground sequences modulo identifier renaming.

More formally, r-gram models can be defined as follows. Let Σ denote a typed
relational alphabet, for which the set of types is partitioned into constants and
identifiers. We will also talk about constant-variables and identifier-variables de-
pending on the variable’s type. Let Σ̄ denote the subset of Σ where no arguments
of identifier types are grounded.

Definition 1 (r-gram model). An r-gram model R of order n over an al-
phabet Σ is a set of relational grams

l1n ∨ ... ∨ ldn ← l1...ln−1

where

1. ∀i : l1...ln−1l
i
n ∈ Σ̄∗;

2. ∀i : lin contains no constant-variables;

40 K. Kersting et al.

3. ∀i : lin is annotated with probability values
Pr(lin | l1...ln−1) such that

∑d
i=1 Pr(lin | l1...ln−1) = 1

4. ∀i �= j : l1...ln−1l
i
n �
 l1...ln−1l

j
n; i.e. the heads are mutually exclusive. Here,

the operator
 implements subsumption2

Example 3. An example of an order 2 relational gram in the Unix user domain
is:

0.4 latex(F, tex)
0.1 latex(F ′, tex)
0.1 emacs(F ′, tex)
...

0.05 cd(Dir)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

← emacs(F, tex)

It states that after editing a file with emacs, a user is more likely to use latex on
that file than she is to use latex on a different file or execute another command.

We still need to show how an r-gram model R defines a distribution over rela-
tional sequences. We first discuss a basic model by analogy to an unsmoothed
n-gram, before extending it to a smoothed one in analogy to Equation 5.

A Basic Model. In the basic r-gram model, for any ground sequence g1...gn−1

there is exactly one gram l1n ∨ ... ∨ ldn ← l1...ln−1 with l1...ln−1
θ g1...gn−1. Its
body l1...ln−1 is the most specific sequence subsuming g1...gn−1. According to
Equation 3, we start by defining a probability PR(g | g1...gn−1) for any ground
atom g given a sequence g1...gn−1 of ground literals. Let g be a ground literal
and consider the above gram subsuming g1...gn−1. If there is an i ∈ {1, ..., d}
such that l1...ln−1l

i
n
θ g1...gn−1g it is unique and we define

PR(g | g1...gn−1) := Pr(g | g1...gn−1) := Pr(lin | l1...ln−1)

Otherwise, PR(g | g1...gn−1) = 0. From PR(g | g1...gn−1), a sequence probability
PR(g1...gm) can be derived as in Equation 3.

In this way, the model assigns a probability value to any ground sequence s
over the alphabet Σ. If two sequences are identical up to local identifier renam-
ing, the model will assign them the same probability value. For example, the
same probability is assigned to emacs(chapter1, tex), latex(chapter1, tex) and
emacs(chapter2, tex), latex(chapter2, tex). We have therefore modeled patterns
of object identifiers (the fact that the same file name is used in both commands)
without referring to any concrete identifiers. As the model does not distinguish
between sequences that are identical up to identifier renaming, the sum of proba-
bility estimates over all ground sequences is larger than one. However, the model
defines a proper probability distribution over the set of equivalence classes mod-
ulo local identifier renaming. More details can be found in [20].
2 We actually use a variant of the subsumption relation introduced above. It is called

object identity as in [31] and it requires that each variable is instantiated to a different
constant that does not occur in the pattern.

Relational Sequence Learning 41

Smoothing r-Grams. In the basic model, there was exactly one gram r ∈ R
subsuming a given ground subsequence g1...gn−1, namely the most specific one.
As for n-grams, the problem with this approach is that there is a large num-
ber of such grams and the amount of training data needed to reliably esti-
mate all of their frequencies is prohibitive unless n is very small. The basic idea
behind smoothing in r-grams is to generalize grams logically, and mix the re-
sulting distributions, i.e., PR(g | g1...gn−1) =

∑
r∈R̂

αr

α Pr(g | g1...gn−1) where
Pr(g | g1...gn−1) is the probability defined by r as explained above, R̂ is the
subset of grams in R subsuming g1...gn−1, and α is a normalization constant,
i.e. α =

∑
r∈R̂ αr. The more general r, the more smooth the probability estimate

Pr(g | g1...gn−1) will be. The actual degree and characteristic of the smoothing
is defined by the set of matching r-grams together with their relative weights αr.

To summarize, r-grams upgrade n-grams to deal with sequences of logical
atoms. As n-grams, they combine simple Markov models with powerful smooth-
ing techniques. Furthermore, they allow us to make abstract of the specific iden-
tifiers in the data. As for n-grams, learning r-grams is straightforward, and
basically amounts to counting frequencies of first-order patterns in the data.
These could be determined efficiently, e.g., by a first-order sequential pattern
miner such as SeqLog [21], see also Section 4. Furthermore, r-grams need a user-
defined language bias, which constrains the allowed patterns in terms of types
and determines which types are treated as identifiers.

R-grams have been successfully applied to structured sequential problems in
Unix user modeling, protein fold prediction, and mobile phone user pattern anal-
ysis (see [20]).

7 Logical Hidden Markov Models

In r-grams and Markov models in general, the (structured) states are directly
visible, and therefore the transition probabilities among states are the only pa-
rameters. In hidden Markov models [28], the states are not directly observable,
but only by means of variables (called observations) influenced by the state.

Definition 2. Abstract transitions are expressions of the form p : H O←− B where
p ∈ [0, 1], and H, B and O are atoms. The atoms H and B are abstract states and O
represents an abstract output symbol. All variables are implicitly assumed to be
universally quantified, i.e., the scope of variables is a single abstract transition.

Consider Figure 3. Here, the gray node emacs(File, tex) denotes that a LATEX
user edits a file F using emacs. That the user is indeed a LATEXuser, however,
is not directly observable but only through a sequence of observations such as
emacs(F) and latex(F) specified in terms of abstract transitions (arrows) such as

c ≡ 0.6 : latex(File, tex)
emacs(File)←−−−−−−−− emacs(File, tex). Assume now that we

are in state emacs(rsl, tex), i.e. θB = {File/rsl}. Then c specifies that there
is a probability of 0.6 that the next state will be subsumed by latex(rsl, tex)
and that one of the symbols represented by emacs(rsl) will be emitted. This

42 K. Kersting et al.

start

ls(U')

latex(F,tex) emacs(F,tex)

emacs(F,U)

emacs(F',U)

0.55 0.45

ls:0.6

emacs(F):0.7

ls:0.4

latex(F):0.2
emacs(F):0.3

emacs(F):0.6

latex(F):0.2

emacs(F):0.1

emacs(F):0.3

latex(F):0.6

Fig. 3. A logical hidden Markov model. Abstract states are represented by gray nodes.
Arrows between nodes denote abstract transitions. The abstract emissions and transi-
tion probabilities are associated with the arrows. Dotted arrows denote ’must-follow’
links; dashed arrows the ’more-general-than’ relation.

was a simple example for an abstract transition because θH and θO were both
empty. In general, the resulting state and output symbol sets are not singletons.

For instance, for 0.6 : emacs(File′, U)
latex(File)←−−−−−−− latex(File, tex) the result-

ing state set is the set of subsumed ground states of emacs(File′, U) such as
emacs(rsl, tex), emacs(rsl, dvi), emacs(lohmm, tex) etc. We therefore need a
way to assign probabilities to these possible alternatives.

Definition 3. The selection distribution µ specifies for each abstract state and
observation symbol A over the alphabet Σ a distribution µ(· | A) over all ground
atoms subsumed by A.

In our example, assume a selection probability

µ(emacs(rsl, tex) | emacs(File′, U)) = 0.4,

µ(emacs(april, tex) | emacs(File′, U)) = 0.6
µ(emacs(rsl, word) | emacs(File′, U)) = 0.5,

µ(emacs(april, word) | emacs(File′, U)) = 0.5

Then there would be a probability of 0.4 × 0.6 = 0.24 that the next state is
emacs(rsl, tex). Taking µ into account, the meaning of an abstract transition
p : H O←− B can be summarized as follows: Let BθB, HθBθH and OθBθHθO be ground
atoms. Then the model makes a transition from OθBθHθO with probability

p · µ(HθBθH | HθB) · µ(OθBθHθO | OθBθH). (6)

To represent µ, any probabilistic representation can – in principle – be used,
e.g. a Bayesian network or a Markov chain. In [16], we show how to use a näıve
Bayes approach to reduce the model complexity.

Relational Sequence Learning 43

Thus far the semantics of a single abstract transition has been defined. A
logical hidden Markov model usually consists of multiple abstract transitions,
which makes things a little bit more complicated. Reconsider Figure 3, where
dotted edges indicate that two abstract states behave in exactly the same way. If
we follow a transition to an abstract state with an outgoing dotted edge, we will
automatically follow that edge making appropriate unifications. Furthermore,
dashed edges encode a preference order among abstract states used as conflict
resolution strategy, which is needed because multiple abstract transitions can
match a given ground state. Consider the dashed edge in Figure 3 connecting
emacs(File, U) and emacs(File, tex). For the state emacs(rsl, tex) the match-
ing abstract transitions do not sum to 1.0. To resolve this, we only consider the
maximally specific transitions (with respect to the body parts B) that apply to
a state in order to determine the successor states. The rationale behind this is
that if there exists a substitution θ such that B2θ = B1, i.e., B2 subsumes B1,
then the first transition can therefore be regarded as more informative than the
second one.

Finally, in order to specify a prior distribution over states, we assume a finite
set Υ of clauses of the form p : H ← start using a distinguished start symbol
such that p is the probability of the logical hidden Markov model to start in a
ground instance of the some ground state of start.

In [16] it is proven that logical hidden Markov models specify a unique prob-
ability measure over sequences of ground atoms over Σ. Moreover all algorithms
for hidden Markov models such as the forward, the Viterbi and the Baum-Welch
algorithms carry over to the relational case. Thus they can be used for sequence
prediction, sequence classification and sequence labeling tasks. Here, we would
like to exemplify the practical relevance of logical Hidden Markov models on
two bioinformatics domains [18,16]: protein fold classification and mRNA signal
structure detection.

Protein fold classification is concerned with how proteins fold in nature, which
is related to their three-dimensional structures. More precisely, the task is to
predict the fold class of unknown proteins. Each fold contains a set of proteins
which fold in a similar way. Fold class predication is an important problem as the
biological functions of proteins depend on the way they fold. As already shown
in the section on relational alignments, the secondary structure of proteins can
elegantly be represented as logical sequences. Here, however, we used a more
fine grained discretization of lengths of helices and strands. For instance, the
Ribosomal protein L4 is represented as follows:

st(null, 2), he(h(right, alpha), 6), st(plus, 2), he(h(right, alpha), 4), . . .

The task was to predict one of the five most populated SCOP [13] folds of alpha
and beta proteins (a/b): TIM beta/alpha-barrel, NAD(P)-binding Rossmann-
fold domains, Ribosomal protein L4, Cysteine hydrolase, and Phosphotyrosine
protein phosphatases I-like. We took the 816 corresponding proteins from the
ASTRAL dataset version 1.65 (similarity cut 95%) consisting of 22210 ground
atoms. The 10-fold cross-validated accuracy was 76%. This is in a similar range
as Turcotte et al.’s [36] 75% accuracy for a similar task. What is important to

44 K. Kersting et al.

helical(s(s(s(0))),s(0),[c,c,c],stem,n(n(0))).
nucleotide_pair((c,g)).

single(s(s(0)),s(0),[],bulge5,n(0)).

root(0,root,[c]).

nucleotide_pair((a,u)).

nucleotide_pair((c,a)).
nucleotide_pair((u,a)).
nucleotide_pair((u,g)).
nucleotide_pair((u,a)).
nucleotide_pair((a,a)).

nucleotide(a).

nucleotide_pair((c,g)).

nucleotide(a).

nucleotide_pair((c,g)).
nucleotide_pair((c,g)).

single(s(s(s(s(0)))),s(s(s(0))),[],bulge5,n(n(n(0)))).

nucleotide(a).

nucleotide_pair((u,a)).

helical(s(0),0,[c,c],n(n(n(n(n(n(n(0)))))))).

nucleotide(g).

helical(s(s(s(s(s(0))))),s(s(s(0))),[c],stem,n(n(n(0)))).
nucleotide_pair((c,g)).

c g

single(s(s(s(s(s(s(0)))))),s(s(s(s(s(0))))),
 [],hairpin,n(n(n(0)))).

nucleotide(a).

nucleotide(a).

a u
u a
c a
u a
u g
u a
a a

a
c g
c g

g a
a
a

c g
c g

a u
u

nucleotide(u).
nucleotide(u).

single(s(s(s(s(s(s(s(0))))))),s(s(s(0))),
 [],bulge3,n(0)).

0

s(0)

s(s(0))

s(s(s(s(s(0)))))

s(s(s(0)))

s(s(s(0))))

s(s(s(s(s(s(0))))))

s(s(s(s(s(s(s(0)))))))

Fig. 4. The tree representation of a mRNA secondary structure (SECIS signal struc-
ture). (a) The logical sequence, i.e., the sequence of ground atoms representing the
tree. The ground atoms are ordered clockwise starting with root(0, root, [c]) in the
lower left-hand side corner. (b) The tree formed by the secondary structure elements.
For more details, we refer to [16].

realize when comparing the Logical HMM approach for this application to the
propositional HMM is to that the logical hidden Markov models were by an order
of magnitude smaller than the number of the equivalent hidden Markov models
(120 parameters vs. approx. 62000). This clearly shows the benefit of learning
in a relational setting.

The secondary structure of mRNA contains special subsequences called sig-
nal structures that are responsible for special biological functions, such as RNA-
protein interactions and cellular transport. In contrast to the secondary structure
of proteins, however, it does not form linear chains, but trees and hence, cannot
be represent using ordinary hidden Markov models, cf. Figure 4. We performed
leave-one-out cross-validation experiments on a similar data set as used in [12]:
15 and 5 SECIS (Selenocysteine Insertion Sequence), 27 IRE (Iron Responsive
Element), 36 TAR (Trans Activating Region) and 10 histone stemloops struc-
tures constituting five classes. The logical hidden Markov models achieved an
accuracy of 99%, which is in the range of Horvath et al.’s relational instance-
based learning approach.

8 Relational Conditional Random Fields

(Logical) HMMs model a sequence X by assuming that there is an underlying
sequence of states Y drawn from a finite set of states S. To model the joint

Relational Sequence Learning 45

Y1 Y2 Y3 YTYT-1

X1 X2 X3 XTXT-1

...

...

Fig. 5. Graphical representation of linear-chain CRF

distribution P (X, Y) tractably, HMMs make two independency assumptions:
each state depends only on its immediate predecessor and each observation/input
xj depends only on the current state yj. The downside of these assumptions is
that they make it relatively cumbersome to model arbitrary dependencies in the
input space, i.e., in the space of X .

For the sequence labeling task, conditional random fields [19] (CRFs) are an
alternative to (logical) HMMs that make it relatively easy to model arbitrary
dependencies in the input space. They have become popular in language pro-
cessing, computer vision, and information extraction. They have outperformed
HMMs on language processing tasks such as information extraction and shallow
parsing. CRFs are undirected graphical models that represent the conditional
probability distribution P (Y |X). Instead of the generatively trained (Lo)HMM,
the discriminatively trained CRF is designed to handle non-independent input
features, which can be beneficial in complex domains.

When used for sequences, the graph structure of a CRF is a first-order chain as
shown in Figure 5. Normalization by the Z(X) ensures that the defined function
returns a probability:

P (Y |X) =
1

Z(X)
exp

∑T

t=1
Ψt(yt, X) + Ψt−1,t(yt−1, yt, X). (7)

In contrast to a Markov Random Field, both the normalization factor Z(X)
and the potential functions Ψ are conditioned on the input nodes X . For the
sequential learning setting, the potentials are typically represented as a linear
combination of feature functions {fk}, which are given and fixed:

Ψ(yt, X) =
∑

αkgk(yt, X) and Ψ(yt−1, yt, X) =
∑

βkfk(yt−1, yt, X). (8)

The model parameters are then a set of real-valued weights αk, βk, one weight
for each feature. In linear-chain CRFs (see Figure 5), a first-order Markov as-
sumption is made on the hidden variables. In this case, there are features for
each label transition. Feature functions can be arbitrary such as a binary test
that has value 1 if and only if yt−1 has the label a.

So far, CRFs have mainly been applied on propositional input sequences. In
the next subsection, we will show how to lift them to the relational sequences
case. A more detailed description can be found in [10].

46 K. Kersting et al.

outPrev(c1)

at(1,strand(X,Y,medium)

at(2,helix(A,B),short))

at(2,strand(X,plus,short))

at(5,strand(X,Z,long))

0.1723

0.8000

-0.5

0.2

-0.55

1.00

true

false

true

false

true

false

true

false

true

false

Fig. 6. A relational regression tree; used in TildeCRF to represent the potential func-
tion. The inner nodes are logical tests.

8.1 TildeCRF

The only parts of a CRF that access the input sequence are the potential func-
tions. Therefore, CRFs can easily be lifted to the relational sequences case by
representing the potential function F as a sum of relational regression trees
learned by a relational regression tree learner such as Tilde [3]. Each regression
tree stands for a gradient and the sum of all for the potential function. We
adapted Dietterich et al.’s Gradient Tree Boosting approach, called TreeCRF,
to learn the trees. Following their notation, we define F yt(yt−1, X) = Ψ(yt, X)+
Ψ(yt−1, yt, X). We do not make any assumptions about F ; it can be any function
and not only a linear combination of features.

The gradient of ∂ log P (Y |X)
∂F v(u,wd(X)) can be evaluated quite easily for every training

sequence and position:

∂ log P (Y |X)
∂F v(u, wd(X))

=I(yd−1 ≺ u, yd ≺ v) − P (yd−1 ≺ u, yd ≺ v|wd(X)) (9)

where I is the identity function, the symbol ≺ denotes that u θ-subsumes y, and
P (yd−1 ≺ u, yd ≺ v|wd(X)) is the probability that class labels u, v fit the class
labels at positions d, d−1. It is calculated as shown in GenExamples in Alg. 3.

By evaluating the gradient at every known position in our training data and
fitting a regression model to this values, we get an approximation of the expec-
tation of the gradient. In order to simplify the derivation of the gradient and
afterwards the evaluation, we do not use the complete input X but a window
wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size. This is exactly
the learning setting of Tilde: each window, i.e., each regression example is a
(weighted) set of ground atoms.

All other issues of Dietterich al.’s original approach, TreeCRF, remain un-
changed. That is, we can use the forward-backward algorithm as proposed by
[6] to compute Z(X). The forward recursion is defined as α(k, 1) = exp F k(⊥,
w1(X)) and α(k, t) =

∑
k′∈K

[
exp F k(k′, wt(X))

] · α(k′, t − 1). The backward

recursion is defined as β(k, T) = 1 and β(k, t) =
∑

k′∈K

[
expF k′

(k, Wt+1(X))
]
·

β(k′, t + 1).

Relational Sequence Learning 47

Algorithm 3. Gradient Tree Boosting
Function TreeCRF(Data,L)/* Data = {(Xi, Yi)|i = 1, 2, . . . , N} */

begin
For each label k, initialize F k

0 ≡ 0 for 1 ≤ m ≤M do
for 1 ≤ k ≤ K /* Iterate over all labels */

do
Sk :=GenExamples(k,Data,Potm−1)
/* where Potm−1 = {F k

m−1 | k = 1, 2, . . . ,K} */

∆m(k) :=FitRelRegressTree(S(k),L)/* at most L leaves */

F k
m := F k

m−1 +∆m(k)

Return PotM
end
Function GenExamples(k,Data, Potm)
begin

S := ∅
for (Xi, Yi) ∈ Data do(

α, β, Z(Xi)
)

:= ForwardBackward(Xi, Ti,K)
/* run the forward-backward algorithm on (Xi, Yi) to get α(k, t)

and β(k, t) for all k and t */

for 1 ≤ t ≤ Ti do
for 1 ≤ k′ ≤ K do

/* Compute gradient at position t for label k */

P (yt−1 = k′, yt = k|Xi) :=
α(k′, t− 1) · exp(F k

m(k′, wt(X))) · β(k, t)

Z(Xi)
∆(k, k′, t) := I(yt−1≺ k′, yt≺ k) − P (yt−1≺ k′, yt≺ k|Xi)
/* add example to set of regression examples */

S := S ∪ {((wt(Xi), k
′),∆(k, k′, t))}

Return S

end

8.2 Making Predictions

There are several ways for obtaining a classifier from a trained CRF. We can
predict the output sequence Y with the highest probability: H(X) = arg maxY

P (Y |X), which can be computed using the Viterbi algorithm [28]. Another op-
tion is to predict every atom yt in the output sequence individually. This makes
sense when we want to maximize the number of correctly tagged input atoms:
Ht(X) = argmaxk∈K P (yt = k|X). Finally, one can also use a CRF for se-
quence classification, i.e., to predict a single label for the entire sequence. To
do so, we can simply make a kind of majority vote. That is, we first predict
H(X). Next, we count the number of times each class atom was predicted, i.e.,

48 K. Kersting et al.

count(c, Y) := |{i ∈ {1, . . . , T} | yi = c}|. Then, the sequence X is assigned to
class c with probability P (c|X) = T−1 · count(c, H(X)).

We employed TildeCRF to the protein fold classification problem. We used
the same subset on the subset of the SCOP database [8] that was mentioned in 7.
We have performed a 10-fold cross-validation and obtained an overall accuracy
of 92.62%, whereas the LoHMMs achieved only 75% accuracy. This difference is
significant (one-tailored t-test, p = 0.05).

To summarize, the previous sections have shown that it is indeed possible to
lift many prominent sequence learning techniques to the relational case. Before
concluding, we will show that this also holds for relational sequential decision
making, i.e., for relational sequence generation through actions.

9 Relational Sequential Decision Making

In the machine learning community, learning about stimuli and actions solely
on the basis of the rewards and punishments associated with them is called
reinforcement learning [34]. It is the problem faced by an agent that acts in
an environment and occasionally receives some reward based on the state the
agent is in and the action(s) the agent took. The agent’s learning task is then to
find a policy for action selection that maximizes its expacted reward over time.
This task requires not only choosing those actions that are associated with high
rewards in the current state but also looking ahead by choosing actions that
will lead the agent to more lucrative parts of the state space. Thus, in contrast
to supervised sequence learning tasks such as sequence labeling, reinforcement
learning is minimally supervised because agents are not told explicitly which
actions to take in particular situations, but must discover this themselves on the
basis of the received rewards.

9.1 Markov Decision Processes

Consider an agent acting in the blocks world [32]. The domain consists of a
surface, called the floor, on which there are blocks. Blocks may be on the floor
or on top of other blocks. They are said to pile up in stacks, each of which is
on the floor. Valid relations are on(X, Y), i.e., block X is on Y, and cl(Z), i.e.,
block Z is clear. At each time, the agent can move a clear (and movable) block
X onto another clear block Y. The move(X, Y, Z) action is probabilistic, i.e., it
may not always succeed. For instance, with probability p1 the action succeeds,
i.e. X will be on top of Y. With probability 1−p1, however, the action fails. More
precisely, with probability p2 the block X remains at its current position, and
with probability p3 (with p1 + p2 + p3 = 1) it falls on some clear block Z.

A natural formalism to represent the utilities and uncertainties is the formal-
ism of Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S, A,T, λ). Here, S is a set of system states such as

z ≡ cl(a), on(a, b), on(b, floor), block(a), block(b)

Relational Sequence Learning 49

describing the blocks world consisting of two blocks a and b where a is on top of
b. The agent has available a finite set of actions A(z) ⊆ A for each state z ∈ S,
which cause stochastic state transitions, for instance, move(a, floor) moving a
on the floor. For each z, z′ ∈ S and a ∈ A(z) there is a transition T in T,
i.e., z′

p:r:a←−−− z. The transition denotes that with probability P (z, a, z′) := p
action a causes a transition to state z′ when executed in state z. For instance
z′ ≡ cl(a), cl(b), on(a, floor), on(b, floor), block(a), block(b). For each z ∈ S
and a ∈ A(z) it holds

∑
z′∈S P (z, a, z′) = 1. The agent gains a reward when

entering a state, denoted as R(z) := r. For instance, on the blocks world we
could have R(z′) = 10.

A solution of a (relational) Markov decision process is a policy π : S �→ A
mapping state to actions. Essentially policy can be viewed as sets of expressions
of the form a ← z for each z ∈ S where a ∈ A(z) such as move(a, floor) ←
cl(a), on(a, b), on(b, floor), block(a), block(b). It denotes a particular course
of actions to be adopted by an agent, with π(z) := a being the action to be
executed whenever the agent is in state z.

Assuming that the sequence of rewards after step t is rt+1, rt+2, rt+3, . . ., the
agent’s goal is to find a policy that maximizes the expected reward E[R] for each
step t. Typically, future rewards are discounted by 0 ≤ λ < 1 so that the expected
return basically becomes

∑∞
k=0 λk · rt+k+1. To achieve this, most techniques

employ value functions. More precisely, given some MDP M = 〈S, A, T, R〉,
a policy π for M , and a discount factor γ ∈ [0, 1], the state value function
V π : S → R represents the value of being in a state following policy π with
respect to the expected reward. In other words, the value V π(z) of a state z
is the expected return starting from that state, which depends on the agent’s
policy π. A policy π′ is better than or equal to another policy π, π′ ≥ π, if
and only if ∀s ∈ S : V π′

(s) ≥ V π(s). Thus, a policy π∗ is optimal, i.e., it
maximizes the expected return for all states if π∗ ≥ π for all π. Optimal value
functions are denoted V ∗. Bellman’s [2] optimality equation states: V ∗(s) =
maxa

∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]. From this equation, all model-based

and model-free methods for solving MDPs can be derived.

9.2 Abstract Policies

A policy over ground states is propositional in the sense that it specifies for
each ground state separately which action to execute. In turn, specifying such
policies for Markov decision programs with large state spaces is cumbersome
and learning them will require much effort. This motivates the introduction of
abstract policies.

An abstract policy π intentionally specifies the action to take for sets of states,
i.e., for an abstract state.

Definition 4. An abstract policy π over Σ is a finite set of decision rules of
the form a ← L, where a is an abstract action and L is an abstract state. We
assume a to be applicable in L, i.e., vars(a) ⊆ vars(L).

50 K. Kersting et al.

B D

<1>

CA

E

B D

move(A,floor,B)

<2>

CA

B

move(E,A,floor)

<3>

A

E

A B

move(A,B,_)

<4>

B

<5>

A

stop

move(A,floor,B)

Fig. 7. The decision rules of the unstack-stack policy. In the figure, the decision rules
are ordered from left to right, i.e., a rule fires only if no rule further to the left fires.

The meaning of a single decision rule a ← L is as follows: If the agent is in
a state Z such that a ≤θ L, then the agent performs action aθ with probability
1/|θ|, i.e., uniformly with respect to number of possible instantiations of action
a in Z. Usually, π consists of multiple decision rules. We assume a total order
≺π among the decision rules in π and use the first matching decision rule.

Consider the following unstack-stack abstract policy:

〈1〉 move(A, floor, B) ← on(A, B), on(C, D), on(E, floor),cl(A), cl(C), cl(E).
〈2〉 move(A, floor, B) ← on(A, B), on(C, D), cl(A), cl(C).
〈3〉 move(E, A, floor) ← on(A, B), on(E, floor), cl(A), cl(E).
〈4〉 move(A, B, floor) ← cl(A), cl(B).
〈5〉 stop ← on(A, B), cl(A).

where the start action adds the absorbing propositions, i.e., it encodes that
we enter an absorbing state3. For instance in state z (see before), only decision
rule 〈3〉 fires.

The policy, which is graphically depicted in Figure 7, is interesting for several
reasons. First, it is close to the unstack-stack strategy, which is well known in
the planning community [32]. Basically, the strategy amounts to first putting
all blocks on the table and then building the goal state by stacking all blocks
from the floor onto one single stack. No block is moved more than twice. Second,
it perfectly generalizes to all other blocks worlds, no matter how many blocks
there are. Finally, it cannot be learned in a propositional setting because here

3 For ease of exposition, we have omitted the absorbing state in front and statements
that variables refer to different blocks.

Relational Sequence Learning 51

Algorithm 4. Relational TD(0) where α is the learning rate and V̂ (�) is
the approximation of V (�)
Let π be an abstract policy over abstract states �
Initialize V̂0(L) arbitrarily for each L in �
repeat

Pick a ground state Z of the underlying (relational) MDP M
repeat

Choose action a in Z based on π, i.e., (1) select first decision rule a← L

in π that matches according to ≺π , (2) select aθ uniformally among
induced ground actions
Take aθ, observe immediate reward r and successor state Z′, i.e., (1) select
with probability pi the i-th outcome of aθ, (2) compute Z′ as [b \ Bθ]∪ Hiθ
Let L′ in � be the abstract state first matching Z′ according to ≺π

V̂ (L) := V̂ (L) + α · (r + λ · V̂ (L′)− V̂ (L))
Set Z := Z′

until Z is terminal, i.e., absorbing

until converged or some maximal number of episodes exceeded

the optimal, propositional policy would encode the number of states and the
optimal number of moves.

9.3 Relational Temporal Difference Learning

The crucial question for (relational) Markov decision programs and for rela-
tional reinforcement learning is how one can learn abstract policies. Almost all
relational MDP solvers and reinforcement learning systems follow the so called
generalized relational policy iteration scheme. It consists of three interacting pro-
cesses: policy evaluation, policy improvement, and policy refinement. Here, eval-
uating a policy refers to computing a performance measure of the current policy;
policy improvement refers to computing a new policy based on the current value
function; and policy refinement makes small modifications to an abstract policy
such as adding rules.

Here, we will focus on model-free approaches, i.e., we do not assume any model
of the world. For a model-based approach, we refer to [17]. Moreover, we will
focus on the relational evaluation problem, which considers how to compute the
state-value function V π for an arbitrary abstract policy π: Given an abstract
policy π, find the state-value function V π from experiences 〈St, at, St+1, rt〉
only, where action at leads from state St to state St+1 receiving reward rt.

The basic idea is to define the value of an abstract state Li (i.e., a body of a
decision rule) to be the average expected value for all the states subsumed by
that state. This is a good model because if we examine each state subsumed,
we make contradictory observations of rewards and transition probabilities. The
best model is the average of these observations given no prior knowledge of
the model. For ease of explanation, we will focus on a TD(0) approach, see
e.g. [34]. Results for general TD(λ) can be obtained by applying Tsitsiklis and
van Roy’s [35] results.

52 K. Kersting et al.

0 1000 2000 3000 4000 5000

0

5

10

15

20

(a) unstack−stack

Episodes

V
al

ue

〈4〉 〈3〉

〈1〉

〈2〉 〈5〉

Fig. 8. Relational TD(0)’s learning curves on the evaluation problem for the unstack-
stack policy. The predicted values are shown as a function of the number of episodes.
These data are averages over 5 runs; the error bars show the standard deviations.

Relational TD(0) as shown in Algorithm 4 sketches the resulting approach.
Given some experience following an abstract policy π, RTD(0) updates its esti-
mate V̂ of V . If the estimate is not changing considerably, the algorithm stops.
If an absorbing state is reached, an episode ends and a new “starting” state is
selected. If a nonabsorbing state is visited, then it updates its estimate based on
what happens after that visit. Instead of updating the estimate at the level of
states, RTD(0) updates its estimate at the abstract states of π only.

RTD(0) can be proven to converge, see e.g. [15]. Figure 8 shows the perfor-
mance of RTD(0) when evaluating the unstack-stack abstract policy (see above).
We randomly generated 100 blocks world states for 6 blocks, for 8 blocks, and
for 10 blocks using the procedure described by [32]. This set of 300 states consti-
tuted the set Start of starting states in all experiments. Note that for 10 blocks a
traditional MDP would have to represent 58, 941, 091 states of which 3, 628, 800
are goal states. The result of each experiment is an average of five runs of 5000
episodes, where for each new episode we randomly selected one state from Start
as starting state. For each run, the value function was initialized to zero. Fur-
thermore, we used a discount factor λ of 0.9 and a learning rate α of 0.015. The
learning curves show that the values of the abstract states converged and, hence,
RTD(0) converged. Note that the value of abstract state 〈5〉 remained 0. The
reason for this is that, by accident, no state with all blocks on the floor was in
Start. Furthermore, the values converged to similar values in all runs. The values
basically reflect the nature of the policy. It is better to have a single stack than
multiple ones.

10 Conclusions

Relational sequence learning problems arise in many applications. This chap-
ter has defined various relational sequence learning tasks and reviewed some
methods for solving them. In contrast to learning with propositional sequences,

Relational Sequence Learning 53

relational sequence learning assumes the elements of the sequences to be struc-
tured in terms of (ground) atoms. Using relational abstraction and unification,
relational sequence models cannot only compress traditional models significantly,
but also make abstraction of identifiers. This in turn is important because it re-
duces the number of parameters of the resulting models, which results in easier
learning tasks.

Acknowledgments

The authors would like to thank Sau Dan Lee for his work on the SeqLog system,
Sarah Finkel for setting up the REAListic web server for relational sequence
alignments, Tapani Raiko for his involvement in the Logical HMMs, Ingo Thon
for implementing Logical (H)MMs in Java, Johannes Horstmann for valuable
work on applying Logical HMMs to the protein data, and Angelika Kimmig
for valuable comments on an earlier draft. This work was supported by the
European Union, contract number FP6-508861, Applications of Probabilistic
Inductive Logic Programming II.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search toll. Journal of Molecular Biology 215(3), 403–410 (1990)

2. Bellman, D.P.: Dynamic Programming. Princeton University Press, Princeton
(1957)

3. Blockeel, H., De Raedt, L.: Top-down Induction of First-order Logical Decision
Trees. Artificial Intelligence 101(1–2), 285–297 (1998)

4. Bruynooghe, M., De Raedt, L., Lee, S.D., Troncon, R.: Mining logical sequences.
Technical report, Department of Computer Science, Katholieke Universiteit Leuven
(forthcoming, 2007)

5. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in
proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5,
ch. 22 pp. 345–352. Nat. Biomedical Research Foundation (1978)

6. Dietterich, T., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via
gradient tree boosting. In: Proc. 21st International Conf. on Machine Learning,
pp. 217–224. ACM Press, New York (2004)

7. Gorodkin, J., Heyer, L.J., Brunak, S., Stormo, G.D.: Displaying the information
contents of structural RNA alignments: The structure logos. CABIOS 13(6), 583–
586 (1997)

8. Gough, J., Karplus, K., Hughey, R., Chothia, C.: Assignment of homology to
genome sequences using a library of hidden markov models that represent all pro-
teins of known structure. JMB 313(4), 903–919 (2001)

9. Greenberg, S.: Using unix: Collected traces of 168 users. Research Report
88/333/45, Department of Computer Science, University of Calgary, Calgary,
Canada (1988)

10. Gutmann, B., Kersting, K.: Tildecrf: Conditional random fields for logical se-
quences. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS
(LNAI), vol. 4212, pp. 174–185. Springer, Heidelberg (2006)

54 K. Kersting et al.

11. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. Natl Acad. Sci. 89, 10915–10919 (1992)

12. Horváth, T., Wrobel, S., Bohnebeck, U.: Relational Instance-Based learning with
Lists and Terms. Machine Learning Journal 43(1/2), 53–80 (2001)

13. Hubbard, T., Murzin, A., Brenner, S., Chotia, C.: SCOP: A structural classification
of proteins database. NAR 27(1), 236–239 (1997)

14. Karwath, A., Kersting, K.: Relational sequences alignments and logos. In: Mug-
gleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 290–304. Springer, Heidelberg (2007)

15. Kersting, K., De Raedt, L.: Logical Markov Decision Programs and the Conver-
gence of Logical TD(λ). In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004.
LNCS (LNAI), vol. 3194, pp. 180–197. Springer, Heidelberg (2004)

16. Kersting, K., De Raedt, L., Raiko, T.: Logical Hidden Markov Models. Journal of
Artificial Intelligence Research (JAIR) 25, 425–456 (2006)

17. Kersting, K., Van Otterlo, M., De Raedt, L.: Bellman goes Relational. In: Greiner,
R., Schuurmans, D. (eds.) Proceedings of the Twenty-First International Confer-
ence on Machine Learning (ICML 2004), Banff, Alberta, Canada, July 4–8, 2004,
pp. 465–472 (2004)

18. Kersting, K., Raiko, T., Kramer, S., De Raedt, L.: Towards discovering structural
signatures of protein folds based on logical hidden markov models. In: Proceedings
of the Pacific Symposium on Biocomputing (PSB 2003), pp. 192–203 (2003)

19. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proc. 18th International
Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)

20. Landwehr, N., De Raedt, L.: r-grams: Relational Grams. In: Proceedings of the
Twentieth Joint International Conference on Artificial Intelligence (IJCAI 2007),
AAAI Press, Menlo Park (2007)

21. Lee, S.D., De Raedt, L.: Mining Logical Sequences Using SeqLog. In: Meo, R.,
Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applica-
tions. LNCS (LNAI), vol. 2682, Springer, Heidelberg (2004)

22. Lee, S.D., De Raedt, L.: Constraint based mining of first order sequences in seqlog.
In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining
Applications. LNCS (LNAI), vol. 2682, pp. 154–173. Springer, Heidelberg (2004)

23. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

24. Manning, C.H., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

25. Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and Meth-
ods. Journal of Logic Programming 19(20), 629–679 (1994)

26. Needleman, S., Wunsch, C.: A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. J. Mol. Bio. 48(3), 443–453
(1970)

27. Nienhuys-Cheng, S.-H.: Distance between Herbrand interpretations: A measure for
approximations to a target concept. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997.
LNCS, vol. 1297, pp. 250–260. Springer, Heidelberg (1997)

28. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

29. Ramon, J.: Clustering and instance based learning in first order logic. PhD thesis,
Department of Computer Science, K.U. Leuven, Leuven, Belgium (October 2002)

30. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Evol. Biol. 4(4), 406–425 (1987)

Relational Sequence Learning 55

31. Semeraro, G., Esposito, F., Malerba, D.: Ideal Refinement of Datalog Programs. In:
Proceedings of the 5th Intternational Workshop on Logic Programming Synthesis
and Transformation (1995)

32. Slaney, J., Thiébaux, S.: Blocks World revisited. Artificial Intelligence Journal 125,
119–153 (2001)

33. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147, 195–197 (1981)

34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

35. Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with func-
tion approximation. IEEE Transactions of Automatic Control 42, 674–690 (1997)

36. Turcotte, M., Muggleton, S.H., Sternberg, M.J.E.: The Effect of Relational Back-
ground Knowledge on Learning of Protein Three-Dimensional Fold Signatures.
Machine Learning Journal 43(1/2), 81–95 (2001)

Learning with Kernels and Logical

Representations

Paolo Frasconi and Andrea Passerini

Machine Learning and Neural Networks Group
Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze, Italy
http://www.dsi.unifi.it/neural/

Abstract. In this chapter, we describe a view of statistical learning in
the inductive logic programming setting based on kernel methods. The
relational representation of data and background knowledge are used
to form a kernel function, enabling us to subsequently apply a number
of kernel-based statistical learning algorithms. Different representational
frameworks and associated algorithms are explored in this chapter. In
kernels on Prolog proof trees, the representation of an example is ob-
tained by recording the execution trace of a program expressing back-
ground knowledge. In declarative kernels, features are directly associated
with mereotopological relations. Finally, in kFOIL, features correspond
to the truth values of clauses dynamically generated by a greedy search
algorithm guided by the empirical risk.

1 Introduction

Kernel methods are one of the highly popular state-of-the-art techniques in ma-
chine learning [1,2]. They make it possible to design generic learning algorithms,
abstracting away details about data types, a trait that makes them especially
appealing in relational domains for dealing with structured objects such as se-
quences [3,4,5,6], trees [7,8], or graphs [9,10,11,12,13,14]. When using kernel ma-
chines, instances are mapped to a Hilbert space commonly called the feature
space, where the kernel function is the inner product. In principle, there is no
need to explicitly represent feature vectors as an intermediate step, as it happens
for example with many propositionalization schemes [15,16]. This trick has often
been exploited from the algorithmic point of view when the kernel function can
be computed efficiently in spite of very high-dimensional feature spaces.

In the simplest supervised learning settings (such as classification and regres-
sion with independent examples), all representational issues are dealt with by
the kernel, whereas the learning algorithm has mainly a statistical role. This
also means that background knowledge about the problem at hand should be
injected into the learning process mainly by encoding it into the kernel function.
This activity is sometimes carried out in an ad-hoc manner by guessing inter-
esting features. However, if domain knowledge has been encoded formally (e.g.
in a declarative fashion using first-order logic, or by means of ontologies), then

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 56–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dsi.unifi.it/neural/

Learning with Kernels and Logical Representations 57

it makes sense to use these representations as a starting point for building the
kernel. An example along these lines is the work by Cumby & Roth [16] that uses
description logic to specify features and that has been subsequently extended to
specify kernels [17].

Within the field of inductive logic programming (ILP), a related area of re-
search is the definition of distances in relational domains [18,19,20]. For every
kernel function (intuitively, a kernel corresponds to a notion of similarity) el-
ementary geometry allows us to derive an associated distance function in the
feature space. Turning distances into valid (positive semi-definite) kernels, how-
ever, is not possible in general as the axiomatic definition of distance imposes
less constraints. Thus, work on distance-based relational learning cannot be im-
mediately translated into equivalent kernel methods

In this chapter, we describe a number of methods based on the combination
of logical representations, kernel machines, and statistical learning. There are
several reasons why seeking links between kernel methods and probabilistic log-
ical learning can be interesting. First, background knowledge about a domain
may be already available and described in a logical representation language. As
we noted above, kernels are usually the main entry point for plugging back-
ground knowledge in the learning process. Therefore, from an engineering point
of view, developing a flexible and systematic approach to kernel design starting
from logical representations seems to be a natural choice. Second, learning algo-
rithms based on kernel machines are very efficient from a computational point
of view. After the Gram matrix has been computed, learning often consists of
finding the (unique) solution of a convex numerical optimization problem. Addi-
tional efficiency can be gained by exploiting the sparsity of the structure of the
solution, as it happens for example with support vector machines [21]. This sce-
nario contrasts with the computational requirements of many ILP schemes that
need to search hypotheses in a complex discrete space of logical programs [22].
Third, several types of learning problems, besides classification, can be solved
under a uniform framework, including regression [23], ranking (ordinal regres-
sion) [24], novelty detection (one-class classification) [25], clustering [26], and
principal component analysis [27]. Logic-based learning, on the other hand, has
mainly focused on classification while other tasks such as regression often need
ad-hoc solutions, except perhaps in the case of decision trees [28,29]. Fourth,
kernel based learning algorithms can be naturally linked to regularization the-
ory, where the complexity of the function calculated by a learning algorithm can
be controlled via its norm in the so-called reproducing kernel Hilbert space [30].
Regularization restores well-posedness in learning algorithms based on empirical
risk minimization, i.e. it ensures that the solution to the learning problem is
unique and stable (small perturbations in the data lead to small variations of
the learned function). Of course, uncertainty can also be handled using other
probabilistic logic learning schemes, like those extensively presented elsewhere
in this book, but from a different and complementary angle. Kernel-based ap-
proaches can be seen as taking the discriminant direction of learning, i.e. they
attempt to identify the optimal prediction function (i.e. the well known Bayes

58 P. Frasconi and A. Passerini

function in the case of binary classification). Theory shows that machines based
on regularized empirical risk minimization, such as the support vector machine
(SVM), do converge to the optimal function as the number of examples goes to
infinity [31,32]. This is a major difference with respect to other probabilistic ILP
approaches that take the generative direction of modeling. Generative models re-
quire more knowledge about the structural form of the probability densities than
their discriminant counterparts. If the underlying assumptions are wrong, they
may converge to a sub-optimal asymptotic error, although faster than discrim-
inant models constructed on the same model space of probability distributions
(a classic propositional example is the model pair formed by Naive Bayes and
logistic regression [33]).

There are, on the other hand, disadvantages when embracing the above frame-
work, compared to learning with other probabilistic logic representations. Since
the learning process only focuses on the discriminant function, it does not dis-
cover any new portion of the theory explaining the phenomena that underly the
data. Additionally the learned function does not provide any easily understand-
able explanations as to why certain predictions are associated with the input.

This chapter is a detailed review of several approaches that have been devel-
oped within APrIL II for statistical learning with kernels in the ILP setting. We
start in Section 2 explaining some basic concepts about the statistical and the
logical learning settings, in order to clarify our assumptions and for the benefit of
readers who are not familiar with both areas. In Section 3 we present kernels on
Prolog ground terms [34], a specialization to first-order logic of kernels on logical
individuals introduced by Gaertner et al. [35]. In Section 4, we describe declara-
tive kernels, a general approach for describing knowledge-informed kernels based
on relations related to decomposition into parts and connection between parts.
In Section 5, we present kernels based on Prolog proof trees [36], an approach
where first a program is ran over instances, to inspect interesting features, and
then program traces are compared by means of a kernel on ground terms. In Sec-
tion 6, we describe kFOIL [37], an algorithm that is especially interesting from
the point of view of the understandability of the learned solution. It constructs a
kernel from data using a simple inductive logic programming engine (FOIL [38])
to generate the clauses that define the kernel. Finally, in Section 7, we report
about two real-world applications that have been tackled with these techniques:
information extraction from scientific literature, and prediction of protein folds.
For the latter application, we also report novel results and comparisons for the
task of multiclass protein fold classification.

2 Notation and Background Concepts

2.1 Supervised Learning in the Statistical Setting

In the typical statistical learning framework, a supervised learning algorithm
is given a training set of input-output pairs D = {(x1, y1), . . . , (xm, ym)}, with
xi ∈ X and yi ∈ Y, sampled identically and independently from a fixed but
unknown probability distribution ρ. The set X is called the input (or instance)

Learning with Kernels and Logical Representations 59

space and can be any set. The set Y is called the output (or target) space; in
the case of binary classification Y = {−1, 1} while the case of regression Y is the
set of real numbers. The learning algorithm outputs a function f : X �→ Y that
approximates the probabilistic relation ρ between inputs and outputs. The class
of functions that is searched is called the hypothesis space.

2.2 Supervised Learning with Kernel Machines

A kernel is a positive semi-definite (psd) symmetric function K : X × X �→ IR
that generalizes the notion of inner product to arbitrary domains [2]. Positive
semi-definite here means that for all m and all finite data sets of size m, the
Gram matrix with entries K(xi, xj), i, j = 1, . . .m has nonnegative eigenvalues.
Each instance x is mapped to a corresponding element φ(x) in a Hilbert space
commonly called the feature space. For example, a feature of a graph may be
associated with the existence of a path with certain node labels; in this way, a
graph is mapped to a sequence of booleans, each associated with a string over the
node labels alphabet. Given this mapping, the kernel function is, by definition,
the inner product K(x, x′) = 〈φ(x), φ(x′)〉. Mercer’s theorem ensures that for
any symmetric and psd function K : X × X �→ IR there exists a mapping in a
Hilbert space where K is the inner product.

When using kernel methods in supervised learning, the hypothesis space, de-
noted FK , is the so-called reproducing kernel Hilbert space (RKHS) associated
with K [30]. Learning consists of solving the following Tikhonov regularized
problem:

f = arg min
h∈FK

C

m∑

i=1

V (yi, h(xi)) + ‖h‖K (1)

where V (y, h(x)) is a positive function measuring the loss incurred in predicting
h(x) when the target is y, C is a positive regularization constant, and ‖·‖K is the
norm in the RKHS. Popular algorithms in this framework include support vector
machines [21], obtained using the “hinge” loss V (y, a) = max{1 − ya, 0}, kernel
ridge regression [39,40], obtained using the quadratic loss V (y, a) = (v−a)2, and
support vector regression [23], obtained using the ε-insensitive loss V (y, a) =
max{|y − a| − ε, 0}. The representer theorem [41] shows that the solution to
the above problem can be expressed as a linear combination of the kernel basis
functions evaluated at the training examples:

f(x) =
m∑

i=1

ciK(x, xi) (2)

where ci are real coefficients expressing the solution of Eq. (1). The above form
also encompasses the solution found by other algorithms not based on Eq. (1),
such as the kernel perceptron [42].

2.3 Convolution Kernels for Discrete Structures

Suppose the instance space X is a set of composite structures and for x ∈ X let
�x = x1, . . . , xD denote a tuple of “parts” of x, with xd ∈ Xd (the d-th part type)

60 P. Frasconi and A. Passerini

for all i ∈ [1, D]. This decomposition can be formally represented by a relation
R on X1 × · · · × XD × X . For each x ∈ X , R−1(x) = {�x ∈ �X : R(�x, x)} denotes
the multiset of all possible decompositions of x.

In order to complete the definition of convolution kernels, we assume that a
kernel function Kd : Xd ×Xd → IR is given for each part type Xd, d = 1, . . . , D.
The R-convolution kernel [43] is then defined as follows:

KR,⊗(x, z) =
∑

(x1,...,xD)∈R−1(x)

∑

(z1,...,zD)∈R−1(z)

D∏

d=1

Kd(xd, zd). (3)

In the above formulation, a tensor product has been used to combine kernels
between different part types. Haussler [43] showed that the tensor product is
closed under positive definiteness and, therefore, R-convolution kernels that use
tensor product as a combination operator are positive definite, provided that all
Kd are. The result also holds for combinations based on other closed operators,
such as direct sum, yielding

KR,⊕(x, z) =
∑

(x1,...,xD)∈R−1(x)

∑

(z1,...,zD)∈R−1(z)

D∑

d=1

Kd(xd, zd). (4)

Convolution or decomposition kernels form a vast class of functions and need to
be specialized to capture the correct notion of similarity required by the task
at hand. For example, several kernels on discrete structures have been designed
using D = 1 and defining a simple concept of part. These “all-substructures
kernels” basically count the number of co-occurrences of substructures in two
decomposable objects. Plain counting can be easily achieved by using the exact
match kernel

δ(x, z) =
{

1 if x = z
0 otherwise. (5)

Interesting discrete data types that have been thoroughly studied in the litera-
ture include sequences [44,5,6], trees [45,8], and graphs [11,9]. The set kernel [2]
is a special case of convolution kernel that will prove useful in defining logical
kernels presented in this chapter and that has been also used in the context
of multi-instance learning [46]. Suppose instances are sets and let us define the
part-of relation as the usual set-membership. The kernel over sets Kset is then
obtained from kernels between set members Kmember as follows:

Kset(x, z) =
∑

ξ∈x

∑

ζ∈z

Kmember(ξ, ζ). (6)

2.4 Normalization and Composition

In order to reduce the dependence on the dimension of the objects, kernels over
discrete structures are often normalized. A common choice is that of using nor-
malization in feature space, i.e., given a convolution kernel KR:

Learning with Kernels and Logical Representations 61

Knorm(x, z) =
KR(x, z)√

KR(x, x)
√

KR(z, z)
. (7)

In the case of set kernels, an alternative is that of dividing by the cardinalities
of the two sets, thus computing the mean value between pairwise comparisons1:

Kmean(x, z) =
Kset(x, z)

|x||z| . (8)

Richer families of kernels on data structures can be formed by applying compo-
sition to the feature mapping induced by a convolution kernel. For example, a
convolution kernel KR can be combined with a Gaussian kernel as follows:

K(x, z) = exp
(
−γ
(
KR(x, x) − 2KR(x, z) + KR(z, z)

))
. (9)

2.5 A Framework for Statistical Logical Learning

One of the standard ILP frameworks is that of learning from entailment. In this
setting, the learner is given a set of positive and negative examples, D+ and D−,
respectively (in the form of ground facts), and a background theory B (as a set of
definite clauses) and has to induce a hypothesis H (also a set of definite clauses)
such that B∪H covers all positive examples and none of the negative ones. More
formally, ∀p(x) ∈ D+ : B ∪ H |= p(x) and ∀p(x) ∈ D− : B ∪ H
|= p(x). Note
that the meaning of term hypothesis in this context is related but not coincident
with its meaning in statistical learning, where the hypothesis space is a class of
functions mapping instances to targets.

We now develop a framework aiming to combine some of the advantages of
the statistical and the ILP settings, in particular: efficiency, stability, generality,
and the possibility of describing background knowledge in a flexible declara-
tive language. As in the ILP setting, we assume that a background theory B is
available as a set of definite clauses. This background theory is divided into in-
tensional predicates, BI , and extensional predicates, BE , the former relevant to
all examples, and the latter that specify facts about specific examples. As in [48],
examples will simply be individuals, i.e., first-order logic objects, syntactically
denoted by a unique identifier. This means that we shall effectively refer to the
examples by their identifier x rather than use the associated set of extensional
clauses, p(x) ⊂ BE. The instance space X is therefore a set of individuals con-
tained in the overall universe of discourse U . As in the statistical setting, we
assume that a fixed and unknown distribution ρ is defined on X × Y and that
training data D consist of input-output pairs (xi, yi) sampled identically and
independently from ρ. Note that the latter assumption is reasonable in the case
of relational domains with independent examples (such as mutagenesis) but not,
1 Note that normalizations such as those of Equations (7) and (8) can give indefinite

results iff one of the two arguments (say x) is the null vector of the feature space
associated to the original kernel (i.e., KR or Kset). In such a case, we will define
Knorm(x, z) = Kmean(x, z) = 0 ∀z ∈ X , z �= x.

62 P. Frasconi and A. Passerini

N

OO

N

O

O

Cl

d26_1

atm(d26,d26_1,c,22,-0.093).
atm(d26,d26_2,c,22,-0.093).
atm(d26,d26_3,c,22,-0.093).
atm(d26,d26_4,c,22,-0.093).
atm(d26,d26_5,c,22,-0.093).
atm(d26,d26_6,c,22,-0.093).
atm(d26,d26_7,h,3,0.167).
atm(d26,d26_8,h,3,0.167).
atm(d26,d26_9,h,3,0.167).
atm(d26,d26_10,cl,93,-0.163).
atm(d26,d26_11,n,38,0.836).
atm(d26,d26_12,n,38,0.836).
atm(d26,d26_13,o,40,-0.363).
atm(d26,d26_14,o,40,-0.363).
atm(d26,d26_15,o,40,-0.363).
atm(d26,d26_16,o,40,-0.363).

bond(d26,d26_1,d26_2,7).
bond(d26,d26_2,d26_3,7).
bond(d26,d26_3,d26_4,7).
bond(d26,d26_4,d26_5,7).
bond(d26,d26_5,d26_6,7).
bond(d26,d26_6,d26_1,7).
bond(d26,d26_1,d26_7,1).
bond(d26,d26_3,d26_8,1).
bond(d26,d26_6,d26_9,1).
bond(d26,d26_10,d26_5,1).
bond(d26,d26_4,d26_11,1).
bond(d26,d26_2,d26_12,1).
bond(d26,d26_13,d26_11,2).
bond(d26,d26_11,d26_14,2).
bond(d26,d26_15,d26_12,2).
bond(d26,d26_12,d26_16,2).

d26_2

d26_3

d26_4

d26_5

d26_6

d26_7

d26_8

d26_9

d26_10 d26_11

d26_12

d26_13 d26_14

d26_15

d26_16

nitro(Drug,[Atom0,Atom1,Atom2,Atom3]) :-
 atm(Drug,Atom1,n,38,_),
 bondd(Drug,Atom0,Atom1,1),
 bondd(Drug,Atom1,Atom2,2),
 atm(Drug,Atom2,o,40,_),
 bondd(Drug,Atom1,Atom3,2),
 Atom3 @> Atom2,
 atm(Drug,Atom3,o,40,_).

mutagenic(d26).

Extensional predicates

Intensional predicates

bondd(Drug,Atom1,Atom2,Type) :-
 bond(Drug,Atom1,Atom2,Type).
bondd(Drug,Atom1,Atom2,Type) :-
 bond(Drug,Atom2,Atom1,Type).

benzene(Drug,Ring_list) :-
 atoms(Drug,6,Atom_list,[c,c,c,c,c,c]),
 ring6(Drug,Atom_list,Ring_list,[7,7,7,7,7,7]).

ring6(Drug,[Atom1|List],[Atom1,Atom2,Atom4,Atom6,Atom5,Atom3],
 [Type1,Type2,Type3,Type4,Type5,Type6]) :-
 bondd(Drug,Atom1,Atom2,Type1), memberchk(Atom2,[Atom1|List]),
 bondd(Drug,Atom1,Atom3,Type2), memberchk(Atom3,[Atom1|List]),
 Atom3 @> Atom2,
 bondd(Drug,Atom2,Atom4,Type3), Atom4 \== Atom1,
 memberchk(Atom4,[Atom1|List]),
 bondd(Drug,Atom3,Atom5,Type4), Atom5 \== Atom1,
 memberchk(Atom5,[Atom1|List]),
 bondd(Drug,Atom4,Atom6,Type5), Atom6 \== Atom2,
 memberchk(Atom6,[Atom1|List]),
 bondd(Drug,Atom5,Atom6,Type6), Atom6 \== Atom3.

Fig. 1. Example from the mutagenesis domain [47] illustrating the framework for sta-
tistical logic learning we use in this chapter

in general, when examples are linked by extensional predicates and collective
prediction schemes are required (e.g. [49,50]).

In Figure 1 we exemplify our framework in the well known mutagenesis do-
main [47]. The extensional predicates are in this case atm/5 and bond/4, describ-
ing the input portion of the data. The predicate mutagenic/1 is also extensional.
It describes the target class y and is not included in B. The instance identifier in
this case is d26, while p(d26), the extensional clauses associated with example
d26 ∈ X , are listed in the upper right box of Figure 1. Intensional predicates
include, among others, nitro/2 and benzene/2, listed in the bottom box of
Figure 1.

The output produced by statistical and ILP-based learning algorithms is also
typically different. Rather than having to find a set of clauses that, added to
the background theory, covers the examples, the main goal of a statistical learn-
ing algorithm is to find a function f that maps instances into their targets and
whose general form is given by the representer theorem as in Eq. (2). Concerning
the methods reviewed in this chapter, when the kernel function is fixed before
learning, (as it happens in the methods presented in Sections 3, 4, and 5), pre-
dictions on new instances will be essentially opaque. However, when the kernel
is learned together with the target function (see Section 6), the learning process
also produces a collection of clauses, like an hypothesis in the ILP setting.

Learning with Kernels and Logical Representations 63

2.6 Types

A finer level of granularity in the definition of some of the logic-based kernels
presented in this chapter can be gained from the use of typed terms. This extra
flexibility may be necessary to specify different kernel functions associated with
constants (e.g. to distinguish between numerical and categorical constants) or to
different arguments of compound terms.

Following [51], we use a ranked set of type constructors T , that contains at
least the nullary constructor ⊥. We allow polymorphism through type parame-
ters. For example listα is a unary type constructor for the type of lists whose
elements have type α. The arity of a type constructor is the number of type
parameters it accepts. The set T is closed with respect to type variable substitu-
tion. Thus if τα1, . . . , αm ∈ T is an m-ary type constructor (with type variables
α1, . . . , αm) and τ1, . . . , τm ∈ T then ττ1, . . . , τm ∈ T .

The type signature of a function of arity n has the form τ1×, . . . ,×τn �→ τ ′

where n ≥ 0 is the number of arguments, τ1, . . . , τk ∈ T their types, and τ ′ ∈ T
the type of the result. Functions of arity 0 have signature ⊥ �→ τ ′ and can be
therefore interpreted as constants of type τ ′. The type signature of a predicate
of arity n has the form τ1×, . . . ,×τn �→ Ω where Ω ∈ T is the type of booleans.
We write t : τ to assert that t is a term of type τ .

A special case is when T = {τ1, . . . , τn} is a partition of U . In this case T can
be viewed as an equivalence relation =T as follows: ∀x, y ∈ U x =T y iff ∃τi ∈
T s.t.(x : τi ⇔ y : τi). Another interesting situation is when type names are
hierarchically organized in a partial order≺T⊂ T ×T , with σ≺T τ meaning that
σ is a τ (e.g. dog≺T animal).

3 Kernels on Prolog Ground Terms

3.1 Motivations

We begin linking statistical and logic learning by introducing a family of ker-
nels for Prolog terms. Convolution kernels over complex individuals have been
recently defined using higher order logic abstractions [52]. The functions defined
in this section can be seen as a specialization of such kernels to the case of Prolog
and are motivated by the following considerations. First, Prolog and first-order
logic representations provide a simpler representational framework than higher
order logics. Second, Prolog expressiveness is sufficient for most application do-
mains (for example, higher order structures such as sets can be simulated and
types can also be introduced). Third, Prolog is a widespread and well supported
language and many inductive logic programming systems and knowledge bases
are actually based on (fragments of) first order logic. Finally, no probabilistic
logic representations (like those thoroughly discussed elsewhere in this book) are
yet available for higher-order logics.

The kernels introduced here have of course interesting connections to rela-
tional distances such as those described in [53,54]. It should be noted, however,
that a distance function can trivially obtained from a kernel just by taking the

64 P. Frasconi and A. Passerini

Euclidean distance in feature space, while a metric does not necessarily map into
a Mercer kernel.

3.2 Untyped Terms

We begin with kernels on untyped terms. Let C be a set of constants and F a
set of functors, and denote by U the corresponding Herbrand universe (the set
of all ground terms that can be formed from constants in C and functors in F).
Let f/n ∈ F denote a functor having name f and arity n. The kernel between
two terms t and s is a function K : U × U �→ IR defined inductively as follows:

– if s ∈ C and t ∈ C then
K(s, t) = κ(s, t) (10)

where κ : C × C �→ IR is a valid kernel on constants;
– else if s and t are compound terms and have different functors, i.e., s =

f(s1, . . . , sn) and t = g(t1, . . . , tm), then

K(s, t) = ι(f/n, g/m) (11)

where ι : F × F �→ IR is a valid kernel on functors;
– else if s and t are compound terms and have the same functor, i.e., s =

f(s1, . . . , sn) and t = f(t1, . . . , tn), then

K(s, t) = ι(f/n, f/n) +
n∑

i=1

K(si, ti) (12)

– in all other cases K(s, t) = 0.

Functions κ and ι are atomic kernels that operate on non-structured symbols.
A special but useful case is the atomic exact match kernel δ defined in Eq. (5).

3.3 Typed Terms

The kernel between two typed terms t and s (see Section 2.6) is defined induc-
tively as follows:

– if s ∈ C, t ∈ C, s : τ , t : τ then

K(s, t) = κτ (s, t) (13)

where κτ : C × C �→ IR is a valid kernel on constants of type τ ;
– else if s and t are compound terms that have the same type but differ-

ent functors or signatures, i.e., s = f(s1, . . . , sn) and t = g(t1, . . . , tm),
s : σ1×, . . . ,×σn �→ τ ′, t : τ1×, . . . ,×τm �→ τ ′, then

K(s, t) = ιτ ′(f/n, g/m) (14)

where ιτ ′ : F × F �→ IR is a valid kernel on functors that construct terms of
type τ ′

Learning with Kernels and Logical Representations 65

– else if s and t are compound terms and have the same functor and type
signature, i.e., s = f(s1, . . . , sn), t = f(t1, . . . , tn), and s, t : τ1×, . . . ,×τn �→
τ ′, then

K(s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κτ1×,...,×τn �→τ ′(s, t)
if (τ1×, . . . ,×τn �→ τ ′) ∈ T

ιτ ′(f/n, f/n) +
n∑

i=1

K(si, ti) otherwise
(15)

where T ⊂ T denotes a (possibly empty) set of distinguished type signatures
that can be useful to specify ad-hoc kernel functions on certain compound
terms, and κτ1×,...,×τn �→τ ′ : U × U �→ IR is a valid kernel on terms having
distinguished type signature τ1×, . . . ,×τn �→ τ ′ ∈ T .

– in all other cases K(s, t) = 0.

Positive semi-definiteness of these kernels follows from their being special cases
of decomposition kernels (see [55] for details). Variants where direct summations
over sub-terms are replaced by tensor products are also possible.

3.4 A Guided Example: Alkanes

We demonstrate here the use of kernels over logical terms in a simple appli-
cation of quantitative structure-property relationship (QSPR) consisting in the
prediction of boiling point of alkanes [56]. Alkanes (except cycloalkanes, which
are not considered here) are naturally represented as trees and a root can be
chosen using a very simple procedure. The resulting rooted trees are encoded as
Prolog ground terms. Figure 2 shows an example of molecule encoding, where we
actually employed a reversed ordering of the children of each node with respect
to the procedure described in [56], in order to have the backbone of the molecule
on the right hand side of the tree.

We designed a kernel on untyped terms by using exact match for comparing
functors (carbon atoms), and the null function for comparing constants (hydro-
gen atoms). The resulting kernel counts the number of carbon atoms in corre-
sponding positions of two alkanes. As an additional source of information, we

C

CH3 C

CH3

CH3

CH3CH3

CH3

 c(h,h,h,c(c(h,h,h),c(h,h,h),c(c(h,h,h),c(h,h,h),c(h,h,h))))

C C C C

H

C C

CC

HH

HH

H

H

H

H

H

H

H

H

HH

H

H

H

Fig. 2. An alkane, its canonical representation as a rooted tree, and the corresponding
Prolog ground term

66 P. Frasconi and A. Passerini

extracted the depths of the trees representing the molecules, and summed their
product to the term kernel, obtaining a more informed kernel K ′. The resulting
function was composed with a Gaussian kernel.

The above kernel was used in conjunction with ridge regression to solve the
boiling point prediction problem. Performance was evaluated by a ten fold cross
validation procedure, removing the methane compound from the test results as
suggested in [56], being it an outlier with basically no structure. Hyperparameters
(namely, the Gaussian width and the regularization parameter), were chosen by
a hold-out procedure on the training set of the first fold, and kept fixed for the
successive 10 fold cross validation procedure. When using kernel K we obtained
an average mean square error of 4.6 Celsius degrees while using K ′ the error can
be reduced to 3.8 degrees. These results are comparable to those produced by
the highly tuned neural networks developed in [56].

4 Declarative Kernels

We present in this section a logical framework for kernel specification that pro-
vides a simple interface for the incorporation of background knowledge. The
relational feature generation process is controlled by an additional set of facts
and axioms, developed on the basis of the available background theory B. Al-
though, in general, any set of relational features could be used, we start from a
specific setting in which these additional facts and axioms refer to special and
germane relations for reasoning about parts and places.

4.1 Mereotopology

The parthood relation has been formally investigated by logicians and philoso-
phers for almost a century since the early work of Leśniewski [57] followed by
Leonard & Goodman’s calculus of individuals [58]. The axiomatic theory of parts
is referred to as mereology (from the Greek μερoζ, “part”). It has obvious connec-
tions to decomposition of data structures in convolution kernels (see Section 2.3).
The theory can be enriched with additional topological predicates and axioms
aiming to describe wholeness. As pointed out by Varzi [59], topology is much
needed because “mereological reasoning by itself cannot do justice to the notion
of a whole (a one-piece, self-connected whole, such as a stone or a whistle, as
opposed to a scattered entity made up of several disconnected parts, such as a
broken glass, an archipelago, or the sum of two distinct cats).” These ideas can
be also leveraged in machine learning to increase the kernel expressiveness with
respect to pure decompositional approaches like the all-substructures kernels
discussed in Section 2.3 that are only based on the notion of parts.

We formally introduce two special predicates: �P and Connected, with the
following intended meaning. For any two objects x and y, x�P y declares x to
be a part of y and Connected(x, y) declares x to be connected to y. Well-behaved
definitions of parthood and connection should satisfy some given axiomatic struc-
ture [59]. In the context of knowledge representation, it is widely accepted that
�P should be a partial order, i.e. ∀x, y, z ∈ U

Learning with Kernels and Logical Representations 67

x�P x (P1)
x�P y ∧ y�P x ⇒ y=P x (P2)
x�P y ∧ y�P z ⇒ x�P z (P3)

The theory defined by the above axioms is referred to as ground mereology.
Interestingly, the above theory immediately provides us with a natural identity
predicate =P that may be used as a basic elementary operator for comparing
parts. Additional useful relations are supported by the theory, in particular

x≺P y iff x�P y ∧ ¬y�P x proper part (16)
Overlap(x, y) iff ∃z.(z�P x ∧ z�P y) overlap (17)

Underlap(x, y) iff ∃z.(x�P z ∧ y�P z) underlap (18)

The supplementation axiom, if added to the theory, supports the notion of ex-
tensionality:

∀z.(z�P x ⇒ Overlap(z, y)) ⇒ x�P y. (P4)

Following [59], the following axioms characterize topology and its link to mere-
ology:

Connected(x, x) (C1)
Connected(x, y) ⇒ Connected(y, x) (C2)
x�P y ⇒ ∀z.(Connected(z, x) ⇒ Connected(z, y)) (C3)

Additional useful relations are supported by the theory, in particular

Externally Connected(x, y) iff Connected(x, y) ∧ ¬Overlap(x, y) (19)

Mereotopology can be used to enrich the given background theory in the hope
that it will generate further instances of the parthood and connection relations
that will be useful for learning. It may also serve the purpose of checking the
correctness of the declared parts and connections. When used for generating new
instances of mereotopological relations, axioms should be used wisely to avoid
an explosion of uninteresting parts and connections. Thus, depending on the
application domain, axioms can be selectively omitted — for example (P4) will
be typically avoided.

4.2 Mereotopological Relations

Several mereotopological relations (MR) can be introduced to characterize an
instance x, for example:

i) The proper parts of x: RP (x) = {y : y≺P x};
ii) The connected proper parts of x: RC(x) = {(y, z) : y ≺P x ∧ z ≺P x ∧

Connected(y, z)};
iii) The overlapping parts in x, along with their common proper parts:

RI(x) = {(y, z, w) : y
= z ∧ y≺P x ∧ z≺P x ∧ w≺P y ∧ w≺P z};

68 P. Frasconi and A. Passerini

iv) The externally connected parts in x along with the associated linking
terminals:

RL(x) = {(y, z, u, v) : z≺P x ∧ y≺P x ∧ ¬Overlap(z, y) ∧ u≺P z ∧ v≺P y

∧Connected(u, v)}.
Additional MRs can be defined if necessary. We denote by M the set of

declared MRs. As detailed below, a declarative kernel compares two instances
by comparing the corresponding MRs, so adding relations to M plays a crucial
role in shaping the feature space.

4.3 The Contribution of Parts

The kernel on parts, denoted KP , is naturally defined as the set kernel between
the sets of proper parts:

KP (x, x′) =
∑

y∈P(x)

∑

y′∈P(x′)

kP (y, y′) (20)

where kP denotes a kernel function on parts, defined recursively using KP . Types
(see Section 2.6) can be used to fine-tune the definition of kP . It types can be
viewed as an equivalence relation (T is a partition of U), then

kP (y, y′) =

⎧
⎨

⎩

ι(y, y′) if y =T y′ and y,y′ are atomic objects;
KP (y, y′) + ι(y, y′) if y =T y′ and y,y′ are non atomic objects;
0 otherwise (i.e. y
=T y′).

(21)
In the above definition, ι(y, y′) is a kernel function that depends on properties
or attributes of y and y′ (not on their parts).

If types are hierarchically organized, then the test for type equality in Eq. (21)
can be replaced by a more relaxed test on type compatibility. In particular, if
y : τ , y′ : τ ′ and there exists a least general supertype σ : τ ≺T σ, τ ′≺T σ, then we
may type cast y and y′ to σ and evaluate κ on the generalized objects σ(y) and
σ(y′). In this case the function ι(y, y′) depends only on properties or attributes
that are common to y and y′ (i.e. those that characterize the type σ).

4.4 The Contribution of Other MRs

The kernel on connected parts compares the sets of objects RC(x) and RC(x′)
as follows:

KC(x, x′) =
∑

(y,z)∈RC(x)

∑

(y′,z′)∈RC(x′)

KP (y, y′) · KP (z, z′). (22)

The kernel on overlapping parts compares the sets of objects RI(x) and RI(x′)
as follows:

KI(x, x′) =
∑

(y,z,w)∈RI(x)

∑

(y′,z′,w′)∈RL(x′)

KP (w, w′)δ(y, y′)δ(z, z′) (23)

Learning with Kernels and Logical Representations 69

where δ(x, y) = 1 if x and y have the same type and 0 otherwise. The kernel
KL(x, x′) on externally connected parts is defined in a similar way:

KL(x, x′) =
∑

(y,z,u,v)∈RL(x)

∑

(y′,z′,u′,v′)∈RL(x′)

KP (u, u′)KP (v, v′)δ(y, y′)δ(z, z′).

(24)

4.5 The General Case

Given a set M of MRs (such as those defined above), the final form of the
kernel is

K(x, x′) =
∑

M∈M
KM (x, x′). (25)

Alternatively, a convolution-type form of the kernel can be defined as

K(x, x′) =
∏

M∈M
KM (x, x′). (26)

To equalize the contributions due to different MRs, the kernels KM can be nor-
malized before combining them with sum or product. Positive semi-definiteness
follows, as in the case of convolution kernels, from the closeness with respect to
direct sum and tensor product operators [43].

4.6 Remarks

The kernel of Eq. (25) could have been obtained also without the support of
logic programming. However, deductive reasoning greatly simplifies the task of
recognizing parts and connected parts and at the same time, the declarative
style of programming makes it easy and natural to define the features that are
implicitly defined by the kernel.

Declarative kernels and Haussler’s convolution kernels [43] are intimately re-
lated. However the concept of parts in [43] is very broad and does not necessarily
satisfy mereological assumptions.

4.7 A Guided Example: Mutagenesis

Defining and applying declarative kernels involves a three-step process: (1) collect
data and background knowledge; (2) interface mereotopology to the available
data and knowledge; (3) calculate the kernel on pairs of examples. We illustrate
the process in the mutagenesis domain. The first step in this case simply consists
of acquiring the atom-bond data and the ring theory developed by Srinivasan
et al. [47], that comes in the usual form described in Figure 1. The second step
consists of interfacing the available data and knowledge to the kernel. For this
purpose, we first need to provide a set of declarations for types, objects, and basic
instances of mereotopological relations. Objects are declared using the predicate
obj(X,T) meaning that X is an object of type T. For example types include
atoms and functional groups (see Figure 3a).

70 P. Frasconi and A. Passerini

type(instance).
type(atm).
type(benzene).

obj(X,atm) :-
 atm(Drug,X,_,_,_).
obj(X,benzene) :-
 benzene(Drug,X).

has_part(B,Drug) :-
 obj(Drug,instance),
 benzene(Drug,B).

partof(X,X) :- % P1 axiom
 obj(X,_SomeType).
equalp(X,Y) :- % P2 axiom
 partof(X,Y), partof(Y,X).

a b

c

partof(X,Y) :- % P3 axiom (base)
 has_part(X,Y).
partof(X,Y) :- % P3 axiom (induction)
 has_part(X,Z), partof(Z,Y).

ppartsof(Parts,Y) :- % MR i)
setof(X,ppartof(X,Y),Parts).

ppartof(X,Y) :- % (proper part)
partof(X,Y), \+ partof(Y,X).

Fig. 3. Code fragments for the guided example (see text)

Then we declare basic proper parts via the predicate has_part(X,Y) that is
true when Y is known to be a proper part of X . For example if an instance D
(a molecule in this case) contains a benzene ring B, then B≺P D (Figure 3b).

Note that the use of a predicate called has_part (rather than partof) is
necessary to avoid calling a recursive predicate in the Prolog implementation.
The third step is independent of the domain. To calculate the kernel, we first
make use of mereotopology to construct the MRs associated with each instance
(for example, the code for computing proper parts is shown in Figure 3c). The
resulting sets of ground facts are then passed to a modified version of SVMlight

[60] for fast kernel calculation.
We can construct here an example where connected parts may produce in-

teresting features. Let us denote by x the molecule, by y the benzene ring,
by v the nitro group consisting of atoms d26_11, d26_13, and d26_14, and
by w the nitro group consisting of atoms d26_12, d26_15, and d26_16. Then
(y, v, d26_4, d26_11) ∈ RL(x) and (y, w, d26_2, d26_12) ∈ RL(x).

To show how learning takes place in this domain, we run a series of 10-fold
cross-validation experiments on the regression friendly data set of 188 com-
pounds. First, we applied a mature ILP technique constructing an ensemble of

L
O

O
 a

c
c
u
ra

c
y

.92

.90

.88

.86

.84

Regularization parameter C
400300200100 5000

Mereological
kernel

Mereotopological
kernel

Fig. 4. LOO accuracy on the regression friendly mutagenesis data set

Learning with Kernels and Logical Representations 71

25 Aleph theories [61]. Aleph parameters search, evalfn, clauselength and nodes
were set to be bf, coverage, 4 and 20000 respectively. The two tunable parameters
minacc and voting threshold were selected by applying 3-fold cross validation in
the training set of the first fold. Voting threshold ranges from 1 to the size of
the ensemble and the set of values for minacc are given by {0.75, 0.9}. We ob-
tained accuracy .88 ± .07 using atom-bond data and .89 ± .05 by adding the
background ring theory. Next we applied declarative kernels with support vec-
tor machines (SVM), obtaining accuracy .90 ± .07. CPU time was of the order
of minutes for the declarative kernel and days for the Aleph ensemble. Finally,
we compared the expressive power of ground mereological relations with that
of the full mereotopological theory. Figure 4 reports LOO accuracy for different
values of the regularization parameter C, for both mereological and mereotopo-
logical kernels, showing the latter achieves both better optimal accuracy and
more stable performances.

5 Kernels on Prolog Proof Trees

The main idea behind this family of kernels is the exploitation of program traces
to define the kernel function. Traces have been extensively used in ILP and pro-
gram synthesis (e.g. [62,63,64,65,66]). Kernels on Prolog proof trees are based
on a new framework for learning from example-traces. The main assumption is
that we are given a target program (called the visitor), that reflects background
knowledge and that takes single examples as its input. The task consists of learn-
ing from the training set of traces obtained by executing the visitor program on
each example. Hence, the statistical learning algorithm will employ a kernel on
program traces rather than using directly a kernel on examples. The visitor acts
therefore as a knowledge-based mediator between the data and the statistical
learning algorithm. The bottom line is that similar instances should produce
similar traces when probed with programs that express background knowledge
and examine characteristics they have in common. These characteristics can be
more general than parts. Hence, trace kernels can be introduced with the aim
of achieving a greater generality and flexibility with respect to various decom-
position kernels (including declarative kernels). These ideas will be developed in
detail for logic programs, although nothing prevents, in principle, to use them in
the context of different programming paradigms and in conjunction with alter-
native models of computation such as finite state automata or Turing machines.

Formally, a visitor program for a background theory B and domain X is a set
V of definite clauses that contains at least one special clause (called a visitor) of
the form V ← B1, . . . , BN and such that

– V is a predicate of arity 1
– for each j = 1, . . . , N , Bj is declared in B ∪ V ;

Intuitively, if visit/1 is a visitor in V , by answering the query visit(ex)? we
explore the features of the instance whose constant identifier ex is passed to the
visitor. Having multiple visitors in the program V allows us to explore different
aspects of the examples and include multiple sources of information.

72 P. Frasconi and A. Passerini

The visitor clauses should be designed to “inspect” examples using other pred-
icates declared in B, keeping in mind that the similarity between two examples
is the similarity between the execution traces of visitors. Thus, we are not only
simply interested in determining whether certain clauses succeed or fail on a
particular example, but rather to ensure that visitors will construct useful fea-
tures during their execution. This is a major difference with respect to other
approaches in which features are explicitly constructed by computing the truth
value for predicates [67].

The learning setting can be briefly sketched as follows. The learner is given
a data set D = {(x1, y1), . . . , (xm, ym)}, background knowledge B, and a visitor
program V . For each instance xi, a trace Txi (see Eq. 28) is obtained by running
the visitor program. A kernel machine (e.g., an SVM) is then trained to form
the function f : X �→ Y defined as

f(x) =
m∑

i=1

ciK(Txi, Tx).

In the following, we give some details about the definition of traces and kernels
between traces.

5.1 Traces and Proof Trees

In order to record a trace, we should store all steps in the proofs of a given visitor
goal called on a given example. We may think that SLD-trees are a rather obvious
representation of proofs when using Prolog. A path in an SLD-tree is indeed an
execution sequence of the Prolog interpreter. Unfortunately, SLD-trees are too
complex for our purposes, containing too many details and prone to generate
irrelevant features such as those associated with failed paths. In order to obtain
simple and still useful traces we prefer proof trees (see e.g. [68]). Given a program
P and a goal G, the proof tree for G is empty if P
|= G or, otherwise, it is a tree
t recursively defined as follows:

– if there is a fact f in P and a substitution θ such that Gθ = fθ, then Gθ is
a leaf of t.

– otherwise there must be a clause H ← B1, ..., Bn ∈ P and a substitution θ′

such that Hθ′ = Gθ′ and P |= Bjθ
′ ∀j, Gθ′ is the root of t and there is a

subtree of t for each Bjθ
′ that is a proof tree for Bjθ

′.

A second aspect is that we would like to deal with ground traces in order to
simplify the definition of the kernel. On the other hand, proof trees may contain
free variables. There are at least three ways of ensuring that proof trees are
ground: first, we can use skolemization (naming existentially quantified variables
with a specific constant symbol). A second option is to require that all clauses
be range-restricted. Finally, we can make specific assumptions about the mode
of head variables not occurring in the body, ensuring that these variables will be
instantiated when proving the goal.

Learning with Kernels and Logical Representations 73

Goals can be satisfied in multiple ways, thus each query generates a (possibly
empty) forest of proof trees. Since multiple visitors may be available, the trace
of an instance is actually a tuple of proof forests. Formally, let N be the number
of visitors in V and for each l = 1, . . . , N let Tlj,x denote the proof tree that
represents the j-th proof of the goal Vl(x), i.e., a proof that B ∪ V |= Vl(x). Let

Tl,x = {Tl1,x, . . . , Tlsl,x,x} (27)

where sl,x ≥ 0 is the number of alternative proofs of goal Vl(x). The trace of an
instance x is then defined as the tuple

Tx = [T1,x, . . . , TN,x]. (28)

A proof tree can be pruned to remove unnecessary details and reduce the
complexity of the feature space. Let us explain this concept with an example
based on mutagenesis (see Figure 1). In this domain, it may be useful to define
visitors that explore groups such as benzene rings:

atoms(X,[]). visit_benzene(X):-

atoms(X,[H|T]):- benzene(X,Atoms),

atm(X,H,_,_,_), atoms(X,Atoms).

atoms(X,T).

If we believe that the presence of the ring and the nature of the involved atoms
represent a sufficient set of features, we may want to ignore details about the
proof of the predicate benzene by pruning the corresponding proof subtree. This
can be accomplished by including the following fact in the visitor program:

leaf(benzene(_,_)).

5.2 Kernels on Traces

A kernel over program traces can be defined in a top-down fashion. First, let us
decompose traces into parts associated with different visitors (i.e., the elements
of the tuple in Eq. (28)). The direct sum decomposition kernel of Eq. (4) applied
to these parts yields:

K(Tx, Tz) =
N∑

l=1

Kl(Tl,x, Tl,z). (29)

We always compare proofs of the same visitor since there is a unique decomposi-
tion of Tx and Tz. By definition of trace (see Eq. (28)), Tl,x and Tl,z, l = 1, . . . , N ,
are proof forests. Hence, the set kernel of Eq. (6) yields:

Kl(Tl,x, Tl,z) =
sl,x∑

p=1

sl,z∑

q=1

Ktree(Tlp,x, Tlq,z). (30)

We now need to introduce a kernel Ktree over individual proof trees. In prin-
ciple, existing tree kernels (e.g. [7,8]) could be used for this purpose. However,

74 P. Frasconi and A. Passerini

we suggest here representing proof trees as typed Prolog ground terms. This
option allows us to provide a fine-grained definition of kernel by exploiting type
information on constants and functors (so that each object type can be com-
pared by its own sub-kernel). Moreover, the kernel on ground terms introduced
in Section 3 is able to compares sub-proofs only if they are reached as a result
of similar inference steps. This distinction would be difficult to implement with
traditional tree kernels. A ground term can be readily constructed from a proof
tree as follows:
– Base step: if a node contains a fact, this is already a ground term.
– Induction: if a node contains a clause, then let n be the number of arguments

in the head and m the number of atoms in the body (corresponding to the
m children of the node). A ground compound term t having n+1 arguments
is then formed as follows:
• the functor name of t is the functor name of the head of the clause;
• the first n arguments of t are the arguments of the clause head;
• the last argument of t is a compound term whose functor name is a Prolog

constant obtained from the clause number2, and whose m arguments are
the ground term representations of the m children of the node.

At the highest level of kernel between visitor programs (Eq. (29)), it is advisable
to employ a feature space normalization using Eq. (7). In some cases it may also
be useful to normalize lower-level kernels, in order to rebalance contributions
of individual parts. In particular, the mean normalization of Eq. (8) can be
applied to the kernel over individual visitors (Eq. (30)) and it is also possible to
normalize kernels between individual proof trees, in order to reduce the influence
of the proof size. Of course it is easy to gain additional expressiveness by defining
specific kernels on proof trees that originate from different visitors.

In order to employ kernels on typed terms (see Section 3), we need a typed
syntax for representing proof trees as ground terms. Constants can be of two
main types: num (numerical) and cat (categorical). Types for compounds terms
include fact (leaves) clause (internal nodes), and body (containing the body
of a clause).

A number of special cases of kernels can be implemented in this framework.
The simplest kernel is based on proof equivalence (two proofs being equivalent if
the same sequence of clauses is proven in the two cases, and the head arguments
in corresponding clauses satisfy a given equivalence relation): Kequiv(s, t) = 1
iff s ≡ t.

The functor equality kernel can be used when we want to ignore the arguments
in the head of a clause. Given two ground terms s = f(s1, . . . , sn) and t =
g(t1, . . . , tm), it is defined as:

Kf(s, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if type(s)
= type(t)
δ(f/n, g/m) if s, t : fact
δ(f/n, g/m) � K(sn, tm) if s, t : clause
K(s, t) if s, t : body

(31)

2 Since numbers cannot be used as functor names, this constant can be simply obtained
by prefixing the clause number by ‘cbody’.

Learning with Kernels and Logical Representations 75

where K is a kernel on ground terms and the operator � can be either sum
or product. Note that if s and t represent clauses (i.e., internal nodes of the
proof tree), the comparison skips clause head arguments, represented by the
first n − 1 (resp. m − 1) arguments of the terms, and compares the bodies (the
last argument) thus proceeding on the children of the nodes. This kernel allows
to define a non trivial equivalence between proofs (or parts of them) checking
which clauses are proved in sequence and ignoring the specific values of their
head arguments.

5.3 A Guided Example: Bongard Problems

One nice example showing the potential of learning from program traces is a
very simple Bongard problem [69] in which the goal is to classify two-dimensional
scenes consisting of sets of nested polygons (triangles, rectangles, and circles).
In particular, we focus on the target concept defined by the pattern triangle-
Xn-triangle for a given n, meaning that a positive example is a scene containing
two triangles nested into one another with exactly n objects (possibly trian-
gles) in between. Figure 5 shows a pair of examples of such scenes with their
representation as Prolog facts and their classification according to the pattern
for n = 1.

A possible example of background knowledge introduces the concepts of nest-
ing in containment and polygon as a generic object, and can be represented by
the following intensional predicates:

inside(X,A,B):- in(X,A,B). % clause nr 1
inside(X,A,B):- % clause nr 2

in(X,A,C),
inside(X,C,B).

polygon(X,A) :- triangle(X,A). % clause nr 3
polygon(X,A) :- rectangle(X,A). % clause nr 4
polygon(X,A) :- circle(X,A). % clause nr 5

A visitor exploiting such background knowledge, and having hints on the target
concept, could be looking for two polygons contained one into the other. This
can be represented as:

visit(X):- % clause nr 6
inside(X,A,B),polygon(X,A),polygon(X,B).

Figure 6 shows the proofs trees obtained running such a visitor on the first
Bongard problem in Figure 5. A very simple kernel can be employed to solve
such a task, namely an equivalence kernel with functor equality for nodewise
comparison. For any value of n, such a kernel maps the examples into a feature
space where there is a single feature discriminating between positive and negative
examples, while the simple use of ground facts without intensional background
knowledge would not provide sufficient information for the task.

The data set was generated by creating m scenes each containing a series of �
randomly chosen objects nested one into the other, and repeating the procedure

76 P. Frasconi and A. Passerini

positive(bong1).
triangle(bong1,o1).
circle(bong1,o2).
triangle(bong1,o3).
in(bong1,o1,o2).
in(bong1,o2,o3).

negative(bong4).
triangle(bong4,o1).
rectangle(bong4,o2).
circle(bong4,o3).
triangle(bong4,o4).
in(bong4,o1,o2).
in(bong4,o2,o3).
in(bong4,o3,o4).

