
Collecting Data Streams from a Distributed
Radio-Based Measurement System

Marcin Gorawski, Pawel Marks, and Michal Gorawski

Silesian University of Technology,
Institute of Computer Science,

Akademicka 16,
44-100 Gliwice, Poland

{Marcin.Gorawski,Pawel.Marks,Michal.Gorawski}@polsl.pl

Abstract. Nowadays it becomes more and more popular to process
rapid data streams representing real-time events, such as large scale fi-
nancial transfers, road or network traffic, sensor data. Analysis of data
streams enables new capabilities. It is possible to perform intrusion de-
tection while it is happening, it is possible to predict road traffic basing
on the analysis of the past and current vehicle flow. We addressed the
problem of real-time analysis of the stream data from a radio-based mea-
surement system. The system consists of large number of water, gas and
electricity meters. Our work is focused on data delivery from meters to
the stream data warehouse as quick as possible even if transmission fail-
ures occur. The system we designed is intended to increase significantly
system reliability and availability. During this demonstration we want to
present an example of the system capabilities.

Keywords: stream processing, fault-tolerance, sensor networks.

1 Introduction

These days it becomes more common to process continuous data streams. It may
have application in many domains of our life such as: computer networks (e.g.
intrusion detection), financial services, medical information systems (e.g. patient
monitoring), civil engineering (e.g. highway monitoring) and more.

Thousands or even millions of energy meters located in households or fac-
tories can be sources of meter readings streams. Continuous analysis of power
consumption may be crucial to efficient electricity production. Unlike other me-
dia such as water or gas, electricity is hard to store for further use. That is why a
prediction of energy consumption may be very important. Real-time analysis of
the media meter readings may help to manage the process of energy production
in the most efficient way.

There are many systems for processing continuous data streams and they are
still developed [1]. In [2] there is presented a fault tolerant Borealis system. This
is a dedicated solution for applications where a low latency criterion is essen-
tial. Another system facing infinite data streams is described in [3]. Authors of

J.R. Haritsa, R. Kotagiri, and V. Pudi (Eds.): DASFAA 2008, LNCS 4947, pp. 702–705, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Collecting Data Streams 703

Stream
sources

RBF RIF ETL FTI SDW

Buffers Integrators ETL Detector Stream DW

Fig. 1. Layered structure of the distributed telemetric system

the work deal with sensors producing data continuously, transferring the mea-
sured data asynchronously without having been explicitly asked for that. They
proposed a Framework in Java for Operators on Remote Data Streams (Fjords).

In our research we have focused on processing data originating from a radio-
based measurement system [4]. We carried research on efficient recovery of
interrupted ETL jobs and proposed a few approaches [5,6] based on the Design-
Resume algorithm [7].

Basing on the previous experience, we have focused on fault-tolerance and high
availability in a distributed stream processing environment. In [8] we proposed
a new set of modules increasing the probability that a failure of one or more
modules will not interrupt the processing of endless data streams. Then we
prepared a model [9,10] of data sources to estimate the amounts of data to be
processed useful in the configuration of the environment. In this paper we want
to present how the system works in practice and how it has been implemented.

2 Research System

Our research is based on a telemetric system [4] for remote and automatic reading
of media consumption meters. It’s main task is transferring data from particular
meters using wireless communication to local collecting nodes (further called
data stream sources). Next, the data streams need to be transferred to a stream
data warehouse (SDW) in which the data can be processed analysed.

Our goal is to assure the continuity and correctness of the data streams being
transmitted into a stream data warehouse. We want the process to run continu-
ously, and we want it to be failure resistant. There are two goals to be achieved:
(a) transferring all the data, (b) transferring data as fast as possible, minimizing
the delay between measurement and loading into SDW. To achieve the above
mentioned goals we introduce three additional layers to the system structure [8]
(Fig. 1): RBF remote buffers, RIF persistent integrators, FTI detector.

Data sources (collecting nodes) are very simple devices comparable to LAN
routers. Their task is to receive data from meters and send it further to the
destination. The most important feature of the data sources is their inability to
buffer data. If the outgoing connection is lost, the outgoing data is lost also. To
avoid such situations each data source transmit data to many RBF buffering
modules. If one connection is lost, the others remain.

RBF buffers are simple and low-cost buffering modules. Because they are
cheap, they can be used in many copies. The more RBFs receive data from
a data source, the lower is the probability of data loss. The RBFs not only

704 M. Gorawski, P. Marks, and M. Gorawski

receive data from sources, they also transmit it to the subsequent system layer.
They also support short-term buffering which avoids loss of data in case of short
communication failures. Unfortunately, it does not protect the system against
data loss during longer communication breaks.

We also introduce a layer of RIF persistent integrators. RIF modules extend
the RBF functionality. They offer persistent buffering based on a persistent
storage (e.g. hard disk). Another task of an RIF module is integration of stream
parts from many RBFs into a single data stream. It is necessary when one RBF
fails, and the RIF starts to receive data from another one. The data safely
received can be processed now.

