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Preface

These are the Proceedings of the 11th International Workshop on Practice and
Theory in Public Key Cryptography — PKC 2008. The workshop was held in
Barcelona, Spain, March 9-12, 2008.

It was sponsored by the International Association for Cryptologic Research
(IACR; see www.iacr.org), this year in cooperation with MAK, the Research
Group on Mathematics Applied to Cryptography at UPC, the Polytechnical Uni-
versity of Catalonia. The General Chair, Carles Padrd, was responsible for chair-
ing the Local Organization Committee, for handling publicity and for University
attracting funding from sponsors.

The PKC 2008 Program Committee (PC) consisted of 30 internationally
renowned experts. Their names and affiliations are listed further on in these
proceedings. By the September 7, 2007 submission deadline the PC had received
71 submissions via the TACR Electronic Submission Server. The subsequent se-
lection process was divided into two phases, as usual. In the review phase each
submission was carefully scrutinized by at least three independent reviewers, and
the review reports, often extensive, were committed to the IJACR Web Review
System. These were taken as the starting point for the PC-wide Web-based dis-
cussion phase. During this phase, additional reports were provided as needed,
and the PC eventually had some 258 reports at its disposal. In addition, the
discussions generated more than 650 messages, all posted in the system. During
the entire PC phase, which started on April 12, 2006 with the invitation by the
PKC Steering Committee, and which continued until March 2008, more than
500 e-mail messages were communicated. Moreover, the PC received much ap-
preciated assistance by a large body of external reviewers. Their names are also
listed in these proceedings.

The selection process for PKC 2008 was finalized by the end of November
2007. After notification of acceptance, the authors were provided with the review
comments and were granted three weeks to prepare the final versions, which were
due by December 14, 2007. These final versions were not subjected to further
scrutiny by the PC and their authors bear full responsibility. The Program Com-
mittee worked hard to select a balanced, solid and interesting scientific program,
and I thank them very much for their efforts.

After consultation with the PC, I decided to grant the PKC 2008 “Best Pa-
per Award” to Vadim Lyubashevsky (University of California at San Diego), for
his paper “Lattice-Based Identification Schemes Secure Under Active Attacks”.
Besides the above-mentioned 21 regular presentations, the PKC 2008 scientific
program featured three invited speakers: David Naccache (ENS, Paris) on “Cryp-
tographic Test Correction”, Jean-Jacques Quisquater (Université Catholique de
Louvain) on “How to Secretly Extract Hidden Secret Keys: A State of the
Attacks”, and Victor Shoup (New York University) on “The Role of Discrete
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Logarithms in Designing Secure Crypto-Systems”. David Naccache also con-
tributed (unrefereed) notes for his lecture, which are also included in this
volume.

CWI! in Amsterdam and the Mathematical Institute at Leiden University,
my employers, are gratefully acknowledged for their support. Also many thanks
to Springer for their collaboration. Thanks to Shai Halevi for his TACR
Web-handling system.

Eike Kiltz from the CWI group, besides serving as a member of the PC,
provided lots of general assistance to the Chair, particularly when setting up
and running the Web system and when preparing this volume. I thank Carles
Padro, PKC 2008 General Chair, for our smooth and very pleasant collaboration.
Finally, we thank our sponsors the Spanish Ministery of Education and Science,
and UPC.

January 2008 Ronald Cramer

1 CWI is the National Research Institute for Mathematics and Computer Science in
the Netherlands
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Total Break of the ¢-IC Signature Scheme

Pierre-Alain Fouque!, Gilles Macario-Rat?,
Ludovic Perret3, and Jacques Stern'

! ENS/CNRS/INRIA
Pierre-Alain.Fouque@ens.fr, Jacques.Stern@ens.fr
2 Orange Labs
gilles.macariorat@orange-ftgroup.com
3 UMPC/LIP6/SPIRAL & INRIA/SALSA
ludovic.perret@lip6.fr

Abstract. In this paper, we describe efficient forgery and full-key re-
covery attacks on the (-IC™ signature scheme recently proposed at PKC
2007. This cryptosystem is a multivariate scheme based on a new internal
quadratic primitive which avoids some drawbacks of previous multivari-
ate schemes: the scheme is extremely fast since it requires one exponen-
tiation in a finite field of medium size and the public key is shorter than
in many multivariate signature schemes. Our attacks rely on the recent
cryptanalytic tool developed by Dubois et al. against the SFLASH sig-
nature scheme. However, the final stage of the attacks requires the use
of Grobner basis techniques to conclude to actually forge a signature
(resp. to recover the secret key). For the forgery attack, this is due to
the fact that Patarin’s attack is much more difficult to mount against
¢-1C. The key recovery attack is also very efficient since it is faster to
recover equivalent secret keys than to forge.

1 Introduction

Multivariate cryptography proposes efficient cryptographic schemes well-suited
for low computational devices. Since the underlying problem is not known to be
easy in the quantum model, these schemes have been considered by standard-
ization bodies as alternatives to RSA or DLog based schemes. For instance, in
2003, one promising signature scheme, called SFLASH, has been selected by the
NESSIE project. SFLASH is based on the C* cryptosystem [20] proposed by
Matsumoto and Imai in 1988 and broken by Patarin in 1995 [2I]. Following an
idea of Shamir [25], Patarin, Goubin and Courtois proposed SFLASH [24] by
removing some equations of the system. The scheme is also called C*~ and the
generic transformation of removing equations is called the “Minus” transforma-
tion which can be applied to many multivariate schemes.

The security of multivariate public-key cryptosystems is related to the prob-
lem of solving systems of quadratic or higher degree equations in many variables.
This problem is known to be NP-hard and it seems to be also difficult on aver-
age. The today most efficient algorithms to solve this generic problem are Grébner

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 1-[17] 2008.
© International Association for Cryptologic Research 2008



2 P.-A. Fouque et al.

basis algorithms whose complexity is exponentiaﬂ in time and space. But this gen-
eral tool can perform much better in the cryptographic context since the security
does not rely on hard instances. As usual in multivariate cryptography, esay in-
stances of this NP-hard problem are hidden using linear mappings and in some
cases, Grobner basis algorithms are able to recover the hidden structure [15]. For-
tunately, some countermeasures are known to avoid this kind of attack such as the
Minus transformation. But are they sufficient to avoid all attack?

Recently, some breakthrough results [I1IT0] have been achieved in the crypt-
analysis of multivariate schemes and have led to the efficient break of SFLASH
in practice. In this work, some cryptanalytic tools have been developed which
are very generic and efficient since only linear and bilinear algebra are used.
They can be seen as differential cryptanalysis applied on multivariate scheme
but the treatment of the differential of the public key is the main important
point. The idea is to compute the differential of the public key and then to
study the differential function as a bilinear function when the internal mapping
is a quadratic function. The differential mapping at some point, or fix difference,
is a linear map, but if we let the point vary, we get a bilinear map. Then, in [I1],
the authors are able to characterize the self-adjoint operators of these bilinear
functions, also called skew-symmetric linear map with respect to the bilinear
function, and they show that they can be used to recover missing coordinates.
For SFLASH, they show that they correspond to the conjugate by one linear and
secret map of the multiplications in the extension. Finally, once all the missing
equations have been recovered, Patarin’s attack can be used to forge a signature
for any message.

Main Results. The /-IC signature scheme has been proposed by Ding, Wolf
and Yang at PKC 2007. They propose a new quadratic function based on the
Cremona mapping over E; an extension of a finite field. The advantages are that
this function is more efficient to invert than SFLASH since it requires only one
inversion in the finite field of ¢* elements, and it provides shorter public key.
The number of quadratic polynomials of the public key P is |¢|n where n is
the product of the extension degree k and ¢ the number of coordinates of the
Cremona map and |q| is the bitlength of the small field K. It can be seen that
the parameter k must be large enough to avoid some attack, and ¢ must be small
if we want to have short public key. In general, ¢ will be equal to 3 or 5, in the
parameters proposed by the authors.

In this paper, we show that the recent tools developed for SFLASH are generic
and can be used to other multivariate schemes. We will use these tools to recover
the missing coordinates of the ¢-IC~ scheme. Once the whole set of equations of
the public key is recovered, Grobner basis techniques can be used either to forge a
signature for any message or to recover the secret key. The key recovery uses the
fact that we are able to characterize and recover equivalent secret keys. More
precisely, we recover two linear mappings Sy and Ty such that if we compose
the public key P with them, T, o P o Sy, the new system of polynomials

! For systems with a finite number of solutions.



Total Break of the ¢-IC Signature Scheme 3

are equivalent to 77 o F o §’, where F is the central mapping and S’ and T’
are two linear mappings defined over the extension E and not over K. Finally,
the description of a ¢-IC public key in E is easy to invert using Grébner basis
technique, since the number of unknown is small provided ¢ is small.

Organization of the Paper. In Section 2, we recall some classical definitions
and properties of Grobner basis. Then, in Section 3, we describe the (-IC™ sig-
nature scheme. We also describe the scheme ¢ = 3, which is the version proposed
in [9]. In Section 4, we describe a special property of the differential of this new
quadratic scheme. This property, together with Grobner basis techniques, will
permit us to mount an efficient forgery (Section 5) and full key recovery attacks
(Section 6).

2 Grobner Basics

We present here Grobner basis and some of their properties. We will touch here
only a restricted aspect of this theory. For a more thorough introduction to this
topic, we refer the interested reader to [IIS].

2.1 Definition — Property

We will denote by K a finite field of ¢ = p" elements (p a prime, and r > 1). We
shall call ideal generated by p1,...,ps € K[z1,...,z,], denoted by (p1,...,ps),
the set:

IT=(p1,...,ps) = {Zpkuk:ul,...,ukEK[xl,...,a:n]} CKlz1,...,zn].
k=1

We will denote by Vk(Z) = {z e Fy: pi(z) = 0Vi,1 < i < s} the variety
associated to Z. Grobner bases offer an explicit method for describing varieties.
Informally, a Grobner basis of an ideal 7 is a computable generating set of 7
with “good” algorithmic properties. These bases are defined with respect to
monomial orderings. For instance, the lexicographical (Lex) and degree reverse
lexicographical (DRL) orderings — which are widely used in practice — are defined
as follows:

Definition 1. Let a = (a1,...,a,) and = (f1,...,5,) € N*. Then:

— a0 e m'fl - P if the left-most nonzero entry of a — 3 is positive.
=tz =pRL mfl g Y > 30 B or Y ey = Y00 B and
the right-most nonzero entry of o — /3 is negative.

Once a (total) monomial ordering is fixed, we can introduce the following
definitions:

Definition 2. We shall call total degree of a monomial 7" ---x% the sum
Z?:l «;. The leading monomial of p € Klzy,...,z,] is the largest monomial
(w.r.t. some monomial ordering <) among the monomials of p. This leading
monomial will be denoted by LM(p, <). The degree of p, denoted deg(p), is the
total degree of LM(p, <).
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We are now in a position to define more precisely the notion of Grébner basis.

Definition 3. A set of polynomials G C Klzy,...,z,] is a Grébner basis —
w.r.t. @ monomial ordering < — of an ideal Z in K[zy,...,a,] if, for all p € Z,
there exists g € G such that LM(g, <) divides LM(p, <).

Grobner bases computed for a lexicographical ordering (Lex-Grobner bases) per-
mit to easily describe varieties. A Lex-Grobner basis of a zero-dimensional system
(i.e. with a finite number of zeroes over the algebraic closure) is always as follows

{fl(l‘l) = O,fg(l‘l,l‘z) = 0,. . .,fk2($1,332) = 0,. . .,fkn(xl,. . ,xn)}

To compute the variety, we simply have to successively eliminate variables by
computing zeroes of univariate polynomials and back-substituting the results.

From a practical point of view, computing (directly) a Lex-Grdbner basis is
much slower that computing a Grébner basis w.r.t. another monomial ordering.
On the other hand, it is well known that computing degree reverse lexicographical
Grobner bases (DRL-Grobuner bases) is much faster in practice. The FLGM
algorithm [I4] permits — in the zero-dimensional case — to efficiently solve this
issue. This algorithm use the knowledge of a Grébner basis computed for a given
order to construct a Grébner for another order. The complexity of this algorithm
is polynomial in the number of solutions of the ideal considered.

DRL-Grobner bases have another interesting property. Namely, these bases
permit to recover low-degree relations between the inputs/outputs of a vectorial
function £ = (f1,..., fm) : K* = K™.

Proposition 1. Let f = (fy,..., f,) be polynomials of K[z, ..., z,]. We shall
call ideal of relations of f the set:

IR(f):<21—f1($1,...,"En)7...7Zm—fm($1,...7$n)>€K[m17...,(En,Zl,...,Zm].

If Zr(f) is radical, then a DRL-Grobner basis G (with 1 > -+ > z, > z; >
-+« > 2,,) of I (f) describes all the (independent) algebraic relations between the
inputs/outputs of f. In particular, G contains a linear basis of the polynomials
Qe€Ir(f) st

deg(Q) = minper, (r) (deg(P)).

Note that in the cryptographic context, the ideals (of relations) are usually
radicals. We can indeed always include the field equations. So, this condition is
not really restrictive.

2.2 Computing Grobner Bases

The historical method for computing Grobner bases is Buchberger’s algorithm
[6/5]. Recently, more efficient algorithms have been proposed, namely the F4 and
F5 algorithms [T2IT3]. These algorithms are based on the intensive use of linear
algebra techniques. Precisely, F4 can be viewed as the “gentle” meeting of Buch-
berger’s algorithm and Macaulay ideas [19]. In short, the arbitrary choices — which
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limit the practical efficiency of Buchberger’s algorithm — are replaced in F4 by
computational strategies related to classical linear algebra problems (mainly the
computation of a row echelon form).

In [I3], a new criterion (the so-called Fj criterion) for detecting useless compu-
tations has been proposed. It is worth pointing out that Buchberger’s algorithm
spends 90% of its time to perform these useless computations. Under some regu-
larity conditions, it has been proved that all useless computations can be avoided.
A new algorithm, called F5, has then been developed using this criterion and lin-
ear algebra methods. Briefly, F5 constructs incrementally the following matrices
in degree d:

mi > Mo > M3 ...
t1f1
Ag= tafs
t3f3

where the indices of the columns are monomials sorted for the admissible or-
dering < and the rows are product of some polynomials f; by some monomials
t; such that deg(t;f;) < d. For a regular system [I3] (resp. semi-regular sys-
tem [3I4]) the matrices Ay are of full rank. In a second step, row echelon forms
of theses matrices are computed, i.e.

mi1 mo ms .
tfi 100 .
L= tafs 010 ..
tsfs |00 1 .
000.

For a sufficiently large d, A/, contains a Grébner basis of the considered ideal.
An important parameter to evaluate the complexity of F5 is the maximal degree
dreg occurring in the computation and the size Ny, of the matrix Ag,,. The
overall cost is dominated by IV, ey with 2 < w < 3 denoting the linear algebra

constant. Very roughly, Ny
global complexity of:

can be approximated by O(n%z) yielding to a

reg

O e);

more details on this complexity analysis, and further complexity results, can be
found in [34].

To date, Fj5 is the most efficient method for computing Grébner bases, and
hence zero-dimensional varieties. From a practical point of view, the gap with
other algorithms computing Grobner bases is consequent. Notably, it has been
proved [2] from both a theoretical and practical point of view that XL [7] —
which is an algorithm proposed by the cryptographic community for solving
overdefined system of equations — is a redundant version of F4 and less efficient
than Fs.
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3 The ¢-1C~ Signature Scheme

In this part, we describe the ¢-IC™ multivariate signature scheme proposed at
PKC’07 by Ding, Wolf and Yang [9]. Note that our description differs from the
original description given by the authors of [9]; allowing us to present our attacks
in a concise way.

The design principle of -IC schemes is classical in multivariate cryptography.
Namely, we start from a well chosen algebraic system F which is “easy” to solve,
and then hide this central system using linear and invertible transformations S
and T following the idea of McEliece’s cryptosystem:

P=ToFoS. (1)

For ¢-IC, the central function F in E[X1, X», ..., X/’ is obtained by considering
the so-called Cremona mapping which is defined — over an extension E of degree
k of K — as follows:

qM q*? g
F(X1, X, ., X)) = (X0 Xo, X3 X5, XT X)), (2)

This function can be invertible for well chosen parameters and it is efficient to
invert since only one inversion in E is required: once X7 is recover, only division
are needed.

The public key consists in P and to sign a message m of n bits, we inverse
it using T', compute an inverse of F', and finally inverse S to find a preimage s
of m for the function P. To verify a signature s, it is sufficient to evaluate the
public key P and check that it is equal to the message m.

We introduce now some notations in order to provide a compact represen-
tation of F. We will denote by = ® y the component-wise multiplication of
x=(x1,22,...,2¢) and y = (y1,Y2, - -, Ye), L.e.:

T ®y = (T1Y1, T2Y2, - - -, Teye)-
Moreover, R will denote the left rotation operator, namely:
R(l‘) = (.732, T3y .- ,xg,ajl).

Finally, if A = (A1,..., ) € N, then £, will denote:

Ealz) = @0, al).

With these notations, the central map F can be expressed as:
F(z) = &a(x) ® R(x).

In order to combine F with the two secret transformations S and T', we have to
consider some canonical bijection & of K¥ onto E*. So, F operates on E¢ and



Total Break of the ¢-IC Signature Scheme 7

&1 o F o @ operates on K*. In the sequel, we may avoid the writing of & when
the context is obvious. Hence, we can express F and therefore the public key P
as a system of n = £ - k polynomials of n variables over K. Since S, T, R, and
&, are K-linear, the polynomials of P are quadratic over the n variables of K.
In expression (), note that S can be seen as a change of input variables of F,
and T as a change of output variables of F.

We now would like to consider the simplest expressions for F. The authors
of [9] remarked that it is useless to consider expression like F(x) = &4, (z) ®
R(€a,(x)). The exponentiation £4, would be absorbed by the morphism S. In
the same spirit, if we consider

A=+ ... + X, 3+ ...+ X, A, 0),

A//:(A1+-" +A[7O,-~'70)7
A" = (0, A2+ ... + A As + o+ A )

then we have the following equality:
Ex (Ea(z) ® R(x)) = Ean (Ean () @ R(Eam (x)).

The exponentiation €4 would be absorbed by the external transformation 7.
For A, we can then limit the choice to vectors such as (A, 0, ..., 0). Thus, a simple
expression for F is given as follows:

A
F(X17X27 teey XZ) = (Xil X27X2X37 cee X@Xl),

for some integer .
Ding, Wolf and Yang gave explicit formulae [9] for inverting F when possible,
since invertibility of F is required in the signature scheme:

— If £ is even, we must have ged(¢* — 1,¢* — 1) = 1. Since ¢ — 1 divides ¢* — 1
and ¢F — 1, we must have ¢ = 2.

— If £ is odd, we must have ged(¢* +1,¢* — 1) = 1. So in this second case, the
choices are A = 0 when ¢ is even and otherwise A > 0 and k/ged(k, \) odd

(according to [I1]).

Then, for a practical signature scheme, the authors of [9] have considered the
effects of some known attacks and some modified versions of the main scheme
¢-1C supposed to defeat those attacks. Particularly for ¢ even, ¢-IC scheme is
vulnerable to the UOV attack [I8[I7]. So even values of ¢ should be avoided.
Then, the authors suggested a modified version, the “Minus” scheme, named
(IC~. The point is to remove r polynomials among the description of P. To sign
a message m of (n—r) bits, first add r random bits to the message, proceed as in
the (-ICscheme, and then discard those r random bits. It increases the complexity
of Patarin and Faugere-Joux attacks by a factor ¢". As a counterpart, the scheme
can only be used for signature since exhaustive search is also impossible for
legitimate user.
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In the sequel, we will denote by Prr € E[X1, Xa, ..., X/]* the corresponding
truncated public key (i.e. the composition of P with a suitable projection IT).

Finally, the authors propose the following sets of parameters:

#K ¢ k n n—r Security estimation

28 31030 20 280
28 31236 24 296
28 31648 32 o128

4 Differential and Multiplication of ¢-1C

In this part, we present some tools adapted for the cryptanalysis of multivariate
systems. We introduce the definition of the differential and we show a special
property of the differential of the central map F of ¢-IC. In the next section, we
show that this property translated onto the public key enables to retrieve special
linear applications, which breaks the “Minus” scheme of /IC~.

4.1 Differential of the Public Key

For a generic application F in one variable, its differential DF is a symmetric
function in two variables defined as:

DF(X,A)=F(X+A) -FX)-F(A) + F(0).
In the case of the central map F of ¢-IC, we get explicitly:
DF(X, A) = £4(X) @ R(A) + E4(A) & R(X).

Note that when F is quadratic function, DF is symmetric bilinear function.
The differential DP of the public key P is also a bilinear symmetric function
and is linked to the differential of the central map F by the following relation:

DP(X,A) = T(DF(S(X), S(A))).

Furthermore, the differential DP can be explicitly computed from the expression
of the public key P since the differential operator operates linearly on functions
and it can be easily computed on monomials.

4.2 Characteristic Properties of the Multiplications

Since R and £, are multiplicative,i.e. for all (X, A), R(X®A) = R(X)@R(A)
and E4(X @ A) = E4(X) ® E4(A), we have the multiplicative property of the
differential DF, for all £, X, A in E¢:

DF((®X,A)+DF(X,{®A) = (Ea(§) + R(§)) @ DF(X, A). (3)

For simplicity, we now introduce the following notations: M¢(X) = £ ® X the
multiplication by ¢ in Ef and Ng = S71 o Mg o S and L(€) = £4(€) + R(€).
The key idea is the following statement.
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Lemma 1. The K-linear applications M that satisfy for all X, A in E*:
DF(M(X),A)+DF(X,M(A)) =0 (4)
are precisely the multiplications M, with ¢ satisfying L(§) = 0.

Proof. Due to the property (@), we first look for the linear applications M and
M’ that satisfy for all X, A in E¢:

DF(M(X),A) + DF(X, M(A)) = M'(DF (X, A)). (5)

We now express M and M’ in a well chosen basis, and then we show that the
coordinates of M are those of the multiplications. Indeed, any K-linear applica-
tion over E can be uniquely expressed as Zf;é a,x? with (ag,...,ap_1) in EF,
Hence, the w-th coordinate of M (X) and M’(X) can be expressed respectively
as:

-1 k—1 -1 k—1
E E Oy v,wX ey and E E BuwwXd
u=0v=0 u=0 v=0

for some vy, 4w and By v in E. The function F is defined as in (@), so the w-th
coordinate of DF(X, A) is

Aw Aw
ng Aw+1 + AZ, X1u+1~
Then by considering the w-th coordinate of equation (&) we get:

—1 k—1
Aw v+ Aw vt Ay YA Y A
>3l (X0 A+ AL X)) e (X8 A%+ AL X))
u=0v=0
£—1 k-1 v

=303 B (X A + 47 Xu1)"(6)

u=0v=0

The functions X gbAgd are linearly independent. So, we can derive as many
relations as the number of these functions, for each coordinate equation (6.
Since one given coefficient oy 5, occurs at most four times in all these relations,
we can see that many of them are null, since corresponding relations are trivial.
Coefficients ay, ., appearing in non trivial relations have the following indexes:
(w,0,w), (W+1, =Ay, w), (W+2, =Xy —Ap+1, W), (w+1,0,w+1), (w, Ay, w+1),
(w—1,A\p + Ap—1,w + 1). At this point, we must recall that “w + 1”7 is in fact
the successor of w in (0,...,¢ — 1) or that w are taken mod/. Hence we may
consider that “¢4+1=1" and “1 —1 = ¢”. This is why we now have to consider
two cases: (¢ = 3, g even), and (¢ = 3, g odd) or £ > 5.

— In the first case (¢ = 3, ¢ even), there are two kinds of “side effect”, since
“w—1=w+2” for indexes, and “X +X = 0”7 in E. In this case, we have A =
(0,0,0), and F(X) = X ®R(X). The solutions of equation (@) are in fact the
E-linear applications over E‘. One can check easily that in this case, solutions
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M of equation (@) can be expressed as a @ X + @ R(X) + v ® R(R(X)),
for some «, B, and v in E. Nevertheless, since in equation (@), is in fact
equation (&) where M’ = 0, the only non trivial relations are: a1 91 =
OZQ’O)Q = ag)o’g. Hence we have M(X) = (a1’0)1X1,a2,0’2X27a3’0)3X3) =
(@1,0,1,2,0,2,03,0,3) @ X.

— In the second case, the only non trivial relations that remain are: agj.o,w
Qut1,00+1 = Buw.0.0- Hence the result: M(X) =a® X, M'(X) = (E4(a)
R(a)) @ X. When M’ = 0, we must have £4(a) + R(a) = 0.

Aw

o+ +

By translating this result in the public key with the following property:
DP(N¢(X),A) + DP(X, N¢(A)) = T(Mp)(DF(5(X), 5(A)))) ()
we get the next result:

Lemma 2. The linear applications M that satisfy for all X, A in E*:
DP(M(X),A) +DP(X, M(A)) =0 (8)

are the “multiplications” N, i.e. the conjugates by S of the multiplications M,
with ¢ satisfying L(£) = 0.

We emphasize here that finding the applications of the lemmallcan be practically
achieved, since it can be reduced to the resolution of a linear system.

To conclude this section, we give here the solutions of L(£) = 0. We need to
show that & = 0 is not the only solution, and more precisely that there exist
solutions whose coordinates are in [E but not in K. This result will be useful
later.

Lemma 3. There are non trivial solutions of equation L(¢) = 0 that are not in

K*.
— When ¢ is even, then A = 0. The solutions satisfy {& = & = ... = &. So
&= (a,...,a) with a in E.
A
— When ¢ is odd, the solutions satisfy ¢ + & =6+ & =... =& +& =0.
So ¢ = (v, —ay...,a,—a) with « in E satisfying a? + o = 0. Since

ged(¢g® —1,¢¥ —1) > ¢ — 1 > 1, equation a? + a = 0 admits solutions in
E\K.

5 Practical Cryptanalysis of £-IC~ for Small £

From now, we focus our attention to the practical cryptanalysis of the 3-1C~
signature scheme. This is the signature scheme proposed in [9]. However, we
would like to emphasize that the next attack can be easily extended to any
¢-1C~ signature scheme.
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5.1 Roadmap of the Attack

The goal of the attack is to recover — from the truncated public key Py — the equa-
tions that were removed. Namely, to recover the whole set of polynomials P. Once
these equations are recovered, the scheme is completely broken since a signature
can be efficiently forged using Grobner bases. The principle of the attack is very
similar to the one described against SFLASH in [I0]. First, we recover an invariant
matrix N¢ for the mapping DP. This is done by solving a linear system gener-
ated from the (public) components of DP (see Section[d]). This matrix will then
permit to reconstruct the whole public key P as we describe in the sequel.