Fig. 5. Graphical and Prolog facts representation of two Bongard scenes. The left
and right examples are positive and negative, respectively, according to the pattern
triangle-X-triangle.

visit(1)

inside(1,o1,o2) polygon(1,o1) polygon(1,o2) inside(1,o2,o3)

visit(1)

polygon(1,o2) polygon(1,o3)

in(1,o1,o2) triangle(1,o1) circle(1,o2) in(1,o2,o3) circle(1,o2) triangle(1,o3)

visit(1)

inside(1,o1,o3) polygon(1,o1) polygon(1,o3)

in(1,o1,o2) inside(1,o2,o3)

in(1,o2,o3)

triangle(1,o1) triangle(1,o3)

Fig. 6. Proof trees obtained by running the visitor on the first Bongard problem in
Figure 5

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

Nesting Level

(a)

SVM LOO
Progol train

Tilde train
 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

Nesting Level

(b)

SVM LOO
Progol train

Tilde train

Fig. 7. Comparison between SVM leave-one-out error, Progol and Tilde empirical error
in learning the triangle-Xn-triangle for different values of n, for data sets corresponding
to m = 10 (a) and m = 50 (b)

for � varying from 2 to 20. Moreover, we generated two different data sets by
choosing m = 10 and m = 50 respectively. Finally, for each data set we obtained
15 experimental settings denoted by n ∈ [0, 14]. In each setting, positive exam-
ples were scenes containing the pattern triangle-Xn-triangle. We run an SVM

Learning with Kernels and Logical Representations 77

with the above mentioned proof tree kernel and a fixed value C = 10 for the reg-
ularization parameter, on the basis that the data set is noise free. We evaluated
its performance with a leave-one-out (LOO) procedure, and compared it to the
empirical error of Tilde and Progol trained on the same data and background
knowledge (including the visitor). Here we focus on showing that ILP algorithms
have troubles finding a consistent hypothesis for this problem, hence we did not
measure their generalization.

Figure 7(a) plots results for m = 10. Both Tilde and Progol stopped learning
the concept for n > 4. Progol found the trivial empty hypothesis for all n > 4
apart from n = 6, and Tilde for all n > 9. While never learning the concept
with 100% generalization accuracy, the SVM performance was much more stable
when increasing the nesting level corresponding to positive examples. Figure 7(b)
plots results for m = 50. Progol was extremely expensive to train with respect
to the other methods. It successfully learned the concept for n ≤ 2, but we
stopped training for n = 3 after more than one week training time on a 3.20
GHz PENTIUM IV. Tilde stopped learning the concept for n > 8, and found
the trivial empty hypothesis for n > 12. Conversely, the SVM was almost always
able to learn the concept with 100% generalization accuracy, regardless of its
complexity level.

Note that in order for the ILP algorithms to learn the target concept re-
gardless of the nesting level, it would be necessary to provide a more informed
inside predicate, which explicitly contains such nesting level as one of its ar-
guments. The ability of the kernel to extract information from the predicate
proof, on the other hand, allows our method to be employed when only par-
tial background knowledge is available, which is typically the case in real world
applications.

6 kFOIL

The above approaches for combining ILP and kernel can be expected to be highly
effective from several points of view, in particular stability (i.e. robustness to
noise), uniformity (i.e. classification and regression tasks can be handled in a
uniform way) and expressivity (a rich hypothesis space is explored in domains
consisting of independent relational objects). However, the function determined
by these methods as a solution to the supervised learning problem is opaque,
i.e. does not provide human-readable insights. In addition, although the feature
space is rich, its definition must be specified before learning takes place. The
idea behind kFOIL is radically different from this point of view. Unlike previ-
ous approaches, the feature space in kFOIL is dynamically constructed during
learning (using a FOIL-like [38] covering algorithm) and can be effectively seen
as an additional output of the learning problem (besides the prediction func-
tion). In this sense, kFOIL is similar to a recently introduced probabilistic ILP
algorithm, nFOIL, that combines Naive Bayes and FOIL [70]. While nFOIL takes

78 P. Frasconi and A. Passerini

the generative direction of modeling, kFOIL is based on regularized empirical
risk minimization (e.g. support vector machine learning). kFOIL preserves all
the advantages of previously introduced kernels, in particular uniformity of rep-
resentation across different supervised learning tasks, stability and robustness
with respect to noise, expressivity of the representation language, and ability to
reuse declarative background knowledge. The strength of kFOIL is its ability to
provide additional explanations about the domain that can be read in the set of
constructed clauses. However, since FOIL is used as an internal subroutine, the
efficiency of other kernel based learning approaches cannot be preserved.

6.1 The Feature Space of kFOIL

In the kFOIL setting, the output of the learning process consists of both a
prediction function f (as in Eq. (2)) and a kernel function K between examples.
Each example x ∈ X is a first-order individual and p(x) denotes the associated
extensional clauses, as explained in Section 2.5. The function K is represented
by means of a collection of clauses

H = {c1, . . . , cn}

that play the same role of a hypothesis in the learning from entailment ILP
setting. In particular, the feature space associated with K consists of Boolean
vectors, indexed by clauses in the current hypothesis H. Formally, the feature
space representation can be written as φH(x) = φH,1(x), . . . , φH,n(x) where

φH,i(x) =
{

1 if BI ∪ {ci} |= p(x)
0 otherwise

The feature space representation is defined by the clauses in the current hy-
pothesis and each feature simply check whether p(x) is logically entailed by
background knowledge and one given clause.

In this way, the kernel between two examples x and x′ is simply the num-
ber of clauses firing on both examples, in the context of the given background
knowledge:

KH(x, x′) = #entH(p(x) ∧ p(x′)) (32)

where #entH(a) = |{c ∈ H|BI ∪ {c} |= a}|. The prediction function f has the
standard form of Eq. (2), using KH as kernel.

6.2 The kFOIL Learning Algorithm

The hypothesis H is induced by a modified version of the well-known FOIL
algorithm [38], which essentially implements a separate-and-conquer rule learning
algorithm in a relational setting.

Learning with Kernels and Logical Representations 79

kFOIL(D,B, ε)
1 H := ∅
2 repeat
3 c := “pos(x) ←”
4 repeat
5 c := argmaxc′∈ρ(c) Score(D,H ∪ {c′},B)
6 until stopping criterion
7 H := H ∪ {c}
8 until score improvement is smaller than ε
9 return H

The kFOIL algorithm, sketched in the above pseudo-code, is similar to the
general FOIL algorithm. It repeatedly searches for clauses that score well with
respect to the data set D and the current hypothesis H and adds them to the
current hypothesis. The most general clause which succeeds on all examples is
“pos(x) ←” where pos is the predicate being learned. The “best” clause c is
found in the inner loop according to a general-to-specific hill-climbing search
strategy, using a refinement operator ρ(c) that generates the set of all possible
refinements of clause c. In the case of kFOIL, each refinement is obtained by
simply adding a literal to the right-hand side of c. Different choices for the scoring
function Score have been used with FOIL. The scoring function of kFOIL is
computed by wrapping around a kernel machine (such as an SVM). Specifically,
Score(D,H,B) is computed by training a kernel machine on D and measuring
the empirical risk

Score(D,H,B) =
∑

(xi,yi)∈D
V (yi, f(xi))

being V a suitable loss function (that depends on the specific kernel machine,
see Eq. (1) and following). kFOIL is stopped when the score improvement be-
tween two consecutive iterations falls below a given threshold ε. This a smoothed
version of FOIL’s criterion which is stopped when no clause can be found that
cover additional positive examples. Finally, note that the data set size is reduced
at each iteration of FOIL by removing examples that are already covered. How-
ever, this step is omitted from kFOIL as the kernel machine needs to be retrained
(with a different kernel) on the entire data set.

In the case of kFOIL, a significant speedup can be obtained by working ex-
plicitly in a sparse feature space, rather than evaluating the kernel function ac-
cording to its definition. This is because, especially at the early iterations, many
examples are mapped to the same point in feature space and can be merged in
a single point (multiplying the corresponding contribution to the loss function
by the number of collisions).

6.3 A Guided Example: Biodegradability

In order to apply kFOIL to a certain learning task, three steps have to be accom-
plished: (1) collect data and background knowledge; (2) write the inductive bias

80 P. Frasconi and A. Passerini

b c

anitro(mol30, [atom1,atom2,atom3], [atom4]).
methyl(mol32, [atom1,atom2,atom3.atom4], [atom5]).bond(mol1,atom1,atom2,1).
atm(mol1,atom1,h,0,0).
logP(mol1, 0.35).
mweight(mol1,0.258).

gt(X,Y):− X > Y.
lt(X,Y):− X < Y.

num(N):−
 member(N,[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]).
sbond(Mol,Atom1,Atom2,Bondtype):−
 bond(Mol,Atom1,Atom2,Bondtype);bond(Mol,Atom2,Atom1,Bondtype).

rmode(lt(+,N)):−numrmode(lt(+,N)):−num(N).
type(nitro(compound,struct1,struct2)).
type(lt(number,number)).
rmode(atom(+,+−,c)).
rmode(nitro(+,−,−)).

Fig. 8. Code fragments for the kFOIL guided example on biodegradability

that will determine all possible refinements of clauses; (3) run kFOIL. We will
show an example of such process on a real world task concerning biodegradabil-
ity of molecules. Degradation is the process by which chemicals are transformed
into components which are not considered pollutants. A number of different path-
ways are responsible for such process, depending on environmental conditions.
Blockeel et al. [71] conducted a study focused on aqueous biodegradation under
aerobic conditions. Low and high estimates of half life time degradation rate were
collected for 328 commercial chemical compounds. In this application domain,
one is interested in the half-life time of the biodegradation process. The regres-
sion task consists in predicting the natural logarithm of the arithmetic mean
of the low and high estimate for a given molecule. Available data include the
atom/bond representation of molecules as well as global physico-chemical prop-
erties such as weight and logP. Rings and functional groups within a molecule
are also represented as facts3, where each groups is described by its constituent
atoms as well as the atoms connecting it to the rest of the molecule. Figure 8(a)
shows extracts of such data4. Additional background knowledge (see Figure 8(b)
for an extract) includes comparison operators between numbers (lt, gt) and
the set of allowed numerical values (num) as well as a predicate (sbond) defining
symmetric bonds. The second step consists of writing the configuration file for
the FOIL part of the algorithm, as a combination of type and mode declarations.
Figure 8(c) contains an extract of such configuration. The final step consists of
running kFOIL in regression mode providing as inputs data, background knowl-
edge and configuration files. Note that the first two steps are independent of the
type of task to be learned (e.g. binary classification or regression), which will
only influence the type of kernel machine to be employed in computing the score
of a given clause and in producing the output for a test example (e.g. SVM or
Support Vector Regression).

3 Intensional predicates representing functional groups were saturated on the examples
in this dataset, thus generating extensional predicates.

4 Note that we are not considering facts representing counts of groups and small
substructures, which were also included in [71], as they slightly degrade performances
for all methods in almost all cases.

Learning with Kernels and Logical Representations 81

Table 1. Result on the Biodegradability dataset. The results for Tilde and S-CART
have been taken from [71]. 5 runs of 10 fold cross-validation have been performed,
on the same splits into training and test set as used in [71]. We report both Pearson
correlation and RMSE as evaluation measures. • indicates that the result for kFOIL is
significantly better than for other method (unpaired two-sided t-test, p = 0.05).

Evaluation measure kFOIL Tilde S-CART

Correlation 0.609 ± 0.047 0.616 ± 0.021 0.605 ± 0.023
Root Mean Squared Error 1.196 ± 0.023 1.265 ± 0.033• 1.290 ± 0.038•

Table 1 shows the regression performance of kFOIL on the Biodegradability
dataset, as compared to the results reported in [71] for Tilde and S-CART.
As our aim here is showing that kFOIL is competitive to other state-of-the-art
techniques, and not to boost performance, we did not try to specifically optimize
any parameter. We thus used default settings for the FOIL parameters: maximum
number of clauses in a hypothesis was set to 25, maximum number of literals
in a clause to 10 and the threshold for the stopping criterion to 0.1%. However,
we performed a beam search with beam size 5 instead of simple greedy search.
The kernel machine employed was support vector regression, with regularization
constant C = 0.01 and ε tube parameter set to 0.001. A polynomial kernel of
degree 2 was used on top of the kernel induced by the learned clauses. The
results obtained show that kFOIL is competitive with the first-order decision
tree systems S-CART and Tilde at maximizing correlation, and slightly superior
at minimizing RMSE.

7 Applications

7.1 Declarative Kernels for Information Extraction

In these experiments we apply declarative kernels to the extraction of relational
information from free text. Specifically, we focus on multi-slot extraction of bi-
nary relations between candidate named entities. Our experiments were carried
out on the yeast protein localization data set described in [72] and subsequently
used as a testbed for state-of-the-art methods based on ILP [73]. The task con-
sists of learning the relation protein_location between two named entities rep-
resenting candidate protein names and cell locations. Instances are ordered pairs
of noun phrases (NP) extracted from MEDLINE abstracts and with stemmed
words. An instance is positive iff the first NP is a protein and the second NP is
a location, for example:

protein_location("the mud2 gene product","earli spliceosom assembl",pos).

protein_location("sco1", "the inner mitochondri membran",pos).

protein_location("the ept1 gene product","membran topographi",pos).

protein_location("a reductas activ", "the cell", neg).

protein_location("the ace2 gene", "multipl copi", neg).

82 P. Frasconi and A. Passerini

Gleaner

Declarative

kernel

.2 .4 .6 .8 1

.2

.4

.6

.8

1

Recall

P
r
e
c
is
io
n

0

Fig. 9. Comparing Gleaner and the declarative kernel on the information extraction
task (fold 5)

The data set is a collection of 7, 245 sentences from 871 abstracts, yielding
1, 773 positive and 279, 154 negative instances. The data is enriched by a large
body of domain knowledge, including relations about the structure of sentences
and abstracts, lexical knowledge, and biological knowledge derived from sev-
eral specialized vocabularies and ontologies such as MeSH and Gene Ontology.
For simplicity, only a fraction of the available knowledge has been used in our
experiments. The main data types in this domain are: instance (pairs of can-
didate NP’s); cp_NP (candidate protein NP); cl_NP (candidate location NP);
word_p (word in a protein NP); word_l (word in a location NP). Basic part-
hood rules in the ontology declare that phrases (cp_NP and cl_NP) are parts
of instances and words are parts of phrases. For this task we used a minimal
mereological kernel with no connections and no axiomatic theory to avoid explo-
sion of features due to words appearing both as part of NP’s and instances. We
compared declarative kernels to state-of-the-art ILP-based system for this do-
main: Aleph and Gleaner [73]. We used the same setting as in [73], performing a
five-fold cross validation, with approximately 250 positive and 120, 000 negative
examples in each fold (split at the level of abstracts), and measuring the quality
of the predictor by means of the area under the recall-precision curve (AURPC).
As reported in [73], Aleph attains its best performance (area .45) by learning on
the order of 108 rules, while Gleaner attains similar performance (.43 ± .6) but
using several orders of magnitude less rules [74]. We trained five SVMs using the
declarative kernel composed with a Gaussian kernel. Gaussian width and the reg-
ularization parameter were selected by reserving a validation set inside each fold.
The obtained AURPC was .47± .7. Figure 9 compares the recall precision curve
reported in [73], which is produced by Gleaner using 1, 000, 000 candidate clauses
on fold five, with that obtained by the declarative kernel. The result is very en-
couraging given that only a fraction of the available knowledge has been used.
Training took less than three hours on a single 3.00GHz Pentium while Aleph
and Gleaner run for several days on a large PC cluster on the same task [74].

Learning with Kernels and Logical Representations 83

7.2 Proof Tree Kernels for Protein Fold Classification

Binary Classification. In our first experiment, we tested our methodology
on the protein fold classification problem studied by Turcotte et al. [75]. The
task consists of classifying proteins into Scop folds, given their high-level log-
ical descriptions about secondary structure and amino acid sequence. Scop is
a manually curated database of proteins hierarchically organized according to
their structural properties. At the top level Scop groups proteins into four main
classes (all-α, all-β, α/β, and α + β). Each class is then divided into folds that
group together proteins with similar secondary structures and three-dimensional
arrangements. We used the data set made available as a supplement to the pa-
per by Turcotte et al. [75]5 that consists of the five most populated folds from
each of the four main Scop classes. This setting yields 20 binary classification
problems. The data sets for each of the 20 problems are relatively small (from
about 30 to about 160 examples per fold, totaling 1143 examples).

b

ec

a dvisit_global(X):-
 normlen(X,Len),
 normnb_alpha(X,NumAlpha),
 normnb_beta(X,NumBeta).

visit_adjacent(X):-
 adjacent(X,A,B,PosA,TypeA,TypeB),
 normcoil(A,B,LenCoil),
 unit_features(A),
 unit_features(B).

visit_unit(X):-
 sec_struc(X,A),
 unit_features(A)

unit_features(A):-
 normsst(A,_,_,_,_,_,_,_,_,_,_),
 has_pro(A).

leaf(adjacent(_,_,_,_,_,_)).
leaf(normcoil(_,_,_)).

unit_features(A):-
 normsst(A,_,_,_,_,_,_,_,_,_,_),
 not(has_pro(A)).

Fig. 10. Visitors for the protein fold classification problem

We relied on the background knowledge provided in [75], to design a set
of visitors managing increasingly complex information. Visitors are shown in
Figure 10. The “global”visitor visit_global/1 is meant to extract protein level
information, such as its length and the number of its α or β secondary structure
segments. A “local” visitor visit_unit/1 explores the details of each of these
segments. In particular, after determining the secondary structure element, it
explores the general features of the element using normsst/11 and checks for
the presence of proline (an amino acid that is known to have important ef-
fects on the secondary structure). Note that since traces are recorded as proof
trees, the first clause of the predicate unit_features/1 above produces infor-
mation only in the case a proline is present. Finally, the “connection” visitor
visit_adjacent/1 inspects pairs of adjacent segments within the protein.

Numerical values were normalized within each top level fold class. The kernel
configuration mainly consisted of type signatures aiming to ignore identifiers
5 Available at http://www.bmm.icnet.uk/ilp/data/ml_2000.tar.gz

84 P. Frasconi and A. Passerini

Table 2. Protein fold classification: 10-fold cross validation accuracy (%) for Tilde,
Progol and SVM for the different classification tasks, and micro averaged accuracies
with 95% confidence intervals. Results for Progol are taken from [75].

Tilde Progol SVM

All-α:
Globin-like 97.4 95.1 94.9
DNA-binding 3-helical bundle 81.1 83.0 88.9
4-helical cytokines 83.3 70.7 86.7
lambda repressor-like DNA-binding domains 70.0 73.4 83.3
EF Hand-like 71.4 77.6 85.7

All-β:
Immunoglobulin-like beta-sandwich 74.1 76.3 85.2
SH3-like barrel 91.7 91.4 93.8
OB-fold 65.0 78.4 83.3
Trypsin-like serine proteases 95.2 93.1 93.7
Lipocalins 83.3 88.3 92.9

α/β:
beta/alpha (TIM)-barrel 69.7 70.7 73.3
NAD(P)-binding Rossmann-fold domains 79.4 71.6 84.1
P-loop containing nucleotide triphosphate hydrolases 64.3 76.0 76.2
alpha/beta-Hydrolases 58.3 72.2 86.1
Periplasmic binding protein-like II 79.5 68.9 79.5

α+ β:
Interleukin 8-like chemokines 92.6 92.9 96.3
beta-Grasp 52.8 71.7 88.9
Ferredoxin-like 69.2 83.1 76.9
Zincin-like 51.3 64.3 79.5
SH2-like 82.1 76.8 66.7

Micro average: 75.2 78.3 83.6
±2.5 ±2.4 ±2.2

and treat some of the numerical features as categorical ones. A functor equality
kernel was employed for those nodes of the proofs which did not contain valuable
information in their arguments.

Following [75], we measured prediction accuracy by 10-fold cross-validation,
micro-averaging the results over the 20 experiments by summing contingency
tables. The proof-tree kernel was combined with a Gaussian kernel (see Eq. (9))
in order to model nonlinear interactions between the features extracted by the
visitor program. Model selection (i.e., choice of the Gaussian width γ and the
SVM regularization parameter C) was performed for each binary problem with
a LOO procedure before running the 10-fold cross validation. Table 2 shows
comparisons between the best setting for Progol (as reported by [75]), which
uses both propositional and relational background knowledge, results for Tilde
using the same setting, and SVM with our kernel over proof trees. The difference
between Tilde and Progol is not significant, while our SVM achieves significantly
higher overall accuracy with respect to both methods. The only task where our

Learning with Kernels and Logical Representations 85

predictor performed worse than both ILP methods was the SH2-like one (the
last one in Table 2). It is interesting to note that a simple global visitor would
achieve 84.6% accuracy on this task, while in most other tasks full relational
features produce consistently better results. This can suggest that even if SVMs
are capable of effectively dealing with huge feature spaces, great amounts of
uninformative or noisy features can also degrade performance, especially if only
few examples are available.

Multiclass Classification. We additionally evaluated our proof tree kernels
on the multiclass setting of the protein fold prediction task as described in [76].
The problem is based on the same 20 SCOP folds previously used for binary
classification, but the data set contains only the chains considered as positive
examples for one of the SCOP folds in the binary classification problems. Four
independent multiclass classification problems are defined, one for each of the
main fold classes in SCOP. A single multiclass problem consists of discriminating
between chains belonging to the same fold class, by assigning each of them to one
of the five main folds in the fold class. The statistics of the dataset are reported
in Table 3, and show the unbalancing of the distribution of examples between
folds. We employed a one-vs-all strategy to address each multiclass classification
task: we trained a number of binary classifiers equal to the number of classes,
each trained to discriminate between examples of one class and examples of all
other classes; during testing, we presented each example to all binary classifiers,
and assigned it to the class for which the corresponding binary classifier was the
most confident, as measured by the margin of the prediction for the example.
We employed the same 5-fold cross validation procedure as reported in [76] and

Table 3. Number of examples for each multiclass problem (fold class) both divided by
single class (fold) and overall

fold class fold1 fold2 fold3 fold4 fold5 overall

all-α 13 30 10 10 14 77
all-β 90 32 40 42 28 116
α/β 55 21 14 12 13 115
α+ β 9 12 26 13 13 73

Table 4. Microaveraged accuracies with standard errors for the four multiclass prob-
lems and overall accuracy microaveraged over problems: comparison between SVM,
SLP and ILP with majority class

fold class SVM SLP ILP + majority class

all-α 80.5±4.5 (62/77) 76.6±4.8 (59/77) 71.4±5.2 (55/77)
all-β 87.1±3.1(101/116) 81.0±3.6 (94/116) 69.8±4.3 (81/116)
α/β 61.7±4.5 (71/115) 51.3±4.7 (59/115) 44.4±4.6 (51/115)
α+ β 60.3±5.7 (44/73) 82.2±4.5 (60/73) 80.8±4.6 (59/73)

overall 73.0±2.3 (278/381) 71.4±2.3 (272/381) 64.6±2.5 (246/381)

86 P. Frasconi and A. Passerini

used exactly the same CV folds. Model selection (Gaussian width and regular-
ization parameter) was conducted by a preliminary LOO procedure as in the
case of binary classification, but using the F1 measure (the harmonic mean of
precision and recall) as a guiding criterion. We kept the same visitors developed
for the binary setting. Table 4 reports accuracies with standard errors for the
four multiclass problems, microaveraged on the CV folds, and overall accuracy
microaveraged on CV folds and multiclass problems. Reported results include
our SVM with proof tree kernels together to the results obtained by a stochastic
logic program (SLP) and ILP with majority class prediction as reported in [76].

Results show that both the SLP and the kernel machine outperform the non-
probabilistic ILP approach. In three out of four SCOP folds the SVM obtained a
higher microaveraged accuracy than the SLP although the data sets have small
size and the standard deviation is rather high. Interestingly, the SLP seems
to perform better on smaller data set, which might indicate a faster rate of
convergence of the SLP to its asymptotic error.

8 Conclusions

In this chapter we have pursued the construction of a bridge between two very
different paradigms of machine learning: statistical learning with kernels, and
inductive logic programming. In particular, we have shown in several ways that
the use of stable (robust to noise) machine learning techniques are applicable
in the ILP setting without resorting to propositionalization. This is especially
interesting in cases where the feature space needed for representing the solution
has a dimension that is not known in advance. The artificial Bongard data set
shows this clearly. Of course one could have solved the Bongard problem even
with traditional ILP techniques by adding to the background theory a predi-
cate counting the number of polygons nested one inside another, but kernels on
program traces can effectively discover this concept without the additional hint.

The algorithmic stability achieved by combining ILP with regularization can
be seen as an interesting alternative to fully fledged probabilistic ILP where
structure and parameters of a stochastic program are learned from data. Em-
pirical evidence on real-world problems such as the protein fold classification
task demonstrates that proof tree kernels can achieve better accuracy than non
probabilistic ILP and similar accuracy as learning stochastic logic programs. Of
course the solution found by the kernel machine in this case lacks interpretabil-
ity. However, computational efficiency is another factor that in some cases needs
to be taken into account. For example, problems like the information extraction
task presented in Section 7.1 can be solved in a fraction of the time required by
a state-of-the-art ILP system.

kFOIL is perhaps the less developed and tested method but at the same
time very promising. Its approach to propositionalization is effectively dynamic
and can be interpreted in close connection to methods that attempt to learn
the kernel matrix from data [77,78,79]. Moreover, the solution found by kFOIL
combines the advantages of kernel machines and ILP systems. It consists of

Learning with Kernels and Logical Representations 87

both a robust decision function and a kernel function defined by interpretable
first-order clauses. This is a direction of research that certainly deserves more
investigation since interpretability is one of the weak aspects of many statistical
learning methods.

Finally, some of the ideas seeded here may deserve more study from an engi-
neering perspective, as the availability of languages for feature description (like
declarative kernels) can help leveraging machine learning into routine software
development. One of the main obstacles towards this goal is maybe the difficulty
of integrating machine learning capabilities in a typical programming environ-
ment. The recent growth of interest in knowledge representation and ontologies
suggests that logic-based representations may be much more widespread in the
future, and that the attention to learning modules that can take advantage
of data and existing knowledge with minimal programmer intervention could
increase.

Acknowledgments

We would like to thank Luc De Raedt, Niels Landwehr, and Stephen Muggleton,
with whom we collaborated in the development of the methods presented in this
chapter (in particular, we collaborated with LDR on kernels on Prolog proof
trees, with SM on declarative kernels, with LDR and NL on kFOIL; NL also
carried out the experiments reported in Section 6.3). A special thanks goes to
Alessio Ceroni, Fabrizio Costa, Kristian Kersting, Sauro Menchetti, and Jan Ra-
mon, who helped us in numerous occasions with fruitful discussions. This work
was supported by the European Union, contract number FP6-508861, Applica-
tions of Probabilistic Inductive Logic Programming II.

References

1. Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)

2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

3. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)

4. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. In: Advances in Neural Information Processing Systems 11, pp. 487–493. MIT
Press, Cambridge (1999)

5. Leslie, C.S., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for svm
protein classification. In: Pacific Symposium on Biocomputing, pp. 566–575 (2002)

6. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. Jour-
nal of Machine Learning Research 5, 1035–1062 (2004)

7. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: Proceedings of the Fortieth
Annual Meeting on Association for Computational Linguistics, Philadelphia, PA,
USA, pp. 263–270 (2002)

88 P. Frasconi and A. Passerini

8. Viswanathan, S., Smola, A.J.: Fast kernels for string and tree matching. In: Becker,
S.T., S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems,
vol. 15, pp. 569–576. MIT Press, Cambridge (2003)

9. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations
Newsletter 5(1), 49–58 (2003)

10. Smola, A.J., Kondor, R.: Kernels and Regularization on Graphs. In: Schölkopf, B.,
Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158.
Springer, Heidelberg (2003)

11. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs.
In: Proceedings of ICML 2003 (2003)

12. Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginal-
ized graph kernels. In: Greiner, R., D. Schuurmans, A.P. (eds.) Proceedings of
the Twenty-first International Conference on Machine Learning, Banff, Alberta,
Canada, pp. 552–559 (2004)

13. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 158–167. ACM Press, New York (2004)

14. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Pro-
ceedings of the Twenty-second International Conference on Machine Learning, pp.
585–592. ACM Press, New York (2005)

15. Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational
data mining. In: Relational Data Mining, pp. 262–286. Springer, Heidelberg (2000)

16. Cumby, C.M., Roth, D.: Learning with feature description logics. In: Matwin, S.,
Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 32–47. Springer, Hei-
delberg (2003)

17. Cumby, C.M., Roth, D.: On kernel methods for relational learning. In: Proceedings
of ICML 2003 (2003)

18. Ramon, J., Bruynooghe, M.: A Framework for Defining Distances Between First-
Order Logic Objects. In: Proc. of the 8th International Conf. on Inductive Logic
Programming, pp. 271–280 (1998)

19. Kirsten, M., Wrobel, S., Horváth, T.: Distance based approaches to relational learn-
ing and clustering. In: Relational Data Mining, pp. 213–230. Springer, Heidelberg
(2001)

20. Ramon, J.: Clustering and instance based learning in first order logic. AI Commu-
nications 15(4), 217–218 (2002)

21. Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning 20, 1–25
(1995)

22. De Raedt, L.: Logical and Relational Learning: From ILP to MRDM. Springer,
Heidelberg (2006)

23. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York
(1995)

24. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal re-
gression. In: Artificial Neural Networks, 1999. ICANN 1999. Ninth International
Conference on (Conf. Publ. No. 470), vol. 1 (1999)

25. Tax, D., Duin, R.: Support vector domain description. Pattern Recognition Let-
ters 20, 1991–1999 (1999)

26. Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V.: Support vector clustering.
Journal of Machine Learning Research 2, 125–137 (2001)

27. Schölkopf, B., Smola, A., Müller, K.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation 10(5), 1299–1319 (1998)

Learning with Kernels and Logical Representations 89

28. Kramer, S.: Structural regression trees. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pp. 812–819 (1996)

29. Kramer, S.: Prediction of Ordinal Classes Using Regression Trees. Fundamenta
Informaticae 47(1), 1–13 (2001)

30. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin (New
Series) of the American Mathematical Society 39(1), 1–49 (2002)

31. Lin, Y.: Support Vector Machines and the Bayes Rule in Classification. Data Min-
ing and Knowledge Discovery 6(3), 259–275 (2002)

32. Bartlett, P., Jordan, M., McAuliffe, J.: Large margin classifiers: Convex loss, low
noise, and convergence rates. Advances in Neural Information Processing Sys-
tems 16 (2003)

33. Ng, A., Jordan, M.: On Discriminative vs. Generative classifiers: A comparison of
logistic regression and naive Bayes. Neural Information Processing Systems (2001)

34. Passerini, A., Frasconi, P.: Kernels on prolog ground terms. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, pp. 1626–1627 (2005)

35. Gärtner, T., Lloyd, J., Flach, P.: Kernels for structured data. In: Matwin, S., Sam-
mut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 66–83. Springer, Heidelberg
(2003)

36. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical
learning in the ILP setting. Journal of Machine Learning Research 7, 307–342
(2006)

37. Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: Learning simple
relational kernels. In: Gil, Y., Mooney, R. (eds.) Proc. Twenty-First National Con-
ference on Artificial Intelligence (AAAI 2006), AAAI Press, Menlo Park (2006)

38. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning 5,
239–266 (1990)

39. Saunders, G., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in
dual variables. In: Proc. 15th International Conf. on Machine Learning, pp. 515–521
(1998)

40. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of
the American Mathematical Society 50(5), 537–544 (2003)

41. Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. The Annals of Mathematical Statis-
tics 41, 495–502 (1970)

42. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Machine Learning 37(3), 277–296 (1999)

43. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, University of California, Santa Cruz (1999)

44. Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using
string kernels. Advances in Neural Information Processing Systems, 563–569 (2000)

45. Collins, M., Duffy, N.: Convolution kernels for natural language. In: NIPS 14, pp.
625–632 (2001)

46. Gärtner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Sam-
mut, C., Hoffmann, A. (eds.) Proceedings of the 19th International Conference on
Machine Learning, pp. 179–186. Morgan Kaufmann, San Francisco (2002)

47. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for mu-
tagenicity: A study in first-order and feature-based induction. Artificial Intelli-
gence 85(1-2), 277–299 (1996)

48. Lloyd, J.W.: Logic for learning: Learning comprehensible theories from structured
data. Springer, Heidelberg (2003)

90 P. Frasconi and A. Passerini

49. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann, San Francisco (2002)

50. Neville, J., Jensen, D.: Collective classification with relational dependency net-
works. In: Proceedings of the Second International Workshop on Multi-Relational
Data Mining, pp. 77–91 (2003)

51. Lakshman, T.K., Reddy, U.S.: Typed prolog: A semantic reconstruction of the
mycroft-O’keefe type system. In: Saraswat, Vijay, Ueda, K. (eds.) Proceedings of
the 1991 International Symposium on Logic Programming (ISLP 1991), pp. 202–
220. MIT Press, San Diego (1991)

52. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine
Learning 57(3), 205–232 (2004)

53. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10), 765–780 (2001)

54. Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with
lists and terms. Machine Learning 43(1/2), 53–80 (2001)

55. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical
learning in the ILP setting. Journal of Machine Learning Research 7, 307–342
(2006)

56. Bianucci, A., Micheli, A., Sperduti, A., Starita, A.: Application of cascade correla-
tion networks for structures to chemistry. Appl. Intell. 12, 117–146 (2000)

57. Leśniewski, S.: Podstawy ogólnej teorii mnogości. Moscow (1916)

58. Leonard, H.S., Goodman, N.: The calculus of individuals and its uses. Journal of
Symbolic Logic 5(2), 45–55 (1940)

59. Casati, R., Varzi, A.: Parts and places: The structures of spatial representation.
MIT Press, Cambridge, MA and London (1999)

60. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges,
C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning, pp.
169–185. MIT Press, Cambridge (1998)

61. Srinivasan, A.: The Aleph Manual. Oxford University Computing Laboratory
(2001)

62. Biermann, A., Krishnaswamy, R.: Constructing programs from example computa-
tions. IEEE Transactions on Software Engineering 2(3), 141–153 (1976)

63. Mitchell, T.M., Utgoff, P.E., Banerji, R.: Learning by experimentation: Acquiring
and refining problem-solving heuristics. In: Machine learning: An artificial intelli-
gence approach, vol. 1, pp. 163–190. Morgan Kaufmann, San Francisco (1983)

64. Shapiro, E.Y.: Algorithmic program debugging. MIT Press, Cambridge (1983)

65. Zelle, J.M., Mooney, R.J.: Combining FOIL and EBG to speed-up logic programs.
In: Proceedings of the Thirteenth International Joint Conference on Artificial In-
telligence, Chambéry, France, pp. 1106–1111 (1993)

66. De Raedt, L., Kersting, K., Torge, S.: Towards learning stochastic logic programs
from proof-banks. In: Proceedings of the Twentieth National Conference on Arti-
ficial Intelligence (AAAI 2005), pp. 752–757 (2005)

67. Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.: Support vector inductive logic
programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS
(LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

68. Russell, S., Norvig, P.: Artifical Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

69. Bongard, M.: Pattern Recognition. Spartan Books (1970)

Learning with Kernels and Logical Representations 91

70. Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Näıve Bayes and
FOIL. In: Proc. of the 20th National Conf. on Artificial Intelligence, pp. 795–800
(2005)

71. Blockeel, H., Dzeroski, S., Kompare, B., Kramer, S., Pfahringer, B., Laer, W.:
Experiments in Predicting Biodegradability. Applied Artificial Intelligence 18(2),
157–181 (2004)

72. Ray, S., Craven, M.: Representing sentence structure in hidden Markov models for
information extraction. In: Proceedings of IJCAI 2001, pp. 1273–1279 (2001)

73. Goadrich, M., Oliphant, L., Shavlik, J.W.: Learning ensembles of first-order clauses
for recall-precision curves: A case study in biomedical information extraction. In:
Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194,
pp. 98–115. Springer, Heidelberg (2004)

74. Goadrich, M.: Personal communication (2005)
75. Turcotte, M., Muggleton, S., Sternberg, M.: The effect of relational background

knowledge on learning of protein three-dimensional fold signatures. Machine Learn-
ing 43(1-2), 81–96 (2001)

76. Chen, J., Kelley, L., Muggleton, S., Sternberg, M.: Multi-class prediction using
stochastic logic programs. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A.
(eds.) ILP 2006. LNCS (LNAI), vol. 4455, Springer, Heidelberg (2007)

77. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learn-
ing the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72
(2004)

78. Ong, C.S., Smola, A.J., Williamson, R.C.: Hyperkernels. In: Adv. in Neural Inf.
Proc. Systems (2002)

79. Micchelli, C.A., Pontil, M.: Learning the Kernel Function via Regularization. Jour-
nal of Machine Learning Research 6, 1099–1125 (2005)

Markov Logic

Pedro Domingos1, Stanley Kok1, Daniel Lowd1, Hoifung Poon1,
Matthew Richardson2, and Parag Singla1

1 Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195-2350, USA
{pedrod,koks,lowd,hoifung,parag}@cs.washington.edu

2 Microsoft Research
Redmond, WA 98052
mattri@microsoft.com

Abstract. Most real-world machine learning problems have both sta-
tistical and relational aspects. Thus learners need representations that
combine probability and relational logic. Markov logic accomplishes this
by attaching weights to first-order formulas and viewing them as tem-
plates for features of Markov networks. Inference algorithms for Markov
logic draw on ideas from satisfiability, Markov chain Monte Carlo and
knowledge-based model construction. Learning algorithms are based on
the conjugate gradient algorithm, pseudo-likelihood and inductive logic
programming. Markov logic has been successfully applied to problems in
entity resolution, link prediction, information extraction and others, and
is the basis of the open-source Alchemy system.

1 Introduction

Two key challenges in most machine learning applications are uncertainty and
complexity. The standard framework for handling uncertainty is probability; for
complexity, it is first-order logic. Thus we would like to be able to learn and
perform inference in representation languages that combine the two. This is
the focus of the burgeoning field of statistical relational learning [11]. Many ap-
proaches have been proposed in recent years, including stochastic logic programs
[33], probabilistic relational models [9], Bayesian logic programs [17], relational
dependency networks [34], and others. These approaches typically combine prob-
abilistic graphical models with a subset of first-order logic (e.g., Horn clauses),
and can be quite complex. Recently, we introduced Markov logic, a language that
is conceptually simple, yet provides the full expressiveness of graphical models
and first-order logic in finite domains, and remains well-defined in many infi-
nite domains [44,53]. Markov logic extends first-order logic by attaching weights
to formulas. Semantically, weighted formulas are viewed as templates for con-
structing Markov networks. In the infinite-weight limit, Markov logic reduces
to standard first-order logic. Markov logic avoids the assumption of i.i.d. (in-
dependent and identically distributed) data made by most statistical learners

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 92–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Markov Logic 93

by leveraging the power of first-order logic to compactly represent dependencies
among objects and relations. In this chapter, we describe the Markov logic rep-
resentation and give an overview of current inference and learning algorithms for
it. We begin with some background on Markov networks and first-order logic.

2 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X [37]. It is composed
of an undirected graph G and a set of potential functions φk. The graph has a
node for each variable, and the model has a potential function for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by

P (X =x) =
1
Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by Z =∑

x∈X
∏

k φk(x{k}). Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an exponentiated weighted
sum of features of the state, leading to

P (X =x) =
1
Z

exp

⎛

⎝
∑

j

wjfj(x)

⎞

⎠ (2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, fj(x) ∈ {0, 1}. In the most direct translation from the potential-
function form (Equation 1), there is one feature corresponding to each possible
state x{k} of each clique, with its weight being log φk(x{k}). This representation
is exponential in the size of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the state of the clique), al-
lowing for a more compact representation than the potential-function form, par-
ticularly when large cliques are present. Markov logic will take advantage of this.

Inference in Markov networks is #P-complete [47]. The most widely used
method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [12], and in particular Gibbs sampling, which proceeds by sam-
pling each variable in turn given its Markov blanket. (The Markov blanket of a
node is the minimal set of nodes that renders it independent of the remaining
network; in a Markov network, this is simply the node’s neighbors in the graph.)
Marginal probabilities are computed by counting over these samples; conditional
probabilities are computed by running the Gibbs sampler with the conditioning
variables clamped to their given values. Another popular method for inference
in Markov networks is belief propagation [59].

Maximum-likelihood or MAP estimates of Markov network weights cannot be
computed in closed form but, because the log-likelihood is a concave function

94 P. Domingos et al.

of the weights, they can be found efficiently (modulo inference) using standard
gradient-based or quasi-Newton optimization methods [35]. Another alternative
is iterative scaling [7]. Features can also be learned from data, for example by
greedily constructing conjunctions of atomic features [7].

3 First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-order
logic [10]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the do-
main of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g., MotherOf) represent
mappings from tuples of objects to objects. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or attributes of objects (e.g.,
Smokes). An interpretation specifies which objects, functions and relations in the
domain are represented by which symbols. Variables and constants may be typed,
in which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For example, the
variable x might range over people (e.g., Anna, Bob, etc.), and the constant C
might represent a city (e.g, Seattle, Tokyo, etc.).

A term is any expression representing an object in the domain. It can be a
constant, a variable, or a function applied to a tuple of terms. For example, Anna,
x, and GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F1 and F2 are formulas, the following are also formulas:
¬F1 (negation), which is true iff F1 is false; F1 ∧ F2 (conjunction), which is
true iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is true iff F1 or
F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true;
F1 ⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value;
∀x F1 (universal quantification), which is true iff F1 is true for every object x
in the domain; and ∃x F1 (existential quantification), which is true iff F1 is true
for at least one object x in the domain. Parentheses may be used to enforce
precedence. A positive literal is an atomic formula; a negative literal is a negated
atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB
can be viewed as a single large formula. A ground term is a term containing no
variables. A ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. A possible world (along with an interpretation)
assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true. The
basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F , i.e., if F is true in all worlds where KB is true
(denoted by KB |= F). This is often done by refutation: KB entails F iff KB ∪
¬F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas trivially
follow from it, which makes painstaking knowledge engineering a necessity.) For

Markov Logic 95

Table 1. Example of a first-order knowledge base and MLN. Fr() is short for Friends(),
Sm() for Smokes(), and Ca() for Cancer().

First-Order Logic Clausal Form Weight

“Friends of friends are friends.”
∀x∀y∀z Fr(x, y) ∧ Fr(y, z)⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

“Friendless people smoke.”
∀x (¬(∃y Fr(x, y))⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3

“Smoking causes cancer.”
∀x Sm(x)⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

“If two people are friends, then either
both smoke or neither does.” ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1
∀x∀y Fr(x, y)⇒ (Sm(x)⇔ Sm(y)) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

automated inference, it is often convenient to convert formulas to a more regular
form, typically clausal form (also known as conjunctive normal form (CNF)). A
KB in clausal form is a conjunction of clauses, a clause being a disjunction of
literals. Every KB in first-order logic can be converted to clausal form using a
mechanical sequence of steps.1 Clausal form is used in resolution, a sound and
refutation-complete inference procedure for first-order logic [46].

Inference in first-order logic is only semidecidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The most widely-used restriction is to Horn clauses, which
are clauses containing at most one positive literal. The Prolog programming
language is based on Horn clause logic [25]. Prolog programs can be learned
from databases by searching for Horn clauses that (approximately) hold in the
data; this is studied in the field of inductive logic programming (ILP) [22].

Table 1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas
that are always true, and such formulas capture only a fraction of the relevant
knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical AI problems. Many ad hoc extensions to address this
have been proposed. In the more limited case of propositional logic, the problem
is well solved by probabilistic graphical models. The next section describes a
way to generalize these models to the first-order case.

4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic
idea in Markov logic is to soften these constraints: when a world violates one
1 This conversion includes the removal of existential quantifiers by Skolemization,

which is not sound in general. However, in finite domains an existentially quantified
formula can simply be replaced by a disjunction of its groundings.

96 P. Domingos et al.

formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
(e.g., see Table 1) that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

Definition 1. [44] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

(Equations 1 and 2) as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding ground
atoms appear together in at least one grounding of one formula in L. For ex-
ample, an MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x) (smoking
causes cancer) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Figure 1. Its features include
Smokes(Anna) ⇒ Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in fact represent a
standard social network model [55].

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network ML,C is given by

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Fig. 1. Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x)⇒ Cancer(x) and ∀x∀y Friends(x, y)⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B)

Markov Logic 97

P (X =x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
(3)

where F is the number of formulas in the MLN and ni(x) is the number of
true groundings of Fi in x. As formula weights increase, an MLN increasingly
resembles a purely logical KB, becoming equivalent to one in the limit of all
infinite weights. When the weights are positive and finite, and all formulas are
simultaneously satisfiable, the satisfying solutions are the modes of the distri-
bution represented by the ground Markov network. Most importantly, Markov
logic allows contradictions between formulas, which it resolves simply by weigh-
ing the evidence on both sides. This makes it well suited for merging multiple
KBs. Markov logic also provides a natural and powerful approach to the prob-
lem of merging knowledge and data in different representations that do not align
perfectly, as will be illustrated in the application section.

It is interesting to see a simple example of how Markov logic generalizes first-
order logic. Consider an MLN containing the single formula ∀x R(x) ⇒ S(x)
with weight w, and C = {A}. This leads to four possible worlds: {¬R(A),¬S(A)},
{¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From Equation 3 we obtain that
P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each of the other three
worlds is ew/(3ew + 1). (The denominator is the partition function Z; see Sec-
tion 2.) Thus, if w > 0, the effect of the MLN is to make the world that is
inconsistent with ∀x R(x) ⇒ S(x) less likely than the other three. From the
probabilities above we obtain that P (S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P (S(A)|R(A)) → 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in AI can be
stated quite concisely as MLNs, and combined and extended simply by adding
the corresponding formulas. Most significantly, Markov logic facilitates the con-
struction of non-i.i.d. models (i.e., models where objects are not independent
and identically distributed).

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the con-
stant and function symbols (domain closure), and the value of each function for
each tuple of arguments is always a known constant (known functions). These
assumptions ensure that the number of possible worlds is finite and that the
Markov logic network will give a well-defined probability distribution. These
assumptions are quite reasonable in most practical applications, and greatly
simplify the use of MLNs. We will make these assumptions for the remainder of
the chapter. See Richardson and Domingos [44] for further details on the Markov
logic representation.

Markov logic can also be applied to a number of interesting infinite domains
where some of these assumptions do not hold. See Singla and Domingos [53] for
details on Markov logic in infinite domains.

98 P. Domingos et al.

5 Inference

5.1 MAP/MPE Inference

In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs
as well. A basic inference task is finding the most probable state of the world
given some evidence. (This is known as MAP inference in the Markov network
literature, and MPE inference in the Bayesian network literature.) Because of the
form of Equation 3, in Markov logic this reduces to finding the truth assignment
that maximizes the sum of weights of satisfied clauses. This can be done using
any weighted satisfiability solver, and (remarkably) need not be more expensive
than standard logical inference by model checking. (In fact, it can be faster, if
some hard constraints are softened.) We have successfully used MaxWalkSAT,
a weighted variant of the WalkSAT local-search satisfiability solver, which can
solve hard problems with hundreds of thousands of variables in minutes [16].
MaxWalkSAT performs this stochastic search by picking an unsatisfied clause
at random and flipping the truth value of one of the atoms in it. With a cer-
tain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local
optima while searching. Pseudocode for MaxWalkSAT is shown in Algorithm 1.

Algorithm 1. MaxWalkSAT(weighted clauses, max flips, max tries, target, p)
vars ← variables in weighted clauses
for i ← 1 to max tries do

soln ← a random truth assignment to vars
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then
return “Success, solution is”, soln

end if
c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do
compute DeltaCost(v)

end for
vf ← v with lowest DeltaCost(v)

end if
soln ← soln with vf flipped
cost ← cost + DeltaCost(vf)

end for
end for
return “Failure, best assignment is”, best soln found

Markov Logic 99

DeltaCost(v) computes the change in the sum of weights of unsatisfied clauses
that results from flipping variable v in the current solution. Uniform(0,1) returns
a uniform deviate from the interval [0, 1].

One problem with this approach is that it requires propositionalizing
the domain (i.e., grounding all atoms and clauses in all possible ways), which
consumes memory exponential in the arity of the clauses. We have overcome
this by developing LazySAT, a lazy version of MaxWalkSAT which grounds
atoms and clauses only as needed [52]. This takes advantage of the sparseness
of relational domains, where most atoms are false and most clauses are triv-
ially satisfied. For example, in the domain of scientific research, most ground-
ings of the atom Author(person, paper) are false, and most groundings of the
clause Author(person1, paper)∧Author(person2, paper)⇒Coauthor(person1,
person2) are satisfied. In LazySAT, the memory cost does not scale with the
number of possible clause groundings, but only with the number of groundings
that are potentially unsatisfied at some point in the search.

Algorithm 2. LazySAT(weighted KB, DB, max flips, max tries, target, p)

for i ← 1 to max tries do
active atoms ← atoms in clauses not satisfied by DB

active clauses ← clauses activated by active atoms

soln ← a random truth assignment to active atoms
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then
return “Success, solution is”, soln

end if
c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do
compute DeltaCost(v), using weighted KB if v
∈ active atoms

end for
vf ← v with lowest DeltaCost(v)

end if
if vf
∈ active atoms then

add vf to active atoms

add clauses activated by vf to active clauses

end if
soln ← soln with vf flipped
cost ← cost + DeltaCost(vf)

end for
end for
return “Failure, best assignment is”, best soln found

100 P. Domingos et al.

Algorithm 2 gives pseudo-code for LazySAT, highlighting the places where
it differs from MaxWalkSAT. LazySAT maintains a set of active atoms and a
set of active clauses. A clause is active if it can be made unsatisfied by flipping
zero or more of its active atoms. (Thus, by definition, an unsatisfied clause is
always active.) An atom is active if it is in the initial set of active atoms, or if
it was flipped at some point in the search. The initial active atoms are all those
appearing in clauses that are unsatisfied if only the atoms in the database are
true, and all others are false. The unsatisfied clauses are obtained by simply going
through each possible grounding of all the first-order clauses and materializing
the groundings that are unsatisfied; search is pruned as soon as the partial
grounding of a clause is satisfied. Given the initial active atoms, the definition
of active clause requires that some clauses become active, and these are found
using a similar process (with the difference that, instead of checking whether a
ground clause is unsatisfied, we check whether it should be active). Each run of
LazySAT is initialized by assigning random truth values to the active atoms. This
differs from MaxWalkSAT, which assigns random values to all atoms. However,
the LazySAT initialization is a valid MaxWalkSAT initialization, and we have
verified experimentally that the two give very similar results. Given the same
initialization, the two algorithms will produce exactly the same results.

At each step in the search, the variable that is flipped is activated, as are any
clauses that by definition should become active as a result. When evaluating the
effect on cost of flipping a variable v, if v is active then all of the relevant clauses
are already active, and DeltaCost(v) can be computed as in MaxWalkSAT. If v
is inactive, DeltaCost(v) needs to be computed using the knowledge base. This is
done by retrieving from the KB all first-order clauses containing the atom that
v is a grounding of, and grounding each such clause with the constants in v and
all possible groundings of the remaining variables. As before, we prune search as
soon as a partial grounding is satisfied, and add the appropriate multiple of the
clause weight to DeltaCost(v). (A similar process is used to activate clauses.)
While this process is costlier than using pre-grounded clauses, it is amortized
over many tests of active variables. In typical satisfiability problems, a small core
of “problem” clauses is repeatedly tested, and when this is the case LazySAT
will be quite efficient.

At each step, LazySAT flips the same variable that MaxWalkSAT would, and
hence the result of the search is the same. The memory cost of LazySAT is on
the order of the maximum number of clauses active at the end of a run of flips.
(The memory required to store the active atoms is dominated by the memory
required to store the active clauses, since each active atom appears in at least
one active clause).

Experiments on entity resolution and planning problems show that this can
yield very large memory reductions, and these reductions increase with domain
size [52]. For domains whose full instantiations fit in memory, running time
is comparable; as problems become larger, full instantiation for MaxWalkSAT
becomes impossible.

Markov Logic 101

5.2 Marginal and Conditional Probabilities

Another key inference task is computing the probability that a formula holds,
given an MLN and set of constants, and possibly other formulas as evidence.
By definition, the probability of a formula is the sum of the probabilities of the
worlds where it holds, and computing it by brute force requires time exponential
in the number of possible ground atoms. An approximate but more efficient
alternative is to use Markov chain Monte Carlo (MCMC) inference [12], which
samples a sequence of states according to their probabilities, and counting the
fraction of sampled states where the formula holds. This can be extended to
conditioning on other formulas by rejecting any state that violates one of them.

For the remainder of the chapter, we focus on the typical case where the evi-
dence is a conjunction of ground atoms. In this scenario, further efficiency can be
gained by applying a generalization of knowledge-based model construction [57].
This constructs only the minimal subset of the ground network required to answer
the query, and runsMCMC(or any other probabilistic inferencemethod) on it.The
network is constructed by checking if the atoms that the query formula directly de-
pends on are in the evidence. If they are, the construction is complete. Those that
are not are added to the network, and we in turn check the atoms they depend on.
This process is repeated until all relevant atoms have been retrieved. While in the
worst case it yields no savings, in practice it can vastly reduce the time and memory
required for inference. See Richardson and Domingos [44] for details.

One problem with applying MCMC to MLNs is that it breaks down in the
presence of deterministic or near-deterministic dependencies (as do other prob-
abilistic inference methods, e.g., belief propagation [59]). Deterministic depen-
dencies break up the space of possible worlds into regions that are not reachable
from each other, violating a basic requirement of MCMC. Near-deterministic
dependencies greatly slow down inference, by creating regions of low probability
that are very difficult to traverse. Running multiple chains with random starting
points does not solve this problem, because it does not guarantee that different
regions will be sampled with frequency proportional to their probability, and
there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with sat-
isfiability testing in the MC-SAT algorithm [40]. MC-SAT is a slice sampling
MCMC algorithm. It uses a combination of satisfiability testing and simulated
annealing to sample from the slice. The advantage of using a satisfiability solver
(WalkSAT) is that it efficiently finds isolated modes in the distribution, and as
a result the Markov chain mixes very rapidly. The slice sampling scheme ensures
that detailed balance is (approximately) preserved.

MC-SAT is orders of magnitude faster than standard MCMC methods such
as Gibbs sampling and simulated tempering, and is applicable to any model that
can be expressed in Markov logic, including many standard models in statisti-
cal physics, vision, natural language processing, social network analysis, spatial
statistics, etc.

Slice sampling [5] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed

102 P. Domingos et al.

Algorithm 3. MC-SAT(clauses, weights, num samples)
x(0) ← Satisfy(hard clauses)
for i← 1 to num samples do

M ← ∅
for all ck ∈ clauses satisfied by x(i−1) do

With probability 1− e−wk add ck to M
end for
Sample x(i) ∼ USAT (M)

end for

variables. For example, to sample from P (X = x) = (1/Z)
∏

k φk(x{k}), we
can define P (X = x, U = u) = (1/Z)

∏
k I[0,φk(x{k})](uk), where φk is the kth

potential function, uk is the kth auxiliary variable, I[a,b](uk) = 1 if a ≤ uk ≤ b,
and I[a,b](uk) = 0 otherwise. The marginal distribution of X under this joint is
P (X =x), so to sample from the original distribution it suffices to sample from
P (x, u) and ignore the u values. P (uk|x) is uniform in [0, φk(x{k})], and thus
easy to sample from. The main challenge is to sample x given u, which is uniform
among all X that satisfies φk(x{k}) ≥ uk for all k. MC-SAT uses SampleSAT [56]
to do this. In each sampling step, MC-SAT takes the set of all ground clauses
satisfied by the current state of the world and constructs a subset, M , that
must be satisfied by the next sampled state of the world. (For the moment we
will assume that all clauses have positive weight.) Specifically, a satisfied ground
clause is included in M with probability 1−e−w, where w is the clause’s weight.
We then take as the next state a uniform sample from the set of states SAT (M)
that satisfy M . (Notice that SAT (M) is never empty, because it always contains
at least the current state.) Algorithm 3 gives pseudo-code for MC-SAT. US is the
uniform distribution over set S. At each step, all hard clauses are selected with
probability 1, and thus all sampled states satisfy them. Negative weights are
handled by noting that a clause with weight w < 0 is equivalent to its negation
with weight −w, and a clause’s negation is the conjunction of the negations of
all of its literals. Thus, instead of checking whether the clause is satisfied, we
check whether its negation is satisfied; if it is, with probability 1 − ew we select
all of its negated literals, and with probability ew we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [40], assuming a perfect uniform sampler. In general, uniform
sampling is #P-hard and SampleSAT [56] only yields approximately uniform
samples. However, experiments show that MC-SAT is still able to produce very
accurate probability estimates, and its performance is not very sensitive to the
parameter setting of SampleSAT.

We have applied the ideas of LazySAT to implement a lazy version of MC-
SAT that avoids grounding unnecessary atoms and clauses. A working version
of this algorithm is present in the open-source Alchemy system [20].

It is also possible to carry out lifted first-order probabilistic inference (akin to
resolution) in Markov logic [3]. These methods speed up inference by reasoning
at the first-order level about groups of indistinguishable objects rather than

Markov Logic 103

propositionalizing the entire domain. This is particularly applicable when the
population size is given but little is known about most individual members.

6 Learning

6.1 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a
relational database (Equation 3). This relational database consists of one or
more “possible worlds” that form our training examples. Note that we can learn
to generalize from even a single example because the clause weights are shared
across their many respective groundings. We assume that the set of constants of
each type is known. We also make a closed-world assumption: all ground atoms
not in the database are false. This assumption can be removed by using an
EM algorithm to learn from the resulting incomplete data. The gradient of the
log-likelihood with respect to the weights is

∂

∂wi
log Pw(X =x) = ni(x) −

∑

x′
Pw(X =x′) ni(x′) (4)

where the sum is over all possible databases x′, and Pw(X = x′) is P (X =
x′) computed using the current weight vector w = (w1, . . . , wi, . . .). In other
words, the ith component of the gradient is simply the difference between the
number of true groundings of the ith formula in the data and its expectation
according to the current model. Unfortunately, computing these expectations
requires inference over the model, which can be very expensive. Most fast numeric
optimization methods (e.g., conjugate gradient with line search, L-BFGS) also
require computing the likelihood itself and hence the partition function Z, which
is also intractable. Although inference can be done approximately using MCMC,
we have found this to be too slow. Instead, we maximize the pseudo-likelihood
of the data, a widely-used alternative [2]. If x is a possible world (relational
database) and xl is the lth ground atom’s truth value, the pseudo-log-likelihood
of x given weights w is

log P ∗
w(X =x) =

n∑

l=1

log Pw(Xl =xl|MBx(Xl)) (5)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth
values of the ground atoms it appears in some ground formula with). Computing
the pseudo-likelihood and its gradient does not require inference, and is therefore
much faster. Combined with the L-BFGS optimizer [24], pseudo-likelihood yields
efficient learning of MLN weights even in domains with millions of ground atoms
[44]. However, the pseudo-likelihood parameters may lead to poor results when
long chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior.
We apply this strategy not only to generative learning, but to all of our weight
learning methods, even those embedded within structure learning.

104 P. Domingos et al.

6.2 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will
be queried, and the goal is to correctly predict the latter given the former. If
we partition the ground atoms in the domain into a set of evidence atoms X
and a set of query atoms Y , the conditional likelihood (CLL) of Y given X

is P (y|x) = (1/Zx) exp
(∑

i∈FY
wini(x, y)

)
= (1/Zx) exp

(∑
j∈GY

wjgj(x, y)
)
,

where FY is the set of all MLN clauses with at least one grounding involving a
query atom, ni(x, y) is the number of true groundings of the ith clause involving
query atoms, GY is the set of ground clauses in ML,C involving query atoms,
and gj(x, y) = 1 if the jth ground clause is true in the data and 0 otherwise.
The gradient of the CLL is

∂

∂wi
log Pw(y|x) = ni(x, y) −

∑

y′
Pw(y′|x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (6)

As before, computing the expected counts Ew[ni(x, y)] is intractable. However,
they can be approximated by the counts ni(x, y∗

w) in the MAP state y∗
w(x) (i.e.,

the most probable state of y given x). This will be a good approximation if most
of the probability mass of Pw(y|x) is concentrated around y∗

w(x). Computing
the gradient of the CLL now requires only MAP inference to find y∗

w(x), which
is much faster than the full conditional inference for Ew[ni(x, y)]. This is the
essence of the voted perceptron algorithm, initially proposed by Collins [4] for
discriminatively learning hidden Markov models. Because HMMs have a very
simple linear structure, their MAP states can be found in polynomial time using
the Viterbi algorithm, a form of dynamic programming [43]. The voted percep-
tron initializes all weights to zero, performs T iterations of gradient ascent using
the approximation above, and returns the parameters averaged over all itera-
tions, wi =

∑T
t=1 wi,t/T . The parameter averaging helps to combat overfitting.

T is chosen using a validation subset of the training data. We have extended the
voted perceptron to Markov logic simply by replacing Viterbi with MaxWalkSAT
to find the MAP state [50].

In practice, the voted perceptron algorithm can exhibit extremely slow con-
vergence when applied to MLNs. One cause of this is that the gradient can
easily vary by several orders of magnitude among the different clauses. For
example, consider a transitivity rule such as Friends(x, y) ∧ Friends(y, z) ⇒
Friends(x, z) compared to a simple attribute relationship such as Smokes(x) ⇒
Cancer(x). In a social network domain of 1000 people, the former clause has one
billion groundings while the latter has only 1000. Since each dimension of the
gradient is a difference of clause counts and these can vary by orders of magni-
tude from one clause to another, a learning rate that is small enough to avoid
divergence in some weights is too small for fast convergence in others.

This is an instance of the well-known problem of ill-conditioning in numerical
optimization, and many candidate solutions for it exist [35]. However, the most

Markov Logic 105

common ones are not easily applicable to MLNs because of the nature of the
function being optimized. As in Markov networks, computing the likelihood in
MLNs requires computing the partition function, which is generally intractable.
This makes it difficult to apply methods that require performing line searches,
which involve computing the function as well as its gradient. These include most
conjugate gradient and quasi-Newton methods (e.g., L-BFGS). Two exceptions
to this are scaled conjugate gradient [32] and Newton’s method with a diagonal-
ized Hessian [1]. In the remainder of this subsection, we focus on scaled conjugate
gradient, since we found it to be the best-performing method for discriminative
weight learning.

In many optimization problems, gradient descent can be sped up by per-
forming a line search to find the optimum along the chosen descent direction
instead of taking a small step of constant size at each iteration. However, on
ill-conditioned problems this is still inefficient, because line searches along suc-
cessive directions tend to partly undo the effect of each other: each line search
makes the gradient along its direction zero, but the next line search will gener-
ally make it non-zero again. In long narrow valleys, instead of moving quickly
to the optimum, gradient descent zigzags.

A solution to this is to impose at each step the condition that the gradient
along previous directions remain zero. The directions chosen in this way are
called conjugate, and the method conjugate gradient [49]. Conjugate gradient
methods are some of the most efficient available, on a par with quasi-Newton
ones. While the standard conjugate gradient algorithm uses line searches to
choose step sizes, we can use the Hessian (matrix of second derivatives of the
function) instead. This method is known as scaled conjugate gradient (SCG),
and was originally proposed by Møller [32] for training neural networks.

In a Markov logic network, the Hessian is simply the negative covariance
matrix of the clause counts:

∂

∂wi∂wj
log P (Y =y|X =x) = Ew[ni]Ew[nj] − Ew[ninj]

Both the gradient and the Hessian matrix can be estimated using samples col-
lected with the MC-SAT algorithm, described earlier. While full convergence
could require many samples, we find that as few as five samples are often suffi-
cient for estimating the gradient and Hessian. This is due in part to the efficiency
of MC-SAT as a sampler, and in part to the tied weights: the many groundings
of each clause can act to reduce the variance.

Given a conjugate gradient search direction d and Hessian matrix H, we
compute the step size α as follows:

α =
dTg

dT Hd + λdT d

For a quadratic function and λ = 0, this step size would move to the minimum
function value along d. Since our function is not quadratic, a non-zero λ term
serves to limit the size of the step to a region in which our quadratic approxi-
mation is good. After each step, we adjust λ to increase or decrease the size of

106 P. Domingos et al.

the so-called model trust region based on how well the approximation matched
the function. We cannot evaluate the function directly, but the dot product of
the step we just took and the gradient after taking it is a lower bound on the
improvement in the actual log-likelihood. This works because the log-likelihood
of an MLN is convex.

In models with thousands of weights or more, storing the entire Hessian matrix
becomes impractical. However, when the Hessian appears only inside a quadratic
form, as above, the value of this form can be computed simply as:

dTHd = (Ew [
∑

idini])2 − Ew[(
∑

idini)2]

The product of the Hessian by a vector can also be computed compactly [38].
Conjugate gradient is usually more effective with a preconditioner, a linear

transformation that attempts to reduce the condition number of the problem
(e.g., [48]). Good preconditioners approximate the inverse Hessian. We use the
inverse diagonal Hessian as our preconditioner. Performance with the precondi-
tioner is much better than without.

See Lowd and Domingos [26] for more details and results.

6.3 Structure Learning

The structure of a Markov logic network is the set of formulas or clauses to
which we attach weights. In principle, this structure can be learned or revised
using any inductive logic programming (ILP) technique. However, since an MLN
represents a probability distribution, much better results are obtained by using
an evaluation function based on pseudo-likelihood, rather than typical ILP ones
like accuracy and coverage [18]. Log-likelihood or conditional log-likelihood are
potentially better evaluation functions, but are vastly more expensive to com-
pute. In experiments on two real-world datasets, our MLN structure learning
algorithm found better MLN rules than CLAUDIEN [6], FOIL [42], Aleph [54],
and even a hand-written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses
(single atoms) to the MLN. The weights of these capture (roughly speaking)
the marginal distributions of the atoms, allowing the longer clauses to focus on
modeling atom dependencies. To extend this initial model, we either repeatedly
find the best clause using beam search and add it to the MLN, or add all “good”
clauses of length l before trying clauses of length l + 1. Candidate clauses are
formed by adding each predicate (negated or otherwise) to each current clause,
with all possible combinations of variables, subject to the constraint that at least
one variable in the new predicate must appear in the current clause. Hand-coded
clauses are also modified by removing predicates.

We now discuss the evaluation measure, clause construction operators, search
strategy, and speedup methods in greater detail.

As an evaluation measure, pseudo-likelihood (Equation 5) tends to give undue
weight to the largest-arity predicates, resulting in poor modeling of the rest. We
thus define the weighted pseudo-log-likelihood (WPLL) as

Markov Logic 107

log P •
w(X =x) =

∑

r∈R

cr

gr∑

k=1

log Pw(Xr,k =xr,k|MBx(Xr,k)) (7)

where R is the set of first-order atoms, gr is the number of groundings of first-
order atom r, and xr,k is the truth value (0 or 1) of the kth grounding of r. The
choice of atom weights cr depends on the user’s goals. In our experiments, we
simply set cr = 1/gr, which has the effect of weighting all first-order predicates
equally. If modeling a predicate is not important (e.g., because it will always be
part of the evidence), we set its weight to zero. To combat overfitting, we penalize
the WPLL with a structure prior of e−α

�F
i=1 di , where di is the number of literals

that differ between the current version of the clause and the original one. (If the
clause is new, this is simply its length.) This is similar to the approach used in
learning Bayesian networks [14].

A potentially serious problem that arises when evaluating candidate clauses
using WPLL is that the optimal (maximum WPLL) weights need to be com-
puted for each candidate. Given that this involves numerical optimization, and
may need to be done thousands or millions of times, it could easily make the al-
gorithm too slow to be practical. We avoid this bottleneck by simply initializing
L-BFGS with the current weights (and zero weight for a new clause). Second-
order, quadratic-convergence methods like L-BFGS are known to be very fast if
started near the optimum. This is what happens in our case; L-BFGS typically
converges in just a few iterations, sometimes one. The time required to evaluate
a clause is in fact dominated by the time required to compute the number of its
true groundings in the data. This time can be greatly reduced using sampling
and other techniques [18].

When learning an MLN from scratch (i.e., from a set of unit clauses), the
natural operator to use is the addition of a literal to a clause. When refining a
hand-coded KB, the goal is to correct the errors made by the human experts.
These errors include omitting conditions from rules and including spurious ones,
and can be corrected by operators that add and remove literals from a clause.
These are the basic operators that we use. In addition, we have found that many
common errors (wrong direction of implication, wrong use of connectives with
quantifiers, etc.) can be corrected at the clause level by flipping the signs of
atoms, and we also allow this. When adding a literal to a clause, we consider all
possible ways in which the literal’s variables can be shared with existing ones,
subject to the constraint that the new literal must contain at least one variable
that appears in an existing one. To control the size of the search space, we set a
limit on the number of distinct variables in a clause. We only try removing literals
from the original hand-coded clauses or their descendants, and we only consider
removing a literal if it leaves at least one path of shared variables between each
pair of remaining literals.

We have implemented two search strategies, one faster and one more complete.
The first approach adds clauses to the MLN one at a time, using beam search
to find the best clause to add: starting with the unit clauses and the expert-
supplied ones, we apply each legal literal addition and deletion to each clause,

108 P. Domingos et al.

keep the b best ones, apply the operators to those, and repeat until no new clause
improves the WPLL. The chosen clause is the one with highest WPLL found in
any iteration of the search. If the new clause is a refinement of a hand-coded
one, it replaces it. (Notice that, even though we both add and delete literals, no
loops can occur because each change must improve WPLL to be accepted.)

The second approach adds k clauses at a time to the MLN, and is similar to
that of McCallum [30]. In contrast to beam search, which adds the best clause
of any length found, this approach adds all “good” clauses of length l before
attempting any of length l + 1. We call it shortest-first search.

The algorithms described in the previous section may be very slow, particu-
larly in large domains. However, they can be greatly sped up using a combination
of techniques described in Kok and Domingos [18]. These include looser conver-
gence thresholds, subsampling atoms and clauses, caching results, and ordering
clauses to avoid evaluating the same candidate clause twice.

Recently, Mihalkova and Mooney [31] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly con-
structing candidate clauses one literal at a time, they let the training data guide
and constrain clause construction. First, they use a propositional Markov net-
work structure learner to generate a graph of relationships among atoms. Then
they generate clauses from paths in this graph. In this way, BUSL focuses on
clauses that have support in the training data. In experiments on three datasets,
BUSL evaluated many fewer candidate clauses than our top-down algorithm,
ran more quickly, and learned more accurate models.

We are currently investigating further approaches to learning MLNs, includ-
ing automatically inventing new predicates (or, in statistical terms, discovering
hidden variables) [19].

7 Applications

Markov logic has been successfully applied in a variety of areas. A system based
on it recently won a competition on information extraction for biology [45]. Cy-
corp has used it to make parts of the Cyc knowledge base probabilistic [29].
The CALO project is using it to integrate probabilistic predictions from many
components [8]. We have applied it to link prediction, collective classification,
entity resolution, information extraction, social network analysis and other prob-
lems [44,50,18,51,40,41]. Applications to Web mining, activity recognition, natu-
ral language processing, computational biology, robot mapping and navigation,
game playing and others are under way.

7.1 Entity Resolution

The application to entity resolution illustrates well the power of Markov logic
[51]. Entity resolution is the problem of determining which observations (e.g.,
database records, noun phrases, video regions, etc.) correspond to the same real-
world objects, and is of crucial importance in many areas. Typically, it is solved

Markov Logic 109

by forming a vector of properties for each pair of observations, using a learned
classifier (such as logistic regression) to predict whether they match, and ap-
plying transitive closure. Markov logic yields an improved solution simply by
applying the standard logical approach of removing the unique names assump-
tion and introducing the equality predicate and its axioms: equality is reflexive,
symmetric and transitive; groundings of a predicate with equal constants have
the same truth values; and constants appearing in a ground predicate with equal
constants are equal. This last axiom is not valid in logic, but captures a useful sta-
tistical tendency. For example, if two papers are the same, their authors are the
same; and if two authors are the same, papers by them are more likely to be the
same. Weights for different instances of these axioms can be learned from data.
Inference over the resulting MLN, with entity properties and relations as the
evidence and equality atoms as the query, naturally combines logistic regression
and transitive closure. Most importantly, it performs collective entity resolution,
where resolving one pair of entities helps to resolve pairs of related entities.

As a concrete example, consider the task of deduplicating a citation database
in which each citation has author, title, and venue fields. We can represent the
domain structure with eight relations: Author(bib, author), Title(bib, title),
and Venue(bib, venue) relate citations to their fields; HasWord(author/title/
venue, word) indicates which words are present in each field; SameAuthor
(author, author), SameTitle(title, title), and SameVenue(venue, venue)
represent field equivalence; and SameBib(bib, bib) represents citation equiva-
lence. The truth values of all relations except for the equivalence relations are
provided as background theory. The objective is to predict the SameBib relation.

We begin with a logistic regression model to predict citation equivalence based
on the words in the fields. This is easily expressed in Markov logic by rules such
as the following:

Title(b1, t1) ∧ Title(b2, t2) ∧ HasWord(t1, +word)
∧ HasWord(t2, +word) ⇒ SameBib(b1, b2)

The ‘+’ operator here generates a separate rule (and with it, a separate learnable
weight) for each constant of the appropriate type. When given a positive weight,
each of these rules increases the probability that two citations with a particular
title word in common are equivalent. We can construct similar rules for other
fields. Note that we may learn negative weights for some of these rules, just as
logistic regression may learn negative feature weights. Transitive closure consists
of a single rule:

SameBib(b1, b2)∧ SameBib(b2, b3) ⇒ SameBib(b1, b3)

This model is similar to the standard solution, but has the advantage that the
classifier is learned in the context of the transitive closure operation.

We can construct similar rules to predict the equivalence of two fields as well.
The usefulness of Markov logic is shown further when we link field equivalence
to citation equivalence:

Author(b1, a1) ∧ Author(b2, a2) ∧ SameBib(b1, b2) ⇒ SameAuthor(a1, a2)
Author(b1, a1) ∧ Author(b2, a2) ∧ SameAuthor(a1, a2) ⇒ SameBib(b1, b2)

110 P. Domingos et al.

The above rules state that if two citations are the same, their authors should be
the same, and that citations with the same author are more likely to be the same.
The last rule is not valid in logic, but captures a useful statistical tendency.

Most importantly, the resulting model can now perform collective entity res-
olution, where resolving one pair of entities helps to resolve pairs of related
entities. For example, inferring that a pair of citations are equivalent can pro-
vide evidence that the names AAAI-06 and 21st Natl. Conf. on AI refer to the
same venue, even though they are superficially very different. This equivalence
can then aid in resolving other entities.

Experiments on citation databases like Cora and BibServ.org show that these
methods can greatly improve accuracy, particularly for entity types that are
difficult to resolve in isolation as in the above example [51]. Due to the large
number of words and the high arity of the transitive closure formula, these models
have thousands of weights and ground millions of clauses during learning, even
after using canopies to limit the number of comparisons considered. Learning at
this scale is still reasonably efficient: preconditioned scaled conjugate gradient
with MC-SAT for inference converges within a few hours [26].

7.2 Information Extraction

In this citation example, it was assumed that the fields were manually segmented
in advance. The goal of information extraction is to extract database records
starting from raw text or semi-structured data sources. Traditionally, informa-
tion extraction proceeds by first segmenting each candidate record separately,
and then merging records that refer to the same entities. Such a pipeline achi-
tecture is adopted by many AI systems in natural language processing, speech
recognition, vision, robotics, etc. Markov logic allows us to perform the two
tasks jointly [41]. While computationally efficient, this approach is suboptimal,
because it ignores the fact that segmenting one candidate record can help to
segment similar ones. This allows us to use the segmentation of one candidate
record to help segment similar ones. For example, resolving a well-segmented
field with a less-clear one can disambiguate the latter’s boundaries. We will con-
tinue with the example of citations, but similar ideas could be applied to other
data sources, such as Web pages or emails.

The main evidence predicate in the information extraction MLN is Token(t, i,
c), which is true iff token t appears in the ith position of the cth citation. A token
can be a word, date, number, etc. Punctuation marks are not treated as separate
tokens; rather, the predicate HasPunc(c, i) is true iff a punctuation mark appears
immediately after the ith position in the cth citation. The query predicates are
InField(i, f, c) and SameCitation(c, c′). InField(i, f, c) is true iff the ith
position of the cth citation is part of field f, where f ∈ {Title, Author, Venue},
and inferring it performs segmentation. SameCitation(c, c′) is true iff citations c
and c′ represent the same publication, and inferring it performs entity resolution.

Our segmentation model is essentially a hidden Markov model (HMM) with
enhanced ability to detect field boundaries. The observation matrix of the HMM
correlates tokens with fields, and is represented by the simple rule

Markov Logic 111

Token(+t, i, c) ⇒ InField(i, +f, c)

If this rule was learned in isolation, the weight of the (t, f)th instance would be
log(ptf/(1−ptf)), where ptf is the corresponding entry in the HMM observation
matrix. In general, the transition matrix of the HMM is represented by a rule of
the form

InField(i, +f, c) ⇒ InField(i+ 1, +f′, c)

However, we (and others, e.g., [13]) have found that for segmentation it suffices
to capture the basic regularity that consecutive positions tend to be part of the
same field. Thus we replace f′ by f in the formula above. We also impose the
condition that a position in a citation string can be part of at most one field; it
may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field
boundaries. Detecting these is key for information extraction, and a number of
approaches use rules designed specifically for this purpose (e.g., [21]). In citation
matching, boundaries are usually marked by punctuation symbols. This can be
incorporated into the MLN by modifying the rule above to

InField(i, +f, c)∧ ¬HasPunc(c, i) ⇒ InField(i+ 1, +f, c)

The ¬HasPunc(c, i) precondition prevents propagation of fields across punctu-
ation marks. Because propagation can occur differentially to the left and right,
the MLN also contains the reverse form of the rule. In addition, to account
for commas being weaker separators than other punctuation, the MLN includes
versions of these rules with HasComma() instead of HasPunc().

Finally, the MLN contains rules capturing a variety of knowledge about ci-
tations: the first two positions of a citation are usually in the author field, and
the middle one in the title; initials (e.g., “J.”) tend to appear in either the au-
thor or the venue field; positions preceding the last non-venue initial are usually
not part of the title or venue; and positions after the first venue keyword (e.g.,
“Proceedings”, “Journal”) are usually not part of the author or title.

By combining this segmentation model with our entity resolution model from
before, we can exploit relational information as part of the segmentation pro-
cess. In practice, something a little more sophisticated is necessary to get good
results on real data. In Poon and Domingos [41], we define predicates and rules
specifically for passing information between the stages, as opposed to just using
the existing InField() outputs. This leads to a “higher bandwidth” of commu-
nication between segmentation and entity resolution, without letting excessive
segmentation noise through. We also define an additional predicate and modify
rules to better exploit information from similar citations during the segmentation
process. See [41] for further details.

We evaluated this model on the CiteSeer and Cora datasets. For entity resolu-
tion in CiteSeer, we measured cluster recall for comparison with previously pub-
lished results. Cluster recall is the fraction of clusters that are correctly output
by the system after taking transitive closure from pairwise decisions. For entity
resolution in Cora, we measured both cluster recall and pairwise recall/precision.

112 P. Domingos et al.

Table 2. CiteSeer entity resolution: cluster recall on each section

Approach Constr. Face Reason. Reinfor.

Fellegi-Sunter 84.3 81.4 71.3 50.6
Lawrence et al. (1999) 89 94 86 79
Pasula et al. (2002) 93 97 96 94
Wellner et al. (2004) 95.1 96.9 93.7 94.7
Joint MLN 96.0 97.1 95.1 96.7

Table 3. Cora entity resolution: pairwise recall/precision and cluster recall

Approach Pairwise Rec./Prec. Cluster Recall

Fellegi-Sunter 78.0 / 97.7 62.7
Joint MLN 94.3 / 97.0 78.1

In both datasets we also compared with a “standard” Fellegi-Sunter model (see
[51]), learned using logistic regression, and with oracle segmentation as the input.

In both datasets, joint inference improved accuracy and our approach out-
performed previous ones. Table 2 shows that our approach outperforms previous
ones on CiteSeer entity resolution. (Results for Lawrence et al. (1999) [23], Pasula
et al. (2002) [36] and Wellner et al. (2004) [58] are taken from the correspond-
ing papers.) This is particularly notable given that the models of [36] and [58]
involved considerably more knowledge engineering than ours, contained more
learnable parameters, and used additional training data.

Table 3 shows that our entity resolution approach easily outperforms Fellegi-
Sunter on Cora, and has very high pairwise recall/precision.

8 The Alchemy System

The inference and learning algorithms described in the previous sections are
publicly available in the open-source Alchemy system [20]. Alchemy makes it
possible to define sophisticated probabilistic models with a few formulas, and
to add probability to a first-order knowledge base by learning weights from a
relevant database. It can also be used for purely logical or purely statistical
applications, and for teaching AI. From the user’s point of view, Alchemy pro-
vides a full spectrum of AI tools in an easy-to-use, coherent form. From the
researcher’s point of view, Alchemy makes it possible to easily integrate a new
inference or learning algorithm, logical or statistical, with a full complement of
other algorithms that support it or make use of it.

Alchemy can be viewed as a declarative programming language akin to Pro-
log, but with a number of key differences: the underlying inference mecha-
nism is model checking instead of theorem proving; the full syntax of first-
order logic is allowed, rather than just Horn clauses; and, most importantly,
the ability to handle uncertainty and learn from data is already built in. Table 4

Markov Logic 113

Table 4. A comparison of Alchemy, Prolog and BUGS

Aspect Alchemy Prolog BUGS

Representation First-order logic + Markov nets Horn clauses Bayes nets
Inference Model checking, MCMC Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

compares Alchemy with Prolog and BUGS [28], one of the most popular toolkits
for Bayesian modeling and inference.

9 Current and Future Research Directions

We are actively researching better learning and inference methods for Markov
logic, as well as extensions of the representation that increase its generality and
power.

Exact methods for learning and inference are usually intractable in Markov
logic, but we would like to see better, more efficient approximations along with
the automatic application of exact methods when feasible.

One method of particular interest is lifted inference. In short, we would like
to reason with clusters of nodes for which we have exactly the same amount of
information. The inspiration is from lifted resolution in first order logic, but must
be extended to handle uncertainty. Prior work on lifted inference such as [39] and
[3] mainly focused on exact inference which can be quite slow. There has been
some recent work on lifted belief propagation in a Markov logic like setting [15],
but only for the case in which there is no evidence. We would like to extend this
body of work for approximate inference in the case where arbitrary evidence is
given, potentially speeding up inference in Markov logic by orders of magnitude.

Numerical attributes must be discretized to be used in Markov logic, but we
are working on extending the representation to handle continuous random vari-
ables and features. This is particularly important in domains like robot navigation,
where the coordinates of the robot and nearby obstacles are real-valued. Even do-
mains that are handled well by Markov logic, such as entity resolution, could still
benefit from this extension by incorporating numeric features into similarities.

Another extension of Markov logic is to support uncertainty at multiple levels
in the logical structure. A formula in first-order logic can be viewed as a tree, with
a logical connective at each node, and a knowledge base can be viewed as a tree
whose root is a conjunction. Markov logic makes this conjunction probabilistic,
as well as the universal quantifiers directly under it, but the rest of the tree
remains purely logical. Recursive random fields [27] overcome this by allowing
the features to be nested MLNs instead of clauses. Unfortunately, learning them
suffers from the limitations of backpropagation.

Statistical predicate invention is the problem of discovering new concepts,
properties, and relations in structured data, and generalizes hidden variable
discovery in statistical models and predicate invention in ILP. Rather than ex-
tending the model directly, statistical predicate invention enables richer models

114 P. Domingos et al.

by extending the domain with discovered predicates. Our initial work in this area
uses second-order Markov logic to generate multiple cross-cutting clusterings of
constants and predicates [19]. Formulas in second-order Markov logic could also
be used to add declarative bias to our structure learning algorithms.

Current work also includes semi-supervised learning, and learning with incom-
plete data in general. The large amount of unlabeled data on the Web is an excel-
lent resource that, properly exploited, could lead to many exciting applications.

Finally, we would like to develop a general framework for decision-making in
relational domains. This can be accomplished in Markov logic by adding utility
weights to formulas and finding the settings of all action predicates that jointly
maximize expected utility.

10 Conclusion

Markov logic is a simple yet powerful approach to combining logic and prob-
ability in a single representation. We have developed a series of learning and
inference algorithms for it, and successfully applied them in a number of do-
mains. These algorithms are available in the open-source Alchemy system. We
hope that Markov logic and its implementation in Alchemy will be of use to
researchers and practitioners who wish to have the full spectrum of logical and
statistical inference and learning techniques at their disposal, without having to
develop every piece themselves.

Acknowledgements

This research was partly supported by DARPA grant FA8750-05-2-0283 (man-
aged by AFRL), DARPA contract NBCH-D030010, NSF grant IIS-0534881,
ONR grants N00014-02-1-0408 and N00014-05-1-0313, a Sloan Fellowship and
NSF CAREER Award to the first author, and a Microsoft Research fellowship
awarded to the third author. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of DARPA, NSF,
ONR, or the United States Government.

References

1. Becker, S., Le Cun, Y.: Improving the convergence of back-propagation learning with
second order methods. In: Proceedings of the 1988 Connectionist Models Summer
School, San Mateo, CA, pp. 29–37. Morgan Kaufmann, San Francisco (1989)

2. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24, 179–195
(1975)

3. Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, UK, pp. 1319–1325. Morgan Kaufmann, San Francisco (2005)

4. Collins, M.: Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the 2002 Confer-
ence on Empirical Methods in Natural Language Processing, Philadelphia, PA, pp.
1–8. ACL (2002)

Markov Logic 115

5. Damien, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate
and hierarchical models by auxiliary variables. Journal of the Royal Statistical
Society, Series B 61 (1999)

6. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146 (1997)
7. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields.

IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380–392
(1997)

8. Dietterich, T.: Experience with Markov logic networks in a large AI system. In:
Probabilistic, Logical and Relational Learning - Towards a Synthesis, number 05051
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Dagstuhl, Germany (2007)

9. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence, Stockholm, Sweden, pp. 1300–1307. Morgan Kaufmann, San
Francisco (1999)

10. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, San Mateo (1987)

11. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

12. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in
Practice. Chapman and Hall, London, UK (1996)

13. Grenager, T., Klein, D., Manning, C.D.: Unsupervised learning of field segmenta-
tion models for information extraction. In: Proceedings of the Forty-Third Annual
Meeting on Association for Computational Linguistics, Ann Arbor, Michigan, pp.
371–378. Association for Computational Linguistics (2005)

14. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20, 197–243
(1995)

15. Jaimovich, A., Meshi, O., Friedman, N.: Template based inference in symmetric
relational markov random fields. In: Proceedings of the Twenty-Third Conference
on Uncertainty in Artificial Intelligence, Vancouver, Canada, AUAI Press (2007)

16. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems
with hard and soft constraints. In: Gu, D., Du, J., Pardalos, P. (eds.) The Satis-
fiability Problem: Theory and Applications, pp. 573–586. American Mathematical
Society, New York (1997)

17. Kersting, K., De Raedt, L.: Towards combining inductive logic programming with
Bayesian networks. In: Proceedings of the Eleventh International Conference on In-
ductive Logic Programming, Strasbourg, France, pp. 118–131. Springer, Heidelberg
(2001)

18. Kok, S., Domingos, P.: Learning the structure of Markov logic networks. In: Pro-
ceedings of the Twenty-Second International Conference on Machine Learning,
Bonn, Germany, pp. 441–448. ACM Press, New York (2005)

19. Kok, S., Domingos, P.: Statistical predicate invention. In: Proceedings of the
Twenty-Fourth International Conference on Machine Learning, Corvallis, OR, pp.
433–440. ACM Press, New York (2007)

20. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos, P.:
The Alchemy system for statistical relational AI. Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA (2007),
http://alchemy.cs.washington.edu

21. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence 118(1-2), 15–68 (2000)

 http://alchemy.cs.washington.edu

116 P. Domingos et al.

22. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, Chichester (1994)

23. Lawrence, S., Bollacker, K., Giles, C.L.: Autonomous citation matching. In: Pro-
ceedings of the Third International Conference on Autonomous Agents, ACM
Press, New York (1999)

24. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(3), 503–528 (1989)

25. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin, Germany (1987)
26. Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In:

Proceedings of the Eleventh European Conference on Principles and Practice of
Knowledge Discovery in Databases, Warsaw, Poland, pp. 200–211. Springer, Hei-
delberg (2007)

27. Lowd, D., Domingos, P.: Recursive random fields. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence, Hyderabad, India, AAAI
Press, Menlo Park (2007)

28. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS – a Bayesian model-
ing framework: Concepts, structure, and extensibility. Statistics and Computing 10,
325–337 (2000)

29. Matuszek, C., Witbrock, M.: Personal communication (2006)
30. McCallum, A.: Efficiently inducing features of conditional random fields. In: Pro-

ceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence,
Acapulco, Mexico, Morgan Kaufmann, San Francisco (2003)

31. Mihalkova, L., Mooney, R.: Bottom-up learning of Markov logic network struc-
ture. In: Proceedings of the Twenty-Fourth International Conference on Machine
Learning, Corvallis, OR, pp. 625–632. ACM Press, New York (2007)

32. Møller, M.: A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks 6, 525–533 (1993)

33. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 254–264. IOS Press, Amsterdam, Netherlands
(1996)

34. Neville, J., Jensen, D.: Dependency networks for relational data. In: Proceedings
of the Fourth IEEE International Conference on Data Mining, Brighton, UK, pp.
170–177. IEEE Computer Society Press, Los Alamitos (2004)

35. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)
36. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty

and citation matching. In: Advances in Neural Information Processing Systems 14,
MIT Press, Cambridge (2002)

37. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

38. Pearlmutter, B.: Fast exact multiplication by the Hessian. Neural Computa-
tion 6(1), 147–160 (1994)

39. Poole, D.: First-order probabilistic inference. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, pp.
985–991. Morgan Kaufmann, San Francisco (2003)

40. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deter-
ministic dependencies. In: Proceedings of the Twenty-First National Conference on
Artificial Intelligence, Boston, MA, pp. 458–463. AAAI Press, Menlo Park (2006)

41. Poon, H., Domingos, P.: Joint inference in information extraction. In: Proceedings
of the Twenty-Second National Conference on Artificial Intelligence, Vancouver,
Canada, pp. 913–918. AAAI Press, Menlo Park (2007)

Markov Logic 117

42. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990)

43. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

44. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–
136 (2006)

45. Riedel, S., Klein, E.: Genic interaction extraction with semantic and syntactic
chains. In: Proceedings of the Fourth Workshop on Learning Language in Logic,
Bonn, Germany, pp. 69–74. IMLS (2005)

46. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12, 23–41 (1965)

47. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82,
273–302 (1996)

48. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings
of the 2003 Human Language Technology Conference and North American Chapter
of the Association for Computational Linguistics, Association for Computational
Linguistics (2003)

49. Shewchuck, J.: An introduction to the conjugate gradient method without the
agonizing pain. Technical Report CMU-CS-94-125, School of Computer Science,
Carnegie Mellon University (1994)

50. Singla, P., Domingos, P.: Discriminative training of Markov logic networks. In:
aaai05, Pittsburgh, PA, pp. 868–873. AAAI Press, Menlo Park (2005)

51. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: Proceedings of
the Sixth IEEE International Conference on Data Mining, Hong Kong, pp. 572–
582. IEEE Computer Society Press, Los Alamitos (2006)

52. Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In: Pro-
ceedings of the Twenty-First National Conference on Artificial Intelligence, Boston,
MA, AAAI Press, Menlo Park (2006)

53. Singla, P., Domingos, P.: Markov logic in infinite domains. In: Proceedings of
the Twenty-Third Conference on Uncertainty in Artificial Intelligence, Vancouver,
Canada, pp. 368–375. AUAI Press (2007)

54. Srinivasan, A.: The Aleph manual. Technical report, Computing Laboratory, Ox-
ford University (2000)

55. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

56. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting random
walk strategies. In: aaai04, San Jose, CA, AAAI Press, Menlo Park (2004)

57. Wellman, M., Breese, J.S., Goldman, R.P.: From knowledge bases to decision mod-
els. Knowledge Engineering Review 7 (1992)

58. Wellner, B., McCallum, A., Peng, F., Hay, M.: An integrated, conditional model of
information extraction and coreference with application to citation matching. In:
Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence,
Banff, Canada, pp. 593–601. AUAI Press (2004)

59. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Leen,
T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing
Systems 13, pp. 689–695. MIT Press, Cambridge (2001)

New Advances in Logic-Based Probabilistic

Modeling by PRISM

Taisuke Sato and Yoshitaka Kameya

Tokyo Institute of Technology, Ookayama Meguro Tokyo, Japan
{sato,kameya}@mi.cs.titech.ac.jp

Abstract. We review a logic-based modeling language PRISM and re-
port recent developments including belief propagation by the generalized
inside-outside algorithm and generative modeling with constraints. The
former implies PRISM subsumes belief propagation at the algorithmic
level. We also compare the performance of PRISM with state-of-the-
art systems in statistical natural language processing and probabilistic
inference in Bayesian networks respectively, and show that PRISM is
reasonably competitive.

1 Introduction

The objective of this chapter is to review PRISM,1 a logic-based modeling lan-
guage that has been developed since 1997, and report its current status.2

PRISM was born in 1997 as an experimental language for unifying logic pro-
gramming and probabilistic modeling [1]. It is an embodiment of the distribution
semantics proposed in 1995 [2] and the first programming language with the
ability to perform EM (expectation-maximization) learning [3] of parameters in
programs. Looking back, when it was born, it already subsumed BNs (Bayesian
networks), HMMs (hidden Markov models) and PCFGs (probabilistic context
free grammars) semantically and could compute their probabilities.3 However
there was a serious problem: most of probability computation was exponential.
Later in 2001, we added a tabling mechanism [4,5] and “largely solved” this prob-
lem. Tabling enables both reuse of computed results and dynamic programming
for probability computation which realizes standard polynomial time probability
computations for singly connected BNs, HMMs and PCFGs [6].

Two problems remained though. One is the no-failure condition that dictates
that failure must not occur in a probabilistic model. It is placed for mathemat-
ical consistency of defined distributions but obviously an obstacle against the
use of constraints in probabilistic modeling. This is because constraints may be

1 http://sato-www.cs.titech.ac.jp/prism/
2 This work is supported in part by the 21st Century COE Program ‘Framework

for Systematization and Application of Large-scale Knowledge Resources’ and also
in part by Ministry of Education, Science, Sports and Culture, Grant-in-Aid for
Scientific Research (B), 2006, 17300043.

3 We assume that BNs and HMMs in this chapter are discrete.

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 118–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Advances in Logic-Based Probabilistic Modeling by PRISM 119

unsatisfiable thereby causing failure of computation and the failed computation
means the loss of probability mass. In 2005, we succeeded in eliminating this
condition by merging the FAM (failure-adjusted maximization) algorithm [7]
with the idea of logic program synthesis [8].

The other problem is inference in multiply connected BNs. When a Bayesian
network is singly connected, it is relatively easy to write a program that simu-
lates πλ message passing [9] and see the correctness of the program [6]. When,
on the other hand, the network is not singly connected, it has been customarily
to use the junction tree algorithm but how to realize BP (belief propagation)4

on junction trees in PRISM has been unclear.5 In 2006 however, it was found
and proved that BP on junction trees is a special case of probability computa-
tion by the IO (inside-outside) algorithm generalized for logic programs used in
PRISM [10].

As a result, we can now claim that PRISM uniformly subsumes BNs, HMMs
and PCFGs at the algorithmic level as well as at the semantic level. All we need to
do is to write appropriate programs for each model so that they denote intended
distributions. PRISM’s probability computation and EM learning for these pro-
grams exactly coincides with the standard algorithms for each model, i.e. the
junction tree algorithm for BNs [11,12], the Baum-Welch (forward-backward)
algorithm for HMMs [13] and the IO algorithm for PCFGs [14] respectively.

This is just a theoretical statement though, and the actual efficiency of proba-
bility computation and EM learning is another matter which depends on imple-
mentation and should be gauged against real data. Since our language is at an
extremely high level (predicate calculus) and the data structure is very flexible
(terms containing variables), we cannot expect the same speed as a C implemen-
tation of a specific model. However due to the continuing implementation efforts
made in the past few years, PRISM’s execution speed has greatly improved to the
point of being usable for medium-sized machine learning experiments. We have
conducted comparative experiments with Dyna [15] and ACE [16,17,18]. Dyna is
a dynamic programming system for statistical natural language processing and
ACE is a compiler that compiles a Bayesian network into an arithmetic circuit to
perform probabilistic inference. Both represent the state-of-the-art approach in
each field. Results are encouraging and demonstrate PRISM’s competitiveness
in probabilistic modeling.

That being said, we would like to emphasize that although the generality and
descriptive power of PRISM enables us to treat existing probabilistic models
uniformly, it should also be exploited for exploring new probabilistic models.
One such model, constrained HMM s that combine HMMs with constraints, is
explained in Section 5.

In what follows, we first look at the basics of PRISM [6] in Section 2. Then in
Section 3, we explain how to realize BP in PRISM using logically described

4 We use BP as a synonym of the part of the junction tree algorithm concerning
message passing.

5 Contrastingly it is straightforward to simulate variable elimination for multiply
connected BNs [6].

120 T. Sato and Y. Kameya

junction trees. Section 4 deals with the system performance of PRISM and
contains comparative data with Dyna and ACE. Section 5 contains generative
modeling with constraints made possible by the elimination of the no-failure
condition. Related work and future topics are discussed in Section 6. We assume
the reader is familiar with logic programming [19], PCFGs [20] and BNs [9,21].

2 The Basic System

2.1 Programs as Distributions

One distinguished characteristic of PRISM is its declarative semantics. For self-
containedness, in a slightly different way from that of [6], we quickly define the
semantics of PRISM programs, the distribution semantics [2], which regards
programs as defining infinite probability distributions.

Overview of the Distribution Semantics: In the distribution semantics, we
consider a logic program DB which consists of a set F of facts (unit clauses)
and a set R of rules (non-unit definite clauses). That is, we have DB = F ∪ R.
We assume the disjoint condition that there is no atom in F unifiable with the
head of any clause in R. Semantically DB is treated as the set of all ground
instances of the clauses in DB . So in what follows, F and R are equated with
their ground instantiations. In particular F is a set of ground atoms. Since our
language includes countably many predicate and function symbols, F and R are
countably infinite.

We construct an infinite distribution, or to be more exact, a probability mea-
sure PDB

6 on the set of possible Herbrand interpretations [19] of DB as the
denotation of DB in two steps.

Let a sample space ΩF (resp. ΩDB) be all interpretations (truth value as-
signments) for the atoms appearing in F (resp. DB). They are so called the
“possible worlds” for F (resp. DB). We construct a probability space on ΩF and
then extend it to a larger probability space on ΩDB where the probability mass
is distributed only over the least Herbrand models made from DB . Note that
ΩF and ΩDB are uncountably infinite. We construct their probability measures,
PF and PDB respectively, from a family of finite probability measures using
Kolmogorov’s extension theorem.7

Constructing PF : Let A1, A2, . . . be an enumeration of the atoms in F . A
truth value assignment for the atoms in F is represented by an infinite vector

6 A probability space is a triplet (Ω,F , P) where Ω is a sample space (the set of
possible outcomes), F a σ-algebra which consists of subsets of Ω and is closed
under complementation and countable union, and P a probability measure which
is a function from sets F to real numbers in [0, 1]. Every set S in F is said to be
measurable by P and assigned probability P (S).

7 Given denumerably many, for instance, discrete joint distributions satisfying a cer-
tain condition, Kolmogorov’s extension theorem guarantees the existence of an in-
finite distribution (probability measure) which is an extension of each component
distribution [22].

New Advances in Logic-Based Probabilistic Modeling by PRISM 121

of 0s and 1s in such way that i-th value is 1 when Ai is true and 0 otherwise.
Thus the sample space, F ’s all truth value assignments, is represented by a set
of infinite vectors ΩF =

∏∞
i=1{0, 1}i.

We next introduce finite probability measures P
(n)
F on Ω

(n)
F =

∏n
i=1{0, 1}i

(n = 1, 2, . . .). We choose 2n real numbers p
(n)
ν for each n such that 0 ≤ p

(n)
ν ≤ 1

and
∑

ν∈Ω
(n)
F

p
(n)
ν = 1. We put P

(n)
F ({ν}) = p

(n)
ν for ν = (x1, . . . , xn) ∈ Ω

(n)
F ,

which defines a finite probability measure P
(n)
F on Ω

(n)
F in an obvious way. p

(n)
ν =

p
(n)
(x1,...,xn) is a probability that Ax1

1 ∧· · ·∧Axn
n is true where Ax = A (when x = 1)

and Ax = ¬A (when x = 0).
We here require that the compatibility condition below hold for the p

(n)
ν s:

∑
xn+1∈{0,1} p

(n+1)
(x1,...,xn,xn+1)

= p
(n)
(x1,...,xn).

It follows from the compatibility condition and Kolmogorov’s extension theo-
rem [22] that we can construct a probability measure on ΩF by merging the
family of finite probability measures P

(n)
F (n = 1, 2, . . .). That is, there uniquely

exists a probability measure PF on the minimum σ-algebra F that contains
subsets of ΩF of the form

[Ax1
1 ∧ · · · ∧ Axn

n]F
def= {ν | ν = (x1, x2, . . . , xn, ∗, ∗, . . .) ∈ ΩF , ∗ is either 1 or 0}

such that PF is an extension of each P
(n)
F (n = 1, 2, . . .):

PF ([Ax1
1 ∧ · · · ∧ Axn

n]F) = p
(n)
(x1,...,xn) .

In this construction of PF , it must be emphasized that the choice of P
(n)
F is

arbitrary as long as they satisfy the compatibility condition.
Having constructed a probability space (ΩF ,F , PF), we can now consider

each ground atom Ai in F as a random variable that takes 1 (true) or 0 (false).
We introduce a probability function PF (A1 = x1, . . . , An = xn) = PF ([Ax1

1 ∧
· · · ∧ Axn

n]F). We here use, for notational convenience, PF both as the probabil-
ity function and as the corresponding probability measure. We call PF a base
distribution for DB .

Extending PF to PDB : Next, let us consider an enumeration B1, B2, . . . of
atoms appearing in DB . Note that it necessarily includes some enumeration of F .
Also let ΩDB =

∏∞
j=1{0, 1}j be the set of all interpretations (truth assignments)

for the Bis and MDB(ν) (ν ∈ ΩF) the least Herbrand model [19] of a program
R ∪ Fν where Fν is the set of atoms in F made true by the truth assignment ν.
We consider the following sets of interpretations for F and DB , respectively:

[By1
1 ∧ · · · ∧ Byn

n]F
def= {ν ∈ ΩF | MDB(ν) |= By1

1 ∧ · · · ∧ Byn
n },

[By1
1 ∧ · · · ∧ Byn

n]DB

def= {ω ∈ ΩDB | ω |= By1
1 ∧ · · · ∧ Byn

n }.

122 T. Sato and Y. Kameya

We remark that [·]F is measurable by PF . So define P
(n)
DB (n > 0) by:

P
(n)
DB ([By1

1 ∧ · · · ∧ Byn
n]DB) def= PF ([By1

1 ∧ · · · ∧ Byn
n]F).

It is easily seen from the definition of [·]F that [By1
1 ∧ · · · ∧ Byn

n ∧ Bn+1]F and
[By1

1 ∧ · · · ∧ Byn
n ∧ ¬Bn+1]F form a partition of [By1

1 ∧ · · · ∧ Byn
n]F , and hence

the following compatibility condition holds:
∑

yn+1∈{0,1} P
(n+1)
DB (

[
By1

1 ∧ · · · ∧ Byn
n ∧ B

yn+1
n+1

]
DB

)=P
(n)
DB ([By1

1 ∧ · · · ∧ Byn
n]DB).

Therefore, similarly to PF , we can construct a unique probability measure PDB

on the minimum σ-algebra containing open sets of ΩDB
8 which is an exten-

sion of P
(n)
DB and PF , and obtain a (-n infinite) joint distribution such that

PDB (B1 = y1, . . . , Bn = yn) = PF ([By1
1 ∧ · · · ∧ Byn

n]F) for any n > 0. The dis-
tribution semantics is the semantics that considers PDB as the denotation of
DB . It is a probabilistic extension of the standard least model semantics in logic
programming and gives a probability measure on the set of possible Herbrand
interpretations of DB [2,6].

Since [G] def= {ω ∈ ΩDB | ω |= G} is PDB -measurable for any closed formula
G built from the symbols appearing in DB , we can define the probability of G
as PDB ([G]). In particular, quantifiers are numerically approximated as we have

limn→∞ PDB ([G(t1) ∧ · · · ∧ G(tn)]) = PDB ([∀xG(x)]),
limn→∞ PDB ([G(t1) ∨ · · · ∨ G(tn)]) = PDB ([∃xG(x)]),

where t1, t2, . . . is an enumeration of all ground terms.
Note that properties of the distribution semantics described so far only assume

the disjoint condition. In the rest of this section, we may use PDB (G) instead
of PDB ([G]). Likewise PF (Ai1 = 1, Ai2 = 1, . . .) is sometimes abbreviated to
PF (Ai1 , Ai2 , . . .).

PRISM Programs: The distribution semantics has freedom in the choice of
P

(n)
F (n = 1, 2, . . .) as long as they satisfy the compatibility condition. In PRISM

which is an embodiment of the distribution semantics, the following requirements
are imposed on F and PF w.r.t. a program DB = F ∪ R:

– Each (ground) atom in F takes the form msw(i, n, v),9 which is interpreted
that “a switch named i randomly takes a value v at the trial n.” For each
switch i, a finite set Vi of possible values it can take is given in advance.10

– Each switch i chooses a value exclusively from Vi, i.e. for any ground terms i
and n, it holds that PF (msw(i, n, v1), msw(i, n, v2)) = 0 for every v1
= v2 ∈ Vi

and
∑

v∈Vi
PF (msw(i, n, v)) = 1.

– The choices of each switch made at different trials obey the same distribu-
tion, i.e. for each ground term i and any different ground terms n1
= n2,

8 Each component space {0, 1} of ΩDB carries the discrete topology.
9 msw is an abbreviation for multi-ary random switch.

10 The intention is that {msw(i, n, v) | v ∈ Vi} jointly represents a random variable Xi

whose range is Vi. In particular, msw(i, n, v) represents Xi = v.

New Advances in Logic-Based Probabilistic Modeling by PRISM 123

PF (msw(i, n1, v)) = PF (msw(i, n2, v)) holds. Hence we denote PF (msw(i, ·, v))
by θi,v and call it as a parameter of switch i.

– The choices of different switches or different trials are independent. The
joint distribution of atoms in F is decomposed as

∏
i,n PF (msw(i, n, vi1) =

xn
i1, . . . , msw(i, n, viKi) = xn

iKi
), where Vi = {vi1, vi2, . . . , viKi}.

The disjoint condition is automatically satisfied since msw/3, the only predicate
for F , is a built-in predicate and cannot be redefined by the user.

To construct PF that satisfies the conditions listed above, let A1, A2, . . . be
an enumeration of the msw atoms in F and put N

(m)
i,n

def= {k | msw(i, n, vik) ∈
{A1, . . . , Am}}. We have {A1, . . . , Am} =

⋃
i,n{msw(i, n, vik) | k ∈ N

(m)
i,n }. We

introduce a joint distribution P
(m)
F over {A1, . . . , Am} for each m > 0 which is

decomposed as∏
i,n:N

(m)
i,n �=φ

P
(m)
i,n

(∧
k∈N

(m)
i,n

msw(i, n, vik) = xn
ik

)
where

P
(m)
i,n

⎛

⎜⎝
∧

k∈N
(m)
i,n

msw(i, n, vik) = xn
ik

⎞

⎟⎠

def=

⎧
⎪⎨

⎪⎩

θi,vik
if xn

ik = 1, xn
ik′ = 0 (k′
= k)

1 −∑
k∈N

(m)
i,n

θi,vik
if xn

ik = 0 for every k ∈ N
(m)
i,n

0 otherwise.

P
(m)
F obviously satisfies the second and the third conditions. Besides the compat-

ibility condition holds for the family P
(m)
F (m = 1, 2, . . .). Hence PDB is definable

for every DB based on {P (m)
F | m = 1, 2, . . .}.

We remark that the msw atoms can be considered as a syntactic specialization
of assumables in PHA (probabilistic Horn abduction) [23] or atomic choices in
ICL (independent choice logic) [24] (see also Chapter 9 in this volume), but
without imposing restrictions on modeling itself. We also point out that there
are notable differences between PRISM and PHA/ICL. First unlike PRISM,
PHA/ICL has no explicitly defined infinite probability space. Second the role of
assumptions differs in PHA/ICL. While the assumptions in Subsection 2.2 are
introduced just for the sake of computational efficiency and have no role in the
definability of semantics, the assumptions made in PHA/ICL are indispensable
for their language and semantics.

Program Example: As an example of a PRISM program, let us consider a left-
to-rightHMM described in Fig. 1. This HMM has four states {s0, s1, s2, s3}where
s0 is the initial state and s3 is the final state. In each state, the HMM outputs a
symbol either ‘a’ or ‘b’. The program for this HMM is shown in Fig. 2. The first
four clauses in the programare called declarations wheretarget(p/n) declares that
the observable event is represented by the predicate p/n, and values(i, Vi) says
that Vi is a list of possible values the switch i can take (a values declaration can

124 T. Sato and Y. Kameya

s1 s2 s3

{a,b} {a,b} {a,b}

s0

{a,b}

Fig. 1. Example of a left-to-right HMM with four states

target(hmm/1).

values(tr(s0),[s0,s1]).

values(tr(s1),[s1,s2]).

values(tr(s2),[s2,s3]).

values(out(_),[a,b]).

hmm(Cs):- hmm(0,s0,Cs).

hmm(T,s3,[C]):- msw(out(s3),T,C). % If at the final state:

% output a symbol and then terminate.

hmm(T,S,[C|Cs]):- S\==s3, % If not at the final state:

msw(out(S),T,C), % choose a symbol to be output,

msw(tr(S),T,Next), % choose the next state,

T1 is T+1, % Put the clock ahead,

hmm(T1,Next,Cs). % and enter the next loop.

Fig. 2. PRISM program for the left-to-right HMM, which uses msw/3

be seen as a ‘macro’ notation for a set of facts in F). The remaining clauses define
the probability distribution on the strings generatedby theHMM.hmm(Cs) denotes
a probabilistic event that the HMM generates a string Cs. hmm(T, S, Cs ′) denotes
that the HMM, whose state is S at time T , generates a substring Cs ′ from that
time on. The comments in Fig. 2 describe a procedural behavior of the HMM as a
string generator. It is important to note here that this program has no limit on the
string length, and therefore it implicitly contains countably infinite ground atoms.
Nevertheless, thanks to the distribution semantics, their infinite joint distribution
is defined with mathematical rigor.

One potentially confusing issue in our current implementation is the use of
msw(i, v), where the second argument is omitted from the original definition for
the sake of simplicity and efficiency. Thus, to run the program in Fig. 2 in
practice, we need to delete the second argument in msw/3 and the first argument
in hmm/3, i.e. the ‘clock’ variables T and T1 accordingly. When there are multiple
occurrences of msw(i, v) in a proof tree, we assume by default that their original
second arguments differ and their choices, though they happened to be the same,
v, are made independently.11 In the sequel, we will use msw/2 instead of msw/3.

11 As a result P (msw(i, v)∧ msw(i, v)) is computed as {P (msw(i, v))}2 which makes the
double occurrences of the same atom unequivalent to its single occurrence. In this
sense, the current implementation of PRISM is not purely logical.

New Advances in Logic-Based Probabilistic Modeling by PRISM 125

E1 = m(out(s0), a) ∧ m(tr(s0), s0) ∧ m(out(s0), b) ∧ m(tr(s0), s0) ∧ m(out(s0), b)

∧ m(tr(s0), s1) ∧ m(out(s1), b) ∧ m(tr(s1), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s3)

∧ m(out(s3), a)
E2 = m(out(s0), a) ∧ m(tr(s0), s0) ∧ m(out(s0), b) ∧ m(tr(s0), s1) ∧ m(out(s1), b)

∧ m(tr(s1), s1) ∧ m(out(s1), b) ∧ m(tr(s1), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s3)

∧ m(out(s3), a)
...

E6 = m(out(s0), a) ∧ m(tr(s0), s1) ∧ m(out(s1), b) ∧ m(tr(s1), s2) ∧ m(out(s2), b)

∧ m(tr(s2), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s2) ∧ m(out(s2), b) ∧ m(tr(s2), s3)

∧ m(out(s3), a)

Fig. 3. Six explanations for hmm([a, b, b, b, b, a]). Due to the space limit, the predicate
name msw is abbreviated to m.

2.2 Realizing Generality with Efficiency

Explanations for Observations: So far we have been taking a model-theoretic
approach to define the language semantics where an interpretation (a possible
world) is a fundamental concept. From now on, to achieve efficient probabilistic
inference, we take a proof-theoretic view and introduce the notion of explanation.
Let us consider again a PRISM program DB = F ∪R. For a ground goal G, we
can obtain G ⇔ E1 ∨E2 ∨ · · · ∨EK by logical inference from the completion [25]
of R where each Ek (k = 1, . . . , K) is a conjunction of switches (ground atoms
in F). We sometimes call G an observation and call each Ek an explanation for
G. For instance, for the goal G = hmm([a, b, b, b, b, a]) in the HMM program, we
have six explanations shown in Fig. 3.

Intuitively finding explanations simulates the behavior of an HMM as a string
analyzer, where each explanation corresponds to a state transition sequence. For
example, E1 indicates the transitions s0 → s0 → s0 → s1 → s2 → s3. It
follows from the conditions on PF of PRISM programs that the explanations
E1, . . . , E6 are all exclusive to each other (i.e. they cannot be true at the same
time), so we can compute the probability of G by PDB (G) = PDB (

∨6
k=1 Ek) =∑6

k=1 PDB (Ek). This way of probability computation would be satisfactory if
the number of explanations is relatively small, but in general it is intractable. In
fact, for left-to-right HMMs, the number of possible explanations (state transi-
tions) is T−2CN−2, where N is the number of states and T is the length of the
input string.12

12 This is because in each transition sequence, there are (N−2) state changes in (T−2)
time steps since there are two constraints — each sequence should start from the
initial state, and the final state should appear only once at the last of the sequence.
For fully-connected HMMs, on the other hand, it is easily seen that the number of
possible state transitions is O(NT).

126 T. Sato and Y. Kameya

hmm([a, b, b, b, b, a]) ⇔ hmm(0, s0, [a, b, b, b, b, a])

hmm(0, s0, [a, b, b, b, b, a]) ⇔ m(out(s0), a) ∧ m(tr(s0), s0) ∧ hmm(1, s0, [b, b, b, b, a])

∨ m(out(s0), a) ∧ m(tr(s0), s1) ∧ hmm(1, s1, [b, b, b, b, a])

hmm(1, s0, [b, b, b, b, a]) ⇔ m(out(s0), b) ∧ m(tr(s0), s0) ∧ hmm(2, s0, [b, b, b, a])

∨ m(out(s0), b) ∧ m(tr(s0), s1) ∧ hmm(2, s1, [b, b, b, a])‡
hmm(2, s0, [b, b, b, a]) ⇔ m(out(s0), b) ∧ m(tr(s0), s1) ∧ hmm(3, s1, [b, b, a])

hmm(1, s1, [b, b, b, b, a]) ⇔ m(out(s1), b) ∧ m(tr(s1), s1) ∧ hmm(2, s1, [b, b, b, a])‡
∨ m(out(s1), b) ∧ m(tr(s1), s2) ∧ hmm(2, s2, [b, b, b, a])

hmm(2, s1, [b, b, b, a])† ⇔ m(out(s1), b) ∧ m(tr(s1), s1) ∧ hmm(3, s1, [b, b, a])

∨ m(out(s1), b) ∧ m(tr(s1), s2) ∧ hmm(3, s2, [b, b, a])

hmm(3, s1, [b, b, a]) ⇔ m(out(s1), b) ∧ m(tr(s1), s2) ∧ hmm(4, s2, [b, a])

hmm(2, s2, [b, b, b, a]) ⇔ m(out(s2), b) ∧ m(tr(s2), s2) ∧ hmm(3, s2, [b, b, a])

hmm(3, s2, [b, b, a]) ⇔ m(out(s2), b) ∧ m(tr(s2), s2) ∧ hmm(4, s2, [b, a])

hmm(4, s2, [b, a]) ⇔ m(out(s2), b) ∧ m(tr(s2), s3) ∧ hmm(5, s3, [a])

hmm(5, s3, [a]) ⇔ m(out(s3), a)

Fig. 4. Factorized explanations for hmm([a, b, b, b, b, a])

Efficient Probabilistic Inference by Dynamic Programming: We know
that there exist efficient algorithms for probabilistic inference for HMMs which
run in O(T) time — forward (backward) probability computation, the Viterbi al-
gorithm, the Baum-Welch algorithm [13]. Their common computing strategy is dy-
namic programming. That is, we divide a problem into sub-problems recursively
with memoizing and reusing the solutions of the sub-problems which appear re-
peatedly. To realize such dynamic programming for PRISM programs, we adopt a
two-staged procedure. In the first stage, we run tabled search to find all explana-
tions for an observationG, in which the solutions for a subgoalA are registered into
a table so that they are reused for later occurrences of A. In the second stage, we
compute probabilities while traversing an AND/OR graph called the explanation
graph for G, extracted from the table constructed in the first stage.13

For instance from the HMM program, we can extract factorized iff formulas
from the table as shown in Fig. 4 after the tabled search for hmm([a, b, b, b, b, a]).
Each iff formula takes the form A ⇔ E′

1 ∨ · · · ∨ E′
K where A is a subgoal (also

called a tabled atom) and E′
k (called a sub-explanation) is a conjunction of sub-

goals and switches. These iff formulas are graphically represented as the expla-
nation graph for hmm([a, b, b, b, b, a]) as shown in Fig. 5.

As illustrated in Fig. 4, in an explanation graph sub-structures are shared
(e.g. a subgoal marked with † is referred to by two subgoals marked with ‡).
Besides, it is reasonably expected that the iff formulas can be linearly ordered
13 Our approach is an instance of a general scheme called PPC (propositionalized prob-

ability computation) which computes the sum-product of probabilities via proposi-
tional formulas often represented as a graph. Minimal AND/OR graphs proposed in
[26] are another example of PPC specialized for BNs.

New Advances in Logic-Based Probabilistic Modeling by PRISM 127

m(tr(s1),s1)

m(tr(s1),s2)

m(tr(s0),s1)

m(tr(s0),s0)

m(tr(s0),s1)

m(out(s3),a)

hmm([a,b,b,b,b,a]):

hmm(0,s0,[a,b,b,b,b,a])

m(out(s0),a)

m(out(s0),b)

m(out(s1),b)

m(out(s2),b)

m(out(s0),a)

m(out(s0),b)

m(out(s1),b)

m(out(s2),b)

m(out(s0),b)

m(out(s1),b)

m(out(s2),b)

m(out(s1),b)

m(out(s1),b)

m(tr(s0),s1)

m(tr(s1),s1)

m(tr(s1),s2)

m(tr(s2),s2)

m(tr(s2),s3)

m(tr(s1),s2)

m(tr(s2),s2)

m(tr(s0),s0)

[source] [sink]

hmm(1,s0,[b,b,b,b,a])

hmm(2,s0,[b,b,b,a])

hmm(1,s1,[b,b,b,b,a])

hmm(2,s1,[b,b,b,a])

hmm(2,s2,[b,b,b,a]):

hmm(3,s1,[b,b,a])

hmm(4,s2,[b,a])

hmm(5,s3,[a])

hmm(1,s0,[b,b,b,b,a]):

hmm(2,s0,[b,b,b,a]):

hmm(1,s1,[b,b,b,b,a]):

hmm(2,s1,[b,b,b,a])

hmm(2,s2,[b,b,b,a])

hmm(3,s1,[b,b,a])

hmm(4,s2,[b,a]):

hmm(5,s3,[a]):

hmm(2,s1,[b,b,b,a]):

hmm(3,s1,[b,b,a]):

hmm(3,s2,[b,b,a])

hmm(3,s2,[b,b,a])

hmm(4,s2,[b,a])

hmm(0,s0,[a,b,b,b,b,a]):

hmm(3,s2,[b,b,a]):

Label of the subgraph

Fig. 5. Explanation graph

with respect to the caller-callee relationship in the program. These properties
conjunctively enable us to compute probabilities in a dynamic programming
fashion. For example, with an iff formula A ⇔ E′

1 ∨ · · · ∨ E′
K such that E′

k =
Bk1∧Bk2∧· · ·∧BkMk

, PDB (A) is computed as
∑K

k=1

∏Mk

j=1 PDB (Bkj) if E′
1, . . . ,

E′
6 are exclusive and Bkj are independent. In the later section, we call PDB (A)

the inside probability of A. The required time for computing PDB (A) is known
to be linear in the size of the explanation graph, and in the case of the HMM
program, we can see from Fig. 5 that it is O(T), i.e. linear in the length of the
input string. Recall that this is the same computation time as that of the forward
(or backward) algorithm. Similar discussions can be made for the other types of
probabilistic inference, and hence we can say that probabilistic inference with
PRISM programs is as efficient as the ones by specific-purpose algorithms.

Assumptions for Efficient Probabilistic Inference: Of course, our effi-
ciency depends on several assumptions. We first assume that obs(DB), a count-
able subset of ground atoms appearing in the clause head, is given as a set
of observable atoms. In the HMM program, we may consider that obs(DB) =
{hmm([o1, o2, . . . , oT]) | ot ∈ {a, b}, 1 ≤ t ≤ T, T ≤ Tmax} for some arbitrary finite
Tmax. Then we roughly summarize the assumptions as follows (for the original
definitions, please consult [6]):

Independence condition:
For any observable atom G ∈ obs(DB), the atoms appearing in the sub-
explanations in the explanation graph for G are all independent. In the
current implementation of msw(i, v), this is unconditionally satisfied.

Exclusiveness condition:
For any observable atom G ∈ obs(DB), the sub-explanations for each sub-
goal of G are exclusive to each other. The independence condition and the

128 T. Sato and Y. Kameya

exclusiveness condition jointly make the sum-product computation of prob-
abilities possible.

Finiteness condition:
For any observable atom G ∈ obs(DB), the number of explanations for G is
finite. Without this condition, probability computation could be infinite.

Uniqueness condition:
Observable atoms are exclusive to each other, and the sum of probabilities
of all observable atoms is equal to unity (i.e.

∑
G∈obs(DB) PDB (G) = 1). The

uniqueness condition is important especially for EM learning in which the
training data is given as a bag of atoms from obs(DB) which are observed
as true. That is, once we find Gt as true at t-th observation, we immediately
know from the uniqueness condition that the atoms in obs(DB) other than
Gt are false, and hence in EM learning, we can ignore the statistics on
the explanations for these false atoms. This property underlies a dynamic-
programming-based EM algorithm in PRISM [6].

Acyclic condition:
For any observable atom G ∈ obs(DB), there is no cycle with respect to the
caller-callee relationship among the subgoals for G. The acyclicity condition
makes dynamic programming possible.

It may look difficult to satisfy all the conditions listed above. However, if we
keep in mind to write a terminating program that generates the observations
(by chains of choices made by switches), with care for the exclusiveness among
disjunctive paths, these conditions are likely to be satisfied. In fact not only
popular generative models such as HMMs, BNs and PCFGs but unfamiliar ones
that have been little explored [27,28] can naturally be written in this style.

Further Issues: In spite of the general prospects of generative modeling, there
are two cases where the uniqueness condition is violated and the PRISM’s se-
mantics is undefined. We call the first one “probability-loss-to-infinity,” in which
an infinite generation process occurs with a non-zero probability.14 The second
one is called “probability-loss-to-failure,” in which there is a (finite) generation
process with a non-zero probability that fails to yield any observable outcome.
In Section 5, we discuss this issue, and describe a new learning algorithm that
can deal with the second case.

Finally we address yet another view that takes explanation graphs as Boolean
formulas consisting of ground atoms.15 From this view, we can say that tabled
search is a propositionalization procedure in the sense that it receives first-order
expressions (a PRISM program) and an observation G as input, and generates
as output a propositional AND/OR graph. In Section 6, we discuss advantages
of such a propositionalization procedure.

14 The HMM program in Fig. 2 satisfies the uniqueness condition provided the proba-
bility of looping state transitions is less than one, since in that case the probability
of all infinite sequence becomes zero.

15 Precisely speaking, while switches must be ground, subgoals can be an existentially
quantified atom other than a ground atom.

New Advances in Logic-Based Probabilistic Modeling by PRISM 129

YnY2Y1

X1 X2 Xn

Fig. 6. BN for an HMM

3 Belief Propagation

3.1 Belief Propagation Beyond HMMs

In this section, we show that PRISM can subsume BP (belief propagation).
What we actually show is that BP is nothing but a special case of generalized
IO (inside-outside) probability computation16 in PRISM applied to a junction
tree expressed logically [6,10]. Symbolically we have

BP = the generalized IO computation + junction tree.

As far as we know this is the first link between BP and the IO algorithm. It
looks like a mere variant of the well-known fact that BP applied to HMMs equals
the forward-backward algorithm [31] but one should not miss the fundamental
difference between HMMs and PCFGs.

Recall that an HMM deals with fixed-size sequences probabilistically gener-
ated from a finite state automaton, which is readily translated into a BN like
the one in Fig. 6 where Xi’s stand for hidden states and Yi’s stand for out-
put symbols respectively. This translation is possible solely because an HMM
has a finite number of states. Once HMMs are elevated to PCFGs however, a
pushdown automaton for an underlying CFG has infinitely many stack states
and it is by no means possible to represent them in terms of a BN which has
only finitely many states. So any attempt to construct a BN that represents a
PCFG and apply BP to it to upgrade the correspondence between BP and the
forward-backward algorithm is doomed to fail. We cannot reach an algorithmic
link between BNs and PCFGs this way.

We instead think of applying IO computation for PCFGs to BNs. Or more
precisely we apply the generalized IO computation, a propositionally reformu-
lated IO computation for PRISM programs [6], to a junction tree described
logically as a PRISM program. Then we can prove that what the generalized IO
computation does for the program is identical to what BP does on the junction
tree [10], which we explain next.
16 Wang et al. recently proposed the generalized inside-outside algorithm for a lan-

guage model that combines a PCFG, n-gram and PLSA (probabilistic latent se-
mantic analysis) [29]. It extends the standard IO algorithm but seems an instance
of the gEM algorithm used in PRISM [30]. In fact such combination can be straight-
forwardly implemented in PRISM by using appropriate msw switches. For example
an event of a preterminal node A’s deriving a word w with two preceding words (tri-
gram), u and v, under the semantic content h is represented by msw([u,v,A,h],w).

130 T. Sato and Y. Kameya

3.2 Logical Junction Tree

Consider random variables X1, . . . , XN indexed by numbers 1, . . . , N . In the
following we use Greek letters α, β, . . . as a set of variable indices. Put α =
{n1, . . . , nk} (⊆ {1, . . . , N}). We denote by Xα the set (vector) of variables
{Xn1 , . . . , Xnk

} and also by the lower case letter xα the corresponding set (vec-
tor) of realizations of each variable in Xα.

A junction tree for a BN defining a distribution PBN (X1 = x1, . . . , XN =
xN) =

∏N
i=1 PBN (Xi = xi | Xπ(i) = xπ(i)), abbreviated to PBN (x1, . . . , xN),

where π(i) denotes the indices of parent nodes of Xi, is a tree T = (V, E)
satisfying the following conditions [11,12,32].

– A node α (∈ V) is a set of random variables Xα. An edge connecting Xα

and Xβ is labeled by Xα∩β. We use α instead of Xα etc to identify the node
when the context is clear.

– A potential φα(xα) is associated with each node α. It is a function consist-
ing of a product of zero or more CPTs (conditional probability tables) like
φα(xα) =

∏
{j}∪π(j)⊆α PBN (Xj = xj | Xπ(j) = xπ(j)). It must hold that∏

α∈V φα(xα) = PBN (x1, . . . , xN).
– RIP (running intersection property) holds which dictates that if nodes α and

β have a common variable in the tree, it is contained in every node on the
path between α and β.

After introducing junction trees, we show how to encode a junction tree T in
a PRISM program. Suppose a node α has K (K ≥ 0) child nodes β1, . . . , βK and
a potential φα(xα). We use a node atom ndα(Xα) to assert that the node α is
in a state Xα and δ to denote the root node of T . Introduce for every α ∈ V Wα

(weight clause for α) and Cα (node clause for α), together with the top clause
Ctop by

Wα : weightα(Xα) ⇐ ∧
PBN (xj |xπ(j))∈φα

msw(bn(j, Xπ(j)), Xj)
Cα : ndα(Xα) ⇐ weightα(Xα) ∧ ndβ1(Xβ1) ∧ · · · ∧ ndβK (XβK)

Ctop : top ⇐ ndδ(Xδ).

Here the Xj ’s denote logical variables, not random variables (we follow Prolog
convention). Wα encodes φα as a conjunction of msw(bn(j, Xπ(j)), Xj)s represent-
ing CPT PBN (Xj = xj | Xπ(j) = xπ(j)). Cα is an encoding of the parent-child
relation in T . Ctop is a special clause to distinguish the root node δ in T .

Since we have (βi \ α) ∩ (βj \ α) = φ if i
= j thanks to the RIP of T , we can
rewrite X(

�K
i=1 βi)\α, the set of variables appearing only in the right hand-side

of Cα, to a disjoint union
⋃K

i=1 Xβi\α. Hence Cα is logically equivalent to

ndα(Xα) ⇐
weightα(Xα) ∧ ∃Xβ1\αndβ1(Xβ1) ∧ · · · ∧ ∃XβK\αndβK (XβK). (1)

Let FT be the set of all ground msw atoms of the form msw(bn(i, xπ(i)), xi). Give
a joint distribution PFT (·) over FT so that PFT (msw(bn(i, xπ(i)), xi)), the proba-
bility of msw(bn(i, xπ(i)), xi) being true, is equal to PBN (Xi = xi | Xπ(i) = xπ(i)).

New Advances in Logic-Based Probabilistic Modeling by PRISM 131

X 5

X 4

X 1 X 3

X 2

BN0 Junction tree T0

P(x 2 | x 4)
X 2, X 4

P(x 5)
P(x 4 | x 5)

X 4, X 5

X 4

X2

P(x 2 | x 3)
X 2, X 3

P(x 1 | x 2)
X 1=a, X 2

X2

Fig. 7. Bayesian network BN0 and a junction tree for BN0

RT0

������
�����

top⇐ nd{4,5}(X4,X5)
nd{4,5}(X4,X5)⇐ msw(bn(5, []), X5) ∧ msw(bn(4, [X5]),X4) ∧ nd{2,4}(X2,X4)
nd{2,4}(X2,X4)⇐ msw(bn(2, [X4]), X2) ∧ nd{1,2}(X1, X2) ∧ nd{2,3}(X2,X3)
nd{2,3}(X2,X3)⇐ msw(bn(3, [X2]), X3)
nd{1,2}(X1,X2)⇐ msw(bn(1, [X2]), X1) ∧X1 = a

Fig. 8. Logical description of T0

Sampling from PFT (·) is equivalent to simultaneous independent sampling
from every PBN (Xi = xi | Xπ(i) = xπ(i)) given i and xπ(i). It yields a set S of
true msw atoms. We can prove however that S uniquely includes a subset SBN =
{msw(bn(i, xπ(i)), xi) | 1 ≤ i ≤ N} that corresponds to a draw from the joint
distribution PBN (·).

Finally define a program DBT describing the junction tree T as a union
FT ∪ RT having the base distribution PFT (·):

DBT = FT ∪ RT where RT = {Wα, Cα | α ∈ V } ∪ {Ctop}. (2)

Consider the Bayesian network BN0 and a junction tree T0 for BN0 shown in
Fig. 7. Suppose evidence X1 = a is given. Then RT0 contains node clauses listed
in Fig. 8.

3.3 Computing Generalized Inside-Outside Probabilities

After defining DBT which is a logical encoding of a junction tree T , we demon-
strate that the generalized IO probability computation for DBT with a goal top
by PRISM coincides with BP on T . Let PDBT

(·) be the joint distribution defined
by DBT . According to the distribution semantics of PRISM, it holds that for
any ground instantiations xα of Xα,

132 T. Sato and Y. Kameya

PDBT
(weightα(xα)) = PDBT

(∧
PBN (xj |xπ(j))∈φα

msw(bn(j, xπ(j)), xj)
)

(3)

=
∏

PBN (xj|xπ(j))∈φα
PF (msw(bn(j, xπ(j)), xj)) (4)

=
∏

PBN (xj|xπ(j))∈φα
PBN (xj | xπ(j))

= φα(xα).

In the above transformation, (3) is rewritten to (4) using the fact that condi-
tional distributions {PFT (xj | xπ(j))} contained in φα are pairwise different and
msw(bn(j, xπ(j)), xj)) and msw(bn(j′, xπ(j′)), xj′)) are independent unless j = j′.

We now transform PDBT
(ndα(xα)). Using (1), we see it holds that between

the node α and its children β1, . . . , βK

PDBT (ndα(xα))

= φα(xα) · PDBT

(∧K
i=1 ∃xβi\αndβi(xβi)

)

= φα(xα) ·∏K
i=1 PDBT

(∃xβi\αndβi(xβi)
)

(5)

= φα(xα) ·∏K
i=1

∑
xβi\α

PDBT
(ndβi(xβi)). (6)

The passage from (5) to (6) is justified by Lemma 3.3 in [10]. We also have

PDBT
(top) = 1 (7)

because top is provable from S ∪ RT where S is an arbitrary sample obtained
from PFT .

Let us recall that in PRISM, two types of probability are defined for a ground
atom A. The first one is inside(A), the generalized inside probability of A, defined
by inside(A) def= PDB (A). It is just the probability of A being true. (6) and (7)
give us a set of recursive equations to compute generalized inside probabilities
of ndα(xα) and top in a bottom-up manner [6].

The second one is the generalized outside probability of A with respect to a
goal G, denoted by outside(G ; A), which is more complicated than inside(A),
but can also be recursively computed in a top-down manner using generalized
inside probabilities of other atoms [6]. We here simply list the set of equations
to compute generalized outside probabilities with respect to top in DBT . We
describe the recursive equation between a child node βj and its parent node α
in (9).

outside(top ; top) = 1 (8)
outside(top ; ndβj(xβj))

=
∑

xα\βj

⎛

⎝φα(xα) · outside(top ; ndα(xα))
K∏

i�=j

∑

xβi\α

inside(ndβi(xβi))

⎞

⎠ . (9)

New Advances in Logic-Based Probabilistic Modeling by PRISM 133

3.4 Marginal Distribution

The important property of generalized inside and outside probabilities is that
their product, inside(A) · outside(G ; A), gives the expected number of occur-
rences of A in a(-n SLD) proof of G from msws drawn from PF . In our case
where A = ndα(xα) and G = top, each node atom occurs at most once in an
SLD proof of top. Hence inside(A) · outside(top ; A) is equal to the probability
that top has a(-n SLD) proof containing A from RT ∪ S where S is a sample
from PFT . In this proof, not all members of S are relevant but only a subset
SBN (x1, . . . , xN) = {msw(bn(i, xπ(i)), xi) | 1 ≤ i ≤ N} which corresponds to a
sample (x1, . . . , xN) from PBN (and vice versa) is relevant. By analyzing the
proof, we know that sampled values xα of Xα appearing in SBN is identical to
those in A = ndα(xα) in the proof. We therefore have

inside(A) · outside(top ; A)
= Probability of sampling SBN (x1, . . . , xN) from PFT such that

SBN (x1, . . . , xN) ∪ RT � A

= Probability of sampling (x1, . . . , xN) from PBN (·) such that
SBN (x1, . . . , xN) ∪ RT � A

= Probability of sampling (x1, . . . , xN) from PBN (·) such that
(x1, . . . , xN)α = xα in A = ndα(xα)

= Probability of sampling xα from PBN (·)
= PBN (xα).

When some of the Xi’s in the BN are observed and fixed as evidence e, a
slight modification of the above derivation gives inside(A) · outside(top ; A) =
PBN (xα, e). We summarize this result as a theorem.

Theorem 1. Suppose DBT is the PRISM program describing a junction tree T
for a given BN. Let e be evidence. Also let α be a node in T and A = ndα(xα)
an atom describing the state of the node α. We then have

inside(A) · outside(top ; A) = PBN (xα, e).

3.5 Deriving BP Messages

We now introduce messages which represent messages in BP value-wise in terms
of inside-outside probabilities of ground node atoms. Let nodes β1, . . . , βK be
the child nodes of α as before and γ be the parent node of α in the junction tree
T . Define a child-to-parent message by

msgα	γ(xα∩γ) def=
∑

xα\γ
inside(ndα(xα))

=
∑

xα\γ
PDBT

(ndα(xα)).

The equation (6) for generalized inside probability is rewritten in terms of child-
to-parent message as follows.

134 T. Sato and Y. Kameya

msgα	γ(xα∩γ) =
∑

xα\γ
PDBT

(ndα(xα))

=
∑

xα\γ

(
φα(xα) ·∏K

i=1 msgβi	α(xβi∩α)
)

. (10)

Next define a parent-to-child message from the parent node α to the j-th child
node βj by

msgα	βj(xα∩βj)
def= outside(top ; ndβj (xβj)).

Note that outside(top ; ndβj (xβj)) looks like a function of xβj , but in reality it
is a function of xβj ’s subset, xα∩βj by (9). Using parent-to-child messages, we
rewrite the equation (9) for generalized outside probability as follows.

msgα	βj(xα∩βj)
= outside(top ; ndβj(xβj))

=
∑

xα\βj

⎛

⎝φα(xα) · msgγ	α(xγ∩α)
K∏

i�=j

msgβi	α(xβi∩α)

⎞

⎠ . (11)

When α is the root node δ in T , since outside(top ; top) = 1, we have

msgδ	βj (xδ∩βj) =
∑

xδ\βj

⎛

⎝φδ(xδ) ·
K∏

i�=j

msgβi	α(xβi∩α)

⎞

⎠ . (12)

The equations (10), (11) and (12) are identical to the equations for BP on T
(without normalization) where (10) specifies the collecting evidence step and
(11) and (12) specify the distributing evidence step respectively [12,11,33]. So
we conclude

Theorem 2. The generalized IO probability computation for DBT describing a
junction tree T with respect to the top goal top by (2) coincides with BP on T .

Let us compute some messages in the case of the program in Fig. 8.

msg{4,5}	{2,4}(X4) = outside(top ; nd(X2, X4))
=
∑

X5
PDBT0

(nd(X4, X5))
=
∑

X5
PBN 0(X4 | X5)PBN 0(X5)

= PBN 0(X4)
msg{1,2}	{2,4}(X2) = inside(nd(X1 = a, X2))

= PDBT0
(nd(X1 = a, X2))

= PBN 0(X1 = a | X2)
msg{2,3}	{2,4}(X2) =

∑
X3

inside(nd(X2, X3))
=
∑

X3
PDBT0

(nd(X2, X3))
=
∑

X3
PBN 0(X3 | X2)

= 1

New Advances in Logic-Based Probabilistic Modeling by PRISM 135

Using these messages we can confirm Theorem 1.

inside(nd(X2, X4)) · outside(top ; nd(X2, X4))
= PBN 0(X2 | X4) · msg{4,5}	{2,4}(X4) · msg{1,2}	{2,4}(X2) · msg{2,3}	{2,4}(X2)
= PBN 0(X2 | X4) · PBN 0(X4) · PBN 0(X1 = a | X2) · 1
= PBN 0(X1 = a, X2, X4).

Theorem 2 implies that computation of generalized IO probabilities in PRISM
can be used to implement the junction tree algorithm. If we do so, we will first
unfold a junction tree to a boolean combination of ground node atoms and msw
atoms which propositionally represents the junction tree and then compute re-
quired probabilities from that boolean combination. This approach is a kind of
propositionalized BN computation, a recent trend in the Bayesian network com-
putation [17,26,34,35] in which BNs are propositionally represented and com-
puted. We implemented the junction tree algorithm based on generalized IO
probability computation. We compare the performance of our implementation
with ACE, one of the propositionalized BN computation systems in the next
section.

4 Performance Data

In this section we compare the computing performance of PRISM with two re-
cent systems, Dyna [15] and ACE [16,17,18]. Unlike PRISM, they are not a
general-purpose programming system that came out of research in PLL (prob-
abilistic logic learning) or SRL (statistical relational learning). Quite contrary
they are developed with their own purpose in a specific domain, i.e. statistical
NLP (natural language processing) in the case of Dyna and fast probabilistic
inference for BNs in the case of ACE. So our comparison can be seen as one be-
tween a general-purpose system and a specific-purpose system. We first measure
the speed of probabilistic inference for a PCFG by PRISM and compare it with
Dyna.

4.1 Computing Performance with PCFGs

Dyna System: Dyna17 is a high-level declarative language for probabilistic
modeling in NLP [15]. The primary purpose of Dyna is to facilitate various
types of dynamic programming found in statistical NLP such as IO probability
computation and Viterbi parsing to name a few. It is similar to PRISM in the
sense that both can be considered as a probabilistic extension of a logic pro-
gramming language but PRISM takes a top-down approach while Dyna takes
a bottom-up approach in their evaluation. Also implementations differ. Dyna
programs are compiled to C++ code (and then to native code18) while PRISM
17 http://www.dyna.org/
18 In this comparison, we added --optimize option to the dynac command, a batch

command for compiling Dyna programs into native code.

136 T. Sato and Y. Kameya

programs are compiled to byte code for B-Prolog.19 We use in our experiment
PRISM version 1.10 and Dyna version 0.3.9 on a PC having Intel Core 2 Duo
(2.4GHz) and 4GB RAM. The operating system is 64-bit SUSE Linux 10.0.

Computing Sentence Probability and Viterbi Parsing: To compare the
speed of various PCFG-related inference tasks, we have to prepare benchmark
data, i.e. a set of sentences and a CFG (so-called a tree-bank grammar [36]) for
them. We use the WSJ portion of Penn Treebank III20 which is widely recognized
as one of the standard corpora in the NLP community [37].

We converted all 49,208 raw sentences in the WSJ sections 00–24 to POS (part
of speech) tag sequences (the average length is about 20.97) and at the same time
extract 11,534 CFG rules from the labeled trees. These CFG rules are further
converted to Chomsky normal form21 to yield 195,744 rules with 5,607 nonter-
minals and 38 terminals (POS tags). Finally by giving uniform probabilities to
CFG rules, we obtain a PCFG we use in the comparison.

Two types of PRISM program are examined for the derived PCFG. In the for-
mer, which is referred to as PRISM-A here, an input POS tag sequence t1, . . . , tN
is converted into a set of ground atoms {input(0, t1, 1), . . . , input(N−1, tN , N)}
and supplied (by the “assert” predicate) to the program. Each input(d−1, t, d)
means that the input sentence has a POS tag t is at position d (1 ≤ d ≤ N).
The latter type, referred to as PRISM-D, is a probabilistic version of definite
clause grammars which use difference lists. Dyna is closer to PRISM-A since in
Dyna, we first provide the items equivalent to the above ground atoms to the
chart (the inference mechanism of Dyna is based on a bottom-up chart parser).
Compared to PRISM-A, PRISM-D incurs computational overhead due to the
use of difference list.

We first compared time for computing the probability of a sentence (POS tag
sequence) w.r.t. the derived PCFG using PRISM and Dyna. The result is plotted
in Fig. 9 (left). Here X-axis shows sentence length (up to 24 by memory limitation
of PRISM) and Y-axis shows the average time for probability computation22 of
randomly picked up 10 sentences. The graph clearly shows PRISM runs faster
than Dyna. Actually at length 21 (closest to the average length), PRISM-A runs
more than 10 times faster than Dyna.

We also conducted a similar experiment on Viterbi parsing, i.e. obtaining the
most probable parse w.r.t. the derived CFG. Fig. 9 (right) show the result, where
X-axis is the sentence length and Y-axis is the average time for Viterbi parsing
of randomly picked up 10 sentences. This time PRISM-A is slightly slower than
Dyna until length 13 but after that PRISM-A becomes faster than Dyna and
the speed gap seems steadily growing.

One may notice that Dyna has a significant speed-up in Viterbi parsing com-
pared to sentence probability computation while in PRISM the computation time
19 http://www.probp.com/
20 http://www.ldc.upenn.edu/
21 We used the Dyna version of the CKY algorithm presented in [15].
22 In the case of PRISM, the total computation time is the sum of the time for con-

structing the explanation graph and the time for computing the inside probability.

New Advances in Logic-Based Probabilistic Modeling by PRISM 137

Sentence probability computation Viterbi parsing

 0

 50

 100

 150

 200

 250

 300

 6 8 10 12 14 16 18 20 22 24

PRISM-D

PRISM-A

Dyna

(sec)

(words)
 0

 10

 20

 30

 40

 50

 60

 70

 6 8 10 12 14 16 18 20 22 24

PRISM-D

PRISM-A

Dyna

(sec)

(words)

Fig. 9. Comparison between PRISM and Dyna on the speed of PCFG-related inference
tasks

remains the same between these two inference tasks. This is because, in Viterbi
parsing, Dyna performs a best-first search which utilizes a priority-queue agenda.
On the other hand, the difference between PRISM-A and Dyna in sentence prob-
ability computation indicates the efficiency of PRISM’s basic search engine. Be-
sides, not surprisingly, PRISM-D runs three times slower than PRISM-A at the
average sentence length.

Thus in our experiment with a realistic PCFG, PRISM, a general-purpose
programming system, runs faster than or competitively with Dyna, a specialized
system for statistical NLP. We feel this is somewhat remarkable. At the same
time though, we observed PRISM’s huge memory consumption which might be
a severe problem in the future.23

4.2 Computing Performance with BNs

Next we measure the speed of a single marginal probability computation in BNs
by PRISM programs DBT described in Section 3.2 (hereafter called junction-tree
PRISM programs) and compare it with ACE [16,17,18].

ACE24 is a software package to perform probabilistic inference in a BN in
three steps. It first encodes the BN by CNF propositionally, then transforms the
CNF to yet another form d-DNNF (deterministic, decomposable negation normal

23 In an additional experiment using another computer with 16GB memory, we could
compute sentence probability for all of randomly picked up 10 sentences of length
43, but the sentences longer than 43 causes thrashing. It should be noted, however,
that the PRISM system did not crash as far as we observed.

24 http://reasoning.cs.ucla.edu/ace/

138 T. Sato and Y. Kameya

Table 1. Comparison between PRISM and ACE on the average computation time [sec]
for single marginal probabilities

Junction-tree PRISM ACE
Network #Nodes Trans. Cmpl. Run Cmpl. Read Run

Asia 8 0.1 0.03 0 0.53 0.14 0.02
Water 32 1.57 1.79 0.38 1.87 0.5 0.8
Mildew 35 6.48 11.2 12.5 4.27 1.95 3.42
Alarm 37 0.34 0.2 0.01 0.33 0.18 0.13
Pigs 441 2.52 9.38 5.38 2.48 0.57 1.95
Munin1 189 1.93 2.54 n/a (1) 2242 0.51 n/a (2)

Munin2 1,003 7.61 85.7 15 9.94 1.0 6.07
Munin3 1,044 8.82 70.3 15.9 8.12 0.95 4.11
Munin4 1,041 8.35 90.7 408 11.2 0.97 6.64

form) and finally extracts from the d-DNNF, a graph called AC (arithmetic
circuit). An AC is a directed acyclic graph in which nodes represent arithmetic
operations such as addition and multiplication. The extracted AC is used to
compute the marginal probability, given evidence. In compilation, we can make
the resulting Boolean formulas more compact than a junction tree by exploiting
the information in the local CPTs such as determinism (zero probabilities) and
parameter equality, and more generally, CSI (context-specific independence) [38].

We picked up benchmark data from Bayesian Network Repository (http://
www.cs.huji.ac.il/labs/compbio/Repository/). The network size ranges
from 8 nodes to 1,044 nodes. In this experiment, PRISM version 1.11 and ACE
2.0 are used and run by a PC having AMD Opteron254(2.8GHz) with 16GB
RAM on SUSE 64bit Linux 10.0. We implemented a Java translator from an
XMLBIF network specification to the corresponding junction-tree PRISM pro-
gram.25 For ACE, we used the default compilation option (and the most ad-
vanced) -cd06 which enables the method defined in [18].

Table 1 shows time for computing a single marginal P (Xi|e).26 For junction-
tree PRISM, the columns “Trans.,” “Cmpl.,” and “Run” mean respectively the
translation time from XMLBIF to junction-tree PRISM, the compilation time
from junction-tree PRISM to byte code of B-Prolog and the inference time. For
ACE, the column “Cmpl.” is compile time from an XBIF file to an AC wheres
the column “Read” indicates time to load the compiled AC onto memory. The
column “Run” shows the inference time. n/a (1) and n/a (2) in Munin1 means
PRISM ran out of memory and ACE stopped by run time error respectively.

25 In constructing a junction-tree, the elimination order basically follows the one spec-
ified in a *.num file in the repository. If such a *.num file does not exist, we used
MDO (minimally deficient order). In this process, entries with 0 probabilities in
CPTs are eliminated to shrink CPT size.

26 For ACE, the computation time for P (Xi | e) is averaged on all variables in the
network. For junction-tree PRISM, since it sometimes took too long a time, the
computation time is averaged on more than 50 variables for large networks.

New Advances in Logic-Based Probabilistic Modeling by PRISM 139

When the network size is small, there are cases where PRISM runs faster than
ACE, but in general PRISM does not catch up to ACE. One of the possible
reasons might be that while ACE thoroughly exploits CSI in a BN to optimize
computation, PRISM performs no such optimization when it propositionalizes
a junction tree to an explanation graph. As a result, explanation graphs used
by PRISM are thought to have much more redundancy than AC used by ACE.
Translation to an optimized version of junction-tree PRISM programs using CSI
remains as future work.

The results of two benchmark tests in this section show that PRISM is now
maturing and reasonably competitive with state-of-the-art implementations of
existing models in terms of computing performance, considering PRISM is a
general-purpose programming language using general data structure – first order
terms. We next look into another aspect of PRISM, PRISM as a vehicle for
exploring new models.

5 Generative Modeling with Constraints

5.1 Loss of Probability Mass

Probabilistic modeling in PRISM is generative. By generative we mean that a
probabilistic model describes a sequential process of generating an outcome in
which nondeterminacy is resolved by a probabilistic choice (using msw/2 in the
case of PRISM). All of BNs, HMMs and PCFGs are generative in this sense.

A generative model is described by a generation tree such that each node
represents some state in a generation process. If there are k possible choices at
node N and if the i-th choice with probability pi > 0 (1 ≤ i ≤ k,

∑k
i=1 pi = 1)

causes a state transition from N to a next state N ′
i , there is an edge from N to

N ′
i . Note that we neither assume the transition is always successful nor the tree

is finite. A leaf node is one where an outcome o is obtained. P (o), the probability
of the outcome o is that of an occurrence of a path from the root node to a leaf
generating o. The generation tree defines a distribution over possible outcomes
if
∑

o∈obs(DB) P (o) = 1 (tightness condition [39]).27

Generative models are intuitive and popular but care needs to be taken to
ensure the tightness condition.28 There are two cases in which the danger of vio-
lating the tightness condition exists. The first case is probability-loss-to-infinity.
It means infinite computations occur and the probability mass assigned to them
is non-zero.29 In fact this happens in PCFGs depending on parameters associated
with CFG rules in a grammar [39,40].

27 The tightness condition is part of the uniqueness condition introduced in
Section 2 [6].

28 We call distributions improper if they do not satisfy the tightness condition.
29 Recall that mere existence of infinite computation does not necessarily violate the

tightness condition. Take a PCFG {p : S → a, q : S → SS} where S is a start
symbol, a a terminal symbol, p+ q = 1 and p, q ≥ 0. If q > 0, infinite computations
occur, but the probability mass assigned to them is 0 as long as q ≤ p.

140 T. Sato and Y. Kameya

The second case is probability-loss-to-failure which occurs when a transition
to the next state fails. Since the probability mass put on a choice causing the
transition is lost without producing any outcome, the total sum of probability
mass on all outcomes becomes less than one. Probability-loss-to-failure does not
happen in BNs, HMMs or PCFGs but can happen in more complex modeling
such as probabilistic unification grammars [41,42]. It is a serious problem because
it prevents us from using constraints in complex probabilistic modeling, the
inherent target of PRISM. In the sequel, we detail our approach to generative
modeling with constraints.

5.2 Constraints and Improper Distributions

We first briefly explain constraints. When a computational problem is getting
more and more complex, it is less and less possible to completely specify every
bit of information flow to solve it. Instead we specify conditions an answer must
meet. They are called constraints. Usually constraints are binary relations over
variables such as equality, ordering, set inclusion and so on. Each of them is just
a partial declarative characterization of an answer but their interaction creates
information flow to keep global consistency.

Constraints are mixed and manipulated in a constraint handling process, giv-
ing the simplest form as an answer just like a polynomial equation is solved by
reduction to the simplest (but equivalent) form. Sometimes we find that con-
straints are inconsistent and there is no answer. When this happens, we stop the
constraint handling process with failure.

Allowing the use of constraints significantly enhances modeling flexibility as
exemplified by unification grammars such as HPSGs [43]. Moreover since they are
declarative, they are easy to understand and easy to maintain. The other side of
the coin however is that they can be a source of probability-loss-to-failure when
introduced to generative modeling as they are not necessarily satisfiable. The
loss of probability mass implies

∑
o∈obs(DB) P (o) < 1, an improper distribution,

and ignoring this fact would destroy the mathematical meaning of computed
results.

5.3 Conditional Distributions and Their EM Learning

How can we deal with such improper distributions caused by probability-loss-
to-failure? It is apparent that what we can observe is an outcome o of some
successful generation process specified by our model and thus should be inter-
preted as an realization of a conditional distribution, P (o | success) where
success denotes the event of generating some outcome.

Let us put this argument in the context of distribution semantics and let
q(·) be a target predicate in a program DB = F ∪ R defining the distribu-
tion PDB (·). Clauses in R may contain constraints such as X < Y in their
body. The event success is representable as ∃X q(X) because the latter says
there exists some outcome. Our conditional distribution is therefore written
as PDB (q(t) | ∃X q(X)). If R in DB satisfies the modeling principles stated

New Advances in Logic-Based Probabilistic Modeling by PRISM 141

in Subsection 5.1, which we assume hereafter, it holds that PDB (∃X q(X)) =∑
q(t)∈obs(DB) PDB (q(t)) where obs(DB) is the set of ground target atoms prov-

able from DB , i.e. obs(DB) = {q(t) | DB � q(t)}. Consequently we have

PDB (q(t) | success) =
PDB (q(t))

PDB (∃X q(X))
=

PDB (q(t))∑
q(t′)∈obs(DB) PDB (q(t′))

.

So if there occurs probability-loss-to-failure, what we should do is to normalize
PDB (·) by computing PDB (success) =

∑
q(t′)∈obs(DB) PDB (q(t′)). The problem

is that this normalization is almost always impossible. First of all there is no
way to compute PDB (success), the normalizing constant, if obs(DB) is infinite.
Second even if obs(DB) is finite, the computation is often infeasible since there
are usually exponentially many observable outcomes and hence so many times
of summation is required.

We therefore abandon unconditional use of constraints and use them only
when obs(DB) is finite and an efficient computation of PDB (success) is possible
by dynamic programming. Still, there remains a problem. The gEM (graphical
EM) algorithm, the central algorithm in PRISM for EM learning by dynamic
programming, is not applicable if failure occurs because it assumes the tightness
condition. We get around this difficulty by merging it with the FAM algorithm
(failure-adjusted maximization) proposed by Cussens [7]. The latter is an EM
algorithm taking failure into account.30

Fortunately the difference between the gEM algorithm and the FAM algorithm
is merely that the latter additionally computes expected counts of msw atoms in a
failed computation of q(X) (∃X q(X)). It is therefore straightforward to augment
the gEM algorithm with a routine to compute the required expected counts
in a failed computation, assuming a failure program is available which defines
failure predicate that represents all failed computations of q(X) w.r.t. DB .
The augmented algorithm, the fgEM algorithm [8], works as the FAM algorithm
with dynamic programming and implemented in the current PRISM.

So the last barrier against the use of constraints is the construction of a failure
program. Failure must be somehow “reified” as a failure program for dynamic
programming to be applicable. However how to construct it is not self-evident
because there is no mechanism of recording failure in the original program DB .
We here apply FOC (first order compiler), a program synthesis algorithm based
on deductive program transformation [44]. It can derive, though not always,
automatically a failure program from the source program DB for the target
predicate q(X) [8]. Since the synthesized failure program is a usual PRISM
program, PDB (failure) is computed efficiently by dynamic programming.

30 The FAM algorithm [7] assumes there occur failed computations before an outcome
is successfully generated. It requires to count the number of occurrences of each msw

atom in the failed computation paths but [7] does not give how to count them. Usu-
ally there are exponentially many failure paths and naive computation would take
exponential time. We solved this problem by merging FAM with gEM’s dynamic
programming.

142 T. Sato and Y. Kameya

In summary, in our approach, generative modeling with constraints is possible
with the help of the fgEM algorithm and FOC, provided that a failure program
is successfully synthesized by FOC and the computation tree (SLD tree) for
failure is finite (and not too large). We next look at some examples.

5.4 Agreement in Number

A Small Example: We here take a small example of generative modeling with
constraints and see its EM learning.

values(subj,[sg,pl]). % introduce msw/2 named sbj and obj

values(obj,[sg,pl]). % with outcomes = {sg,pl}

target(agree/1).

agree(A):-

msw(subj,A), % flip the coin subj

msw(obj,B), % flip the coin obj

A=B. % equality constraint

Fig. 10. agree program describing agreement in number

A program in Fig. 10 models agreement in number in some natural language
using two biased coins subj and obj. values clauses declare we use multi-ary
random switches msw(a,v) and msw(b,v) where v is sg or pl. target(agree/1)
declares a target predicate and what we observe are atoms of the form agree(·).

For a top-goal :-sample(agree(X)) which starts a sampling of the defined
distribution for agree/1, msw(subj, A) is executed simulating coin tossing of subj
which probabilistically instantiates A either to sg or pl. Similarly for msw(obj, B).
Hence an outcome is one of {agree(sg), agree(pl)} and it is observable only
when both coins agree (see the equality constraint A=B). When the two coins
disagree, A=B fails and we have no observable outcome from this model.

Parameter Learning by the fgEM Algorithm: Given the program in
Fig. 10 and a list of observations such as [agree(sg),agree(pl),. . .], we es-
timate parameters, i.e. probabilities of each coin showing sg or pl. In what
follows, to simplify notation and discussion, we treat logical variables A and B as
random variables and put parameters by θa = P (A = sg) = P (msw(subj, sg)),
θb = P (B = sg) = P (msw(obj, sg)) and θ = (θa, θb).

Parameters are estimated from the observable distribution P (A | success, θ)
=
∑

B∈{sg,pl} P (agree(A), A = B |θ)/P (success |θ) (hereafter we omit θ when
obvious). Because the normalizing constant P (success) = P (agree(sg)) +
P (agree(pl)) = θaθb + (1 − θa)(1 − θb) is not necessarily equal to unity, the
defined model becomes log-linear.

Obtaining a Failure Program: Thanks to the deep relationship between
failure and negation in logic programming, a failure program can be derived

New Advances in Logic-Based Probabilistic Modeling by PRISM 143

failure :- not(success).

success :- agree(). % agree() = ∃ X agree(X)

Fig. 11. Clauses defining failure

failure:- closure_success0(f0). % f0 is initial continuation

closure_success0(C):- closure_agree0(C).

closure_agree0(C):-

msw(subj,A),

msw(obj,B),

\+A=B. % \+ is Prolog’s negation

Fig. 12. Compiled failure program

automatically by ‘negating’ the target atom in the original program. Let q(X)
be a target atom. We add failure:- ∀ X not(q(X)) to the original program.
failure says that there is no observable outcome of q(X). As it is not executable,
we ‘compile’ it using FOC to obtain a negation-free executable program. For the
agree program in Fig. 10 we add two clauses shown in Fig. 11.31

FOC compiles the failure predicate into executable code shown in Fig. 12.
As can be seen, it eliminates negation in Fig. 11 while introducing two new
predicates and one new function symbol.32 We would like to point out that
negation elimination is just one functionality of FOC. It can compile a much
wider class of formulas into executable logic programs.

Using the failure program in Fig. 12 we conducted a learning experiment with
artificial data sampled from the agree program. The sample size is 100 and the
original and learned parameters (by fgEM and by gEM) are shown below.

parameters original fgEM gEM
θa 0.4 0.4096 0.48
θb 0.6 0.6096 0.48

As seen clearly, parameters estimated by the gEM algorithm that does not
take failure into account are widely off the mark. Worse yet it cannot even dis-
tinguish between two parameters. We suspect that such behavior always occurs
when failure is ignored though data is generated from a failure model.

5.5 Constrained HMMs

As an instance of generative modeling with constraints that may fail, we in-
troduce constrained HMMs, a new class of HMMs that have constraints over

31 We here decompose failure :- ∀ X not(agree(X)) into two clauses for readability.
32 They convey ‘continuation’ (data representing the remaining computation).

f0 is an initial continuation and bound to C in closure success0(C) and
closure agree0(C).

144 T. Sato and Y. Kameya

r1r0

p,s h,s

Fig. 13. HMM for the dieting person

failure:- not(success).

success:- chmm(L,r0,0,7).

chmm(L,R,C,N):- N>0,

msw(tr(R),R2), % choose a restaurant

msw(lunch(R),D), % choose lunch

(R = r0,

(D = p, C2 is C+900 % pizza:900, sandwich:400

; D = s, C2 is C+400) % hanburger:400, sandwich:500

; R = r1,

(D = h, C2 is C+400

; D = s, C2 is C+500)),

L = [D|L2],

N2 is N-1,

chmm(L2,R2,C2,N2). % recursion for next day

chmm([],_,C,0):- C < 4000. % calories must be < 4,000

Fig. 14. Constrained HMM program

the states and emitted symbols [8]. Constraints are arbitrary and can be global
such as the total number of emitted symbols being equal to a multiple of three.
Constrained HMMs define conditional distributions just like CRFs (conditional
random fields) [45] but generatively. Our hope is that they contribute to the
modeling of complex sequence data and will be applied to, say bioinformatics,
computer music etc.

We illustrate constrained HMMs by an example borrowed from [8]. It models
the probabilistic behavior of a person on a diet. The situation is like this. He,
the person, takes lunch at one of two restaurants ‘r0’ and ‘r1’ which he proba-
bilistically chooses at lunch time. He also probabilistically chooses pizza (900) or
sandwich (400) at ‘r0’, and hamburger (500) or sandwich (500) at ‘r1’ (numbers
are calories). He is ordered by his doctor to keep calories for lunch in a week
less than 4000 in total. Furthermore he is asked to record what he has eaten in
a week like [p,s,s,p,h,s,h] and show the record to the doctor. He however
is a smart person and preserves it only when he has succeeded in satisfying the
constraint. Our task is to estimate his behavioral probability from the list of
preserved records.

An HMM in Fig. 13 represents the probabilistic behavior of the dieting person
except the constraint on total calories for lunch in a week. A program in Fig. 14 is

New Advances in Logic-Based Probabilistic Modeling by PRISM 145

Table 2. Estimated probabilities for the dieting person

sw name original value estimation(average)

tr(r0) r0 (0.7) r1 (0.3) r0 (0.697) r1 (0.303)
tr(r1) r1 (0.7) r0 (0.3) r1 (0.701) r0 (0.299)

lunch(r0) p (0.4) s (0.6) p (0.399) s (0.601)
lunch(r1) h (0.5) s (0.5) h (0.499) s (0.501)

a usual HMM program corresponding to Fig. 13 but augmented with a constraint
atom C < 4000 where C stands for accumulated calories. If the accumulated
calories, C, is not less than 4,000 on the seventh day, C < 4000 in the last clause
fails and so does the execution of the program (sampling).

The program looks self-explanatory but we add some comments for readabil-
ity. R is the current restaurant and msw(tr(R),R2) is used for a random choice
of the restaurant next day, R2. Likewise msw(lunch(R),D) stands for a random
choice of dish ‘D’ for lunch at ‘R’. We accumulate calories in C and record the
chosen dish in L. FOC eliminates not in the program and produces a failure
program that runs linearly in the number of days (‘N’).

With this synthesized failure program, we conducted a learning experiment
using artificial data sampled from the original program. After setting param-
eters as shown on the left column of original value in Table 2, we generated
500 examples and let the fgEM algorithm estimate parameters from these 500
examples. The right column in Table 2 shows shows averages of 50 experiments.
The result says for example that the probability of msw(tr(r0),r0) be true,
i.e. the probability of visiting the restaurant r0 from r0, is originally 0.7 and
the average of estimation is 0.697. It seems we have reasonably succeeded in
recovering original parameters.

In this section, we explained how to overcome probability-loss-to-failure in
generative modeling and introduced constrained HMMs, a class of HHMs with
constraints, as an application. We also introduced finite PCFGs in [46] as a
preliminary step toward approximate computation of probabilistic HPSGs. They
are PCFGs with a constraint on the size of parse trees and only a finite number
of parse trees are allowed for a sentence. Their unique property is that even if the
original PCFG suffers probability-loss-to-infinity, parameters can be estimated
from the constrained one. We conducted a learning experiment with a real corpus
and observed that the deterioration of parsing accuracy by truncating parse trees
to a certain depth is small [46].

6 Related Work and Discussion

There are three distinctive features which jointly characterize PRISM as a logic-
based probabilistic modeling language. They are the distribution semantics [2],
two-staged probability computation, i.e. probability computation combined with
tabled search [6,47] and EM learning by the fgEM algorithm [8]. Since each topic
has a body of related work of its own, we only selectively state some of them.

146 T. Sato and Y. Kameya

6.1 Semantic Aspects

First we deal with semantic aspects. When looking back on probabilistic reason-
ing in AI, one can observe at least two research streams. One of them focuses
on the inference of probabilistic intervals, in a deductive style [48,49,50] or in
a logic programming style [51,52,53,54]. The other aims to define distributions.
The latter is further divided, for the sake of explanation, into three groups in
view of how distributions are defined. The first group uses undirected graphical
models [55,56] and define discriminative models. The second group is based on di-
rected graphs, i.e. BNs and their combination with KBs (knowledge bases) called
KBMC (knowledge-based model construction) [57,58,59,60,61,62,63,64,65,66,67].
The third group does not rely on graphs but relies on the framework of logic
programming [2,6,7,23,24,68,69,70,71,72] to which PRISM belongs, or on the
framework of functional programming [73].

Semantically the most unique feature of PRISM’s declarative semantics, i.e.
the distribution semantics, is that it defines unconditionally a global probability
measure over the set of uncountably many Herbrand interpretations for any
program in a first order language with countably many function and predicate
symbols. In short, it always uniquely defines a global and infinite distribution for
any program, even if it is a looping program such as p(X):-p(X),q(Y) or even
if it contains negation in some clause body [8]. Note that we are not claiming
that PRISM, an embodiment of the distribution semantics, can always compute
whatever probability defined by its semantics. Apparently it is impossible. All
it can do is to compute computable part of the distribution semantics.

Unconditional Global Distribution: The unconditional existence of global
distributions by the distribution semantics sharply differs from the KBMC ap-
proach. Basically in the KBMC approach, a BN is reconstructed from a KB and
an input every time the input is given. For example in the case of PRMs (prob-
abilistic relational models) [61], when a new record is added to a RDB, a new
BN is constructed. Since different inputs yield different BNs, there is no global
distribution defined by the KB, which makes it difficult to consider observed
data as iid data from the KB.

Our semantics also sharply differs from SLP (stochastic logic programming)
[68,7] which defines a distribution over SLD proofs, not over Herbrand interpre-
tations. Furthermore for a distribution to be definable in SLP, programs must
satisfy a syntactic condition called “range-restrictedness” which excludes many
ordinary programs such as the member program. The same range-restrictedness
condition is imposed on BLPs (Bayesian logic programs) [62] and LBNs (logical
Bayesian networks) [67].

Infinite Distribution: Concerning infinite distributions (infinite BNs), there
are attempts to construct them from infinitely many BNs. Kersting and De Raedt
showed the existence of infinite BNs defined by BLPs. They assume certain con-
ditions including the acyclicity of the ground level caller-callee relation defined
by a BLP program. Under the conditions, local BNs are constructed for each
ground atom in the least model and distributions defined by them are pasted

New Advances in Logic-Based Probabilistic Modeling by PRISM 147

together to construct an infinite distribution using the Kolmogorov extension
theorem [65].

Similar conditions were placed when Laskey proposed a probabilistic logic
called MEBN (multi-entity BN) [74]. In MEBN local BNs are defined by schemes
containing logical variables and constraints. Assuming local BNs, when com-
bined, create no infinitely many parents (in terms of the CPT) or ancestors for
each node, the existence of a global infinite distribution satisfying each scheme
is proved by Kolmogorov’s extension theorem.

BLOG (Bayesian logic) proposed by Milch et al. [75] defines a distribution
over possible worlds consisting of objects through an infinite BN. In a BLOG
model (program), objects are generated according to certain statements contain-
ing CPTs. These statements generate structured random variables in conjunction
with their dependency as a local BN. CBNs (contingent BNs) are introduced to
precisely specify such dependency [76]. They are BNs with constraints attached
to edges such that edges are removed when constraints are not satisfied. The
existence of a global distribution satisfying these local BNs is proved when a
CBN satisfies conditions ensuring that every node has finitely many ancestors
and parents.

These approaches all unify infinitely many distributions defined by local BNs,
and hence need conditions to ensure the possibility of their unification. The
distribution semantics of PRISM on the other hand does not attempt to unify
local BNs to construct an infinite distribution. Instead it starts from a simple
infinite distribution (over msw atoms) that surely exists and extends it by way of
fixpoint operation which is always possible, thereby achieving the unconditional
definability of infinite distributions.

Independent vs. Dependent Choice: In the distribution semantics, PDB ,
the distribution defined by a program DB , is parameterized with a base distribu-
tion PF . PRISM implements the simplest PF , a product measure of independent
choices represented by msw atoms like PHA [23], aiming at efficiency of prob-
ability computation. At first one may feel that msw atoms are not enough for
complex modeling because they cannot represent dependent choices. In reality,
however, they can, because the name of an msw switch is allowed to be any
term and hence, one choice msw(s,X) can affect another choice msw(t[X],Y)
through their common variable X . The realization of dependent choice by this
“name trick” is used to write a naive BN program and also used to implement
an extension of PCFGs called pseudo context sensitive models [6]. We note that
mutually dependent choices can be implementable by substituting a Boltzmann
machine for PF .

6.2 Probability Computation

Two-Staged Probability Computation: The second unique feature of
PRISM is a way of probability computation. To compute a probability PDB (G)
of a top-goal atom (query) G from a distribution PDB defined by a program DB
at the predicate level, we first reduce G by tabled search to an explanation graph

148 T. Sato and Y. Kameya

Expl(G) for G such that Expl(G) ⇔ G. Expl(G) is a compact propositional for-
mula logically equivalent to G and consists of ground user atoms and msw atoms.
Then we compute PDB (Expl(G))(= PDB (G)) as the generalized inside proba-
bility by dynamic programming assuming the exclusiveness of disjuncts and the
independence of conjuncts in Expl(G).

The reduction from a predicate level expression (goal) to a propositional ex-
pression (explanation graph) can have three favorable effects though it sometimes
blows up the size of the final expression. The first one is that of pruning, detect-
ing impossible conditions corresponding to zero probability. The second one is to
be able to explicitly express exclusiveness as a disjunction and independence as a
conjunction. In an attempt by Pynadath and Wellman that formulates a PCFG
by a BN [77], they end up in a very loopy BN partly because zero probability
and exclusiveness are not easy to graphically express in BNs. To state the last
one, we need some terminology.

Value-Wise vs. Variable-Wise: We say that random variables are used
variable-wise in an expression if they are treated uniformly in the expression
regardless of their values. Otherwise we say they are used value-wise. For exam-
ple BNs are variable-wise expressions and their standard computation algorithm,
BP, is a variable-wise algorithm because uniform operations are performed on
variables regardless of their values whereas, for instance, d-DNNFs after opti-
mization used in ACE are value-wise. The point is that value-wise expressions
have a bigger chance of sharing subexpressions (and hence sharing subcompu-
tations in dynamic programming) than variable-wise expressions because for
sharing to occur in a value-wise expression, it is enough that only some values,
not all values of a random variable, are shared by some subexpressions. Also
we should note that value-wise dependency is always sparser than variable-wise
dependency because 0 probability cuts off the chain of value-wise dependency.

Returning to PRISM, in a program, a random variable X is expressed as
a logical variable X in an msw atom like msw(id, X), but a search process in-
stantiates it, differently depending on the context of its use, to ground terms
like msw(id, t1), . . . , msw(id, tn) resulting in a value-wise explanation graph. The
reduction to a value-wise expression is a key step to make possible O(L3) com-
putation of a sentence probability by PRISM [6] where L is the sentence length.
Moreover, it was empirically shown that for moderately ambiguous PCFGs, the
probability computation by PRISM is much faster than the one by the stan-
dard Inside-Outside algorithm [6]. Another example of value-wise computation
is the left-to-right HMMs shown in Fig. 1. Their direct implementation by a BN
(Fig. 6) would require O(N2) time for probability computation where N is the
number of states though their transition matrix is sparse. Contrastingly PRISM,
exploiting this sparseness by value-wise computation, realizes O(N) computation
as can be seen from Fig. 4.

Propositionalized BNs: It is interesting to note that probability computation
of BNs by way of explanation graphs such as the one in Section 3 agrees with
the emerging trend of “propositionalized BNs” which computes probabilities of

New Advances in Logic-Based Probabilistic Modeling by PRISM 149

a BN by converting it to a value-wise propositional level formula [17,34,35]. For
example in [17] Chavira and Darwiche considered a BN as a multi-variate poly-
nomial composed of binary-random variables representing individual values of
a random variable and compile the BN into an arithmetic circuit. They empir-
ically showed that their approach can efficiently detect and take advantage of
CSI (context-specific independence) [38] in the original BN. McAllester et al.
proposed CFDs (case factor diagrams) which are formulas representing a “fea-
sible” set of assignments for infinitely many propositional variables. They can
compute probabilities of linear Boolean models, a subclass of log-linear mod-
els [34]. In a CFD, subexpressions are shared and probabilities are computed by
dynamic programming, thus realizing cubic order probability computation for
PCFGs. Mateescu and Dechter introduced AND/OR search trees representing
variable elimination of BNs propositionally [26]. Value dependency of nodes in
a BN is expressed as an AND/OR search tree but identical subtrees are merged
to produce a “minimal AND/OR graph” which realizes shared probability com-
putation.

The main difference between PRISM and these approaches is that they ma-
nipulate propositional level expressions and predicate level expressions are out
of concern. In the case of CFDs for example, programming for a PCFG starts
from encoding parse forests of sentences. Contrastingly in PRISM, we do not
encode parse forests but encode the PCFG itself using high level expressions in
predicate logic. A subsequent search process automatically reduces a sentence
to propositional formulas representing parse forests. Our approach thus makes
compatible the ease and flexibility of high level programming and the computa-
tional efficiency in low level probability computation. However hitting the right
balance between generality and efficiency in designing a programming language
is always a difficult problem. PRISM is one extreme aiming at generality. A re-
cent proposal of LOHMMs (logical hidden Markov models) by Kersting et al. [71]
takes an intermediate approach by specializing in a logical extension of HMMs.

Eliminating Conditions: Finally we discuss the possibility of eliminating
some conditions in Subsection 2.2. The first candidate is the exclusiveness
condition on disjunctions. It can be eliminated by appealing to general compu-
tation schemes such as the inclusion-exclusion principle generalizing P (A ∨ B)
= P (A) + P (B) − P (A ∧ B) and the sum-of-disjoint products generalizing
P (A ∨ B) = P (A) + P (¬A ∧ B), or BDDs (binary decision diagrams) [78].
ProbLog, seeking efficiency, uses BDDs to compute probabilities of nonexclusive
disjunctions [72]. Although it seems possible in principle to introduce BDDs to
PRISM’s explanation graphs at the cost of increasing time and memory, details
are left as future work.

The second candidate is the acyclicity condition. When eliminated, we might
have a “loopy” explanation graph. Such a graph makes mathematical sense if,
like loopy BP, loopy probability computation guided by the graph converges.
There is a general class of loopy probability computation that looks relatively
simple and useful; prefix computation of PCFGs. Given a string s = w1, . . . , wk

and a PCFG, we would like to compute the probability that s is an initial

150 T. Sato and Y. Kameya

string of some complete sentence s = w1, . . . , wk, . . . , wn derived from the PCFG.
There already exists an algorithm for that purpose [79] and we can imagine a
generalized prefix computation in the context of PRISM. We however need to
consider computation cost as the resulting algorithm will heavily use matrix
operations to compute “loopy inside probability.”

