

Lecture Notes in Computer Science 4854
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luc Bougé Martti Forsell
Jesper Larsson Träff Achim Streit
Wolfgang Ziegler Michael Alexander
Stephen Childs (Eds.)

Euro-Par 2007
Workshops
Parallel Processing

HPPC 2007, UNICORE Summit 2007, and VHPC 2007
Rennes, France, August 28-31, 2007
Revised Selected Papers

13

Volume Editors

Luc Bougé
IRISA/ENS Cachan, Rennes, France
E-mail: luc.bouge@bretagne.ens-cachan.fr

Martti Forsell
VTT Technical Research Center of Finland, Oulu
E-mail: martti.forsell@vtt.fi

Jesper Larsson Träff
NEC Laboratories Europe, Sankt Augustin, Germany
E-mail: traff@it.neclab.eu

Achim Streit
Jülich Supercomputing Centre (JSC), Germany
E-mail: a.streit@fz-juelich.de

Wolfgang Ziegler
Fraunhofer Institute SCAI, Sankt Augustin, Germany
E-mail: wolfgang.ziegler@scai.fraunhofer.de

Michael Alexander
Wirtschaftsuniversität Wien, Austria
E-mail: malexand@wu-wien.ac.at

Stephen Childs
Trinity College Dublin, Ireland
E-mail: stephen.childs@cs.tcd.ie

Library of Congress Control Number: 2008921917

CR Subject Classification (1998): C.1-4, D.1-4, F.1-3, G.1-2, H.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78472-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78472-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12236053 06/3180 5 4 3 2 1 0

Preface

Parallel and distributed processing, although within the focus of computer science
research for a long time, is gaining more and more importance in a wide spectrum
of applications. These proceedings aim to demonstrate the use of parallel and
distributed processing concepts in different application fields, and attempt to
spark interest in novel research directions to advance the embracing model of
high-performance computing research in general.

The objective of these workshops is to specifically address researchers com-
ing from university, industry and governmental research organizations and
application-oriented companies, in order to close the gap between purely sci-
entific research and the applicability of the research ideas to real-life problems.

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.
The 2007 event was the 13th issue of the conference. Euro-Par has for a long
time been eager to attract colocated events sharing the same goal of promoting
the development of parallel and distributed computing, both as an industrial
technique and an academic discipline, extending the frontier of both the state of
the art and the state of the practice. Since 2006, Euro-Par offers researchers the
chance to colocate advanced technical workshops back-to-back with the main
conference. This is for a mutual benefit: the workshops can take advantage of
all technical and social facilities which are set up for the conference, so that
the organizational tasks are kept to a minimal level; the conference can rely on
workshops to experiment with specific areas of research which are not yet mature
enough, or too specific, to lead to an official, full-fledged topic at the conference.

The 2006 experience was quite successful, and was extended to a larger size
in 2007, where five events were colocated with the main Euro-Par Conference:

CoreGRID Symposium is the major annual event of the CoreGRID Euro-
pean Research Network on Foundations, Software Infrastructures and Appli-
cations for large-scale distributed, Grid and peer-to-peer technologies. It is
also an opportunity for a number of CoreGRID Working Groups to organize
their regular meetings. The proceedings have been published in a specific
volume of the Springer CoreGRID series Towards Next Generation Grids,
edited by Thierry Priol and Marco Vanneschi.

GECON 2007 is the Fourth International Workshop on Grid Economic and
Business Model. Euro-Par was eager to attract an event about this very
important aspect of grid computing, which has often been overlooked by
scientific researchers of the field. This very successful workshop was organized
by Jörn Altmann and Daniel J. Veit. Its proceedings are published in a
separate volume of Springer’s Lecture Notes in Computer Science series,
number 4685.

VI Preface

HPPC 2007 is the First Workshop on Highly Parallel Processing on a Chip.
With a number of both general and special purpose multi-core processors
already on the market, it is foreseeable that new designs with a substantial
number of processing cores will emerge to meet demands for extremely high
performance, dependability, and controllable power consumption in mobile
and embedded devices, and in response to the convergence of communication,
media and compute devices. This workshop was a unique opportunity for
the Euro-Par community to get acquainted with this new and hot field of
research.

UNICORE Summit 2007 aimed to bring together researchers and practi-
tioners working with UNICORE in the areas of grid and distributed comput-
ing, to exchange and share their experiences, new ideas, and latest research
results on all aspects of UNICORE. The UNICORE grid technology pro-
vides a seamless, secure, and intuitive access to distributed grid resources.
This was the third meeting of the UNICORE community, after a meeting
in Sophia-Antipolis, France, in 2005, and a colocated meeting at Euro-Par
2006 in Dresden, Germany, in 2006.

VHPC 2007 is the Workshop on Virtualization/Xen in High-Performance
Cluster and Grid Computing. Virtual machine monitors (VMMs) are now
integrated with a variety of operating systems and are moving out of research
labs into scientific, educational and operational usage. This workshop aimed
to bring together researchers and practitioners active in exploring the appli-
cation of virtualization in distributed and high-performance cluster and grid
computing environments. This was a unique opportunity for the Euro-Par
community to make connections with this very active research domain.

The reader will find in this volume the proceedings of the last three events.
Hosting Euro-Par 2007 and these colocated events in Rennes would not have

been possible without the support and the help of different institutions and
numerous people.

Although we are thankful to many more people, we are particularly grateful to
Édith Blin: she put a huge amount of work in the organization of the conference,
always combining efficiency and enthusiasm, smoothing consistently the whole
process of organizing the conference.

We are obviously most thankful to the workshop organizers: Martti Forsell
and Jesper Larsson Träff for HPPC 2007; Achim Streit and Wolfgang Ziegler
for UNICORE Summit 2007; and Michael Alexander and Stephen Childs for
VHPC 2007. It has been a pleasure to collaborate with them on this project.
We definitely thank them for their interest in our proposal and their trust and
availability along the entire preparation process.

Euro-Par 2007 was hosted on the University Campus and we would like
to thank the Department of Computer Science (IFSIC) of the University of
Rennes 1 for the support and infrastructure. We gratefully acknowledge the
great financial and organizational support of INRIA and IRISA as well as the
support of our institutional sponsors the University of Rennes 1, the Regional

Preface VII

Council, Rennes Métropole, the local council, the Métivier Foundation, the Pôle
de competitivité Images & Réseaux and the city of Rennes.

Finally, we are grateful to Springer for agreeing to publish the proceedings
of these three workshops in a specific volume of its Lecture Notes in Computer
Science series. We are definitely eager to pursue this collaboration.

It has been a great pleasure to work together on this project in Rennes.
We hope that the current proceedings are beneficial for sustainable growth and
awareness of parallel and distributed computing concepts in future applications.

November 2007 Luc Bougé
Martti Forsell

Jesper Larsson Träff
Achim Streit

Wolfgang Ziegler
Michael Alexander

Stephen Childs

Organization

Euro-Par Steering Committee

Chair

Christian Lengauer University of Passau, Germany

Vice-Chair

Luc Bougé ENS Cachan, France

European Representatives

José Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Rainer Feldmann University of Paderborn, Germany
Christos Kaklamanis Computer Technology Institute, Greece
Paul Kelly Imperial College, UK
Harald Kosch University of Passau, Germany
Thomas Ludwig University of Heidelberg, Germany
Emilio Luque Universitat Autònoma de Barcelona, Spain
Luc Moreau University of Southampton, UK
Wolfgang E. Nagel Technische Universität Dresden, Germany
Rizos Sakellariou University of Manchester, UK

Non-European Representatives

Jack Dongarra University of Tennessee at Knoxville, USA
Shinji Tomita Kyoto University, Japan

Honorary Members

Ron Perrott Queen’s University Belfast, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observers
Anne-Marie Kermarrec IRISA/INRIA, Rennes, France
Domingo Beńıtez University of Las Palmas, Gran Canaria, Spain

Euro-Par 2007 Local Organization

Euro-Par 2007 was organized by the IRISA/INRIA research laboratory in
Rennes.

X Organization

Conference Chairs
Anne-Marie Kermarrec IRISA/INRIA
Luc Bougé IRISA/ENS Cachan
Thierry Priol IRISA/INRIA

General Organization

Édith Blin IRISA/INRIA

Technical Support

Étienne Rivière, Yann Busnel

Publicity

Gabriel Antoniu

Proceedings

Marin Bertier

Secretariat

Patricia Houée-Barbedet, Violaine Tygréat

CoreGRID Coordination

Päıvi Palosaari, Olivia Vasselin

Organization XI

Euro-Par 2007 Workshop Program Committees

Workshop on Highly Parallel Processing on a Chip
(HPPC)

Program Chairs

Martti Forsell VTT, Finland
Jesper Larsson Träff NEC Laboratories Europe, Germany

Program Committee

Gianfranco Bilardi University of Padova, Italy
Taisuke Boku University of Tsukuba, Japan
Martti Forsell VTT, Finland
Jim Held Intel, USA
Peter Hofstee IBM, USA
Ben Juurlink Technical University of Delft, The Netherlands
Darren Kerbyson Los Alamos National Laboratory, USA
Lasse Natvig NTNU, Norway
Kunle Olukotun Stanford University, USA
Wolfgang Paul Saarland University, Germany
Andrea Pietracaprina University of Padova, Italy
Alex Ramirez Technical University of Catalonia and

Barcelona Supercomputing Center, Spain
Peter Sanders University of Karlsruhe, Germany
Thomas Sterling Caltech and Louisiana State University, USA
Jesper Larsson Träff NEC Laboratories Europe, Germany
Uzi Vishkin University of Maryland, USA

UNICORE Summit

Program Chairs

Achim Streit Jülich Supercomputing Centre,
Forschungszentrum Jülich, Germany

Wolfgang Ziegler Fraunhofer Gesellschaft SCAI, Germany

Program Committee

Agnès Ansari CNRS-IDRIS, France
Rosa Badia Barcelona Supercomputing Center, Spain
Thomas Fahringer University of Innsbruck, Austria
Donal Fellows University of Manchester, UK
Anton Frank LRZ Munich, Germany
Edgar Gabriel University of Houston, USA
Alfred Geiger T-Systems SfR, Germany

XII Organization

Odej Kao Technical University of Berlin, Germany
Paolo Malfetti CINECA, Italy
Ralf Ratering Intel GmbH, Germany
Johannes Reetz Max-Planck-Institut für Plasmaphysik, RZG,

Germany
Mathilde Romberg University of Ulster, UK
Bernd Schuller Forschungszentrum Juelich, Germany
David Snelling Fujitsu Laboratories of Europe, UK
Stefan Wesner University of Stuttgart, HLRS, Germany
Ramin Yahyapour University of Dortmund, Germany

Additional Reviewers

Sven van den Berghe
Morris Riedel

Workshops on Virtualization/XEN in HPC Cluster and
Grid Computing Environments

Program Chairs

Michael Alexander WU Vienna, Austria
Stephen Childs Trinity College, Dublin, Ireland

Program Committee

Jussara Almeida Federal University of Minas Gerais, Brazil
Padmashree Apparao Intel Corp., USA
Hassan Barada Etisalat University College, UAE
Volker Buege University of Karlsruhe, Germany
Simon Crosby Xensource, UK
Peter Dinda Northwestern University, USA
Marc Fiuczynski Princeton University, USA
Rob Gardner HP Labs, USA
William Gardner University of Guelph, Canada
Marcus Hardt Forschungszentrum Karlsruhe, Germany
Klaus Ita WU Vienna, Germany
Sverre Jarp CERN, Switzerland
Krishna Kant Intel Corporation, USA
Yves Kemp University of Karlsruhe, Germany
Naoya Maruyama Tokyo Institute of Technology, Japan
Jean-Marc Menaud EMN-INRIA, France
José E. Moreira IBM T.J. Watson Research Center, USA

Organization XIII

Sonja Sewera WU Vienna, Austria
Dan Stanzione Arizona State University, USA
Peter Strazdins Australian National University, Australia
Franco Travostino Nortel, Canada
Andreas Unterkircher CERN, Switzerland
Geoffroy Vallée Oak Ridge National Laboratory, USA
Dongyan Xu Purdue University, USA

Table of Contents

HPPC 2007: Workshop on Highly Parallel Processing
on a Chip

HPPC 2007: Workshop on Highly Parallel Processing on a Chip
(Foreword) . 3

Martti Forsell and Jesper Larsson Träff

Toward Realizing a PRAM-on-a-Chip Vision (Abstract) 5
Uzi Vishkin

Societies of Cores and Their Computing Culture (Abstract) 7
Thomas Sterling

Hardware Transactional Memory with Operating System Support,
HTMOS . 8

Sasa Tomic, Adrian Cristal, Osman Unsal, and Mateo Valero

Auto-parallelisation of Sieve C++ Programs . 18
Alastair Donaldson, Colin Riley, Anton Lokhmotov, and
Andrew Cook

Adaptive L2 Cache for Chip Multiprocessors . 28
Domingo Beńıtez, Juan C. Moure, Dolores I. Rexachs, and
Emilio Luque

On-Chip COMA Cache-Coherence Protocol for Microgrids of
Microthreaded Cores . 38

Li Zhang and Chris Jesshope

Parallelization of Bulk Operations for STL Dictionaries 49
Leonor Frias and Johannes Singler

UNICORE Summit 2007

UNICORE Summit 2007 (Foreword) . 61
Achim Streit and Wolfgang Ziegler

A Black-Box Approach to Performance Analysis of Grid Middleware . . . 62
Per Alexius, B. Maryam Elahi, Fredrik Hedman, Phillip Mucci,
Gilbert Netzer, and Zeeshan Ali Shah

UNICORE/w3 . 72
R. Menday and B. Hagemeier

XVI Table of Contents

Chemomentum - UNICORE 6 Based Infrastructure for Complex
Applications in Science and Technology . 82

Bernd Schuller, Bastian Demuth, Hartmut Mix, Katharina Rasch,
Mathilde Romberg, Sulev Sild, Uko Maran, Piotr Ba�la,
Enrico del Grosso, Mosé Casalegno, Nadège Piclin, Marco Pintore,
Wibke Sudholt, and Kim K. Baldridge

Flexible Streaming Infrastructure for UNICORE . 94
Krzysztof Benedyczak, Aleksander Nowiński, and Piotr Ba�la

Extending UNICORE 5 Authentication Model by Supporting Proxy
Certificate Profile Extensions . 104

Katerina Stamou, Fredrik Hedman, and Anthony Iliopoulos

Using SAML-Based VOMS for Authorization within Web
Services-Based UNICORE Grids . 112

Valerio Venturi, Morris Riedel, Shiraz Memon, Shahbaz Memon,
Federico Stagni, Bernd Schuller, Daniel Mallmann,
Bastian Tweddell, Alberto Gianoli, Sven van den Berghe,
David Snelling, and Achim Streit

Attributes and VOs: Extending the UNICORE Authorisation
Capabilities . 121

Arash Faroughi, Roozbeh Faroughi, Philipp Wieder, and
Wolfgang Ziegler

A Business-Oriented Grid Workflow Management System 131
Luca Clementi, Claudio Cacciari, Maurizio Melato,
Roger Menday, and Björn Hagemeier

VHPC 2007: Workshop on Virtualization/Xen in
High-Performance Cluster and Grid Computing

VHPC 2007: Workshop on Virtualization/Xen in High-Performance
Cluster and Grid Computing (Foreword) . 143

Michael Alexander and Stephen Childs

Virtualization Techniques in Network Emulation Systems 144
Roberto Canonico, Pasquale Di Gennaro, Vittorio Manetti, and
Giorgio Ventre

SOA Based Control Plane for Virtual Clusters . 154
Paolo Anedda, Simone Manca, Massimo Gaggero, and
Gianluigi Zanetti

Grid Virtual Laboratory Architecture . 164
Eduardo Grosclaude, Francisco López Luro, and
Mario Leandro Bertogna

Table of Contents XVII

Information Service of Virtual Machine Pool for Grid Computing 174
Marcel Kunze and Lizhe Wang

Virtual Cluster Management with Xen . 185
Nikhil Bhatia and Jeffrey S. Vetter

Deploying and Managing Xen Sites with XSM . 195
Felipe Franciosi, Jean Paulo Orengo, Mauro Storch,
Felipe Grazziotin, Tiago Ferreto, and César De Rose

Xen Management with SmartFrog: On-Demand Supply of
Heterogeneous, Synchronized Execution Environments 205

Xavier Gréhant, Olivier Pernet, Sverre Jarp, Isabelle Demeure, and
Peter Toft

Integrating Xen with the Quattor Fabric Management System 214
Stephen Childs and Brian Coghlan

Getting 10 Gb/s from Xen: Safe and Fast Device Access from
Unprivileged Domains . 224

Kieran Mansley, Greg Law, David Riddoch, Guido Barzini,
Neil Turton, and Steven Pope

Author Index . 235

HPPC 2007: Workshop on
Highly Parallel Processing on a Chip

HPPC 2007: Workshop on

Highly Parallel Processing on a Chip

(Foreword)

Technological developments are bringing parallel computing back into the lime-
light after some years of absence from the stage of mainstream computing and
computer science between the early 1990 and early 2000s. The driving forces
behind this return are mainly technological: increasing transistor densities along
with hot chips, leaky transistors, and slow wires – coupled with the infeasibil-
ity of extracting significantly more ILP at execution time – make it unlikely
that the increase in single processor performance can continue the exponential
growth that has been sustained over the last 30 years. To satisfy the needs for
application performance, major processor manufacturers are instead counting on
doubling the number of processor cores per chip every second year, in accordance
with the original formulation of Moore’s law. We are therefore on the brink of
entering a new era of highly parallel processing on a chip. However, many fun-
damental unresolved hardware and software issues remain that may make the
transition slower and more painful than is optimistically expected from many
sides. Among the most important issues are convergence on an abstract archi-
tecture, programming model, and language to easily and efficiently realize the
performance potential inherent in the technological developments.

The Workshop on Highly Parallel Processing on a Chip (HPPC) aims to be
a forum for discussing such fundamental issues. It is open to all aspects of ex-
isting and emerging/envisaged multi-core (by which is meant: many-core) pro-
cessors with a significant amount of parallelism, especially to considerations on
novel paradigms and models and the related architectural and linguistic sup-
port. To be able to relate to the parallel processing community at large, which
we consider essential, the workshop has been organized in conjunction with Euro-
Par, the main European (but international) conference on all aspects of parallel
processing.

The call for papers for the HPPC workshop was launched early in the year
2007, and by the submission deadline we had received 20 submissions, which
were of good quality and generally relevant to the theme of the workshop. The
papers were swiftly and expertly reviewed by the Program Committee, most of
them receiving four qualified reviews. The Program Chairs thank the Program
Committee for the time and expertise they put into the reviewing work, and
for getting it all done within the rather strict time limit. A final decision on
acceptance was made by the Program Chairs based on the recommendations
from the Program Committee. Being a(n extended) half- day event, there was
room for accepting only six of the contributions, resulting in an acceptance
ratio of about 30%. Five of the six accepted contributions were presented at
the workshop (the paper not presented is as a matter of principle not included
in these proceedings), together with two forward-looking invited talks by Uzi

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 3–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 M. Forsell and J.L. Träff

Vishkin and Thomas Sterling on realizing a PRAM-on-a-chip vision and societies
of cores and their computing culture.

These post-workshop proceedings include the final versions of the presented
HPPC papers, taking the feedback from reviewers and workshop audience into
account. In addition, the extended abstracts of the two invited talks by Uzi
Vishkin and Thomas Sterling have also been included in the proceedings.

The Program Chairs sincerely thank the Euro-Par organization for providing
the opportunity to arrange the HPPC workshop in conjunction with the Euro-
Par 2007 conference. We also warmly thank our sponsors VTT and Euro-Par for
financial support, which made it possible to invite Uzi Vishkin and Thomas Ster-
ling, both of whom we also sincerely thank for accepting our invitation to come
and speak. Finally, we thank all attendees at the workshop, who contributed to
a lively day, and hope they too found something of interest in the workshop.
Based on the mostly positive feedback, the Program Chairs and organizers plan
to continue the HPPC workshop in conjunction with Euro-Par 2008.

November 2007 Martti Forsell
Jesper Larsson Träff

Toward Realizing a PRAM-on-a-Chip Vision

Uzi Vishkin

University of Maryland
University of Maryland Institute for Advanced Computer Studies (UMIACS)

College Park, Maryland, USA

Abstract

Serial computing has become largely irrelevant for growth in computing perfor-
mance at around 2003. Having already concluded that to maintain past perfor-
mance growth rates, general-purpose computing must be overhauled to
incorporate parallel computing at all levels of a computer system – including the
programming mode – all processor vendors put forward many-core roadmaps.
They all expect exponential increase in the number of cores over at least a
decade. This welcome development is also a cause for apprehension. The whole
world of computing is now facing the same general-purpose parallel computing
challenge that eluded computer science for so many years and the clock is ticking.
It is becoming common knowledge that if you want your program to run faster
you will have to program for parallelism, but the vendors who set up the rules
have not yet provided clear and effective means (e.g., programming models and
languages) for doing that. How can application software vendors be expected to
make a large investment in new software developments, when they know that
in a few years they are likely to have a whole new set of options for getting
much better performance?! Namely, we are already in a problematic transition
stage that slows down performance growth, and may cause a recession if it lasts
too long. Unfortunately, some industry leaders are already predicting that the
transition period can last a full decade.

The PRAM-On-Chip project started at UMD in 1997 foreseeing this chal-
lenge and opportunity. Building on PRAM – a parallel algorithmic approach
that has never been seriously challenged on ease of thinking, or wealth of its
knowledge-base – a comprehensive and coherent platform for on-chip general-
purpose parallel computing has been developed and prototyped. Optimizing
single-task completion time, the platform accounts for application program-
ming (VHDL/Verilog, OpenGL, MATLAB, etc), parallel algorithms, parallel
programming, compiling, architecture and deep-submicron implementation, as
well as backward compatibility on serial code. The approach goes after any type
of application parallelism regardless of its amount, regularity, or grain size. Some
prototyping highlights include: an eXplicit Multi-Threaded (XMT) architecture,
a new 64-processor, 75MHz XMT (FPGA-based) computer, 90nm ASIC tape-
out of the key interconnection network component, a basic compiler, class tested
programming methodology where students are taught only parallel algorithms
and pick the rest on their own, and up to 100X speedups on applications.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 5–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 U. Vishkin

The talk will overview some future plans and will argue that the PRAM-On-
Chip approach is a promising candidate for providing the processor-of-the-future.
It will also posit that focusing on a small number of promising approaches, such
as PRAM-On-Chip, and accelerate their incubation and testing stage, would
be most beneficial both: (i) for the field as a whole, and (ii) for an individual
researcher who is seeking improved impact.
URL: http://www.umiacs.umd.edu/∼vishkin/XMT

http://www.umiacs.umd.edu/~vishkin/XMT

Societies of Cores and Their Computing Culture

Thomas Sterling

Louisiana State University
Center for Computation & Technology

Baton Rouge, Louisiana, USA

Abstract

The performance opportunities enabled through multi-core chips and the effi-
ciency potential of heterogeneous ISA and structures is creating a climate for
computer architecture, highly parallel processing chips, and HPC systems un-
precedented for more than a decade. But with change comes the uncertainty
from competition of alternatives. One thing is clear: all systems will be parallel
systems and all chips will be highly parallel. If so, then, how will the parallelism
be represented and controlled and what will be the roles and responsibilities
for managing system wide parallelism? This presentation will address both the
exciting opportunities and challenges of highly parallel processing cores on chips
and describe one possible path for future parallel ISA cores, ParalleX, which
may enable the synthesis of many cores into one single scalable system.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, p. 7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hardware Transactional Memory with

Operating System Support, HTMOS

Sasa Tomic, Adrian Cristal, Osman Unsal, and Mateo Valero

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Abstract. Hardware Transactional Memory (HTM) gives software de-
velopers the opportunity to write parallel programs more easily compared
to any previous programming method, and yields better performance
than most previous lock-based synchronizations.

Current implementations of HTM perform very well with small trans-
actions. But when a transaction overflows the cache, these implementa-
tions either abort the transaction as unsuitable for HTM, and let software
takeover, or revert to some much more inefficient hash-like in-memory
structure, usually located in the userspace.

We present a fast, scalable solution that has virtually no limit on
transaction size, has low transactional read and write overhead, works
with physical addresses, and doesn’t require any changes inside the cache
subsystem.

This paper presents an HTMOS - Operating System (OS) and Ar-
chitecture modifications that leverage the existing OS Virtual Memory
mechanisms, to support unbounded transaction sizes, and provide trans-
action execution speed that does not decrease when transaction grows.

1 Introduction

1.1 Motivation

Transactional Memory (TM) systems can be subdivided into two flavors: Hard-
ware TM (HTM) and Software TM (STM). HTM systems bound TM implemen-
tations to hardware to keep the speculative updated state and as such are fast
but suffer from resource limitations. In this work, we propose Hardware Transac-
tional Memory with Operating System support (HTMOS) which is complexity-
effective, potentially performs on the same order of magnitude with HTM, and is
flexible like STM systems. We present a fast, scalable solution that has virtually
no limit on transaction size, does not prefer either directory based coherence or
snooping, that has low transactional read and write overhead, that works with
physical addresses, and does not require any changes inside cache subsystem.
Instead, changes are done on the Operating System (OS) level - in the Virtual
Memory system, and inside the processor - the TLB and in the form of additional
instructions/functionality.

HTMOS involves modest architectural and OS changes to keep the additional
copies of a page in memory for transactional memory. Compared to the pre-
vious HTM proposals, HTMOS has three important advantages: (1) implicitly

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 8–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hardware Transactional Memory with Operating System Support, HTMOS 9

accommodates large transactions without getting bogged down with complex im-
plementations which decreases the performance (as is the case for most HTMs).
In fact for a 4GB address space, a transaction could be as large as 2GB. (2) is
much more flexible than other HTMs. For example, different versioning schemes
such as in-place update versus lazy update are trivial to implement. Most other
HTM proposals embed a certain versioning scheme in silicon which makes it
very difficult to implement other alternative schemes. (3) ensures strong atom-
icity. Non-transactional loads and stores do not conflict with transactional ones.
More specifically, each non-transactional load or store can be seen like a single-
instruction transaction to the transactional ones.

1.2 Previous Work

Almost all current HTM implementations assume that transactions are going to
be very small in size. Our assumption is that ordinary programmers will try to
use transactions whenever they are not sure if they should use them, and for as
big segments of the program as they can.

In the current HTM implementations, there are generally two approaches to
the version management: lazy and eager, and two for conflict detection: lazy and
eager. Two representatives for these are LogTM[5], from University of Wiscon-
sin, with eager-eager, and Transactional Memory Coherence and Consistency[3],
from Stanford University, with lazy-lazy conflict detection and version manage-
ment. According to some researchers, the overall performance of LogTM is a
little bit worse than that of TCC[1].

In a recent proposal, called Unbounded Page based Hardware Transactional
Memory[2] (PTM), the conflict detection is done on the level of cache-line sized
blocks, and it supports unbounded transaction size. All of the transactional state
is indexed by physical pages, and is maintained at the memory controller. PTM’s
Transaction Access Vector (TAV) double linked list tracks the accesses to a page.
One shadow page for every physical page is created, which requires the eager
conflict detection. The memory controller is responsible for all conflict detection,
updating transactional state, and aborting/committing transactions. On abort
or commit, the memory controller updates the TAV and the special summary
cache for this transaction. Transactions are nested by flattening. The cost of
every miss to the TAV cache increases linearly with the length of the TAV list.
The length of TAV lists increases with the number of processors (transactions)
accessing different blocks of the same physical page. So, if there are many (N)
processors, each non-cached memory access would require N memory reads. To
avoid the high cost of non-cached access, the TAV cache that was used in eval-
uation is fully associative 2048 entries, which is very difficult to be done using
current technology.

2 HTMOS Architecture

HTMOS leverages the strong coupling between the Architecture and OS to en-
able the HTM design that is both fast and flexible. The core idea is to create

10 S. Tomic et al.

an additional, secondary copy of the page, for every transaction, in case when
transaction is trying to write to the page. Each transaction has its own trans-
actional Virtual Page Table (VPT), which can be utilized to switch between
the alternate versions of the block inside the page. Each page is subdivided into
blocks of cache-line size, to reduce the granularity for conflict detection. Assum-
ing eager conflict detection implementation, the current value of the data is in
the primary copy of the page, so only the record-keeping information needs to
be cleaned. On abort, the original values are copied from the secondary copy of
the page to the primary, and record-keeping information is cleaned. The detailed
explanation follows, divided into Software and Hardware sections.

2.1 Software

Operating System manages the memory required for the transactional bookkeep-
ing. It also allocates the secondary pages used for storing the backup copies of
the cachelines.

Global Transaction State Table (TST). OS has a special area of mem-
ory allocated for the TST. There is a fixed number of transactions running at
the same time. This number is fixed by both hardware and software. In our
implementation, we use so called transaction flattening: nesting counter is incre-
mented on begin of a nested transaction and decremented on commit of a nested
transaction. The real commit is done only when nesting counter reaches zero.
Therefore, it is sufficient to have the maximum number of concurrently running
transactions equal to number of processors in the system.

The global TST (Tab. 1) holds the basic information about all transactions.
Every processor has access to each element of this table and, therefore, can read
or set status of any transaction in the system. The table has as many entries as
there are processors/transactions in the system. We will assume a 32 processor
system.

Each entry of the table is extended with (currently) unused bits up to cache-
line size, to minimize the false-sharing between processors.

On system startup, the OS also creates a 32 transactional VPTs. Transactional
VPT holds the physical addresses for the secondary pages of this transaction.

Transactional Bitmap (TB). Transactional Bitmap is the key structure of
our HTM implementation. This sparse bit-array is permanently stored in the
physical memory, and holds the information about the transactional reads and
writes from and to the page that it is associated with. It exists only for the pages
that have the transactional reads and/or writes.

TB is organized in the following way:
For every block in the page (standard page of 4KB is split into 64B standard

cacheline-sized blocks) we have a bitmap in the following format: 1 M bit: marks
if this block has been Modified by some processor, 32 TXID bits (1 bit per
processor): marks which processors have read the value, or in case when M=1,
then which processor (only one) is holding the modified value. This makes a

Hardware Transactional Memory with Operating System Support, HTMOS 11

Table 1. An entry of Transaction State Table, assuming cache-line size of 512b (64B)

size field name possible states

52b tx vpt pointer to transactional vpt

1b active INACTIVE / INSIDE PROC

2b status RUNNING, COMMITTED, ABORTED, FREE

9b nesting depth 0..511

64b ws size 0..(264 − 1)

32b tx blocked bitmap of TXs blocked on this one

32b thread id thread id that is running transaction

320b unused -

Fig. 1. Transactional Bitmap organization for nCPUs processors

total of 64 x (1+32) bits = 2112bits = 264B associated with each transactional
PTE, and this is enough to cover up to 32 processors, with concurrent access to
each of the 64B blocks in the page.

As can be seen on Fig. 1, when stored in the memory, M bits are grouped into
one 64-bit M field, and all TXID bits are grouped in a field after that.

The motivation for the addition of the TB is the reduction of conflict detection
granularity. The best granularity for the conflict detection is word-size, but false-
conflicts are mostly tolerable[2,4] if the granularity is 64B (standard cache-line
size). Therefore, we split the page of 4KB to 64B blocks.

This bitmap can be located in the memory separately from the page table.
The TLB inside the processor is extended to also hold the address of this bitmap,
associated with every page. On the first transactional read or write to the page,
if the address of the TB for the page is uninitialized (equal to zero), the processor
interrupts the OS and signals that it needs the TB for the page. The OS allocates
the space and loads the new TLB entry into the processor, that is now also
holding a pointer to the TB. From now on, the processor reads and updates this
TB on transactional access to the page blocks.

The total occupied space by both TST and TB grows linearly with the number
of processors in the system, and this dependency can be seen graphically in the
Fig.2.

As an example, let us assume non-conflicting transactional read and write to
a block by e.g. processor 3. After reading from this block, the 3rd bit of TXID
for this block will be 1. After writing to the block, the M bit will be 1 and 3rd
bit of TXID for this block will be 1. With this simple approach it is easy to
quickly detect the conflicts later.

The M and TXID bits are consulted on every (transactional or not) read or
write to the block.

12 S. Tomic et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 20 40 60 80 100 120

S
pa

ce
 ta

ke
n

(in
 b

yt
es

)

Number of processors

TST table size (for the system)
TB size (per transactional page)

Fig. 2. Space taken for the transactional bookkeeping as a function of the number of
processors in the system

TB is actually associated with the physical page in the system, but is accessed
only from the virtual addresses, during the translation from the virtual to the
physical address. Therefore, we don’t need the same number of the TBs as the
number of transactionally accessed physical pages in the system. Additionally,
many virtual pages can point to the same Transactional Bitmap. This allows
inter-process shared memory communication, where many processes share the
same TB for different virtual address spaces.

2.2 Hardware

Translation Lookaside Buffer. Each entry in the TLB inside the processor is
extended with one additional bit, T, that is actually appended to the virtual
address on every TLB lookup (Fig. 3). This bit signifies if the TLB entry holds

Fig. 3. New TLB entry

the primary (T=0) or the secondary (T=1) copy of the page. The processor,
itself, knows whether the lookup it wants to make is the transactional one or
not. One more addition to each entry are the pointer to the Transactional
Bitmap, TBp, and the value of TB, whose functionalities are explained in 2.1.

A specialized hardware that can be used to process the M and TXID bits, and
for conflict detection, can be seen in the Fig.4. The multiplexer for the M bits
selects the proper bit with the value of bl, the cacheline block offset inside the
page. The TXID is the array of bits, with 64 chunks of ’number of processors’
bits. From each of these chunks, for conflict detection each processor is using only
one bit, which is hardcoded to the multiplexer input. The multiplexers with 64
input bits and one output bit, can be multilevel to reduce the fan-in.

Hardware Transactional Memory with Operating System Support, HTMOS 13

Fig. 4. Additional hardware per TLB entry, for reading and processing of M/TXID
bits

Effect on Non-transactional Reads and Writes. The OS flushes the TLB
entry from all processors that might hold it, in the case when a pointer to TB
(TBp) is changed. This ensures strong atomicity. On a conflict between non-
transactional and transactional code, processor running non-transactional code
determines that the transaction created a conflict, and either sends a kill tx
(abort your transaction) message to a remote processor if conflicting trans-
action is INSIDE PROC or raises an ABORT interrupt if the transaction is
INACTIVE.

3 Transactional Access

3.1 Begin Transaction

The transaction begins with the call to the ISA instruction (see Table2) btx
TSTp, where TSTp is the address of the first entry in the Transaction State
Table. Each processor has a unique number, CPUID or TXID, that in our im-
plementation goes from 0 to 31. The processor locates its entry in TST, and sets
the value of the active field for this processor as INSIDE PROC, and the status
field of the transaction as RUNNING. Then it increments the nesting depth. Af-
ter this the processor effectively enters the transactional mode and all memory
reads and writes are implicitly transactional.

When the processor changes priority level (e.g. from user mode changes to
kernel mode or vice-versa), or when it enters a fault: interrupt, page fault, etc.
the active field is automatically set to INACTIVE. This is done by writing to
the memory bit. Most of the time this will be just a private cache write, unless
this TST entry had to be evicted.

On subsequent calls to the btx, the processor simply increments the nesting
depth of the transaction.

3.2 Transactional Read

On every transactional read, the processor consults the TLB entry for the page
for the permission to read. If the TBp is zero (i.e. there is no TB associated

14 S. Tomic et al.

Table 2. ISA extensions

begin transaction btx TSTp

commit transaction ctx TSTp

clean TB for the TXID clean tb vaddr, txid

unblock TXIDs blocked on the given TXID and set the
TST free for the given TXID

finish tx txid

undo the writes and clean the TB for the given TXID undo tx vaddr, txid

with this virtual address), the processor raises an interrupt to the OS to create
it. OS allocates the space for the TB, then loads the TBp and the TB into the
TLB entry and returns to the same instruction that raised the interrupt. A non-
transactional read would not raise an interrupt when the TBp is zero in the TLB
entry. This is the only difference between the two of them. If there is non-zero
TBp, it is obeyed in both cases.

For avoiding the potential race condition when multiple processors wants to
read/write to the same block, testing and setting of M and TXID bits should be
done atomically.

If M[bl]=1 for the cacheline, some processor transactionally wrote to it.
The read is either permitted or denied, depending on the TXID bits for the
cacheline. If some other processors transactionally wrote to this address (bit for
this processor is not set), the conflict resolution protocol takes place and read is
denied.

If M[bl]=0, read from the cacheline is allowed. If needed (determined by the
TLB hardware), the TB entry for the cacheline is updated.

When the processor (e.g. P0) detects a conflict with other processor (e.g.
P1), it first locates the P1’s entry in TST, then reads the active bit of TX1. If
TX1 is INACTIVE (e.g. P1 is inside the trap), then P0 sets the status of P1
to ABORTED and calls the OS function to initiate the abort of P1’s writes.
If TX1 has active flag set to INSIDE PROC, then P0 sends an inter-processor
interrupt (IPI) to P1 block tx(my writeset size), and waits. Upon receiving
the interrupt, the processor P1 compares the size of the write-set of the other
transaction with the size of the write-set of himself, and based on that decides
which one is going to proceed. For more details about the protocol see 3.6.
Overhead of each transactional read:
The cost of the transactional read is not uniform as can be seen in Fig. 5a. The
first read from the transaction is slowed down by one additional write to TB, and
every transactional read after that is slowed down by only one additional read
to the Transactional Bitmap, which should be located in cache of the processor.

3.3 Transactional Write

On every transactional write, the processor consults the TLB entry for the per-
mission to write. For avoiding the potential race condition when multiple proces-
sors wants to read/write to the same block, testing and setting of M and TXID
bits needs to be done atomically.

Hardware Transactional Memory with Operating System Support, HTMOS 15

(a) The overhead of the transac-
tional read

(b) The overhead of the transac-
tional write

Fig. 5. The overhead of the transactional access

If the block was not modified (M bit is zero), then the processor has to
copy the current value of the cache line to the secondary page and set the M
and its TXID bits for this block. It also needs to inform other processors, that
have read from this block, that they need to restart their running transactions,
by sending the kill tx (abort your transaction) to each of them or raising the
interrupt ABORT TXn (see 3.5) in case they were INACTIVE. Then it writes
to the destination cache line and increments the private writeset size variable,
used for the conflict resolution.

If the M bit is one and the TXID is not equal to the ID of this processor,
a conflict resolution protocol needs to applied. The processor sends the other
processor an interrupt block tx(my writeset size), and waits. The other pro-
cessor, on this interrupt, enters the block tx procedure. For further details about
the conflict resolution mechanism see 3.6. On re-writing by the same processor,
there is no extra overhead.

Obviously, there is a need for the translation of one virtual address to two or
more physical addresses. This is accomplished with the different Page Directory
Base Registers (PDBR). Standard PDBR in x86 architectures is the CR3 regis-
ter. Alternatively, transactional PDBR is defined uniquely for every transaction,
in the TST (see 2.1).

The cost of transactional write is not uniform as can be seen in Fig. 5b. First
write to the block is slowed down by a write to TB, creating a backup of the
block in the secondary page and notifying all dependent transactions/processors
to abort transactions. Every next write by the same transaction to the same
block is slowed down by only one extra read.

3.4 Commit Transaction

A call to commit tx() is translated to the processor instruction ctx TSTp,
which decrements a transaction nesting depth. If the nesting depth is not yet
zero, there is no side-effect of instruction call. If the nesting depth becomes zero,
then this is the outermost commit (when transactions are nesting). In that case,
the processor executes the OS function ”commit(TXn)”. In this function, the
OS iterates through the list of all secondary pages and for each of them calls the

16 S. Tomic et al.

instruction clean tb vaddr, TXID, in which the processor cleans all the bits
for the given TXID. When the OS finishes iterating, it executes finish tx, which
informs every transaction blocked on this one that they can proceed, and sets
the transaction state in the TST as FREE and INACTIVE. The cleaning of the
transactional VPT can be done by other idle processor.

3.5 Abort Transaction

Abort transaction is implemented as an interrupt, to allow non-transactional
reads and writes that have a conflict with a transactional write, to undo the
transaction, restore original value of the block and then proceed with execution.
In the global TST it sets the transaction status to ABORTED, loads the correct
virtual page table base address into the PDBR (CR3 register on the x86 architec-
ture) of the chosen processor and then starts iterating through the Transactional
VPT, and for every page in it issues a processor the instruction undo tx vaddr,
cpuid , which for each block (bl) in the page: restores a backup copy if it exists,
and clears the M/TXID bits of the block (same activity as for clean tb)

When the OS finishes iterating through the Transactional VPT, it executes
finish tx, which informs every transaction blocked on this one that they can
proceed, and sets the transaction state in the TST as FREE and INACTIVE.

3.6 Conflict Resolution: Block Transaction IPI

Conflict resolutions are usually done either by the system clock, by virtual time
(timestamp), by transaction size, by transaction execution time, or other criteria.
We have adopted the conflict resolution by write-set size. Whenever a transaction
modifies a block for the first time (and creates a backup value of the block), it
increments the private writeset size counter. The value of this counter is used
to determine the priority of transactions. The transaction with bigger value of
writeset size has the higher priority in a conflict.

When a processor, for instance P1, receives the block tx (writeset size)
IPI from the other processor, for instance P0, it compares the write-set size
of P0 (P0 writeset size) with the write-set size of P1 (P1 writeset size), and if
P0 writeset size is greater then the P1 writeset size, it aborts (retries) the cur-
rent transaction. Otherwise, if P0 writeset size is less or equal to the P1 writeset
size, then P1 puts the P0 into the waiting list. In that case, P1’s write-set is
greater in size, and the other processor should wait until the completion of trans-
action inside P1.

This protocol gives the priority to the transactions with the bigger write set.
At the same time, it orders transactions so that dead-lock is avoided.

4 Conclusions and Future Work

We presented a new synergistic hardware-software solution for providing Un-
bounded Page based Hardware Transactional Memory. Leveraging existing Vir-
tual Memory mechanisms, it should allow constant transaction execution speed,

Hardware Transactional Memory with Operating System Support, HTMOS 17

regardless of the transaction size, and with small overhead for transactional reads
and writes. It does not require any changes of the currently highly-optimized
caches. It requires some relatively small changes in current Operating System
implementations, to allocate and manipulate the memory space for bookkeeping
and secondary pages.

References

1. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.:
Performance pathologies in hardware transactional memory. In: ISCA, pp. 81–91
(2007)

2. Chuang, W., Narayanasamy, S., Venkatesh, G., Sampson, J., Biesbrouck, M.V.,
Pokam, G., Calder, B., Colavin, O.: Unbounded page-based transactional memory.
SIGARCH Comput. Archit. News 34(5), 347–358 (2006)

3. Hammond, L., Carlstrom, B.D., Wong, V., Hertzberg, B., Chen, M., Kozyrakis,
C., Olukotun, K.: Programming with transactional coherence and consistency (tcc).
In: ASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pp. 1–13. ACM Press,
New York (2004)

4. McDonald, A., Chung, J., Chafi, H., Cao Minh, C., Carlstrom, B.D., Hammond,
L., Kozyrakis, C., Olukotun, K.: Characterization of tcc on chip-multiprocessors.
In: Proceedings of the 14th International Conference on Parallel Architectures and
Compilation Techniques (September 2005)

5. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: Logtm: Log-based
transactional memory. In: Proceedings of the 12th International Symposium on
High-Performance Computer Architecture, pp. 254–265 (February 2006)

Auto-parallelisation of Sieve C++ Programs

Alastair Donaldson1, Colin Riley1, Anton Lokhmotov2,�, and Andrew Cook1

1 Codeplay Software
45 York Place, Edinburgh, EH1 3HP, UK

2 Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

Abstract. We describe an approach to automatic parallelisation of programs
written in Sieve C++ (Codeplay’s C++ extension), using the Sieve compiler and
runtime system. In Sieve C++, the programmer encloses a performance-critical
region of code in a sieve block, thereby instructing the compiler to delay side-
effects until the end of the block. The Sieve system partitions code inside a sieve
block into independent fragments and speculatively distributes them among mul-
tiple cores. We present implementation details and experimental results for the
Sieve system on the Cell BE processor.

1 Introduction

Computer systems are increasingly parallel and heterogeneous, while programs are still
largely written in sequential languages assuming a single processor connected to uni-
form memory. The obvious suggestion that the compiler should automatically distribute
a sequential program across the system usually fails in practice because of the complex-
ity of dependence analysis in the presence of aliasing.

In Codeplay’s Sieve C++ [1,2,3], the programmer can place a code fragment inside a
special sieve block, thereby instructing the compiler to delay writes to memory locations
defined outside of the block (global memory) and apply them in order on exit from the
block. For example, by writing:

float *pa, *pb; ...
sieve { // sieve block

for(int i = 0; i < n; ++i) {
pb[i] = pa[i] + 42;

}
} // writes to pb[0:n-1] happen on exit from the block

the programmer requests to delay the writes to global memory locations referenced by
pb[0],. . . , pb[n-1] until the end of the block. In this example, we can also say that
the programmer requests the semantics of the Fortran 90 vector notation

pb[0:n-1] = pa[0:n-1] + 42;

in which all the reads happen before all the writes [4]. (The vector notation semantics
departs from the conventional one if vectors pa[0:n-1] and pb[0:n-1] overlap.)

� This author gratefully acknowledges the financial support provided by a TNK-BP Cambridge
Kapitza Scholarship and by an Overseas Research Students Award.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 18–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Auto-parallelisation of Sieve C++ Programs 19

It is easy to see that the sieve semantics is equivalent to the conventional seman-
tics if code within a sieve block does not write to and then subsequently read from a
global memory location (otherwise, delaying the write violates the true dependence).
The compiler preserves the order of writes to global memory by recording the writes in
a FIFO queue and applying the queue on exit from the sieve block.

The sieve construct is different from Software Transactional Memory: code within an
atomic block can immediately read new values of modified free variables; code within
a sieve block “commits” its side-effects without retrying [2].

Using sieve blocks is attractive for several reasons. First, in order to parallelise code
in a sieve block, the compiler needs to conduct dependence analysis only on memory
locations defined within the block (local memory). Second, global memory can be read
on entry to the sieve block and written to on exit from the block. This maps well to a
natural programming style for heterogeneous systems with hierarchical memory. Third,
the compiler can distribute the computation across the system speculatively (for exam-
ple, if the number of iterations is not known at compile time). Results from excessive
computation can simply be discarded when committing the side-effect queue to global
memory. Fourth, the sieve semantics is deterministic, hence program behaviour is pre-
dictable and repeatable.

In this paper, we describe the Sieve C++ iterator and accumulator classes (§2), spec-
ulation in the Sieve system (§3), and present implementation details and experimental
results for the IBM/Sony/Toshiba Cell BE processor (§4).

2 Syntax

2.1 Sieve and Immediate Functions

A function called from inside a sieve block must be explicitly specified as either sieve
or immediate. Sieve functions can only be called from inside sieve blocks or other sieve
functions (sieve scopes), and have their writes to global memory delayed. Immediate
functions can be called from both sieve and non-sieve scopes, and must not update
global memory. The compiler enforces the correct usage of these function types.

2.2 Iterator Classes

In C/C++, the induction variable and increment value for a loop can be changed within
the loop body [4]. Sieve C++ defines special iterator classes to track changes to induc-
tion variables in order to facilitate speculation.

A simple iterator class has a private state variable and a method for updating this
variable with the value it should have after a given number of loop iterations.1 For
convenience and efficiency, the class can also include a method for updating the state
with the value it should have at the next iteration. All methods updating the state must
be specified with the update keyword. All other methods must be specified as const,
and other fields as private and immutable.

1 The programmer is responsible for the correct behaviour of this method, as this is not checked
by the compiler.

20 A. Donaldson et al.

For example, an integer counter class can be defined as:

iteratorclass intitr {
int cnt; // state variable

public:
immediate intitr(const int cnt) { this->cnt = cnt; }
immediate operator int() const { return cnt; }
// update methods
update void operator +=(const int x) { cnt += x; }
update void operator ++() { ++cnt; }

}

and used in the vector addition example as follows:

for(intitr i(0); i < n; ++i) {
pb[i] = pa[i] + 42;

}

Iterator classes are not confined to basic induction. Consider another example:

double opt[n]; const double up = 1.1;
for (int i = 0, double Si = 1000.0; i < n; ++i) {

opt[i] = Si;
Si *= up;

}

Here, the value of variable Si (in all iterations but the first) depends on its value at the
previous iteration. The programmer can re-write this loop in Sieve C++:

sieve {
powitr Si(1000.0, 1.1);
for (intitr i(0); i < n; ++i) {

opt[i] = Si;
Si.mulUp();

}
}

where powitr is defined as follows:

iteratorclass powitr {
double val; // state variable
const double up;

public:
immediate powitr(const double val, const double up)

{ this->val = val; this->up = up; }
immediate operator double() const { return val; }
// update methods
update void mulUp(const int x) { val *= pow(up, x); }
update void mulUp() { val *= up; }

}

The parameterised mulUp method can be used to update the state variable val with the
value it should have after x iterations.

Auto-parallelisation of Sieve C++ Programs 21

2.3 Accumulator Classes

Reduction is the process of obtaining a single element by combining the elements of a
vector [4]. The following example computes the sum of the elements of pa:

float sum = 0.0;
for(int i = 0; i < n; ++i) {

sum += pa[i];
}

If we assume that addition is associative, this reduction can be performed as a number
of partial sums the results of which are summed to give the final result.

This computational pattern is supported in Sieve C++ with special accumulator
classes, which have a distinguished parameterised method called the merge rule that
is specified with the > symbol (c.f. using ˜ for destructors in C++).

The floating point accumulator class:
accumulatorclass floatsum {

float acc;
public:

immediate floatsum() { this->acc = 0.0; }
>floatsum(float * res, const floatsum ** resv,

const unsigned int resc) {

*res = resv[0]->acc;
for(int i = 1; i < resc; ++i) { *res += resv[i]->acc; }

}
immediate void operator += (float x) { acc += x; }

}

can be used to re-write the summation reduction in Sieve C++:
sieve {

floatsum fsum() merges sum;
for(intitr i(0); i < n; ++i) {

fsum += p[a];
}

} // the merge rule ’>’ is implicitly called here

Each partial sum is accumulated into a (private to each core) acc variable via the +=
operator. On exit from the block, the sieve runtime calls the merge rule >floatsum to
obtain the final result.

Accumulators can be defined for any associative operation. Practical examples
include the sum, product, exclusive-or, min and max operators.

3 Speculative Execution

3.1 Split Points

The Sieve system uses the notion of a split point to parallelise C++ code within a sieve
block. Split points are program points which delimit a sieve block into fragments which
can be executed independently, and thus deployed across multiple cores. Split points
can either be inserted implicitly by the compiler or explicitly by the programmer via
the splithere keyword. Every sieve block has two implicit split points: at the start
and end of the block.

22 A. Donaldson et al.

Annotating the vector addition example with a split point inside the loop:

sieve { // implicit split point (1)
for(intitr i(0); i < n; ++i) {

splithere; // explicit split point (2)
pb[i] = pa[i] + 42;

}
} // implicit split point (3)

indicates to the compiler that it would be sensible to parallelise this loop.
We can view split points statically or dynamically: there are three static split points

in the above example, as indicated in the comments. Dynamically there are n + 2 split
points: at the start and end of the sieve block, plus a split point for each iteration of
the loop. We can distinguish each dynamic split point in a loop nest by combining the
associated static split point with an iteration vector (IV) [4], comprised of the values of
iterators controlling the loop nest. Execution of a sieve block can then be organised as
a chain of dynamic split points. For the above example we have the chain 1〈 〉, 2〈0〉,
2〈1〉, . . ., 2〈n − 1〉, 3〈 〉 (where 〈 〉 denotes an empty IV).

A fragment is any contiguous portion of a chain of dynamic split points. A sieve
block can be efficiently executed by dividing its associated chain of dynamic split points
into fragments and executing these fragments in parallel. Each fragment maintains a
queue of side-effects which are applied to global memory in order on exit from the
block. In addition, each fragment maintains a local accumulator variable for every ac-
cumulator declared within the sieve block. On exit from the block the values of these
accumulators are merged into appropriate global data structures via the accumulator
merge rules.

Note that a fragment typically spans multiple split points. The compiler and run-
time system decide how large each fragment should be for the given code and parallel
hardware.

3.2 Speculative Execution

A fragment can be described by specifying a static split point, an IV giving the values
of iterator variables at the start of the fragment, and an integer specifying how many
split points should be traversed during the fragment. The result of executing a fragment
can be described by: a queue of side-effects to global memory, a set of values for ac-
cumulator variables, and an IV giving the values of iterator variables at the end of the
fragment.

Parallel execution of a loop in a sieve block can be achieved by guessing the IVs for
a sequence of contiguous fragments. Since the first fragment always begins at the start
of the sieve block, its IV is empty and thus trivial to guess. The runtime system assigns
this fragment to one core for execution. The runtime then uses a strategy to guess the
value which the IV will have at the end of this fragment. This guessed vector is used to
generate a fragment for parallel execution by another core. If more cores are available,
then this guessing process is extended so that each core executes a fragment starting
with a guessed IV.

If the guessed IV for a fragment matches the actual final IV of the previous fragment,
then the fragments are contiguous, and the guess is correct, or valid. Given a chain of

Auto-parallelisation of Sieve C++ Programs 23

correctly guessed fragments, applying the side-effects for each fragment to global mem-
ory in sequence has the same effect as executing the fragments in serial with the sieve
semantics. If the IV for a fragment is incorrectly guessed then its side-effect queue (and
the queues of its subsequent fragments) must be discarded. We refer to the execution of
fragments with guessed IVs as speculative execution, since the execution results may
have to be discarded if guessing turns out to be wrong.

3.3 Examples

We illustrate the idea of IV guessing and speculative execution using the vector addition
example. Suppose that at runtime n = 20, so that there are 22 dynamic split points: 1〈 〉,
2〈0〉, 2〈1〉,. . ., 2〈19〉, 3〈 〉. Suppose further that the arrays pa and pb both have size 20
and that before execution of the loop pa is set up so that pa[i]=i, for any 0 ≤ i < 20.

The following table shows a perfect guessing chain for execution of the loop on a
quad-core machine:

core guessed IV guessed length actual length side-effects final IV
1 1〈 〉 6 6 pb[0:4]=[42..46] 2〈5〉
2 2〈5〉 5 5 pb[5:9]=[47..51] 2〈10〉
3 2〈10〉 5 5 pb[10:14]=[52..56] 2〈15〉
4 2〈15〉 5 5 pb[15:19]=[57..61] 3〈 〉

The guessing chain is perfect because, for i > 1, the guessed IV for core i matches the
final IV for core i − 1; the guessed length of each fragment matches the actual length
of the fragment execution; computation is balanced as evenly as possible between the
cores, and no unnecessary computation is performed.

On the other hand, the following table illustrates a poor guessing chain for the same
execution:

core guessed IV guessed length actual length side-effects final IV
1 1〈 〉 12 12 pb[0:10]=[42..52] 2〈11〉
2 2〈11〉 12 9 pb[11:19]=[53..61] 3〈 〉
3 2〈23〉 12 1 pb[23]=⊥ 3〈 〉
4 2〈35〉 12 1 pb[35]=⊥ 3〈 〉

In this example core 1 performs most of the computation, and a correct IV guess
allows core 2 to do the rest of the computation in parallel. The fact that the guessed
fragment length for core 2 is too large does not affect correctness of execution: when
the loop condition becomes false, this core reaches the end of the sieve block as ex-
pected. However, the guessed IVs for cores 3 and 4 are based on the expected fragment
length for core 2. As a result, these cores attempt to read subscripts of pa and write to
subscripts of pb which are beyond the bounds of these arrays. The resulting side-effects
are marked grey in the above table, and the undefined values speculatively assigned to
pb[23] and pb[35] are denoted ⊥.

After this speculative execution the runtime assesses the correctness of its guessing
effort. It determines that cores 1 and 2 have performed the required loop execution, and
applies their side effects to global memory (filling the array pb). The runtime also de-
tects that the guesses for cores 3 and 4 were incorrect and therefore does not apply their

24 A. Donaldson et al.

side-effect queues. As a result, although this poor guessing effort does not lead to opti-
mal exploitation of parallel hardware, it still results in correct, deterministic execution
of the sieve block.

3.4 Coping with Invalid Guesses

In the above example, attempting to read from pb[23] or pb[35] may result in an
access exception. In more complicated examples, speculative execution could result in
other exceptions (e.g. division by zero). These exceptions are caught by the runtime
system and hidden until the runtime can determine whether the guess which caused a
given exception is valid (i.e. whether this guess simulates serial behaviour). If a guess
turns out to be invalid (as in the above example) then, in addition to discarding the side-
effect queue, any exceptions arising from the speculated execution are also ignored. If
the guess is valid, the runtime system will re-run the fragment and this time expose the
exception so that the user can debug the program as usual.

3.5 Advanced Techniques for Guessing

As discussed in §2.2, the update methods provide a way to set up the state of iterator
variables as if a given number of loop iterations had already been executed. Neverthe-
less, sometimes it is impossible to determine the number of iterations a given loop will
execute: the loop may exit early via break statements; the loop bounds may change
dynamically, etc. Thus, good guessing is a challenge.

A simple guesser can operate by running small fragments (e.g. with a length of one)
to check for updates to iterator variables in the loop body. Once the pattern of these up-
dates is discovered, the runtime can make larger guesses to ensure that the computation
within each fragment is sufficient to outweigh the runtime overhead of managing the
fragments.

More advanced speculation techniques could be employed by having the compiler
communicate extra sieve block meta-data to the runtime. For example, the compiler
could identify the split points which a given iterator spans, and mark split points across
which no iterators are live, allowing speculation before and after these points to be
independent. This would ease the task of checking guess-chain correctness, and increase
the likelihood of valid guesses.

4 Implementation on the Cell BE

Experimental results showing the effectiveness of parallelisation via the Sieve system
for multi-core x86 systems are presented in [2]. We focus here on implementation and
experimental results for the Cell Broadband Engine (BE) processor [5]. Fig. 1 illustrates
the Cell BE architecture, which consists of a “power processing element” (PPE) and
eight2 “synergistic processing elements” (SPEs). Each SPE has 256KB local memory,
and accesses main memory using DMA transfers.

2 Our implementation is for the Sony PlayStation 3 console, on which only six of the SPEs are
available to the programmer.

Auto-parallelisation of Sieve C++ Programs 25

Fig. 1. Architecture overview of the Cell BE processor. (Only the six SPEs which are available to
the PlayStation 3 programmer are shown.)

4.1 The Cell Runtime

The Codeplay Sieve system is designed to be easily ported to new processor architec-
tures. The Sieve compiler has an ANSI C backend which can be used to enable support
for architectures where a C compiler already exists. In particular, the IBM Cell SDK
2.0 (which we used for our experiments) includes the GCC and xlC compilers.

In addition to C source files, the Sieve compiler also outputs details of which source
files should be compiled for which processing elements. This allows auto-generation of
a makefile for direct compilation of Sieve compiler’s output to a parallelised binary.

A runtime for the Cell BE took only two weeks of time for one developer to create;
this runtime incorporates simple loop-level speculation, support of iterator and accu-
mulator classes, an SPE software-managed cache, side-effect queue management, and
streaming DMA optimisations.

The runtime manages the SPEs as a pool. The SPEs boot into a tight runtime loop
which checks for fragments which are waiting to be executed. The side-effect queue
for each SPE is implemented using a ping-pong double-buffered streaming technique to
achieve constant memory usage, yet to allow efficient use of SPE-initiated non-blocking
DMA operations. Each SPE requires a certain amount of its 256 KB local store to be
reserved for runtime use. Reserving too small an amount can lead to communication
bottlenecks, as large side-effect queues must be streamed back in smaller chunks.

The PPE produces guesses, which are consumed by the SPEs, and writes SPE side-
effect queues to main memory on exit from a sieve block. When an accumulator is used
within a sieve block, the PPE is also responsible for collecting accumulated values from
the SPEs and merging these values using the accumulator merge rule.

4.2 Experimental Results

Fig. 2 shows the speedup (over a single SPE) for five example Sieve C++ applications: a
cyclic redundancy check of a randomly generated 8MB message (CRC); generation of a
ray-traced 500×500 image representing a 3D intersection of a 4D Julia set, with reflec-
tion and phong shaded lighting (Julia); a noise reduction filter over a 512 × 512 image,
using a 20×20 neighbourhood per pixel (Noise); generation of a 1500×1500 fragment
of the Mandelbrot set (Mandelbrot); a 4M-point Fast Fourier Transform (FFT).

26 A. Donaldson et al.

1 2 3 4 5 6
0

1

2

3

4

5

6

Active SPEs

N
or

m
al

is
ed

 s
pe

ed
up

 [w
.r

.t.
 s

in
gl

e
S

P
E

]

CRC
Julia
Noise
Mandelbrot
FFT

Fig. 2. Scalability results on Sony PlayStation 3

The results show that all Sieve C++ benchmarks, with the exception of FFT, scale
well over multiple cores (similar to our results for multi-core x86 systems [2]), with
77%, 86.7%, 89.3% and 92.9% efficiency on 6 SPEs for the CRC, Julia, Noise, and
Mandelbrot benchmarks, respectively. Of these scalable benchmarks, the CRC is least
efficient because it uses accumulator variables which require a modest amount of serial
computation on the PPE to execute the accumulator merge rule. The Julia, Noise and
Mandelbrot do not use accumulators, and hence are more efficient. The experiments
were performed using the delayed-write combining technique discussed next.

4.3 Combining Writes

Managing the side-effect queue incurs space and time overheads. A side-effect queue
element is written as a triple (address,size,data), where address is the destina-
tion memory address and size is the data size (in bytes). In the current implementation,
the combination of the address and size is 8 bytes long and data is padded to a mini-
mum of 4 bytes. Thus, a delayed write of a single byte results in writing 12 bytes to the
queue.

An easy way to reduce this space overhead is to combine a series of small consecutive
writes into a single, larger write. This can be achieved by comparing each write with
the last entry in the queue, merging the data and updating the data size information if
the data items turn out to be contiguous in memory.