5.2 Description of the Attack
What we have to do is first finding one suitable linear application M satisfying:
DP;(M(X),A) + DP (X, M(A)) = 0.

If r the number of missing coordinates is not too high, all solutions are indeed
“multiplications” N¢ according to section [l

We recall that Ng = S™1M¢S, Mg being the matrix of multiplication by ¢ in
[E‘. Since we have the following relation:

ProNe=IIoToFoSoN;
=IloToFoSoS toM:oS
ZHOTOFOMEOS
=HoToMpgoFoS
:HOTOMF(E)OT_loToFoS
:HOTOMF(g)OTiloP,

by composing the public key P by N¢, we get another set of (n —r) equations.
We select randomly r equations among this set. It is very likely that this new
set will be independent from the (n —r) of Ppy. This is indeed the case if £ does
not have all its coordinates in K or more precisely if M is not diagonal. So,
we have in some sense recovered the equations removed. We quoted below some
experimental results that we obtained for /-IC~. We have done these experiments
using the computer algebra Magmaﬁ. In this table, T}, is the time to reconstruct
the missing equations with our approach.

#K L k n r Tre
28 3103020 12s.
28 3123624 31s.
28 31648 32 2 min.
28 51050 4 3 min
28 51260 4 8 min.
28 51680 4 36 min.

% http://magma.maths.usyd.edu.au/magma,/
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Equations Linking Input and Output. It remains anyway to actually forge
a signature using this additional knowledge. To this end, we can first try to
mimic Patarin’s attack on C*. It can be noted that Patarin’s bilinear equations
also exist for £-IC. For instance, when £ = 3, we can see that:

Y = X1 Xo X3Y) = X1Ys
}/2 = XQXg implies X2Y3 = X3Y1 .
Y3 = X3X, X1Ys = XoY3

These are bilinear equations between the input X = (X3, X2, X3) and output
Y = (Y1,Y5,Y3) of the function F. However, the last bilinear equation is not
independent from the two previous ones. We have then only 2k independent
equations in K. In order to have enough independent equations, we can try to
add:

YV1Ys = X1 X2 X3 = X2Y5.

This last equation permits to obtain k additional independent equations. It is
not bilinear in the left hand side. But, this is not really an issue, since the right
hand side is bilinear when char(E)= 2.

We mention that these equations can be recovered automatically using Grobner
bases. To do so, we consider the ideal of relations:

Ir(F) = (V1 — X1X3,Ys — X5 X3,Y3 — X1 X3) € K[X1, Xo, X3, Y7, Y2, Y3).

This ideal is radical. Thus, a DRL-Grobner basis G (with X7 > -+ > X3 > Y] >
-+ >Y3) of g (F) contains a generator set of all the algebraic (independent)
relations between the inputs/outputs of F (see Property [I]). In this particular
case, we obtain instantaneously (using the computer algebra system Magma)
the following basis:

(X1 X2 + Y1, X1X3 + Y3, Xo X3 + Yo, X3Y1 + XoV3, X1Ya + XoV3, X3Y3 + V1 V5.

Anyway, this approach does not permit to efficiently forge a signature. Unfor-
tunately, if we try to reconstruct the corresponding equations from the (whole)
public key P, we need 248 operations for the first set of parameters.

Signature Forgery. To conclude the attack, we will use another classical prop-
erty of Grobner basis. Once all the polynomials of P recovered, it is not difficult
to forge a signature of a message m € K" by computing a solution of the non-
linear system:

P(X) —m, 9)

which can be done in practice for real sizes of the parameters. This behavior
was already suspected by the authors of the scheme [9]. However, for the sake of
completeness, we quoted below some experimental results that we obtained for
¢-1IC. We have done these experiments using Magma (v2.13-12) which includes
a very efficient implementation of the Grébner basis algorithm Fy.
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HKLk ndpey T
28 31030 4 0.7s.

28 31236 4 2s.
28 31648 4 11s.
28 51050 4 12s.
28 51260 4 39s.
28 51680 4 209 s.

In this table, T denotes the amount of time needed to compute a solution of the
system (@), for randomly chosen (non-zero) messages m € K" (i.e. to forge a
valid signature for m). We mention that T is the time of computing Grobner
basis plus the time to compute the solution from this Grobner basis. We have also
reported the maximum degree d,.4 reached during Grobner bases computations.
It appears that this degree is bounded from above by a constant (4), leading
then to an experimental complexity for systems arising in ¢-IC (¢ odd) of:

O(n**), with 2 < w < 3 denoting the linear algebra constant.

This implies that whole attack presented in this part is polynomial (in the num-
ber n of variables).

6 A Key-Recovery Attack for £-1C~ for Small £

In this part, we show that we can go one step further in the cryptanalysis of
the ¢-IC~ scheme. Namely, we can recover the secret key (T,S), or at least
one equivalent description, when ¢ is small. As previously, this attack will com-
bine differential and Grébner bases techniques. We will only consider the case ¢
even, but once again this attack can easily be extended to other cases. Finally,
the attack does not need to have the definition of the irreductible polynomial
which defines the medium field [E since this isomorphism can be absorbed in the
equivalent key.

6.1 Equivalent Secret Keys

For an attacker, a total break of /-1C is equivalent to finding a description of P
such as P = ToFoS. In fact, this description is not unique. Indeed, it can be seen
that there exist many equivalent keys [27]. For instance, since Myp(¢)oF = Fo M,
then (T o Ml‘?(lg)7 M¢ 0 5) is another valid description. We notice here that M,
is not only K-linear, but also E-linear. So, more generally, we have to face the
problem of finding an equivalent description (7", S") where T~ 'oT” and S’ 0 S~1
are [E-linear.

In the sequel, we will use the fact that a matrix of a K-linear application
which is also E-linear can be viewed as a kf x kf-matrix over K but also as a
£ x £-block matrix whose blocks are multiplications by elements of E.
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6.2 Roadmap of the Attack

To recover one such equivalent secret key, we consider that S and T' can be de-
composed into one K-linear part and one E-linear part, according to the previous
subsection. In the first part of the attack, we will find the part of S and of T
in K and then the parts in [E. To recover the part of S in K, called Sy, we will
use the invariants /N¢ that we recover using the differential of the public key.
Then, once Sy is recovered, we will find the part of 7" in K, called Tj, using the
differential DP. In fact, DP depends linearly on S and T and if we compose
DP by 50—1’ then we are able to cancel the part of S in DP. Using some clever
ideas we are able to reconstruct some Tj. Finally, we find the part of S and T
in E using Grobner basis algorithms on the public equation composed on the
right by Sy and on the left by T, '. The problem can then be described in E
instead of K. In such a case, we have reduced the number of variables to 2 x £2.
Due to the special form of the equations, the two sets of variables are separated,
Grobner basis algorithms are very efficient.

6.3 Description of the Attack

Resolution of Sy. We suppose that we have already recovered the multiplica-
tion matrix N¢ (we have then all the polynomials of P). We recall that:

SN¢ = M;S,

Me being a block-diagonal matrix and since £ = («, o, @), each block of the
diagonal corresponds to the same multiplication matrix by « element of E. Our
goal is to recover S from this equality.

To this end, we try to find M¢. Observe that « is an element of the multi-
plicative group E* of E. We know that E* is of order ¢¥ — 1. Due to the choice
of the parameters, we can isolate a small subgroup of E*, not totally included
in K*. Note that elements of K must be avoided, otherwise M¢ would be totally
diagonal, leading then to linearly dependent equations.

In our example, ¢ = 256 and k = 10,12, 16. Since k is even, a good candidate
for the order is 0 = g+ 1, but any smaller value prime with ¢ — 1 will be possible.
Consequently, by raising N¢ to the power a = (¢* — 1) /o we get:

N¢ = 57" MgS =S~ MES,
and &% is of order o. Finally, we can test all elements p of order o. For each of
them, we try to solve:
XN¢ =M,X.
Let’s suppose that X; and X5 are two particular invertible solutions of this
equation. Then YV = X1 X5 L must satisfy the equation:

Y M, = M,Y.

So, at this step, the solutions for S form the right coset of any particular solution
and the subgroup of ¢-by-¢ block-matrices of elements of K, which precisely
commute with M,. These are exactly the E-linear applications. So, we can pick
at random some invertible solution Sj.
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Resolution of Ty. Next step is to obtain a similar description for 7. We would
like to gain some information on T from the differential of the public key using
linear algebra. We recall that:

DP(X,A) = T(DF(S(X), S(A))).

From now, it will be easier to fix the first variable and to see DPx(A) as a
linear mapping or equivalently as a matrix. So let’s consider vy a fixed random
vector. Then, consider the expression:

DP,, 0 S;' =T oDFg(,,)0 505"

It is important to note that DF g(,,) o S o Sy 1 is actually E-linear, not only
K-linear. The matrix DP,, o Sy ! is therefore the product of 7' and an unknown
{-by-£ block-matrix of elements of E. Unfortunately, this matrix is not invertible
due to the underlying structure of DF. However, this issue can be easily resolved
by picking at random a second vector v and some matrix R with ¢-by-¢ block-
multiplications (i.e. R is E-linear) and computing the matrix DP,, o S; 1+
DP,, o Sy o R. All possible results can be seen as a left coset which contains
the real value of T'. So, it suffices to pick any value Ty, provided it is invertible.

Resolution of TV and S’. In the last step, we compose the public equations on
the right by S ! and on the left by T, 071, the result is public equations expressed
in E instead of K. As explained in [16], we can recover the components of T”
and S’ by solving an algebraic system of equations. In our case, we have reduced
the number of variables to 2 x ¢2. This is due to the fact we are working over
E instead of K. Here, the number of unknowns is very small (2 x 32, for the
parameters considerd). The last unknown parameters can easily be retrieved
(within a second) using Grobner bases techniques, as illustrated in the table
below:

#KC E n T

28 310300.1 s.
28 312360.1 s.
2% 316480.1s.
2% 51050 0.3 s.
28 51260 0.3 s.
2% 516800.3 s.

7 Conclusion

We have presented a forgery attack and a key recovery attack on the parameters
of the ¢-IC™ signature scheme proposed in the original paper. We also briefy
mention that this attack can be extended to all other choices of parameters. The
main worry when proposing a multivariate scheme is that the Minus Transfor-
mation can be used with attention now, due to the differential attack. Finally,
for this scheme and contrary to the SFLASH signature scheme, we show that it
is possible to recover the secret keys S and T'.
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Abstract. We consider the NTRU encryption scheme as lately sug-
gested for use, and study the connection between inverting the NTRU
primitive (i.e., the one-way function over the message and the blinding in-
formation which underlies the NTRU scheme) and recovering the NTRU
secret key (universal breaking). We model the inverting algorithms as
black-box oracles and do not take any advantage of the internal ways
by which the inversion works (namely, it does not have to be done by
following the standard decryption algorithm). This allows for secret key
recovery directly from the output on several inversion queries even in
the absence of decryption failures. Our oracles might be queried on both
valid and invalid challenges e, however they are mot required to reply
(correctly) when their input is invalid. We show that key recovery can be
reduced to inverting the NTRU function. The efficiency of the reduction
highly depends on the specific values of the parameters. As a side-result,
we connect the collisions of the NTRU function with decryption failures
which helps us gain a deeper insight into the NTRU primitive.

Keywords: NTRUEncrypt, Inversion Oracles, Universal Breaking,
Public-Key Cryptanalysis.

1 Introduction

For every cryptosystem the connection between recovering the secret key (i.e.,
universally breaking the system) and inverting the underlying (one-way) encryp-
tion function is a question of fundamental importance. The classical example is
the basic Rabin cryptosystem [21] where the ability to invert instances (i.e., find-
ing modular square roots) was shown to be equivalent to the recovery of the key,
i.e., factoring; (recently, [20] extended this to all factoring based cryptosystem
with a single composite). For general RSA, the question whether one can factor
the modulus N querying (polynomially many times) an oracle that inverts the
function f(z) = x° (mod N), remains a challenging open problem for almost 30
years (some work in the opposite direction can be found in [3]). Relating secret
key recovery to ciphertext inversion may be used to strengthen security claim (in
case key recovery is believed to be hard), and at the same time it opens the door
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to chosen ciphertext attacks as was originally pointed out by Rivest regarding
Rabin’s scheme.

We study this connection for the NTRU Encryption scheme (NTRUEncrypt)
[1] with respect to parameter sets where the secret key f has the shape f =
1+ p« F for a binary polynomial F.

We note that given the state of the art, not much is known about the structure
of the NTRU encryption function and the one-way properties of the basic NTRU
operation, and unlike traditional public-key schemes NTRU lacks random self-
reducibility which is a property often used in understanding the structure. Our
investigation, in turn, is aimed at better understanding the one-way trapdoor
function that underlies NTRU.

Our conceptual goal has been a “black box” reduction, i.e., treating the inver-
sion oracle (device) as unknown (which is a stronger reduction than ones that
assume specific knowledge of how the inverting algorithm works). With this goal
in mind, we found that the problem of finding the secret key pair (i.e. universally
breaking the scheme) can be reformulated in a way that resembles the problem
of inverting a certain instance of NTRU. More specifically, rewriting the key
generation equation leaks a polynomial which, for specific parameter values, can
be efficiently transformed into a valid instance and thus be recovered using a
black box (hypothetical) inverting algorithm.

Related Work: To the best of our knowledge, our work is the first one that
studies the problem of NTRU universal breaking outside the CCA framework.
All previous key recovery attacks assume access to the decryption oracle, which
on input a (valid or invalid) ciphertext applies the standard NTRU decryption
process, and use its output to retrieve information about the secret key f. All the
known CCAs are not guaranteed to work unless the decryption process functions
in a very specific way. These attacks retrieve f indirectly and almost all of them
work only in the presence of decryption failures.

Jaulmes and Joux [I5] were the first to present CCAs against NTRU. Even
though their attacks need just a small number of queries to recover f, they do not
seem to work for all instantiations of NTRU and require the whole output of the
decryption oracle for the recovery of f. In addition, they use invalid ciphertexts
of a very special shape and can thus be easily thwarted by a decryption machine
(which simply refuses to give an output when the input is an invalid ciphertext).

In [T4] the authors present 3 new chosen-ciphertext attacks against optimized
NTRU (where f = 14 p=*F). The attacks require a very small number of queries
to the decryption oracle while all the queries are on ciphertexts chosen offline
and independently of the previous outputs. The main drawback of the attacks is
that the oracle is queried again on invalid ciphertexrts. In addition, the attacker
needs to see the whole output of the oracle in order to fully recover the secret key
f. The reaction attacks presented in [I0] work for f of any shape and do not need
to view the output of the decryption in order to recover f. The knowledge of
whether the ciphertext decrypts correctly under the assumed decryption process
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suffices for this type of attack. The number of queries to the decryption oracle
is, naturally, significantly larger than in [I4].

In [I2], the authors present attacks exclusively based on valid ciphertexts. The
attacker creates the ciphertexts by encrypting valid messages and checks whether
the receiver is able to decrypt them correctly (the output of the decryption is
not required). These attacks work for any padding scheme and instantiation of
NTRU as long as there are decryption failures. Here again the number of queries
gets considerably large. In addition, these attacks seem to not have been fully
implemented.

Recently, Gama and Nguyen [5] presented new CCAs on NTRU which use
only valid ciphertexts chosen at random. Their attacks require the collection of
a small number of decryption failures in order to recover f (but still a large
number of tries in order to collect these failures). However, they require the full
output of the oracle (and not just a YES/NO answer) and work only in the
presence of decryption failures.

Table [l summarizes the most representative CCAs against NTRUEncrypt. It
worths noting that almost all of them (with the exception of [15] and [I4]) do
not work for the latest NTRU instantiations where no decryption failures occur.

Table 1. Known Chosen-Ciphertext Attacks against NTRU

Attack # Queries Dec.Failures ciphertexts type of reply Applicability shape of F Ref.
Jaulmes, Joux small - invalid full output unpadded version NTRU-1998
Hong et al. very small - invalid full output unpadded version 1+ px* F  [I4]
Hoffstein,Silverman large required invalid YES/NO  unpadded version any shape [10]
How.-Graham et al. large required valid YES/NO padded version any shape
Gama, Nguyen small required valid full output padded version  any shape

Our Results: All the aforementioned attacks work in the CCA framework and
in particular assume access to the decryption oracle, while we assume access to
an inversion oracle. Although the two approaches are not directly comparable,
we present two main points that differentiate our analysis from the previous
works.

(i) We do not consider padding schemes: After [15], several padding schemes
have been proposed in order to enhance the security of NTRUEncrypt (seman-
tic and CCA security) in the random oracle model [2] (see for example [9], [16]
and several flaws pinpointed in [19] and [12]). However, here we are concerned
only in the connection between breaking the primitive (that is the NTRU “one-
way” function) and universal breaking. We work on the space of polynomials
rather than in the space of binary strings. Thus we are not concerned about how
the strings and the polynomials are connected. It is important to note that even
the “valid” spaces might differ. Valid challenges e as defined below might not
correspond to valid ciphertexts. Namely, there might be e = h * r + m (mod q)
for (r,m) € (B(d,), B) (valid challenge) which corresponds to an invalid cipher-
text because r and m may not be connected via the hash functions used by the
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padding scheme. Therefore, our results do not work in the presence of a padding
scheme and thus they are unlikely to lead to a practical attack. Still, the study of
the unpadded version remains theoretically interesting and does say something
about the NTRU primitive itself.

(ii) The internal functionality of the oracle is not exploited: All the aforemen-
tioned attacks assume that the oracle uses the standard decryption process (mul-
tiplication of the ciphertext e with f and then reduction modulo p). They all
derive information about f indirectly from the effect this multiplication has on
the input of the oracle. On the contrary, here we view the inversion oracle as a
black box and make no assumption on the internal computations of the oracle.
This allows for key recovery even in the absence of decryption failures (NTRU-
2005). Given our “lack of knowledge” about the internals of the inversion box,
it is natural that we might require a relatively large number of oracle queries.
Indeed, the efficiency of the reduction highly depends on the Hamming weights
dp,d, of polynomials F' and r respectively. In particular, the number of queries
required to recover the secret key is exponential to |dp — d,|.

Organization: In section [2] we give some notation and a brief description of
NTRUEncrypt. Section B defines formally the underlying NTRU primitive and
studies the connection between the number of collision pairs and decryption
failures. In section ] we define the inversion oracle and its decision counterpart.
Subsequently, in section Bl we give the main results and analyze the number of
queries and the success probability for finding the secret key pair with respect
to each oracle. Finally in section [6] we present the conclusions and suggests
directions for future research.

2 NTRU Preliminaries

2.1 Definitions and Notation

We will use B to denote the set of all polynomials with binary coefficients.
Accordingly, we use B(d) to indicate the set of all polynomials with exactly d
1’s and all the other coefficients set to 0 (d is the hamming weight of the binary
polynomial). 7 will denote the set of ternary polynomials and 7 (dy,dz) the
set of polynomials with exactly d; 1s and dy —1s. We also use the equivalence
in representation between polynomials and vectors. That is, each polynomial
p(x) = Zi‘c:o pix’ of degree k corresponds to a vector § = [po, p1, ..., Pk and vice
versa. We define the width of a polynomial p as

deth(p) = ma’x(p()a apk) - min<p0a apk)

NTRU was proposed in 1996 by Hoffstein, Pipher and Silverman [§]. All the
operations take place in the ring of truncated polynomials P = Z,[X]/(XN -1).
That is all the polynomials involved are of degree at most N — 1 with coefficients
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lying in an interval of width ¢. In this ring, addition of two polynomials (denoted
“+7) is defined as pairwise addition of the coefficients of the same degree and
multiplication (denoted “*7) is defined as convolution multiplication. That is

f(x) x g(x) = h(x) where hy = Z fi - gj (mod q).

i+j=k (mod N)

The operator “*” is both commutative and associative. We define the pseudo-
inverse of a polynomial p as the polynomial P € P such that

Pxpxs=s(modq)
for any polynomial s € P such that s(1) =0 (mod q).

2.2 Overview of NTRUEncrypt

Below we describe in brief the NTRU Encryption Scheme. Further details can
be found in [§].

Parameter Set. For key generation, encryption and decryption process the
following parameters are used:

—N: Determines the maximum degree of the polynomials used. N is taken to be
a prime in order to prevent attacks described by Gentry [0] and sufficiently large
to prevent lattice attacks such as those described in [4] and [I8]. The associated
NTRU lattice seems to have dimension 2N.

—¢q: Large modulus. It is a positive integer. Its value depends on the specific
instantiation.

—p: Small modulus. A small integer or a polynomial with small coefficients.

N, g and p depend on the desired security level. However (p, ¢) = 1 should always
hold, that is p, ¢ should generate the unit ideal.

—Ly, L, : Private Key spaces. Sets of polynomials from which the private keys
are selected.

—L,,: Plaintext Space. Set of polynomials that represent encoded messages.
—L,: Blinding value space. Set of polynomials from which the temporary blind-
ing value used during encryption is selected.

—1: A bijection between L,, (modp) and L,,.

—center: Centering method. An algorithm that“ensures” that the reduction
modulo ¢ is performed correctly during decryption.

Key Generation

Input: A prime N, the moduli p, ¢ and a description of the sets Ly, £,.

Output: The key pair (pk, sk) = (h, (f, fp))-

1. Choose uniformly at random polynomials f € Ly and g € L.

2. Compute f, = f~! (mod q) and f, = f~* (modp). If f, or f, does not exist,
go to previous step.

3. Compute h = f, * p* g (mod q).

4. Return (pk, sk) = (h, (f, fp)). h is the public key. The pair (f, fp) is the
private key.
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Encryption

Input: A message m € L, and the public key h.

Output: A ciphertext e that corresponds to m.

1. Select uniformly at random a polynomial r € £, (blinding value).
2. return e = (h * r 4+ m) (mod q).

Decryption

Input: A ciphertext e and the private key pair (f, f,).

Output: The message m € L,,, that corresponds to the ciphertext e.

1. Compute a =ex* f (mod q). (a=rxh*f+ fxm=pxr*g+ f*m(modq)).

2. Using a and an appropriate centering algorithm find a polynomial A such that
A=pxrxg+ f*min ZZ and not only mod q.

3. Compute m (mod p) = f, * A (mod p).

4. Return ¢ (m mod p) € L,, which corresponds to the plaintext polynomial.

Remark 2.1. In most of the instantiations of the parameter set ([1], [13]), g is
also taken to be invertible mod q. In that case h is invertible too. In any case, h
is pseudo-invertible mod q¢ with H being its pseudo-inverse.

Remark 2.2. As we mentioned in the introduction, in our analysis we do not
consider padding schemes. Therefore, in the encryption and decryption process,
we omit the parts that describe how padding is performed. For the padded
version of encryption and decryption algorithms the reader is referred to [16],

[ and [13].

2.3 Instantiations of NTRU

Since its first publication, several variants of NTRUEncrypt have appeared in
the literature. This has made the analysis of NTRU a tricky task since different
choices of parameter sets might significantly affect the security of the underlying
NTRU primitive. Indeed, it is not yet known whether the proposed sets lead to
equivalent (in terms of security) primitives. A study of the connection of the
various instantiations and an analysis of their vulnerabilities with respect to
certain types of attack, consists a very challenging direction for future research.

In table[Pl we summarize the main instantiations of NTRUI (for further details
the reader is referred to [Bl Section 2]). Sometimes, for efficiency reasons, a
combination of the above sets might be used. For example in NTRU-2001 ¢
might be a prime or in NTRU-2005 £, and F might belong in X(d) which
denotes the set of (binary) polynomials of the from by + b % b3 where b; are very
sparse binary polynomials with d 1s.

! Recently, in order to secure against attacks presented in [11], the NTRU parameters
have been revised in [7]. The major difference is that polynomials F, g, r,m belong
to the space of trinary polynomials (that is their coefficients lie in the set {—1,0,1}).
Still, in most of the new parameter sets, f has the shape f =1+ p x F with p = 3.
We haven’t looked at reductions in these new sets, but we anticipate that similar
reduction arguments apply (though the number of queries required for the reduction
might grow larger since the search space grows).
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Table 2. The Main NTRU Parameter Sets

Variant q P Lf Ly Lo L, F Dec. Failures Ref.
NTRU-1998 2* ¢ [¥,N] 3 T(dg,dy—1) T(dg,dg) T T(dp,dr) - YES 8
NTRU-2001 2" € [§  N]2+a 1+pxF B(dy) B B(d,) B(dr) YES [16]
NTRU-2005 prime 2 1+pxF B(dg) B  B(d,) B(dr) NO 3]

3 The NTRU “One-Way” Function

In this work we consider instantiations where f = 1+p%F. In these instantiations,
the NTRU function is defined as follows:

Definition 3.1 (The NTRU Function)

£:B(d,) xB— ZzZ)
(rym) — hxr+m (mod q)

The NTRU function, like the underlying functions of many other practical cryp-
tosystems, does not have a formal proof of security in that there exists no known
reduction that proves that its inversion is at least as hard as a well studied hard
problem. Its security appears to be related to the hardness of some lattice prob-
lems, namely the shortest and closest vector problems (SVP, CVP). In particular,
finding the secret key pair (f,g) can be reduced to finding the shortest vector
in a lattice constructed by the public information (Log lattice defined in [4])
whereas inverting NTRU instances can be reduced to finding the closest lattice
vector to a point. However, it is possible that both NTRU problems are easier
than their lattice counterparts and thus the analogy between Finding NTRU
Key/Inverting challenges and SVP/CVP might be too loose.

The underlying NTRU problem can be summarized in the following definition
(first formally presented by Nguyen and Pointcheval in [19])

Definition 3.2 (The NTRU Inversion Problem). For a given security pa-
rameter k, which specifies N,p,q as well as a random public key h and e =
hxr+m (modq) where m € B and r € B(d,), find m. Let Succr gy (A) denote
the success probability of any adversary A.

Sucel gy (A) = Pr [.A(e, h) =m|(h, sk) K@%, m e B,r €g B(d,),e = h *r + m (mod q)]

The probability is taken over all the random choices made by the key generation
and the encryption algorithm (h and r) as well as over all possible m € B. Hence,
the security of NTRUEncrypt is based on the following assumption

Definition 3.3 (The NTRU Assumption). The NTRU Inversion Problem
18 asymptotically hard to solve. That is, for any polynomially bounded adversary
A, Succyrry (A) is negligible.

