
Temporal Difference Learning and Simulated
Annealing for Optimal Control: A Case Study

Jinsong Leng, Beulah M. Sathyaraj, and Lakhmi Jain

School of Electrical and Information Engineering,
Knowledge Based Intelligent Engineering Systems Centre,

University of South Australia, Mawson Lakes SA 5095, Australia
Jinsong.Leng@postgrads.unisa.edu.au,
Beulah.Moses@postgrads.unisa.edu.au,

Lakhmi.Jain@unisa.edu.au

Abstract. The trade-off between exploration and exploitation has an
important impact on the performance of temporal difference learning.
There are several action selection strategies, however, it is unclear which
strategy is better. The impact of action selection strategies may depend
on the application domains and human factors. This paper presents a
modified Sarsa(λ) control algorithm by sampling actions in conjunc-
tion with simulated annealing technique. A game of soccer is utilised as
the simulation environment, which has a large, dynamic and continuous
state space. The empirical results demonstrate that the quality of conver-
gence has been significantly improved by using the simulated annealing
approach.

Keywords: temporal difference learning, agent, convergence, simulated
annealing.

1 Introduction

An intelligent agent is expected to be capable of adapting and learning in an
uncertain environment. The ability of learning can be built up by interacting
with the environment in which it is situated. Reinforcement learning is a proper
approach for an agent to learn from experience.

Reinforcement learning is the learning of a mapping from situations to ac-
tions so as to maximise a scalar reward or reinforcement signal [19], which
mainly includes Dynamic Programming (DP), Monte Carlo Method, and Tem-
poral Difference Learning technique (TD). DP [4,8] has been well investigated
under the formalism of Markov Decision Processes (MDPs). TD [18] is a form
of asynchronous DP, and the value function is estimated by sample episodes.
TD method addresses the problem of approximating the optimal action strategy
through and while interacting with the environment.

Trial–and–error, delayed rewards, and trade-off between exploration and ex-
ploitation are three important features in TD algorithm. As a kind of unsu-
pervised learning, TD has to balance exploration and exploitation during the

N.T. Nguyen et al. (Eds.): KES-AMSTA 2008, LNAI 4953, pp. 495–504, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

496 J. Leng, B.M. Sathyaraj, and L. Jain

learning period. To effectively build up the reward structure, the strategy deal-
ing with the trade-off between exploration and exploitation has to be considered.
Some strategies have been used for balancing exploration and exploitation, e.g.,
greedy strategies, randonmised strategies, annealing-like strategies. It is unclear
which policy is better and the performance may depend on the task and on
human factors. Only few careful comparative studies are available [19].

The simulated annealing (SA) [15] is a technique for solving combinatorial
optimisation problems. SA starts with a high temperature and gradually de-
creases the temperature over time. As a consequence, the agent starts with the
high possibility of exploration and turns towards exploitation by incorporating
a probability function in accepting or rejecting new solutions. SA approach does
not require large computer memory, which can speed up the computation.

In this paper, the simulated annealing technique is utilised for sampling pos-
sibility distribution over actions at a given state, so as to improve the quality
of performance. A novel algorithm Sarsa(λ) is proposed by combining on-policy
learning algorithm with SA method. A comparative study is conducted in a
real-time, stochastic, and dynamic testbed called SoccerBots [1]. The simula-
tion results are compared by using ε-greedy policy and ε-greedy policy with
simulated annealing, in conjunction with a linear approximation function called
Tile Coding [2]. The experimental results demonstrate that the quality of the
performance can be enhanced by using the simulated annealing technique.

The rest of the paper is organised as follows: Section 2 introduces the TD
technique and simulated annealing method. The simulation environment and
algorithm are detailed in Section 3. The empirical results are analysed and dis-
cussed in Section 4. Section 5 presents the related work. Finally, we discuss future
work and conclude the paper.

2 Background

2.1 Temporal Difference Learning

TD is a form of model-free approach and is a combination of DP and Monte Carlo
Method [18,19]. The idea of TD is to learn how to take action through trial-and-
error interactions in a dynamic environment. The value function is accumulated
by an incremental learning model and infinite horizon discount model.

The incremental learning model accumulates the value function based on tem-
poral difference errors, as given in Equation (1):

Vt+1 = Vt + α
[
Rt+1 − Vt

]
(1)

where the parameter α is learning rate, 0 ≤ α ≤ 1, Rt+1 is the accumulated
reward.