Consider the following sieve block which writes characters to an array:

char *p = 0xfeed;
sieve {

p[0] = ’b’; p[1] = ’e’; p[2] = ’e’; p[3] = ’f’;
}

Auto-parallelisation of Sieve C++ Programs 27

Without delayed-write combining, the side-effect queue grows significantly with each
delayed write:

sieve {
p[0] = ’b’; // queue: [(0xfeed,1,’b’)]
p[1] = ’e’; // queue: [(0xfeed,1,’b’), (0xfeee,1,’e’)]
p[2] = ’e’; // queue: [(0xfeed,1,’b’), (0xfeee,1,’e’),

// (0xfeef,1,’e’)]
p[3] = ’f’; // queue: [(0xfeed,1,’b’), (0xfeee,1,’e’),

// (0xfeef,1,’e’), (0xfef0,1,’f’)]
}

Applying delayed-write combining results in a smaller queue:
sieve {

p[0] = ’b’; // queue: [(0xfeed,1,’b’)]
p[1] = ’e’; // queue: [(0xfeed,2,"be")]
p[2] = ’e’; // queue: [(0xfeed,3,"bee")]
p[3] = ’f’; // queue: [(0xfeed,4,"beef")]

}

This optimisation is particularly beneficial for the Mandelbrot benchmark which writes
pixels into a contiguous unsigned char array. Computing a 600 × 600 Mandelbrot
image across 6 SPEs (working on 100 rows each) means that each fragment has 60,000
twelve-byte queue entries. Using the optimal transfer size of 16KB implies 44 DMA
operations per fragment [5]. Applying delayed-write combining results in only 4 DMA
operations per fragment (three 16KB transfers followed by a transfer of 10,872 bytes).
The total number of DMA operations is thus reduced from 264 to 24. The benefit is
in having less of a bus-bottleneck and less blocking whilst ping-ponging buffers (as
the queues now take longer to fill). In our experiments, using delayed-write combining
resulted in 21.4% faster execution time when computing a 1500 × 1500 pixel image.

5 Conclusion

We have presented the Sieve compiler and runtime system for auto-parallelising Sieve
C++ programs. Our future work will focus on advanced implementation techniques
of Sieve C++ programs for performance and scalability on the Cell BE and other
multi-core architectures.

References

1. Codeplay: Portable high-performance compilers, http://www.codeplay.com/
2. Lokhmotov, A., Mycroft, A., Richards, A.: Delayed side-effects ease multi-core programming.

In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 629–
638. Springer, Heidelberg (2007)

3. Lindley, S.: Implementing deterministic declarative concurrency using sieves. In: Proc. of
the ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming (DAMP),
ACM Press, New York (2007)

4. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan Kaufmann,
San Francisco (2002)

5. IBM/Sony/Toshiba: Cell Broadband Engine Programming Handbook Version 1.1 (2007)

http://www.codeplay.com/

Adaptive L2 Cache for Chip Multiprocessors

Domingo Beńıtez1, Juan C. Moure2, Dolores I. Rexachs2, and Emilio Luque2

1 DIS Department and IUSIANI, University of Las Palmas G.C., Spain
dbenitez@dis.ulpgc.es

2 CAOS Department, University Autónoma of Barcelona, Spain
{JuanCarlos.Moure,Dolores.Rexachs,Emilio.Luque}@uab.es

Abstract. An open question in chip multiprocessors is how to organize
large on-chip cache resources. Its answer must consider hit/miss laten-
cies, energy consumption, and power dissipation. To handle this diversity
of metrics, we propose the Amorphous Cache, an adaptive heterogeneous
architecture for large cache memories that provides new ways of config-
urability. The Amorphous Cache adapts to fit the code and data by
using partial array shutdowns during run-time. Its cache configuration
can be resized and the set associativity changed. Four reconfiguration
modes can be used, which prioritize either IPC, processor power dissi-
pation, energy consumption of processor and DIMM memory module,
or processor power2×delay product. They have been evaluated in CMPs
that use private L2 caches and execute independent tasks. When one of
the cores of a CMP with 4-MB L2 shared-cache is used as baseline, the
maximum average improvements in IPC, power dissipation, energy con-
sumption, and power2×delay achieved by a single core with 2-MB private
L2 Amorphous Cache are 14.2%, 44.3%, 18.1%, and 29.4% respectively.

1 Introduction

Future chip multiprocessors (CMPs) will require innovative designs of on-chip
memory hierarchies. One of the options in the design of a CMP for taking advan-
tage of the increase of transistor count in the chip consists in including a larger
cache [5]. Increasing on-chip wire delays and leakage power will influence on how
this large storage should be organized if latency and power must be minimized.

Based on the observation that the aim of a large cache is to reduce memory
related stalls rather than to reduce misses, and that the best cache configu-
ration depends on program and design constraints, we propose a reconfigurable
architecture for large on-chip cache memories called Amorphous Cache. Our con-
tributions are the following: [A] We introduce a novel reconfigurable cache that
uses partial array shutdowns during program execution (Section 2). It adapts
the best cache architecture to the needs of different programs after chip fabrica-
tion. [B] Several actual layouts were created using a 130-nm CMOS technology
in order to determine the impact of reconfiguration logic on architectural met-
rics (Section 3). [C] Four reconfiguration modes are defined, which prioritize one
of a set of architectural metrics: IPC, processor power dissipation, energy con-
sumption of processor and DIMM memory module, or processor power2×delay

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 28–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adaptive L2 Cache for Chip Multiprocessors 29

product. These modes offer distinct trade-offs between performance improve-
ment and energy usage. They have been evaluated in CMP processors that use
private L2-caches and execute independent tasks. When one of the cores of a
CMP with 4-MB L2 shared-cache is used as baseline, a core with 2-MB pri-
vate L2 Amorphous Cache can provide at the same time higher performance,
lower power dissipation and lower energy consumption (Section 5). Other three
sections describe the experimental methodology, related work and conclusions.

2 Reconfigurable Cache

In this section, we describe a specialized reconfigurable circuit for CMP caches
(shared or private) called Amorphous Cache (AC). The term amorphous is moti-
vated by the fact that the range of cache configurations, critical paths and power
consumptions is not homogeneous. The integrated circuit is organized into an
array of heterogeneous blocks called subcaches, which are selectively connected
to the external ports by programmable pass gates called interconnection gates.
All disconnected sub-caches are powered-off. This circuit includes configuration
registers that store configuration bits. The AC cache implements different cache
organizations by overwriting the configuration registers. Fig. 1 shows the basic
architecture of a 2-MB Amorphous Cache.

Fig. 1. Structure of the reconfigurable Amorphous Cache

An interconnection gate is composed of a pass gate and the X 1-bit register. It
connects or disconnects the local port of a subcache to intermediate wires, which
are connected to the input/output port of the AC cache. We propose using the
programmable interconnection gates to selectively aggregate the heterogeneous
sizes of subcaches to adapt the cache to the needs of program working-sets.

The subcaches are based on the classical organization of CMOS cache mem-
ories. Each of them consists of four cache subarrays called tags-data, which are
4-way set-associative caches with 256-byte blocks. The Y 2-bit register deter-
mines its set associativity. Three different set associativities can be selected:

30 D. Beńıtez et al.

4-, 8- and 16-way, while the full capacity of the subcache is utilized. Depending
on the address bits address[INDEX+], one tags-data subarray is activated by one
of the address pre-decoder outputs (CE) and acceded with the common index:
address[INDEX]. We assume that the critical paths of the tags-data subarrays
are the same as proposed by Zhan et al [16]. They argued that by increasing the
sizes of certain transistors, the critical path inside the tag and data arrays is not
affected by the pre-decoder output signals. The address bits connected to the
pre-decoder and tag-data subarrays depend on each subcache because different
subcaches offer different sizes. The cache tag bits address[TAG] used to check for
a match also depend on the cache configuration. The V 3-bit register indicates
which tag bits are used to determine hit or miss.

Our design takes into account six subcaches with sizes that vary from 64 KB
to 1 MB. When all subcaches are powered on, which is indicated by the W 1-bit
register, the total cache size is 2 MB. In this paper, we evaluate 18 tuneable cache
configurations of the AC cache with the following range of capacities: from 64
KB to 2 MB, which can be either 4-, 8- or 16-way set-associative. The subcaches
that are not required for a determined cache configuration are powered-off by
using the Z 1-bit register. Each subcache has an independent power ring which
can be selectively connected to the voltage supply.

The Amorphous Cache can be reconfigured either dynamically, after each
instruction or temporal interval, or statically, before a different program begins
fetching instructions. Dynamic reconfiguration is outside the scope of this paper
and will be evaluated in future papers. In the rest of paper, we assume that
the Amorphous Cache is statically reconfigured. This is done by software in two
phases called Learning and Actuation. The Learning Stage is executed for each
program during profiling time, in which the software calculates the performance
and energy usage from the measures made by internal processor counters, which
monitor clock cycles, cache hits, and cache misses. This task is repeated for each
tuneable cache configuration. After that, each program is associated with the
best cache configuration, which in turn, could be distinct if a different prioritized
metric is selected at profiling time: IPC, energy, etc. In the Actuation Stage, the
prioritized metric is indicated by software, the corresponding cache configuration
is picked, and the AC cache is reconfigured before running the program.

3 Physical Implementation

The hit latency, dynamic energy, and leakage power of the tuneable cache config-
urations vary significantly. We created several VLSI circuits using the standard-
cells design methodology to determine as accurately as possible the impact of
the extra circuitry of the AC cache on these parameters. Fig. 2 shows the layouts
of a 256-KB conventional cache memory and the 256-KB subcache of the AC
cache. We used Synopsis Design Compiler [13] to synthesize different VHDL de-
signs into technology-dependent netlists, and Cadence Encounter SoC tools [4] to

Adaptive L2 Cache for Chip Multiprocessors 31

perform automatic placement and routing of the full-chips from the netlists that
allowed us to make the temporal and power analysis of the layouts. The tech-
nology we used was UMC 130-nm CMOS with 8-metal layers and 1.2 V power
supply [15] through the Europractice university program [6]. A SRAM com-
piler from Virtual Silicon Technology was used to generate single-port SRAM
modules. Using Cadence Encounter, we measured the access time, dynamic ac-
cess energy, and leakage power of various conventional baseline caches and the
equivalent configurations of the Amorphous Cache.

Fig. 2. Physical layouts of: (1) a 256-KB 8-way set-associative conventional cache mem-
ory; (2) the 256-KB subcache of the Amorphous Cache. (a) Placed SRAM blocks and
the critical path of the routed layout, (b) power graph, (c) routed layout.

We observe that the additional transistors required by the Amorphous Cache
are mainly used in the tag memories, configuration registers, address pre-
decoders, and selection logic at the output of the comparators. The amount
of additional transistors in the layout of the 2-MB AC cache relative to the lay-
out of a 2-MB baseline cache is lower than 0.5%. The circuits of the critical paths
that are affected by the specialized reconfigurable architecture are the address
pre-decoders, comparators, multiplexer drivers, and wire lines connected to the
input address and output data.

An architectural model for the AC cache is required for detailed simulations
of complete processors. We used the results obtained from the physical layouts
to scale the values provided by CACTI 4 [14] for conventional cache memories.
Table 1 contains the access time, dynamic access energy and leakage power for
each cache configuration of the 70-nm AC cache using a 4-GHz clock. They
were obtained by taking the original values provided by CACTI and adding the
respective percentages measured in 130-nm.

32 D. Beńıtez et al.

Table 1. Configurations of a 2-MB Amorphous Cache for a 4-GHz clock and λ=70
nm. Legends: at is cache access time, ae is dynamic access energy, lp is leakage power

AC
Configuration

at
[cycles]

ae
[nJ]

lp
[mW]

AC
Configuration

at
[cycles]

ae
[nJ]

lp
[mW]

64KB 4-way 4 0.12 302.05 512KB 8-way 6 1.48 2555.02

64KB 8-way 4 0.23 313.77 512KB 16-way 7 2.99 2585.60

128KB 4-way 4 0.23 603.77 1MB 4-way 10 1.19 4973.29

128KB 8-way 4 0.46 622.80 1MB 8-way 9 3.00 5033.59

256KB 4-way 5 0.31 1219.07 2MB 4-way 17 3.61 10796.20

256KB 8-way 5 0.60 1259.01 2MB 8-way 17 6.82 11401.20

256KB 16-way 5 1.16 1292.20 2MB 16-way 17 13.38 12085.70

Since the Amorphous Cache is a reconfigurable circuit, it requires temporal
and power overheads that are proportional to the number of conguration bits.
For the Amorphous Cache shown in Fig. 1, each one of its six subcaches has
seven conguration 1-bit registers, in addition to the 21 1-bit registers of the
interconnection gates; i.e., 63 1-bit configuration registers determine the cache
configuration of the AC. They are loaded before programs begin execution. As-
suming that these bits are serially loaded from an on-chip ROM memory with
a 800 MHz conguration clock signal, the reconguration time of the Amorphous
Cache is 0.08 μs; i.e. 320 penalization cycles for a clock speed of 4 GHz. This tem-
poral overhead was considered in our architectural simulations. Furthermore, we
also considered the additional 5 μJ energy consumed by the Amorphous Cache
in each cache reconguration. The amount of leakage power dissipated by the
configuration registers and associated circuits was assigned the value of 10 mW.
In the rest of paper, the Amorphous Cache is evaluated when it is used as private
L2 cache memory in a CMP.

4 Experimental Methodology

We evaluated a baseline core in a L2 shared-cache CMP (see Table 2) and a
core with private L2 Amorphous Cache. The L1 and L2 caches of the baseline
system were carefully selected to reflect the cache configuration of a current
dual-core shared-cache CMP. Seven architectural metrics were used: IPC, L2
miss rate, static and dynamic energy consumption, static and dynamic processor
power dissipation, and power2×delay product. We decompose the total energy
consumed by a core into the energy consumed by the L2 cache and the energy
consumed by the rest of processor. The dynamic energy in each L2 access and
the L2 leakage power for each adaptive and non-adaptive cache configuration
were provided by CACTI 4 for a 70-nm technology [14] and the AC cache
model described above. For the rest of processor, we assume that the energy
consumptions are proportional to the respective values consumed by the baseline
4-MB L2 cache. This proportionality for the dynamic energy was determined by

Adaptive L2 Cache for Chip Multiprocessors 33

using Wattch simulator [3], and factoring its results to reflect the realistic dy-
namic energy breakdown of the 130-nm 1MB-L2 AMD Athlon 64 processor [11].
Based on the leakage power breakdown of this Athlon processor, we assume that
the leakage power dissipated by the rest of processor is 1.5X times the leakage
power dissipated by the baseline L2 cache. Since the baseline processor except
L2 remains identical, its dynamic and static energy is considered constant dur-
ing all experiments. We also use an execution-driven simulator that models the
Alpha ISA to determine execution time and cache activity.

Table 2. Baseline out-of-order processor configuration integrated in a CMP

Operating Frequency 4 GHz

CMOS Technology λ = 70 nm, Power supply= 1.2 V.

Fetch Engine Decoupled, pipeline stages: 8, fetch queue: 16-entry

Instruction and Data
Cache

16KB+16KB, line-size: 64B, 8-way, LRU, at: 3-cycle,
MSHR: 32-entry, 2-port, early-start, ae: 0.037
nJ/access, lp: 70.5 mW

Branch Predictor Gshare 64K-entry, 2-bit counters; BTB: 512-entry,
8-way; minimum miss-prediction penalty: 17 cycles

Decode/Issue/Retired Up to 8 instructions per cycle; issue queue: 48-entry;
reorder buffer: 256-entry; 8 pipeline stages

Execution Units Operation latencies like Pentium 4

Load/Store Unit 64/32-entry queue, Perfect memory disambiguation,
Store to Load forwarding

Unified and Shared L2
Cache

Inclusive, 4 MB, line-size:256B, 16-way, LRU, at:27
cycles, 1-port, ae:15.38 nJ/access, lp:19570.5 mW

External Bus Unit at: 20-cycle latency, ae: 5 nJ/external-access

Main Memory at:380 cycles, ae: 245 nJ/access (DDR2 DIMM, 1.8 V,
333 MHz, 64-bit, pin-out capac.:10 pF/pin), lp:2.2 mW

We used single-threaded SPEC CPU2000, Mediabench II and NAS-2.3 bench-
marks compiled for the Alpha ISA with the −O4 optimizations. We assume that
workloads are multiprogrammed, which are believed to be encountered typically
in desktops [5]. This means that each core runs a different single-threaded pro-
gram. We also assume that no data sharing exists among threads. Table 3 shows
the benchmarks and the instruction intervals of the simulation stages. Addition-
ally, Table 3 includes some results that were obtained from the simulations of
the baseline processor.

The selection policy of benchmarks was based on two key ideas. On the one
hand, they characterize representative workloads because the L2 miss rates (MR)
of the baseline processor vary a lot: from 23.1% (ammp) to 1.0E-6 (eon). On the
other hand, the IPCs of the baseline processor also exhibit a wide variation:
from 3.54 (twolf) to 0.04 (ammp). This allows us to analyze the impact of the
Amorphous Cache on performance of a baseline processor that executes the
programs with different cache efficiencies.

34 D. Beńıtez et al.

Table 3. Benchmark summary and performance of the baseline processor. Legends:
M/I= Memory accesses per Instruction, IPC= Instructions Per Cycle, MR= number of
L2 misses per memory access, B= Billions of instructions, M= Millions of instructions.

Benchmark Instruct.
Intervals

Baseline
Processor

Benchmark Instruct.
Intervals

Baseline
Processor

Name Suite Fwd Sim. M/I IPC MR Name Suite Fwd Sim. M/I IPC MR

ammp spec 0 2B 0.25 0.04 23.1% is NAS 0 382M 0.35 0.51 0.30%

applu spec 100M 2B 0.38 0.56 0.85% lu NAS 50K 2B 0.39 1.25 0.23%

apsi spec 0 57M 0.48 3.40 1.4E-5 lucas spec 0 2B 0.17 1.02 0.89%

art spec 50K 2B 0.38 0.56 1.0E-5 mcf spec 1B 2B 0.33 3.19 0.08%

bt NAS 50K 2B 0.42 0.48 0.97% mesa spec 0 2B 0.36 2.60 0.03%

cg NAS 0 1.6B 0.46 0.23 1.36% mg NAS 50 K 2B 0.46 0.96 0.40%

cjpeg Med2 0 1.6B 0.27 2.57 1.6E-6 mgrid spec 0 2B 0.37 1.04 0.47%

eon spec 0 2B 0.46 2.39 1.0E-6 perlbmk spec 0 2B 0.42 1.96 0.08%

ep NAS 50 K 2B 0.26 0.97 8.0E-6 sixtrack spec 0.5B 1B 0.31 2.50 3.8E-5

equake spec 0 2B 0.33 3.48 4.3E-5 sp NAS 50K 2B 0.40 0.48 1.01%

ft NAS 0 1.2B 0.46 0.84 0.28% swim spec 0 2B 0.31 0.56 1.15%

galgel spec 0 2B 0.42 0.72 0.01% twolf spec 100M 376M 0.32 3.54 0.01%

gzip spec 0 2B 0.28 1.42 0.06% vpr spec 200M 2B 0.40 1.22 0.18%

gzip spec 0 2B 0.31 1.21 0.06% wupwise spec 0 2B 0.18 2.05 0.19%

5 Application to Adaptive CMPs with Private L2 Cache

We assume that only one single-threaded benchmark is running on one core of the
baseline CMP, and all the shared L2 cache is used by the active core. We compare
the performance and energy usage of the baseline processor with shared 4-MB
L2 cache with a single core of a CMP that uses 2-MB private L2 Amorphous
Cache. When the programs running on different cores share neither data nor
code, the number of misses in the shared L2 cache of a CMP may be higher than
having all the shared L2 cache for only one active core. The hypothesis is that
there can be more L2 conflict misses than when all cores except one of them
are inactive, due to multiple independent working-sets sharing the same cache.
However, private L2 caches are not affected by the activity of single-threaded
programs in other private caches. Thus, our results may establish a lower bound
for the performance improvement and energy efficiency of CMPs with private
L2 AC cache over shared-cache CMPs with double-size L2 cache.

The criterion for determining the best cache configuration of AC cache de-
pends whether the primary objective is optimizing performance or energy us-
age. This paper evaluates the potential of the private 2-MB L2 AC cache in
four different Reconfiguration Modes, which prioritize four architectural met-
rics respectively. The performance-aware reconfiguration mode picks the cache
configuration that provides the highest IPC for each program. In power-aware re-
configuration mode, the simulator uses for each program the cache configuration
that provides the lower average power dissipation. We have additionally evalu-
ated selection mechanisms driven by the L2 configuration that provides for each

Adaptive L2 Cache for Chip Multiprocessors 35

benchmark the lowest energy consumption, called energy-aware reconfiguration,
or the lowest power2×delay product, called time&energy-aware reconfiguration.

Fig. 3 compares the performance-aware reconfiguration mode of the 2-MB L2
private Amorphous Cache with the 4-MB L2 shared-cache baseline configuration
for each benchmark. Benchmarks exhibit IPC increase (positive improvement)
or decrease (negative improvement) with respect to the baseline configuration
that ranges between +47.9% (ft) and -28.0% (perlbmk). For those benchmarks in
which the number of memory stall cycles of the AC cache configuration is larger
than baseline (21% of benchmarks: mg, mcf, ammp, lu, sp, perlbmk), a negative
performance improvement was always observed. Thus, the reduced L2 hit time
of AC cache does not compensate for the product of the increased L2 miss rate
and the 400-cycle miss penalty. However, the most frequent case occurs when
the L2 hit latency of the AC cache is lower than baseline (79% benchmarks).
In these cases, a positive performance improvement was always observed. On
average, the performance improvement achieved by our adaptive performance-
aware L2 cache is 14.2%, which is due to a combination of the following factors:
[A] memory performance limits processor performance when the L2 size is lower
than a threshold that is program dependent, [B] the program working-set can
use a lower size L2 cache with minimal increase in the L2 miss rate, [C] the out-
of-order instruction processing provides a relative low toleration for the memory
stall cycles. Therefore, we conclude that for higher performance, it is more effi-
cient to increase the miss rate of the L2 configuration a little (on average 17.7%)
by picking a smaller cache size since its impact on performance can be hidden
by the reduction in L2 hit latency (on average 63.9%) −see Table 4−.

Fig. 3. Results of the performance-aware reconfiguration mode of the 2-MB L2 AC

6 Related Work

Recent studies have considered that wire latency is a primary design factor in
CMP caches. Balasubramonian et al proposed a reconfigurable exclusive L2/L3
cache that can be tuned at every instruction interval or subroutine call [1]. They
concluded that the L2/L3 cache with configurable scheme can have a profound

36 D. Beńıtez et al.

Table 4. Average improvements (%) achieved by four reconfiguration modes of the
private L2 AC cache relative to the L2 shared-cache baseline system after the simulation
of 28 benchmarks. Positive numbers (+) indicate that AC cache achieves improvement
in the respective metric. Negative numbers (-) indicate just the opposite.

Reconfi-
guration
Mode

IPC Energy Power Power2×
Delay

L2
Miss
Rate

L2
Access
Time

Mem
Stalls

L2
Dyn
Eng

L2
Leak
Pow

Performance +14.2 +15.7 +15.4 +26.5 −17.7 +63.9 +17.7 +77.4 +72.6

Power −19.1 +6.1 +44.3 −79.4 −143.4 +84.4 −136.6 +99.0 +98.3

Energy +8.5 +18.1 +25.1 +16.3 −61.0 +79.5 −16.7 +94.8 +91.6

Time&Energy +12.5 +17.1 +20.8 +29.4 −56.0 +71.6 +12.9 +89.5 +83.3

impact on increasing energy efficiency when compared with a conventional three-
level cache hierarchy. Huh et al proposed a low-latency L2 cache for a 16-core
CMP, which is organized as a non-uniform cache architecture array (NUCA)
with a switched network embedded in it [7]. They conclude that the best L2
cache configuration is a static organization with sharing degrees of two or four.
Beckmann et at compared three latency reduction techniques for CMPs with
an 8-core shared cache [2]. They observed that combining the three latency
reduction techniques can decrease the L2 hit latencies of CMPs. Speight et al
studied how CMP L2 caches interact with off-chip L3 caches and how L2 caches
temporally absorb modified replacement blocks from other caches [12].

Several researches have investigated dynamically re-allocating cache capacity
for CMPs. Liu et al proposed achieving dynamic bank allocation by re-mapping
the banks [10]. Iyer proposed priority-based cache management systems to al-
locate cache resources by OS-assigned priority [8]. To prevent thread starvation
to cache capacity sharing, Kim et al investigated fairness issues in CMP cache
sharing [9].

7 Conclusions

This paper presents an architecture for heterogeneous adaptive caches called
Amorphous Cache, which can adapt its size at run-time to match the actual
cache requirements of the application working-sets. The evaluation of detailed
circuit layouts have provide us realistic limits in the granularity of sub-cache
shutdowns, and an estimation of the cost of shutdowns and the fixed penalty
due to its reconfiguration capability. Four reconfiguration modes can be used,
which achieve different levels of trade-off in the improvements of performance
and energy usage. In CMP processors with shared L2 cache, the memory latency
relative to cycle time and power consumption both continue to grow, and proces-
sors are neither very latency- nor power-tolerant. Using the Amorphous Cache
as private L2 cache in a CMP processor has many potential advantages for mul-
tiprogrammed and independent workloads; IPC, processor power dissipation,
energy consumption of processor and DIMM memory module, and processor

Adaptive L2 Cache for Chip Multiprocessors 37

power2×delay product can be improved, on average, by 14.2%, 44.3%, 18.1%,
and 29.4% respectively.

Acknowledgements

We sincerely thank Prof. Antonio Nunez and Pedro P. Carballo for their invalu-
able comments on the designs of the integrated circuits. This work was partially
funded by the MEC-Spain under contract TIN2004-03388.

References

1. Balasubramonian, R., Albonesi, D.H., Buyuktosunoglu, A., Dwarkadas, S.: A Dy-
namically Tunable Memory Hierarchy. IEEE Tran. Comp. 2(10), 1243–1257 (2003)

2. Beckmann, B.M., Wood, D.A.: Managing wire delay in large chip-multiprocessor
caches. In: Proc. of the 37th MICRO, pp. 319–330. IEEE Computer Society, Los
Alamitos (2004)

3. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. In: Proc. of the 27th Int. Symp. Comp.
Arch., pp. 83–94. IEEE Computer Society, Los Alamitos (2000)

4. CADENCE Design Systems, http://www.cadence.com
5. Chang, J., Sohi, G.S.: Cooperative Caching for Chip Multiprocessors. In: Proceed-

ings of the 33rd Int. Symp. Comp. Arch., pp. 264–276. IEEE Computer Society,
Los Alamitos (2006)

6. EUROPRACTICE, http://www.te.rl.ac.uk/europractice com/
7. Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D., Keckler, S.W.: A NUCA sub-

strate for flexible CMP cache sharing. In: Proc. of the 19th Intl. Conf. on Superc.,
pp. 31–40. ACM Press, New York (2005)

8. Iyer, R.: CQoS: a framework for enabling QoS in shared caches of CMP platforms.
In: Proc. of the 18th Intl. Conf. on Superc., pp. 257–266. ACM Press, New York
(2004)

9. Kim, S., Chandra, D., Solihin, Y.: Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. In: Proc. of the 13th Intl. Conf. on Paral. Arch. and
Comp. Techn., pp. 111–122. IEEE Computer Society, Los Alamitos (2004)

10. Liu, C., Sivasubramaniam, A., Kandemir, M.: Organizing the Last Line of Defense
before Hitting the Memory Wall for CMPs. In: Proc. of the 10th Intl. Symp. High
Perf. Comp. Arch., p. 176. IEEE Computer Society, Los Alamitos (2004)

11. Mesa-Martinez, F.J., Nayfach-Battilan, J., Renau, J.: Power Model Validation
Through Thermal Measurements. In: Proc. of the 34th Int. Symp. Comp. Arch.,
pp. 302–311. IEEE Computer Society, Los Alamitos (2007)

12. Speight, E., Shafi, H., Zhang, L., Rajamony, R.: Adaptive Mechanisms and Policies
for Managing Cache Hierarchies in Chip Multiprocessors. In: Proc. of the 32th Int.
Symp. Comp. Arch., pp. 346–356. IEEE Computer Society, Los Alamitos (2005)

13. SYNOPSIS, Inc., http://www.synopsis.com
14. Tarjan, D., Thoziyoor, S., Jouppi, N.P.: CACTI 4.0. HP Tech. Rep. Lab. HPL-

2006-86 (2006)
15. UMC, http://www.umc.com
16. Zhang, C., Vahid, F., Najjar, W.: A Highly Configurable Cache Architecture for

Embedded Systems. In: Proc. of the 30th Int. Symp. Comp. Arch., pp. 136–146.
IEEE Computer Society, Los Alamitos (2003)

http://www.cadence.com
http://www.te.rl.ac.uk/europractice_com/
http://www.synopsis.com
http://www.umc.com

On-Chip COMA Cache-Coherence Protocol for

Microgrids of Microthreaded Cores

Li Zhang1 and Chris Jesshope2

1 Informatics Institute, University of Amsterdam
2 Kruislaan 403, Amsterdam 1098SJ, the Netherlands

{zhangli,jesshope}@science.uva.nl

Abstract. This paper describes an on-chip COMA cache coherency
protocol to support the microthread model of concurrent program com-
position. The model gives a sound basis for building multi-core comput-
ers as it captures concurrency, abstracts communication and identifies
resources, such as processor groups explicitly and where mapping and
scheduling is performed dynamically. The result is a model where binary
compatibility is guaranteed over arbitrary numbers of cores and where
backward binary compatibility is also assured. We present the design of a
memory system with relaxed synchronisation and consistency constraints
that matches the characteristics of this model. We exploit an on-chip
COMA organisation, which provides a flexible and transparent partition-
ing between processors and memory. This paper describes the coherency
protocol and consistency model and describes work undertaken on the
validation of the model and the development of a co-simulator to the
Microgrid CMP emulator.

1 Introduction

It is now widely accepted that future computer systems must manage mas-
sive concurrency. Even on chip, that concurrency will be significant and
asynchronous, having many of the same characteristics as grid systems. The
constraints driving this are based on exponential functions meeting hard lim-
its. For example, the hard limit on power dissipation will limit clock frequency
and the limit of chip area is already a problem with respect to the area reach-
able in a single clock cycle. These constraints are the final nail in the coffin of
the sequential model of computation. In the past, superscalar processors were
able to exploit the implicit concurrency in sequential programs but they have
very poor scaling as a consequence of their centralised model of synchronisation
and scheduling. There is therefore a dire need for the development of more dis-
tributed models that still retain the advantages of the sequential model, namely
composability and determinism.

Basic research into scalable, on-chip instruction execution has led in two dis-
tinct directions. The first has been the resurrection of dataflow instruction execu-
tion. In this model, instructions are mapped to ALUs and data is moved between
instructions by using other instructions rather than named memory locations as

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 38–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On-Chip COMA Cache-Coherence Protocol 39

targets of an operation [1,2]. The problem with this approach is that it does not
support a memory model that can be used with conventional languages. Both
approaches referenced have addressed this limitation but at some expense to the
concurrency they are able to expose.

An alternative approach is to embrace explicit concurrency in the execution
model, while at the same time maintaining the properties defined above that have
made the sequential model so ubiquitous. The microthread model achieves this
by capturing abstract concurrency in a conventional RISC-like ISA [3]. A cre-
ate instruction dynamically defines concurrent execution as a family of threads
based on a single thread definition. Because each member of the family has a
unique index assigned to it, heterogeneous as well as homogeneous concurrency
is supported. Families are parameterised and can be infinite in range. Concur-
rency can be created hierarchically as the thread definition for one family may
contain creates for subordinate families. Create is therefore used to replace the
sequential constructs of looping and function calls with concurrent equivalents.
Moreover, the create instruction binds a unit of work, which is a family and its
subordinate families to a place, which is a collection of processors.

Registers in this model implement a blocking read and provide fine-grain syn-
chronisation between threads. This is similar to dataflow and in distinct contrast
to other thread models such as Simultaneous Multi-Threading (SMT) [4] that
synchronise on memory. The distributed register file also provides the mech-
anism for scheduling instructions from threads as continuations are stored in
registers waiting for data, which are rescheduled on a write. The distribution
of register files between multiple cores enables scalable data-driven execution of
microthreaded code across many processors. It also provides significant tolerance
to latency, as memory operations are decoupled by this register-based synchro-
nisation. Current processor designs allow hundreds of threads to execute locally,
typically allowing tolerance of up to a thousand cycles in memory accesses.

Threads in a family are mapped dynamically but deterministically to a set of
cores and this provides the binary code compatibility. Moreover, legacy binary
programs that use function calls and loops can be executed as singleton families
in this model, providing backward compatibility.

While registers are used for fine-grain synchronisation between threads (and
a thread and the memory system). A bulk synchronous model is provided on
memory. Typically families of threads will update indexed data-structures in
memory and a sync action (using a return code to a synchronising register) will
provide the synchronisation required in order to create another family to con-
sume the data structure. The memory model has a relaxed memory consistency
compared to other thread-based approaches and requires the design of a new
memory architecture and coherency protocol to fully exploit it. Memory written
by a family is only defined following termination of all threads in that family.
Race conditions are not excluded but the only reason they would exist (apart
from bugs) is to allow explicit non-determinism, as may be found in some chaotic
algorithms. We adopt location consistency on these races [5].

40 L. Zhang and C. Jesshope

2 Background

With multi-core chips, it is even more difficult to break the ’memory wall’ [6].
According to recent analysis (for instance Intel Pentium M platrom [7]), typical
access to level 1 cache takes 1 to 3 cycles, access to level 2 cache takes around
10 to 20 cycles, while the RAM access may take more than a hundred cycles.
Current trends in solving this problem are to increase the cache size and, as a
result, the chip area of modern microprocessors is already dominated by cache.
However a multi-core design must also consider scalable throughput from mem-
ory. An example is the IBM Power 4/5 architectures, which use three identical
cache controllers for L2 cache, where cachelines are hashed across the controllers.
Distribution brings further problems to the memory design and a choice must be
made on how to implement sharing and coherence. In the Power 4/5 IBM pro-
vides coherence with four snoop processors implemented on the L2 controllers,
whereas in their Cell processor they partition the memory locally and force the
user to explicitly code the mapping of data to maintain coherence. Bus-based
snooping on the other hand is not scalable.

Trends in multi-cores designs can be seen in the Intel’s 80-core Tera-Scale
Research Chips [8], where each core has a local 256 KB memory associated via
Through Silicon Vias (TSV) and where all processing cores are connected to the
network on-chip. Such distributed structures provide scalability, but the local
memory implementation lacks flexibility and would destroy the abstraction over
mapping that gives binary code compatibility in the microthread model, where
families of microthreads can be assigned freely to different processing cores on
chip.

2.1 Requirements

The requirement for a memory system in a Microgrid of microthreaded proces-
sors must provide the abstraction of a shared memory but achieve this across
potentially thousands of processing cores, while providing scalable throughput
both on and off chip. The ameliorating factor in this difficult design is that
the processors tolerate a large amount of latency, which has led us to resurrect
and specialise a paradigm used in earlier parallel computers, such as the Kendal
Square KSR1 [9]. We introduce a Cache Only Memory Architecture (COMA)
[10] for the on-chip cache system. In COMA, all the memory modules can be
considered as large caches, called Attraction Memory (AM). Data is stored by
cacheline but the line has no home location as a CC-NUMA [11], where the
physical location of a memory address is always known. COMA adds complexity
to locating a data in the memory but at the same time, increases the chances
of data being in the local cache. In a Microgrid of microthreaded processors we
propose a cache memory based on the COMA approach and allow data to mi-
grate dynamically within the on-chip memory. A significant difference between
the on-chip COMA and traditional COMA system is that the traditional COMA
system will hold all data in the system without a backing store. However, on-
chip COMA is unlikely to provide enough space to store so much data. The

On-Chip COMA Cache-Coherence Protocol 41

on-chip COMA therefore has a backing store for data off the chip, where one
or more DRAM interfaces or links or some other Microgrid chips will provide
an interface for storing incoming data. The main contribution of this paper is
the protocol required to implement the memory consistency model in such an
on-chip COMA memory system, its verification and subsequent use in a memory
co-simulator.

2.2 The Microgrid Multi-core Chip

A Microgrid is a tiled multi-core chip designed using microthreaded multiproces-
sors. Because the microthread model uses a unique method of program compo-
sition using the create instruction, all structures in the microgrid must support
this model. This includes on-chip networks and the memory organisation. At
different levels in a program’s concurrency hierarchy, families of threads are dis-
tributed to configured rings of processors, allocated from a pool of processors.
This requires dynamic processor allocation similar to the way in which malloc
is used for memory management. This is illustrated in Figure 1.a which shows a
dynamic snapshot of an executing microthread program. The node marked SEP
maintains a map of resources used and allocates and configures rings of proces-
sors over the low bandwidth grid network. The circuit-switched, ring networks
that form clusters from the microthreaded processors provide protocols for fam-
ily creation and termination and also allow adjacent processors in a ring to share
data between their local register files to provide the distributed shared register
file in the cluster. The ring network is shown in more detail in Figure 1.b.

(a) (b)

Fig. 1. (a) Microgrid of microthreaded processors (μT proc) configured into dynamic
clusters with ring interconnections. A request for a configured cluster is performed
by the SEP over the resource management and delegation network, which is the low-
bandwidth, packet-routed grid linking all processors. (b) Details of the ring network
configured to support the execution of families of threads.

42 L. Zhang and C. Jesshope

Each microthreaded processor in a cluster has a small (1KByte) level 1 D-
cache. Missing in this cache does not stall the processor as memory operations
are decoupled by suspending the thread on the target register location. Memory
requests asynchronously update the register file when the memory access com-
pletes. In order to manage this, all memory requests must be tagged by target lo-
cation in the register file as well as family identifier, for memory synchronisation.

The single address space defined in Figure 1.a is distributed over the chip
in order to provide scalable performance. It is partitioned into Level 2 cache
blocks, where a small number of processors will share requests on their L1 cache
misses. In a traditional NUMA organisation, data has a home location, which
means when the processor suffers a miss on the L2 cache, the processor will
try to access the home location of the address. The access to a remote memory
might take more than a thousand cycles. COMA, on the contrary, does not have
a home location for a given piece of data. In COMA, the dynamic migration of
data increases the possibility of finding the data in the local L2 cache or possibly
another L2 cache module on chip. The downside of this is that to locate data
is relatively expensive and to do this, directories are utilised. COMAs are also
developed in different structures. Data Diffusion Memory (DDM) [12] uses a tree
structure, where each level of the tree is associated with a Directory that holds
information about the data availability below this level. (N.b. a directory does
not store any data, just state information). The Kendall Square multiprocessor
[9] on the other hand used a hierarchical snooping ring network. Generally, the
protocols used are very similar to snooping protocols.

Details of the structure and protocol of the Microgrid on-chip COMA are
given in the next section.

3 Memory Hierarchy Design

The memory system includes both the on-chip cache system and an off-chip
communication interface or interfaces. Presently it is assumed that the off-chip
interface is connected to a multi-bank memory storage, which is able to provide
a high bandwidth for feeding multiple processors on a chip. The address space
is physically interleaved across different memory banks.

The on-chip cache system is designed to have 2 levels of caches. Each
processor is closely associated with its own small and fast L1 cache. L2 caches
are relatively big, and each could supply data for multiple processor-L1 cache
pairs. The L2 caches and their associated L1 caches are connected with snooping
buses. Since the local bus configuration is not scalable, the number of L1 caches
connected on a bus is restricted. Assuming each L2 cache can support between 4
to 8 processor-L1 cache pairs, then the number of L2 caches for current technol-
ogy (say 128 processors) is 16 to 32. In future, perhaps thousands or even tens of
thousands of processors may be integrated onto a single chip. Thus, the network
utilised to connect L2 caches will be a hierarchy of ring networks, which map onto
the hierarchical nature of the concurrency trees generated in the microthreaded

On-Chip COMA Cache-Coherence Protocol 43

model. We believe this will provide scalability in both bandwidth and cost as
well as locality in communication.

To reduce the coherence pressure on a ring network, we group adjacent
L2 caches together, and the caches in the same group are connected with a
uni-directional ring network. Furthermore, all groups are connected by a higher
level ring to allow for memory requests between groups. The lower and higher
level ring networks are called level-1 (L1) and level-2 (L2) ring networks re-
spectively. The joints between L1 and L2 rings are Directories, the structures
designed to direct the flow of certain requests and reduce the network traffic.
Each directory holds the information about all the data available in the group it
is associated with. Like caches, directories hold information in a set-associative
manner. Furthermore, the items in the directory are tailored to the cacheline
size. Each item in the directory holds information about the cacheline tag and
some state information without any data values. The state information can tell
the availability and exclusiveness of a certain cacheline in the group it associates
with. For instance, when a directory indicates a certain data is exclusive, it
means that the certain cacheline can only be found valid in the current group,
although the cacheline inside the group can be shared across different caches.
On the L2 ring a Root Directory (RD) holds all the state information about
the available data on-chip. It helps decide whether to send out a request off
the chip. The memory controller connected with RD will carry out the off-chip
communication.

Fig. 2. Attraction Caches are organized around a 2-level hierarchical ring network as
on-chip COMA

A normal snooping L2 cache only serves requests from processors and passively
changes its state information. However, in this on-chip cache, each L2 cache not
only serves the request received locally, but also serves requests received from
the network. The property is very similar to COMA, which allows different
Attraction Memories to serve data automatically so that data can flow to the
place where it was mostly or recently used. Thus we call our on-chip cache
system an on-chip COMA cache hierarchy. Furthermore, since the L2 cache
behaves similarly to an attraction memory, to differentiate the cache from a
normal cache we also call these L2 caches Attraction Caches (AC). The on-chip

44 L. Zhang and C. Jesshope

COMA structure is depicted in Figure 2. In the figure, there are only 3 L1 rings
and 3 ACs are shown, but the number of rings and ACs can be set arbitrarily.
Since the memory access patterns in our model can be very different from normal
processors due to its distributed large register file design and swift context swtich
capability, the detailed design parameters have to be decided by co-simulation
with our existing multi-processor simulator.

4 On-Chip COMA Cache-Coherence Protocol

A cache-coherence protocol maintains the consistency in a cache system. The
design of the protocol for our model also has to address the issues such as
minimising off-chip communication and providing a solution to the high band-
width requirement. Our L1 cache is very small, simply providing a buffering and
prefetching functionality. It uses a simple protocol with only two cacheline states,
Valid and Invalid. Here we focus on the design of Attraction Cache protocol.

In a distributed shared memory architecture, almost all the cache coher-
ence protocols are based on MOESI variations. MOESI represents five cache-
line states, Modified (M), Owned (O), Exclusive (E), Shared (S), and Invalid
(I) states. The cachelines in M and O states have the ownership of the data;
they are also called dirty. The line at M/E states holds data exclusively. A
shared cacheline only has the validness of data. Invalid data means the line is
not present in the current cache. S and I states are the basic states that represent
the validness of a cacheline. M and O states tend to keep the dirty values on the
chip, which helps reduce off-chip communication. The Exclusive state is useful
when repeated writes and reads to the same location happens in the cache. This
situation is unlikely to happen because in our architecture data dependencies
are generally captured at the register level rather than the memory level. Thus
without Exclusive state a MOSI protocol is chosen. Since the memory requests
are served asynchronously, the outstanding requests have to be remembered in
the current cache. Consequently, two basic states are provided, ReadPending
(RP) and WritePending (WP) states. The RP line waits for the valid data to
be loaded and the WP line waits for the exclusiveness of the line to be acquired
before performing a Write operation locally.

The AC is able to handle 10 different requests, which are listed on Figure 3.
In the following text only the acronyms are mentioned. Requests LR and LW
can only be issued by the processor. Both RS and RE try to load the data
remotely, while RE will acquire exclusiveness at the same time. SR and ER
are the corresponding replies for RS and RE. The request BR represents the
eviction of a cacheline. The BR can invalidate a shared line directly; it also has
to preserve the dirty data by writing them back to the main memory with WB
request. The IV request is normally generated by an LW request, which needs to
acquire the exclusiveness of a data copy. When the IV returns to the initiator, it
is regarded as a DE which represents the acquisition of the data exclusiveness.

As described above, the directories hold information about the current state
of the data in the group. Three different states, Invalid (IN), Shared (SH), and

On-Chip COMA Cache-Coherence Protocol 45

Fig. 3. MOSI protocol State Transition Diagram of Attraction Cache and Directory

Exclusive (EX), can be assigned to each item in a directory. As a joint of L1
and L2 rings, a directory also determines whether a certain request should be
passed to the next node in the same or a different level. For instance, an RE
request is received from L1 ring by a directory which has the corresponding item
at EX state. Being aware the sub-system holds the exclusiveness, the directory
will propagate the RE in the L1 level without incuring any traffic on L2 ring.
The detailed state transitions of AC and directory are depicted in Figure 3.

5 Consistency Model

In a multi-processor system, a consistency model places specific requirement on
the sequence that shared memory accesses from one process may be observed by
other processes. A number of consistency models have been proposed, including
Sequential Consistency (SC) [13], Release Consistency (RC) [14], and Location
Consistency (LC) [5]. Different consistency models balance the programming
complexity and system performance. LC is claimed to be the weakest consistency
model. Unlike SC, LC does not make the assumption that all writes to the
same memory location are serialized in some order observable to all processors.
The program will behave the same as on other systems as deterministic code is
being executed. Furthermore, unlike RC the synchronization is not happening

46 L. Zhang and C. Jesshope

for different blocks of code, but in terms of each individual memory location.
This partial order is only maintained for each individual memory locations. The
issuing order between memory accesses on different memory locations can be
adjusted by the compiler to achieve better performance.

In our on-chip COMA architecture, the maintenance of sequential consistency
is very expensive. For instance, if two processors are writing to the same memory
location concurrently on a ring. The processors separate the ring into two arcs.
The ACs on different arcs will observe the two requests in different orders, which
is forbidden in the sequential consistency model. Fortunately the microthread
memory model allows us to adopt the more relaxed LC as the consistency model,
which does not require the strict order under non-deterministic situations.

To exploit the potential of Location Consistency, a suspended request queue
structure is proposed for each cache and directory. In the Attraction Cache, a
cacheline will be locked in a temporary state when a new request to the same
location cannot be served directly. Thus, the incoming request has to be saved
temporarily in a buffer. To avoid blocking the request to other memory locations
which can be served directly, a queue structure is proposed to be associated with
each suspended cacheline. As the reply to the locked line returns, the associated
suspended line can be reactivated and served directly. Since we are using the LC
consistency model, the order of serving requests from different locations does not
need to be handled by the memory system. As a result, LC is actually extended
to the cacheline level. The temporary ReadPending and WritePending states are
actually combinations of the states in the data table and Tstates in queue table
depicted in Figure 4. Each queue head in the queue table is associated with a
linked list in the request buffer. An Empty Queue Head (EQH) maintains the list
of empty slots in the request buffer. Similar queue structure is also implemented
in the directories.

Fig. 4. Suspended Queue Structure in Attraction Cache

6 Conclusion and Future Work

The paper gives an overview of the microthreaded CMP architecture. With its
capability for explicit context switching and scheduling based on thread con-
tinuations held in a large distributed register files, the model can tolerate long
memory access latency and give high throughput. Targeting VLSI technology in

On-Chip COMA Cache-Coherence Protocol 47

the 10 to 15 year timeframe, we have introduced an on-chip distributed shared
memory architecture and defined its operation. The choice of an on-chip COMA
system is to more efficiently utilise the overall memory bandwidth. Two levels
of ring networks are utilised to distribute memory storage across the network
for a large number of processors on chip and directories are used to direct the
memory transaction flow within the on-chip cache hierarchy. We have analised
the microthreaded memory model and have used Location Consistency as the
consistency model. Finally, for coherence a variant of the MOSI protocol has
been specified and implemented to maintain coherence for the caches. A novel
feature of this work is the proposed Suspended Request Queue implementation
for both Attraction Cache and Directory to further reduced the traffic on the
network.

Currently we are intensively verifying the cache coherence protocol by speci-
fying its complete behavior in Murphy description language [15]. The language
allows the user to specify initial system state and rules in addition to the pro-
cedures. From the initial state Murphi will automatically fire different rules
according to the conditions specified for them. The process will continue until
all system states are explored. By checking the correctness of each system state,
the protocol can be verified. The technique is called State Enumeration [16]. At
the current stage, the protocol has been proved free of deadlock with Murphi
and we are verifying the implementation of location consistency.

In addition, the simulation of the memory system using SystemC has been
completed and tested using synthetic traces. In the near future, this memory
simulator will be integrated into the Microgrid CMP emulator to evaluate the
overall chip architecture in a cycle-accurate manner. The design parameters and
protocols will then be be tuned for the on-chip COMA memory system. Further-
more, we are developing a memory protection scheme that will provide families
of microthreads exclusive access to memory protection domains.

References

1. Mercaldi, M., Swanson, S., Petersen, A., Putnam, A., Schwerin, A., Oskin, M.,
Eggers, S.J.: Instruction scheduling for a tiled dataflow architecture. In: ASPLOS-
XII: Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, pp. 141–150. ACM Press, New
York (2006)

2. Burger, D., Keckler, S.W., McKinley, K.S., Dahlin, M., John, L.K., Lin, C., Moore,
C.R., Burrill, J., McDonald, R.G., Yoder, W.: The TRIPS Team: Scaling to the
end of silicon with edge architectures. Computer 37(7), 44–55 (2004)

3. Jesshope, C.R.: A model for the design and programming of multicores. In: Ad-
vances in Parallel Computing, IOS Press, Amsterdam (Draft paper submitted,
2007)

4. Tullsen, D.M., Lo, J.L., Eggers, S.J., Levy, H.M.: Supporting fine-grained synchro-
nization on a simultaneous multithreading processor. In: HPCA 1999: Proceedings
of the 5th International Symposium on High Performance Computer Architecture,
Washington, DC, USA, p. 54 (1999)

48 L. Zhang and C. Jesshope

5. Gao, G.R., Sarkar, V.: Location consistency-a new memory model and cache con-
sistency protocol. IEEE Transactions on Computers 49(8), 798–813 (2000)

6. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News 23(1), 20–24 (1995)

7. Besedin, D.: Testing platforms with rightmark memory analyzer benchmark. part
5: Intel pentium m platform (dothan) (May 2004),
http://www.digit-life.com/articles2/rmma/rmma-dothan.html

8. Intel Corporation: Intel develops tera-scale research chips (September 2006),
http://www.intel.com/go/terascale/

9. Corporation, K.S.R.: Ksr1 technical summary. Technical report (1992)
10. Dahlgren, F., Torrellas, J.: Cache-only memory architectures. Computer 32(6), 72–

79 (1999)
11. LeBlanc, T.J., Marsh, B.D., Scott, M.L.: Memory management for large-scale numa

multiprocessors. Technical report, Rochester, NY, USA (1989)
12. Hagersten, E., Landin, A., Haridi, S.: DDM - a cache-only memory architecture.

IEEE Computer 25(9), 44–54 (1992)
13. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)
14. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P.B., Gupta, A., Hennessy,

J.L.: Memory consistency and event ordering in scalable shared-memory multipro-
cessors. In: 25 Years ISCA: Retrospectives and Reprints, pp. 376–387 (1998)

15. Dill, D.L.: The murphi verification system. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

16. Pong, F., Dubois, M.: Verification techniques for cache coherence protocols. ACM
Computing Surveys 29(1), 82–126 (1997)

http://www.digit-life.com/articles2/rmma/rmma-dothan.html
http://www.intel.com/go/terascale/

Parallelization of Bulk Operations for

STL Dictionaries

Leonor Frias1,� and Johannes Singler2

1 Dep. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
2 Institut für Theoretische Informatik, Universität Karlsruhe

lfrias@lsi.upc.edu, singler@ira.uka.de

Abstract. STL dictionaries like map and set are commonly used in
C++ programs. We consider parallelizing two of their bulk operations,
namely the construction from many elements, and the insertion of many
elements at a time. Practical algorithms are proposed for these tasks.
The implementation is completely generic and engineered to provide best
performance for the variety of possible input characteristics. It features
transparent integration into the STL. This can make programs profit in
an easy way from multi-core processing power. The performance mea-
surements show the practical usefulness on real-world multi-core ma-
chines with up to eight cores.

1 Introduction

Multi-core processors bring parallel computing power to the customer at virtu-
ally no cost. Where automatic parallelization fails and OpenMP loop paralleliza-
tion primitives are not strong enough, parallelized algorithms from a library are
a sensible choice. Our group pursues this goal with the Multi-Core Standard
Template Library [7], a parallel implementation of the C++ STL. To allow best
benefit from the parallel computing power, as many operations as possible need
to be parallelized. Sequential parts could otherwise severely limit the achievable
speedup, according to Amdahl’s law. Thus, it may be profitable to parallelize an
operation even if the speedup is considerably less than the number of threads.

The STL contains four kinds of generic dictionary types, namely set, map,
multiset, and multimap. The first two are unique, i. e. no two equal elements
may be included. Parallelization of the bulk operations of these containers has
been one of the major missing parts of the MCSTL, so far. Now, we have imple-
mented all variants, but limit our description to set in this paper, as it is one of
the more general and more complicated ones, at the same time. The fine-grained
basic operations, i. e. insertion, query and deletion of a single element, are not
worth parallelizing because parallelization overhead would dominate their log-
arithmic running time. But often, many elements are inserted at a time, or a
� Supported by ALINEX project (TIN2005-05446) and by grants number 2005FI 00856

and 2006BE-2 0016 of the Agència de Gestió d’Ajuts Universitaris i de Recerca with
funds of the European Social Fund. This work was partially done while visiting
Universität Karlsruhe.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 49–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 L. Frias and J. Singler

dictionary is constructed newly and initialized by a large sets of elements. Of
course, the latter is a special case of the former, namely inserting into an empty
dictionary. Nevertheless, we treat both cases explicitly, for best performance.

Our parallelization augments the STL implementation coming with the GNU
C++ compiler (libstdc++), which uses red-black trees [4]. Red-black trees are
balanced binary trees1 whose nodes can be either colored red or black, the root
always being black. The following invariant is maintained at all times: Each path
from the root to a leaf must contain the same number of black nodes. This limits
the tree height to 2�logn�. By performing so-called rotations, the invariant can
be held up efficiently for all operations.

2 Algorithms

For the PRAM model, parallel red-black tree algorithms have been proposed [5].
They are highly theoretical, use fine-grained pipelining etc., and are thus not
suitable for real-world machines. To our knowledge, there is neither an imple-
mentation nor experimental results. Nonetheless, some of the high-level ideas
can be transferred to practical algorithms.

The STAPL [1] library does provide a parallel tree implementation, with an
interface similar to the STL but it is not publicly available. It also works for
distributed-memory systems, but makes a completely new implementation nec-
essary. Its quite rigid partitioning of the tree can lead to all the elements being
inserted by one processor, in the worst case. In contrast, we have implemented
our bulk insertion operations on the top of the sequential data structure core,
which stays unaffected. Our partitioning of the data is temporary for one opera-
tion and more flexible, e. g. multiple threads can work on a relatively small part
of the tree. The cost of splitting the tree is negligible compared to the cost of
creating/inserting the elements into the tree, for the common case.

As stated before, bulk construction can be seen as a special case of insertion.
Indeed, we treat it the other way around here. Bulk construction (of a subtree) is
the base case for bulk insertion. This way, we get good performance also for the
case where many elements are inserted between two already contained elements
(or conceptually, −∞ and ∞ for bulk construction).

Before describing the parallel tree construction and the bulk insertion, we
present the common setup for both, i. e. preprocessing the data to enable paral-
lelization, and allocating node objects. Let p be the number of threads used, n
the size of existing tree, and k the number of elements to insert and to construct
the tree from, respectively.

Common Setup. The first step is to make sure the input sequence S is sorted,
which also is a precondition in [5]. If two wrongly ordered elements are found,
checking the order is aborted, and the input sequence is sorted stably, using the
existing MCSTL implementations. Because the actual input sequence must not
1 Note that hash data structures are not feasible here since STL dictionaries support

sorted sequence functionality as well.

Parallelization of Bulk Operations for STL Dictionaries 51

be modified, we need linear temporary storage here. Finally, S is divided into p
subsequences of (almost) equal size.

Allocation and Initialization. Each thread t allocates and constructs the
nodes for its subsequence St, which are still unlinked. The tree nodes are stored
in an array of pointers, shared among the threads. This allows the algorithm
to easily locate the nodes for linking, later on. If we wanted to avoid the array
of pointers, we would need a purely recursive algorithm where allocation and
initialization of the pointers are intertwined.

We also deal with equal elements in this step. In parallel, the surplus elements
are removed from the sequence. A gap might emerge at the end of each St. Since
we use stable sorting, we can guarantee that the first equal element becomes the
one inserted, as demanded by the specification.

2.1 Parallel Tree Construction

Once the common setup has been performed, the tree is constructed as a whole
by setting the pointers and the color of each node, in parallel. For each node,
its pointers can be calculated independently, using index arithmetic. This takes
into account the gaps stemming from removed equal elements, as well as the
incompleteness of the tree. Each node is only written to by one thread, there is
no need for synchronization. Thus, this is perfectly parallelized.

The algorithm constructs a tree that is complete except for the last level,
which is filled partially from left to right. The last level is colored red, all other
nodes are colored black.2 Another option would be to also color every �th level
red. The smaller �, the more favored are deletions in the subsequent usage of the
dictionary. The larger �, the more favored are insertions.

2.2 Parallel Bulk Insertion

The problem of inserting elements into an existing tree is much more involved
than construction. The major question is how to achieve a good load balance
between the threads. There are essentially two ways to divide the work into input
subsequences St and corresponding subtrees Tt. 1. We divide the tree according
to the input sequence, i. e. we take elements from the sequence and split the tree
into corresponding subtrees. 2. We divide the input sequence according to the
tree, i. e. we split St by the current root element, recursively. Both approaches
fail if very many elements are inserted at the end of the path to the same leaf.
The first approach gives guarantees only on |St|, but not on |Tt|. The second
approach does not guarantee anything about |St|, and bounds |Tt| only very
weakly: One of the subtrees might have twice the height as the other, so only
|T1| < |T2|2 holds. We use the first option in the initial step, and the second
approach to compensate for greatly different |Tt| dynamically.

2 We could omit this if the tree is complete, but this is a rare special case. For a tree
containing only one element, the root node is colored black anyway.

52 L. Frias and J. Singler

The split and concatenate operations on red-black trees [8,9] are the major
tools in our parallelization of the bulk insertion operation.

Split into Multiple Subtrees. A red-black tree is split into p red-black trees,
such that the elements will be distributed according to p − 1 pivots.

Concatenate. Two range-disjoint red-black trees and a node “in-between” are
concatenated to form a single red-black tree. Rebalancing might be necessary.

The whole algorithm consists of four phases. For coordinating the work,
insertion tasks and concatenation tasks are generated, to be processed in the
future.

Phase 0. Common setup, as described above.
Phase 1. Split the tree into p subtrees, the leftmost elements of the subse-

quences (except the first one) acting as splitters. This is performed in a
top-down fashion, traversing at most p − 1 paths, and generating p − 1 con-
catenation tasks. With each concatenation task, we associate a node which is
greater than all elements in the right subtree, but smaller than all elements
in the right subtree. The algorithm chooses either the greatest element from
the left subtree, or the least element from the subsequence to insert. This
node will be used as tentative new root when concatenating the subtrees
again, but might end up in another place, due to rebalancing rotations. The
resulting subtrees and the corresponding subsequences form p independent
insertion tasks, one for each thread.

Phase 2. Process the insertion tasks. Each thread inserts the elements of its
subsequence into its subtree, using an advanced sequential bulk insertion
algorithm (see Section 2.4).

Phase 3. Process the concatenation tasks to rebuild and rebalance the tree.
This phase is not actually temporally separated from Phase 2, but only
conceptually. As soon as one thread has finished processing an insertion
task, it tries to process its parent concatenation task, recursively. However,
this can only happen if the sibling subtask is also already done. Otherwise,
the thread quits from this task and continues with another. It takes that
one from its local queue or steals from another thread, if the own queue
is empty. The root concatenation task does not have any parent, so the
algorithm terminates after having processed it.

2.3 Analysis

We analyse the parallel time complexity of our algorithms. Assume for simplicity
that the input sequence has already been preprocessed. To get rid of lower-order
terms, we assume the number of elements in the tree being relatively large with
respect to the number of threads, n > p2.

Our construction algorithm takes O(k/p) parallel time.

Parallelization of Bulk Operations for STL Dictionaries 53

Calculating the worst-case cost for the bulk insertion algorithm is more in-
volved. Splitting the tree sequentially into p parts takes O(p log n) time. As tests
have shown, performing this step in parallel is not helpful assuming the number
of cores currently available. In the worst case, one of the partitions contains a
tree of size (almost) n, and the others contain (almost) empty trees.

Inserting a subsequence of size k/p sequentially into a tree of constant size
takes O(k/p) time. Inserting a sequence of size k/p sequentially into a tree of
size n is upper bounded by the cost of inserting the elements one by one, i. e.
O(k/p log n). Therefore, doing k insertions in p disjoint trees takes O(k/p log n)
parallel time.

Finally, the p trees must be concatenated. Note that the concatenation oper-
ation itself is done sequentially but concatenations of disjoint trees will happen
in parallel. A concatenation takes O(log n1/n2) sequential time, where n1 is the
size of the larger tree and n2 is the size of the smaller subtree. Besides, the trees
to be concatenated can differ in size by at most n elements. Therefore, one con-
catenation takes at most O(log n) time. Given that there are O(log p) levels of
concatenations in total, the cost of concatenating all the trees is O(log p log n).

As a result, the total cost of the operation is dominated by the insertion itself
and therefore, it takes O(k/p log n) parallel time.

2.4 Dynamic Load-Balancing

The sequence of the elements to insert is perfectly divided among the threads.
However, the corresponding subtrees might have very different sizes, which of
course affects (wall-clock) running time negatively. Even worse, it is impossible
to predict how elaborate the insertion will be, since this depends on the structure
of the tree and the sequence. To counter this problem, we add dynamic load-
balancing to Phase 2, using the randomized work-stealing [3] paradigm.