Since we are interested in efficient reductions , apart from the number of queries,
we also need to bound the output of the oracles upon being asked on a specific
challenge.
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Definition 3.4 (Collision-Pair). A pair ((r1,m1), (ra,msa)) with (r;,;m;) €
(B(d,),B), is a NTRU collision-pair if

(ri,m1) # (ro,ma)  and  E(r1,m1) = E(ra, ma).

Definition 3.5. The NTRU walid challenge space is denoted by E(‘;’Th and con-
tains the image of all pairs (r,m) € (B(dy), B) under NTRU function £. Namely,

E;lfh ={ee€ ZfIVEIT € B(d,),meB:e=hx*xr+m(modq)}.

Definition 3.6. Let eEZfIV be a (valid or invalid) challenge. The set preimg(e)
is the set of all pairs (r,m) € (L, Ly,) that give e under the NTRU function.
That is

preimg(e) = {@; = (i, ma)|rs € Lyymy € Lon, hx 7 +m; = e (mod q)}

Obviously |preimg(e)] = 0 if e ¢ E;lfh and |preimg(e)| > 1 otherwise. The
following proposition connects the number of collisions to the decryption failure
probability.

Proposition 3.1. On input e € Ei}” the standard NTRU decryption algorithm

will fail to decrypt correctly with probability at least 1 — |prei711g(e)|’

Proof. We give an intuitive proof. A less intuitive (but more formal) proof can be
found in Appendix[Al On input e, the standard NTRU process returns a unique
message m. But there are exactly |preimg(e)| distinct m’s that corresponds to
that e (see appendix [A] why these m's are distinct). Assuming (naturally) that
e has emerged from the encryption of an (r;, m;) € preimg(e) with probability

|pmifng(e)| (uniformly), then the inversion algorithm recovers the correct pair

with probability at most |p7‘ei:ng(e)|’ We say “at most” because the decryption
algorithm might fail to recover any of the (r;,m;) € preimg(e) (due to gap or
wrap failures). O

The implications are straightforward. If e € E ., decrypts correctly, then e has
a unique preimg. For example, for NTRU—2005 Where decryption failures have
been eliminated, this means that each valid e has a unique preimg (r,m) €
(B(r), B). Notice that the uniqueness holds not only for m (something naturally
implied by perfect decryption) but for r as well. In addition, even for NTRU-
2001, where decryption failures are present, the fraction of valid e that have a
unique (r,m) € (B(r),B) preimg is at least as large as the fraction of e that
decrypt correctly which is (exponentially) close to one. But even for the small
fraction of e that may have more than one preimages, we can argue that the num-
ber of preimages cannot grow exponentially large, otherwise the NTRU instance
can be efficiently broken. Indeed, if there is a challenge e which corresponds to
an exponential number of preimages, one can mount a birthday-type attack to
efficiently obtain two pairs (71, m1), (r2, m2) both of which encrypt to e. We then
have

r1%h+my =re*xh+mo(modq) = (r1 —r2) * h = ma —my (mod q)
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But 71 — r2 and m; — mo have very small norms and can be therefore used
instead of f and g to invert most of the instances (of course, now the centering
algorithm will perform reduction mod ¢ in an interval centered at zero since
r1 — ro and my — mo have coefficients in {—1,0,1}). We summarize the above
arguments in the following sentence which we only state as an assumption for
scientific accuracy.

The Preimage Assumption: For each e € Edh the number of pairs (r;, m;) €
(B(d,), B) such that e = h * r; + m; (mod q) is polynomially bounded.

4 Modeling an Inverting Algorithm with Inversion
Oracles

We will use the word “challenge” for e (instead of “ciphertext”) in order to avoid
any confusion with Chosen-Ciphertext Attacks. An ideal inversion algorithm
would invert any valid challenge e in polynomial time given only the public
information. In the rest of this section we introduce our main inversion oracle
and its decision version.

Definition 4.1 (orcl). On input e € Zév orcl outputs the pair(s) (r,m) €
(B(d,),B) such that e = hxr+m (modq) if e € E;lf Ife ¢ Eq L, orcl gives an
undefined reply denoted by “?7.

We also consider the decision version of orcl.

Definition 4.2 (orc1PF¢). On input e € Zév, orclPEC outputs “YES” if e €
E;lTh and “?” otherwise.

Remark 4.1. Both orcl and orc1PF¢ | as defined above, can be used to fully
distinguish valid and invalid challenges. More interestingly, orcl (and orc1P#¢
with a further search similar to the one described in the proof of theorem B3]),
might recover the correct message polynomials even in cases where the standard
decryption might have failed (recall that the NTRUEncrypt standard decryption
process in the initial instantiations has non-zero failure probability). However,
the goal here is to study how easy the key recovery problem becomes in the
presence of inverting algorithms, rather than argue about properties of the al-
gorithms themselves.

5 Universal Breaking from Inversion Oracles

We denote the problem of finding the NTRU secret key pair as UByrry (Uni-
versal Breaking).

Definition 5.1. We say that UBNTRrU is (p,ore, Q)-solvable if there exists an
algorithm, polynomial in the number Q of queries, which fully recovers f with
probability at least p by querying oracle orc at most @ times.
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5.1 Universal Breaking Using orcl

Transforming the Secret Key Equation to a Valid Inversion Instance.
From the key generation process we have

h=foxpxg(modq) = fxh=pxg(modq) = hx(1+pxF)=px*g(modq)
=pgxh+pgxhspxF=g(modq)=pg+xh+h=*F = g(modq).

from which we can either get
h«F —g=—pg*h(modq) = h*F +u—g=u—pg*h(modq)
where u(X) = XV~ 4+ XN=2 4 41 or alternatively
pgxh=—h*F+g(modq) = psxh+h*xu=hxu—h=*F+ g(modq).
If we now define § = u — g, F' = u — F these two give

u—pg*h=hx*F + g(mod q) (1)
pg*xh+hsu=hx*F+ g(modq)

where hxu = (3" hi, > hi, ..., . hi)T. Summarizing, let d = min{|dr —d,|,|N —
dp —d,|}.
Then the problem of key recovery takes the following form

t=hx*v+w(modq) (Secret Key Equation)

where

— (I) d=|dp — d,|. Then t = u — pg * h (mod q),v = F and w = u — g.
— (II) d=|N —dp —d,|. Then t = pg* h+h*xu(modq),v =u—F and w = g.

with u(X) = XN=1+ XN=2 4+ 4+1 (or 4 = (1,1,....,1)T). It is important to
note that in both cases w, v are bmary By definition, orcl guarantees to output
the correct pair(s) only when e € E ’,» that is when the blinding polynomial r
used for encryption has exactly d, 1 s. Thus, in any case, in order to construct
a polynomial that is“useful” for orcl, we need to transform (using an efficient
and invertible transformation) the known polynomial ¢ into a polynomial that
belongs to the challenge space recognized by orcl. The steps of this transfor-
mation depend, as we show below, on the difference d = |d, — d,.| between the
hamming weights of the polynomials v and . We highlight below the aforemen-
tioned transformation.

(I) Let us consider the first case where d = |dp — d,|.

We get the following two subcases:

(a) dp > d, : Then dp — d, = d. We then have

t=hxv+w(modq), where t=u—pg*h(modq),v=1F andw=u—g.
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e Suppose that d = 0 (Binary polynomials F' and r have exactly the same
hamming weight). Then we query orcl on t € Ejfh and by the definition of
the oracle, we expect to get F, g (and thus f,g).

e Suppose that d = 1 and let ¢ be an index such that F; = 1. Then h* F + g,
can be rewritten in the following form

hxF4+g=h*x(F+X'—X")+g,
Thus
t=hx(F=X)4+hxX'+g(modq) =t—h*X'=h+(F—X")+g(modq).

But F — X' € B(d,). Querying orcl on t — h * X*, we can recover F' — X
and consequently F' (if we know 7).

e Generalizing to arbitrary d = dp — d,.. Suppose that we know indices
il,iz, ...,id such that Fi1 =L, = ... = Fid = 1. Then

t—hs (X" + X2 4 4 X)) =hx(F—X"—X"2_ - X")4g(modq).

where again t — h x (X + X% 4 .. + X'4) € Ej:}l. If we query orcl on
t—h* (X% 4+ X2+ ...+ X%) we can recover F' — X — X2 —  — X' and
consequently F.
It only remains to determine the cost of finding d indices iy,i2,...,iq €
{0, 17 7]\[ — 1} such that Fil =Ly, = ... = Fid =1.

(b) dp < d, : Then d =d, — dp.
e Suppose that for the indices i1,i9,...,iq we know that F;, = F;, = ... =
F;, = 0. Then

t+hx (X4 X2 4 4+ X)) =hx(F+X"+ X2 4 ... 4 X)) +g(modq).

If we query orcl on t 4 hx (X 4 X" 4 ... 4 X'¢) we can recover F + X" +
X" 4+ ...+ X" and consequently F.

(IT) The case where d = [N — dp — d,| is similar to case (I). Next we study the
cost of finding the correct indices 1, i, ..., 74 that allow the reconstruction of F.

Computing the Cost of Finding the Correct Indices. We consider case
(Ta). The analysis of the cases (Ib),(Ila) and (ITb) is completely similar.

The input is a polynomial ¢ with N coefficients, M of which equal 1 (of course
M < N). We need to guess d indices (d < M) iy, ...,iq such that ¢;; = ... =
c¢i, = 1 with the least possible number of tries. The only feedback we get is a
“YES” whenever ¢;, = ... = ¢;, = 1 holds (and then we are done) and “NO” in
all other cases. Let u(N, M, d) denote the minimum number of guesses required
in the worst case, if we follow an optimal strategy and (N, M, d) the expected
number of guesses.

Theorem 5.1. (i) u(N,M,d) < (N_i\l“'d).
(i) (N M d) < ().

d
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Proof. (i) We restrict our guesses to the first N — M +d positions of the polyno-
mial. Suppose that the first N—M+d positions contain at most d—1 1’s. Then the
total number of 1’s in the whole vector would be at most d—1+ (M —d) = M —1
which yields a contradiction. Thus, in the worst case, we have to try at most
(N _2/[ +d) possible (non ordered) d-tuples.

(ii) At each step we pick a set of d indices at random from all the sets of car-
dinality d that have not been picked in previous guesses. Obviously this yields
a smaller expected number of steps than if we just picked from all possible sets
(examined or not). The number of guesses in the latter scenario follows the ge-

(%)

ometrical distribution with p = (%) Thus the expected number of the former
d

N

strategy is at most ((;SI)). O
d

We note that the above bounds are rather gross estimates of the values p and fi.

The problem of minimizing the number of guesses is mainly a learning problem

of independent interest.

Corollary 5.1. UBnrru is(1,orcl, u(N,dp,dr—d,))-solvable under the Preim-
age Assumption.

Proof. Getting back to case (Ia) of our problem, we are searching for d = dp —d,
1s in a vector with M = dp 1s in order to transform ¢ = w — pg * h (mod q)
which belongs to EqF to at € Edh and then query orcl on t'. After at most

w(N,dp,dp—d,) guesses the decryptlon oracle outputs a pair (r,m) € (B(d,.), B).
Because of the Preimage Assumption, the pairs returned upon querying the
oracle on a valid challenge e are polynomially bounded. This means that the
dominant factor is the number of queries addressed to orcl till the correct set of
indices is guessed. Then, hopefully, the 7 returned equals F — Xt — X% — ., — X
and so F' can be reconstructed correctly. There might be an exception to that.
There might be a d-tuple of indices (i}, ...,i,;) such that ¢t — h % (X + ... +
Xié) € E(‘;’Th but Fi;. = 0 for some j € 1,...,d. Fortunately, we can detect these
exceptions by reconstructing F’. Then either F' ¢ B(dp) or ¢’ ¢ B, where
g =pg* (1 +p*F')*xh(modq). The preceding analysis, however, guarantees
that with at most u(N,dg,dr — d,) queries to orcl, we will have ended up with
the correct r from which F' can be reconstructed in a straightforward way. Thus,
the success probability after u(B,dr,dr — d,) queries is 1. O

The same result applies to cases (Ib), (ITa) and (IIb) where d is defined properly.
Hence, an upper bound for the number of the oracle queries is

(N—d.)! (N —d)
d(N —d,—d)!  d(N —dp)!
But dl((jifv ddl'd) < (N_dflr)d. This means that if d is a (relatively small) constant,
we can solve UBNrry in a polynomial number of queries to orcl.
On the contrary, the cost of the reduction grows exponentially on d. That
means that, in instantiations where d = w(log!t¢N) for some positive e, the
reduction is no longer polynomial.
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Probabilistic Analysis. The following theorem bounds the number of queries to
orcl when the success probability of solving UBn7ry is lower-bounded by e.

dl
Theorem 5.2. UBNTRU i (@07“017 (dp]\—[dr) . (1 —(1—¢) (”Ffdr)>>-solvable,

Proof. Consider again the game of guessing d coefficients. We have in total T' =

(dFJXdT) possible (non-ordered) d-tuples (d = dp —d,), S = (dFdde) of which are

“winning”. The probability that after ) guesses we have no winning guess is

Pr(fail, Q) = (“i) ' (1_T§1>'"<1_T—2+1>

Q-1 3 Q-1
_ s
()=
1=0 =0

where we have used that for z > 0, 1 — x < e~ .Thus

Prr(fail’ Q) S eis'ziniOl Tlfi = eis'(HTfHT*Q)7

where Hy, = Zle . is the k-th Harmonic number. Let € be the success probabil-
ity, that is the probability that we guess a correct d-tuple in the first @ queries
to orcl. Then using the approximation Hy = In k for the harmonic number , we
get

1—e=Pr(fail,Q) < e”3Hr=Hr-q) o =S-InT=In(T=Q)) _ P=5(7 _ )%,
Thus

1—e§<1—§>S:$QST-(1—(1—6)5)7

which completes the proof. a

5.2 Replacing orcl with Its Decision Version

Let us now consider the decision version of orcl, orc1PFC. The main result is
summarized in Theorem B3l First we introduce Assumption 1 that simplifies the
proof of the main result and makes the combinatorial arguments more clear. We
then introduce a weaker assumption (Assumption 2) and sketch how one could
recover the secret key under the latter.

Assumption 1: Let 7 denote the set of all polynomials with coefficients in
{-=1,0,1}. In addition let (r1,ma), (r2,me) € (7,B) with r1(1) = r2(1) and
Eg.n(r,m) = hxr 4+ m(modq). Then

Eqn(ri,mi) = Egn(ra, ma) & (ri,m1) = (ra, ma).
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Theorem 5.3. UBnrry is (1,0rc1PEC, (ﬁ:ﬁl{i) + N +d, — dp — 1)-solvable
under Assumption 1.

Proof. We consider again the game of guessing d 1-coefficients where now we
choose the indices (i1,1is9,...,44) according to the lexicographical ordering. We
first exclude the M — d rightmost coefficients (coefficients that correspond to
positions N — M +d, ..., N — 1) from our search. We begin with (0,1,...,d — 1)
and feed orc1PPC with t — h* (1 4+ X + ... + X971). At each step (and as long
as we get “NO” answers by orc1”?F¢) we move the rightmost index 1 position
to the right until it reaches the boundary position (position N — M +d—1) or
another index. When that happens, we move the rightmost index that can be
moved 1 position to the right and initialize all its right indices right next to it
(on the right). In order to make the algorithm clear, we give an example.

Let N =7,M = 5,d = 3. The boundary value is N — M +d — 1 = 4. Then
the sequence of indices we examine is the following.

(0,1,2), (0,1,3), (0,1,4), (0,2,3), (0,2,4),(0,3,4), (1,2,3), (1,2,4), (1,3,4), (2,3,4).

Notice that the number of combinations we examine is at most ("~ 3*9),

that is the algorithm checks all the possible (non ordered) d-combinations of
the first N — M + d coefficients. According to theorem [5.] at least one of those
d-tuples will result to a “YES” answer from orc1PF¢. Suppose that orc1PFC
responds “YES” after @) queries (of course @ < (N_S/Hd)) and let (i7,...,45) be
the configuration of indices for which the answer is “YES”. Then we know that
t—hx (X 4 ..+ X%) € B But

t—h* (X7 4.+ X)) =hx(F—X"7— .. —X%) + g(mod q).
We claim that Fi» = ... = F;» = 1. Indeed, suppose that Fi; = 0 for some j.
Then F — X% — ... — X% is no longer binary (it has at least one -1 coefficient)
but still £(F — X1 — ... — X%, §) = E(r,m) for a pair (r,m) € (B(d,), B) (recall
that t — h* (X" + ... + X%) € E;lfh). This yields a contradiction according to

our assumption. Thus with at most (N _3/1 +d) we find d indices that correspond
to 1 coefficients in F.

It only remains to recover the rest of the coefficients of F. To do this we
make a simple observation. For each configuration of indices, there exists one
configuration previously examined that differs in exactly one index. Indeed, if
we move the leftmost index that has been moved one position to the left we get
a configuration of indices that has already been examined. Since the previous
configuration has yielded a “NO” answer the different index corresponds to a 0
coefficient in F. So, after at most (V%' +d) queries we know d coefficients of F
2 There is an exception to that. When (i1, ..., i) = (0, 1, ...,d — 1), there is no previous

configuration at all. If this is the case, we can determine the rest coefficients by simply

querying orc1PFC on t — hx (XiT +o b X1 4 X?) for each unknown coefficient F;.

Tgen because of the assumption, F; = 1 if and only if t —hx* (XiT ot XA +XH e

E o



32 P. Mol and M. Yung

that are equal to 1 and one 0 coefficient. Let Fj, = 0 the known 0 coefficient. We
also know that

t—hx (X% + .. 4+ Xa)=hx(F—X1— .. —X')+g(modq).
Thus for all other unknown coefficients
Fy=1ifand only if F — X1 — .. — X% + X* — X' € B(d,)
or, because of the assumption, if and only if
t—hx (X% 4. 4+ X% - XFy XY e B

So we only have to query orc1P?F¢ N —d —1 more times to fully recover F. Now,
setting M = dp,d = dp—d,, we get that we need at most (d]\;i‘fi:‘)+N+dr—dF—1
queries in total to recover F, which completes the proof. a

Interestingly, a similar result holds if we relax Assumption 1 to Assumption 2.

Assumption 2: Let 7 as in Assumption 1. The number of pairs (r;,m;) €
(7, B) with constant value r;(1) that encrypt to the same e € Zév under &, p, is
polynomially bounded.

Theorem 5.4. UBnrr is (1, 0rc1PEC O(N)- (g:@:))—solvable under Assump-
tion 2.

Proof (Sketch). In the presence of (polynomially many) collisions, we just need
to do an extra checking every time orclPF¢ responds “YES” in order to see if
the d-tuple of indices selected is the one that leads to the correct reconstruction
of F' (see details of the proof for theorem[(.3]). For each checking a computational
overhead of O(N) queries is added (the checking works in a way similar to the
checking in the proof of theorem [1.3]). In that case the total number of queries
to orc1PFC is multiplied by a factor of at most O(N). O

Remark 5.1. The above analysis implies that if dp — d,. is small with respect
to N, we can universally break NTRUEncrypt if we have a polynomial time
distinguisher between valid and invalid challenges.

Decryption Oracles and Real NTRU Parameters. The applicability of our
reductions is enhanced by the set of parameters that have been proposed from
time to time. Indeed both in [I3] and in [I] it is suggested that during the key
generation process, dp is set equal to d,.. In addition, in the web challenges pub-
lished by NTRU Cryptosystems (www.ntru.com/cryptolab/challenges.htm),the
parameter sets proposed are as shown in the table below

Security N q dr d, d,
Medium 251 128 72 71 72

High 347128 64 173 64
Highest 503 256 420 251 170
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For the Medium and High level of security d, = dp, which, suggests that for
theses values of parameters the problems of inverting a challenge e and finding
the secret key pair, are structurally the same. For the highest level of security,
however, d = 420 4+ 170 — 503 = 87 which does not allow for efficient reductions.

6 Conclusions

We have shown how inversion black-box oracles that output message polyno-
mials corresponding to valid challenges e or that serve as decision oracles lead
to a secret key recovery in the current NTRU system where f = 1 + p x F.
The cost of recovering the secret key depends on the difference between the
Hamming weights of the polynomials F' and r in an exponential fashion. The
reductions presented do not work in the presence of a padding scheme and thus
seem unlikely to lead to any practical attacks. Still, this fundamental connec-
tion teaches us about the very structure of the cryptosystem in general. The
implication is quite straightforward and should be carefully interpreted: Finding
an algorithm that inverts NTRU instances in recent NTRU instantiations (and
for certain parameter values), opens the door to secret key recovery within a
small number of queries to that algorithm. It is important to note that there is
nothing particular that makes the secret key recovery harder than inverting ran-
dom instances (see equation [Secret Key Equation]). Indeed, the target challenge
t is no less “random” than any other inversion instance, since F, g are random
polynomials.

As a related future direction, we believe that coming up with more efficient
reductions which further exploit the structure of the NTRU function is an inter-
esting field for investigation. Finally, another challenging direction would be to
extend the range of behavior of the black-box oracles to non-ideal ones (that fail
with some probability to return the correct preimage even when being queried
on valid challenges).
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A Proof of Theorem [3.1]

Proof. For each pair (r;,m;) € preimg(e), we define a; = p* g*r;, + f *m;
where, as usual, f,g are the secret and auxiliary key respectively. Equation
e = hxr; +m;(mod q) gives f xe = a; (mod q). We need the following two
lemmas.

Lemma A.1. If (r;,m;), (r;,m;) are two distinct pairs that belong to preimg(e),
then (r; # 1) A (m; # m;).

Proof. Suppose on the contrary, that there exist (r;,m;), (r;, m;) with (r;, m;) #
(rj,m;) such that (r; = ;) V (m; = m;). Then we have the following two cases

(a) 7, =r; : Then
h*r;+m; = hx*r; +m;(mod q) = m;j (mod q).

But both m;, m; € L,, and thus have small coefficients (with respect to ¢).
Therefore m; = m; holds over the integers which yields a contradiction.
(b) m1 = my : Then we have

hxry = hxry(modq) = hx*(ry —ra) = 0(mod q)

But h has a pseudo-inverse, that is there exists a polynomial H € P such that
Hxhxs=s(modq) for any polynomial s with s(1) = 0 (mod q). Now notice
that (ry —r2)(1) = r1(1) —r2(1) = dr —d, = 0 (in all instantiations of NTRU
the value r(1) is a public constant). This gives that H xh* (ry —r9) =11 —
r9 (modq), which combined with the above equation gives r1 —re = 0 (modq).
This implies that 1 = ro since both r; and ro have very small coefficients.
O

Lemma A.2. a; # aj over ZZVi # j. That is a;s are pairwise distinct.

Proof. Suppose that there exist distinct indices ¢,j such that a; = a;. First
observe that (r; # r;) A (m; # m;), otherwise we would have

prgxr+ frxm; =pxgxr;+ fxm; Xzéqh*ri+mizh*rj+f*mj(modq)

which clearly contradicts lemma [A] If we multiply both sides with f, (recall
that f, * f =1+ p=*k for a polynomial k) we get

px fpxgxr;+ (1+pxk)s«m; =px fpxgxr;+(L+p*k)*xm; over the integers

which gives m; = m; (modp). But p and the modulo p reduction process are
selected in such a way that m (modp) for a polynomial m € L,, uniquely de-
termines m. Otherwise the decryption would be ambiguous. This means that
m; = m; over the integers which gives a contradiction. a
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Back to the proof of B} we have that for each pair of distinct indices ¢, j a; # a;
but a; = a;j (mod q) for all pairs that collide to the same e, since a; = a; =
f xe(mod q). This means that there exists at most one index i such that all the
coefficients of a; lie in the interval dictated by the centering algorithm (let’s say
[A, A+q¢—1]). Indeed, if again a;, a;, i # j had all their coefficients in [A, A4+¢—1]
(of range ¢) the equation a; = a; (mod ¢) would imply a; = a; over the integers
(contradiction).

Thus, the centering algorithm (and the inversion part of the decryption algo-
rithm in general) works properly for at most one pair (r;,m;) € preimg(e). All
the decryption algorithm sees is the challenge e and has no information on the
preimage pair (r,m). Assuming (naturally) that e has emerged from the encryp-
tion of each (r;,m;) € preimg(e) with probability |premllg(e)| (uniformly), with
probability at most |p7‘ei71ng(e)|
Thus we conclude that

the inversion algorithm recovers the correct pair.

1
Pr[Decryption succeeds|input is e] < ) . 0
[preimyg(e)]
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Abstract. We address the problem of polynomial time solving univari-
ate modular equations with mutually co-prime moduli. For a given sys-
tem of equations we determine up to which size the common roots can
be calculated efficiently. We further determine the minimum number of
equations which suffice for a recovery of all common roots. The result that
we obtain is superior to Hastad’s original RSA broadcast attack, even if
Hastad’s method is combined with the best known lattice technique due
to Coppersmith. Namely, our reduction uses a slightly different trans-
formation from polynomial systems to a single polynomial. Thus, our
improvement is achieved by optimal polynomial modelling rather than
improved lattice techniques. Moreover, we show by a counting argument
that our results cannot be improved in general. A typical application for
our algorithm is an improved attack on RSA with a smaller number of
polynomially related messages.

Keywords: Chinese Remaindering, Coppersmith’s method, Hastad’s at-
tack, systems of univariate modular polynomials.

1 Introduction

The RSA cryptosystem [I4] is the public key cryptosystem which is most widely
used in practice. Therefore, it has attracted the interest of many cryptanalysts
since its invention in 1977 (compare e.g. [2]). In the following, let us denote
by N = pq the RSA modulus with prime factors p and ¢, and let Zx denote
the ring of integers modulo N. Let e be the public exponent, and let d = e~*
(mod ¢(N)) be the private key.

Attacks on RSA intend either to factorize the modulus and thereby recover
the private key, or to compute e-th roots modulo N, i.e. to decrypt ciphertexts.
The equivalence or inequivalence of these two problems is still open. However,
partial results are known in restricted models [3/4UT0].
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In this paper we deal with the problem of extracting e-th roots. This is the
well-known RSA problem: Given an RSA modulus N, a public exponent e and
a ciphertext ¢ = m® (mod N), find the corresponding plaintext m.

If m® < N, the equation does not only hold in Zy but over the integers,
and we can calculate m easily. This implies that encrypting small messages with
small public exponents is insecure.