Based on the infinite horizon discount model, the one-step update at a given
time t and state s is shown in equation (2).

Vt+1(s) = Vt(s) + α
[
rt+1(s) + γVt+1(s′) − Vt(s)

]
(2)

Temporal Difference Learning and Simulated Annealing 497

where the parameter γ is the discount rate, 0 ≤ γ ≤ 1. The rewards in the future
are geometrically discounted by the parameter γ, rt+1 is the immediate reward.

The use of eligibility traces is another mechanism to improve the convergence
of value function [11,18]. The aim of eligibility traces is to assign credit or blame
to the eligible states or actions. The ways for evaluating the traces include ac-
cumulating traces and replacing traces.

The accumulating traces are given by:

et(s, a) =

{
γλet−1(s, a), if s �= st

γλet−1(s, a) + 1, if s = st

(3)

whereas replacing traces use et(s, a) = 1 for the second update [19].
The trade-off between exploration and exploitation is a problem the learning

agent has to deal with. On one hand, the agent must explore the environment
explicitly, in case to fall into local optimum. On the other hand, the agent need
to exploit the existing knowledge to make the value function converge quickly.
However, how can the agent know that the sequence of actions that has been
found is the best? It may be helpful to integrate some parametric optimisation
techniques with reinforcement learning.

Normally, there are some action selection strategies [19]: e.g., ε-greedy policy
is to select a random action with probability ε and the optimal action with
probability 1-ε. The drawback is that unlucky sampling may cause the rewards
obtained from optimal action to fall into a local optimum. On the another hand,
randomised strategy is to select the action according to probability p, which is
sampled by Boltzmann distribution. Yet, another strategy is the annealing-like
approach, which is used in this paper.

2.2 Simulated Annealing

SA [10] is based on the theory of Markov processes and motivated by the physical
process of annealing [15] in solids. The solids are heated to a temperature above
the melting point and then allowed to cool. When the solid is cooled to a lower
temperature, the solid reaches the stable crystalline structure. If the cooling is
done slowly then the crystalline structure is stable. However, if the cooling is
done fast then the obtained solid has crystalline imperfection. Therefore, for
the system to reach equilibrium, the cooling has to be done slowly. Slower does
not mean it can be done forever to obtain stable state. Simulated Annealing is
analogous to this process.

The SA algorithm searches the search space similar to the thermodynamic
change of energy-to-energy state. First random position in the search space is
chosen to be the initial state or current state and another random position is
chosen as the next state. The value functions at both the current state and the
next state are evaluated. These value functions are compared. If the next state
yields a better solution then it is chosen as the best solution. Even otherwise, the

498 J. Leng, B.M. Sathyaraj, and L. Jain

next state is chosen with a probability. This probability of acceptance of worse
solution is P (accept) which is expressed as given in Equation 4.

P (accept) = exp(−c/T) < r (4)

Where c = �E is the change in the evaluation function, T is the current tem-
perature and r is a random number between 0 and 1. It is not required to stick
on to a particular solution, which could lead to locking up in local optimisation
rather than global optimisation. The problem of getting locked to local optimum
is overcome in SA by letting the possibility of the choice of accepting the worse
solution with a certain probability of P(accept).

The cooling schedule or temperature schedule T of SA is how the temperature
is decremented and is the mapping of the temperature to time. It depends on
starting temperature, final temperature, decrement in temperature (linear or
nonlinear) and number of iterations at each temperature. There are various
types of cooling schedules available that are used in practice.

SA Algorithm [16] has been used to solve many combinatorial optimisation
problems and some continuous variable problems. The choice of the temperature
schedule or the cooling schedule, can be either linear or non-linear.

The algorithm is given in Fig. 1:

1. Current node = MAKE-NODE (INITIAL-RANDOM
STATE [Problem, Schedule[t]]).

2. For t = 1 to ∞ do:
3. If T = 0 then return Current;
4. Next node = a randomly selected successor of Current;
5. �E = VALUE[Next] - VALUE[Current]
6. If �E ≥ 0 then Current = Next;
7. Else Current = Next only with probability exp(-�E/T) ;

Fig. 1. Basic Algorithm of Simulated Annealing

The inner loop of Simulated Annealing algorithm need to be run as long as the
search space; where the nodes are present are explored rather than exploring the
entire search space. The value of the current and the next solution is evaluated
and the difference is �E. When the difference is greater than 0, then the next
solution is accepted, else the next solution is accepted with a probability of
P(accept) = exp(-�E/T), where T is the current temperature.