Each thread breaks down its principal insertion task into smaller ones. It goes
down the subtree and divides the subsequence recursively, with respect to the
current root. For each division, it creates the appropriate concatenation task, in
order to reestablish the tree in Phase 3. The insertion task for the right subtree
is pushed to the thread’s work-stealing queue, while the recursion continues on
the left subtree. However, the queue is only used if St is still longer than a
threshold s.Otherwise, the algorithm works on the problem in isolation, to avoid
the overhead of maintaining the queue. When there is nothing left to split, the
bulk construction method is called for the remaining elements, and the new tree
is concatenated to the leaf. If the subsequence has only a few elements left, the
single-element insertion algorithm is called. As a side-effect, this gives us an more
efficient sequential bulk-insertion algorithm, for s conceptually set to ∞.

To implement work-stealing, we use the lock-free double-ended queue provided
by the MCSTL. It allows efficient synchronization of the work, using hardware-
supported atomic operations. On the downside, its size must be limited at con-
struction time. Fortunately, the size of all queues is bounded by the height of
the tree, namely 2�log n�. In total, the approach is similar to the parallelized
quicksort in the MCSTL [7, p. 6].

54 L. Frias and J. Singler

Fig. 1. Inserting into a tree, using three threads. “Red” nodes are shown transparent.
1. Phase 0/1. The input sequence is divided equally, the tree is split accordingly. 2.
Phase 2. The two elements that will serve as the tentative roots in the future con-
catenation tasks are found to be 31 and 75. They are excluded from the subtree and
not inserted to it, respectively. 58 is not inserted either, since it is a duplicate. 3./4.
Phase 3. Eventually, the concatenation task are processed. First, the right two subtrees
are concatenated, using 75 as the new root. Then, the resulting tree is concatenated
with the left one using 31 as the new root. In this case, a rotation is necessary for
rebalancing purposes, so 75 ends up at the top position.

Parallelization of Bulk Operations for STL Dictionaries 55

3 Interface and Implementation Aspects

Memory Management. For both bulk operations, allocating the node objects
constitutes a considerable share of the work to be done. We cannot allocate
several of them with one function call, since we need to be able to deallocate them
one by one in case the user deletes elements from the data structure. The memory
management concept of C++ does not allow such an asymmetric usage. Tests
have shown that allocating memory concurrently scales quite well, but imposes
some work overhead compared to the strictly sequential implementation. There
also exist memory managers designed for this specific problem, e. g. Hoard [2]. We
successfully used it on the Sun machine. However, for our 64-bit Intel platform,
Hoard could not even match the performance of the built-in allocator, so we did
not use it there.

Trade-Offs for Different Input Data and Comparator Types. STL dic-
tionaries, apart from being parameterized by the data type, are also customized
by a comparator type. This can lead to very different costs for comparing and
copying an element. We also have to relate this to the cost of copying the node
as a whole, which contains three pointers and the node color flag, in addition to
the actual payload.

We tested this for sorting the input elements, experimentally. For large el-
ements, it is better to sort pointers only, to avoid costly copying. For small
elements, it is more cache-efficient to sort the elements directly.

4 Experimental Results

Experiments. We tested our program on two multi-processor machines with
the following processors: 1. Sun T1 (1 socket, 8 cores, 1.0GHz, 32 threads, 3 MB
shared L2 cache), 2. Intel Xeon E5345 (2 sockets, 2 × 4 cores, 2.33GHz, 2 ×
2 × 4MB L2 cache, shared among two cores each). For the Intel machine, we
used the Intel C++ compiler 10.0.25, on the Sun machine, we took GCC 4.2.0,
always compiling with optimization (-O3) and OpenMP support. In both cases,
we used the libstdc++ implementation coming with GCC 4.2.0. On the Xeon,
compiling using the Intel compiler lead to more consistent results, due to the
better OpenMP implementation, which is causing less overhead.

We have run each test at least 30 times and taken the average values for the
plots, accompanied by the standard deviation range (too small to be seen in
most cases). The following parameters concerning the input were considered:

Tree size/insertion sequence length ratio. Let n be the size of the existing
dictionary/tree. Let r = n/k. Thus, r = 0 is equivalent to bulk construction.

Sortedness of the insertion sequence. The input sequence can be presorted
or not. We focus on presorted insertion sequences here because parallel sort-
ing is a separate issue.

Key data type. We show experiments on 32-bit signed integers.

56 L. Frias and J. Singler

Randomness of the input sequence. The input sequence by default con-
sists of values in the range {RAND MIN . . .RAND MAX}, but can optionally be
limited to a smaller range, {RAND MIN/100 . . .RAND MAX/100} here. This poses
a challenge to the load-balancing mechanisms.

Both load-balancing mechanisms were switched on by default, but deactivated
for some experiments, to show their influence on the running time.

For the insertion tests, we first build a tree of the appropriate size using
the sequential algorithm, and then insert the elements using our parallel bulk
insertion. This guarantees fair initial conditions for comparing the sequential
and the parallel implementation. Actually, the shape of the existing tree does
affect performance, though the sequential insertion is more affected than our
algorithms.

Results for the Sequential Case. Our sequential algorithm is never substan-
tially slower and in some cases substantially faster (e. g. Figures 2, 4 and 5). In
particular, our specialized algorithms are very competitive when having random
inputs limited to a certain range, being more than twice as fast (see Figures 8
and 9) as the standard implementation. This is because of saving many compar-
isons in the upper levels of the tree, taking advantage of the input characteristics.

Results for the Parallel Case. For the dictionary construction, our algo-
rithms scale quite well, as shown in Figures 2 and 3. In particular, on the 8-core
Sun T1, even the absolute speedup slightly exceeds the number of cores, culmi-
nating in about 11. This shows the usefulness of per-core multithreading in this
case.

For insertion, our algorithm is most effective when the existing tree is smaller
than the data to insert (see Figures 5 and 6). This is also due to the fast (se-
quential) insertion procedure, compared to the original algorithm. Splitting the
input sequence is most effective in terms of number of comparisons because the
subsequences left when reaching a leaf still consist of several elements.

In all cases, speedups of at least 3 for 4 threads and 5 for 8 threads, are
achieved. The break-even is already reached for as little as 1000 elements, the
maximum speedup is usually hit for 100000 or more elements.

The tree splitting step, used to make an initial balancing in the case of in-
sertion, is shown to be really effective. For instance, compare Figures 6 and 7,
which only differ in whether Phase 1 of the algorithm is run. We can see that
both the speedup and the scalability are far better when the initial splitting is
activated.

On top of that, the parallelization scales nicely, specifically when using dy-
namic load-balancing. Switching load-balancing off hurts performance for large
inputs, while for small inputs it does not create considerable overhead. Dynamic
load-balancing makes the algorithm more robust, comparing Figures 8 and 9.

As a by-product, we show the effects of mapping 2 threads to cores in dif-
ferent ways (see Figure 4). For small input, the most profitable configuration is
sharing the cache, i. e. both threads running on the same die. As the input data

Parallelization of Bulk Operations for STL Dictionaries 57

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106 107

S
pe

ed
up

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 2. Constructing a set of integers on
the Xeon

 0

 2

 4

 6

 8

 10

 12

100 1000 10000 100000 106 107

S
pe

ed
up

Number of inserted elements (k)

32 th
16 th

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 3. Constructing a set of integers on
the T1

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106 107

S
pe

ed
up

Number of inserted elements (k)

2 threads, different sockets
2 threads, same socket, different dice

2 threads, same die
1 thread

sequential

Fig. 4. Constructing a set of integers on
the Xeon fixing two cores

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106 107

S
pe

ed
up

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 5. Inserting integers into a set
(r = 0.1) on the Xeon

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106

S
pe

ed
up

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 6. Inserting integers into a set
(r = 10) on the Xeon

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106

S
pe

ed
up

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 7. Inserting integers into a set
(r = 10) on the Xeon, without using ini-
tial splitting of the tree

 0

 2

 4

 6

 8

 10

 12

 14

 16

100 1000 10000 100000 106

S
pe

ed
up

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 8. Inserting integers from a limited
range into a set (r = 10) on the Xeon

 0

 2

 4

 6

 8

 10

 12

 14

 16

100 1000 10000 100000 106

S
pe

ed
up

Number of inserted elements (k)

8 th
7 th
6 th
5 th
4 th
3 th
2 th
1 th
seq

Fig. 9. Inserting integers from a limited
range into a set (r = 10) on the Xeon,
without using dynamic load-balancing

58 L. Frias and J. Singler

gets larger, memory bandwith becomes more important, so running the threads
on different sockets wins. Running both threads on the same socket, but on dif-
ferent dice is in fact worst, because it combines both drawbacks. For the other
tests, we have refrained to explicitly bind threads to specific cores, however, be-
cause the algorithms should be allowed to run on a non-exclusive machine in
general.

5 Conclusion and Future Work

In this paper, we have shown that construction of and bulk insertion into a
red-black tree can be effectively parallelized on multi-core machines, on top of
a sequential implementation which remains unaffected. Our construction bulk
operation shares some ideas with the theoretical algorithm in [5], giving a prac-
tical implementation. The code has been released in the MCSTL [6], version
0.8.0-beta.

To speed up programs that do not use bulk operations explicitly, we could
use lazy updating. Each sequence of insertions, queries, and deletions could be
split into consecutive subsequences of maximal length, consisting of only one
of the operations. This approach could transparently be covered by the library
methods. Then, for example, a loop inserting a single element in each iteration,
would also benefit from the parallelized bulk insertion.

Another enhancement to the functionality is bulk deletion of elements. Since
it is easy to remove a consecutive range from a tree, we will rather tackle the
problem posed by a remove if call, specializing it for the dictionary types.

References

1. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato,
N.M., Rauchwerger, L.: STAPL: An Adaptive, Generic Parallel C++ Library. In:
LCPC, pp. 193–208 (2001),
http://parasol.tamu.edu/groups/rwergergroup/research/stapl/

2. Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: A scalable mem-
ory allocator for multithreaded applications. In: ASPLOS-IX (2000)

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. JACM 46(5), 720–748 (1999)

4. Guibas, Sedgewick: A dichromatic framework for balanced trees. In: FOCS (1978)
5. Park, H., Park, K.: Parallel algorithms for red-black trees. Theoretical Computer

Science 262, 415–435 (2001)
6. Singler, J.: The MCSTL website (June 2006),

http://algo2.iti.uni-karlsruhe.de/singler/mcstl/
7. Singler, J., Sanders, P., Putze, F.: The Multi-Core Standard Template Library.

In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641,
Springer, Heidelberg (2007)

8. Tarjan, R.E.: Data structures and network algorithms. In: CBMS-NSF Regional
Conference Series on Applied Mathematics, vol. 44, SIAM, Philadelphia (1983)

9. Wein, R.: Efficient implementation of red-black trees with split and catenate oper-
ations. Technical report, Tel-Aviv University (2005)

http://parasol.tamu.edu/groups/rwergergroup/research/stapl/
http://algo2.iti.uni-karlsruhe.de/singler/mcstl/

UNICORE Summit 2007

UNICORE Summit 2007

(Foreword)

The UNICORE grid technology provides a seamless, secure, and intuitive
access to distributed grid resources. UNICORE is a full-grown and well-tested
grid middleware system, which today is used in daily production worldwide. Be-
yond this production usage, the UNICORE technology serves as a solid basis
in many European and International projects. In order to foster these ongo-
ing developments, UNICORE is available as open source under BSD licence at
http://www.unicore.eu.

The UNICORE Summit is a unique opportunity for grid users, developers,
administrators, researchers, and service providers to meet. The first UNICORE
Summit was held in conjunction with “Grids@work - 2nd Grid Plugtests” dur-
ing October 11–12, 2005 in Sophia Antipolis, France. In 2006 the style of the
UNICORE Summit was changed by establishing a Program Committee and pub-
lishing a Call for Papers. The UNICORE Summit 2006 was held in conjunction
with the Euro-Par 2006 conference in Dresden, Germany, August 30–31, 2006.
The proceedings are available as LNCS 4375. In 2007 the UNICORE Summit
was held again in conjunction with the Euro-Par conference, this time in Rennes,
France, on August 28.

We would like to thank the Program Committee members Agnes Ansari,
Rosa Badia, Thomas Fahringer, Donal Fellows, Anton Fank, Edgar Gabriel, Al-
fred Geiger, Odej Kao, Paolo Malfetti, Ralf Ratering, Johannes Reetz, Mathilde
Romberg, Bernd Schuller, Dave Snelling, Stefan Wesner, and Ramin Yahyapour
for their excellent job. Special thanks go to Sven van den Berghe and Morris
Riedel for providing additional reviews.

Finally, we would like to thank all authors for their submissions, camera-ready
versions, and presentations at the UNICORE Summit 2007 in Rennes as well as
Ken Klingenstein for giving the opening talk.

The next UNICORE Summit will most likely take place again in conjunction
with the Euro-Par conference. More information can be found at http://www.
unicore.eu/summit. We are looking forward to the next UNICORE Summit!

November 2007 Achim Streit
Wolfgang Ziegler

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, p. 61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.unicore.eu
http://www.unicore.eu/summit
http://www.unicore.eu/summit

A Black-Box Approach to Performance Analysis

of Grid Middleware

Per Alexius, B. Maryam Elahi, Fredrik Hedman, Phillip Mucci, Gilbert Netzer,
and Zeeshan Ali Shah

Center for Parallel Computers (PDC), KTH, SE-100 44 STOCKHOLM, Sweden
{alexius,elahi,hedman,mucci,noname,zashah}@kth.se

Abstract. We propose a black-box approach to performance analy-
sis of grid middleware and present the architecture of a non-invasive
platform-independent evaluation tool that quantifies the effects of the
overhead imposed by grid middleware on both the throughput of the
system and on the turnaround times of grid applications. This approach
is a step towards producing a middleware independent, comparable, re-
producible and fair performance analysis of grid middlewares. The result
of such performance analysis can be used by system administrators to
tune the system configuration and by developers to find the bottlenecks
and problems in their design and implementation of the system. It can
also be used to devise more optimized usage patterns. As a proof of con-
cept, we describe the implementation details of the evaluation tool for
UNICORE 5 and demonstrate the result of initial experiments.

Keywords: UNICORE, Performance Analysis, Grid Middleware.

1 Introduction

Performance analysis and benchmarking are relatively young and emerging areas
in Grid computing which itself is only about a decade old. Grids are comprised of
a hierarchy of heterogeneous resources that are managed by several interacting
software components [1]. This inherent complexity frustrates the direct applica-
tion of some of well established techniques in parallel or distributed computing,
among them performance analysis and benchmarking [2].

A few research groups have presented their interpretation of what the pa-
rameters of interest in grid performance assessment are and have also proposed
methods and developed tools for evaluation of grid systems [2,3,4,5]. However,
benchmarking and performance analysis of grid middlewares are a less explored
area of research. The characteristic of grid applications is that they vary in re-
source requirements. The resource that is ultimately allocated must satisfy the
user specified minimum requirements, but could be very different from one run to
another. This makes platform-centric performance assessment of any particular
application of limited use to grid developers, and grid users. Although resource
benchmarking could be used as a tool for assisting better resource ranking and
allocation [6], it can hardly be used to reflect on the performance of the grid mid-
dleware. This is for two reasons. The first is that platform-centric metrics places

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 62–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Black-Box Approach to Performance Analysis of Grid Middleware 63

undue restrictions on the underlying execution platform to provide hardware and
software components able to provide these specific measurement capabilities; also
these components can not be guaranteed to be available. Secondly, using such
metrics on a grid system is in direct contrast to the platform independent nature
of the grid execution model. This model very purposely abstracts the underlying
platform to facilitate a ubiquitous execution environment. Furthermore, perfor-
mance of the grid middleware affects the throughput of the system with little
or bounded dependency on the execution platform. A thorough evaluation of
the overhead imposed by the middleware is important and could be leveraged
throughout the design cycle; by the developers and grid site administrators as a
performance analysis and diagnosis tool and by grid users and grid application
developers to find the optimal submission patterns for a particular grid site.

In this paper we present a black-box approach to performance analysis of
grid middleware and introduce a non-invasive platform independent design of
an evaluation tool that measures the overhead of the middleware and quanti-
fies the effects of this overhead both on the throughput of the system and on
the turnaround times of grid applications. The tool measures the overhead im-
posed by the grid middleware on different job submission patterns. It measures
only the time spent on ”grid work” for different number of simultaneous job
submissions to show the effect of middleware overhead on the throughput of the
system and the turn-around time of jobs for different submission patterns. Beside
the useful information this tool provides to grid developers, administrators and
users, we discuss how this approach could be leveraged to produce comparative
performance analysis among different grid middlewares. With this approach we
aim at producing middleware independent, comparable, reproducible and fair
performance analysis of grid middlewares. As a proof of concept, we present
the implementation details of the evaluation tool for UNICORE 5 and present
the result of some initial experiments on the OMII-Europe [7] JRA4 internal
evaluation test bed.

A discussion on how performance analysis of grid middleware and revealing
the overhead imposed by middleware components provide indispensable informa-
tion for grid developers, administrators and grid users is presented in section 2.
Section 3 illustrates the design of our middleware evaluation tool. Section 4 pro-
vides implementation details of the tool for UNICORE 5. Section 5 demonstrates
the result of initial experiments with the tool on UNICORE 5. Conclusions and
future directions are presented in section 6.

2 Measuring the Overhead Imposed by the Middleware

To analyze the performance of the grid middleware rather than measuring the
period of time an application spends on a resource, we propose a method to
measure the time spent on the ”grid work” per job, namely everything that has
to be done before and after the job performs its computation on the grid resource.
We expose the fixed costs of the grid middleware components-the latency of the
components-and show how those costs affect the performance of a single job and

64 P. Alexius et al.

ultimately the throughput of the entire system, i.e. the bandwidth. Although
the overhead of grid middleware is not a constant-factor, it is bounded by the
resource usage of the job (e.g. storage requirements); so useful patterns can be
extracted from submitting different types of jobs with different resource usages.

Whether a large or a small job is submitted, the fixed costs contribute to
the overhead of the grid system. From a user point of view, jobs that run for
a long time amortize this cost versus the amount of computation that they
perform. However, a frequent usage model of grids is to submit thousands of
small jobs as part of a particular experiment (i.e. signal analysis, pattern recog-
nition, Monte Carlo simulations). In order to facilitate better scheduling and
resource utilization, users submit the jobs individually instead of all at once.
However, this usage model is highly prone to the overheads induced by individ-
ual grid components and those components can contribute significantly to the
run-time of a series of jobs representing a body of work that a user would like to
perform.

Arguably, it is important to be able to record, diagnose and address this la-
tency issue early in the design cycle. Grid developers can use this information
for evaluating design choice trade-offs. Consequently, the analysis of the perfor-
mance assessments that reflects the overhead imposed by the middleware could
be beneficial to both developers to improve the design and implementation of the
middleware components and to grid users to try to find the optimal usage model
for the submission of their grid applications to a particular grid infrastructure.
Given some estimates of the performance patterns of a standard installation
of a middleware are published along with the middleware distributions, system
administrators could also compare the result of performance measurements on
their grid site and diagnose possible problems in their system configurations.

2.1 Comparison Across Different Middlewares

One of the things that contribute to the originality of our approach is the am-
bition to facilitate the production of performance data about grid components
that is comparative among different middleware stacks. However, due to the dif-
ferences among the middlewares there is no obvious way to produce this type of
data with a high level of detail in a non-invasive manner. On the other hand,
since such performance comparison has not been previously done, even some-
what crude measurements that can reveal differences in performance among the
middlewares should be of interest to the Grid community.

A grid may from the point of view of this test be considered a black box, into
which jobs are submitted and from which results are returned. Having this view,
an initial thought is to put each of the middlewares in the place of the black
box and record the submit time and the completion time, i.e. the time when the
results are returned. Assuming that the middlewares are set up in a fair way
(running on the same hardware, using the same number of worker nodes etc.)
the results from such measurements provide a basis for comparison of different
grid middlewares and also show which grid middleware handles a certain number
of jobs in the shortest time-all in the scope of a particular set of use cases.

A Black-Box Approach to Performance Analysis of Grid Middleware 65

Obviously to provide a basis for sound and valid comparison, it is necessary
to create reasonably fair conditions when performing comparisons between mid-
dlewares. However, fair conditions are very difficult, not to say impossible, to
achieve since there are such large differences in how the middlewares are de-
signed. We argue that adopting a best effort approach can still give us some
comparable performance measurements across different grid middlewares.

3 Design of the Middleware Evaluation Tool

As an initial attempt to create an evaluation tool for grid middleware with the
goals mentioned in the previous section, we propose a simple architecture for a
non-invasive, middleware independent performance analysis tool that treats the
middleware as a black box and gathers and visualizes performance data. This tool
consists of scripts for submitting jobs to the middleware, recording the necessary
timing information and for processing the output into graphs and charts. On the
grid system, jobs are submitted, executed and the output is returned. Recording
timestamps for when jobs are submitted, started, terminated and for when the
output is returned, makes it possible to measure the overhead imposed on jobs by
a middleware prior to and after execution (we call this pre-work and post-work).
Information extracted from this measurement includes how much overhead the
grid imposes on a submitted job and how this overhead changes when the number
of submitted jobs varies.

We can assume that somewhere inside the grid, each job is executed and
thus has an actual start and end time. Recording these times in addition to
the submit and completion time, adds to the level of detail of the performance
assessment. However, it is not obvious that these times are easily available, at
least not considering the fact that the submit and completion times as well
as the start and end times may be recorded on different computers on which
clocks may differ significantly. In order to circumvent this problem, we use call-
backs from the submitted jobs to the submitting computer. When jobs make
call-backs at the time of starting and finishing, the times when these call-backs
are received at the submitting computer are recorded. Obviously this approach
introduces other possible sources of error, such as network latency, but initially it
is assumed that the impact of these potential errors is negligible in a controlled
environment. A schematic view of this execution case is illustrated in Fig 1.
The performance measurements extracted via this approach gives a view of how
different settings of a middleware performs and how different design choices
affect the overall performance of the system and can also be further advanced
to provide comparative performance data between different grid middlewares.
It can be used as a starting point for where to instrument for more detailed
measurements and could also help developers decide where to focus for improving
performance.

For the measurements presented in this paper, the jobs that have been sub-
mitted are ’no-op’ jobs, i.e. jobs with a negligible execution time. A natural
continuation would be to extend this to include also other types of jobs, in order

66 P. Alexius et al.

to stress particular components of the system. Further development of this ap-
proach would be to increase the number of jobs that are submitted and measure
how the turnaround time changes. This can provide a view of how the middle-
ware handles large workloads and also give a hint of where potential bottlenecks
are to be found. The level of detail in this approach may not be high enough
to point out exactly which components are the main performance bottlenecks,
but gives an indication of where to spend effort on further investigation. These
tools are being developed and tested on four different grid middlewares within
the OMII-Europe Joint Research Activity on benchmarking [7]. As a proof of
concept, the result of some initial experiment on UNICORE 5 is presented in
section 5.

Fig. 1. Schematic view of the test script execution; jobs make call-backs when start-
ing and finishing and the times when these call-backs are received at the submitting
computer are recorded

3.1 Components of the Evaluation Tool

In this section, we describe the components of our evaluation tool:

Submit Script. A script to encapsulate the use of the scripting tools for the
middleware and the recording of timestamps at relevant times. The submit
script makes it possible for the user to submit a specified number of jobs to
the middleware. The script produces the timestamps from the jobs as well as
some metadata about the run. The output processor further processes this
data to a more descriptive and graphic format.

Server. As described above, the submitted jobs issue call-backs to a server on
the submitting computer when starting and stopping. The server listens for
these call-backs and records timestamps when they are received. It is started
by the submit script before submitting any jobs and when the last call-back
has been received the server stops and hands over its output to the script.

Jobs. To perform initial measurement of the middleware overhead a very sim-
ple job without in-data or out-data is used. This job does not do anything else

A Black-Box Approach to Performance Analysis of Grid Middleware 67

but issue the two call-backs to the server before it exits. This job can be
easily extended to stress test or for more fine-grained performance analysis
of the components.

Output Processor. A script to process the timestamps and produce different
graphs to show the turnaround time, throughput and the pre-work overhead
versus post work overhead imposed by the middleware.

4 Proof of Concept on UNICORE

As a proof of concept, we provide the implementation details of the test tool for
UNICORE 5 and present the result of running some initial experiments with the
tool on the OMII-Europe JRA4 internal evaluation infrastructure.

4.1 UNICORE

The UNICORE (Uniform Interface to Computer Resources) grid middleware is
a software infrastructure that aims at providing the user with a smooth, secure,
and intuitive access to their heterogeneous and distributed computing resources.
The key objective of UNICORE is to enhance abstraction, security, site au-
tonomy, ease of use and ease of installation. UNICORE, which was initially
developed by the UNICORE and UNICORE Plus projects, is now one of the
major projects in Grid computing [8,9,10]. Recently UNICORE 6 has been re-
leased in a beta version; it is a web service based implementation. In the near
future we will extend our evaluation tool to perform tests also on UNICORE 6.
This will produce comparative measurements between the two versions of the
middleware.

4.2 Evaluation Testbed Setup

The UNICORE server has three main components: the Gateway, the Network
Job Supervisor (NJS) and the Target System Interface (TSI). These may be
placed on different nodes or on the same node in any combination. We have
chosen to place each component on its own node and also put the client interface,
”Command Line Interface Queue” (CLIQ), on yet another node. SSL is used for
the communication between the client and the gateway as well as between the
gateway and the NJS. The NJS and the TSI communicate over plain sockets.
The TSI interfaces to a default installation of Torque.

4.3 Middleware Specific Details for the Test Tool

When submitting a large number of jobs, the proposed way to interact with
UNICORE 5 is through CLIQ. It is a tool that handles both job submission,
monitoring and output retrieval. It lets you specify jobs or entire workflows in
an XML format. When copied to the CLIQ submission folder, the information in
the XML job specification file is used to create an Abstract Job Object (AJO),

68 P. Alexius et al.

which is then submitted to the UNICORE Gateway for execution. CLIQ keeps
track of the status of the job and retrieves output files when the job is done.

The submit script interacts with CLIQ according to the following scheme:

1. Start CLIQ
2. For each job that should be submitted:

(a) Create job description file.
(b) Copy job description file to the CLIQ submit folder. This is where the

submit timestamp is recorded.
3. Poll the folder where the output files from the jobs will be written. When

the output files for a particular job is found, consider that job done. This is
where the completion timestamp is recorded.

4. Stop CLIQ when all jobs are finished.

By default, CLIQ is restricted to not submit more than ten jobs at the same
time and to poll for job status every fifth second. To stress the system slightly
more we have set the maximum number of jobs to 1000 and to get more fine-
grained results we have chosen a polling time of 100 ms. In next the section we
present some results from initial tests as a proof of concept. We also categorize
the results by interfacing UNICORE with different batch systems.

5 Experimental Results

The computer platform used consists of four nodes each with a 2.8 GHz Intel
Pentium D CPU and 2 GB RAM connected through gigabit Ethernet. Scientific
Linux is the operating system that has been used. The version chosen was 3.0.8.
We used version 5 for UNICORE and for batch systems we used version 2.1.6
of Torque from its originator (we call it vanilla Torque) and the Torque version
2.1.6, which is packaged with gLite 3.0.2 (we call it gLite Torque).

5.1 Initial Test Scenarios

Below is the test scenarios for this paper:

– Measurements on Unicore-5 with direct submission (we call it Fork submis-
sion or unicore-nobatch),

– Measurements on Unicore-5 with submissions through Torque (gLite flavor
Torque) and

– Measurements on Unicore-5 with submissions through Torque (vanilla).

For the scenarios above we produce the following graphs:

– Pre/Post work bar chart
– Turnaround time per job
– Throughput of the system (number of submitted jobs divided by the total

time it takes for them to complete)

A Black-Box Approach to Performance Analysis of Grid Middleware 69

1 10 50 100

250

500

750

unicore-torque(glite), unicore-nobatch, unicore-torque
Number of Jobs

0

1000.0

2000.0
T

im
e

pe
r

jo
b

in
 s

ec
on

ds
 (

m
ed

ia
n)

unicore-torque(glite) pre work
unicore-nobatch pre work
unicore-torque pre work
unicore-torque(glite) post work
unicore-nobatch post work
unicore-torque post work

Fig. 2. UNICORE 5 Pre/Post work using Fork, Torque (vanilla) and Torque (gLite)

The figures in this section are generated using test data recorded by the testing
tool. The data is then processed by a python script which then converts them into
different graphs. From Fig 2. we see that the pre-work in case of Torque (vanilla)
and no-batch is lower than the post work. For Torque (gLite) it shows that the
pre work took more than half of the time of the post work. In Fig 3 we can
notice that UNICORE performs equally when interfaced with Torque (vanilla)
and with out any batch system (Fork)-measurements overlap in the figure. The
line marked with triangles shows that UNICORE performs more slowly when
interfaced with the gLite flavor of Torque. Fig 4 shows the throughput time and
it is clearly shown the difference between UNICORE 5 when interfaced with
Torque (vanilla) and when interfaced with Torque (gLite).

0 100
200
300
400
500
600
700
800

Number of Jobs

0

1000

2000

T
ur

na
ro

un
d

tim
e

pe
r

jo
b

in
 s

ec
on

ds
 (

m
ed

ia
n)

unicore-nobatch
unicore-torque
unicore-torque(glite)

Fig. 3. UNICORE 5 turnaround time per job using Fork, Torque (vanilla), Torque
(gLite). Note that lines from Unicore-torque and Unicore-nobatch are overlapping.

70 P. Alexius et al.

0 100
200
300
400
500
600
700
800

Number of Jobs

0

100

200

300

400

500

600

700
T

hr
ou

gh
pu

t p
er

 1
00

0
se

co
nd

s
(m

ed
ia

n)

unicore-nobatch
unicore-torque
unicore-torque(glite)

Fig. 4. UNICORE 5 throughput per 1000 seconds using Fork, Torque (vanilla), Torque
(gLite). Note that lines from Unicore-torque and Unicore-nobatch are almost overlap-
ping.

6 Summary and Future Work

In this paper we have presented a black-box approach to performance analysis of
grid middleware and introduced a non-invasive platform independent architec-
ture for evaluation tools to measure the overhead of the grid middleware and to
quantify the effects of this overhead both on the throughput of the system and
on the turnaround times of grid applications. Producing middleware component
overhead measurements in a middleware independent and non-invasive manner
and with high level of detail is currently difficult due to the differences among
the middlewares. However, a use case that is relevant for all grids is the submis-
sion of jobs, their execution and the retrieval of their output data. Recording
timestamps for when jobs are submitted, started, terminated and for when the
output is returned, makes it possible to measure the overhead imposed on jobs
by a middleware prior to and after execution and observe how this overhead
changes when the number of submitted jobs varies.

As a future direction we intend to produce comparative performance data
across different middlewares. Work is on-going for running tests using other mid-
dlewares including gLite, Globus and CROWN Grid in the context of the OMII-
Europe Joint Research Activity on Benchmarking [7]. Extending the evaluation
tool for UNICORE 6 and comparing the performance with that of UNICORE 5
is also planned.

We have provided a discussion on how exploiting this simple approach can
produce performance analysis data that is beneficial to grid developers, users
and grid site administrators. This approach can be further extended to provide
comparative performance analysis across different grid middlewares. For proof
of concept we presented the implementation details of the evaluation tool for

A Black-Box Approach to Performance Analysis of Grid Middleware 71

UNICORE 5 and the results obtained from running initial experiments with
this tool. This approach is easily extended by introducing different types of
jobs with specific resource requirements that would stress particular components
of the middleware. To conclude, we have shown one approach to middleware
independent and uniform performance evolution suites for grid middlewares that
produce comparative performance measurements.

Acknowledgement

This work is supported by the European Commission through the OMII-Europe
project-INFSO-RI-031844. For further information please refer to [7].

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Elsevier, Amsterdam (2004)

2. Nemeth, Z., Gombas, G., Balaton, Z.: Performance evaluation on grids: Directions,
issues and open problems. In: 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP 2004), p. 290 (2004)

3. Snavely, A., Chun, G., Casanova, H., der Wijngaart, R.F.V., Frumkin, M.A.:
Benchmarks for grid computing: a review of ongoing efforts and future directions.
SIGMETRICS Perform. Eval. Rev. 30(4), 27–32 (2003)

4. Dikaiakos, M.: Grid benchmarking: Vision, challenges, and current status. Concur-
rency and Computation: Practice and Experience 19(1), 89–105 (2007)

5. Nmeth, Z.: Grid performance, grid benchmarks, grid metrics. In: Proceedings of
the 3rd Cracow Grid Workshop, Cracow, pp. 34–41 (October 2003)

6. Tsouloupas, G., Dikaiakos, M.: Ranking and performance exploration of grid in-
frastructures: An interactive approach. In: Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, Barcelona, September 28-29, 2006,
pp. 313–315. IEEE Computer Society, Los Alamitos (2006)

7. Open Middleware Infrastructure Institute for Europe. Project no: RI03, –OMII-
Europe (1844), http://omii-europe.org

8. The UNICORE project, http://www.fz-juelich.de/zam/grid/unicore
9. The UNICORE Plus project, http://www.fz-juelich.de/unicoreplus

10. UNICORE, Official website, http://www.unicore.eu

http://omii-europe.org
http://www.fz-juelich.de/zam/grid/unicore
http://www.fz-juelich.de/unicoreplus
http://www.unicore.eu

UNICORE/w3�

R. Menday and B. Hagemeier

Central Institute for Applied Mathematics,
Forschungszentrum Jülich, D-52425 Jülich, Germany

r.menday@fz-juelich.de

Abstract. Drawing on the core values of UNICORE - “seamless, intu-
itive and secure access” - in this paper we propose building the next gen-
eration of UNICORE by closely aligning the Grid and the Web, namely
by using the Web as the homogenizing middleware layer for the Grid. The
RESTful use of HTTP coupled with a unified, RDF-based model, results
in a loosely-coupled, global scale architecture. Therefore the Grid as a
very rich source of information contributes to the Semantic Web of data.
This is the foundation for the strong focus on usability in UNICORE/w3.
Navigation of the linked resources, filtering, powerful searching function-
ality, the annotation and sharing of resources and monitoring using Web
syndication techniques are some of the features proposed.

1 Introduction

Key characteristics of the Web are that it is simple to understand and use, deeply
integrated in the user’s desktop and working practices, navigatable through link-
ing, loosely coupled and has unparalleled support in terms of tools and support.
The initial Web can be likened to a global document repository, the future evo-
lution is towards the Web is a single global database. Human readability will
be augmented with data published in a form that can be usefully processed by
machines.

On the evolutionary path towards the Semantic Web [13], so-called Web 2.0
added a new dimension in the richness and interactivity of the experience for the
user. It added customised content, and the notion that other users are ‘out there’
consuming the same content. Importantly, we have also seen progress on the
machine readable Web characterised by Web sites offering ‘web apis’ explicitly
designed for direct consumption by machines. This has enabled another feature
found in Web 2.0 applications - the ‘mash-up’. This is the combining and re-use
of data published on the Web, to build new applications. This is often based on
XML and JSON, so whilst good results can be achieved, e.g. Google Maps mash-
ups, the free joining of data from sources distributed across the Internet is not
fully realised. This can only really happen when a unified model for describing
the data in the Web is in place. With the maturing of the Semantic Web we

� This work is partially funded through the European A-WARE project under grant
FP6-2005-IST-034545.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 72–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

UNICORE/w3 73

are starting to see this happening. A result of this can be seen in the W3C
Tabulator[11], an RDF browser allowing the user to explore the linked ‘Web
of data’. Furthermore, LinkingOpenData[6] is an interesting initiative targeting
the ‘bootstrapping’ of the Semantic Web with the goal of making “... various
open data sources available on the Web as RDF and to set RDF links between
data items from different data sources”. In future we will see more re-use, re-
publishing, merging and integration of information over the Web. This is the
Web as the global-scope, homogeneous layer providing a role similar to that
of middleware for machine consumers of the data. Furthermore, as the Web
evolves towards this Web of data, so to do the opportunities for using the Web
as a middleware for Grid computing.

Why the Grid and the World Wide Web ?

Grid Computing is the “coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organisations” [20]. It is fair to say that the
initial target audience was the scientific community. It is interesting to compare
with the initial impetus driving Tim Berners-Lee’s vision of the World Wide
Web. The Web was initially conceived due to a frustration preventing scientists
from effectively collaborating and sharing scientific results[16]. Between the Web
and the Grid there seems to be some shared purpose, although it is surprising
that none of the main Grid middleware platforms have attempted to integrate,
to a deeper extent, Grid middleware with the infrastructure of the Web.

Our reservations regarding the suitability of Web services for building a single
Global grid, leads us to this paper where we present our vision for a Web-based
Grid, as a starting point for discussion and future activity. We believe that
building UNICORE as a Web application addresses the shortcomings of the
previous versions of UNICORE, and provides new opportunities for our users.

Thus this paper makes the case for the single Grid - one which is realised as
part of the Web. The vision is that every supercomputer (or any other computing
resource) has a projection of it and its resources published and accessible over
the Web. HTTP agents interact with these resources. The concept of navigating
links (through clicking) to discover related information is highly intuitive for
any computer user. With a resource-oriented approach we directly identify with a
HTTP URI all our resources, for example, a File, Job, Storage, Reservation, User,
etc. Given such a situation information on an executing job or a particular data
artifact, for example, can be shared between collaborators or bookmarked. This
is the participatory Grid where scientists are able to use the Grid infrastructure
for the fine-grained sharing of data and jobs.

We cover many topics in the paper, and due to space restriction many technical
details have had to be omitted. The paper continues as follows. In Section 2 we
review some background to this work, in particular looking back at relevant
architectural approaches and philosophy in the evolution of the UNICORE grid
system since 1997. Section 3 covers some of the technologies which make the Web
ideal for Grid computing. Section 4 describes the functionality and architecture
of UNICORE/w3 - first by describing how the Grid of resources become part of

74 R. Menday and B. Hagemeier

the Web, and then by describing some possibilities for higher-level services which
provide aggregation points exploiting these distributed resources. We review
relevant work in Section 5, and offer a summary and outlook to the future in
Section 6.

2 Review

The original goal of UNICORE was to develop production quality software for
accessing the distributed resources of high performance computing centres, and
largely this still drives UNICORE development today1. The reader is referred
to [18] and [25] for good overviews. UNICORE/w3 draws on experience with all
versions of UNICORE. Relevant architectural concepts are summarised below.

Abstract Job Object. The central architectural concept in pre-Web Services
UNICORE (versions 1-5) is the Abstract Job Object (AJO). The AJO is the uni-
fied model of the distributed computing world. In this model computer resource
descriptions and requests use the same model. It is realised as Java objects and
uses the Java serialisation format as wire format2. UNICORE recognised early
on that the Grid can be best modelled as a graph, and the AJO reflects this. The
goal of seamless computing is addressed by the abstract-ness of the AJO. Incar-
nation in the AJO processing chain maps the abstractly expressed user request
into an executable form for the targeted system.

The document-centric design of the AJO is almost exclusively procedural.
Whilst this is convenient for modelling Jobs running on a batch system, it is
interesting to note that the AJO does not contain a object representing a File
on the Grid (an XFile is used to structure the responses to ListDirectory and
FileCheck, but not as a first class entity of the model) making it difficult to
capture at a top-level abstraction the notion that a Storage contains a set of
Files3. This is an example of one of the shortcomings of the AJO that is addressed
in current modelling.

Another consequence of the procedural model is the unconstrained nature
of the ‘operations’ (or processes) encoded into the AJO. Changing operation
names or subtle differences in how these documents are conveyed, means that
a server upgrade almost always prompted corresponding client updates. This is
satisfactorily in a tightly-controlled environment, but not in a Global setting
where for example multiple versions of the same software should be expected to
be in use. Thus, whilst UNICORE achieved vertical integration with the AJO,
this was at the expense of loose-coupling.

1 UNICORE 6 was released mid-2007 and is based on Web services technologies.
2 A recognised issue with the implementation of the AJO model is the strong depen-

dency on Java, and as a result of this the model is rather closed and difficult to
extend. However, this is more of a simple rendering issue not fault with the model
as such.

3 We note that the AJO Portfolio object captures a subset of this requirement

UNICORE/w3 75

Web-Services and XML. UNICORE 6 builds on top of a Web services based
foundation developed in the UniGrids[2] project. Most other popular Grid mid-
dleware, for example Globus 4[3], has also migrated to a Web services based
infrastructure in recent years. UNICORE 6 boasts excellent performance en-
hancements over previous UNICORE versions, and uses XML to overcome the
Java serialisation format limitation. However, Web services were supposed to
address the issues of tight-coupling in Grid architectures, bringing Grid infras-
tructure to the Internet scale. We claim that this has failed.

Much has been made of WSRF providing support for stateful Web services.
Whilst the name of the Web Service Resource Framework (WSRF) seems to
indicate a resource-centric approach, the resource in question is obscured by the
service managing each WS-Resource. One re-occurring criticism of WSRF is that
it is a distributed object system (perhaps more realistically a distributed object
facade), and in essence it is. The state is hidden behind the service interface.
Manipulation of the state of the WS-Resource is done through service-specific
set of operations (although WSRF attempts to standardise some common state
retrieval operations), and there is no explicit concept of navigatable state. In a
Web services based SOA whilst there is a good loose-coupling of implementation
(primarily through the use of XML) such that unlike the Java based AJO, in the-
ory client and server do not have to be written in the same language. However,
the strictly-defined and specific nature of the interface results in an early bind-
ing and consequent tight-coupling between client and server. A Service-oriented
approach also makes the service the primary entity, and not the resources it
manages. This has major implications regarding caching.

Whilst an improvement on the binary format of serialised Java objects, one
can question semantic sparseness of XML as a document format. What emerges
are XML ‘islands’ of information which make powerful search, query and joining
of data difficult.

Therefore whilst the AJO does not make enough of its natural ability to
describe a graph, in principal it is in a better position to model the richness and
complexity of the Grid. We note that the graph-oriented modelling of the Grid
evolved further in the UniGrids project [12], [23] and we take these ideas further
in UNICORE/w3.

3 The World Wide Web

The standards driving the Web are absolutely established and stable. The same
can be said for the Web infrastructure - HTTP servers, routers, firewalls, etc.
This section describes some key characteristics and features of a Web oriented
architecture.

Single Resource, Multiple Representations. As described in [17], we make
the distinction between two kinds of resources: Information resources and non-
information resources. Non-information resources are ‘real world objects’ which
exist outside of the Web, but are identified by HTTP URIs. Therefore, rather

76 R. Menday and B. Hagemeier

than being directly de-referencable, following the advice of [24] we can use the
Web as a lookup mechanism to find more information about these resources.
We use the ‘303 URIs’ method where a HTTP 303 redirects a HTTP request
for a non-information resource, using content negotiation to redirect to the rel-
evant representation of the information resource (for example, the RDF doc-
ument describing the resource, or a human readable HTML representation).
UNICORE/w3 should support HTML, XML, JSON and RDF representations
as a minimal set.

REST and ATOM. Millions of Web sites are in a constant state of evolution
but this happens without forcing the upgrade of each users’ Web browser. Client
and server are freer to evolve independently. The uniform interface constraint of
REST[19] limits the set of allowable operations on resources, and REST advances
this characteristic as one reason for the loose coupling of the Web. For HTTP,
the essential operations are GET, PUT, POST and DELETE. As an example,
taking the getResourceDescription and getJobs AJOs and migrating to one
possible RESTful scheme, these become just GET on a VSite and VSite Jobs
collection resources respectively. REST proposes a resource-oriented approach,
where the state of a users interaction is reflected by the HTTP URIs they are
currently ‘talking to’. The state of an application is published as a navigatable
set of resources, and through the navigation of links the state of the application
is transferred back to the user as a URI. The agent can de-reference this URI
to discover a new set of navigatable URIs. Furthermore, a resource-oriented ap-
proach is actually something very useful and beneficial from a user’s perspective
too as it is likely to achieve a desirable quality of ‘bookmark-ability’, and in the
Grid domain, resources which a user might want to bookmark are very easy to
identify. Furthermore, ATOM and the ATOM Publishing Protocol[1] offer a con-
venient payload for distributing Web content as a chronological sequence of items
and for creating and updating Web resources. Both are milestone technologies
and play an important role in this work.

The Semantic Web. By itself a Web based system based on HTTP and its
URIs, with HTML, XML, JSON and ATOM representations is a significant
advancement for UNICORE. Going further, the Grid is part of the Web, and
the Web is a graph. An ability to describe this graph is extremely powerful as
it brings the data together into a single unified model in a manner far more
flexible than XML or Database structures. RDF is a language for representing
information about resources, in the form of statements about these resources,
including the type of a particular resource and the nature of the relationship
with other resources. For example, in a supercomputer, a File is related to a
particular Storage where it is held, and the nature of this relationship can be
explicitly stated in a computer processable manner. Ontology (expressed using
RDFS/OWL) is used to define the vocabulary for the resources, their types and
the relationships between them. This can be used to infer non-explicitly stated
relationships between the resources in the system, and the Semantic Web query
language SPARQL[10] can be used to query this information.

UNICORE/w3 77

4 Grid Computing with UNICORE/w3

UNICORE is the “Uniform Interface to Computing Resources” and it sum-
marises its character very well. UNICORE/w3 software acts a gateway to the
business and scientific resources of a single site, projecting representations of
each resource onto the Web for those authorised to view and manipulate them.
HTTP agents interacting at this interface perform the functionalities tradition-
ally associated with Grid computing, namely resource management, information
services and data management. All of which are dependent on a common secu-
rity infrastructure. We explore each briefly in the following sections. Then we
take a look at what is often referred to as ‘higher-level services’ - the Google and
Yahoo Pipes of UNICORE/w3.

Information. Information publishing at a single resource (VSite in UNICORE
terminology) is the publishing of information about the Grid resources at this
particular site - Jobs, Storages, Files, etc. We use a lightweight ontology (inspired
to some extent by the UniGrids ontology [12]) expressed using OWL to define the
vocabulary for this description. We note that an attractive feature of RDF is that
it encourages a data-first approach, whereby the collection of RDF statements
can use vocabulary from a number of ontologies, and one is not constrained by
defining a schema first and populating according only to that particular schema.
In this sense the information model for UNICORE/w3 is highly flexible and
extensible.

Resource Management. In the simplest case, resource management at a single
VSite is achieved by POSTing activity descriptions to a Job collection resource
using the ‘process this’ semantic associated with HTTP POST, resulting in the
creation of new resources. The execution is managed with the various stages in
the execution modelled as subordinate resources. An ATOM feed publishes the
changes to the Job resource as it evolves. Complete Job removal uses HTTP
DELETE on the Job resource which also deletes the subordinate resources. A
possible enhancement is through publishing Application resources reflecting ap-
plications discovered on the target system (application software resources in
UNICORE terminology). Application resources publish template request docu-
ments, bootstrapping resource negotiation.

Data Management. UNICORE/w3 enables a projection onto the Web of files
and directories in storage systems. For UNICORE/w3 each entity is individually
identified with its own HTTP URI. By default files in a storage are only acces-
sible by the owner of the file. Basic information (modified times, size) and data
management functionality (copy, move, delete) should be offered. Furthermore,
it should be possible to instruct one site to initiate a transfer of a file to an-
other remote storage. Following a mechanism similar to UNIX file permissions,
we can allow the owner of a single file resource to make it accessible to a group
of authenticated users. Furthermore, a file could be published as freely readable
by everyone. This is similar to the publishing of Google Docs[4], which by de-
fault are private, but on request can be made viewable by all. Finally, the actual

78 R. Menday and B. Hagemeier

contents of a file should of course be retrievable. HTTP transfer is supported,
but also a user may wish to take advantage of other transfer mechanisms, and
XMPP and Bittorrent are potential candidates here.

Security. HTTP requests for a particular resource are subject to authorisation
checking based on the URI of the resource and the identity of the authenticator.
Controlling who is able to view/modify resources is important. For example,
usage information from a group of users should only be accessible by adminis-
trators. Organising around resources makes an implementation of a robust and
fine-grained authorisation policy cleaner. Authentication in such architecture
also needs to be addressed robustly. Due to space constraints we have not anal-
ysed in depth the issues, but at the global scale, there is a growing need for a
Web-native identity solution. We foresee leveraging the open, rapidly emerging
OpenID standard. With OpenID, users identify themselves with a URI, aligning
nicely with the RESTful, resource-centric design.

Higher-Level Functionality

For many Web users a search engine, such as Google, provides the ‘jump-in’
point to the Web. We see specialised search engines - indexing a subset of the
Web related to a particular user’s known Grid resources - offering a similar func-
tionality for the Grid of resources of UNICORE/w3. Leveraging the rich graph
of information and the search capability, UNICORE/w3 users will be able to
view many presentations of their Grid of resources in ways most useful to them.
These aggregation services, whilst accessing information from the underlying re-
sources, can also assert additional RDF statements regarding these resources. Of
course, such annotation carry less provenance, but can be used in many inter-
esting ways. For example, the search engine can allow the user to tag particular
resources in the underlying Grid of resources.

Searching and Tagging. Information from the Grid, once published as RDF,
can be queried and joined with any information, including information from
other resources. SPARQL[10] is the standard RDF query language. Provided
with an RDF description of resources, SPARQL can be used to express queries
across them. This may be used for a multitude of purposes - for resource selec-
tion, querying for support of a particular application, mining for trends, etc. As
described above, the user is able to ‘tag’ particular resources with a free-form
string. Queries can then take the tagging attributes on a particular resource also
into consideration. Examples of typical queries include,

• find all Sites, current status and other useful monitoring information
• find the total number of Jobs executed at each site over the past 30 days
• find all Jobs tagged ‘hot’, which have appended files in the last 30 minutes
• find Files in directory with a specified file name pattern.

Once a new SPARQL query has been POSTed a new resource is created for that
particular query. This can be re-run at any point by GETting that resource.

UNICORE/w3 79

The results of a SPARQL SELECT query results in a table of information, each
column header for each variable in the query and the results of the query in each
row. Moreover an ATOM feed is associated with each query. Over time, changes
in the results of the query are published in the feed allowing changes in the
SPARQL result to be identified. We believe this to be a unique and extremely
useful merging of SPARQL and Web syndication.

Workflow. Other services may offer to manage long-running executions, such as
the coordinated usage of multiple computational resources. Following the REST
principle that ‘hypermedia is the engine of all application state’ we have the
foundation of a interactive and modifiable/dynamic workflow model. Workflow
structures as RDF graphs are stored as additional statements related to the
underlying resources. One can view a Web-based workflow as a collection of Web
resources, and the state of the users interaction is captured by these resources,
where every stage in the workflow is a resource in the graph, and can be de-
referenced. This is a very powerful concept for when it comes to monitoring,
tracking and re-writing.

5 Related Work

In this paper we propose using the Web and HTTP as a end-to-end infrastructure
for the Grid, and we therefore note differences between this and many projects
building portals over existing Grid infrastructures, for example, GridSphere[5].
The Semantic Grid[7] has made many explorations in the area of Semantic tech-
nologies applied to Grids. Much work from this working group is connected with
adding Semantic support to Web services infrastructure to build Semantic Web
Services, although recent activity at the OGF[8] is exploring synergies between
Web 2.0 and Grid including a workshop at OGF 21, where we see our work as
highly relevant. Of course a number of others have done some extremely inter-
esting work in the application of Semantic and Semantic Web technologies to
Grids. In 2001, [21] evaluated the applicability of using RDF schema as a vocab-
ulary for Grid resources, and in [26] the authors propose using Semantic Web
technologies for resource selection. In [14] a delegation ontology is derived and
SPARQL is used to evaluate policy.

A proposal for layering SPARQL functionality and a HTTP interface over
existing Grids appeared in [22], and this can be seen as forerunner to this work.
Regarding other work in the direct UNICORE community we are not aware of
any related work which builds upon the core UNICORE values, wholly recom-
mending building on a RESTful Web foundation and using the Semantic Web
technologies to add rich structure.

6 Outlook and Summary

In this paper we have outlined our vision for a Web-based future for UNICORE.
We can summarise a number of possibilities for further exploration. The use of

80 R. Menday and B. Hagemeier

OpenID[9] as an identity solution looks very appealing, but needs further anal-
ysis. For example, provision for delegated authorisation could possibly leverage
the additional functionality offered by OpenID 2.0. For the searching functional-
ity provided by the information services we would like to investigate other RDF
query languages (of which there are many). We would also like to iterate further
on the core UNICORE/w3 ontology, re-using existing ontologies where appro-
priate. A negotiation process to guarantee a particular quality of service (QoS)
is usually managed using WS-Agreement[15] in SOA based Grids. We note that
the Web naturally provides much of the capabilities necessary for resource ne-
gotiation - the notion of the Web as protocol state machine, and a template
repository and would also like to examine this area in more detail. Finally, the
nuts-and-bolts of taking the UNICORE/w3 concepts and making a production
system from the current prototype adds a number of other topics for further
discussion.

From the notion of clicking to navigate, to receiving a HTTP URI in an email,
the Web is an extremely familiar environment for most people. Using the Web
the middleware layer for the Grid is provided by HTTP. The constrained inter-
face of HTTP, together with a RESTful design of the resources, offers much in
terms of genuine loose-coupling between client and server, cacheability, scalabil-
ity, stability and accessibility. In addition using the Semantic Web provides a
basis the for flexible and powerful higher-level services going well beyond todays
state of the art. We offer searching and the notion of the participatory Grid
where scientists are empowered to easily share results computed on the Grid.

It is worth noting that an early prototype already demonstrates a number of
these concepts. It is the strong conviction of the authors that the Web (more
precisely the Semantic Web) will subsume the Grid as we know it today. Building
on the core values of UNICORE - “seamless, secure, and intuitive access” - this
paper is intended as a sincere exploration of the further opportunities which will
come with a full migration to the Web.

References

1. ATOM, http://tools.ietf.org/html/rfc4287
2. European UniGrids Project, http://www.unigrids.org
3. Globus, http://www.globus.org
4. Google, http://www.google.com
5. GridSphere, http://www.gridsphere.org/
6. Linking Open Data, http://esw.w3.org/topic/SweoIG/TaskForces/

CommunityProjects/LinkingOpen Data
7. OGF Semantic Grid, http://www.semanticgrid.org/
8. Open Grid Forum, http://www.ogf.org/
9. OpenID, http://openid.net/

10. Sparql, http://www.w3.org/TR/rdf-sparql-query/
11. The Tabulator, http://www.w3.org/2005/ajar/tab
12. UniGrids Ontology, http://www.unigrids.org/ontology.html
13. W3C Semantic Web, http://www.w3.org/2001/sw/

http://tools.ietf.org/html/rfc4287
http://www.unigrids.org
http://www.globus.org
http://www.google.com
http://www.gridsphere.org/
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpen Data
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpen Data
http://www.semanticgrid.org/
http://www.ogf.org/
http://openid.net/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/ajar/tab
http://www.unigrids.org/ontology.html
http://www.w3.org/2001/sw/

UNICORE/w3 81

14. Ahsant, M., Basney, J., Mulmo, O., Lee, A., Johnsson, L.: Toward An On-demand
Restricted Delegation Mechanism for Grids. In: Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, September 28th-29th, Barcelona
(2006)

15. Andrieux, A.: et al. Web Services Agreement Specification (2007)
16. Berners-Lee, T.: Weaving the Web (Hardcover). Texere Publishing Ltd. (November

1999)
17. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web,

http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
18. Erwin, D. (ed.): UNICORE Plus Final Report – Uniform Interface to Computing

Resources. UNICORE Forum e.V. (2003), ISBN 3-00-011592-7
19. Fielding, R.T.: Architectural styles and the design of network-based software ar-

chitectures. PhD thesis, Chair-Richard N. Taylor (2000)
20. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable

virtual organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L.
(eds.) Euro-Par 2001. LNCS, vol. 2150, Springer, Heidelberg (2001)

21. Gunter, D., Jackson, K.: The applicability of rdf-schema as a syntax for describing
grid resource metadata (2001)

22. Menday, R., Streit, A.: SPAQRLing UNICORE. In: Proc. of the 6rd Cracow Grid
Workshop (CGW 2006) (2006)

23. Parkin, M., van den Burghe, S., Corcho, O., Snelling, D., Brooke, J.: The Knowl-
edge of the Grid: A Grid Ontology. In: Proc. of the 6rd Cracow Grid Workshop
(CGW 2006), October 15–18 (2006)

24. Sauermann, L., Cyganiak, R., Vlkel, M.: Cool uris for the semantic web. DFKI
Technical Memo TM-07-01 (2007)

25. Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel,
M., Romberg, M., Schuller, B., Wieder, P.: Unicore - From Project Results to
Production Grids. In: Grandinetti, L. (ed.) Grid Computing and New Frontiers of
High Performance Processing, Elsevier, Amsterdam (2005)

26. Tangmunarunkit, H., Decker, S., Kesselman, C.: Ontology-based resource matching
in the grid—the grid meets the semantic web (2003)

http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/

Chemomentum - UNICORE 6 Based

Infrastructure for Complex Applications in
Science and Technology

Bernd Schuller1, Bastian Demuth1, Hartmut Mix2, Katharina Rasch2,
Mathilde Romberg3, Sulev Sild4, Uko Maran4, Piotr Ba�la5, Enrico del Grosso6,

Mosé Casalegno7, Nadège Piclin8, Marco Pintore8, Wibke Sudholt9,
and Kim K. Baldridge9

1 Research Centre Jülich, Jülich, Germany
2 Dresden University of Technology, Dresden, Germany

3 University of Ulster, Coleraine, Northern Ireland
4 University of Tartu, Tartu, Estonia

5 ICM, Warsaw, Poland
6 TXT e-Solutions, Milan, Italy

7 Istituto Mario Negri, Milan, Italy
8 BioChemics Consulting, Orléans, France
9 University of Zurich, Zurich, Switzerland

Abstract. Chemomentum, Grid Services based Environment to enable
Innovative Research, is an end-user focused approach to exploit Grid
computing for diverse application domains. Building on top of UNICORE
6, we are designing and implementing a flexible, user-friendly Grid sys-
tem focussing on high-performance processing of complex application
workflows and management of data, metadata and knowledge. This pa-
per outlines Chemomentum vision, application scenarios, technical chal-
lenges, software architecture and design of the system.

1 Introduction

The European Chemomentum [1] project1 joins today partners from nine in-
stitutions, developing an environment for workflow-oriented scientific as well as
industrial applications. A wide range of end-users in science and technology with
varying IT and Grid computing expertise is targeted. The Chemomentum sys-
tem is designed to be generic and thus usable in a wide range of application
domains. In the applications we are targeting, data management is of crucial
importance. Secure access to stored data, metadata-based lookup, global iden-
tifiers and location management comprise a few of the many challenges in this
area of research and development.

Within the project, a chemical application domain in the natural and life
sciences and material science, is targeted. Domain-specific additions are provided
1 This work has been funded by the European Commission under contract no. IST-5-

033437

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 82–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Chemomentum - UNICORE 6 Based Infrastructure 83

that will enable the building of complex workflows for predictive modelling tasks
in risk assessment, biotechnology, material and drug design. Our aim is to test-
drive the system together with the installed applications in the context of the
European REACH legislation [2], offering in silico tools that may prove crucial
in reducing costs and the number of animal tests. The Chemomentum extends
the experience of partners gained in the OpenMolGRID [3,4], EUROGRID [5],
Gemstone [6], and DEMETRA [7] projects.

At the forefront of our efforts is high usability. Therefore, we follow a user-
centric approach that allows for seamless and interactive usage of software by
domain experts. A flexible client architecture, based on the Eclipse platform,
will enable us and the domain experts to deliver focused end-user interfaces that
combine ease of use with detailed access to the system’s features. For special
use cases, web based access will be provided. Furthermore, a client library will
allow the Chemomentum system to be coupled to any type of domain-specific
user interface.

To realise such a system, we selected UNICORE 6 [8] as Grid middleware,
providing basic Grid services such as security, job execution and file transfer.
Furthermore, it allows to write and deploy additional services, such as a high-
level workflow processing system and data management services.

The remainder of the paper is organised as follows: In section 2, we describe
the characteristics of the different application domains and scenarios that the
Chemomentum software is targeted towards, from which requirements can be
extracted. Section 3 explains in detail the architecture of the Chemomentum
system. Section 4 provides an overview of the actual testbed infrastructure that
can be used to test-drive the Chemomentum framework. Finally, section 5, con-
cludes the publication and discusses the status and plans.

2 Application Scenarios

The main application drivers for Chemomentum originate from the chemical and
biochemical application domains, in particular drug and material design, predic-
tive modelling, and toxicological and environmental risk assessment of chemi-
cals. In this application domain, a wide array of different technologies is used
for computer based modelling. As a second, complementary application scenario
supply chain planning will be used to verify the generality of the Chemomentum
approach.

The Chemomentum project aims to implement generic interfaces for the fol-
lowing application families from biochemistry and chemistry:

– Linear and non-linear predictive model building;
– 3D coordinate generation for molecules from their connectivity information;
– Chemical conformational space analysis;
– Semi-empirical and ab initio quantum chemical calculations;
– Molecular descriptor calculation;
– Prediction of chemical property and activity values;

84 B. Schuller et al.

– Data filtering and preprocessing: clustering and artificial intelligence for ra-
tional chemical data pre-treatment;

– Molecular docking;
– Homology modelling of proteins.

A significant challenge in Chemomentum is the integration of such diverse ap-
plication families in a way that enables the user to be creative and explorative,
so that innovative ways of using existing tools for a variety of application scenar-
ios are possible. This is achieved through the Chemomentum workflow engine
(see section 3.1). In the following, details about the use of these applications in
certain application scenarios are described.

Quantitative structure-activity relationship. (QSAR) methods are key technolo-
gies behind computer based modelling of chemicals, including chemical and phys-
ical properties and biological activities. The QSAR methodology assumes that
the activity of chemicals is determined by their molecular structures and that
there exists a mathematical relationship, P = f(s), between them, where P is the
modelled activity and s is the numerical representation (i.e. molecular descrip-
tors) of the molecular structure. Molecular descriptors in this context are used
to calibrate various chemical properties or biological activities among a grouping
of chemicals. QSAR is a complex application scenario. The process starts with
the design of data sets for the model development and predictions which may
require access to a variety of heterogeneous data sources. This is followed by
the geometry optimisation of molecular structures (see paragraph on Quantum
Chemistry) and the calculation of molecular descriptors. Both of these steps
are data parallel and therefore ideal candidates for Grid computing. Once the
experimental values and molecular descriptors are available, statistical methods
are applied for the development of the actual mathematical model. Finally the
developed QSAR models can be used for predicting activity values of chemicals
from their molecular descriptor values. Our previous examples of the use of Grid
technology in QSAR are the modelling of aqueous solubility [9], HIV-1 protease
inhibitors [10], and acute toxicity [11].