Let us look at the inhomogeneous case. Namely, suppose the most significant
bits are known so that the unknown part remains small enough. Then we get the
equation (m + x)¢ = ¢ (mod N), with m denoting the known, = the unknown
part of the message. D. Coppersmith [6] showed that this inhomogeneous case
can be solved efficiently under the same condition ¢ < N.

Precisely, he showed that given a composite integer N and a univariate poly-
nomial f(z) € Zy[z] of degree § one can determine all zeros smaller than N 5
efficiently. Hence, (1 + )¢ = ¢ (mod N) can be solved if |z] < Ne.

Now we may ask what happens if we get further information in form of addi-
tional polynomials? Can we then determine larger zeros as well?

There are two variants of systems of polynomial modular equations. Either
there exist equations with the same modulus or all moduli are different. The
first case was considered in Coppersmith, Franklin, Patarin and Reiter [7]. They
showed that it is usually sufficient to have two equations fi(z) = 0 (mod N)
and fa(z) = 0 (mod N) in order to recover the common roots. Let a be the
common solution of the two equations. Then, fi(z) and fs(x) share a factor
(r — a). Computing the greatest common divisor ged (fi(x), fo(x)) (mod N)
reveals this factor if it is the only common factor. In the rare cases where the
greatest common divisor is not linear, the method fails and further polynomials
are needed. The running time of this method is O(8log? §) where 6 is the degree
of the given polynomials.

It is worth pointing out that a scenario with two RSA encryptions under co-
prime public exponents (e1, e2) and a common modulus N is a special case of this
setting. Namely, an attacker has to find the common root m of f;(z) = x —m®
(mod N) and fa(x) = x°2—m*® (mod N). G. Simmons [16] has presented a neat
attack for this special setting with running time polynomial in the bitlength of
(e1, e2). Namely, one computes integers w1, ug such that uje; +uses = 1 with the
help of the Extended Euclidean Algorithm. This gives us m = (m®!)** (m®2)%2
(mod N).

In this work, we focus on equations with different moduli Ny, No,..., Ny € N.
Without loss of generality, we assume that all moduli are composite as modular
equations over finite fields can be solved efficiently (compare e.g. [I], Chap-
ter 7.4). We further assume that the N;, ¢ = 1,...,k, are relatively prime. In
case of our main application, RSA-moduli, we can otherwise compute prime
factors of the IN; by computing the greatest common divisor.

Before we define our polynomial roots problem in general, let us give a moti-
vating cryptographic application. This application was introduced by J. Hastad
in [89] and can be considered as an analogue of Simmon’s attack in the setting
of different RSA moduli. A user wishes to send the same message m to several
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participants having different moduli and using plain RSA encryption without
padding techniques. Suppose these users share the same public exponent e = 3.
Then, an attacker obtains three equations m? = ¢; (mod N;) for i = 1,2, 3. He
can make use of the fact that the N; are relatively prime and combine the equa-
tions by the Chinese Remainder Theorem. Thus, he gets m3 (mod N7N3N3) and
is able to determine m in Z as m3 < N; N> N3. Therefore, the attacker solves the
system of polynomial equations f;(z) = 2° —¢; =0 (mod N;), i = 1,2,3, with
the common root m.

Now let us generalize to arbitrary polynomial equations. We define the prob-
lem of solving systems of modular univariate polynomial equations (SMUPE-
problem).

Definition 1 (SMUPE-problem). Let k € N, é1,...,6r € N, and let Ny, ...,
N € N be mutually co-prime composite numbers of unknown factorization.
Suppose N1 < No < ... < Ni. Let fi(x),..., fr(z) be polynomials of degree

81,0k in Zn,[x], ..., ZN,[2], Tespectively. Let
fi(x) =0 (mod Ny)
f2(x) =0 (mod N3)

fe(x) =0 (mod Ny)
be a system of univariate polynomial equations.

Let X < Ny, X € R. Find all common roots xo of (@) with size |xo| < X.

Our goal is to compute an upper bound X for which the SMUPE-problem is
solvable in time polynomial in Hi;l 6; and in the bitlength of Hle N;. This
upper bound will give us a condition on the number of equations k in terms of
6; and ;. This will enable us to compute the minimal k such that the SMUPE-
problem can be computed up to the bound X = Ny, i.e. system ({I]) can be solved
efficiently.

J. Hastad [9] gave the following algorithm for solving the SMUPE-problem.
Let 6 € N be the maximum degree of all polynomials occuring in the system, i. e.
6 := max;=1__k{6;}. One first multiplies the given polynomials with x0=% to
adjust their degrees. Then one combines the resulting polynomials using the
Chinese Reminder Theorem to a univariate polynomial f(z) with the same
roots modulo Hle N;. Applying lattice reduction methods, J. Hastad derived
k> 6(6; D as a lower bound on the number of polynomials for efficiently finding
all roots z¢ with |zg| < Nj. This bound can be easily improved to k > § by
directly applying Coppersmith’s lattice techniques [6] to f(x) (see e.g. [2]).

Our contribution: We give a different construction to combine all £ polynomial
equations into a single equation f(z) =0 (mod Hle N;). Instead of multiply-
ing the polynomials by powers of x like in Hastad’s approach, we take powers of
the polynomials f;(z) themselves. This results in the condition Zle ;L_ > 1 for
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solving the SMUPE-problem for all 2y with |xg| < Ni. In case all polynomials
share the same degree ¢ this corresponds to Hastad’s condition k > ¢. For poly-
nomials of different degrees, however, our new condition is superior. Especially,
a few polynomials of low degree suffice.

The paper is organized as follows. In Section 2, we review Coppersmith’s result
from [6] and the Chinese Remainder Theorem for polynomials. In Section 3, we
prove the new sufficient condition on the number of polynomials that is needed
to recover all common roots efficiently. The improved RSA broadcast attack is
given as an application in Section 4. In Section 5, we show that our condition
cannot be improved in general by giving an example for which the condition is
optimal.

2 Preliminaries

The problem of solving modular univariate polynomial equations is believed to
be difficult in general. Under some restrictions on the roots however, this is not
the case. In [6], D. Coppersmith showed how to provably determine zeros of
modular univariate equations with sufficiently small size.

Theorem 1 (Coppersmith [6]). Let f(x) be a monic polynomial of degree
6 € N in one variable modulo an integer N of unknown factorization. Let X be
a bound on the desired solution xq. If X < N5 then we can find all integers xq
such that f(zo) =0 (mod N) and |xo| < X in time O(5°(6 + log N)log N).

The running time can be achieved by using an algorithm of Nguyen, Stehlé [13]
for the LLL lattice basis reduction step (see [11I12]).

The SMUPE-problem can be reduced to the problem of solving a single uni-
variate polynomial equation by combining the equations into a single one with
the same solutions. Then we can apply Theorem [Il A possible way to combine
equations is by Chinese Remaindering which is described e. g. in [9J15].

Theorem 2 (Chinese Remainder Theorem). Let k € Z. Let 6 € N, § > 1.
Fori=1,... k let N; € N be pairwise relatively prime numbers, and let f;(x) €
Z[z] be polynomials of degree 6.

Then there exists a unique polynomial f(x) modulo M := Hle N; such that

f(z) = fi(z) (mod N;) ()
The polynomial f(x) can be determined in time O(8log® M).

Proof. Let M := Hle N;, M; = %I and M/ be the inverse of M; modulo N; for
i=1,..., k. The existence of such an inverse is guaranteed by ged(M;, N;) =1
Then

k
= MM fi(x)
=1
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is the desired solution. If we look at f(x) modulo N; for j € {1,...,k}, all
summands with index i # j cancel out (as N; divides M;) and M;M;f;(z) =
fi(@) (mod Nj).

Now suppose that g(x) is another solution fulfilling the required conditions.
Then, f(z) —g(z) =0 (mod N;) for all ¢ = 1,...,k, and therefore also f(x) =
g(z) (mod M).

Multiplication modulo M and calculating the inverses by the Extended Eu-
clidean Algorithm can be performed in time O(log® M). Determining all coeffi-
cients of f then gives us O(6 log® M ) for the complete algorithm. O

3 An Improved Algorithm for Solving SMUPE

For notational convenience let us briefly recall the SMUPE-problem. Given

k € N, Nq,..., N, € N, mutually co-prime composite numbers of unknown
factorization, such that Ny < ... < Nj, and a system of polynomial equations
fi(x) =0 (mod Ny)
fa(x) =0 (mod Ni)

(1)

fe(x) =0 (mod Ny),

where fi(x),..., fr(x) are of degree é1,...,6, € N in Zn,[z],...,ZnN,[7],
respectively.
Let X < Ny, X € R. Recover all solutions xg of [{@) with |z¢| < X.

Considering for example Coppersmith’s method (Theorem [ for the first

1
equation in (), only small roots zo with |zg] < N;* can be found in poly-
nomial time. By considering further equations this bound can be improved until
all solutions can be found eventually.

By Héastad’s algorithm in combination with Theorem [ the condition k& > ¢
with 6 := max;—1,. {6} is sufficient to solve a system of equations efficiently.
However, this condition is clearly not optimal as the following trivial example
shows. Let Ny < ... < Ny and take the following equations.

2 =c¢; (mod Ny)
3 =cy (mod Ny)
3 =c¢3  (mod N3)
°=¢4 (mod Ny)

Then k =4 < 5 =6, i.e. the condition is not fulfilled. However, if we just take
the first three equations, we are able to compute all common solutions smaller
than Nj. This gives us the intuition that the proportion of higher and lower
degrees of the polynomials ought to be taken into account. Let us now change
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the given example a little bit into a non-trivial one, so that no subsystem of the
equations fulfills the sufficient condition.

z°=c¢; (mod Np)
3 =c¢y (mod No)
2° =¢3  (mod N3)
5 =c¢; (mod Ny)

The parameters k and 6 and the N; remain the same. Can we still determine all
solutions? We notice that we can transform the first equation by squaring into

2% =2c12% — ¢} (mod N7).

Applying Theorem [ to this equation, we can find all solutions x for which

1
|z| < (N2)s = N{ holds. This is the same bound which we get for the roots of
the original equation 2° = ¢; (mod Nj). We proceed with the second equation
in the same way, then multiply the two other equations by x and finally combine

all the equations by Theorem 2] (Chinese Remainder Theorem). This gives us
25 = a1(2¢12% — &) + az(2c22® — ¢3) + azxes + agzey,  (mod NENZN3Ny),

where the a; are the coefficients from the Chinese Remainder Theorem, i.e.
a; = 1 (mod Nj;), a; = 0 (mod Nj), j # i. The above equation can be solved
in Z for z with |z| < (N2N2N3N,)s. This condition is fulfilled for any z with
|z| < Ny = (N8)s < (NEN2N3N,)é. Therefore, we can determine all solutions
of the above system of equations, although the condition k£ > ¢ is not fulfilled.

In order to generalize our approach we make the following crucial observation.
Let f(x) be a polynomial of degree 6. Let f(xz) =0 (mod N) for N € N, and let
m € N. Then g(z) := f™(xz) = 0 (mod N™). The solutions  with |z| < N of
the two equations remain unchanged. Moreover, with Coppersmith’s Theorem [I]
we can determine those solutions for which the condition |z| < No < |z| <
(N™)ms holds. Thus, Coppersmith’s bound is invariant under taking powers of
the polynomial f(z).

As opposed to our approach, in Hastad’s algorithm one does not take powers
of the polynomials but multiplications of polynomials with powers of x. This
increases the degree of the polynomial but leaves the modulus unchanged. Let
f(x) be a polynomial of degree é with f(z) =0 (mod N) for N € N. Then with
v > 6 the equation g(z) := 27~ °f(z) = 0 (mod N) contains all the solutions x of
f(x) with |z| < N. However, applying Coppersmith’s method to determine roots
of g(x) we only get roots x with |z| < N+ < Ns. So obviously, Coppersmith’s
bound is not invariant under multiplication with powers of x. This explains why
we obtain a superior bound on the size of the roots.

In the following analysis we will restrict ourselves to monic polynomials. If
one of the given polynomials f;(z) is not monic, either the coefficient of the
leading monomial is invertible, or we can find a factor of the modulus. In the
first case, we make the polynomial monic by multiplication with the inverse of
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the leading coefficient. In the latter case, we obtain for RSA moduli the complete
factorization, which in turn allows for efficiently solving this polynomial equation
modulo the prime factors.

Theorem 3. Let (f;,6;,N;),i =1,...,k, be an instance of the SMUPE-problem

&
with monic f;. Define M := Hf:l N/ with § := lem{6;,i =1,...,k}. Then the
SMUPE-problem can be solved for all x¢ with

|zo| < M5
in time O(65log? M).

Proof. Let xy be a solution of the system of polynomial equations (). Then xg
is a solution of
&

é 13
[ () =0 (mod NJ*) foralli=1,.... k.

All these equations have common degree § and are monic.
Combining them by Chinese Remaindering yields a polynomial f(x) of de-

&
gree ¢ such that zp is a solution of f(z) = 0 (mod M) with M := Hle N/,
Moreover, this polynomial is still monic.
For the coefficient as of the monomial z° in f(z) it holds that as = 1

s
(mod N,’*) for all i = 1,...,k and therefore as = 1 (mod M).
The above step can be performed in time O(8log> M) by Theorem Bl With
Theorem [T all solutions zo of the above equation which fulfill |z] < M: =

8
(15, N )+ can be found in time O(8% (8§ +log M) log M). The result can there-

i=1""4%

fore be obtained in time O(6% log? M). O

Remark 1. The same result is obtained by applying Coppersmith’s method [6]
directly to the polynomials fi(x),..., fx(z) instead of f(x).

Theorem Bl immediately gives us a sufficient condition on &k and the §; for
solving the SMUPE-problem for all zy € Zy;, .

Corollary 1. The SMUPE-problem can be solved for all xo € Zn, in time
O(6%log® M) provided that

>1 (3)

"
=0
Proof. Let xo be a common solution to all the equations. An application of
&
Theorem [ gives us |zo| < M+ := (Hf:l N/ ) as an upper bound for all roots

5 1

that can be computed in time O(8log® M). As ([[5_, N/*)s > [, N/ =
k 1

N;”"7" % > Nj all solutions o € Zy, can be found.

This gives us an algorithm to solve the SMUPE-problem with running time
polynomial in the bitsize of the N;, ¢ = 1,...,k, if 6 is polynomial in the bitsize
of the N;.
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Comparing this to the result due to Hastad and Coppersmith we observe that
in the case § := 61 = ... = &, the sufficient condition is k > 6 with both
methods. For different 6; however, our method is always superior. Taking e.g.
the illustrating example with public exponents (3,3,5,5) from the beginning of
this section, we see that our new condition é + é + é + é = %g > 1 is fulfilled.

4 Application: RSA with Polynomially Related Messages

A typical example in which polynomially related messages occur is an RSA
broadcast scenario. Assume a user wants to broadcast a message m to k different
users using an RSA encryption scheme with public exponents ey, ..., e, and co-
prime public moduli N7 < ... < Ng. From the ciphertexts ¢; (mod Ny),...,ck
(mod Ni) an attacker can compute the message m if m is smaller than the
upper bound given in Theorem Bl He sets f;(z) = 2% —¢; (mod N;) and applies
Theorem [3]

In order to avoid sending various encryptions of the same message, a user
might add some randomness r; and then encrypt the linearly related messages
(m+r;),i=1,...,k, instead of m. However, if the attacker gets to know the
randomness, he can calculate F;(z) := fi(x + r;) (mod N;) and analyze the
system of equations F;(x) =0 (mod N;), i =1,...,k. As degree, modulus and
leading coefficient are the same for F;(x) and f;(z), the upper bound on m, up
to which m can be recovered efficiently, also remains unchanged. More generally,
taking polynomially related messages instead of linearly related ones, the degree
of Fi(x), i = 1,...,k, changes from e; to e;7y;, where ~; is the degree of the
known polynomial relation.

Theorem 4. Let k € N, (e;,N;), i = 1,...,k, be RSA public keys with N1 <

Ny < ... < Ny and co-prime N;. Furthermore, let m € Zn, and let g;(x) € Zx]

be polynomials of degree v; € N with a;, the coefficient of x7¢ fori=1,...,k.

Let ¢1,...,c, be the RSA-encryptions of gi(m) under the public key (e;, N;).
8

Define 6; := e;y; and M := Hle Niﬁi with 6 == lem{é;,i =1,...,k}.
Then an adversary can recover the message m in time O(6° log® M) provided
that

Proof. Without loss of generality we assume that all a;,, are invertible modulo
N;. (Otherwise ged(aq,, N;) and gcd(a]:[; ;) Will give us the factorization of NV;
for at least one i € {1,...,k}. We can then compute m modulo the prime factors.
This can be done efficiently (see [I])).

We are looking for a solution m of f;(z) := g;(x)¥ —¢; = 0 (mod N;), i =
1,..., k. However, the polynomials f;(z) are not necessarily monic. Therefore, we
modify them slightly to be able to apply Corollary[ll Let Fi(z) := a;.’ (gi(2)e —
¢i) (mod N;), i = 1,...,k. Hence, F;(z) is a monic polynomial of degree §; =
e;7vi- The theorem then directly follows as an application of Corollary [I O
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5 Optimality of Our Bound for Solving SMUPE

In this section, we will see that the condition |zo| < Me for efficiently solving
the SMUPE-problem given in Theorem [B]is optimal if the moduli N; are prime
powers. This implies that the condition cannot be improved in general, unless we
make use of the structure of the moduli or of the specific polynomials occuring
in the system. Thus, our argument does not exclude the existence of superior
conditions for special moduli, e.g. square-free N;. Moreover, our formula captures
the intuition that equations of low degree §; comprise more information since
they contribute to the sum in (@) with a larger term 611_ than equations with
higher degree.

The counting argument that we use is a generalization of the argument in [5]
to systems of polynomial equations instead of a single equation.

Let £ € N. Let py,...,px be different prime numbers, 61,...,0r € N and
N = p‘fﬂ vy Ny = pi"'. Suppose N1 < ... < Ni. Let us look at the following
system of polynomial equations.

fi(x) =

0
falw) = 2"

(mod Nl)

0
0 (mod NQ)

: (4)
fe(z) =2 =0 (mod Ny)

We would like to determine all solutions zo of this system with |zo| < Ny = pi*.
An application of Theorem [ to a single equation f;(x) =0 (mod N;) efficiently
yields all solutions xg with |zo| < (IV;) 5 = p;. Furthermore, each multiple of p;
is a solution of f;(z) =0 (mod N;). Thus, if ¢ is a multiple of Hle pi, then xz
is a common zero of all the polynomials.

Let 6 :=lem{é;,i = 1,...,k}. We apply the same method as in the proof of
Theorem Bl to the polynomial equations in system (H). Namely, we take their
(;Z th powers and combine them by Chinese Remaindering (Theorem [). This

8
gives us an equation f(z) = 2° (mod M) with M :=[["_, N,* = []7_, p® with
the same roots as in ().

We assume that M s < Ny. Otherwise M > Ny > ||, i.e. the condition of
Theorem [(is fulfilled and there is nothing to be shown. Therefore, let € > 0 such
that Maste < Nj. Suppose now we could calculate all simultaneous solutions
o of the system such that |zo| < Mot = (Hf:l p;)! €. Since we know that
every integer multiple of Hi;l p; is a root of (), the number of roots is roughly
Q(HfZ1 p;)%¢. This implies that we have exponentially many roots o with |zo| <
Ms *¢, which we cannot even output in polynomial time. Consequently, there is

no polynomial time algorithm that improves upon the exponent in the condition
1
|zo] < M s of Theorem B
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Abstract. We introduce a new simplified notion of plaintext awareness,
which we term PA2I, and show that this is equivalent to the standard
definition of PA2 plaintext awareness for encryption schemes that satisfy
certain weak security and randomness requirements. We also show that
PA2 plaintext awareness is equivalent to PA2+ plaintext awareness under
similar security and randomness requirements. This proves a conjecture
of Dent that, for suitably random public-key encryption schemes, PA2
plaintext awareness implies PA1+ plaintext awareness.

1 Introduction

Loosely speaking, a public-key encryption scheme is plaintext aware if it is im-
possible for any reasonable attacker to create a ciphertext without knowing the
underlying message. This is an interesting concept, but one that has proven dif-
ficult to formalise. The first formal notion of plaintext awareness was introduced
by Bellare and Rogaway [3] and later refined by Bellare et al. [1]. However, this
notion of plaintext awareness could only be achieved in the random oracle model.

Later, Bellare and Palacio [2] introduced a new definition for plaintext aware-
ness. This new notion could be achieved without recourse to the random oracle
methodology, yet was consistent with the earlier definitions in the sense that a
schemes proven secure under the earlier definition were also secure under the
new definition. These new definitions were slightly extended by Dent [4].

In the formal definition, for every ciphertext creator (algorithm) that can out-
put a ciphertext, there should exist a plaintext extractor (algorithm) that can
extract the underlying message given all of the inputs of the ciphertext creator
(i.e. the explicit inputs and the random coins that the ciphertext creator uses).
This is meant to represent the idea that the plaintext extractor can “observe” ev-
ery action that the ciphertext creator makes when constructing the ciphertext it
finally outputs. The plaintext extractor should be able to extract the underlying
message of a ciphertext even if the ciphertext creator can query an encryption
oracle that provides the ciphertext creator with the encryption of messages that
have been drawn from some arbitrary and unknown (polynomial-time) distribu-
tion. This is known as PA2 plaintext awareness.

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 47-[64] 2008.
© International Association for Cryptologic Research 2008
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We may also consider a weaker definition in which the ciphertext creator
does not have the ability to obtain ciphertexts from the encryption oracle. This
is known as PA1 plaintext awareness. Furthermore, the ciphertext creator may
also have access to a randomness oracle which returns random bits (PA1+4/PA2+
plaintext awareness). This has the effect of making the actions of the ciphertext
creator unpredictable in advance. The complexity of these definitions, and the
difficulty in achieving the definition using standard computational assumptions,
are the two main barriers to the use of plaintext awareness in cryptography.

However, the concept of plaintext awareness has several uses. First, it can
be used to show that an encryption scheme is IND-CCA2 secure. It has been
proven that an encryption scheme that is PA2 plaintext aware and IND-CPA
secure is necessarily IND-CCA2 secure [2]. Second, there are some cryptographic
applications which require a scheme to be plaintext aware; for example, the
deniable authentication protocol of Di Raimondo, Gennaro and Krawczyk [6].
Lastly, the concept provides an insight into why some public-key encryption
schemes are secure, while others are not. We therefore believe that it is an
interesting and useful notion to study.

Our Contributions

We attempt to simplify the definition of plaintext awareness. In particular, we
introduce a new notion of plaintext awareness in which the ciphertext creator
cannot obtain the encryption of messages drawn from an arbitrary and unknown
distribution, but only the encryption of messages drawn from a simple, fixed
distribution. This distribution is defined by the plaintext creator P; which takes
two messages as input and chooses one of those messages at random. We term
this new notion of plaintext awareness PA2I as this is precisely the distribution
of messages that one considers when proving IND security.

We show that for encryption schemes meeting certain weak security and ran-
domness requirements (IND-CPA security, OW-CPA security and ~y-uniformity)
the notions of PA2, PA2I and PA2+ plaintext awareness are equivalent. This
equivalence proves a conjecture of Dent [4] that a suitably random PA2 plaintext
aware encryption scheme is necessarily PA1+ plaintext aware. As a by-product
of these theorems, we also show that an encryption scheme that is IND-CPA
and PA2 plaintext aware must satisfy the stronger property that an adversary
cannot distinguish between encryptions of messages of different lengths, a prop-
erty not required by the standard definition of indistinguishability. In particular,
this implies that the scheme has a finite message space. Finally, we show that
PA2I plaintext awareness is not equivalent to PA2 plaintext awareness if the
encryption scheme is only OW-CPA secure and 7-uniform.

2 Definitions

2.1 Notation

We will use the following notation in this paper. If S is a set, then z <~ S means
x is sampled uniformly at random from the set S. If S is a distribution, then
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& < S means that z is sampled according to the distribution. For a deterministic
algorithm A, we write = «+ A®(y, z) to mean that x is assigned the output of
running A on inputs y and z, with access to oracle O. If A is a probabilistic
algorithm, we may write 2 «+ A% (y, z; R) to mean the output of A when run on
inputs y and z with oracle access to O and using the random coins R. If we do
not specify R then we implicitly assume that the coins are selected uniformly
at random from {0,1}°°. This is denoted = < A®(y, z). We let R[A] denote the
coins of an algorithm A.

2.2 Public-Key Encryption Schemes

An encryption scheme is a triple (G, &, D) of probabilistic polynomial-time al-
gorithms. The algorithm G(1*) outputs a key pair (pk, sk). The public key pk
implicitly defines a message space M and a ciphertext space C. The encryption
algorithm takes as input a public key pk and a message m € M, and outputs a
ciphertext C' € C. The decryption algorithm takes as input a private key sk and
a ciphertext C' € C, and outputs either a message m € M or the unique ‘reject’
symbol L. We require that if (pk, sk) < G(1*), then for all m € M

Pr[D(sk,E(pk,m)) =m] =1.

where the probability is taken over the random coins of the encryption algorithm.

We will refer to a public-key encryption scheme as having either a finite or
infinite message space. A public-key encryption scheme IT has an infinite message
space if M is an infinite set for all values of the security parameter \. IT has a
finite message space if M is a finite set for all values of the security parameter
A. For simplicity, we will assume that all public-key encryption schemes either
have the infinite message space M = {0,1}* (as with most hybrid encryption
schemes) or the finite message space M = {0,1}*N. We will assume that all
encryption schemes run in time that is polynomially bounded in the size of their
inputs (i.e. A and |m]|).

Note that if £(\) is polynomially bounded then we may equivalently define a
finite message space as M = {0,1}<*, i.e. the set of all bit strings of length less
than /, as there is a trivial polynomial-time map from {0,1}<¢ into {0, 1}*.

2.3 Indistinguishability of Ciphertexts

We first describe the IND-ATK (where ATK is either CPA or CCA2) game for
an adversary A = (A1, A2), where A; and As are probabilistic polynomial-time
algorithms:

(pk, sk) < G(17)

(Mg, M1, STATE) < AS (pk)
b & {0,1}

C* & E(pk,my)

v & A (C*, STATE)
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In the above, A; outputs two messages (mg, m1) such that |mg| = |mq| and
some state information. The challenger chooses a bit b at random and encrypts
my, to give a challenge ciphertext C*. As takes C* and the state information as
input and outputs a guess for b. We define the advantage of A as

AdviPAT = | Prp’ = 1|b = 1] — Pr[t) = 1]b = 0]|.