3 Details of Simulation Environment and Algorithms

TeamBots is a Java-based collection of application programs and Java packages
for multiagent mobile robotics research [1]. Each soccer team can have no more
than 5 players. Two teams are built and the individual and team strategies for
each team are defined.

Temporal Difference Learning and Simulated Annealing 499

The scenario is defined to learn a ball interception skill for the soccer player
in SoccerBots. For the ball interception, the ball is kicked at a certain angle
and speed. The player is away from the ball at a certain distance and angle
to ball, in order to intercept the ball with the highest speed and the fewest
steps. The intercepting ball problem is that a soccer agent is trained to find the
optimal interception direction at each step toward the ball in order to catch an
approaching ball in the shortest time.

d b

theta

beta

Fig. 2. Ball Interception Problem

In addition, the state space reduction technique is necessary for a large,
stochastic, and dynamic environment. In this paper, a linear approximation
function known as tile coding [2] is utilised to avoid state space from growing
exponentially [12].

The details of modified Sarsa(λ) with replacing traces is given in Fig. 3.
In Fig. 3: α is a learning rate, γ is a discount rate. The action selection policy

is the exploration strategy, which can be ε-greedy policy, i.e. the agent takes a
random action with probability ε and takes the best action with probability (1
- ε). Q(s,a) is the state-action value, δ and θ are matrices to represent action,
feature and related feature weights, and F is the feature to trace the eligible
state process. The parameter T is a temperature, and ψ is the temperature-decay
factor. Lower temperatures cause a greater difference in selection probability for
actions. In the limit as T = 0, the action selection becomes the same as greedy
action selection.

4 Empirical Study

SA based exploration works similarly to neighborhood search based exploration
by searching the set of all possible actions, but reducing the chance of getting
stuck in a poor local optimum by allowing moves to inferior actions to be con-
trolled by a randomised scheme [20]. The parameter T is initially high, allowing
many inferior actions to be accepted, and is slowly reduced to a value where
inferior actions are nearly always rejected. For the annealing-like approach, the
temperature T is set to 120 and temperature-decay factor ψ is set to 0.99. The
annealing process is illustrated in Fig. 4.

500 J. Leng, B.M. Sathyaraj, and L. Jain

1. Initialise Q(s,a) arbitrarily and e(s, a) = 0, for all s, a.
2. Repeat (for each episode):
3. Initialise s, a;
4. Initialise T ← ψ T;
5. Repeat (for each step of episode):
6.1. Choose ap in s based on action selection policy (e.g., ε-greedy);
6.2. Choose ar in s at random;
6.3. Generate an random possibility Prandom;
6.4. Calculate Q(s, ar) and Q(s, ap);
6.5. Calculate the possibility of accept Paccept using exp((Q(s,ar) − Q(s, ap))/T);
6.6. If Q(s, ar) ≥ Q(s, ap);
6.7. a ← ar;
6.8. Else If Prandom ≤ Paccept;
6.9. a ← ar;
6.10. Else
6.11. a ← ap;
7. Take action a, observe r, s’;
8. Choose a’ from s’ using action selection policy derived from Q ;
9. δ ← r + γQ(s’, a’) - Q(s, a);
10. e(s, a) ← 1;
11. For all s, a:
12. Q(s, a) ← Q(s, a) + αδe(s, a);
13. e(s, a) ← γλe(s, a);
14. s ← s’;
15. until s is terminal.

Fig. 3. Sarsa(λ) Control Algorithm with Replacing Traces

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

Computation Steps

T
em

pe
ra

tu
re

 S
ch

ed
ul

e

Fig. 4. Temperature Schedule and Computation Steps

The initial start temperature T, the temperature-decay factor ψ, and final
temperature T’ have to be scaled properly, otherwise, the poor results may occur.
In [21], the choice process of their values includes to estimate the mean of the

Temporal Difference Learning and Simulated Annealing 501

distribution of state values to define a maximum energy scale of the system, its
standard deviation to define the maximum temperature scale, and the minimum
change in energy to define the minimum-temperature scale.