Quantum chemistry. (QC) represents a collection of theoretical and computa-
tional methods that employ approximate solutions to the Schroedinger equation
ĤΨ = EΨ to characterise the structure, properties and mechanism of reac-
tion of molecular systems. The utilisation of QC approaches is of particular
importance for addressing questions involving chemical reactions where bonds
are broken or formed, and to obtain results with very high accuracy. Promi-
nent application areas in both academia and industry include the elucidation
of reaction mechanisms, the prediction of molecule properties (e.g., as part of
QSAR procedures), and the computation of, for example, the effects of solva-
tion or spectroscopic information. Unfortunately, depending on the level of their
theoretical foundation, QC methods can be quite complex and computationally
intensive. This means that such calculations are typically not carried out with-
out significant intervention of the user, and in many cases require knowledge in

Chemomentum - UNICORE 6 Based Infrastructure 85

the field in order to properly set up and carry through computations to address
questions of structure and reactivity in molecules. QC approaches are also of-
ten combined with approaches from classical mechanics, to enable the treatment
of larger (e.g., biological or material) systems. Together with high-throughput
investigations involving many molecules, these are the main application areas
where QC can benefit from Grid computing, data, and workflow processing (see,
e.g., Refs. [12,13,14] for earlier approaches). A major challenge for Grid comput-
ing in QC is that many of the highly used computer programs are legacy, and
that each has their own input and output formats. However, there are now Eu-
ropean efforts under way to agree on standardised data-exchange formats [15].
The quantum chemical program packages that will initially be tackled within
the Chemomentum project include MOPAC [16] and GAMESS [17].

Molecular docking. describes the procedure of finding optimal structural fits of
one component molecule within another, typically a ligand in a protein pocket.
Most importantly, docking is used in the early stages of the pharmaceutical drug
design pipeline, and has thus gained considerable interest from academia as well
as industry. Typically one begins with a previously determined 3D structure
of a protein with a certain biological function, and investigates possibilities for
modification of that function. This could involve a functional modification of a
ligand already embedded in the protein, or, the ’docking’ of a small molecule
(i.e., a potential drug candidate). The idea is to use computation to search for
an optimal orientation of the two molecules (i.e., usually a binding of the ligand
at the natural activity site of the protein). In this procedure, each calculation
step involves computation of the free energy of the complex formation, to be de-
termined by an empirical function. Such calculations are usually embarrassingly
parallel, and therefore highly suited for high throughput-oriented Grid comput-
ing. A clear demonstration of this is the Docking@Home [18] project. Often,
a number of preparation and analysis steps is necessary, for example, to apply
more accurate energy functions to score the ligands, after an initial set of com-
plexes has been identified. As such, molecular docking also profits from workflow
approaches. A typical representative for a widely-distributed docking program
package is AutoDock [19]. However, molecular docking methods are still topic
of intensive research, in particular to obtain better scoring functions. At the
University of Zurich for instance, we are currently developing a Grid-enabled
docking procedure based on quantum chemistry and biomolecular continuum
electrostatics [20].

Homology modelling. is a fundamental and widely used tool in molecular biol-
ogy. Using such tools, biologists are able to compare DNA or protein sequences
from the same or different organism. In this way, evolutionary relationships be-
tween organisms can be explored, and biological functions of new sequences can
be predicted. The main task is to find statistically significant local similarities
between pairs: a user-defined (protein or DNA) sequence and sequences from
databases.

86 B. Schuller et al.

All of these types of application scenarios are used in many aspects of chem-
istry and life science related fields. Prominent examples include:

The European REACH policy. (Registration and evaluation of chemicals). Sub-
stances have to be carefully evaluated and assessed for possible risks to human
health and the environment prior to marketing and distribution. This requires
massive efforts in terms of time, money and animal testing. The Chemomen-
tum system has the potential to reduce the need for animal testing as such by
providing a wide variety of solutions for the computational, in silico, testing
of chemicals. QSAR has been selected as one of the key predictive modelling
techniques for REACH.

Research and development in the pharmaceutics. Computational solutions are
more and more used to virtually screen large databases of compounds in order
to identify potential leads concerning a given biological activity. The size of
the databases requires extensive computing solutions that can be achieved via
efficient use of Grid technologies. In particular, emphasis should be given to the
high level of security while working with the data with significant intellectual
property risk.

Research and development in biotechnology. The biotechnology sector is using
the largest databases for screening and determining technologically relevant new
substances. This determines their need for the extensive computational solutions
to reduce the time to product and also the costs.

The scope of Chemomentum system is not limited to scientific applications.
The overall architecture is generic and will be also tested on completely unrelated
applications in the retail sector, such as demand prediction in supply chain
management.

Supply chain planning. The purpose of this application is to apply the capa-
bilities offered by Chemomentum to a complex scenario where different and
heterogeneous applications need to work together in a common environment.
The scenario is based on the tools offered by TXT e-Solutions (TXTPERFORM
suite [24]), but it has a sufficiently generic degree of validity. The focus involves
three different phases: 1. Demand and merchandise forecasting; 2. Assortment
and allocation plan; 3. Replenishment planning. These phases are usually con-
nected together to form a complex workflow that involves the usage of different
applications. This scenario is posing some major challenges: First, in the solution
that is currently deployed, maintenance costs are high due to usage of different
applications requiring heterogeneous environments. A Grid based integration so-
lution can be expected to reduce costs by providing seamless and unified access
to these heterogeneous enviromnents. Second, the control of the entire workflow
needs to be human driven, which is the only possible way to have full control on
the behaviour of the applications.

The solution that Chemomentum is investigating is based on workflow au-
tomation, where applications are located behind an infrastructure that allows a
common access to their functionalities and resources.

Chemomentum - UNICORE 6 Based Infrastructure 87

3 Architecture of the Chemomentum System

This section provides a birds-eye view on the Chemomentum architecture, and
the primary associated functional systems. These functional systems will be ex-
plored in more detail in the subsequent sections.

As Figure 1 shows, Chemomentum consists of five major sub-systems.

– Workflow System: Executing and managing workflows, for details see section
3.1;

– Data Management: Services for accessing data and metadata, for details see
section 3.2

– Grid Management: Monitoring and managing all services making up the
Chemomentum systems 2;

– UNICORE 6 Hosting Environment: Hosts fabric services (such as job execu-
tion) provided by the UNICORE Grid middleware. The additional Chemo-
mentum services will make use of the UNICORE 6 hosting environment, to
benefit from its features and integrate with the UNICORE 6 security, see
section 3.3;

– Client Layer: graphical interfaces for end-users and administrators for ac-
cessing and managing Chemomentum services, for details see section 3.4.

Fig. 1. Overview of the Chemomentum Architecture

3.1 Workflow Processing

Workflow processing is at the core of the Chemomentum system. As Figure 2
shows, the Workflow System is subdivided into two layers of abstraction: the
Workflow Engine and Service Orchestration layers. The Workflow Engine pro-
cesses a workflow on a logical level, whereas the Service Orchestrator deals with
the actual execution and supervision of tasks using different services and re-
sources on the Grid. Thus, the workflow processing logic is cleanly separated
from the re-occurring invocations of low level Grid services.
2 The Grid management components are not covered in detail in the present paper

due to space constraints.

88 B. Schuller et al.

Fig. 2. Three-tier approach to workflow

In order to handle different domain specific workflow languages, the workflow
engine translates incoming workflow descriptions to a generic workflow language
using pluggable Domain Specific Logic (DSL) modules. Splitting and distribution
of computational effort in order to maximise throughput and to make most
efficient use of the available computational resources is one of the core goals
of the Chemomentum system. Each activity of the translated workflow results
in an atomic unit of work for the Grid, a so called “Work Assignment”. Work
Assignments (WAs) are abstract, in the sense that they are not bound to specific
service endpoints on the Grid. They are individually submitted to the Service
Orchestrator for execution. Due to dependencies and conditions in the translated
workflow, WAs cannot be executed in arbitrary order. For instance, one WA
may depend on the output data of another WA. The Workflow Engine keeps
track of such preconditions and does not submit WAs with unmet preconditions.
The Service Orchestrator transforms each incoming WA into a job, given in
Job Submission Description Language (JSDL). It exchanges the logical names
of input files for addresses of physical file locations. It submits the job to a
computing resource, supervises job execution and informs the workflow engine
of job completion or failure.

3.2 Data Management

The objectives of the Data Management System (DMS) within Chemomentum
are to provide data storage and retrieval functionality and to give a global data
view independent of actual data location. The DMS establishes a distributed
data store that can be used to house data and, even more important, corre-
sponding metadata that thoroughly describe the data stored. The metadata
include typical descriptive information like for example the user who produced
the data, the date of generation/modification or the applications that were used
to produce the data. Additionally, meta information specific to a domain can
be stored, e.g. the list of properties used in building a QSAR model. The set of
domain specific metadata items to be stored is flexible.

Chemomentum - UNICORE 6 Based Infrastructure 89

A key feature of the Data Management System is the user-transparent access
to external data sources of different kinds, e.g. web-based databases, flat files,
etc. The data from the internal data store and the external databases is presented
to the requester in data views specifically adapted to its demands. This could
be, for example, a view that focuses on a specific domain or application and
integrates the information gathered from external databases with data stored in
the internal data store.

The DMS is accessed by the Workflow System when executing a workflow.
Input data necessary for executing the workflow is retrieved, output data gen-
erated by the workflow and the metadata that describes this output data is
stored. The end-user can access the data management system to browse the
data in the internal data store – highly aided by the extensive metadata; access
data in external databases, or manually upload interesting files to the internal
data store.

Fig. 3. Data Management System architecture

The heart of the Data Management System is the Documented Data Space
(DDS), see Figure 3. It is composed of Metadata Databases, Data Storages and a
Location Database. The Data Storages contain data in flat files, typically input
and output data produced by Chemomentum. The Location Database acts as a
global file location directory by indexing those files and assigning them globally
unique logical names. The Metadata Databases contain metadata that describe
the files in the data storages, referencing them by their logical names.

The central interface to the DMS is the Data Management System Access
Service. It forwards service requests to the appropriate service(s), collects the
results and returns them to the requester. For example, in case of a data store
request containing files and metadata it
(a) instructs the Storage Management Service to stage out the files from the
temporary data store to one of the Data Storages in the DDS;
(b) instructs the Location Manager Service to index the uploaded files in the
Location Database and generate logical names; and
(c) instructs the DDS Access Service to insert the metadata into one of the
Metadata Databases in the DDS.

90 B. Schuller et al.

The Database Access Tool (DBAT) serves as a uniform interface to external
databases. It transforms a query to the data management system into the native
query language used by the external database, queries the external database and
transforms the result back into a format the client understands. The Ontology
Service supports the DBAT in providing information, e.g. synonyms of molec-
ular names, to broaden queries to external data sources. It provides knowledge
about types and vocabulary necessary to interpret data retrieved from external
sources or to store domain-specific data. The metadata vocabulary is not fixed.
Given that different scientific fields and simulation environment have different
needs, new domains can easily be added to the system to meet these needs and
existing domains can be extended. For each domain a vocabulary is maintained,
which does not only include metadata items with their respective data types,
but also further properties like a human readable name or information on its
range. Currently the domain vocabularies are provided as a relational database
schema. Metadata and knowledge representation models like RDF[25] and Topic
Maps[26] that could allow an even more expressive description of the metadata
of a domain are under investigation for use in Chemomentum.

Users of the data management system do not have to know about the vocab-
ulary of a domain beforehand. Existing domains and their vocabularies can be
queried for and retrieved whenever needed. This allows to develop generic clients,
e.g. a data browsing client that enables the user to browse through stored meta-
data regardless of the domain.

3.3 Security Considerations

The present system adopts the security infrastructure of UNICORE 6, which
is based on X.509 certificates, and offers fine-grained access control to services
based on user attributes stored in a user database (XUUDB). This is sufficient
for simple use of UNICORE 6, for example to decide whether a given user has
the permission to run a job or access a storage service.

However, Chemomentum has more complex requirements on security. For ex-
ample, trust delegation mechanisms are obviously needed for Chemomentum to
support the secure use of the chain of services needed to process a workflow. The
Explicit Trust Delegation model of UNICORE 5 [27] is a first step, but becomes
impractical for larger Grids. At the time of writing (June 2007), the final trust
delegation model in UNICORE 6 was not fully defined.

Also, the Data Management System needs access to even more detailed user
permission data, similar to the level of detail offered by a relational database
system, in order to provide fine enough access control. Thus, the access control
available in UNICORE 6 is not sufficient.

Similarly, the user management in UNICORE 6 as available in June 2007 is
not sufficient for large Grids, and complex virtual organisation structures. Thus,
Chemomentum aims to provide a security service offering Virtual Organisations
(VO) based user management and storing extended user attributes for making
access control decisions. This is intended as a drop-in replacement for the basic
UNICORE 6 solution.

Chemomentum - UNICORE 6 Based Infrastructure 91

Irrespective of the security middleware in place, it is well known that in certain
application domains data can be so sensitive that the data owners will not allow
to send it over a network. Chemomentum caters for these users by allowing
private data to be stored and maintained physically at a specific site, in a private
instance of the DDS service discussed in 3.2.

3.4 Clients

The client layer of the Chemomentum system provides the associated interface
to end-users in the different targeted application domains (see section 2) and to
administrators of the infrastructure. In this way, the Chemomentum services can
be easily and uniformly accessed and managed. Our main focus is on graphical
user interfaces, but for certain user communities, command line interfaces might
be of interest. We are developing three types of clients: (i) Eclipse [28] Rich
Client Platform-based client, (ii) web portal and (iii)third-party clients.

As a common application programming interface between the clients and the
server-side infrastructure, a Basic Chemomentum Client Library (BCCL) has
been created. The BCCL will, in particular, enable third-party tools, for exam-
ple domain-specific user interfaces such as Gemstone [6], to integrate into the
Chemomentum system.

As an initial step towards building the Chemomentum graphical user interface,
GridBeans [21], based directly on the underlying UNICORE environment, have
been developed and already deployed in the testbed (see also the next section).
GridBeans can later be included into the rich client, or used independently. A
generic GridBean suitable for any type of UNICORE-deployed application has
been developed and successfully tested with the quantum chemistry package
GAMESS [17]. Furthermore, a GridBean for the BLAST application is avail-
able [22]. It is designed to provide a user interface organised in a similar way as
the one on the NCBI-BLAST [23] website. The main purpose is to provide ease
of use, particularly by scientists who are used to the NCBI website and may
not want to learn about a different interface. Also, GridBeans for QSAR model
development have been developed.

4 The Chemomentum Testbed

To evaluate and test the software, Chemomentum provides a special site [29],
which allows the wide public to test new system capabilities. Everybody can use
the test installation to evaluate the software. The site allows to request a test
certificate, valid for the test site, and when certificate is issued it allows do run
grid jobs on a dedicated virtual system. The testbed is intended to run quick
jobs.

Setting up of a pilot installation available to a wide user community involves
a security challenge. In order to minimise the risk we have used a virtualisation
technique to protect the server integrity and to offer a reasonable security level.
The execution system has been set up on an isolated virtual host, and be treated

92 B. Schuller et al.

as compromised all the time. A further benefit of the virtualisation technique is
the possibility to share the images of the virtual systems, which allows for fast
and easy replication of the pilot installation.

UNICORE provides client applications to access distributed resources. These
clients offer a powerful and extensible interface to the resources, but a number
of users expect web access to the Grid. This motivation, clearly expressed in the
Chemomentum project, resulted in the redesign of the UNICORE Client frame-
work to allow easy integration with portals. A client library has been created
which allows for fast development of web interfaces to the Grid resources.

5 Conclusions and Outlook

Driven by application requirements, we have designed a UNICORE 6 based
Grid system focussing on ease of use, high-performance processing of complex
scientific and industrial workflows and elaborate data management solutions.

We have found UNICORE 6 to be an excellent basis for such a system, as its
open structure makes it easy to build custom services and integrate them into the
basic infrastructure. The security requirements of Chemomentum were not fully
met by the beta version of UNICORE 6, but we expect marked improvements
in this area with the availability of the final UNICORE 6 release.

The presented design has been validated in a number of prototype implemen-
tations. A first implementation of the full workflow processing stack is available,
based on the Shark [30] XPDL workflow engine. The Data Management System
in the first prototype provides storage and retrieval of data from the QSAR do-
main with predefined metadata. A client component allows to browse through
data stored in the DDS.

The first release of the basic software framework, based on UNICORE 6 final,
is targeted for August 2007, which will be available on the public testbed in
October 2007.

References

1. Chemomentum: Grid-Services based Environment for enabling Innovative Re-
search, http://www.chemomentum.org

2. REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 18 December 2006 concerning the Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH), establishing a European
Chemicals Agency, amending Directive 1999/45/EC

3. OpenMolGRID: Website, http://www.openmolgrid.org
4. Sild, S., Maran, U., Lomaka, A., Karelson, M.: Open Computing Grid for Molecular

Science and Engineering. J. Chem. Inf. Model 46, 953–959 (2006)
5. EUROGRID: Website, www.eurogrid.org
6. Gemstone: Website, http://gemstone.mozdev.org
7. Benfenati, E. (ed.): Quantitative Structure-Activity Relationships (QSAR) for Pes-

ticide Regulatory Purposes. Elsevier, Amsterdam (2007)
8. UNICORE: Website, http://www.unicore.eu

http://www.chemomentum.org
http://www.openmolgrid.org
www.eurogrid.org
http://gemstone.mozdev.org
http://www.unicore.eu

Chemomentum - UNICORE 6 Based Infrastructure 93

9. Sild, S., Maran, U., Romberg, M., Schuller, B., Benfenati, E.: OpenMolGRID: Us-
ing Automated Workflows in GRID Computing Environment. In: Sloot, P.M.A.,
Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS,
vol. 3470, pp. 464–473. Springer, Heidelberg (2005)

10. Maran, U., Sild, S., Kahn, I., Takkis, K.: Mining of the Chemical Information in
GRID Environment. Future Gen. Comput. Syst. 23, 76–83 (2007)

11. Maran, U., Sild, S., Mazzatorta, P., Casalegno, M., Benfenati, E., Romberg, M.:
Grid Computing for the Estimation of Toxicity: Acute Toxicity on Fathead Minnow
(Pimephales promelas). In: Dubitzky, W., Schuster, A., Sloot, P.M.A., Schröder,
M., Romberg, M. (eds.) GCCB 2006. LNCS (LNBI), vol. 4360, pp. 60–74. Springer,
Heidelberg (2007)

12. Sudholt, W., Baldridge, K.K., Abramson, D., Enticott, C., Garic, S., Kondric, C.,
Nguyen, D.: Application of Grid Computing to Parameter Sweeps and Optimiza-
tions in Molecular Modeling. Future Gen. Comput. Syst. 21, 27–35 (2005)

13. Baldridge, K.K., Greenberg, J.P., Sudholt, W., Mock, S., Altintas, I., Amoreira, C.,
Potier, Y., Birnbaum, A., Bhatia, K., Taufer, M.: The Computational Chemistry
Prototyping Environment. Proceedings of the IEEE 93, 510–521 (2005)

14. Sudholt, W., Altintas, I., Baldridge, K.: Scientific Workflow Infrastructure for Com-
putational Chemistry on the Grid. In: Alexandrov, V.N., et al. (eds.) ICCS 2006.
LNCS, vol. 3993, pp. 69–76. Springer, Heidelberg (2006)

15. COST Action D37 Grid Computing in Chemistry: GRIDCHEM, Working Group
0004 DeciQ

16. MOPAC: Website, http://www.openmopac.net
17. GAMESS: Website, www.msg.ameslab.gov/GAMESS/GAMESS.html
18. Docking@Home: Website, docking.utep.edu
19. AutoDock: Website, autodock.scripps.edu
20. Seebeck, F.P., Guainazzi, A., Amoreira, C., Baldridge, K.K., Hilvert, D.: Stereose-

lectivity and Expanded Substrate Scope of an Engineered PLP-dependent Aldolase.
Angew. Chem. Int. Ed. 45, 6824–6826 (2006)

21. GPE4GTK Project: Website, http://gpe4gtk.sourceforge.net
22. Borcz, M., Kluszczyński, R., Ba�la, P.: BLAST Application on the GPE/UnicoreGS

Grid. In: Lehner, W., et al. (eds.) Euro-Par Workshops 2006. LNCS, vol. 4375, pp.
244–252. Springer, Heidelberg (2007)

23. National Center for Biotechnology Information (NCBI), BLAST interface,
http://www.ncbi.nlm.nih.gov/BLAST/

24. TXT e-solutions website, http://www.txt.it
25. Resource Description Framework, http://www.w3.org/RDF/
26. Steve Pepper, The TAO of Topic Maps,

www.ontopia.net/topicmaps/materials/tao.html
27. Snelling, D.F., van den Berghe, S., Qian Li, V.: Explicit Trust Delegation: Security

for Dynamic Grids. FUJITSU Sci. Tech. J. 40(2), 282–294 (2004)
28. Eclipse: Website, http://www.eclipse.org
29. Chemomentum Portal, Demo site,

http://www.chemomentum.org/chemomentum/demo/
30. Shark Workflow Engine, shark.enhydra.org

http://www.openmopac.net
www.msg.ameslab.gov/GAMESS/GAMESS.html
docking.utep.edu
autodock.scripps.edu
http://gpe4gtk.sourceforge.net
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.txt.it
http://www.w3.org/RDF/
www.ontopia.net/topicmaps/materials/tao.html
http://www.eclipse.org
http://www.chemomentum.org/chemomentum/demo/
shark.enhydra.org

Flexible Streaming Infrastructure for UNICORE

Krzysztof Benedyczak1, Aleksander Nowiński2, and Piotr Ba�la1,2

1 Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Chopina 12/18, 87-100 Toruń, Poland
2 Interdisciplinary Center for Mathematical

and Computational Modelling
Warsaw University

Pawińskiego 5a, 02-106 Warsaw, Poland

Abstract. We present recent innovation in a field of advanced, multi-
purpose streaming solutions for the grid. The described solution is based
on the Unigrids Streaming Framework [7] which has been adopted to the
UNICORE 6 middleware and extended. The main focus of this paper
is the UGSF Data Flow Editor, which is an universal tool for powerful
streaming composition. It has been developed to provide users with a
graphical interface for streaming applications on the grid.

1 Introduction

Data streaming is one of the most advanced services available in the grid. The
data streaming, as well as instrument and application steering, gets significant
attention of the grid users and middleware developers. Unfortunately, there is
still lack of good and stable solutions ready for wide deployment.

The early works on the data streaming in the UNICORE [1] were focused
on solutions dedicated to the particular applications. Among others, specialized
approaches based on the SSH and pre-OGSA version of UNICORE have been
developed [2]. Currently SSH tunnels are used in COVS framework [3] to perfom
streaming of visualisation data. However those developments can not be seen as
universal streaming framework, as are limited to concrete applications.

The new version of OGSA [4] and therefore service oriented version of the UNI-
CORE opened the possibility to develop much better solutions. As a result the
UniGrids Streaming Framework (UGSF) has been made available. The UGSF
is a middleware, which serves as an engine for the new generation of UNICORE
streaming services. It contains also a library for the client development.

The UGSF established a new quality in comparison to the solutions developed
for pre-web services versions of UNICORE. The large part of the UGSF - the
UGSF core is not directly operated by the end-users. It contains a number of
stream implementations which can be deployed and used without any additional
effort. However, from the user’s point of view, there were still few problems
in the UGSF. The main one is lack of user-friendly, graphical tools to access
the streaming services. The development of such tools was limited either to the

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 94–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Flexible Streaming Infrastructure for UNICORE 95

programming from scratch1 or to use GPE GridBeans technology [5]. The first
solution is obviously hard, while the second one could be efficiently used only
for concrete streaming scenarios.

The shortcomings of the existing solution motivated us to start the develop-
ment of the UGSF Data Flow Client. It can be considered as an alternative to
the UGSF clients, which have been developed in the GridBeans technology. The
UGSF Data Flow Client can be seen as a streaming counterpart of the GPE
Expert Client, which allows for composing arbitrary live stream connections
instead of building jobs workflows.

In this paper we present the UGSF platform and describe the Data Flow
Client. The detailed discussion of the plugin interface is performed. Example
applications are presented in the second part. The final part of the paper de-
scribes ongoing and future developments.

2 The UGSF Platform

The aim of the UniGrids Streaming Framework (UGSF) is the provision of a
direct data streaming for applications. The main part of UGSF is UGSF core,
which is a middleware that allows developers to create dedicated streaming ser-
vices. Every system based on the UGSF will use the core together with some
application dependent code. The UGSF core provides basic functionality com-
mon for all streaming applications. This includes a creation or a shut down of a
connection. UGSF contains also a large group of versatile software pieces which
can be reused when creating actual implementations of streaming services. A
good example is a component which allows for locating UNICORE job’s work-
ing directory.

The detailed UGSF architecture is presented elsewhere [6] and here we will
introduce its brief overview focused on the basic elements. The UGSF is built
based on the fundamental concept of stream. A Stream is a logical entity that
encapsulates some functionality on server-side. This functionality can be:

1. production of data (by any means, e.g. importing it, reading from a file or
even creating it)

2. consumption of data (any kind of destination like file export to another
streaming system)

3. data processing (filtering, changing data format, etc.)

The stream defines at least one of input ports, output ports or bidirectional
ports. Those represent possibility to connect to different UGSF streams or ordi-
nary clients. The stream can have many ports, with different characteristics (list
of allowed formats is a good example of stream characteristics). It can also per-
form many logical data transfers - “streamings” in common sense. Every logical

1 “Programming from scratch” refers here to the GUI part of such applications. The
UGSF provides client-side library, which simplifies development of the logic of the
application. Nevertheless, significant programming skills are necessary.

96 K. Benedyczak, A. Nowiński, and P. Ba�la

Fig. 1. The general architecture of UGSF

data transfer, started or ended at port of the stream is called a flow. To give
an example: “Theora video decompressing stream” can have two flows; one in-
put which accepts compressed Theora video, and one output flow, that transfers
raw video frames. In this example the stream has defined data processing while
neither production nor consumption of data (as defined above) are present. The
implementation that provides defined functionality is called a stream implemen-
tation. Usage of the stream implementation requires creation of a corresponding
resource which is called a stream instance.

The UGSF streams (or better streams implementations) have a metadata at-
tached. For every flow there are defined capabilities such as reconnect capability,
supported formats (or protocols) and others. It is possible to specify more than
one format for a single flow as well as to express the only supported formats’
combinations for the all flows of the stream together.

2.1 UGSF Architecture

The UGSF system is based on the WSRF compliant version of the UNICORE,
(version 6) [1]. The first version of UGSF system was developed using UnicoreGS
software [7] as the hosting environment. Recently, the hosting environment was
changed to use mainstream UNICORE 6 server-side components: WSRFLite
and UnicoreX.

The UGSF core consists of a UGSF Web Service part, Streaming Server part
and a library to create clients. The usage of the last component is optional. The
UGSF Web Service takes advantage of WSRF capabilities. It is used to control
a set of available stream types, to create new streams and to manage already
created ones. The Streaming Server part is managed by a UGSF Web Service
and performs streaming. Client library is used to simplify the creation of the
client-side software. Overall architecture is shown in Figure 1.

Flexible Streaming Infrastructure for UNICORE 97

The UGSF core is complemented with stream implementations. Those con-
sists of two server-side parts: streaming server and web service modules. Web
service module implements control operations specific to the stream implemen-
tation. Streaming server module deals with a wire streaming protocol and data
consumption or acquisition. The recent works provided a possibility to add client-
side implementation for the stream implementation. The details are given in the
section 3.

2.2 UGSF Web Service

The UGSF Web Service component consists of two kinds of web services. A base
one (called StreamingFrameworkService) is responsible for connection authoriza-
tion, creation of stream and its setup. During this process the new WS-Resource
(called StreamManagementService) is created by a dedicated web service inter-
face. This WS-Resource acts as a controller of an active streaming connection.

The StreamingFrameworkService is a WS-Resource which maintains list of
StreamManagementServices. The StreamingFrameworkService allows users to
get a list of available stream instances and to set up a connection to the speci-
fied one. The list of both owned and accessible streams is available. In addition,
the StreamingFrameworkService has an administrative interface, which empow-
ers system administrator to enable and disable particular stream types on the
fly. The service reconfiguration such as addition or removal of stream types is
also possible.

For each created stream an instance of the StreamManagementService allows
user to perform universal operations for all streams. This includes shutting the
stream down (by means of WS-Lifetime interface) or getting status and statistics
of the connection. This functionality can be easily enriched by the developer. He
can extend StreamManagementService with additional operations. The enriched
implementations are free to consume any special XML configuration supplied to
the StreamingFrameworkService and required for service setup and creation.

2.3 UGSF Streaming Server

The UGSF Streaming Server is a stand-alone, modular application which per-
forms streaming to and from the target system. The server is tightly connected
with the UGSF Web Service which maintains stream definitions (however UGSF
Web Service can control multiple Streaming Servers without a problem). The
server is modular and configurable.

Streaming Server modules can be divided into two categories: entry point
modules and stream modules. The first kind of modules is responsible for im-
plementation of special handshake protocol used to start streaming connection.
Thanks to the modular architecture there can be many of such protocols avail-
able, even concurrently. An addition of a new one is possible and easy. Currently
HTTP and HTTPS entry modules are available (special connection parameters
are passed in HTTP header).

98 K. Benedyczak, A. Nowiński, and P. Ba�la

The second category of modules is responsible for streaming implementation.
These modules can operate simultaneously in both directions: pushing the data
from a server or pulling to the server. Stream module implements required ele-
ments of functionality presented in section 2. One possible class of streams are
“filtering” streams which provides neither source nor sink for data. The data is
read from a client, then processed and finally written out to a (possibly another)
client.

Integration of the streaming functionality with grid jobs is of great interest
here. The UGSF, among its standard stream modules, supplies visualization
stream implementation. It can stream any kind of file both from and to job’s
USpace determined based on the given UNICORE job’s reference and file’s name.
There is also a set of other implementations available, including TCP tunnels,
UDP over TCP tunnels or multiplexer which clones input into many copies to
name a few.

3 UGSF Data Flow Client

The UGSF Data Flow Client has been designed to provide solid base for creation
of a specialized client applications which have to deal with complex streaming
scenarios, including arbitrary data flow composition. The basic idea was to pro-
vide support for all, or nearly all generic features of UGSF and to support fea-
tures available in sophisticated stream implementations by pluggable modules.
Graphical approach was chosen for manipulating stream instances connections
(i.e. data flow). To be fully functional, Data Flow Client must have possibility
to act as a local endpoint for streaming in addition to control server to server
connections. Local machine should be able to stream data in both directions to
and from UGSF servers.

3.1 Generic Functionality

Data Flow Client manages the user’s keystore which allows access to the grid. As
the first entry point, some sort of resource discovery must be performed to locate
streaming services. This is achieved in the usual manner for the UNICORE 6
— the user has to provide addresses of the registries. The same registry can
be used for both UNICORE and UGSF services. The content of registries is
automatically fetched and UGSF services are enumerated in side panel, called
services panel. User can choose between having all services displayed or only
those which are present in the actually chosen registry.

The stream instances managed by UGSF services are displayed in the same
services panel in the form of a tree. From the context menus the user can create
new instances, and destroy existing ones. While destroying is simple, the creation
of a new stream instance is a more advanced operation and involves configuration
of the instance. The client shows a pop-up dialog similar to shown in fig. 3.
The dialog allows user to choose among all stream types defined in the selected
streaming service. Further on, the user can choose the name for the job, set the

Flexible Streaming Infrastructure for UNICORE 99

Fig. 2. The example of Data Flow Editor usage: Two simple data flows are prepared;
one streams a local video file to a remote grid node, where UGSF filtering stream
decompress the video and pushes it to the input file of the grid job. The job processes
the input and its output is (after compression) sent back to the client, where live results
are presented (optical flow of the input video sequence in this example).

termination time and select initial set of formats to be used. The dialog makes
use of plugins to render GUI for preparation of any stream specific configuration
that is needed.

When stream instance is created, its entry appears in the services panel tree.
From there the stream instance can be added to the main workbench of the
program: the graphical data flow editor. The editor visualizes data flow as a di-
rected graph. Vertexes symbolize stream instances. Every vertex can have multi-
ple ports, i.e. places of edges’ attachment. Edges are used intuitively to represent
stream connections (flows). Each fundamental property of a flow specifies direc-
tion of data transport.

Every stream can have many flows and adequate number of ports. There are
also different kinds of ports: input, output and bidirectional rendered in a slightly
different color at a different side of a vertex.

Usage of a stream instance in the data flow editor is accomplished by context
menus. There are two menus: one for the stream instance to perform stream
manipulation, and another one for every port to invoke operations related to
the particular flows. For example, they allow for creating a new connection. The

100 K. Benedyczak, A. Nowiński, and P. Ba�la

Fig. 3. Dialog used to create a stream instance in Data Flow Client. The parameters
of video compression are set in subpanel which is provided by a plugin. The rest of the
dialog window is generic.

client does not allow to connect two ports (an therefore flows) with incompatible
formats or data transport directions.

An automatic policy setting is used for created connections and on default
only creator can connect to the stream. This leads to the problem whenever one
stream instance created in Data Flow Client has to connect to another instance.
In this case the Data Flow Client sets up permissions behind the scene. The
client fetches the identity of the stream A which initiates connection. In the
next step it changes the authorization policy of the target stream, to accept the
connections with the A.

There is also a possibility to manually control the most of generic features of
the stream from the vertex, port and edge context menus. For example, if the
stream supports multiple formats, which is the generic UGSF feature, it is possi-
ble to change them. The streams in the UGSF allow for choosing a format of the
individual flow or of all flows together. Whenever there are format dependencies,
a change of a format of one flow will affect the format of another.

The UGSF Data Flow Client also provides features to monitor data flow
state. This is the function of a dedicated panel located below the data flow
editor panel. The information about selected element is displayed there. If a
port is selected, then related flow properties are shown including (among others)

Flexible Streaming Infrastructure for UNICORE 101

flow status CONNECTED, DISCONNECTED, statistics of transferred bytes in
any direction, average transfer speed and the time of last activity. The status is
updated either automatically or manually by the user.

The Data Flow Client also provides auto-discovery of data flows. This is nec-
essary to avoid problems, when there are stream instances created by other
clients or in other sessions. The available streaming services allow for doing this
except for the connections between UGSF streams and external clients. The
auto-discovery process can be divided into two parts. The more simple one is
used whenever stream instance is added to the data flow editor. The instance is
checked if it has some active connections. If so, the another side of connection is
determined. If it is already known by the editor, the connection is automatically
added. If it is not present, an “orphaned” connection is drawn to mark that the
stream is used.

There is also a more advanced feature which finds all vertices with orphaned
edges, tries to locate them on the grid (not only among streams in the editor)
the peers and add them to the editor. The process is repeated until no more
orphaned connections exist or there is no known element to be added.

3.2 Plugins

The generic functionality of the UGSF cannot be used without dedicated stream
implementations which offer specialized control and configuration possibilities.
The Streaming Framework Client uses dynamically loaded plugins to manage
stream implementations.

There are cases where plugin for the stream implementation is not needed.
The example is multiplexer stream which does not need any special configuration
because it uses only standard operations of UGSF platform.

The client offers extensibility points for the plugins. Usage of most of them is
optional and then some default values/components are used instead. The UGSF
Data Flow Client can provide:

– GUI to ask for these stream creation parameters which are implementation
dependent. The GUI has to return those parameters. It is used in stream
creation dialog, for example to specify compression parameters for Theora
stream encoding (see fig. 3).

– Menu with operations related to the stream. Such a menu is added to the
context menu of vertex in data flow editor panel.

– Menu with operations applicable to the particular flow of the stream. Such
a menu is attached to an appropriate port menu of the stream.

– Ability to create local endpoints.

Local endpoint feature is designed to allow user’s machine to act as a peer
in a data flow. In the UGSF the description how to connect to the remote
stream is implementation dependant. Implementation provides data to stream
and describes data format or application protocol. Local source or sink of data
needs to be defined as well. This functionality is reserved exclusively for the
plugins.

102 K. Benedyczak, A. Nowiński, and P. Ba�la

When local endpoint is created, it appears in a data flow editor as a vertex
(but of different color than ordinary stream instances). The functionality resem-
bles the simplified stream vertex — there are ports and two kinds of context
menus. The only difference is that the contents of the menus are coming nearly
exclusively from plugin implementation.

To give an example, the IVis stream used to stream files to/from UNICORE
job work directory allows for creating local endpoint. This endpoint offers two
features activated in its context menu: to create output flow and to create input
flow. In the first case local file needs to be specified for streaming it out. In the
latter case, the name of a local file to store streamed data is required.

4 Related Work

In general there are few general frameworks which integrate computing grid in-
frastructure with advanced streaming capabilities and flexible data flow creation.

In the case of UNICORE platform there is no such solution known to the
authors. However frameworks that offers (some) streaming capabilities exist. One
example is COVS framework [3]. It’s aim is to support online visualisation and
steering of scientific applications run on the grid, with collaboration support.
The COVS implementation uses VISIT library [8] as underlying technology.
Therefore COVS application is available only for VISIT enabled software. The
COVS framework uses SSH to tunnel VISIT protocol and extedns it with web
service management capabilities. The data flow is fixed: one application run on
the grid node can be steered and visualised by one or more end-users. The UGSF
approach to the streaming is far more powerful. It does not restrict streaming
to one (eg. SSH) low level protocol. Usage of other protocols can bring large
performance gain, especially when encryption is not required. UGSF allows for
client ↔ server communication as COVS does, but also for server ↔ server. Last
but not least, UGSF can be used with any streaming application run on the grid,
not only those VISIT enabled. In conclusion we can state that UGSF and VISIT
overlap only in small part of functionality. UGSF provides low level mechanism
and COVS could be built on top of it.

The length of this paper doesn’t allow for performing through comparison with
streaming frameworks for other than UNICORE grid platforms as NaradaBro-
kering [9], GridKit [10] or GATES [11]. However we can state here that, whilst
most of such platforms offers very extensive features in case of streaming itself,
their integration with computational grid is very limmited. Also the visual data
flow editor described in this paper is a significant advantage of UGSF compared
to other solutions.

5 Conclusions and Future Work

The presented solution is a big step forward in providing streaming capabilities
for UNICORE. It is a convenient and easy base to be used for universal stream
composition.

Flexible Streaming Infrastructure for UNICORE 103

Some of the presented streaming features can be performed using standard
UNICORE technology such as GridBeans and UNICORE Clients. This is not
possible for special cases, where user wants to execute workflow and stream data
between tasks executed on the different target systems. With the UGSF Data
Flow client, such task can be built with a few mouse clicks.

The solution presented here solves the most important problems related to the
data streaming in the grid but needs some further development. One of the im-
portant features is possibility to save and restore data flow composition, which
is different from saving graphical representation of workflow as it can involve
many complicated situations. One example is recreation of already destroyed
stream instances and connections. This might require development of the dedi-
cated service acting as data stream broker. The another required feature is UGSF
administrative interface, which will allow to define stream types and deploy and
manage streaming services. Such work is now in progress.

This work was partially supported by European Commission under IST grant
UniGrids (No. 004279).

References

1. UNICORE project (May 2007), http://sourceforge.net/projects/unicore
2. Benedyczak, K., Nowiński, A., Nowiński, K., Ba�la, P.: Real-Time Visualisation in

the Grid Using UNICORE Middleware. In: Wyrzykowski, R., Dongarra, J., Meyer,
N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 608–615. Springer,
Heidelberg (2006)

3. Riedel, M. et al: Requirements and Design of a Collaborative Online Visualization
and Steering Framework for Grid and e-Science infrastructures. German e-Science
Conference, (May 2007)

4. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Globus Project,
2002 (May 2007),
http://www.globus.org/alliance/publications/papers/ogsa.pdf

5. GPE4GTK project (May 2007),
http://gpe4gtk.sourceforge.net

6. Benedyczak, K., Nowinski, A., Nowinski, K., Bala, P.: UniGrids Streaming Frame-
work. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA
2006. LNCS, vol. 4699, Springer, Heidelberg (2007)

7. UniGrids project (May 2007), http://www.unigrids.org
8. Visualization Interface Toolkit (May 2007),

http://www.fz-juelich.de/zam/visit
9. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework

and Architecture for Enabling Durable Peer-to-Peer Grids. In: Endler, M., Schmidt,
D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 41–61. Springer, Heidelberg
(2003)

10. Grace, P., et al.: GRIDKIT: Pluggable Overlay Networks for Grid Computing. In:
Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE (2). LNCS, vol. 3291, pp.
1463–1481. Springer, Heidelberg (2004)

11. Chen, L., Reddy, K., Agrawal, G.: GATES: A Grid-Based Middleware for Process-
ing Distributed Data Streams. In: HPDC, IEEE Computer Society, Los Alamitos
(2004)

http://sourceforge.net/projects/unicore
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://gpe4gtk.sourceforge.net
http://www.unigrids.org
http://www.fz-juelich.de/zam/visit

Extending UNICORE 5 Authentication Model

by Supporting Proxy Certificate Profile
Extensions

Katerina Stamou1, Fredrik Hedman1, and Anthony Iliopoulos2

1 Center for Parallel Computers (PDC), KTH, SE-100 44 STOCKHOLM, Sweden
{kstamou,hedman}@kth.se

2 Department of Computer Science, School of Systems Engineering, The University of
Reading, Whiteknights, READING RG6 6AY, Uk

ailiop@teilam.gr

Abstract. Authentication interoperability between the UNICORE grid
middleware system and other Grid middleware systems is addressed. An
approach to extending the UNICORE authentication model to support
a proxy certificate (RFC3280) profile is presented. This optional feature
can then be enabled based on site policy. Furthermore, the addition ca-
pacitates further advances related to authorization. With interoperability
becoming a key issue in many production environments, extending the
generality of UNICORE in this way opens up the possibility of direct
and general interoperability scenarios.

Keywords: UNICORE, proxy certificates, RFC 3280, X.509, grid, in-
teroperability, authentication, authorization.

1 Introduction

This paper describes an implementation of proxy certificate profile [1] authen-
tication support in the gateway component of the UNICORE release 5 grid
middleware system. The motivation behind this effort is to enable and promote
functional interoperability among the different existing grid systems currently
in production [2].

The existing authentication model of UNICORE allows for end-to-end plain
X.509 mutual authentication between clients and UNICORE services. The pro-
posed extension introduces support for verifying and authenticating against
proxy certificates, thus allowing a wider and more flexible range of credential
management in the UNICORE architecture. Numerous kinds of setups will ben-
efit from the appearance of the features that the proxy certificate profile offers,
the most significant being a controllable restricted form of trust delegation. This
enables single sign-on like functionality allowing the possibility of disconnected
operations that many of the other grid middleware systems already include. En-
vironments that have a large grid deployment base and make use of UNICORE
in parallel with other grid systems can benefit from the proposed functionality
enhancement.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 104–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extending UNICORE 5 Authentication Model 105

All work conducted pertains to UNICORE release 5, and is generally directed
towards the pre-WebServices era systems.

2 The UNICORE Authentication Model

The UNICORE 5 release [3] is the well-tested, production-ready and pre-Web
Services version of the UNICORE Grid middleware [4]

The system supports end-to-end user X.509 certificates, as main tokens of au-
thentication. The UNICORE gateway service acts as the central entrance point
for task submissions, and takes care of authenticating incoming client requests
based on their presented X.509 certificates. The gateway maintains a config-
urable list of trusted Certificate Authoritiy (CA) certificates, thus clients are
considered trusted and successfully authenticated only if their X.509 certificate
is signed by a trusted CA.

Following a successful authentication, the gateway forwards the user X.509-
signed Abstract Job Object (AJO) task to a configured Network Job Supervi-
sor (NJS). There takes place the authorization part. The NJS detects if the X.509
certificate that signed the supplied AJO task exists in the Unicore USer Data
Base (UUDB). All entries in the UUDB are comprised by an end-user X.509
certificate and a UNIX login account name. Upon successful authorization, the
requested task executes having the privileges of the local UNIX user that the
UUDB entry maps to.

Overall, this process is able to operate with ordinary X.509 certificates. There
is no provision for restricted privilege delegation1 which is present in other Grid
middleware efforts (e.g. gLite, Globus, Naregi) and proves to be a highly desired
functionality for Grid operations. This static credential management scheme is
secure but lacks some flexibility. The proxy certificate profile approach comes to
cover this functionality gap and offer a finer-granularity control.

3 Implementation of the Proposed Enhancement

Proxy X.509 certificate extensions provide a means to achieve trust delegation
and restriction of delegated privileges [1]. In general terms it forms a simple
and adequately secure approach that can be easily supported by extending an
existing SSL/TLS-enabled server.

In our development setup, we have used SUN’s JDK release 5 and OpenSSL
toolkit, release 0.9.8d. For applications written in the C/C++ programming
language the OpenSSL library [5] is the most widely used; it has full support
for proxy certificates. The Java API does not natively support proxy X.509
extensions. However, the Java language provides a way to override the default
TrustManager methods [6] which are responsible for making the authorization
decisions during the relevant SSL handshake phase. Because third-party external
1 Except from the “Explicit Trust Delegation” scheme, which does not offer the flexi-

bility of proxy certificate extensions.

106 K. Stamou, F. Hedman, and A. Iliopoulos

Fig. 1. Diagram of operation with & without proxy certificates. During normal op-
eration the user’s private key from the keystore is used to sign the AJO task to be
submitted. In the proposed extension, a proxy certificate is generated and then used
to sign the AJO.

libraries, such as BouncyCastle [7], have yet to include full support for proxy
certificates, implementing a customized TrustManager class is thus a solution to
access the functionality provided by proxy certificates from Java.

The relevant TrustManager method in the UNICORE gateway responsible
for the authentication decisions is the checkClientTrusted method. Our cus-
tomized version of this method works as follows:

– Initially, it instantiates a default TrustManager which attempts to verify the
supplied client certificate chain, in order to cover authentication of connec-
tions using non-proxy X.509 certificates.

– If this fails, it attempts to verify the client certificate chain using an external
proxy path certificate validation algorithm [1].

– Ultimately, if this fails too, the method raises a standard validation excep-
tion, indicating that the client certificate was not validated.

Extending UNICORE 5 Authentication Model 107

The external proxy path validation is realized by the ProxyPathValidation
class provided by the COG-JGlobus 2 project [8]. The supplied “validate”
method is able to handle rfc3820-based proxy certificates, as well as the complete
range of the old-style legacy Globus proxy certificates.3 The scheme is easily in-
tegrated to the existing gateway classes and specifically the ListenerManager
class that handles the incoming connections, as an inner class. Several jar bun-
dles have to be included to the gateway libraries, mainly the cog-jglobus.jar (that
actually provides the ProxyPathCertificate class) along with some other jar
files that in turn JGlobus depends on (puretls, cryptix, etc.)

Figure 1 depicts how a normal client interaction operation occurs and how an
operation using proxy certificates takes place.

4 Validation Testing

A demo CA was created using OpenSSL. The enhanced gateway was configured
to trust certificates issued and signed by this CA. A user certificate and a corre-
sponding user key were issued by this demo CA. Subsequently, proxy certificates
were issued based on that user certificate by OpenSSL.

It was verified that the enhanced gateway could handle all kinds of proxy-style
certificates (RFC or not), by using the grid-proxy-init tool of both the Globus
toolkit and the gLite in order to generate the various certificates.

The following comprehensive test cases were realized, in order to validate the
correctness of the implementation using the OpenSSL client functionality with
different kinds of proxy certificates, and connecting to the enhanced UNICORE
gateway to verify the authentication decision:

– Connecting using a plain (non-proxy) user certificate signed by a trusted CA
– Connecting using a plain (non-proxy) user certificate signed by an non-

trusted CA
– Connecting using a proxy user certificate signed by a user certificate which

in turn was signed by a trusted CA
– Connecting using a proxy user certificate signed by a user certificate which

in turn was signed by a non-trusted CA
– Repeated the above two test-cases using various types of proxy-style certifi-

cates
– Repeated the tests for expired proxy certificates

At the point where the tests proved successful, the functionality of the en-
hanced gateway was fully verified and it was asserted that proxy signed jobs
could be executed. This was realized by using the UNICORE CLI to build a
standard sample task (AJO) and submit it to the proxy-enabled gateway.

The above tests should cover most of in not all of the potential user cases,
and were thoroughly successful.
2 Specifically, release 1.4 of the COG package.
3 The usual technique used in pre-RFC era proxy certificates format, was to prepend

the subject line with a “CN=proxy” entry.

108 K. Stamou, F. Hedman, and A. Iliopoulos

5 Towards Grid Middleware Interoperability

The main obstacles encountered in trying to achieve full interoperability between
the various middleware software systems, are the different tokens of authentica-
tion and authorization used, as well as the specific language that each system
uses to describe the task to be submitted and various restrictions and require-
ments specific to that. In our current efforts [2] the main interest is concentrated
around the interoperability between the major middleware systems, namely UNI-
CORE, gLite and Globus. Adding support for proxy certificate authentication
in the UNICORE system with the proposed solution completes the first aspect
of interoperability, as proxy certificates are the primary form of authentication
as well as authorization (when used in conjunction with attribute certificate
extensions [9]) tokens in the other middleware systems.

Several projects have focused on the other half of the interoperability prob-
lem, specifically the inter-mapping of the various job languages. For example,
GlobusTSI [10] that made a UNICORE job submission transparently compatible
with Globus NJS backends. This work is currently deprecated and not compati-
ble with the current releases of Globus and UNICORE. Other efforts are under-
way to transform JSDL [11] submissions into AJO tasks and conversely [12].

From an authorization angle, the UNICORE model lacks sophisticated
support, as it merely distinguishes users only by utilizing the local username
mapping (Xlogin). This essentially delegates the authorization problem to the
underlying operating system access control—which in the common case (UNIX,
Linux) is simply the discretionary model. The authorization problem in UNI-
CORE is double-faceted: the transport of authorization information within the
authentication tokens (signed AJOs) and the actual enforcement of these pieces
of information accordingly. The first part of the problem can be fairly trivially
solved by enhancing the structure of the proxy certificate, adding attribute infor-
mation. This scheme has been extensively used by the other middleware systems
by embedding various pseudo-attribute extensions to the proxy certificate thus
augmenting it to include authorization information [13]. A standardization effort
is underway, attempting to formally define a structure for these extensions that
have been described by an RFC [9]. Currently, not many software implementa-
tions exist, but various endeavors are on-going [14,15].

The second part of the problem, the utilization of the authorization infor-
mation, could be directly solved by making use of additional features of the
underlying operating system (e.g. UNIX user groups), in support of policy en-
forcement. More elaborate operating system setups, such as those supporting
filesystem extended attributes and full-fledged access control lists [16] can be
leveraged to fully utilize the supplied authorization information.

Overall, proxy profiles adopt quite well as temporary authentication tokens
to convey authorization related information, as the valid life-time of the later
is usually very limited, a fact that suites the commonly small validity duration
period of the proxy certificates in contrast to plain X.509 that have a much
longer lifetime (6-12 months).

Extending UNICORE 5 Authentication Model 109

6 Alternative Approaches and Solutions

6.1 Explicit Trust Delegation

Recognizing the need for privilege delegation due to the very dynamic nature
of Grids, the UNICORE/FUJITSU team initially proposed an alternative to
using proxy certificate profiles, a scheme known as ETD (Explicit Trust Dele-
gation) [17]. This was made to avoid using the then non-standard and not very
well supported proxy extensions, which had very few implementations, and while
having in mind a trade-off between flexibility and security of the two different
solutions.

The proposed solution was to enhance the UNICORE architectural model at
its core, introducing an explicit role model to assist in stricter privilege separa-
tion. In this scheme, a new role is added, the User role, splitting the authority
of the legacy Endorser role in two separate parts. The end-user retains the User
role for creating jobs, while the Endorser role is only retained for the autho-
rization action. The Consignor role, is typically held by either the end-user to
transfer the signed AJO to the server, or by a UNICORE server transporting
a sub-AJO to another server. Thus, the user commonly assumes all three roles
(User, Endorser and Consignor) for submitting jobs. The servers have the ability
to not only consign jobs, but endorse them on behalf of the user, achieving a
strict form of trust delegation with the restriction that only the end-user can act
in the User role and create jobs.

Although overall this scheme is efficient and secure, it currently also excludes
the desired interoperability property that the proxy certificates provide.

6.2 The CONDOR-UNICORE Bridge

Condor [18] is a job queuing/scheduling system aiming at supporting high-
throughput computing by providing a sophisticated workload management sys-
tem. It supports functionality for smart matching of requested resources with
available resources. As Condor attempts to be quite flexible as a system, it can
be used as a component for building larger systems comprised of numerous dis-
tributed Condor installations as well as other Grid-like environments.

Condor has mostly been supporting submission of jobs to foreign Grid en-
gines, mainly the various Globus Toolkit releases (GT2+). Recently, the Condor
team has introduced a new model for easy integration of job submission “back-
ends” requiring no modifications on the main Condor sources. A proof-of-concept
implementation of this new framework was the Condor-UNICORE Bridge [19].
This approach has the advantage that it

– smoothly integrates within existing deployments. No source code or any other
kind of configuration modifications are required in order for this to work with
UNICORE.

The disadvantages are that it

– introduces one additional software layer. Installation, configuration, mainte-
nance, and user training overhead.

110 K. Stamou, F. Hedman, and A. Iliopoulos

– No source code availability (this is conditional).
– Insecurity: the user keystore passphrase is kept in file to avoid repeated user

interaction in cases of failure (for recovery). A solution for this might be the
usage of RFC3820 proxy X.509 certificates.

The Condor-UNICORE Bridge approach as a credential provisioning solution
might be a proper one when there is already a Condor deployment which is used
by users as primary means for submitting any kind of tasks to systems. The
GAHP [19] provides a smooth integration interface for extending the interoper-
ability of the Condor system with other systems. This does not offer any kind of
limited and restricted authentication and authorization capabilities in contrast to
the proxy certificate profile approach. The Condor-G project [20], incorporated
more extensive support for job submission to Globus sites into Condor. It has
also added the ability to make use of MyProxy [21] for credential management,
although for proxy certificates to be used for authentication in UNICORE, the
presented enhancement—or a functionally similar solution—has to be available.

7 Conclusion

UNICORE is a very mature grid software system, with a wide deployment base.
With the ever-increasing grid site installations and different grid middleware
systems, a concern of imperative importance is the interoperability between het-
erogeneous software environments. This paper presented a brief overview of the
traditional UNICORE authentication and authorization model, as well as the
main barriers that exist preventing the harmonic symbiosis and compatibility of
the various grid systems. A simple solution was introduced, extending UNICORE
to support authentication using a proxy certificate profile extension. The pro-
posed solution provides a significant step towards the near-term interoperability
goals, which are the main concern of the OMII-Europe project.

Acknowledgement

This work is supported by the European Commission through the OMII-Europe
project-INFSO-RI-031844. For further information please refer to [2].

References

1. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastructure
(PKI) Proxy Certificate Profile (2002), http://www.ietf.org/rfc/rfc3820.txt

2. Open Middleware Infrastructure Institute for Europe. Project no: RI031844–OMII-
Europe, http://omii-europe.org

3. UNICORE: release 5, http://www.unicore.eu
4. Romberg, M.: The unicore architecture: Seamless access to distributed resources.

In: Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computing (HPDC-1999) (1999)

http://www.ietf.org/rfc/rfc3820.txt
http://omii-europe.org
http://www.unicore.eu

Extending UNICORE 5 Authentication Model 111

5. OpenSSL, http://www.openssl.org/
6. Java Secure Socket Extension (JSSE) Reference Guide for the Java 2 SDK, Stan-

dard Edition, v 1.4.2, http://java.sun.com/products/jsse/reference/docs
7. Castle, B.: Java crypto api, http://www.bouncycastle.org/
8. The Java Commodity Grid Kit (v1.4).

http://www-unix.globus.org/cog/distribution/1.4/api/index.html
9. Farrell, S., Housley, R.: An internet attribute certificate profile for authorization,

http://www.ietf.org/rfc/rfc3281.txt
10. Riedel, M., Mallmann, D.: Standardization processes of the unicore grid system.

In: Proceedings of 1st Austrian Grid Symposium, pp. 191–203. Austrian Computer
Society, Schloss Hagenberg, Austria (2005),
http://www.fz-juelich.de/zam/vsgc/pub/riedel-2006-SPU.pdf

11. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S.,
Pulsipher, D., Savva, A.: Job submission description language (jsdl) specification,
version 1.0.,
http://www.ogf.org/documents/GFD.56.pdf

12. Russel, M., et al.: Transformation of JSDL into UNICORE AJOs. Poznan Super-
computing & Network Center. Personal Communication (March 2007)

13. Ciaschini, V.: A VOMS Attribute Certificate Profile for Authorization (2007),
http://egee-jra-data.web.cern.ch/egee-jra1-data/glite-stable/stage/
share/doc/voms/AC-RFC.pdf

14. Montes, J.A.M., Bernal, F.M., Sanchez, J.M.R.: The OpenPMI project:
OpenSSL+AC,
http://openpmi.sourceforge.net/

15. Levitte, R.: Official Support of Attribute Certificate Profiles in OpenSSL. Private
communication (May 2007)

16. Authors, V.: Linux extended attributes and acls, http://acl.bestbits.at/
17. Snelling, D., van de Berge, S., Li, V.: Explicit trust delegation: Security for dynamic

grids. FUJITSU Scientific and Technical Journal 40(2), 282–294 (2004)
18. Condor, High Throughput Computing Project, http://www.cs.wisc.edu/condor/
19. Nakada, H., Yamada, M., Itou, Y., Nakano, Y., Matsuoka, S., Frey, J.: Design and

Implementation of Condor-UNICORE Bridge
20. The Condor-G Project, http://www.cs.wisc.edu/condor/condorg/
21. Basney, J., Humphrey, M., Welch, V.: The MyProxy Online Credential Repository.

Software: Practice and Experience 35(9), 801–816 (2005)

http://www.openssl.org/
http://java.sun.com/products/jsse/reference/docs
http://www.bouncycastle.org/
http://www-unix.globus.org/cog/distribution/1.4/api/index.html
http://www.ietf.org/rfc/rfc3281.txt
http://www.fz-juelich.de/zam/vsgc/pub/riedel-2006-SPU.pdf
http://www.ogf.org/documents/GFD.56.pdf
http://egee-jra-data.web.cern.ch/egee-jra1-data/glite-stable/stage/share/doc/voms/AC-RFC.pdf
http://egee-jra-data.web.cern.ch/egee-jra1-data/glite-stable/stage/share/doc/voms/AC-RFC.pdf
http://openpmi.sourceforge.net/
http://acl.bestbits.at/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/condorg/

Using SAML-Based VOMS for Authorization

within Web Services-Based UNICORE Grids

Valerio Venturi1, Morris Riedel2, Shiraz Memon2, Shahbaz Memon2,
Federico Stagni1, Bernd Schuller2, Daniel Mallmann2, Bastian Tweddell2,

Alberto Gianoli1, Sven van den Berghe3, David Snelling3, and Achim Streit2

1 National Institute of Nuclear Physics (INFN),
Bologna, Italy

2 Forschungszentrum Juelich (FZJ),
Juelich, Germany

3 Fujitsu Laboratories of Europe (FLE),
London, UK

Abstract. In recent years, the Virtual Organization Membership Ser-
vice (VOMS) emerged within Grid infrastructures providing dynamic,
fine-grained, access control needed to enable resource sharing across Vir-
tual Organization (VOs). VOMS allows to manage authorization infor-
mation in a VO scope to enforce agreements established between VOs
and resource owners. VOMS is used for authorization in the EGEE and
OSG infrastructures and is a core component of the respective middle-
ware stacks gLite and VDT. While a module for supporting VOMS is also
available as part of the authorization service of the Globus Toolkit, there
is currently no support for VO-level authorization within the new Web
services-based UNICORE 6. This paper describes the evolution of VOMS
towards an open standard compliant service based on the Security As-
sertion Markup Language (SAML), which in turn provides mechanisms
to fill the VO-level authorization service gap within Web service-based
UNICORE Grids. In addition, the SAML-based VOMS allows for cross
middleware VO management through open standards.

1 Introduction

The concept of Virtual Organization (VO), defined as a dynamic collection of in-
dividuals, institutions, and resources, emerged as central within world-wide Grid
and e-Science infrastructures that deal with the so-called ’Grid problem’: flexible,
secure, coordinated resource sharing across dynamic, multi-institutional collabo-
rations [1]. Enabling VOs implies requirements for a highly dynamical fine grained
access control over shared resources. Resource owners makes agreements with the
VOonsharing their resourcesprovidedtheyhavecontrol onhowthe sharing isdone.

Enabling VO management means providing instruments to facilitate the en-
forcement of such agreements. One such instrument is the Virtual Organization
Membership Service (VOMS) [2]. VOMS is an Attribute Authority (AA) focused
on VO management. It allows VO manager to assign attributes to users accord-
ing to their position in a VO. With position we mean group or project mem-
bership, role possession, or generic key value pair attributes. On request VOMS

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 112–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using SAML-Based VOMS for Authorization 113

releases signed assertions containing the above described attributes. These at-
tributes are used at the resource level to drive authorization decisions. Thus
VOMS supports dynamic, fine-grained access control needed to enable resource
sharing across VOs.

VOMS is used for authorization in the Enabling Grid for E-SciencE (EGEE)
[3] and Open Science Grid (OSG) [4] Grid infrastructures and is thus a core com-
ponent of the respective middleware stacks, the Lightweight Middleware for Grid
Computing (gLite) and the Virtual Data ToolKit (VDT). In addition, a module
for supporting VOMS is also available as part of the Globus Toolkit (GT) [5]
authorization framework1. Hence, all these Grid middleware systems as well as
production Grids provide sophisticated VO-level authorization. This can be sig-
nificantly improved within UNICORE [6] Grids such as DEISA [7]. The absence
of VO-level fine-grained authorization within UNICORE motivates our work to
support VOMS authorization within the new Web services-based UNICORE 6
Grid middleware. The benefits are two fold. First, it fills the gap of having a
VO-level authorization available within UNICORE Grids. Second, it lays the
foundation for interoperability with other VOMS-based Grid infrastructures in
terms of security and VO management.