6.3 EM Learning

The advantage of EM learning by PRISM is made clear when we are given the
task of EM learning for N new probabilistic model classes like BN, HMMs,
PCFGs etc. We write N different programs and apply the same algorithm, the
(f)gEM algorithm, to all of them, instead of deriving a new EM algorithm N
times. The differences in model classes are subsumed by those in their expla-
nation graphs and do not affect the gEM algorithm itself. The cost we have to
pay for this uniformity however is time and space inefficiency due to the use of
predetermined data structure, explanation graphs, for all purposes. For example,
HMMs in PRISM require memory proportional to the input length to compute
forward-backward probabilities while a specialized implementation only needs a
constant space.

Another problem is that when we attempt EM learning of a generative model
with failure, we have to synthesize a failure program that can represent all failed
computation paths of the original program for the model. When models are
variants of HMMs like constrained HMMs in Section 5, this synthesis is always
possible. However for other cases including PCFGs with constraints, the synthe-
sis is future work.

7 Conclusion

PRISM is a full programming language system equipped with rich functionalities
and built-in predicates of Prolog enhanced by three components for probabilistic
modeling. The first one is the distribution semantics [2], a measure theoretical se-
mantics for probabilistic logic programs. The second one is two-staged probability
computation [6,47], i.e. generalized IO computation after tabled-search for ex-
planation graphs. The third one is an EM algorithm, the fgEM algorithm [8], for
generative models allowing failure. PRISM not only uniformly subsumes three
representative model classes, i.e. BNs, HMMs, and PCFGs as instances of the
distribution semantics at the semantic level but uniformly subsumes their prob-
ability computation with the same time complexity, i.e. BP on junction trees
for BNs [10], the forward-backward algorithm for HMMs, and IO probability
computation for PCFGs respectively as instances of generalized IO probability
computation for logic programs [6].

Despite the generality of computational architecture, PRISM runs reasonably
fast compared to the state-of-art systems as demonstrated in Section 4 as long
as we accept memory consumption for tabling. We also emphasize that PRISM
facilitates the creation and exploration of new models such as constrained HMMs

New Advances in Logic-Based Probabilistic Modeling by PRISM 151

as exemplified in Section 5. Hence we believe PRISM is now a viable tool for
prototyping of various probabilistic models.

There remains much to be done. The biggest problem is memory consump-
tion. Currently terms are created dynamically by pointers and every pointer
occupies 64 bits. This is a very costly approach from a computational viewpoint
though it gives us great flexibility. Restricting the class of admissible programs
to make it possible to introduce array is one way to avoid the memory problem.
The second one is to make PRISM more Bayesian. Currently only MAP estima-
tion is possible though we are introducing built-in predicates for BIC [80] and
the Cheeseman-Stutz criterion [81]. Probably we need a more powerful Bayesian
computation such as variational Bayes to cope with data sparseness. Also paral-
lelism is inevitable to break computational barrier. Although an initial step was
taken toward that direction [82], further investigation is needed.

Acknowledgments

We are grateful to Yusuke Izumi and Tatsuya Iwasaki for generously providing
all graphs in this chapter.

References

1. Sato, T., Kameya, Y.: PRISM: A language for symbolic-statistical modeling. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI 1997), pp. 1330–1335 (1997)

2. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP 1995), pp. 715–729 (1995)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Royal Statistical Society B39(1), 1–38 (1977)

4. Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Shapiro, E. (ed.) ICLP
1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)

5. Zhou, N.F., Sato, T.: Efficient fixpoint computation in linear tabling. In: Pro-
ceedings of the 5th ACM-SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2003), pp. 275–283 (2003)

6. Sato, T., Kameya, Y., Abe, S., Shirai, K.: Fast EM learning of a family of PCFGs.
Technical Report (Dept. of CS) TR01-0006, Tokyo Institute of Technology (2001)

7. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn-
ing 44(3), 245–271 (2001)

8. Sato, T., Kameya, Y., Zhou, N.F.: Generative modeling with failure in PRISM. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pp. 847–852 (2005)

9. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco (1988)

10. Sato, T.: Inside-Outside probability computation for belief propagation. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 2605–2610 (2007)

152 T. Sato and Y. Kameya

11. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical
structures and their applications to expert systems. Journal of the Royal Statistical
Society, B 50, 157–224 (1988)

12. Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press (1996)
13. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
14. Baker, J.K.: Trainable grammars for speech recognition. In: Proceedings of Spring

Conference of the Acoustical Society of America, pp. 547–550 (1979)
15. Eisner, J., Goldlust, E., Smith, N.: Compiling Comp Ling: Weighted dynamic pro-

gramming and the Dyna language. In: Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing
(HLT-EMNLP)., pp. 281–290 (2005)

16. Darwiche, A.: A compiler for deterministic, decomposable negation normal form.
In: Proceedings of the 18th national conference on Artificial intelligence (AAAI
2002), pp. 627–634 (2002)

17. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pp. 1306–1312 (2005)

18. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational bayesian networks for
exact inference. International Journal of Approximate Reasoning 42, 4–20 (2006)

19. Doets, K.: From Logic to Logic Programming. The MIT Press, Cambridge (1994)
20. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-

ing. The MIT Press, Cambridge (1999)
21. Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network

Models. Springer, Heidelberg (1997)
22. Chow, Y., Teicher, H.: Probability Theory, 3rd edn. Springer, Heidelberg (1997)
23. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-

gence 64(1), 81–129 (1993)
24. Poole, D.: The independent choice logic for modeling multiple agents under uncer-

tainty. Artificial Intelligence 94(1-2), 7–56 (1997)
25. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and

Databases, pp. 293–322. Plenum Press, New York (1978)
26. Mateescu, R., Dechter, R.: The relationship between AND/OR search spaces and

variable elimination. In: Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence (UAI 2005), pp. 380–387 (2005)

27. Sato, T.: Modeling scientific theories as PRISM programs. In: Proceedings of ECAI
1998 Workshop on Machine Discovery, pp. 37–45 (1998)

28. Mitomi, H., Fujiwara, F., Yamamoto, M., Sato, T.: Bayesian classification of human
custom based on stochastic context-free grammar (in Japanese). IEICE Transac-
tion on Information and Systems J88-D-II(4), 716–726 (2005)

29. Wang, S., Wang, S., Greiner, R., Schuurmans, D., Cheng, L.: Exploiting syntactic,
semantic and lexical regularities in language modeling via directed Markov random
fields. In: Proceedings of the 22th International Conference on Machine Learning
(ICML 2005), pp. 948–955 (2005)

30. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

31. Smyth, P., Heckerman, D., Jordan, M.: Probabilistic independence networks for
hidden Markov probability models. Neural Computation 9(2), 227–269 (1997)

32. Kask, K., Dechter, R., Larrosa, J., Cozman, F.: Bucket-tree elimination for au-
tomated reasoning. ICS Technical Report Technical Report No.R92, UC Irvine
(2001)

New Advances in Logic-Based Probabilistic Modeling by PRISM 153

33. Shafer, G., Shenoy, P.: Probability propagation. Annals of Mathematics and Arti-
ficial Intelligence 2, 327–352 (1990)

34. McAllester, D., Collins, M., Pereira, F.: Case-factor diagrams for structured prob-
abilistic modeling. In: Proceedings of the 20th Annual Conference on Uncertainty
in Artificial Intelligence (UAI2004), Arlington, Virginia, pp. 382–391. AUAI Press
(2004)

35. Minato, S., Satoh, K., Sato, T.: Compiling bayesian networks by symbolic proba-
bility calculation based on zero-suppressed bdds. In: Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2550–2555
(2007)

36. Charniak, E.: Tree-bank grammars. In: Proceedings of the 13th National Confer-
ence on Artificial Intelligence(AAAI 1996), pp. 1031–1036 (1996)

37. Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus
of English: The Penn Treebank. Computational Linguistics 19, 313–330 (1993)

38. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-
dence in Bayesian networks. In: Procceding of the 12th Conference on Uncertainty
in Artificial Intelligence (UAI 1996), pp. 115–123 (1996)

39. Chi, Z., Geman, S.: Estimation of probabilistic context-free grammars. Computa-
tional Linguistics 24(2), 299–305 (1998)

40. Wetherell, C.S.: Probabilistic languages: A review and some open questions. Com-
puting Surveys 12(4), 361–379 (1980)

41. Abney, S.: Stochastic attribute-value grammars. Computational Linguistics 23(4),
597–618 (1997)

42. Schmid, H.: A generative probability model for unification-based grammars. In:
Proceedings of the 21st International Conference on Computational Linguistics
(COLING 2002, pp. 884–896 (2002)

43. Sag, I., Wasow, T.: Syntactic Theory: A Formal Introduction. CSLI Publications,
Stanford (1999)

44. Sato, T.: First Order Compiler: A deterministic logic program synthesis algorithm.
Journal of Symbolic Computation 8, 605–627 (1989)

45. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th
International Conference on Machine Learning (ICML 2001, pp. 282–289 (2001)

46. Sato, T., Kameya, Y.: Negation elimination for finite PCFGs. In: Etalle, S. (ed.)
LOPSTR 2004. LNCS, vol. 3573, pp. 119–134. Springer, Heidelberg (2005)

47. Kameya, Y., Sato, T.: Efficient EM learning for parameterized logic programs. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 269–294. Springer, Heidelberg (2000)

48. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)

49. Frish, A., Haddawy, P.: Anytime deduction for probabilistic logic. Journal of Arti-
ficial Intelligence 69, 93–122 (1994)

50. Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic
events. Journal of Artificial Intelligence Research 10, 199–241 (1999)

51. Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Information and
Computation 101, 150–201 (1992)

52. Lakshmanan, L.V.S., Sadri, F.: Probabilistic deductive databases. In: Proceedings
of the 1994 International Symposium on Logic Programming (ILPS 1994), pp.
254–268 (1994)

154 T. Sato and Y. Kameya

53. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Proceedings
of the 14th International Conference on Logic Programming (ICLP 1997), pp. 391–
405 (1997)

54. Saad, E., Pontelli, E.: Toward a more practical hybrid probabilistic logic program-
ming framework. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS,
vol. 3350, pp. 67–82. Springer, Heidelberg (2005)

55. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for rela-
tional data. In: Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence (UAI 2002), pp. 485–492 (2002)

56. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–
136 (2006)

57. Breese, J.S.: Construction of belief and decision networks. Computational Intelli-
gence 8(4), 624–647 (1992)

58. Wellman, M., Breese, J., Goldman, R.: From knowledge bases to decision models.
Knowledge Engineering Review 7(1), 35–53 (1992)

59. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI
1997), pp. 1316–1321 (1997)

60. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science 171, 147–177 (1997)

61. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI 1999), pp. 1300–1309 (1999)

62. Kristian Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J.,
Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 138–155. Springer,
Heidelberg (2000)

63. Jaeger, J.: Complex probabilistic modeling with recursive relational Bayesian net-
works. Annals of Mathematics and Artificial Intelligence 32(1-4), 179–220 (2001)

64. Getoor, L., Friedman, N., Koller, D.: Learning probabilistic models of relational
structure. In: Proceedings of the 18th International Conference on Machine Learn-
ing (ICML 2001), pp. 170–177 (2001)

65. Kersting, K., De Raedt, L.: Basic principles of learning bayesian logic programs.
Technical Report Technical Report No. 174, Institute for Computer Science, Uni-
versity of Freiburg (2002)

66. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational bayesian networks for
exact inference. In: Proceedings of the Second European Workshop on Probabilistic
Graphical Models (PGM 2004), pp. 49–56 (2004)

67. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical Bayesian networks
and their relation to other probabilistic logical models. In: Kramer, S., Pfahringer,
B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 121–135. Springer, Heidelberg
(2005)

68. Muggleton, S.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

69. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
431–445. Springer, Heidelberg (2004)

70. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33.
Springer, Heidelberg (2003)

71. Kersting, K., De Raedt, L., Raiko, T.: Logical hidden Markov models. Journal of
Artificial Intelligence Research 25, 425–456 (2006)

New Advances in Logic-Based Probabilistic Modeling by PRISM 155

72. De Raedt, L., Angelika, K., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discoverry. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007) (2007)

73. Pfeffer, A.: IBAL: A probabilistic rational programming language. In: Proceedings
of the 17th International Conference on Artificial Intelligence (IJCAI 2001), pp.
733–740 (2001)

74. Laskey, K.: MEBN: A logic for open-world probabilistic reasoning. C4I Center
Technical Report C4I06-01, George Mason University Department of Systems En-
gineering and Operations Research (2006)

75. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: Prob-
abilistic models with unknown objects. In: Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1352–1359 (2005)

76. Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D., Kolobov, A.: Approximate
Inference for Infinite Contingent Bayesian Networks. In: Proceedings of the 10th
International Workshop on Artificial Intelligence and Statistics (AISTATS 2005),
pp. 1352–1359 (2005)

77. Pynadath, D.V., Wellman, M.P.: Generalized queries on probabilistic context-free
grammars. IEEE Transaction on Pattern Analysis and Machine Intelligence 20(1),
65–77 (1998)

78. Rauzy, A., Chatelet, E., Dutuit, Y., Berenguer, C.: A practical comparison of
methods to assess sum-of-products. Reliability Engineering and System Safety 79,
33–42 (2003)

79. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics 21(2), 165–201 (1995)

80. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2), 461–
464 (1978)

81. Cheeseman, P., Stutz, J.: Bayesian classification (AutoClass): Theory and results.
In: Fayyad, U., Piatesky, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowl-
edge Discovery and Data Mining, pp. 153–180. The MIT Press, Cambridge (1995)

82. Izumi, Y., Kameya, Y., Sato, T.: Parallel EM learning for symbolic-statistical mod-
els. In: Proceedings of the International Workshop on Data-Mining and Statistical
Science (DMSS 2006), pp. 133–140 (2006)

CLP(BN): Constraint Logic Programming for

Probabilistic Knowledge

Vı́tor Santos Costa1, David Page2, and James Cussens3

1 DCC-FCUP and LIACC
Universidade do Porto

Portugal
vsc@dcc.fc.up.pt

2 Dept. of Biostatistics and Medical Informatics
University of Wisconsin-Madison

USA
page@biostat.wisc.edu

3 Department of Computer Science
University of York UK
jc@cs.york.ac.uk

Abstract. In Datalog, missing values are represented by Skolem con-
stants. More generally, in logic programming missing values, or existen-
tially quantified variables, are represented by terms built from Skolem
functors. The CLP(BN) language represents the joint probability dis-
tribution over missing values in a database or logic program by using
constraints to represent Skolem functions. Algorithms from inductive
logic programming (ILP) can be used with only minor modification to
learn CLP(BN) programs. An implementation of CLP(BN) is publicly
available as part of YAP Prolog at http://www.ncc.up.pt/∼vsc/Yap.

1 Introduction

One of the major issues in knowledge representation is how to deal with incom-
plete information. One approach to this problem is to use probability theory in
order to represent the likelihood of an event. More specifically, advances in rep-
resentation and inference with Bayesian networks have generated much interest
and resulted in practical systems, with significant industrial applications [1]. A
Bayesian network represents a joint distribution over a set of random variables
where the network structure encapsulates conditional independence relations be-
tween the variables.

A Bayesian network may be seen as establishing a set of relations between
events. This presents a clear analogy with propositional calculus, as widely dis-
cussed in the literature [2], and raises the question of whether one could move
one step forward towards a Bayesian network system based on the more pow-
erful predicate calculus. Arguably, a more concise representation of Bayesian
Networks would avoid wasted work and possible mistakes. Moreover, it would
make it easier to learn interesting patterns in data. Work such as Koller’s Prob-
abilistic Relational Models (PRMs) [3], Sato’s PRISM [4], Ngo and Haddawy’s

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 156–188, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ncc.up.pt/~vsc/Yap

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 157

Probabilistic Logic Programs [5], Muggleton and Cussens’ Stochastic Logic Pro-
grams [6], and Kersting and De Raedt’s Bayesian Logic Programs [7] have shown
that such a goal is indeed attainable.

The purpose of probabilistic first order languages is to propose a concise
encoding of probability distributions for unobserved variables. Note that manip-
ulating and reasoning on unknown values is a well-known problem in first-order
representations. As an example, First-Order Logic is often used to express exis-
tential properties, such as:

∀x∃y, Make(x) → OwnsCar(y, x)

A natural interpretation of this formula is that every make of car has at least
one owner. In other words, for every make x there is an individual y that owns
a car of this make. Notice that the formula does not state who the owner(s)
may be, just that one exists. In some cases, e.g., for inference purposes, it would
be useful to refer to the individual, even if we do not know its actual name.
A process called skolemization can replace the original formula by a formula
without existential quantifiers:

∀x, Make(x) → OwnsCar(y, s(x))

where y = s(x) and s(x) is called a Skolem function: we know the function
describes an individual for each x, but we do not know which individual.

Skolem functions have an interesting analogy in probabilistic relational mod-
els (PRMs) [3]. PRMs express probability distributions of a field in the database
by considering related fields, thus encoding a Bayesian network that represents
the joint probability distribution over all the fields in a relational database. The
Bayes network constructed by PRMs can then be used to infer probabilities
about missing values in the database. We know that the field must take one
value, we know that the value will depend on related fields, and we know the
values for at least some of these related fields. As for Skolem functions, PRMs
refer to fields that are unknown function of other fields. But, in contrast with
First Order Logic, PRMs do allow us to estimate probabilities for the differ-
ent outcomes of the function: they allow us to represent partial information on
Skolem functions.

Can we take this process a step further and use a Bayesian network to repre-
sent the joint probability distribution over terms constructed from the Skolem
functors in a logic program? We extend the language of logic programs to make
this possible. Our extension is based on the idea of defining a language of Skolem
functions where we can express properties of these functions. Because Skolem
functions benefit from a special interpretation, we use Constraint Logic Pro-
gramming (CLP), so we call the extended language CLP(BN). We show that
any PRM can be represented as a CLP(BN) program.

Our work in CLP(BN) has been motivated by our interest in multi-relational
data mining, and more specifically in inductive logic programming (ILP). Be-
cause CLP(BN) programs are a kind of logic program, we can use existing ILP
systems to learn them, with only simple modifications to the ILP systems. In-
duction of clauses can be seen as model generation, and parameter fitting can

158 V. Santos Costa, D. Page, and J. Cussens

be seen as generating the CPTs for the constraint of a clause. We show that the
ILP system aleph [8] is able to learn CLP(BN) programs.

Next, we present the design of CLP(BN) through examples. We then discuss
the foundations of CLP(BN), including detailed syntax, proof theory (or oper-
ational semantics), and model-theoretic semantics. We next discuss important
features of CLP(BN), namely its ability to support aggregation and recursion.
Finally, we present the results of experiments in learning CLP(BN) programs
using ILP. Lastly, we relate CLP(BN) with PRMs and with other related work.

2 CLP(BN) Goes to School

We introduce CLP(BN) through a simplified version of the school database
originally used to explain Probabilistic Relational Models [3] (PRMs). We chose
this example because it stems from a familiar background and because it clearly
illustrates how CLP(BN) relates to prior work on PRMs. Figure 2 shows a sim-
plified fragment of the school database. The schema consists of three relations:
students, courses, and grades. For each student, we have a primary key, Student,
and its Skill. To simplify, the value for skill is the expected final grade of the
student: an A student would thus be a top student. For each course, Course is the
primary key and Difficulty gives the course’s difficulty: an A difficulty course
would be a course where we would expect even the average student to do very
well. Lastly, the Registration records actual student participation in a course.
This table’s key is a registration key. Both Student and Course are foreign keys
giving student and course data. The last field in the table gives the grade for
that registration.

Figure 1 shows an example database with these 3 tables. Notice that some
non-key data is missing in the database. For example, we do not know what was
mary’s grade on c0, maybe because the grade has not been input yet. Also, we

r0
r1
r2
r3
r4

Student Course Grade

John c0 B
Mary c0
Mary c2 A
John c2
Mary c3 A

Course Difficulty

c0 A
c2
c3 C

Student Skill

John A
Mary

?

?

?

?

Reg

Fig. 1. A Simplified School Database with Tables on Students, Courses and Grades

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 159

r0
r1
r2
r3
r4

Student Course Grade

John c0 B
Mary c0
Mary c2 A
John c2
Mary c3 A

?

?

Reg

Course Difficulty

c0 A
c2
c3 C

Student Skill

John A
Mary ?

?

Fig. 2. Direct Dependency Between Random Variables in Simplified School Database

do have john’s skill, but we could not obtain data on mary. This is a common
problem in databases: often, the database only contains partial data for some
items. A fundamental observation in the PRM design is that such missing data
can be represented as random variables. The idea is that columns for which there
is missing data should be seen as sets of random variables. If a specific value is
known, we say that the database includes evidence on this item. For example,
we may say that the Skill attribute in the Student table is a set of random
variables, and that we have evidence for the skill variable corresponding to key
john. Other sets of random variables are for Difficulty and Grade.

An immediate step in the PRMs is that we can estimate probabilities on the
missing values through considering other items in the database. Such items may
be on the same relation, or may also be found at a different relations. In our
database example, for instance, it would make sense to assume that better skilled
students would have better grades, e.g., an A level student would have an higher
probability of achieving an A. Moreover, it makes sense to assume that a grade
will also depend on the course’s difficulty: the easier the course, the better the
grades. We can go one step further and argue that given course and student
information, a grade should be conditionally independent on the other elements
on the database. This reasoning suggests that all the random variables in our
PRM-extended database should form a Bayesian network.

Figure 2 shows a fragment of the Bayesian network induced by this rule. At
first sight, our expectations for mary’s grade on course c0 depend on data we
have on mary and course c0.

CLP(BN) is grounded on the idea that such beliefs can easily be expressed
in Logic. Namely, the previous example can be expressed in a variety of ways,
but one approach (using Prolog Notation) would be as follows:

160 V. Santos Costa, D. Page, and J. Cussens

grade(r1,Grade) :-
skill(mary,Mskill),
difficulty(c0,C0Difficulty),
Grade = ‘G’(MSkill,C0Difficulty).

Grade is as an attribute of registration r1. We know that its actual value
will depend on mary’s skill and course c0’s difficulty. The clause says exactly
that: Grade is a random variable that can also be described as an unknown
function, G(), of r1, mary’s skill, Mskill, and c0’s difficulty, C0Difficulty.
Such unknown functions are often used in Logic, where they are usually called
Skolem functions : thus, in our formalism we shall say that a random variable is
given by a Skolem function of its arguments.

Note that we do have some expectations on G(). Such data can be expressed
in a variety of ways, say through the fact:

random_variable(‘G’(_,_),[‘A’,‘B’,‘C’,‘D’],[0.4,0.3,0.2,0.1]).

that states that the random variable has domain A,B,C,D and a discrete con-
ditional probability table that we represent as a Prolog list with a number of
floating point values between 0 and 1.

Of course, one of the main advantages of the PRMs (and of using first-order
representations), is that we can generalize. In this case, we could write a single
rule for Grade by lifting the constants in our grade clause and making the indi-
vidual registration an argument to the Skolem function. We will need to access
the foreign keys, giving the following clause:

grade(Registration,Grade) :-
registration_student(Registration, Student),
registration_course(Registration, Course),
difficulty(Course,Difficulty),
skill(Student,Skill),
Grade = ‘S’(Registration,Skill,Difficulty).

random_variable(‘S’(_,_,_),[‘A’,‘B’,‘C’,‘D’],[0.4,0.3,0.2,0.1]).

Next, we need rules for difficulty and skill. In our model, we do not have helpful
dependencies for Skill and Difficulty, so the two columns should be given
from priors. We thus just write:

skill(Student,‘S1’(Student)).
difficulty(Course,‘S2’(Course)).

random_variable(‘S1’(_),[‘A’,‘B’,‘C’,‘D’],[0.25,0.25,0.25,0.25]).
random_variable(‘S2’(_),[‘A’,‘B’,‘C’,‘D’],[0.25,0.25,0.25,0.25]).

At this point we have a small nice little logic program that fully explains the
database. We believe this representation is very attractive (indeed, a similar
approach was proposed independently by Blockeel [9]), but it does have one
major limitation: it hides the difference between doing inference in first order
logic and in Bayesian network, as we discuss next.

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 161

Evidence. We have observed that mary’s grade on c0 depends on two factors:
course c0’s difficulty, and mary’s skill. In practice, the actual database does have
some extra information that can help in refining the probabilities for this grade.

First, we have actual data on an item. Consider c0’s difficulty: we actually
know that c0 is an easy course. We thus have two sources of information about
c0’s difficulty: we know that it is a random function, ‘S1’(c0); but we also know
that it takes the value A. Logically, this evidence can be seen as setting up the
equation S1(c0) = ‘A’. Unfortunately, unification cannot be easily redefined in
Prolog.

One simple solution would be to add evidence through an extra fact:

evidence(‘S1’(c0),‘A’).

We assume that somehow this evidence is going to be used when we actually run
the program. This solution is not entirely satisfactory, as we now have two sepa-
rate sources of data on skill: the skill/2 relation and some facts for evidence/2.

Evidence plays indeed a very important role in Bayesian networks. Imagine
we want to know the probability distribution for mary’s grade on course c0.
We have more accurate probabilities knowing c0 is an easy course. And, even
though we do not have actual evidence on mary’s skill, Mskill, we can achieve
a better estimate for its probability distribution if we consider evidence relevant
to Mskill. Namely, mary has attended two other courses, c2 and c3, and that
she had good grades on both. In fact, course c3 should be quite a good indicator,
as we know grades tend to be bad (a C). We do not know the difficulty of course
c2, but we can again make an estimate by investigating evidence on the students
that attended this course. Following all sources of evidence in a network can be
quite complex [10], even for such simple examples. In this case, the result is the
network shown in Figure 3. Bayesian networks have developed a number of both
exact and approximate methods to estimate the probabilities for Grade given all
the evidence we have on this graph [1].

Evaluating all the relevant evidence is a complex process: first, we need to
track down all relevant sources of evidence, through algorithms such as knowl-
edge based model construction [11]. Next, we need to perform probabilistic in-
ference on this graph and marginalize the probabilities on the query variables.
To do so would require an extra program, which would have to process both the
original query and every source of evidence.

Constraints. The previous approach suggests that a Prolog only approach can
be used to represent all the properties of Bayesian networks, but that it does
expose the user to the mechanisms used by the Bayesian network to accept and
propagate evidence. The user would have the burden of knowing which random
variables have evidence, and she would be responsible to call a procedure for
probabilistic inference.

Such difficulties suggest that we may want to work at an higher abstraction
level. Constraint Logic Programming is an important framework that was de-
signed in order to allow specific interpretations on some predicates of interest.
These interpretations can then be used to implement specialized algorithms over

162 V. Santos Costa, D. Page, and J. Cussens

Reg Student Course Grade

r0 John c0 B
r1 Mary c0
r2 Mary c2 A
r3 John c2
r4 Mary c3 A

?

?

Course Difficulty

c0 A
c2
c3 C

?

Student Skill

John A
Mary ?

Fig. 3. Full Bayesian Network Induced by Random Variables in the Network

the standard Prolog inference. For example, CLP(R) defines constraints over
reals: it redefines equality and arithmetic operations to create constraints, or
equations, that are manipulated by a separate constraint solver. The constraint
solver maintains a Store of all active arithmetic constraints, and calls specialized
algorithms to process the equations into some canonical form.

We believe the constraint framework is a natural answer to the problems
mentioned above. First, through constraints we can extend equality to support
evidence. More precisely we can redefine the equality:

{ S1(c0) = ‘A’ }

to state that random variable S1(c0) has received evidence A. In constraint
programming, we are not forced to bind S1(c0) to A. Instead, we can add S1(c0)
= ‘A’ to a store for later evaluation.

The second advantage of using constraint programming is that it is natural to
see a Bayesian Network as a store: both constraints stores and Bayesian networks
are graphs; in fact, it is well known that there is a strong connection between
both [12]. It is natural to see the last step of probabilistic inference as constraint
solving. And it is natural to see marginalization as projection.

Moreover, because constraint stores are opaque to the actual inference process,
it is possible to have a global constraint store that accommodates all evidence so
far. In other words, any time we add evidence to the database we can add this
evidence to a global constraint store. Probabilistic inference will then be called
having this global Bayesian network as a backdrop.

We have presented the key ideas of CLP(BN). Next, we discuss the CLP(BN)
language in some more detail.

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 163

3 The CLP(BN) Language

A CLP(BN) program is a constraint logic program that can encode Bayesian
constraints. Thus, CLP(BN) programs are sets of Prolog clauses, where some
clauses may contain BN constraints. BN constraints are of the form {X = F
with P}, where X must be a Prolog variable, F a term, and P a probability
distribution.

As an example, consider the following clause:

skill(S,Skill) :-
{Skill = skill(S) with p([‘A’, ‘B’, ‘C’, ‘D’],

[0.25,0.25,0.25,0.25],[])}.

This clause sets a constraint on Skill. The constraint declares that Skill should
be constrained to the term skill(S), an unknown function, or Skolem function,
of S. Throughout the paper we refer to this term that uniquely identifies a
random variable as the Skolem term. The constraint declares some further in-
formation on skill(S) through the with construct. In this case, the right hand
side of with declares that skill(S) is a discrete random variable with 4 possible
values and a prior distribution:

1. skill(S) has domain A, B, C and D;
2. it has an uniform probability distribution over those values;
3. and that skill(S) has no parent nodes.

The right-hand-side of the with is a Prolog term. Thus, the same constraint
could be written as:

skill(S,Skill) :-
cpt(skill(S), CPT),
{Skill = skill(S) with CPT }.

cpt(skill(_), p([‘A’, ‘B’, ‘C’, ‘D’],
[0.25,0.25,0.25,0.25],[])).

One advantage of this approach is that it makes it straightforward to represent
different CPTs for different students with a single constraint. Imagine we have
extra information on student’s academic story: in this case, we could expect
senior students to have better skills than first-year students.

skill(S,Skill) :-
cpt(skill(S), CPT),
{Skill = skill(S) with CPT }.

cpt(skill(S), p([‘A’,‘B’,‘C’,‘D’],[PA, PB, PC, PD],[])) :-
skill_table(S, PA, PB, PC, PD).

164 V. Santos Costa, D. Page, and J. Cussens

skill_table(S, 0.25, 0.25, 0.25, 0.25) :-
freshman(S).

skill_table(S, 0.35, 0.30, 0.20, 0.15) :-
sophomore(S).

skill_table(S, 0.38, 0.35, 0.17, 0.10) :-
junior(S).

skill_table(S, 0.40, 0.45, 0.15,0.00) :-
senior(S).

In general, all CLP(BN) objects are first class objects. They can be specified
as compile-time constants, but they can also be computed through arbitrary
logic programs. And they can be fully specified before or after setting up the
constraint, so

skill(S,Skill) :-
{Skill = skill(S) with CPT },
cpt(skill(S), CPT).

is a legal program, and so is:

skill(S,CPT,Skill) :-
{Skill = skill(S) with CPT }.

Conditional Probabilities. Let us next consider an example of a conditional prob-
ability distribution (CPT). We may remember from Figure 2 that a registration’s
grade depends on the course’s difficulty and on the student’s intelligence. This
is encoded in the following clause:

grade(Registration, Grade) :-
registration_student(Registration, Student),
registration_course(Registration, Course),
difficulty(Course,Dif),
intelligence(Student,Skill),
grade_table(TABLE),
{

Grade = grade(Course, Dif, Skill) with
p([‘A’,‘B’,‘C’,‘D’],TABLE,[Dif,Skill])

}.

The constraint says that Grade is a Skolem function of Reg, Dif , and Skill. We
know that Grade must be unique for each Reg, and we know that the probability
distribution for the possible values of Grade depend on the random variables
Dif and Skill. These variables are thus the parents in Grades’s CPT, i.e., the
third argument in the with term. The actual table must include 43 cases: we
save some room in the text by assuming it was given by an auxiliary predicate
grade table/1.

Figure 4 shows an alternative, pictorial, representation for a CLP(BN) clause
in this example. The representation clearly shows the clause as having two com-
ponents: the logical component sets all variables of interest, and the Bayesian
constraint connects them in a sub-graph.

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 165

 reg(Reg, Course, Student),
 difficulty(Course, Dif),
 intelligence(Student, Int).

Dif Intgrade(Reg, grade(Reg)):−

grade(Reg)

Fig. 4. Pictorial representation of a grade clause

3.1 Execution

The evaluation of a CLP(BN) program results in a network of constraints. In
the previous example, the evaluation of

?- grade(r1,Grade).

will set up a constraint network with grade(r2) depending on dif(course) and
int(student). CLP(BN) will output the marginal probability distribution on
grade(r2).

Table 1 shows in some detail the actual execution steps for this query in the
absence of prior evidence. The binding store and the query store grow along
as we execute a query on grade r1. The leftmost column shows the step num-
ber, the middle column shows new bindings, and the rightmost column shows
new constraints. We represent each binding as an equality, and we represent a
constraint as the corresponding Skolem term. For space considerations, we ab-
breviate names of constants and variables, and we do not write the full CPTs,
only the main functor and arguments for each Skolem term.

Table 1. A Query on Grade

Step Bindings Skolem Terms

0 {R = r1} {}
1 ∪{S = mary}
2 ∪{C = c0}
3 ∪{D(c0)}
4 ∪{S(mary)}
5 ∪{G(r1, D(c0), I(mary))}

Each step in the computation introduces new bindings or BN constraints. In
step 1 the call to registration student/2 obtains a student, mary. In step 2
the call to registration course/2 obtains a course, c0. The course’s difficulty
is obtained from c0 in step 3. Step 4 gives mary’s skill. We then link the two
variables together to obtain the CPT for Grade.

166 V. Santos Costa, D. Page, and J. Cussens

Reg Student Course Grade Satisf

r0 John c0
r1 Mary c0
r2 Mary c2
r3 John c2
r4 Mary c3

Course Prof Difficulty

c0 Bayes
c2 Moivre
c3 Bayes

?

Student Skill

John
Mary ?

Professor Ability

Bayes
Moivre

?

h?

Fig. 5. School Database Extended to Include Satisfaction and Professor Data

Execution: Conditioning on Evidence. One major application of Bayesian net-
work systems is conditioning on evidence. To give this next example, we will
add some extra information to the database, as shown in Fig 5. First, we assume
that now we have some information on the professors that actually taught the
course. We shall need an extra table for professors, and an extra column on
courses saying which professor teaches each course. Second, we are interested in
how happy students were in our courses. Thus, we add an extra field for courses
saying how happy, or Satisfied, the student was.

Satisfaction is a random variable. We do not always know it. We do know that
it depends on grade and that it even with bad grades, students will be happy
to attend courses taught by very good professors. Notice that in order to obtain
a professor’s ability, we need to navigate in the database: we find the course
associated with the registration, the professor who taught the course, and finally
the professor’s ability. The corresponding program is shown next:

satisfaction(Reg, Sat) :-
registration_course(Reg, Course),
professor(Course, Prof),
ability(Prof, Abi),
grade(Reg, Grade),
sat_table(Abi, Grade, Table),
{ Sat = satisfaction(Reg) with Table }.

Next, imagine that mary was the only student who actually gave her satis-
faction, and that she was highly satisfied with registration r1. Given this extra
evidence on satisfaction for r1, can we compute the new marginal for grade?

We need to be able to query for Grade, given that r2’s satisfaction is bound to
h. In CLP(BN) the random variable for satisfaction can be obtained by asking a
query,and evidence can be introduced by unifying the answer to the query. The
full query would thus be:

?- grade(r1,X), satisfaction(r1,h).

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 167

Table 2. A Query on Grade and Satisfaction

Step Bindings Skolem Terms

0 {R = r1} {}
1 ∪{S = mary}
2 ∪{C = c0}
3 ∪{D(c0)}
4 ∪{S(mary)}
5 ∪{G(r1, D(c0), S(mary))}
6 {C′ = c0}
7 ∪{P ′ = Bayes}
8 ∪{A(Bayes)}
9− 13
14 ∪{S(r1, A(Bayes), G(r1, . . .))}
15 ∪{S(r1, . . .) = h}

Table 2 shows how the execution steps update the stores in this case.
The first five steps repeat the computation for grade. Step 5 and 6 find the

professor for the course. Step 8 finds its ability. Next, we recompute Grade.
The computation will in fact be redundant, as the Skolem term for Grade was
already in the store. The final step introduces evidence. Unification in CLP(BN)
implements evidence through updating the original constraint in the store. The
full store is then marginalized against the query variables by the constraint
solver.

Evidence in Store. Imagine again we ask grade(r1, X) but now given the
database shown in Figure 1. The actual query should now be:

?- grade(r1,X),
grade(r0,‘B’), grade(r2,‘A’), grade(r4, ‘A’),
difficulty(c0, ‘A’), difficulty(c3, ‘C’),
skill(john, ‘A’).

Writing such long queries is cumbersome, to say the least. It may be unclear
which evidence is relevant, whereas giving all the evidence in a database may be
extremely expensive computationally.

Table 3. A Query on Grade

Step Bindings Skolem Terms

0 {R = r1} {G(r0, D(c0), S(john)), D(c0), S(john), . . .}
1 ∪{S = mary}
2 ∪{C = c0}
3 ∪{D(c0)}
4 ∪{S(mary)}
5 ∪{G(r1, D(c0), S(mary))}

168 V. Santos Costa, D. Page, and J. Cussens

CLP(BN) allows the user to declare evidence in the program. This is simply
performed by stating evidence as a fact for the predicate. Currently, we use the
construct {} to inform CLP(BN) that a fact introduces evidence:

grade(r0, ‘B’) :- {}.
grade(r2, ‘A’) :- {}.
grade(r4, ‘A’) :- {}.

This global evidence is processed at compile-time, by running the evidence data
as goals and adding the resulting constraints to the Global Store. Execution of
grade(1,X) would thus be as shown in Table 3.

4 Foundations

We next present the basic ideas of CLP(BN) more formally. For brevity, this
section necessarily assumes prior knowledge of first-order logic, model theory,
and resolution.

First, we remark that CLP(BN) programs are constraint logic programs, and
thus inherit the well-known properties of logic programs. We further interpret a
CLP(BN) program as defining a set of probability distributions over the models
of the underlying logic program. Any Skolem function sk of variables X1, ..., Xn,
has an associated CPT specifying a probability distribution over the possible
denotations of sk(X1, ..., Xn) given the values, or bindings, of X1, ..., Xn. The
CPTs associated with a clause may be thought of as a Bayes net fragment, where
each node is labeled by either a variable or a term built from a Skolem function.
Figure 4 illustrates this view using a clause that relates a registration’s grade to
the course’s difficulty and to the student’s intelligence.

4.1 Detailed Syntax

The alphabet of CLP(BN) is the alphabet of logic programs. We shall take a set
of functors and call these functors Skolem functors ; Skolem constants are simply
Skolem functors of arity 0. A Skolem term is a term whose primary functor is
a Skolem functor. We assume that Skolem terms have been introduced into the
program during a Skolemization process to replace the existentially-quantified
variables in the program. It follows from the Skolemization process that any
Skolem functor sk appears in only one Skolem term, which appears in only one
clause, though that Skolem term may have multiple occurrences in that one
clause. Where the Skolem functor sk has arity n, its Skolem term has the form
sk(W1, ..., Wn), where W1, ..., Wn are variables that also appear outside of any
Skolem term in the same clause.

A CLP(BN) program in canonical form is a set of clauses of the form H ←
A/B. We call H the head of the clause. H is a literal and A is a (possibly empty)
conjunction of literals. Together they form the logical portion of the clause, C.
The probabilistic portion, B, is a (possibly empty) conjunction of atoms of the
form: {V = Sk with CPT }. We shall name these atoms constraints. Within

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 169

a constraint, we refer to Sk as the Skolem term and CPT as the conditional
probability table. We focus on discrete variables in this paper. In this case,
CPT may be an unbound variable or a term or the form p(D, T, P). We refer
to D as the domain, T as the table, and P as the parent nodes.

A CLP(BN) constraint Bi is well-formed if and only if:

1. All variables in Bi appear in C;
2. Sk′s functor is unique in the program; and,
3. There is at least one substitution σ such that CPTσ = p(Dσ, Tσ, Pσ), and

(a) Dσ is a ground list, all members of the list are different, and no sub-term
of a term in the list is a Skolem term; (b) Pσ is a ground list, all members of
the list are different, and all members of the list are Skolem terms; and (c)
Tσ is a ground list, all members of Tσ are numbers p such that 0 ≤ p ≤ 1,
and the size of Tσ is a multiple of the size of Dσ.

If the probabilistic portion of a clause is empty, we also call the clause a
Prolog clause. According to this definition, every Prolog program is a CLP(BN)
program.

4.2 Operational Semantics

A query for CLP(BN) is an ordinary Prolog query, which is a conjunction of
positive literals. In logic programming, a query is answered by one or more proofs
constructed through resolution. At each resolution step, terms from two different
clauses may be unified. If both of the terms being unified also participate in
CPTs, or Bayes net constraints, then the corresponding nodes in the Bayes net

 reg(Reg, Course, Student),
Dif Int

 difficulty(Course, Dif),
 intelligence(Student, Int).

from first clause with

grade(Reg, grade(Reg)):−

Resolve grade(Reg, grade(Reg))

grade(Reg’, Grade’) from second

satisfaction(Reg’, sat(Reg’)):−
 course(Reg’, Course’),
 professor(Course’, Prof’),
 ability(Prof’, Abi’),
 grade(Reg’, Grade’).

Abi’ Grade’

satisfaction(Reg’)

clause. Note that the ’ symbol
is simply to rename all variables
when standardizing apart.

satisfaction(Reg’, sat(Reg’)):−
 course(Reg’, Course’),
 professor(Course’, Prof’),
 ability(Prof’, Abi’),
 reg(Reg’, Course, Student),
 difficulty(Course, Dif),
 intelligence(Student, Int). satisfaction(Reg)

Abi’

IntDif

grade(Reg)

grade(Reg)

Fig. 6. Resolution

170 V. Santos Costa, D. Page, and J. Cussens

constraints must be unified as illustrated in Figure 6. In this way we construct
a large Bayes net consisting of all the smaller Bayes nets that have been unified
during resolution.

A cycle may arise in the Bayes Net if we introduce a constraint such that
Y is a parent of X , and X is an ancestor of Y . In this case, when unifying Y
to an argument of the CPT constraint for X , X would be a sub-term of the
CPT constraint for Y which causes unification failure. To detect this failure it
is necessary to do a proper unification test using the ‘occur-check’, something
standard Prolog does not do (for efficiency reasons).

To be rigorous in our definition of the distribution defined by a Bayes net
constraint, let Ci/Bi, 1 ≤ i ≤ n, be the clauses participating in the proof, where
Ci is the ordinary logical portion of the clause and Bi is the attached Bayes net,
in which each node is labeled by a term. Let θ be the answer substitution, that is,
the composition of the most general unifiers used in the proof. Note that during
resolution a clause may be used more than once but its variables always are
renamed, or standardized apart from variables used earlier. We take each such
renamed clause used in the proof to be a distinct member of {Ci/Bi|1 ≤ i ≤ n}.
We define the application of a substitution θ to a Bayes net as follows. For each
node in the Bayes net, we apply θ to the label of that node to get a new label.
If some possible values for that node (according to its CPT) are not instances
of that new label, then we marginalize away those values from the CPT.

4.3 Model-Theoretic Semantics

A CLP(BN) program denotes a set of probability distributions over models.
We begin by defining the probability distribution over ground Skolem terms
that is specified by the probabilistic portion of a CLP(BN) program. We then
specify the probability distribution over models, consistent with this probability
distribution over ground Skolem terms, that the full CLP(BN) program denotes.

A CLP(BN) program P defines a unique joint probability distribution over
ground Skolem terms as follows. Consider each ground Skolem term to be a
random variable whose domain is a finite set of non-Skolem constants.1 We
now specify a Bayes net BN whose variables are these ground Skolem terms.
Each ground Skolem term s is an instance of exactly one Skolem term t in the
program P . To see this recall that, from the definition of Skolemization, any
Skolem functor appears in only one term in the program P , and this one term
appears in only one clause of P , though it may appear multiple times in that
clause. Also from the definition of Skolemization, t has the form sk(W1, ..., Wm),
where sk is a Skolem functor and W1, ..., Wm are distinct variables. Because s is
a ground instance of t, s = tσ for some substitution σ that grounds t. Because
t = sk(W1, ..., Wn) appears in only one clause, t has exactly one associated
(generalized) CPT, T , conditional on the Skolem terms in W1, ..., Wn. Let the

1 This can be extended to a finite subset of the set of ground terms not contain-
ing Skolem symbols (functors or constants). We restrict ourselves to constants here
merely to simplify the presentation.

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 171

parents of s in BN be the Skolem terms in W1σ, ..., Wmσ, and let the CPT
be Tσ. Note that for any node in BN its parents are sub-terms of that node.
It follows that the graph structure is acyclic and hence that BN is a properly
defined Bayes net, though possibly infinite. Therefore BN uniquely defines a
joint distribution over ground Skolem terms; we take this to be the distribution
over ground Skolem terms defined by the program P .

The meaning of an ordinary logic program typically is taken to be its least
Herbrand model. Recall that the individuals in a Herbrand model are them-
selves ground terms, and every ground term denotes itself. Because we wish to
consider cases where ground Skolem terms denote (non-Skolem) constants, we
instead consider Herbrand quotient models [13]. In a Herbrand quotient model,
the individuals are equivalence classes of ground terms, and any ground term
denotes the equivalence class to which it belongs. Then two ground terms are
equal according to the model if and only if they are in the same equivalence class.
We take the set of minimal Herbrand quotient models for P to be those derived
as follows.2 Take the least Herbrand model of the logical portion of P , and for
each non-Skolem constant, merge zero or more ground Skolem terms into an
equivalence class with that constant. This equivalence class is a new individual,
replacing the merged ground terms, and it participates in exactly the relations
that at least one of its members participated in, in the same manner. It follows
that each resulting model also is a model of P . The set of models that can be
constructed in this way is the set S of minimal Herbrand quotient models of P .
Let D be any probability distribution over S that is consistent with the distri-
bution over ground Skolem terms defined by P . By consistent, we mean that
for any ground Skolem term t and any constant c, the probability that t = c
according to the distribution defined by P is exactly the sum of the probabilities
according to D of the models in which t = c. At least one such distribution D
exists, since S contains one model for each possible combination of equivalences.
We take such 〈D, S〉 pairs to be the models of P .

4.4 Agreement Between Operational and Model-Theoretic
Semantics

Following ordinary logic programming terminology, the negation of a query is
called the “goal,” and is a clause in which every literal is negated. Given a pro-
gram and a goal, the CLP(BN) operational semantics will yield a derivation of
the empty clause if and only if every model 〈D, S〉 of the CLP(BN) program
falsifies the goal and hence satisfies the query for some substitution to the vari-
ables in the query. This follows from the soundness and refutation-completeness
of SLD-resolution. But in contrast to ordinary Prolog, the proof will be accom-
panied by a Bayes net whose nodes are labeled by Skolem terms appearing in
the query or proof. The following theorem states that the answer to any query of
2 For brevity, we simply define these minimal Herbrand quotient models directly. Al-

ternatively, we can define an ordering based on homomorphisms between models and
prove that what we are calling the minimal models are indeed minimal with respect
to this ordering.

172 V. Santos Costa, D. Page, and J. Cussens

this attached Bayes net will agree with the answer that would be obtained from
the distribution D, or in other words, from the distribution over ground Skolem
terms defined by the program P . Therefore the operational and model-theoretic
semantics of CLP(BN) agree in a precise manner.

Theorem 1. For any CLP(BN) program P , any derivation from that program,
any grounding of the attached Bayes net, and any query to this ground Bayes
net,3 the answer to the query is the same as if it were asked of the joint distri-
bution over ground Skolem terms defined by P .

Proof. Assume there exists some program P , some derivation from P and as-
sociated ground Bayes net B, and some query Pr(q|E) such that the answer
from B is not the same as the answer from the full Bayes net BN defined by
P . For every node in B the parents and CPTs are the same as for that same
node in BN . Therefore there must be some path through which evidence flows
to q in BN , such that evidence cannot flow through that path to q in B. But by
Lemma 1, below, this is not possible.

Lemma 1. Let B be any grounding of any Bayes net returned with any deriva-
tion from a CLP(BN) program P . For every query to B, the paths through which
evidence can flow are the same in B and in the full Bayes net BN defined by P .

Proof. Suppose there exists a path through which evidence can flow in BN but
not in B. Consider the shortest such path; call the query node q and call the
evidence node e. The path must reach q through either a parent of q or a child of
q in BN . Consider both cases. Case 1: the path goes through a parent p of q in
BN . Note that p is a parent of q in B as well. Whether evidence flows through
p in a linear or diverging connection in BN , p cannot itself have evidence—
otherwise, evidence could not flow through p in BN . Then the path from e to p
is a shorter path through which evidence flows in BN but not B, contradicting
our assumption of the shortest path. Case 2: the path from e to q flows through
some child c of q in BN . Evidence must flow through c in either a linear or
converging connection. If a linear connection, then c must not have evidence;
otherwise, evidence could not flow through c to q in a linear connection. Then
the path from e to c is a shorter path through which evidence flows in BN
but not B, again contradicting our assumption of the shortest path. Therefore,
evidence must flow through c in a converging connection in BN . Hence either c
or one of its descendants in BN must have evidence; call this additional evidence
node n. Since n has evidence in the query, it must appear in B. Therefore its
parents appear in B, and their parents, up to q. Because evidence can reach c
from e in B (otherwise, we contradict our shortest path assumption again), and
a descendant of c in B (possibly c itself) has evidence, evidence can flow through
c to q in B.

3 For simplicity of presentation, we assume queries of the form Pr(q|E) where q is one
variable in the Bayes net and the evidence E specifies the values of zero or more
other variables in the Bayes net.

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 173

5 Non-determinism and Aggregates

One important property of relational databases is that they allow users to query
for properties of sets of elements, or aggregates. Aggregates are also particularly
important in the application of Probabilistic Relational Models, as they allow
one to state that the value of a random variable depends on a set of elements
that share some properties [14].

To clarify this concept, imagine that we run a private school, and we want
to find out which courses are most attractive. To do so, we would want one
extra attribute on the Courses table giving how popular the course is, as shown
in Figure 7. Ideally, one would ask students who have attended the course and
average the results. On the other hand, if we cannot obtain a representative
sample, we can try to estimate popularity from the average of student satisfaction
for that course.

Towards this goal, an extension to the Bayesian network is shown in Figure 8.
We need an operator to aggregate on the set of satisfactions for a course, and
then we can estimate the field’s value from the aggregate.

Reg Student Course Grade Satisf

r0 John c0
r1 Mary c0
r2 Mary c2
r3 John c2
r4 Mary c3

Course Prof Difficulty Popularity

c0 Bayes
c2 Moivre
c3 Bayes

Student Skill

John
Mary

Professor Ability

Bayes
Moivre

Fig. 7. School Database Extended to Include a Field on Course Popularity

Reg Student Course Grade Satisf

r0 John c0
r1 Mary c0
r2 Mary c2
r3 John c2
r4 Mary c3

Course Prof Difficulty Popularity

c0 Bayes
c2 Moivre
c3 Bayes

Student Skill

John
Mary

Professor Ability

Bayes
Moivre

Fig. 8. School Database: Popularity is a random variable, and depends on the average
of student satisfaction

174 V. Santos Costa, D. Page, and J. Cussens

CLP(BN) can deal with such aggregates in a straightforward way, by taking
advantage of the second order features in Prolog, as shown in the next clause:

rating(C, Rat) :-
setof(S,R^(registration(R,C),

satisfaction(R,S)), Sats),
average(Sats, Average),
rating_table(Table),
{ Rat = rating(C) with prob([a,b,c,d],Table,[Average])

The call to setof obtains the satisfactions of all students registered in the course.
The procedure average/3 generates a the conditional probability of their average
as a new random variable, Average. The course’s rating, Rat, is assumed to be
highly dependent on Average.

5.1 Building Aggregates

Aggregates are deterministic functions. Given n discrete random variables that
range over k possible values, the aggregate value will take one well defined value.
Hence, the probability of that value will be 1, and 0 for the remaining k−1 values.
Writing the CPTs for aggregates should therefore be quite straightforward.

Unfortunately, aggregates create two problems. First, CPTs are most often
represented as tables, where the size of the table grows exponentially with the
number of dimensions. As the number of nodes n in the aggregate grows, table
size grows exponentially. The current implementation of CLP(BN) uses divorc-
ing [1]. The idea is to introduce hidden nodes, also called mediating variables,
between a node and its parents, so that the total number of parents for every
node can be guaranteed to never exceed a small number. The current system
implements an aggregate node through a binary tree of mediating variables.

Figure 9 shows a fragment of an example network for an artificially generated
School database with 4096 students. The query node is the gray node below. The
gray node above is a evidence node for course rating. The node is an aggregate
of 68 student satisfaction nodes, hence building the full table would require
3 ∗ 368 entries. Figure 9 shows the hierarchy of mediating nodes constructed by
CLP(BN): note that the value of each node is deterministic on the ancestor
nodes.

Figure 9 clearly shows the second problem we need to address in making
CLP(BN) effective for real data-bases. The Bayes network shown here was cre-
ated to answer a query on course difficulty, shown as the gray node below.
Given the original query, the algorithm searches for related evidence (shown
as the other gray nodes). The knowledge-based model-construction algorithm
searches parents recursively, eventually finding a number of nodes with evidence.
Next, it needs to consider the Markov Blanket for these nodes, thus leading to
searching other nodes. In this case, eventually almost every random variable in
the database was included in the actual Bayes net (even though most of the
nodes will have little relevancy to the original query).

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 175

Fig. 9. A Bayesian Network Generated for an Ability Query. The Artificial network
includes 4096 students, 128 professors, and 256 courses.

We observed that it is often the case that some nodes in a database are highly
connected and take a central position in the graph. If evidence reaches these
central nodes probabilistic inference will end up involving most of the network.

1. Exact inference is very expensive, and may not be possible at all.
2. Standard approximate inference such as Gibbs sampling may not always

converge as often these networks include deterministic operations, such as
average in current the example.

Processing such large networks effectively [15,16,17,18] and choosing the best
strategy for different networks is one of the major challenges in the development
of CLP(BN).

6 Recursion and Sequences

Recursion in Logic provides an elegant framework for modeling sequences of
events, such as Markov Models. Next we discuss how the main ideas of CLP(BN)
can be used to represent Hidden Markov Models (HMMs) [19], which are used
for a number of applications ranging from Signal Processing, to Natural Lan-
guage Processing, to Bioinformatics, and Dynamic Bayes Networks (DBNs).
This was inspired by prior work on combining the advantages of multi-relational
approaches with HMMs and DBNs: evaluation and learning of HMMs is part
of PRISM [20,21], Dynamic Probabilistic Relational Models combine PRMs
and DBNs [22], Logical HMMs have been used to model protein structure

176 V. Santos Costa, D. Page, and J. Cussens

Fig. 10. Plan7 (From the HMMer Manual)

data [23,24]. More recently, non-directed models such as LogCRFs have also
been proposed toward this goal [25].

Next, we discuss how to model HMMs and DBNs in CLP(BN). We present
our experience in modeling profile-HMMs (pHMMs), an HMM structure widely
used in Bioinformatics for homology detection between a sequence and a family
of sequences. We chose pHMMs because they are extremely important in prac-
tice, and because they are not a trivial application. We focus on HMMer, an
open-source tool that implements the Plan7 model, and which is one of the most
widely used tools [26]. HMMer was used to build the well-known Pfam protein
database [27].

HMMer is based on the Plan7 model, shown in Figure 10. The model describes
a number of related sequences that share the same profile: a number of columns,
each one corresponding to a well-preserved amino-acid. The example shows a
relatively small profile, we can have profiles with hundreds of columns. A match
state corresponds to an amino-acid in the sequence being a good match to the
amino-acids found at the same position in the profile. Insert and delete states
correspond to gaps: inserts are new material inserted in the sequence, and deletes
removed material. There also three other character emitting-states: N, E, and J.
The N states corresponds to material preceding the match, the E states to mate-
rial after the match, and the J states allow several matches on the same sequence.

Fig. 11. M-State in Plan7

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 177

We model a pHMM by writing rules for each type of state. First, each state
has two indexes: I refers to the current position in the sequence, and J to the
column we are at. Second, whereas in a standard Bayesian Network we write how
a variable depends on its parents, in an HMM we think in terms of transitions
between states. As an example, consider the case of a typical M state, shown in
Figure 11.

If we are at M state we can next move to an I state, (meaning a match is
followed by a gap), to a D state, meaning the sequence will skip the next match
state, or to the next M state. The model also makes it possible to jump directly
to the end of the match. The CLP(BN) clause is as follows:

m_state(I,J,M) :-
I1 is I+1,
J1 is J+1,
i_state(I1,J,NI),
m_state(I1,J1,M1),
d_state(I1,J1,ND),
e_state(I1,NE),
m_i_prob(J,MIP),
m_m_prob(J,MMP),
m_d_prob(J,MDP),
m_e_prob(J,MEP),
{ M = m(I,J) with p([0,1],trans([MIP,MMP,MDP,MEP]),

[NI, M1, ND, NE])) },
emitting_state(m, I, J, M).

The M variable refers to the random variable for the current state. The rule
is not very complex:

1. We can move from M(I, J) to I(I + 1, J), M(I + I, J + 1), D(I + 1, J + 1),
or E(I + 1);

2. The transition probabilities at column I are PM→I = MIP , PM→M =
MMP PM→D = MDP , PM→E = MEP , such that

MIP + MMP + MDP + MEP = 1

3. M is a binary random variable with the given transition probabilities;
4. trans indicates we are setting up a constraint with transition probabilities;

such constraints need specialized solvers, such as Viterbi or forward propa-
gation.

5. emitting state/3: if the state emits a symbol, access evidence for sequence
element I.

Implementation. One can observe that HMMs are highly-recursive programs,
and executing in the standard Prolog way would result in calling the same goal
repeatedly over and over again. This problem can be addressed by tabling calls
so that only the first one is actually executed, and repeated calls just need

178 V. Santos Costa, D. Page, and J. Cussens

to lookup a data-base [28]. Tabled execution of these programs has the same
complexity as standard dynamic programming algorithms. To the best of our
knowledge, PRISM was the first language to use tabling for this task [20]. The
CLP(BN) implementation originally relied on YAP’s tabling mechanism [29].
Unfortunately, the YAP implementation of tabling is optimized for efficient eval-
uation of non-deterministic goals; we have achieved better performance through
a simple program transformation.

Given this tabling mechanism, implementing algorithms such as Viterbi is just
a simple walk over the constraint store.

Experiments. We tried this model with a number of different examples. The
most interesting example was the Globin example from the standard HMMer
distribution. The example matches a Plan7 model of the Globin family of pro-
teins against an actual globin from Artemia. The Globin model has 159 columns,
and the protein has 1452 amino-acids. The run generates 692 k states (random
variables) and is about two orders of magnitude slower than the highly opti-
mized C-code in HMMer. HMMer uses a much more compact and specialized
representation than CLP(BN). Also, CLP(BN) actually creates the complete
graph; in contrast, HMMer only needs to work with a column at a time. On the
other hand, CLP(BN) has some important advantages: it provides a very clear
model of the HMM, and it relatively straightforward to experiment and learn
different structures.

7 Learning with CLP(BN)

We have performed some experiments on learning with CLP(BN). In both cases
the goal is learn a model of a database as a CLP(BN) program.

The learning builds upon work performed for learning in Bayesian networks
and in Inductive Logic Programming. We leverage on the Aleph ILP system. Es-
sentially, we use Aleph to generate clauses which are then rewritten as CLP(BN)
clauses. The rewriting process is straightforward for deterministic goals. If non-
deterministic goal are allowed, we aggregate over the non-deterministic goals.
We assume full data in these experiments, hence the parameters can be learned
by maximum likelihood estimation. Next, we score the network with this new
clause. Note that the score is used to control search in Aleph.

7.1 The School Database

We have so far used the school database as a way to explain some basic concepts
in CLP(BN), relating them to PRMs. The school database also provides a good
example of how to learn CLP(BN) programs.

First, we use an interpreter to generate a sample from the CLP(BN) program.
The smallest database has 16 professors, 32 courses, 256 students and 882 reg-
istrations; the numbers roughly double in each successively larger database. We
have no missing data. Can we, given this sample, relearn the original CLP(BN)
program?

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 179

Professor

Student

Course
Registration

Teaching-Ability

Popularity

Rating

Difficulty

Intelligence

Ranking

Satisfaction

Grade

Instructor
Course

Student

Fig. 12. Pictorial representation of the CLP(BN) clauses learned from the largest
schools database, before removal of cycles

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

15 20 25 30 35 40 45 50 55 60 65

F
ra

ct
io

n
of

 A
rc

s/
Li

nk
s/

M
ar

ko
v

R
el

at
io

ns

size of data-base

fraction of orig arcs recovered
fraction of learnt arcs right

fraction of orig links recovered
fraction of learnt links right

fraction of orig MR recovered
fraction of learnt MR right

Fig. 13. Graph of results of CLP(BN)-learning on the three sizes of schools databases.
Links are arcs with direction ignored. A Markov relation (MR) holds between two
nodes if one is in the Markov blanket of the other.

From the ILP point of view, this is an instance of multi-predicate learning.
To simplify the problem we assume each predicate would be defined by a sin-
gle clause. We use the Bayesian Information Criterion (BIC) score to compare
alternative clauses for the same predicate. Because aleph learns clauses inde-
pendently, cycles may appear in the resulting CLP(BN) program. We therefore
augment aleph with a post-processing algorithm that simplifies clauses until no
cycles remain; the algorithm is greedy, choosing at each step the simplification
that will least affect the BIC score of the entire program.

The following is one of the learned CLP(BN) clauses; to conserve space, we
do not show the full conditional probability table.

180 V. Santos Costa, D. Page, and J. Cussens

registration_grade(A,B) :-
registration(A,C,D), course(C,E),
course_difficulty(C,F), student_intelligence(D,G),
{F = registration_grade(A,F,G) with

p([‘A’,‘B’,‘C’,‘D’],...,[F,G] }.

Figure 12 illustrates, as a PRM-style graph, the full set of clauses learned for
the largest of the databases before simplification; this would be the best network
according to BIC, if not for the cycles. Figure 13 plots various natural measures
of the match between the learned program after cycles have been removed and
the original program, as the size of the database increases. By the time we get
to the largest of the databases, the only measures of match that do not have a
perfect score are those that deal with the directions of arcs.

7.2 EachMovie

Next, we experiment our learning algorithm on the EachMovie data-set. This
data-set includes three tables: there is data on 1628 movies, including movie
type, store-info, and a link to the IMDB database. There is data on 72000 people
who voted on the movies. Input was voluntary, and may include age, gender and
ZIP code. From ZIP code it is possible to estimate geographical location and to
get a good approximation of average income. Lastly, there are 2.8 million votes.
Votes can be organized by class and range from 0 to 5. Our task is to predict how
every non-key column in the database depends on the other non-key fields. That
is we try to predict individual voting patterns, movie popularity, and people
information. Given that there is a large amount of data, we use log-likelihood to
score the network.

The data-set introduces a number of challenges. Firstly, there is missing data,
especially in the people table. Following Domingos, we cannot assume that the
individuals who refused to give their ZIP address or their age follow the same
distribution as the ones who do [30]. Instead, we introduce an unknown evidence
value, which says the individual refused to provide the information.

Aggregates are fundamental in these models because we often want to predict
characteristics of groups of entities. In the School work we build aggregates
dynamically during clause-construction by aggregating over non-deterministic
goals. but doing so is just too expensive for this larger database. In this work,
we use pre-computed aggregates:

– For each person, we compute how many votes and average score.
– For each movie, we compute how many people voted on this movie and

average score.

A first result on the full data-set is shown in Figure 14. As for the school data-
base, predicates are defined by a single clause. Learning proceeded greedily in this
experiment: we first learn the predicate that best improves global log-likelihood.
Next, we use this predicate plus the database to learn the other predicates. The
process repeats until every predicate has been learned.

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 181

Fig. 14. EachMovie

Figure 14 was generated using the dot program. To the left it shows con-
nections between movies of the different types (e.g., being an animation movie
affects whether you are a family movie). The center/left of the network is about
people. The system inferred that the average person score affects the number
of movies seen per individual, and this in turn affects class. Last, the network
includes voting patterns for movies. As an example, votes on family movies seem
to depend on whether it is an action movie also, on whether it is also a drama,
and on the person’s average vote.

8 Relationship to PRMs

Clearly from the preceding discussion the CLP(BN) representation owes an in-
tellectual debt to PRMs. As the reader might suspect at this point, any PRM can
be represented as a CLP(BN) program. In this section we present an algorithm
to convert any PRM into a CLP(BN) program. But before that, we address the
natural question, “given that we already have PRMs, of what possible utility is
the CLP(BN) representation?”

182 V. Santos Costa, D. Page, and J. Cussens

First, there has been much work on incorporating probabilities into first-order
logic (see Section 9). Hence while there is great interest in the relationship be-
tween PRMs and these various probabilistic logics [31,32,33,34], this relationship
is difficult to characterize. Approaches such as CLP(BN) and BLPs are closely
related to PRMs, and can help us to better understand the relationship between
PRMs and various probabilistic logics. Second, because CLP(BN)s are an exten-
sion of logic programming, they permit recursion and the use of function symbols,
e.g., to construct data structures such as lists or trees. This expressivity may be
useful for a variety of probabilistic applications and is not available in PRMs. Of
course we must note that the uses of recursion and recursive data structures are
not unlimited. CLP(BN)s disallow resolution steps that introduce a cycle into
a Bayes net constraint. Third, and most importantly from the authors’ view-
point, the CLP(BN) representation is amenable to learning using techniques
from inductive logic programming (ILP). Hence CLP(BN)s provide a way of
studying the incorporation of probabilistic methods into ILP, and they may well
give insight into novel learning algorithms for PRMs. The methods of learning
in PRMs [3] are based upon Bayes net structure learning algorithms and hence
are very different from ILP algorithms. The CLP(BN) representation provides
a bridge through which useful ideas from ILP might be transferred to PRMs.

The remainder of this section presents an algorithm to convert any PRM into
a CLP(BN) program. Because of space limits, we necessarily assume the reader
already is familiar with the terminology of PRMs.

We begin by representing the skeleton of the PRM, i.e., the database itself
with (possibly) missing values. For each relational table R of n fields, one field
of which is the key, we define n − 1 binary predicates r2, ..., rn. Without loss of
generality, we assume the first field is the key. For each tuple or record 〈t1, ..., tn〉
our CLP(BN) program will contain the fact ri(t1, ti) for all 2 ≤ i ≤ n. If ti is
a missing value in the database, then the corresponding fact in the CLP(BN)
program is ri(t1, skri(t1)), where skri is a Skolem function symbol. It remains
to represent the Bayes net structure over this skeleton and the CPTs for this
structure.

For each field in the database, we construct a clause that represents the parents
and the CPT for that field within the PRM. The head (consequent) of the clause
has the form ri(Key, Field), where the field is the ith field of relational table R,
and Key and Field are variables. The body of the clause is constructed in three
stages, discussed in the following three paragraphs: the relational stage, the
aggregation stage, and the CPT stage.

The relational stage involves generating a translation into logic of each slot-
chain leading to a parent of the given field within the PRM. Recall that each
step in a slot chain takes us from the key field of a relational table R to another
field, i, in that table, or vice-versa. Each such step is translated simply to the
literal ri(X, Y), where X is a variable that represents the key of R and Y is a
variable that represents field i of R, regardless of directionality. If the next step
in the slot chain uses field i of table R, then we re-use the variable Y ; if the next
step instead uses the key of table R then we instead re-use variable X . Suppose

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 183

field i is the foreign key of another table S, and the slot chain next takes us
to field j of S. Then the slot chain is translated as ri(X, Y), sj(Y, Z). We can
use the same translation to move from field j of S to the key of R, although we
would re-order the literals for efficiency. For example, suppose we are given a
student key StudentKey and want to follow the slot chain through registration
and course to find the teaching abilities of the student’s professor(s). Assuming
that the course key is the second field in the registration table and the student
key is the third field, while the professor key is the second field of the course
table, and ability is the second field of the professor table, the translation is as
below. Note that we use the first literal to take us from StudentKey to RegKey,
while we use the second literal to take us from RegKey to CourseKey.

registration3(RegKey, StudentKey),
registration2(RegKey, CourseKey),
course2(CourseKey, ProfKey),
professor2(ProfKey, Ability)

In the preceding example, the variable Ability may take several different bind-
ings. If this variable is a parent of a field, then the PRM will specify an aggre-
gation function over this variable, such as mean. Any such aggregation function
can be encoded in a CLP(BN) program by a predicate definition, as in ordinary
logic programming, i.e. in Prolog. We can collect all bindings for Ability into a
list using the Prolog built-in function findall or bagof, and then aggregate this
list using the appropriate aggregation function such as mean. For the preceding
example, we would use the following pair of literals to bind the variable X to
the mean of the abilities of the student’s professors.

findall(Ability, (registration2(RegKey, CourseKey),
course2(CourseKey, ProfKey),
professor2(ProfKey, Ability), L),

mean(L, X)

At this point, we have constructed a clause body that will compute binding
for all the variables that correspond to parents of the field in question. It remains
only to add a literal that encodes the CPT for this field given these parents.

9 Other Related Work

The key idea in CLP(BN)s is that they provide joint probability distributions
over the variables in the answer to a query, i.e., in a single proof. Hence it is
not necessary to reconcile various probabilities obtained from different clauses
or through different proofs. We combine information using aggregation (see
Section 5), and the predicates for aggregation are part of the CLP(BN) program.
This contrasts with the approach taken in both [35] and [7] where a combining
rule is added on top of the logical representation.

CLP(BN) implements Knowledge-based model construction (KBMC) in that
it uses logic “as a basis for generating Bayesian networks tailored to particu-
lar problem instances” [11]. However, in contrast to many KBMC approaches

184 V. Santos Costa, D. Page, and J. Cussens

[11,36], a probability in a CLP(BN) program does not give the probability that
some first-order rule is true. Instead it is a (soft) constraint on possible instanti-
ations of a variable in a rule. This also distinguishes it from the work in [4,37]. In
these approaches instead of ground atomic formulas (atoms) being true or false
as in normal logic programming semantics, they are true with a certain proba-
bility. In PRISM programs [4] a basic distribution gives the probabilities for the
msw ground atoms mentioned in the PRISM program; this is then extended to
define probabilities for all atoms which can be derived using rules in the program.
In contrast, in a Bayesian logic program (BLP) [7] the distribution associated
with a ground atom is unrestricted; it need not be always be over the two values
{true, false}. In this respect BLPs are closer to CLP(BN) than, say, PRISM
programs. The central difference is that BLPs represent random variables with
ground atoms—in CLP(BN) they are represented by (Bayesian) variables.

In Angelopoulos’s probabilistic finite domain Pfd model [38] hard constraints
between variables and probability distributions over the same variables are kept
deliberately separate, thereby allowing a normal CLP constraint solver to find
variable instantiations permitted by the hard constraints. However, in addition
to normal CLP, each such instantiation is returned with its probability. The
main difference to our work is that we do not put hard constraints on Bayesian
variables. Also CLP(BN) exploits conditional independence to permit efficient
inference, whereas currently computation within Pfd is exponential in the num-
ber of variables involved.

10 Conclusions and Future Work

We have presented CLP(BN), a novel approach to integrating probabilistic infor-
mation in logic programs. Our approach is based on the key idea that constraints
can be used to represent information on undefined variables. Logical inference is
used to define a Bayesian network that can be processed by a Bayesian solver.
CLP(BN)s are closely related to PRMs, but they permit recursion, the use of
functor symbols, and the representation is amenable to learning using techniques
from inductive logic programming. Our first implementation of CLP(BN) sys-
tem used Yap as the underlying Prolog system and the Kevin Murphy’s Bayesian
Network Toolbox as the Bayesian solver [39]. This allowed flexibility in choosing
different engines. The newer versions include specialized solvers written in Pro-
log. The solvers implement variable elimination, Gibbs sampling, and Viterbi.
We have successfully experimented the system with both database style and
recursive programs.

The main focus of our future work will be in learning with CLP(BN) pro-
grams. Namely, we are now working with CLP(BN) on inducing regulatory net-
works [40,41]. We are also looking forward at integrating CLP(BN) with some
of recent work in generating statistical classifiers [42,43,44,45,46]. Last, it would
be interesting to study whether the ideas of CLP(BN) also apply to undirected
models [47]. We are also considering directions to improve CLP((BN). Regard-
ing implementation, most effort will focus on tabling [28,29] that avoids repeated
invocation of the same literal and can be quite useful in improving performance

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 185

of logic programs, namely for database applications. As we have seen, CLP(BN)
will directly benefit from this work. At present a CLP(BN) program generates a
query-specific BN, and then standard BN algorithms (e.g. junction tree propa-
gation) are used to compute the desired probabilities. Given the well-known con-
nections between constraint processing and probabilistic computations as given
by Dechter [12] it would be interesting to bring the probabilistic computations
inside CLP(BN).

In common with many logical-probabilistic models [7,36,4,37], CLP(BN) ex-
ploits its logical framework to quantify over random variables, thereby facili-
tating the definition of large and complex BNs. An alternative approach, not
explicitly based on first-order logic, is the BUGS language [48]. BUGS programs
permit Bayesian statistical inference by defining large BNs with one (instanti-
ated) node for each data point. It would be interesting to see if CLP(BN) could
also be used for such statistical inference, particularly since CLP(BN), unlike
BUGS, allows recursion.

Acknowledgments

This work was supported by the NSF Colleague project and by the DARPA
EELD program. We gratefully acknowledge discussions with Jesse Davis, Inês
Dutra, Peter Haddawy, Kristian Kersting, and Irene Ong. Maleeha Qazi partici-
pated in the development of learning algorithms for CLP(BN) and obtained the
learning results for the Artificial School Database. V. Santos Costa was partially
supported by CNPq and Fundação para a Ciência e Tecnologia.

References

1. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
2. Russel, S., Norvig, P.: Artificial intelligence (1996)
3. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational

models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 307–335.
Springer, Berlin (2001)

4. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

5. Ngo, L., Haddawy, P.: Probabilistic logic programming and bayesian networks.
In: Algorithms, Concurrency and Knowledge, pp. 286–300. Springer, Heidelberg
(1995)

6. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming. Frontiers in Artificial Intelligence and Applications,
vol. 32, pp. 254–264. IOS Press, Amsterdam (1996)

7. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical Report 151, Insti-
tute for Computer Science, University of Freiburg, Germany (2001)

8. Srinivasan, A.: The Aleph Manual (2001)
9. Blockeel, H.: Prolog for Bayesian networks: A meta-interpreter approach. In: Pro-

ceedings of the 2nd International Workshop on Multi-Relational Data Mining
(MRDM-2003), pp. 1–13 (2003),
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=40881

http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=40881

186 V. Santos Costa, D. Page, and J. Cussens

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

11. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: IJCAI
1997, Nagoya, Japan (1997)

12. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113, 41–85 (1999)

13. Page, C.D.: Anti-unification in constraint logics. PhD thesis, University of Illinois
at Urbana-Champaign, UIUCDCS-R-93-1820 (1993)

14. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Relational Data Mining, pp. 307–335. Springer, Heidelberg (2001)

15. Jaakkola, T., Jordan, M.I.: Variational probabilistic inference and the QMR-DT
network. Journal of Artificial Intelligence Research 10, 291–322 (1999)

16. Choi, A., Darwiche, A.: A variational approach for approximating Bayesian net-
works by edge deletion. In: Proceedings of the 22nd Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 80–89 (2006)

17. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deter-
ministic dependencies. In: Proceedings, The Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Artificial In-
telligence Conference, Boston, Massachusetts, USA, July 16-20, 2006, AAAI Press,
Menlo Park (2006)

18. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimina-
tion. In: Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 2443–2449 (2007)

19. Rabiner, L.R.: A tutorial on hidden Markov models and selected apllications in
speech recognition. In: Waibel, A., Lee, K.-F. (eds.) Readings in Speech Recogni-
tion, pp. 267–296. Kaufmann, San Mateo (1990)

20. Sato, T., Kameya, Y., Zhou, N.-F.: Generative modeling with failure in PRISM.
In: IJCAI 2005, Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pp. 847–
852 (2005)

21. Sato, T., Kameya, Y.: New Advances in Logic-Based Probabilistic Modeling. In:
Probabilistic Inductive Logic Programming, Springer, Heidelberg (2007)

22. Sanghai, S., Domingos, P., Weld, D.S.: Dynamic probabilistic relational models.
In: IJCAI 2003, Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pp. 992–1002 (2003)

23. Kersting, K., Raiko, T., Kramer, S., De Raedt, L.: Towards Discovering Structural
Signatures of Protein Folds based on Logical Hidden Markov Models. In: Proceed-
ings of the Pacific Symposium on Biocomputing (PSB 2003), Kauai, Hawaii, pp.
3–7 (2003)

24. Kersting, K., de Raedt, L., Raiko, T.: Logical Hidden Markov Models. Journal of
Artificial Intelligence Research 25, 425–456 (2006)

25. Kersting, K., de Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational
Sequence Learning. In: Probabilistic Inductive Logic Programming, Springer, Hei-
delberg (2007)

26. Eddy, S.: Profile hidden Markov models. Bioinformatics 14, 755–763 (1998)
27. Bateman, A., Coin, L., Durbin, R., Finn, R., Hollich, V., Griffiths, S., Khanna,

A., Marshall, M., Moxon, S., Sonnhammer, E., Studholme, D., Yeats, C., Eddy, S.:
The pfam protein families database. Nucleic Acids Research 32, 138–141 (2004)

28. Ramakrishnan, I.V., et al.: Efficient Tabling Mechanisms for Logic Programs. In:
12th ICLP, Tokyo, Japan, pp. 687–711 (1995)

CLP(BN): Constraint Logic Programming for Probabilistic Knowledge 187

29. Rocha, R., Silva, F., Santos Costa, V.: On Applying Or-Parallelism and Tabling
to Logic Programs. Theory and Practice of Logic Programming Systems 5(1–2),
161–205 (2005)

30. Domingos, P.: Personal communication (December 2002)
31. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Ben-

David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp.
19–36. Springer, Heidelberg (2004)

32. Muggleton, S.: Learning structure and parameters of stochastic logic programs. In:
Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206.
Springer, Heidelberg (2003)

33. Cussens, J.: Logic-based Formalisms for Statistical Relational Learning. In: Intro-
duction to Statistical Relational Learning, MIT Press, Cambridge (2007)

34. de Raedt, L., Kersting, K.: Introduction. In: Probabilistic Inductive Logic Pro-
gramming, Springer, Heidelberg (2007)

35. Clark, K.L., McCabe, F.G.: PROLOG: A language for implementing expert sys-
tems. Machine Intelligence 10, 455–470 (1982)

36. Haddawy, P.: An overview of some recent developments in Bayesian problem solving
techniques. AI Magazine (1999)

37. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64, 81–129 (1993)

38. Angelopoulos, N.: Probabilistic Finite Domains. PhD thesis, Dept of CS, City
University, London (2001)

39. Murphy, K.P.: The Bayes Net Toolbox for Matlab. Computing Science and Statis-
tics (2001)

40. Ong, I.M., Glasner, J.D., Page, D.: Modelling regulatory pathways in e. coli from
time series expression profiles. In: Proceedings of the Tenth International Confer-
ence on Intelligent Systems for Molecular Biology, Edmondon, Alberta, Canada,
August 3-7, 2002, pp. 241–248 (2002)

41. Ong, I.M., Topper, S.E., Page, D., Santos Costa, V.: Inferring regulatory networks
from time series expression data and relational data via inductive logic program-
ming. In: Proceedings of the Sixteenth International Conference on Inductive Logic
Programming, Santiago de Compostela, Spain (2007)

42. Davis, J., Burnside, E.S., Dutra, I., Page, D., Ramakrishnan, R., Santos Costa,
V., Shavlik, J.W.: View learning for statistical relational learning: With an ap-
plication to mammography. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI 2005,
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pp. 677–683. Professional
Book Center (2005)

43. Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating näıve Bayes and
FOIL. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twentieth Na-
tional Conference on Artificial Intelligence and the Seventeenth Innovative Appli-
cations of Artificial Intelligence Conference, Pittsburgh, Pennsylvania, USA, July
9-13, 2005, pp. 795–800 (2005)

44. Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Santos Costa, V.: An inte-
grated approach to learning bayesian networks of rules. In: Gama, J., Camacho, R.,
Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720,
pp. 84–95. Springer, Heidelberg (2005)

45. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI) (2007)

188 V. Santos Costa, D. Page, and J. Cussens

46. Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., Santos Costa, V.: Change
of Representation for Statistical Relational Learning. In: Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI) (2007)

47. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–
136 (2006)

48. Spiegelhalter, D., Thomas, A., Best, N., Gilks, W.: BUGS 0.5 Bayesian inference
using Gibbs Sampling Manual. MRC Biostatistics Unit, Cambridge (1996)

Basic Principles of Learning Bayesian Logic

Programs�

Kristian Kersting1 and Luc De Raedt2

1 CSAIL, Massachusetts Institute of Technologie,
32 Vassar Street, Cambridge, MA 02139-4307, USA

kersting@csail.mit.edu
2 Departement Computerwetenschappen, K.U. Leuven,

Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium
Luc.DeRaedt@cs.kuleuven.be

Abstract. Bayesian logic programs tightly integrate definite logic pro-
grams with Bayesian networks in order to incorporate the notions of
objects and relations into Bayesian networks. They establish a one-to-
one mapping between ground atoms and random variables, and between
the immediate consequence operator and the directly influenced by rela-
tion. In doing so, they nicely separate the qualitative (i.e. logical) compo-
nent from the quantitative (i.e. the probabilistic) one providing a natural
framework to describe general, probabilistic dependencies among sets of
random variables. In this chapter, we present results on combining Induc-
tive Logic Programming with Bayesian networks to learn both the quali-
tative and the quantitative components of Bayesian logic programs from
data. More precisely, we show how the qualitative components can be
learned by combining the inductive logic programming setting learning
from interpretations with score-based techniques for learning Bayesian
networks. The estimation of the quantitative components is reduced to
the corresponding problem of (dynamic) Bayesian networks.

1 Introduction

In recent years, there has been an increasing interest in integrating probability
theory with first order logic. One of the research streams [42,40,24,19,29] con-
centrates on first order extensions of Bayesian networks [41]. The reason why
this has attracted attention is, that even though Bayesian networks are one of
the most important, efficient and elegant frameworks for representing and rea-
soning with probabilistic models, they suffer from an inherently propositional
character. A single Bayesian network specifies a joint probability density over a
finite set of random variables and consists of two components:
� The is a slightly modified version of Basic Principles of Learning Bayesian Logic

Programs, Technical Report No. 174, Institute for Computer Science, University of
Freiburg, Germany, June 2002. The major change is an improved section on param-
eter estimation. For historical reasons, all other parts are left unchanged (next to
minor editorial changes).

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 189–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

190 K. Kersting and L. De Raedt

– a qualitative one that encodes the local influences among the random vari-
ables using a directed acyclic graph, and

– a quantitative one that encodes the probability densities over these local
influences.

Imagine a Bayesian network modelling the localization of genes/proteins. Every
gene would be a single random variable. There is no way of formulating general
probabilistic regularities among the localizations of the genes such as the protein
P encoded by gene G has localization L if P interacts with another protein P’
that has localization L.

Bayesian logic programs are a language that overcomes this propositional
character by tightly integrating definite logic programs with Bayesian networks
to incorporate the notions of objects and relations. In doing so, they can nat-
urally be used to do first order classification, clustering, and regression. Their
underlying idea is to establish a one-to-one mapping between ground atoms and
random variables, and between the immediate consequence operator and the di-
rectly influences by relation. In doing so, they nicely separate the qualitative (i.e.
logical) component from the quantitative (i.e. the probabilistic) one providing a
natural framework to describe general, probabilistic dependencies among sets of
random variables such as the rule stated above.

It is, however, well-known that determining the structure of a Bayesian
network, and therefore also of a Bayesian logic program, can be difficult and
expensive. In 1997, Koller and Pfeffer [33] addressed the question “where do
the numbers come from?” for similar frameworks. So far, this issue has not yet
attracted much attention in the context of first order extensions of Bayesian net-
works (with the exception of [33,19]). In this context, we present for the first time
how to calculate the gradient for a maximum likelihood estimation of the param-
eters of Bayesian logic programs. Together with the EM algorithm which we will
present, this gives one a rich class of optimization techniques such as conjugate
gradient and the possibility to speed up the EM algorithm, see e.g. [38].

Moreover, Koller and Pfeffer [33] rose the question whether techniques from
inductive logic programming (ILP) could help to learn the logical component
of first order probabilistic models. In [30], we suggested that the ILP setting
learning from interpretations [13,14,6] is a good candidate for investigating this
question. In this chapter we would like to make our suggestions more concrete.
We present a novel scheme to learn intensional clauses within Bayesian logic
programs [28,29]. It combines techniques from inductive logic programming with
techniques for learning Bayesian networks. More precisely, we will show that
learning from interpretations can indeed be integrated with score-based Bayesian
network learning techniques in order to learn Bayesian logic programs. Thus, we
answer Koller and Pfeffer’s question affirmatively.

We proceed as follows. After briefly reviewing the framework of Bayesian logic
programs in Section 2, we define the learning problem in Section 3. Based on
this, we then present a score-based greedy algorithm called Scooby solving the
learning problem. More precisely, Section 4 presents Scooby first in the context
of a special class of propositional Bayesian logic programs, i.e. Bayesian networks,

Basic Principles of Learning Bayesian Logic Programs 191

and then on general Bayesian logic programs. In Section 5, we formulate the
likelihood of the parameters of a Bayesian logic program given some data and,
based on this, we present a gradient-based and an EM method to find that
parameters which maximize the likelihood. Section 6 reports on first experiments.
Before concluding the paper, we touch upon related work.

We assume some familiarity with logic programming or Prolog (see e.g. [45,37])
as well as with Bayesian networks (see e.g. [41,10,27]).

2 Bayesian Logic Programs

Throughout the paper we will use an example from genetics which is inspired
by Friedman et al. [19]: “it is a genetic model of the inheritance of a single gene
that determines a person’s X blood type bt(X). Each person X has two copies
of the chromosome containing this gene, one, mc(Y), inherited from her mother
m(Y,X), and one, pc(Z), inherited from her father f(Z,X).” We will use P to
denote a probability distribution, e.g. P(x), and the normal letter P to denote
a probability value, e.g. P (x = v), where v is a state of x.

2.1 Representation Language

The basic idea underlying our framework is that each Bayesian logic program
specifies a (possibly infinite) Bayesian network, with one node for each (Bayesian)
ground atom (see below). A Bayesian logic program B consist of two components:

– a qualitative or logical one, a set of Bayesian clauses (cf. below), and
– a quantitative one, a set of conditional probability distributions and combin-

ing rules (cf. below) corresponding to that logical structure.

Definition 1 (Bayesian Clause). A Bayesian (definite) clause c is an expression
of the form

A | A1, . . . , An

where n ≥ 0, the A, A1, . . . , An are Bayesian atoms and all Bayesian atoms
are (implicitly) universally quantified. We define head(c) = A and body(c) =
{A1, . . . , An}.
So, the differences between a Bayesian clause and a logical one are:

1. The atoms p(t1, ..., tn) and predicates p arising are Bayesian, which means
that they have an associated (finite) domain1 S(p), and

2. We use “ | ” instead of “:-”.

For instance, consider the Bayesian clause c

bt(X) | mc(X), pc(X).

where S(bt) = {a, b, ab, 0} and S(mc) = S(pc) = {a, b, 0}. It says that the blood
type of a person X depends on the inherited genetical information of X . Note
1 For the sake of simplicity we consider finite random variables, i.e. random variables

having a finite set S of states. However, the ideas generalize to discrete and contin-
uous random variables.

192 K. Kersting and L. De Raedt

that the domain S(p) has nothing to do with the notion of a domain in the log-
ical sense. The domain S(p) defines the states of random variables. Intuitively,
a Bayesian predicate p generically represents a set of (finite) random variables.
More precisely, each Bayesian ground atom g over p represents a (finite) random
variable over the states S(g) := S(p). E.g. bt(ann) represents the blood type of a
person named Ann as a random variable over the states {a, b, ab, 0}. Apart from
that, most other logical notions carry over to Bayesian logic programs. So, we will
speak of Bayesian predicates, terms, constants, substitutions, ground Bayesian
clauses, Bayesian Herbrand interpretations etc. We will assume that all Bayesian
clauses are range-restricted. A clause is range-restricted iff all variables occur-
ring in the head also occur in the body. Range restriction is often imposed in the
database literature; it allows one to avoid derivation of non-ground true facts.