To compare the realistic performance, the simulation is conducted with dif-
ferent set of parameter values with a number of experiments [13,14]. By setting
ε to 0.1, the set of optimal parameter values can be found: α = 0.005, γ = 0.93,
and λ = 0.9. The performance may be heavily influenced by the action selection
strategy. By running the episodes 2500 times, the average rewards can be ob-
tained using algorithm of Fig. 3 with ε-greedy policy. The average rewards can
be generated using algorithm in Fig. 3 with annealing-like policy. By comparing
the average reward at different episodes, it is clear that the convergence with
annealing-like policy is much quicker than that with ε-greedy policy.

Table 1. Performance Comparison: Accumulated Average Rewards

Episodes 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
ε-greedy -28.79 -25.96 -24.25 -23.38 -23.2 -22.6 -22.36 -22.22 -22.07 -21.8 -21.72

SA -25.98 -23.92 -22.79 -21.96 -21.47 -21.36 -21.07 -20.84 -20.67 -20.59 -20.57

The curves in Fig. 5 illustrate that annealing-like policy can significantly im-
prove the performance, both in speed of convergence and eventually convergence.

0 500 1000 1500 2000 2500
−40

−38

−36

−34

−32

−30

−28

−26

−24

−22

−20

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

Epsilon Greedy
Simulated Annealing

Fig. 5. Convergence Comparison of epsilon-Greedy and Simulated Annealing(SA)

5 Related Work

SA is a technique to find the good solution to an optimisation problem by
trying random variation of the current solution. SA has been widely applied
to optimisation problems [6] by searching for possible solutions and converge
at optimal solution. The applications include but are not limited to Travelling

502 J. Leng, B.M. Sathyaraj, and L. Jain

Salesman Problem (TSP), Capacited Vehicle Routing Problems (CVRP), Job
Scheduling Problems, Timetabling Problems, and Selection of Communication
Protocols/Standards and various other applications [5].

A version of simulated annealing called Adaptive Simulated Annealing is em-
ployed with the reinforcement learning algorithm, which shows further improve-
ments in algorithmic convergence properties [3]. A Q-learning algorithm with
simulated annealing is introduced to balance exploration and exploitation [7].
In [20], three action selection methods, i.e., neighborhood search based explo-
ration, simulated annealing based exploration, and tabu search based explo-
ration, are evaluated and compared on a discrete reinforcement learning task
(robot navigation).

Softmax or Boltzmann distribution Action Selection. A combined use of
reinforcement learning and simulated annealing is proposed in [17]. A theoreti-
cally established approach tailored to reinforcement learning following Softmax
action selection policy are discussed. It has been proven that Boltzmanns for-
mula converges to uniform distribution as T goes to infinity and to the greedy
distribution as T goes to 0. In addition, an application example of agent-based
routing will also be illustrated.

Another work [3] on adaptive simulated annealing(ASA) based reinforcement
learning method is proposed. Here ASA [9] allows far-reaching access of the state
space, and permits much faster annealing and hence faster convergence. The
action can be generated according to a Boltzmann probability, which provides
some kind of ”annealing” that is the spirit of the other annealing performed in
value function maximisation.

The ε-greedy Action Selection with SA. SA based exploration is discussed
in [20]. The ε-greedy algorithm is a method using near-greedy action selection
rule. It behaves greedily (exploitation) most of the time, but every once in a
while, say with small probability ε (exploration), instead select an action at
random. This paper evaluates the role of heuristic based exploration in rein-
forcement learning. Three methods are compared: neighborhood search based
exploration, simulated annealing based exploration, and tabu search based ex-
ploration. SA based exploration works by searching the set of all possible actions,
but reducing the chance of getting stuck in a poor local optimum by allowing
moves to inferior actions. When a non-greedy action is selected, this action is
evaluated by SA based exploration approach.

A similar work done in [7] is to explore the possibility of improving the simple
ε-greedy approach by appropriately reducing ε during the learning process. The
SA approach is combined with Q(λ). The task of finding the optimal policy in
Q-learning is transformed into search for an optimal solution in a combinatorial
optimisation problem. Then the Metropolis criterion from SA algorithm is ap-
plied to the search procedure in order to control the balance between exploration
and exploitation. The improved algorithm is tested in the puzzle simulation do-
main.