Behind the RIF layer we placed the layer of ETL modules. ETL stands for
Extraction, Transformation and Loading. In this layer the data streams received
from RIF modules are processed (filtered, transformed, recalculated, joined, ag-
gregated). The ETL process is described using Directed Acyclic Graph. Graph
nodes are responsible for data processing, whereas graph edges define tuple flow
directions. Graph nodes belong to one of three node classes: extractors respon-
sible to retrieving data to be processed, transformations in which tuples are
processed, and inserters which save data in a destination. The ETL process sup-
ports three resumption algorithms: Design-Resume (DR) [7], hybrid DR-based
resumption [5] and checkpoint-based algorithm [6]. In stream processing only
checkpointing is applicable.

The FTI layer is responsible for merging redundant data stream from repli-
cated ETL processes. It also checks the correctness of received data comparing
all received stream copies. Finally the data is stored in the data warehouse.

The use of checkpointing enables replication and migration of ETL process.
Saved ETL process state can be easily copied and used to restart ETL on another
machine or network node. The checkpointing algorithm uses filtration known
from DR algorithm. It enables synchronization with streams incoming from RIFs
and delivered to the last FTI layer.

3 Technical Details

For research purposes the system has been implemented in Java. We have built
the stream data generator which works similarly to the real collecting nodes.
RBF and RIF modules are also implemented in Java, although in real world
RBFs should be a small and simple devices based on microcontrollers e.g. AVR
or ARM equipped with necessary communication interfaces. The RIF module
can be built similarly to RBF using microcontroller; however, it is not to be used
in so many copies as RBFs, so its functionality can be realized in a PC running
necessary software.

ETL module is a set of Java classes implementing ETL process, communica-
tion with RIF and FTI layers and resumption algorithms. Each instance of an
ETL process is started in a separate Java Virtual Machine (JVM).

Each system module (data generator, RBFs, RIFs, ETLs, FTI) runs on a sep-
arate instance of JVM. This references the complete independence of modules

Collecting Data Streams 705

in real world. The communication between layers uses RMI and TCP/IP con-
nections. RMI interfaces of modules are required to locate needed services and
initialize the communication. When the modules agree for the connection options
after exchange of host IPs and port number, they exchange data via TCP/IP
connections, which are much more efficient than RMI.

During experiments failures are simulated in two ways: by ”unexpected” ter-
minating of random system modules or by breaking the connections between
system modules. In both cases the system is expected to handle the failure cor-
rectly and continue the processing without any data loss.

Our demonstration is going to be preceded by a short slideshow clarifying
how the system works. During the demonstration we want to show the working
system using the software simulator running on a PC-class machine. We are
going to simulate module failures and observe the system reaction.

References

1. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I.,
Srivastava, U., Thomas, D., Varma, R., Widom, J.: Stream: The stanford stream
data manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)

2. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-Tolerance
in the Borealis Distributed Stream Processing System. In: ACM SIGMOD Conf.,
Baltimore, MD (2005)

3. Madden, S., Franklin, M.J.: Fjording the stream: An architecture for queries over
streaming sensor data. In: ICDE, pp. 555–566. IEEE Computer Society, Los Alami-
tos (2002)

4. Gorawski, M., Malczok, R.: Distributed spatial data warehouse indexed with vir-
tual memory aggregation tree. In: Sander, J., Nascimento, M.A. (eds.) STDBM,
pp. 25–32 (2004)

5. Gorawski, M., Marks, P.: High efficiency of hybrid resumption in distributed data
warehouses. In: DEXA Workshops, pp. 323–327. IEEE Computer Society, Los
Alamitos (2005)

6. Gorawski, M., Marks, P.: Checkpoint-based resumption in data warehouses. In:
Socha, K. (ed.) IFIP International Federation for Information Processing, Warsaw.
Software Engineering Techniques: Design for Quality, vol. 227, pp. 313–323 (2006)

7. Labio, W., Wiener, J.L., Garcia-Molina, H., Gorelik, V.: Efficient resumption of
interrupted warehouse loads. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.)
SIGMOD Conference, pp. 46–57. ACM, New York (2000)

8. Gorawski, M., Marks, P.: Fault-tolerant distributed stream processing system. In:
DEXA Workshops, pp. 395–399. IEEE Computer Society, Los Alamitos (2006)

9. Gorawski, M., Marks, P.: Towards reliability and fault-tolerance of distributed
stream processing system. In: DepCoS-RELCOMEX, pp. 246–253. IEEE Computer
Society, Los Alamitos (2007)

10. Gorawski, M., Marks, P.: Distributed stream processing analysis in high availability
context. In: ARES 2007: Proceedings of the The Second International Conference
on Availability, Reliability and Security, Washington, DC, USA, pp. 61–68. IEEE
Computer Society, Los Alamitos (2007)

	Collecting Data Streams from a Distributed Radio-Based Measurement System
	Introduction
	Research System
	Technical Details

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