This paper describes our work to make VOMS available under UNICORE 6
as it is developed within the Open Middleware Infrastructure Institute for Eu-
rope (OMII-Europe) [8]. The paper introduces VOMS and decribe its evolution
towards an open standard compliant version based on the Security Assertion
Markup Language (SAML) [9]. The core of the paper describes the usage of
signed SAML assertions released by the VOMS server with the Web services-
based UNICORE 6 Grid middleware. In details, it will describe how the asser-
tions are transported in the Simple Object Access Protocol (SOAP) headers of
message exchanges between UNICORE and its clients. In addition, the paper
explains how the Extensible Access Control Markup Language (XACML) [10] of
OASIS can be used in conjunction with VOMS and its SAML-based assertions
to realize fine-grained authorization decisions within UNICORE.

The remainder of this paper is structured as follows. Section 2 presents the
evolution of VOMS toward open standards and its adoption of SAML. How
UNICORE 6 is capable of using VOMS as AA is described in Section 3, and
in Section 4 we provide a use case scenario of how this newly developed VOMS
support in UNICORE can be used by higher-level services. Related work is
addressed in Section 5. The paper closes with some concluding remarks.

2 Evolution of Virtual Organization Membership Services

VOMS was originally developed in the framework of the European Data Grid and
DataTag collaborations to solve the problem of granting Grid users authorization
to access resources within a VO scope, enabling the high fine-grained, complex
level of access control needed for sharing agreements in a VO. VOMS allows ser-
vices to drive authorization decisions based on the position of the user in a VO.
1 http://dev.globus.org/wiki/VOMS

114 V. Venturi et al.

In the last years, VOMS has been developed within the EGEE project. It is a ba-
sic component of the EGEE Grid middleware, gLite and it is used in many Grids
world-wide (OSG, D-Grid, NAREGI). A module for using VOMS for authoriza-
tion is available with the Globus Toolkit.

In more detail, VOMS is a system for managing the user’s membership and po-
sition in a VO, such for example as group membership and role possession. These
information are used by Grid services to allow for access control. VOMS has a
Web-based administrative interface as well as command-line tools to administer
the VO: add and delete users, create groups, assign roles or other attributes.
The core component is an AA that releases signed assertions containing user’s
attributes holding the position of the user in the VO. In the server that is used
in production today, these attribute are carried in Attribute Certificates (ACs)
compliant to RFC 3821 [11]. In the most adopted usage pattern, the AC is in-
serted in an extension of proxy certificates of the users, as shown in 1(a). When
the user authenticates with the Grid services, the services extract the AC from
the proxy and authorize the access to the resource based on the these attributes.

Fig. 1. VOMS server releases Attribute Certificates (a) or signed SAML assertions (b)

Within the OMII-Europe project, the VOMS server is being re-engineered to
support standards emerging from the Grid community. The OGSA Authorization
Working Group of the Open Grid Forum (OGF) has been working on recommen-
dations for standardization of authorization related services. Following the work in
the OMII-Europe project, the working group is defining a specification for a profile
for attributes retrieval services based on OASIS SAML. The VOMS SAML Ser-
vice implements that specification. The aim of the standardization activity in the
OMII-Europe project is to have a VO management solution across different mid-
dleware distributions. The VO management services is part of a wider activity of
re-engineering by the OMII-Europe project that aims at interoperability across of
selected basic component of different grid middlewares such as UNICORE, gLite
and GT. Components being re-engineered are for example Job Submission services
(OGSA-BES [12]) and Data Access services (OGSA-DAI [13]).

The VOMS SAML Service is a Web service implementing protocols and bind-
ing defined in the SAML set of specifications [14] [15]. A prototype is available

Using SAML-Based VOMS for Authorization 115

on the OMII-Europe Evaluation Infrastructure. The VOMS SAML Service uses
Axis as SOAP implementation and can be deployed in a service container such
as Tomcat. The package does not provide an API, with the aim of letting each
consumer use their preferred Web services tools. The distribution comes with
examples of consuming the service using popular SOAP implementations such
as Axis, XFire, gSOAP, ZSI.

3 Using SAML-Based VOMS with UNICORE 6

VOMS is used within gLite (EGEE), VDT (OSG), and GT (TeraGrid), mainly
by using RFC 3821 compliant ACs within a proxy certificate of end-users. This
usege pattern makes VOMS widely adopted with middlewares that uses proxy

Fig. 2. VOMS acts as a AA for UNICORE 6 and releases signed SAML assertions
with VOMS attributes. Based on these attributes, XACML policies are used to realize
authorization decisions within the UNICORE 6 backend.

116 V. Venturi et al.

certificates, but not as widely adopted in middlewares using end-entity certifi-
cates such as UNICORE. Therefore, it becomes very helpful that the newly
developed VOMS server is releasing SAML-compliant assertions that are inde-
pendent from proxy certificates and thus can be used in environments that use
end entity certificates. This paragraph describes how this is done in a way that
VOMS can be used as AA for UNICORE Grids, including details about the
authorization decisions based on VOMS attributes as shown in Figure 2.

3.1 VOMS as Attribute Authority for UNICORE

Figure 2 shows how we have used VOMS as an AA for the Web service-based
UNICORE 6 Grid middleware. The client retrieve a SAML assertion from the
VOMS SAML Service. While proxy certificates proved a very effective way of

<soap:Header xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
<wsa:To>http://...services/BESFactory?res=defaultbesfactory</wsa:To>
<wsa:Action>http://.../BESFactoryPortType/CreateActivity</wsa:Action>
<wsa:MessageID>...CBA4</wsa:MessageID>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

ID="_ec36fa7c396ka4nqa91jst"
IssueInstant="2007-04-22T14:34:10.059Z"
Version="2.0"

<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
CN=omii002.cnaf.infn.it,L=CNAF,OU=Host,O=INFN,C=IT

</saml:Issuer>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
...

</ds:Signature>
<saml:Subject>
<saml:NameID
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:x509SubjectName">
CN=Morris Riedel,OU=ZAM,OU=Forschungszentrum JuelichGmbH,
O=GridGermany,C=DE
</saml:NameID>

</saml:Subject>
<saml:SubjectConfirmation

Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-key">
...

</saml:SubjectConfirmation>
<saml:Conditions NotBefore="..." NotOnOrAfter="..." />
<saml:AttributeStatement>
...

</saml:AttributeStatement>
</saml:Assertion>
</soap:Header>

Fig. 3. SAML-based assertions released from the VOMS server are transferred within
the SOAP header of Web service message exchanges between UNICORE and its clients

Using SAML-Based VOMS for Authorization 117

<saml:Assertion>
...
<saml:AttributeStatement>}
<saml:Attribute Name="group-membership-id" NameFormat="urn...">
<saml:AttributeValue type="xs:string">
/omiieurope
</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>
...
</saml:Assertion>

Fig. 4. Simple example of an VOMS FQAN (group-membership-id with value omiieu-
rope) encoded in an saml:AttributeStatement element within a saml:Assertion element.
In this context an XACML policy can be defined within UNICORE that only allow
members of the omii-europe group to access the requested service.

tranporting ACs, we found that the most natural way of transporting SAML
assertions is in the SOAP Header of Web services messages as shown in Figure 3.
A similar mechanism is described in the OASIS Web Services Security set of
specification.

3.2 Authorization Decisions in UNICORE Based on XACML

Figure 2 also shows how SAML assertions from the VOMS are used during
authorization decisions in conjunction with XACML policies. UNICORE 6 in-
corporates a Policy Decision Point (PDP) that uses Extensible Access Control
Markup Language (XACML) policies during authorization decisions in conjunc-
tion with the UNICORE User Database (UUDB). In the context of VOMS,
these XACML policies can be used to make attribute-based authorization deci-
sions based on SAML assertions released from the VOMS server and that are
transported to UNICORE within the SOAP header. Part of these assertions are
saml:AttributeStatement elements that provide values for Fully Qualified At-
tribute Names (FQANs) stating role possession or group/project membership
as shown in Figure 4. Finally, the SAML-based assertions are signed with the
certificate of the VOMS server, which can be verified at the resource level to
check if the assertion comes from a trusted VOMS server.

4 Use Case Scenario: Role-Based Authorization in
Collaborative Visualization and Steering Sessions

UNICORE 6 is easily extensible and allows for the development of higher-level
services that work on top of the UNICORE Atomic Services (UAS) [16]. One of
these services is the Collaborative Online Visualization and Steering (COVS) [17]
Grid service that allow multiple participants sharing the same visualization ses-
sion. COVS sessions support multiple roles for users and thus is a good proof of
concept of how VOMS can be used for role-based authorization in UNICORE 6.

118 V. Venturi et al.

The master role is the initiator of a COVS session and is able to configure
different setups during a session that can not be done by usual participants. A
person that acts in this role uses the Grid middleware client and its COVS plugin
to access the COVSFactory service. The COVSFactory service creates in turn a
COVS session resource, which includes the startup of components realizing the
communication between a parallel simulation on supercomputers or clusters and
visualization clients. The participant role on the other hand is defined as any
person that participates in a COVS session, which also includes the person in
the master role. End-users that want to participate also use the Grid middleware
client to join a COVS sessions, but are not allowed to create a session.

In this context, VOMS provides fine-grained authorization based on different
roles or on group memberships. Therefore it can be used to control which users
are able or not able to participate (e.g. a research group named astro-d configured
within the VOMS server is allowed to share the view of a visualization or normal
participants are usually not allowed to submit computational jobs). The VOMS
server can release signed SAML assertions with role attributes checked at service-
level at the COVSFactory and COVSSession service as shown in Figure 5.

Fig. 5. Using the SAML-based VOMS to manage different roles in COVS sessions

5 Related Work

The other main AA within Grids is Shibboleth, a tool that provides a federated
single sign-on and attribute exchange framework, mainly used in the educa-
tion community. GridShib is a software product that allows for interoperability
between GT and Shibboleth, thus making the latter available for Grid autho-
rization. GridShib project members are working on an OASIS standard for a
deployment profile for X.509 subject to use with SAML 2.0. This profile com-
plements the SAML specifications with indications on how to use SAML with
X.509 certificates. Therefore, members from the GridShib and VOMS teams

Using SAML-Based VOMS for Authorization 119

have agreed within the OGF OGSA Authorization WG that this specification
in combination with SAML 2.0 is the specification for AA services. To sum up,
it is expected that GridShib and VOMS follow the same standard interface for
message exchanges as well as assertions and thus the work describes in this
paper should work not only with VOMS but also with GridShib, except the
different policy definitions that are dependent from the correspondent attribute
formats. In addition, VOMS and Shibboleth use the same Internet2 OpenSAML
toolkit source code. VOs and authorization based on information about the role
of users within VOs are missing concepts in production UNICORE 5 today.
UNICORE 5 also lacks support for using attributes of a user retrieved from his
home institution. Overcoming these limitations is part of the IVOM project [18]
that is part of the German D-Grid Initiative [19]. In contrast to our work that
rely on UNICORE 6 and the SAML-based VOMS server, the IVOM project
develops solutions for UNICORE 5 and the Attribute Certificate-based VOMS
server.

6 Conclusions

An initial prototype of using the SAML-based VOMS in conjunction with UNI-
CORE 6 was shown at OGF20 at the OMII - Europe booth and is currently
further improved within the evaluation infrastructure of OMII-Europe.

This in particular fills the gap of UNICORE’s limited VO-level authorization
functionality since the new SAML-based VOMS server is independent from gLite
and thus can be used by purely UNICORE Grids as Attribute Authority.

We have further shown that a VO is now capable to offer its end-users both
high throughput computing resources (nodes in a farm running gLite) and high
performance resources (supercomputers running UNICORE) if the middleware
provide services that are compliant to emerging standards interfaces such as
OGSA-BES or WS-DAIS. In other words, this work has a significant impact
regarding the interoperability between UNICORE and gLite primary, but also
Globus can be configured to use VOMS and thus VOMS can act as an AA for
VOs to use cross-middleware Grid resources.

Finally, even if interoperability is technically possible, the adoption of these
new developed components within production e-Infrastructures such as DEISA
or EGEE is rather slow. However, it is expected that UNICORE 6 and thus
the support for the new SAML-based VOMS server will considered as the next
production version within these e-Infrastructures.

Acknowledgements

This work is partially funded by the OMII-Europe project under EC grant
RIO31844-OMII-EUROPE, duration May 2006 - April 2008.

120 V. Venturi et al.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications 15(3) (2001)

2. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, Á., Lörentey, K.,
Spataro, F.: From gridmap-file to voms: managing authorization in a grid environ-
ment. Future Generation Comp. Syst. 21(4), 549–558 (2005)

3. Enabling Grid for E-sciencE, http://www.eu-egee.org/
4. Open Science Grid, http://www.opensciencegrid.org/
5. The Globus Toolkit, http://www.globus.org/toolkit
6. Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel,

M., Romberg, M., Schuller, B., Wieder, P.: UNICORE - From Project Results to
Production Grids. In: Grandinetti, L. (ed.) Grid Comp. and New Frontiers of High
Performance Proc., pp. 357–376. Elsevier, Amsterdam (2005)

7. DEISA - Distributed European Infrastructure for Supercomputing Applications,
http://www.deisa.org

8. The Open Middleware Infrastructure Institute for Europe,
http://omii-europe.org/OMII-Europe/

9. OASIS Security Services (SAML) TC,
http://www.oasis-open.org/committees/security

10. OASIS eXtensible Access Control Markup Language (XACML) TC,
http://www.oasis-open.org/committees/xacml

11. S.Farrell, R.: An Internet Attribute Certificate Profile for Authorization (2002),
http://www.ietf.org/rfc/rfc3281.txt

12. OGSA Basic Execution Services WG,
http://forge.gridforum.org/projects/ogsa-bes-wg

13. Database Access and Integration Services (DAIS),
https://forge.gridforum.org/sf/go/proj1070

14. Cantor, S., et al.: Assertions and Protocols for the Security Assertion Markup
Language (SAML) Vol 2, (2005)
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

15. Cantor, S., et al.: Bindings for the Security Assertion markup Language (SAML),
vol. 2 (2005),
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

16. Riedel, M., Mallmann, D.: Standardization Processes of the UNICORE Grid Sys-
tem. In: Proceedings of 1st Austrian Grid Symposium 2005, pp. 191–203. Austrian
Computer Society, Schloss Hagenberg, Austria (2005)

17. Riedel, M., Eickermann, T., Frings, W., Dominiczak, S., Mallmann, D., Dssel, T.,
Streit, A., Gibbon, P., Wolf, F., Schiffmann, W., Lippert, T.: Design and evaluation
of a collaborative online visualization and steering framework implementation for
computational grids. In: Proc. of the 8th IEEE/ACM International Conference on
Grid Computing (Grid 2007), Austin, Texas (to appear)

18. Interoperability and Integration of VO-Management Technologies in D-Grid,
http://www.d-grid.de/index.php?id=314\&L=1

19. D-Grid Initiative, http://www.d-grid.de/index.php?id=1\&L=1

http://www.eu-egee.org/
http://www.opensciencegrid.org/
http://www.globus.org/toolkit
http://www.deisa.org
http://omii-europe.org/OMII-Europe/
http://www.oasis-open.org/committees/security
http://www.oasis-open.org/committees/xacml
http://www.ietf.org/rfc/rfc3281.txt
http://forge.gridforum.org/projects/ogsa-bes-wg
https://forge.gridforum.org/sf/go/proj1070
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://www.d-grid.de/index.php?id=314&L=1
http://www.d-grid.de/index.php?id=1&L=1

Attributes and VOs: Extending the UNICORE

Authorisation Capabilities

Arash Faroughi1, Roozbeh Faroughi1, Philipp Wieder2, and Wolfgang Ziegler1

1 Fraunhofer Institute SCAI, Department of Bioinformatics,
53754 Sankt Augustin, Germany

{arash.faroughi,roozbeh.faroughi,wolfgang.ziegler}@scai.fraunhofer.de
2 Central Institute for Applied Mathematics, Research Centre Jülich,

52425 Jülich, Germany
ph.wieder@fz-juelich.de

Abstract. Reliable authentication and authorisation are crucial for
both service providers and their customers, where the former want to pro-
tect their resources from unauthorised access and fraudulent use while
their customers want to be sure unauthorised access to their data is
prevented. In Grid environments Virtual Organisations (VO) have been
adopted as a means to organise and control access to resources and data
based on roles that are assigned to users. Moreover, attribute based au-
thorisation has emerged providing a decentralised approach with better
scalability. Up to now UNICORE authentication and authorisation is
based on X.509 certificates only. In this paper we will present two ap-
proaches to integrate both role or attribute based authorisation using
VOMS and attribute based authorisation using Shibboleth into
UNICORE.

1 Introduction

In collaborative distributed environments like Grids where services are offered by
multiple service providers and consumed by a large number of clients, the concept
of linking authorisation to roles and attributes may help lowering the complexity
of user management and user authorisation while making the process more trans-
parent. In Grid environments the concept of Virtual Organisations (VOs) [8] are
utilised as a powerful instrument for creating dynamic organisations whose mem-
bers are sharing a common goal, e.g. researchers working together on a dedicated
subject for a limited time using shared resources. Based on roles defined for VO
members the service provider will enforce the access control for resources and
data. A well known example are the four major experiments around the Large
Hadron Collider [10] where scientists are organised in four corresponding VOs
to share their data and get access to the computational and storage resources
of EGEE [4]. In general, the VO-based approaches are relying on users being
furnished with X.509 certificates from a trusted Certificate Authority (CA) op-
erated e.g. by their home institution or on a project level. However, setting up
such trusted Public Key Infrastructures (PKI) is often beyond the capabilities of

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 121–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 A. Faroughi et al.

smaller institutions or regarded as imposing too much effort for large institutions
with a huge number of certificates to be managed.

In collaborative environments without a PKI the concept of identity federation
has been identified as a mechanism for authentication and authorisation. The
most prominent system is Shibboleth [19]. Shibboleth implements a distributed
approach where the user authenticates vis--vis his home institution when trying
to access resources of a service provider and in turn the service provider gets
access to selected attributes of this user, which are maintained by his home
institution. Based on these attributes the service provider then decides on the
authorisation of the user to access the requested resources.

For the rest of this paper we will use the term role-based authorisation for
authorisation based on the information about a user within a VO maintained
by a VO Management system and usually included in his X.509 certificate like
e.g. when using the Virtual Organisation Membership Service (VOMS) [21]. In
contrast, we will use the term attribute-based authorisation when attributes of
a user stored at his home institution are used for taking authorisation decisions,
i.e. when using Shibboleth mechanisms to retrieve these attributes.

The authentication and authorisation in UNICORE is based on plain X.509
certificates until now, which implies several limitations, e.g. single sign on
(SSO) for Grid resources that are not part of a UNICORE environment is
not supported as UNICORE so far only allows static explicit trust delegation
(ETD) and users without a certificate could not access UNICORE resources of
a UNICORE based Grid at all. Meanwhile, some of the issues were smoothed
out by the GRIP project [11] and trust delegation through proxy-certificates is
supported by UNICORE. However, VOs and authorisation based on information
about the role of users within VOs are missing concepts in UNICORE today.
UNICORE lacks also support for using attributes of a user retrieved from
his home institution. Overcoming these limitations is part of the IVOM
project [9] funded by the German D-Grid Initiative [3] and we will present work
done in IVOM in this paper.

The remainder of the paper is organised as follows: Section 2 describes current
attribute-based authorisation work. Section 3 gives a brief overview on the two
basic technologies for role-based and attribute based authorisation we consider
for the integration with UNICORE. Section 4 introduces the current UNICORE
mechanisms for authentication and authorisation. The architectures for the in-
tegration with VOMS and Shibboleth are presented in Section 5. Section 6 de-
scribes future work and concludes the paper.

2 Related Work

The Swiss National Research Network (NREN) SWITCH is setting up a Shibbo-
leth based authentication and authorisation infrastructure (AAI) for the Swiss
Research infrastructure. SWITCH has set up a federation of Swiss Identity
Providers (IdP) and Service Providers (SP) and operates the necessary Short
Lived Credential Service (SLCS) [15]. SWITCH also developed the VOMS

Attributes and VOs: Extending the UNICORE Authorisation Capabilities 123

Attribute from Shibboleth (VASH) [7] service that allows transferring the Shib-
boleth user attributes into VOMS. At the time of the VASH development Grid-
Shib was not considered because of its limitation to the pull-model for retrieving
the attributes from the IdP. The German NREN DFN also has almost com-
pleted the setup of a federation of German IdPs and SPs [2]. DFN is finalising
the accreditation of its SLCS by the EUGridPMA and is expected to go into
productive operation in near future. More work on integration of the different
existing VO-Management technologies and the introduction of attribute-based
authorisation in D-Grid is done in the IVOM project [9]. Finally the OMII-
Europe project [12] is working on integration of SAML assertions into UNICORE
coming from a modified VOMS based on the emerging OGSA AuthZ standard.

3 Role-Based and Attribute-Based Authorisation

3.1 Virtual Organization Membership Service (VOMS)

VOMShas beendeveloped as part of the joint efforts of theEuropeanDataGrid and
DataTAG projects. It is a system, which classifies users that are participating in a
VO based on a set of attributes thatwill be granted to them upon request. These at-
tributes will be included into Globus-compatible proxy-certificates for supporting
SSO in grid-environments. VOMS consists of four main components [1]:

User Server: receives requests from a client and returning information about
the user

User Client: contacts the User Server with the user’s certificate, authen-
ticates the user to the server and creates a proxy certificate with VO Fully
Qualified Attribute Name (FQAN) extensions.

Administration Client: used by the VO Administrator to add/delete and
change VO-Attributes like roles and groups.

Administration Server: accepts requests from client to update the database.
Prior to getting access to the Grid the user must execute the voms-proxy-init to

generate a proxy-certificate, similar to the grid-proxy-init command of the Globus
Toolkit. The main difference is that VOMS includes the authorisation information

1. Using certificates the user and VOMS Server authenticate each other;
2. The user sends a request to the VOMS Server, which is signed by it;
3. The VOMS Server verifies the user’s identity and checks the syntax of the request;
4. The VOMS Server sends the required authorisation information as an attribute certificate

back to the user;
5. The user validates the response of the server;
6. Optionally, the user repeats this process for other VOMSes;
7. The user creates the proxy certificate and inserts the received authorisation information

into a (non-critical) extension of the proxy-certificate.
8. The user may add user-supplied authentication information (e.g. Kerberos tickets)

List 1. VOMS operations

124 A. Faroughi et al.

of the user into the proxy certificate retrieved from the VOMS-Server [6] resulting
in an Attribute Certificate (RFC 3281). List 1 describes the procedure:

3.2 Shibboleth

The open source system Shibboleth supports an Attribute Based Access Control
model. Shibboleth is a federated identity management system, developed by
Internet2 and supports authorisation decisions based on the attributes of the
users. It uses the Security Assertion Markup Language (SAML) to implement
SSO across or within organisational boundaries. The three major components of
Shibboleth are [13]]:

The Identity Provider (IdP) is responsible for asserting authentication and
authorisation information about their Shibboleth-user. The IdP is located at
the home organisation of a user. The IdP has two major services, the Handle
Service (HS) and the Attribute Authority (AA). The HS authenticates the user
and issues an Attribute Query Handle in the form of a signed SAML response.
The AA responds to requests for user-attributes by the Attribute Requester
(AR) of the Service Provider.

The Service Provider (SP) is offering protected resources to customers. The
SP decides and enforces the authorisation to access resources. The SP consumes
SAML Assertions. The most important components of the SP are the Asser-
tion Consumer Service (ACS), the Attribute Requester (AR) and the Resource
Manager (RM). The ACS validates Authentication assertions from the HS of an
Identity Provider. The AR is responsible to request attributes from the user’s
IdP. The RM makes authorisation decisions based on the user’s attributes.

The Where Are You From Service (WAYF) may be used to establish the
communicationbetween the ServiceProvider and the Identity Provider of the user.
It provides amechanism for routingusers froma resource to their point of login.The
WAYF Service shows a list of IdPs where users have to select their IdP.

1. A user tries to access a resource, which is located at the Service Provider
2. The Service Provider needs to identify the home organisation where the user is known.

Therefore the Service Provider redirects the user to the WAYF Service.
3. The WAYF service shows a list of Identity Providers.
4. The user selects his Identity Provider aka home organisation.
5. The WAYF service redirects the user to his Identity Provider.
6. His home organisation asks the user to provide his/her login credentials.
7. The user provides his/her credentials to the home organisation.
8. After a successful AuthN the Identity Provider creates a handle and forwards this to the

Service Provider.
9. The Service Provider sends an attribute request to the Identity Provider of the user by

sending the received handle.
10. The Attribute Authority (AA) verifies the Handle. After a successful validation the AA

follows the rules of the Attribute Release Policy when deciding whether or not to release
an attribute. The AA sends the released attributes to the Service Provider. The Resource
Manager makes authorisation decisions based on the user’s attributes.

List 2. Ten steps accessing protected resources using Shibboleth [20] [13]

Attributes and VOs: Extending the UNICORE Authorisation Capabilities 125

List 2 described the process of the authentication and the transfer of the user
attributes to the SP.

4 UNICORE Authentication and Authorisation Model

The target sites comprising a UNICORE Grid need to verify the identity and
access rights of users who want to execute tasks on the target sites, and they
must, in addition, verify that the tasks they receive for execution belong to
the appropriate users. To achieve this, the UNICORE security model specifies
the usage of permanent X.509 certificates (which are issued by a Certification
Authority (CA)) to authenticate and authorise users, to authenticate UNICORE
server components, and to sign jobs and software plugins [18]. In the course of
this section we contemplate user authentication and user authorisation since
both mechanisms are fundamental to the enhancements we present later. The
user’s X.509 certificate is used to provide single-sign-on in the UNICORE client.
The client unlocks the user’s keystore once the correct password is entered at
start-up, which implies that no further password requests are demanded from
the user. To authenticate the user, the client has to present the user’s X.509
certificate to the UNICORE Gateway. The certificate is issued by a CA that is
being trusted within a UNICORE Grid. This implies that the signer certificate
of this particular CA is included in the server components of UNICORE. Please
note that UNICORE neither prescribes a specific Certification Authority nor is
limited to the usage of only a single CA.

To authorise users, certificates are mapped to local accounts (i.e. in general
a standard UNIX uid/gid), which may be different at each site due to existing
naming conventions. The rules that describe the mapping of a user’s abstract
identity (which is contained in the certificate) to the concrete one at the local site
are contained in the UNICORE User Data Base (UUDB). Through the UUDB
sites retain full control over the authorisation of users and over the underlying
rules leading to the acceptance or rejection of a particular individual based on
the distinguished name or other information that might be contained in the
certificate. UNICORE can handle multiple user certificates (abstract identities)
of a single user, i.e. it permits a client to be part of multiple, disjoint Virtual
Organisations. In addition the client offers the possibility to configure different
project accounts so to allow users to select different accounts for different projects
on one execution system or to maintain different roles with different privileges.

The private key contained in the client keystore is also used to sign each
UNICORE job (and all the nested sub-jobs). This mechanism protects against
tampering while the job is transmitted over insecure connections and it allows
to verify the identity of the owner at the receiving server without it trusting the
intermediate sites which forwarded the job.

UNICORE, apart from extensions implemented to realise interoperation with
other Grid middleware like Globus, does natively not support proxy certificates.
Instead it supports an explicit trust delegation [14] that allows trusted ”agents”
in the Grid to create jobs on behalf of end-users. This mechanism allows services

126 A. Faroughi et al.

like brokers, schedulers, or third-party SLA negotiators to be integrated into a
UNICORE Grid without breaching UNICORE’s security model.

5 UNICORE Integration with VOMS and Shibboleth

Goals: The goals of the UNICORE integration with VOMS and Shibboleth
are to extend UNICORE with attribute and role based authorisation, though
to keep the modification of the UNICORE Client as minimal as possible and to
keep the UNICORE authentication mechanisms as much as possible.

5.1 The Integrated Architecture of VOMS and UNICORE

To support VO-based Authorisation in UNICORE, a VO-Module is needed,
which creates the user certificates with VO-authorisation information. VOMS
creates credentials in form of proxy certificates. For the integration of VOMS and
UNICORE a VOMS-plugin and an extension of the UUDB will be implemented:

The VOMS-Plugin is the VO-module for UNICORE and allows the user to
specify his request for creating proxy certificates including the vo/group/
role-information. The VOMS-Plugin generates a proxy certificate with VOMS-
specific extensions for the end-user (by using the VOMS-command voms-proxy-
init and attaches it to the Abstract Job Object (AJO) encapsulated as a
site-specific security object (SSO-Object) [5].

Extended UUDB: UNICORE maps with the UUDB the identity of the end-
user (DN-subject of the end-user certificate) to a local account. To support
Role-Based Access Control (RBAC) or Attribute Based Access Control (ABAC)
authorisation, the UUDB authorisation mechanism must be extended. For the
UNICORE-VOMS integration, a new UUDB implementation is needed, which
does the mapping on basis of VOMS-FQANs.

UNICORE-VOMS-Architecture: The VOMS plugin is integrated into the
UNICORE client and doesn’t modify the authentication mechanism of UNI-
CORE. It extends the UNICORE client with the functionality described
above. The UUDB implementation of UNICORE 5 must be replaced by the

1. The user authenticates to the UNICORE client using his permanent user certificate;
2. The user specifies his VOMS-request by using the VOMS-Plugin of the UNICORE client;
3. The VOMS-Plugin checks the syntax of the request, validates the users identity and sends

the request to the VOMS Server:
4. The VOMS Server validates the request and sends the required authorisation information

as an attribute certificate to the VOMS-Plugin;
5. The VOMS-Plugin generates a proxy-certificate with the received VOMS extensions.
6. The user submits a job with the usual UNICORE mechanism. The VOMS-Plugin encap-

sulates the proxy certificate in the AJO SSO. The UNICORE Client sends the AJO via
the UNICORE Protocol through the Gateway and the NJS component.

7. The VOMS-extended UUDB maps the VO-FQAN of the user’s proxy certificate to a local
account.

List 3. Interaction of UNICORE and VOMS

Attributes and VOs: Extending the UNICORE Authorisation Capabilities 127

VOMS-extended UUDB. UNICORE provides a simple way for inserting plugins
and changing the UUDB-Implementation. Therefore, UNICORE can be extend
with the VOMS-Implementation using standard features.

List 3 and Figure 1 illustrate the architecture of the UNICORE/VOMS inte-
gration and the communication-procedure:

Fig. 1. Architecture of the UNICORE and VOMS integration

5.2 UNICORE Integration with Shibboleth

The major modification of UNICORE with respect to the Shibboleth integration
is the UUDB, therefore the effort to integrate Shibboleth with higher UNICORE
versions are expected to be small. The main tasks to extend UNICORE with
shibboleth-based authorisation are:

UNICORE Authentication with a Short Lived Credential (SLC): The
exchange in Shibboleth is based on assertions between an Identity Provider and
a Service Provider. The AAI in UNICORE relies on the usage of X.509 certifi-
cates. With MyProxy a Shibboleth Identity can be translated to Grid Identity
by generating a SLC. Using SLC the authentication mechanisms in UNICORE
are largely unchanged. MyProxy issues a short lived X.509 Credentials after a
successful user authentication at a Shibboleth Identity Provider. The short lived
Credentials have a maximum Lifetime of 1 million seconds. To use SLC for the
UNICORE user-authentication, the UNICORE Client, the UNICORE Gateway
and the UNICORE NJS must trust the MyProxy Certification authority.

128 A. Faroughi et al.

Attribute-Based UUDB: UNICORE maps the identity of the end-user (DN-
subject of the end-user certificate) to a local account using the information
stored in the UUDB. To support ABAC-Authorisation, the UUDB authorisa-
tion mechanism must be extended. For the UNICORE-Shibboleth integration,
an extended UUDB implementation is needed, which does the mapping to the
permissions based on the attributes.

5.3 Necessary Changes of the Shibboleth-Framework

Shibboleth’s HTTP-Redirects: The usual web-based Shibboleth mechanisms
of redirecting the user accessing the service provider to the WAYF server and
the IdP is not practical in Grid environments submitting unattended batch
jobs [17]. For this reason, the UNICORE/Shibboleth-approach does the user-
authentication before requesting a protected resource. This will be realised by
a module collecting the user’s authentication and authorisation information for
creating SLCs and convey those to the UNICORE System. The authentication
and authorisation will be done in UNICORE with these SLCs.

The WAYF Service has a list of known and trusted Identity Providers in a
Shibboleth Federation. The user first interacts directly with the WAYF service
and then tries to access a resource.

UNICORE-Shibboleth-Architecture: An external Shibboleth-UNICORE
module will be implemented for the creation of SLCs. The authentication is
done by the IdP and the SLC is issued by MyProxy (see List 4 and Figure 2).

Fig. 2. Integration of UNICORE and Shibboleth

Attributes and VOs: Extending the UNICORE Authorisation Capabilities 129

1. The user runs the Shibboleth-UNICORE Module
2. The Module fetches an up-to-date list of IdPs from the WAYF server, presents the list of

Identity Providers and makes a Shib-Authentication Request.
3. The user selects his/her identity provider and gives his/her Credentials.
4. The Shibboleth-UNICORE Module authenticates the user to the Identity Provider.
5. After a successful authentication the IdP returns a SAML Response to the Shibboleth-

UNICORE Module. The Response contains an authentication assertion and an attribute
assertion.

6. The Shibboleth-UNICORE Module presents the Response to MyProxy.
7. MyProxy generates an X.509 credential, inserts the attribute assertion into the certificate,

and returns the credential to the Shibboleth-UNICORE Module.
8. The Module runs the UNICORE Client and uses the SLC for the UNICORE user authen-

tication.
9. The NJS sends the SLC to the UUDB.

10. Based on the attributes of the SLC the UUDB response with an access decision.

List 4. Interaction of UNICORE and Shibboleth

6 Future Work

Within the IVOM project the feasibility studies and the design of the two archi-
tectures have been completed recently and we started with the implementation of
the UNICORE extensions. In the meantime the IVOM project will also provide
a version of GridShib for the D-Grid which will then be integrated also allowing
GridShib users accessing UNICORE resources. We also plan to integrate the
VO Membership Registration Services [16] database of VO attributes with UNI-
CORE in the next version. Also, because in D-Grid the currently used UNICORE
5 will be replaced by UNICORE 6 in 2008 we plan to integrate UNICORE 6
when it will become available. Once available we will switch to the D-Grid Short
Lived Credential Service (SLCS) operated by the German DFN for the creation
of SLCs. Finally, we will co-operate with the OMII-Europe project [12], which
is working on similar extensions of UNICORE.

Acknowledgements

Some of the work reported in this paper is funded by the German Federal
Ministry of Education and Research through the D-Grid project under grant
#01AK800A. This paper also includes work carried out jointly within the Core-
GRID Network of Excellence funded by the European Commission’s IST pro-
gramme under grant #004265.

References

1. Alfieria, R., Cecchinib, R., Ciaschinic, V., dell’Agnello, L.: From gridmap-file to
voms: managing authorization in a grid environment. Future Generation Computer
Systems 21(4), 549–558 (2005),
http://www.fis.unipr.it/lca/grid/doc/from-gridmap.pdf

http://www.fis.unipr.it/lca/grid/doc/from-gridmap.pdf

130 A. Faroughi et al.

2. DFN-AAI: Authentication and Authorisation Infrastructure in DFN (in German)
(last visited June 15, 2007) website https://www.aai.dfn.de/der-dienst.html

3. D-grid initiative (last visited June 15, 2007), website
http://www.d-grid.de/index.php?id=1\&L=1

4. EGEE - Enabling Grids for E-sciencE (last visited June 15, 2007) website
http://www.eu-egee.org/

5. Wieder, P., et al.: Grid interoperability project. Technical report, FZJ Jülich Ger-
many (2002)

6. Alfieri, R., et al.: From gridmap-file to VOMS - managing authorization in a Grid
environment. Technical report, INFN Parma and University of Parma (2004),
http://grid-auth.info.it/docs/voms-FGCS.pdf

7. Flury, P., Tschopp, V., Lenggenhager, T., Witzig, C.: Shibboleth Interoperability
with Attribute Retrieval through VOMS. Technical report, EGEE (2006),
https://edms.cern.ch/file/807849/1/EGEE-II-MJRA1.5-807849-v0.95.pdf

8. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. Journal of High Performance Computing Applications 15(3),
200–222 (2001), www.globus.org/research/papers/anatomy.pdf

9. Interoperability und integration of vo-management technologies in d-grid (last vis-
ited June 15, 2007) website
http://www.d-grid.de/index.php?id=314\&L=1

10. LHC - The Large Hadron Collider (last visited June 15, 2007) website:
http://lhc.web.cern.ch/lhc/

11. Nicole, D.A.: UNICORE and GRIP: Experiences of Grid Middleware Development.
In: Proceedings of 2005 International Conference on Grid Computing and Appli-
cations. ECS, June 2005, pp. 11–17 (2005), Online at:
http://eprints.ecs.soton.ac.uk/11889/01/gca final.pdf

12. Open Middleware Infrastructure Institute Europe - OMII-Europe (last visited June
15, 2007) website:
http://omii-europe.org/OMII-Europe/

13. Scavo, T., Cantor, S.: Shibboleth architecture, technical overview. Technical re-
port (2005), http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-
tech-overview-latest.pdf

14. Snelling, D., van den Berghe, S., Li, V.: Explicit trust delegation: Security for
dynamic grids. Technical report, FUJITSU Scientific and Technical Journal, 40(2),
282–294 (December 2004)

15. Short Lived Credential Service (SLCS) (last visited June 15, 2007), website
http://www.switch.ch/grid/slcs/

16. VO Membership Registration Service (last visited June 15, 2007), website:
http://www.uscms.org/SoftwareComputing/Grid/VO/

17. Welch, V., Barton, T., Keahey, K., Siebenlist, F.: Attributes, anonymity, and access
- shibboleth and globus integration to facilitate grid collaboration (2005), Online:
http://grid.ncsa.uiuc.edu/papers/gridshib-pki05-final.pdf

18. Wieder, Ph., Goss-Walter, T., Letz, R., Kentemich, T., Hoppe, H.-C.: An analysis
of the unicore security model. Technical report, Global Grid Forum. Grid Forum
Document - Informational 18 (GFD-I 18)

19. Shibboleth. Online: http://shibboleth.internet2.edu/
20. The Swiss Education and Research Network. Online:

http://www.switch.ch/aai/demo/medium.html
21. Virtual Data Toolkit: VOMS-Documentation. Online:

http://vdt.cs.wisc.edu/VOMS-documentation.html

https://www.aai.dfn.de/der-dienst.html
http://www.d-grid.de/index.php?id=1&L=1
http://www.eu-egee.org/
http://grid-auth.info.it/docs/voms-FGCS.pdf
https://edms.cern.ch/file/807849/1/EGEE-II-MJRA1.5-807849-v0.95.pdf
www.globus.org/research/papers/anatomy.pdf
http://www.d-grid.de/index.php?id=314&L=1
http://lhc.web.cern.ch/lhc/
http://eprints.ecs.soton.ac.uk/11889/01/gca_final.pdf
http://omii-europe.org/OMII-Europe/
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
http://www.switch.ch/grid/slcs/
http://www.uscms.org/SoftwareComputing/Grid/VO/
http://grid.ncsa.uiuc.edu/papers/gridshib-pki05-final.pdf
http://shibboleth.internet2.edu/
http://www.switch.ch/aai/demo/medium.html
http://vdt.cs.wisc.edu/VOMS-documentation.html

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 131–140, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Business-Oriented Grid Workflow Management
System

Luca Clementi1, Claudio Cacciari1, Maurizio Melato2, Roger Menday3,
and Björn Hagemeier3

1 CINECA,

Via Magnanelli 6/3,
40033 Casalecchio di Reno, Italy

{l.clementi,c.cacciari}@cineca.it
2 NICE,

via Marchesi di Roero 1,
14020 Cortanze, Italy

maurizio.melato@nice-italy.com
3 Central Institute for Applied Mathematics

Forschungszentrum Jülich GmbH
D-52425 Jülich, Germany

{r.menday,b.hagemeier}@fz-juelich.de

Abstract. The wide adoption of Service Oriented Architecture by the Grid
community has made available several software tools that allow exposing
hardware resources and scientific data to remote peers by means of well
standardized protocols. Hence the necessity for scientists to easily design a
simulation that leverages distributed applications. In this paper, we present the
implementation details of A-WARE, a workflow framework that adopts
recognised standards, especially by the enterprise community, like BPEL. In
this way our product can boast a higher level of interoperability with other
similar systems. The workflow graphical notation is also based on a standard:
BPMN. BPMN provides a unique, standardized and comprehensive modeling
format understandable by both business people (involved in the area of business
process management) and IT people, resulting also portable across different
departments or companies.

Keywords: Workflow, Grid System, SOA, BPEL, BPMN.

1 Introduction

Grid computing is enabling scientists to use heterogeneous and distributed resources and
applications in a seamless way, allowing their composition into more complex tasks in a
transparent manner and hiding all complexity of the underlying infrastructure.

In the early days, Grid systems were built with ad-hoc components and
technologies developed specifically for particular projects sometimes using specific
communication protocols. On the other hand, the recent past has seen the emerging
paradigm of Service Oriented Architectures (SOA) with well standardized protocols

132 L. Clementi et al.

gaining more acceptance and adoption by the Grid community [1]. The term SOA
refers to systems structured as network of loosely coupled communication services
[2]. To these purposes a set of technologies called Web Services (WS) have gained
wide acceptance, creating a huge collection of open-source and commercial tools that
support their development and deployment.

Regarding the Grid community, there are plenty of production-level products
available today that allow exposing hardware and software resources using Web Services
standard interface description (Globus, EGEE, UNICORE, etc.). Moreover, several
scientific data repositories are currently available by means of Web Services interfaces
[3], [4]. In this scenario, where there is an increasing number of distributed data sources
and services exposed through WS standards, applications able to orchestrate remote WS
resources with user friendly interfaces play a very important role.

Workflow management systems able to operate in a WS-standard SOA environment,
would allow scientists to concentrate on the creation of their simulations and analyses,
designing workflows that would take full advantage of such data sources, applications,
and hardware resources. This service composition into more complex tasks would be
accomplished without having to deal with the complexity of the actual service and
infrastructure implementations.

The scientific community has developed various workflow systems that allow the
orchestration of such a distributed resource set [5]. We believe a more standardized
approach should be used to build such a framework. In this direction there is a growing
interest and adoption by both scientific and business communities of Business Process
Execution Language (BPEL) as a standard language to describe and execute workflows.
In fact BPEL, besides being widely accepted as industry standard for defining business
processes and adopted by many commercial Enterprise Application vendors, has also
recently become a OASIS standard [9]. Lately, also the Grid community began to follow
this standard with more interest as a possible foundation for Grid workflow systems [5].

However, BPEL does not provide any specification regarding how a process should be
represented graphically. Therefore, many software vendors supporting BPEL have
invented their own notation for workflows, while only few have adopted an already
existing standard, the Business Process Modeling Notation (BPMN), a graphical notation
for business processes developed by the Object Management Group [8].

In this paper we present the implementation of a workflow infrastructure system,
which is primarily based on BPEL as a runtime language and on BPMN for the graphical
representation, highlighting the most challenging problems that arise from our approach,
and showing its advantages. The second chapter presents a short description of the
currently available workflow systems for Grid computing, and describes their
architectural choices. In the same chapter there is also a more detailed description of the
BPEL and BPMN and of the problems that arise when these two standard are adopted
together. The third chapter presents our workflow system highlighting how we have
approached the problem of translating a BPMN graph into a BPEL process. The fourth
chapter gives a general description of the A-WARE project where our workflow system
has been developed. In the fifth chapter we finally present our conclusion and future
work plans.

 A Business-Oriented Grid Workflow Management System 133

2 Related Work and Background

Kepler [6] is a workflow system developed under several research projects. It is
written in Java and based on Ptolemy II [6], a system originally created to study
modeling, simulation, and design of concurrent systems. Kepler models workflow in
MoMl, a markup language developed in Ptolemy that is based on the concept of
actors. Each actor has input and output ports and wraps typical workflow objects like
Web- and GridServices, Globus Grid Jobs, GridFTP, and many others. Therefore,
Kepler can be classified as a system based on data flow (rather than sequence flow).

Taverna is an open source software tool for designing and executing bioinformatics
workflows, developed in the myGrid project [7]. It uses Scufl as a runtime language
for the execution of the workflow, and Freefluo as an execution engine. Scufl can be
extended using Processor plug-ins that manage the interaction with different external
service interfaces. Taverna is shipped with a set of processors that guarantee
interaction with services based on WS-I standard. The designer is based on a directed
graph that represents data flow, which uses a simple graphical notation developed by
the Taverna team. The GUI can be extended creating new palettes and new widgets.

Several workflow systems have been developed in the enterprise world, some of
them are:

• IBM WebSphere Process Server is part of the WebSphere framework, based on the
BPEL language, and it can be used along with the WebSphere Business Modeler
that provides designing capability in a notation that has been created specifically
for BPEL processes

• Oracle BPEL Process Manager is part of the Oracle Fusion Middleware. It is based
on the BPEL language and it has a designer based on another not standard notation.

• BEA AquaLogic BPM Suite is an integrated solution for creating, executing and
optimizing business processes. It uses BPEL as its underlying runtime language
and it has two designer applications: one for business users that allows drawing
high level representations of the workflow, and another one for IT users that allows
specifying low level details regarding service binding and data mapping. Both
designer applications do not use standard notation.

Concluding in the enterprise world there is a convergence for BPEL based
workflow execution systems, but concerning the notation, different providers offer
different solutions that do not adhere to any standard. This approach causes problems
to end users who want to create scientific workflows. In fact, they have to waste time
learning a new notation every time they change the execution engine. On the other
hand, in the Grid world both designers and engines use various technologies and
approaches. In this case there is also the problem that a workflow created on a
particular platform can not be executed on another platform because of the different
engines.

We believe that a standard based approach especially in scientific communities
with both designer and engine will assist the final user and above all will provide a
better means to share work between scientists.

134 L. Clementi et al.

2.1 BPMN and BPEL

BPMN [8] is a standardized graphical notation to draw business processes, developed
by the Object Management Group (OMG). Its primary goal is to provide a notation
readable by all stakeholders, business analysts, scientific users, and IT specialists. It is
based on a directed graph where the sequence of processes and the messages that flow
between different process participants are coordinated in a related set of activities.
The specification does not include any indication on how a graph should be saved into
a file.

BPEL [9] is an orchestration language that is serialized in an XML format. It is
developed by the OASIS group and has reached version 2.0 (commonly referred to as
WS-BPEL). Essentially, it is an imperative programming language with specific
constructs for Web Services interaction. BPEL does not specify how a process should
be represented graphically.

Both standards have been developed independently and hence they do not take into
account how to map a BPMN graph into a BPEL process. Currently there are two
possible approaches, one restricts the possible graph that can be drawn in the
designer, and the other one implements a complex algorithm that allows mapping a
BPMN graph into a BPEL process. Section 3.2 provides a detailed discussion on this
topic and it explains our approach.

3 Workflow Framework System

Our proposed solution is being developed within the A-WARE research project. A-
WARE aims at creating a workflow system able to coordinate various instances of
different Grid fabric middleware. Initially, UNICORE will be the reference platform
[10], but support for other Grid systems is planned for the project. The other ambition
pursued by the A-WARE project is to design and implement a pluggable workflow
infrastructure flexible enough to support and host multiple workflow languages and
engines. The additional challenge A-WARE is facing is to provide users with a fully
Web-based interface for the whole workflow life-cycle management, from design to
submission, from monitoring to result retrieval.

In the following paragraphs we outline some of the details of the A-WARE
workflow system design and implementation. We identified three user roles for our
system: the scientific/business logic user, the IT specialist and the end user.

• The scientific/business logic user defines new methods and processes in his
specific domain of expertise within the company, designing workflow.

• IT specialists support business users with the IT infrastructure development. They
participate in the process of design enriching workflow with all the technical
details needed to make them executable against a specified engine.

• End or application users focus on accomplishing their business tasks. They
parameterize and submit predefined business processes.

The user roles described above highlight the need to modularize the workflow
design process into two stages: the first phase targeting the business expert role and
the second phase involving the IT specialist. For the first release of the A-WARE

 A Business-Oriented Grid Workflow Management System 135

system, the creation of a BPMN/BPEL workflow is actually performed in several
steps, each one accomplished by one of the two previously mentioned user roles, the
scientific/business user and the IT specialist, as depicted in the Fig. 1:

1. design: for the graphical representation of the workflow,
2. translation from BPMN to BPEL,
3. the grounding of BPEL for the creation of an executable workflow.

BPMN2BPEL

BPEL Modeler

abstract BPEL

concrete BPEL

BPEL engine

Scientific user

automatic

Designer

BPMN xml file

IT specialist

Fig. 1. Architecture of the Workflow Management System

In the next sections we describe each one of these three steps in detail.

3.1 Design of a New Workflow

The first design phase implies the construction of the graphical workflow model by
placing nodes and edges within an editing environment offering drag and drop
functionalities as well as other interactive, advanced editing modes. The component
aimed to provide such functionalities is called the Workflow Designer Application or
just Designer.

136 L. Clementi et al.

To implement the designer we have used a Java applet, which can be embedded in
a Web page. For the implementation of the graphical part we relied on the Java
Universal Network/Graph Framework [14], which provides a common and extensible
library for modeling, analysis, and visualization of data that can be represented as a
graph or network. Several BPMN elements have already been made available in the
designer, as it is shown in Fig. 2, but others can be added if required. The designer
can save the graph into an XML file.

Fig. 2. Snapshot of the Workflow Designer

The designer does not let the user specify all the parameters required to execute the
workflow, but permits to describe only the flow structures and a partial representation
of the data flow. Firstly because [11] adding too much information directly into the
graph can result in a clumsy and hardly understandable representation. Secondly, we
wanted to separate low level IT details (like service binding and low level data
mapping) from the scientific aspects of the simulation.

Finally, our designer is not bound to any particular workflow system. Its represent-
ation is completely independent from the underlying workflow engine.

3.2 Converting BPMN into a Workflow Language: BPMN2BPEL

The next step in the workflow creation process is the translation of the BPMN graph
into a BPEL process description. As described in research literature [12], the two

 A Business-Oriented Grid Workflow Management System 137

representations belong to different classes of languages. BPEL is mainly a block-
structured language while BPMN is graph oriented. Mapping between these two
different sets of languages is notoriously challenging.

S. White [11] sketches some guidelines to translate between BPMN and BPEL, but
his solution is limited, because it restricts the possible topologies of the graph. To
tackle this drawback C. Ouyang et al. [13] proposed an alternative algorithm which
allows the automatic translation of any BPMN graph structure. This solution can
create with most BPMN graphs a BPEL code that maintains the organization of the
corresponding graph also called “well-structured” BPEL. On the other hand some
particular graph topologies can be translated only by “event-action rules”. Event-
action rules are a block of BPEL code with additional control link to capture
sequential dependencies between different activities. Obviously, this second
translation produces code that does not directly reflect the original structure of the
graph; hence it is more difficult to be read.

We believe that due to the complexity of the BPMN-to-BPEL mapping, enterprise
applications have preferred not to use the BPMN notation in their designers. A
designer application, adopting a different graphical representation can end up with an
easier mapping between the graph and the BPEL process: the overall complexity of
the system is lower but the graphical notation is domain specific or, worse,
completely custom. On one side the A-WARE project brings the added value to be
fully compliant with BPMN standard notation, on the other we had to cope with the
complexity to translate BPMN to a BPEL detailed description.

During this phase the low-level information that would make the workflow
executable by the engine is still missing, it needs to be provided by the IT expert user.
For this reason the first transformation step produces an abstract BPEL that’s
compliant with the BPEL 2.0 specification [9] adopted by A-WARE.

From a high level point of view this module provides the translation from the
BPMN notation into an executable workflow language. It actually decouples the
notation from the underlying workflow language and engine. Moving in the direction
to support other workflow languages, this library should be extended with pluggable
translation modules.

3.3 Workflow Grounding: BPEL Modeler

As described above, the first transformation of the BPMN into a workflow language
does not provide sufficient information to produce a working workflow ready for
execution. To have a “concrete” (grounded or executable) workflow that can be run
on an engine the IT user needs to provide the following missing information: the
actual services incarnating the abstract workflow tasks and the actual data flowing
through the workflow as input/output to/from the various tasks.

In the case of the BPEL processes this information will be:

• Service mapping, the service endpoints and binding protocols (e.g. port type,
service name, port)

• Data mapping, the format of the exchanged messages by the various orchestrated
services, e.g. XML selections with XPATH and manipulation with XSLT

138 L. Clementi et al.

Moving from an abstract BPEL to a concrete BPEL is commonly referred to as
workflow grounding. In our system we have implemented a library that can manipulate
and modify BPEL files. The A-WARE Web interface, currently based on the
EnginFrame Grid portal framework [15], drives the IT user through a set of dynamic
forms during the grounding process and triggers the BPEL modeler module on the base
of the user’s choices.

Both service binding and data mapping operations involve low-level infrastructural
IT details that are usually quite distant from the scientific and business logic aspects
of the workflow. This last point justifies the choice to have a different user interface
for the two steps of the workflow creation process: design and workflow grounding.

4 The A-WARE Infrastructure

The orchestration engine for executing BPEL is based on the Apache ODE engine. This
is hosted within the Java Business Integration (JBI) environment of the A-WARE
Service Bus (ASB). JBI offers an SOA based framework for the integration of
applications, data and processes, the normalization of otherwise incompatible protocols,
and finally by providing a highly scalable and robust service environment for the
management of processes, process instances, Grid interactions and all other supporting
functionality. The Service-oriented computing environment of ASB enables a clean,
pluggable platform where various connectivity and extensibility options are supported,
various workflow execution strategies can co-exist, and through the semi-autonomous
nature of the Grid component access to multiple Grid fabrics.

The ASB acts as a mediator between the Orchestrator (the BPEL engine) and the
Orchestrated (the Grid resources). The common tasks necessary to interact with the
Grid are exposed as higher-level functionality on the ASB using an intermediate
proxy called the Grid component. They are expressed using higher-level formulations
than typically found in Web Services based interfaces of the underlying Grid fabric.
The ASB ‘lifts’ the applications defined as installed and available on the target
systems to application-specific services on the bus. In this way users are able to
express their requirements using terminology relevant to a specific targeted
application. In addition, instead of the back-and-forth (request/response) nature of
WSRF based Web Services for the Grid, the BPEL process orchestrates processes
based on long-running, asynchronous but correlated messages running over the ASB.
The Grid component acts in a semi-autonomous manner providing this functionality
to its consumers on the bus. It manages the interactions with the un-predictable and
un-reliable resources of the Grid fabric on behalf of its consumers.

From a monitoring perspective the ASB in conjunction with the ODE BPEL engine
keeps track of each running instance. It provides monitoring capability tracked
through capturing the messages sent from each running process instance to provide
runtime ‘picture’ of the state of the process. It is also worth noting that this
functionality is independent of orchestration strategy. However, it is possible for a
particular orchestration engine to further embellish this monitoring information with
engine-specific monitoring metadata.

 A Business-Oriented Grid Workflow Management System 139

5 Conclusions

In this paper we have seen how originally proprietary protocols moved towards service-
oriented architecture to enable the interaction of services within heterogeneous
infrastructures. Consequently, standards emerged that enabled the orchestration of
services across boundaries of these infrastructures and allowed for the orchestration’s
description to be exchanged. BPEL is one such standard description. However, it lacks a
specification of its graphical representation. As a result, different implementations of
BPEL execution engines differ in their approach of graphically representing workflows.
A standard notation for Workflow is available with the BPMN. Unfortunately, mapping
between BPMN and BPEL and vice versa is a complex task. In this paper we have
shown a possible approach based on an algorithm proposed by C. Ouyang et al. [13].

Users of a Grid system certainly don’t care about the difficulty of mapping BPMN
to BPEL; they want a simple solution that provides an easy to understand notation.
The A-WARE software stack provides such a solution by separating responsibilities
of Workflow design and deployment to experts with different roles and different Web
interfaces.

In A-WARE, services are mostly provided as services on the ASB, which are
orchestrated. Through the Grid component, they primarily access UNICORE 6
resources, although, through leveraging the Roctopus library, UNICORE 5 and other
middleware are possible targets.

Future Developments. At the time of writing, the workflow design process is
irreversible. Due to the complex mapping of BPMN to BPEL, currently it is not
possible to translate an existing BPEL process into a BPMN graph. This hinders a
seamless workflow development cycle for scientific and IT users. A solution where
meta-data about the grounding process is stored along with workflows has been
thought of, but still needs implementation.

Acknowledgments. This work has been supported by the European Union under the
FP6 IST-05-034545 project. A special thanks goes to all the other members of the
A-WARE project.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration (February 2002), http://
www.globus.org/alliance/publications/papers/ogsa.pdf

2. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:
Web Services Architecture. In: W3C Working Group Note (February 2004)

3. Miyazaki, S., Sugawara, H., Ikeo, K., Gojobori, T., Tateno, Y.: DDBJ in the Stream of
Various Biological Data. Nucleic Acids Research 32, 31–34 (2004)

4. Pillai, S., Silventoinen, V., Kallio, K., Senger, M., Sobhany, S., Tate, J., Valenkar, S.,
Golovin, A., Henrick, K., Rice, P., Stoehr, P., Lopez, R.: SOAP-based Services Provided
by the European Bioinformatics Institute Nucleic Acids Research. 33, 25–28 (2005)

5. Fox, G.C., Gannon, D.: Special Issue: Workflow in Grid Systems: Editorials. Concurrency
and Computation: Practice and Experience 18(10), 1009–1019 (2006)

140 L. Clementi et al.

6. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency
and Computation: Practice & Experience 18(10), 1039–1065 (2005)

7. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R.,
Wipat, A., Wroe, C.: Taverna: Lessons in Creating a Workflow Environment for the Life
Sciences. Concurrency and Computation: Practice and Experience 18(10), 1067–1100
(2006)

8. Object Management Group: Business Process Modeling Notation (BPMN) 1.0: OMG
Final Adopted Specification (February 2006)

9. OASIS: Web Service Business Process Execution Language Version 2.0. OASIS Standard
(April 2007)

10. Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel, M.,
Romberg, M., Schuller, B., Wieder, P.: UNICORE - From Project Results to Production
Grids. In: Grid Computing: The New Frontiers of High Performance Processing. Advances
in Parallel Computing, vol. 14, pp. 357–376. Elsevier, Amsterdam (2005)

11. White, S.: Using BPMN to Model a BPEL Process. BPTrends 3, 1–18 (2005)
12. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, V.M.P.: Pattern-Based

Translation of BPMN Process Models to BPEL Web Services. International Journal of
Web Services Research (to be published, 2007)

13. Ouyang, C., Dumas, M., ter Hofstede, A.H., van der Aalst, W.M.P.: From BPMN Process
Models to BPEL Web Services. In: Proceedings of the IEEE international Conference on
Web Services, vol. 00, pp. 285–292 (2007)

14. O’Madadhain, J., Fisher, D., White, S., Boey, Y.: JUNG: The Java Universal
Network/Graph Framework., http://jung.sourceforge.net

15. EnginFrame Grid portal – NICE s.r.l.: http://www.enginframe.com

VHPC 2007: Workshop on
Virtualization/Xen in

High-Performance Cluster and
Grid Computing

VHPC 2007: Workshop on Virtualization/Xen in

High-Performance Cluster and Grid Computing

(Foreword)

Virtual machine monitors (VMMs) are now integrated with a variety of oper-
ating systems and are moving out of research labs into scientific, educational
and operational usage. Modern hypervisors exhibit a low overhead and allow
concurrent execution of large numbers of virtual machines, each strongly encap-
sulated. VMMs can offer a network-wide abstraction layer of individual machine
resources, thereby opening up new models for implementing high-performance
computing (HPC) architectures in both cluster and grid environments. This
workshop aims to bring together researchers and practitioners active in explor-
ing the application of virtualization in distributed and high-performance cluster
and grid computing environments.

Areas that are covered in the workshop series include VMM performance,
VMM architecture and implementation, cluster and grid VMM applications,
management of VM-based computing resources, hardware support for virtual-
ization, but it is open to a wider range of topics.

As basic virtualization technologies mature, the main focus of research is now
techniques for managing virtual machines in large-scale installations. This was
reflected in this year’s workshop, where five presentations were given on the
management of virtualized HPC systems. It was good to see work integrating
VMs into existing management systems such as SmartFrog and Quattor. In total
ten papers were accepted for this year’s workshop, with an acceptance rate of
approximately 50%.

An invited talk by Greg Law of Solarflare described their implementation
of high-performance I/O for guest VMs which was developed to support for
their 10-Gbit Ethernet card. The model presented allows for direct, secure, low-
latency access to network hardware from guest VMs. This addresses a significant
limitation of Xen in an HPC environment, and would potentially allow many
virtual cluster nodes to operate using the full potential of the underlying network
hardware.

The Chairs would like to thank the Euro-Par organizers, the members of the
Program Committee along with the speakers and attendees, whose interaction
created a stimulating environment. Thanks also to Greg Law for accepting our
invitation to speak at the workshop, and to the conference for their financial
support which made this possible. XHPC/VHPC is planning to continue the
successful co-location with Euro-Par in 2008.

November 2007 Michael Alexander
Stephen Childs

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, p. 143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Virtualization Techniques in

Network Emulation Systems

Roberto Canonico, Pasquale Di Gennaro, Vittorio Manetti, and Giorgio Ventre

Dipartimento di Informatica e Sistemistica
Università di Napoli Federico II

via Claudio 21, 80125 Napoli, Italy
{roberto.canonico,pasquale.digennaro,
vittorio.manetti,giorgio}@unina.it

Abstract. The continuous increase of computational power has made
viable the implementation of more and more sophisticated virtualization
techniques. The use of virtualization in cluster environments to build on-
demand computing infrastructures is a recent trend with a great poten-
tial. Cluster-based network emulators are a specific class of cluster-based
systems whose main purpose is to help researchers evaluate the effective-
ness of new protocols and applications in realistic, synthetically gener-
ated network scenarios. Both large scale experimental testbeds (such as
PlanetLab) and cluster-based network emulation systems (such as Em-
ulab) use virtualization techniques at the basis of their resource man-
agement mechanisms to achieve isolation and concurrent experiments
execution. In this paper, we compare different virtualization techniques
already adopted in this kind of distributed systems and illustrate the
peculiar virtualization requirements of a cluster-based network emula-
tor. Furthermore, we show how Xen can be used to build a flexible and
scalable network emulation system.