Temporal Difference Learning and Simulated Annealing 503

6 Conclusion and Future Work

The parametric optimisation techniques can be combined with TD algorithms
to improve the overall performance. This paper provides a comparative study
by using the simulated annealing technique to balance between exploration and
exploitation. The experimental results demonstrate that the algorithm in Fig. 3
with the annealing-like approach converges much quicker. For a large, stochastic,
and dynamic system, utilising the annealing-like technique can reduce compu-
tational cost and learn quickly.

Future work includes the comparison of softmax action selection and simu-
lated annealing technique. The ultimate goal is to develop a methodology for
adaptively selecting the parameter values in the learning algorithm. In addition,
the algorithm will be extended to soccer agents teaming to solve the cooperative
learning problems.

References

1. Teambots (2000), http://www.cs.cmu.edu/∼trb/Teambots/Domains/SoccerBots
2. Albus, J.S.: A Theory of Cerebellar Function. Mathematical Biosciences 10, 25–61

(1971)
3. Atiya, A.F., Parlos, A.G., Ingber, L.: A Reinforcement Learning Method Based

on Adaptive Simulated Annealing. In: Proceedings of the 46th IEEE International
Midwest Symposium on, pp. 121–124 (2003)

4. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
5. Chaharsooghi, S.K., Jafari, N.: A Simulated Annealing Approach for Product Mix

Decisions. Scientia Iranica 14(3), 230–235 (2007)
6. Dowsland, K.A.: Simulated Annealing. In: Modern Heuristic Techniques for Com-

binatorial Problems (1995)
7. Guo, M., Liu, Y., Malec, J.: A New Q-learning Algorithm Based on the Metropolis

Criterion. Systems, Man and Cybernetics, Part B, IEEE Transactions on 34(5),
2140–2143 (2004)

8. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge (1960)

9. Ingber, L.: Very Fast Simulated Re-annealing. Mathematical Computer Mod-
elling 12(8), 967–973 (1989)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220(4598), 671–680 (1983)

11. Klopf, A.H.: Brain Function and Adaptive Systems–A Heterostatic Theory. Techni-
cal report, AFCRL–72–0164, Air Force Cambridge Research Laboratories, Bedford,
MA (1972)

12. Leng, J., Fyfe, C., Jain, L.: Reinforcement Learning of Competitive Skills with
Soccer Agents. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I.
LNCS (LNAI), vol. 4692, Springer, Heidelberg (2007)

13. Leng, J., Jain, L., Fyfe, C.: Simulation and Reinforcement Learning with Soccer
Agents. Journal of Multiagent and Grid systems, IOS Press, The Netherlands 4(4)
(to be published, 2008)

14. Leng, J., Jain, L., Fyfe, C.: Convergence Analysis on Approximate Reinforcement
Learning. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS
(LNAI), vol. 4692, pp. 85–91. Springer, Heidelberg (2007)

http://www.cs.cmu.edu/~trb/Teambots/Domains/SoccerBots

504 J. Leng, B.M. Sathyaraj, and L. Jain

15. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of
State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092
(1953)

16. Russel, S., Norwig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (2003)

17. Stefán, P., Monostori, L.: On the relationship between learning capability and the
boltzmann-formula. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001.
LNCS (LNAI), vol. 2070, pp. 227–236. Springer, Heidelberg (2001)

18. Sutton, R.S.: Learning to Predict by the Method of Temporal Differences. Machine
Learning 3, 9–44 (1988)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

20. Vien, N.A., Viet, N.H., Lee, S., Chung, T.: Heuristic Search Based Exploration in
Reinforcement Learning. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M.
(eds.) IWANN 2007. LNCS, vol. 4507, pp. 110–118. Springer, Heidelberg (2007)

21. White, S.R.: Concepts of scale in simulated annealing. In: AIP Conference Pro-
ceedings, vol. 122, pp. 261–270 (1984)

	Temporal Difference Learning and Simulated Annealing for Optimal Control: A Case Study
	Introduction
	Background
	Temporal Difference Learning
	Simulated Annealing

	Details of Simulation Environment and Algorithms
	Empirical Study
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