In order to represent a probabilistic model we associate with each Bayesian
clause c a conditional probability distribution cpd(c) encoding P(head(c) |
body(c)). To keep the expositions simple, we will assume that cpd(c) is repre-
sented as table, see Figure 1. More elaborate representations like decision trees
or rules are also possible. The distribution cpd(c) generically represents the con-
ditional probability distributions of all ground instances cθ of the clause c. In
general, one may have many clauses, e.g. clauses c1 and the c2

bt(X) | mc(X).
bt(X) | pc(X).

and corresponding substitutions θi that ground the clauses ci such that
head(c1θ1) = head(c2θ2). They specify cpd(c1θ1) and cpd(c2θ2), but not the
distribution required: P(head(c1θ1) | body(c1)∪ body(c2)). The standard solution
to obtain the distribution required are so called combining rules.

Definition 2 (Combining Rule). A combining rule is a functions which maps
finite sets of conditional probability distributions {P(A | Ai1, . . . , Aini) | i =
1, . . . , m} onto one (combined) conditional probability distribution P(A | B1, . . . ,
Bk) with {B1, . . . , Bk} ⊆ ⋃m

i=1{Ai1, . . . , Aini}.

We assume that for each Bayesian predicate p there is a corresponding combining
rule cr, such as noisy or (see e.g. [27]) or average. The latter assumes n1 = . . . =
nm and S(Aij) = S(Akj), and computes the average of the distributions over
S(A) for each joint state over

⊗
j S(Aij).

To summarize, we could define Bayesian logic program in the following way:

Definition 3 (Bayesian Logic Program). A Bayesian logic program B consists
of a (finite) set of Bayesian clauses. To each Bayesian clause c there is exactly
one conditional probability distribution cpd(c) associated, and for each Bayesian
predicate p there is exactly one associated combining rule cr(p).

2.2 Declarative Semantics

The declarative semantics of Bayesian logic programs is given by the annotated de-
pendency graph. The dependency graph DG(B) is that directed graph whose nodes

Basic Principles of Learning Bayesian Logic Programs 193

m(ann,dorothy).
f(brian,dorothy).
pc(ann).
pc(brian).
mc(ann).
mc(brian).

mc(X) | m(Y,X),mc(Y),pc(Y).
pc(X) | f(Y,X),mc(Y),pc(Y).
bt(X) | mc(X),pc(X).

(1)

mc(X) pc(X) P(bt(X))
a a (0.97, 0.01, 0.01, 0.01)
b a (0.01, 0.01, 0.97, 0.01)

· · · · · · · · ·
0 0 (0.01, 0.01, 0.01, 0.97)

(2)

Fig. 1. (1) The Bayesian logic program bloodtype encoding our genetic domain. To
each Bayesian predicate, the identity is associated as combining rule. (2) A conditional
probability distribution associated to the Bayesian clause bt(X) | mc(X), pc(X) rep-
resented as a table.

correspond to the ground atoms in the least Herbrand model LH(B) (cf. below).
It encodes the directly influenced by relation over the random variables in LH(B):

there is an edge from a node x to a node y if and only if there exists a
clause c ∈ B and a substitution θ, s.t. y = head(cθ), x ∈ body(cθ) and
for all atoms z in cθ : z ∈ LH(B).

The direct predecessors of a graph node x are called its parents, Pa(x). The
Herbrand base HB(B) is the set of all random variables we can talk about. It
is defined as if B were a logic program (cf. [37]). The least Herbrand model
LH(B) ⊆ HB(B) consists of all relevant random variables, the random variables
over which a probability distribution is well-defined by B, as we will see. It is
the least fix point of the immediate consequence operator applied on the empty
interpretation. Therefore, a ground atom which is true in the logical sense cor-
responds to a relevant random variables. Now, to each node x in DG(B) we
associate the combined conditional probability distribution which is the result
of the combining rule cr(p) of the corresponding Bayesian predicate p applied
to the set of cpd(cθ)’s where head(cθ) = x and {x}∪ body(cθ) ⊆ LH(B). Thus, if
DG(B) is acyclic and not empty then it encodes a (possibly infinite) Bayesian
network, because the least Herbrand model always exists and is unique. There-
fore, the following independence assumption holds:

Independence Assumption 1. Each node x is independent of its non-
descendants given a joint state of its parents Pa(x) in the dependency graph.

E.g. in the program in Figure 1, the random variable bt(dorothy) is indepen-
dent from pc(brian) given a joint state of pc(dorothy), mc(dorothy). Using this
assumption the following proposition holds:

Proposition 1. Let B be a Bayesian logic program. If

1. LH(B) �= ∅,
2. DG(B) is acyclic, and
3. each node in DG(B) is influenced by a finite set of random variables

then B specifies a unique probability distribution PB over LH(B).

194 K. Kersting and L. De Raedt

m(ann,dorothy).

f(brian,dorothy).

pc(ann).

pc(brian).

mc(ann).

mc(brian).

mc(dorothy) | m(ann, dorothy),mc(ann),pc(ann).

pc(dorothy) | f(brian, dorothy),mc(brian),pc(brian).

bt(ann) | mc(ann), pc(ann).

bt(brian) | mc(brian), pc(brian).

bt(dorothy) | mc(dorothy),pc(dorothy).

Fig. 2. The grounded version of the Bayesian logic program of Figure 1. It (directly)
encodes a Bayesian network.

The proof of the proposition can be sketched as follows (for a detailed proof
see [29]). The least Herbrand LH(B) always exists, is unique and countable.
Thus, DG(B) exists and is unique, and due to condition (3) the combined prob-
ability distribution for each node of DG(B) is computable. Furthermore, because
of condition (1) a total order π on DG(B) exists, so that one can see B together
with π as a stochastic process over LH(B). An induction “along” π together
with condition 2 shows that the family of finite-dimensional distribution of the
process is projective (cf. [2]), i.e the joint probability density over each finite
subset s ⊆ LH(B) is uniquely defined and

∫
y p(s, x = y) dy = p(s). Thus, the

preconditions of Kolmogorov’s theorem [2, page 307] hold, and it follows that B
given π specifies a probability density function p over LH(B). This proves the
proposition because the total order π used for the induction is arbitrary.

A program B satisfying the conditions (1), (2) and (3) of proposition 1 is called
well-defined. The program bloodtype in Figure 1 is an example of a well-defined
Bayesian logic program. It encodes the regularities in our genetic example. Its
grounded version, which is a Bayesian network, is shown in Figure 2. This illus-
trates that Bayesian networks [41] are well-defined propositional Bayesian logic
programs. Each node-parents pair uniquely specifies a propositional Bayesian
clause; we associate the identity as combining rule to each predicate; the condi-
tional probability distributions are those of the Bayesian network.

Some interesting insights follow from the proof sketch. We interpreted a
Bayesian logic program as a stochastic process. This places them in a wider
context of what Cowell et al. call highly structured stochastic systems (HSSS),
cf. [10], because Bayesian logic programs represent discrete-time stochastic pro-
cesses in a more flexible manner. Well-known probabilistic frameworks such as
dynamic Bayesian networks, first order hidden Markov models or Kalman filters
are special cases of Bayesian logic programs. Moreover, the proof in [29] indi-
cates the important support network concept. Support networks are a graphical
representation of the finite-dimensional distribution, cf. [2], and are needed for
the formulation of the likelihood function (see below) as well as for answering
probabilistic queries in Bayesian logic programs.

Basic Principles of Learning Bayesian Logic Programs 195

Definition 4 (Support Network). The support network N of a variable x ∈
LH(B) is defined as the induced subnetwork of S = {x}∪{y | y ∈ LH(B) and y is
influencing x}. The support network of a finite set {x1, . . . , xk} ⊆ LH(B) is the
union of the networks of each single xi.

Because we consider well-defined Bayesian logic programs, each x ∈ LH(B) is
influenced by a finite subset of LH(B). So, the support network N of a finite
set {x1, . . . , xk} ⊆ LH(B) of random variables is always a finite Bayesian net-
work and computable in finite time. The distribution factorizes in the usual
way, i.e. PN (x1 . . . , xn) =

∏n
i=1 PN (xi | Pa xi), where {x1 . . . , xn} = S, and

P(xi | Pa xi) is the combined conditional probability distribution associated to
xi. Because N models the finite-dimensional distribution specified by S, any
interesting probability value over subsets of S is specified by N . For the proofs
and an effective inference procedure (together with a Prolog implementation) we
refer to [29].

3 The Learning Problem

So far, we have assumed that there is an expert who provides both the structure
and the conditional probability distributions of the Bayesian logic program. This
is not always easy. Often, there is no-one possessing necessary the expertise or
knowledge. However, instead of an expert we may have access to data. In this
section, we investigate and formally define the problem of learning Bayesian logic
programs. While doing so, we exploit analogies with Bayesian network learning
as well as with inductive logic programming.

3.1 Data Cases

In the last section, we have introduced Bayesian logic programs and argued
that they contain two components, the quantitative (the combining rules and
the conditional probability distributions) and the qualitative ones (the Bayesian
clauses). Now, if we want to learn Bayesian logic programs, we need to employ
data. Hence, we need to formally define the notions of a data case.

Let B be a Bayesian logic program consisting of the Bayesian clauses
c1, . . . , cn, and let D = {D1, . . . , Dm} be a set of data cases.

Definition 5 (Data Case). A data case Di ∈ D for a Bayesian logic program
B consists of a

Logical part: Which is a Herbrand interpretation V ar(Di) such that V ar(Di)
= LH(B ∪ V ar(Di)), and a

Probabilistic part: Which is a partially observed joint state of some variables,
i.e. an assignment of values to some of the facts in V ar(Di).

Examples of data cases are

D1 = {m(cecily, fred) = true, f(henry, fred) =?, pc(cecily) = a,

pc(henry) = b, pc(fred) =?, mc(cecily) = b, mc(henry) = b,

mc(fred) =?, bt(cecily) = ab, bt(henry) = b, bt(fred) =?},

196 K. Kersting and L. De Raedt

D2 = {m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = b,

mc(ann) =?, mc(brian) = a, mc(dorothy) = a,

pc(dorothy) = a, pc(brian) =?, bt(ann) = ab, bt(brian) =?,
bt(dorothy) = a},

where ‘?’ stands for an unobserved state. Notice that – for ease of writing – we
merged the two components of a data case into one. Indeed, the logical part of
a data case Di ∈ D, denoted as Var(Di), is a Herbrand interpretation, such as

Var(D1) = {m(cecily, fred), f(henry, fred), pc(cecily), pc(henry),
pc(fred), mc(cecily), mc(henry), mc(fred), bt(cecily),
bt(henry), bt(fred)},

Var(D2) = {m(ann, dorothy), f(brian, dorothy), pc(ann),
mc(ann), mc(brian), mc(dorothy), pc(dorothy),
pc(brian), bt(ann), bt(brian), bt(dorothy)},

satisfy this logical property w.r.t. the target Bayesian logic program B

mc(X) | m(Y,X),mc(Y),pc(Y).
pc(X) | f(Y,X),mc(Y),pc(Y).
bt(X) | mc(X),pc(X).

Indeed, Var(B ∪ Var(Di)) = Var(Di) for all Di ∈ D.
So, the logical components of the data cases should be seen as the least Her-

brand models of the target Bayesian logic program. They specify different sets of
relevant random variables, depending on the given “extensional context”. If we
accept that the genetic laws are the same for both families then a learning algo-
rithm should find regularities among the Herbrand interpretations that can be
to compress the interpretations. The key assumption underlying any inductive
technique is that the rules that are valid in one interpretation are likely to hold
for any interpretation. This is exactly what the learning from interpretations in
inductive logic programming [14,6] is doing. Thus, we will adapt this setting for
learning the structure of the Bayesian logic program, cf. Section 4.

There is one further logical constraints to take into account while learning
Bayesian logic programs. It is concerned with the acyclicity requirement (cf.
property 2 in proposition 1) imposed on Bayesian logic programs. Thus, we
require that for each Di ∈ D the induced Bayesian network over LH(B∪Var(Di))
has to be acyclic.

At this point, the reader should also observe that we require that the logical
part of a data case is a complete model of the target Bayesian logic program
and not a partial one2. This is motivated by 1) Bayesian network learning and 2)
the problems with learning from partial models in inductive logic programming.
First, data cases as they have been used in Bayesian network learning are the
2 Partial models specify the truth-value (false or true) of some of the elements in the

Herbrand Base.

Basic Principles of Learning Bayesian Logic Programs 197

propositional equivalent of the data cases that we introduced above. Indeed, if we
have a Bayesian network B over the propositional Bayesian predicates {p1, ..., pk}
then LH(B) = {p1, ..., pk} and a data case would assign values to some of the
predicates in B. This also shows that the second component of a data case is
pretty standard in the Bayesian network literature. Second, it is well-known that
learning from partial models is harder than learning from complete models (cf.
[12]). More specifically, learning from partial models is akin to multiple predicate
learning, which is a very hard problem in general. These two points also clarify
why the semantics of the set of relevant random variables coincided with the
least Herbrand domain and at the same time why we do not restrict the domain
of Bayesian predicates to {true, false}.

Before we are able to fully specify the problem of learning Bayesian logic
programs, let us introduce the hypothesis space and scoring functions.

3.2 The Hypothesis Space

The hypothesis space H explored consists of Bayesian logic programs, i.e. finite set
of Bayesian clauses to which conditional probability distributions are associated.
More formally, let L be the language, which determines the set C of clauses that
can be part of a hypothesis. It is common to impose syntactic restrictions on the
space H of hypotheses.

Language Assumption: In this paper, we assume that the alphabet of L
only contains constant and predicate symbols that occur in one of the
data cases, and we restrict C to range-restricted, constant-free clauses
containing maximum k = 3 atoms in the body. Furthermore, we assume
that the combining rules associated to the Bayesian predicates are given.

E.g. given the data cases D1 and D2, C looks like

mc(X) | m(Y,X).
mc(X) | mc(X).
mc(X) | pc(X).
mc(X) | m(Y,X),mc(Y).
...
pc(X) | f(Y,X),mc(Y),pc(Y).
...
bt(X) | mc(X),pc(X).

Not every element H ∈ H has to be a candidate. The logical parts of the data
cases constraint the set of possible candidates. To be a candidate, H has to be

– (logically) valid on the data, and
– acyclic on the data i.e. the induced Bayesian network over LH(H ∪Var(Di))

has to be acyclic.

E.g. given the data cases D1 and D2, the Bayesian clause

mc(X) | mc(X)

is not included in any candidate, because the Bayesian network induced over the
data cases would be cyclic.

198 K. Kersting and L. De Raedt

3.3 Scoring Function

So far, we mainly exploit the logical part of the data cases. The probabilistic
part of the data cases are partially observed joint states. They induce a joint
distribution over the random variables of the logical parts of the data cases. A
candidate H ∈ H should reflect this distribution. We assume that there is a
scoring function scoreD : H �→ R which expresses how well a given candidate H
fits the data D. Examples of scoring functions are the likelihood (see Section 5)
or the minimum description length score (which bases on the likelihood).

Putting all together, we can define the basic learning problem as follows:

Definition 6 (Learning Problem). Given a set D = {D1, . . . , Dm} of data
cases, a set H of sets of Bayesian clauses according to some language bias, and
a scoring function scoreD : H �→ R, find a hypothesis H∗ ∈ H such that for
all Di ∈ D : LH(H∗ ∪ Var(Di)) = Var(Di), H∗ is acyclic on the data, and H∗

maximizes scoreD.

As usual, we assume the all data cases are independently sampled from identical
distributions. In the following section we will present an algorithm solving the
learning problem.

4 Scooby: An Algorithm for Learning Intensional
Bayesian Logic Programs

In this section, we introduce Scooby (structural learning of intensional Bayesian
logic programs), cf. Algorithm 1. Roughly speaking, Scooby performs a heuris-
tic search using traditional inductive logic programming refinement operators on
clauses. The hypothesis currently under consideration is evaluated using some
score as heuristic. The hypothesis that scores best is selected as the final hy-
pothesis.

First, we will illustrate how Scooby works for the special case of Bayesian
networks. As it will turn out, Scooby coincides in this case with well-known
and effective score-based techniques for learning Bayesian networks [22]. Then,
we will show that Scooby works for first-order Bayesian logic programs, too.
For the sake of readability, we assume the existence of a method to compute the
parameters maximizing the score given a candidate and data cases. Methods to
do this will be discussed in Section 5. They assume that the combining rules are
decomposable, a concept which we will introduce below. Furthermore we will
discuss the basic framework only; extensions are possible.

4.1 The Propositional Case: Bayesian Networks

Let us first explain how Scooby works on Bayesian networks. and show that
well-known score-based methods for structural learning of Bayesian networks are
special cases of Scooby.

Let x = {x1, . . . , xn} be a fixed set of random variables. The set x corresponds
to a least Herbrand model of an unknown propositional Bayesian logic program

Basic Principles of Learning Bayesian Logic Programs 199

Algorithm 1. A simplified skeleton of a greedy algorithm for structural
learning of intensional Bayesian logic programs (Scooby). Note that we have
omitted the initialization of the conditional probability distributions associ-
ated with Bayesian clauses with random values. The operators ρg and ρs are
generalization and specialization operators.
Let H be an initial (valid) hypothesis;
S(H) := scoreD(H);
repeat

H ′ := H ;
S(H ′) := S(H);
foreach H ′′ ∈ ρg(H

′) ∪ ρs(H
′) do

if H ′′ is (logically) valid on D then
if the Bayesian networks induced by H ′′ on the data are acyclic then

if scoreD(H ′′) > S(H) then
H := H ′′;
S(H) := S(H ′′);

until S(H ′) = S(H) ;
Return H ;

representing a Bayesian network. The probabilistic dependencies among the rel-
evant random variables are not known, i.e. the propositional Bayesian clauses
are unknown. Therefore, we have to select such a propositional Bayesian logic
program as a candidate and estimate its parameters. Assume the data cases
D = {D1, . . . , Dm} look like

{m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = a,

mc(ann) =?, mc(brian) =?, mc(dorothy) = a, mc(dorothy) = a,

pc(brian) = b, bt(ann) = a, bt(brian) =?, bt(dorothy) = a}
which is a data case for the Bayesian network in Figure 2. Note, that the atoms
have to be interpreted as propositions. Each H in the hypothesis space H is a
Bayesian logic program consisting of n propositional clauses: for each xi ∈ x a
single clause c with head(c) = xi and body(c) ⊆ x\{xi}. To traverse H we specify
two refinement operators ρg : H �→ 2H and ρs : H �→ 2H, that take a hypothesis
and modify it to produce a set of possible candidates. In the case of Bayesian
networks the operator ρg(H) deletes a Bayesian proposition from the body of
a Bayesian clause ci ∈ H , and the operator ρs(H) adds a Bayesian proposition
to the body of ci ∈ H (cf Figure 3). The search algorithm performs an greedy,
informed search in H based on scoreD.

As a simple illustration we consider a greedy hill-climbing algorithm incorpo-
rating scoreD(H) := LL(D, H), the log-likelihood of the data D given a candi-
date structure H with the best parameters. We pick an initial candidate S ∈ H

200 K. Kersting and L. De Raedt

g

s

s

)2()1(

g

s

s

Fig. 3. (1) The use of refinement operators during structural search for Bayesian net-
works. We can add (ρs) a proposition to the body of a clause or delete (ρg) it from the
body. (2) The use of refinement operators during structural search within the frame-
work of Bayesian logic programs. We can add (ρs denoted as ‘s′) an atom to the body
of a clause or delete (ρg denoted as ‘g’) it from the body. Candidates crossed out in
(1) and (2) are illegal because they are cyclic.

as starting point (e.g. the set of all propositions) and compute the likelihood
LL(D, S) with the best parameters. Then, we use ρ(S) to compute the legal
“neighbors” (candidates being acyclic) of S in H and score them. All neighbors
are valid (see below for a definition of validity). E.g. replacing pc(dorothy)with
pc(dorothy) | pc(brian) gives such a “neighbor”. We take that S′ ∈ ρ(S)
with the best improvements in the score. The process is continued until no im-
provements in score are obtained.

4.2 The First Order Case: Bayesian Logic Programs

Let us now explain how Scooby works in the first order case. The key differ-
ences with the propositional case are The key difference to the propositional
case are

1. That some Bayesian logic programs will be logically invalid (see below for
an example), and

2. That the traditional first order refinement operators must be used.

Difference 1 is the most important one, because it determines the hypotheses
that are candidate Bayesian logic programs. To account for this difference, two
modifications of the traditional Bayesian network algorithm are needed.

The first modification concerns the initialization phase where we have to
choose a logically valid, acyclic Bayesian logic program. Such a program can
be computed using a CLAUDIEN like procedure ([13,14,6]). CLAUDIEN is
an ILP-program that computes a logically valid hypothesis H from a set of
data cases. Furthermore, all clauses in H will be maximally general (w.r.t.
θ-subsumption), and CLAUDIEN will compute all such clauses (within L).
This means none of the clauses in H can be generalized without violating the
logical validity requirement (or leaving L). Consider again the data cases

Basic Principles of Learning Bayesian Logic Programs 201

D1 = {m(cecily, fred) = true, f(henry, fred) =?, pc(cecily) = a,

pc(henry) = b, pc(fred) =?, mc(cecily) = b, mc(henry) = b,

mc(fred) =?, bt(cecily) = ab, bt(henry) = b, bt(fred) =?},
D2 = {m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = b,

mc(ann) =?, mc(brian) = a, mc(dorothy) = a,

pc(dorothy) = a, pc(brian) =?, bt(ann) = ab, bt(brian) =?,
bt(dorothy) = a},

The clause bt(X) is not a member of L. The clause bt(X) | mc(X),pc(X) is
valid but not maximally general because the literal pc(X) can be deleted without
violating the logical validity requirement. Any hypothesis including m(X,Y) |
mc(X),pc(Y)would be logically invalid because cecily is not the mother of henry.
Examples of maximally general clauses are

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).
bt(X) | pc(X).
...

Roughly speaking, CLAUDIEN works as follows (for a detailed discussion we
refer to [14]). It keeps track of a list of candidate clauses Q, which is initialized
to the maximally general clause (in L). It repeatedly deletes a clause c from Q,
and tests whether c is valid on the data. If it is, c is added to the final hypothesis,
otherwise, all maximally general specializations of c (in L) are computed (using
a so-called refinement operator ρ, see below) and added back to Q. This process
continues until Q is empty and all relevant parts of the search space have been
considered. The clauses generated by CLAUDIEN can be used as an initial
hypothesis.

In the experiments, for each predicate, we selected one of the clause gener-
ated by CLAUDIEN for inclusion in the initial hypothesis such that the valid
Bayesian logic program was also acyclic on the data cases (see below). An initial
hypothesis is e.g.

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).

The second modification concerns filtering out those Bayesian logic programs
that are logically invalid during search. This is realized by the first if-condition in
the loop. The second if-condition tests whether cyclic dependencies are induced
on the data cases. This can be done in time O(s · r3) where r is the number of
random variables of the largest data case in D and s is the number of clauses in
H . To do so, we build the Bayesian networks induced by H over each Var(Di)
by computing the ground instances for each clause c ∈ H where the ground
atoms are members of Var(Di). Thus, ground atoms, which are not appearing

202 K. Kersting and L. De Raedt

m(ann,dorothy). m(cecily,fred).

f(brian,dorothy). f(henry,fred).

pc(ann). pc(brian). pc(cecily). pc(henry).

mc(ann). mc(brian). mc(cecily). mc(henry).

mc(dorothy) | m(ann,dorothy). mc(fred) | m(cecily,fred).

pc(dorothy) | f(brian,dorothy). pc(fred) | f(cecily,fred).

bt(ann) | mc(ann). bt(brian) | mc(brian).

bt(dorothy) | mc(dorothy). bt(cecily) | mc(cecily).

bt(henry) | mc(henry). bt(fred) | mc(fred).

Fig. 4. The support network induced by the initial hypothesis S (see text) over the
the data cases D1 and D2

as a head atom of a valid ground instance, are apriori nodes, i.e. nodes with an
empty parent set. This takes O(s · r3

i). Then, we test in O(ri) for a topological
order of the nodes in the induced Bayesian network. If it exists, then the Bayesian
network is acyclic. Otherwise, it is cyclic. Figure 4 shows the support network
induced by the initial hypothesis over D1 and D2.

For Difference 2, i.e. the refinements operators, we employ the traditional
ILP refinement operators. In our approach we use the two refinement operators
ρs : 2H �→ H and ρg : 2H �→ H. The operator ρs(H) adds constant-free atoms
to the body of a single clause c ∈ H , and ρg(H) deletes constant-free atoms
from the body of a single clause c ∈ H . Figure 3 shows the different refinement
operators for the first order case and the propositional case for learning Bayesian
networks. Instead of adding (deleting) propositions to (from) the body of a
clause, they add (delete) according to our language assumption constant-free
atoms. Furthermore, Figure 3 shows that using the refinement operators each
hypothesis can in principle be reached.

Finally, we need to mention that whereas the maximal general clauses are the
most interesting ones from the logical point of view, this is not necessarily the
case from the probabilistic point of view. E.g. having data cases D1 and D2 (see
Section 3.1), the initial candidate S

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).

is likely not to score maximally on the data cases. E.g. the blood type does not
depend on the fatherly genetical information.

As a simple instantiation of Algorithm 1, we consider a greedy hill-climbing
algorithm incorporating scoreD(H) := LL(D, H) with D = {D1, D2}. It takes
S ∈ H (see above) as starting point and computes LL(D, S) with the best
parameters. Then, we use ρs(S) and ρg(S) to compute the legal “neighbors” of
S in H and score them. E.g. one such a “neighbor” is given by replacing bt(X) |
mc(X) with bt(X) | mc(X), pc(X). Let S′ be that valid and acyclic neighbor
which scores best. If LL(D, S) < LL(D, S′), then we take S′ as new hypothesis.
The process is continued until no improvements in score are obtained.

Basic Principles of Learning Bayesian Logic Programs 203

4.3 Discussion

The algorithm presented serves as a basic, unifying framework. Several exten-
sions and modifications based on ideas developed in both fields, inductive logic
programming and Bayesian networks are possible. These include: lookaheads,
background knowledge, mode declarations and improved scoring functions. Let
us briefly address some of these.

Lookahead: In some cases, an atom might never be chosen by our algorithm
because it will not – in itself – result in a better score. However, such an atom,
while not useful in itself, might introduce new variables that make a better score
possible by adding another atom later on. Within inductive logic programming
this is solved by allowing the algorithm to look ahead in the search space. Im-
mediately after refining a clause by putting some atom A into the body, the
algorithm checks whether any other atom involving some variable of A results
in a better score [5]. The same problem is encountered when learning Bayesian
networks [47].

Background Knowledge: Inductive logic programming emphasizes
background knowledge, i.e. predefined, fixed regularities which are common to
all examples. Background knowledge can be incorporated into our approach in
the following way. It is expressed as a fixed Bayesian logic program BK. Now,
we search for a candidate H∗ which is together with BK acyclic on the data
such that for all Di ∈ D : LH(BK ∪ H∗ ∪ Var(Di)) = Var(Di), and BK ∪ H∗

matches the data D best according to scoreD. Therefore, all the Bayesian facts
that can be derived from the background knowledge and an example are part of
the corresponding “extended” example. This is particularly interesting to specify
deterministic knowledge as in inductive logic programming. In [29], we showed
how pure Prolog programs can be represented as Bayesian logic programs w.r.t.
the conditions 1,2 and 3 of Proposition 1.

Improved Scoring Function: Using the likelihood directly as scoring func-
tion, score-based algorithm to learn Bayesian networks prefer fully connected
networks. To overcome the problem advanced scoring functions were developed.
On of these is the minimum description length (MDL) score which trades off the
fit to the data with complexity. In the context of learning Bayesian networks,
the whole Bayesian network is encoded to measure the compression [34]. In the
context of learning clause programs, other compression measure were investi-
gated such as the average length of proofs [44]. For Bayesian logic programs, a
combination of both seems to be appropriate.

Finally, an extension for learning predicate definitions consisting of more than
one clause is in principle possible. The refinement operators could be modified
in such a way that for a clause c ∈ H ′ with head predicate p another (valid)
clause c′ (e.g. computed by CLAUDIEN) with head predicate p is added or
deleted.

204 K. Kersting and L. De Raedt

5 Learning Probabilities in a Bayesian Logic Program

So far, we have assumed that there is a method estimating the parameters of
an candidate program given data. In this section, we show how to learn the
quantitative component of a Bayesian logic program, i.e. the conditional proba-
bility distributions. The learning problem can be stated as follows:

Definition 7 (Parameter Estimation). Given a set D = {D1, . . . , Dm} of data
cases3, a set H of Bayesian clauses according to some language bias, which is
logically valid and acyclic on the data, and a scoring function scoreD : H �→ R,
find the parameters of H maximizing scoreD.

We will concentrate on maximum likelihood estimation (MLE).

5.1 Maximum Likelihood Estimation

Maximum likelihood is a classical method for parameter estimation. The likeli-
hood is the probability of the observed data as a function of the unknown pa-
rameters with respect to the current model. Let B be a Bayesian logic program
consisting of the Bayesian clauses c1, . . . , cn, and let D = {D1, . . . , Dm} be a set
of data cases. The parameters cpd(ci)jk = P (uj | uk), where uj ∈ S(head(ci))
and uk ∈ S(body(ci)), affecting the associated conditional probability distribu-
tions cpd(ci) constitute the set λ =

⋃n
i=1 cpd(ci). The version of B where the

parameters are set to λ is denoted by B(λ), and as long as no ambiguities occur
we will not distinguish between the parameters λ themselves and a particular
instance of them.

Now, the likelihood L(D, λ) is the probability of the data D as a function of
the unknown parameters λ:

L(D, λ) := PB(D | λ) = PB(λ)(D). (1)

Thus, the search space H is spanned by the product space over the possible
values of λ(ci) and we seek to find the parameter values λ∗ that maximize the
likelihood, i.e.

λ∗ = max
λ∈H

PB(λ)(D).

Usually, B specifies a distribution over a (countably) infinite set of random
variables namely LH(B) and hence we cannot compute PB(λ)(D) by considering
the whole dependency graph. But as we have argued it is sufficient to consider
the support network N(λ) of the random variables occurring in D to compute
PB(λ)(D). Thus, using the monotonicity of the logarithm, we seek to find

λ∗ = max
λ∈H

log PN(λ)(D) (2)

3 Given a well-defined Bayesian network B, the logical part of a data case Di can also
be a partial model only if we only estimate the parameters and do not learn the
structure, i.e. RandVar(Di) ⊆ LH(B). The given Bayesian logic program will fill in
the missing random variables.

Basic Principles of Learning Bayesian Logic Programs 205

where PN(λ) is the probability distribution specified by the support network
N(λ) of the random variables occurring in D. Equation (2) expresses the original
problem in terms of the maximum likelihood parameter estimation problem of
Bayesian networks:

A Bayesian logic program together with data cases induces a Bayesian
network over the variables of the data cases.

This is not surprising because the learning setting is an instance of the proba-
bilistic learning from interpretations. More important, due to the reduction, all
techniques for maximum likelihood parameter estimation within Bayesian net-
works are in principle applicable. We only need to take the following issues into
account:

1. Some of the nodes in N(λ) are hidden, i.e., their values are not observed
in D.

2. We are not interested in the conditional probability distributions associ-
ated to ground instances of Bayesian clauses, but in those associated to the
Bayesian clauses themselves.

3. Not only L(D, λ) but also N(λ) itself depends on the data, i.e. the data
cases determine the subnetwork of DG(B) that is sufficient to calculate the
likelihood.

The available data cases may not be complete, i.e., some values may not be ob-
served. For instance in medical domains, a patient rarely gets all of the possible
tests. In presence of missing data, the maximum likelihood estimate typically
cannot be written in closed form. Unfortunately, it is a numerical optimiza-
tion problem, and all known algorithms involve nonlinear, iterative optimization
and multiple calls to a Bayesian inference procedures as subroutines, which are
typically computationally infeasible. For instance the inference within Bayesian
network has been proven to be NP-hard [9]. Typical ML parameter estimation
techniques (in the presence of missing data) are the Expectation-Maximization
(EM) algorithm and gradient-based approaches. We will now discuss both ap-
proaches in turn.

5.2 Gradient-Based Approach

We will adapt Binder et al.’s solution for dynamic Bayesian networks based on
the chain rule of differentiation [3]. For simplicity, we fix the current instantiation
of the parameters λ and, hence, we write B and N(D). Applying the chain rule
to (2) yields

∂ log PN (D)
∂ cpd(ci)jk

=
∑

subst. θ s.t.
sn(ciθ)

∂ log PN (D)
∂ cpd(ciθ)jk (3)

where θ refers to grounding substitutions and sn(ciθ) is true iff {head(ciθ)} ∪
body(ciθ) ⊂ N . Assuming that the data cases Dl ∈ D are independently sampled
from the same distribution we can separate the contribution of the different data
cases to the partial derivative of a single ground instance cθ:

206 K. Kersting and L. De Raedt

∂ log PN (D)
∂ cpd(ciθ)jk

=
∂ log

∏m
l=1 PN (Dl)

∂ cpd(ciθ)jk
by independence

=
m∑

l=1

∂ log PN (Dl)
∂ cpd(ciθ)jk

by log
∏

=
∑

log

=
m∑

l=1

∂PN (Dl)/∂ cpd(ciθ)jk

PN (Dl)
. (4)

In order to obtain computations local to the parameter cpd(ciθ)jk we introduce
the variables head(ciθ) and body(ciθ) into the numerator of the summand of (4)
and average over their possible values, i.e.,

∂PN (Dl)
∂ cpd(ciθ)jk

=
∂

∂ cpd(ciθ)jk

(∑

j′,k′
PN (Dl, head(ciθ) = uj′ , body(ciθ) = uk′)

)

Applying the chain rule yields

∂PN (Dl)
∂ cpd(ciθ)jk

=
∂

∂ cpd(ciθ)jk

(∑

j′,k′
PN (Dl | head(ciθ) = uj′ , body(ciθ) = uk′)

·PN (head(ciθ) = uj′ , body(ciθ) = uk′)
)

=
∂

∂ cpd(ciθ)jk

(∑

j′,k′
PN (Dl | head(ciθ) = uj′ , body(ciθ) = uk′)

·PN (head(ciθ) = uj′ | body(ciθ) = uk′)

·PN (body(ciθ) = uk′)
)

(5)

where uj ∈ S(head(ci)), uk ∈ S(body(ci)) and j, k refer to the corresponding
entries in cpd(ci), respectively cpd(ciθ). In (5), cpd(ciθ)jk appears only in linear
form. Moreover, it appears only when j′ = j, and k′ = k. Therefore, (5) simplifies
two

∂PN (Dl)
∂ cpd(ciθ)jk

= PN (Dl | head(ciθ) = uj, body(ciθ) = uk) · PN (body(ciθ) = uk).

(6)
Substituting (6) back into (4) yields

m∑

l=1

∂ log PN (Dl)/∂ cpd(ciθ)jk

PN (Dl)

=
m∑

l=1

PN (Dl | head(ciθ) = uj , body(ciθ) = uk) · PN (body(ciθ) = uk)
PN (Dl)

Basic Principles of Learning Bayesian Logic Programs 207

=
m∑

l=1

PN (head(ciθ) = uj , body(ciθ) = uk | Dl) · PN (Dl) · PN (body(ciθ) = uk)
PN (head(ciθ) = uj, body(ciθ) = uk) · PN (Dl)

=
m∑

l=1

PN (head(ciθ) = uj , body(ciθ) = uk | Dl)
PN (head(ciθ) = uj | body(ciθ) = uk)

=
m∑

l=1

PN (head(ciθ) = uj , body(ciθ) = uk | Dl)
cpd(ciθ)jk

.

Combining all these, (3) can be rewritten as

∂ log PN (D)
∂ cpd(ci)jk

=
∑

subst. θ with
sn(ciθ)

en(cijk | θ,D)
cpd(ciθ)jk

(7)

where

en(cijk | θ,D) := en(head(ciθ) = uj, body(ciθ) = uk | D)

:=
m∑

l=1

PN (head(ciθ) = uj, body(ciθ) = uk | Dl)
(8)

are the so-called expected counts of the joint state head(ciθ) = uj , body(ciθ) = uk

given the data D.
Equation (7) shows that PN (head(ciθ) = uj, body(ciθ) = uk | Dl) is all

what is needed. This can essentially be computed using any standard Bayesian
network inference engine. This is not surprising because (7) differs from the one
for Bayesian networks given in [3] only in that we sum over all ground instances
of a Bayesian clause holding in the data. To stress this close relationship, we
rewrite (7) in terms of expected counts of clauses instead of ground clauses.
They are defined as follows:

Definition 8 (Expected Counts of Bayesian Clauses). The expected
counts of a Bayesian clauses c of a Bayesian logic program B for a data set
D are defined as

en(cijk | D) := en(head(ci) = uj , body(ci) = uk | D)

:=
∑

subst. θ with
sn(ciθ)

en(head(ciθ) = uj , body(ciθ) = uk | D) . (9)

Reading (7) in terms of Definition 8 proves the following proposition:

Proposition 1 (Partial Derivative of Log-Likelihood). Let B be a
Bayesian logic program with parameter vector λ. The partial derivative of the
log-likelihood of B with respect to cpd(ci)jk for a given data set D is

∂LL(D, λ)
∂ cpd(ci)jk

=
en(cijk | D)
cpd(ci)jk

. (10)

208 K. Kersting and L. De Raedt

Algorithm 2. A simplified skeleton of the algorithm for adaptive Bayesian
logic programs estimating the parameters of a Bayesian logic program
input : B, a Bayesian logic program; associated cpds are parameterized by λ;

D, a finite set of data cases
output: a modified Bayesian logic program

λ←InitialParameters

N ←SupportNetwork(B,D)
repeat

∆λ← 0
set associated conditional probability distribution of N according to λ
foreach Dl ∈ D do

set the evidence in N from Dl

foreach Bayesian clause c ∈ B do
foreach ground instance cθ s.t. {head(cθ)} ∪ body(cθ) ⊂ N do

foreach single parameter cpd(cθ)jk do
∆ cpd(c)jk ← ∆ cpd(c)jk + (∂ logPN (Dl)/∂ cpd(cθ)jk)

∆λ←ProjectionOntoConstraintSurface(∆λ)
λ← λ + α ·∆λ

until ∆λ ≈ 0
return B

Equation (10) can be viewed as the first-order logical equivalent of the Bayesian
network formula. A simplified skeleton of a gradient-based algorithm employing
(10) is shown in Algorithm 2.

Before showing how to adapt the EM algorithm, we have to explain two points,
which we have left out so far for the sake of simplicity: Constraint satisfaction
and decomposable combining rules.

In the problem at hand, the gradient ascent has to be modified to take into
account the constraint that the parameter vector λ consists of probability values,
i.e. cpd(ci)jk ∈ [0, 1] and

∑
j cpd(ci)jk = 1. Following [3], there are two ways to

enforce this:

1. Projecting the gradient onto the constraint surface (as used to formulate the
Algorithm 2), and

2. Reparameterizing the problem.

In the experiments, we chose the reparameterization approach because the new
parameters automatically respect the constraints on cpd(ci)jk no matter what
their values are. More precisely, we define the parameters β with βijk ∈ R such
that

cpd(ci)jk =
eβijk

∑
l e

βilk
(11)

where the βijk are indexed like cpd(ci)jk. This enforces the constraints given
above, and a local maximum with respect to the β is also a local maximum with

Basic Principles of Learning Bayesian Logic Programs 209

respect to λ, and vice versa. The gradient with respect to β can be found by
computing the gradient with respect to λ and then deriving the gradient with
respect to β using the chain rule of derivatives. More precisely, the chain rule of
derivatives yields

∂LL(D, λ)
∂βijk

=
∑

i′j′k′

∂LL(D, λ)
∂ cpd(ci′)j′k′

· ∂ cpd(ci′)j′k′

∂βijk
(12)

Since ∂ cpd(ci′)j′k′/∂βijk = 0 for all i �= i′, and k �= k′, (12) simplifies to

∂LL(D, λ)
∂βijk

=
∑

j′

∂LL(D, λ)
∂ cpd(ci)j′k

· ∂ cpd(ci)j′k

∂βijk

The quotient rule yields

∂LL(D,λ)

∂βijk
=
∑

j′

{
∂LL(D,λ)

∂ cpd(ci)j′k
·
(

∂e
β

ij′k

∂βijk
·∑l e

βilk

)
−
(
eβij′k · ∂

∑
l eβilk

∂βijk

)

(∑
l e

βilk

)2

}

=

{
∑

j′

(
∂LL(D,λ)

∂ cpd(ci)j′k
· ∂e

β
ij′k

∂βijk
·∑l e

βilk

)}

(∑
l e

βilk

)2 −

{
∑

j′

(
∂LL(D,λ)

∂ cpd(ci)j′k
· eβij′k · ∂

∑
l eβilk

∂βijk

)}

(∑
l e

βilk

)2

Because ∂eβij′k/∂βijk = 0 for j′ �= j and ∂eβijk/∂βijk = eβ
ijk, this simplifies to

∂LL(D,λ)

∂βijk
=

(
∂LL(D,λ)
∂ cpd(ci)jk

· eβijk ·∑l e
βilk

)

(∑
l e

βilk

)2
−
∑

j′

(
∂LL(D,λ)

∂ cpd(ci)j′k
· eβij′k · eβilk

)

(∑
l e

βilk

)2

=
eβijk

(∑
l e

βilk

)2 ·
{
∂LL(D,λ)

∂ cpd(ci)jk
·
(∑

l
eβilk

)
−
∑

j′
∂LL(D,λ)

∂ cpd(ci)j′k
· eβij′k

}
(13)

To further simplify the partial derivative, we note that ∂LL(D, λ)/∂ cpd(ci)jk

can be rewritten as

∂LL(D, λ

∂ cpd(ci)jk
=

en(cijk | D)
cpd(ci)jk

=
en(cijk | D)

eijk
∑

l eβijk

=
en(cijk | D)

eβijk
·
(∑

l
eβijk

)

by substituting (11) in (9). Using the last equation, (13) simplifies to

∂LL(D, λ)

∂βijk

=
eβijk (∑

l
eβilk

)2 ·
{

en(cijk | D)

eβijk
·
(∑

l
eβilk

)2 −
∑

j′
en(cij′k | D)

e
β

ij′k
·
(∑

l
eβilk

)
· e

β
ij′k

}

=en(cijk | D) − eβijk

∑
l
eβilk

·
∑

j′
en(cij′k | D).

210 K. Kersting and L. De Raedt

...

...

...

hnh1

b11 b1k1 blklbl1

h

Fig. 5. The scheme of decomposable combining rules. Each rectangle corresponds to a
ground instance cθ ≡ hi|b1i, . . . , bki of a Bayesian clause c ≡ h|b1, . . . , bk. The node h is
a deterministic node, i.e., its state is deterministic function of the parents joint state.

Using once more (11), the following proposition is proven:

Proposition 2 (Partial Derivative of Log-Likelihood of an Reparame-
terized BLP). Let B be a Bayesian logic program reparameterized according
to (11). The partial derivative of the log-likelihood of B with respect to βijk for
a given data set D is

∂LL(D, λ)
∂βijk

= en(cijk | D) − cpd(ci)jk

∑
j′

en(cij′k | D) . (14)

Equation (14) shows that the partial derivative can be expressed solely in terms
of expected counts and original parameters. Consequently, its computational
complexity is linear in (10).

We assumed decomposable combining rules.

Definition 9 (Decomposable Combining Rule). Decomposable combining
rules can be expressed using a set of separate, deterministic nodes in the support
network such that the family of every non-deterministic node uniquely corre-
sponds to a ground Bayesian clause, as shown in Figure 5.

Most combining rules commonly employed in Bayesian networks such as noisy or
or linear regression are decomposable (cp. [23]). The definition of decomposable
combining rules directly imply the following proposition.

Proposition 3. For each node x in the support network n there exist at most
one clause c and a substitution θ such that body(cθ) ⊂ LH(B) and head(cθ) = x.

Thus, while the same clause c can induce more than one node in N , all of
these nodes have identical local structure: the associated conditional probability
distributions (and so the parameters) have to be identical, i.e.,

∀ substitutions θ : cpd(cθ) = cpd(c) .

Example 1. Consider the nodes bt(ann), mc(ann), pc(ann) and bt(brain),
mc(brain), pc(brian). Both families contribute to the conditional probability
distribution associated with the clause defining bt(X).

Basic Principles of Learning Bayesian Logic Programs 211

This is the same situation as for dynamic Bayesian networks where the param-
eters that encode the stochastic model of state evolution appear many times in
the network. However, gradient methods might be applied to non-decomposable
combining functions as well. In the general case, the partial derivatives of an in-
ner function has to be computed. For instance, [3] derive the gradient for noisy or
when it is not expressed in the structure. This seems to be more difficult in the
case of the EM algorithm, which we will now devise.

5.3 Expectation-Maximization (EM)

The Expectation-Maximization (EM) algorithm [15] is another classical ap-
proach to maximum likelihood parameter estimation in the presence of miss-
ing values. The basic observation of the Expectation-Maximization algorithm is
as that if the states of all random variables are observed, then learning would
be easy. Assuming that no value is missing, Lauritzen [36] showed that maxi-
mum likelihood estimation of Bayesian network parameters simply corresponds
to frequency counting in the following way. Let n(a | D) denote the counts for
a particular joint state a of variables A in the data, i.e. the number of cases
in which the variables in A are assigned the evidence a. Then the maximum
likelihood value for the conditional probability value P (X = x|Pa(X) = u) is
the ratio

n(X = x,Pa(X) = uk | Dl)
n(Pa(X) = uk | Dl)

. (15)

However, in the presence of missing values, the maximum likelihood estimates
typically cannot be written in closed form. Therefore, the Expectation-
Maximization algorithm iteratively performs the following two steps:

(E-Step) Based on the current parameters λ and the observed data D the algo-
rithm computes a distribution over all possible completions of each partially
observed data case. Each completion is then treated as a fully-observed data
case weighted by its probability.

(M-Step) A new set of parameters is then computed based on Equation (15)
taking the weights into accounts.

[36] showed that this idea leads to a modified Equation (15) where the expected
counts

en(a|D) :=
m∑

l=1

PN (a | Dl) (16)

are used instead of counts. Again, essentially any Bayesian network engine can
be used to compute P (a|Dl).

To apply the EM algorithm to parameter estimation of Bayesian logic pro-
grams, we assume decomposable combining rules. Thus,

– Each node in the support network was “produced” by exactly one Bayesian
clause c, and

– Each node derived from c can be seen as a separate “experiment” for the
conditional probability distribution cpd(c).

212 K. Kersting and L. De Raedt

Formally, due to the reduction of our problem at hand to parameter estimation
within the support network N , the update rule becomes

cpd(ci)jk ← en(ci|D)
en(body(ci)|D)

=
en(head(ci), body(ci)|D)

en(body(ci)|D)
(17)

where en(·|D) refers to the first order expected counts as defined in Equation (9).
Note that the summation over data cases and ground instances is hidden in
en(·|D). Equation (17) is similar to the one already encountered in Equation (10)
for computing the gradient.

5.4 Gradient vs. EM

As one can see, the EM update rule in equation (17) and the corresponding
equation (7) for the gradient ascent are very similar. Both rely on computing
expected counts. The comparison between EM and (advanced) gradient tech-
niques like conjugate gradient is not yet well understood. Both methods perform
a greedy local search, which is guaranteed to converge to stationary points. They
both exploit expected counts, i.e., sufficient statistics as their primary computa-
tion step. However, there are important differences.

The EM is easier to implement because it does not have to enforce the con-
straint that the parameters are probability distributions. It converges much
faster (at least initially) than simple gradient, and is somewhat less sensitive to
starting points. (Conjugate) gradients estimate the step size with a line search
involving several additional Bayesian network inferences compared to EM. On
the other hand, gradients are more flexible than EM, as they allow one to learn
non-multinomial parameterizations using the chain rule for derivatives [3] or to
choose other scoring functions than the likelihood [26]. Furthermore, although
the EM algorithm is quite successful in practice due to its simplicity and fast ini-
tial progress, it has been argued (see e.g. [25,38] and references in there) that the
EM convergence can be extremely slow in particular close to the solution, and
that more advanced second-order methods should in general be favored to EM
or one should switch to gradient-based method after a small number of initial
iterations.

Finally, though we focused here on parameter estimation, methods for com-
puting the gradient of the log-likelihood with respect to the parameters of a
probabilistic model can also be used to employ generative models within discrim-
inative learners such as SVMs. In the context of probabilistic ILP, this yields
relational kernel methods [31,16].

6 Experiments

The presented learning algorithm for Bayesian logic programs is mainly meant
as an overall and general framework. Indeed, it leaves several aspects open such
as scoring functions. Nevertheless in this section, we report on experiments that
show that the algorithm and its underlying principles work.

Basic Principles of Learning Bayesian Logic Programs 213

We implemented the score-based algorithm in Sicstus Prolog 3.9.0 on a
Pentium-III 700 MHz Linux machine. The implementation has an interface to
the Netica API (http://www.norsys.com) for Bayesian network inference and
maximum likelihood estimation. To do the maximum likelihood estimation, we
adapted the scaled conjugate gradient (SCG) as implemented in Bishop and
Nabney’s Netlab library (http://www.ncrg.aston.ac.uk/netlab/, see also [4])
with an upper bound on the scale parameter of 2·106. Parameters were initialized
randomly. To avoid zero entries in the conditional probability tables, m-estimates
were used.

6.1 Genetic Domain

The goal was to learn a global, descriptive model for our genetic domain, i.e.
to learn the program bloodtype. We considered two totally independent families
using the predicates given by bloodtype having 12 respectively 15 family mem-
bers. For each least Herbrand model 1000 data cases from the induced Bayesian
network were sampled with a fraction of 0.4 of missing at random values of the
observed nodes making in total 2000 data cases.

Therefore, we first had a look at the (logical) hypotheses space. The space
could be seen as the first order equivalent of the space for learning the structure
of Bayesian networks (see Figure 3). The generating hypothesis is a member of it.
In a further experiment, we fixed the definitions for m/2 and f/2. The hypothesis
scored best included bt(X) | mc(X), pc(X), i.e. the algorithm re-discovered
the intensional definition which was originally used to build the data cases.
However, the definitions of mc/1 and pc/1 considered genetic information of the
grandparents to be important. It failed to re-discover the original definitions
for reasons explained above. The predicates m/2 and f/2 were not part of the
learned model rendering them to be extensionally defined. Nevertheless, the
founded global model had a slightly better likelihood than the original one.

6.2 Bongard Domain

The Bongard problems (due to the Russian scientist M. Bongard) are well-known
problems within inductive logic programming. Consider Figure 6. Each example
or scene consists of

– A variable number of geometrical objects such as triangles, rectangles and
circles etc (predicate obj/2 with S(obj) = {triangle, circle})., each having a
number of different properties such as color, orientation, size etc., and

– A variable number of relations between objects such as in (predicate in/3
having states true, false), leftof, above etc.

The task is to find a set of rules which discriminates positive from negative ex-
amples (represented by class/1 over the states pos, neg) by looking at the kind
of objects they consists of. Though the Bongard problems are toy problems,
they are very similar to real-world problems in e.g. the field of molecular biol-
ogy where essentially the same representational problems arise. Data consists of

214 K. Kersting and L. De Raedt

positive negative

Fig. 6. A Bongard problem consisting of 12 scenes, six positive ones and six negative
ones. The goal is to discriminate between the two classes.

molecules, each of which is composed of several atoms with specific properties
such as charge. There exists a number of relations between atoms like e.g. bonds,
structure etc.

In most real-world applications, the data is noisy. Class labels or object prop-
erties might be wrong or missing in the data cases. One extreme case concerns
clustering where no class labels are given. Furthermore, we might be uncertain
about relations among objects. Some positive examples might state that a tri-
angle is not in a circle due to noise. In such cases, Bayesian logic programs are
a natural method of choice. We conducted the following experiments.

First, we generated 20 positive and 20 negative examples of the concept “there
is a triangle in a circle.” The number of objects varied from 2 to 8. We conducted
three different experiments. We assumed the in relation to be deterministic and
given as background knowledge in(Example,Obj1,Obj2), i.e. we assumed that
there is no uncertainty about it. Due to that, no conditional probability distri-
bution has to take in/3 into account. Because each scene is independent of the
other, we represented the whole training data as one data case

{class(e1) = pos, obj(e1, o1) = triangle, obj(e1, o2) = circle,
class(e2) = neg, obj(e2, o1) = triangle, size(e2, o1) = large,
obj(e2, o2) = ‘?′, . . .}

with the background knowledge in(e1, o1, o2), . . . where e1, e2, . . . are identifiers
for examples and o1, o2, . . . for objects. A fraction of 0.2 of the random variables
were not observed. Our algorithm scored the hypothesis

class(Ex) | obj(Ex,O1),in(Ex,O1,O2),obj(Ex,O2).

best after specifying obj(Ex,O2) as a lookahead for in(Ex,O1,O2). The condi-
tional probability distribution assigned pos a probability higher than 0.6 only
if object O1 was a triangle and O2 a circle. Without the lookahead, adding
in(Ex,O1,O2) yield no improvement in score, and the correct hypothesis was
not considered. The hypothesis is not a well-defined Bayesian networks, but it

Basic Principles of Learning Bayesian Logic Programs 215

says that ground atoms over obj/2 extensional defined. Therefore, we estimated
the maximum likelihood parameters of

obj(Ex,O) | dom(Ex,O).
class(Ex) | obj(Ex,O1),in(Ex,O1,O2),obj(Ex,O2).

where dom/2 ensured range-restriction and was part of the deterministic back-
ground knowledge. Using 0.6 as threshold, the learned Bayesian logic program
had accuracy 1.0 on the training set and on an independently generated valida-
tion set consisting of 10 positive and 10 negative examples.

In a second experiments, we fixed the structure of the program learned in
the first experiment, and estimated its parameters on a data set consisting of 20
positive and 20 negative examples of the disjunctive concept “there is a (triangle
or a circle) in a circle.” The estimated conditional probability distribution gave
almost equal probability for the object O1 to be a triangle or circle.

In third experiment, we assumed uncertainty about the in relation. We en-
riched the data case used for the first experiment in the following way

{class(e1) = pos, obj(e1, o1) = triangle, obj(e1, o2) = circle,
in(e1, o1, o2) = true, class(e2) = neg, obj(e2, o1) = triangle,
size(e2, o1) = large, obj(e2, o2) = ‘?′, in(e2, o1, o2) = false, . . .},

i.e. for each pair of objects that could be related by in a ground atom over in
was included. Note that the state need not to be observed. Here, the algorithm
did not re-discovered the correct rule but

class(X) | obj(X,Y)
obj(X,Y) | in(X,Y,Z), obj(Z).

This is interesting, because when these rules are used to classify examples, only
the first rule is needed. The class is independent of any information about in/3
given full knowledge about the objects. The likelihood of the founded solution
was close to the one of class(Ex) | obj(Ex,O1),in(Ex,O1,O2),obj(Ex,O2)
on the data (absolute difference less than 0.001). However, the accuracy de-
creased (about 0.6 on an independently generated training set (10 pos / 10
neg)) for the reasons explained above: We learned a global model not focus-
ing on the classification error. [18] showed for Bayesian network classifier that
maximizing the conditional likelihood of the class variable comes close to mini-
mizing the classification error. In all experiments we assumed noisy or as
combining rule.

Finally, we conducted a simple clustering experiments. We generated 20 pos-
itive and 20 negative examples of the disjunctive concept “there is a triangle.”
There were triangles, circles and squares. The number of objects varied from 2 to
8. All class labels were said to be observed, and 20% of the remaining stated were
missing at random. The learned hypothesis was class(X) | obj(X,Y) totally
separating the two classes.

216 K. Kersting and L. De Raedt

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

#

Rank of correct localization

Fig. 7. An histogram of the ranks of the correct localization computed by an Bayesian
logic program on the KDD Cup 2001 test set

6.3 KDD Cup 2001

We also started to conduct experiments on large scale data sets namely the KDD
Cup 20014 data sets, cf. [8]. Task 3 is to predict the localizations local(G) of pro-
teins encoded by the genes G. This is a multi-class problem because there are 16
possible localizations. The training set consisted of 862 genes, the test set of 381
genes. The information we used included whether organisms with an mutation
in this gene can survive ess(G) (3 states), the class class(G) of a gene/protein
G (24 states), the complex compl(G) (56 states), and the other proteins G with
which each protein G is known to interact encoded by inter(G1,G2). To avoid a
large interaction table, we considered only those interactions with a correlation
higher than 0.85. Furthermore, we introduced a hidden predicate hidden/1 with
domain 0, 1, 2 to compress the representation size because e.g. the conditional
probability table of local(G1) | inter(G1,G2),local(G2) would consists of
225 entries (instead of 45 using hidden(G1)). The ground atoms over hidden/1
were never observed in the data. Nevertheless, the naive Prolog representation of
the support networks induced by some hypothesis (more than 4.400 random vari-
ables with more than 60.000 parameters) in our current implementation broke
the memory capabilities of Sicstus Prolog. Due to that, we can only report on
preliminary results. We only considered maximum likelihood parameter estima-
tion on the training set. The (logical) structure is based on naive Bayes taking
relational information into account:

local(G1) | gene(G1).
hidden(G1) | local(G1).
hidden(G1) | inter(G1,G2),local(G2).

4 For details see http://www.cs.wisc.edu/~dpage/kddcup2001/

Basic Principles of Learning Bayesian Logic Programs 217

class(G1) | hidden(G1).
compl(G1) | local(G1).
ess(G1) | local(G1).

As combining rule, we used for all predicates average. The given ground atoms
over inter/2 were used as pure logical background knowledge. Therefore, the
conditional probability distribution associated to hidden(G1) | inter(G1,G2),
local(G2) had not to take it into account. The parameters were randomly ini-
tialized. Again, the training set was represented as one data case, so that no
artificial independencies among genes were postulated. Estimate the parameters
took 12 iteration (about 30 min). The learned Bayesian logic program achieved
an accuracy of 0.57 (top 50% level of submitted models was 0.61, best predictive
accuracy was 0.72). A learner predicting always the majority class would achieve
an predictive accuracy of 0.44. Furthermore, when we rank for each test gene
its possible localizations according to the probability computed by the program,
then the correct localization was among the three highest ranked localizations
in 293 out of 381 cases (77%) (cf. Figure 7). Not that it took 40 iterations to
learn the corresponding grounded Bayesian logic program.

7 Related Work

The learning of Bayesian networks has been thoroughly investigated in the Un-
certainty in AI community, see e.g. [22,7]. Binder et al. [3], whose approach we
have adapted, present results for a gradient-based method. But so far – to the
best of our knowledge – there has not been much work on learning within first
order extensions of Bayesian networks. Koller and Pfeffer [33] adapt the EM
algorithm for probabilistic logic programs [40], a framework which in contrast
to Bayesian logic programs sees ground atoms as states of random variables.
Although the framework seems to theoretically allow for continuous random
variables there exists no (practical) query-answering procedure for this case; to
the best of our knowledge, Ngo and Haddawy [40] give only a procedure for vari-
ables having finite domains. Furthermore, Koller and Pfeffer’s approach utilizes
support networks, too, but requires the intersection of the support networks of
the data cases to be empty. This could be in our opinion in some cases too re-
strictive, e.g. in the case of dynamic Bayesian networks. Friedman et al. [19,20]
adapted the Structural-EM to learn the structure of probabilistic relational mod-
els. It applies the idea of the standard EM algorithm for maximum likelihood
parameter estimation to the problem of learning the structure. If we know the
values for all random variables, then the maximum likelihood estimate can be
written in closed from. Based on the current hypothesis a distribution over all
possible completions of each partially observed data case is computed. Then, new
hypotheses are computed using a score-based method. However, the algorithm
does not consider logical constraints on the space of hypotheses. Indeed, the con-
sidered clauses need not be logically valid on the data. Therefore, combining our
approach with the structural EM seems to be reasonable and straightforward.
Finally, there is work on learning object-oriented Bayesian networks [35,1].

218 K. Kersting and L. De Raedt

There exist also methods for learning within first order probabilistic frame-
works which do not build on Bayesian networks. Sato and Kameya [43] introduce
an EM method for parameter estimation of PRISM programs, see also Chapter 5.
Cussens [11] investigates EM like methods for estimating the parameters of
stochastic logic programs (SLPs). As a reminder, SLPs lift probabilistic context-
free grammars to the first order case by replacing production rules with prob-
ability values with clauses labeled with probability values. In turn, they define
probability distributions over proofs. As discussed in Chapter 1, this is quite
different from Bayesian logic programs, which lift Bayesian networks by defin-
ing probability distributions over an interpretation. Nevertheless, mappings be-
tween the two approaches exist as shown by Muggleton and Chen in Chapter 12.
Cussens’ EM approach for SLPs has been successfully applied to protein fold
discovery by Chen et. al as reported in Chapter 9. Muggleton [39] uses ILP
techniques to learn the logical structure/program of stochastic logic programs.
The used ILP setting is different to learning from interpretations, it is not based
on learning Bayesian networks, and so far considers only for single predicates
definitions.

To summarize, the related work on learning probabilistic relational models
mainly differs in three points from ours:
– The underlying (logical) frameworks lack important knowledge representa-

tional features which Bayesian logic programs have.
– They adapt the EM algorithm to do parameter estimation which is particu-

larly easy to implement. However, there are problematic issues both regard-
ing speed of convergence as well as convergence towards a local (sub-optimal)
maximum of the likelihood function. Different accelerations based on the gra-
dient are discussed in [38]. Also, the EM algorithm is difficult to apply in the
case of general probability density functions because it relies on computing
the sufficient statistics (cf. [22]).

– No probabilistic extension of the learning from interpretations is established.

8 Conclusions

A new link between ILP and learning of Bayesian networks was established. We
have proposed a scheme for learning both the probabilities and the structure
of Bayesian logic programs. We addressed the question “where do the numbers
come from?” by showing how to compute the gradient of the likelihood based on
ideas known for (dynamic) Bayesian networks. The intensional representation
of Bayesian logic programs, i.e. their compact representation should speed up
learning and provide good generalization. The general learning setting built on
the ILP setting learning from interpretations. We have argued that by adapting
this setting score-based methods for structural learning of Bayesian networks
could be updated to the first order case. The ILP setting is used to define and
traverse the space of (logical) hypotheses.

The experiments proved the principle of the algorithm. Their results highlight
that future work on improved scoring functions is needed. We plan to conduct ex-
periments on real-world scale problems. The use of refinement operators adding

Basic Principles of Learning Bayesian Logic Programs 219

or deleting non constant-free atoms should be explored. Furthermore, it would be
interesting to weaken the assumption that a data case corresponds to a complete
interpretation. Not assuming all relevant random variables are known would be
interesting for learning intensional rules like nat(s(X)) | nat(X). Ideas for han-
dling this within inductive logic programming might be adapted [14,6]. Further-
more, instead of traditional score-based greedy algorithm more advanced UAI
methods such as Friedman’s Structural-EM or structure search among equiva-
lence classes of Bayesian logic programs may be adapted taking advantage of the
logical constraints implied by the data cases. In any case, we believe that the
proposed approach is a good point of departure for further research. The link
established between ILP and Bayesian networks seems to be bi-directional. Can
ideas developed in the UAI community be carried over to ILP?

Acknowledgements

The authors would like to thank Manfred Jaeger, Stefan Kramer and David Page
for helpful discussions on the ideas of the paper. Furthermore, the authors would
like to thank Jan Ramon and Hendrik Blockeel for making available their Bon-
gard problems generators. This research was partly supported by the European
Union IST programme under contract number IST-2001-33053 (Application of
Probabilistic Inductive Logic Programming – APRIL).

References

1. Bangsø, O., Langseth, H., Nielsen, T.D.: Structural learning in object oriented
domains. In: Russell, I., Kolen, J. (eds.) Proceedings of the Fourteenth International
Florida Artificial Intelligence Research Society Conference (FLAIRS 2001), Key
West, Florida, USA, pp. 340–344. AAAI Press, Menlo Park (2001)

2. Bauer, H.: Wahrscheinlichkeitstheorie, 4th edn., Walter de Gruyter, Berlin, New
York (1991)

3. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive Probabilistic Networks
with Hidden Variables. Machine Learning 29(2–3), 213–244 (1997)

4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Blockeel, H., De Raedt, L.: Lookahead and discretization in ilp. In: Džeroski, S.,
Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 77–85. Springer, Heidelberg (1997)

6. Blockeel, H., De Raedt, L.: ISIDD: An Interactive System for Inductive Database
Design. Applied Artificial Intelligence 12(5), 385 (1998)

7. Buntine, W.: A guide to the literature on learning probabilistic networks from data.
IEEE Transaction on Knowledge and Data Engineering 8, 195–210 (1996)

8. Cheng, J., Hatzis, C., Krogel, M.–A., Morishita, S., Page, D., Sese, J.: KDD Cup
2002 Report. SIGKDD Explorations 3(2), 47–64 (2002)

9. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

10. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic net-
works and expert systems. In: Statistics for engineering and information, Springer,
Heidelberg (1999)

220 K. Kersting and L. De Raedt

11. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn-
ing 44(3), 245–271 (2001)

12. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1),
197–201 (1997)

13. De Raedt, L., Bruynooghe, M.: A theory of clausal discovery. In: Bajcsy, R. (ed.)
Proceedings of the Thirteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 1993), Chambery, France, pp. 1058–1063. Morgan Kaufmann, San
Francisco (1993)

14. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146
(1997)

15. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Stat. Soc. B 39, 1–39 (1977)

16. Dick, U., Kersting, K.: Fisher Kernels for relational data. In: Fürnkranz, J., Schef-
fer, T., Spiliopoulou, M. (eds.) Proceedings of the 17th European Conference on
Machine Learning (ECML 2006), Berlin, Germany, pp. 112–125 (2006)

17. Flach, P.A., Lachiche, N.: 1BC: A first-order Bayesian classifier. In: Džeroski, S.,
Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Hei-
delberg (1999)

18. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29, 131–163 (1997)

19. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Confer-
ences on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 1300–1309.
Morgan Kaufmann, San Francisco (1999)

20. Getoor, L., Koller, D., Taskar, B., Friedman, N.: Learning probabilistic relational
models with structural uncertainty. In: Getoor, L., Jensen, D. (eds.) Proceedings
of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data,
AAAI Press, Menlo Park (2000)

21. Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for complex
bayesian modelling. The Statistician 43 (1994)

22. Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report
MSR-TR-95-06, Microsoft Research (1995)

23. Heckerman, D., Breese, J.: Causal Independence for Probability Assessment and
Inference Using Bayesian Networks. Technical Report MSR-TR-94-08, Microsoft
Research (1994)

24. Jaeger, M.: Relational Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Pro-
ceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI 1997), Providence, Rhode Island, USA, pp. 266–273. Morgan Kauf-
mann, San Francisco (1997)

25. Jamshidian, M., Jennrich, R.I.: Accleration of the EM Algorithm by using Quasi-
Newton Methods. Journal of the Royal Statistical Society B 59(3), 569–587 (1997)

26. Jensen, F.V.: Gradient descent training of bayesian networks. In: Hunter, A., Par-
sons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 190–200. Springer,
Heidelberg (1999)

27. Jensen, F.V.: Bayesian networks and decision graphs. Springer, Heidelberg (2001)
28. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A.

(eds.) Work-in-Progress Reports of the Tenth International Conference on Induc-
tive Logic Programming (ILP 2000) (2000),
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-35/

29. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical Report 151, Uni-
versity of Freiburg, Institute for Computer Science (submitted) (April 2001)

http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-35/

Basic Principles of Learning Bayesian Logic Programs 221

30. Kersting, K., De Raedt, L., Kramer, S.: Interpreting Bayesian Logic Programs.
In: Getoor, L., Jensen, D. (eds.) Working Notes of the AAAI-2000 Workshop on
Learning Statistical Models from Relational Data (SRL), Austin, Texas, AAAI
Press, Menlo Park (2000)

31. Kersting, K., Gärtner, T.: Fisher Kernels for Logical Sequences. In: Boulicaut, J.-
F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI),
vol. 3201, p. 205. Springer, Heidelberg (2004)

32. Koller, D.: Probabilistic relational models. In: Džeroski, S., Flach, P.A. (eds.) ILP
1999. LNCS (LNAI), vol. 1634, pp. 3–13. Springer, Heidelberg (1999)

33. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Pro-
ceedings of the Fifteenth Joint Conference on Artificial Intelligence (IJCAI 1997),
Nagoya, Japan, pp. 1316–1321 (1997)

34. Lam, W., Bacchus, F.: Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence 10(4) (1994)

35. Langseth, H., Bangsø, O.: Parameter learning in object oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence 32(1-2), 221–243 (2001)

36. Lauritzen, S.L.: The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis 19, 191–201 (1995)

37. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1989)
38. McKachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Eiley &

Sons, Inc. (1997)
39. Muggleton, S.H.: Learning stochastic logic programs. In: Getoor, L., Jensen, D.

(eds.) Working Notes of the AAAI-2000 Workshop on Learning Statistical Models
from Relational Data (SRL), Austin, Texas, AAAI Press, Menlo Park (2000)

40. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science 171, 147–177 (1997)

41. Pearl, J.: Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd
edn. Morgan Kaufmann, San Francisco (1991)

42. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64, 81–129 (1993)

43. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

44. Srinivasan, A., Muggleton, S., Bain, M.: The justification of logical theories based
on data compression. In: Furukawa, K., Michie, D., Muggleton, S. (eds.) Machine
Intelligence, vol. 13, Oxford University Press, Oxford (1994)

45. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques.
MIT Press, Cambridge (1986)

46. Taskar, B., Segal, E., Koller, D.: Probabilistic clustering in relational data. In:
Nebel, B. (ed.) Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI 2001), Seattle, Washington, USA, pp. 870–887. Morgan Kaufmann, San
Francisco (2001)

47. Xiang, Y., Wong, S.K.M., Cercone, N.: Critical remarks on single link search in
learning belief networks. In: Horvitz, E., Jensen, F.V. (eds.) Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996),
Portland, Oregon, USA, pp. 564–571. Morgan Kaufmann, San Francisco (1996)

The Independent Choice Logic and Beyond

David Poole

Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C., Canada V6T 1Z4

poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole/

Abstract. The Independent Choice Logic began in the early 90’s as a way to
combine logic programming and probability into a coherent framework. The idea
of the Independent Choice Logic is straightforward: there is a set of independent
choices with a probability distribution over each choice, and a logic program that
gives the consequences of the choices. There is a measure over possible worlds
that is defined by the probabilities of the independent choices, and what is true in
each possible world is given by choices made in that world and the logic program.
ICL is interesting because it is a simple, natural and expressive representation of
rich probabilistic models. This paper gives an overview of the work done over the
last decade and half, and points towards the considerable work ahead, particularly
in the areas of lifted inference and the problems of existence and identity.

1 Introduction

There are good normative arguments for using logic to represent knowledge [Nilsson,
1991; Poole et al., 1998]. These arguments are usually based on reasoning with sym-
bols with an explicit denotation, allowing relations amongst individuals, and permitting
quantification over individuals. This is often translated as needing (at least) the first-
order predicate calculus.

There are also good normative reasons for using Bayesian decision theory for deci-
sion making under uncertainty [Neumann and Morgenstern, 1953; Savage, 1972].
These arguments can be intuitively interpreted as seeing decision making as a form
of gambling, and that probability and utility are the appropriate calculi for gambling.
These arguments lead to the assignment of a single probability to a proposition; thus
leading to the notion of probability as a measure of subjective belief.

These two normative arguments are not in conflict with each other. Together they
suggest having probability measures over rich structures. How this can be done in a
simple, straightforward manner is the motivation behind a large body of research over
the last 20 years.

The independent choice logic (ICL) started off as Probabilistic Horn Abduction
[Poole, 1991a,b, 1993a,b] (the first three of these papers had a slightly different lan-
guage), which allowed for probabilistically independent choices and a logic program
to give the consequences of the choices. The independent choice logic extends proba-
bilistic Horn abduction in allowing for multiple agents each making their own choices

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 222–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Independent Choice Logic and Beyond 223

[Poole, 1997b] (where nature is a special agent who makes choices probabilistically)
and in allowing negation as failure in the logic [Poole, 2000b].

The ICL is still one of the simplest and most powerful representations available. It
is simple to define, straightforward to represent knowledge in and powerful in that it is
a Turing-complete language that can represent arbitrary finite1 probability distributions
at least as compactly as can Bayesian belief networks. It can also represent infinite
structures such as Markov chains.

In this paper we overview the base logic, and give some representation, inference
and learning challenges that still remain.

2 Background

2.1 Logic Programming

The independent choice logic builds on a number of traditions. The first is the idea of
logic programs [Lloyd, 1987].

A logic program is built from constants (that denote particular individuals), variables
(that are universally quantified over the set of individuals), function symbols (that are
used to indirectly describe individuals), predicate symbols (that denote relations). A
term is either a constant, a variable or of the form f (t1, . . . , tk) where f is a function
symbol and the ti are terms. A predicate symbol applied to a set of terms is an atomic
formula (or just an atom). A clause is either an atom or is of the form

h ← a1 ∧ · · · ∧ ak

where h is an atom and each ai is an atom or the negation of an atom. We write the nega-
tion of atom a as ¬a. A logic program is a set of clauses. We use the Prolog convention
of having variables in upper case, and constants, predicate symbols and function sym-
bols in lower case. We also allow for Prolog notation for lists and allow the standard
Prolog infix operators.

A ground atom is one that does not contain a variable. The grounding of a program
is obtained by replacing the variables in the clauses by the ground terms. Note that if
there are function symbols, the grounding contains countably infinitely many clauses.

Logic programs are important because they have:

– A logical interpretation in terms of truth values of clauses (or their completion
[Clark, 1978]). A logic program is a logical sentence from which one can ask for
logical consequences.

– A procedural semantics (or fixed-point semantics). A logic program is a non-
deterministic pattern-matching language where predicate symbols are procedures
and function symbols give data structures.

– A database semantics in terms of operations on the relations denoted by predi-
cate symbols. As a database language, logic programs are more general than the
relational algebra as logic programs allow recursion and infinite relations using
function symbols.

1 It can represent infinite distributions, just not arbitrarily complex ones. A simple counting
argument says that no finite language can represent arbitrary probability distributions over
countable structures.

224 D. Poole

Thus a logic program can be interpreted as logical statements, procedurally or as a
database and query language.

Logic programming research has gone in two general directions. In the first, are
those frameworks, such as acyclic logic programs [Apt and Bezem, 1991], that ensure
there is a single model for any logic program. Acyclic logic programs assume that all
recursions for variable-free queries eventually halt. In particular, a program is acyclic
if there is assignment of an natural number to each ground atom so that the natural
number assigned to the head of each clause in the grounding of the program is greater
than the atoms in the body. The acyclicity disallows programs such as {a ← ¬a} and
{a ← ¬b, b ← ¬a}. Intuitively, acyclic programs are those that don’t send top-down
interpreters, like Prolog, into infinite loops. Under this view, cyclic programs are buggy
as recursions are not well founded.

The other direction, exemplified by Answer Set Programming [Lifschitz, 2002], al-
lows for cyclic theories, and considers having multiple models as a virtue. These multi-
ple models can correspond to multiple ways the world can be. Baral et al. [2004] have
investigated having probability distributions over answer sets.

The stable model semantics [Gelfond and Lifschitz, 1988] provides a semantics for
logic programs where the clauses contain negations in the body (i.e., for “negation as
failure”). The stable model semantics is particularly simple with acyclic logic programs
[Apt and Bezem, 1991]. A model specifies the truth value for each ground atom. A
stable model M is a model where a ground atom a is true in M if and only if there is a
clause in the grounding of the logic program with a as the head where the body is true
in M. An acyclic logic program has a unique stable model.

Clark [1978] gives an alternative definition of negation as failure in terms of com-
pletions of logic programs. Under Clark’s completion, a logic program means a set of
if and only if definitions of predicates. Acyclic logic programs have the nice property
that what is true in the unique stable model corresponds to what logically follows from
Clark’s completion.

2.2 Belief Networks

A belief network or Bayesian network [Pearl, 1988] is a representation of independence
amongst a finite set of random variables. In this paper we will write random variables
starting with a lower case letter, so they are not confused with logical variables.

In particular, a belief network uses an acyclic directed graph to represent the depen-
dence amongst a finite set of random variables: the nodes in the graph are the variables,
and the network represents the independence assumption that a node is independent of
its non-descendants given its parents. That is, if x is a random variable, and par(x) is
the set of parents of in the graph, then P(x|par(x), u) = P(x|par(x)). It follows from
the chain rule of probability that if x1, . . . , xn are all of the variables, then

P(x1, . . . , xn) =
n∏

i=1

P(xi|par(xi))

The probability distribution P(x1, . . . , xn) can be used to define any conditional
probability.

The Independent Choice Logic and Beyond 225

Bayesian networks have become very popular over the last 20 years, essentially
because:

– The independence assumption upon which belief networks are based is useful in
practice. In particular, causality would be expected to obey the independence as-
sumption if the direct causes of some event are the parents. The notion of locality
of influence is a good modelling assumption for many domains.

– There is a natural specification of the parameters. Humans can understand and
debug the structure and the numbers. The specification in terms of conditional
probability means that the probabilities can be learned independently; adding and
removing variables from the models only have a local effect.

– There are algorithms that can exploit the structure for efficient inference.
– The probabilities and the structure can be learned effectively.

Note that the first two properties are not true of undirected models such as
Markov networks (see e.g., Pearl [1988], pages 107–108). Markov Logic Networks
[Richardson and Domingos, 2006] inherit all of the problems of undirected models.

Example 1. Consider the problem of diagnosing errors that students make on simple
multi-digit addition problems [Brown and Burton, 1978]:

x2 x1

+ y2 y1

z3 z2 z1

The students are presented with the digits x1, x2, y1 and y2 and are expected to provide
the digits z1, z2 and z3. From observing their behaviour, we want to infer whether they
understand how to do arithmetic, and if not, what they do not understand so that they
can be taught appropriately.

For simplicity, let’s assume that the student can make systematic and random errors
on the addition of digits and on the carrying. This problem can be represented as a
belief network as depicted in Figure 1. The tabular representation of the conditional
probabilities often used in belief networks makes the representation cumbersome, but it
can be done.

In this figure, x1 is a random variable with domain {0, . . . , 9} that represents the digit
in the top-right. Similarly for the variables x2, y1, y2, z1, z2, z3. The carryi variables repre-
sent the carry into digit i, and have domain {0, 1}. The Boolean variable knows addition
represents whether the student knows basic addition of digits. (A Boolean variable has
domain {true, false}). The variable knows carry has domain {knowCarry, carryZero,
carryRandom} representing whether they know how to carry, whether they always carry
zero, or whether they carry randomly (i.e., we are modelling more than one error state).
By conditioning on the observed values of the xi, yi and zi variables, inference can be
used to compute the probability that a student knows how to carry or knows addition.

The belief network representation for the domain of diagnosing students with addi-
tion problems becomes impractical when there are multiple problems each with multi-
ple digits, multiple students, who take the same or different problems at different times
(and change their skills through time).

One way to represent this is to duplicate nodes for the different digits, problems, stu-
dents and times. The resulting network can be depicted using plates [Buntine, 1994], as

226 D. Poole

x2
x1

y2
y1

z1z2z3

carry2carry3

knows
addition

knows
carry

Fig. 1. A belief network for the simple addition example

in Figure 2. The way to view this representation is that there are copies of the variables
in the Student/Time plate for each student-time pair. There are copies of the variables
in the Digit/Problem plate for each digit-problem pair. Think of the plates as coming
out of the diagram. Thus, there are different instances of variables x and y for each digit
and each problem; different instances of carry and z for each digit, problem, student
and time; and different instances of knowsCarry and knowsAddition for each student
and time. Note that there can be cycles in this graph when the dependence is on differ-
ent instances of variables. For example, there is a cycle on the node carry as the carry
for one digit depends on the carry from the previous digit. The cycle on knowsCarry is
because a student’s knowledge of carrying depends on the student’s knowledge at the
previous time.

Student
Time

Digit
Problem

x

y

z

carry

knows
addition

knows
carry

Fig. 2. A belief network with plates addition example

The Independent Choice Logic and Beyond 227

The plate notation is very convenient and natural for many problems and leads to
what could be called parametrized belief networks that are networks that are built from
templates [Horsch and Poole, 1990]. Note that it is difficult to use plates when one
variable depends on different instances of the same relation. For example, if whether
two authors collaborate depends on whether they have coauthored a paper (collaborate
depends on two different instances of an author relationship). Heckerman et al. [2004]
show how plates relate to PRMs and discuss limitations of both models.

2.3 The Independent Choice Logic

The ICL can either be seen as adding independent stochastic inputs to a logic program,
or as a way to have rule-based specification of Bayesian networks with logical variables
(or plates).

We assume that we have atomic formulae as logic programming. We allow function
symbols.

An atomic choice is an atom that does not unify with the head of any clause. An
alternative is a set of atomic choices. A choice space is a set of alternatives such that
the atomic choices in different alternatives do not unify.

An ICL theory consists of:

F: The facts, an acyclic logic program.
C: A choice space, which is a set of sets of atoms. The elements of the choice space

are called alternatives. The elements of the alternatives are called atomic choices.
Atomic choices in the same or different alternatives cannot unify with each other.
Atomic choices cannot unify with the head of any clause in F.

P0: A probability distribution over the alternatives in C. That is P0 : ∪C → [0, 1] such
that

∀χ ∈ C
∑

α∈χ

P0(α) = 1

The restrictions on the unification of atomic choices are there to enable a free choice of
an atomic choice from each alternative.

Example 2. Here is a meaningless example (that is simple enough to show the seman-
tics below):

C = {{c1, c2, c3}, {b1, b2}}

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ¬c2 ∧ b1,
e ← f , e ← ¬d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

228 D. Poole

2.4 Semantics

The semantics is defined in terms of possible worlds.
A total choice for choice space C is a selection of exactly one atomic choice from

each grounding of each alternative in C. Note that while choice spaces can contain free
variables, a total choice does not.

There is a possible world for each total choice. What is true in a possible world
is defined by the atoms chosen by the total choice together with the logic program. In
particular an atom is true in a possible world if it is in the (unique) stable model of the
total choice corresponding to the possible world together with the logic program [Poole,
2000b]. The acyclicity of the logic program and the restriction that atomic choices don’t
unify with the head of clauses guarantees that there is a single model for each possible
world.

For the case where there are only a finite number of possible worlds (when there
are no function symbols), the probability for a possible world is the product of the
probabilities of the atomic choices that make up the possible world. The probability
of any proposition is the sum of the probabilities of the possible worlds in which the
proposition is true.

Example 3. In the ICL theory of example 2, there are six possible worlds, and each
possible world can be given a probability:

w1 |= c1 b1 f d e P(w1) = 0.45
w2 |= c2 b1 ¬f ¬d e P(w2) = 0.27
w3 |= c3 b1 ¬f d ¬e P(w3) = 0.18
w4 |= c1 b2 ¬f d ¬e P(w4) = 0.05
w5 |= c2 b2 ¬f ¬d e P(w5) = 0.03
w6 |= c3 b2 f ¬d e P(w6) = 0.02

The probability of any proposition can be computed by summing the measures of the
worlds in which the proposition is true. For example

P(e) = μ({w1, w2, w5, w6}) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77

where μ is the measure on sets of possible worlds.

When there are function symbols, there are infinitely many possible worlds, and there
needs to be a more sophisticated definition of probabilities. To define the probabilities,
we put a measure over sets of possible worlds. In particular, we define the sigma alge-
bra of sets of possible worlds that can be described by finite logical formulae of ground
atomic choices. We define a probability measure over this algebra as follows. Any for-
mula of ground atomic choices can be put into disjunctive normal form, such that the
disjuncts are mutually exclusive. That is, it can be put in the form

(a11 ∧ . . . ∧ a1k1) ∨ . . . ∨ (am1 ∧ . . . ∧ amkm)

such that for each i 	= j there is some such s, t that ais and ajt are in the grounding of an
alternative. The set of all possible worlds where this formula is true, has measure

∑

i

∏

j

P0(aij)

The Independent Choice Logic and Beyond 229

Note that this is assuming that different ground instances of alternatives are probabilis-
tically independent.

The probability of a proposition is the measure of the set of possible worlds in which
the proposition is true.

2.5 ICL and Belief Networks

It may seem that, with independent alternatives, that the ICL is restricted in what it can
represent. This is not the case; the ICL can represent anything that is representable by
a belief network. Moreover the translation is local, and there is the same number of
alternatives as there are free parameters in the belief network.

A random variable having a value is a proposition and is represented in ICL as a
logical atom. Random variable x having value v can be represented as the atom x(v),
with the intended interpretation of x(v) being that x has value v. We can also use the
infix relation = and write x = v. Note that there is nothing special about = (the only
thing built-in is that it is an infix operator). As long as you use a consistent notation for
each random variable, any syntax can be used, except that names that start with an upper
case represent logical variables (following the Prolog tradition), not random variables.

A Boolean random variable x can be optionally directly represented as an ICL atom
x; i.e., x = true is x and x = false is ¬x.

Conditional probabilities can be locally translated into rules, as in the following
example.

Example 4. Suppose a, b and c are variables, where b and c are the parents of a. We
could write the conditional probability as a single rule:

a(A) ← b(B) ∧ c(C) ∧ na(A, B, C)

where there is an alternative for na(A, B, C) for each value of B and C. For example, if
a, b and c were Boolean (have domain {true, false}), one alternative is:

{na(true, true, false), na(false, true, false)}
where P0(ca(true, true, false)) has the same value as P(a|b,¬c) in the belief network.

As a syntactic variant, if you had decided to use the = notation, this clause could be
written as:

a = A ← b = B ∧ c = C ∧ aifbnc(A, B, C)

If a, b and c are Boolean variables, replacing the P(a|b,¬c) in the belief network,
we could have rules such as

a ← b ∧ ¬c ∧ aifbnc

where aifbnc is an atomic choice where P0(aifbnc) has the same value as the conditional
probability as P(a|b,¬c) in the belief network.

As a syntactic variant, this can be abbreviated as

a ← b ∧ ¬c : p0

where p0 is P(a|b,¬c). In general

H ← b : p

230 D. Poole

is an abbreviation for H ← b ∧ n, where n is an atom that contains a new predicate
symbol and contains all of the free variables of the clause. This notation, however, tends
to confuse people (students who are familiar with logic programming), and they make
more mistakes than when they have a clear separation of the logical and probabilistic
parts. It is not as useful when there are logical variables, as there tends to be many
numbers (as in the table for aifbnc(A, B, C)), often we don’t want a fully parametrized
atomic choice, and you often want to say what happens when the atomic choice is false.

The ICL representation lets us naturally specify context-specific independence
[Boutilier et al., 1996; Poole, 1997a], where, for example, a may be independent of c
when b is false but be dependent when b is true. Context-specific independence is often
specified in terms of a tree for each variable; the tree has probabilities at the leaves and
parents of the variable on the internal nodes. It is straightforward to translate these into
the ICL. The logic program also naturally represents the “noisy or”, when the bodies are
not disjoint which is a form of causal independence [Zhang and Poole, 1996]. Standard
algorithms such as clique-tree propagation are not good at reasoning with these rep-
resentations, but there are ways to exploit noisy-or and context specific independence
using modifications of variable elimination [Zhang and Poole, 1996; Dı́ez and Galán,
2002; Poole and Zhang, 2003] or recursive conditioning [Allen and Darwiche, 2003].

Example 5. Continuing our addition example, it is difficult to specify a Bayesian net-
work even for the simple case of adding two digits case as shown in Figure 1, as spec-
ifying how, say z2 depends on its parents is non-trivial, let alone for arbitrary digits,
problems, students and times.

In this example, we will show the complete axiomatization for z that runs in our
CILog2 interpreter2. The plates of Figure 2 correspond to logical variables. For exam-
ple, z(D, P, S, T) gives the z value for the digit D, problem P, student S, at time T.
x(D, P) is the x value for digit D and problem P. knowsCarry(S, T) is true when student
S knows how to carry at time T.

The rules for z are as follows. Note that the symbol “=” here is just a syntactic sugar;
it just as easily could be made the last argument of the predicate.

If the student knows addition and didn’t make a mistake on this case, they get the
right answer:

z(D, P, S, T) = V ←
x(D, P) = Vx ∧
y(D, P) = Vy ∧
carry(D, P, S, T) = Vc ∧
knowsAddition(S, T)∧
¬mistake(D, P, S, T) ∧
V is (Vx + Vy + Vc) div 10.

2 The complete code can be found at http://www.cs.ubc.ca/spider/poole/ci2/
code/cilog/CILog2.html

http://www.cs.ubc.ca/spider/poole/ci2/code/cilog/CILog2.html
http://www.cs.ubc.ca/spider/poole/ci2/code/cilog/CILog2.html

The Independent Choice Logic and Beyond 231

If the student knows addition but made a mistake, they pick a digit at random:

z(D, P, S, T) = V ←
knowsAddition(S, T)∧
mistake(D, P, S, T) ∧
selectDig(D, P, S, T) = V.