We consider two attack models. In the chosen plaintext attack (CPA) model,
A does not have access to any oracles. In the adaptive chosen ciphertext attack
(CCA2) model, A may query a decryption oracle D, which takes a ciphertext C
as input and returns D(sk,C'). The only restriction is that Ay may not query
the decryption oracle on C*.

Definition 1 (IND-ATK). A public key encryption scheme II = (G,E,D) is
IND-ATK secure if for any probabilistic, polynomial-time IND-ATK adversary
A, the advantage Adv'}" "™ is negligible as a function of .

Frequently, where it will not cause undue confusion, we will suppress the state
information STATE and simply assume that all necessary information is passed
from Al to .AQ.

2.4 One-Wayness

We also require a notion of one-wayness (OW-CPA) for an encryption scheme
with an infinite message space. For simplicity we assume that M = {0,1}*.
One-wayness is assessed via the following game:

(pk,sk) < G(1*)
m < {0,1}*

C* & E(pk,m)
m' & A(pk, C*)

We define the attacker A’s success probability to be Pr[m’ = m].

Definition 2 (OW-CPA). A public key encryption scheme II = (G,E,D) is
OW-CPA secure if for any probabilistic polynomial-time OW-CPA adversary A,
the success probability of A is negligible as a function of A.

2.5 Plaintext Awareness

The formal definition of plaintext awareness in the standard model was proposed
by Bellare and Palacio [2]. A scheme is plaintext aware if for every probabilis-
tic polynomial-time algorithm (ciphertext creator) A there exists a probabilistic
polynomial-time algorithm (plaintext extractor) A* which can simulate a de-
cryption oracle for A when given the random coins that 4 uses (in the sense
that the output of A when interacting with A4* is computationally indistinguish-
able from the output of A when interacting with a real decryption oracle). In
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order to model the attacker’s ability to obtain ciphertexts for which it does
not know the underlying decryption, the ciphertext creator is equipped with
an oracle that will return the encryption of a randomly chosen message m <
P(s) where P is an arbitrary probabilistic polynomial-time algorithm (plaintext
creator) and s is supplied by the ciphertext creator A. Note that both P and
A* are considered to be stateful algorithms.

Formally, we consider two games. In both cases, the ciphertext creator A is
given a public key pk from a correctly generated public-key pair (pk, sk) < G(1*)
and outputs a bitsting x. In both cases, the ciphertext creator has access to an
“encryption oracle” that will, on input s, generate a message m < P(s), compute
c & E(pk,m), add C to a list of returned ciphertexts CLIST and return C' to the
ciphertext creator. The games are distinguished by the “decryption oracle” to
which A has access. In the REAL game, A can query a decryption oracle on any
ciphertext C' ¢ CLIST and the oracle will return D(sk, C'). In the FAKE game, A
can query a decryption oracle on any ciphertext C' ¢ CLIST and the oracle will
execute A*(pk, C, R[A], CLIST) and return the result. We stress again that A*
and P are stateful algorithms. We can summarise these two games as follows:

REAL GAME: FAKE GAME:
(pk, sk) < G(1) (pk, sk) < G(1*)
TReal &AD(sk,-),E(pk’P(-))(pk) xmeLAA*(pk,-’R[A},CLIST)’E(pk,P(-))(pk)

Definition 3 (PA2). A public key encryption scheme II = (G,E,D) is PA2
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A* such that for all polynomial-time plaintext
creators P and polynomial-time distinguishing algorithms D, the advantage

AdV%iA*,P,D = |Pr[D(%pew) = 1] — Pr[D(2pu.) = 1]

is negligible as a function of the security parameter (where ., is the output of
A in the REAL game and % g, is the output of A in the FAKE game).

Definition 4 (PA1). A public key encryption scheme II = (G,E,D) is PA1
plaintext aware if it is PA2 plaintext aware for all ciphertext creators A that
do not make any queries to the encryption oracle. In other words, II is PA1
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A* such that for all polynomial-time distin-
guishing algorithms D, the advantage

Adv'{y. p = | Pr[D(2p.) = 1] — Pr[D(wp,.) = 1|
1s negligible as a function of the security parameter.

Dent [] extended these definitions to allow the ciphertext creator A to take
actions that are unpredictable to the plaintext extractor A* in advance by al-
lowing the ciphertext creator A to repeatedly query a “randomness oracle” which
returns a single random bit.
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Definition 5 (PA+). For any plaintext awareness definition PA (PA1, PA2I,
PA2), we define a new condition PA+ (PA1+, PA2I+, PA2+) by adding a
randomness oracle, which takes no input and returns a random bit. The plaintext
extractor is altered so that it takes a list RLIST of all such bits queried so far as
one of its inputs, i.e. A*(pk,C, R[A], RL1ST, CLIST).

Note that any such PA+ definition implies the corresponding PA definition, since
an adversary may simply not use the randomness oracle.

Bellare and Palacio proved that [2] any scheme that was PA2 plaintext aware
and IND-CPA secure was IND-CCA2 secure. The proof of this fact makes use
of a particular plaintext creator P; which takes as input two messages (mg, m)
and outputs a randomly chosen message m;. We call this the IND plaintext
creator and define a scheme to be PA2I plaintext aware if it is PA2 plaintext
aware for the IND plaintext creator.

Definition 6 (PA2I). A public key encryption scheme II = (G,E,D) is PA2I
plaintext aware if for all polynomial-time ciphertext creators A, there exists a
polynomial-time plaintext extractor A* such that for all polynomial-time distin-
guishing algorithms D, the advantage

PA2T _ PA2
AdV.A,.A*,D = Adv.A,.A*,P],D
18 negligible as a function of the security parameter.

The paper of Bellare and Palacio [2] actually proves that a scheme which is
PAZ2I plaintext aware and IND-CPA secure is IND-CCA2 secure. We note that a
theorem of Teranishi and Ogata [8] shows that any scheme which is one-way and
PA2 plaintext aware is IND-CCA2 secure. We stress that the proof of Teranishi
and Ogata requires the use of the arbitrary plaintext creator P provided by the
full definition of PA2 plaintext awareness.

3 Theoretical Results about Plaintext Awareness

3.1 Connection between PA2I and PA2

One of the more complex aspects of plaintext awareness is the fact that the
encryption oracle returns an encryption of a message that has been chosen from
some arbitrary distribution defined by P. The order of the quantifiers in the
definition of PA2 plaintext awareness means that neither the ciphertext creator
A, nor the plaintext extractor A*, know the distribution from which messages
are chosen, although the ciphertext creator does have the ability to affect this
distribution via its input s to the encryption oracle. In this section, we show that
for IND-CPA encryption schemes it is sufficient to consider the fixed plaintext
creator Pr. We note that PA2 plaintext awareness trivially implies PA2I plaintext
awareness, so we will concentrate on proving the converse theorem.

Theorem 1. Ifan encryption scheme with the finite message space M ={0, 1}2(/\)
is IND-CPA secure and PA2I plaintext aware, and £(\) is polynomially bounded in
A, then it is PA2.
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Note that we could have equivalently chosen the message space to be {0,1}<*,
i.e. the set of bitstrings of length less than ¢, as we can trivially map one set
onto the other. Note also that ¢ may depend on the security parameter A but
for each value of A we have that ¢()) is finite.

Proof. Consider an arbitrary plaintext creator P. We prove that the output of
A interacting with P is computationally indistinguishable from the output of A
interacting with Py and therefore, if there exists a plaintext extractor A* for the
ciphertext creator A in the PA2I model, then A* is also a plaintext extractor for
the ciphertext creator A in the PA2 model. We prove this through a sequence of
four games. Let x; be the output of A in Game 4. Fix a distinguishing algorithm
D and let S; be the event that D(x;) = 1.

Game 0: Let Game 0 be the FAKE game with plaintext creator P. In other

words, the encryption oracle computes messages m « P(s) and returns C &
E(pk,m). The decryption oracle returns A* (pk, C, R[A], CLIST).

Game 1: We replace P with the P;. Since A expects to be interacting with
P, and will not explicitly format its queries as (mg,m1), we will define P; so
that it truncates or pads s with zeros to 2¢ bits if necessary, and then splits the
result into two £ bit messages, chooses one of them at random and returns it.
Since £(\) is polynomially bounded, this action can be computed in polynomial
time. The oracle then encrypts this message, then returns the ciphertext to A
and adds it to CLIST.

If | Pr[S1]—Pr[So]| is non-negligible, then we can construct an adversary 55 that
breaks the IND-CPA security of the scheme. We use a simple hybrid argument.
Suppose A makes at most g. queries to the encryption oracle. By takes as input
the public key pk and runs A and A* exactly as described in the Game 0.
B responds to the first ¢. — 1 encryption oracle queries as in Game 0 (i.e. by
computing a message m < P(s) and returning C' < £(pk, m)). For the g.-th
query to the encryption oracle, By generates both my < P(s) and m; < Py(s)
and outputs (mg,m1) as the messages on which it wishes to be challenged.

The challenger will pick one of these messages and encrypt it, the result will
be returned to By. Bs handles any decryption oracle queries by A in the same
way as before (i.e. by using A*). Eventually A terminates and outputs a bitstring
x. By terminates by outputting the bit D(x).

Since IT is IND-CPA, B’s advantage is bounded by Advy " “"*. It is clear that
if the challenger chose to encrypt message mg, then A was playing Game 0. It also
clear that if the challenger chose to encrypt message m; then A was playing a
hybrid game in which the first g. — 1 queries were answered as in Game 0 and the
last query was answered as in Game 1. Hence, the probability that the ciphertext
creator A outputs a bitstring x such that D(x) = 1 can only change by at most
Advg " " if the final encryption is computed using Py rather than P.

We now repeat this “trick” g. times, until all the encryption oracle queries
are handled as in Game 1. Hence,

|Pr[S1] — Pr(So]| < geAdvy ™ ™.
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Game 2: We replace A* with a real decryption oracle. By definition, we have
that
| Pr[So] — Pr[S1]| < Advii%- p

Game 3: We replace Pr by P. We can prove that | Pr[Ss] — Pr[Ss]| is negligible
by much the same argument as in Game 1, except that this time we construct
an IND-CCA2 adversary B, which uses its own decryption oracle to answer
decryption queries. We may assume that IT is IND-CCAZ2 secure as it is both
IND-CPA secure and PA2I plaintext aware. Hence, after ¢. rounds, we have that

| Pr[S3] — Pr[Ss]| < g Adv S

Note that Game 3 is identical to the REAL game with plaintext creator P.
We can therefore conclude that

Adv Y. p p = |Pr[So] — Pr[Ss]|
< geAdvyg " + Adviﬁi{*’D + geAdvyg "ot
Since the scheme is PA2I and IND-CPA, we see that
Advg "ot < Advp PO + qudv?ﬁ*’D,
for some probabilistic polynomial time algorithms C, F, F* and D’. Thus
AV p p < qeAdvET T + AdVIPS- b+ ge(Adve O 4 g AdVE R b))
which is negligible as required. a

Corollary 1. If an encryption scheme Il is IND-CPA secure and PA2I+ plain-
text aware then it is PA2+ plaintext aware.

Proof. The proof of this theorem mirrors the proof of Theorem [II O

The fact that we may be substitute an arbitrary plaintext creator P with the
specific plaintext creator P; will be crucial in proving the relationship between
PA2 and PA2+ in Section 3.3

For schemes that have already been shown to be IND-CCAZ2 secure, but about
which their plaintext awareness may be in doubt, we can prove a stronger result.
Let P,, be the plaintext creator that constantly outputs the message m € M.

Corollary 2. If an encryption scheme II is IND-CCA2 secure and PA2 (resp.
PA2+) plaintext aware with respect to the specific plaintext creator Py, then it
is PA2 (resp. PA2+) plaintext aware.

Proof. The proof of this theorem mirrors the proof of Theorem [ except we
explicitly use the fact that IT is IND-CCA2 secure in the third game hop, rather
than deriving the fact that I7 is IND-CCAZ2 secure from the fact that it is IND-
CPA secure and PA2I plaintext aware. O

This corollary may have some applications in situations where public key en-
cryption schemes are known to be IND-CCA2 secure, but need to be shown to
be PA2 plaintext aware in order that they might be used in some specific pro-
tocol, e.g. the deniable authentication protocol of Di Raimondo, Gennaro and
Krawczyk [6].
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3.2 PA2 and One-Wayness Implies a Finite Message Space

In the previous section, we introduced an extra condition into our proof — we
required the encryption scheme to have a finite message space. This may seem
like an unreasonable restriction. Far from being unreasonable, particularly when
one considers hybrid encryption schemes; however, we will show in this section
that a finite message space is necessary in order for a one-way scheme to achieve
PA2 plaintext awareness. Hence, we can conclude that many hybrid encryption
schemes, are unable to achieve this level of security, at least if we define the
message space to be {0, 1}*, the set of all bitstrings. Our proof will not preclude
the possibility that a scheme is PA2I plaintext aware, OW-CPA secure and has
an infinite message space.

Theorem 2. Let IT = (G,E,D) be an encryption scheme. If IT is PA2 and has
an infinite message space, then it is not OW-CPA.

In order to prove this theorem, we use the proof technique of Teranishi and Ogata
[8]. The technique involves using a specific plaintext creator P to leak the value
of a ciphertext C* to the ciphertext creator A bit-by-bit in such a way that C*
does not appear on CLIST. The plaintext creator can then query the decryption
oracle on C* to obtain the underlying message (the validity of which it can check
using one further query to the plaintext creator). Now, since this system allows
the ciphertext creator to decrypt an arbitrary ciphertext by interacting with
only the polynomial-time plaintext extractor, the encryption scheme cannot be
one-way. Our proof differs from Teranishi and Ogata in that we will leak the
value of the challenge ciphertext C* by outputting short ciphertexts if a bit of
C™ is zero and long ciphertexts if a bit of C'* is one. We can produce ciphertexts
which are recognisably short or long due to the infinite size of the message space.

Proof. We will prove that if IT = (G,&,D) is PA2 and has an infinite message
space then IT is not OW-CPA secure. For simplicity, we assume M = {0,1}*.

Note that the length of any ciphertext must be bounded by a polynomial
f(A,|m|) in the security parameter A and length of the corresponding plaintext.
An upper bound for f is simply the running time of €. Let lo = f(A\, \) + A+ 1,
Lh=fN)+ A+, and o = f(\ 1) + A+ 1

Let Encode be an algorithm which takes input i € {0, 1,2} outputs a message
m < {0,1}%. Let Decode be an algorithm which takes a ciphertext C' and returns

if f(AA) <[C] < f(\ o)
if f(Alo) <|C| < f(\ D)
if f(\ 1) <|C]< f(Al2)

otherwise

Decode(C) =

|_[\>>—~o

If C & &(pk, Encode(0)), then we would like Decode(C') = 0. However, since we
only know that |C] < f(A,lp), it is possible that |C| < f(A, A) and so the decode
algorithm will fail. But, since there exists only 2/(AY+1 1 ciphertexts of length
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at most f(\, \) and 2/0 —1 messages of length Iy, the probability that a randomly
chosen message will encrypt to give a ciphertext of length less than or equal to
f(X\,A) is bounded by 27, Similarly, the probability that Decode(C') # i when
C & &(pk,Encode(i)) for i € {1,2} is bounded by 2.

Next we construct a ciphertext creator A and a specific plaintext creator P.
The plaintext creator P works in a series of phases:

1. The first time the plaintext creator is initialised it picks a random message
m* & {0,1}* and computes C* & &(pk,m).

2. For the i-th query, where 1 < i < |C*|, the plaintext creator returns
Encode(b;), where b; is the i-th bit of C*. Hence, the ciphertext creator
will receive €(pk, Encode(b;). This leaks the value of the ciphertext C* to
the ciphertext creator.

3. For the next query the plaintext creator returns Encode(2). This signifies the
end of the ciphertext.

4. For the next query the plaintext creator uses the input s provided by the
ciphertext creator. If s = m™* then the ciphertext creator returns Encode(1);
otherwise it returns Encode(0). This is a validity check.

5. For all subsequent queries the plaintext creator outputs 0.

The ciphertext creator A works as follows:

1. The ciphertext creator queries the plaintext creator repeatedly, each time
receiving a ciphertext C' and computing the bit b < Decode(C). If b € {0,1}
then the ciphertext creator stores this bit and repeats the query. If b = 2
then the ciphertext creator continues to the next phase.

2. The ciphertext creator reconstructs the ciphertext C* from the bits recovered
in the first phase.

3. The ciphertext creator submits the ciphertext C* to the decryption oracle
and receives a message m.

4. Next, the ciphertext creator submits m to the encryption oracle and receives
back a ciphertext C.

5. The ciphertext creator outputs the bit Decode(C')

Let Spear be the event that A returns 1 in the REAL game, and Syqke be the
event that A returns 1 in the FAKE game. We note that if the decode algorithm
always returned the correctly encoded bit, then C* ¢ CLIST as every ciphertext
C' that the encryption oracle returns is of size greater than f(\, A). Furthermore,
if the decode algorithm always returned the correctly encoded bit, the A will
always return 1 in the REAL game. Hence,

Pr[Syea] > 1 — (|C*|+2)-277.

Since, 11 is PA2 plaintext aware, there exists a plaintext extractor A* for the
ciphertext creator A with the property that

Pr(Stare] > 1= (|C*| +2)- 27 = Advi{%. » p
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where D is the trivial distinguishing algorithm that outputs the single bit which
it takes as input. Due to the validity check, this means that A* must return the
correct decryption of C* with probability Pr[Sake].

We use the functionality of A and A* to create an adversary B against the
OW-CPA security of IT as follows:

1. B receives a ciphertext C* and sets n to be |C*].

2. B generates a simulation of CLIST « {Cy,C4,...,Chy1} in which C; &
E(pk,Encode(b;)), for 1 < i < n and where b; is the i-th bit of C*, and
Chy1 < E(pk,Encode(2)).

3. B generates a suitably large random tape R[A]. The useable tape length can
be polynomially bounded by the runtime of A*; hence, the construction of
such a tape is polynomial time.

4. B computes m < A*(pk, C*, R[A], CLIST) and returns m.

Since B exactly simulates the environment in which A* runs, B correctly decrypts
C* with probability Pr{Sgake] > 1 — (|C*[ +2) - 27 — Adv'{%. » p which is
non-negligible as required. O

This proof actually shows that any PA2 plaintext-aware encryption scheme which
a message space M = {0,1} <) cannot be OW-CPA if £()\) grows faster than
any polynomial. This is because we only require that the message space be able
to cope with messages up to length lo(\) for the proof to work.

We may also conclude that any public-key encryption scheme IT which is IND-
CPA secure, PA2I plaintext aware and has an infinite message space cannot be
PA2 plaintext aware (as in such a case IND-CPA security implies OW-CPA
security and this contradicts the previous theorem). Hence, the condition that
the message space be finite in Theorem [I] is necessary.

3.3 Connection between PA2 and PA2+

Clearly, a scheme which is PA24 must necessarily be PA2, since an adversary
may simply not use its randomness oracle, but the converse is not obviously true.
We now show that it is true for a sufficiently randomised encryption scheme,
since an adversary may use randomness inherent in a ciphertext generated by
the encryption oracle to simulate a randomness oracle. This in turn implies that
a suitably random PA2 encryption scheme is PA1+, thus giving a formal proof
to the conjecture of Dent [4].

The proof essentially involves constructing a randomness oracle by taking ci-
phertexts created by a y-uniform encryption algorithm and hashing them onto a
single bit using a randomly chosen universals hash function. The resulting distri-
bution on {0, 1} is only a small statistical distance from the uniform distribution
on {0, 1} and the result follows from the Leftover Hash Lemma [5]. One subtlety
of the proof is that we will require the ciphertext creator A* that we construct
to know the functionality of the plaintext creator P. Hence, we actually prove
that a suitably random PA2I plaintext aware encryption scheme is PA2I+, and
appeal to Theorem [l to finish the proof.
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Definition 7 (vy-Uniformity). An encryption scheme is v-uniform if for all
public keys pk, messages m and ciphertexts C, Pr[€(pk,m) = C]| < ~, where
the probability is taken over the choice of random coins used by the encryption
algorithm.

Definition 8 (Universal, Hash Family). A family H = (H, K, A, B) of func-
tions (Hy)kex where each Hy maps A to B is universaly if for all x #y in A,
Pr[Hy(x) = Hy(y)|k < K] < 1/|B].

We will use a universaly function family H = (Hy)gex where Hy is a function
from {0,1}* — {0,1} for all k € K. For simplicity, we will assume K = {0,1}".
Such families are known to exist without any computational assumptions [9].

Definition 9 (Statistical Distance). Let © and y be random variables taking
values on a finite set S. We define the statistical distance between x and y as

1
Alw,y] =, > [Prlz = s] = Prly = ]|
ses
Note that if A is a predicate on the set S, then the following inequalities holds:
Alz,y] = | Pr[A(z)] — PrlA(y)]| 1)
We give the version of Leftover Hash Lemma given in Theorem 6.21 of [7].

Lemma 1 (Leftover Hash Lemma). Let H be a family of universaly hash
Junctions from A to B where B is of size 3. Let V denote any distribution on
A which is independent of the choice of k. Let U and V' denote the distributions
given by

U={(ky): k< K, y< By V={(ky): k<K oz &V, y— He(a)}
and let

K:ZPT[V:(I]Q.

acA
Then A[U, V] < /Br/2.
This allows us to prove the following lemma.

Lemma 2. Let II be a y-uniform encryption scheme, then, for any fixed mes-
sage m € M and public key pk, we have

| PrHL(E k) = 1]~ | < V2,

where the probability is taken over the choice of k < {0,1}™ and the random
coins used by the encryption algorithm.
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Proof. Let V be the distribution of C' <~ £(pk, m). By the y-uniformity of IT we
have

So
k(V) < Z Pr[C=v]y = ~ Z Pr[C=v] = ¥

ve{0,1}* ve{0,1}*

and so by the Leftover Hash Lemma we have
Al(k, Hi(0)), (k,y)] < v/27/2,
where y < {0,1}. However,
Al(k, Hi(C)), (k,y)] = [Pr{H)(C) = 1] = 1/2
which gives the required result. O

Theorem 3. Suppose a public key encryption scheme II is vy-uniform (for a
negligible value of v) and PA2I plaintext aware. Then it is PA2I+ plaintext
aware.

Proof. Let H be as above. Let A be a PA2I+ ciphertext creator that makes
at most ¢, queries to the randomness oracle. We construct a PA2I ciphertext
creator B as follows: B takes input pk. We designate the first g, n-bit chunks of
the random tape of B as (ki1,...,k,,) and the rest R[A]. B runs A(pk; R[A]). B
answers A’s encryption and decryption queries by passing them to its own oracle
and returning the result. To answer the i*" randomness query, it queries the
encryption oracle on the input 0 and receives a ciphertext C. It then computes
b; < Hy,(C) and returns b;.

Since B is a valid PA2I ciphertext creator, there exists a plaintext extractor
B*. We use B* to construct a plaintext extractor A* for A.

Recall that A* takes input (pk,C, R[A], RLIST, CLIST). We will assume that
when A* is first initialised it chooses hash keys (k1, ..., kg, ) < ({0,1}")% and
stores these keys. If A* is queried with a ciphertext C', then it runs as follows:

1. If the randomness oracle has been queried since A* was last executed, i.e.
RLIST has grown, then for each new bit b; that has been returned A* gen-
erates a ciphertext C; by running &(pk, P;(0)) repeatedly until it finds C;
such that Hy, (C;) = b;, then adds C; to CLIST in the appropriate place. We
note that, by Lemma [ the probability that Pr[Hy, (C) # b;] < 1 + /v/2.
We limit A* to running A trials; hence, A* will run in polynomial time, but
fail with the negligible probability (5 + V/2)

2. A* then computes m & B*(pk, C, R, CLIST) where R = ky||. .. ||k, ||R[A].

We now show that A* is a valid plaintext extractor for A, i.e. the output
r & A° (pk) is computationally indistinguishable in the REAL and FAKE games.
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Fix a distinguishing algorithm D, let z; be the output of A in Game i and let
S; be the event that D(z;) = 1.

Game 0: Let Game 0 be the REAL game for A. In other words, the encryption
oracle takes as input s, computes m <~ P;(s) and returns C' <~ &(pk,m). The
decryption oracle returns D(sk, C).

Game 1: We modify the randomness oracle so that on the i*" query it com-

putes C; < E(pk,Pr(0)) and sets b; «— Hy, (C;), where 1 < i < g, rather than

simply returning a random bit. In order to prove that | Pr[So] — Pr[S1]| is neg-

ligible, we use a hybrid argument. Suppose we consider changing the response

of the first query to the randomness oracle from the random bit b to the bit
R

b — Hy, (E(pk,Pr(0))) and let S* be the event that D(z) = 1 in this new game.
By Lemma 2] and Equation [I] we have that

[ Pr(So] = Pr(S7]| < Al(k,b), (k1,0)] < v/7/2
We may repeat this argument for all ¢, randomness oracle queries to obtain

| Pr[So] — Pr[Si]] < g,v/7/2

Game 2: We modify the randomness oracle so that it adds each ciphertext
C; & Pr(0) it generates to CLIST. Since the ciphertext creator A does not have
access to CLIST and the ciphertext creator A has access to a real decryption
oracle, the view of A is identical in the two games unless it submits one of these
ciphertexts to the decryption oracle. The probability that a specific ciphertext
involved in a decryption oracle query matches a specific ciphertext created by
the randomness oracle is bounded by v due to the vy-uniformity property. Since
A makes at most ¢, randomness oracle queries such ciphertexts and at most ¢4
decryption queries, we have

| Pr[Sa] — Pr[Si]] < ¢rqay

Game 3: We modify the decryption oracle so that it uses the plaintext ex-
tractor A* to answer decryption oracle queries. Game 3 exactly simulates the
environment of B* providing that the B* finds a suitable ciphertext C; for each
random bit b; on RLIST, so if D is an arbitrary distinguishing algorithm for 5,

| Pr(Ss] — PrS:]] < AdVER p.p + 0 + V7/2)
However, Game 3 is the FAKE game for A, so
AdviUt p p = | Pr[S3] — Pr[S]|
< AAVEE pp + Gdey + @/ v/2+ qr(; +/v/2)>.

which is negligible as required. O
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Corollary 3. Suppose a public key encryption scheme II is PA2 plaintext aware,
OW-CPA secure, and vy-uniform. Then I is PA24 plaintext aware.