1 Introduction

In the last few years, network emulation has gained interest in the community
of network reserchers, being considered an important technique to evaluate the
effectiveness of new protocols and applications in heterogeneous, controllable
and realistic network scenarios. In a network emulation experiment, simulated
network elements interact, in real-time, with real network components and ap-
plications. Today’s most complex network emulation systems are cluster-based.
These systems are made of a large number of hardware components arranged in
a common facility that can be remotely accessed by users through a web inter-
face. Components include links, switches, routers, and PCs that interchangeably
play the roles of end-systems, routers, or WAN emulators. An efficient use of
the available hardware resources is one of the main goals, usually achieved by
means of a combination of virtualization and space-sharing that aims at allowing
simultaneous non-interfering experiments.

In a typical cluster-based network emulation system, users submit to the sys-
tem an experiment request. An experiment request contains a “virtual” network

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 144–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Virtualization Techniques in Network Emulation Systems 145

description to be reproduced with the available cluster resources. A conserva-
tive resource allocation policy consists in mapping the emulated “virtual” nodes
onto dedicated PCs and emulated links onto switched ethernet links. Nowadays,
with increasing computational power made available at low-cost, it is possible
to exploit virtualization techniques to map multiple “virtual” nodes on a single
CPU. There are many good reasons for doing that. For example many applica-
tions need to be evaluated on large topologies, yet they are not resource hungry.
Moreover, multiplexing provides a more efficient use of communication resources
as the bandwidth of the emulated geographic links is usually much less than that
available in the local interconnect used in a modern cluster [1]. These reasons
motivate the use of small-scale clusters to emulate medium/large size topologies
in a inexpensive manner [2],[3].

In the rest of this paper we will illustrate the importance of virtualization
for network emulation. We compare different virtualization techniques already
adopted in cluster-based network emulation systems. Furthermore, we show how
Xen can be used to build a flexible and scalable network emulation system.

2 Cluster-Based Network Emulation Systems

Maybe the most complex cluster-based emulation system developed so far is
Emulab [4]. Emulab is a free-for-use, Web-accessible, time- and space-shared,
reconfigurable network testbed, providing integrated access to a wide range of
experimental environments. The Emulab core consists of several hundred rack-
mounted PCs, combined with secure, user-friendly web-based tools, and driven
by ns-compatible scripts or a Java GUI, allowing remote configuration and con-
trol of machines. Even the OS of a cluster node can be fully and securely replaced
with custom images by any experimenter.

In Emulab an enhanced version of FreeBSD jail has been used, which allows
the creation of isolated environments (vnodes), characterized by independent
namespaces. Each of these vnodes is accessible not only through the host node,
but also remotely via ssh. This kind of virtualization technology used by Emulab
is not resource hungry: this gives the opportunity to build a relatively large
number of vnodes even on not very powerful machines. Anyway, this mechanism
does not offer fully isolated execution environments, potentially creating some
security issues. For this reason, in Emulab all vnodes running on a given physical
host must belong to the same experiment. Even the network is not completely
virtualized, since much of the network stack is shared between physical host and
vnodes.

The Network Emulation Testbed project [5] provides a configurable network
environment for the performance analysis of distributed applications and pro-
tocols, consisting of a 64 node PC cluster system running Linux connected by
a flexible network infrastructure. The network infrastructure can be set up in
arbitrary ways, emulating anything from Wide Area Networks (WANs) to highly
dynamic Mobile AdHoc Networks (MANETs). The node PCs are connected by
means of a Gigabit Ethernet switch on which an arbitrary number of VLANs

146 R. Canonico et al.

can be configured. Through the use of VLANs, nodes can be connected with
any possible virtual topology. Network traffic on emulated links is controlled
by a special traffic shaper module, called NETshaper, implemented as a Linux
kernel module. NETShaper provides a link-layer emulation that is completely
transparent to upper layers. Parameters that can be emulated by NETShaper
include fixed delay, variable delay, and frame loss.

NEPTUNE is a cluster-based emulation system developed at University of
Napoli. Even though many design assumptions made for NEPTUNE were bor-
rowed by Emulab, since from the early stages of design, NEPTUNE has assumed
virtualization as a key technology for realizing complex networking scenario. The
NEPTUNE project was started in 2004 at University of Napoli. The project main
goal is to create a cluster-based network emulation system that could be used
to assess either new networking technologies and protocols (e.g. to test new QoS
Routing protocols and Traffic Engineering schemes in MPLS-based networks), as
well as new distributed applications (e.g. multimedia peer-to-peer applications).

At the time of this writing, the NEPTUNE emulation system runs on a clus-
ter of workstations consisting of 28 biprocessor nodes ProLiant DL380, each
equipped with two Intel Pentium IV Xeon 2.8 GHz CPUs, 5 GB of PC-2100
RAM, one 100 Mbps Ethernet NIC, one Gigabit Ethernet NIC. Each node is
equipped with a 34.6 GB SCSI disk. A 700GB centralized disk array is also avail-
able to the whole cluster. The cluster nodes are connected each other through a
set of 100/1000 Ethernet switches.

One of the cluster nodes, the NeptuneManager, provides the fundamental
services (like dhcp, dns, tftp, nfs, and so on) needed to properly configure at
boot-time the physical cluster nodes and the virtual machines participating to
the emulation experiments. A web-based system is used to manage and configure
the whole system.

Setting up an emulation experiment in NEPTUNE consists primarily in defin-
ing a “virtual topology” made of emulated intermediate network nodes (routers)
and end-system nodes (user terminals). A complex networked system can be
reproduced by allocating multiple “virtual” network nodes (both routers and
end systems) on each of the cluster physical nodes. A testbed mapping module
(much like the one used in Emulab [6]) is responsible of mapping the “virtual”
topology onto the cluster physical resources. Virtual network nodes are imple-
mented in NEPTUNE as Xen virtual machines. The main advantage of the use
of virtualization techniques to instantiate virtual network nodes is the signifi-
cant reduction in equipment and management costs. Virtual machines allow the
creation of customized execution environments, where customization consists in
selecting the operating system, installed software packages and user access poli-
cies. Furthermore, virtual machines can be paused or shut down at any time, and
later resumed, even at a different physical location (migration). Finally, virtual
machines support fine-grained mechanism for resource usage control, allowing to
define (and even change at run-time) precise limits to the the amount of usable
RAM and disk space.

Virtualization Techniques in Network Emulation Systems 147

3 Virtualization Technologies

Virtualization is a widely used technique in which a software layer multiplexes
lower-level resources among higher-level software programs and systems.

In a non virtualized system, a single OS controls all hardware platform re-
sources. A virtualized system includes a new layer of software, the virtual
machine monitor (VMM). A virtual machine monitor manages the creation,
destruction and control of one or more virtual machines (VM) on a computer,
and is responsible for controlling access to the resource of the real hardware, as
well as multiplexing the execution of multiple VMs fairly. Virtual machines do
not access the system’s real resources directly, but through the VMM.

Some virtualization techniques support migration of virtual machines. In ad-
dition to facilitating hardware maintenance operations, VM migration can be
triggered automatically by workload balancing or failure-prediction agents.

In the following we will present a few virtualization technologies that have
been used in distributed experimental infrastructures to support multiple con-
current experiments.

3.1 FreeBSD Jails

The Emulab system supports multiple experiments running concurrently on the
same physical node. This is implemented thanks to the use of the FreeBSD
Jail mechanism. The FreeBSD Jail facility provides the ability to partition the
operating system environment. Administrators can create several independent
mini-systems called jails and provide access to the super-user account in each
of these without losing control of the over-all environment. Each jail is a virtual
environment running on the host machine with its own files, processes, user and
superuser accounts. From within a jailed process, the environment is indistin-
guishable from a real system. A process in a partition is referred to as in jail.
When a FreeBSD system is booted up after a fresh install, no processes will be
in jail. When a process is placed in a jail, it and any descendents of the process
created after the jail creation, will be in the same jail. A process may be in only
one jail, and processes within the jail are prevented from delivering signals to
processes outside the jail. The only way for a new process to enter the jail is by
inheriting access to the jail from another process already in that jail. Processes
may never leave the jail they created, or were created in. When a jail is created, it
is bound to a particular file system root. Processes are unable to manipulate files
that they cannot address, and as such the integrity and confidentiality of files
outside of the jail file system root are protected. Security is simply guaranteed
because the jail environment is separated from the rest of the system, in other
words, since the jail is limited to a narrow scope, the effects of a misconfiguration
or mistake does not jeopardize the rest of the system’s integrity. Modifying the
running kernel by direct access and loading modules is prohibited, just like mod-
ifying the network configuration and accessing raw, divert and routing sockets
are prohibited. Thanks to the limited scope of a jail, it allows administrators to

148 R. Canonico et al.

painlessly delegate several tasks which require superuser access without handing
out complete control over the system. With jails it is possible to install different
daemons in different jails and delegate their administration to other people by
giving them access to the superuser account. It is safe because the jailed su-
peruser has limited privileges and he can’t escape the jail because he cannot
get any information about the base system. Virtualization is valuable to service
providers wishing to offer their users the ability to have custom configurations
and yet keep the overall system easy to maintain.

3.2 Linux VServer

The Linux-VServer technology implements a soft partitioning concept based
on Security Contexts which permits the creation of many independent Virtual
Private Servers (VPS) running simultaneously on a single physical server. A
VPS provides an almost identical operating environment as a conventional Linux
server. All services can be started on such a VPS, without modification, or with
only minimal modifications. The implementation of Security Contexts requires
some modification to the plain Linux kernel. The purpose of a Context is to hide
all processes outside of its scope, and prohibit any unwanted interaction between
a process inside the context and a process belonging to another context. This
separation requires the extension of some existing data structures in order for
them to become aware of contexts and to differentiate between identical uids used
in different virtual servers. It also requires the definition of a default context that
is used when the host system is booted, and to work around the issues resulting
from some false assumptions made by some user-space tools that the init process
has to exist and to be running under id ’1’.

The real drawback when VServer is used in a network emulation system,
is that networking is based on isolation, not on virtualization. This prevents
each virtual server from creating its own internal routing or firewalling setup.
Furthermore, it is not possible to assign different MAC addresses to VPS.

3.3 OpenVZ

OpenVZ [7] is an another operating system-level virtualization technology built
using GNU/Linux. It gives the ability to run multiple isolated system instances,
called Virtual Private Servers (VPS) or Virtual Environments (VE). It does not
offer the same flexibility in the choice of the operating system, if compared to
other solutions such as VMware and Xen, but in many usage scenarios it can
be an interesting solution. Networking in OpenVZ is implemented through a
virtual device (venet). Network emulation can also benefit of the use of Virtual
Ethernet device (veth), that is an Ethernet-like device which can be instantiated
inside a VE. A veth can be assigned a MAC address and used in a bridged
configuration, emulating a sort of “virtual switch” inside the host, to which all
virtual interfaces created in the VEs are connected. Each veth can be configured
via dhcp at boot time, when the VE is started.

Virtualization Techniques in Network Emulation Systems 149

3.4 Xen

Xen [8] is a paravirtualization system developed by the University of Cambridge.
Xen provides a virtual machine monitor for x86 processors that supports execu-
tion of multiple guest operating systems at the same time.

Today, a special Xen-compatible version of Linux, XenoLinux, is available. Ac-
cording to Xen researchers, 100 XenoLinux instances can be run simultaneously
on a single Xen VMM with minimal performance degradation. Xen-compatible
version of Windows XP and NetBSD are actively being developed at the time
of this writing.

4 Virtualization for Node Multiplexing

Node multiplexing is the problem of emulating more than a network node on
the same physical cluster node. This problem is inherently a problem of machine
virtualization, as it has been described in the previous section. Hence, it can be
solved with one of the many available virtualization technics. Aspect to be taken
int account to select the proper one for a a cluster-based emulation system are
efficiency, scalability, flexibility, isolation, and operating system customization.

In Emulab, an extended version of FreeBSD Jails is used. Jail allows the
creation of different execution environments at the same time. The user can per-
form remote ssh to each of the execution environments. The Jails implementation
is relatively lightweight, so it is possible to instantiate several execution envi-
ronments on the same machine. Unfortunately, the Jails approach has also some
drawbacks. In particular, since it does not rely on a virtual machine monitor, the
degree of isolation among different execution environments is limited. To limits
the negative effects of this problem, in Emulab, all the execution environments
activated on the same physical machine must belong to the same emulation ex-
periment. Furthermore, the communication resources are not virtualized at all:
the whole protocol stack is shared among the various execution environments.
This, incidentally, make it impossible for Jail to support communication with
guaranteed Quality of Service. Finally, the Jail mechanism is currently only avail-
able in the FreeBSD kernel, and its porting to other platforms does not appear
straightforward.

The node multiplexing technique we chose for NEPTUNE is Xen, due to its
many advantages, and in particular because Xen is:

– highly scalable;
– potentially supports different kinds of Operating Systems;
– provides good isolation among different virtual machines running

concurrently;
– supports virtual machine migration, allowing dynamic re-allocation of ex-

periments on the cluster nodes;

and also because Xen implements different optimization techniques in the com-
munication mechanisms, allowing good communication performance among vir-
tual machines implemented within the same physical node.

150 R. Canonico et al.

5 Virtualization for Link Multiplexing

The nodes of a cluster are connected by means of one or more switched Ethernet
LANs. Each cluster node may be equipped with one or more (Giga or Fast)
Ethernet NIC. These NICs, in turn, may be connected to the same switch or to
different switches. In theory, it would be possible to connect the cluster nodes in
pairs, by means of crossed Ethernet cables, so to physically reproduce the desired
topology. However, such a solution is not viable, for at least two reasons. Firstly,
because changing the network topology would be extremely impractical, time-
consuming and error-prone. Secondly, because this would make it impossible
to emulate network topologies with a number of links greater than half of the
number of Ethernet NICs. Hence, practical solutions require to emulate multiple
point-to-point connections on top of one or more shared Ethernet LANs. This is
usually performed by means of Virtual LANs (VLANs) [1], [5]. Such a solution is
implemented by properly configuring the Ethernet switches and does not require
any configuration and processing in the cluster nodes. This makes, however,
the system configuration software extremely dependent on the characteristics of
the network switches. For the above reasons, we decided not to use VLANs in
NEPTUNE and we adopted two network device independent solutions for link
multiplexing:

– IP-aliasing and destination MAC address filtering
– Virtual NICs

The first technique is our choice when the emulated node has been mapped
directly onto a physical node, i.e. there is no node multiplexing. The other solu-
tion consists in activating a virtual NIC and binding it to one virtual interface
of a virtual machine. Traffic shaping is obtained by means of queuing disciplines
directly attached to the virtual interfaces. Main advantages of this technique
is a more clean management of the networking during the experiment creation
and the possibility to use classless shapers in addition to classful ones, which
are required to emulate characteristics of emulated links when ip aliasing is
used.

6 Virtualization Techniques for Link Multiplexing
Compared

In this section we show a comparison of two network emulation solutions, imple-
mented by means of two different virtualization techniques both supporting the
creation of a virtual interface inside a VM, namely OpenVZ and Xen. OpenVZ
is an example of an operating system-level server virtualization solution, while
Xen is an example of an hypervisor based on the paravirtualization concept.

Our emulated network consists of two end systems interconnected by means of
a couple of intermediate IP routers. We compare two different implementations
of this emulated network: one in which routers are implemented in Xen VMs,

Virtualization Techniques in Network Emulation Systems 151

and another in which routers are implemented in OpenVZ VMs. In both cases
we allocated the two VMs in two different Linux boxes. We also implemented a
reference scenario, in which the intermediate routers are plain Linux boxes. The
three scenarios are depicted in 1.

Fig. 1. Our experimental testbed

Physical machines have an identical hardware configuration: each of them is
a SMP system with two Intel Xeon running at 2.8Ghz and is equipped with
5GB of RAM. For our tests we have used only one Tigon 3 gigabit ethernet
interface on each machine. Virtualization of the network is obtained by means of
IP-aliasing. In Xen we have created for each virtual router two virtual NICs. Xen
networking has been configured in the bridge configuration: in dom0 a bridge
has been created to which all virtual interfaces are connected. OpenVZ offers
two networking implementations: virtual ethernet and virtual network. We have
chosen the first one, as it gives the opportunity to assign MAC addresses to
virtual interfaces.

Constant bit rate traffic has been generated between end hosts by use of D-
ITG traffic generator [9], varying packet size and inter-departure time (IDT). In
figure 2 we show packets dropped at increasing inter-departure rates; one Kbyte
packets were used. Results demonstrate that for trasmission rates not exceeding
30000 packets per second, we almost don’t have losses. Reducing inter-departure
times, causes an increasing drop rate. Drop rates are always higher in Xen as
compared to OpenVZ. Anyway, in both virtualization solutions, losses reduce
the sustainable effective throughput in such configurations.

The mean jitter measured at the receiver node (estimated on 10 milliseconds
intervals) has been plotted in figures 3, 4, 5 for the three scenarios . Since the
experiment has been conducted in absence of any other interfering traffic, jitter
is entirely due to the variable packet processing time in the intermediate routers.
This experiment has been conducted by generating CBR streams made of 1KB
packets transmitted at an increasing rate. Each stream has been generated con-
tinuously for 30 seconds. The comparison of results shows that OpenVZ routers
introduce, on average, 50% less jitter than Xen. Similar results have been noticed
varying packets generation rates.

152 R. Canonico et al.

Fig. 2. Packets dropped vs. tx rate

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 0 5 10 15 20 25 30

Ji
tte

r

Time (s)

1-192.168.8.5-192.168.2.1 Aggregate-Flow

Fig. 3. jitter introduced by Linux
routers

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0 5 10 15 20 25 30

Ji
tte

r

Time (s)

1-192.168.8.5-192.168.2.1 Aggregate-Flow

Fig. 4. jitter introduced by Xen
routers

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0 5 10 15 20 25 30

Ji
tte

r

Time (s)

1-192.168.8.5-192.168.2.1 Aggregate-Flow

Fig. 5. jitter introduced by
OpenVZ routers

7 Conclusions

Virtualization is maybe the most important tool to design effective network
emulation systems. Virtualization of resources, in fact, offers two fundamental
benefits: first, it allows to allocate more than one network node per single phys-
ical node; secondly, it is an instrument to allocate the available computational
resources of a cluster among different users and different experiments, in an on-
demand manner. When it comes to network emulation, it is not only important
to virtualize CPUs, but also communication resources, e.g. network interfaces
and their available bandwidth. For this reason, the designers of a cluster-based
network emulation system need to take this specific requirement into account
when they select the virtualization technique to be used at the foundation of
their system. Our tests show that most of today’s virtualization techniques have
some problems when they have to deal with huge amount of network traffic. Our
preliminary results show that OpenVZ performs better than Xen. Nonetheless,
Xen is largely more easy to use and more flexible, and this is a great advantage
for cluster-based systems of several tens or hundreds of machines. Furthermore,
the fault-isolation capabilities of paravirtualization systems also play in favor of
Xen. For all the above reasons, we decided to base the NEPTUNE emulation

Virtualization Techniques in Network Emulation Systems 153

system on Xen, being confident that most of today’s limitations will be overcome
in future releases.

Acknowledgements

This work has been partially funded by the FP6 IST-2005-034819 project
OneLab: an open networking laboratory supporting communication network re-
search across heterogeneous environments. Pasquale Di Gennaro has been funded
from the Italian Ministry of University and Research (MIUR), in the form of a
grant in the framework of the S.Co.P.E. Project.

References

1. Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb, K.,
Lepreau, J.: Feedback-directed virtualization techniques for scalable network ex-
perimentation. Technical report, University of Utah, Flux Group Technical Note
2004-02 (May 2004)

2. Guruprasad, S., Ricci, R., Lepreau, J.: Integrated network experimentation using
simulation and emulation. In: Proceedings of TridentCom, IEEE, Los Alamitos
(2005)

3. Maier, S., Herrscher, D., Rothermel, K.: On Node Virtualization for Scalable Net-
work Emulation. In: Proceedings of the 2005 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS 2005),
Philadelphia, PA, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Simulation Councils, Inc., July 24–28, 2005, pp. 917–928 (2005)

4. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, pp. 255–270. USENIX Association, Boston (2002)

5. Herrscher, D., Leonhardi, A., Rothermel, K.: On node virtualization for scalable
network emulation. In: Proceedings of the 2005 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS 2005)
(July 2005)

6. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping problem.
SIGCOMM Comput. Commun. Rev. 33(2), 65–81 (2003)

7. OpenVZ server virtualization open-source project, http://openvz.org
8. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Procs. of the 19th ACM
Symposium on Operating Systems Principles, SOSP 2003, pp. 164–177. ACM Press,
New York (2003)

9. Avallone, S., Emma, D., Pescapè, A., Ventre, G.: Performance evaluation of an
open distributed platform for realistic traffic generation. Performance Evaluation
(Elsevier) 60(1-4), 359–392 (2005)

http://openvz.org

SOA Based Control Plane for Virtual Clusters

Paolo Anedda1,2, Simone Manca1, Massimo Gaggero1, and Gianluigi Zanetti1

1 CRS4, Center for Advanced Studies,
Research and Development in Sardinia,

Parco Scientifico e Tecnologico,
POLARIS, Edificio 1, 09010 Pula (Ca), Italy

2 DIEE (Department of Electric and Electronic Engineering),
University of Cagliari,

Italy
{paolo.anedda,simone.manca,

massimo.gaggero,gianluigi.zanetti}@crs4.it

Abstract. Virtualization is an essential enabling technology for the construction
and control of computing facilities that can dynamically adapt available physical
resources to transient tasks such as the temporary creation of a virtual computing
center tailored to the needs of a virtual organization. In this paper we will describe
our strategy for the creation of virtual computer clusters based on standard SOA
and hosts virtualization technologies and we will report on our ongoing work
on the application of the latter to the deployment and management of a research
cluster with 140 dual core cpu. Our deployment mechanism, as well as the system
management, is delegated to a control plane based on workflows of coordinated
web services. The control plane is based on two logically independent modules,
the first is responsible of the physical resources and the deployment on the hard-
ware of virtual Xen hypervisor images, while the second manages operations on
virtual clusters such as their creation, startup and control. Low level operations –
e.g., the control of a running image on a given computational host – are directly
provided by atomic web services, in this specific case a WSRF service running in
the dom0 of each participating physical Xen host, while all logic above that level
is implemented as BPEL scripts.

1 Introduction

Recent advances in virtualization technologies and the exponential growth in network
bandwidth are introducing new dimensions for the computational facilities configura-
tion space and opening interesting and effective new ways to deliver High Performance
Computing (HPC) resources to applications. In this paper we will report on our ongo-
ing work on experimenting with these technologies in the context of Cybersar, a new
computational infrastructure for research being currently built in Italy.

1.1 Virtual Computing Facilities

Virtual machines, such as VMWare [1], Xen [2], and KVM [3], bring to HPC two main
gifts. On one hand, they enable the specialization of operating systems to particular

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 154–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SOA Based Control Plane for Virtual Clusters 155

tasks with hardware resources safely and transparently multiplexed by the vm hyper-
visor [4]. On the other hand, virtual machines allow the decoupling of the physical
computational infrastructure management from the management of the user-visible vir-
tual computing facility [5,6], making the former essentially homogeneous and agnostic
with respect to the specific applicative context, while putting the latter in the hands of
the virtual organization managing the virtual resource [7,8]. This separation removes
many of the difficulties that oppose the effective sharing of computational resource
between organizations that are not adhering to very strict common standards for their
software stacks.

Virtualization guarantees a high level of flexibility in the dynamic configuration and
use of “atomic” computational resource, which can then be organized and orchestrated
to provide virtual clusters that, differently from standard, general purpose, HPC com-
puting facilities, can be tailored to satisfy the needs of specific virtual organizations
[9,8].

Virtual clusters can encompass computational resources that are distributed on dif-
ferent, potentially remote sites, current trends on ever increasing available network
bandwidth [10] make it possible – at least when the structure of the applications run
allows to trade latency for pipeline depth [11] – to tightly couple geographically distant
computational resources in a single computational facility that appears as a coherent
entity to its users. Such a constructions, however, requires a much closer coordina-
tion between computational and network resources with dynamic network configura-
tion mechanisms, similar to the ones described in [12], being activate in parallel to the
virtual cluster construction.

1.2 Cybersar

Cybersar is a high performance computing initiative recently (March 2006) funded
by the Italian Ministry of Research that has as its goal the development of a Cyber-
infrastructure for research in Sardinia based on high speed networks interconnecting
all main scientific computational facilities and research communities of the island. Cy-
bersar network core is on dark fibers and it provides an optical network backbone that
can support application driven dynamic creation of point to point multi-lambda, cur-
rently 1GbE to be soon upgraded to 10GbE per lambda, optical circuits. The optical
backbone is linked to the DWDM (Dense Wavelength Division Multiplexing) Regional
network (2.5Gbit/s per lambda) and via the latter to the Janna submarine optical cables
connecting Sardinia to the Italian Mainland and to Sicily. The main Cybersar compu-
tational resources are hosted by physically separated (20 to 70 km apart), computing
facilities based at CRS4, the University of Cagliari, Cagliari Astronomic Observatory
and the University of Sassari. The total computing power directly available to Cybersar
is of about 1200 AMD Opteron class cores with about 2.5TB of RAM and more than
200TB of available disk space. Besides being a source of computing power for the local
research community, and to contribute to the National computing infrastructure, Cyber-
sar main goal is to be an experimental platform for research on new approaches to high
performance computing.

156 P. Anedda et al.

2 Generalized Computing Control Plane

The dynamic construction of specialized virtual clusters will be the main mechanism
that will be used within Cybersar to support large scale applications spanning the re-
sources of multiple sites. This will allow, as it has been discussed above, to insulate the
system managers of the partecipating sites from the specifics of operating system and
middleware configuration while, at the same time, supporting reasonably fast procedure
for application instantiation, freeze and tear down. On the other hand, as we will discuss
below, the control plane machinery that we are setting up has, at its most basic layer,
general mechanisms to deploy complete systems starting from the bare hardware. Thus,
if the overhead to be payed to the virtualization layer is too high (e.g., when one needs
to drive specialized hardware such as Infiniband PCI-Xpress boards), we mantain the
option of mapping specific applications, similarly to what it is done in Grid5000 [13], to
dynamically build real clusters. The logic behind the creation and the management of a
virtual clusters, that we can represent as a set of information work-flows of cooperating
components, is demanded to the control plane. Making a parallel with the networking
field, the latter can be seen as the abstraction layer to which all the logic for the setup of
the virtual computing center is entrusted. It is composed by all the programs and system
architectures that are required to successfully deploy a new virtual cluster following a
cluster blue-print. We consider the control plane as divided in two main components.
The first is responsible for the physical allocation of the computational nodes and net-
work resources, while the second is in charge of creating and administering virtual
resources. For the practical implementation of the system we choose to adhere to SOA
[14] principles and, in particular, to the W3C style of implementation. The entire sys-
tem is basically build upon web services and is implemented using standard languages
and protocols. Following the work of [15], we use Xen as a virtualization layer and web
services to control virtual hosts. Since the creation of virtual clusters can be seen as the
results of a process of web services calls, all control logic, above low level operations
e.g., the control of a running image on a given computational host is implemented as
work-flows.

2.1 Physical Resources Management

To be able to deploy complete systems starting from the bare hardware, we have de-
veloped a new deployment system, called HaDeS . It meets two main requirements.
The first is to be able to communicate with an orchestrator, using standard SOA mech-
anisms, to properly control the critical steps of the deployment process such as creation
of a specific disk partitioning, filesystems, and the population of partitions with the op-
erating systems. The second is to be agnostic with respect to the operating system to be
deployed. This is a major requisite for two reasons: we want to be able to support a large
number of OS types with different installation methods; we want to be able to deploy
a pre-assembled image of an operating system that can’t be installed with traditional
methods. These are requirements that systems such as RedHat Kickstart, or Suse Yast2,
or even Debian FAE cannot meet. While other deployment system, such as SystemIm-
ager, are not designed to negotiate with an orchestration system. HaDeS is similar in

SOA Based Control Plane for Virtual Clusters 157

spirit to kadeploy [16], albeit with a different implementation, but, differently from the
latter, has been thought from the beginning to be integrated in a SOA architecture.

2.2 Virtual Resources Management

As reported in [6], there could be various levels or aspects of virtualization. In our
work, when we talk about virtual resources, we refer to the possibilities offered by the
so called virtualization software. Following this assumption, we define a virtual host as
the abstraction of a real computing facility from which it inherits all the functionalities,
running on top of a virtualization software. Going forward in this reasoning, a virtual
cluster is composed by a set of cooperating virtual hosts connected by a virtual network.

Virtual Hosts Management. The lifecycle of a virtual host can be represented as a
state diagram characterized by six states.

Fig. 1. The lifecycle of a virtual host

As depicted in the figure above, the lifecycle of a virtual host starts from the Initial
state in which the virtual host is only a representation of a potential running host. When
it is in this state, we call it a ”Virtual Host Image” (VHI). A VHI is characterized by an
operative system, a configuration and some representation of the initial conditions. We
can represent it with a triple in the space of the virtual hosts:

(OSi(t0), Ci(t0), Ici) (1)

where we use OSi, Ci and Ici to indicate, respectively, the operating system, its con-
figuration and the initial state (initial conditions) of the virtual host.

When the resources controller decides to create a new virtual host, it turns a VHI into
a running virtual host (VH) by instantiating it on a physical host. This transition is fired
by a ”create” event. After his creation, a virtual host evolves into the running state. A
VH is represented by the same triple of the starting VHI at the time t, plus the reference
to the VHI from which it was created:

(OSi(t), Ci(t), Ici, Ref(V HIi)) (2)

From this state, a VH can be destroyed, paused or frozen. When it is paused all the
VH’s operations are suspended, while when it is frozen, the controller serialize it into

158 P. Anedda et al.

a file and release all the resources associated with that particular VH. From this state it
can be instantiated again in the same machine or, after a migration procedure, in another
one.

The very basic building block of the system is the Virtual Host Controller (VHC).
The VHC is the component responsible to instantiate and control the VHs inside a real
host. The process of creation of each VH is controlled by the Virtual Host Factory
(VHF). The VHF asks the appropriate VHC to instantiate a new VH using a specific
VHI. The VHF knows exactly where the VHCs are and how to communicate with them.
It can choose a particular VHC using a special algorithm for the resources’ optimiza-
tion, or on a random basis.

All the VHIs are maintained by the Virtual Host Images Repository (VHIR), that
stores all information regarding a particular VHI and make them available to all the
others components.

The Virtual Host Manager (VHM) is responsible for the orchestration of all the com-
ponents’ activities.

The creation of a Virtual Cluster (VC) is managed by the Virtual Cluster Manager
(VCM). All the operations to instantiate a new VC are performed by the Virtual Cluster
Factory, which is responsible to dialog with the VHM for the VHs creation. Its respon-
sibilities include also the managing of all information about a particular VC that is
running.

2.3 Virtual Resources Implementation

Virtual Host Controller. As we mentioned before, the very basic building block of
the entire architecture is the VHC. This is the component that physically controls the
creation and the management of the virtual machines running onto the physical hosts,
through a common interface that wraps the command line calls to the Xend hypervisor
control program. Each physical node is equipped with a WSRF (Web Services Re-
sources Framework, [17]) container which contains an implementation of the interface.
This allows to export, through a standard web interface, the main functionality of Xen
to the rest of the system.

Virtual Host Images repository. The VHIR is the component responsible to manage
the information regarding the ”potential” virtual hosts. It is the repository where all the
information about all the VHIs are stored.

A VHI is the description of the components of a VH in his initial state. It is composed
by an image of an operative system, an initial configuration and the initial conditions.

The initial configuration is the set of information regarding the network, the device
drivers and the storage resources.

The initial conditions are a representation of the state of the VH at the moment of
his first running. With this, we mean a representation of the virtual memory and the
filesystem associated with it. That’s because a running VH can be frozen and his image,
with all the virtual memory and the filesystem, can be stored to be used as a new image
for the instantiation of a new VH.

When the VHIR is asked to give the information about a specific VHI, it knows how
to retrieve the physical image of the operative system and creates a reference to it. It
also has a description about the configuration of the network and the storage resources.

SOA Based Control Plane for Virtual Clusters 159

These information are usefull to create the connections among the VHs and are set at
the moment of the creation of the VHI.

Virtual Host Factory. The VHF is the component responsible for the instantiation of a
new VH. It receives the request, that indicates the type of the node to create and the re-
sources associated to it, from the VHM. Then the VHF asks the VHIR for that particular
image and evaluates the answer. If the request can be fulfilled, a VHI reference is sent
from the VHIR to the VHF. At this point, because the VHF has a database with all the
available VHCs and knows the state of every node, it asks a particular VHC to create a
new VH passing the VHI reference to it. At this point the VHC creates a new VH and,
if all goes well, starts it and returns the VH’s reference to the VHF. The VHF updates
his internal database with all the information regarding the new node and returns the
new VH’s pointer to the VHM.

Virtual Cluster Factory. The VCF is the component that is responsible for the creation
of virtual clusters. When it receives a request from the VCM, it dialogs with the VHM
for the creation of the VHs. For every VH specified in the VCM’s request, it talks to the
VHM.

It maintains an internal database of all the VCs available and of all the VHs belonging
to each VC.

Work-flow control. The logic behind the creation and the management of virtual ma-
chines and its related network resources, can be expressed in terms of work-flows of
business processes. A work-flow can be represented using a standard language. Accord-
ing to our philosophy to follow the SOA requirements, we choose the BPEL (Business
Process Execution Language, [18]) language.

BPEL defines business processes that interact with external entities through Web
Service operations defined using WSDL 1.1 (Web Service Definition Language, [19]).
It defines business processes using an XML based language but do not define a graphical
representation of processes or provide any particular design methodology for processes.
Each business process has inputs, method and outputs and so, also the workflow exports
a web-service interface. Workflows can be nested, so it is possible to call a workflow
from inside another one. This allows us to define very complex execution processes.

Once is defined, a workflow is executed by a BPEL engine which is responsible for
the instantiation of all the components defined and to coordinate their execution. The
execution of a specific workflow is started by the invocation of a method defined by his
interface.

The creation of VH can be represented as a sequence of coordinated actions per-
formed by the components defined in the section above. Since the VHM is responsible
for these operations, we decided to implement it as a workfow.

The process of creation of a new VH starts with the invocation of the create VH
method of the VHM. This envent triggers the execution of the process depicted in fig-
ure 2. The VHM calls the VF with a request for a new VH. The VH asks the VHIR for
the appropriate VI, according to the inputs from the VHM. The VHIR then returns a
reference to the VI that meets the request’s specifications. At this point, the VHF calls
a VHC for the VH creation, passing the VI reference to it. The choice of a particular

160 P. Anedda et al.

Fig. 2. The VH creation process

VHC, is made according to a specific workload policy. Once a new VH is created, the
VHC returns a VH reference to the VF which sends it back to the VHM.

As we did for the VHM, we also implemented the VCM as a workflow. In this case
the process of creation of a new VC, is represented by the VCM. When the VCM receives
the request for a new VC, it invokes the create VC method on the VCF. The VCF then
calls the VHM for the creation of a new VH as many times as the number of nodes de-
fined in the VC creation’s request. Once all the VHs are created, the VCF stores all the
information regarding the VHs and returns to the VCM a reference to the new VC created.

Virtual Resources Definition. Following the approach of [15] and [9], to describe a
VC we use an XML schema that defines all the details and the attributes of the corre-
sponding computational resource associated to it. The XML describes the virtual cluster
as a whole, in terms of general properties common to all the nodes; it also specifies the
details of each node in terms of their parameters. So, a virtual cluster is defined by
declaring a list of nodes. For each node, the name and the node type are specified. Each
node can also contain the details of his implementation or a reference to a specific node
configuration.

The schema definition has been splitted into two separate files. The former contains
the description of the whole cluster while the latter the description of a single node.
This was done to separate the level of details between the cluster definition and the
nodes description. During the creation of a new cluster, the control plane, which is
responsible for the new cluster deployment, processes the XML file and, for each node,
it sends the corresponding XML fragment to a virtual host controller. The virtual host
controller doesn’t need to know about the whole cluster details; he only has to deal with
the parameters necessary for the creation of a new virtual node.

A virtual node configuration contains the details of the disks partition, the network
settings and also the boot parameters like the number of virtual processors or the amount
of memory associated with the new host.

3 Preliminary Testbed

Following the approach described above, we develop the whole system using a pre-
liminary experimental environment composed by three servers connected to the same

SOA Based Control Plane for Virtual Clusters 161

ethernet switch. Each server was equipped with two 2.2 GHz AMD Opteron CPUs,
2GB main memory, and two 200GB hard drives.

One server was used for the implementation of the control plane. We choose the
ActiveBPEL server[20] as workflows manager. ActiveBPEL is an open source imple-
mentation of a BPEL engine, that follows the J2EE ([21]) specifications, entirely written
in Java. We deployed it onto the Tomcat container ([22]).

The other two servers were equipped with the Xen software. The VHs are created
through the call to a local web-service running inside a WSRF container. The imple-
mentation of the web services was written in Python, using the pyGridWare toolkit [23].

To create all the scripts for the activation of the container and his associated services,
we used a template mechanism ([24]) entirely written in python that, starting from a
definition of the methods written in XML, is able to automatically generate all the stub
classes and the code that are necessary for the execution of the service’s methods.

4 Target Testbed

The actual target testbed for the control plane software is currently being delivered
at CRS4 site, and it is composed by 72 IBM System x3455 machines. Each machine
contains 2 dual-core AMD Opteron processors of the latest ”revision F” series (2218)
operating at 2.6 GHz, with 64 bit extension and 1 MB of L2 cache per core. The amount
of RAM is of 8 GB per machine, while the storage consists of two 200 GB SATA
disks, managed by the Broadcom SATA/Raid controller. Two Broadcom 5704 Gigabit
Ethernet allow each host to connect to the LAN while their IPMI integrated controller
allows remote monitoring and remote management.

Twenty-four machines of the 72 are connected, through an Infiniband Interface, to a
Cisco Infiniband Fabric Switch. All nodes have two free PCI Express slots that can be
used for further addition of new peripherals.

Fig. 3. The workflow of a new virtual cluster

162 P. Anedda et al.

5 Conclusions

We have described our strategy for the creation of virtual computer clusters based
on standard SOA and hosts virtualization technologies and our ongoing work. Our
deployment mechanism, as well as the system management, is delegated to a control
plane based on workflows of coordinated web services. The control plane is based on
two logically independent modules, the first is responsible of the physical resources
and the deployment on the hardware of virtual Xen hypervisor images, while the sec-
ond manages operations on virtual clusters such as their creation, startup and control.
Low level operations – e.g., the control of a running image on a given computational
host – are directly provided by atomic web services, in this specific case a WSRF ser-
vice running in the dom0 of each participating physical Xen host, while all logic above
that level is implemented as BPEL scripts.

Acknowledgments. This research is partially supported by the Italian Ministry of Uni-
versity and Research, project PON-Cybersar 2006.

References

1. Warren, S.S.: The VMWare Workstation 5 Handbook. Charles River Media, Hingham, MA,
USA (2005)

2. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P.,
Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of the ACM Symposium
on Operating Systems Principles (October 2003)

3. Qumranet: Kernel based virtual machine.,
http://en.wikipedia.org/wiki/Kernel-based Virtual Machine

4. Mergen, M.F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for high-performance com-
puting. SIGOPS Oper. Syst. Rev. 40(2), 8–11 (2006)

5. Keahey, K., Foster, I.T., Freeman, T., Zhang, X., Galron, D.: Virtual workspaces in the
grid. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 421–431.
Springer, Heidelberg (2005)

6. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., Krsul, I., Matsunaga, A.,
Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From virtualized resources to virtual
computing grids: The in-vigo system. Future Gener. Comput. Syst. 21(6), 896–909 (2005)

7. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for grid computing on virtual machines.
In: ICDCS 2003: Proceedings of the 23rd International Conference on Distributed Comput-
ing Systems, Washington, DC, USA, p. 550. IEEE Computer Society Press, Los Alamitos
(2003)

8. Ramakrishnan, L., Irwin, D., Grit, L., Yumerefendi, A., Iamnitchi, A., Chase, J.: Grid alloca-
tion and reservation—toward a doctrine of containment: grid hosting with adaptive resource
control. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, p. 101. Springer, Hei-
delberg (2006)

9. Foster, I.T., Freeman, T., Keahey, K., Scheftner, D., Sotomayer, B., Zhang, X.: Virtual clus-
ters for grid communities. In: CCGRID, pp. 513–520. IEEE Computer Society, Los Alamitos
(2006)

10. Foster, I., Grossman, R.L.: Data integration in a bandwidth-rich world. Commun.
ACM 46(11), 50–57 (2003)

http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

SOA Based Control Plane for Virtual Clusters 163

11. Smarr, L., Chien, A.A., DeFanti, T.A., Leigh, J., Papadopoulos, P.M.: The optIPuter. Com-
mun. ACM 46(11), 58–67 (2003)

12. Lehman, T., Sobieski, J., Jabbari, B.: Dragon: A framework for service provisioning in het-
erogenous grid networks. IEEE Communications Magazine 44(3) (2006)

13. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E., Jegou, Y., Lanteri, S., Leduc,
J., Melab, N., Mornet, G., Namyst, R., Primet, P., Richard, O.: Grid 5000: a large scale,
reconfigurable, controlable and monitorable Grid platform. In: Grid 2005 Workshop, Seattle,
USA, November 13-14, 2005, IEEE/ACM (2005)

14. Hégaret, P.L.: Web services and soa.,
http://www.w3.org/2003/Talks/1211-xml2003-wssoa

15. Zhang, X., Keahey, K., Foster, I., Freeman, T.: Virtual cluster workspaces for grid applica-
tions. In: Cluster Computing and the Grid, 2006. CCGRID 2006. Sixth IEEE International
Symposium (2006)

16. Kadeploy team: Kadeploy, http://kadeploy.imag.fr/
17. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling, D.,

Tuecke, S.: Modeling and managing state in distributed systems: The role of OGSI and
WSRF. Proceedings of the IEEE 93, 604–612 (2005)

18. BPELSource: Bpelsource, http://www.bpelsource.com/
19. World Wide Web Consortium: Web services description language (wsdl) 1.1.,

http://www.w3.org/TR/wsdl
20. ActiveBPEL: Activebpel., http://www.activebpel.org/
21. Sun: Java platform, enterprise edition., http://java.sun.com/javaee/
22. Apache: Apache tomcat., http://tomcat.apache.org/
23. Boverhof, J.: pygridware: Python web services resource framework
24. Rudd, T.: Cheetah - the python-powered template engine

http://www.w3.org/2003/Talks/1211-xml2003-wssoa
http://kadeploy.imag.fr/
http://www.bpelsource.com/
http://www.w3.org/TR/wsdl
http://www.activebpel.org/
http://java.sun.com/javaee/
http://tomcat.apache.org/

Grid Virtual Laboratory Architecture

Eduardo Grosclaude, Francisco López Luro, and Mario Leandro Bertogna

Department of Computer Science
Universidad Nacional del Comahue

C.P 8300. Buenos Aires 1400. Neuquén. Argentina
{oso,flopez,mlbertog}@uncoma.edu.ar

Abstract. This work describes an approach to managing networked vir-
tual and physical resources under a Grid-based Virtual Organization,
viewed as elementary components of Virtual Remote Laboratories. While
keeping overhead at local organizations at a minimum, we seek to obtain
secure and dynamic configuration of available resources, then provid-
ing interactive access to these resources through web interfaces. These
resources can be involved in tasks such as parallel computing, internet-
working simulation laboratories, etc. Two test cases, representative of
two broad use case classes, are implemented.

Keywords: Grid, Resource Management, High Performance Comput-
ing, Virtual Laboratory, Distance Education.

1 Introduction

Availability and integration of geographically spersed technological resources is
currently one of the most important challenges. The quest for this kind of solu-
tions calls for greater software and hardware requirements. A greater complexity
in administration is also brought in, as resources across distributed environments
are heterogeneous and a security posture is to be kept. Physical and virtual re-
sources are logically grouped into Virtual Laboratories. These are defined by
UNESCO[1] as electronic workspaces to collaborate and experiment in research
and other creational activities, for generating and delivering research results us-
ing distributed information technologies. The biggest motivations for Remote
Laboratories are their ability to scale up, to globally integrate organizations, to
allow for sharing of specific resources, for collection and analysis of geographi-
cally distributed data, and for interdisciplinary specialists to cooperate. Among
common uses for Virtual Laboratories are remote monitoring of production pro-
cesses, remotely assessing performance of real and simulated facilities, remote
configuration and management, and distance education applications. This work
proposes a solution for the generation of Virtual Laboratories, using physical and
virtual devices deployed at distinct local organizations and logically grouped by
a virtual organization over a Grid environment. This must allow for dynamic and
flexible configuration of a workspace by means of open standards and protocols.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 164–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Grid Virtual Laboratory Architecture 165

We will describe the solution’s architecture and components, and two use
cases will be analyzed: a parallel computing environment (parcomp) and an
educational remote virtual laboratory in internetworking (netlab).

2 Architecture Overview

From the design viewpoint, the proposed architecture is conceptually divided
into three layers or tiers. In the first one, named access tier, the clients accessing
the system are defined. The second, management tier, considers access control
and creation of resources. Finally, the third, resource tier, deals with the imple-
mentation of physical and virtual resources.

A diagram of this architecture (fig. 1) pictures clients accessing a virtual
organization through Internet. This particular Virtual Organization is composed
by four Grid nodes, distributed into two physical organizations A and B. Both
organizations own different types of Grid-available resources, but they both have
dedicated clusters allowing the instantiation of virtual machines.

The solution we present here produces a space where independent virtual
networks can be created. Administration of these networks runs completely apart
from the physical networks that support them. Coordination tasks among local
administration people are kept to a minimum.

Fig. 1. Architecture

166 E. Grosclaude, F. López Luro, and M.L. Bertogna

The first type of clients are Grid clients, which give access to resources at
one or more Grid nodes from a command line interface. Grid nodes and their
resources are managed with a Grid client. Web clients, having no Grid-specific
tool or library to execute their tasks, are a second type. They do not know about
implementation issues. Final users of the system sit at these clients, and their
workspace is a virtual space. Finally, secure clients accesing remote terminals
use a Grid security model. This is a special client of the first type. Teachers, or
Grid administrators, use this kind of client.

The modules managing the Grid platform are found at the second tier. Each
Grid node act as a gateway to the local cluster’s private address space. Tasks
execution in this space is always done through these nodes. To do work upon
physical and virtual machines, command files can be executed in the domains
managed by these Grid nodes.

At the third tier, the system’s physical and virtual nodes are found. Physi-
cal nodes are dedicated to services requested by the Grid node. Each of these
physical nodes can instantiate one or more resources such as virtual machines
or simulated internetworking devices. Moreover, special resources like physical
devices or persistent storage can be accessed from the virtual addressing space.

3 Architecture Components

We schematize in fig. 2 how a client accesses the system services involved, for
instance, in the execution of a given request for computing nodes. Here the
client calls a scheduling service, parametrically expressing his computing needs
in an XML-based description language. The result from this stage specifies which
physical nodes will be involved in the service, how many virtual nodes will be
spawned at each of them, and which implementation of virtual machines will
support each virtual node. These results are then sent by the scheduler as a pa-
rameter to the corresponding Web Service at each Grid node. Other parameters
included in the scheduler’s results are the range of network addresses to be used;
and the service access points, if interactive access is in order. Each Grid node
will instantiate the machines and return a service access locator for the client to
access this network of virtual resources.

3.1 Requirements Specification

The system’s input, at the edge next to the user, is a description of the virtual
scenario the user intends to instantiate. The feasibility of this virtual scenario
will be ensured, and then the proper logical resources will be mapped over a
set of physical resources. Ideally, the user will operate an interface for edition of
requirements to build the original description. For simplicity, to test our archi-
tecture we have devised a small programming interface which suffices to demon-
strate the system’s usage. This programming interface implements a simple set
of classes modeling the desired devices and topology, as well as their mapping
to the devices in the physical plant.

Grid Virtual Laboratory Architecture 167

Fig. 2. Sequence Diagram

Using an object based language, the user can describe her scenario, essen-
tially a graph whose nodes are the virtual nodes in the logical network to be
instantiated; and whose arcs are the links that build up the desired topology.
The scheduler will later resolve the request by mapping the virtual elements in
the scenario to certain elements in the physical plant.

The programming interface assisted us during the tests to manually specify
suitable scenarios and their mappings. This compensated for the lack of a visual
interface and allowed to bypass the scheduling stage at the same time.

3.2 Scheduler

Grid nodes have status information about hosts in the physical plant. The sched-
uler, by reasoning upon configuration and status data about those physical hosts,
will output an allocation plan or mapping between virtual and pyhsical nodes.
A given Grid node will offer a variable but limited amount of resources. Un-
der non-availability or high load conditions, the scheduler can instantiate logical
resources at several other Grid nodes if needed, then building a virtual net-
work among them. The ability to detect which physical machines in the Virtual
Organization have virtualization software is needed to carry on the scheduling
phase.

In addition to building the mapping plan, the scheduler must return the ser-
vice access locators for the virtual elements instantiated and other physical de-
vices or services. For the parcomp use case, the (sparse) mapping will instan-
tiate no more than a single virtual machine per physical host; all these virtual
machines will share the same addressing space; and the output to the user will

168 E. Grosclaude, F. López Luro, and M.L. Bertogna

be just a single service access locator and a service URI for persistent storage.
On the other hand, for the netlab use case, the (dense) mapping will work un-
der fundamentally different scheduling constraints, i.e. possibly requesting many
virtual resources per physical host. These virtual resources will also live in the
same addressing space but the scheduler’s output to the user will be a set of
service access locators and URIs, one for each virtual resource instantiated.

For the netlab use case, physical topology can be exploited according to
logic topology (i.e. mapping certain virtual links to certain physical links). In
the parcomp use case, it makes little sense to instantiate more than one virtual
machine on the same physical machine, as the application is performance-driven;
and the whole instantiated scenario should be located into a same physical cluster
if possible.

3.3 Logical to Physical Mapping

The monitoring and discovery system offered by the Grid environment allows
users to know which resources are considered a part of the Virtual Organization,
and to monitor their status. Every piece of information acquired through aggre-
gation services is maintained in XML and accessed through XPath queries. The
same can be said about other query mechanisms through Web Services.

In our work, the information flow hierarchy begins at the cluster monitoring
level [2]. The Ganglia package was used to link cluster data to each one of
the Grid nodes. To acquire information about active machines in the clusters,
the scheduling service sends an XPath query to the Grid node. This query is
generated following the requirements presented in the logical scenario and can
contain threshold specifications such as free memory or idle CPU status.

3.4 Resource Instantiation

Once a feasible logical-to-physical mapping is obtained, and having previously
ensured the availability of resources, virtual machines are created in physical
nodes under each Grid node. As shown in fig. 2, the scheduler will send allocation
requests to every Grid node using a Web Services interface. The Grid nodes
in turn are to redirect these requests to corresponding physical nodes. Scripts
were implemented to translate the specifications for virtual machine instantiation
into configuration files to be interpreted in each physical node. Extending these
scripts transparently allows for the use of new virtualization technologies.

3.5 Network Virtualization

After every logical resource requested in the original scenario is up and running,
they have to be interconnected so as to reflect the required topology. However,
we seek to hide the details concerning the particular networks and physical
hosts existing behind each Grid node. Therefore, we need a private network to
relate the virtual machines. We selected VDE SWITCH [3] and NetCat[4] as
tools to deploy virtual “cabling”. Custom scripts were created to build up a

Grid Virtual Laboratory Architecture 169

solution according to the system’s needs. Virtual machines are linked by means
of “virtual cables” using TCP tunnels as a transport between physical nodes.
A similar approach is used to interconnect LANs on different domains, this
time under an SSH connection to ensure privacy. Level 2 frames exchanged
by the virtual machines are encapsulated into the tunnel. The elements in the
instantiated scenario stay transparently interconnected over a private virtual
addressing space which cannot collide with other addressing schemes at the
participating Grid nodes.

4 Use Case Implementation

The test cases selected for this work have different goals, and their correspond-
ing scenarios present different topologies and interaction requirements. In the
netlab test case, links do have specific attributes, such as bandwidth, delay
or reliability, and they are crucial to the functioning of the instantiated sce-
nario. Access to the instantiated elements by the user is essentially interactive.
In the parcomp case, the effective processing power of virtual machines is what
matters. Tasks are launched in batch mode, and they are not interactive. As a
consequence, both scenarios will challenge the mapping process with different
goals and constraints.

Our computing environment is composed by two clusters. One of them is
located at premises of the Universidad Nacional del Comahue (UNC) and the
other one is hosted at a local IT company (CDF). Both locations are in the
same city. Hosts in the UNC cluster are Pentium IV 2.2 MHz machines with
512 MB RAM. The CDF cluster is composed by five Pentium IV 3.06 GHz, Hy-
perThreading machines, with 1GB RAM. The software used for managing the
Grid environment is Globus Toolkit 4 [5]. The operating system was Linux, dis-
tributions CentOS and Fedora Core 6. The parcomp use case was implemented
on Xen 3.0.3 [6] virtual machines. For the netlab use case, QEMU [7] virtual
machines were also used.

4.1 Parallel Application Use Case (parcomp)

The goal for the parcomp use case is testing the practical feasibility, and mea-
suring the overhead, of our solution for the execution of parallel applications.
We want to benefit from a Grid environment’s capabilities, while not having
to modify the application. For this use case we selected a parallel application
used to model transmission in neural synapses. This application belongs to for-
mer work developed by the Complex Systems research group at Universidad
Nacional General Sarmiento[8]. The application works under the master-worker
paradigm, adequately balancing load among the workers. After each Worker fin-
ishes a batch of work, it reports partial results to the Master. The Master then
collects the partial results and proceeds with other sequential processing [9].

The application was run using the MPICH 1.2.7p1 parallel library. Three
kinds of tests were performed. The first test consisted in the execution of the

170 E. Grosclaude, F. López Luro, and M.L. Bertogna

application without involving any virtualization. The goal of this first test was
to acquire a baseline against which virtualization overhead could be measured.
The next test uses virtual machines over physical machines, but no network
virtualization. This test allows us to observe application processing overhead.
The last execution test uses virtual machines as well as virtual networking, and
allows us to know the amount of communications overhead in the complete
solution.

As can be seen in Table 1, the Worker’s computing overhead for the virtual
computing-only test is very low. However, measurements taken at the Master
(which account for coordination and data exchange with Workers) show a no-
ticeable increment in computing time for the different virtualization types.

Table 1. Parallel Aplication Benchmark

Master Worker

Pure Parallel 512 secs. 50 secs.

Virtual Machines -Physical Network 640 secs. 69 secs.

Virtual Machines - Virtual Network (With Netcat) 768 secs. 73.5 secs.

Virtual Machines -Virtual Network (With SSH) 768 secs. 74 secs.

4.2 Internetworking Laboratory Use Case (netlab)

The netlab use case consists in a computer internetworking scenario. Students
are expected to practice some network configuration and administration tech-
niques inside this environment. We assume resources are limited at the univer-
sity labs, hence machines hosted at remote facilities owned by an external entity
(such as a partner company) are made available under an agreement and ac-
cessed through Internet. To this end, the partner entity stores a repository of
system images that can be used to do networking practices. The goal for this use
case is to show how the proposed infrastructure can allow the automatic instan-
tiation of virtual laboratory scenarios using a Grid environment and making use
of physical resources available at each organization.

As a simple example, the practice assignment implies interconnecting three
nodes, located on two different LANs linked by a router. First, the teacher gener-
ates a template with the logical design of the assignment. The particular amount
of physical resources available at the university labs is immaterial at this stage.
Then she invokes the scheduling service of the solution for every student group
taking the assignment. The scheduler will instantiate virtual machines on phys-
ical hosts across the virtual organization as needed. The virtual scenarios in
execution will be the resulting workspaces. The virtual devices are made avail-
able through their service access locators, published on web pages dynamically
generated. The students, using a Java-enabled browser, access the resources from
different locations and collaborate on the assignment.

The experiences showed variable delays, depending on the link capacity and
offered load at the moment of performing the assignment work. Performance

Grid Virtual Laboratory Architecture 171

measurements were done using the NetPerf tool[10]. As shown in fig. 3, the non-
virtualized execution, at 98 Mbps, is close to the theoretical expectation. As
connections are virtualized, transmission capacity loss reaches about 50% over
an SSH “cable”.

Fig. 3. Virtual Network Benchmark

5 Related Work

Some amount of work has been published about Virtual Laboratories, usually
showing high performance environments as a use case, and highlighting some
aspect of the solution. The main concern of the Virtual Spaces project [11] is
defining and administrating virtual spaces in a Grid environment. Its use case
is based on clusters of virtual machines inside a local area network. Cluster on
Demand[12] implements the packaging of a cluster scheduler to obtain subsets of
a physical cluster through dynamic network address assignment. VioCluster[13]
is closely related to this work, although it does not consider Grid for virtual
network configuration, nor dynamic discovery of candidate physical machines
for virtual machine instantiation. Instead, VioCluster focuses on automatic ne-
gotiation of administration domains following established policies, and relates
to autonomic concepts. In-VIGO[14], at a very higher abstraction level, allows
applications to use virtual environments through Grid services.

Our work can be compared to these efforts, as all of them seek to provide
virtual environments through the use of virtual machines. Our approach differs
from them in that Grid technology is used to build the communication infras-
tructure for resources, allowing the dynamic creation of common spaces across
different domains.

6 Conclusion

We described a feasible solution for the coordinated usage of geographically
spersed computing resources, under a virtual organization scheme provided by

172 E. Grosclaude, F. López Luro, and M.L. Bertogna

the Grid infrastructure. The solution makes use of virtual machines for flexibility
and transparency.

Our work delivers an approach to issues related to configuration, access and
resource management. Regarding configuration, a simple object-based language
has been specified for the design and validation of the logical requirements.
As for access, a model for service access locators, achieving virtual terminal
redirection from the resources across Internet, onto the user, has been developed
and tested. As for management, Grid middleware functionality has been used to
allow remote execution and data transfer across administrative domains with no
work required from local administrators.

Use case implementation allowed us to gather some experience about the
proposed solution’s behaviour under different sets of requirements. The first one,
the use of a parallel application, where network configuration is trivial, with a
single type of virtual machine but with strong performance requirements. The
second one, a remote laboratory where the main requirement is flexibility in the
configuration of several kinds of scenarios, and there is a demand for a high
number of virtual machines, but no strong performance requirements.

The implementation of these two use cases motivated a detailed analysis.
The existence and separate configuration of the private addressing space pro-
vided addressing transparency and allowed the enforcement of a security policy
when working on lab assignments (netlab). Usage of virtual machines, when
implementing a parallel computing application (parcomp), eased working with
divergingly configured clusters (such as when having different versions of par-
allel libraries) with little administration overhead. In both cases, introducing a
Grid environment into the problem of cluster hosts configuration allows for the
combination of a greater number of resources on demand, therefore enhancing
usage patterns.

In the case where performance requirements are not specific (netlab), and
where primary importance is given to the creation of a virtual work environ-
ment, separated from the encompassing physical environment, this is an accept-
able solution which allows users to make an efficient usage of available resources,
or introduce otherwise unavailable elements. When the application bears per-
formance constraints (parcomp), usage analysis must lead to further studying
the infrastructure behaviour for the particular application (namely, computing
power demand, amount of coordination messaging, bulk data transfer volume,
network virtualization overhead must all be taken into account).

Our future work includes studying the optimization of the virtual machines’
networking. Enhancing performance at the point of access to the network is of
prime importance for the parallel computing class of use cases. For Xen vir-
tual machines, this is currently dependent on Linux “bridge” devices. As for
configuration, we plan to extend the specification language, introducing new
interfaces. As for administration, we plan to define a framework for querying
virtual scenarios and for dynamic creation of virtual machines on a package- or
service-provided basis, so as to be able to easily manage repositories to enhance
the solution’s availability and flexibility.

Grid Virtual Laboratory Architecture 173

References

1. James, P., Vary, E.: Report of the Expert Meeting on Virtual Laboratories. Tech-
nical Report CII-00/WS/01, International Institute of Theoretical and Applied
Physics (IITAP), UNESCO (2000)

2. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni-
toring with ganglia, pp. 289–298 (2003)

3. Davoli, R.: Vde: Virtual distributed ethernet. In: TRIDENTCOM 2005: Proceed-
ings of the First International Conference on Testbeds and Research Infrastructures
for the DEvelopment of NeTworks and COMmunities (TRIDENTCOM 2005),
Washington, DC, USA, pp. 213–220. IEEE Computer Society, Los Alamitos (2005)

4. NetCat, http://netcat.sourceforge.net/
5. Foster, I.T.: Globus toolkit version 4: Software for service-oriented systems. In:

NPC, pp. 2–13 (2005)
6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164–177. ACM Press, New York (2003)

7. QEMU, a fast and portable dynamic translator (2005)
8. Carusela, M., Perazzo, R., Romanelli, L.: Information transmission and storage

sustained by noise. Physica D 168–169, 177–183 (2002)
9. Argollo, E., Gaudiani, A., Rexachs, D., Luque, E.: Tuning application in a multi-

cluster environment. In: Euro-Par, pp. 78–88 (2006)
10. NetPerf., http://www.netperf.org/netperf/
11. Foster, I.T., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.:

Virtual clusters for grid communities. In: CCGRID, pp. 513–520. IEEE Computer
Society, Los Alamitos (2006)

12. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual
clusters in a grid site manager. In: HPDC 2003: Proceedings of the 12th IEEE
International Symposium on High Performance Distributed Computing (HPDC
2003), p. 90. IEEE Computer Society, Los Alamitos (2003)

13. Ruth, P., Mcgachey, P., Xu, D.: Viocluster: Virtualization for dynamic computa-
tional domains. In: Proceedings of the IEEE International Conference on Cluster
Computing (Cluster 2005) (2005)

14. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., Krsul, I., Mat-
sunaga, A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From virtualized
resources to virtual computing grids: The in-vigo system. Future Gener. Comput.
Syst. 21(6), 896–909 (2005)

http://netcat.sourceforge.net/
http://www.netperf.org/netperf/

Information Service of Virtual Machine Pool for

Grid Computing

Marcel Kunze and Lizhe Wang

Institute for Scientific Computing, Forschungszentrum Karlsruhe
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

{Marcel.Kunze,Lizhe.Wang}@iwr.fzk.de

Abstract. Distributed virtual machines can help to build scalable, man-
ageable and efficient Grid infrastructures. The work proposed in this
paper focuses on employing virtual machines for Grid computing. In
order to efficiently run Grid applications, resource information of vir-
tual machines should be provided. The paper firstly discusses the sys-
tem architecture of virtual machine pools and the process of information
retrieval from virtual machines. Based on the characterization of the
system model, the paper presents the work how to retrieve resource in-
formation from Xen/VMware virtual machines via VMware CIM SDK
and light weight Java agents. The resource information is integrated into
Grid information service. The work is implemented in a test bed with
Xen/VMware virtual machines and Globus Toolkit.