If the student doesn’t know addition, they pick a digit at random:

z(D, P, S, T) = V ←
¬knowsAddition(S, T)∧
selectDig(D, P, S, T) = V.

The alternatives are:

{noMistake(D, P, S, T), mistake(D, P, S, T)}
{selectDig(D, P, S, T) = V | V ∈ {0..9}}

There are similar rules for carry(D, P, S, T) that depend on x(D, P), y(D, P),
knowsCarry(S, T) and carry(D1, P, S, T) where D1 is the previous digit. And similar
rules for knowsAddition(S, T) that depends on the previous time.

By observing x, y and z for a student on various problems, we can query on the
probability the student knows addition and knows how to carry.

2.6 Unknown Objects

BLOG [Milch et al., 2005] claims to deal with unknown objects. In this section we will
show how to write one of the BLOG example in ICL. First note that BLOG has many
built-in procedures, and ICL (as presented) has none. I will simplify the example only
to make concrete the distributions used which are not specified in the BLOG papers.

I will do the aircraft example, which is Example 3 of Milch et al. [2005]. As I will
make the low levels explicit I will assume that the locations are a 10x10 grid and there
are 8 directions of aircraft.

First we can generate a geometric distribution of the number of aircraft3. We can
do this by generating the number by repeatedly asking whether there are any more;
the resulting number follows a geometric distribution with parameter P (which must be
specified when numObj is called). numObj(T, N, N1, P) is true if there are N1 objects
of type T given there are N. Note that the type is provided because we want the number
of planes to be independent of the number of other objects (even though it isn’t strictly
needed for this example):

numObj(T, N, N, P) ←
¬more(T, N, P).

3 I would prefer to have the initial number of aircraft and to allow for new aircraft to enter, but
as the BLOG paper did not do this, I will not either. I will assume that all of the aircraft are in
the grid at the start, these can leave, and no new aircraft can arrive.

232 D. Poole

numObj(T, N, N2, P) ←
more(T, N, P) ∧
N1 is N + 1 ∧
numObj(T, N + 1, N2, P).

Where the alternative is (in CILog syntax):

prob more(T, N, P) : P.

which means that {more(T, N, P),¬more(T, N, P)} is an alternative with P(more
(T, N, P)) = P. Note that we could have equivalently used noMore(T, N, P) instead
of ¬more(T, N, P).

Note also that if the probability changes with the number of objects (as in a Poisson
distribution), that can be easily represented too.

We can define the number of aircraft using numObj with P = 0.8:

numAircraft(N) ←
numObj(aircraft, 0, N, 0.8).

The aircraft will just be described in terms of the index from 1 to the number of aircraft:

aircraft(I) ←
numAircraft(N) ∧
between(1, N, I).

where between(L, H, V) is true if L ≤ V ≤ H and is written just as it would be in
Prolog. Note that aircraft(I) is true in the worlds where there are at least I aircraft.

We can now define the state of the aircraft. The state of the aircraft with consist
of an x-coordinate (from 0 to 9), a y-coordinate (from 0 to 9), a direction (one of the 8
directions) and a predicate to say whether the aircraft is inside the grid. Let xpos(I, T, V)
mean the x-position of aircraft I at time T is V if it is in the grid, and the value V can be
arbitrary if the aircraft I is outside the grid.

We will assume the initial states are independent, so they can be stated just in choices.
One alternative defines the initial x-coordinate.

{xpos(I, 0, 0), xpos(I, 0, 1), . . . , xpos(I, 0, 9)}
with P0(xpos(I, 0, V)) = 0.1.

We can axiomatize the dynamics similarly to the examples of Poole [1997b], with
rules such as:

xpos(I, next(T), P) ←
xpos(I, T, PrevPos) ∧
direction(I, T, Dir) ∧
xDer(I, T, Dir, Deriv) ∧
P is PrevPos + Deriv.

The Independent Choice Logic and Beyond 233

Where xDer(I, T, Dir, Deriv) gives the change in the x-position depending on the di-
rection. It can be defined using CILog syntax using alternatives such as:

prob xDer(I, T, east, 0) : 0.2, xDer(I, T, east, 1) : 0.7, xDer(I, T, east, 2) : 0.1

We can now define how blips occur. Let blip(X, Y, T) be true if a blip occurs at
position X-Y at time T. Blips can occur at random or because of aircraft. We could
either have a distribution over the number of blips, as we did for aircraft, and have a
random variable for the location of each blip. Alternatively, we could have a random
variable for the existence of a blip at each location. To do the latter, we would have:

blip(X, Y, T) ←
blipRandomlyOccurs(X, Y, T).

Suppose that blips can randomly occur at any position with probability 0.02, indepen-
dently for each position and time. This can be stated as:

prob blipRandomlyOccurs(X, Y, T) : 0.1.

To axiomatize how blips can be produced by aircraft we can write4:

blip(X, Y, T) ←
aircraft(I) ∧
inGrid(I, T) ∧
xpos(I, T, X) ∧
ypos(I, T, Y) ∧
producesBlip(I, T).

Aircraft produce blips where they are with probability 0.9 can be stated as:

prob producesBlip(I, T) : 0.1.

Observing blips over time, you can ask the posterior distributions of the number of
aircraft, their positions, etc. [Poole, 1997b] gives some similar examples (but without
uncertainty over the number).

Ultimately, you want to axiomatize the actual dynamics of blip production; how are
blips actually produced? Presumably the experts in radars have a good intuition (which
can presumably be combined with data).

The complete axiomatization is available at the CILog2 web site (Footnote 2). Note
that the CILog implementation can solve this as it generates only some of the proofs
and bounds the error [Poole, 1993a] (although not as efficiently as possible; see
Section 3).

BLOG lets you build libraries of distributions in Java. ICL, lets you build them in
(pure) Prolog. The main difference is that a pure Prolog program is an ICL program
(and so the libraries will be in ICL), but a Java program is not a BLOG program.

4 I will leave it as an exercise to the reader to show how to represent the case where there can be
noise in the location of the blip.

234 D. Poole

2.7 ICL as a Programming Language

The procedural interpretation of logic programs gives another way to look at ICL. It
turns out that any belief network can be represented as a deterministic system with (in-
dependent) probabilistic exogenous inputs [Pearl, 2000, p. 30]. One technique for mak-
ing a probabilistic programming language is to use a standard programming language
to define the deterministic system and to allow for random inputs. This is the basis for
a number of languages which differ in the language used to specify the deterministic
system:

– ICL uses acyclic logic programs (they can even have negation as failure) to specify
the deterministic system

– IBAL [Pfeffer, 2001] uses an ML-like functional language to specify the determin-
istic system

– A-Lisp [Andre and Russell, 2002] uses Lisp to specify the deterministic system
– CES [Thrun, 2000] uses C++ to specify the deterministic system.

While each of these have their advantages, the main advantage if ICL is the declarative
semantics and the relational view (it is also an extension of Datalog).

All of these can be implemented stochastically, where the inputs are chosen using a
random number generator and the programming language then gives the consequences.
You can do rejection sampling by just running the program in the randomly generated
inputs, but the real challenge is to do more sophisticated inference which has been
pursued by for all of these.

2.8 ICL, Abduction and Logical Argumentation

Abduction is a powerful reasoning framework. The basic idea of abduction is to make
assumptions to explain observations. This is usually carried out by collecting the as-
sumptions needed in a proof and ensuring they are consistent.

The ICL can also be seen as a language for abduction. In particular, if all of the
atomic choices are assumable (they are abducibles or possible hypotheses). An expla-
nation5 for g is a consistent set of assumables that implies g. A set of atomic choices is
consistent if there is at most one element in any alternative.

Recall that the semantic of ICL is defined in terms of a measure over set of atomic
choices. Abduction can be used to derive those atomic choices over which the measure
is defined.

Each of the explanations has an associated probability obtained by computing the
product of the probabilities of the atomic choices that make up the explanation. If the
rules for each atom are mutually exclusive, the probability of g can be computed by
summing the probabilities of the explanations for g [Poole, 1993b, 2000b]. We need to
do something a bit more sophisticated if the rules are not disjoint or contain negation
as failure [Poole, 2000b]. In these cases we can make the set of explanations disjoint
(in a similar way to build a decision tree from rules) or find the duals of the set of
explanations of g to find the explanations of ¬g.

5 We need to extend the definition of explanation to account for negation as failure. The expla-
nation of ¬a are the duals of the explanations of a [Poole, 2000b].

The Independent Choice Logic and Beyond 235

If we want to do evidential reasoning and observe obs, we compute

P(g|obs) =
P(g ∧ obs)

P(obs)

In terms of explanations, we can first find the explanations for obs (which would give
us P(obs)) and then try to extend these explanations to also explain g (this will give us
P(g ∧ obs)). Intuitively, we explain all of the observations and see what these expla-
nations also predict. This is similar to proposals in the non-monotonic reasoning com-
munity to mix abduction and default reasoning [Poole, 1989; Shanahan, 1989; Poole,
1990].

We can also bound the prior and posterior probabilities by generating only a few of
the most plausible explanations (either top-down [Poole, 1993a] or bottom-up [Poole,
1996]). Thus we can use inference to find the best explanations to do sound (approxi-
mate) probabilistic reasoning.

2.9 Other Formalisms

There are other formalisms that combine logic programming and probabilities.
Some of them such as Bayesian Logic Programs [Kersting and De Raedt, 2007] use

some of the theory of logic programming, but mean different things by their logic pro-
grams. For example, the allHappy program (where allHappy(L) is true if all elements
of list L are happy):

allHappy([]).
allHappy([X|A]) ← happy(X) ∧ allHappy(A).

is a perfectly legal ICL program and means exactly the same as it does in Prolog. The
meaning does not depend on whether there is uncertainty about whether someone is
happy, or even uncertainty in the elements of the list. However, this is not a Bayesian
logic program (even if allHappy was a Boolean random variable).

Bayesian logic program do not mean the same things by atoms in logic programs.
In normal logic programs, atoms represent propositions (and so can be combined with
logical expressions). In Bayesian logic programs they mean random variables. The rules
in ICL mean implication, whereas in BLP, the rules mean probabilistic dependency.
BLP does not allow negation as failure, but ICL does.

In ICL, familiar theorems of logic programs are also theorems of ICL. Any theo-
rem about acyclic logic programs is also a theorem of ICL (as it is true in all possible
worlds). In particular, Clark’s completion [Clark, 1978] is a theorem of ICL. For ex-
ample, the completion of allHappy is true in the ICL when the above definition of
allHappy is given in the facts. This is true even if happy(X) is stochastic: happy(a) may
have different values in different possible worlds, and so might allHappy([a, b, c]), but
the completion is true in all of the possible worlds.

Kersting and De Raedt [2007] claim that “Bayesian logic programs [compared to
ICL theories] have not as many constraints on the representation language,, have a
richer representation language and their independence assumptions represent the
causality of the domain”. All these claims are false. ICL can represent arbitrary logic

236 D. Poole

programs with no restrictions except the acyclicity restriction that recursions have to
be well-founded (none of the textbooks on logic programming I know of contains any
logic programs that are not acyclic, although they do have logic programs that con-
tains cuts and input/output that ICL does not handle.). ICL is Turing-complete. Pearl
[2000] defines causality in terms of structural equation models with exogenous noise.
The ICL represents this causality directly with the structural equation models repre-
sented as logic programs.

Note that the logical reasoning in Bayesian logic programming constructs a belief net-
work, whereas logical reasoning in ICL is probabilistic reasoning. Finding the proofs of
the observation and query is enough to determine the posterior probability of the query
[Poole, 1993a]. Reasoning in ICL has inspired many of the algorithms for Bayesian
network inference [Zhang and Poole, 1996; Poole, 1996; Poole and Zhang, 2003]. We
should not assume that we can just pass of the probabilistic inference problem to a
general-purpose solver and expect it to work (although [Chavira et al., 2006] comes
close to this goal) as there is much more structure in the high-level representations.

Stochastic logic programs [Muggleton, 1996] are quite different in their goal to the
other frameworks presented here. Stochastic logic programs give probability distribu-
tions over proofs, rather than defining the probability that some proposition is true.

3 Ongoing Research

This section outlines some challenges that we are currently working on. These corre-
spond to representation, inference and learning.

3.1 Continuous Variables

There is nothing in the ICL semantics that precludes having continuous random vari-
ables, or even continuously many random variables. In the example of aircraft and blips,
we could have a continuous random variable that is the position of the aircraft. We could
also have continuously many random variables, about whether there is a blip at each of
continuously many x-y positions.

The semantics of ICL mimics the standard definition of the limiting process of a con-
tinuous variable. The logical formulae could describe finer partitions of the continuous
space, and we get the standard definition.

However, reasoning in terms of finer partitions is not computationally satisfactory.
It is better to define continuous variables in terms of a mixture of kernel functions,
such as mixtures of Gaussian distributions, truncated Gaussians [Cozman and Krotkov,
1994] or truncated exponential distributions [Cobba and Shenoy, 2006]. This can be
done by having Gaussian alternatives. Allowing Gaussian alternatives and conditions in
the logic programs, means that the program has to deal with truncated Gaussians; but it
also means that it is easy to represent truncated Gaussians in terms of logic programs
with Gaussian alternatives.

There are still many problems to be solved to get this to work satisfactorily. It needs
to be expressive enough to state what we need, but it also needs to be able to be reasoned
with efficiently.

The Independent Choice Logic and Beyond 237

3.2 Reasoning in the ICL

To reason in the ICL we can either do

– Variable elimination (marginalization) to simplify the model [Poole, 1997a]. We
sum out variables to reduce the detail of the representation. This is similar to partial
evaluation in logic programs.

– Generating some of the explanations to bound the probabilities [Poole, 1993a,
1996]. If we generated all of the explanations we could compute the probabilities
exactly, but there are combinatorially many explanations. It should be possible to
combine this with recursive conditioning [Darwiche, 2001] to get the best of both
worlds.

– Stochastic simulation; generating the needed atomic choices stochastically, and es-
timating the probabilities by counting the resulting proportions.

One of the things that we would like in a logical language like the ICL to allow
lifted inference, where we don’t ground out the theory, but reason at the first-order
level, with unification. There have been a number of attempts at doing this for various
simple languages [Poole, 1997a, 2003; de Salvo Braz et al., 2005], but the final solution
remains elusive. The general idea of [Poole, 2003] is that we can do lifted reasoning
as in theorem proving or as in Prolog, using unification for matching, but instead of
applying a substitution such as {X/c}, we need to split on X = c, giving the equality
case, X = c, and the inequality case, X 	= c. Lifted inference gets complicated when
we have aggregation, such as the “or” in the logic program, as shown in the following
example:

Example 6. Consider the simple ICL theory with a single clause

f ← e(Y).

where the alternative is {e(Y), not e(Y)}, where P(e(X)) = α. In this case, the proba-
bility of f depends on the number of individuals. In particular,

P(f) = 1 − (1 − α)n

where n is the population size (the number of individuals). It is of this form as we as-
sume that the choices are independent. The probability of f can be computed in O(log n)
time. The challenge is to define a general algorithm to compute probabilities in time less
than linear in the population size.

This example has shown why we need to type existential variables, and a population
size for each type.

There are more complicated cases where how to solve it in time less than linear in
the population size is part of ongoing research:

Example 7. Consider the rules:

f ← e(Y).
e(Y) ← d(Y) ∧ n1(Y).
e(Y) ← ¬d(Y) ∧ n2(Y).

238 D. Poole

d(Y) ← c(X, Y).
c(X, Y) ← b(X) ∧ n3(X, Y).
c(X, Y) ← ¬b(X) ∧ n4(X, Y).
b(X) ← a ∧ n5(X)
b(X) ← ¬a ∧ n6(X)
a ← n7

Where the ni are atomic choices. Suppose P(ni(·)) = αi. There are thus, 7 numbers
to specify, but the interdependence is very complicated. Suppose X has domain size n
and the Y has domain size m, and the grounding of e is e1, . . . , em, and similarly for the
other variables. The grounding can be seen as the belief network of Figure 3.

a

b1 bn

c11 cn1

c1m cnm

d1

dm

e1

em

f

. . .

. . .

.

.

.

. . .

.

.

.

.

.

.

.

.

.

a

b

c
d

e

f

n

m

Fig. 3. A belief network and plate representation from Example 7

Note that the parents of f are all interdependent. Not only do they depend on a, but
on each of the b variables. It is still an open problem to be able to solve networks such
as this in time that is less than linear in n and m.

3.3 ICL and Learning

There is a large body of work on learning and belief networks. This means either:

– Using the belief network as a representation for the problem of Bayesian learning
of models [Buntine, 1994]. In Bayesian learning, we want the posterior distribution
of hypotheses (models) given the data. To handle multiple cases, Buntine uses the
notion of plates that corresponds to the use of logical variables in the ICL [Poole,
2000a]. Poole [2000a] shows the tight integration of abduction and induction. These
papers use belief networks and the ICL to learn various representations including
decision trees and neural networks, as well us unsupervised learning.

The Independent Choice Logic and Beyond 239

– Learning the structure and probabilities of belief networks [Heckerman, 1995].
There has been much work on learning parameters for the related system called
PRISM [Sato and Kameya, 2001].

There are a number of reasons that the ICL makes a good target language for
learning:

– Being based on logic programming, it can build on the successes of inductive
logic programming [Muggleton and De Raedt, 1994; Quinlan and Cameron-Jones,
1995; Muggleton, 1995]. The fact that parts of ICL theories are logic programs
should aid in this effort.

– There is much local structure that naturally can be expressed in the ICL that can
be exploited. One of the most successful methods for learning Bayesian networks
is to learn a decision tree for each variable given its predecessors in a total or-
dering [Friedman and Goldszmidt, 1996; Chickering et al., 1997]. These decision
trees correspond to a particular form of ICL rules.

– Unlike many representations such as Probabilistic Relational Models [Getoor et al.,
2001], the ICL is not restricted to a fixed number of parameters to learn; it is possi-
ble to have representations where each individual has associated parameters. This
should allow for richer representations and so better fit to the data. That is, it lets
you learn about particular individuals.

3.4 Existence and Identity

The first-order aspects of theorem proving and logic programming are based on Skolem-
ization and Herbrand’s theorem. See for example [Chang and Lee, 1973].

Skolemization is giving a name to something that is said to exist. For example, con-
sider the formula ∀X∃Yp(X, Y). When Skolemizing, we name the Y that exists for each
X, say f (X). The Skolemized form of this formula is then p(X, f (X)). After Skolemiza-
tion, there are only universally quantified variables.

Herbrand’s theorem [1930] says:

– If a logical theory has a model it has a model where the domain is made of ground
terms, and each term denotes itself.

– If a logical theory T is unsatisfiable, there is a finite set of ground instances of
formulae of T which is unsatisfiable.

This theorem is the basis for the treatment of variables in theorem proving and logic
programming. We may as well reason in terms of the grounding. It also implies that if
a logical theory does not contain equality as a built-on predicate, that we can reason as
though different ground terms denote different objects.

As soon as we have negation as failure, the implicit assumption that ground terms
denote different objects needs to be made explicit.

Languages such as the ICL make two very strong assumptions:

– You know all of the individuals in the domain
– Different constants denote different individuals

240 D. Poole

The first assumption isn’t a problem in logic programming and theorem proving, due
to Herbrand’s theorem. The second assumption, the unique names assumption, is very
common in logic programming. Lifting the second assumption is important when we
want to reason about identity uncertainty.

To consider the first assumption, suppose that you want to have a naive Bayesian
model of what apartment a person likes. Suppose you want to say that if a person
likes an apartment, then it’s very likely there exists a bedroom in the apartment that
is large and green. To do this, it is common to create a constant, say c, for the room
that exists. There are two main problems with this. First is semantic, you need to reason
about the existence of the room. A common solution is to have existence as a predi-
cate [Pasula et al., 2003; Laskey and da Costa, 2005]. Unfortunately this doesn’t work
in this situation, as it has to be clear exactly what doesn’t exist when the predicate is
false, and the properties of the room do not make sense when this room doesn’t exist.
The second reason is more pragmatic: it isn’t obvious how to condition on observations,
as you may not know which room that you have observed corresponds to the room c.
For example, consider the case where you have observed a green bedroom, but you
haven’t observed its size, and a large bedroom, but you haven’t observed its colour. It
isn’t well defined (or obvious) how to condition on the observation of c. A solution pro-
posed in [Poole, 2007] is to only have probabilities over well-defined propositions, and
for the theory to only refer to closed formulae; this avoids the need to do correspon-
dence between objects in the model and individuals in the world when conditioning.
We are currently integrating this idea with the independence assumptions of the ICL.

4 Conclusion

This paper has provided a brief overview of the Independent Choice Logic as well as
some issues that arise from representing and reasoning about first-order probabilistic
theories. There are some fundamental open issues that cut across representations that
we have touched on this paper. Which representations will prove to be most effective
remains to be seen.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council
of Canada Operating Grant OGPOO44121. Thanks to Michael Chiang, Mark Crow-
ley, Jacek Kisyński, Brian Milch, Kristian Kersting and the anonymous reviewers for
valuable feedback.

References

Allen, D., Darwiche, A.: New advances in inference by recursive conditioning. In: Proceedings
of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 2–10.
Morgan Kaufmann, San Francisco (2003)

Andre, D., Russell, S.: State abstraction for programmable reinforcement learning agents. In:
Proc. AAAI 2002 (2002)

The Independent Choice Logic and Beyond 241

Apt, K.R., Bezem, M.: Acyclic programs. New Generation Computing 9(3-4), 335–363 (1991)
Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Proceedings of

LPNMR7, pp. 21–33 (2004)
Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in

Bayesian networks. In: Horvitz, E., Jensen, F. (eds.) UAI 1996, Portland, OR, pp. 115–123
(1996)

Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills.
Cognitive Science 2, 155–191 (1978)

Buntine, W.L.: Operations for learning with graphical models. Journal of Artificial Intelligence
Research 2, 159–225 (1994)

Chang, C.L., Lee, R.C.T.: Symbolic Logical and Mechanical Theorem Proving. Academic Press,
New York (1973)

Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational bayesian networks for exact infer-
ence. International Journal of Approximate Reasoning (IJAR) 42, 4–20 (2006)

Chickering, D.M., Heckerman, D., Meek, C.: A Bayesian approach to learning Bayesian networks
with local structure. In: UAI 1997, pp. 80–89 (1997)

Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–
322. Plenum Press, New York (1978)

Cobba, B.R., Shenoy, P.P.: Inference in hybrid bayesian networks with mixtures of truncated
exponentials. International Journal of Approximate Reasoning 41(3), 257–286 (2006)

Cozman, F., Krotkov, E.: Truncated gaussians as tolerance sets. Technical Report CMU-RI-TR-
94-35, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (September 1994)

Darwiche, A.: Recursive conditioning. Artificial Intelligence 126(1-2), 5–41 (2001)
de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI 2005,

Edinburgh (2005),
http://www.cs.uiuc.edu/∼eyal/papers/fopl-res-ijcai05.pdf

Dı́ez, F.J., Galán, S.F.: Efficient computation for the noisy max. International Journal of Intelli-
gent Systems (to appear, 2002)

Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. In:
UAI 1996, pp. 252–262 (1996), http://www2.sis.pitt.edu/˜dsl/UAI/UAI96/
Friedman1.UAI96.html

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.,
Bowen, K. (eds.) Proceedings of the Fifth Logic Programming Symposium, Cambridge, MA,
pp. 1070–1080 (1988)

Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In:
Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 307–337. Springer, Heidelberg
(2001)

Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-
95-06, Microsoft Research, March 1995. URL Revised (November 1996), http://www.
research.microsoft.com/research/dtg/heckerma/heckerma.html

Heckerman, D., Meek, C., Koller, D.: Probabilistic models for relational data. Technical Report
MSR-TR-2004-30, Microsoft Research (March 2004)

Horsch, M., Poole, D.: A dynamic approach to probabilistic inference using Bayesian networks.
In: Proc. Sixth Conference on Uncertainty in AI, Boston, July 1990, pp. 155–161 (1990)

Kersting, K., De Raedt, L.: Bayesian logic programming: Theory and tool. In: Getoor, L., Taskar,
B. (eds.) An Introduction to Statistical Relational Learning, MIT Press, Cambridge (2007)

Laskey, K.B., da Costa, P.G.C.: Of klingons and starships: Bayesian logic for the 23rd century.
In: Uncertainty in Artificial Intelligence: Proceedings of the Twenty-First Conference (2005)

Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1–2), 39–
54 (2002)

http://www.cs.uiuc.edu/~eyal/papers/fopl-res-ijcai05.pdf
http://www2.sis.pitt.edu/~dsl/UAI/UAI96/Friedman1.UAI96.html
http://www2.sis.pitt.edu/~dsl/UAI/UAI96/Friedman1.UAI96.html
http://www.research.microsoft.com/research/dtg/heckerma/heckerma.html
http://www.research.microsoft.com/research/dtg/heckerma/heckerma.html

242 D. Poole

Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Symbolic Computation Series.
Springer, Berlin (1987)

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic
models with unknown objects. In: IJCAI 2005, Edinburgh (2005)

Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic
Programming, pp. 254–264. IOS Press, Amsterdam (1996)

Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13(3-4), 245–286
(1995)

Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of
Logic Programming 19(20), 629–679 (1994)

Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior, 3rd edn. Princeton
University Press, Princeton (1953)

Nilsson, N.J.: Logic and artificial intelligence. Artificial Intelligence 47, 31–56 (1991)
Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and citation match-

ing. In: NIPS, vol. 15 (2003)
Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge

(2000)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-

gan Kaufmann, San Mateo (1988)
Pfeffer, A.: IBAL: A probabilistic rational programming language. In: IJCAI 2001 (2001),
http://www.eecs.harvard.edu/∼avi/Papers/ibal.ijcai01.ps

Poole, D.: Logical generative models for probabilistic reasoning about existence, roles and iden-
tity. In: 22nd AAAI Conference on AI (AAAI 2007) (2007)

Poole, D.: Learning, Bayesian probability, graphical models, and abduction. In: Flach, P., Kakas,
A. (eds.) Abduction and Induction: Essays on their relation and integration, Kluwer, Dordrecht
(2000a)

Poole, D.: First-order probabilistic inference. In: Proc. Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 985–991 (2003)

Poole, D.: Explanation and prediction: An architecture for default and abductive reasoning. Com-
putational Intelligence 5(2), 97–110 (1989)

Poole, D.: A methodology for using a default and abductive reasoning system. International Jour-
nal of Intelligent Systems 5(5), 521–548 (1990)

Poole, D.: Representing diagnostic knowledge for probabilistic Horn abduction. In: IJCAI 1991,
Sydney, pp. 1129–1135 (August 1991a)

Poole, D.: Representing Bayesian networks within probabilistic Horn abduction. In: UAI 1991,
Los Angeles, July 1991, pp. 271–278 (1991b)

Poole, D.: Logic programming, abduction and probability: A top-down anytime algorithm for
computing prior and posterior probabilities. New Generation Computing 11(3–4), 377–400
(1993a)

Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81–
129 (1993b)

Poole, D.: Probabilistic conflicts in a search algorithm for estimating posterior probabilities in
Bayesian networks. Artificial Intelligence 88, 69–100 (1996)

Poole, D.: Probabilistic partial evaluation: Exploiting rule structure in probabilistic inference. In:
IJCAI 1997, Nagoya, Japan, pp. 1284–1291 (1997a),
http://www.cs.ubc.ca/spider/poole/abstracts/pro-pa.html

Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Ar-
tificial Intelligence 94, 7–56 (special issue on economic principles of multi-agent systems)
(1997b),
http://www.cs.ubc.ca/spider/poole/abstracts/icl.html

http://www.eecs.harvard.edu/~avi/Papers/ibal.ijcai01.ps
http://www.cs.ubc.ca/spider/poole/abstracts/pro-pa.html
http://www.cs.ubc.ca/spider/poole/abstracts/icl.html

The Independent Choice Logic and Beyond 243

Poole, D.: Abducing through negation as failure: stable models in the Independent Choice Logic.
Journal of Logic Programming 44(1–3), 5–35 (2000),
http://www.cs.ubc.ca/spider/poole/abstracts/abnaf.html

Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. Journal of
Artificial Intelligence Research 18, 263–313 (2003)

Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford
University Press, New York (1998)

Quinlan, J.R., Cameron-Jones, R.M.: Induction of logic programs: FOIL and related systems.
New Generation Computing 13(3-4), 287–312 (1995)

Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136 (2006)
Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling.

Journal of Artificial Intelligence Research (JAIR) 15, 391–454 (2001)
Savage, L.J.: The Foundation of Statistics, 2nd edn. Dover, New York (1972)
Shanahan, M.: Prediction is deduction, but explanation is abduction. In: IJCAI-1989, Detroit, MI,

pp. 1055–1060 (August 1989)
Thrun, S.: Towards programming tools for robots that integrate probabilistic computation and

learning. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), San Francisco, CA, IEEE, Los Alamitos (2000)

Zhang, N.L., Poole, D.: Exploiting causal independence in Bayesian network inference. Journal
of Artificial Intelligence Research 5, 301–328 (1996)

http://www.cs.ubc.ca/spider/poole/abstracts/abnaf.html

Protein Fold Discovery Using Stochastic Logic Programs

Jianzhong Chen1, Lawrence Kelley2, Stephen Muggleton1, and Michael Sternberg2

1 Department of Computing, Imperial College London, London SW7 2AZ, UK
{cjz,shm}@doc.ic.ac.uk

2 Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK
{l.a.kelley,m.sternberg}@imperial.ac.uk

Abstract. This chapter starts with a general introduction to protein folding. We
then present a probabilistic method of dealing with multi-class classification, in
particular multi-class protein fold prediction, using Stochastic Logic Programs
(SLPs). Multi-class prediction attempts to classify an observed datum or exam-
ple into its proper classification given that it has been tested to have multiple
predictions. We apply an SLP parameter estimation algorithm to a previous study
in the protein fold prediction area, in which logic programs have been learned
by Inductive Logic Programming (ILP) and a large number of multiple predic-
tions have been detected. On the basis of several experiments, we demonstrate
that PILP approaches (eg. SLPs) have advantages for solving multi-class (protein
fold) prediction problems with the help of learned probabilities. In addition, we
show that SLPs outperform ILP plus majority class predictor in both predictive
accuracy and result interpretability.

1 Introduction to Protein Folding

1.1 The Importance of Proteins in Biology

Proteins are the molecular machines that drive and control virtually all of the features
of biological organisms at the molecular level. The primary function of DNA and the
genes contained therein is to store the instructions for creating proteins. Many proteins
are enzymes that catalyze biochemical reactions, and are vital to metabolism. Other pro-
teins have structural or mechanical functions, such as the proteins in the cytoskeleton,
which forms a system of scaffolding that maintains cell shape. Proteins are also central
in cell signalling, immune responses, cell adhesion, and cell division for growth and
reproduction. An understanding of how proteins perform this diverse range of functions
allows a deep insight into how organisms function as a whole, how they evolved, and
how to treat disease.

1.2 The Importance of Protein Structure

A protein is a biological macromolecule composed of a series of smaller, building-
block molecules called amino acids, linked together in a linear chain, like beads on a
string. Amino acids are small molecules containing nitrogen, hydrogen, carbon, oxygen
and sometimes sulphur. There are 20 different types of amino acid found in biological
systems and they range in size from 6 to 25 atoms. A protein can be thought of as a

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 244–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Protein Fold Discovery Using Stochastic Logic Programs 245

linear sequence of letters taken from the alphabet of 20 amino acids. Proteins in biology
range from between 30 amino acids in length up to several thousand, with a typical size
of 200.

The actual protein sequences found in nature are derived from the genetic sequences
of DNA that we call genes. A gene is essentially a stretch of DNA composed of the
four letter alphabet A,T,G,C. Within the cell, molecular machinery (itself composed of
an amalgam of protein and nucleic acid) converts such stretches of DNA (genes) into
stretches of amino acids linked in a chain (a protein) through a straightforward mapping
where triplets of DNA bases (A,T,G,C) map to specific amino acid types. In this way,
genes are the instructions for making proteins: a mapping of strings from an alphabet
of 4 to strings from an alphabet of 20.

Thus a bewildering diversity of protein sequences are possible. Currently over 4
million different protein sequences have been elucidated by gene sequencing projects
around the world. Human beings are currently estimated to have approximately 30,000
genes. Each of these genes ‘codes’ for a unique protein. How do proteins carry out such
a diverse range of complex biological functions?

Protein sequences, that is, linear polymers of amino acids do not simply remain in
a loose extended, or even random shape. The power of proteins hinges on the fact that
protein sequences found in nature fold up into compact, complex three-dimensional
shapes. These complex shapes, or folds, are generally stable and the same sequence
will reliably fold to the same shape. However, different sequences fold into different
shapes. It is the highly complex, nonlinear interaction of regions of the chain with itself
via a variety of physical and chemical forces that means the sequence determines the
final folded structure. It is the specific three-dimensional shape of a folded protein that
provides it with the power to carry out highly specific molecular functions, such as
specifically binding to other proteins or DNA. Or specifically binding a small drug
molecule, breaking specific bonds in the drug, and releasing the pieces. The complex
folds of proteins can be likened to specifically shaped molecular ‘hands’ with the power
to make and break chemical bonds, transport electrons, and interact with one another.
The central principle of structural biology is that “sequence determines structure, and
structure determines function”. This principle has been called “the other half of the
genetic code” (Fig. 1).

Given the three-dimensional structure of a protein one can gain deep insights into
how the protein carries out its function. In addition, it permits researchers to design
methods to intervene in its function by rationally designing drug molecules to bind to
specific three-dimensional features of the protein molecule. This is of particular impor-
tance in the case of proteins involved in disease states.

The biological community has now gathered vast amounts of data regarding the se-
quences of genes and their corresponding proteins across hundreds of species. However,
elucidating the three-dimensional shape of a folded protein by experimental methods is
an extremely costly, time-consuming and sometimes impossible task. As a result only
a tiny fraction (42,000) of the proteins found in nature (4 million so far) have had their
three-dimensional structure experimentally determined (Data as of March 2007). Natu-
rally, since the three-dimensional structure of a protein is determined by the amino acid
sequence, and given that we know the amino acid sequence, one would imagine it to

246 J. Chen et al.

Fig. 1. Schematic illustration of the flow of biological information from a gene sequence in
DNA, to a protein sequence, which then folds to its unique three-dimensional shape. This three-
dimensional fold can then perform its specific biological function. This process is known as the
sequence, structure, function paradigm.

be a straightforward task to model the folding process given the sequence and to thus
computationally determine the folded structure.

1.3 Computational Protein Folding Is Extremely Difficult

Unfortunately, understanding the relationship between the amino acid sequence of a
protein and its resulting three-dimensional structure is one of the major long-standing
problems in molecular biology. This is known as the protein folding problem and has
been under intensive study by research groups around the world for almost 30 years.
The protein folding problem is so difficult primarily for two reasons: 1) The compu-
tational resources needed to run a physics (or quantum physics) simulation are so vast
that even taking Moore’s law into account, it would be at least 50 years before we could
simulate the folding of a very small protein and hundreds of years before we could
model a typical protein. 2) Heuristic approaches do not work because of the size of the
protein conformational space, inadequacies in the approximations, and the nonlinearity
of the problem. It is a conservative approximation to say each amino acid along the
protein chain has five degrees of freedom. Thus a 100 amino acid protein has approx-
imately 5100 possible conformations, which is more than the number of quarks in the
observable universe. Even when reasonable heuristics are used to significantly restrict
this search space, there is still a problem of determining whether a given conformation

Protein Fold Discovery Using Stochastic Logic Programs 247

Alpha Helix Beta Sheet

Fig. 2. Most proteins are composed of combinations of simple substructures known as secondary
structure elements. This figure illustrates the basic connectivity of the chain (with many atoms
omitted for clarity) of the alpha helix and the beta-strand. Cartoon representations are superposed
on the protein chain for ease of visualisation.

is correct. Dozens of papers are written each year with new attempts at designing an
‘energy function’ that can pick out correctly folded computer models from incorrect
ones, but with little success.

1.4 Fold Space

Fortunately however, the repertoire of three-dimensional folds found in nature appears
to be severely limited. Of the 42,000 experimentally determined protein structures, there
are less than 1000 fundamentally different ‘folds’. That is, many of the protein struc-
tures seen in nature bear strong resemblances to one another when one considers the
general path of the protein chain in space. In addition, almost all protein structures seen
in nature are composed of packed arrangements of more regular, more primitive sub-
structures, known as alpha-helices and beta-strands (Fig. 2). These substructure types
are termed the secondary structure elements (in contrast with the primary structure
which is the 1 dimensional sequence of amino acids). Multiple helices and/or strands
pack together in space to form the tertiary structure of the protein (Fig. 3). This hierar-
chical organisation has been taken further in databases such as SCOP [1] and CATH [2].
In SCOP (Structural Classification Of Proteins), tertiary protein structures are grouped
into families, superfamilies, folds, and classes. This classification has been designed
and maintained by world experts on protein structure and is based on a combination of
evolutionary and structural/topological considerations. Understanding or discovering
rules that govern the structure of fold space, i.e. how patterns of secondary structure el-
ements partition the space of folds, is an important step in deepening our understanding
of the sequence, structure, function paradigm.

248 J. Chen et al.

Fig. 3. Two views of the tertiary structure of a typical protein fold. It can be seen that the protein
is a complex combination of alpha helices and beta strands connected by variable loop regions. In
this particular protein, there is a central barrel structure surrounded by helices. This general fold
is known as a TIM-Barrel after the first such structure solved with this fold - Triose phosphate
Isomerase.

2 Problems to Be Addressed

2.1 Multi-class Prediction/Classification

Multi-class classification is a central problem in machine learning, as applications that
require a discrimination among several classes are ubiquitous [3]. We consider the prob-
lem of multi-class prediction/classification1 using Probabilistic Inductive Logic Pro-
gramming (PILP) approaches [4]. A conventional Inductive Logic Programming (ILP)
program is given with a training data set consisting of examples belonging to N > 2 dif-
ferent classes, and the goal is to construct a method that, given a new unlabeled datum,
will correctly predict the class to which the datum belongs2.

From machine learning point of view, solving the above problem requires us to deal
with multi-class prediction rather than the binary classification approach3 used in the
original study. Generally speaking, binary classification can be used to predict whether
an example belong to a class or not, whereas multi-class prediction can classify an
example into one class from multiple ambiguous predictions based on some given
‘ranking’ or ‘leveraging’ mechanism. Precisely, a binary predictor defines a function

1 It is also called multiclass prediction, multiple classification or multi-classification in some
references.

2 We distinguish the case where each datum is required to belong to a single class from the other
case where a given example is allowed to be a member of more than one class simultaneously.
The former case of requirement is assumed in our framework, where multiple predictions have
been detected due to some reasons in practice and the goal is to solve the uncertainty from the
observations so that a single prediction could be made correctly for each datum.

3 When there are multiple classes and the class labels are assumed to be independent, a con-
ventional ILP classifier actually provides a set of binary classifiers, each of which is used to
distinguish whether or not an example is in a certain class.

Protein Fold Discovery Using Stochastic Logic Programs 249

f that maps an example e and a class label cl to a binary set, ie. f : (e, cl) �→ {yes, no};
and a multi-class predictor defines a function g that maps an example e and a set of class
labels {cl1, . . . , clm} to one class label cli ∈ {cl1, . . . , clm} with some ranking mechanism
ri, ie. g : {(e, cl1), . . . , (e, clm)} �→ (e, cli, ri),m > 1, 1 ≤ i ≤ m. Multi-class predictor
is more useful for unlabeled/unseen data classification. In majority voting, the ranking
mechanism is the class size, ie. the number of predicted examples of a class. In PILP
approaches, the class-conditional probabilities are computed for each example e as the
ranking mechanism, which specify a distribution of the prediction probabilities of e
over multiple classes.

While binary classification [6,7], which classifies the members of a given set of objects
into two groups on the basis of whether they have some property or not, is well under-
stood, multi-class classification requires extra techneques. Most of the current multi-class
classification techniques are developed in the discriminative classification methods, in-
cluding decision trees, kernel methods, support vector machine and neural networks.
Standard one uses measures that go back to CN2 and ID3. Some of them extend the bi-
nary classification algorithms to handle multi-class problems directly, such as decision
trees, regression, discriminant analysis, etc [7,8]. The others build multi-class methods
on the basic binary classification methods, such as one-versus-others, pairwise classifi-
cation, all-versus-all, error-correcting output coding, etc [3,6,9,10]. There has also been
some work on the combination of these methods with probabilistic modeling [10,11].
The above approaches have limited relevance to ILP-based classifiers, as most of them
are based on regularization, modeling the decision boundaries or evaluating several bi-
nary classification methods. In logic-based classification methods , such as ILP, majority
voting is often used to solve the multiple prediction problems, however the performance
depends on the empirical distribution and the (im)balance feature of data.

To solve the multiple prediction uncertainty that naturally exists in the ILP classi-
fiers, we use PILP techniques, which aim at integrating three underlying constituents:
statistical learning and probabilistic reasoning within logical or relational knowledge
representations [4]. There have been increasing number of attempts to use PILP meth-
ods in practical settings recently [12,13]. In this chapter, we present applications of
Stochastic Logic Programs (SLPs) [14], one of the existing PILP frameworks, to learn
probabilistic logic programs that help to solve the multi-class prediction problem de-
tected in a protein fold prediction study and a working example. We apply a comparative
experimental strategy to demonstrate our method in which SLPs are learned from the
existing ILP programs and training data, and then the results, including the predictive
accuracy and interpretability, are compared between SLP predictors against ILP plus
majority class predictors.

2.2 Multi-class Protein Fold Prediction

Protein fold prediction is one of the major unsolved problems in modern molecular biol-
ogy. Given the amino acid sequence of a protein, the aim is to predict the corresponding
three-dimensional structure or local fold [15]. It has been proved that determining ac-
tual structure of a protein is hard. It is a good idea to predict the structure and machine
learning methods are useful. A major event in the area is the well-known Comparative
Assessment of protein Structure Prediction (CASP) competition and CAFASP2 [15].

250 J. Chen et al.

A variety of machine learning approaches have been successful, such as decision trees
[9], support vector machines [6,9] and kernel methods [16,17], neural networks [6],
hidden Markov models [12,13], ILP [5,18,19], etc. ILP is useful as it can learn ex-
plainable logic rules from examples with the help of relational background knowledge.
Multi-class protein fold prediction has been investigated in [6,9,13].

An experimental study of applying ILP to automatically and systematically dis-
cover the structural signatures of protein folds and functions has been explored in [5].
The rules derived by ILP from observation and encoded principles are readily inter-
preted in terms of concepts used by biology experts. For 20 populated folds in SCOP
database [20], 59 logical rules were found by ILP system Progol [21]. With the same
experiments, the effect of relational background knowledge on learning protein three-
dimensional fold signatures has also been addressed in [18]. However, there exists a
problem of multiple predictions unsolved in the previous study, ie. a number of pro-
tein domains have been predicted to belong to more than one of 20 protein folds or
can be explained by rules across multiple folds. In fact, only one protein fold pre-
diction is expected for each protein. We have investigated that, in the previous study,
about 40% of the examples have been involved in the problem (Table 1). For exam-
ple, the worst case we have found is where protein domain ‘d1xyzb ’ is given to be in
fold ‘β/α (TIM)-barrel’, however it has been tested to have up to four fold predictions
- ‘β/α (TIM)-barrel’, ‘NAD(P)-binding Rossmann-fold domains’, ‘α/β-Hydrolases’
and ‘Periplasmic binding protein-like II’. This is called the ‘False Positive’ problem in
binary classification [6], where in practice many examples show positive on more than
one class which leads to ambiguous prediction results.

Table 1. Ratio of examples with multiple predictions in the previous study

all-α class all-β class α/β class α + β class overall
30/77=38.96% 34/116=29.31% 67/115=58.26% 23/73=31.51% 154/381=40.42%

One of the main reasons for the false positive problem is that the decision boundary
between ILP rules can be naturally overlapped due to the complex nature of protein
folding, the quality and noise of acquired background knowledge and data, etc. From
biology point of view, our study is motivated by finding ways to solve the multiple
prediction problem so that, deriving the ILP program and data from the previous study,
only one unique fold prediction can be discovered for each protein domain.

In order to make comparison, we inherit the same classification scheme in our study
from the previous one [5], which predicts protein folds from the knowledge of pro-
tein domains based on the famous SCOP classification scheme [20]. The scheme is
a classification done manually by the experts on protein structure and facilitates the
understanding of protein structure which can be served as a starting point for machine
learning experiments. Table 2 illustrates the hierarchy of protein structures we are using.
A domain is the building block of the classification; a fold represents a classification for
a group of protein domains. At the top level, a class is used to group folds based on the
overall distribution of their secondary structure elements.

Protein Fold Discovery Using Stochastic Logic Programs 251

Table 2. Protein structure classification scheme

Level Description Examples

CLASS folds are grouped into classes based on the all-α
overall distribution of their secondary structure elements. α/β

FOLD proteins that share the same core secondary structures Globins
and the same interconnections. Cytokines

superfamily a group of families.
family a group of domains.

a structure or substructure that is considered to be d1scta
DOMAIN folded independently; small proteins have a single domain, d1xyzb

and for larger ones, a domain is a substructure.

In our study, we have been using the above classification scheme to design the exper-
iments. The data are a set of (positive) examples in protein domain level associated with
known protein fold classification for training and test purpose. The background knowl-
edge are a set of domain knowledge for representing the structural and inter-relational
information of the domains. The learned ILP rules derived from the previous study
stand for the prediction knowledge discovered from the data with the help of back-
ground knowledge in protein fold level. The learned SLP probabilities associated with
rules and background knowledge represent the probabilistic distributions or statistical
frequencies of the protein fold predictions that can be used as the ranking mechanism
for solving multiple prediction problem.

3 Multi-class Prediction Using SLPs

3.1 Stochastic Logic Programs

Stochastic logic programs (SLPs) [14] have been chosen as the PILP framework in
the study as SLPs provide a natural way in associating probabilities with logical rules.
SLPs were introduced originally as a way of lifting stochastic grammars to the level of
first-order logic programs. SLPs were considered as a generalization of hidden Markov
models and stochastic context-free grammars. SLPs have later been used to define
distributions for sampling within inductive logic programming (ILP). It is clear that
SLPs provide a way of probabilistic logic representations and make ILP become bet-
ter at inducing models that represent uncertainty. Please see chapter 2 for a tutorial
of SLPs.

Syntactically, an SLP S is a definite logic program, where each clause C is a first-
order range-restricted definite clause4 and some of the definite clauses are labelled/
parameterised with non-negative numbers, l : C. S is said to be a pure SLP if all clauses
have parameters, as opposed to an impure SLP if not all clauses have labels. The subset
S q of clauses in S whose head share the same predicate symbol q is called the definition
of q. For each definition S q, we use πq to denote the sum of the labels of the clauses

4 A definite logical clause C is range-restricted if every variable in C+, the head of C, is found
in C−, the body of C.

252 J. Chen et al.

in S q. S is normalised if πq = 1 for each q and unnormalised otherwise. Till now, the
definition does not show SLPs represent probability distributions, as each label can be
any non-negative number and there is no constraints for the parameters of unnormalised
SLPs. For our interest, SLPs are restricted to define probability distributions over logic
clauses, where each l is set to be a number in the interval [0,1] and, for each S q, πq

must be at most 1. In this case, a normalised SLP is also called a complete SLP, as
opposed to a incomplete SLP for unnormalised one. In a pure normalised/complete SLP,
each choice for a clause C has a parameter attached and the parameters sum to one, so
they can therefore be interpreted as probabilities. Pure normalised/complete SLPs are
defined such that each parameter l denotes the probability that C is the next clause used
in a derivation given that its head C+ has the correct predicate symbol. Impure SLPs are
useful to define logic programs containing both probabilistic and deterministic rules, as
shown in this paper. Unnormalised SLPs can conveniently be used to represent other
existing probabilistic models, such as Bayesian nets.

Semantically, SLPs have been used to define probability distributions for sampling
within ILP [14]. Generally speaking, an SLP S has a distributional semantics [22], that
is one which assigns a probability distribution to the atoms of each predicate in the
Herbrand base of the clauses in S . The probabilities are assigned to ground atoms in
terms of their proofs according to a stochastic SLD-resolution process which employs
a stochastic selection rule based on the values of the probability labels. Furthermore,
some quantitative results are shown in [23], in which an SLP S with parameter λ = log l
together with a goal G defines up to three related distributions in the stochastic SLD-
tree of G: ψλ,S ,G(x), fλ,S ,G(r) and pλ,S ,G(y), defined over derivations {x}, refutations {r}
and atoms {y}, respectively. An example is illustrated in Fig. 4, in which the example
SLP S defines a distribution {0.1875, 0.8125} over the sample space {s(a), s(b)}. It is
important to understand that SLPs do not define distributions over possible worlds, i.e.,
pλ,S ,G(y) defines a distribution over atoms, not over the truth values of atoms.

3.2 Failure-Adjusted Maximization Algorithm

There are two tasks for learning SLPs. Parameter estimation aims to learn the param-
eters from observations assuming that the underlying logic program is fixed. Failure-
Adjusted Maximization (FAM) [23] is a parameter estimation algorithm for pure
normalised SLPs. Structure learning tries to learn both logic program and parame-
ters from data. Although some fundamental work have been done for SLP structure
learning [22,24], it is still an open hard problem in the area which requires one to
solve almost all the existing difficulties in ILP learning. In this paper, we apply the
two-phase SLP learning method developed in [22] to solve multi-class protein fold
predication problem, in which SLP structure has been learned by some ILP learning
system and SLP parameters will then be estimated by playing with FAM to the learned
ILP program.

FAM is designed to deal with SLP parameter learning from incomplete or ambiguous
data in which the atoms in the data have more than one refutation that can yield them.
It is an adjustment to the standard EM algorithm where the adjustment is explicitly ex-
pressed in terms of failure derivation. The key step in the algorithm is the computation

Protein Fold Discovery Using Stochastic Logic Programs 253

0.4: s(X) :- p(X), p(X).
0.6: s(X) :- q(X).
0.3: p(a). 0.7: p(b).
0.2: q(a). 0.8: q(b). (a)

0 4 0 3 0 7 0 0 8 41

0 4 0 7 0 3 0 0 8 42

0 4 0 3 0 3
0 0 4 31 1 0 0 8 4 2

0 4 0 3 0 3 0 6 0 2
0 1 8 7 5

1 0 0 8 4 2

0 4 0 7 0 7 0 6 0

, ,: ()

, ,: ()

, ,: ()

, ,: ()

, ,: ()

. . . .

. . . .

. . .
.

.

.
.

.

. . . .

() ,

() ,

() ,

(()) ,

(())

S s X

S s X

S s X

S s X

S s X

x

x

f r

p s a

p s b

−

−

−

−

−

× × =

× × =

× ×
=− ×

× × + ×
− ×

× × + ×

=

=

=

= =

= 8
0 8 1 2 5

1 0 0 8 4 2

.
.

.− ×
=

(c)
(b)

Fig. 4. (a) An example of SLP S (adapted from [23]); (b) A stochastic SLD-tree for S with goal:-
s(X), including 6 derivations in which 4 are refutations (end with �) and 2 are fail derivations;
(c) Probability distributions defined in S for the two fail derivations x1 and x2, for the leftmost
refutation r1, and for the two atoms s(a) and s(b), respectively

of ψλh [νi|y], the expected frequency for clause Ci given the observed data y and the
current parameter estimate λh

ψλh [νi|y] =
t−1∑

k=1

Nkψλh [νi|yk] + N(Z−1
λh − 1)ψλh[νi| f ail],

where νi counts times Ci appeared in some derivation, Nk is the number of times datum
yk occurred in the observed data, N =

∑
k Nk is the number of observed data, ψλh [νi|yk]

is the expected number of times Ci was used in refutations yielding yk, ψλh [νi| f ail]
denotes the expected contribution of Ci to failed derivations, and Zλh is the probability
of success. Therefore, the first part corresponds to refutations while the second term to
failed derivations. Broadly speaking, the equation gathers together the contributions of
a particular clause Ci to derivations against the program, the current parameters and the
data. The counts are used to estimate the probabilities for the parameterised clauses in
each FAM iteration. FAM can be used to estimate the parameters for normalized impure
SLP in which some rules are set to be probabilistic and others are pure logical rules.

3.3 An SLP Example for Multi-class Prediction

An artificially generated working example is defined and processed in order to clarify
the problem of multi-class prediction and to demonstrate our method. It also shows that
multiple prediction problem may naturally happen in logic-based classifiers due to the
overlapping among logic clauses.

The so-called multi-class animal classification example starts from a logic program
illustrated in Table 3, which contains a set of logic rules learned using ILP and can be
used to classify animals into three classes, ie. mammal, bird or fish. The program was
learned from an artificial data set with 10% of noise and 30% of multiple prediction
examples. An example of multiple predictions can be gained by testing that a bat be-
longs to both mammal and bird classes, or a dolphin is predicted to be in both mammal

254 J. Chen et al.

Table 3. A working example: multi-class animal classification program

Prob. Logic rules Comments
0.195: class(mammal,A) :- has milk(A). %classification rules
0.205: class(mammal,A) :- animal running(A). %A is in ‘mammal’ class
0.222: class(bird,A) :- animal flying(A). %A is in ‘bird’ class
0.189: class(fish,A) :- has gills(A). %A is in ‘fish’ class
0.189: class(fish,A) :- habitat(A,water),has covering(A,none),has legs(A,0).
0.433: animal running(A) :- hemeothermic(A),habitat(A,land),

has legs(A,4).
% extensional back-
ground knowledge

0.567: animal running(A) :- hemeothermic(A),habitat(A,caves).
0.6: animal flying(A) :- hemeothermic(A),habitat(A,air),

has covering(A,feathers),has legs(A,2).
0.4: animal flying(A) :- hemeothermic(A),habitat(A,air),

has covering(A,hair),has legs(A,2).
animal(bat).has milk(bat).hemeothermic(bat).habitat(bat,air).
habitat(bat,caves).has covering(bat,hair).has legs(bat,2).

% intensional back-
ground knowledge

animal(dolphin).has milk(dolphin).hemeothermic(dolphin).
habitat(dolphin,water).has covering(dolphin,none).has legs(dolphin,0).· · · · · ·
class(mammal,bat).class(mammal,dolphin).· · · · · · % data,examples

and fish classes. An example of SLP is also listed in Table 3 in which probabilities are
estimated for some rules from data.

3.4 Multi-class Prediction Algorithm Using SLPs

Our method of multi-class prediction using SLPs is illustrated as an algorithm in Ta-
ble 4. As shown in Table 3, an SLP for multi-class prediction is an impure SLP that
has a hierarchical structure, consisting of a set of probabilistic classification/prediction
rules, a set of probabilistic clauses for extensional background knowledge, and a set
of non-probabilistic clauses for intensional background knowledge. Probabilities are
parameter-estimated by FAM algorithm (step 2.1).

Given an example e and a set of predictions {cl1, . . . , clN} for e, a FAM-learned SLP
defines a distribution over the predictions, ie. {p(e | cl1, λ, S), . . . , p(e | clN , λ, S)}. Each
p(e | cln, λ, S) denotes a class-conditional prediction probability of e in class cln and
can be computed (step 2.3.3) as

p(e | cln, λ, S) = p(class(cln, e)) =

∑Mn
i=1

∏Mi
j=1 l

ν j(ri)
j∑N

k=1 p(e | clk, λ, S)

in its stochastic SLD-tree given S and goal :-class(cln, e), where ri is the i-th refu-
tation that satisfies e, Mn denotes the total number of refutations of e in cln, l j is
the probability of clause C j, ν j(ri) is the number of times C j has been used in ri,
and Mi denotes the number of clauses occurred in ri. Because impure SLPs are al-
lowed, some clauses are unparameterised in a derivation. We apply the ‘equivalence
class’ feature developed in [23] to deal with the case where an unparameterised clause,
with probability 1, either succeeds or fails in a derivation (exclusively). Two stochastic

Protein Fold Discovery Using Stochastic Logic Programs 255

Table 4. The algorithm of multi-class prediction using SLPs

1. Initialize matrix MILP and MSLP to be zero matrix;
2. Apply n-fold cross validation or leave-one-out test to the data set that are thus divided

into n (training,test) subsets; for each subset repeat
2.1. Learn SLP from training data by playing FAM algorithm, which associates proba-

bilities to the probabilistic rules;
2.2. for each class cl count the number of predicted examples in the training set d(cl);
2.3. for each labeled example (e, cli) in the test set do

2.3.1. if e has only one prediction cl j then set MILP
i j + + and MSLP

i j + +; else
2.3.2. in all possible class predictions, apply majority class voting to choose cl j that

has the maximum value of d(cl); (in the case when equivalent values happen,
cl j is randomly chosen from the set)

2.3.3. for each possible class prediction cl, apply the learned SLP to compute the pre-
diction probability of e in cl, p(e | cl, λ, S);

2.3.4. choose clk that has the maximum value of p(e | clk , λ, S);
2.3.5. set MILP

i j + + and MSLP
ik + +;

3. Compute predictive accuracies paILP and paSLP bases on MILP and MSLP;
4. Learn the final SLP from the whole data set.

SLD-trees for the animal classification working example are illustrated in Fig. 5, from
which we have p(bat | mammal, λ, S) = 0.195+0.205×0.567

0.3112+0.0888 = 0.778 and p(bat | bird, λ, S)=
0.222×0.4

0.3112+0.0888 = 0.222 given the SLP presented in Table 3. They thus define a distribution
over {class(mammal,bat),class(bird,bat)}, the two predictions of bat.

In the algorithm, two multi-class confusion matrixes are built in a n-fold cross val-
idation or leave-one-out test in order to evaluate the corresponding predictive accura-
cies. We informally define a multi-class confusion matrix to be an integer square matrix
M(m+1)×(m+1) for m known classes5, in which an arbitrary element Mi j, 1 ≤ i, j ≤ (m+1),

Fig. 5. Stochastic SLD-trees for goals class(mammal,bat) and class(bird,bat)

5 The (m + 1)-th column is set to be an ‘unknown’ class, where an example in some cases fails
to be predicted in any of m known classes.

256 J. Chen et al.

will be increased by 1 if a labeled example taken from class cli is predicted to be in
class cl j (or in class clm+1 if no prediction). The overall predictive accuracy based on

the multi-class confusion matrix can then be computed by pa =
∑m+1

i=1 Mii∑m+1
i, j=1 Mi j

(step 3). Two

matrixes with the predictive accuracies for the working example are shown in Fig. 6.

MILP
4×4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 0 2 0
2 10 0 0
2 0 17 1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, paILP = 86 ± 4.9%; MSLP

4×4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

18 0 0 0
2 10 0 0
2 0 17 1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, paSLP = 90 ± 4.2%.

Fig. 6. Confusion matrixes with the predictive accuracies for the animal working example

4 Experiments

A set of scientific experiments6 are designed to demonstrate and evaluate our methods.

4.1 Hypotheses to Be Tested

The null hypotheses to be empirically investigated in the study are as follows,

– PILP approaches based on highly expressive probabilistic logic learning frame-
works, eg. SLPs, do not outperform any conventional ILP methods on the multi-
class prediction showcase.

– For a given logic program with multiple predictions/classifications and a corre-
sponding data set, provision of probabilities does not increase predictive accuracy
compared with non-probabilistic approaches such as majority class predictor.

– Probabilistic knowledge learned by PILP approaches does not produce improved
explanatory insight.

4.2 Materials and Inputs

In terms of ILP, the input materials consist of an ILP logic program that has multiple
prediction problem and a corresponding data set. An example can be found in Table 3
for the multi-class animal classification and 50 artificial examples are provided. In pro-
tein fold prediction, a data set of 381 protein domains together with known protein
folds, based on SCOP classification, is provided in Prolog format, for example,

fold(’Globin-like’,d1scta). fold(’beta/alpha (TIM)-barrel’, d1xyzb).

Background knowledge are used to represent the three-dimensional structure informa-
tion of the examples, eg.

dom t(d1scta). len(d1scta , 150). nb alpha(d1scta ,6). nb beta(d1scta ,0).

Three types of domain background knowledge are further distinguished (Table 5) – re-
lational knowledge introduce relationships between secondary structure elements and

6 Details of the experiments can be found at http://www.doc.ic.ac.uk/∼cjz/research.

http://www.doc.ic.ac.uk/~cjz/research.

Protein Fold Discovery Using Stochastic Logic Programs 257

Table 5. List of some predicates of background knowledge

Predicates Description

extensional relational background knowledge, there are two clauses for each predicate
adjacent(Dom,
S1,S2,Loop,
TypeS1,TypeS2)

it returns true if the length of the loop separating two secondary structures
S1 of TypeS1 and S2 of TypeS2 is Loop; otherwise, S1 and S2 are bound
to two consecutive secondary structure elements.

coil(S1,S2,Len) bound Len to the length of the loop between secondary structure S1 and S2
or is true if the length of the loop is Len ± 50%.

extensional global background knowledge, there are two clauses for each predicate
len interval
(Lo=<Dom=<Hi)

is true if the length of the domain Dom is in [Lo,Hi]; otherwise, Lo (Hi) is
bound to the length of the smallest (longest) positive example.

nb alpha interval
(Lo=<Dom=<Hi)

similar to len interval but process the number of alpha helices.

nb beta interval
(Lo=<Dom=<Hi)

similar to len interval but process the number of beta helices.

intensional local background knowledge, there is one clause for each predicate
unit len(S,Cst) is true if the length of the secondary structure S is Cst, the values for Cst

are very lo, lo, hi and very hi.
unit aveh(S,Cst) similar to unit len but process the average hydrophobicity.
unit hmom(S,Cst) similar to unit len but process the hydrophobic moment.
has pro(S) is true if S contains a proline amino acid.

their properties; global knowledge encode global characteristics of protein folds, specif-
ically, the number of residues and the number of secondary structures; and local knowl-
edge state local information of a single protein element. Some predicates are designed to
be intensional, while others are extensional that are generated from intensional knowl-
edge. In addition, 59 prediction rules learned by ILP system Progol [21] over 20 popu-
lated protein folds have been derived from the original study, eg.

fold(’Globin-like’,A) :- adjacent(A,B,C,1,h,h), has pro(C).
fold(’beta/alpha (TIM)-barrel’,A) :- adjacent(A,B,C,4,h,e), unit len(B,hi).

4.3 Methods and Results

The method presented in Table 4 has been applied to both multi-class protein fold pre-
diction with a 5-fold cross validation test and multi-class animal classification working
example with a leave-one-out test. In order to empirically test the pre-set hypotheses,
five sub-experiments (Table 6) are designed and evaluated, each of which has an SLP
predictor as well as a majority class predictor. The first two experiments are used to test
the convergence property of FAM, while the other three are designed to investigate the
influence of empirical data distribution on the performance of the two predictors. Main
results of the predictive accuracy for the experiments are shown in Table 7. In sum-
mary, SLP predictors outperform majority class predictors in predictive accuracy in all
five experiments. The result of protein fold prediction experiment 1 shows a promising
improvement in the overall predictive accuracy that is 71.39% achieved by SLP pre-
dictor against 64.57% by non-probabilistic majority class predictor, and the difference

258 J. Chen et al.

Table 6. Description of the experiments

Experiment Data set and description
1 protein fold prediction, 59 learned ILP rules and 381 protein domains; learning SLP

from uniform initial parameters, ie. each parameterised clause with definition S q is
initially set to have a probability 1

|S q |
2 protein fold prediction, 59 learned ILP rules and 381 protein domains; learning SLP

from random initial parameters
3 animal classification, 18 examples of mammal class, 12 of bird class and 20 of fish

class; predicted class size in order: mammal ≥ fish > bird
4 animal classification, 17 examples of mammal class, 17 of bird class and 16 of fish

class; predicted class size in order: bird ≥ mammal > fish
5 animal classification, 14 examples of mammal class, 18 of bird class and 18 of fish

class; predicted class size in order: bird ≥ fish > mammal

Table 7. Comparison of predictive accuracies for experiment 1 (overall and by four protein
classes), 3, 4 and 5

Experiment 1 (overall) 3 4 5
SLP predictor 71.39±2.32% 90±4.24% 90±4.24% 90±4.24%
majority class predictor 64.57±2.45% 86±4.91% 84±5.18% 68±6.60%
Significance of Difference 0.021 0.269 0.185 0.003

Experiment 1 by protein class all-α class all-β class α/β class α + β class
SLP predictor 76.62±4.82% 81.03±3.64% 51.30±4.66% 82.19±4.48%
majority class predictor 71.43±5.15% 69.83±4.26% 44.35±4.63% 80.82±4.61%

of the predictive accuracies (ie. the probability of the second null hypothesis in
section 5.1) is significant at the 0.021 level. Experiment 3, 4 and 5 imply that the ma-
jority class predictors are dependent on the predicted class size of each class, ie. the
number of examples predicted in that class, which is further dependent on the empirical
data distribution, ie. the ratio of the number of examples provided in the training data
set (Table 6). We can see that the predicted class size of mammal class plays a key role
on the predictive accuracy, eg. the accuracy is 86% when it has the largest class size in
experiment 3, whereas the accuracy decreases to 68% in the worst case when it has the
smallest class size in experiment 5.

4.4 Interpretability

Probabilities not only increase predictive accuracy but also improve the interpretability
of the learned programs. These are demonstrated by interpreting Fig. 7 as follows, in
which the probabilities are learned from the whole data set for all five experiments.

Fig. 7(a) – The probabilities demonstrate the ranking or importance information of
the prediction rules in each protein fold; the values exactly match the power rules se-
lected in [5] that was determined by recall, however different recall thresholds have
to be manually set for different folds, whereas the probabilities can be automatically
learned; by comparing the results between experiment 1 and 2, which are shown in the

Protein Fold Discovery Using Stochastic Logic Programs 259

(a) Probability vs. Rules

0

0.01

0.02

0.03

0.04

0.05

0.06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Rule No.

Pr
ob

ab
ili

ty

Experiment 1 Experiment 2

(b) Probability vs. Protein Fold

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Protein fold No.

P
ro

b
ab

il
it

y

Emperical data distribution Protein fold distribution

(c) Probabilities learned for extensional background knowledge predicates

0

0.2

0.4

0.6

0.8

1

1.2

adjacent(). cool(). len_interval() nb_alpha_interval(). nb_beta_interval().

Predicate

P
ro

b
ab

ili
ty

Predicate 1 Predicate 2

(d) Probability vs. Background knowledge

0

0.2

0.4

0.6

0.8

1

1.2

ad
ja

ce
nt()

.

co
ol()

.

le
n_in

te
rv

al(
)

nb_a
lp

ha_
in

te
rv

al(
).

nb_b
et

a_
in

te
rv

al(
).

unit_
le

n().

unit_
av

eh
().

unit_
hm

om
().

has
_p

ro
().

Background knowledge predicate

P
ro

b
ab

ili
ti

es
 o

f
O

cc
u

rr
en

ce

(e) Probability vs. Clauses for multi-class animal classification

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.
cla

ss
(A

,m
am

m
al)

2.
cla

ss
(A

,m
am

m
al)

3.
cla

ss
(A

,b
ird

)

4.
cla

ss
(A

,fis
h)

5.
cla

ss
(A

,fis
h)

6.
an

im
al_

ru
nn

ing
(A

)

7.
an

im
al_

ru
nn

ing
(A

)

8.
an

im
al_

fly
ing

(A
)

9.
an

im
al_

fly
ing

(A
)

Clause

P
ro

b
ab

ili
ty

Experiment 3 Experiment 4 Experiment 5

Fig. 7. Probability interpretability

two legends, we claim that the initial parameter settings have no effect on the learning
results, ie. the FAM algorithm converges with any normalised initial parameters.

Fig. 7(b) – The fold probabilities, that are computed by summing up corresponding
rule probabilities and shown in the first legend, indicate the popularity of different pro-
tein folds, which has been agreed by the biologists (the second and fourth authors of the
paper); they tend towards empirical data distribution that is shown in the other legend.

Fig. 7(c) – Probabilities have been learned for the extensional background knowl-
edge (Table 5), each of which has two clauses shown in two legends; it is one of the
advantages of PILP to learn the probabilities for extensional background knowledge in
addition to those for the prediction rules that might be simply estimated from or tend to
converge to the empirical data distribution; these probabilities play the key roles in the
computation of prediction probabilities for examples (section 4).

260 J. Chen et al.

Fig. 7(d) – The probabilities shown are summed up from all 59 probabilistic rules
by counting the frequencies of use of particular extensional background knowledge:
relational 	 global 	 local; it is clear to find that relational knowledge are far more
frequently used and occurred than the other two; the finding reenforces the conclusions
in [5] - different predicates play different roles in defining protein fold signatures, but the
predicate coil() has been found to have a higher frequency of use as relational knowledge
in our study than that in [5], where it was treated as global knowledge.

Fig. 7(e) – The probabilities of probabilistic clauses in the animal working example
(Fig. 3) are illustrated by the three legends for experiments 3, 4 and 5, respectively; the
values are slightly changed by providing data sets with different empirical distributions,
which result in the SLP predictors having the same predictive accuracy in the three
experiments (Table 7); in contrast, the predictive accuracies of majority class predictors
are dependent on the empirical data distribution and the predicted class sizes.

5 Discussion and Conclusions

Impure SLPs play a key role in our study, which allow us to model both probabilistic
and deterministic knowledge in the probabilistic logic programs. The ability to combine
non-probabilistic domain knowledge with probabilities is a central feature of SLPs [23].
In addition, the hierarchical structure of the SLPs improves the interpretability, and the
ability of learning probabilities for extensional background knowledge from determin-
istic intensional background knowledge and ground examples provides SLPs a good
representation for solving multi-class prediction problem. On the other hand, efficiency
is a problem existed in the current FAM algorithm, especially for large SLPs. Some pos-
sible ways of using tabulation or sampling to increase efficiency have been discussed
in [23].

From machine learning point of view, it is useful to compare the following two terms
used in ILP method [5] with the probability used in SLPs. The measure of compression
(the number of positive examples covered – the number of negative examples covered
– the length of the rules) was used to seek the specific rules in ILP, but the probability
is used to measure the importance of ILP rules with the same definition. While recall
(true positive / total number of positive examples) was used to measure the predictive
accuracy and to generate the power rules in the original binary classification method, the
probability is used to solve multi-class prediction problem. However, ILP can deal with
both positive and negative examples, SLPs are learned from positive examples only.

Our method of multi-class prediction using SLPs has significant advantages com-
pared with some existing multi-class classification methods. Firstly, SLPs outperform
majority voting in the way that probability has less dependency on the empirical data
distribution. Secondly, sample probabilities are learned from data to tackle the uncer-
tainty of multiple predictions naturally existing in logic programs, which are more
natural and sound than decision trees [7] and the sequential model [8]. Thirdly, our
method does not need to combine or utilize multiple binary classifiers as presented in
[6,9,10,11]. Fourthly, SLPs use probabilities to model the decision boundaries among
classes, whereas support vector machine and their reduction methods [6,9] use regu-
larization and discriminative methods to evaluate several binary classification methods
for stochastic voting and usually result in reduced accuracy and efficiency. Finally, a

Protein Fold Discovery Using Stochastic Logic Programs 261

distingusing feature of SLPs is, in contrast to typical conflict resolution strategies in
rule-learning, SLPs attach probability values to all the rules, not just the ones defining
the concept.

The same protein folding data set or similar sets have been applied as a benchmark
by some other machine learning methods. Improved logic rules have been learned using
ILP in [19], in which the multiple predictions have been effectively reduced by rearrang-
ing background knowledge. Logical hidden Markov models, another PILP framework,
are applied in [13] to deal with multi-class protein fold prediction by representing
the secondary structure of protein domains as logical sequences; the work increases
predictive efficiency and accuracy by reducing the problem representation complexity.
Conditional random fields [12] provide another PILP approach to deal with multi-class
protein fold classification using logical sequence method. A novel kernel method on
Prolog proof trees for binary protein fold prediction has been studied in [17] which pro-
vides higher overall accuracy compared with Progol. Even with the same data set, it is
not straightforward to compare the results gained by these methods with those shown in
this paper due to our specific research motivation and target, which aims to solve multi-
class prediction problem by learning SLPs on the basis of the existing ILP programs
and data, while the other methods apply their own binary or multi-class classification
solutions to the data without deriving the ILP programs. As our future work, resolving
rule conflicts with double induction [25] and using Area Under the Curve (AUC) [26]
rather than predictive accuracy for performance evaluation will be considered.

In conclusion, the null hypotheses we have set in experiments were rejected on the
basis of the results. Overall we conclude that PILP approaches (eg. SLPs) have demon-
strable advantages for solving multi-class prediction problem, in particular multi-class
protein fold prediction problem, and SLPs have outperformed ILP plus majority class
predictor in both predictive accuracy and result interpretability.

Acknowledgements

The authors would like to acknowledge the support of the EC Sixth Framework Project
“Application of Probabilistic Inductive Logic Programming II (APrIL II)” (Grant Ref:
FP-508861).

References

1. Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J.P., Chothia, C., Murzin, A.G.: SCOP
database in 2004: Refinements integrate structure and sequence family data. Nucl. Acid
Res. 32, 226–229 (2004)

2. Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R.,
Grant, A., Lee, D., Akpor, A., Maibaum, M., Harrison, A., Dallman, T., Reeves, G., Diboun,
I., Addou, S., Lise, S., Johnston, C., Sillero, A., Thornton, J., Orengo, C.: The CATH Domain
Structure Database and related resources Gene3D and DHS provide comprehensive domain
family information for genome analysis. Nucleic Acids Research 33(Database Issue), 247–
251 (2005)

3. Har-Peled, S., Roth, D., Zimak, D.: Constraint Classification: a New Approach to Multiclass
Classification and Ranking. In: Proc. of the Inter. Conf. on Algorithmic Learning Theory, pp.
365–379 (2002)

262 J. Chen et al.

4. De Raedt, L., Dietterich, T., Getoor, L., Muggleton, S.H.: Probabilistic, Logical and Rela-
tional Learning - Towards a Synthesis. In: Dagstuhl Seminar Proceedings 05051 (2006)

5. Turcotte, M., Muggleton, S.H., Sternberg, M.J.E.: Automated Discovery of Structural Sig-
natures of Protein Fold and Function. J. Mol. Biol. 306, 591–605 (2001)

6. Ding, C.H.Q., Dubchak, I.: Multi-class Protein Fold Recognition Using Support Vector Ma-
chines and Neural Networks. Bioinformatics 17(4), 349–358 (2001)

7. Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc, New York (1997)
8. Even-Zohar, Y., Roth, D.: A Sequential Model for Multi Class Classification. In: Proc. of the

Conf. on Empirical Methods for Natural Language Processing (EMNLP), pp. 10–19 (2001)
9. Tan, A.C., Giltert D., Deville Y.: Multi-class Protein Fold Classification Using a New En-

semble Machine Learning Approach. In: Inter. Conf. on Genome Informatics, GIW (2003)
10. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability Estimates for Multi-class Classification by

Pairwise Coupling. JMLR 5, 975–1005 (2004)
11. Yukinawa, N., Oba, S., Kato, K., Taniguchi, K., Iwao-Koizumi, K., Tamaki, Y., Noguchi,

S., Ishii, S.: A Multi-class Predictor Based on a Probabilistic Model: Application to Gene
Expression Profiling-based Diagnosis of Thyroid Tumors. BMC Genomes 7, 190 (2006)

12. Gutmann, B., Kersting, K.: TildeCRF: Conditional Random Fields for Logical Sequences. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 18–22. Springer, Heidelberg (2006)

13. Kersting, K., De Raedt, L., Raiko, T.: Logical Hidden Markov Models. JAIR 25, 425–456
(2006)

14. Muggleton, S.H.: Stochastic Logic Programs. In: De Raedt, L. (ed.) Advances in Inductive
Logic Programming, pp. 254–264 (1996)

15. Moult, J.: Rigorous Performance Evaluation in Protein Structure Modeling and Implications
for Computational Biology. Phil. Trans. R. Soc. B 361, 453–458 (2006)

16. Kersting, K., Gartner, T.: Fisher Kernels for Logical Sequences. In: Boulicaut, J.-F., Esposito,
F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 205–216.
Springer, Heidelberg (2004)

17. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on Prolog Proof Trees: Statistical Learning
in the ILP Setting. JMLR 7, 307–342 (2006)

18. Turcotte, M., Muggleton, S.H., Sternberg, M.J.E.: The Effect of Relational Background
Knowledge on Learning of Protein Three-Dimensional Fold Signature. Machine Learn-
ing 43(1-2), 81–95 (2001)

19. Cootes, A.P., Muggleton, S.H., Sternberg, M.J.E.: The Automatic Discovery of Structural
Principles Describing Protein Fold Space. J. Mol. Biol. 330, 839–850 (2003)

20. Brenner, S.E., Chothia, C., Hubbard, T.J., Murzin, A.G.: Understanding protein structure:
Using SCOP for fold interpretation. Methods in Enzymology 266, 635–643 (1996)

21. Muggleton, S.H., Firth, J.: CProgol4.4: A Tutorial Introduction. In: Džeroski, S., Lavrač, N.
(eds.) Relational Data Mining, pp. 160–188 (2001)

22. Muggleton, S.H.: Learning Stochastic Logic Programs. Electronic Transactions in Artificial
Intelligence 5(041) (2000)

23. Cussens, J.: Parameter Estimation in Stochastic Logic Programs. Machine Learning 44(3),
245–271 (2001)

24. Muggleton, S.H.: Learning Structure and Parameters of Stochastic Logic Programs. Elec-
tronic Transactions in Artificial Intelligence 6 (2002)

25. Lindgren, T., Boström, H.: Resolving Rule Conflicts with Double Induction. Intell. Data
Anal. 8(5), 457–468 (2004)

26. Hand, D.J., Till, R.J.: A Simple Generalisation of the Area Under the ROC Curve for Multiple
Class Classification Problems. Machine Learning 45(2), 171–186 (2001)

Probabilistic Logic Learning from

Haplotype Data

Niels Landwehr1 and Taneli Mielikäinen2

1 Machine Learning Lab, Institute for Computer Science, University of Freiburg
Georges-Koehler Allee, Building 079, 79110 Freiburg, Germany

landwehr@informatik.uni-freiburg.de
2 Helsinki Institute for Information Technology, University of Helsinki, Finland

Taneli.Mielikainen@cs.helsinki.fi

Abstract. The analysis of haplotype data of human populations has
received much attention recently. For instance, problems such as Haplo-
type Reconstruction are important intermediate steps in gene association
studies, which seek to uncover the genetic basis of complex diseases. In
this chapter, we explore the application of probabilistic logic learning
techniques to haplotype data. More specifically, a new haplotype recon-
strcution technique based on Logical Hidden Markov Models is presented
and experimentally compared against other state-of-the-art haplotyping
systems. Furthermore, we explore approaches for combining haplotype
reconstructions from different sources, which can increase accuracy and
robustness of reconstruction estimates. Finally, techniques for discovering
the structure in haplotype data at the level of haplotypes and population
are discussed.

1 Introduction

In this chapter, we will look at applications of probabilistic logic learning and
related approaches in the area of genetic data analysis. More specifically, we
are concerned with analyzing haplotype data—a concise representation of the
individual genetic make-up of an organism, that is encoded in a set of genetic
markers. The analysis of haplotype data has become a central theme in modern
bioinformatics, and is considered to be a promising approach to many important
problems in human biology and medicine. Application areas range from the quest
to identify genetic roots of complex diseases to analyzing the evolution history
of populations or developing “personalized” medicine based on the individual
genetic disposition of the patient.

The rest of the chapter is organized as follows. After starting with a brief intro-
duction to the basic concepts of genetics, such as the genome, chromosomes, and
haplotypes, three different haplotype data analysis problems will be discussed.
The first problem concerns haplotype reconstruction: the problem of resolving
the hidden phase information in genotype data obtained from laboratory mea-
surements. For this problem a new statistical method based on Logical Hidden
Markov Models is introduced. The second, related, problem is that of combining

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 263–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 N. Landwehr and T. Mielikäinen

haplotypings, that is, the question how different haplotype reconstructions ob-
tained from different algorithmic methods can be combined and jointly analyzed.
The third problem is concerned with discovering the structure in haplotype data,
at the level of haplotypes and populations of individuals.

1.1 Genomes, Chromosomes and Haplotypes

The genome is organized as a set of chromosomes [TJHBD97]. A chromosome
is a DNA molecule consisting of nucleotides, small molecules that connect to
form the long chain-like DNA molecule. Basically, four different nucleotides oc-
cur (Adenine, Cytosine, Guanine, Thymine), and the genetic information is en-
coded in the sequence of “letters” A,C,G and T. Thus, for our purposes, a DNA
molecule is a sequence over the alphabet {A, C, G, T }, and a genome is then a
collection of sequences in {A, C, G, T }∗.

Most of the genome is invariant between different human individuals. How-
ever, the genetic variations that do exist play a crucial role in determining our
genetic individuality, they can e.g. contribute to risk factors of complex diseases
or influence how an individual patient responds to a certain drug treatment. The
analysis of genetic variation in human populations has therefore become a focus
of attention in human biology recently [The05]. Most studied differences in the
genome are single-nucleotide variations at particular positions in the genome,
which are called single nucleotide polymorphisms (SNPs). The positions are also
called markers and the different possible values alleles. A haplotype is a se-
quence of SNP alleles along a region of a chromosome, and concisely represents
the (variable) genetic information in that region.

The genetic variation in SNPs is mostly due to two causes: mutation and
recombination. A mutation changes a single nucleotide in the chromosome. Mu-
tations are relatively rare, they occur with a frequency of about 10−8. While
SNPs are themselves results of ancient mutations, mutations are usually ignored
in statistical haplotype models due to their rarity. Recombination introduces
variability by breaking up the chromosomes of the two parents and reconnecting
the resulting segments to form a new and different chromosome for the offspring.
Because the probability of a recombination event between two markers is lower
if they are near to each other, there is a statistical correlation (so-called link-
age disequilibrium) between markers which decreases with increasing marker
distance. Statistical approaches to haplotype modeling are based on exploiting
such patterns of correlation.

In diploid organisms such as humans there are two homologous (i.e., almost
identical) copies of each chromosome. Determining haplotype information for an
individual therefore means measuring a set of markers along a chromosome for
both copies of the chromosome. Current practical laboratory measurement tech-
niques produce a genotype—for m markers, a sequence of m unordered pairs
of alleles. The genotype reveals which two alleles are present at each marker,
but not their respective chromosomal origin. Genotypes, as sequences of un-
ordered pairs, are an example of the way data is structured in haplotype analy-
sis, posing challenges to standard propositional data analysis techniques. Using

Probabilistic Logic Learning from Haplotype Data 265

propositional techniques, a genotype could be represented as a sequence of un-
ordered pairs, where each unordered pair is considered as a letter in the alphabet.
However, such a representation would not take into account the intrinsic struc-
ture in each letter as an unordered pair. These limitations can be overcome using
a relational representation of the data, as will be shown in the next section.

A similarly challenging task is the representation of a haplotype pair in propo-
sitional form, as a haplotype pair consists of two haplotype sequences and there
is no natural order for the sequences in the pair. In some cases it might be
known which of the haplotypes is inherited from the maternal/paternal genome,
but this does not yield a natural ordering: based on the current knowledge of ge-
netics, it does not matter from which parent a particular copy of a chromosome
is inherited. Such representational issues will also be discussed in the forthcom-
ing sections. Furthermore, additional relational information could be taken into
account. Individuals can be related (e.g., by family relations), and relations be-
tween different regions of the marker maps are sometimes known. For example,
certain genes might be known to be correlated. Such information is typically
probabilistic.

Because of the outlined difficulties with representing haplotype data in propo-
sitional form, this domain is an interesting challenge for statistical relational
modeling techniques.

Notational Convention. For our purposes, a haplotype h is a sequence of alleles
h[i] in markers i = 1, . . . , m. In most cases, only two alternative alleles occur at
an SNP marker, so we can assume that h ∈ {0, 1}m. A genotype g is a sequence
of unordered pairs g[i] = {h1

g[i], h
2
g[i]} of alleles in markers i = 1, . . . , m. Hence,

g ∈ {{0, 0}, {1, 1}, {0, 1}}m. A marker with alleles {0, 0} or {1, 1} is homozygous
whereas a marker with alleles {0, 1} is heterozygous. The number of heterozygous
markers is denoted by m′ and the number of individuals in the population by n.

2 Haplotype Reconstruction

This section describes and formalizes the haplotype reconstruction (or haplotyp-
ing) problem, and presents a new method for statistical haplotype reconstruction
based on Logical Hidden Markov Models (LOHMMs, see Chapter 3). We will
start by defining the problem setting and present a basic LOHMM model for
this domain. Two extensions to the basic model will be presented, and finally
the method is compared against several state-of-the-art haplotyping techniques
on real-world population data.

2.1 The Haplotype Reconstruction Problem

In order to obtain haplotype data for a set of human individuals, their geno-
types are measured in the laboratory, and afterwards the haplotypes must be
determined from this genotype data. There are two alternative approaches for
this reconstruction: One is to use family trios, i.e., genotype two parents and the

266 N. Landwehr and T. Mielikäinen

corresponding child. If trios are available, most of the ambiguity in the phase
(the order of the alleles in the genotype data) can be resolved analytically, and
haplotypes be inferred. If no trios can be obtained, population-based computa-
tional methods have to be used to estimate the haplotype pair for each genotype.
These approaches exploit statistical correlations between different markers to es-
timate a distribution over haplotypes for the population sample in question, and
use this estimate to infer the most likely haplotype pair for each genotype in
the sample. Because trios are more difficult to recruit and more expensive to
genotype, population-based approaches are often the only cost-effective method
for large-scale studies. Consequently, the study of such techniques has received
much attention recently [SWS05,HBE+04].

Problem 1 (haplotype reconstruction). Given a multiset G of genotypes, find for
each g ∈ G the most likely haplotypes h1

g and h2
g which are a consistent recon-

struction of g, i.e., g[i] = {h1
g[i], h

2
g[i]} for each i = 1, . . . , m.

If H denotes a mapping G → {0, 1}m×{0, 1}m, associating each genotype g ∈ G
with a pair 〈h1

g, h
2
g〉 of haplotypes, the goal is to find the H that maximizes

P(H | G). It is usually assumed that the sample G is in Hardy-Weinberg equi-
librium, i.e., that P(〈h1

g, h
2
g〉) = P(h1

g) P(h2
g) for all g ∈ G, and that genotypes

are independently sampled from the same distribution. With such assumptions,
the likelihood P(H | G) of the reconstruction H given G is proportional to∏

g∈G P(h1
g) P(h2

g) if the reconstruction is consistent for all g ∈ G, and zero
otherwise. In population-based haplotyping, a probabilistic model λ for the dis-
tribution over haplotypes is estimated from the available genotype information G.
The distribution estimate P(h | λ) is then used to find the most likely recon-
struction H for G under Hardy-Weinberg equilibrium.

2.2 A LOHMM Model for Haplotyping

Logical hidden Markov models (LOHMMs, see Chapter 3) upgrade traditional
hidden Markov models to deal with sequences of structured symbols, rather
than flat characters. The key idea underlying LOHMMs is to employ logical
atoms as structured (output and state) symbols. More specifically, LOHMMs
define abstract states such as s(A, B) where s is the state name and A, B are
logical variables. An abstract state represents a set of “ground” states, namely
all variable-free logical specializations of the abstract state expression s(A, B)
(e.g., s(1, 0)). Abstract transitions such as s(X, Y) → s′(1, Y) describe how the
model transitions between abstract states, and variable unification is used to
share information between states, and between states and observations. Variants
of the Expectation-Maximization and Viterbi algorithms used with standard
HMMs can be derived for learning and inference in LOHMMs.

The basic motivation for using LOHMMs in haplotyping is that it is straight-
forward to encode genotypes (sequences of unordered pairs) as sequences of logi-
cal atoms. This can be done with a predicate pair(X, Y), which can be grounded
to pair(0, 0) (homozygous 0), pair(1, 1) (homozygous 1), and pair(0, 1) (het-
erozygous). Using logical variables and unification, the two individual alleles in

Probabilistic Logic Learning from Haplotype Data 267

the pair can be accessed. This allows to represent biological knowledge such as
the assumption of Hardy-Weinberg equilibrium (the fact that a genotype is sam-
pled by sampling two haplotypes independently and from the same distribution)
in the LOHMM structure.

As underlying model for the distribution over haplotypes, we use a straight-
forward left-to-right Markov model λ over the binary marker values at positions
t = 1, . . . , m:

P(h) =
m∏

t=1

Pt(h[t] | h[t − 1], λ).