Proof. Since IT is PA2 plaintext aware and OW-CPA secure, we have that it is
PA2I plaintext aware, IND-CPA secure and that it has a finite message space
M = {0,1}*N where £()) is polynomially bounded (Theorem[]). Since IT is PA2I
plaintext aware and y-uniform, we have that it is PA2I+ plaintext aware (Theo-
rem[3]). Since IT has a finite message space and is both PA2I+ plaintext aware and
IND-CPA secure, we have that it is PA2+ plaintext aware (Corollary [I]). O

3.4 PA2I+ and OW-CPA Do Not Guarantee IND-CPA Security

We have shown that for IND-CPA encryption schemes, the notions of PA2I plain-
text awareness and PA2 plaintext awareness are equivalent. It might be hoped
that this equivalence also holds for schemes with fewer security guarantees — in
particular, it might be hoped that one can find an analogue of the Teranishi and
Ogata theorem [§] which would prove that a scheme which was PA2I plaintext
aware and OW-CPA secure was IND-CCA2 secure.

In this section we give evidence that this is not the case by proving that there
exist schemes that are PA2I+ plaintext aware and OW-CPA secure, but which
are not IND-CPA secure. Alternatively, by Theorem Bl we have that there exists
a scheme which is PA2I plaintext aware, OW-CPA secure and ~y-uniform, but
not IND-CPA secure. We leave the question of showing that there exists schemes
that are PA2I plaintext aware and OW-CPA secure, but not IND-CPA secure,
as an open problem.

Theorem 4. Suppose there ezists a public key encryption encryption scheme
II = (G,&,D) which is OW-CPA, IND-CPA, and PA2I+. Then there exists
another encryption scheme II' = (G,E', D) which is OW-CPA and PA2I+ but
not IND-CPA.

Proof. We assume that the message space M for I is such that it is easy to find
messages mg and my which differ in the final bit and let F'(m) denote the final bit of
message m. We now describe a new encryption scheme IT" = (G, &', D’) as follows:

&' (pk,m): D'(sk,C):
C' & E(pk,m) Parse C as (C',b)
b— F(m) m « D(sk,C")
C — (C",b) If b = F(m):
Return C Return m
Else
Return L

Clearly, IT' is OW-CPA, since if there is an adversary against the OW-CPA
security of IT" with advantage ¢, there is an adversary against IT with advantage
€/2 which just guesses the final bit at random. It is also clear that I’ is not

IND-CPA, since an adversary may simply choose two messages (mg,m1) that
differ in the final bit.
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We now show that IT’ is PA21+. Let A be a PA21+ ciphertext creator against
IT'. We construct a PA2I+ ciphertext creator B against I1. B runs A(pk; R[B])
and handles queries as follows:

— If A makes an encryption oracle query on (mg,m1), B queries its own en-
cryption oracle on (mg, m;) and receives a ciphertext C’. It then checks if
F(mg) = F(my). If so, B then returns C = (C’, F(myg)) to A. If not, B
queries its randomness oracle to get a bit b/, and returns C' = (C’, /).

— If A makes a decryption query on C' = (C’, V'), B checks whether (C’, 0/ 1)
is on CLIST. If so, B returns L to A. Otherwise, B queries its own decryption
oracle on C’ to get a message m, and returns m if F(m) = b or L otherwise.

Finally, when A outputs x and terminates, B does the same.

By the PA2I+ property of IT there exists a plaintext extractor B* for the
ciphertext creator 5. We use B* to construct a plaintext extractor A* for the
ciphertext creator A. A* takes input (pk,C, R[A], RLIST, CLIST) and runs as
follows:

1. When it is first initialised, A* creates two empty lists RLIST' and CLIST
which will be used to simulate the inputs to the plaintext extractor B*.

2. A* checks to see if the encryption oracle or decryption oracle has been used
since it was last activated. It does this by executing A on all the appropriate
inputs (using pk, R[A] and the values on CLIST and RLIST).

— For each new bit b’ returned by the randomness oracle, A* appends o/
to RLIsT .

— For each new ciphertext (C',b’) returned by the encryption oracle, A*
examines the two messages (mg, m1) that A submitted to the encryption
oracle (which A* knows because it has executed A). If F(mg) = F(mq),
then A* appends C’ to CLIST'. If F(mg) # F(m1), then A* appends b/
to Ruist’ and C’ to CLIST .

3. If C € CLisT” then A* returns L.

Otherwise, A* computes m < B*(pk, C, R[A], RLisT’, CLIST').

5. If F(m) = b’ then A* returns m; otherwise A* returns L.

~

We must now show that A* is a valid plaintext extractor for A. We do this
by showing that A and A* almost perfectly simulates the output of 5 and B*.
Fix a distinguishing algorithm D, let x; be the output of A in Game i and let
S; be the event that D(z;) =1 in Game i.

Game 0: Let Game 0 be the REAL game for A. In other words, the encryption
oracle takes as input two messages (mq,m1), chooses a bit b <~ {0, 1} and returns
(C', ') & &' (pk,my). The decryption oracle returns D’ (sk, C).

Game 1: We let Game 1 be identical to Game 0 except that for each ciphertext
(C’, V) returned by the encryption oracle, the bit ¥’ is chosen in the same way
that B does — i.e. if F(mg) = F(m1) then the oracle chooses ' = F(myg),
otherwise b’ is chosen uniformly at random {0, 1} independently of the message
that is encrypted.
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Game 1 exactly simulates the REAL game for B. We claim that
| Pr[S1] — Pr[So]| < geAdvy o2

for some IND-CCA2 adversary B’ against IT, since if the outputs of A are distin-
guishable in these two games, we can construct an adversary which distinguishes
ciphertexts. Note that we may assume I7 is IND-CCA2 secure as it is IND-CPA
secure and PA21+ plaintext aware.

Game 2: Let Game 2 be the same as Game 1, except that A’s D queries are
handled by A*. We note that Game 2 exactly simulates the FAKE game for 5.
Thus by the PA2I+ property of IT,

| Pr[Sy] — Pr[S1]| < Advygi .
Game 3: Let Game 3 be as Game 2, except with the original behaviour of the

encryption oracle restored, i.e. the final bit of the ciphertext is the final bit of
the message. Hence,

| Pr[S3] — Pr[Ss]| < geAdvz” ™

for some IND-CPA adversary B’ for the same reasoning as in Game 1.
However, Game 3 is identical to the FAKE game for A. Hence,

Adviﬁi{f’D = | Pr[So] — Pr[Ss]|
< g AdvE Ot + Advgjf;D + geAdvg ™

which is negligible as required. O

4 Conclusion

In this paper we have discussed the relationship between several notions of com-
putational plaintext awareness, most notably the relationship between PA2 and
the newly introduced notion of PA2I. The relationships between PA2I and PA2
are summarised in the diagram below:

IND-CPA OW-CPA

PA2 I —
4
[

PA2I | J— —

The downwards arrows in the diagram follow trivially, since PA2I is a weaker no-
tion than PA2. The arrows numbered 1 follow trivially if the message space is
super-polynomial sized in the security parameter, since in this case any scheme
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which is IND-CPA is also OW-CPA. The arrow numbered 2 follows from the re-
sult of Teranishi and Ogata [§]. The arrow numbered 3 is a result of Theorem[land
the separation is a result of Theorem ] (under the added assumption that the en-
cryption scheme is y-uniform). Note that the diagram also demonstrates that there
exist schemes that are OW-CPA, v-uniform and PA2I, but not PA2. We believe
that in almost all practical cases, the PA2I notion of plaintext awareness suffices.
We also explored some of the properties of encryption schemes that are PA2
plaintext aware, y-uniform, OW-CPA secure and IND-CPA secure. We demon-
strated that these schemes must have a finite message space and that they are
necessarily PA2+. This latter result proves the conjecture of Dent [4].

Acknowledgements

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the authors’ views, is
provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk
and liability. The first author was also funded in part by the EPSRC.

References

1. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26-45. Springer, Heidelberg (1998)

2. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS, vol. 3329, pp. 48-62.
Springer, Heidelberg (2004)

3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92-111. Springer, Heidelberg (1995)

4. Dent, A.W.: The Cramer-Shoup encryption scheme is plaintext aware in the stan-
dard model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289
307. Springer, Heidelberg (2006)

5. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: STOC, pp. 12-24. ACM, New York (1989)

6. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM
Conference on Computer and Communications Security, pp. 400-409. ACM, New
York (2006)

7. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2005)

8. Teranishi, I., Ogata, W.: Relationship between standard model plaintext awareness
and message hiding. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp. 226-240. Springer, Heidelberg (2006)

9. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In: Foun-
dations Of Computer Science, pp. 175-182. IEEE, Los Alamitos (1979)



Completely Non-malleable Encryption Revisited

Carmine Ventre and Ivan Visconti

Dipartimento di Informatica ed Applicazioni
Universita di Salerno, 84084 Fisciano (SA), Italy
{ventre,visconti}@dia.unisa.it

Abstract. Several security notions for public-key encryption schemes
have been proposed so far, in particular considering the powerful adver-
sary that can play a so called “man-in-the-middle” attack.

In this paper we extend the notion of completely non-malleable en-
cryption introduced in [Fischlin, ICALP 05]. This notion immunizes a
scheme from adversaries that can generate related ciphertexts under new
public keys. This notion is motivated by its powerful features when en-
cryption schemes are used as subprotocols. While in [Fischlin, ICALP 05]
the only notion of simulation-based completely non-malleable encryption
with respect to CCA2 adversaries was given, we present new game-based
definitions for completely non-malleable encryption that follow the stan-
dard separations among NM-CPA, NM-CCA1 and NM-CCA2 security
given in [Bellare et al., CRYPTO 98]. This is motivated by the fact that in
several cases, the simplest notion we introduce (i.e., NM-CPA*) in several
cases suffices for the main application that motivated the introduction
of the notion of NM-CCA2* security, i.e., the design of non-malleable
commitment schemes. Further the game-based definition of NM-CPA*
security actually implies the simulation-based one.

We then focus on constructing encryption schemes that satisfy these
strong security notions and show: 1) an NM-CCA2* secure encryption
scheme in the shared random string model; 2) an NM-CCA2* secure
encryption scheme in the plain model; for this second result, we use
interaction and non-black-box techniques to overcome an impossibility
result.

Our results clarify the importance of these stronger notions of encryp-
tion schemes and show how to construct them without requiring random
oracles.

1 Introduction

The study of the relations among security notions for public-key encryption is a
central question in Cryptography. Several notions for encryption schemes have
been defined in order to construct schemes that are secure against strong adver-
saries. One of the most general and accepted concept is that of non-malleability
formalized with the notion of adaptive chosen ciphertext security (shortly re-
ferred to as CCA2). Intuitively, a man-in-the-middle adversary should not be
able given a public key pk and a ciphertext ¢, relative to a message m sam-
pled from a distribution of its choice, to output a relation R and a ciphertext

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 652008.
© International Association for Cryptologic Research 2008
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¢’ whose plaintext m’ is related through R with m. This task has to be hard
even in case that the adversary has access to a decryption oracle. Important
constructions (see [1I2]) as well as relations among security notions [3] cur-
rently clarify the power of CCA2 security with respect to the weaker notions
of CCA1 (where the decryption oracles can be accessed only before the chal-
lenge is received) and CPA (where no access to a decryption oracle is possible)
security.

Recently, Fischlin presented in [4] a new security notion for public-key en-
cryption, referred to as complete non-malleability. This notion, requires that
non-malleability has to be preserved even in case that the man-in-the-middle
adversary can also choose a new public key (that thus could be related to the
original one). The goal of the adversary is to compute a ciphertext (under the
new public key) that corresponds to a plaintext that is related to the original
plaintext. Notice that in this more general case the relation considers also the
new public key.

The main motivation for considering this new notion is that encryption
schemes are often used as building blocks for larger protocols and in [4] it is
stressed that completely non-malleable security has much more applications than
the standard non-complete security notions for public-key encryption schemes.
In particular, in [4] Fischlin discusses possible approaches for the design of non-
malleable commitment schemes on top of completely non-malleable encryption
schemes.

This new security notion is strong but unfortunately also impossible to achieve
in the standard model when non-interactive encryption with simulation-based
black-box security is considered (see []). Constructions are instead possible [4]
in the random oracle model.

1.1 Our Results

In this paper we revisit the study of the concept of completely non-malleable
encryption schemes initiated in [4]. First we notice that the idea behind com-
plete non-malleability can be extended also to the notions of CPA and CCA1l
security, while the original notion of Fischlin only considered CCA2 security.
In order to motivate these new definitions, we present separating examples (see
Theorem [I]) showing that such notions seem to capture more than what the
older non-complete definitions actually do. We will refer to these new notions
of security for encryption schemes as NM-CPA*, NM-CCA1* and NM-CCA2*
respectively.

The importance of the new definitions (and thus of our study of the relations
among the different notions) follows from the following observation. The main
motivation given in [4] for NM-CCA2* security concerned the possibility of con-
structing non-malleable commitments on top of NM-CCA2* secure encryption
schemed!]. This could be done (under some additional assumption that however

! Additionally, in [4] similar powerful attacks are discussed with respect to signature
schemes.
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we do not stress here) by assuming that the committer selects a public key, en-
crypts the message and sends the encryption as commitment. Then the opening
is performed by sending the randomness used for the encryption. Obviously a
man-in-the-middle could select a related public key in order to compute a re-
lated encryption and thus a related commitment. NM-CCA2* security should
guarantee the failure of the above attack of the man-in-the-middle.

We observe that the role of a decryption oracle is not clear in this context
and in particular could not be required in many applications. Indeed, for non-
malleable commitments, the man-in-the-middle A does not have access to or-
acles that can open challenge commitments, therefore the NM-CCA2* security
requirement in some cases can be relaxed to NM-CPA* security. Therefore, in
this work we consider the possible variants for complete non-malleability, con-
sidering also the potential presences of a decryption oracle.

We stress that while the definitions of [4] follow the simulation-based approach
already used in [I], we give definitions that follow the game-based approach of [3].
The choice of this formulation follows from the fact that the game-based defini-
tion of NM-CPA* security (our motivating notion) implies its simulation-based
variant. Thus, we give a simpler formulation for NM-CPA* security and also show
that for a large set of relations, the game-based formulations of NM-CCA1* and
NM-CCA2* security imply the simulation-based ones. This implication shows
that the impossibility result proved by Fischlin [4] about the design (in the plain
model) of public-key encryption schemes that are completely non-malleable can
be adapted to the game-based version of the definition of NM-CCA2* security.

We next focus on feasibility results with the goal of overcoming known im-
possibility results as well as improving the assumptions needed by previous
constructions.

1. We first consider the shared random string model. By starting from any IND-
CPA secure encryption scheme and by using the non-malleable NIZK proof
of knowledge of [5] we obtain an NM-CCA2* secure encryption schemes in
the shared random string model. In this construction we enrich the known
technique due to [2] in which every ciphertext of the underlying IND-CPA
secure encryption scheme is augmented with a NIZK proof of knowledge of
the corresponding plaintext. In our construction we also need a proof that
the new public key is indeed valid (i.e., the output of the honest key genera-
tion algorithm of the underlying encryption scheme). We stress that such a
construction improves the assumption (i.e., the existence of random oracles)
needed by Fischlin’s constructions. Moreover we show that by using robust
NIZK [5] (thus strengthening the non-malleable NIZK proof of knowledge),
the construction also satisfies the simulation-based notion of NM-CCA2*
security.

2. We show a construction of an interactive non-black-box completely non-
malleable encryption scheme that works by assuming that oracle queries
are asked sequentially. We stress that even this second construction satisfies
the simulation-based notion of NM-CCA2* security. Since the impossibility
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results proved by Fischlin in [4] only concerned black-box adversaries and
non-interactive encryption, the possibility of further improving our construc-
tion by relaxing either the non-black-box requirement or the interactiveness
of the encryption or the concurrency issue for oracle queries is an interest-
ing open problem. The techniques of [1l6] would potentially avoid the non-
black-box techniques, but would produce a non-constant round complexity.
We finally stress that the potential drawback due to the interaction could
not be an issue when encryption is used as subprotocol in an interactive
protocol.

The motivation behind the constructions we present in this work is the proved
failure of the random oracle proved in several papers [T8JOIT0]. We therefore
show (constructively) that without a random oracle complete non-malleability
is achievable in at least two settings.

2 New Definitions for Encryption Schemes

In this section we give the first contribution of this work by giving new definitions
for completely non-malleable encryption schemes.

2.1 Completely Non-malleable Encryption

We define stronger notions of security against man-in-the-middle attacks follow-
ing the lead of []. Indeed, Fischlin in [4] defined complete non-malleability as
a stronger notion of NM-CCA2 security. We will refer to these stronger encryp-
tion schemes as NM-CCA2* secure encryption schemes. We here generalize that
notion with respect to all the three main variants of security: namely NM-CPA,
NM-CCA1 and NM-CCA2.

An important ingredient that we take from the framework introduced in [4] is
that of a complete relation. A complete relation R is a (probabilistic) algorithm
that takes as inputs: a public key pk, a message m, a public key pk*, a ciphertext
vector (under pk*) ¢* and a plaintext vector m* (the decryption of ¢*). R returns
either false or true.

In our definition we will use the notation introduced in [3] based on indistin-
guishability rather than on the simulation paradigm (used in [4]) as the game-
based paradigm simplifies the task of working with non-malleability, moreover
it implies the simulation-based approach for the case of NM-CPA* security.

Definition 1 (NM-CPA*, NM-CCA1*, NM-CCA2%*). Let PE€ = (G,
E,D) be a public-key encryption scheme, let A = (A1, As) be an adversary.
For atk € {cpa, ccal,cca2} and k € N let

AdvEET (k) = |Prob [ Expti 5 (k) | — Prob | Expeime (k) ||
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nm—atk

}uilLlere, the experiments Exptipe “(k), and Expt;l;gfifk;(k) are defined as
ollows:

Exptine 4% (k): Exptipy <5 (k):

(pk, sk) «— G(r) where r «— {0,1}* (pk, sk) < G(r) where r «— {0,1}*
(M, 5) — A9 (pk) (M, 5) — A9 (pk)

x— M r, T — M

¢ = Epk(x) ¢ = Epk(2)

(R, pk*,c*) — AS?(M, pk, s, ) (R, pk*, c*) — A92(M, pk, s, )
return true iff 3 m* such that  return true iff 3 m* such that

(¢" = Ep (")) A (c" = Epe (")) A

(C¢c V pk # pk*) A (¢ & c* Vpk # pk™) A

(m* # 1) A (m” # L) A

(R(ac m*, pk, pk*, c*) = true) (R(Z, m"*, pk, pk*, c*) = true)

Above

if atk = cpa then O1(-) = and Oz(-) =€,
if atk = ccal then O1(-) = Dsk( ) and Oz(-) =€,
if atk = cca2 then O1(-) = Dgi(-) and Oz(-) = D(s(li()’

with D(s(li() meaning that the oracle decrypts any ciphertext except c. We insist,
above, that the message space M is valid: |x| = |2'| for any x, 2’ with non-zero
probability in the message space M. Moreover, we let m* #1 meaning that at
least one of the ciphertexts in c* is valid, i.e., in m* there is at least one message
that is different from a special symbol L.

We say that PE is NM-ATK* secure if for every probabilistic polynomial-time
adversary A, Adv%rrglfjk*(.) is negligible.

In the definition above we assume (as in [403]) that any a priori information of
the adversary, i.e. the history, is in the message space M.

Insecurity of known schemes with respect to complete non-malleability. In order
to motivate his definitions Fischlin showed in [4] that two encryption schemes,
namely Cramer-Shoup [1I] and RSA-OAEP [12J13], are not NM-CCA2* secure
though they are NM-CCA2 secure. We first note that both separations trivially
work also under our game-based definitions and further motivate both our defini-
tions and Fischlin’s security notion by providing the next two theorems. Below,
we let ATK € {cpa, ccal, cca2}.

Theorem 1. For any NM-ATK secure encryption scheme PE = (G, E, D) there
exists an NM-ATK secure encryption scheme PE = (G', &, D) which is not
NM-ATK* secure.

The proof of above result is based on the following simple observation. A bit is
appended to the public key of an NM-ATK secure encryption scheme and it is
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ignored by the encryption and decryption algorithms. Obviously the resulting
scheme is still NM-ATK secure but it is not NM-ATK* secure as the adversary
can simply change the appended bit of the public key, thus obtaining a new en-
cryption of the same message with respect to a new public key. It is also possible
to show that the NM-CCA2 secure encryption schemes known in literature [2//5]
are not NM-CCA2* secure even under our game-based definition.

Game-Based vs Simulation-Based Definitions. We next study the relation be-
tween the game-based definitions and the simulation-based ones. We start by
giving the simulation-based definition for NM-CCA2* [] security.

Definition 2 (SNM-CCA2%*). ([4]) Let PE = (G,&,D) be a public key en-
cryption scheme, let R be a complete relation, let A = (A1, As) be an adversary
and let S = (81,82) be a pair of algorithms that we call simulator. For k € N
we define

Advin e () = ‘Prob [Exptjfg—;fag (k)} — Prob [Exptjfg;ﬁc;;? (k)”

where, the experiments Expt™™™ 2" (k). and Expt™™™ 2" (k) are defined as

PE, A, R PE, S, R
follows:
Exptie 5 (k): Exptie o5 (k):
(pk, sk) « G(1") (pk, sk) « G(1")
D .
(M,5) — A% (o) (M,5) — 1 (pK)
m«— M; ¢ = Ey(m) m— M
DS ()

(PK*, ") — A, 5% (¢, s) (pK', ') — Sa(s)
return true iff 3 m* such that return true iff Im’ such that

(¢" = Epg-(m”)) A (¢ = Epg (M) A

((pk, c) # (K™, c")) A
(R(m,m*, pk, pk*,c*) = true) (B(m,m’,pk,pk’,c’) = true)

where D(Scﬁ() means the oracle that decrypts any ciphertext except c. We insist,
above, that the message space M is valid: |x| = |2'| for any z, 2" with non-zero
probability in the message space M.

We say that PE is SNM-CCA2* secure if for every probabilistic polynomial-
time adversary A and complete relation R computable in polynomial time, there

exists a polynomial-time simulator S such that Advi‘gfjfa‘g:ﬁ g(+) is negligible.

We remark that if we remove both oracle accesses to the adversary A in the above
definition then we have a simulation-based definition of NM-CPA* security (we
refer to this notion as SNM-CPA*). To be consistent with Fischlin’s definition
we slightly change our game-based definitions by not asking for the condition
m* #.1 (see Definition [I). We are now in the position to show that our game-
based definition of NM-CPA* security implies the corresponding simulation-
based one (see Definition ).
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Theorem 2. If an encryption scheme PE = (G,E,D) is NM-CPA* secure ac-
cording to the game-based definition then PE is SNM-CPA* secure according to
simulation-based definition.

Proof. We next show that given a relation R and an adversary A = (A, As) we
are able to construct a simulator S = (81, 82). The simulator simply runs the
adversary A. More formally:

S1(pk): S2(8) where § = (M, s, pk):
T—M

(M, 5) — Ay (p) ¢ — Enc(a)

S5 (M,s,pk) (pk*,c*) « Aa(c,s)

return (M,5) return (pk*,c*)

A key point is that the simulator can indeed run A as A has not oracle access
(and therefore S does not need to know the secret key corresponding to pk).
Now we want to show that Advjfg1 jpz g (*) is negligible. We do this using the
hypothesis that PE is secure in the sense of NM-CPA*. To that end, we consider
the following adversary B = (B1,Bs) attacking PE in the sense of NM-CPA*

security:

B (pk): By (M, pk;, 5, ¢):
(M;s) — Ai(pk) (pk",c") — As(c,s)
return (M,s) return (R,pk*,c*)

It is clear from the definition of B that

Prob Expt%rg)_gpa* (k)} = Prob [Expt;;l?jp;* (k)]

for all k£ € N. Now, let us expand the definition of Expt??;q’ﬁ* (k), substituting

in the definition of S given above.

Expt;f:;ipﬁ (k):

(pk, sk) — G(1)

(M, s) < Ai(pk)

5« (M, s, pk)

m «— M

x—M

¢ — Epy(a)

(Pk*a C*) — AQ(Ca 8)

return true iff there exists m* such that
(¢* = Egi- (™)) A
(R(m, m*, pk, pk*, ¢*) = true)
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Examining the code above we notice that we can drop instructions § «

(M, s,pk) (as § is never referred to). The resulting code is equivalent to that
of Expty,e 5" (k) so that:

Prob Exptg;_gpag (k)} = Prob [Expt;;l?_;pﬁ* (k)]

for all kK € N. Thus for all £ € N we have:

snm—cpa’* o nm-—cpa*
Advpgv A S R™ Advpg) B -

But PE is assumed to be secure in the sense of NM-CPA*, so Advrggfgpa* is

snm—cpa’*

negligible. The above implies that Advpg A S R is negligible too. Therefore,
PE is secure in the sense of SNM-CPA*. O

Using the same technique we can show that the game-based definitions of NM-
CCA1* and NM-CCA2* security imply the corresponding simulation-based def-
initions for a large set of relations. Below we just present discussion for the
NM-CCA2* security notion.

We say that an encryption scheme is (S)NM-CCA2* secure with respect to
a set of complete relations R if in Definitions [[l and [ we require R € R (we
require that the scheme is resistant to a set of relations — and not to all relations
as demanded by the definition). Further, we call a relation R lacking if R is a
complete relation that ignores the input of the challenge public key: R is lacking
if and only if R(m, m*, pk, pk*, ¢*) = R(m, m*, pk*, ¢*) where pk is the challenge
public key.

Theorem 3. Let R be the set of lacking relations. If an encryption scheme
PE = (G,E,D) is NM-CCA2* secure (Definition ) with respect to R then PE
is SNM-CCA2* secure with respect to R (Definition[2).

The proof is similar in spirit to that we gave above (and to the one in [I4] where it is
shown that the game-based formulation of [3] implies the simulation-based formu-
lation of [I]). However, there is the following technical problem. The proof in [14]
consists in designing a simulator that on input a challenge public key pk, runs an
adversary A of the simulation-based notion. The simulator generates a new pair
of public and private keys and runs A on input the new public key. The simulator
computes an encryption of a randomly chosen message and uses it as challenge
for the adversary A. The simulator uses the secret key to answer to all decryption
queries of A and can decrypt the final ciphertext produced by A. The plaintext
obtained is then encrypted under the challenge public key pk and returned by the
simulator. The assumption that the original encryption scheme is secure under
the game-based notion is crucially used in [I4] as it is possible to show that the
simulator has the same probability of succeeding as the adversary A.