Keywords: Virtual machine, Grid computing, Information service.

1 Introduction

Grid computing technology [1] offers interesting solutions for parallel and dis-
tributed computing. It can provide reliable, collaborative and secure access to
remote computational resources as well as distributed data and scientific instru-
ments. However, as more resources are shared in Grid environments largely sized
distributed data can be manipulated and applications for Grid computing may
become complex and intractable. Grid workflows nowadays are frequently used
to model complex applications for Grid computing. Based on Grid middleware
and Grid infrastructures a Grid workflow system defines, specifies and manages
a workflow on computational Grids [2].

A virtual machine is a computing platform that creates a virtualized layer
between the computing hardware and the application. This paper is devoted
to discuss a Grid workflow system on distributed virtual machines. There are
advantages like on demand creation and customization, performance isolation,
legacy software support and ease of management.

We try to build a workflow system based on virtual machines [3]. A Grid
workflow user could experience the following challenges:

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 174–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Information Service of Virtual Machine Pool for Grid Computing 175

– Site autonomy
In the virtual machine based Grid system the hosting resources are usually

owned and controlled by different organizations at different sites. Users may
have to meet different resource management policies during the manipulation
of their virtual machines.

– Hierarchy
The virtual machine based Grid system is hierarchical in nature. It con-

tains several levels, for instance, virtual machine level, hosting resource level
and the user access point, i.e., Grid portal.

– Heterogeneity
The virtual machine based Grid system includes heterogeneous hosting

resources, virtual machine technologies (e.g., Xen, VMware) as well as pro-
gramming interfaces.

– Large scale distribution
Computer centers and data centers frequently employ virtual machines

and build Grid infrastructures across geographically distributed sites.

The paper implements information collectors in Xen/Vmware virtual machines
and builds Grid information service with virtual machine information providers.
The paper is organized as follows: related work is investigated in Section 2;
Section 3 presents the system architecture of employing virtual machines for
Grid computing and Section 4 provides details of the design and implementation
of the system. In Section 5, test results are discussed; Section 6 concludes the
paper and points out future work.

2 Related Work

Since several years the Grid computing research community shows interest for
virtual machines and virtual environments. The typical Virtual Machine Monitor
(VMM) or hypervisor setup includes Xen VMM [4], VMware workstation and
ESX server [5], and User Mode Linux [6].

The Globus alliance recently implemented the concept of virtual workspace [7],
which allows a Grid client to define an environment in terms of its requirements,
manage it, and then deploy the environment on the Grid. The implementation
is based on Globus Toolkit 4 (GT4) and it only supports Xen VMM. Some other
research work also focuses on deploying computing systems or test beds with
virtual machines, for example, virtualization of batch queueing system [8], Grid-
Builder [9], using virtual machine as Grid gateway [10], multi-site MPI platform
with Xen virtual machine [11], migration of virtual machines in MAN/WAN
[12].

Other researchers try to build virtulized middleware for clusters and dis-
tributed systems. Xen Grid Engine [13] employs an approach to create dynamic
virtual cluster partitions using para-virtualization techniques. The work pre-
sented in [14] builds virtual clusters and virtual networks for applications in large
distributed systems. The In-VIGO [15] project aims to build virtulization mid-
dleware for computational Grids. In-VIGO provides a distributed environment

176 M. Kunze and L. Wang

where multiple application instances can coexist in virtual or physical resources
such that clients are unaware of the complexity inherent to Grid computing.

Another important topic is the performance analysis of virtual machines or
virtual environments. The Xen group brings a performance evaluation and com-
parison between serval popular VMMs concerning the performance overhead in
different scenarios [16]. Other research efforts refer to virtual machine based sys-
tems, i.e., performance of para- and paene- virtualized systems [17], performance
enhancement of SMP clusters with virtual machines [18].

3 System Architecture of Employing Virtual Machines

This section describes the system architecture of a virtual machine based system
for Grid computing. The system architecture is defined hierarchically:

– Grid level
The target Grid system contains multiple geographically distributed sites,

which could be computer centers, data centers and research institutes. On
the Grid level, each site is represented and accessed via a single access point,
where Grid middleware, for instance Globus Toolkit, is installed.

– Site level
Each site provides a number of hosting resources, for instance cluster,

PVP or MPP. Physical resources at each site are interconnected and can
support multiple virtual machines.

– Virtual machine level
Hosting resources are installed with VMMs, such as VMware ESX server

or Xen hypervisor, and back several virtual machines. Multiple virtual ma-
chines can be grouped into resource pools.

In the system model defined in Fig. 1, each site in the Grid system provides
an access point (or head node), via which clients can manipulate the virtual
machines backed by the Virtual Machine Monitor (VMM), like for instance Xen
VMM, VMware server or VMware ESX server. For example, users can deploy
virtual machines in Grid infrastructures, retrieve resource information of virtual
machines and submit Grid applications in workflow to virtual machine pools. The
access point can be installed using Globus Toolkit or Condor daemon, virtual
machines can thus be configured as a cluster with a GRAM (Globus Resource
Allocation Manager) head node. The Grid application is submitted to virtual
machine pools via GRAM.

4 Design and Implementation of an Information Service

4.1 Overview

The information service consists of an information collector in virtual machines,
an information provider in the access point, and the aggregated Globus index
service. The information collector which runs inside a virtual machine is used to

Information Service of Virtual Machine Pool for Grid Computing 177

access point

1

3

4

2

VM
3

VM

VMware ESX server

hosting resource

VM
1

VM

Xen VMM

hosting resource

VM
2

VM
4

VMware Server

hosting resource

Fig. 1. System model for virtual machine based Grid computing

retrieve resource information for the information provider. Information providers
for Globus MDS 4 (Monitoring and Discovery System) organize the resource
information from information collectors in predefined XML schema, which are
aggregated into the Globus index service. The WebMDS can be configured as a
graphical user interface based on the Globus index service (see also Fig. 2).

WebMDS

VMVM

VMM

 provider

 information

 provider

 information

Service aggregation

 information

 collector

site

......
VM

hosting resourcehosting resource

access

point

......
 information

 provider

Command Line

 Service client

 Globus Index

Fig. 2. Overview of the information service

178 M. Kunze and L. Wang

4.2 Information Collector

The information collector is a light weight software, which resides inside a virtual
machine and collects resource information. In the system, two types of informa-
tion collectors have been implemented:

– CIMOM for VMware ESX server
VMware ESX server is a commercial virtualization product of VMware Inc.
Common Information Model (CIM) [19] is defined as an international stan-
dard by the Distributed Management Task Force (DMTF) [20]. The VMware
ESX server together with CIM SDK provides a CIM-compliant object model
for virtual machines and their related storage devices. Fig. 3 shows a typi-
cal configuration environment of VMware ESX server. The virtual machine
contains a virtual disk that resides as a virtual disk file on a storage area
network.

storage array

VMware ESX server

 disk

virtual

 FC HBA

VM
LUN

virtual

disk file

Fig. 3. Sample environment of VMware ESX server

The SMI-S (Storage Management Initiative Specification) schema for
the sample ESX server environment is shown using UML in Fig. 4. ESX-
ComputerSystem is the kernel object of the system. It associates VM, Vir-
tualDisk and FC HBA&LUN 1 with HostedDependency, HostedStoragePool
and SystemDevice relationships respectively. VM is associated with Vir-
tualDisk with ArchiConnection relationship. The latter is associated with
FC HBA&LUN in ConcreteComponent relationship.

The pegasus CIMOM (CIM Object Manager) [21] is installed on the
VMware ESX server. The information provider at the access point works
as the CIM client, communicates with pegasus CIMOM to retrieve infor-
mation from virtual machines and their associated storage. The information
provider complies with SMI-S profile [22] and transports CIM XML over
HTTP/HTTPS to pegasus CIMOM (see also Fig. 5).

– Light weight Java agent for VMware server and Xen VMM

1 Fibre Channel Host Bus Adaptor & Logical Unit Number

Information Service of Virtual Machine Pool for Grid Computing 179

ConcreteComponent

VirtualDisk ESXComputerSystem

 FC HBA & LUN

VM

HostedDependency

SystemDevice

HostedStoragePool ArchiveConnection

Fig. 4. CIM schema for VMware ESX server

HTTP/HTTPS

provider

information Pegasus

CIMOM

 VMware ESX server

Fig. 5. CIMON for VMware ESX server

VMware server is a free virtualization product of VMware VMM without
CIM SDK support. The Xen CIM project is providing an implementation of
the preliminary virtualization and resource allocation models, which is cur-
rently being defined by the DMTF System Virtualization, Partitioning, and
Clustering Working Group (SVPC WG). As the CIM SDK or programming
support is not available for Xen VMM and VMware server we implemented a
light weight Java agent as information collector for Xen VMM and VMware
server.

The information agent contains the following components (see also Fig. 6):
• Information Sensor

The information sensor is designed to retrieve certain types of re-
source information. For example, a memory sensor provides memory in-
formation. In the implementation, information sensors are perl scripts
to retrieve memory, CPU and OS information.

• Information Engine
The information engine forwards the information collected from infor-

mation sensors to the access point. The information engine firstly queries
on the information item cache in the memory. When the information in
the cache is missed or expired, the engine then invokes information sen-
sors to deliver the information.

• Information Item Cache
The information item cache is a block of memory allocated to store

values of information items. Each time after the information sensors are
executed, the information item cache is updated.

180 M. Kunze and L. Wang

The communication between the information agent and information provider
in the access point is implemented using TCP/IP socket communication. The
information agent periodically updates the information to the information
provider at the access point. The information provider can also query infor-
mation agents to obtain the latest information.

information cache

 information

 providerVM

VMWare Server/Xen VMM

information sensor

VM

hosting resource

......

Access point

information engine
 TCP/IP

Fig. 6. Light weight Java agent for VMware server and Xen VMM

4.3 Information Provider for Globus Index Service Aggregation

An information provider resides on the access point and provides virtual machine
information to GT4 index service back end [23]. The information retrieved from
virtual machines are organized in plain text format. The information provider
defines a simple XML schema and reorganizes the plain text based resource
information in the schema.

It is also demanded to configure Globus Toolkit to enable the information
provider for Globus index service, for example, registering the information
provider, mapping the information provider in the deployment file of the Globus
index service. Globus index service clients can get resource information from
virtual machines, for example, via WebMDS [24] or from the Globus Toolkit
command line.

5 Test Results

5.1 Test Bed

The actual test bed is configured as shown in Fig. 7. Blade10, Blade11 and
Lizhe3 are hosting resources which are installed with Xen VMM, VMware ESX
server and VMware server, respectively. VM1, VM2 and VM3 are virtual
machines backed by the hosting resources that form the virtual machine pool.
Lizhe2 is the access point for the virtual machine pool (see also Tab. 1).

Information Service of Virtual Machine Pool for Grid Computing 181

blade10

VM3VM2VM1

virtual machine pool

lizhe2lizhe3blade11

Fig. 7. Test bed

Table 1. Test bed summary

Resource Name Resource Type Software installed

Blade10 IBM BladeCenter HS20 Xen VMM

Blade11 IBM BladeCenter LS20 VMware ESX server

Lizhe3 Linux Workstation VMware server

Lizhe2 Linux Workstation GT4, Condor, GridFTP

VM1, VM2, VM3 Virtual Machine —

5.2 Test Results

The access point runs an information provider to retrieve information from
VM1/VM3 and VM2 via light weight Java agent and VMware ESX server
SDK respectively. The information provider collects the resource information
and organizes it with XML schema (shown as below):

<VirtualMachineInformation>
<VirtualMachine>
<item name="Hostname" value="IWR-LIZHE-VM2.fzk.de"/>
<item name="BIOS UUID"

value="564ddc04-d598-5abd-b318-92f58810c7bc"/>
<item name="Gest OS" value="Suse Linux Enterprise Server"/>
<item name="Power state" value="powered off"/>
<item name="Storage pool" value="iwrcgblade11"/>
...
</VirtualMachine>
<VirtualMachine>
<item name="host.name" value="IWR-LIZHE-VM1.ka.fzk.de"

sensor="uname"/>
<item name="cpu.speed" value="1000.353" sensor="cpuinfo"/>
<item name="os.name" value="Linux" sensor="uname"/>
<item name="mem.total" value="254552" sensor="meminfo"/>
...
</VirtualMachine>
...
</VirtualMachineInformation>

182 M. Kunze and L. Wang

The information provider thus furnishes the organized information to the back
end of Globus index service. Users can retrieve the information with client pro-
grams of Globus index service or browse the information via WebMDS. Fig. 8
shows the resource information retrieved from virtual machine pool with Web-
MDS on Lizhe2. These results justify the prototype implemented on the test
bed.

Fig. 8. Resource information from virtual machines

6 Conclusion and Future Work

Virtual machines are widely accepted in computer centers to support various ap-
plications. This paper implements an information service of virtual machine pools
in a computer center for Grid computing. The information service can monitor
virtual machines backed by popular VMMs, such as Xen VMM, VMware server
and VMware ESX server. The paper furthermore builds interfaces of virtual ma-
chine pools for computational Grids. The next step is to test the performance with

Information Service of Virtual Machine Pool for Grid Computing 183

some real applications of high energy experiments, like for instance a CMS bench-
mark [25].

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Philosophy of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Technical
report, Open Grid Service Infrastructure Workgroup, Global Grid Forum (2002)

2. Wang, L., Jie, W., Zhu, H.: State-of-Arts: Workflow Management for Grid Com-
puting. In: Grid Technologies: Emerging from Distributed Architectures to Virtual
Organizations, ch. 9, pp. 241–271. WIT Press (2006)

3. Wang, L., Kunze, M.: On the Design of Virtual Environment Based Workflow Sys-
tem for Grid Computing. In: Proceedings of International Workshop on Workflow
System for Grid Computing and Applications (WSGE), China, October 2006, pp.
212–218. IEEE Computer Society Press, Los Alamitos (2006)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization . In: Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP), pp. 164–177.
ACM Press, New York (2003)

5. VMware virtualization products, http://www.vmware.com
6. User Mode Linux, http://user-mode-linux.sourceforge.net
7. Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual Workspaces in

the Grid. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 421–431. Springer, Heidelberg (2005)

8. Buege, V., Kemp, Y., Kunze, M., Oberst, O., Quast, G.: Virtualizing a Batch
Queueing System at a University Grid Center. In: Min, G., Di Martino, B., Yang,
L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp.
397–406. Springer, Heidelberg (2006)

9. Childs, S., Coghlan, B., McCandless., J.: GridBuilder: A Tool for Creating Virtual
Grid Testbeds. In: Proceedings of 2nd IEEE Conference on eScience and Grid com-
puting (e-Science), pp. 77–77. IEEE Computer Society Press, Amsterdam, Nether-
lands (2006)

10. Childs, S., Coghlan, B., O’Callaghan, D., Quigley, G., Walsh., J.: A Single-
computer Grid Gateway Using Virtual Machines. In: Proceedings of the 19th Inter-
national Conference on Advanced Information Networking and Applications, pp.
310–315. IEEE Computer Society Press, Washington, DC, USA (2005)

11. Tatezono, M., Maruyama, N., Matsuoka, S.: Making Wide-Area, Multi-Site MPI
Feasible Using Xen VM. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger,
G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 387–396. Springer, Heidel-
berg (2006)

12. Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C., Mambretti, J.,
Monga, I., van Oudenaarde, B., Raghunath, S., Wang, P.: Seamless Live Migra-
tion of Virtual Machines over the MAN/WAN. Future Generations Computer Sys-
tems 22, 901–907 (2006)

13. Fallenbeck, N., Picht, H.J., Smith, M., Freisleben, B.: Xen and the Art of Cluster
Scheduling. In: Proc. of 1st International Workshop on Virtualization Technology
in Distributed Computing, IEEE Computer Society Press, Los Alamitos (2006)

14. Ruth, P., Jiang, X., Xu, D., Goasguen., S.: Towards Virtual Distributed Environ-
ments in a Shared Infrustructure. IEEE Computer 38(5), 63–69 (2005)

http://www.vmware.com
http://user-mode-linux.sourceforge.net

184 M. Kunze and L. Wang

15. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., Krsul, I., Mat-
sunaga, A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu., X.: From Virtualized
Resources to Virtual Computing Grids: the In-VIGO System. Future Generation
Computing Systems 21(6), 896–909 (2005)

16. Performance Comparison of VMMs (July 2006),
http://www.cl.cam.ac.uk/research/srg/netos/xen/performance.html

17. Soltesz, S., Fiuczynski, M.E., Peterson, L., McCabe, M., Matthews, J.: Virtual
Doppelganger: On the Performance, Isolation, and Scalability of Para- and Paene-
Virtualized Systems (November 2005),
http://www.cs.princeton.edu/∼mef/research/paenevirtualization.pdf

18. Strazdins, P., Alexander, R., Barr, D.: Performance Enhancement of SMP Clusters
with Multiple Network Interfaces Using Virtualization. In: Min, G., Di Martino, B.,
Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331,
pp. 452–463. Springer, Heidelberg (2006)

19. Common Information Model, http://www.dmtf.org/standards/cim
20. Distributed Management Task Force, http://www.dmtf.org
21. Pegasus CIMOM, http://www.openpegasus.org
22. Storage Management Initiative Specification,

http://www.snia.org/smi/tech activities/smi spec pr/spec
23. Information Provider for Globus Index Service, http://www.globus.org/toolkit/

docs/4.0/info/index/WS MDS Index HOWTO Execution Aggregator.html
24. WebMDS, http://www.globus.org/toolkit/docs/4.0/info/webmds
25. Compact Muon Solenoid, http://cms.cern.ch

http://www.cl.cam.ac.uk/research/srg/netos/xen/performance.html
http://www.cs.princeton.edu/~mef/research/paenevirtualization.pdf
http://www.dmtf.org/standards/cim
http://www.dmtf.org
http://www.openpegasus.org
http://www.snia.org/smi/tech_activities/smi_spec_pr/spec
http://www.globus.org/toolkit/docs/4.0/info/index/WS_MDS_Index_HOWTO_Execution_Aggregator.html
http://www.globus.org/toolkit/docs/4.0/info/index/WS_MDS_Index_HOWTO_Execution_Aggregator.html
http://www.globus.org/toolkit/docs/4.0/info/webmds
http://cms.cern.ch

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 185–194, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Virtual Cluster Management with Xen

Nikhil Bhatia and Jeffrey S. Vetter

Future Technologies Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA 37831

{bhatia,vetter}@ornl.gov

Abstract. Recently, virtualization of hardware resources to run multiple
instances of independent virtual machines over physical hosts has gained
popularity due to an industry-wide focus on the need to reduce the cost of
operation of an enterprise computing infrastructure. Xen is an open source
hypervisor that provides a virtual machine abstraction layer which is very
similar to the underlying physical machine. Using multiple physical hosts, each
hosting multiple virtual machines over a VMM like Xen, system administrators
can setup a high-availability virtual cluster to meet the ever-increasing demands
of their data centers. In such an environment, the Xen hypervisor enables live
migration of individual virtual machine instances from one physical node to
another without significantly affecting the performance of the applications
running on a target virtual machine. This paper describes a scalable Virtual
Cluster Manager that provides such application agnostic cluster management
capabilities to the system administrators maintaining virtual clusters over Xen
powered virtual nodes.

1 Introduction

Recently, virtualization of hardware resources to run multiple instances of independent
virtual machines over physical hosts has gained popularity as a potential solution to an
industry-wide focus on the need to reduce the cost of operations of enterprise and
scientific computing infrastructures [1]. Industrial and academic installations of these
clusters can contain thousands of physical nodes. Such clusters are prone to changes in
the availability of physical resources due to unfortunate conditions like node failure
due to overheating, or system administrative tasks like dynamic load balancing and
preventative maintenance. Meanwhile, applications and users on these infrastructures
expect highly available, reliable, and transparent operation.

Accordingly, there has been a prolific rise in the research and development of
Virtual Machine Monitors (VMMs) that employ virtualization at different levels in the
system software stack (e.g., Xen [2], QEMU [3], VMWare [4], User Mode Linux [5]).
One such system exemplifying this trend is Xen: an open source hypervisor that
provides a virtual machine abstraction layer which is very similar to the underlying
physical machine. Xen’s type of virtualization, often termed as para-virtualization,

186 N. Bhatia and J.S. Vetter

overcomes the typical performance loss due to virtualization by maintaining hardware
information per individual VM inside the VMM interface. On the other hand, this para-
virtualization requires substantial modification to the hardware dependent code in the
target operating systems running over the virtual machine. This virtualization provides
many benefits including the ability to save the entire VM to persistent storage, and then
restart it later on the same, or on a different, physical host [6]. When using large pools
of physical hosts, with each physical host containing multiple virtual machines, system
administrators can easily construct a high-availability virtual cluster to meet the ever-
increasing demands of their data centers and scientific computing clusters. With these
virtualization capabilities, system administrators can handle various management
tasks, such as dynamic load balancing of virtual nodes, and eviction of applications
from a physical nodes to prepare for maintenance or to preempt a expected failure,
transparently to the individual applications running in the virtual machines.

This paper describes a Virtual Cluster Manager that provides such application-
agnostic cluster management capabilities to the system administrators maintaining
these virtual clusters. We demonstrate its capabilities that include remote migration
and dynamic load balancing of VMs across a pool of physical nodes. This framework
manages a virtual cluster powered by the Xen virtual machines across multiple
physical nodes. Our prototype-- the Xen Virtual Cluster Manager, henceforth referred
to as XCM -- provides several of these features. First, it provides an overview of the
performance of virtual machines to the system administrators on a per physical node
basis. Second, it provides capabilities to initiate administrative tasks like automatic
load balancing of VMs across physical resources based on their utilization and
eviction of VMs from physical nodes in preparation for maintenance at arbitrary
intervals.

Following is the organization of this paper. Section 2 describes the Virtual cluster
organization. Section 3 describes the related work in this area. Section 4 describes the
XCM framework which is divided into two parts: the XCM client and the XCM
Daemon. Section 5 describes the implementation decisions we made during the
course of this project. Section 6 provides the reader with an overview of our
framework in action. Finally, we discuss out future research goals in this area in
section 7 and conclude in section 8.

2 Virtual Clusters

Virtual clusters [7] [8] are comprised of several physical nodes running a virtual
machine monitor (e.g. Xen) and hosting multiple virtual machines (often referred to
as DOM Us) which in turn are running several user-level applications. Such an
infrastructure can easily run into managing hundreds (or even thousands) of virtual
machine instances running over tens (or hundreds) of physical nodes. These
configurations are beneficial for large scale computing facilities because it reduces
the cost of operation of these data centers by replacing the need for hundreds of
physical servers by having hundreds of virtual machine over tens of physical servers.

 Virtual Cluster Management with Xen 187

Also, this infrastructure can also be useful in managing distributed memory cluster
environments where each physical node can host multiple virtual machines, with each
hosting several distributed memory application processes (e.g., MPI tasks), depending
on the application level topology.

Due to increased need of to improve the performance of virtualized servers, many
microprocessor vendors like Intel and AMD are providing hardware support (Intel-
VT and AMD Pacifica) for maintaining several hardware states for several virtual
machines in the microprocessor itself. This would reduce the changes made to the
guest operating system servicing a virtual machine to and at the same time reap the
benefits of para-virtualization. A physical node hosts a fully loaded operating system
which consists of device drivers for I/O devices and network interfaces. Such a fully
loaded host operating system is often referred to as the Host Operating System or
DOM 0. As described earlier, the VMM creates an abstraction of the hardware
resources (like the CPU, the memory, the Network Card and the I/O devices)
per virtual machine instance. Such a virtual machine instance is serviced by an
Operating System which is often referred to as a Guest Operating System or a DOM
U. The DOM U uses the device driver interface provided by DOM 0 to access the
hardware abstraction provided by the VMM. The VMM is responsible for translating
the per-domain system call to access the actual hardware through the hypercall
interface.

3 Related Work

The Virt-manager [9] Project from Redhat has provided an infrastructure to build a
Virtual Node Manager which provides the system administrator with a GUI to display
the performance information of the virtual machines along with all of its domains
running on a physical node under a VMM. It also provides a Virtual Machine
configuration window through which the system administrator can configure and
create new Virtual machines on a physical node. Their goal is to provide a per
physical node administration tool which can help the system administrators to
monitor the exiting virtual machines and create new ones depending on a certain
configuration. In contrast, our efforts are concerned with the managing of a cluster of
physical nodes, each hosting multiple virtual machines and providing an infrastructure
that encapsulates VMM level details in the system management tasks like dynamic
load balancing, node maintenance, and preemptive node failure from the system
administrator. It also provides a framework for designing new load balancing
algorithms and resilience policies for handling node failures based on a cluster’s
telemetry data.

The libvirt API [10] project is a step forward in unifying the interface to gather the
performance metrics of a virtual machine running over the hypervisor layer of a
VMM. It provides an API in C which hides the hypervisor layer abstraction from the
tool builders who want to develop performance analysis tools and cluster managers
over many hypervisor layers. Our work, in contrast, can be built on top of the libvirt
API and target multiple VMMs like Xen, qemu, VMWARE etc. Currently, our
framework works only with Xen powered clusters.

188 N. Bhatia and J.S. Vetter

4 Overview of Xen Virtual Cluster Manager

XCM is a Virtual cluster wide resource manager for managing Guest Domains
running as Virtual machines over physical nodes. The XCM is built using a client-
server model where it runs as a client on a remote node called as the Monitoring
Station. Each physical node runs a XCM daemon which gathers performance
metrics for the virtual machines running on that physical node. The XCM daemon
uses the hypervisor interface to gather the performance metrics. The XCM
daemons connect to the XCM client on the Monitoring Station. Then, the XCM
client gathers the performance metrics from physical nodes using this daemon and
aggregates the cluster-wide information in its internal data structures. The XCM
client is built using C++ over the wx-Widgets GUI toolkit. The XCM daemons are
built using C over the virtual machine monitoring libraries built over the Xen
hypercall interface.

4.1 XCM Client

The XCM client runs on the monitoring station. The XCM client connects with the
XCM daemons running on the physical nodes. The XCM client gathers the
performance metrics from the XCM daemons at regular intervals and arranges them
into a per-physical node per virtual-machine information. The time intervals at which
the client gathers the results from the daemons can be configured by the user. The
internal data structures of the client are used to display the performance of virtual
machines on a per-physical node granularity in two views: the summary view and the
detailed view.

The system administrator using the framework can study the performance metrics
to make intelligent decisions about what administrative tasks need to be performed for
optimal utilization of the physical resources. The administrator is also given an option
of performing those tasks via the framework. Currently, three types of administrative
actions can be performed by the administrator. These are dynamic load balancing,
preemptive node maintenance, and live migration of individual virtual machines
(henceforth referred to as domains) across physical nodes (henceforth referred to as
nodes).

Views. XCM client can display virtual cluster-wide information in two views. The
summary view displays coarse-grained information about the virtual machines
running on each of the virtual nodes in a cluster. The detailed view displays the fine-
grained per virtual machine/per virtual node information for all the virtual machines
in a cluster.

Actions. The XCM client provides the system administrator with three types of
actions that can be performed for managing the virtual cluster: dynamic load
balancing, preemptive node maintenance, and live migration of individual domains.
First, the XCM client can perform live migration of domains across virtual nodes. The

 Virtual Cluster Management with Xen 189

information required to perform live migration is entered through the GUI interface.
Second, the XCM client can perform automatic load balancing by migrating domains
across all available physical nodes. Currently, we are investigating the policies on
which we will determine our migratory decisions. Finally, the XCM client can also
enable the system administrator enables the clean shutdown of a physical node by
migrating all it’s domains to other physical nodes in the cluster when that node is
being taken away for maintenance.

4.2 XCM Daemon

The XCM daemon runs on the physical nodes’ host operating system. The daemon
gathers performance metrics of all the virtual machines using the hypercall interface
of the VMM. Currently, we gather per-VM performance metrics like total number of
domains hosted by the VM, the state of each domain, the memory that has been
allocated to each domain, the current CPU utilization of a VM, information about the
number of virtual CPUs allocated to a VM, the number of virtual block devices and
the information about the virtual network interface.

This information is obtained at regular intervals from the Xentop utility that is
shipped along with the Xen distribution. The Xentop utility is built over the Xenstat
library that provides an API for accessing the above mentioned performance metrics
from the hypercall interface of the Xen VMM. The daemon is invoked using the
command line interface and it connects to the monitoring station using TCP/IP
sockets. The time interval that elapses between two successive performance data
collect operations can be configured by the administrator using command line
options. The daemon communicates the local performance data to the XCM client
which organizes that data into its local data structures and displays that information
on its GUI.

5 Xen Cluster Manager in Action

The XCM client provides the System Administrator of a virtual cluster with a
capability to perform various administrative tasks like automatic load balancing,
clean shutdown of nodes while system maintenance and live migration of individual
domains from one node to the other across the virtual cluster. We have utilized
the XCM client to manage a Virtual Cluster consisting of 3 physical nodes and
hosting 8 virtual machines in all. The physical nodes are dual core AMD opteron
machines running XEN-3.0.3 as a VMM. We have performed system administration
tasks like live migration of domains across the three physical nodes, automatic load
balancing of the virtual cluster based on a simple load balancing strategy, and
clean removal of physical nodes during system maintenance. These experiments
have been done as a proof of concept of our framework and demonstrate the
scalability of our framework. The policies for various administrative actions are
discussed next.

190 N. Bhatia and J.S. Vetter

Fig. 1. XCM client in the Detailed view and also depicting administrative actions menu

5.1 Live Migration

Many times an administrator might want to remove a particular domain from a
physical node and transfer it to run on some other physical node based on a certain
performance metric. For example, a node may be hosting too many CPU intensive
domains. This might reduce the throughput of a certain critical user-level application
running on that domain. At the same time, there might be some node that might be
only hosting a less CPU-centric application (e.g., an MPI application doing ping-pong
communication). The XCM client gives the administrator a migration functionality in
which they can select a source node, a source domain, and a new destination node for
a domain. The live migration occurs transparently to the user-level application. Also,
due to para-virtualization and hardware state saving of a virtual machine the overhead
due to live migration is about 60ms.

5.2 Automatic Load Balancing

Sometimes, manual migration of virtual machines to across multiple nodes is a
cumbersome task if the virtual cluster consists of a large number of physical nodes or
virtual machines. Also, due to the arbitrary scheduling of virtual machines to host
user-level applications, there might be inefficient usage of hardware resources. To
ensure optimal hardware resource utilization, the administrator might develop some
policies and algorithms which perform the load balancing of the virtual cluster by
redistributing the cluster workload across multiple physical nodes. This typically
requires the live migration of hundreds of domains across different physical nodes in
the virtual cluster.

 Virtual Cluster Management with Xen 191

The XCM client enables the system administrator to perform automatic dynamic
load balancing. Currently, the client uses a very simple resource management policy to
define workload imbalance on a certain physical node. The initial load balancing
policy seeks to balance the number of domains across the available physical nodes. We
are currently extending our XCM framework to allow users to input specific policies,
composed of the information provided by XCM. In this way, the administrator will be
able to configure these policies based on weights given to various performance metrics
collected by the XCM daemons. The current load balancing policy is based on the total
number of domains in the cluster and the number of nodes in the cluster. Now,
consider these three administrator defined metrics: Let N be the total number of
physical nodes and D be the total number of domains in the virtual cluster. Also, let X
be the number of maximum number of domains per physical node. Now, according to
this policy, X will be evaluated by the expression: X = (D / N) + 1.

This policy limits the number of domains that can be hosted by a single physical
node. We reiterate that this simple policy has been adopted to demonstrate this
capability of our framework and may not be employed by real world installations of
our framework. Now, whenever the system administrator selects the automatic load
balancing menu item from the client’s Actions menu, the XCM client parses
through its internal data structures and makes a list of migration information (a
tuple having {source node, target domain, destination node} information). Any
node which contains more than D domains is selected as a source node and the
nodes which have less than D domains are selected as the destination node. The
target domains are randomly chosen from amongst the domains hosted on the
source nodes. The XCM client maintains a migration information dispatch queue
which stores all the pending live migration requests which have been requested by
the system administrator. The “Domain Migration Thread” as described in section
5.1 clears this dispatch queue and sends the migration requests to the XCM
daemons running on the source nodes. Hence, this dynamic load balancing strategy
is application-agnostic and helps system administrator to devise load balancing
policies in a virtual cluster.

5.3 Node Maintenance

Frequently, system administrators must service a physical node to upgrade and/or
replace its hardware or software. Also, sometimes by monitoring metrics like heat
generated per physical node, an administrator can make wise policies that can predict
node failure in advance. Both these scenarios would require the administrator to
remove a physical node from the virtual cluster. To make a clean removal of physical
nodes from virtual clusters, the virtual machines hosted by the target physical node
must be moved to a safe candidate node. Live migration can be used to evacuate a
physical node of its VMs. The XCM client provides this feature to the administrator.
The administrator chooses a particular physical node to be removed from the virtual
cluster. The XCM client then rearranges the workload on a target node to be migrated
to a safe destination node by filling out entries in the migration dispatch queue.
Currently, a very simple algorithm is used to design this policy. The XCM client

192 N. Bhatia and J.S. Vetter

chooses the physical node which is hosting the minimum number of virtual machines
as the destination node for the target node’s domains. After these domains are
migrated from the target node, the target node is proclaimed dead by the XCM client.
This information is transmitted to the XCM daemon which causes it to terminate. The
node can be safely switched off from the virtual cluster at that moment. Eventually,
the dead node collector thread in the XCM client removes all the data structures
related to the target node from its internal cluster-wide data structures.

A

B C

D

E

F

G H I J

K

Fig. 2. Activity timeline for Xen migration experimental results

6 XCM Experiment

Using the XCM framework, we conducted an experiment comprising a variety of
system administrative tasks on a virtual cluster configured to run 8 virtual machines
across 3 physical nodes. Each physical node is a dual core AMD opteron machine
running Red Hat Linux.

Each physical node hosts a Xen 3.0.3 VMM. On each of the 3 physical nodes, a
patched fedora core 5 image was used to run as the host domain. The guest domains
were also patched fedora core 5 images. In our experiments, the images were shared
over NFS fileserver accessible to both the nodes. The nodes were connected through a
gigabit Ethernet. The virtual machines running on these physical nodes are configured
to run Linux fedora core 5 images.

Figure 2 represents a graph showing the virtual cluster workload distribution as a
function of the number of domains on each of the three physical nodes as a function
of time. We start of out experiment by starting a physical node and launching 8 DOM
Us running on that virtual machine represented by “dmz1”. At point A in the figure,
there are total 9 domains running on dmz01. At time instance represented by pint B, a
new physical node “dmz02” is added to the cluster. This physical node has only one

 Virtual Cluster Management with Xen 193

domain (DOM 0) running on it. At point C, the administrator decides to balance the
workload of the virtual cluster which causes the migration of 4 out of the 8 DOM Us
to the newly available dmz02. The load balancing finishes at point D in time. Then at
some point in time E, a new physical node, dmz03, is added to the virtual cluster. At
point F, the administrator again decides to balance the cluster workload due to the
availability of a free physical node. At point G in time, the virtual cluster is fully load
balanced with each physical node hosting virtual machines. According to our load
balancing policy discussed in section 5.2, the resources of the virtual cluster are being
optimally utilized at this point in time. At time H, one domain is migrated from node
dmz03 to the node dmz02 based on the cluster-wide performance metrics displayed
by the XCM client. At point I in time, the administrator decides to schedule node
dmz01 for system maintenance. All the domains of dmz01 are migrated to dmz03
depending on our policy as described in section 5.3. At point J in time, the node
dmz03 is hosting 5 DOM Us. Then at point J in time, the administrator decides to
remove node dmz02 as he decides to change the RAM configuration in that node. At
point K in time, the virtual cluster only consists of one physical node, dmz03, which
is now hosting all 8 DOM Us along with its DOM 0.

7 Conclusion

By providing a user-friendly framework built on top of TCP/IP sockets and the
Xen hypercall interface for virtual cluster management we relieve the system
administrator of a virtual cluster facility of manual interaction with individual virtual
machines for performing administrative tasks like cluster performance monitoring,
cluster load balancing, node maintenance, node failure etc. We also provide the
administrator with a framework which can be used to automatically perform
administrative actions by configurable policies designed using a variety of algorithms.
This would reduce the burden of handling and maintaining a virtual cluster and would
enable rapid decision making for optimal usage of hardware resources in such an
environment.

References

[1] Bar, M.: Xen, the virtual machine monitor. Free Software Magazine, issue (June 5, 2005),
http://www.free/software/magazine/articles/focus-xen

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles SOSP 2003, Bolton Landing, NY, USA,
October 19 - 22, pp. 164–177. ACM Press, New York (2003),
http://doi.acm.org/10.1145/945445.945462

[3] http://fabrice.bellard.free.fr/qemu/
[4] Devine, S., Bugnion, E., Rosenblum, M.: Virtualization system including a virtual

machine monitor for a computer with a segmented architecture (VMWARE). US Patent
Office, Ed., USA (1998)

[5] http://user-mode-linux.sourceforge.net/

194 N. Bhatia and J.S. Vetter

[6] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:
Live Migration of Virtual Machines. In: Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Boston, MA
(May 2005)

[7] Werner Fischer and Christoph Mitasch. High availability clustering of virtual machines –
possibilities and pitfalls. Paper for the talk at the 12th Linuxtag, May 3rd-6th,
Wiesbaden/Germany Version 1.01 (2006)

[8] Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC systems. UCSB
Computer Science Technical Report Number (2006)-10

[9] http://virt-manager.et.redhat.com/
[10] http://libvirt.org/

Deploying and Managing Xen Sites with XSM�

Felipe Franciosi1, Jean Paulo Orengo1, Mauro Storch1, Felipe Grazziotin1,
Tiago Ferreto2, and César De Rose2

1 PUCRS/HP Research Center
Porto Alegre, Brazil

2 Catholic University of Rio Grande do Sul
Computer Science Department

Porto Alegre, Brazil

Abstract. Xen is becoming a de facto solution for virtualization with
low performance overhead. Virtualization features include optimization
in resources utilization, server consolidation, improved security and fault
tolerance. Server consolidation is currently one of the main attractions
of virtualization for enterprises. It enhances the scalability of a regular
IT infrastructure, enabling the utilization of an amount of servers larger
than the available physical machines. However, deploying and managing
virtual machines in such environment can be a complex task. It is first
necessary to install the virtualization layer, represented by the VMM
(Virtual Machine Monitor), on each physical machine. After that, the
virtual machines can be deployed. Due to the possibility of having several
virtual machines inside a single physical machine, an efficient manage-
ment of the environment in order to enhance overall system performance
and resources utilization is required. Considering these issues, we present
in this paper the Xen Site Manager (XSM), a tool to facilitate the de-
ployment and management of virtual sites based on Xen. It interacts
with standard services and tools, such as SystemImager, DHCP, PXE
and Ganglia, in order to provide high flexibility. We provide a detailed
description of XSM architecture and present a performance evaluation
of its deployment feature.

1 Introduction

Virtualization is one of the latest trends in the IT market. It’s becoming a com-
mon standard due to the increase of commercial and open-source software prod-
ucts (e.g., Xen [1], VMWare [2], OpenVZ [3], Virtuozzo [4]) and investments of
major hardware companies in providing mechanisms in their newest products to
give better support to virtualization (e.g., Intel VT [5], AMD Virtualization [6]).
Despite being an old concept (used initially by IBM 370 mainframes [7]), vir-
tualization is proving to be an efficient solution to current problems faced by
enterprises. Some of these problems are: exponential increase in the number of
� This work was developed in collaboration with HP Brazil R&D.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 195–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

196 F. Franciosi et al.

resources owned by organizations, high management costs, inefficient utilization
of resources, etc.

One of the sectors presenting the higher increase in the utilization of virtual-
ization techniques is data centers. Typical data center problems fit well in the
types of problems that virtualization intends to solve. Usually, there is a huge
number of services being executed on sub-utilized resources, which results in
high management costs. In order to obtain an efficient utilization of all available
computing infrastructure and provide good performance to all services, virtual-
ization techniques must be applied.

In spite of virtualization seems to be a de facto solution to data center prob-
lems, its utilization is not straightforward, especially in environments with a
huge number of resources. Deploying and managing a virtualization solution is
currently a problematic task due to the nonexistence of flexible tools that provide
a complete creation of a manageable virtualization environment. Current tools,
such as Oscar [8], XenMan [9], and Enomalism Virtualized Management Console
(VMC) [10] do not provide all the necessary features, from the installation of
the virtualization layer in each resource, to the creation, removal, migration and
monitoring of virtual machines in the environment.

Due to the lack of a flexible tool to deploy virtualization sites, we developed
the Xen Site Manager (XSM). XSM is a tool to deploy and manage virtual en-
vironments. It is based on the Xen Virtual Machine Monitor [1], an open-source
solution for virtualization. Xen is becoming a standard solution for virtualization
due its low performance overhead to execute virtual machines. XSM is highly
flexible in deploying virtual machines with different configurations in a regular
site. It uses standard services and tools such as DHCP (Dynamic Host Config-
uration Protocol), PXE (Preboot Execution Environment), SystemImager [11]
and Ganglia [12].

The remainder of this paper is organized as follows. Section 2 describes the
XSM tool presenting all of its features. Section 3 presents a performance eval-
uation of XSM showing the time it takes to deploy variable configurations of
Xen Sites. Section 4 presents some related work. Finally, Section 5 concludes the
paper and presents some future works.

2 Xen Site Manager

When required to install a set of Xen servers in a data center, it is natural that a
site administrator will look for tools to assist him with the job. Besides the help
needed to install the machines, assistance to manage the virtual hosts is also
required. This was the main motivation to develop XSM, a tool for deploying
and managing Xen virtual machines in a site.

In order to fulfill those tasks, XSM uses available tools such as: SystemIm-
ager [11], Ganglia [12] and XM (Xen Management User Interface). While Sys-
temImager and Ganglia are standard solutions for deploying and monitoring
systems respectively, XM is a tool that comes along with Xen itself and is used
to manage virtual machines. Figure 1 illustrates the typical lifecycle of XSM

Deploying and Managing Xen Sites with XSM 197

utilization, showing the concept of deploying the site, managing virtual machines
and monitoring the environment. At any time, management of the previously
installed hosts or deployment of new machines can be performed.

Manage Monitor

1 2 3

GangliaSystemImager XM + XSMd

Deploy

Fig. 1. XSM lifecycle

Jointly with the tools, XSM interacts also with another component, called
Xen Site Manager Daemon (XSMd). This component, written in C language,
was developed in order to perform management tasks in all hosts. It is based
on a distributed management strategy. Each host contains a description of the
whole site configuration. All XSMd communicate with each other in order to
maintain a common vision of the site. The site can be managed from any host.
When the site configuration changes, the configuration is modified in all other
hosts. When the host receives the new configuration, it verifies if there is any
local modification to be performed, and acts accordingly. This model excuses the
need of a centralized management server, once any host may assume this role.
Besides that, if any host goes down, the site will be manageable through any
other host in the site.

2.1 Deployment

When installing more than one computer with the same system, automatic de-
ployment becomes an attractive choice if compared to the manual installation
of each host. XSM facilitates this process by using SystemImager and the PXE
facility available in most computers. Figure 2 illustrates the boot process of a
new computer involving the installation of the base system.

As the figure suggests, at least one auxiliary server is required for the initial
deployment process. This server must run DHCP, TFTP (Trivial File Transfer
Protocol) and SystemImager services. The first step consists of the new computer
booting and, using PXE, fetching its configuration from the DHCP server. This
configuration specifies, besides basic network configuration, the IP address of
the TFTP server and the filename of a PXELinux image, which is downloaded
in the second step. Next, this image is executed and the SystemImager client is
downloaded. Step four consists of SystemImager client connecting to the server
and fetching the base system, which is copied to the disk using partitioning
information also specified by the server.

The base image supplied by XSM consists of a Linux Debian Etch as Domain
0. Naturally, this installation already ships a pre-configured Xen, Ganglia, XSMd

198 F. Franciosi et al.

SystemImager Client downloads and installs the base system

Based on the options, downloads PXE Linux

Netboot fetchs network config and options

Machine
New

Server
DHCP

Server
TFTP

Server
SI

1

2

3

4

PXE Linux downloads the SystemImager Client

t

Fig. 2. Boot process using XSM deployment tools

and other Linux standard tools. As for the host configuration, SystemImager is
also capable of automatically setting network interfaces (using DHCP or static
setup) and hostname parameters.

As for the installation methods, SystemImager can use three different meth-
ods: unicast, multicast and broadcast. The choice depends on the site situation.
With unicast, the SystemImager client will use the rsync tool to fetch the base
image from the server. This method is well suited for a small number of hosts.
When installing a larger number of hosts, the other methods, multicast and
broadcast, are preferred due to the increase in network overhead with unicast.
Deployment process are independent for each site machine. Thus, a failure in a
host will not stop the deployment in the other site machines.

It is worth noting that, as all the tools used by XSM are administration tools,
only the system administrator will be able to deploy a Xen site using XSM. No
extra access control, but the one provided by the Linux System, is used during
deployment process.

2.2 Management

After completing the deployment process, it is possible to manage the Xen site.
XSM is capable of starting, stopping and migrating Xen VMs via a site config-
uration described in an XML file supplied by the user. An example of the site
configuration file is presented in Figure 3. The example shows a site composed
by 4 hosts, with one virtual machine per host (vm1, vm2, vm3, vm4). Virtual
machines vm1, vm2 and vm3 are composed by Apache servers, and vm4 is a
MySQL server. Hosts are identified by the IP address in the DOM0 parame-
ter. The parameters to configure a virtual machine are: virtual machine name,
virtual machine configuration (kernel and image details), location (Domain 0
IP address), number of virtual CPUs, MAC address, method to obtain net-
work configuration (static or DHCP) and physical memory. The virtual machine

Deploying and Managing Xen Sites with XSM 199

configuration represents the name of a regular Xen virtual machine configuration
file which contains details to execute the virtual machine, such as: kernel, image,
disks configuration, etc. Figure 4 presents the environment after the processing
of the configuration file by the XSMd in each host.

<XSMConfig>
<Set name="My_site">
<Owner>root@domain.com</Owner>
<VM name="vm1" config="apache_svr">
<DOM0>192.168.5.101</DOM0>
<VCPUS>4</VCPUS>
<HWADDR>AA:00:00:00:00:01</HWADDR>
<IP>DHCP</IP>
<MEM>96</MEM>

</VM>
<VM name="vm2" config="apache_svr">
<DOM0>192.168.5.102</DOM0>
<VCPUS>4</VCPUS>
<HWADDR>AA:00:00:00:00:02</HWADDR>
<IP>DHCP</IP>
<MEM>96</MEM>

</VM>
<VM name="vm3" config="apache_svr">
<DOM0>192.168.5.103</DOM0>
<VCPUS>4</VCPUS>
<HWADDR>AA:00:00:00:00:03</HWADDR>
<IP>DHCP</IP>
<MEM>96</MEM>

</VM>
<VM name="vm4" config="mysql_svr">
<DOM0>192.168.5.104</DOM0>
<VCPUS>4</VCPUS>
<HWADDR>AA:00:00:00:00:04</HWADDR>
<IP>DHCP</IP>
<MEM>96</MEM>

</VM>
</Set>
</XSMConfig>

Fig. 3. XSM site configuration file

When the site configuration file is modified, the XSMd reads the new con-
figuration and forwards to other hosts. Each host reads the new configuration
and performs the necessary modifications. XSMd interacts with XM in order
to create, remove, reconfigure and migrate virtual machines. Virtual machines
creation is performed when inserting a new virtual machine entry in the file. The

200 F. Franciosi et al.

Vm1
apache_svr

192.168.5.101

Dom0

Xen VMM Xen VMM

Xen VMM Xen VMM

Dom0

Dom0
apache_svr

Dom0

192.168.5.102
apache_svr

Vm2

192.168.5.103

Vm3

192.168.5.104

Vm4
mysql_svr

Fig. 4. Environment configuration

host that will contain the new virtual machine reads the file, creates a new Xen
virtual machine configuration file with the generic configuration (virtual ma-
chine configuration) and the virtual machine parameters (VCPUs, HWADDR,
IP and MEM), and starts the virtual machine. To remove a virtual machine, it’s
just necessary to delete the virtual machine entry in the file. Reconfiguration is
performed modifying the values of the parameters, and migration changing the
host (Domain 0) IP address of a virtual machine.

This distributed approach was chosen prior to a centralized management
server in order to avoid a central point of failure and to simplify the development
of the system according to an already existent infrastructure in our data center.
Another advantage of such method is that no additional servers are needed for
this purpose.

2.3 Monitoring

To keep track of all site state we use Ganglia, a scalable distributed monitoring
system that was designed to monitor cluster and grid state [12]. On these envi-
ronments, scalability, reliability and heterogeneity are common issues. To work
with scalability, Ganglia was structured as a distributed system, with decentral-
ized control. To detect a component failure, Ganglia uses a heartbeat protocol.
It was also implemented and deployed over many different operating systems as
Linux, FreeBSD, Solaris and IBM AIX.

Ganglia encompasses three main components: gmond, gmetad and gmetric.
Each host of a XSM site runs gmond, which is responsible for collecting infor-
mation about CPU usage, free memory, and other monitoring metrics. It also
sends this information to a well-known multicast address every time significant
updates occur. All hosts listen for metrics on the multicast address and collect

Deploying and Managing Xen Sites with XSM 201

and maintain monitoring data for all other hosts. Therefore, in case of failure, the
view of the entire site state can be reconstructed easily because every host has an
approximated view of the environment. In addition, Ganglia allows the user to
easily expand the core metrics adding any arbitrary host metric using the gmetric
component. On this work, we use gmetric to add information collected from
the XM command about every VM including their current state and resource
utilization.

Besides the common metrics included in Ganglia, the metrics collected for each
virtual machine and Domain 0 are: CPU time and weight, maximum amount of
memory and used memory, number of VCPUs (online and available), and status
(blocked, ready, etc). Every metric is obtained through XM. Ganglia performs
the periodic capture of these metrics and presentation with graphs showing a
historical perspective.

3 Performance Evaluation

In order to evaluate the deployment performance, we built a testbed composed
of 16 machines and one server. The machines share a common Fast-Ethernet
Network (100Mbps). The server is responsible for executing basic services that
provide support to the deployment system. This server is a Dual Pentium III
1 GHz, 512 MBytes RAM running Debian Sarge 2.6 and the following services:
DHCP, TFTP, rsync, and SystemImager. The machines used as installation tar-
gets are all Intel Pentium 4 1.6 Ghz with 256 MBytes RAM and 20 GBytes of
Hard Disk.

The experiment intends to analyze the performance of deploying a variable
number of machines with our base image using two deployment techniques: uni-
cast and multicast. The broadcast method was not measured because, to what
is network concerned, its results would be the same as the multicast scenario.
The size of our base image is 920 MBytes and, as described before, it consists
of a Debian Etch Linux with Xen 3.0.1 and other software packages. It is also
important to report that every measurement was executed 10 times, discarding
the slowest and the fastest executions.

Figure 5 presents the results achieved. As expected, we obtained better results
with the unicast method when using a small number of machines, once the in-
stallation is straightforward using TCP packets. The multicast installation uses
UDP packets, which is unreliable and requires synchronization stages and error
correction with retransmission, causing overhead for a single host installation.
Nevertheless, this overhead is softened when installing multiple computers, be-
cause there’s only one packet sent no matter the number of hosts involved in the
process (considering no retransmissions).

This explanation helps our understanding of why the multicast curve looks
logarithmic. That’s because some computers may perform the installation faster
than others, lagging the synchronization stages. With several similar computers
in the deployment process, these stages are likely to be reduced, once the speed
of the fastest and slowest computers is not very different.

202 F. Franciosi et al.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

D
ep

lo
ym

en
t T

im
e

(s
)

Hosts

unicast deployment
multicast deployment

Fig. 5. XSM deployment performance evaluation

4 Related Work

The Xen project, although younger than its counterparts, was well received by
the research community which elaborates many other projects to facilitate the
deployment and management of Xen VMs, such as XenMan, Enomalism and
Oscar.

The XenMan is an open source project that aims to provide an intuitive
graphical user interface (GUI) for both administrators and new users of Xen.
This interface, similar to the one provided by VMWare, can be used to create,
start and stop VMs using buttons and fancy icons, making the management
process easier. However, it was developed to work in a single computer, thus this
tool is not feasible to manage one entire site.

Oscar, on the other hand, can be used to deploy a cluster composed of Xen
VMs in one or more computer hosts. Oscar is a well-know project in distributed
computing [13], used to assist the installation and management of Beowulf clus-
ters. Recently, the Oscar suite was improved to allow the creation and deploy-
ment of Xen VMs, aiming to turn effortless their suite testing procedure [14].
Using this tool one can install Xen over a new machine, configure and create
many VMs and also run them after the installation process. This tool can ad-
dress the deployment steps of the XSM lifecycle presented in Figure 1; however,
it cannot handle neither the management nor the monitoring steps.

A more complete tool that can manage and monitor Xen sites is the Enoma-
lism Virtualized Management Console (VMC). The VMC provides a web page
interface to monitor the VMs, showing the CPU and memory usage, among
other information. With the same interface one can add new virtual machines
or users and also manage them through a console emulator. To do these tasks

Deploying and Managing Xen Sites with XSM 203

the administrator need to be connected to the machine he wants to manage. In
this way the VMC project is similar to XSM. However, the former is unable to
deploy new machines and was built on a centralized point of view. The main ad-
vantages of XSM are that it assists the deployment steps and can handle failures
because of the distributed approach used to manage the whole site. Moreover,
the administrator can manage all the hosts by accessing only one of them rather
than connecting to each host one by one, which is inadequate when there are
many machines.

5 Conclusions and Future Work

In this paper we presented XSM, a tool to deploy and manage Xen Sites. XSM
provides high flexibility in deploying virtual machines with different configura-
tions in a regular site. It uses standard services and tools such as DHCP, PXE,
SystemImager and Ganglia. We evaluated the deployment functionality of XSM
and observed that it can both deploy a base Xen system efficiently in a site
with a variable number of machines and start virtual machines described in a
XML file.

As future work, we intend to enhance the management functionalities of XSM,
develop a web-based interface to facilitate the management of Xen Virtual Ma-
chines, develop a tool for automatic generation of XML files, and perform deploy-
ment tests with larger environments in order to identify spots for optimization.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauery,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of
SOSP 2003 (2003)

2. Devine, S., Bugnion, E., Rosenblum, M.: Virtualization system including a vir-
tual machine monitor for a computer with a segmented architecture. US Patent
(October 1998)

3. OpenVZ Project: OpenVZ - Server Virtualization Open Source Project (2007),
http://openvz.org/

4. SWsoft: Virtuozzo Server Virtualization (2007),
http://www.swsoft.com/en/products/virtuozzo/

5. Intel Corporation: Intel Virtualization Technology (2006),
http://www.intel.com/technology/computing/vptech/

6. Advanced Micro Systems: AMD’s Virtualization Solutions (2006), http://
enterprise.amd.com/us-en/Solutions/Consolidation/virtualization.aspx

7. Creasy, R.J.: The origin of the vm/370 time-sharing system. IBM Journal of Re-
search and Development 25(5), 483–490 (1981)

8. Vallee, G., Scott, S.L.: OSCAR Testing with Xen. In: HPCS 2006: Proceedings
of the 20th International Symposium on High-Performance Computing in an Ad-
vanced Collaborative Environment, Washington, DC, USA, p. 43. IEEE Computer
Society Press, Los Alamitos (2006)

9. XenMan Project: XenMan (2007), http://sourceforge.net/projects/xenman/

http://openvz.org/
http://www.swsoft.com/en/products/virtuozzo/
http://www.intel.com/technology/computing/vptech/
http://enterprise.amd.com/us-en/Solutions/Consolidation/virtualization.aspx
http://enterprise.amd.com/us-en/Solutions/Consolidation/virtualization.aspx
http://sourceforge.net/projects/xenman/

204 F. Franciosi et al.

10. Enomaly Inc.: Enomalism Virtualized Management Console (2006),
http://www.enomalism.com/

11. SystemImager Project: SystemImager (2007), http://systemimager.org
12. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:

Design, implementation, and experience. Parallel Computing 30(7), 817–840 (2004)
13. Mugler, J., Naughton, T., Scott, S.L., Barrett, B., Lumsdaine, A., Squyres, J.M., t

des Ligneris, B., Giraldeau, F., Leangsuksun, C.: OSCAR Clusters. In: Proceedings
of the Ottawa Linux Symposium (OLS 2003), Ottawa, Canada (July 2003)

14. Vallée, G., Scott, S.L.: Xen-Oscar for cluster virtualization. In: Min, G., Di Martino,
B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331,
pp. 487–498. Springer, Heidelberg (2006)

http://www.enomalism.com/
http://systemimager.org

Xen Management with SmartFrog

On-Demand Supply of Heterogeneous, Synchronized
Execution Environments

Xavier Gréhant1,2, Olivier Pernet3, Sverre Jarp1,
Isabelle Demeure2, and Peter Toft4

1 CERN openlab, Geneva, Switzerland
2 École Nationale Supérieure des Télécommunications, Paris, France

3 ENSIMAG, Grenoble, France
4 Hewlett-Packard Laboratories, Bristol, UK

xag@cern.ch

Abstract. Applications to be executed on multipurpose Grids frequently
have very specific resource requirements (platform, kernel, operating sys-
tems, libraries, memory, CPU, etc.) and need to be delegated part of
the resource control. Typical Grid sites offer a limited range of resource
types, inhibiting the range of applications that can be supported; and
Grid node managers are bound to maintain their servers according to
users requirements. To address these problems, we introduce Smart-
Domains, which combines the high performance virtual machine tech-
nology provided by Xen, with automatic deployment of Xen virtual
machines using the SmartFrog configuration and deployment framework.
SmartDomains automatically deploys distributed, synchronized pools of
custom-configured Xen virtual machines and manages them through
their lifecycle as a single coherent distributed execution environment.
SmartDomains uses a representation of the complete distributed re-
sources specifications, including information about how to sequence their
creation and removal. We discuss SmartDomains test cases at CERN for
distributed testbeds and Grid execution nodes.

1 Introduction

Although virtual machine (VM) technology has been around for four decades or
more [1,2], there has been a resurgence of interest in recent years as virtualization
has become practical on commodity hardware [3]. It follows that grid resource
management tools will evolve to embrace support for virtual resources and those
that do not will risk obsolescence. Our contribution to this evolution is a tool
called SmartDomains (SD), which automatically supplies custom-configured, dis-
tributed virtual execution environments targeted at running batch Grid jobs or
conducting system tests. In these contexts, it is important to keep independent
the activity on the utilized resources and the maintenance of the backing hard-
ware. SD provides fast, integrated VM control and a representation of resources
to decouple administration and usage. A comparable resource control plane was

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 205–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

206 X. Gréhant et al.

developed in COD [4] for nodes provisioning in Beowulf clusters, and in Plan-
etLab [5] for managing networked applications’ points of presence. Scientific
production Grids (e.g. LCG, EGEE, OSG) do not yet optimise back-end re-
source usage with platform virtualization [6], which would add extra dimensions
of flexibility in terms of resource configuration and fractional physical resource
allocation (as illustrated with Tycoon [7]) although Globus Virtual Workspaces
[8] already make interactions with the VM Monitors (VMMs) a Grid service.

The goal of SD is to provide a simple-to-use yet powerful mechanism for
describing a required set of virtual machine resources, and a fully-automated
deployment system to create VMs according to the supplied description. The
automated deployment engine is a peer-to-peer distributed layer that takes in
resource request descriptions and realises them with the requested sequencing.
The same deployment engine is used to deactivate resource requests and release
their resources, again according to the specified sequencing. Our experience with
this approach leads us to believe that it makes it easier for resource administra-
tors to prepare and control virtual resources, and for developers to create new
functionality.

In this paper we discuss SD from three perspectives: In section 2 we explain
the component technologies used in the SD system. SD usage is explained in
section 3 along with a comparison of other systems using virtualization for re-
source management, and performance measurements are presented. In section 4
we illustrate the benefits of SD for resource administration, and its contributions
to research and development in resource management systems.

2 SmartDomains, a Novel Approach

SD builds on Xen [9] for virtualization, and on SmartFrog [10,11] for the re-
source description and deployment mechanisms. Using virtualization in batch
execution environments offers resource consumers and resource providers the
following benefits:

Software compatibility: By creating a library of customized VM images, VMs
can easily replicate a very wide range of resource configurations, satisfying
the specific needs of a wide range of applications.

Resource sharing and performance isolation: By running multiple VMs on the
same physical machine, fractional resources can be allocated, with fine-
grained control over the resource consumption of each VM.

Failure isolation: VM failures do not affect the physical node nor other VMs.

We chose the Xen virtualization technology [9] for its high performance,
openness, advanced features (live VM migration, for example) and growing
popularity. Xen allows VMs to run at near native speed, which is critical for
high-performance computing applications. However, the SD approach could be
applied to other virtualization technologies such as VMWare [12], or in-kernel
virtualization approaches such as KVM [13]. The resource description and de-
ployment mechanism in SD is built using SmartFrog (SF), a Java-based frame-
work for the configuration, deployment and management of distributed software

Xen Management with SmartFrog 207

systems, developed by HP Labs. In the domain of utility computing, the Sof-
tUDC project [14] illustrates the use of SF along with VMMs for centralized
management features. SF encourages the separation of the functionality of a
software component from its configuration details. This allows the development
of configuration-driven systems, the behaviour of which, including deployment
choices, can be determined by configuration data. SF provides:

– A rich description language to express the configuration of software compo-
nents (pieces of software to be placed on distributed hosts), and to express
their orchestration at run-time using various composition components.