This is motivated by the observation that linkage disequilibrium is strongest for
adjacent markers. Parameters of this model are of the form Pt(h[t] | h[t−1]), the
probability of sampling the new allele h[t] at position t after observing the allele
h[t − 1] at position t − 1. The Markov model on haplotypes can be extended to
a LOHMM on genotypes as follows. The LOHMM is organized as a left-to-right
model with layers t = 1, . . . , m. At every layer t, one component of the model
encodes the distribution P (h[t + 1] | h[t]). This component is traversed twice for
sampling the two new alleles h1[t+1], h2[t+1] based on their respective histories
h1[t], h2[t]. Afterwards, the unordered pair corresponding to the new allele pair
is emitted.

Figure 1 shows a single layer (at marker t) of the LOHMM model. For sam-
pling two new markers h1[t + 1], h2[t + 1] at position t + 1 based on the markers
h1[t], h2[t] at position t, we start at state mt(X, Y) with h1[t], h2[t] bound to X
and Y . The model then transitions to the state st(X, Y, x) to sample the first
new marker h1[t + 1]. The multiple transitions from state st to state s′t encode
the distribution P (h[t + 1] | h[t]). In s′t(A

′, B, x), the new marker h1[t + 1] has
been sampled and is bound to A′. Afterwards, the same path is traversed again
to sample the second marker, with arguments in state st swapped. This effec-
tively samples the new marker h2[t + 1] based on h2[t] independently and from
the same distribution. Finally, the unordered pair corresponding to the two new
markers is emitted in the transition from s′t to mt+1. This is can be easily ac-
complished using the logical generality ordering on abstract states in LOHMMs:
if the more specific abstract states for homozygous markers match the ground
state a homozygous pair is emitted, otherwise, an (unordered) heterozygous pair.
Note that this model only has 2 free parameters per layer, in contrast to a naive
first-order HMM model on the the joint state of the two haplotypes, which would
have 12 free parameters per layer.

This kind of model can be directly trained from genotype data using the EM
algorithm for LOHMMs, and the most likely haplotype pair for a genotype can
be read off the most likely state sequence for that observation returned by the
Viterbi algorithm (see [KDR06]). However, initial experiments using the XAN-
THOS engine for LOHMMs showed that the computational overhead due to the
general-purpose framework used in LOHMMs reduced the computational effi-
ciency of the model. Fortunately, it is possible to compile the presented LOHMM
model into an equivalent HMM model with parameter tying constraints. While

268 N. Landwehr and T. Mielikäinen

�� ���� �	mt(X,Y)
ε : 1

���� ���� �	st(X,Y, x)

���� ���� �	st(A,B,M)

���
�
�

��������
�� ���� �	st(B,A

′, y)��

�� ���� �	st(0, B,M)

ε : 0.7
��
ε : 0.3

��������������
�� ���� �	st(1, B,M)

ε : 0.4
��

ε : 0.6
��������������

�� ���� �	s′t(0, B,M)

��

�� ���� �	s′t(1, B,M)

���� ���� �	s′t(A
′, B,M) ������������������

��������

���
�

�
�

�
�

�
�

�
�

�

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�� ���� �	s′t(A
′, B, x)

ε : 1

		

�� ���� �	s′t(A
′, B, y)

pair(0, 1) : 1
���� ���� �	mt+1(B,A

′)

���� ���� �	s′t(0, 0, y)
pair(0, 0) : 1

���� ���� �	mt+1(0, 0) ���� ���� �	mt+1(X,Y)

�� ���� �	s′t(1, 1, y)
pair(1, 1) : 1

���� ���� �	mt+1(1, 1)

Fig. 1. LOHMM for haplotype reconstruction. One layer at marker position t is shown.
The standard syntax for visualizing LOHMMs is used: solid arrows represent abstract
transitions, dashed arrows the “more general than” relation, and dotted arrows “must
follow” links. For a more detailed description, see Chapter 3.

the details of this transformation are beyond the scope of this article, it generally
follows the grounding mechanism for LOHMMs, as described in [KDR06].

2.3 Higher Order Models and Sparse Distributions

The main limitation of the model presented so far is that it only takes into
account dependencies between adjacent markers. Expressivity can be increased
by using a Markov model of order k > 1 for the underlying haplotype distribu-
tion [EGT04]:

P(h) =
m∏

t=1

Pt(h[t] | h[t − k, t − 1], λ),

where h[j, i] is a shorthand for h[max{1, j}] . . . h[i]. Unfortunately, the number
of parameters in such a model increases exponentially with the history length
k. However, observations on real-world data (e.g., [DRS+01]) show that only
few conserved haplotype fragments from the set of 2k possible binary strings
of length k actually occur in a particular population. This can be exploited by
modeling sparse distributions, where fragment probabilities which are estimated

Probabilistic Logic Learning from Haplotype Data 269

Algorithm 1. The level-wise SpaMM learning algorithm
Initialize k := 1
λ1 := initial-model()
λ1 := em-training(λ1)
repeat
k := k + 1
λk := extend-and-regularize(λk−1)
λk := em-training(λk)

until k = kmax

to be very low are set to zero. More precisely, let p = Pt(h[t] | h[t− k, t− 1]) and
define for some small ε > 0 a regularized distribution

P̂t(h[t] | h[t − k, t − 1]) =

⎧
⎨

⎩

0 if p ≤ ε;
1 if p > 1 − ε;
p otherwise.

If the underlying distribution is sufficiently sparse, P̂ can be represented using a
relatively small number of parameters. The corresponding sparse hidden Markov
model structure (in which transitions with probability 0 are removed) will reflect
the pattern of conserved haplotype fragments present in the population. How
such a sparse model structure can be learned without ever constructing the
prohibitively complex distribution P will be discussed in the next section.

2.4 SpaMM: A Level-Wise Learning Algorithm

To construct the sparse order-k hidden Markov model, we propose a learning
algorithm—called SpaMM for Sparse Markov Modeling—that iteratively re-
fines hidden Markov models of increasing order (Algorithm 1). More specifi-
cally, the idea of SpaMM is to identify conserved fragments using a level-wise
search, i.e., by extending short fragments (in low-order models) to longer ones
(in high-order models), and is inspired by the well-known Apriori data mining al-
gorithm [AMS+96]. The algorithm starts with a first-order Markov model λ1 on
haplotypes where initial transition probabilities are set to Ṗt(h[t] | h[t−1], λ1) =
0.5 for all t ∈ {1, . . . , m}, h[t], h[t − 1] ∈ {0, 1}. For this model, a corresponding
LOHMM on genotypes can be constructed as outlined in Section 2.2, which can
be compiled into a standard HMM with parameter tying constraints and trained
on the available genotype data using EM.

The function extend-and-regularize(λk−1) takes as input a model of order
k − 1 and returns a model λk of order k. In λk, initial transition probabilities
are set to

Ṗt(h[t] | h[t−k, t−1], λk+1) =

⎧
⎨

⎩

0 if Pt(h[t] | h[t − k + 1, t − 1], λk) ≤ ε;
1 if Pt(h[t] | h[t − k + 1, t − 1], λk) > 1 − ε;
0.5 otherwise,

i.e., transitions are removed if the probability of the transition conditioned on a
shorter history is smaller than ε. This procedure of iteratively training, extending

270 N. Landwehr and T. Mielikäinen

Fig. 2. Visualization of the SpaMM Structure Learning Algorithm. Sparse
models λ1, . . . , λ4 of increasing order learned on the Daly dataset are shown.
Black/white nodes encode more frequent/less frequent allele in population. Conserved
fragments identified in λ4 are highlighted.

and regularizing Markov models of increasing order is repeated up to a maximum
order kmax.

Figure 2 visualizes the underlying distribution over haplotypes learned in
the first 4 iterations of the SpaMM algorithm on a real-world dataset. The set
of paths through the lattice corresponds to the set of haplotypes which have
non-zero probability according to the model. Note how some of the possible
haplotypes are pruned and conserved fragments are isolated. Accordingly, the
number of states and transitions in the final LOHMM/HMM model is signifi-
cantly smaller than for a full model of that order.

2.5 Experimental Evaluation

The proposed method was implemented in the SpaMM haplotyping system1.
We compared its accuracy and computational performance to several other
state-of-the art haplotype reconstruction systems: PHASE version 2.1.1 [SS05],
fastPHASE version 1.1 [SS06], GERBIL as included in GEVALT version 1.0
[KS05], HIT [RKMU05] and HaploRec (variable order Markov model) version 2.0
[EGT06]. All methods were run using their default parameters. The fastPHASE
system, which also employs EM for learning a probabilistic model, uses a strat-
egy of averaging results over several random restarts of EM from different initial
parameter values. This reduces the variance component of the reconstruction
error and alleviates the problem of local minima in EM search. As this is a gen-
eral technique applicable also to our method, we list results for fastPHASE with
averaging (fastPHASE) and without averaging (fastPHASE-NA).

The methods were compared using publicly available real-world datasets, and
larger datasets simulated with the Hudson coalescence simulator [Hud02]. As
1 The implementation is available at http://www.informatik.uni-freiburg.de/

~landwehr/haplotyping.html

Probabilistic Logic Learning from Haplotype Data 271

Table 1. Reconstruction Accuracy on Yoruba and Daly Data. Normalized
switch error is shown for the Daly dataset, and average normalized switch error over
the 100 datasets in the Yoruba-20, Yoruba-100 and Yoruba-500 dataset collections.

Method Yoruba-20 Yoruba-100 Yoruba-500 Daly

PHASE 0.027 0.025 n.a. 0.038
fastPHASE 0.033 0.031 0.034 0.027
SpaMM 0.034 0.037 0.040 0.033
HaploRec 0.036 0.038 0.046 0.034
fastPHASE-NA 0.041 0.060 0.069 0.045
HIT 0.042 0.050 0.055 0.031
GERBIL 0.044 0.051 n.a 0.034

real-world data, we used a collection of datasets from the Yoruba population in
Ibadan, Nigeria [The05], and the well-known dataset of Daly et al [DRS+01],
which contains data from a European-derived population. For these datasets,
family trios are available, and thus true haplotypes can be inferred analytically.

For the Yoruba population, we sampled 100 sets of 500 markers each from dis-
tinct regions on chromosome 1 (Yoruba-500), and from these smaller datasets
by taking only the first 20 (Yoruba-20) or 100 (Yoruba-100) markers for every
individual. There are 60 individuals in the dataset after preprocessing, with an
average fraction of missing values of 3.6%. For the Daly dataset, there is informa-
tion on 103 markers and 174 individuals available after data preprocessing, and
the average fraction of missing values is 8%. The number of genotyped individuals
in these real-world datasets is rather small. For most disease association studies,
sample sizes of at least several hundred individuals are needed [WBCT05], and
we are ultimately interested in haplotyping such larger datasets. Unfortunately,
we are not aware of any publicly available real-world datasets of this size, so
we have to resort to simulated data. We used the well-known Hudson coales-
cence simulator [Hud02] to generate 50 artificial datasets, each containing 800
individuals (Hudson datasets). The simulator uses the standard Wright-Fisher
neutral model of genetic variation with recombination. To come as close to the
characteristics of real-world data as possible, some alleles were masked (marked
as missing) after simulation.

The accuracy of the reconstructed haplotypes produced by the different
methods was measured by normalized switch error. The switch error of a re-
construction is the minimum number of recombinations needed to transform the
reconstructed haplotype pair into the true haplotype pair. (See Section 3 for
more details.) To normalize, switch errors are summed over all individuals in
the dataset and divided by the total number of switch errors that could have
been made. For more details on the methodology of the experimental study,
confer [LME+07].

Table 1 shows the normalized switch error for all methods on the real-world
datasets Yoruba and Daly. For the dataset collections Yoruba-20, Yoruba-100
and Yoruba-500 errors are averaged over the 100 datasets. PHASE and Gerbil

272 N. Landwehr and T. Mielikäinen

Table 2. Average Error for Reconstructing Masked Genotypes on Yoruba-
100. From 10% to 40% of all genotypes were masked randomly. Results are averaged
over 100 datasets.

Method 10% 20% 30% 40%

fastPHASE 0.045 0.052 0.062 0.075
SpaMM 0.058 0.066 0.078 0.096
fastPHASE-NA 0.067 0.075 0.089 0.126
HIT 0.070 0.079 0.087 0.098
GERBIL 0.073 0.091 0.110 0.136

 1

 10

 100

 1000

 10000

 100000

 400 200 100 50 25

R
un

tim
e

(s
ec

on
ds

)

Number of Markers

SpaMM
fastPHASE

fastPHASE-NA
PHASE

Gerbil
HaploRec

HIT

Fig. 3. Runtime as a Function of the Number of Markers. Average runtime
per dataset on Yoruba datasets for marker maps of length 25 to 500 for SpaMM, fast-
PHASE, fastPHASE-NA, PHASE, Gerbil, HaploRec, and HIT are shown (logarithmic
scale). Results are averaged over 10 out of the 100 datasets in the Yoruba collection.

did not complete on Yoruba-500 in two weeks2. Overall, the PHASE system
achieves highest reconstruction accuracies. After PHASE, fastPHASE with av-
eraging is most accurate, then SpaMM, and then HaploRec. Figure 3 shows the
average runtime of the methods for marker maps of different lengths. The most
accurate method PHASE is also clearly the slowest. fastPHASE and SpaMM are
substantially faster, and HaploRec and HIT very fast. Gerbil is fast for small
marker maps but slow for larger ones. For fastPHASE, fastPHASE-NA, Hap-
loRec, SpaMM and HIT, computational costs scale linearly with the length of

2 All experiments were run on standard PC hardware with a 3.2GHz processor and
2GB of main memory.

Probabilistic Logic Learning from Haplotype Data 273

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 800 400 200 100 50

N
or

m
al

iz
ed

 S
w

itc
h

E
rr

or

Number of Individuals

SpaMM
fastPHASE

PHASE
HaploRec

Fig. 4. Reconstruction Accuracy as a Function of the Number of Samples
Available. Average normalized switch error on the Hudson datasets as a function of
the number of individuals for SpaMM, fastPHASE, PHASE and HaploRec is shown.
Results are averaged over 50 datasets.

the marker map, while the increase is superlinear for PHASE and Gerbil, so
computational costs quickly become prohibitive for longer maps.

Performance of the systems on larger datasets with up to 800 individuals
was evaluated on the 50 simulated Hudson datasets. As for the real-world data,
the most accurate methods were PHASE, fastPHASE, SpaMM and HaploRec.
Figure 4 shows the normalized switch error of these four methods as a function
of the number of individuals (results of Gerbil, fastPHASE-NA, and HIT were
significantly worse and are not shown). PHASE was the most accurate method
also in this setting, but the relative accuracy of the other three systems depended
on the number of individuals in the datasets. While for relatively small numbers
of individuals (50–100) fastPHASE outperforms SpaMM and HaploRec, this is
reversed for 200 or more individuals.

A problem closely related to haplotype reconstruction is that of genotype im-
putation. Here, the task is to infer the most likely genotype values (unordered
allele pairs) at marker positions where genotype information is missing, based
on the observed genotype information. With the exception of HaploRec, all
haplotyping systems included in this study can also impute missing genotypes.
To test imputation accuracy, between 10% and 40% of all markers were masked
randomly, and then the marker values inferred by the systems were compared to
the known true marker values. Table 2 shows the accuracy of inferred genotypes
for different fractions of masked data on the Yoruba-100 datasets and Table 3
on the simulated Hudson datasets with 400 individuals per dataset. PHASE was

274 N. Landwehr and T. Mielikäinen

Table 3. Average Error for Reconstructing Masked Genotypes on Hudson.
From 10% to 40% of all genotypes were masked randomly. Results are averaged over
50 datasets.

Method 10% 20% 30% 40%

fastPHASE 0.035 0.041 0.051 0.063
SpaMM 0.017 0.023 0.034 0.052
fastPHASE-NA 0.056 0.062 0.074 0.087
HIT 0.081 0.093 0.108 0.127
GERBIL 0.102 0.122 0.148 0.169

too slow to run in this task as its runtime increases significantly in the pres-
ence of many missing markers. Evidence from the literature [SS06] suggests that
for this task, fastPHASE outperforms PHASE and is indeed the best method
available. In our experiments, on Yoruba-100 fastPHASE is most accurate,
SpaMM is slightly less accurate than fastPHASE, but more accurate than any
other method (including fastPHASE-NA). On the larger Hudson datasets,
SpaMM is significantly more accurate than any other method.

To summarize, our experimental results confirm PHASE as the most ac-
curate but also computationally most expensive haplotype reconstruction sys-
tem [SS06,SS05]. If more computational efficiency is required, fastPHASE yields
the most accurate reconstructions on small datasets, and SpaMM is preferable
for larger datasets. SpaMM also infers missing genotype values with high accu-
racy. For small datasets, it is second only to fastPHASE; for large datasets, it is
substantially more accurate than any other method in our experiments.

3 Comparing Haplotypings

For haplotype pairs, as structured objects, there is no obvious way of measuring
similarity—if two pairs are not identical, their distance could be measured in
several ways. At the same time, comparing haplotypings is important for many
problems in haplotype analysis, and therefore a distance or similarity measure
on haplotype pairs is needed. The ability to compare haplotypings is useful, for
example, for evaluating the quality of haplotype reconstructions, if (at least for
part of the data) the correct haplotypings are known. An alternative approach to
evaluation would be to have an accurate generative model of haplotype data for
the population in question, which could assign probability scores to haplotype
reconstructions. However, such a model seems even harder to obtain than known
correct haplotype reconstructions (which can be derived from family trios).

Moreover, a distance measure between haplotypes allows to compute con-
sensus haplotype reconstructions, which average between different, conflicting
reconstructions—for example, by minimizing the sum of distances. This opens
up possibilities for the application of ensemble methods in haplotype analysis,
which can increase accuracy and robustness of solutions. Finally, comparison

Probabilistic Logic Learning from Haplotype Data 275

operators can be used to study the structure of populations (Section 4.1) or
structure of haplotypes (Section 4.2).

Although we could simply represent the haplotype data in a relational form
and use standard relational distance measures, distance measures customized
to this particular problem will take our knowledge about the domain better
into account, and thus yield better results. In the rest of this section we will
discuss different approaches to define distances between haplotype pairs and
analyze their properties. Afterwards, we discuss algorithms to compute consensus
haplotypes based on these distances, and present some computational complexity
results.

3.1 Distance Computations

The genetic distance between two haplotype pairs is a complex function, which
depends on the information the chromosomes of the two individuals contain
(and, in principle, even other chemical properties of the DNA sequences). How-
ever, modeling distance functions at this level is rather tedious. Instead, simpler
distance functions aiming to capture some aspects of the relevant properties of
the genetic similarity have to be used.

In this section we consider distance functions based on markers, i.e., distances
between haplotype pairs. These can be grouped into two categories: distances
induced by distances between individual haplotypes, and distance functions that
work with the pair directly. Pair-wise Hamming distance is the most well-known
example for the first category, and switch distance for the second. We will also
give a unified view to both of the distance functions by proposing a k-Hamming
distance which interpolates between pair-wise Hamming distance and switch
distance.

Hamming distance and other distances induced by distances on se-
quences. The most common distance measure between sequences s, t ∈ Σm is
the Hamming distance that counts the number of disagreements between s and
t, i.e.,

dH(s, t) = |{i ∈ {1, . . . , m} : s[i] �= t[i]}| . (1)

The Hamming distance is not directly applicable for comparing the genetic in-
formation of two individuals, as this information consists of a pair of haplotypes.
To generalize the Hamming distance to pairs of haplotypes, let us consider hap-
lotype pairs {h1

1, h
2
1} and {h1

2, h
2
2}. The distance between the pairs should be

zero if the sets {h1
1, h

2
1} and {h1

2, h
2
2} are the same. Hence, we should try to

pair the haplotypes both ways and take the one with the smaller distance, i.e.,
dH({h1

1, h
2
1}, {h1

2, h
2
2})=min

{
dH(h1

1, h
1
2) + dH(h2

1, h
2
2), dH(h1

1, h
2
2)+dH(h2

1, h
1
2)
}
.

Note that a similar construction can be used to map any distance function
between haplotype sequences to a distance function between pairs of haplotyp-
ings. Furthermore, if the distance function between the sequences satisfies the
triangle inequality, so does the corresponding distance function for haplotype
reconstructions.

276 N. Landwehr and T. Mielikäinen

Proposition 1. Let d : Σm × Σm → R≥0 be a distance function between se-
quences of length m and

d({h1
1, h

2
1}, {h1

2, h
2
2}) = min{d(h1

1, h
1
2) + d(h2

1, h
2
2), d(h1

1, h
2
2) + d(h2

1, h
1
2)}

for all h1
1, h

2
1, h

1
2, h

2
2 ∈ Σm. If d satisfies the triangle inequality for comparing

sequences, i.e.,
d(s, t) ≤ d(s, u) + d(t, u)

for all s, t, u ∈ Σm, then d satisfies the triangle inequality for comparing un-
ordered pairs of sequences, i.e.,

d(h1, h2) ≤ d(h1, h3) + d(h2, h3)

for all h1
1, h

2
1, h

1
2, h

2
2, h

1
3, h

2
3 ∈ Σm.

Proof. Choose arbitrary sequences h1
1, h

2
1, h

1
2, h

2
2, h

1
3, h

2
3 ∈ Σm. We show that the

claim holds for them and hence for all sequences of length m over the alphabet Σ.
Assume, without loss of generality, that d({h1

1, h
2
1}, {h1

2, h
2
2}) = d(h1

1, h
1
2)+ d(h2

1,
h2

2) and d({h1
1, h

2
1}, {h1

3, h
2
3}) = d(h1

1, h
1
3) + d(h2

1, h
2
3). For d({h1

2, h
2
2}, {h1

3, h
2
3})

there are two cases as it is the minimum of d(h1
2, h

1
3) + d(h2

2, h
2
3) and d(h2

2, h
1
3) +

d(h1
2, h

2
3).

If d({h1
2, h

2
2}, {h1

3, h
2
3}) = d(h1

2, h
1
3) + d(h2

2, h
2
3), then

d({h1
1, h

2
1}, {h1

3, h
2
3}) + d({h1

2, h
2
2}, {h1

3, h
2
3}) =

d(h1
1, h

1
3) + d(h2

1, h
2
3) + d(h1

2, h
1
3) + d(h2

2, h
2
3) =[

d(h1
1, h

1
3) + d(h1

2, h
1
3)
]
+
[
d(h2

1, h
2
3) + d(h2

2, h
2
3)
] ≥ d(h1

1, h
1
2) + d(h2

1, h
2
2).

If d({h1
2, h

2
2}, {h1

3, h
2
3}) = d(h2

2, h
1
3) + d(h1

2, h
2
3), then

d({h1
1, h

2
1}, {h1

3, h
2
3}) + d({h1

2, h
2
2}, {h1

3, h
2
3}) =

d(h1
1, h

1
3) + d(h2

1, h
2
3) + d(h2

2, h
1
3) + d(h1

2, h
2
3) =[

d(h1
1, h

1
3) + d(h2

2, h
1
3)
]
+
[
d(h2

1, h
2
3) + d(h1

2, h
2
3)
] ≥

d(h1
1, h

2
2) + d(h2

1, h
1
2) ≥ d(h1

1, h
1
2) + d(h2

1, h
2
2).

Thus, the claim holds. 	

The approach of defining distance functions between haplotype pairs based on
distance functions between haplotypes has some limitations, regardless of the
distance function used. This is because much of the variance in haplotypes orig-
inates from genetic cross-over, which breaks up the chromosomes of the parents
and reconnects the resulting segments to form a new chromosome for the off-
spring. A pair {ĥ1, ĥ2} of haplotypes which is the result of a cross-over between
two haplotypes h1, h2 should be considered similar to the original pair {h1, h2},

Probabilistic Logic Learning from Haplotype Data 277

even though the resulting sequences can be radically different. This kind of
similarity cannot be captured by distance functions on individual haplotypes.

Switch distance. An alternative distance measure for haplotype pairs is
to compute the number of switches that are needed to transform a haplo-
type pair to another haplotype pair that corresponds to the same genotype.
A switch between markers i and i + 1 for a haplotype pair {h1, h2} trans-
forms the pair {h1, h2} = {h1[1, i]h1[i + 1, m], h2[1, i]h2[i + 1, m]} into the pair
{h1[1, i]h2[i + 1, m], h2[1, i]h1[i + 1, m]}. It is easy to see that for any pair of hap-
lotype reconstructions corresponding to the same genotype, there is a sequence
of switches transforming one into the other. Thus, this switch distance is well
defined for the cases we are interested in.

The switch distance, by definition, assigns high similarity to haplotype pairs if
one pair can be transformed into the other by a small number of recombination
events. It also has the advantage over the Hamming distance that the order of the
haplotypes in the haplotype pair does not matter in the distance computation:
the haplotype pair can be encoded uniquely as a bit sequence consisting of just
the switches between the consecutive heterozygous markers, i.e., as a switch
sequence:

Definition 1 (Switch sequence). Let h1, h2 ∈ {0, 1}m and let i1 < . . . < im′

be the heterozygous markers in {h1, h2}. The switch sequence of a haplotype pair
{h1, h2} is a sequence s(h1, h2) = s(h2, h1) = s ∈ {0, 1}m′−1 such that

s[j] =
{

0 if h1[ij] = h1[ij+1] and h2[ij] = h2[ij+1]
1 if h1[ij] �= h1[ij+1] and h2[ij] �= h2[ij+1]

(2)

The switch distance between haplotype reconstructions can be defined in terms
of the Hamming distance between switch sequences as follows.

Definition 2 (Switch distance). Let {h1
1, h

2
1} and {h1

2, h
2
2} be haplotype pairs

corresponding to the same genotype. The switch distance between the pairs is

ds(h1, h2) = ds({h1
1, h

2
1}, {h1

2, h
2
2}) = dH(s(h1

1, h
2
1), s(h

1
2, h

2
2))

As switch distance is the Hamming distance between the switch sequences, the
following proposition is immediate:

Proposition 2. The switch distance satisfies the triangle inequality.

k-Hamming distance. Switch distance considers only a very small neigh-
borhood of each marker, namely only the previous and the next heterozygous
marker in the haplotype. On the other extreme, the Hamming distance uses the
complete neighborhood (via the min operation), i.e., the whole haplotypes for
each marker. The intermediate cases are covered by the following k-Hamming
distance in which all windows of a chosen length k ∈ {2, . . . , m} are considered.
The intuition behind the definition is that each window of length k is a potential
location for a gene, and we want to measure how close the haplotype recon-
struction {h1, h2} gets to the true haplotype {h1

2, h
2
2} in predicting each of these

potential genes.

278 N. Landwehr and T. Mielikäinen

Definition 3 (k-Hamming distance). Let {h1
1, h

2
1} and {h1

2, h
2
2} be pairs of

haplotype sequences corresponding to the same genotype with m′ heterozygous
markers in positions i1, . . . , im. The k-Hamming distance dk−H between {h1

1, h
2
1}

and {h1
2, h

2
2} is defined by

dk−H(h1, h2) =
m′−k+1∑

j=1

dH(h1[ij , . . . , ij+k−1], h2[ij , . . . , ij+k−1])

unless m′ < k, in which case dk−H(h1, h2) = dH(h1, h2).

It is easy to see that d2−H = 2dS , and that for haplotyping pairs with m′ het-
erozygous markers, we have dm′−H = dm−H = dH . Thus, the switch distance
and the Hamming distance are the two extreme cases between which dk−H in-
terpolates for k = 2, . . . , m′ − 1.

3.2 Consensus Haplotypings

Given a distance function d on haplotype pairs, the problem of finding the con-
sensus haplotype pair for a given set of haplotype pairs can be stated as follows:

Problem 2 (Consensus Haplotype). Given haplotype reconstructions {h1
1, h

2
1},

. . . , {h1
l , h

2
l } ⊆ {0, 1}m, and a distance function d : {0, 1}m × {0, 1}m → R≥0,

find:

{h1, h2} = argmin
h1,h2∈{0,1}m

l∑

i=1

d({h1
i , h

2
i }, {h1, h2}).

Consensus haplotypings are useful for many purposes. They can be used in en-
semble methods to combine haplotype reconstructions from different sources in
order to decrease reconstruction errors. They are also applicable when a repre-
sentative haplotyping is needed, for example for a cluster of haplotypes which
has been identified in a haplotype collection.

The complexity of finding the consensus haplotyping depends on the distance
function d used. As we will show next, for d = dS a simple voting scheme
gives the solution. The rest of the distances considered in Section 3.1 are more
challenging. If d = dk−H and k is small, the solution can be found by dynamic
programming. For d = dk−H with large k and d = dH , we are aware of no
efficient general solutions. However, we will outline methods that can solve most
of the problem instances that one may encounter in practice. For more details,
confer [KLLM07].

Switch distance: d = dS. For the switch distance, the consensus haplotyping
can be found by the following voting scheme:

(1) Transform the haplotype reconstructions {h1
i , h

2
i } ⊆ {0, 1}m, i = 1, . . . , l

into switch sequences s1, . . . , sl ∈ {0, 1}m′−1.
(2) Return the haplotype pair {h1, h2} that shares the homozygous markers

with the reconstructions {h1
i , h

2
i } and whose switch sequence s ∈ {0, 1}m′−1

is defined by s[j] = argmaxb∈{0,1} |{j ∈ {1, . . . , m′ − 1} : si[j] = b}| .
The time complexity of this method is O(lm).

Probabilistic Logic Learning from Haplotype Data 279

k-Hamming distance: d = dk−H . The optimal consensus haplotyping is

h∗ = {h1
∗, h

2
∗} = argmin

{h1,h2}⊆{0,1}m

l∑

i=1

dk−H(hi, h).

The number of potentially optimal solutions is 2m′
, but the solution can be

constructed incrementally based on the following observation:

h∗ = argmin
{h1,h2}⊆{0,1}m

l∑

i=1

dk−H(hi, h)

= argmin
{h1,h2}⊆{0,1}m

l∑

i=1

m′−k+1∑

j=1

dH(hi[ij, . . . , ij+k−1], h[ij , . . . , ij+k−1])

Hence, the cost of any solution is a sum of terms

Dj({x, x̄})=
l∑

i=1

dH(hi[ij, . . . , ij+k−1], {x, x̄}), j = 1, . . . , m′−k+1, x∈ {0, 1}k,

where x̄ denotes the complement of x. There are (m′ − k + 1)2k−1 such terms.
Furthermore, the cost of the optimal solution can be computed by dynamic
programming using the recurrence relation

Tj({x, x̄} =
{

0 if j = 0
Dj({x, x̄) + minb∈{0,1} Tj−1({bx, bx}) if j > 0

Namely, the cost of the optimal solution is minx∈{0,1}k Tm′({x, x̄}) and the op-
timal solution itself can be reconstructed by backtracking the path that leads to
this position. The total time complexity for finding the optimal solution using
dynamic programming is O(lm + 2kkl(m′ − k)): the heterozygous markers can
be detected and the data can be projected onto them in time O(lm), and the
optimal haplotype reconstruction for the projected data can be computed in
time O(2kkl(m′ − k)). So the problem is fixed-parameter tractable3 in k.

Hamming distance: d = dH. An ordering (h1, h2) of an optimal con-
sensus haplotyping {h1, h2} with Hamming distance determines an ordering
of the unordered input haplotype pairs {h1

1, h
2
1}, . . . , {h1

l , h
2
l }. This ordering

can be represented by a binary vector o = (o1, . . . , ol) ∈ {0, 1}l that states
for each i = 1, . . . , l that the ordering of {h1

i , h
2
i } is (h1+oi

i , h2−oi

i). Thus,
oi = argminb∈{0,1} dH(h1, h1+b

i), where ties are broken arbitrarily.

3 A problem is called fixed-parameter tractable in a parameter k, if the running time
of the algorithm is f(k)O(nc) where k is some parameter of the input and c is a
constant (and hence not depending on k.) For a good introduction to fixed-parameter
tractability and parameterized complexity, see [FG06].

280 N. Landwehr and T. Mielikäinen

Table 4. The total switch error between true haplotypes and the haplotype recon-
structions over all individuals for the baseline methods. For Yoruba and HaploDB, the
reported numbers are the averages over the 100 datasets.

Method Daly Yoruba HaploDB

PHASE 145 37.61 108.36
fastPHASE 105 45.87 110.45
SpaMM 127 54.69 120.29
HaploRec 131 56.62 130.28
HIT 121 73.23 123.95
Gerbil 132 75.05 134.22

Ensemble 104 39.86 103.06
Ensemble w/o PHASE 107 43.18 105.68

If the ordering o is known and l is odd, the optimal haplotype reconstruction
can be determined in time O(lm) using the formulae

h1[i] = argmax
b∈{0,1}

=
∣∣∣
{
j ∈ {1, . . . , l} : h

1+oj

j [i] = b
}∣∣∣ (3)

and
h2[i] = argmax

b∈{0,1}
=
∣∣∣
{

j ∈ {1, . . . , l} : h
2−oj

j [i] = b
}∣∣∣ . (4)

Hence, finding the consensus haplotyping is polynomial-time equivalent to the
task of determining the ordering vector o corresponding to the best haplotype
reconstruction {h1, h2}.

The straightforward way to find the optimal ordering is to evaluate the quality
of each of the 2l−1 non-equivalent orderings. The quality of a single ordering can
be evaluated in time O(lm). Hence, the consensus haplotyping can be found in
total time O(lm+2llm′). The runtime can be reduced to O(lm+2lm′) by using
Gray codes [Sav97] to enumerate all bit vectors o in such order that consecutive
bit vectors differ only by one bit. Hence, the problem is fixed-parameter tractable
in l (i.e., the number of methods).

3.3 Experiments with Ensemble Methods

Consensus haplotypings can be used to combine haplotypings produced by differ-
ent systems along the lines of ensemble methods in statistics. In practice, genetics
researchers often face the problem that different haplotype reconstruction meth-
ods give different results and there is no straightforward way to decide which
method to choose. Due to the varying characteristics of haplotyping datasets, it
is unlikely that one haplotyping method is generally superior. Instead, different
methods have different relative strengths and weaknesses, and will fail in different
parts of the reconstruction. The promise of ensemble methods lies in “averaging
out” those errors, as far as they are specific to a small subset of methods (rather

Probabilistic Logic Learning from Haplotype Data 281

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

the sum of switch distances between the the baseline methods

th
e

sw
itc

h
er

ro
r

of
 P

H
A

S
E

Fig. 5. The switch error of PHASE vs. the sum of the switch distances between the
baseline methods for the Yoruba datasets. Each point corresponds to one of the Yoruba
datasets, x-coordinate being the sum of distances between the reconstructions obtained
by the baseline methods, and y-coordinate corresponding to the switch errors of the
reconstructions by PHASE.

than a systematic error affecting all methods). This intuition can be made pre-
cise by making probabilistic assumptions about how the reconstruction methods
err: If the errors in the reconstructions were small random perturbations of the
true haplotype pair, taking a majority vote (in an appropriate sense depending
on the type of perturbations) of sufficiently many reconstructions would with
high probability correct all the errors.

Table 4 lists the reconstruction results for the haplotyping methods introduced
in Section 2 on the Daly, Yoruba and HaploDB [HMK+07] datasets, and results
for an ensemble method based on all individual methods (Ensemble) and all
individual methods except the slow PHASE system (Ensemble w/o PHASE).
The ensemble methods simply return the consensus haplotype pair based on
switch distance. For the HaploDB dataset, we sampled 100 distinct marker sets
of 100 markers each from chromosome one. The 74 available haplotypes in the
data set were paired to form 37 individuals.

It can be observed that the ensemble method generally tracks with the best
individual method, which varies for different datasets. Furthermore, if PHASE
is left out of the ensemble to reduce computational complexity, results are still
close to that of the best method including PHASE (Daly,Yoruba) or even better
(HaploDB).

Distance functions on haplotypings can also be used to compute estimates of
confidence for the haplotype reconstructions for a particular population.
Figure 5 shows that there is a strong correlation between the sum of distances

282 N. Landwehr and T. Mielikäinen

between the individuals methods (their “disagreement”) and the actual, nor-
mally unknown reconstruction error of the PHASE method (which was chosen
as reference method as it was the most accurate method overall in our exper-
iments). This means that the agreement of the different haplotyping methods
on a given population is a strong indicator of confidence for the reconstructions
obtained for that population.

4 Structure Discovery

The main reason for determining haplotype data for (human) individuals is to
relate the genetic information contained in the haplotypes to phenotypic traits of
the individual, such as susceptibility to certain diseases. Furthermore, haplotype
data yields insight into the organization of the human genome: how individual
markers are inherited together, the distribution of variation in the genome, or re-
gions which have been evolutionary conserved (indicating locations of important
genes). At the data analysis level, we are therefore interested in analyzing the
structure in populations—to determine, for example, the difference in the genetic
make-up of a case and a control population—and the structure in haplotypes,
e.g. for finding evolutionary conserved regions. In the rest of this section, we will
briefly outline approaches to these structure discovery tasks, and in particular
discuss representational challenges with haplotype and population data.

4.1 Structure in Populations

The use of haplotype pairs to infer structure in populations is relevant for re-
lating the genetic information to phenotypical properties, and to predict the
phenotypical properties based on the genetic information. The main approaches
for determining structure in populations are classification and clustering.

As mentioned in the introduction, the main problem with haplotype data is
that the data for each individual contains two binary sequences, where each po-
sition has a different interpretation. Hence, haplotype data can be considered to
consist of unordered pairs of binary feature vectors, with sequential dependen-
cies between nearby positions in the vector (the markers that are close to each
other can, for example, be located on the same gene).

A simple way to propositionalize the data is to neglect the latter, i.e., the
sequential dependence in the vectors. In that case the unordered pair of binary
vectors is transformed into a ternary vector with symbols {0, 0}, {0, 1}, and
{1, 1}. However, the dependences between the markers are relevant. Hence, a
considerable fraction of the information represented by the haplotypes is then
neglected, resulting in less accurate data analysis results.

Another option is to fix the order of the vectors in each pair. The problem in
that case is that the haplotype vectors are high-dimensional and hence fixing a
total order between them is tedious if not impossible. Alternatively, both ordered
pairs could be added to the dataset. However, then the data analysis technique
has to take into account that each data vector is in fact a pair of unordered data
vectors, which is again non-trivial.

Probabilistic Logic Learning from Haplotype Data 283

The representational problems can be circumvented considering only the dis-
tances/similarities between the haplotype pairs, employing distance functions
such as those we defined in the previous section. For example, nearest-neighbor
classification can be conducted solely using the class labels and the inter-point
distances. Distance information also suffices for hierarchical clustering. Further-
more, K-means clustering is also possible when we are able to compute the
consensus haplotype pair for a collection of haplotype pairs. However, the dis-
tance functions are unlikely to grasp the fine details of the data, and in genetic
data the class label of the haplotype pair (e.g., case/control population in gene
mapping) can depend only on a few alleles. Such structure would be learnable
e.g. by a rule learner, if the data could be represented accordingly.

Yet another approach is to transform the haplotype data into tabular from
by feature extraction. However, that requires some data-specific tailoring and
finding a reasonable set of features is a highly non-trivial task, regardless of
whether the features are extracted explicitly or implicitly using kernels.

The haplotype data can, however, be represented in a straightforward way
using relations. A haplotype pair {h1, h2} is represented simply by a ternary
predicate m(i, j, hi[j]), i = 1, 2, j = 1, . . . , m. This avoids the problem of fixing
an order between the haplotypes, and retains the original representation of the
data. Given this representation, probabilistic logical learning techniques could
be used for classification and clustering of haplotype data. Some preliminary
experiments have indicated that using such a representation probabilistic logic
learning methods can in principle be applied to haplotype data, and this seems
to be an interesting direction for future work.

4.2 Structure in Haplotypes

There are two main dimensions of structure in haplotype data: horizontal and
vertical. The vertical dimension, i.e., structure in populations, has been briefly
discussed in the previous section. The horizontal dimension corresponds to linear
structure in haplotypes, such as segmentations. In this section, we will briefly
discuss approaches for discovering this kind of structure.

Finding segmentation or block structure in haplotypes is considered one of the
most important tasks in the search for structure in genomic sequences [DRS+01,
GSN+02]. The idea for discovering the underlying block structure in haplotype
data is to segment the markers into consecutive blocks in such a way that most
of the recombination events occur at the segment boundaries. As a first approx-
imation, one can group the markers into segments with simple (independent)
descriptions. Such block structure detection takes the chemical structure of the
DNA explicitly into account, assuming certain bonds to be stronger than others,
whereas the genetic marker information is handled only implicitly. On the other
hand, the genetic information in the haplotype markers could be used in conjunc-
tion with the similarity measures on haplotypes described in Section 3 to find
haplotype segments, and consensus haplotype fragments for a given segment.

The haplotype block structure hypothesis has been criticized for being overly
restrictive. As a refinement of the block model, mosaic models have been

284 N. Landwehr and T. Mielikäinen

suggested. In mosaics there can be different block structures in different parts
of the population, which can be modeled as a clustered segmentation [GMT04]
where haplotypes are clustered and then a block model is found for each clus-
ter. Furthermore, the model can be further refined by taking into account the
sequential dependencies between the consecutive blocks in each block model
and the shared blocks in different clusters of haplotypes. This can be mod-
eled conveniently using a Hidden Markov Model [KKM+04]. Finally, the HMM
can be extended also to take into account haplotype pairs instead of individual
haplotypes.

A global description of the sequential structure is not always necessary, as
the relevant sequential structure can concern only a small group of markers.
Hence, finding frequent patterns in haplotype data, i.e., finding projections of
the haplotype pairs on small sets of markers such that the projections of at least a
σ-fraction of the input haplotype pairs agree with the projection for given σ > 0
is of interest. Such patterns can be discovered by a straightforward modification
of the standard level-wise search such as described in [MT97]. For more details
on these approaches, please refer to the cited literature.

5 Conclusions

A haplotype can be considered a projection of (a part of) a chromosome to those
positions for which there is variation in a population. Haplotypes provide cost-
efficient means for studying various questions, ranging from the quest to identify
genetic roots of complex diseases to analyzing the evolution history of popula-
tions or developing “personalized” medicine based on the individual genetic dis-
position of the patient. Haplotype data for an individual consists of an unordered
pair of haplotypes, as cells carry two copies of each chromosome (maternal and
paternal information). This intrinsic structure in haplotype data makes it diffi-
cult to apply standard propositional data analysis techniques to this problem.
In this chapter, we have studied how (probabilistic) relational/structured data
analysis techniques can overcome this representational difficulty, including Logi-
cal Hidden Markov Models (Section 2) and methods based on distances between
pairs of vectors (Section 3).

In particular, we have proposed the SpaMM system, a new statistical hap-
lotyping method based on Logical Hidden Markov Models, and shown that it
yields competitive reconstruction accuracy. Compared to the other haplotyping
systems used in the study, the SpaMM system is relatively basic. It is based on a
simple Markov model over haplotypes, and uses the logical machinery available
in Logical Hidden Markov Models to handle the mapping from propositional
haplotype data to intrinsically structured genotype data. A level-wise learning
algorithm inspired by the Apriori data mining algorithm is used to construct
sparse models which can overcome model complexity and data sparseness prob-
lems encountered with high-order Markov chains. We furthermore note that us-
ing an embedded implementation LOHMMs can also be competitive with other
special-purpose haplotyping systems in terms of computational efficiency.

Probabilistic Logic Learning from Haplotype Data 285

Finally, we have discussed approaches to discovering structure in haplotype
data, and how probabilistic relational learning techniques could be employed in
this field.

Acknowledgments. We wish to thank Luc De Raedt, Kristian Kersting, Matti
Kääriäinen and Heikki Mannila for helpful discussions and comments, and
Sampsa Lappalainen for help with the experimental study.

References

[AMS+96] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast
discovery of association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G.,
Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery
and Data Mining, pp. 307–328. AAAI/MIT Press (1996)

[DRS+01] Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.:
High-Resolution Haplotype Structure in the Human Genome. Nature
Genetics 29, 229–232 (2001)

[EGT04] Eronen, L., Geerts, F., Toivonen, H.: A Markov Chain Approach to
Reconstruction of Long Haplotypes. In: Altman, R.B., Dunker, A.K.,
Hunter, L., Jung, T.A., Klein, T.E. (eds.) Biocomputing 2004, Pro-
ceedings of the Pacific Symposium, Hawaii, USA, 6-10 January 2004,
pp. 104–115. World Scientific, Singapore (2004)

[EGT06] Eronen, L., Geerts, F., Toivonen, H.: HaploRec: efficient and accurate
large-scale reconstruction of haplotypes. BMC Bioinformatics 7, 542
(2006)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. In: EATCS
Texts in Theoretical Computer Science, Springer, Heidelberg (2006)

[GMT04] Gionis, A., Mannila, H., Terzi, E.: Clustered segmentations. In: 3rd
Workshop on Mining Temporal and Sequential Data (TDM) (2004)

[GSN+02] Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blu-
menstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-
Cordero, S.N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander,
E.S., Daly, M.J., Altshuler, D.: The structure of haplotype blocks in the
human genome. Science 296(5576), 2225–2229 (2002)

[HBE+04] Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph,
S., Istrail, S.: A survey of computational methods for determining
haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DI-
MACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983,
pp. 26–47. Springer, Heidelberg (2004)

[HMK+07] Higasa, K., Miyatake, K., Kukita, Y., Tahira, T., Hayashi, K.: D-
HaploDB: A database of definitive haplotypes determined by genotyp-
ing complete hydatidiform mole samples. Nucleic Acids Research 35,
D685–D689 (2007)

[Hud02] Hudson, R.R.: Generating samples under a wright-fisher neutral model
of genetic variation. Bioinformatics 18, 337–338 (2002)

[KDR06] Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models.
Journal for Artificial Intelligence Research 25, 425–456 (2006)

286 N. Landwehr and T. Mielikäinen

[KKM+04] Koivisto, M., Kivioja, T., Mannila, H., Rastas, P., Ukkonen, E.: Hidden
markov modelling techniques for haplotype analysis. In: Ben-David, S.,
Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp.
37–52. Springer, Heidelberg (2004)

[KLLM07] Kääriäinen, M., Landwehr, N.: Sampsa Lappalainen, and Taneli
Mielikäinen. Combining haplotypers. Technical Report C-2007-57, De-
partment of Computer Science, University of Helsinki (2007)

[KS05] Kimmel, G., Shamir, R.: A Block-Free Hidden Markov Model for Geno-
types and Its Applications to Disease Association. Journal of Compu-
tational Biology 12(10), 1243–1259 (2005)

[LME+07] Landwehr, N., Mielikäinen, T., Eronen, L., Toivonen, H., Mannila, H.:
Constrained hidden markov models for population-based haplotyping.
BMC Bioinformatics (to appear, 2007)

[MT97] Mannila, H., Toivonen, H.: Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–
258 (1997)

[RKMU05] Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden markov
technique for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.)
WABI 2005. LNCS (LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg
(2005)

[Sav97] Savage, C.: A survey of combinatorial gray codes. SIAM Review 39(4),
605–629 (1997)

[SS05] Stephens, M., Scheet, P.: Accounting for Decay of Linkage Disequilib-
rium in Haplotype Inference and Missing-Data Imputation. The Amer-
ican Journal of Human Genetics 76, 449–462 (2005)

[SS06] Scheet, P., Stephens, M.: A Fast and Flexible Statistical Model for
Large-Scale Population Genotype Data: Applications to Inferring Miss-
ing Genotypes and Haplotypic Phase. The American Journal of Human
Genetics 78, 629–644 (2006)

[SWS05] Salem, R., Wessel, J., Schork, N.: A comprehensive literature review of
haplotyping software and methods for use with unrelated individuals.
Human Genomics 2, 39–66 (2005)

[The05] The International HapMap Consortium. A Haplotype Map of the Hu-
man Genome. Nature, 437, 1299–1320 (2005)

[TJHBD97] Thompson Jr., J.N., Hellack, J.J., Braver, G., Durica, D.S.: Primer of
Genetic Analysis: A Problems Approach, 2nd edn. Cambridge Univer-
sity Press, Cambridge (1997)

[WBCT05] Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide
association studies: Theoretical and practical concerns. Nature Reviews
Genetics 6, 109–118 (2005)

Model Revision from Temporal Logic Properties

in Computational Systems Biology

François Fages and Sylvain Soliman

INRIA Rocquencourt, France
Francois.Fages@inria.fr, Sylvain.Soliman@inria.fr

Abstract. Systems biologists build models of bio-molecular processes
from knowledge acquired both at the gene and protein levels, and at
the phenotype level through experiments done in wild-life and mutated
organisms. In this chapter, we present qualitative and quantitative logic
learning tools, and illustrate how they can be useful to the modeler. We
focus on biochemical reaction models written in the Systems Biology
Markup Language SBML, and interpreted in the Biochemical Abstract
Machine BIOCHAM. We first present a model revision algorithm for in-
ferring reaction rules from biological properties expressed in temporal
logic. Then we discuss the representations of kinetic models with ordi-
nary differential equations (ODEs) and with stochastic logic programs
(SLPs), and describe a parameter search algorithm for finding param-
eter values satisfying quantitative temporal properties. These methods
are illustrated by a simple model of the cell cycle control, and by an ap-
plication to the modelling of the conditions of synchronization in period
of the cell cycle by the circadian cycle.

1 Introduction

One promise of computational systems biology is to model biochemical processes
at a sufficiently large scale so that complex system behaviors can be predicted
under various conditions. The biochemical reaction systems involved in these
processes may contain many cycles and exhibit complex multistationarity and
oscillating behaviors. While usually neglected in metabolic networks, these char-
acteristics are preponderant in models of signal transduction and cell control.
They thus provide a challenge to representation and inference methods, and the
issue of representing complex biochemical systems and their behavior at different
levels of abstraction is a central one in systems biology.

The pioneering use in [1] of the π-calculus process algebra for modeling cell
signalling pathways, has been the source of inspiration of numerous works in
the line of process calculi [2,3,4] and their stochastic extensions [5]. Recently,
the question of formalizing the biological properties of the system has also been
raised, and formal languages have been proposed for this task, most notably using
temporal logics in either boolean [6,7], discrete [8,9,10] or continuous models
[11,12].

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 287–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 F. Fages and S. Soliman

The biochemical abstract machine BIOCHAM1 [13,14] has been designed
as a simplification of the process calculi approach using a logic programming
setting and a language of reaction rules compatible with the Systems Biol-
ogy Markup Language SBML [15] (http://www.sbml.org/). This opens up the
whole domain of mathematical biology, through repositories like BioModels.net
(http://www.biomodels.net), CMBSlib (http://contraintes.inria.fr/
CMBSlib/), PWS (http://jjj.biochem.sun.ac.za/), etc. This rule-based lan-
guage is used in BIOCHAM for modeling biochemical networks at three abstrac-
tion levels:

– The boolean semantics, where one reasons on the presence/absence of
molecules,

– The differential semantics, where one reasons on molecular concentrations,
– The stochastic semantics, where one reasons on molecule numbers and reac-

tion probabilities.

A second language is used to formalize the biological properties known from
experiments in temporal logic (the Computation Tree Logic CTL, Linear Time
Logic LTL or Probabilistic LTL with constraints, according to the qualitative,
quantitative or stochastic nature of the properties). Such a formalization is a first
step toward the use of logic learning tools to help the modeler in his tasks [16].
When a model does not satisfy all the expected properties, the purpose of the
machine learning system of BIOCHAM is to propose rules or kinetic parameter
values in order to curate the model w.r.t. a given specification [12]. This novel
approach to biological modeling has been applied to a data set of models about
the cell cycle control in different organisms, and signal transduction network (see
http://contraintes.inria.fr/APrIL2/).

There has been work on the use of machine learning techniques, such as in-
ductive logic programming (ILP, see Chapter 1 or [17]), to infer gene functions
[18], metabolic pathway descriptions [19,20] or gene interactions [8]. However
learning biochemical reactions from temporal properties is quite new, both from
the machine learning perspective and from the systems biology perspective. A
precursor system of this type was the system KARDIO used in drug target dis-
covery [21]. The novelty in our approach is the use of the temporal logic setting
to express semi-qualitative semi-quantitative properties of the behaviour of the
system to be captured by the model.

In the following, we present successively:

– The boolean semantics of reaction models in Datalog, the representation
of biological properties in temporal logic CTL, the application of ILP and
model revision from temporal properties,

– The representation of kinetic models, of quantitative properties in temporal
logic LTL with constraints, and a parameter search algorithm,

– The evaluation on an application: the modelling of the synchronization in
period of the cell cycle by the circadian cycle.

1 BIOCHAM is available for download at http://contraintes.inria.fr/BIOCHAM

http://www.sbml.org/
http://www.biomodels.net
http://jjj.biochem.sun.ac.za/
http://contraintes.inria.fr/APrIL2/

Model Revision from Temporal Logic Properties 289

2 Reaction Rule Learning from Temporal Properties

2.1 Biochemical Reaction Models in Datalog

From a syntactical point of view, SBML and BIOCHAM models basically con-
sists in a set of reaction rules between molecules, protein complexes and modified
proteins such as by phosphorylation. Each reaction rule for synthesis, degrada-
tion, complexation, phosphorylation, etc. can be given with a kinetic expression.

Example 1. Here is for instance a simple model of the cell cycle control after
Tyson (1991). Each rule is given here with an arithmetic expression (its rate)
followed by the keyword for and then a list of reactants separated by + on the
left side of the reaction arrow => and a list of products on the right side. The
notation represents the empty list.

k1 for _=>Cyclin.

k2*[Cyclin] for Cyclin=>_.

k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1}=> Cdc2~{p1}-Cyclin~{p1}.

k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1}=> Cdc2-Cyclin~{p1}.

k4*([Cdc2-Cyclin~{p1}])^2*[Cdc2~{p1}-Cyclin~{p1}]

for Cdc2~{p1}-Cyclin~{p1}=[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=> Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1}=> Cyclin~{p1}+Cdc2.

k7*[Cyclin~{p1}] for Cyclin~{p1}=>_.

k8*[Cdc2] for Cdc2=> Cdc2~{p1}.

k9*[Cdc2~{p1}] for Cdc2~{p1}=> Cdc2.

The first rule represents the synthesis of a cyclin with a constant rate k1. The
second rule represents the degradation of the cyclin with a reaction rate propor-
tional to the cyclin concentration. The third rule represents the phosphorylation
of the cyclin when it gets complexed with the kinase Cdc2~{p1}. The fourth rule
is an autocatalyzed dephosphorylation of the complex, etc. For a more complete
account of BIOCHAM syntax see for instance [12].

From a semantical point of view, reaction rules can be interpreted under differ-
ent semantics corresponding to different abstraction levels. The most abstract
semantics of BIOCHAM rules is the boolean semantics that associates to each
molecule a boolean variable representing its presence or absence in the system,
and ignores the kinetic expressions. Reaction rules are then interpreted as an
asynchronous transition system2 over states defined by the vector of boolean
variables. A rule such as A+B=>C+D defines four possible transitions correspond-
ing to the complete or incomplete consumption of the reactants A and B. Such
a rule can only be applied when both A and B are present in the current state.
In the next state, C and D are then present, while A and B can either be present
(partial consumption) or absent (complete consumption).

2 In this context asynchronous refers to the fact that only one transition is fired at
a time, even if several are possible. This choice is justified by the fundamental bio-
chemical phenomena of competition and masking between reaction rules.

290 F. Fages and S. Soliman

The boolean semantics can be straightforwardly represented in Datalog. We
use Prolog here for convenience. A state is represented by a Prolog term
state(mol1,...,molN) where the molecule variable mol is 0 if absent, 1 if
present, and a variable if it can take any value. Transitions are represented by
facts transition(predecessor state, successor state) with variables link-
ing successor and predecessor values.

Example 2. The boolean semantics of the previous cell cycle model can be rep-
resented in Prolog as follows:

dimension(6).

names(’Cyclin’,’Cdc2~{p1}’,’Cdc2-Cyclin~{p1,p2}’,

’Cdc2-Cyclin~{p1}’,’Cdc2’,’Cyclin~{p1}’).

transition(state(_,A,B,C,D,E),state(1,A,B,C,D,E)).

transition(state(1,A,B,C,D,E),state(_,A,B,C,D,E)).

transition(state(1,1,_,A,B,C),state(_,_,1,A,B,C)).

transition(state(A,B,1,_,C,D),state(A,B,_,1,C,D)).

transition(state(A,B,1,1,C,D),state(A,B,_,1,C,D)).

transition(state(A,B,_,1,C,D),state(A,B,1,_,C,D)).

transition(state(A,B,C,1,_,_),state(A,B,C,_,1,1)).

transition(state(A,B,C,D,E,1),state(A,B,C,D,E,_)).

transition(state(A,_,B,C,1,D),state(A,1,B,C,_,D)).

transition(state(A,1,B,C,_,D),state(A,_,B,C,1,D)).

Formally, the boolean semantics of a reaction model is a Kripke structure (see
for instance [22]) K = (S, R) where S is the set of states defined by the vector
of boolean variables, and R ⊆ S × S is the transition relation between states,
supposed to be total (i.e. ∀s ∈ S, ∃s′ ∈ S s.t. (s, s′) ∈ R). A path in K, starting
from state s0 is an infinite sequence of states π = s0, s1, · · · such that (si, si+1) ∈
R for all i ≥ 0. We denote by πk the path sk, sk+1, · · ·.

2.2 Biological Properties in Temporal Logic CTL

In the boolean semantics of reaction models, the biological properties of interest
are reachability properties, i.e. whether a particular protein can be produced
from an initial state; checkpoints, i.e. whether a particular protein or state is
compulsory to reach another state; stability, i.e. whether the system can (or
will) always verify some property; etc.

Such properties can be expressed in the Computation Tree Logic CTL∗ [22]
that is an extension of propositional logic for reasoning about an infinite tree
of state transitions. CTL∗ uses operators about branches (non-deterministic
choices) and time (state transitions). Two path quantifiers A and E are in-
troduced to handle non-determinism: Aφ meaning that φ is true on all branches,
and Eφ that it is true on at least one branch. The time operators are F, G, X, U
and W ; Xφ meaning φ is true at the next transition, Gφ that φ is always true,
Fφ that φ is eventually true, φ U ψ meaning φ is always true until ψ becomes
true, and φ W ψ meaning φ is either always true or until and when ψ becomes
true. Table 1 recalls the truth value of a formula in a given Kripke structure.

Model Revision from Temporal Logic Properties 291

Table 1. Inductive definition of the truth value of a CTL∗ formula in a state s or a
path π, in a given Kripke structure K

s |= α iff α is a propositional formula true in the state s,
s |= Eψ iff there exists a path π starting from s s.t. π |= ψ,
s |= Aψ iff for all paths π starting from s, π |= ψ,
s |=!ψ iff s �|= ψ,
s |= ψ & ψ′ iff s |= ψ and s |= ψ′,
s |= ψ | ψ′ iff s |= ψ or s |= ψ′,
s |= ψ ⇒ ψ′ iff s |= ψ′ or s �|= ψ,

π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.
π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.

or there exists k ≥ 0 s.t. πk |= ψ&ψ′ and for all 0 ≤ j < k, πj |= ψ.
π |=!ψ iff π �|= ψ,
π |= ψ & ψ′ iff π |= ψ and π |= ψ′,
π |= ψ | ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π �|= ψ,

In this logic, Fφ is equivalent to true U φ, Gφ to φ W false, and the fol-
lowing duality properties hold: !(Eφ) = A(!φ), !(Xφ) = X(!φ), !(Fφ) = G(!φ),
!(φ U ψ) =!ψ W !φ and !(φ W ψ) =!ψ U !φ, where ! denotes negation. The
following abbreviation are used in BIOCHAM:

– reachable(P) stands for EF (P);
– steady(P) stands for EG(P);
– stable(P) stands for AG(P);
– checkpoint(Q,P) stands for !E(!Q U P);
– oscillates(P) stands for EG((F !P) ∧ (F P)).

These temporal properties can be checked in the Prolog representation of reac-
tion rules, by using a symbolic model-checker written in Prolog. The BIOCHAM
model checker in Prolog proceeds by computing both backward and forward fron-
tiers of states, starting from the initial states (resp. the goal states) leading to a
goal state (resp. an initial state). These sets of states are represented by Prolog
facts with variables. Their cardinalities are reduced by subsumption checks in
this representation. In its simplest form, the forward reachability analysis pro-
ceeds by computing the transitive closure of the transition relation, starting from
the initial state, up to the reaching of a state in the query. The simplest case in
such a model checker is thus a standard transitive closure algorithm in Prolog.

For performance reasons in large reaction models however, the symbolic model
checker NuSMV [23] based on ordered binary decision diagram (OBDD) is pre-
ferred and is used by default in BIOCHAM, through an interface. NuSMV is
restricted to the fragment CTL of CTL∗ in which each time operator must be
immediately preceded by a path quantifier. This restriction causes a difficulty

292 F. Fages and S. Soliman

for the oscillation properties only, since they cannot be expressed in CTL. In
CTL, oscillation properties are thus approximated by the necessary but not suf-
ficient formula EG((EF !P) ∧ (EF P)). We refer to [7,24] for the expressivity
and scalability of this approach in reaction models containing several hundreds
of variables and rules.

2.3 Model Revision from Temporal Properties

Having the model and the properties defined by a Prolog program, ILP tech-
niques can in principle be used for learning reaction rules from temporal prop-
erties, i.e. structure learning of the underlying logic program (see Chapter 1).
Here the positive and negative examples are uniformly given as a list of tempo-
ral properties to satisfy (expressed in a language closed by negation), instead of
by positive and negative facts. Because of the relative complexity of the model
checker in Prolog, this approach is currently limited to reachability properties.
For learning from more general temporal properties, the NuSMV model checker
is used in BIOCHAM as a black box, within an enumeration algorithm of all
possible rule instances of some given rule pattern.

Furthermore, in the general framework of model revision, one wants to dis-
cover deletions as well as additions of reaction rules (of some pattern given as
a bias) in order to satisfy a set of CTL formulas given as positive and negative
examples. CTL properties can be classified into ECTL and ACTL formulas (i.e.
formulas containing only E or A path quantifiers respectively) in order to an-
ticipate whether reaction rules need be added or deleted. Indeed if an ECTL
(resp. ACTL) formula is false in a Kripke structure, it remains false in a Kripke
structure with less (resp. more) transitions. We refer to [12] for the details of the
model revision algorithm implemented in BIOCHAM along these lines.

We show here our results on the model of example 1. For the structure learn-
ing phase, some CTL formulae are entered as a specification, expressing here
reachability, oscillation and checkpoint properties:

add_specs({

reachable(Cdc2~{p1}),

reachable(Cdc2),

reachable(Cyclin),

reachable(Cyclin~{p1}),

reachable(Cdc2-Cyclin~{p1}),

reachable(Cdc2~{p1}-Cyclin~{p1})}).

add_specs({

oscil(Cdc2,

oscil(Cdc2~{p1})),

oscil(Cdc2~{p1}-Cyclin~{p1}),

oscil(Cdc2-Cyclin~{p1}),

oscil(Cyclin),

checkpoint(Cdc2~{p1}-Cyclin~{p1}, Cdc2-Cyclin~{p1})}).

These properties are satisfied by the model and can be automatically checked
by the model-checker. The simplest example to illustrate the structural learning

Model Revision from Temporal Logic Properties 293

method is to delete one rule in the model and let the learning system revise the
model in order to satisfy the specification.

biocham: delete_rules(Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}).

Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}

biocham: check_all.

The specification is not satisfied.

This formula is the first not verified: Ai(oscil(Cdc2~{p1}-Cyclin~{p1}))

biocham: revise_model(more_elementary_interaction_rules).

Success

Modifications found:

Deletion(s):

Addition(s):

Cyclin+Cdc2~{p1}=[Cdc2]=>Cdc2~{p1}-Cyclin~{p1}.

The first solution found is correct, even though it does not correspond to the
deleted rule. In fact, there are four solutions consisting in adding one rule, the
third one corresponds to the original model:

biocham: learn_one_addition(elementary_interaction_rules).

(1) Cyclin+Cdc2~{p1}=[Cdc2]=>Cdc2~{p1}-Cyclin~{p1}

(2) Cyclin+Cdc2~{p1}=[Cyclin]=>Cdc2~{p1}-Cyclin~{p1}

(3) Cyclin+Cdc2~{p1}=>Cdc2~{p1}-Cyclin~{p1}

(4) Cyclin+Cdc2~{p1}=[Cdc2~{p1}]=>Cdc2~{p1}-Cyclin~{p1}

It is worth noting that in these algorithms, the use of types [25] specifying
the protein functions for instance, has the effect of reducing the number of pos-
sibilities and improving the performances in terms of both adequacy of results
and computation time.

3 Parameter Search from Quantitative Temporal
Properties

For relatively small networks of less than a hundred of proteins, kinetic models
have been proved successful to perform quantitative analyses and predictions.
Since the models of most datasets are in SBML, it is quite natural to handle
the kinetic expressions provided in those models, especially for relating them to
quantitative biological properties. In this section, we recal the two most usual
semantics for those expressions, the differential semantics and the stochastic
semantics, and relate them to PILP representations. We then show that the
Linear Time Logic LTL with numerical constraints provides the expressive power
necessary to represent both qualitative and quantitative properties of biological
systems. Similarly to what is done in the boolean case, a model-checker is then
used as basis for a learning process allowing here to find parameter values fitting
a given LTL specification of the biological properties that the model is supposed
to reproduce. This is shown on example 1 and is developed in an application in
the next section.

294 F. Fages and S. Soliman

3.1 Continuous Semantics with ODE’s

The concentration semantics of BIOCHAM associates to each molecule a real
number representing its concentration. Reaction rules are in fact interpreted
with their kinetic expressions by a set of nonlinear ordinary differential
equations (ODE)3. Formally, to a set of BIOCHAM reaction rules E = {ei for
Si => S′

i}i=1,...,n with variables {x1, ..., xm}, one associates the system of ODEs:

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

Given an initial state, i.e. initial concentrations for each of the objects, the
evolution of the system is deterministic, and numerical integration algorithms
compute a time series describing the temporal evolution of the system variables.
The integration methods actually implemented in BIOCHAM are the adaptive
step-size Runge-Kutta method and the Rosenbrock implicit method for stiff
systems, which both produce simulation traces with variable time steps and are
implemented in Prolog.

3.2 Stochastic Semantics with SLPs

The stochastic semantics is the most realistic semantics but also the most difficult
to compute. This semantics associates to each BIOCHAM object an integer
representing the number of molecules in the system. Rules are interpreted as a
continuous time Markov chain where transition probabilities are defined by the
kinetic expressions of reaction rules.

Stochastic simulation techniques [26] compute realizations of the process. The
results are generally noisy versions of those obtained with the concentration
semantics. However, in models with, for instance, very few molecules of some
kind, qualitatively different behaviors may appear in the stochastic simulation,
and thus justify the recourse to that semantics in such cases. A classical example
is the model of the lambda phage virus [27] in which a small number of molecules,
promotion factors of two genes, can generate an explosive multiplication (lysis)
after a more or less long period of passive wait (lysogeny).

In the stochastic semantics, for a given volume V of the location where a com-
pound is situated, its concentration C is translated into a number of molecules
N = C × V × K, where K is Avogadro’s number. The kinetic expression ei

for the reaction i is converted into a transition rate τi by replacing all concen-
trations by the corresponding number of molecules multiplied by volume. After
normalization on all possible transitions, this gives the transition probability
pi = τi�n

j=1 τj
.

3 The kinetic expressions in BIOCHAM can actually contain conditional expressions,
in which case the reaction rules are interpreted by a deterministic hybrid automaton.

Model Revision from Temporal Logic Properties 295

This semantics is close to SLPs. Two points however render unusable the
classical learning techniques, and suggest an extension of the SLP framework:

– Kinetic expressions, and thus the corresponding transition probabilities τi,
can contain variables representing the molecular concentrations (resp. num-
ber) of the reactants in each rule. A faithful translation of those models into
SLP would thus involve dynamic probabilities according to variables values,
like in the stochastic semantics of BIOCHAM by continuous time Markov
chains [12]. On the other hand, SLPs as defined in Section 3 of Chapter 2,
are restricted to constant probabilities on each rule.

– In stochastic simulation and Gillespie algorithms [26], the time is a random
variable over reals, which cannot be mixed with SLPs in the current version
of the formalism.

3.3 Biological Properties in LTL with Numerical Constraints

The Linear Time Logic, LTL is the fragment of CTL∗ that uses only temporal
operators. A first-order version of LTL is used to express temporal properties
about the molecular concentrations in the simulation trace. A similar approach
is used in the DARPA BioSpice project [11]. The choice of LTL is motivated by
the fact that the concentration semantics given by ODEs is deterministic, and
there is thus no point in considering path quantifiers. The version of LTL with
arithmetic constraints we use, considers first-order atomic formulae with equal-
ity, inequality and arithmetic operators ranging over real values of concentrations
and of their derivatives.

For instance F([A]>10) expresses that the concentration of A eventually gets
above the threshold value 10. G([A]+[B]<[C]) expresses that the concentration
of C is always greater than the sum of the concentrations of A and B. Oscillation
properties, abbreviated as oscil(M,K), are defined as a change of sign of the
derivative of M at least K times:

F((d[M]/dt>0) & F((d[M]/dt<0) & F((d[M]/dt>0)...))). The abbreviated
formula oscil(M,K,V) adds the constraint that the maximum concentration of
M must be above the threshold V in at least K oscillations.

For practical purposes, some limited forms of quantified first-order LTL for-
mulae are also allowed. As an example of this, constraints on the periods of
oscillations can be expressed with a formula such as period(A,75), defined as
∃t ∃v F (T ime = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0) & F (T ime =
t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0))) where T ime is the
time variable. This very formula is used extensively in the example of the next
section.

Note that the notion of next state (operator X) refers to the state of the
following time point computed by the (variable step-size) simulation, and thus
does not necessarily imply real-time neighborhood. Nevertheless, for computing
local maxima as in the formula above for instance, the numerical integration
methods do compute the relevant time points with a very good accuracy.

296 F. Fages and S. Soliman

3.4 Parameter Search from Temporal Properties

We implemented a dedicated LTL model checker for biochemical properties over
simulation traces and proceeded, as in the boolean case, to use it for a learning
method. Actually, it is mostly a search method automatically evaluating the
fitness of a given parameter set w.r.t. an LTL specification.

The same method could theoretically be used to sample for a probability
of satisfaction of an LTL specification for the stochastic semantics, however
experimental trials proved to be too computationally expensive.

Fig. 1. Broken cell cycle model with parameter k4 = 0

The parameter learning method can be illustrated by changing the value of
some parameter like k4 for instance. Figure 1 shows that the model is not oscil-
lating as it should when k4 is set to zero.

The property of oscillation can be added as a temporal logic constraint to the
parameter value search system as follows:

learn_parameters([k4],[(0,200)],20,oscil(Cdc2-Cyclin~{p1},3),100).

First values found that make oscil(Cdc2-Cyclin~{p1},3) true:

parameter(k4,200).

The value 200 found for k4 is close to the original value (180) and satisfies
the experimental results formalized in LTL, as depicted in Figure 2.

Note that beacuase of the highly non-linear nature of the kinetics used in
most biological models of the literature it is not possible to rely on usual tools of
control theory for this kind of parameter estimation. The other available tech-
niques are mostly local optimization based (simulated annealing and derivatives)
but require to optimize with respect to a precise quantitative objective function,
whereas the presented technique allows to mix qualitative and quantitative data.

Model Revision from Temporal Logic Properties 297

Fig. 2. Curated cell cycle model showing oscillations with the inferred parameter value
k4 = 200

4 Application to Modelling the Synchronization in
Period of the Cell Cycle by the Circadian Cycle

Cancer treatments based on the administration of medicines at different times
of the day have been shown to be more efficient against malign cells and less
damaging towards healthy ones. These results might be related to the recent
discovery of links between the circadian clock (controlled by the light/dark cycle
of a day) and the cell cycle. However, if many models have been developed
to describe both of these cycles, to our knowledge none has described a real
interaction between them.

In the perspective of the European Union project TEMPO4 on temporal ge-
nomics for patient tailored chronotherapies, we developed a coupled model at the
molecular level and studied the conditions of synchronization in period of these
cycles, by using the parameter learning features of the modeling environment
BIOCHAM. More specifically, the learning of parameter values from temporal
properties with numerical constraints has been used to search how and where in
the parameter space of our model the two cycles get synchronized. The technical
report [28] describes the conditions of synchronization (i.e. synchronization by
forcing the period of the target oscillator to be the same as that of the forcing
oscillator) of the cell cycle by the circadian cycle via a common protein kinase
WEE1 (see Figure 3).

4 http://www.chrono-tempo.org

298 F. Fages and S. Soliman

Fig. 3. Linking the circadian and the cell cycles via WEE1

The proteins chosen to illustrate the cell cycle are MPF, preMPF, the degra-
dation factor of the cyclins, APC, the WEE1 kinase and the CDC25 phosphatase
(Figure 3). Early in the cycle, MPF is kept inactive because the cyclin is not
synthesized and WEE1 is present. As the cyclin is slowly synthesized, MPF acti-
vates and reaches a threshold that both inactivates WEE1 and activates CDC25
which maintains MPF in its active state. The cell enters mitosis. With a short
delay, APC is activated and degrades the cyclin component of MPF. The cell
exits mitosis and repeats its cycle. The model is composed of two positive feed-
back loops (CDC25 activates MPF which in turn activates CDC25, and WEE1
inactivates MPF which in turn inactivates WEE1) and a negative feedback loop
(MPF activates APC through an intermediary enzyme X and APC degrades the
cyclin component of the complex MPF). See Figure 4.

The two models describing the cell and circadian cycles are linked through
the transcription of WEE1. In the model of the cell cycle alone, wee1 mRNA
was a parameter equal to 1. In the coupled model, the production of Wee1m is
a function of the nuclear form of the complex BMAL1/CLOCK (BN) and the
unphosphorylated nuclear form of the complex PER/CRY (PCN).

To find values for which synchronization occurs, the parameter space for each
parameter has been explored using the BIOCHAM learning features from tem-
poral properties. The values of three parameters appeared to be more significant
than others: ksweem, kswee and kimpf. The two parameters ksweem and kswee
both control the level of the WEE1 protein and show such similarities that in
the following discussion, we will only report on kswee. The parameter values
are varied in a given interval and reveal domains of synchronization reported in
Figure 5. The parameters are plotted as a function of the period of three proteins
that account for the behavior of the two cycles, BN (BMAL1/CLOCK nuclear)
for the circadian cycle, MPF for the cell cycle, and their link, WEE1. For low

Model Revision from Temporal Logic Properties 299

Fig. 4. Temporal simulation of a generic cell cycle

values of the parameters (region 1), MPF and BN have independent periods of
oscillations of 22.4h and 23.85h respectively and no sustained oscillations are ob-
served for WEE1. The reason for the perturbation in WEE1 oscillations in this
region is that WEE1 receives simultaneously two influences: from the circadian
cycle that controls the transcription of the protein mediated by the circadian
transcription factors BMAL1/CLOCK and PER/CRY; and from the cell cycle
that controls the activity of the protein via phosphorylation by MPF. WEE1 is
produced but as soon as MPF activates, it is inactivated because WEE1 has no
or little effect on MPF activation and MPF inhibits WEE1 protein. The two in-
fluences operate on WEE1 at different times as they both have different periods,
perturbing WEE1 period.

For intermediate values of the parameters (region 2), WEE1 starts to play
a more significant role in the cell cycle by inhibiting MPF activity, and as a
result, disturbing MPF oscillations. It is only when the parameters reach a high
value (either kimpf=1.2 or kswee=0.4) that the oscillations of MPF become stable
again but with a period similar to that of the circadian cycle (region 3) revealing
the synchronization of the cell cycle through WEE1 activity (through kimpf) or
protein level (through kswee).

However, the study of kimpf, the parameter controlling the activity of WEE1
on MPF inactivation, shows that the synchronization does not solely depend on
the value of the parameter but more particularly on the ratio kimpf/kampf since
both CDC25 and WEE1 are involved in the positive feedback loops that activate
MPF and therefore responsible for the G2-M transition. To investigate this dual
effect, the limit of synchronization is measured as the two parameters kimpf and

300 F. Fages and S. Soliman

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
er

io
d

kimpf

1 2 3

MPF
BN
Wee1

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

io
d

kswee

1 2 3

MPF
BN
Wee1

Fig. 5. Plot of the period as a function of the parameter kimpf from 0.01 to 1.6 and
kswee from 0.01 to 1. The system shows synchronization for values superior to 1.2 for
kimpf and 0.4 for kswee. For our purposes, constant periods are defined as follows: the
last 11 peaks of the simulation over 500 time units show no more than 4% difference in
their maxima and the length of the periods. MPF starts with an autonomous period
of 22.4h and BN a period of 23.85h. As kimpf and kswee increase, MPF oscillations
(accounting for cell cycle) lose stability and are entrained, along with WEE1, for higher
values of the parameter with a period of 23.85h.

Model Revision from Temporal Logic Properties 301

Fig. 6. BIOCHAM-generated plot of the synchronization in period of the cell cycle by
the circadian cycle for different values of kimpf (action of WEE1 on MPF) and kampf
(action of CDC25 on MPF). The limit of synchronization computed by BIOCHAM
(red crosses) is interpolated by the linear function kampf = 2.44832 · kimpf + 2.0071
(solid line).

kampf are varied simultaneously. A linear function of the form: kampf = 2.44832·
kimpf + 2.0071 is obtained, the region below the line being the synchronization
region (Figure 6).

These studies have been carried out thanks to the machine learning features of
BIOCHAM to express the condition of synchronization in period by a first-order
LTL formula with time constraints, and to explore the parameter values satisfy-
ing that formula. These methods are complementary to and have no counterpart
in traditional tools for the study of dynamical systems such as the computation
of bifurcation diagrams.

5 Discussion and Conclusions

Temporal logic is a powerful formalism for expressing the biological properties
of a living system, such as state reachability, checkpoints, stability, oscillations,
etc. This can be done both qualitatively and quantitatively, by considering re-
spectively propositional and first-order temporal logic formulae with numerical
constraints.

In the propositional case, we have given a Datalog representation of general
biochemical reaction models allowing the use of ILP techniques for discovering
reaction rules from given CTL properties. Because of the relative complexity
of the CTL model checker however, this approach was limited to reachability
properties. For general CTL properties, our approach was to use the symbolic
OBDD model checker NuSMV as a black box within a model revision algorithm

302 F. Fages and S. Soliman

that searches for rule additions and deletions in order to satisfy a CTL specifica-
tion. The first results are encouraging but also show some limitations concerning
the boolean abstraction that simply forgets the kinetic expressions. Less crude
abstractions are however possible and are currently under investigation. Fur-
thermore, when restricting to pure reachability properties between completely
defined states, ILP methods have been shown more efficient. There is thus a
perspective for combining the best of both methods in this general setting.

Kinetic models of biochemical systems have been considered too with their two
most usual interpretations, by ODEs, and by continuous time Markov chains.
The second interpretation has been related to PILP representations with a gen-
eralized notion of SLPs involving dynamic probabilities according to variable
values. However the stochastic interpretation of kinetic expressions is compu-
tationally too expensive, while the interpretation by differential equations does
scale up to real-size quantitative models. This is the reason why the contin-
uous semantics of BIOCHAM rules based on non-linear ordinary differential
equations, instead of the stochastic semantics based on continuous-time Markov
chains is used in these applications. We have shown that the inference of param-
eter values from a temporal logic specification is flexible enough to be easy to
use, and provides accurate results with reasonable execution times. These func-
tionalities are completely new and complement the other tools the modeler can
use to estimate the range of parameter values. This has been illustrated by an
original application to the modelling of the synchronization in period of the cell
cycle by the circadian cycle.

Acknowledgements. The authors would like to thank Stephen Muggleton
and Luc de Raedt for extensive discussions on the topics of this paper, and
Nathalie Chabrier-Rivier and Laurence Calzone for their contributions. This
work has been partly supported by the EC Sixth Framework Project Applica-
tion of Probabilistic Inductive Logic Programming II (APrIL II) (Grant Ref:
FP-508861).

References

1. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. In: Proceedings of the
sixth Pacific Symposium of Biocomputing, pp. 459–470 (2001)

2. Cardelli, L.: Brane calculi - interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

3. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:
An abstraction for biological compartments. Theoretical Computer Science 325,
141–167 (2004)

4. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325, 69–110 (2004)

5. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
Transactions on Computational Systems Biology Special issue of BioConcur (to
appear, 2004)

Model Revision from Temporal Logic Properties 303

6. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.:
Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the
seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)

7. Chabrier, N., Fages, F.: Symbolic model cheking of biochemical networks. In: Pri-
ami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

8. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal
methods to biological regulatory networks: Extending thomas’ asynchronous logical
approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)

9. Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model checking
genetic regulatory networks using gna and cadp. In: Graf, S., Mounier, L. (eds.)
SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg (2004)

10. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using the prism model checker. In: Plotkin, G. (ed.) CMSB 2005: Proceedings
of the third international conference on Computational Methods in Systems Biol-
ogy (2005)

11. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-
ing for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

12. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)

13. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4, 64–73 (2004)

14. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling bio-
logical systems and formalizing experimental knowledge. BioInformatics 22, 1805–
1807 (2006)

15. Hucka, M., et al.: The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531 (2003)

16. Fages, F.: From syntax to semantics in systems biology - towards automated reason-
ing tools. Transactions on Computational Systems Biology IV 3939, 68–70 (2006)

17. Muggleton, S.H.: Inverse entailment and progol. New Generation Computing 13,
245–286 (1995)

18. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P.G.K., King, R.D.:
Combining inductive logic programming, active learning and robotics to discover
the function of genes. Electronic Transactions in Artificial Intelligence, 6 (2001)

19. Angelopoulos, N., Muggleton, S.H.: Machine learning metabolic pathway descrip-
tions using a probabilistic relational representation. Electronic Transactions in Ar-
tificial Intelligence 7 (2002) (also in Proceedings of Machine Intelligence 19)

20. Angelopoulos, N., Muggleton, S.H.: Slps for probabilistic pathways: Modeling and
parameter estimation. Technical Report TR 2002/12, Department of Computing,
Imperial College, London, UK (2002)

21. Bratko, I., Mozetic, I., Lavrac, N.: KARDIO: A study in Deep and Qualitative
Knowledge for Expert Systems. MIT Press, Cambridge (1989)

22. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

304 F. Fages and S. Soliman

23. Cimatti, A., Clarke, E., Enrico Giunchiglia, F.G., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Hei-
delberg (2002)

24. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biochemical interaction networks. Theoretical Computer Science 325,
25–44 (2004)

25. Fages, F., Soliman, S.: Type inference in systems biology. In: Priami, C. (ed.)
CMSB 2006. LNCS (LNBI), vol. 4210, Springer, Heidelberg (2006)

26. Gillespie, D.T.: General method for numerically simulating stochastic time evolu-
tion of coupled chemical-reactions. Journal of Computational Physics 22, 403–434
(1976)

27. Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its reg-
ulation. In: Bolouri, H., Bower, J. (eds.) Computational Methods in Molecular
Biology: From Genotype to Phenotype, MIT Press, Cambridge (2000)

28. Calzone, L., Soliman, S.: Coupling the cell cycle and the circadian cycle. Research
Report 5835, INRIA (2006)

A Behavioral Comparison of Some Probabilistic

Logic Models

Stephen Muggleton and Jianzhong Chen

Department of Computing, Imperial College London, London SW7 2AZ, UK
{shm,cjz}@doc.ic.ac.uk

Abstract. Probabilistic Logic Models (PLMs) are efficient frameworks
that combine the expressive power of first-order logic as knowledge rep-
resentation and the capability to model uncertainty with probabilities.
Stochastic Logic Programs (SLPs) and Statistical Relational Models
(SRMs), which are considered as domain frequency approaches, and on
the other hand Bayesian Logic Programs (BLPs) and Probabilistic Rela-
tional Models (PRMs) (possible worlds approaches), are promising PLMs
in the categories. This paper is aimed at comparing the relative expres-
sive power of these frameworks and developing translations between them
based on a behavioral comparison of their semantics and probability com-
putation. We identify that SLPs augmented with combining functions
(namely extended SLPs) and BLPs can encode equivalent probability
distributions, and we show how BLPs can define the same semantics
as complete, range-restricted SLPs. We further demonstrate that BLPs
(resp. SLPs) can encode the relational semantics of PRMs (resp. SRMs).
Whenever applicable, we provide inter-translation algorithms, present
their soundness and give worked examples.

1 Introduction

Probabilistic Logic Models (PLMs) combine expressive knowledge representation
formalisms such as relational and first-order logic with principled probabilistic
and statistical approaches to inference and learning. This combination is needed
in order to face the challenge of real-world learning and data mining problems
in which data are complex and heterogeneous and we are interested in finding
useful predictive and/or descriptive patterns.

Probabilistic logic representations and PLMs have varying levels of expressiv-
ity. As yet more effort has been put into defining new variants of PLMs than
into characterising their relationships. Studying the relative expressive power of
various probabilistic logic representations is a challenging and interesting task.
On the one hand, there exist some theoretical study of the relations of two prob-
abilistic approaches, i.e., possible-worlds and domain-frequency. On the other
hand, it is interesting to see how both logic programming-based approaches and
relational model/database-based methods have converged and to analyze rela-
tions between them. Essentially the following questions at different levels can be
asked:

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 305–324, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 S. Muggleton and J. Chen

• From a semantical perspective: can we compare the semantics between PLMs
in terms of the definition of probability distributions?

• From a theoretical perspective: given an expert domain, can we encode the
same knowledge in different PLMs?

• More practically: can we find inter-translations between these PLMs?

This study is based on a behavioural approach: we analyze what the respec-
tive interests of these formulations are. In particular, how can we semantically
compare PLMs and if there exist inter-translations, do the translations have
the same features (computation of the probabilities, inference with or without
evidence)?

The chapter is organised as follows. In section 2, we shortly introduce logi-
cal/relational models and probabilistic models as well as their extension to first-
order probabilistic models. In section 3, we present a introduction to the four
PLMs we choose for the study. In section 4, we explain the behavioural com-
parison approach and compare the semanics of the four PLMs based on the
catigories of first-order probabilistic models. In the next three sections, we de-
tail probabilistic knowledge encoding and inter-translations between the PLMs
of interest. We deal with the concluding remarks and direction of future work in
the last section.

2 Preliminaries

2.1 Logical/Relational Models

Knowledge encoded in PLMs are mainly based on two representation languages
and their associated system of inference, namely the Definite Clause Logic used
in logic programming model and the Relational Algebra used in the relational
model.

Logic Programming Model. Definite Clause Logic (DCL), also known as
Horn clause logic, is the subset of first-order logic whose well formed formulas
are universally quantified conjunctions of disjunctions of literals. Each disjunct
is called a clause. DCL further requires that clauses are definite, which means
that they have exactly one positive literal each (the head of the clause). The
list of negative literals (if any) is called the body of the clause. A list of definite
clauses is called a logic program (LP). We assume our terminology discussed in
the paper are within DCL.

The semantics, ie. the knowledge that can be encoded by a logic program L,
can be defined with the least Herbrand model of L (noted LH(L)). There exists
several inference algorithms to compute LH(L) such as the SLD-resolution proof
procedure. The success set of L, ie. the set of statements that can be refuted
using SLD-resolution is exactly LH(L). It is interesting to note that the use
of functors and recursive clauses allows DCL programs to encode potentially
infinite semantics. However, the functor-free subset of DCL (called Datalog) has
a finite semantics since Datalog programs have finite least Herbrand models.

A Behavioral Comparison of Some Probabilistic Logic Models 307

The use of DCL or Horn clause logic is supported by the wide availability and
applicability of the programming language Prolog [1] and most Inductive Logic
Programming systems, such as Progol [17].

Relational Model. Knowledge is often stored in relational databases which are
formally defined by the so called relational model for data. We use the notations
of [4] and [6] to introduce the relational model setting. This setting uses the
abstract notion of relational schema to structure the data encoded in a database.
Formally, a relational schema is a set of classes (also called relations or tables)
R = {Ri}. Each class R is associated to a primary key R.K, a set of foreign
keys F(R) = {Fk} and a set of descriptive attributes A(R) = {Aj}. Primary
keys are unique identifiers for class instances. Descriptive attributes Aj take
their respective values in the finite domains V(Aj). Each foreign key Fk ∈ F(R)
establishes a directed relationship from its source class Dom[Fk] = R onto a
target class Range[Fk]. An instance of such a relational schema is a set of objects
(also called entities, records or tuples). Instances of relational schemas are also
called databases. Each object x is an instance of a class R: for each descriptive
attribute Aj ∈ A(R), x is associated to an attribute value x.Aj = aj ∈ V(Aj).
Furthermore, class level foreign keys define binary relationships between objects:
for each foreign key Fk ∈ F(R), x is associated an object y = x.Fk such that y is
an instance of the class Y = Range[ρk]. Databases that respect the constraints
implied by foreign keys are said to respect the referential integrity.