In our case, when A is a completely non-malleable adversary it generates the
final ciphertexts under a new public key. Moreover, A’s success depends also on
this new public key and the fake public key generated by the simulator (i.e., the
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outcome of complete relations does not depend just on plaintexts). This means
that such a success of A does not seem to be easily reproducible by the simulator
with respect to the challenge public key pk. Thus the technique exploited in [I4]
fails, in our case, because we are considering complete relations. Therefore, if we
restrict R to relations that ignore the challenge public key pk, the simulator can
use his own pair of keys. Consequently, it can answer to decryption queries of the
underlying adversary A (knowing the secret key) and can return the new public
key and ciphertexts given in output by A. If the relation ignores the challenge
public key pk in input to the simulator (as we assume) then such a simulator is
successful whenever A is.

Theorem 6 in [I5] shows the impossibility result for simulation-based black-
box NM-CCA2* security with respect to a set of relation that contains relations
Risg—eq: R € Rinsg—eq means that R(m, m*, pk, pk*,¢*) = 1 if and only if m =
m*. Since Ry,s9—eq is lacking, we have the following corollary.

Corollary 1. Encryption schemes which are game-based NM-CCA2* secure ac-
cording to black-box adversaries do not exist.

3 NM-CCA2* Secure Encryption with Shared Random
Strings

In this section we show an NM-CCA2* secure encryption scheme in the shared
random string model.

We stress that the NM-CCA2* security definition easily adapts to the shared
random string model by simply feeding each algorithm (and the relation) with
the shared random string X' as extra input. We remark that such a string is not
under the control of the adversary and is known to all players in the game.

IND-CPA Secure Encryption Schemes. In our construction we will make use of
encryption scheme satisfying the following classical security notions (see [3]).

Definition 3 (IND-CPA). Let PE = (G,£,D) be a public-key encryption
scheme, let A = (A1, Az) be an adversary. For k € N let

AdvEe P (k) = ]Prob [Exptiﬁgf"j*o(k) = 0] — Prob [Expti;gfpjfl(k) _ 0] ‘

where, for b € {0,1},

Expt;lg?pj_b (k):

(pk, sk) < G(r) where r «— {0,1}F
(zo, 21, 8) < Ai(pk)

Cc = Epk(acb)

d — Ay(zg, 1, 8, )

return d
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Above it is mandatory that |zo| = |x1|. We say that PE is IND-CPA secure if A

ind—cpa

being polynomial-time implies Advpg " (+) is negligible.

Non-Malleable NIZK proof of knowledge. An important tool of our construction
is the following notion defined in [5].

Definition 4 (Non-Malleable NIZK). Let II = (¢{,P,V,S) be an unbounded
NIZK proof system for the NP language L with witness relation W. We say that
IT is a non-malleable (in the explicit witness sense) NIZK proof system for L if
there exists a probabilistic polynomial-time oracle machine M = (Mg, M1, M3)
such that:

For all non-uniform probabilistic polynomial-time adversaries A and for all
non-uniform polynomial-time relations R, there exists a negligible function v(k)
such that

Prob [Exptiﬁ(k)} — Prob {Expt;tﬁ(k)} ‘ <wv(k)

where Expti R(k) and Expti4 g are the following experiments:

Exptiﬁ(k) : Expt;lﬁ(k)

(Z,7) = Si(1%)

(z, 7, aux) « AS2:Z7)(X)

Let @ be list of pairs (z,7) given by Sy above (x,w,aux) « M*(1%)
return true iff

((z,m) & Q) A return true iff
V(z,m, X) = true) A ((x,w) € W) A
(R(z,aux) = true) (R(z, aux) = true)

We focus our attention to the construction given in [5] and thus we can rewrite
the non-malleability machine M of the non-malleable NIZK proof of knowledge
of [B] as follows. We can state that M is actually composed of three different
algorithms (Gs, M1, M3). In particular we can rewrite Expt;t’R(k) above as
follows:

Expt;t’R(k)

Make reference string X
(2,7) — Gs(1F)

Interact with A(X"). When asked for a proof of z, do:
Ty — M1(X,z,7)

Extract witness from some proof 7
(x,w,aux) «— My(X, 7, z,7)

return true iff ((z,w) € W) A (R(x, aux) = true)
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Ingredients of the Construction. Our scheme (G',E’,D’) is based on:

1. Any IND-CPA secure encryption scheme PE = (G,€,D) in the standard
model.

2. A non-malleable NIZK proof of knowledge IT = (¢, P,V,S) for the following
languages:

Ly = {pk: 3 r s.t. |r| =k, (pk,sk) — G(r)},
Lo = {(C7pk) :dr,m st c= 5pk(m§7“)}.

We observe that both languages are in N'P. Indeed, for L1, r witnesses the
membership in the language, and further, the length of r is polynomial in
the size of pk. For Lo, 7 and m witness the membership in the language; the
size of r and m is polynomial in the sizes of ¢ and pk.

Construction 4. The scheme (G',E',D’) is defined as follows:

— G'(1%): randomly pick v «— {0,1}*, call G(r) to obtain a valid pair of keys
(pk, sk). Use P,r and X to generate a proof of knowledge 71 that pk € Ly
using r as witness. The public key is PK = (pk,m1). The private key is
SK = sk.

— Ep(m): Use V to verify the correctness of the proof m in PK. If m is
valid then compute (using randomness r) ¢ = Epg(m). Use P,r,m and X
to generate a proof of knowledge o that (c¢,pk) € Lo using v and m as
witnesses. Output (¢, m2).

— Dk (c): Use V to verify the correctness of the proof o in c. If mo is valid
then output Dgy(c).

We next give an informal argument supporting the complete non-malleability of
our scheme. Since the component encryption scheme is IND-CPA in the standard
model then every IND-CPA adversary for PE has a negligible advantage. We
define one of such IND-CPA adversaries A in the standard model by means of
an NM-CCA2* adversary B in the shared random string model. The adversary A,
on input the challenge ciphertext c, starts by creating a random string using the
algorithm Gy, (thus allowing A to know a trapdoor for X). B, with such a random
string and on input the challenge ¢ returns a relation R, a new public key PK*
(i-e., a component public key pk* and the proof of knowledge of a corresponding
secret key sk*) and a vector of ciphertexts ¢* under the new public key PK*.
If B is a winning adversary then the probability that the plaintext encrypted
in ¢, the ciphertext vector ¢* and the corresponding plaintexts are in relation R
is noticeable. The adversary A then uses the trapdoor to extract the secret key
sk* and then evaluates the relation R. This leads to a noticeable advantage for A
distinguishing the plaintext behind the challenge ¢ contradicting the IND-CPA
security of PE. Since we augmented the encryption of a message m by a proof of
knowledge of m, A can answer the decryption queries the NM-CCA2* adversary
B will ask for, due to the fact that A knows the trapdoor for X.
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Theorem 5. The encryption scheme (G',E',D’) above is NM-CCA2* secure in
the shared random string model.

Proof. The main idea is to transform a strong NM-CCA2* attack against the
new encryption scheme P& = (G', &', D') into an IND-CPA attack against the
component encryption scheme PE. In particular, let B = (B1,B82) be an NM-
CCA2* adversary attacking the new encryption scheme. We must show that

Advipe, gcaQ* (+) is negligible. Towards this end we describe an IND-CPA adver-

sary A = (A1, A2) attacking the component encryption scheme PE.

Ay (pk):

(X,7) « Gz (1F)

T M1<Eupk7 T)

Run BlpSk(') on input ((pk, ), X):

When B; asks Dgy(-) for a ciphertext (¢/,7’), do:
If V((c,pk), 7', X)) = false return L to B4
(r,m) «— Ma(X, 7, (c,pk), )
return m to By

Let (M, s) the output of By

Lo, L1 < M
return (xo,z1, (s, 7, (pk, 7), X, M))

As(xg, 21,8, ¢): where s’ = (s, 7, PK, X, M)
P (.

Run B, sk on input (M, PK, s,¢, X):
When B, asks D(Scll() for a ciphertext (¢/,7’), do:
IfV((c,pk), 7', X) = false return L to B
(T7 m) — MQ(Ea T, (Cla pk)7 ﬂ—/)
return m to By
Let (R, (pk*, 7*), c*) the output of By
r*— Mo (X, 7, pk*, ")
(pk", 5K°) — G(r*); x = Dgge c*)
f=(c¢c"Vpk#pk")
if (fA(x#L)A R(zo,x, (pk,7), (pk*, 7*),c*, X)) then d «— 0
else d —{0,1}
return d

Notice A is polynomial time given that the running time of B, the time to
compute R, the time to sample from M and the running time of M are all
bounded by a fixed polynomial.

Observe that in the adversary above we use three different kind of proofs:
7 is the (non-malleable NIZK) proof (of knowledge) that pk € L, ' is the
(non-malleable NIZK) proof (of knowledge) that the ciphertext ¢’ for which B;
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(j = 1,2) is asking for the decryption is valid - i.e., (¢, pk) € Ly —, and 7* is the
(non-malleable NIZK) proof (of knowledge) that pk* € Li. We use the proofs
7' along with the trapdoor 7 to allow A to answer to the decryption queries.
Indeed, up to a negligible factor, My extracts the witnesses r, m and therefore
A can correctly return m to the NM-CCA2* adversary.

Moreover, observe that since we are using a non-malleable NIZK PoK proof
system then Ms(-, -, -, +) must extract (up to a negligible factor) the plaintext
used by Ba(-,-,+, ) in the proof 7*. If it was not the case, then we could use
Ba(+, -, -, ) to break the properties of the non-malleable NIZK proof system. Thus
the operation of using the output of Ms(-,-,-,-) to generate the secret key sk*
corresponding to pk* is well defined. The decryption with sk* will thus give the
actual plaintext vector behind c*. _

The advantage of A is given by Advggfipa(k) = |pr(0) — px(1)| where, for
b e {0,1}, we let

) = Prob | (9, 3)  G(14)s 0. 1.) A pKlic o Epun)
As (0,21, 5,¢) =0 .
Also for b € {0, 1} we let?
PA() = Prob | (e, 8) = G(14)5(5,7) = G(1) 7 = My (5, i )
(M. ) — By =K (pk, 7), D) 20,21 — Mic — Eg(as);

D(c) )
(R, (pk*, 7%), ¢*) « B, K (M, PK,s,¢, X); 1" Mo(5,7,pk*, 7%);

(Pk", 8k") — G(r");x = Dgg~(c"); f = (¢ € ¢ V pk # pk’) :

fA(x#L)A R(xo,x, (pk, 7), (pk*, 7*), c*, E)] )

Now observe that As may return 0 either when x is R-related to xg or as a result
of the coin flip. Thus we have:

ind—cpa 1
Advipg (k) = Ipe(0) —pi(1)] =

PL(0) —p;u)\ |

We now observe that the experiment of By being given a ciphertext of z; and

R-relating x to ¢ is exactly Exptg"‘g”‘,_CE,aQ$ (k). On the other hand, in the case

in which By works on the ciphertext of zy, we are looking at the experiment
nm—cca2™

Exptpg 5 (k) = 1. Therefore we obtain the following.
AV G (k) = |pi,(0) — pi(1)] = 2- Advipg " (k).

% To simplify our notation, in the definition of p}, (b) we do not specify that the decryption
queries of B are replied as in the description of the IND-CPA adversary A.
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Since PE is IND-CPA secure then Adv;‘gffj’a(-) is negligible. It follows that
Adv %?/ cl§a2 () is negligible. .

We stress that we cannot use just one of the two languages above. Indeed, Lo is
needed because it allows an IND-CPA adversary to answer to the queries of an NM-
CCA2* adversary. Moreover, we need L; to enforce the NM-CCA2* adversary to
output a valid new public key pk* (i.e., pk* is the output of the key generation algo-
rithm of PE) for the component IND-CPA secure encryption scheme. One would
be tempted to use the proof of knowledge contained in c* — the ciphertext output
of the NM-CCA2* adversary — to extract the corresponding plaintext and use it
to evaluate the relation. This approach fails when pk* is not valid since the NM-
NIZK PoK extractor returns one of the messages for which c* is the corresponding
encryption but not necessarily the one that satisfies the relation.

Simulation-based NM-CCA2* security. We now discuss that our construction
can be adapted to achieve the simulation-based notion of NM-CCA2* security.
In particular, we will consider the following tool. We start by giving the definition
of same-string ZK.

Definition 5 (Same-String Zero Knowledge). We say that an NIZK argu-
ment system is same-string NIZK if the (unbounded) zero knowledge requirement
above is replaced with the following requirement: there exists a negligible function
v such that for all k the following property holds.

Same-string Zero Knowledge: For all non-uniform probabilistic polynomial-
time adversaries A we have that

[Prob[X = 1] —Prob[Y =1]| < v(k), where X andY are as defined in (and
all probabilities are taken over) the experiment Expt(k) below:

Expt(k) :

(EaT) — Sl( k)

X — APCE (2)
Y — AS'CE1)(5)

where S’ (x,w, X, T) dlef Sy(z, X, 7). The distribution on X produced by Sy (1F)

is the uniform distribution over {O7 11k,

We refer to NIZK arguments that are both non-malleable and same-string as
robust NIZK (as in [0]). We denote a robust NIZK IT as the following tuple:
II = (¢4,P,V,S). We remark that the authors of [5] give a construction of a
robust NIZK starting from a same-string NIZK proof of knowledge given that
one-way functions exist.

The construction. We now show that in the above scheme by simply replacing the
non-malleable NIZK proof of knowledge IT = (¢,P,V,S) by a robust NIZK [T’ =
(¢, P, V', S’) we obtain a scheme that satisfies the simulation-based definition
of [4] (see Definition 2] adapted to the shared random string model.
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First of all we argue why Construction @l does not seem to be sufficient. The
simulator S receives as input a pair (pk = (pk’, ), X)) generates a fake SRS X’
along with a trapdoor 7/, and computes a new proof 7’ so that pk” = (pk’, ') is
a valid public key with respect to X’. Then S runs A on input (pk”, X’) and can
obviously answer to all its queries since knowledge of 7 allows S to decrypt all
valid ciphertexts. Moreover S feeds to A the encryption ¢ of a random message m
as challenge. Finally A outputs a pair (¢*, pk*) that corresponds to the encryption
of a messages m related to m. However, the relation R receives as input also the
public keys pk”, pk* and X’. S could obviously decrypt the message m encrypted
in ¢* and could compute an encryption of 7 with respect to a new public key pk
and shared random string X' (notice that S can not simply output the pair (¢*, pk*)
since this is valid only with respect to X’ while S needs to output a valid pair with
respect to X). However even though the same message has been encrypted, the
relation could not be satisfied as & # X’ and pk* # pk.

We fix this problem by strengthening the ingredient that we use in the con-
struction: we replace the non-malleable NIZK by a robust NIZK. Robust NIZK
considers non-malleable zero-knowledge arguments (i.e., computationally sound
proofs) of knowledge where the simulator works using the same shared random
string of the real game, still having a trapdoor that will allow it to compute
simulated proofs and to extract witnesses from accepting proofs.

Concretely, S will run A precisely on input (pk, X) and will feed it the en-
cryption ¢ of a random message m. S decrypts A’s queries by using 7 and finally
outputs the pair (¢*, pk*) given in output by A. The indistinguishability of the
output of the stand-alone S with respect to the man-in-the-middle A can be
proved by using standard hybrid arguments.

We finally stress that the above simulator does not require access to a decryp-
tion oracle, therefore it satisfies the stronger notion of stand-alone simulation
discussed in [4].

4 Interactive Non-black-box Complete Non-malleability

In this section we present a completely non-malleable encryption scheme using
interaction and non-black-box techniques. Our construction can be compared to
Fischlin’s impossibility result. Indeed, that impossibility proof holds for black-box
non-interactive encryption schemes, therefore it is still possible to relax either the
need of interaction or the need of non-black-box techniquesﬁ. The construction we
give is NM-CCA2* secure under both our game-based definition and under the
simulation-based definition. Moreover, it is stand-alone (i.e., the simulator does
not access to a decryption oracle) and requires sequential decryption queries (i.e.,
the decryption oracle sends its answers one-by-one, sequentially). We construct
a non-black-box constant-round interactive completely non-malleable encryption
scheme in the standard model using the recent technique by Pass and Rosen [T6//17]
that produced a constant-round NMZK argument of knowledge in the standard

3 We stress that the techniques of [16] would potentially avoid the non-black-box tech-
niques, but would produce a non-constant round complexity.
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model. On top of this tool they showed also how to construct constant-round
concurrent non-malleable commitments in the standard model by composing a
commitment scheme with the NMZK argument of knowledge of the committed
message. The same approach has been recently used in [I8] where non-malleable
witness indistinguishable argument systems are achieved by committing to an N'P
witness and then using the NMZK argument of knowledge to prove that the com-
mitted message satisfies an NP relation. We notice that by following the same
approach, it is possible to first encrypt a message using an IND-CPA encryption
scheme and then prove knowledge of the encrypted message with the NMZK ar-
gument of knowledge. While this gives NM-CPA* security, extra work is required
to claim NM-CCA1* and NM-CCA2* security as in these last two cases, queries
to a decryption oracle have to be taken into account.

Definitions for interactive encryption. The definitions for NM-ATK*-secure en-
cryption for ATK € {CPA, CCA1, CCA2} given in Section [ assume that an
encryption and a decryption (oracle answer) is computed non-interactively by
an efficient algorithm. An interactive encryption is instead a two-party protocol.
Therefore, in order to recycle all the previous definitions we have to specify the
role of the parties in all the steps described in Definition [l

An interactive encryption is a protocol played between a sender sen and a
receiver rec. At the end of the protocol, if both parties behave correctly, the
exchanged transcript corresponds to an encryption of a message computed by
sen for rec under a public key pk.

Non-malleable interactive encryption concerns a man-in-the-middle adversary
A that controls the communication between sen and rec (e.g., he can delay, dis-
card, scramble, and update the messages, as defined for non-malleable protocols
in [I]). A aims at computing encryptions for rec of messages that are related to
the message encrypted by sen. The goal of a non-malleable interactive encryp-
tion scheme is to preserve security against such man-in-the-middle attacks, thus
making useless the attack of A. Different definitions of interactive non-malleable
encryption can be given by possibly giving to A access to decryption oracles, thus
producing the variations CPA, CCA1l and CCA2. In order to have a definition
of interactive encryption following the standard non-interactive Definition [I we
consider the framework used by Katz in [19/20]. We sketch here the setting on
which we base our protocol, more details can be in the full version of the paper.

A has access to an encryption oracle Op = Epk(+) that plays as sender while
A plays as receiver. The goal of A is to produce the description of a relation R,
a new public key pk* and encryptions of messages that are related through R to
the message encrypted by Og. In order to do that, A plays the protocol with
honest receivers potentially interleaving (even concurrently) these interactions
and the one with Og.

The above sketched discussion only concerns NM-CPA* security given in Def-
inition [ but adapted for interactive encryption. Instead, for the notions of NM-
CCA1* and NM-CCA2* security the adversary A has to include the capability
of accessing to a decryption oracle. Such accesses (e.g., oracle queries) are in-
teractive encryptions where the adversary acts as a sender and the decryption
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oracle Op = Dgi(-) plays the role of a receiver. Indeed, an oracle query is an
encryption sent by the adversary (and thus the interactive encryption protocol
is played) plus an answer of the oracle. Each time a given interactive encryption
with Op is completed, the decryption oracle computes the decryption (using the
secret key) and sends the resulting message (or a special symbol, if the transcript
was invalid) to the adversary.

The definition of NM-CCA1* security assumes that A has first access to the
decryption oracle Op and then, once all interactions with Op have been com-
pleted, A starts the game above, choosing the messages distribution M and
receiving an encryption from Opg while computing encryptions for honest re-
ceivers. For the case of NM-CCA1* security we therefore assume a time barrier
between all decryption queries and the remaining protocols. These accesses to
Op correspond to queries to @7 in Definition [II

The definition of NM-CCA2* security instead allows A to run decryption queries
even during and/or after receiving the challenge encryption from Og. Obviously
some limitations must be placed on the adversary access to the decryption oracle
or else the adversary may simply forward messages between O and Op and there-
fore trivially succeeds in computing encryptions of messages that are related to the
challenge plaintext. We therefore require that the transcript of the encryptions of
Op must be different from the ones of the decryption queries. These additional
accesses to Op correspond to queries to Oy in Definition [Tl

The above definition gives to the adversary A the power of controlling the
communication channel and thus of deciding the schedule of the messages of
different interactions involving different parties (different honest receivers, the
encryption oracle and the decryption oracle). It is therefore obvious to assume
that interactions with different parties can be run concurrently. The only restric-
tion we have is on the interactions with the decryption oracle that we required
to be sequential. Notice that this is also applicable in practice since Op is a
stateful algorithm that can simply manage a queue of requests to satisfies them
one by one.

We finally say that an encryption scheme is self-certifiable, if there exists an
efficient algorithm that on input a public key outputs 1 if it holds that any valid
ciphertext corresponds to only one plaintext and 0 otherwise.

Theorem 6. Under the assumption that there exists a family of claw-free per-
mutations and that self-certifiable IND-CPA secure encryption schemes exist,
there exists an interactive (constant-round) non-black-box NM-CCAZ* secure
encryption scheme with sequential decryption queries.

For lack of space we show the construction in Fig. [l (where we let Il;ny =
(Piag, V};ag> be the tag-based constant-round one-left many-right concurrent non-
malleable statistical zero-knowledge argument of knowledge of [T6I1I7] and S.S =
(SG,Sig, SVer) be a one-time secure signature scheme of [2I]). The proof can be
found in the full version of the paper, where we also show in a separate theorem
that the same protocol also satisfies the simulation-based notion of complete
non-malleability. We remark that the proof exploits the power of the simulator
and the extractor of the statistical non-malleable zero knowledge argument of
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knowledge of [I7I16]. In particular the extractor will be used for answering to
the decryption queries, and, since it requires rewinds, we assume that decryption
queries are answered sequentially, so that we do not need to face the known
problems of concurrent zero knowledge [22].

We stress that a public key of our scheme is the public key of a self-certifiable
IND-CPA secure encryption scheme.

sen sets ¢ < Epg(w) where w is the k-bit message to encrypt.

sen sets (ssk, spk) < SG(1").

sen sends the pair (¢, spk) to rec.

sen and rec run protocol [1gpx = (Pspk, Vspk) Where sen proves knowledge

s e

of w such that ¢ « &gk (w).

5. sen computes a signature 7 < Sig(pk o trans, ssk) where trans is the tran-
script exchanged so far and sends it to rec.

6. rec accepts the encryption iff SVer(pko trans, 7, spk) = 1 and Vgpy outputs
1.

Fig. 1. Constant-Round Completely Non-Malleable Encryption

We now only give an intuition of the proof.

Proof’s sketch. Assume by contradiction that an adversary A succeeds in com-
puting encryptions of related messages under a new public and a new relation
of its choice. Therefore A has non-negligible success of generating an encryp-
tion ¢f of a message mg related to mo on input an encryption c¢o of mo and an
encryption ¢} of a message mj related to m; on input an encryption c¢; of my.

Let Expt, and Expt, the two above experiments, we can consider two hybrid
experiments Expt,, Expt, where instead of running A, we run the simulator S
associated to the statistical non-malleable zero knowledge argument of knowl-
edge of [I7I16] giving it access to A and ¢p in Expt; and access to A and ¢ in
Expt,.

By the statistical zero-knowledge property of this tool, we have that experi-
ment Expt; in indistinguishable with respect to Expt,,.

A distinguisher between Expt, and Expt, can be used for breaking the seman-
tic security of the (non-interactive) encryption scheme used as subprotocol. This
can be done by feeding to A a challenge ¢ that can be either an encryption of myg
or an encryption of m; under the encryption scheme used as subprotocol. Then
the extractor of [L7IT6] obtains the encrypted message and can therefore be used
to break with non-negligible advantage the semantic security of the encryption
scheme.

Finally, Expt, and Expt, are indistinguishable for the same reason that make
indistinguishable Expt, and Expt.

The full proof considers other issues as concurrency and adaptiveness. More-
over it is shown that the protocol satisfies also the simulation-based definition,
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as a simulator can be designed by simply sending an encryption of any message
(say 0%) and then using the simulator of the NMZK argument of knowledge. O

Concluding Remarks. In this paper we explored the notion of complete non-
malleability for public-key encryption schemes. We have given new definitions
and proved relations among these notions. Finally, we have shown new construc-
tions that achieve these security notions without using random oracles.
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Abstract. Multiple choice questionnaires (MCQs) are a widely-used as-
sessment procedure where examinees are asked to select one or more
choices from a list.

This invited tal] explores the possibility of transferring a part of the
MCQ’s correction burden to the examinee when sophisticated technologi-
cal means (e.g. optical character recognition systems) are unavailable. Ev-
idently, such schemes must make cheating difficult or at least conspicuous.

We did not manage to devise a fully satisfactory solution (cheating
strategies do exist) — but our experiments with a first clumsy system
encouraged us to develop alternative McQ formats and analyze their per-
formance and security.

1 Foreword

Three years ago I moved from industry to academia.

At the first staff meeting, I discovered that the university’s policyﬁ was to as-
sign first-year amphitheater courses to the newest staflf members. I was delighted
by the perspective of lecturing computer science to 600 students.

A day later, I got a call from the Reprography Department. The reprographer
wanted to ascertain that the test’s camera-ready copy will reach him at least a
month before the test. I suddenly realized that my Ph.D. students and I will
have to spend our winter vacations correcting a heap of 600 multiple choice
questionnaires (MCQs).

While designing the MCQ, an intriguing question started taunting my mind:
Could the freshmen “chip-farm” help correcting the heap of copies?

After all — since twenty years we routinely witness all sorts of miracles in
cryptography: Alice and Bob regularly prove knowledge without revealing se-
crets, anonymously say “no”, flip coins over the phone, transfer bits obliviously
and so on.

Could any of these wonderful tools help?

I challenged my Ph.D. students to imagine methods for safely delegating to
the examinees the burden of MCQ correction.

The result is the cryptographic curiosity presented here.

David Naccache
! This is not a refereed research paper.

2 Université Paris 11 Panthéon-Assas.

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 85-[I00} 2008.
© International Association for Cryptologic Research 2008
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2 Introduction

MCQs are an assessment procedure, invented in 1914 by Frederick J. Kelly, where
examinees are asked to select one or more choices from a list. MCQs are widely
used in education, opinion polls, elections, and many other areas.