– A deployment engine formed from a distributed, peer-to-peer network of SF
daemons. The deployment engine interprets the description language, dis-
patches software component deployment and management actions to local
or remote daemons, checks liveness and maintains dependencies and refer-
ences for attribute lookup and remote method invocation.

A domain is a running Xen virtual machine. SD defines a set of SF components
that configure, monitor, deploy and manage Xen virtual machines. A user sub-
mits a description of the distributed environment he requires, specifying with
complete freedom the kernels, filesystem images (distribution, libraries), com-
puting resources (memory, CPU, hard drive size, etc), and orchestration details
(e.g., the deployment sequence). SD automatically deploys the description and
manages the deployment process until the resources are no longer required. Di-
rect access to the physical nodes or to the Xen VMMs is not necessary. SD
has been used in production since early in its development to create distributed
virtual testbeds for the task of integrating and certifying gLite, a major grid
middleware software distribution. This caused SD to support fast deployment of
complex distributed configurations. We are now experiencing its integration in
EGEE production Grid. In this context, SF dynamically boots appropriate exe-
cution environments upon request from a VO1, and thus improves the compro-
mise between resource delegation to the user, and control by the node manager.

3 Usage: A Comparative Overview

SD requires users to create descriptions for their virtual resource pools. There
are simple extension and composition mechanisms that make it easy to create a
library of different virtual resource pools, and to share these amongst users. It
is simple to deploy a description, to un-deploy it, and to do so repeatedly. We
compare this approach with other tools.

3.1 Launching a Virtual Pool

To start a deployment and launch a virtual pool, users submit a description with
a single command line, and use another command line to un-deploy (remove)

1 Virtual Organization, a federation of Grid users.

208 X. Gréhant et al.

the virtual pool: > sfStart localhost pool vp.sf. The user specifies where
deployment is to be initiated (localhost here), provides a name for identification
at runtime (pool), and provides the description (vp.sf) of resource requirements:
> sfTerminate localhost pool. Behavior on termination is defined in the de-
scription as well; by default it shuts down all virtual domains and cleans up the
physical machines to return them to their initial state.

SD is distinctive in that it reduces the virtual resource management bur-
den to the simplicity of an “on/off” button. It can automatically deploy the
appropriate virtual resources on grid sites to handle incoming jobs or job work-
flows, or it can be used for repetitive, varied testbed setups for quality assurance
tasks. A number of advanced enterprise resource management systems (Plat-
form VM Orchestrator [15], Cassat Collage [16], OpenQRM [17], DynamicOE
[18]) also leverage virtualization, but generally for a different purpose: they let
the site administrator flexibly allocate computer center resources across long-
lived applications, typically addressing resource utilization and high-availability
concerns. Open source virtualization management projects (Virtual Workspaces,
GPE, Enomalism) focus on presenting the VMM control via a variety of different
interfaces. All these systems makes VMMs remotely accessible. SD development
began with many of these ideas in mind, but its evolution was driven by spe-
cific requirements emerging from the CERN computing environment. Hence we
focused on building a highly-configurable, highly-automated system that mini-
mizes user interaction.

3.2 Describing a Virtual Pool

A single logical description specifies the actions that the distributed deployment
system will take in order to deploy, and un-deploy, the requested virtual resource
pool. The only current, known limitation to the run-time, distributed scope of a
SD description is the presence of firewalls that block Java RMI communication,
which is used for peer-to-peer communication by the SF daemons. A virtual re-
source pool deployment can vary in scale from one host to a complete data center.
The RMI limitation will be overcome in future implementations by substituting
RMI for a more firewall-friendly protocol, such as REST-based communication
over HTTP. SD descriptions permit all possible configurations allowed by the
Xen VMM, expressed as attribute values2. It differs in this respect from Ama-
zon EC2, which provides fixed virtual machine resource configurations, and is
elastic only in terms of the number of machines. However, like Xenoservers [19],
EC2 does let users upload their own VM images. In Tycoon, it is the resource
provider that decides what image is used. SD is linked to OSFarm[20] for custom
image generation. In addition to configuring a domain, attributes define other
behaviors, such as saving the image after use, compressing / uncompressing it.
For ease of use, however, almost all attributes have default values. As a conse-
quence, describing a single virtual domain with SD requires less knowledge than

2 For brevity, they do not appear on figure 1. For a full list, please see the tutorial:
www.cern.ch/smartdomains.

Xen Management with SmartFrog 209

Fig. 1. Description with minimal configuration

writing a Xen configuration file. The description language lets the user configure
how virtual machines should be synchronized (on figure 1 Compound is an ex-
ample of synchronization type). It addresses the need for lifecycle management
mechanisms cited on the Xen road-map [21], and is necessary for distributed
batch jobs and tests. A management console provides a view of deployed vir-
tual resource pools at runtime, and lets users update their configuration. For
example, to change the frequency of virtual domains liveness checking, change
memory allocation, or alter whether the image will be saved after shutdown.

3.3 Measurements and Future Work on Performance

Our measurements show that SD overhead is negligible on modern systems, for
a considerable gain in resource flexibility. Our first tests with 48 CPU-intensive
benchmark runs did not show any significant overhead introduced by SD. We
found only a 0.25% difference in minimum elapsed times between these configu-
rations: no liveness checking and liveness checking every 2 seconds, and between
checks every 2 and 10 seconds. We monitored memory consumption in different
scenarios (figure 2): a single deployment shows that an idle SD daemon needs
about 20MB, and booting and terminating a first VM requires about 3 more
MB. (We did identify a memory leak: each additional VM requires an addi-
tional 300KB which is never surrendered. For the moment the daemon can just

210 X. Gréhant et al.

Fig. 2. Memory measurements

be restarted after every few hundred deployments.) For successive, cumulative
deployments, we have been restricted by disk space so far. For simultaneous,
multithreaded deployments, currently 8 VMs can be booted together on the
same host; this limitation will be removed in the future. As shown on figure 2,
booting 5 VMs simultaneously requires about 24 MB total, and all the VMs
are booted after about 40 seconds. The time to change an environment is the
same as VMPlants’[22] best case, a complementary work that minimizes software
installation time on VMs.

4 Extending SmartDomains

SD is easy to extend for both resource administrators and developers. Admin-
istrators can easily provide and extend resource pool descriptions, that can be
offered to their users. Developers can easily extend the SD framework through
the addition of new control components.

4.1 Administration: Specialize by Composing and Pre-configuring

The first prerequisite is to install the Xen hypervisor on every physical ma-
chine. Installing SD is then just a matter of downloading the SD distribution
and running an Ant command. It is therefore a simple process to install SD in
large computer installations. And, while SD is targeted at large deployments, the
simplicity of installation makes it quite usable on a single laptop for local VM
deployments. Any computer can trigger the deployment of new virtual resource
on the whole pool of physical hosts of which it is part, and where the virtual
machines actually reside does not matter. There are no a priori privileged hosts
and every node can act as the root for the whole site’s computing power. SD
distributes the work across the distributed computing environment and avoids
bottlenecks and single points of failure. SD makes resource control simple in
cases where it is delegated to a “trusted community” (e.g. physicists working
on the same CERN experiment) or operated inside the same organization. In

Xen Management with SmartFrog 211

other cases, an additional admission control component may restrict deploy-
ment possibilities, and a user interface will regulate access to this component
to restrict deployments. The extension mechanism (example of domain1 extends
XenDomainDefault on figure 1) adds or overwrites component attributes that
will be resolved at run-time as configuration data available to the corresponding
class. This lets administrators create partly-configured descriptions which can be
easily extended by users with all the necessary data. The description language
allows attributes to be flexibly linked upwards (ATTRIB, PARENT:), or down-
wards (name: childName: attribute) in the hierarchy. Used in conjunction with
LAZY keyword, this indicates a reference to be used for remote method invoca-
tion; without LAZY, it copies the target of the link. This allows administrators
to define specialized components that populate low-level base components with
user-level attributes. In our use-cases, these mechanisms improved convenience
while using pre-defined templates.

4.2 Development: Enriching SD by Plugging in New Logic and
Composite Structures

The basic SF approach is to describe a hierarchical organisation of software com-
ponents and their configuration data; when deployed, each component interprets
its configuration data, which drives the component’s behavior. This proceeds in
a hierarchy from the root component downwards. We mentioned how important
it is for SD to not require any interaction with the user in order to accept batch
requests for non-interactive jobs or software quality assurance tasks (section 3.1).
Hence automation is vital, and new forms of automation can be developed by
extending the set of SF/SD components. As an example, to dispatch virtual ma-
chines across physical hosts, a Scheduler component chooses the next suitable
host, and a Schedulee wraps in the description the components to be placed.

For fine-grained resource sharing via a bidding system, a definitive advantage
of Tycoon over previous works was the best response algorithm that bids in place
of the user to avoids the need for frequent interaction. Indeed, we contend that
computing resource management should be transparent and automated with-
out restricting functionality. Combining the ability to manipulate descriptions
with the ability to easily add new components allows us to balance function-
ality with automation and transparency. The mechanisms provided in SF for
flexibly composing components at runtime allow developers to easily implement
new behaviors (high availability, scheduling and load balancing mechanisms)
and to apply these to the management of SD virtual resource pools. There is
no restriction in the types of components that can be created, and they can
easily fit into the framework and descriptions. Following the lessons of Planet-
Lab experience[5] SD favors evolutionary design more than clean slate design.
In most other systems from enterprise resource management systems to research
prototypes, adding new functionality can have significant implications for the
whole system structure, thus restricted to some usage policies or available hard-
ware (e.g. the two hard-coded availability classes in DynamicOE). SD allows the
implementation of distributed algorithms involving VMs located on the whole

212 X. Gréhant et al.

peer-to-peer network of trusted daemons, to contrast with Tycoon where real-
time auction for resources is limited to a competition between virtual machines
on a per-physical-host basis [7].

5 Conclusion

SD deploys virtual resource pools for batch jobs or tests. Our use cases at CERN
drove us towards high configurability, and high automation. Interaction is still
possible, but the composable, component-based structure of the system allows
automation functionality to be easily added. Generality is preserved when writ-
ing a description or specializing components, because the extension mechanisms
allow descriptions to be prepared in advance and then customized for every de-
ployment. Configurability, composition and lifecycle management are provided
to the user or administrator through the description language. These are novel
characteristics in a resource management system. they provide the necessary flex-
ibility to decouple administration and usage requirements on the Grid resource
control plane.

References

1. Goldberg, R.P.: Survey of virtual machine research. Computer, 34–45 (June 1974)
2. Denning, P.: Performance analysis: Experimental computer science at its best.

Communications of the ACM 24(11), 725–727 (1981)
3. Rosenblum, M.: The reincarnation of virtual machines. ACM Queue 2(5), 34–40

(2004)
4. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual

clusters in a grid site manager. In: HPDC 2003: Proceedings of the 12th IEEE In-
ternational Symposium on High Performance Distributed Computing, p. 90. IEEE
Computer Society, Washington (2003)

5. Peterson, L.L., Roscoe, T.: The design principles of planetlab. Operating Systems
Review 40(1), 11–16 (2006)

6. Nabrzyski, J., Schopf, J.M., Weglarz, J.: Grid Resource Management: State of the
Art and Future Trends, 1st edn. Springer, Heidelberg (2003)

7. Feldman, M., Lai, K., Zhang, L.: A price-anticipating resource allocation mech-
anism for distributed shared clusters. In: EC 2005: Proceedings of the 6th ACM
conference on Electronic commerce, pp. 127–136. ACM Press, New York (2005)

8. Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B., Zhang, X.: Virtual
clusters for grid communities. In: CCGRID 2006: Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid, pp. 513–520. IEEE
Computer Society, Washington (2006)

9. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164–177. ACM Press, New York (2003)

10. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: Smartfrog:
Configuration and automatic ignition of distributed applications. Technical report,
HP (2003)

Xen Management with SmartFrog 213

11. Pathak, J., Treadwell, J., Kumar, R., Vitale, P., Fraticelli, F.: A framework for
dynamic resource management on the grid. Technical report, HPL (2005)

12. Waldspurger, C.A.: Memory resource management in vmware esx server. In: OSDI
2002: Proceedings of the 5th symposium on Operating systems design and imple-
mentation, pp. 181–194. ACM Press, New York (2002)

13. Qumranet: Kvm: Kernel-based virtualization driver. Qumranet White-Paper
(2006)

14. Kallahalla, M., Uysal, M., Swaminathan, R., Lowell, D.E., Wray, M., Christian,
T., Edwards, N., Dalton, C.I., Gittler, F.: Softudc: A software-based data center
for utility computing. Computer 37(11), 38–46 (2004)

15. Computing, P.: Platform VM orchestrator., http://www.platform.com/
16. Cassatt: Cassatt collage., http://www.cassatt.com/prod virtualization.htm
17. Qlusters Inc. 1841 Page Mill Road, G2, Palo Alto, CA 94304: openQRM Technical

Overview: Open Source - Data Center Management Software (November 2006)
18. FusionDynamics: Fusiondynamics - http://www.fusiondynamics.com
19. Kotsovinos, E., Moreton, T., Pratt, I., Ross, R., Fraser, K., Hand, S., Harris, T.:

Global-scale service deployment in the xenoserver platform. In: Proceedings of
the First Workshop on Real, Large Distributed Systems (WORLDS 2004), San
Francisco (December 2004)

20. Bjerke, H., Rattu, D., Habib, I.: OSFarm
21. XenSource: Xen roadmap, http://wiki.xensource.com/xenwiki/XenRoadMap
22. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.O.: Vmplants:

Providing and managing virtual machine execution environments for grid comput-
ing. In: SC 2004: Proceedings of the ACM/IEEE SC 2004 Conference on High
Performance Networking and Computing, Pittsburgh, PA, USA, p. 7. IEEE Com-
puter Society, Los Alamitos (2004)

http://www.platform.com/
http://www.cassatt.com/prod_virtualization.htm
http://www.fusiondynamics.com
http://wiki.xensource.com/xenwiki/XenRoadMap

Integrating Xen with the Quattor Fabric

Management System

Stephen Childs and Brian Coghlan

Department of Computer Science, Trinity College Dublin
childss@cs.tcd.ie

Abstract. While the deployment of virtual machines (VMs) within the
high-performance computing (HPC) community is proceeding at a great
pace, tools for system management of VMs are still lagging behind those
available for physical machines. In order to make further progress, VM
management must be fully integrated with existing fabric management
infrastructure. We present the results of work done to integrate Xen [4]
with the Quattor [15] fabric management suite. The principal contribu-
tions are the development of a network bootloader for para-virtualised
Xen VMs and a Quattor management component for setting up hosted
VMs. The combination of these tools allows for full unattended installa-
tion of Xen VMs and the automatic configuration of services, all from a
single configuration database.

1 Introduction

Deployment of virtual machines (VMs) in the high-performance computing com-
munity is taking off rapidly. The past few years have seen the use of virtualisation
for Grid service nodes [8], training infrastructures [5,6], dynamic clusters [11],
and middleware certification. Initially most projects took an ad hoc approach to
the creation and management of virtual machines, developing small tools as nec-
essary. However, as virtualisation becomes mainstream and starts to be deployed
in production environments, the need to integrate VMs into existing manage-
ment infrastructure has become apparent: it should be possible to use existiing
installation and configuration mechanisms to install virtual machines.

The term fabric management system is used to describe an integrated suite
of tools used to install, configure and monitor the various service and com-
pute nodes that make up a Grid or HPC infrastructure. Quattor [15] is a fab-
ric management system originally developed as part of the European DataGrid
[17] project, and now developed as a community effort with contributions from
various sites, mostly within the high-energy physics community. It is currently
deployed at over forty sites managing over 10,000 nodes. It is a modular system
designed to manage all stages of a machine’s lifecycle from initial installation on
the bare metal to configuration (and reconfiguration) of complex software such
as Grid middleware.

Quattor configurations are written in Pan [9], a powerful declarative language
allowing complex compositions of configuration templates, and are compiled to

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 214–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrating Xen with the Quattor Fabric Management System 215

XML profiles that contain a complete configuration tree for the machine. Con-
figuration profiles for a site are stored in a configuration database, and the client
machines pull profiles from this database at regular intervals. Programs running
on the client (known as components) read the relevant sections of the config-
uration profile and generate configurations for the services they manage. For
example, the ncm-accounts component manages user accounts, and ncm-ssh
manages secure shell (ssh) services.

Quattor also includes a subsystem for configuring a network boot infrastruc-
ture. The Automated Installation Infrastructure (AII) uses the information from
machine profiles to generate configuration entries for DHCP and pxelinux [3] run-
ning on an installation server. AII allows machines to be installed from scratch
using Kickstart[1]: once the server and client are configured correctly for network
booting, installation of a new node is as simple as switching it on. The aim of
this work is to fully integrate Xen virtual machines with AII and Quattor so
that they can be automatically installed in the same way as physical machines.

2 Design

The aim of this work is to integrate VMs fully into the fabric management
system so that the complete lifecycle can be managed automatically via the
configuration database and installation servers. Once correct profiles have been
configured for a VM and its host, it should be as easy to install the VM as it is
to install a physical machine.

Integrating Xen with Quattor required three main areas of work: i) design of
appropriate Quattor data structures to represent Xen VMs and global config-
uration options, ii) development of a Quattor management component for Xen
(ncm-xen), and iii) development of a bootloader for para-virtualised Xen do-
mains that was compatible with automatic network installation. While the first
two items are specific to Quattor, the bootloader we have developed is useful for
other systems that use network booting (especially those using pxelinux).

It should be noted that there was no need to modify core Quattor services.
The aim was to make VMs behave as much like physical machines as possible,
rather than adapting the core services to treat VMs specially. The combination
of a configuration component running on the hosting machine and enhancements
to the VM boot process made this possible. This approach results in a simpler
system: the installation procedure for VMs is very similar to that of physical
machines, and so the normal debugging procedures used by administrators ap-
ply. Also, once a VM has been successfully booted and configured, day-to-day
management via Quattor is exactly the same as for a physical machine.

2.1 VM Configuration

In Quattor, the configuration state of a physical machine can be entirely en-
capsulated in its configuration profile. In contrast, there are two aspects to the
configuration of a virtual machine: firstly, the configuration of the VM itself, and

216 S. Childs and B. Coghlan

secondly the information needed by the host machine to set up the VM correctly.
The first category includes the same information as for a physical machine (e.g.
user accounts, service parameters, etc.) The second category includes all the in-
formation needed by the host machine to set up the virtual machine: location of
storage, network configuration (including MAC address to be assigned), amount
of memory to be assigned, method of booting, etc. None of this information is
visible within the VM, and so must be included in the configuration of the host
machine.

"/software/components/xen/domains" = push(nlist(
"memory", value("//cagnode50/hardware/ram/0/size"),
"name", "cagnode50.cs.tcd.ie",
"disk",list(nlist

("type",’file’,
"path",’/var/xen-grid/cagnode50/fs/disk’,
"device",’sda’,
"size",value("//cagnode50/hardware/harddisks/sda/capacity"),
"rw",’w’),

nlist("type",’lvm’,
"hostdevice",’xenvg’,
"hostvol", ’cagnode50-swap’,
"size", 6*GB,
"device",’hda3’,"rw",’w’)),

"vif",list(’mac=’+value(//cagnode50/hardware/cards/nic/eth0/hwaddr)),
"bootloader","/usr/bin/pypxeboot",
"bootargs","vif[0]",
"auto", true
));

Fig. 1. Example domain configuration

In Quattor, the configuration for a particular component is normally located
under the location /software/components. So the configuration for ncm-xen
is located under /software/components/xen. The profile of a host machine
includes a list (called domains) of data structures for the VMs that it hosts.
Figure 1 shows an example of this data structure. Most of the entries are simple
strings that will be directly translated to entries in the Xen configuration file. The
exception is the disk entry, which is a more complex data structure incorporating
information needed to create the physical filesystem (i.e. the size) as well as that
needed for VM configuration. Much of the information needed to create the
VM can be extracted from the VM’s own profile (e.g. RAM size, disk capacity,
MAC address). The auto flag determines whether ncm-xen will set up the links
necessary to make the VM run automatically on host system startup.

In addition to the data structures representing domains, there are other vari-
ables that control the global configuration of Xen on the host, and the operation
of ncm-xen. For example, ncm-xen can optionally create storage for guest VMs:

Integrating Xen with the Quattor Fabric Management System 217

this is controlled by the create filesystems variable. The create domains
variable determines whether VMs are automatically started when ncm-xen de-
tects that they are not running.

When ncm-xen is run on the host machine, it extracts this list of data struc-
tures representing VMs from the machine’s profile. ncm-xen uses this information
to generate Xen configuration files for VMs and to set up storage. Once the VM
has been installed successfully, it will retrieve its own profile and invoke the
Quattor configuration components to configure services.

3 Implementation

3.1 Network Bootloader

Preboot Execution Environment (PXE) is a standard for automatically retriev-
ing operating system kernels and configuration information over the network at
boot time. It is widely used for installation of nodes within the high-performance
computing community. When a machine configured for PXE boots up, its net-
work card broadcasts a request for an IP address. A DHCP server will respond
with an IP address and the address of the server holding the configuration and
OS kernel for that machine. The PXE client server then downloads the OS kernel
and uses it to boot the machine.

PXE booting is often used in conjunction with an automatic system installa-
tion program such as Kickstart [1]. Kickstart reads a configuration file, sets up
filesystems and installs a basic set of packages to get the OS up and running.

PXE clients are usually located either in a boot ROM on the network interface
or on the motherboard itself. Boot images loaded from a floppy disk or other
bootable media are also sometimes used. This option would be possible for fully
virtualised VMs running on machines with hardware support, but could not be
used with the para-virtualised (PV) VMs that are currently widely deployed. As
a PV Xen virtual machine does not have physical hardware, some other solution
is required. Various approaches have been suggested in discussions on the Xen
developer list: we have taken the simple approach of writing a program that runs
on the host VM and performs a simulated PXE boot process on behalf of its
guest VMs.

Xen supports the use of a ”bootloader” for guest VMs. This is simply a pro-
gram that is run on the host VM (as part of the VM boot process) to retrieve
a kernel for a guest VM. This scheme has been used by others to implement
pygrub, a program that looks inside the guest’s filesystem, works out which ker-
nel to use, and copies it back out to the host’s filesystem to boot the VM. We
have implemented a network bootloader, pypxeboot, that takes a similar ap-
proach but which retrieves the configuration and kernel over the network rather
than from the guest’s filesystem. The Trivial File Transfer (TFTP) [18] protocol
is used for downloads.

pypxeboot is invoked as part of Xen’s VM creation procedure, and performs
the following steps (illustrated in Figure 2) to retrieve a boot kernel:

218 S. Childs and B. Coghlan

Fig. 2. Pypxeboot network boot cycle

1. Make a DHCP request using the MAC address that will be assigned to the
guest VM.

2. Extract the address of the TFTP server and download the configuration for
the guest VM.

3. Read the configuration received. If the VM is set to network boot, then
download the kernel for the VM over the network. If the VM is set to local
boot, drop back to a bootloader that will load the kernel from the VM’s own
filesystem. In either case, the location of the kernel retrieved is passed to
Xen, which uses it to boot the VM.

DHCP client software normally reads the MAC address from a physical interface
and uses that directly. With pypxeboot, the host VM will need to make a request

Integrating Xen with the Quattor Fabric Management System 219

on behalf of the guest VM using the guest’s MAC address. We modified the udhcp
[10] client to read a user-specified MAC address from the command line, allowing
us to send a DHCP request that appears to come from the guest VM. udhcp also
retrieves other parameters provided by the server, the most important being the
location of the server holding the node’s boot configuration and kernel image.
pypxeboot parses the output from udhcp to determine which server to use, and
then downloads the configuration using a TFTP client.

In order for a Kickstart installation to succeed, installation tools such as
Anaconda must be modified to run on the Xen virtual hardware. We are currently
using images created by Linux Support at CERN [16] which include modified
partitioning and hardware detection code that is compatible with Xen virtual
hardware.

3.2 Quattor Management Component

We have implemented ncm-xen, a management component that runs on the
host machine to translate the configuration specified in a machine’s profile into
a valid Xen configuration. This requires Xen global configuration options to be
set, and also configuration files to be created for the guest VMs. ncm-xen can also
create storage to be used by guest VMs and start VMs: these optional features
are required to enable full unattended installation of Xen hosts and VMs from
scratch.

Quattor components are normally written in Perl, and use the Configuration
Cache Management (CCM) API to access the Quattor profile for the machine
on which they are running. As shown above, most of the parameters for a VM
can be translated directly into Xen configuration parameters: ncm-xen extracts
these entries from the profile and writes them out to a configuration file for the
VM.

A little more work is necessary to correctly configure the filesystems for a
VM. In addition to creating the appropriate configuration entries describing
the storage to be used by the VM, ncm-xen also supports the creation of file-
backed storage and logical volumes. If a file or logical volume is specified in
the VM’s configuration entry but does not exist, ncm-xen will create it. This
is particularly useful when host and guests are being installed from scratch:
ncm-xen can automatically set up backing storage for a VM prior to its first
instantiation. The details from the profile are also used to generate entries in
the correct format for the Xen configuration file.

3.3 Putting It All Together

Having presented all the components of our integrated system, we can now de-
scribe a complete usage scenario where a combination of host and guest VMs,
each with its own profile, are automatically installed on a physical machine.

Figure 3 shows the complete automatic installation of a host and guest VMs,
from bare metal to a fully-configured set of VMs. The first step is to set up
the DHCP entries and pxelinux configuration on the installation server: the AII

220 S. Childs and B. Coghlan

Fig. 3. Complete installation cycle

program provides options to translate information from machine profiles into
DHCP entries, and then to set up the pxelinux configuration for the machines
to cause a network installation.

Integrating Xen with the Quattor Fabric Management System 221

The next stage of the process starts when the physical machine is powered on
for the first time. The machine then boots into Kickstart via PXE and instal-
lation starts. Once a minimal set of packages has been installed, the machine
restarts and boots from local disk. At this stage, Quattor packages are installed,
the machine’s profile is downloaded and a configuration run begins. As part of
this configuration run, ncm-xen will be invoked to configure guest VMs. It will
read the entries from the host’s profile and then create filesystems and Xen con-
figuration files according to this information. The guest VMs are configured to
use pypxeboot as their bootloader, and when they are started they determine
which kernel to boot via PXE, then boot into the same Kickstart installation
procedure used by the host. They then reboot, download their Quattor profile
and begin a configuration run to set up their own services. Once this completes,
the host and guest VMs are all under Quattor control and future configuration
changes can be made by deploying new profiles.

4 Related Work

The need to integrate VMs with existing management systems has been ad-
dressed by others. The developers of OSCAR [12], have presented the results
of a project [2] to add support for Xen guests. However, as they did not solve
the problem of network booting para-virtualised Xen guests, they were forced
to use a cumbersome solution involving a two-stage install. In Xen-OSCAR, the
guest VM initially boots into an install image that sets up the real filesystem for
the VM and installs into it. As our installation uses a native network boot, the
process is much simpler. The installation process for a VM is also very similar
to a standard network installation, making it easier to debug.

XenSource provide the XenEnterprise [14] management suite for deployment
and control of Xen VMs. Enomaly’s enomalism Virtualized Management Dash-
board provides similar functionality [13]. Both of these products provide a GUI-
driven interactive management methodology, rather than the fine-grained,
automated control provided by the Pan language and configuration database
in Quattor. We see the two modes of management as complementary: in fact, we
are also developing an interactive management interface targeted at the creation
of custom test environments. This tool, known as GridBuilder, [7] uses template
FS images and copy-on-write techniques to rapidly create transient VMs whose
configuration need not be stored permanently in a central database. We hope
to investigate closer integration of GridBuilder and Quattor in the future: for
example, experimental configurations created in GridBuilder could be translated
into Quattor configurations for deployment in a production environment.

5 Conclusion

The integration of Xen with a fabric management suite overcomes a significant
obstacle to further deployment of VMs within the HPC community. Previously,
those wishing to deploy VMs needed to develop their own tools, or to interface

222 S. Childs and B. Coghlan

external VM management tools to their existing fabric management system. The
tools we have developed allow for seamless integration of VMs into an existing
Quattor infrastructure, providing for unified management of physical and virtual
machines.

ncm-xen is currently being used by Grid-Ireland to install Gird infrastructure
servers hosted on VMs, and has been released to the Quattor community for
testing. pypxeboot has been submitted for inclusion in the Xen release.

Future work will focus on extending the functionality of ncm-xen. For example,
support for downloading and customising pre-installed images would allow for
faster startup compared to from-scratch installation. It would also be good to
modify the schema so that it is compatible with other VM technologies such as
VMWare, qemu, and kvm.

This work makes use of results produced by the Enabling Grids for E-sciencE
project, a project co-funded by the European Commission (under contract num-
ber INFSO-RI-031688) through the Sixth Framework Programme. EGEE brings
together 91 partners in 32 countries to provide a seamless Grid infrastructure
available to the European research community 24 hours a day. Full information
is available at http://www.eu-egee.org.

References

1. Kickstart installations. http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/custom-guide/ch-kickstart2.html

2. Vallée, G., Scott, S.L.: Xen-Oscar for cluster virtualization. In: Min, G., Di Martino,
B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331,
pp. 487–498. Springer, Heidelberg (2006)

3. Peter Anvin, H.: PXELINUX - SYSLINUX for network boot.,
http://syslinux.zytor.com/pxe.php

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, ACM, New York
(2003)

5. Berlich, R., Hardt, M.: Grid in a box - virtualisation techniques in Grid training.
In: EGEE conference, Athens (April 2005), Available via:
http://www.ep1.rub.de/∼ruediger/pandoraAthens.pdf

6. Cassidy, K., McCandless, J., Childs, S., Walsh, J., Coghlan, B., Dagger, D.: Com-
bining a virtual grid testbed and grid elearning courseware. In: Proc. Cracow Grid
Workshop 2006 (CGW 2006). Academic Computer Centre CYFRONET AGH,
Cracow, Poland (October 2006)

7. Childs, S., Coghlan, B., McCandless, J.: GridBuilder: A tool for creating virtual
Grid testbeds. In: 2nd IEEE Conference on eScience and Grid computing, Ams-
terdam (December 2006)

8. Childs, S., Coghlan, B., O’Callaghan, D., Quigley, G., Walsh, J.: A single-computer
grid gateway using virtual machines. In: Proc. AINA 2005, Taiwan, March 2005,
pp. 761–770. IEEE Computer Society, Los Alamitos (2005)

9. Cons, L., Poznanski, P.: Pan: A high-level configuration language. In: LISA 2002:
Sixteenth Systems Administration Conference, Usenix, pp. 83–98 (2002)

http://www.eu-egee.org
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html
http://syslinux.zytor.com/pxe.php
http://www.ep1.rub.de/~ruediger/pandoraAthens.pdf

Integrating Xen with the Quattor Fabric Management System 223

10. Dill, R., Ramsay, M.: udhcp client/server package (2002),
http://udhcp.busybox.net/

11. Emeneker, W., Stanzione, D., Jackson, D., Butikofer, J.: Dynamic virtual clustering
with Xen and Moab. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G.
(eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 440–451. Springer, Heidelberg
(2006)

12. Open Cluster Group. Open source cluster application resources.,
http://oscar.openclustergroup.org

13. Enomaly Inc. enomalism virtualized management dashboard.,
http://www.enomalism.com

14. XenSource Inc. Xen Enterprise 3.1 datasheet.,
http://www.xensource.com/files/xenenterprise 3.1 datasheet.pdf

15. Garcia Leiva, R., Barroso Lopez, M., Cancio Melia, G., Chardi Marco, B., Cons,
L., Poznanski, P., Washbrook, A., Ferro, E., Holt, A.: Quattor: Tools and Tech-
niques for the Configuration, Installation and Management of Large-Scale Grid
Computing Fabrics. Journal of Grid Computing 2(4) (2004)

16. Jaroslaw Polok. Xenification of Scientific Linux CERN.,
https://twiki.cern.ch/twiki/bin/view/LinuxSupport/XenificationOfSLC

17. Segal, B., Robertson, L., Gagliardi, F., Carminati, F.: Grid computing: The euro-
pean data grid project (2000)

18. Sollins, K.: The TFTP Protocol (Revision 2), RFC (1350) (July 1992)

http://udhcp.busybox.net/
http://oscar.openclustergroup.org
http://www.enomalism.com
http://www.xensource.com/files/xenenterprise_3.1_datasheet.pdf
https://twiki.cern.ch/twiki/bin/view/LinuxSupport/XenificationOfSLC

Getting 10 Gb/s from Xen: Safe and Fast

Device Access from Unprivileged Domains

Kieran Mansley, Greg Law, David Riddoch,
Guido Barzini, Neil Turton, and Steven Pope

Solarflare Communications, Inc.
{kmansley,glaw,driddoch,gbarzini,nturton,spope}@solarflare.com

Abstract. The networking performance available to Virtual Machines
(VMs) can be low due to the inefficiencies of transferring network packets
between the host domain and guests. This can limit the application-level
performance of VMs on a 10 Gb/s network. To improve network perfor-
mance, we have created a “virtualization aware” smart network adapter
and modified Xen1 to allow direct, but safe, access to such adapters from
guest operating systems. Networking overheads are reduced considerably,
and the host domain is removed as a bottleneck, resulting in significantly
improved performance.

We describe our modifications to the Xen networking architecture
that allow guest kernels direct — but secure — access to the network-
ing hardware, whilst preserving support for migration. We also describe
briefly how the same technology is used to grant direct network access to
user-level applications and thus provide even greater efficiency in terms
of bandwidth, latency and CPU utilisation.

1 Introduction

Modern commodity servers are able to saturate 10Gb/s Ethernet networks
[1]. However, VM guests incur significant additional overheads due to context-
switching, data movement and passing packets between the host domain and
guests. The Xen [2] virtual machine architecture imposes relatively low over-
heads on networking compared with other virtualization technologies, yet its
performance is well below that of native operating systems [3, 4]. The privi-
leged host VM quickly becomes a bottleneck as all network traffic must pass
through it.

This I/O bottleneck makes virtualization effectively impractical for certain
classes of application, including many HPC applications and high performance
servers. As 10Gb/s Ethernet moves more into the mainstream, the set of ap-
plications for which this is a barrier to adoption of virtualization will likely
increase.

1 Xen is a trademark of XenSource, Inc. in the United States and other countries.

L. Bougé et al. (Eds.): Euro-Par 2007 Workshops, LNCS 4854, pp. 224–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Getting 10 Gb/s from Xen: Safe and Fast Device Access 225

This paper shows how allowing guest operating systems direct access to the
I/O hardware eliminates the bottleneck and software overheads usually associ-
ated with virtualized I/O, and allows a virtualized guest to achieve performance
comparable with a system running natively. Doing so requires additional support
from the hardware in order to multiplex the device between multiple guests that
may access it concurrently and also to enforce isolation so that guests cannot
gain privileges or compromise system integrity.

The rest of this paper is structured as follows. Section 2 outlines the archi-
tecture for accelerated networking that we have added to Xen, while Section 3
expands to describe our implementation and the results we have obtained with a
virtualization-aware network adapter. Section 4 shows how the same techniques
can be applied to user-level applications. Finally, Section 5 concludes.

2 Architecture

2.1 Xen Paravirtualized Network I/O

Paravirtualized network I/O in Xen is achieved through a pair of interlinked
drivers; netfront the “frontend driver” in the guest, and netback the “backend
driver” in the host domain. The frontend and backend communicate through
a region of shared memory and send each other virtual interrupts using event
channels. Together these form a channel that supports the transfer of packets
between host domain and guest.

The upper edge of the frontend driver presents the interface of a standard net-
work device driver, allowing it to interface to the bottom of the guest’s network
stack. The backend appears likewise and is usually configured to connect to a
software bridge in the host OS. This allows it to communicate with the host’s
network stack, other virtual machines’ backend drivers, and physical network
interfaces and so the network beyond.

Packets that arrive from a physical network interface are routed by the bridge
to the appropriate backend drivers, which in turn forward them to the cor-
responding guests’ frontend drivers. These then pass them on to the network
stack as if they had arrived directly at the guests. Packets sent by guests follow
the same path in reverse. Packets sent from one guest to another are routed
between the corresponding backend drivers by the bridge.

2.2 Acceleration Architecture

We have extended the Xen netfront/netback architecture with a plugin interface
that provides an opportunity to accelerate network performance. We have pre-
served the existing netfront/netback channel and added an optional “fast path”
implemented by the plugins. To account for as many different kinds of hardware
as possible (existing and future designs), the plugin interface makes as few as-
sumptions as possible. By preserving the existing netfront/netback mechanism
it is possible to support migration and also hardware that accelerates only a
subset of traffic with other traffic taking the “slow path”.

226 K. Mansley et al.

Interrupt

Control

Data "slow path"

Data "fast path"

bridge

accelerator
netfront
accelerator

netdev

DomUDom0

NIC

netback netfront

netback

Fig. 1. Accelerated networking in Xen

Various acceleration techniques are possible, but the main model anticipated
is for the plugin driver in the guest to access the network adapter hardware
directly to send and receive packets, bypassing the host domain and associated
overheads. This is illustrated in Figure 1.

The netfront and netback drivers each accept an “accelerator plugin.” The
frontend accelerator communicates with netfront and implements the data path,
whereas the backend accelerator communicates with netback and handles control
functions.2 See Section 3 for details of our implementation of accelerators for the
Solarstorm SFC4000 controller.

Accelerated Transmit Path. Packets to be transmitted are passed from the
guest kernel to the netfront driver. If an accelerated plugin is present it is given
the opportunity to send the packet via the fast path, and it indicates whether or
not it did so. If it did not, the netfront driver transmits the packet via the slow
path through netback. Thus netfront need have no knowledge of the capabilities
of the accelerator. Packets that are destined for local VMs (those in the same
system) must not be transmitted onto the network and so in most cases are sent
via the slow path. However, some smart adapters might be able to deliver them
via an accelerated path.
2 The backend accelerator can be part of the network adapter’s ‘net’ driver, or can be

a separate module.

Getting 10 Gb/s from Xen: Safe and Fast Device Access 227

Accelerated Receive Path. How the receive path is accelerated depends on
the capabilities of the hardware and frontend accelerator. Some smart network
adapters are able to demultiplex received packets to the appropriate guest by
inspecting headers and delivering packets directly into the guest’s address space.
The frontend accelerator may then be invoked by an interrupt or via the host
domain and an event channel. It then passes received packets to the kernel stack.
The plugin interface allows the frontend accelerator to participate in Linux’s
NAPI algorithm for managing interrupts.

If the network adapter is not able to deliver a packet directly to a guest it
can deliver it to the net driver in the host domain, from where it will be passed
along the normal path through the bridge and netback drivers. This path will
usually be used for multicast and broadcast packets that need to be delivered
to multiple guests. When a received packet is delivered via netback, it is pre-
sented to the backend accelerator. This gives the accelerator an opportunity to
inspect the packet and if appropriate program the network adapter to deliver
similar packets directly to the guest in future. This provides a means to sup-
port hardware with differing means of demultiplexing received traffic and also
for the backend accelerator to allocate scarce hardware resources according to
demand.

By placing these small hooks in the netfront/netback architecture, we aim to
leave sufficient flexibility for device vendors to construct a wide range of accel-
eration devices and drivers. That is, our goal is to make the netfront/netback
drivers in Xen simple and device-agnostic. This keeps the acceleration-specific
and device-specific code in the accelerator plugins and thus achieves maximum
flexibility.3

The code that implements the framework for this architecture was recently
accepted by XenSource into the xen-unstable open source repository and will
likely be included in future releases of Xen.

2.3 Security

The security concerns that this architecture raises are largely to do with the
guest OS’s ability to access network hardware directly. It must not be possible
for software running in the guest VM, whether by accident or attack, to com-
promise the security, integrity and isolation guarantees normally provided by
Xen. To prevent this, the network adapter must be able to provide the following
guarantees:

1. Guests can only transfer network data to and from the adapter using memory
regions they own. This may be enforced by the use of a platform IOMMU,
or by pre-registering buffers through the host domain (which can do the
necessary checks) and restricting access to that set.

3 Once several accelerator plugin drivers have been developed, it may be that com-
mon code is identified and a framework is built to encapsulate this common code.
However, that is beyond the current scope of this work.

228 K. Mansley et al.

2. Packets must only be delivered via a fast path if they would have reached
the same recipients via the slow path. I.e. packets must only be delivered to
their addressee.

3. Guests can only transmit packets which have the correct source MAC
address.

Other features may also be desirable, including filtering packets according to
other address fields such as VLAN tag or IP address. The ability to control the
rate at which individual guests are able to transmit can also be useful to achieve
fair access to the network amongst competing VMs.

2.4 Migration

Exposing entire devices directly to the guest (by “PCI pass-through” for ex-
ample) would render migration between machines with heterogeneous hardware
very difficult. Fortunately, the use of the para-virtualized netfront/netback driver
model makes migration relatively straightforward.

The plugin model and ability to fall back to the slow path are key. Before a
VM is moved from one host to another the frontend accelerator plugin is removed
and all network traffic reverts to the slow path. The VM no longer has direct
access to the hardware and so can be migrated without difficulty. Note that the
removal of the frontend accelerator is largely transparent to applications in the
guest VM, which at worst see a degradation in network performance.

On arrival at the new host, the netfront/netback channel is created and network-
ing on the slow path resumes. If the new host contains a smart adapter a suitable
frontend accelerator is loaded once again and networking can be accelerated.

The acceleration architecture must also be robust as other VMs migrate out-
of and into a host that contains an accelerated VM. When another VM migrates
in, the existing frontend accelerators need to be aware of this transition as they
must switch from accepting packets on the fast path to sending them down the
slow path so they can be delivered locally.4 Without this it would continue to
route packets via the fast path onto the network when the destination is now on
the same host.

This is the same problem as that facing Ethernet switches in the network,
as they must also become aware of the change in topology. The solution takes
advantage of the gratuitous ARP packet sent after migration to update the
switches. On receipt of this ARP the backend accelerator plugin can inform the
frontend plugin of the change.

3 Implementation for Solarstorm Controllers

Presently the Solarstorm SFC4000 is the only device for which accelerator plug-
ins have been written, but it is likely that other adapters will be supported in the
future, particularly with the advent of platform IOMMUs [5,6] and PCI-IOV [7]
devices.
4 Unless the smart adapter itself supports local deliver in hardware.

Getting 10 Gb/s from Xen: Safe and Fast Device Access 229

3.1 Hardware

Like most modern network adapters, the SFC4000 uses DMA descriptor rings
to manage transfer of packet data between host memory and the adapter. It
has another type of queue, called an event queue, to notify the software as DMA
transfers complete. In common with some other high-end adapters, the SFC4000
supports many DMA queues and event queues. A transmit ring, receive ring and
event queue together form a virtual interface (VI) which comprises all of the
resources needed to transfer packets between the host and network. Each VI is
accessed through a separate page of the I/O address mapping of the adapter and
so an unprivileged domain can be given access to just one VI by mapping the
I/O page into the domain’s address space.

The SFC4000 steers received packets to the appropriate VI’s receive queue by
inspecting address fields in packet headers, under the control of filters. Filters can
only be programmed by the backend accelerator in the priviliged host domain.

In contrast to most other network adapters, the addresses of DMA buffers in
host memory can be specified either with physical addresses, or protected virtual
addresses. The virtual addressing mode is used for VIs that are mapped into
unprivileged domains and provides the memory protection guarantee discussed
in Section 2.3. An internal IOMMU is used to translate the virtual addresses to
physical addresses, which can only be programmed by the privileged driver.

3.2 Accelerated Transmit

Accelerated transmit is relatively straightforward. Most packets offered by net-
front to the accelerator plugin are simply appended to the transmit ring of its
VI. However, the frontend plugin elects not to transmit packets addressed to
other guests on the same host, including broadcast and multicast packets (net-
front will then send them in the normal way). Once the DMA transfer for a send
is completed, the adapter places a completion notification on the event queue,
which the frontend accelerator responds to by releasing the packet buffer.

3.3 Accelerated Receive

Each packet received by the adapter is directed to a DMA queue according to its
addressing information. If the packet’s destination address matches a filter, the
packet is received onto the VI with which that filter is associated. If the destination
address matches no filters, the packet is received onto the default VI.

Packets received onto the default VI queue are handled by the net driver.
These packets are passed to the backend accelerator plugin in order to give it an
opportunity to accelerate future traffic with that addressing information. The
backend accelerator will typically insert a filter to ensure that future packets
received to this address are steered by the hardware to the appropriate VI for
the guest. The net driver then passes the received packet up to the network stack
as usual, which will then make its way over netback to the appropriate netfront
in the traditional Xen way.

230 K. Mansley et al.

Currently Xen does not support MSI-X, so all interrupts are delivered to
the net driver, even for accelerated traffic. The net driver must then notify the
appropriate frontend accelerator (via the backend accelerator) using an event
channel.5 Upon receiving the event channel interrupt, the guest’s frontend ac-
celerator inspects its event queue and delivers received packets to the guest OS.

3.4 Performance

We used the Chariot [8] benchmark suite to measure the TCP bandwidth achiev-
able with 1–4 guests, and compared the SFC4000 accelerator plugin implemen-
tation against the same (but unmodified) version of the latest open source xen-
unstable tree. The experiments were run on two Dell PowerEdge 2950 servers,
each fitted with two quad-core Intel Xeon 2.66GHz CPUs. The CPUs were par-
titioned such that each VM was pinned to its own (exclusive) physical CPU
core and each virtual machine had 256 MB of memory. The servers were con-
nected back-to-back using a pair of Solarstorm SFE4003 CX-4 10Gb/s Ethernet
adapters. The operating systems used were based on Red Hat Fedora Core 5
modified to use the open source xen-unstable tree with Linux 2.6.18-xen kernels.
The MTU was 1500 bytes. For tests involving multiple guests, each guest was
running the Chariot benchmark client concurrently. All throughput results are
the aggregate for all guests.

Table 1 shows results for a single uni-directional TCP stream to each guest.
Performance saturates at 9.25 Gb/s due to a PCIe bus bandwidth limitation.
Table 2 shows corresponding results for bi-directional traffic.

Table 1. Bandwidth (Gb/s) for uni-directional traffic

Number of guests Unaccelerated throughput Accelerated throughput
Gb/s Gb/s

1 1.93 5.26
2 2.60 8.86
3 2.80 9.25
4 2.84 9.25

We also noted that under heavy load with unmodified xen-unstable the host
domain became very unresponsive to the point of being very difficult to use. This
is thought to be due to it becoming overloaded by the network traffic passing
through it. In the accelerated experiments there was no human-observable effect
on the host domain’s responsiveness as the network load was carried by the
guests’ CPUs.

This illustrates a further benefit of accelerated virtualized networking: Each
guest has an independent network stack and so network traffic passed to and
from the physical network is multiplexed only in the hardware. Thus there is
5 We plan to implement MSI-X support in the near future, meaning that the hardware

will be able to deliver interrupts directly to the guest.

Getting 10 Gb/s from Xen: Safe and Fast Device Access 231

Table 2. Bandwidth (Gb/s) for bi-directional traffic

Number of guests Unaccelerated throughput Accelerated throughput
Gb/s Gb/s

1 2.13 5.34
2 2.66 9.95
3 2.85 11.61
4 2.91 14.22

no cross-talk between CPUs that are running separate guests and performance
scales very well as the number of CPU cores and guests increases.

4 Solarstorm and User-Level Networking

The same hardware features that make the Solarstorm adapters suitable for
direct access by untrusted guest VMs can be used to allow direct access by
untrusted user-level applications. We have developed a TCP stack which can be
linked against user-level applications and allows the bulk of network processing
to be performed in the context of the application, eliminating system calls from
the transmit and receive data paths. This results in significant reduction in

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 32 1024 32768 1.04858e+06

B
an

dw
id

th
 (

M
b/

s)

Message size (bytes)

Linux kernel
Open onload

Fig. 2. Bandwidth (Mb/s) of user-level and kernel networking

232 K. Mansley et al.

CPU utilisation, increased bandwidth and reduced latency. We call our user-level
TCP/IP stack Open Onload, and intend to release it under an open-source licence
in the near future.

The plot in Figure 2 shows the bandwidth achieved by Open Onload compared
with the Linux kernel stack running over the same hardware. This test was run
with a 1500b̃yte MTU and reaches link saturation bandwidth.

The application to application one-way latency for the kernel stack6 on these
systems is 10.1μs and just 5.3μs with Open Onload. Of this, 4.3μs is attributable
to the hardware and link, so the software overhead to send and receive a small
message is 5.8μs for the kernel stack and just 1.0μs for Open Onload.

As well as improving performance, the Open Onload stack improves system
behaviour by performing network processing in the context of the application.
This ensures that the work done is properly accounted to the application and
so improves fairness. Another consequence is that it does not suffer from receive
live-lock [9], a situation in which a CPU spends all of its time processing network
traffic at high priority and not making any progress in the user-level application.
Thus performance under overload conditions is improved.

5 Conclusion

This paper has presented an architecture for accelerating network access from
virtual machines. The architecture has several advantages:

Fast. The performance delivered with the acceleration architecture far exceeds
that seen by “vanilla” Xen, particularly when many guests are competing
for network access. By removing the shared host domain from the common
data path, performance isolation is improved.

Simple. The amount of additional code in the Xen mainline has been kept low.
Flexible. The architecture makes minimal assumptions about the capabilities

offered by hardware, meaning it should be compatible with a wide range of
devices, present and future.

Mobile. The ability to fall-back to the slow path means it is possible to support
migration in heterogeneous environments and benefit from acceleration when
suitable hardware is available.

Safe. With suitable hardware support the architecture ensures that VMs remain
isolated from each other and can not exploit their direct access to the NIC
to interfere with other guests.

Using this architecture Xen can now fill a 10Gb/s pipe and deliver perfor-
mance to guest OSs comparable to that which is normally only seen by the host
OS. Further developments currently in progress, including MSI-X support, are
expected to improve performance yet further.

6 With interrupt moderation disabled.

Getting 10 Gb/s from Xen: Safe and Fast Device Access 233

References

1. Pope, S., Riddoch, D.: 10Gb/s Ethernet performance and retrospective. Computer
Communication Review 37(2) (2007)

2. Pratt, I., Fraser, K., Hand, S., Limpach, C., Warfield, A., Magenheimer, D., Naka-
jima, J., Mallick., A.: Xen 3.0 and the Art of Virtualization. In: Proceedings of the
Ottawa Linux Sumposium (2005)

3. Menon, A., Cox, A., Zwaenepoel, W.: Optimizing Network Virtualization in Xen.
In: USENIX Annual Technical Conference (2006)

4. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Di-
agnosing Performance Overheads in the Xen Virtual Machine Environment. In:
ACM/USENIX Conference on Virtual Execution Environments (VEE 2005) (June
2005)

5. Intel Corportation: Intel Virtualization Technology for Directed I/O (2006),
http://www.intel.com/technology/itj/2006/v10i3/2-io/
5-platform-hardware-support.htm

6. AMD Inc: AMD I/O Virtualization Technology (IOMMU) Specification.
http://www.amd.com/us-en/assets/content type/white papers and tech docs/
34434.pdf

7. PCI SIG: PCI-SIG - I/O Virtualization,
http://www.pcisig.com/specifications/iov/

8. Ixia Corporation: IxChariot.,
http://www.ixiacom.com/products/display.php?skey=ixchariot

9. Mogul, J.C., Ramakrishnan, K.: Eliminating receive livelock in an interrupt-driven
kernel. ACM Transactions on Computer Systems 15(3), 217–252 (1997)

http://www.intel.com/technology/itj/2006/v10i3/2-io/5-platform-hardware-support.htm
http://www.intel.com/technology/itj/2006/v10i3/2-io/5-platform-hardware-support.htm
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://www.pcisig.com/specifications/iov/
http://www.ixiacom.com/products/display.php?skey=ixchariot

Author Index

Alexander, Michael 143
Alexius, Per 62
Anedda, Paolo 154

Ba�la, Piotr 82, 94
Baldridge, Kim K. 82
Barzini, Guido 224
Benedyczak, Krzysztof 94
Beńıtez, Domingo 28
Bertogna, Mario Leandro 164
Bhatia, Nikhil 185

Cacciari, Claudio 131
Canonico, Roberto 144
Casalegno, Mosé 82
Childs, Stephen 143, 214
Clementi, Luca 131
Coghlan, Brian 214
Cook, Andrew 18
Cristal, Adrian 8

De Rose, César 195
del Grosso, Enrico 82
Demeure, Isabelle 205
Demuth, Bastian 82
Di Gennaro, Pasquale 144
Donaldson, Alastair 18

Elahi, B. Maryam 62

Faroughi, Arash 121
Faroughi, Roozbeh 121
Ferreto, Tiago 195
Forsell, Martti 3
Franciosi, Felipe 195
Frias, Leonor 49

Gaggero, Massimo 154
Gianoli, Alberto 112
Gréhant, Xavier 205
Grazziotin, Felipe 195
Grosclaude, Eduardo 164

Hagemeier, Björn 72, 131
Hedman, Fredrik 62, 104

Iliopoulos, Anthony 104

Jarp, Sverre 205
Jesshope, Chris 38

Kunze, Marcel 174

Law, Greg 224
Lokhmotov, Anton 18
López Luro, Francisco 164
Luque, Emilio 28

Mallmann, Daniel 112
Manca, Simone 154
Manetti, Vittorio 144
Mansley, Kieran 224
Maran, Uko 82
Melato, Maurizio 131
Memon, Shahbaz 112
Memon, Shiraz 112
Menday, Roger 72, 131
Mix, Hartmut 82
Moure, Juan C. 28
Mucci, Phillip 62

Netzer, Gilbert 62
Nowiński, Aleksander 94

Orengo, Jean Paulo 195

Pernet, Olivier 205
Piclin, Nadège 82
Pintore, Marco 82
Pope, Steven 224

Rasch, Katharina 82
Rexachs, Dolores I. 28
Riddoch, David 224
Riedel, Morris 112
Riley, Colin 18
Romberg, Mathilde 82

Schuller, Bernd 82, 112
Shah, Zeeshan Ali 62
Sild, Sulev 82

236 Author Index

Singler, Johannes 49

Snelling, David 112

Stagni, Federico 112

Stamou, Katerina 104

Sterling, Thomas 7

Storch, Mauro 195

Streit, Achim 61, 112

Sudholt, Wibke 82

Toft, Peter 205

Tomic, Sasa 8

Träff, Jesper Larsson 3

Turton, Neil 224

Tweddell, Bastian 112

Unsal, Osman 8

Valero, Mateo 8
van den Berghe, Sven 112
Ventre, Giorgio 144
Venturi, Valerio 112
Vetter, Jeffrey S. 185
Vishkin, Uzi 5

Wang, Lizhe 174
Wieder, Philipp 121

Zanetti, Gianluigi 154
Zhang, Li 38
Ziegler, Wolfgang 61, 121

	Title Page
	Preface
	Organization
	Table of Contents
	HPPC 2007: Workshop on Highly Parallel Processing on a Chip
	Toward Realizing a PRAM-on-a-Chip Vision
	Societies of Cores and Their Computing Culture
	Hardware Transactional Memory with Operating System Support, HTMOS
	Introduction
	Motivation
	Previous Work

	HTMOS Architecture
	Software
	Hardware

	Transactional Access
	Begin Transaction
	Transactional Read
	Transactional Write
	Commit Transaction
	Abort Transaction
	Conflict Resolution: Block Transaction IPI

	Conclusions and Future Work

	Auto-parallelisation of Sieve C++ Programs
	Introduction
	Syntax
	Sieve and Immediate Functions
	Iterator Classes
	Accumulator Classes

	Speculative Execution
	Split Points
	Speculative Execution
	Examples
	Coping with Invalid Guesses
	Advanced Techniques for Guessing

	Implementation on the Cell BE
	The Cell Runtime
	Experimental Results
	Combining Writes

	Conclusion

	Adaptive L2 Cache for Chip Multiprocessors
	Introduction
	Reconfigurable Cache
	Physical Implementation
	Experimental Methodology
	Application to Adaptive CMPs with Private L2 Cache
	Related Work
	Conclusions

	On-Chip COMA Cache-Coherence Protocol for Microgrids of Microthreaded Cores
	Introduction
	Background
	Requirements
	The Microgrid Multi-core Chip

	Memory Hierarchy Design
	On-Chip COMA Cache-Coherence Protocol
	Consistency Model
	Conclusion and Future Work

	Parallelization of Bulk Operations for STL Dictionaries
	Introduction
	Algorithms
	Parallel Tree Construction
	Parallel Bulk Insertion
	Analysis
	Dynamic Load-Balancing

	Interface and Implementation Aspects
	Experimental Results
	Conclusion and Future Work

	UNICORE Summit 2007
	A Black-Box Approach to Performance Analysis of Grid Middleware
	Introduction
	Measuring the Overhead Imposed by the Middleware
	Comparison Across Different Middlewares

	Design of the Middleware Evaluation Tool
	Components of the Evaluation Tool

	Proof of Concept on UNICORE
	UNICORE
	Evaluation Testbed Setup
	Middleware Specific Details for the Test Tool

	Experimental Results
	Initial Test Scenarios

	Summary and Future Work

	UNICORE/w3
	Introduction
	Review
	The World Wide Web
	Grid Computing with UNICORE/w3
	Related Work
	Outlook and Summary

	Chemomentum - UNICORE 6 Based Infrastructure for Complex Applications in Science and Technology
	Introduction
	Application Scenarios
	Architecture of the Chemomentum System
	Workflow Processing
	Data Management
	Security Considerations
	Clients

	The Chemomentum Testbed
	Conclusions and Outlook

	Flexible Streaming Infrastructure for UNICORE
	Introduction
	The UGSF Platform
	UGSF Architecture
	UGSF Web Service
	UGSF Streaming Server

	UGSF Data Flow Client
	Generic Functionality
	Plugins

	Related Work
	Conclusions and Future Work

	Extending UNICORE 5 Authentication Model by Supporting Proxy Certificate Profile Extensions
	Introduction
	The UNICORE Authentication Model
	Implementation of the Proposed Enhancement
	Validation Testing
	Towards Grid Middleware Interoperability
	Alternative Approaches and Solutions
	Explicit Trust Delegation
	The CONDOR-UNICORE Bridge

	Conclusion

	Using SAML-Based VOMS for Authorization within Web Services-Based UNICORE Grids
	Introduction
	Evolution of Virtual Organization Membership Services
	Using SAML-Based VOMS with UNICORE 6
	VOMS as Attribute Authority for UNICORE
	Authorization Decisions in UNICORE Based on XACML

	Use Case Scenario: Role-Based Authorization in Collaborative Visualization and Steering Sessions
	Related Work
	Conclusions

	Attributes and VOs: Extending the UNICORE Authorisation Capabilities
	Introduction
	Related Work
	Role-Based and Attribute-Based Authorisation
	Virtual Organization Membership Service (VOMS)
	Shibboleth

	UNICORE Authentication and Authorisation Model
	UNICORE Integration with VOMS and Shibboleth
	The Integrated Architecture of VOMS and UNICORE
	UNICORE Integration with Shibboleth
	Necessary Changes of the Shibboleth-Framework

	Future Work

	A Business-Oriented Grid Workflow Management System
	Introduction
	Related Work and Background
	BPMN and BPEL

	Workflow Framework System
	Design of a New Workflow
	Converting BPMN into a Workflow Language: BPMN2BPEL
	Workflow Grounding: BPEL Modeler

	The A-WARE Infrastructure
	Conclusions
	References

	VHPC 2007: Workshop on Virtualization/Xen in High-Performance Cluster and Grid Computing
	Virtualization Techniques in Network Emulation Systems
	Introduction
	Cluster-Based Network Emulation Systems
	Virtualization Technologies
	FreeBSD Jails
	Linux VServer
	OpenVZ
	Xen

	Virtualization for Node Multiplexing
	Virtualization for Link Multiplexing
	Virtualization Techniques for Link Multiplexing Compared
	Conclusions

	SOA Based Control Plane for Virtual Clusters
	Introduction
	Virtual Computing Facilities
	Cybersar

	Generalized Computing Control Plane
	Physical Resources Management
	Virtual Resources Management
	Virtual Resources Implementation

	Preliminary Testbed
	Target Testbed
	Conclusions

	Grid Virtual Laboratory Architecture
	Introduction
	Architecture Overview
	Architecture Components
	Requirements Specification
	Scheduler
	Logical to Physical Mapping
	Resource Instantiation
	Network Virtualization

	Use Case Implementation
	Parallel Application Use Case (parcomp)
	Internetworking Laboratory Use Case (netlab)

	Related Work
	Conclusion

	Information Service of Virtual Machine Pool for Grid Computing
	Introduction
	Related Work
	System Architecture of Employing Virtual Machines
	Design and Implementation of an Information Service
	Overview
	Information Collector
	Information Provider for Globus Index Service Aggregation

	Test Results
	Test Bed
	Test Results

	Conclusion and Future Work

	Virtual Cluster Management with Xen
	Introduction
	Virtual Clusters
	Related Work
	Overview of Xen Virtual Cluster Manager
	XCM Client
	XCM Daemon

	Xen Cluster Manager in Action
	Live Migration
	Automatic Load Balancing
	Node Maintenance

	XCM Experiment
	Conclusion
	References

	Deploying and Managing Xen Sites with XSM
	Introduction
	Xen Site Manager
	Deployment
	Management
	Monitoring

	Performance Evaluation
	Related Work
	Conclusions and Future Work

	Xen Management with SmartFrog
	Introduction
	SmartDomains, a Novel Approach
	Usage: A Comparative Overview
	Launching a Virtual Pool
	Describing a Virtual Pool
	Measurements and Future Work on Performance

	Extending SmartDomains
	Administration: Specialize by Composing and Pre-configuring
	Development: Enriching SD by Plugging in New Logic and Composite Structures

	Conclusion

	Integrating Xen with the Quattor Fabric Management System
	Introduction
	Design
	VM Configuration

	Implementation
	Network Bootloader
	Quattor Management Component
	Putting It All Together

	Related Work
	Conclusion

	Getting 10 Gb/s from Xen: Safe and Fast Device Access from Unprivileged Domains
	Introduction
	Architecture
	Xen Paravirtualized Network I/O
	Acceleration Architecture
	Security
	Migration

	Implementation for Solarstorm Controllers
	Hardware
	Accelerated Transmit
	Accelerated Receive
	Performance

	Solarstorm and User-Level Networking
	Conclusion

	Author Index