Relational Algebra (RA) is a procedural language to perform queries on rela-
tional databases. RA is a procedural equivalent to declarative calculi such as the
tuple calculus and the domain calculus that provides mathematical foundation
for relational databases. RA is built upon six fundamental operations on sets
of tuples: the selection, the projection, the Cartesian product, the set union,
the set difference and the renaming of attribute names. These operations can
be considered building blocks to define higher level operations such as joins, set
intersections and divisions. From a more practical perspective, RA corresponds
to SQL (Structured Query Language) without the aggregate and group opera-
tions. RA’s expressive power is equivalent to non-recursive Datalog’s (which is
not Turing complete).

2.2 Probabilistic Models

Uncertainty is commonly modelled by defining a probability distribution over
the domain Dom(V) = {vi} of a random variable V . We assume all random
variables are discrete in the paper. We note P (V = vi) = pi. A set {vi, pi} defines
a probability distribution if and only if the {pi} are normalized (

∑
i pi = 1).

Bayesian networks (BNs) [19,10] are introduced to make additional indepen-
dency assumptions between random variables and to calculate the probabili-
ties of the conjunctions. A BN is a Directed Acyclic Graph (DAG) where each
vertex/node represents a random variable. Independency assumptions are en-
coded in the edges between chance nodes. Each variable is independent of its
non-descendants given its parents. The parameters of the Bayesian networks

308 S. Muggleton and J. Chen

are embedded in Conditional Probability Tables (CPTs) which specify, for each
variable Vi, the probability that Vi = v (v ∈ Dom(Vi)) given the values of the
parents Pa(Vi). Given these and based on the Bayes theorem, a joint probability
distribution of a set of n random variables can be defined using the following
chain rule formula:

P (V1, V2, . . . , Vn) =
n∏

i=1

P (Vi|Pa(Vi))

There exists a variety of algorithms to efficiently compute this probability
distribution, such as Pearl’s message passing, Variable Elimination, graph based
Junction Tree, etc.

2.3 First-Order Probabilistic Models

First-Order Probabilistic Reasoning. First-order logic alone is not suitable
to handle uncertainty, while this is often required to model non-deterministic
domains with noisy or incomplete data. On the other hand, propositional prob-
abilistic models (such as BNs) can’t express relations between probabilistic vari-
ables; such frameworks suffer from a lack of structure over the domain, and the
knowledge they can encode is fairly limited.

First-order probabilistic models are models which integrate logics and proba-
bilities; they overcome the limits of traditional models by taking the advantages
of both logics and probabilities.

Categories of First-Order Probabilistic Models. A well-known categoriza-
tion of first-order probabilistic models was introduced by Halpern [7], in which
two types of first-order probabilistic logic are categorized, ie. probabilities on the
domain (or type 1 probability structure) and probabilities on possible worlds (or
type 2 probability structure).

Type 1 probability structure can represent statements like “The probability
that a randomly chosen bird will fly is greater than .9”. It provides a type
of domain-frequency approaches, which semantically illustrates objective and
‘sampling’ probabilities of domains. Precisely, a type 1 probability structure is a
tuple (D, π, μ), where D is a domain, π maps predicate and function symbols in
alphabet to predicates and functions of the right arity over D, and μ is a discrete
probability function on D. The probability here is taken over the domain D. In
the logic programming setting, it is reasonable to consider the Herbrand base
over a given signature to have the same function as the domain.

On the other hand, type 2 probability structure may represent statements like
“The probability that Tweety (a particular bird) flies is greater than .9”. It is a
kind of possible-world approaches and illustrates the subjective and ‘degree-of-
belief’ semantics of the probabilities of domains. Formally, a type 2 probability
structure is a tuple (D, W, π, μ), where D is a domain, W is a set of states
or possible worlds, for each state w ∈ W , π(w) maps predicate and function
symbols in alphabet to predicates and functions of the right arity over D, and μ

A Behavioral Comparison of Some Probabilistic Logic Models 309

is a discrete probability function on W . The probability here is taken over W ,
the set of states (or possible worlds or logic models). BNs and related models
are type 2 approaches.

One of the differences between the two models is that there seems to assume
only one possible world in type 1 case, saying that “any bird has a probability of
flying greater than 0.9” is like giving the result of some statistical analysis (by
counting domain frequency) in the real world.

3 Presentation of PLMs

We choose four promising PLMs to do the comparison.

3.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) were first introduced in [14] as a generalization
of stochastic grammars.

Syntax. An SLP consists of a set of labelled clauses p : C, where p is from the
interval [0, 1], and C is a range-restricted1 definite clause. Later in this report,
the labelled clauses p : C will be named parameterized clauses or stochastic
clauses. This original SLP definition requires that for each predicate symbol q,
the probability labels for all clauses with q in the head sum to 1. However, this
can be a restrictive definition of SLPs. In other articles ([2] for instance), SLPs
having this property are called complete SLPs, while in uncomplete SLPs, the
probability labels for all clauses with a same predicate symbol in the head sum
to less than 1. Pure SLPs are introduced in [2], whose clauses are all parameter-
ized (whereas impure SLPs can have non-parameterized clauses, that is, definite
logical clauses). Furthermore, normalized SLPs are like complete SLPs, but in
unnormalised SLPs, the probability labels for all clauses with a same predicate
symbol in the head can sum to any positive value other than 1.

Semantics. An SLP S has a distributional semantics, that is one which assigns
a probability distribution to the atoms of each predicate in the Herbrand base
of the clauses in S. The probabilities are assigned to atoms according to an
SLD-resolution strategy that employs a stochastic selection rule2.

Three different related distributions are defined in [2], over derivations, refu-
tations and atoms. Given an SLP S with n parameterized clauses and a goal G,
it is easy to define a log-linear probability distribution over the set of derivations

ψλ(x) = eλ.ν(x) =
n∏

i=1

l
νi(x)

i

1 C is said to be range-restricted iff every variable in the head of C is found in the
body of C.

2 The selection rule is not deterministic but stochastic; the probability that a clause
is selected depends on the values of the labels (details can be found in [15]).

310 S. Muggleton and J. Chen

where x is a derivation of goal G; λ = (λ1, λ2, ..., λn) ∈ �n is a vector of
log-parameters where λi = log(li), li being the label of the clause Ci; ν =
(ν1, ν2, ..., νn) ∈ Nn is a vector of clause counts s.t. νi(x) is the number of times
Ci is used in the derivation x. If we assign the probability 0 to all derivations
that are not refutations of the goal G, and normalize the remaining probabilities
with a normalization factor Z, we obtain the probability distribution fλ(r) over
the set R of the refutations of G

fλ(r) = Z−1
λ,G eλ.ν(r)

The computed answer in the SLD-tree is the most general instance of the goal
G that is refuted by r, which is also named the yield atom. Let X(y) be the set
of refutations which lead to the yield atom y, we can finally define a distribution
of probabilities over the set of yield atoms

pλ,G(y) =
∑

r∈X(y)

fλ(r) = Z−1
λ,G

∑

r∈X(y)

(
n∏

i=1

l
νi(r)
i

)

Given an SLP S, a query G and a (possibly partial) instantiation of G noted
Ga, if λ is the vector of log-parameters associated to S and Y the set of yield
atoms appearing in the refutations of Ga, we define PSLP

S (Ga) =
∑

y∈Y pλ,G(y).

3.2 Bayesian Logic Programs

Bayesian Logic Programs (BLPs) were first introduced in [13], as a generalization
of Bayesian networks (BNs) and Logic Programs.

Syntax. A Bayesian logic program has two components – a logical one, which
is a set of Bayesian clauses), and a quantitative one, which is a set of condi-
tional probability distributions and combining rules corresponding to that log-
ical structure. A Bayesian clause is an expression of the form: A | A1, ..., An

where n ≥ 0 and the Ai are Bayesian atoms which are (implicitly) universally
quantified. The difference between a logical definite clause and a Bayesian clause
is that: the sign | is employed instead of : −; Bayesian atoms are assigned a (fi-
nite) domain, whereas first order logic atoms have binary values. Following the
definitions in [13], we assume that atom domains in BLPs are discrete.

In order to represent a probabilistic model, each Bayesian clause c is associated
with a conditional probability distribution cpd(c) which encodes the probability
that head(c) takes some value, given the values of the Bayesian atoms in body(c),
ie. P (head(c)|body(c)). This conditional probability distribution is represented
with a conditional probability table. As there can be many clauses with the
same head (or non-ground heads that can be unified), combining rules are intro-
duced to obtain the distribution required, i.e. functions which map finite sets of
conditional probability distributions onto one combined conditional probability
distribution. Common combining rules include the noisy-or rule, when domains
are boolean, and the max rule, which is defined on finite domains.

A Behavioral Comparison of Some Probabilistic Logic Models 311

Semantics. The link of BLPs to BNs is straightforward: each ground Bayesian
atom can be associated to a chance node (a standard random variable), whose
set of states is the domain of the Bayesian atom. The links (influence relations)
between chance nodes are given by the Bayesian clauses, and the link matrices
by the conditional probability distributions associated to these Bayesian clauses.
The set of ground Bayesian atoms in the least Herbrand model together with the
structure defined by the set of ground instances of the Bayesian clauses define a
global (possibly infinite) dependency graph.

The semantics of BLPs can be discussed in a well-defined BLP. A range re-
stricted BLP B is well-defined if:

1. Its least Herbrand model not empty: LH(B) �= ∅. There must be at least
one ground fact in B.

2. The induced dependency graph is acyclic;
3. Each random variable is only influenced by finite set of random variables.

Any such well-defined BLP B defines a unique probability distribution over
the possible valuations of a ground query Ga ∈ LH(B) [13]. The query-answering
procedure actually consists of two parts: first, given a ground query and some
evidence, the Bayesian network (namely the support network) containing all rel-
evant atoms is computed, using Knowledge Based Model Construction (KBMC).
Then the resulting Bayesian network can be queried using any available infer-
ence algorithm, the results we were looking for being the probability of the initial
ground query over its domain.

Let B be a well-defined BLP and Ga a ground query. The Bayesian network
constructed with KBMC is denoted by BNB,Ga . The probability of a chance
node Q taking the value v in BNB,Ga (i.e. the probability of the set of possible
worlds of BNB,Ga in which Q has the value v) is denoted PBLP

B,Ga
(Q = v).

3.3 Statistical Relational Models

Statistical Relational Models (SRMs) were introduced in [6] in order to provide
ways to infer statements over the success of some relational databases queries.

Syntax. SRMs are defined with respect to a given relational schema R. Fur-
thermore, SRMs require R to be table stratified, that is there must exist a partial
ordering ≺ over classes in R such that for any R.F ∈ F(R) and S = Dom[R.F],
S ≺ R holds. Given such a table stratified relational schema R, an SRM ψ is a
pair (S, θ) that defines a local probability model over a set of variables {R.A}
(for each class R and each descriptive attribute A ∈ A(R)) and a set of boolean
join indicator {R.JF } (for each foreign key F ∈ F(R) with S = Dom[R.F]).
For each random variable of the form R.V , S specifies a set of parents Pa(R.V)
where each parents has the form R.B or R.F.B, and θ specifies a CPT θR.V =
P (R.V |Pa(R.V)). S is further required to be a directed acyclic graph.

Semantics. Any SRM ψ defines a unique probability distribution PSRM
ψ over

the class of so called inverted-tree-foreign-key-join queries (or legal queries) of a
table stratified relational schema R.

312 S. Muggleton and J. Chen

A legal query Q has form: �	Q (σQ(R1 × R2 × . . . × Rn)). The set T =
{t1, . . . , tn} of tuple variables occurring in Q must be closed with respect to the
universal foreign key closure of R as defined in [6] so that:

�	Q= {t.F �	 s.K | t ∈ T, s ∈ T is associated to t.F}
The select part of Q occurs on some subset of A(T), σQ = {Ai = ai | Ai ∈ A(T)}

Given an SRM ψ = (S, θ), S induces a Bayesian network B over the attributes
of tuples variables in T (joint indicators included). The parameters of B are set
according to θ. PSRM

ψ is then defined as the probability distribution induced by
B over possible instantiations of attributes of T that correspond to σQ of any
legal query Q over T :

PSRM
ψ (Q) =

∏

t.Vi∈Q

θ(t.Vi|PaB(t.Vi))

SRMs can thus be used to estimate the probability PD of success of legal
queries against a database D that implements the relational schema R. For any
select-join query Q over D, PD is defined as follows:

PD(Q) =
| �	Q (σQ(R1 × R2 × . . . × Rn))|

|R1| × |R2| × . . . × |Rn|
A table stratified database D is said to be a model of an SRM ψ if ψ’s esti-

mations are correct, ie. for any legal query Q, PSRM
ψ (Q) = PD(Q). In this case,

we note D |= ψ.

3.4 Probabilistic Relational Models

Probabilistic Relational Models (PRMs) were introduced in [4], which extends
the relational model presented in section 2.1 by introducing reference slots and
relational skeletons. For a given class R, the set of reference slots �(R) = {ρk} is
the union of R’s foreign keys F(R) with the set of foreign keys R′.F that point
to R.K (ie. reverse foreign keys). Such a reference slot ρ may thus establish
a one-to-many relationship between R and R′ = R.ρ. A relational skeleton σ
is a set of objects respecting the constraints of a given relational schema. The
difference between a relational skeleton σ and a complete instance is that the
values of some descriptive attributes of objects in σ are unknown. However σ
specifies the values for the foreign keys.

Syntax. PRMs with attribute uncertainty consider each class-level descriptive
attribute as a random variable. PRMs make some independency assumptions in
order to shrink the model size. As with BNs, these independency assumptions
are encoded in an dependency structure S where the vertices represent the de-
scriptive attributes. S is defined with respect to a given relational structure R.
For each descriptive attribute R.A in R, S specifies a set of parents Pa(R.A).
A parent takes either the form R.A′ (another descriptive attribute of the same
class) or γ(R.τ.A′) where τ = ρk1 .ρk2ρkn is a chain of n reference slots and

A Behavioral Comparison of Some Probabilistic Logic Models 313

γ is an aggregate function. Indeed, for a given object r ∈ R, r.τ is potentially a
multi-set of objects of class R.τ . In such a case S uses an aggregate function γ to
map the different values in r.τ.A′ to a single value in the domain V(γ). Aggregate
functions can be any of those traditionally used in SQL: min, max, average, etc.
A dependency structure S is said to be legal with respect to a given relational
skeleton if it is guaranteed-acyclic at the object-level: an object’s descriptive
attribute cannot be its own ancestor.

A PRM quantifies the probabilistic dependencies encoded in S through a set of
parameters θS . For each attribute r.A, θS(r.A) = P (r.A|Pa(r.A)). The CPTs are
identical for every objects of the same class. However, as the aggregate functions
might compute different values for two different objects, the resulting probability
can change from an object to another. A PRM Π is fully defined by a dependency
structure S and its associated CPTs θS (parameters), Π = (S, θS).

Semantics. Given a relational skeleton σ, every PRM Π = (S, θS), with S legal
w.r.t. σ, defines a coherent probability distribution over Iσ, the set of possible
instances of σ, by the following chain-rule formula

PPRM
Π,σ (i) =

∏

x∈σ

∏

A∈A(x)

P (i(x.A)|i(Pa(x.A)))

where i(x.A) and i(Pa(x.A)) are the respective representations of the random
variables x.A and Pa(x.A) in the instance i.

4 Behavioural Comparison of Expressive Knowledge
Representations

Suppose that A, B represent two Herbrand bases3 over given signatures Σ, Ω
and that p, q represent probability functions over sets. Halpern’s two types of
probabilistic logic can be characterised as classes of probability functions with
the following forms: p : A → [0, 1] (type 1) and q : 2B → [0, 1] (type 2). Here
2B represents the set of all possible worlds over the Herbrand base B. In this
paper the approach taken to establishing relationships between type 1 and type
2 probabilistic logics involves demonstrating the existence of mappings between
the logics. Suppose R1, R2 denote particular type 1, 2 logics respectively.

We say that R1 is behaviourally weaker than R2, or simply R1 	b R2 in
the case that for every probability function p in R1 with Herbrand base A there
exists a probability function q in R2 with Herbrand base B and a function f such
that f : A → 2B where ∀a ∈ A· q(f(a)) = p(a). Similarly, R2 is behaviourally
weaker than R1, or simply R2 	b R1 when for every q in R2 with Herbrand
base B there exists a probability function p in R1 with Herbrand base A and a
function g such that g : 2B → A where ∀b ∈ 2B· p(g(b)) = q(b). As usual we say
that R1 is behaviourally equivalent to R2, or simply R1 ≡b R2, in the case that
R1 	b R2 and R2 	b R1.
3 As stated before, we treat the Herbrand base of a logic model as its domain.

314 S. Muggleton and J. Chen

Halpern’s work [7] provides good clarifications about what respective kinds
of knowledge can be captured with probabilities on the domain (such as those
defined by SLPs and SRMs) and probabilities on possible worlds (BLPs and
PRMs). Links between these probabilities are also provided. However, the con-
clusions that can be drawn from a behavioral approach differ from the results
obtained in previous model-theoretical studies (such as that of [7]): our aim is to
provide ways in which knowledge encoded in one framework can be transferred
into another framework. We focus on inter-translations, their features and limits.

We have adopted the following methodology:

– We first demonstrate relations between semantics: for a pair of frameworks
(say, SLPs and BLPs), we define equivalent programs and equivalent set of
queries. For instance, the fact that a k-ary Bayesian atom Ga takes the value
v in a BLP can be represented in an equivalent SLP with a (k+1)-ary logical
atom G having the same predicate and k first arguments as Ga, and the value
v as last argument. We then say that a k-ary atomic BLP query is equivalent
to the associated (k + 1)-ary atomic SLP query.

– We say that the semantics are equivalent when equivalent (set of) queries
on equivalent programs infer the same (set of) probability distributions.

– Hence our goal is eventually to provide algorithms that transform a pro-
gram into an equivalent program in another framework, (such algorithms
are referred to as inter-translations) and to analyze their features and their
limits.

From the semantics perspective, we compare the four PLMs in terms of the
following categories (as presented in section 2)

– Logic programming (LP) vs. relational models (RM): SLPs and BLPs are
LP-based, while SRMs and PRMs are RM-based.

– Possible-world vs. domain-frequency: SLPs and SRMs are type 1 / domain-
frequency approaches, in contrast type 2 / possible-world perspective is dom-
inant in BLPs and PRMs.

In addition, SLPs are considered to be grammar-based models, while BLPs,
PRMs and SRMs are classified to be graph-based models. In the rest sections, we
detail the inter-translations between the PLMs of interests: SLPs-BLPs, SLPs-
SRMs and BLPs-PRMs respectively.

5 A Behavioral Comparison of SLPs and BLPs

We first claim that a BLP B and an SLP S define equivalent semantics if the
probability that any ground Bayesian atom Ga in the Herbrand model of the
BLP takes some value v is identical to the probability of the associated logi-
cal atom G in S, ie. PSLP

S (Ga) ≡b PBLP
B,Ga

(Ga = v). There is an intuitive and
global approach to find an inter-translation: any BLP B can be represented by

A Behavioral Comparison of Some Probabilistic Logic Models 315

a (possibly infinite) Bayesian network BNB, and the KBMC stage consists in
finding the Bayesian variables relevant to the query (hence leading to a finite BN
-a subpart of BNB- that can be queried). Provided that the least Herbrand model
of the BLP is finite, BNB will be finite, and it is possible to use the method
in [2] to translate BNB into SLPs. But this approach cannot be extended to
general BLPs.

To solve the problem, we need either restrict BLPs or extend SLPs. Therefore
we developed a standard translation [20], which exists in two versions: one trans-
lates restricted BLPs (which do not make use of combining rules) into SLPs; and
the other one translates general BLPs into extended SLPs (which are augmented
with combining functions). One remaining drawback is that the standard trans-
lations do not handle evidence, that is, some prior knowledge about the domain
in BNs. The reason is that SLPs and e-SLPs define semantics on tree structure,
whereas KBMC in BLPs permits the union of several trees and the computation
of probabilities in singly connected networks.

We summarize the translation approaches and theorems presented in [20]
without examples and proofs, and provide some revisions with examples.

5.1 Restricted BLPs and Extended SLPs

If S is an SLP, the subset Sh of clauses in S with predicate symbol h in the
head is called the definition of h. A restricted BLP is a BLP whose predicate
definitions contain one single stochastic clause each. A ground query Ga is said
to be safe with regards to a BLP B if the and-or tree rooted at Ga does not
contain 2 identical nodes (no merging of nodes takes place during KBMC). Nn

is the set of natural numbers from 1 to n.
An extended SLP (e-SLP) is an SLP S augmented with a set of combining

functions {CRh}, for all predicates h appearing in the head of some stochastic
clause in S. A combining function is a function that maps a set of possible
resolvents of h (obtained using one clause in Sh) and associated real numbers in
[0, 1] to a real number in [0, 1], CRh : ((r1, p1), ..., (rn, pn)) �→ r ∈ [0, 1].

Given an e-SLP Se consisting of the SLP S and the combining functions
{CRh}, and a query Q (consisting of a predicate h), the probability PeSLP

Se
(Q)

is the probability of the pruned and-or tree T rooted at the or-node Q. The
probability of a pruned and-or tree is defined by structural induction:

– Base case: if T is a single or-node, PeSLP
Se

(Q) is PSLP
S (Q), the probability

of S at query Q.
– If the root of T is an or-node with n branches leading to the resolvents

(and-nodes) (ri)i∈Nn , then PeSLP
Se

(Q) = CRh((ri, pi)i∈Nn), where pi is the
probability of the pruned and-or subtree rooted at the and-node ri.

– If the root of T is an and-node leading to the resolvents (or-nodes) (ri)i∈Nn ,
then PeSLP

Se
(Q) =

∏n
i=1 pi, where pi is the probability of the pruned and-or

subtree rooted at the or-node ri.

316 S. Muggleton and J. Chen

5.2 Standard Translation from Restricted BLPs to SLPs

Let B denote a restricted BLP.

– Identify each k-ary Bayesian atom b, which appears in B and has the value
domain V , to the (k + 1)-ary (logical) atom b(vb) having the same k first
arguments and a value vb of V as last argument.

– For each Bayesian clause head|b1, ..., bn in B, for each value in the associ-
ated CPT, which indicates the probability pvh,vb1,...,vbn

that the Bayesian
atom head takes the value vh given that the {bi : i ∈ Nn} take the val-
ues (vb1, ..., vbn), construct the stochastic clause consisting of the parameter
pvh,vb1,...,vbn

, and the definite clause head(vh) ← b1(vb1), ..., bn(vbn).
– The standard translation of B consists of the n stochastic clauses con-

structible in that way, n being the sum of the numbers of coefficients in the
CPTs. This SLP is pure and unnormalised (the parameters of the clauses in
Sh ⊆ S sum to the product of the domain sizes of the Bayesian atoms in the
body of the Bayesian clause with head h).

Theorem. Given a restricted BLP B, its standard translation S obtained as de-
fined above, and a ground Bayesian query Ga which is safe with regards to B. Let
us associate to Ga the logical query G(v), v ∈ dom(Ga). Then PSLP

S (G(v)) ≡b

PBLP
B,Ga

(Ga = v).

5.3 Standard Translation from BLPs to e-SLPs

Let B denote a BLP. The standard translation of B is the extended SLP Se

defined by the following stochastic clauses and combining functions:

– The stochastic clauses (which form the set S) are obtained in the same way
as the stochastic clauses obtained from a restricted BLP.

– Let us take a ground predicate h in the head of some clause in S and assume
that it can be unified with the heads of some clauses in Sh, leading to the
resolvents {ri,j} with probabilities in S equal to {pi,j}. A resolvent can
contain several atoms. The clauses in Sh come from z different Bayesian
clauses with the same predicate in the head. These original clauses can be
indexed with a number that corresponds to the first index i ∈ Nz in the
name of the resolvents. The second index j ∈ Nni refers to one of the ni

different distributions of values over the Bayesian atoms in the body of the
Bayesian clause i. We define CRh by:

CRh =
∑

j1∈Nn1 ,...,jz∈Nnz

CR(h, r1,j1 , ..., rz,jz) ×
z∏

t=1

pt,jt

where CR is the combining rule defined in B.

Theorem. Given any BLP B, its standard translation Se obtained as defined
above, and a ground Bayesian query Ga which is safe with regards to B. Let us
associate to Ga the logical query G(v), v ∈ dom(Ga). Then PeSLP

Se
(G(v)) ≡b

PBLP
B,Ga

(Ga = v).

A Behavioral Comparison of Some Probabilistic Logic Models 317

5.4 Translation from SLPs to BLPs

Let S denote a complete, range-restricted and non-recursive SLP4.

– For each stochastic clause p : head ← b1, ..., bn in S, identify each atom to
a Bayesian atom whose domain is {true, false}.

– Construct the Bayesian clause having the same head, the same body, and
the following conditional probability table:

head
b1 ... bn true false

true true true p 1 − p
true true false 0 1
� � � 0 1

false false false 0 1

– To complete the definition of the BLP, we need to define a combining rule
CR. Suppose that we have to combine n conditional probability tables CPTi

(1 ≤ i ≤ n). Each CPTi defines the probabilities P (head | Bi), where Bi is
the set of ground Bayesian atoms in the body of the associated clause. Thus
to define CR((CPTi)1≤i≤n), and by using normalization, we only have to
set the values of P (head = true | ∪n

i=1 Bi) for all possible instantiations of the
ground Bayesian atoms in (∪n

i=1 Bi). The value of P (head = false|∪n
i=1Bi) =

1 − P (head = true| ∪n
i=1 Bi) can then be deduced.

– For each possible instantiation (∪n
i=1 Insti) of (∪n

i=1 Bi), we take the sum∑n
i=1 P (head = true | Bi = Insti) and assign it to P (head = true | ∪n

i=1 Bi).
Since the SLP is complete, this sum will never be greater than 1, and the
CR is well defined.

Theorem. Given a complete, range-restricted and non-recursive SLP S, its
translation into a BLP B obtained as defined above , and a ground query G.
Let us associate to G the Bayesian atom Ga, whose domain is {true, false},
and which is itself associated to a chance node in the Bayesian net BNB,Ga . If
Ga is safe with regards to B then PSLP

S (G) ≡b PBLP
B,Ga

(Ga = true).

5.5 A Revised Translation from BLPs to SLPs

There exists a potential ‘contradictory refutation’ problem in BLPs-SLPs trans-
lation, which is illustrated in Figures 1, 2 and 3 for an example. The error lies
in the potential inconsistent value settings (or substitutions) between atoms in
a clause, eg. in clause d(tom,y) ← b(tom,y),c(tom,y), b(tom,y) may be set
to a(tom,y) while c(tom,y) might be set to a contradictory value a(tom,n)
simultaneously. To solve the problem, we introduce an extra data structure of list
to ‘set and remember’ values instead of just setting values. Translations from the

4 A clause C is said to be non-recursive iff the head of C is not found in the body
of C.

318 S. Muggleton and J. Chen

(a)a first-order BN

(b)corresponding BLP

A (tom)
B (tom) | A (tom)
C (tom) | A (tom)
D (tom) | B (tom), C (tom)

A={y,n}

B={y,n} C={y,n}

D={y,n}

Fig. 1. An example of a first-order BN and corresponding BLP representation

←a(tom,y),c(tom,y).

← a(tom, y).

refutation

p2 p1

p8

← d(tom, y).

← b(tom, y), c(tom, y). ……

←a(tom,n),c(tom,y).

……

← a(tom, n).

contradictory refutation

p11 p12

p3 p4

p1

p7
← c(tom, y).

← d(tom, [A,y,y,y]).

← b(tom, [A,y,y,y]), c(tom, [A,y,y,y]). ……

←a(tom,[y,y,y,y]),c(tom,[y,y,y,y]).

← c(tom, [y,y,y,y]).

←a(tom,[n,y,y,y]),c(tom,[n,y,y,y]).

……

refutation

p11 p12

p3 p4

p1

p7

p1

← a(tom, [y,y,y,y]).

Fig. 2. (a) Stochastic SLD-tree with contradictory refutation (shown in dash lines) and
(b) Resolved SSLD-tree without contradictory refutation

p1 : a(tom, y) ← .
p2 : a(tom, n) ← .
p3 : b(T, y) ← a(T, y).
p4 : b(T, y) ← a(T, n).
p5 : b(T, n) ← a(T, y).
p6 : b(T, n) ← a(T, n).
p7 : c(T, y) ← a(T, y).
p8 : c(T, y) ← a(T, n).
p9 : c(T, n) ← a(T, y).
p10: c(T, n) ← a(T, n).
p11: d(T, y) ← b(T, y), c(T, y).
p12: d(T, y) ← b(T, y), c(T, n).
p13: d(T, y) ← b(T, n), c(T, y).
p14: d(T, y) ← b(T, n), c(T, n).
p15: d(T, n) ← b(T, y), c(T, y).
p16: d(T, n) ← b(T, y), c(T, n).
p17: d(T, n) ← b(T, n), c(T, y).
p18: d(T, n) ← b(T, n), c(T, n).

p1 : a(tom, [y,B,C,D]) ← .
p2 : a(tom, [n,B,C,D]) ← .
p3 : b(T, [y,y,C,D]) ← a(T, [y,y,C,D]).
p4 : b(T, [n,y,C,D]) ← a(T, [n,y,C,D]).
p5 : b(T, [y,n,C,D]) ← a(T, [y,n,C,D]).
p6 : b(T, [n,n,C,D]) ← a(T, [n,n,C,D]).
p7 : c(T, [y,B,y,D]) ← a(T, [y,B,y,D]).
p8 : c(T, [n,B,y,D]) ← a(T, [n,B,y,D]).
p9 : c(T, [y,B,n,D]) ← a(T, [y,B,n,D]).
p10: c(T, [n,B,n,D]) ← a(T, [n,B,n,D]).
p11: d(T, [A,y,y,y]) ← b(T, [A,y,y,y]), c(T, [A,y,y,y]).
p12: d(T, [A,y,n,y]) ← b(T, [A,y,n,y]), c(T, [A,y,n,y]).
p13: d(T, [A,n,y,y]) ← b(T, [A,n,y,y]), c(T, [A,n,y,y]).
p14: d(T, [A,n,n,y]) ← b(T, [A,n,n,y]), c(T, [A,n,n,y]).
p15: d(T, [A,y,y,n]) ← b(T, [A,y,y,n]), c(T, [A,y,y,n]).
p16: d(T, [A,y,n,n]) ← b(T, [A,y,n,n]), c(T, [A,y,n,n]).
p17: d(T, [A,n,y,n]) ← b(T, [A,n,y,n]), c(T, [A,n,y,n]).
p18: d(T, [A,n,n,n]) ← b(T, [A,n,n,n]), c(T, [A,n,n,n]).

Fig. 3. Previous and revised translations from the above BLP to an SLP

A Behavioral Comparison of Some Probabilistic Logic Models 319

BLP to an SLP by applying previous method (in [20]) and a revised method (this
paper) are shown in Fig. 3(a) and (b) respectively, and the resolved stochastic
SLD-tree can be seen in Fig.2(b). More precisely, a revised BLP-SLP translation
algorithm is shown in the following steps. Let B denote a restricted BLP and S
denote its translation SLP.

– Identify each k-ary Bayesian atom b, which appears in B and has the value
domain Vb, to the (k + 1)-ary (logical) atom b(vb) having the same k first
arguments and a value vb ∈ Vb as last argument.

– Construct a list lvb to replace vb. The length of lvb is the number of all
Bayesian atoms. Each element of lvb corresponds to an arbitrary Bayesian
atom b′ and is set to a fresh variable if b′ �= b or a value vb′ ∈ Vb′ if b′ = b.

– For each Bayesian clause head | b1, ..., bn in B, for each value in the asso-
ciated CPD, which indicates the probability pvh,vb1,...,vbn

that the Bayesian
atom head takes the value vh given that the {bi : i ∈ Nn} take the values
(vb1, ..., vbn), construct a list lvh for head as done in step 2, then construct the
stochastic clause consisting of the parameter pvh,vb1,...,vbn

, and the definite
clause: head(lvh) ← b1(lvb1), ..., bn(lvbn).

– For lvh, lvb1, ..., lvbn, update the value for each element in lists with respect
to vh, vb1, ..., vbn respectively.

– The standard translation of B consists of the n stochastic clauses con-
structible in that way, n being the sum of the numbers of coefficients in
the CPD tables. This SLP is pure and unnormalised (the parameters of the
clauses in Sh ⊆ S sum to the product of the domain sizes of the Bayesian
atoms in the body of the Bayesian clause with head h).

Note that, in a definite clause (eg. b(tom,[n,y,C,D]) ← a(tom,[n,y,C,D])),
all atoms have the same list values (eg. [n,y,C,D]), in which the elements cor-
responding to the atoms occurred in the clause are value set (eg. [n,y, ,] cor-
responds to atoms a,b) and other elements are assigned to be variables (eg.
[, ,C,D] correspond to atoms c,d). The introduction of lists with variables will
guarantee atoms to propagate consistent values to their predecessors in stochas-
tic SLD-trees.

6 A Behavioral Comparison of SRMs and SLPs

SRMs naturally have a type 1 semantics with domain frequency over the rows
of a database. This section will show how to build SLPs that encode the same
class of semantics. Our approach is to find for any SRM ψ, a SLP S whose least
Herbrand model is a contraction of a minimal table stratified database D such
that ψ |= D and such that the probabilities of success of legal queries against D
or ψ match the probabilities induced by S on a set of corresponding SLP queries.

Let R be a table stratified relational schema and ψ an associated SRM. In
order to translate ψ into an equivalent SLP S, we need to translate the model
itself on one hand and the associated set of legal queries on the other hand.

320 S. Muggleton and J. Chen

For every descriptive attribute Ri.Aj and for each ground instantiation with−→
k as tuple of indices, we assert the parameterised ground fact:

θ
−→
k
Ri.Aj

: ri,j(ak1
i,j ,

−→pa(Ri, Aj)
−→
k)

where θ
−→
k
Ri.Aj

is the corresponding ψ parameter in which all joint indicator vari-
ables in the parents are set to true.

For each class Ri, we recursively define the key-validator predicate gi as
follows:

1 : gi(ki(
−→
Ai1 ,

−→
Fi,

−→
Ji)) ←

gi1(Fi1), . . . , gi1(Fin),
gai,1(Ai,1), . . . , gai,ni(Ai,ni),
gji,1(Ji,1), . . . , gji,mi(Ji,mi).

For each class Ri in ψ we can build a clause that defines the predicate ri/ni

by using the above predicates and by introducing additional helper predicates5.

1 : ri(ki(
−→
Ai, kj(

−→
Aj1 ,

−→
Fj , true(

−→
Ai|Jj,i

),
−→
Jj),

−→
Ai,

−→
Fi,

−→
Ji),

−→
Ai,

−→
Fi) ←

gj(kj(
−→
Aj1 ,

−→
Fj , true(

−→
Ai|Jj,i

),
−→
Jj)),

ri,1(Ai,1,
−→
Pa(Ai,1)), . . . , ri,n(Ai,n,

−→
Pa(Ai,n)),

ji,1(Ji,1,
−→
Ai|Ji,1), . . . , ji,m(Ji,m,

−→
Ai|Ji,m

).

Let Q be a legal query with respect to ψ. The following shows how to build a
corresponding SLP query GQ. Initialise GQ to an empty formula. For each tuple
variable tj in of class Ri occurring in Q, add a literal to GQ with predicate symbol
ri and the free variable Kj as primary key. Descriptive attributes arguments are
set to the constants al

i,k corresponding to the values tj .a
l
k specified in σQ or to

some new free variable if no value is specified. Foreign key arguments are set
bound variables K ′

j according to the join �	Q.

Theorem. The previous procedure translates any SRM ψ into a SLP S that
computes the same probability distribution over legal queries; that is, for any legal
query Q, the corresponding SLP query GQ, such that PSRM

ψ (Q) ≡b PSLP
S (GQ).

7 A Behavioral Comparison of PRMs and BLPs

PRMs naturally have a type 2 semantics with possible worlds which correspond
to possible instances of a given relational skeleton. This section will show how to
build BLPs that can capture the same class of semantics where unary Bayesian
predicates represent descriptive attributes and aggregate functions, binary pred-
icates represent reference slots and constants represent objects of the relational
skeleton.

Given a relational skeleton σ and a PRM Π = (S, θS), Table 1 defines a
translation procedure prm2blp that builds a BLP B inferring a probabilistic
distribution on Iσ, the set of complete instances of the relational skeleton σ.
5 Definition and translation of helper predicates are omitted.

A Behavioral Comparison of Some Probabilistic Logic Models 321

Table 1. The prm2blp translation procedure from PRMs to BLPs

proc prm2blp(σ, S, θS):

1. for each class Ri:

(a) for each descriptive attribute Aj ∈ A(Ri) :

define the unary Bayesian predicate pi,j/1 with

dom(pi,j/1) = V(Aj)
(b) for each reference slot ρk ∈ R(Ri) :

define the binary Bayesian predicate ri,k/2 with

dom(ri,k/2) = {true, false}
(c) for each aggregate function γi in θS:

define the unary Bayesian predicate gi/1 with

dom(gi/1) = V(γi)
2. let B be an empty BLP

3. for each class Ri:

(a) for each object o ∈ Oσ(Ri):
i. for each reference slot ρk ∈ �(Ri) and each

o′ ∈ ρk(o):
assert in B the ground Bayesian fact ri,k(o, o

′). with associated

(instantiated) CPT: [1, 0]
(b) for each descriptive attribute Aj ∈ A(Ri):

– if (Pa(Ri.Aj) = ∅) according to S then:

for each object o ∈ Oσ(Ri):
i. assert in B the ground Bayesian fact pi,j(o). with

associated CPT: θS(Ri.Aj)
– else:

i. let C be a Bayesian clause with head pi,j(V)
ii. for each Ul ∈ U = Pa(Ri.Aj)

• if Ul = Ri.Am then:

add the literal pi,m(V) to the body of C
• else Ul = γk(Ri.τ.Am) where τ a chain of

reference slots of the form τ = ρk1 , ρk2 , . . . , ρkn:

∗ add the literal gk(V) to the body of C
∗ let Ri′ = Ri.τ
∗ assert in B the following helper Bayesian clause :

gk(V) | ri,k1 (V, V1), . . . , rkn−1,kn(Vn−1, Vn), pi′,m(Vn).
iii. let CPTC be θS(Ri.Aj |Pa(Ri.Aj))
iv. assert C in B

4. build the Combining Rules for each predicate in B by applying the

build cr procedure

5. return B

Theorem. For any PRM Π that is guaranteed-acyclic w.r.t. some non-empty
relational skeleton σ:

∀i ∈ Iσ : PPRM
(σ,Π) (i) ≡b PBLP

prm2blp(σ,Π)(i
′),

where i′ is the ground Bayesian query corresponding to the database instance i.

322 S. Muggleton and J. Chen

8 Discussion and Conclusions

The first result we achieved in the study is BLPs ≡b e-SLPs. We argue that
SLPs augmented with combining functions (namely extended SLPs) and BLPs
can encode the same knowledge, in that they encode equivalent probability dis-
tributions for equivalent set of queries. Since SLPs need to be augmented with
combining rules in order to be as expressive as BLPs, and BLPs are able to
encode complete, range-restricted and non-recursive SLPs, we are tempted to
conclude that BLPs are more expressive than strict SLPs. However, SLPs’ and
BLPs’ formalisms are more or less intuitive, depending on the kind of knowledge
we want to model. It should be noted that BLP’s query-answering procedure
benefits from different frameworks, say logic programming and Bayesian net-
works, while inference mechanisms in SLPs are straightforward using only logic
programming.

Another finding is also shown in the study, denoting as PRMs 	b BLPs and
SRMs 	b SLPs. When considering models within the same probabilistic model
category (type 1 or type 2), BLPs (resp. SLPs) can naturally express PRMs
(resp. SRMs), i.e., translated models and queries can be forged, which compute
the same probability distributions.

We believe this study to be a formal basis for further research. Several learning
algorithms have been devised for SLPs [2,15,16], BLPs [11,12], PRMs [4,5] and
SRMs [5,6]. Further work thus includes the study of how inter-translations be-
tween those frameworks can help devising better learning algorithms for PLMs
depending on the kind of knowledge we want to model. For instance, inter-
translations of e-SLPs and BLPs can be used to extend learning techniques
designed for BLPs to the learning of e-SLPs (and vice-versa). Investigating such
extensions could be interesting. We also hope this study provide a bridge to
developing an integrated theory of probabilistic logic learning.

As the related studies, one may find an intuitive approach of translating SLPs
into BNs, Markov networks and stochastic context free grammars in [2]; a simpler
scheme for mapping PRMs to BLPs is contained in [3]; a theoretical comparison
of BLPs and Relational Markov Models (RMMs) is presented in [18]; and an-
other approach of analysing the expressive power of different probabilistic logic
languages could be found in [9,8] as well as in this volume.

Acknowledgement

We are very grateful to Aymeric Puech and Olivier Grisel for their initial contri-
butions on the topic when they were studying in Imperial College London. This
work was supported by the Royal Academy of Engineering/Microsoft Research
Chair on ‘Automated Microfluidic Experimentation using Probabilistic Inductive
Logic Programming’; the BBSRC grant supporting the Centre for Integrative
Systems Biology at Imperial College, Grant Reference BB/C519670/1; the BB-
SRC grant on ‘Protein Function Prediction using Machine Learning by Enhanced
Novel Support Vector Logic-based Approach’, Grant Reference BB/E000940/1;

A Behavioral Comparison of Some Probabilistic Logic Models 323

ESPRIT IST project ‘Application of Probabilistic Inductive Logic Programming
II (APRIL II)’, Grant reference FP-508861.

References

1. Bratko, I.: Prolog for artificial intelligence. Addison-Wesley, London (1986)
2. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn-

ing 44(3), 245–271 (2001)
3. De Raedt, L., Kersting, K.: Probabilistic Logic Learning. ACM-SIGKDD Explo-

rations: Special issue on Multi-Relational Data Mining 5(1), 31–48 (2003)
4. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational

models. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Confer-
ences on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 1300–1309.
Morgan Kaufmann, San Francisco (1999)

5. Getoor, L.: Learning Statistical Models from Relational Data. PhD thesis, Stanford
University (2001)

6. Getoor, L., Koller, D., Taskar, B.: Statistical models for relational data. In: Wrobel,
S. (ed.) MRDM 2002, University of Alberta, Edmonton, Canada, July 2002, pp.
36–55 (2002)

7. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelli-
gence 46, 311–350 (1989)

8. Jaeger, M.: Type extension trees: A unified framework for relational feature con-
struction. In: Gärtner, T., Garriga, G.C., Meinl, T. (eds.) Working Notes of the
ECML 2006 Workshop on Mining and Learning with Graphs (MLG 2006), Berlin,
Germany (September 2006)

9. Jaeger, M., Kersting, K., De Raedt, L.: Expressivity analysis for pl-languages. In:
Fern, A., Getoor, L., Milch, B. (eds.) Working Notes of the ICML 2006 Workshop
Open Problems in Statistial Relational Learning (SRL 2006), Pittsburgh, USA,
June 29 (2006)

10. Jensen, F.V.: Introduction to Bayesian Networks. Springer, New York (1996)
11. Kersting, K., De Raedt, L.: Adaptive Bayesian Logic Programs. In: Rouveirol, C.,

Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, Springer, Heidelberg (2001)
12. Kersting, K., De Raedt, L.: Towards Combining Inductive Logic Programming and

Bayesian Networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI),
vol. 2157, Springer, Heidelberg (2001)

13. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A.
(eds.) Proceedings of the Work-in-Progress Track at the 10th International Con-
ference on Inductive Logic Programming, pp. 138–155 (2000)

14. Muggleton, S.H.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in
Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

15. Muggleton, S.H.: Learning stochastic logic programs. Electronic Transactions in
Artificial Intelligence 4(041) (2000)

16. Muggleton, S.H.: Learning structure and parameters of stochastic logic programs.
In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, Springer,
Heidelberg (2003)

17. Muggleton, S.H., Firth, J.: CProgol4.4: a tutorial introduction. In: Dzeroski, S.,
Lavrac, N. (eds.) Relational Data Mining, pp. 160–188. Springer, Heidelberg (2001)

324 S. Muggleton and J. Chen

18. Muggleton, S.H., Pahlavi, N.: The complexity of translating blps to rmms. In:
Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 351–365. Springer, Heidelberg (2007)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Los Altos (1988)

20. Puech, A., Muggleton, S.H.: A comparison of stochastic logic programs and
Bayesian logic programs. In: IJCAI 2003 Workshop on Learning Statistical Models
from Relational Data, IJCAI (2003)

Model-Theoretic Expressivity Analysis

Manfred Jaeger

Institut for Datalogi, Aalborg University
Selma-Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

jaeger@cs.aau.dk

1 Introduction

In the preceding chapter the problem of comparing languages was considered
from a behavioral perspective. In this chapter we develop an alternative, model-
theoretic approach.

In this approach we compare the expressiveness of probabilistic-logic (pl-)
languages by considering the models that can be characterized in a language.
Roughly speaking, one language L′ is at least as expressive as another language
L, if every model definable in L also is definable in L′. Results obtained in the
model-theoretic approach can be somewhat stronger than results obtained in
the behavioral approach in that equivalence of models entails equivalent behav-
ior with respect to any possible type of inference tasks. On the other hand,
the model-theoretic approach is somewhat less flexible than the behavioral ap-
proach, because only languages can be compared that define comparable types
of models. A comparison between Bayesian Logic Programs (defining probability
distributions on possible worlds) and Stochastic Logic Programs (defining prob-
ability distributions over derivations), therefore, is already quite challenging in a
model-theoretic approach, as it requires first to define a unifying semantic frame-
work. In this chapter, therefore, we focus on pl-languages that exhibit stronger
semantic similarities (Bayesian Logic Programs (BLPs) [6], Probabilistic Rela-
tional Models (PRMs) [1], Multi-Entity Bayesian Networks [7], Markov Logic
Networks (MLNs) [12], Relational Bayesian Networks (RBNs) [4]), and first es-
tablish a unifying semantics for these languages. However, the framework we
propose is flexible to enough (with a slightly bigger effort) to also accommodate
languages like Stochastic Logic Programs [9] or Prism [13].

The focus of this chapter is expressivity analysis. Clearly, expressivity is only
one relevant aspect in the comparison of languages. Further highly important
issues are compactness of representation, efficiency of inference, and learnability
in different languages. A meaningful comparison of these issues, however, re-
quires concepts of equivalence of models and inferences, which is just what our
expressivity analysis provides. Thus, this analysis is to be understood as a first
step towards more comprehensive comparisons.

L. De Raedt et al. (Eds.): Probabilistic ILP 2007, LNAI 4911, pp. 325–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

326 M. Jaeger

2 PL-Models

In this chapter the word model is used to refer to unique distributions over some
state space. This is consistent with the usage in logic, where “model” refers to
a unique structure. It is different from the usage in statistics, where “model”
refers to a parametric class of distributions. Specifically, when we talk about the
model represented by some BLP, RBN or MLN, for example, we are referring to
a fully quantified BLP, etc., i.e. all numeric parameters set to specific values.

As a first step towards a unifying semantics for different pl-languages, we
have to find a common structure of the state spaces on which distributions are
defined. A sufficiently general class of state spaces consists of the spaces that
are generated by a set of random variables that can be written in the syn-
tactic form of ground atoms, e.g. blood pressure(tom), sister(susan,tom), geno-
type(mother(tom)),. . . These random variables take values in finite sets of states
that are associated with the relation symbol, e.g. states(genotype)={AA, Aa, aa}.
At this point we do not consider continuous variables. We call any assignment
of states to the set of all ground atoms constructible over a given vocabulary S
of relation, function and constant symbols (the Herbrand base of S, HB(S)) a
Multi-valued Herbrand interpretation.

To reason about identity we allow that =∈ S. The symbol = is seen as a binary
Boolean relation symbol. Interpretations of = are constrained to be consistent
with identity relation on domain elements (i.e. they must satisfy the axioms of
equality). Some languages (including RBNs and MLNs) use the = relation to de-
fine models, but do not provide probabilistic models of = itself. Some approaches
have been proposed to model “identity uncertainty”, i.e. to build probabilistic
models for = [10,8,11].

The set of all multi-valued Herbrand interpretations for S is denoted MVHI(S).
We use ω, ω′, . . . to denote individual multi-valued Herbrand interpretations. In
the case where all relations in S are Boolean, then these ω are also referred to
as possible worlds (in agreement with standard logic terminology). When ω ∈
MVHI(S), and S′ ⊆ S then ω[S′] denotes restriction of ω to the symbols in S′.
Similarly, when α is an arbitrary vector of ground S-atoms, then ω[α] denotes the
state assignment in ω to the ground atoms in α. Another notational convention
we will use is to refer by r/k to a relation symbol of arity k. Specifically, r/k ∈ S
is to be read as “r is a k-ary relation symbol in S”. Similarly for function symbols.

P on MVHI(S)

M ∈ L M ′ ∈ L′Translation

Fig. 1. Preliminary translation schema

Model-Theoretic Expressivity Analysis 327

We always assume that probability distributions P on MVHI(S) are defined
on the σ-algebra A(S) generated by all elementary events of the form α = s,
where α ∈ HB(S), and s is a value in the state space of α.

Figure 1 gives a preliminary view of the model-theoretic language comparison:
a language L′ is at least as expressive as a language L, if for every model M ∈ L
defining a distribution P on MVHI(S) there exists a model M ′ ∈ L′ defining the
same distribution. The schema in Figure 1 is not yet fully adequate, however.
The first problem with this schema is that we cannot expect the model M ′

to define a distribution on exactly the same state space MVHI(S) as M . For
example, language L′ might only permit Boolean relations, whereas L operates
with multi-valued relations. The translation from M to M ′ then will involve a
“binarization” of the vocabulary S, leading to a new vocabulary S′, and hence a
different probability space MVHI(S′). We must therefore allow that M ′ does not
represent exactly the distribution P defined by M , but only that M ′ defines some
P ′ that encodes all the information contained in P . In the following definition
we formalize this scenario. The definition also provides for the case where the
model M ′ does not encode all of M , but only as much as is needed to answer a
restricted class of queries.

Definition 1. Let P, P ′ be probability distributions over MVHI(S), respectively
MVHI(S′). Let Q ⊆ A(S). A Q-embedding of P in P ′ is a mapping

h : Q → A(S′) (1)

such that for all Q ∈ Q:
P (Q) = P ′(h(Q)).

We write P �Q P ′ if there exists a Q-embedding of P in P ′.
A conditional Q-embedding of P in P ′ is a mapping (1) together with a subset

C ∈ A(S), such that for all Q ∈ Q:

P (Q) = P ′(h(Q) | C).

We write P �Q,c P ′ if there exists a conditional Q-embedding of P in P ′.
If Q = A(S) we just write �,�c instead of �Q,�Q,c.

An important example for Q is the set of all events of the form α = s. If then
P �Q P ′, we can retrieve from P ′ all single variable marginals of P , but not
necessarily joint or conditional distributions of P .

We now turn to a second, more subtle and fundamental deficiency of the
schema in Figure 1. Consider the situation where MVHI(S) is finite (which
happens when S contains only finitely many constant and no function symbols).
In this case basically every pl-language will be able to represent any distribution
P on MVHI(S) (P could be expressed by a Bayesian network with one node
for each α ∈ HB(S); for essentially all pl-languages it is known that they can
encode any standard Bayesian network). Thus, it would immediately follow that
for purely relational vocabularies all pl-languages are equally expressive, and
that they have the same expressive power as standard Bayesian networks.

328 M. Jaeger

To see why this argument misses the point, consider a typical pl-model for
genotypes in a pedigree. Such a model would be given by two distinguishable
elements: on the one hand, there are general probabilistic rules that specify, for
example, that each of the two alleles of one gene is passed from parent to child
with equal probability, or that specify the probability of a random mutation. On
the other hand, there are basic facts that describe the structure of the pedigree,
e.g. that John and Mary are the parents of Paul. The power and usefulness
of pl-languages derives from this modularity that separates generic underlying
probabilistic rules from domain-specific information.

The modularity in the model specification is most clearly expressed in PRMs,
where the specification of the skeleton structure is distinguished from the actual
probabilistic model, and in RBNs, where the specification of an input structure
is distinguished from the specification of the actual RBN model. BLPs make a
distinction between the intensional and the extensional model part, where the
extensional part mostly is expressed in terms of special logical relations, roughly
corresponding to the predefined relations of RBNs.

In the following we adopt the extensional/intensional terminology (originating
in database theory), and by the following definition demand that a pl-model has
a modular structure that separates the generic, high-level (intensional) part of
the model from a specific, non-probabilistic (extensional) domain specification.

Definition 2 (PL-model). A PL-model M for a vocabulary S is a specification
in a formal language L of a probability distribution P [M] on MVHI(S). The
model M can be decomposed as M = (Mint, Mext), such that

(i) For a given Mint there exist infinitely many different M
(1)
ext , M

(2)
ext , . . ., such

that (Mint, M
(i)
ext) defines a distribution on some MVHI(Si), where for i �= j

the vocabularies Si, Sj contain different constant symbols.
(ii) If α ∈ HB(S) with 0 < P [M](α) < 1, then there exists M ′ = (M ′

int, Mext)
with P [M ′](α) �= P [M](α).

Definition 2 requires that a model M has a modular structure (Mint, Mext).
Moreover, conditions (i) and (ii) make certain minimal requirements for the
components: condition (i) ensures that the generic, intensional part of the model
gives rise to infinitely many concrete model instances obtained by exchanging
the extensional part, and that these changes permit a change of the underlying
domain as represented by the constants in S. Condition (i) alone would per-
mit the trivial decomposition M = (∅, Mext). Condition (ii), therefore, requires
that Mint actually contains the essential probabilistic information, and that by
changes to Mint (typically just by change of numerical parameter values) one
can change the quantitative aspects of the model.

It must be emphasized that the partitioning of a model into intensional and
extensional part may not be unique. For some languages there exists a canonical
decomposition that is also reflected in a syntactic distinction between the two
parts. For other languages, several meaningful partitions satisfying Definition 2
can exist.

Model-Theoretic Expressivity Analysis 329

Mint

Mext

M ′
int

M ′
ext

P P ′

tint

text

Embedding

Fig. 2. Translations and Embeddings

We now arrive at the refined schema in Figure 2: to show that L′ is at least
as expressive as L, we have to find translations between L and L′ models that
respect the modular structure of the models, i.e. we need separate translations
for the intensional and extensional parts. For the following precise definition
we take it for granted that for L and L′ decompositions into intensional and
extensional parts have been defined, and emphasize that modifications to how
intensional and extensional parts are identified can lead to changes in the partial
expressivity order � here defined.

Definition 3. Language L′ is at least as expressive as L with respect to queries
Q, L �Q L′, if ∃tint∀Mint∃text∀Mext

P [Mint, Mext]�QP [tint(Mint), text(Mext)] (2)

If (2) is only satisfied by a conditional embedding �Q,c, we write L �Q,c L′.

The quantifier string ∃tint∀Mint∃text∀Mext in Definition 3 requires some expla-
nation. According to the definition, the exact translation used for the extensional
part may depend on the concrete intensional part. This reflects to some extent
the “primacy” of the intensional model part, which is supposed to contain the
essential probabilistic specifications, whereas the extensional part contains an-
cillary domain information. The following example illustrates how the possible
dependence of text on Mint can become relevant in practice.

Example 1. One special application of comparisons of the form L � L′ is the
case where L′ is a fragment of L. In such a case, a relation L � L′ is basically a
normal form theorem: every model M is equivalent to a model M ′ in a normal
form characterized by the syntactic restrictions of L′. As an example, let L be
the language of BLPs, and L′ the BLP fragment in which Bayesian clauses are
not allowed to contain constant symbols.

Consider the following BLP (here not showing the probability annotation of
the intensional clauses):

Mext :
father(peter,paul)
mother(mary,paul)
Mint :
bloodtype(X)|father(thomas,X)
bloodtype(X)|father(Y,X),mother(Z,X),bloodtype(Y),bloodtype(Z)

330 M. Jaeger

Here an intensional probabilistic rule contains the constant ‘thomas’. In order
to eliminate the occurrence of this constant, we can introduce a new unary
relation symbol thomas rel/1, and translate the original model into

M ′
ext :

father(peter,paul)
mother(mary,paul)
thomas rel(thomas)
M ′

int :
bloodtype(X)|father(Y,X),thomas rel(Y)
bloodtype(X)|father(Y,X),mother(Z,X),bloodtype(Y),bloodtype(Z)

In general, tint replaces constants cons in Mint with new variables, and adds
cons rel() atoms to the clauses. This translation is independent of Mext. The
translation text adds clauses cons rel(cons) to Mext. This depends on Mint,
because we first have to inspect Mint in order to find the constant symbols in
need of elimination.

3 Case Study: MLNs and RBNs

In this section we apply the general framework established in the previous section
to compare the expressiveness of Markov Logic Networks [12] with Relational
Bayesian Networks [4]. We begin by briefly reviewing the essential concepts and
definitions for both languages.

3.1 Markov Logic Networks

In the following we give a definition of MLNs following [12]. Notation and pre-
sentation are somewhat adapted to our general conceptual setting. In particular,
we make explicit an intensional/extensional division in MLN models, which is
only implicit in the original definitions. Our definitions are based on the known
functions assumption stated in [12], which basically stipulates that all function
symbols in the language have a fixed and known interpretation, and are not mod-
eled probabilistically. The general MLN paradigm allows to relax or eliminate
this assumption. The translation we present in this chapter can be generalized
also to MLN versions without the known functions assumption.

Under the known function assumption, MLNs contain a domain specification
given by a set of constant symbols Smln

C , and interpretations over this domain
of a set of function symbols Smln

F . This domain specification is the extensional
part of the model, i.e.

Mmln
ext ∈ MVHI(Smln

ext),

where Smln
ext := Smln

C ∪ Smln
F ∪ {=}.

The intensional part of an MLN is given by a set of pairs

Mmln
int = {(φi(x1, . . . , xki), wi) | i = 1, . . . , n}, (3)

Model-Theoretic Expressivity Analysis 331

Here the φi are first-order logic formulas in Smln := Smln
ext ∪ Smln

R , where Smln
R

is a set of Boolean relation symbols. The wi are numbers in R ∪ {∞}. Mmln =
(Mmln

ext , Mmln
int) defines a distribution on MVHI(Smln) as follows:

P [Mmln](ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if ω[Smln
ext] �= Mmln

ext ,
or ω �|= ∀xφi(x) for some i with wi =∞

1
Z exp(

n∑

i=1

wi �=∞

ni(ω)wi) otherwise

(4)
where ni(ω) is the number of true instances of φi in ω obtained by grounding φi

with constants from Smln
C . Z is a normalizing constant.

Table 1. MLN: friends and smokers example

φi wi

Fr(x, y) ∧ Fr(y, z)⇒ Fr(x, z) 0.7
¬∃yFr(x, y)⇒ Sm(x) 2.3
Sm(x)⇒ Ca(x) 1.5
Fr(x, y)⇒ (Sm(x)⇔ Sm(y)) 1.1
Fr(Anna,Bob) ∞

Example 2. (adapted from [12]) Table 1 shows a small intensional model using
relation symbols Smln

R = {Fr(iend),Sm(okes),Ca(ncer)}. The model consists of
four weighted formulas expressing, respectively, that the friends relation is tran-
sitive, friendless people smoke, smoking causes cancer, and friends will either
both smoke or both not smoke. Furthermore, there is a hard constraint say-
ing that Anna is friends with Bob (not necessarily implying the converse). This
intensional model is to be combined with domain specifications given by a set
of constants, including the constants Anna,Bob, e.g Smln

C = {Anna,Bob,Paul}.
There are no function symbols, so this set of constants (together with the unique
names assumption) defines Mmln

ext ∈ MVHI(Smln
C ∪ {=}).

A B

P

Fig. 3. A small ω ∈ MVHI(SC ∪ SR ∪ {=})

332 M. Jaeger

Let ω ∈ MVHI(Smln
ext) as shown in Figure 3, where arrows indicate the interpre-

tation of the Fr relation, light shading indicates the objects for which Sm is true,
and dark shading indicates the objects for which Ca is true. In ω there are 26
groundings that satisfy φ1(x, y, z) (there are 33 possible groundings, and only the
grounding x = A, y = B, z = A does not satisfy φ1), i.e. n1(ω) = 26. Similarly,
n2(ω) = 3 (the condition ¬∃yFr(x, y) is not satisfied for any x), n3(ω) = 2, and
n4(ω) = 7 (this example highlights some potential difficulties with calibrating
the weights for material implications, which can have a large number of true
groundings simply because most groundings do not satisfy the antecedent).

3.2 Relational Bayesian Networks

We here give a condensed summary of all relevant technical definitions for syntax
and semantics of RBNs. For more detailed explanations and motivating examples
the reader is referred to [5].

In RBN models the vocabulary is partitioned into predefined (extensional) and
probabilistic (intensional) symbols: Srbn = Srbn

ext ∪Srbn
int , where Srbn

ext consists of re-
lation and constant symbols (including the = relation), and Srbn

int of relation sym-
bols only. The extensional part of a RBN model consists of M rbn

ext ∈ MVHI(Srbn
ext),

where the interpretation of = follows the unique names assumption (in the orig-
inal RBN terminology, M rbn

ext is called an input structure).
The intensional part (i.e. the RBN proper) consists of a collection of probability

formulas Fr for the intensional relations:

M rbn
int = {Fr(x1, . . . , xk) | r/k ∈ Srbn

int }. (5)

Probability formulas are formal expressions generated by a syntax which can be
seen as a probabilistic counterpart of the syntax of predicate logic: the probability
formula constructs of atoms, convex combinations and combination functions (cf.
Table 2) correspond to predicate logic constructs of atomic formulas, Boolean
connectives, and quantification, respectively. A first-order formula φ(x1, . . . , xk)
evaluates for particular domain elements c1, . . . , ck from some possible world ω
to a truth value φ(c1, . . . , ck)[ω] ∈ {true, false} (note that φ(c1, . . . , ck)[ω] = true
is synonymous with ω |= φ(c1, . . . , ck)).

A probability formula F (x1, . . . , xk) evaluates to a probability value

F (c1, . . . , ck)[ω] ∈ [0, 1].

Both the first-order and the probability formula depend for their evaluation
usually not on the whole possible world ω, but only on the truth values of a set
of ground atoms α(φ, c), respectively α(F, c). For example, the evaluation of
the first-order formula φ(x) = ∃y(r(x, y) ∧ t(y)) depends for x = c on the atoms
r(c, c′), t(c′) for all c′ in the domain of ω.

In the case of probability formulas we will be mostly interested in the de-
pendence on Srbn

int -atoms. The set of Srbn
int -atoms that the evaluation of F (c)[ω]

depends on is determined by c and the extensional part of ω, i.e. ω[Srbn
ext]. We

write α(F, c, ω[Srbn
ext]) for this set of ground Srbn

int -atoms.

Model-Theoretic Expressivity Analysis 333

Table 2 now summarizes syntax and semantics of probability formulas. Shown
are the syntactic form of the formulas F (x) constructed via the four different
construction rules, a specification of the sets α(F, c, ω[Srbn

ext]), and the computa-
tion rule for the probability value F (c)[ω]. The combination function construct
here is only shown for the noisy-or combination function, which is the only one
we will need for MLN encodings.

Table 2. RBN syntax and semantics – F1, F2, F3, F
′ are any probability formulas;

ψ(x,y) is any Boolean combination of Srbn
ext -atoms

F (x) α(F, c, ω[Srbn
ext])

Constant p (p ∈ [0, 1]) ∅
Atom r(x) (r ∈ Srbn

int) r(c)

Convex Com-
bination

(F1 : F2, F3) ∪3
i=1α(Fi, c, ω[Srbn

ext])

Combination
Function

noisy-or{F ′(x, y) | y : ψ(x,y)}
�
c′

ω[Srbn
ext]|=ψ(c,c′)

α(F, (c, c′), ω[Srbn
ext])

F (c)[ω]

Constant p

Atom

�
1 if r(c)[ω] = true
0 otherwise

Convex Combination F1(c)[ω]F2(c)[ω] + (1− F1(c)[ω])F3(c)[ω]

Combination Function 1−
�
c′

ω|=ψ(c,c′)

(1− F (c, c′)[ω])

A pair M rbn = (M rbn
ext , M rbn

int) induces a dependency relation between Srbn
int -

atoms:
r(c) � r′(c′) :⇔ r′(c′) ∈ α(Fr, c, M rbn

ext).

If this dependency relation is acyclic, then we obtain a well-defined probability
distribution on MVHI(S) via

P [M rbn](ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ω[Srbn
ext] �= M rbn

ext∏

r∈Srbn
int

∏

c

ω|=r(c)

Fr(c)[ω]
∏

c

ω �|=r(c)

(1 − Fr(c)[ω]) otherwise

Probability formulas can encode standard first-order formulas in the following
sense: for all first-order φ(x) there exists a probability formula Fφ(x), such that

334 M. Jaeger

for all ω, c: φ(c)[ω] = true iff Fφ(c)[ω] = 1, and φ(c)[ω] = false iff Fφ(c)[ω] =
0 [4]. This encoding will be the cornerstone for our MLN to RBN translation in
the next section.

3.3 MLN to RBN Translation

Let Mmln = (Mmln
ext , Mmln

int) be a MLN model with Mmln
int as in (3). We begin by

defining the vocabulary for the target RBN model:

Srbn
ext = Smln

C ∪ {rf/(k + 1) | f/k ∈ Smln
F }

Srbn
int = Smln

R ∪ {rφi/ki | i = 1, . . . , n}.
Thus, Srbn

ext is Smln
C ∪ Smln

F with relations instead of functions, and Srbn
int adds to

Smln
R new relation symbols rφi corresponding to the formulas in Mmln

int .
The translation text is independent of the intensional model part Mmln

int , and
simply consists of a transformation of Mmln

ext ∈ MVHI(Smln
ext) into M rbn

ext ∈
MVHI(Srbn

int) by replacing interpretations of f/k ∈ Smln
F with corresponding

interpretations of rf/(k + 1) ∈ Srbn
ext .

To define M rbn
int := tint(Mmln

int), we have to define for each relation r ∈ Srbn
int a

probability formula. For r/k ∈ Smln
R we simply define:

Fr(x1, . . . , xk) = 0.5. (6)

The formulas Fr (r ∈ Smln
R) together with the input structure M rbn

ext define a
uniform distribution over {ω ∈ MVHI(Srbn

ext , Smln
R) | ω[Srbn

ext] = M rbn
ext }.

The core of the translation lies in the definition of probability formulas Fφi

for the new relation symbols rφi . The main component in the construction of
the Fφi are sub-formulas Hφi that are essentially encodings of the formulas φi,
as mentioned at the end of the preceding section. More precisely, we construct
probability formulas Hφi with the following properties:

(i) α(Hφi , c, ω[Srbn
ext]) only contains atoms in relations from Smln

R .
(ii) Hφi(c)[ω] ∈ {0, 1} for all ω, c.
(iii) For all ω ∈ MVHI(Smln), c, and ω′ ∈ MVHI(Srbn

ext , Smln
R) with ω′[Srbn

ext] =
text(ω[Smln

ext]) and ω′[Smln
R] = ω[Smln

R]:

φi(c)[ω] = true ⇔ Hφi(c)[ω′] = 1.

The formulas Hφ are defined inductively in the manner described in [4]. Some
additional provisions are necessary for dealing with the transformation of func-
tion symbols into a relational representation.

Case 1a: φ is a relational atom. This is the most difficult case, as it involves
the elimination of function. We demonstrate the construction of Hφ by a generic
example: let φ = r(f(d), x), with r ∈ Smln

R , f ∈ Smln
F , d ∈ Smln

C . Define

Hφ(x) := noisy-or{r(y, x) | y : rf (d, y)}.
According to the semantics of probability formulas, the evaluation Hφ(c)[ω′]
performs all substitutions r(y, c)[y/c′] for c′ ∈ Smln

C that satisfy rf (d, c′), by

Model-Theoretic Expressivity Analysis 335

evaluating the resulting ground probability formulas, and by combining all values
so obtained by noisy-or. We first observe that this evaluation does not require
truth values of any atoms in the relations rφi , so that (i) is satisfied. By the
definition of M rbn

ext , the condition rf (d, y) is satisfied exactly for y = c′ with
c′ = f(d) in Mmln

ext . Thus, only this substitution is performed, and the evaluation
of Hφ(c)[ω′] reduces to the evaluation of noisy-or{r(c′, c)}. The evaluation of
r(c′, c) returns 1, respectively 0, according to whether r(c′, c) is true, respectively
false, in ω′, or, equivalently r(f(d), c) is true, respectively false, in ω. Since, finally
noisy-or{0} = 0 and noisy-or{1} = 1, we obtain (ii) and (iii).

Case 1a: φ is an equational atom. This case is similar. The formula for the
equational atom f(c) = x is given by noisy-or{1 | y : rf (c, y) ∧ y = x}. This
construction utilizes the convention that noisy-or∅ := 0.

Case 2a (Negation): φ(x) = ¬ψ(x). Define Hφ(x) := (Hψ(x) : 0, 1), using the
convex combination construct for probability formulas.

Case 2a (Conjunction): φ(x) = ψ(x)∧χ(x): Define Hφ(x) := (Hψ(x) : Hχ(x), 0),
again using convex combinations.

Case 3 (Existential quantifiers): φ(x) = ∃yψ(x, y). Define Hφ(x) := noisy-or
{Hψ(x, y) | y : τ}, where τ stands for a tautological constraint (e.g. y = y).
Thus, the sub-formula Hψ(x, c) will be evaluated for all c ∈ C, and Hφ(x)
returns 1 iff Hψ(x, c) evaluates to 1 for at least one c ∈ C.

In all cases condition (i) is immediate from the syntactic form of the con-
structed probability formulas (they do not contain any φi-atoms), and (ii),(iii)
follow from the evaluation rules for probability formulas.

Given the formulas Hφi , we define the final probability formulas Fφi as follows:

Fφi(x) :=

⎧
⎨

⎩

(Hφi : 1, 0) if wi = ∞
(Hφi : 1, 1/ewi) if ∞ > wi ≥ 0
(Hφi : ewi , 1) if wi < 0

Example 3. Table 3 shows the formulas Hφi and Fφi for φ1, . . . , φ5 from Table 1.
Here we have translated implications φ ⇒ ψ directly into probability formulas
(Hφ : Hψ, 1), rather than applying the translation given above for ¬ and ∧ to
¬(φ ∧ ¬ψ). Note, too, that we need to encode Fr(Anna,Bob) in the roundabout
way shown in the table, because the RBN syntax does not allow constants from
Srbn

ext as arguments in atomic relation formulas (cf. Table 2).

Table 3. Translation of Mmln
int of Table 1

Hφi Fφi

((Fr(x, y) : Fr(y, z), 0) : Fr(x, z), 0) (Hφ1 : 1, 0.496)
(noisy-or{(Fr(x, y) : Sm(x), 1) | y : y = y} : 0, 1) (Hφ2 : 1, 0.1)
(Sm(x) : Ca(x), 1) (Hφ3 : 1, 0.223)
(Fr(x, y) : (Sm(x) : Sm(y), (Sm(y) : 0, 1))) (Hφ4 : 1, 0.332)
noisy-or{Fr(x, y) | x, y : x = Anna ∧ y = Bob} (Hφ5 : 1, 0)

336 M. Jaeger

Having defined the translations text, tint, we have to show that

P [Mmln] �c P [M rbn]. (7)

where Mmln = (Mmln
int , Mmln

ext) and M rbn = (tint(Mmln
int), text(Mmln

ext)). For this we
have to find a suitable embedding, and a conditioning set C.

Since both MVHI(Smln) and MVHI(Srbn) are finite, we need to define the
embedding h(Q) only for singleton Q = {ω} (ω ∈ MVHI(Smln)). First define
h̃(ω) ∈ MVHI(Srbn

ext , Smln
R) as the unique ω̃ with ω̃[Srbn

ext] = text(ω[Smln
ext]), and

ω̃[Smln
R] = ω[Smln

R]. Now let

h(ω) := {ω′ ∈ MVHI(Srbn) | ω′[Srbn
ext , Smln

R] = h̃(ω)}. (8)

Thus, h(ω) contains all possible extensions of h̃(ω) with interpretations of the
relations rφi/ki ∈ Srbn

int \ Smln
R .

Now let

C := {ω′ ∈ MVHI(Srbn) | ∀i = 1, . . . , n∀c : rφi(c)[ω′] = true}. (9)

To show (7) it is sufficient to show that for all ω ∈ MVHI(Smln):

P [Mmln](ω) = 0 ⇔ P [M rbn](h(ω) | C) = 0, (10)

and for all ω1, ω2 ∈ MVHI(Smln) with P [Mmln](ωi) > 0:

log
P [Mmln](ω1)
P [Mmln](ω2)

= log
P [M rbn](h(ω1) | C)
P [M rbn](h(ω2) | C)

. (11)

It is quite straightforward to verify (10) from the definitions of P [Mmln] and
P [M rbn]. We therefore only show (11), for which we then can make the simpli-
fying assumption that wi < ∞ for all i. By the semantics of MLNs, we obtain
for the left-hand side of (11):

log
P [Mmln](ω1)
P [Mmln](ω2)

=
n∑

i=1

wi(ni(ω1) − ni(ω2)), (12)

For the right-hand side, we first obtain

log
P [M rbn](h(ω1) | C)
P [M rbn](h(ω2) | C)

= logP [M rbn](h(ω1) ∩ C) − logP [M rbn](h(ω2) ∩ C)

= logP [M rbn](h(ω1))P [M rbn](C | h(ω1))−logP [M rbn](h(ω2))P [M rbn](C | h(ω2))

= logP [M rbn](C | h(ω1)) − logP [M rbn](C | h(ω2)). (13)

The last equality follows from P [M rbn](h(ω1)) = P [M rbn](h(ω2)), which holds
because P [M rbn](h(ωi)) is equal to the marginal probability P [M rbn](h̃(ωi))
defined by M rbn

ext and the probability formulas for r ∈ Smln
R alone. According to

(6), these probabilities are uniform over the ω that have nonzero probability.

Model-Theoretic Expressivity Analysis 337

We now determine

P [M rbn](C | h(ωi)) =
n⋂

i=1

⋂

c

P [M rbn](rφi(c) = true | h(ωi)).

Since Fφ(c) only depends on relations in Smln
R , we have that the random vari-

ables rφi(c) are conditionally independent given an interpretation of all relations
in Smln

R . Furthermore, since all ω′ ∈ h(ω) have the same interpretation of Smln
R ,

we obtain
P [M rbn](rφi (c) = true | h(ωi)) = Fφi(c)[h̃(ω)].

This gives us

logP [M rbn](C | h(ω)) =
n∑

i=1

∑

c

logFφi(c)[h̃(ω)]

=
n∑

i=1

wi≥0

(
∑

c

h̃(ω)|=φi(c)

log(1) +
∑

c

h̃(ω) �|=φi(c)

log(1/ewi))

+
n∑

i=1

wi<0

(
∑

c

h̃(ω)|=φi(c)

log(ewi) +
∑

c

h̃(ω) �|=φi(c)

log(1))

=
∑

i:wi≥0

−wi(Ni − ni(ω)) +
∑

i:wi<0

wini(ω), (14)

where Ni is the total number of possible groundings c of φi(x), and, thus, Ni −
ni(ω) is the number of groundings with h̃(ω) �|= φi(c). The terms −wiNi cancel
when taking the difference in (13), so that we finally obtain for the right-hand
side of (11) the same expression as in (12) for the left-hand side.

We have now shown that RBNs are at least as expressive as MLNs. It is an
open question whether the converse also holds.

Beyond the pure expressivity result, our MLN to RBN translation provides
some additional insights: first, it is clear that the size of the RBN encoding of
a MLN model is linear in the size of the MLN, so that compactness of repre-
sentation is preserved. Second, one can see that MLN models and their RBN
encodings will exhibit very similar behavior in terms of inference complexity:
inference for MLNs is conducted on a ground Markov network [12] whose nodes
are ground atoms in the relations from Smln

R with constants from Smln
C . Inference

for RBNs (usually) is conducted on a ground Bayesian network, whose nodes are
ground atoms in the relations from Srbn

int with constants from Smln
C . For inference,

this Bayesian network will first be transformed into its moral graph. This moral
graph turns out to have essentially the same structure as the ground Markov
network from the MLN, only that to the cliques of Smln

R -nodes are attached
nodes with ground rφ-atoms. Since for inference these nodes are all instantiated

338 M. Jaeger

to true, they can easily be eliminated, and one ends up with a graphical support
structure for inference in the RBN model that is identical to the ground Markov
network. Thus, the commonly used inference techniques (exact or approximate)
that operate on ground graphical models will show very similar behavior for
MLN and RBN encodings. This does not preclude the possibility, however, that
for one language one might find a more sophisticated inference technique, which
does not readily translate into a corresponding inference technique for the other
language.

4 Conclusion

In this chapter we have developed a model-theoretic framework for comparisons
of probabilistic logic languages. The framework is based on the key hypothesis
that the essential feature of pl-languages is their modularity: they allow to repre-
sent general, high-level probabilistic specifications (the intensional model part),
that is combined with the specification of concrete domains (the extensional
model part).

Within this framework we have shown that the RBN language can encode
MLN models. This result is based on basic versions of RBNs and MLNs. Both
languages can be extended in various ways, e.g. to provide probabilistic models of
functions in addition to probabilistic relations, or to provide probabilistic models
for infinite domains [2,14]. For some of the simpler extensions the basic transla-
tion method described in this chapter will also be applicable. For more complex
extensions (notably infinite domains), however, some substantial additional ef-
fort may be required to determine whether MLN models can be translated into
RBN models, or vice-versa.

Turning our attention to other languages, we conjecture that BLPs and RBNs
are equally expressive when both languages are restricted to the noisy-or combi-
nation function. Since only noisy-or is required for the RBN encodings of MLNs,
this would also mean that MLN �c BLP .

Acknowledgments

The author wants to thank Kristian Kersting and Luc De Raedt for many fruitful
discussions on the topic of this paper. A preliminary account of some of the
material in this chapter was given in [3]. This work was supported in part by the
EU IST program: FP6-508861, Application of Probabilistic ILP II (April-II).

References

1. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI 1999) (1999)

Model-Theoretic Expressivity Analysis 339

2. Jaeger, M.: Reasoning about infinite random structures with relational bayesian
networks. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) Proceedings of the
6th International Conference on Principles of Knowledge Representation and Rea-
soning (KR 1998), Trento, Italy, pp. 570–581. Morgan Kaufmann, San Francisco
(1998)

3. Jaeger, M., Kersting, K., De Raedt, L.: Expressivity analysis for pl-languages (po-
sition paper). In: Online Proceedings of the Workshop on Statistical Relational
Learning (SRL 2006) (2006)

4. Jaeger, M.: Relational bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Pro-
ceedings of the 13th Conference of Uncertainty in Artificial Intelligence (UAI-13),
Providence, USA, pp. 266–273. Morgan Kaufmann, San Francisco (1997)

5. Jaeger, M.: Complex probabilistic modeling with recursive relational Bayesian net-
works. Annals of Mathematics and Artificial Intelligence 32, 179–220 (2001)

6. Kersting, K., De Raedt, L.: Towards combining inductive logic programming with
bayesian networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI),
vol. 2157, pp. 118–131. Springer, Heidelberg (2001)

7. Laskey, K.B., da Costa, P.C.G.: Of starships and klingons: Bayesian logic for the
23rd century. In: Proceedings of UAI 2005 (2005)

8. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: Blog: Prob-
abilistic logic with unknown objects. In: Proc. 19th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 1352–1359 (2005)

9. Muggleton, S.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

10. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and
citation matching. In: Proceedings of NIPS 2003 (2003)

11. Poole, D.: Logical generative models for probabilistic reasoning about existence,
roles and identity. In: Proceedings of AAAI 2007 (2007)

12. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

13. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP 1995), pp. 715–729 (1995)

14. Singla, P., Domingos, P.: Markov logic in infinite domains. In: Proceedings of UAI
2007 (2007)

Author Index

Chen, Jianzhong 244, 305
Cussens, James 156

De Raedt, Luc 1, 28, 189
Domingos, Pedro 92

Fages, François 287
Frasconi, Paolo 56

Gutmann, Bernd 28

Jaeger, Manfred 325

Kameya, Yoshitaka 118
Karwath, Andreas 28
Kelley, Lawrence 244
Kersting, Kristian 1, 28, 189
Kok, Stanley 92

Landwehr, Niels 28, 263
Lowd, Daniel 92

Mielikäinen, Taneli 263
Muggleton, Stephen 244, 305

Page, David 156
Passerini, Andrea 56
Poole, David 222
Poon, Hoifung 92

Richardson, Matthew 92

Santos Costa, Vı́tor 156
Sato, Taisuke 118
Singla, Parag 92
Soliman, Sylvain 287
Sternberg, Michael 244

	Title Page
	Preface
	Table of Contents
	Probabilistic Inductive Logic Programming
	Introduction
	Logic Programming Concepts
	Inductive Logic Programming (ILP) and Its Settings
	Learning from Entailment
	Learning from Interpretations
	Learning from Proofs

	Probabilistic ILP Settings
	Probabilistic Learning from Interpretations
	Probabilistic Proofs
	Probabilistic Learning from Entailment

	Probabilistic ILP: A Definition and Example Algorithms
	Parameter Estimation
	Structure Learning
	Learning from Probabilistic Interpretations
	Learning from Probabilistic Proofs
	Probabilistic Learning from Entailment

	Conclusions

	Relational Sequence Learning
	Introduction
	Sequential Learning
	Moving to More Complex Sequences
	Mining Logical Sequences
	Relational Alignments
	Sequence Alignment Algorithms
	Moving Towards the Alignment of Relational Sequences
	Relational Information Content
	Relational Sequence Logos

	Relational Grams
	Logical Hidden Markov Models
	Relational Conditional Random Fields
	TildeCRF
	Making Predictions

	Relational Sequential Decision Making
	Markov Decision Processes
	Abstract Policies
	Relational Temporal Difference Learning

	Conclusions

	Learning with Kernels and Logical Representations
	Introduction
	Notation and Background Concepts
	Supervised Learning in the Statistical Setting
	Supervised Learning with Kernel Machines
	Convolution Kernels for Discrete Structures
	Normalization and Composition
	A Framework for Statistical Logical Learning
	Types

	Kernels on Prolog Ground Terms
	Motivations
	Untyped Terms
	Typed Terms
	A Guided Example: Alkanes

	Declarative Kernels
	Mereotopology
	Mereotopological Relations
	The Contribution of Parts
	The Contribution of Other MRs
	The General Case
	Remarks
	A Guided Example: Mutagenesis

	Kernels on Prolog Proof Trees
	Traces and Proof Trees
	Kernels on Traces
	A Guided Example: Bongard Problems

	kFOIL
	The Feature Space of kFOIL
	The kFOIL Learning Algorithm
	A Guided Example: Biodegradability

	Applications
	Declarative Kernels for Information Extraction
	Proof Tree Kernels for Protein Fold Classification

	Conclusions

	Markov Logic
	Introduction
	Markov Networks
	First-Order Logic
	Markov Logic
	Inference
	MAP/MPE Inference
	Marginal and Conditional Probabilities

	Learning
	Generative Weight Learning
	Discriminative Weight Learning
	Structure Learning

	Applications
	Entity Resolution
	Information Extraction

	The Alchemy System
	Current and Future Research Directions
	Conclusion

	New Advances in Logic-Based Probabilistic Modeling by PRISM
	Introduction
	The Basic System
	Programs as Distributions
	Realizing Generality with Efficiency

	Belief Propagation
	Belief Propagation Beyond HMMs
	Logical Junction Tree
	Computing Generalized Inside-Outside Probabilities
	Marginal Distribution
	Deriving BP Messages

	Performance Data
	Computing Performance with PCFGs
	Computing Performance with BNs

	Generative Modeling with Constraints
	Loss of Probability Mass
	Constraints and Improper Distributions
	Conditional Distributions and Their EM Learning
	Agreement in Number
	Constrained HMMs

	Related Work and Discussion
	Semantic Aspects
	Probability Computation
	EM Learning

	Conclusion

	CLP(BN): Constraint Logic Programming for Probabilistic Knowledge
	Introduction
	CLP(BN) Goes to School
	The CLP(BN) Language
	Execution

	Foundations
	Detailed Syntax
	Operational Semantics
	Model-Theoretic Semantics
	Agreement Between Operational and Model-Theoretic Semantics

	Non-determinism and Aggregates
	Building Aggregates

	Recursion and Sequences
	Learning with CLP(BN)
	The School Database
	EachMovie

	Relationship to PRMs
	Other Related Work
	Conclusions and Future Work

	Basic Principles of Learning Bayesian Logic Programs
	Introduction
	Bayesian Logic Programs
	Representation Language
	Declarative Semantics

	The Learning Problem
	Data Cases
	The Hypothesis Space
	Scoring Function

	Scooby: An Algorithm for Learning Intensional Bayesian Logic Programs
	The Propositional Case: Bayesian Networks
	The First Order Case: Bayesian Logic Programs
	Discussion

	Learning Probabilities in a Bayesian Logic Program
	Maximum Likelihood Estimation
	Gradient-Based Approach
	Expectation-Maximization (EM)
	Gradient vs. EM

	Experiments
	Genetic Domain
	Bongard Domain
	KDD Cup 2001

	Related Work
	Conclusions

	The Independent Choice Logic and Beyond
	Introduction
	Background
	Logic Programming
	Belief Networks
	The Independent Choice Logic
	Semantics
	ICL and Belief Networks
	Unknown Objects
	ICL as a Programming Language
	ICL, Abduction and Logical Argumentation
	Other Formalisms

	Ongoing Research
	Continuous Variables
	Reasoning in the ICL
	ICL and Learning
	Existence and Identity

	Conclusion

	Protein Fold Discovery Using Stochastic Logic Programs
	Introduction to Protein Folding
	The Importance of Proteins in Biology
	The Importance of Protein Structure
	Computational Protein Folding Is Extremely Difficult
	Fold Space

	Problems to Be Addressed
	Multi-class Prediction/Classification
	Multi-class Protein Fold Prediction

	Multi-class Prediction Using SLPs
	Stochastic Logic Programs
	Failure-Adjusted Maximization Algorithm
	An SLP Example for Multi-class Prediction
	Multi-class Prediction Algorithm Using SLPs

	Experiments
	Hypotheses to Be Tested
	Materials and Inputs
	Methods and Results
	Interpretability

	Discussion and Conclusions

	Probabilistic Logic Learning from Haplotype Data
	Introduction
	Genomes, Chromosomes and Haplotypes

	Haplotype Reconstruction
	The Haplotype Reconstruction Problem
	A LOHMM Model for Haplotyping
	Higher Order Models and Sparse Distributions
	SpaMM: A Level-Wise Learning Algorithm
	Experimental Evaluation

	Comparing Haplotypings
	Distance Computations
	Consensus Haplotypings
	Experiments with Ensemble Methods

	Structure Discovery
	Structure in Populations
	Structure in Haplotypes

	Conclusions

	Model Revision from Temporal Logic Properties in Computational Systems Biology
	Introduction
	Reaction Rule Learning from Temporal Properties
	Biochemical Reaction Models in Datalog
	Biological Properties in Temporal Logic CTL
	Model Revision from Temporal Properties

	Parameter Search from Quantitative Temporal Properties
	Continuous Semantics with ODE's
	Stochastic Semantics with SLPs
	Biological Properties in LTL with Numerical Constraints
	Parameter Search from Temporal Properties

	Application to Modelling the Synchronization in Period of the Cell Cycle by the Circadian Cycle
	Discussion and Conclusions

	A Behavioral Comparison of Some Probabilistic Logic Models
	Introduction
	Preliminaries
	Logical/Relational Models
	Probabilistic Models
	First-Order Probabilistic Models

	Presentation of PLMs
	Stochastic Logic Programs
	Bayesian Logic Programs
	Statistical Relational Models
	Probabilistic Relational Models

	Behavioural Comparison of Expressive Knowledge Representations
	A Behavioral Comparison of SLPs and BLPs
	Restricted BLPs and Extended SLPs
	Standard Translation from Restricted BLPs to SLPs
	Standard Translation from BLPs to e-SLPs
	Translation from SLPs to BLPs
	A Revised Translation from BLPs to SLPs

	A Behavioral Comparison of SRMs and SLPs
	A Behavioral Comparison of PRMs and BLPs
	Discussion and Conclusions

	Model-Theoretic Expressivity Analysis
	Introduction
	PL-Models
	Case Study: MLNs and RBNs
	Markov Logic Networks
	Relational Bayesian Networks
	MLN to RBN Translation

	Conclusion

	Author Index