This paper explores the possibility of safely transferring a part of the MCQ’s
correction burden to the examinee, when sophisticated technological means, such
as optical character recognition (OCR) systems, are unavailable.

We regard an MCQ as a list of n questions {question,,...,question, }.

Each question, is associated to two potential choices answer; o and answer; 1,
of which only one is correct. We denote by ¢ the MCQ’s answer-vector, namely:

¢; = 1 iff answer; ; is correct.
The student is required to generate an answer-vector ¢:
¢; = 1 iff the student thinks that answer; ; is correct.

And the corrector, usually the newest member of the faculty staff, computes

the mark:
n

m:n—Z(Cz‘EBéi)
i=1
2.1 Cryptographic Test Correction

To transfer the correction burden to the examinee, the MCQ designer generates
a secret key k and computes, using an encoding algorithm £, a set of 2n public
values v; ; where 1 <i <mn, j € {0,1}:

{vij} = E&(c, k)
Students are instructed to:

— Generate ¢ as before but, in addition, apply an easily computable accumu-
lation algorithm M to {v; ;} and ¢.
— Write down the result ¢ = M({v; ;},¢) on the questionnaire.

The examiner uses a (potentially complex) scoring algorithm C to compute
the student’s final mark m:

. ) n-= Z:‘L:l (Ci D éz) if 3¢ such that ¢t = M({’U@j}, &)
m=C(t k) = { s otherwise

We call {€, M,C} a Cryptographic Test Correction (CTC) scheme.

2.2 Desirable Features

Ideally, we would like {€, M, C} to have the following features:
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Security: We say that an algorithm 4 has a ¢TC cheating advantage e if:
- 1
Pr|C 7,7 7~ ak - % ~i - Z
r[C(A({vi;},€), k) > n 216@0] 5| 2 €

{€,M,C} is {w, e}-secure if no algorithm requiring w basic calculator opera-
tions (i.e. +, —, X, +) has a CTC cheating advantage e.

In other words, we require that even if a cheating student knows the correct
answers to all the questions but one, inferring the missing answer from {v; ;},
or (more generally) manipulating ¢ to artificially increase m is unfeasible given
the simple calculator authorized by the university’s regulations (Figure 1) and
the test’s limited duration.

Unlike e-cash or e-voting protocols, CTC does not seem to require protection
against colluding parties (examinees cannot communicate). However, we do need
some form of limited resistance against adaptive attacks as students knowing u
correct answers can potentially generate 2" valid ¢-values corresponding to marks
expectedlyﬁ ranging between zero and ("JQ”“).

Efficiency: Trivially, one can design a secure CTC by assigning to the v; ; suc-
cessive powers of two or zeros. i.e.:

o]0 if j=0
Vi T 2 =1

The encoding v; ; = j x 2% is secure but inefficient. The size of ¢, i.e. n bits,
is obviously an overkill as we do not need to convey to the examiner the precise
answer vector ¢ but only the Hamming distance between ¢ and ¢ (a quantity of
information encodable in log, n bits).

Denoting by T' the maximal bit length of ¢ we require that T' < n.

T measures the CTC’s efficiency as it represents the number of digits that the
corrector will need to key into his computer per corrected form.

As the theoretical foundations were ready, we started thinking about imple-
menting CTCs.

3 Practical Experiments with an Insecure and Clumsy cTC

A simplified ¢TC was tested on 550 economics freshmerf]. To avoid unresolvable
complaints and computational errors, students were requested to both tick the
correct answers and use the ¢TC. Ticked answers were used whenever C returned
L (27 cases), when a statistical alert occurred (unrecorded number of cases) or
when the student didn’t sum up the v; ; at all (79 cases).

3 The student can force part of the MCQ to contribute any precise number of points
< u. Answers to the rest of the McQ will result in an expected contribution of (";")
points.

4 Examinees were given additional thirty minutes to account for the extra computa-
tional burden.
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Fig. 1. Authorized Calculator (10-Digit Precision, Restricted to +, —, X, <)

We made the following risk management assumptions:

— As modular arithmetic was not part of the students’ curriculum we assumed
that the theoretical tools necessary for cheating were not at the average
student’s command.

— No parameters or specifications were revealed and a form of psychological
warfare was used: we subtly hinted that the scheme is “...probably very
resilient to cheating...”.

— A cheater who would have discoveredd one of the (many) existing cheating
strategies would have anyway obtained an excellent mark given the course’s
subject mattell.

3.1 Description

Generate five integers {p, k,g > nk,p > (n+ 1)g, e} such that ged(e, p) = 1.
The authorized pocket-calculator must be able to handle at least the number
(p+ L)np.
Prepare the following values:

— Pick n random bits {b1,...,b,} and define ¢; 5, = 0 and €; 1y, = 1.
— For 1 <i<nandje {0,1} generate randomly 0 < r; ; < p.
— For 1 <14 < n generate randomly 0 < a; < p.

5 E.g. given the scheme’s additive nature.
5 Introduction to Computer Science.
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We denote by 7, = (—¢; @ ¢ )k, in other words:

S k  if the student’s answer to question i is correct
‘ 0 if the student’s answer to question 7 is incorrect

and define:
vij = ((a; + (me; ® j)k + geij)e mod p) +17;; Xp

Students were instructed to sum the v; ; corresponding to their answers and
answer randomly whenever they don’t know the answer.

The examiner computes: (¢ x e™' — (31" | a;) mod p) which is Y1 | (r; +
gEi)gi) e N.

This is easily checked by bounding:

n
0< Z(Ti+gﬁi)5i) <nk+g)=g+nxg<p
i=1
We therefore recover the exact value:
n n n
' =txe - (Z(h) mod p = Z(Tl +g€i ) = mk —|—gz €6, = mk+gq
i=1 i=1 i=1

where:

n
0<g=) €z <n
i=1

but mk < nk < g hence we can retrieve mk and ¢ with no ambiguity.

Ifm ¢ Norm ¢ [0,n or ¢ ¢ [0,n] reburn L (i.e. trigger a manual form
verification). The odds to hit a multiple of k by picking ¢ at random are ,16
Implementation values and a marking example are given in Appendix A.

3.2 Statistical Analysis

Unfortunately, this scheme is insecure. Namely, if a student knows the algo-
rithm’s specifications, then several efficient cheating strategies exist. For instance
the cheater may identify one correct answer, say ¢, subtract the incorrect v; ;
from the correct one and obtain a “clean” encoding of +k:

A= (k+eg)e+ ap where e {-1,1}

" The rationale is both the need to collect all the a;s for decryption to work, and
preventing “the cryptanalyst” from generating ¢-values corresponding to precisely
chosen marks.
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Fig. 3. The University’s Grand Amphithéatre

The cheater will then pick random answers to the entire questionnaire, thereby
reaching an expected average mark of 7 and artificially improve it by adding a
multiple of A.

To overcome this (to some extent) we used a basic statistical test on ¢. Namely,
if ¢ does not exceed a given likelihood threshold, we treat the form as suspicious
and verify it manually. Indeed, if the cheater brutally adds pA to ¢ the additional
+ug will start showing up as a statistical bias in the distribution of g.

Evidently, a very good student could use much smarter cheating strategies
based on the linear combination of several A values derived from different ques-
tions weighted by moderate coefficients but we considered such a strategy un-
likely given our risk management assumptions.

A given v; ; has a é probability to contain no g and a % probability to contain
g. Thus, the probability that ¢ takes a given value 0 < d < n is simply:

Prlg = d] = <Z> x 2171
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30 40 50 60
Fig.4. Prlg=d] = (}) x27%

That is, for n = 80:

Table 1. Prg =d] = (%) x 27%

d Prllg—n/2/<d]  d Prllg-n/2(<d] d Pilg—n/2| <d]
0 0.08893 7 0.90709 14 0.99895
1 0.26245 8 0.94334 15 0.99955
2 0.42357 9 0.96701 16 0.99982
3 0.56596 10 0.98168 17 0.99993
4 0.68569 11 0.99032 18 0.99997
5 0.78148 12 0.99513 19 0.99999
6 0.85436 13 0.99768 20 1.00000

We hence triggered, in addition, a manual verification whenever |¢ — 40| > 7.

We conjecture that no student tried to cheat but the scheme’s clumsiness and
poor security performances motivated the quest for alternative CTC mechanisms —
some of which we describe in the next section.

4 Alternative cTc Mechanisms

An alternative line of research is the development of new MCQ mechanisms. This
section describes such a scheme — called Interval Estimation MCQs (IEMCQs).

Again, question, is associated to two potential choices answer; o and answer; 1,
of which only one is correct. answer; g is printed in blue while answer; ; is printed
in redd.

The test’s idea consists in having the student determine the (correct) number
of (correct) red answers.

In other words, the student’s output is a sequence of three digits: the number of
red answers, the number of blue answers and (implicitly) the difference between
n and the sum of the previous two, i.e. the number of unsolved questions. This
output can be encoded using only two integers — we choose to ask for an interval
containing the number of red answers.

8 The use of colors is not mandatory. Any form of distinction between answers will do
(e.g. preceding answers by symbols such as © or & etc.).
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Assume, for example, that n = 9 and that the examinee identified 2 reds and
3 blues, the student’s answer will be [2, 6]. This notation means that the student
thinks that there are at least 2 reds and at most 6 = 9 — 3 reds. The low and high
bounds will be denoted by a and ¢ (here a = 2 and ¢ = 6) while b will denote the
correct answer, I.e. the precise number of reds. In other words, [a, ¢] reads as “I hope
that a < b < ¢”. The interval’s narrowness reflects the examinee’s knowledge.

Evidently, if questions are independent, we would expect b ~ 7. Hence, we
must first pick b randomly in [0, n] and color the IEMCQ accordingly. In practice,
we recommend n = 9, as this shrinks answers to two decimal digits (compact
notation) and allows approaching 100 points using eleven question-packs. Note
that, unlike additive CTCs, filling an IEMCQ does not require a pocket calculator.

Mapping [a, ¢] to a mark (scoring) is the most delicate part, as the scoring
function must:

— faithfully reflect the student’s knowledge.
— be fairly resilient to statistical attacks.
— and have a small standard deviation.

In addition — we would like IEMCQs to allow students who know answers with
sufficiently high probability (say 80%) to continue benefiting from this knowledge.

As these objectives are independent and incomparable, an “ideal” scoring
function might not exist. We hence looked for functions that reasonably comply
with the above objectives. The following proposals are thus examples and not
reference designs.

We will start with a basic scoring function C; and refine it progressively,
explaining at each step the rationale of our successive refinements. To simplify
calculations we assume that a correct answer is rewarded by a point while an
incorrect answer is penalized by a point.

4.1 Notations and Definitions

We denote by Xq,c() the Heaviside function:

(z) = 1 if x € [a, (]
Xael) =1 0 otherwise

and by d, () the distance between x and the interval [a, c], i.e.:

dg,c(z) = (1 — Xa,c(z)) max (@ — x,x — ¢)

Fig.5.A. The Heaviside Function xa,.(z) Fig.5.B. The Distance Function dg,.(z)



Cryptographic Test Correction 93

We also define two auxiliary variables:

|a =2 if A#0

n

A=n+a—-—c and 6=
0 if A=0

A is the number of possibilities that the student has ruled out.
6 expresses the difference between the ratio of reds estimated by the student
(4) and the actual ratio of reds (?) in the 1EMCQ.

4.2 Heaviside Scoring

Heaviside scoring is defined as:
Ci(n,a,b,¢) = A+ (Xa,e(b) —1)(n+1)

Intuitively, C; correlates the student’s mark to the number of possibilities
ruled-out. The role of the penalty component (Xq,.(b) —1)(n + 1) is to equate
the expectation of random guessing to zero.

C; complies with all criteria but resilience to statistical attacks. Indeed, a
cheater could use the proportion of reds he spots as an estimate (sample) of
the actual ratio of reds in the IEMCQ (IEMCQ “redness”) and narrow his interval
accordingly. This might significantly optimize his mark (e.g. by +20%).

For example, if the cheater successfully detected 3 reds and no blues amongst
n =9, the risk taken by betting that the unknown answers contain 2 more reds
is moderate. We call such cheaters “narrowers”.

4.3 Distance Scoring

In addition, Cy’s penalty component is insensitive to the magnitude of mistakes.
After all, it would be desirable to penalize a {[a,c] = [1,4],b = 5} less than a
{la,c] = [1,4],b = 9}.

While it seems clear that gradual penalty implies using dq .(x), there seems to
be no obvious way to tune the penalty function (other than increasing penalty as
dg,c(z) grows). We therefore used the probability ¢(d) to miss b by d to fine-tune
a linear penalty coefficient ~;:

CQ(nvaa bv C) =A- Al (n + 1) da’C(b)

Note that ¢(x) reflects the test’s hardness (i.e. depending on pedagogic factors).

Typically, the configurations (1) = ¢(2) = ; or {p(1)= 5, 0(2) = 3, 0(3) =
110} are Ci-compatible when v = g We recommend to adopt this value of y1 —a
value we used in our simulations hereafter.

A second design objective is to discourage narrowers. Indeed, an examinee’s
answer is not only an interval. It also expresses a redness approximation.

In general a (non exaggerating) narrower will score the same A as an honest
examinee, however, the narrower’s redness estimate will be less accurate. In other
words, his ¢ will be expectedly bigger. We thus use § to damp A:

Cs(n,a,b,c) = A(1 —=6) —v1 (n+1) dg (D)
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4.4 Father Christmas Scoring

During the French revolution, different strategies for abolishing birth privileges
were debated. Proposals ranged from forbidding titles to exiling noblemen or...
making titles available to anybody i.e. eliminate distinctions by devaluation.

All our scoring functions allow cheaters to estimate the IEMCQ’s redness.
While endeavoring to limit the cheaters’ redness estimation abilities (using 0)
we also reduce the cheaters’ advantage by devaluation: namely, we award au-
tomatically to any examinee the cheaters’ redness approximation advantage.
We call this “Father Christmas Scoring”, as we distribute extra points to all
examinees.

Cs(n,a,b,¢c)+v2(c—a) ifb=c=nora=b=0

Cis(n,a,b,c) =
Cs(n,a,b,c) otherwise
C4’s side-effect is an increase in standard deviation, but this increase can be
controlled by .. We propose to use vy, =

4.5 Features

Accuracy. Table 2 shows the correlation between the mark obtained by consid-
ering a test as a traditional MCQ and as an IEMCQ scored with Cyp (for £ = 1,3,4).

The quantity:
b\ [n—b n+1
23 ()60 e
a=0 b=0

counts the number of different ways in which k& correct answers can be potentially
distributed between a reds and k — a blued]. We can hence compute Av[Cy, k,n),
the average mark of an examinee knowing k£ answers out of n in an IEMCQ scored
with Cy:

Av[Cy, kyn] = WMMZZ()( )Cg(nabn k+a)

=0b=0

Note that for C; averaging is unnecessary as C; coincides with scores obtained
using a traditional MCQ.

It appears that all scoring functions approximate quite faithfully a traditional
MCQ (plain black line).

Narrowers’ Advantage. Table 3 lists Ad[Cy, k, n], the average advantage of a
narrower over an honest examinee assuming that both know k& answers (of which
a are red).

9 puk is the denominator of the k-th element in line n in Leibniz’s Harmonic triangle.
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Table 2. Average Accuracy for n =9 and n = 12

k Av[Ci k9] Av[Cs,k,9] AV[Ca,k 9]  k AV[Ci, K, 12] Av[Cs, k,12] Av[Ca,k,12]
0 0.000 0.000 0.100 0  0.000 0.000 0.077
1 0.111 0.078 0.167 1 0.083 0.058 0.128
2 0.222 0.180 0.257 2 0.167 0.133 0.197
3 0.333 0.286 0.353 3 0.250 0.212 0.269
4 0.444 0.394 0.450 4 0.333 0.292 0.343
5  0.556 0.505 0.550 5 0.417 0.373 0.418
6  0.667 0.620 0.653 6  0.500 0.457 0.496
7 0.778 0.735 0.757 7 0.583 0.540 0.572
8  0.889 0.856 0.867 8  0.667 0.626 0.651
9 1.000 1.000 1.000 9 0.750 0.712 0.731
10 0.833 0.800 0.813
11 0.917 0.891 0.898
12 1.000 1.000 1.000
1
s
0.8 7zl
— C1
0.6 £
S
& o C3
0.4 5
-
0.2 o - - C4
— ></' '@

2 4 6 8 10 12
Fig. 6. Av[C1, k, 12], Av[Cs, k, 12] and Av[C4, k, 12]

The cheater’s strategy will depend on {a, k} — whose values he knows. As b
is unknown to the cheater, we exhaust all the possible fraudulent answers [a, ¢]
(given {a, k}), select the best-performing (over [a,¢]) cheating advantage:

f[(na a76a @, ba k) = C@(”a d7 ba 6) - Cf(”a a, ba n—k + Cl)
and averag@ over b:

k n
1 b\ /n—0 - .
Ad[Ce, k] = X flkn EZ 0 n (Z (a> (k - a> Falr 8,80, k))

=0 b=0

=
o
IANIA P

a
¢

ININ

Table 2 reads as follows: Under C; and n = 9, an honest examinee knowing
k = 2 answers will score 0.22 (cf. to Table 1). Table 2 shows that under identical
circumstances a cheater could hope to score 0.22 + 0.198 ~ 0.42.

Naturally, an ideal scoring function C, will feature an Ad[Cy, k,n] = 0. Note
that, for n =9 and n = 12, we nearly always have:

Ad[Cy, k,n] < Ad[Cs, k,n] < Ad[Cq, k,n]

10 The Y7, in the following formula can be simplified into a Sp—F.
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Table 3. Narrower’s Advantage for n =9 and n = 12

k 0 1 2 3 4 5 6 7 8 9
Ad[Cy, k,9 0.000| 0.198| 0.198| 0.175| 0.147| 0.102| 0.069| 0.031| 0.000| 0.000
Ad[Cs, k, 9 0.012| 0.091| 0.145| 0.144| 0.134| 0.102| 0.074| 0.038| 0.008| 0.000
Ad[Cy, k, 9 0.000| 0.068| 0.111| 0.110| 0.101| 0.078| 0.052| 0.027| 0.000| 0.000

k 0 1 2 3 4 5 6 7 8 9 10 11 12
Ad[Cy, k, 12 0.000| 0.208| 0.225| 0.216| 0.205| 0.177| 0.151| 0.113| 0.082| 0.049| 0.020| 0.000| 0.000
Ad[C3, k, 12 0.011| 0.081| 0.144| 0.167| 0.163| 0.156| 0.136| 0.110| 0.086| 0.054| 0.028| 0.005| 0.000
Ad[Cy, k, 12 0.000| 0.066| 0.118| 0.142| 0.136| 0.131| 0.111| 0.091| 0.068| 0.042| 0.022| 0.000| 0.000

Table 4. Pa[Cy,w,12] for n =9 and n = 12

w 1.00[ 0.90] 0.80] 0.70] 0.60] 0.50] [ w 1.00] 0.90] 0.80] 0.70] 0.60] 0.50
Pa[Cy,w, 9 1.00] 0.64| 0.47| 0.31] 0.15]| 0.00| | Pa[Cy,w, 12 1.00| 0.67| 0.50| 0.33] 0.17] 0.00
Pa[Cs, w, 9 1.00] 0.60| 0.38] 0.18| 0.05| 0.01| | PalCs,w, 12 1.00| 0.61| 0.40| 0.20] 0.05] 0.01
Pa[Cs, w, 9 1.00] 0.60| 0.40| 0.22| 0.11] 0.10| | PaC4,w, 12 1.00| 0.62| 0.42| 0.22| 0.10] 0.08
Pa[MCQ, w, 9]|| 1.00] 0.80] 0.60] 0.40| 0.20] 0.00| | Pa[McQ,w,12]|[ 1.00] 0.80] 0.60| 0.40] 0.20] 0.00

Partial Knowledge. Another interesting benchmark is Pa[Cy, w, n], the mark ex-

pected by an examinee who knows the answer to each question with probability w.

We regard the experiment as a vision test where the student — standing at

a distance from the corrector’s answer form — tries to identify (and count) the

colors of the IEMCQ’s answers. As distance increases, w tends to 2, i.e. reds and
blues become less and less distinguishable.

Having stared at the distant form for long enough, the student finally makes
his mind and bets that the form contains s red answers and n — s blue answers.
The probability w applies to each individual answer.

For each {Cy,w,s,n} there exists an optimal answer [a,c] that we discover
by exhausting all intervals [a, ¢]. The frequency-weighted score-contribution of
these optima when the student’s blind shot hits x reds amongst b reds and s — x
reds amongst n — b blues gives:

1 n s n et o b n—>b ) )
Pa[Cg,w,n]:mz ZZw b—s+2 (l—w)bJr 2 (z) (Sim)(&(n,a,b,c)

0
04

o QKB
\/\\/\N

\/\\/\

The normalization factor v, is:

n S n b o b
y, = Z Z anfbfs+2a:(1 _ w)b+s2a:< ) (” )
5=0 =0 b=0 TSNS
Note that Pa[Cs,w, n] = Pa[Cy, 1 —w, n] and Pa[usual MCQ,w,n] = w—(1l—w) =
2w — 1.

Standard Deviation. To assess the typical standard deviation of the different
Cys the following simulation was performed: We generated one million random
99-question IEMCQs. Each IEMCQ contained 11 groups of n = 9 questions.
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For each IEMCQ we generated a random binary vector ey, ..., eg9. If e, = 1 we
considered that the examinee answered the i-th question correctly. If e; = 0 the
question was not answered. The IEMCQ was then corrected as a traditional MCQ
and as an 1IEMCQ scored with Cy, C3 and Cy.

The experiment’s means, 1 and standard deviations, o, are reported here:

Table 5. Experimental Results

MCQ Cy Cs Ca
o 0.050 0.050 0.052 0.060
0 0.500 0.500 0.453 0.503

Efficiency. Table 5 allows to estimate efficiency, i.e. the number of decimal
digits that the examiner needs to key into his computer per corrected form.
The examiner starts by setting a target o’ and multiplies the number of ques-

tions by:
o2
(J’)

The following table assumes binary encoding for the traditional MCQ and the
compressed answer encoding of Appendix B for n = 12:

Table 6. Efficiency

MCQ Cy Cs Ca
n= 9 31 24 24 32
n =12 31 18 18 24

5 Further Research

It seems that homomorphism, necessary for mark accumulation, is the root-cause
of the security problems encountered while designing all additive CTCs we could
think of. The design of an additive CTC which is simultaneously practical, secure
and efficient remains an open problem. Potential solutions could involve the
use of non commutative operations such as moderate-size matrix multiplications
or vector product. Unfortunately, the cost of 80 matrix multiplications or
vector products is prohibitive and so are the foreseeable error odds. The use of
simple physical accessories (scratch cards [I], tables, envelopes, etc) also seems
a promising idea.

The generalization of IEMCQs and scoring functions to more than two colors,
attacks on the IEMCQs proposed in this paper or the development of better
scoring functions are also welcome — as these might find practical applications
during the 2008-2009 academic year...

—

" Taking advantage of the fact that @ A (VA W) # (W AT)AW.
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A Implementation Detalils

Fix {n = 80,9 = 9189, k = 54, p = 3931231, e = 2032603} and generate:

i a; vi,0 student Vi1 i a; Vi,0 student Vi1

1 5498 50178050 e 18103810 v/ 41 4395 v 36600526 e 49018611

2 19893 61139595 o 09409200 v 42 2457 v 48613553 e 76135590

3 6294 v 32424036 e 04908839 43 6430 37606525 e 80846646 v
4 6545 71173575 e 39099335 V' 44 18139 14405678 e 68818520 v/
4 5441 v 32286548 ® 67671047 45 9341 61598589 e 81251324 v
5 9189 28139589 e 55033814 v 46 3423 26839816 e 58286244 v
7 17580 v' 68719202 e 81137287 47 13508 75687895 e 78994734 v
8 13388 v/ 19850231 e 79443088 48 4543 v 38652214 e 82520147

9 14708 v/ 61409445 e 49619172 49 18648 15086852 e 49843539 v
10 19321 14960283 ® 69373125 V' 50 10242 v 09910823 ® 25639167
11 6861 44856367 e 72371564 v 51 3981 v/ 32765573 e 72081303
12 1571 71821899 e 60024786 V' 52 4790 57477648 e 22093149 v
13 13903 v/ 05518892 e 09453543 53 10402 68117501 e 43905723 V'
14 18627 66751733 e 26815031 v/ 54 13061 35916405 e 51016937 v
15 11471 23445338 ® 62754228 v 55 5825 22942575 e 65561724 v
16 14564 47835434 o 43900783 v~ 56 1062 v* 47239433 e 59657518
17 2659 42802779 e 61834542 v 57 18333 11676329 e 81814095 v
18 11202 19495495 e 66045875 v 58 19114 v 69576507 e 38130079
19 13374 70642801 e 34637330 v 59 3226 63094152 e 42813605 v
20 10978 v' 39557468 e 51354581 60 15857 v* 53546130 e 69895446
21 18810 61319906 o 21383204 v 61 10718 73560627 e 69005004 v
22 13683 57926475 o 21921004 v 62 7214 v 58360971 e 03948129
23 13811 78294568 ® 26564173 v 63 4281 13552933 e 17480744 v
24 12734 43495725 e 19283947 v 64 18135 41656345 e 68550570 v/
25 9648 60541981 e 01570096 v/ 65 2170 27736431 e 27112039 v
26 12917 v/ 64958123 e 53788822 66 4245 v 34725349 e 58316155
27 3219 72142831 e 09239715 v/ 67 849 03800769 e 43109659 V'
28 8971 17157059 e 21084870 v 68 10077 32276769 e 12617194 v
29 4619 v 67330650 e 67955042 69 927 v/ 24436812 e 25061204
30 1482 v 63890976 e 16719624 70 7304 25391442 o 25388022 v
31 13212 v 24095841 e 35892954 71 8668 73518851 e 34203121 v
32 11850 15728623 e 58347772 v 72 18606 24067070 e 47030064 v
33 9833 31656743 e 31653323 v 73 10119 82265016 e 78330365 v*
34 5271 09108400 e 01242518 v 74 7537 v/ 70480342 e 27240221
35 9059 v/ 54187901 e 19431214 75 5030 42415286 ® 49653356 V'
36 10894 02794576 o 61138649 v 76 18830 v' 03377285 e 46624246
37 1410 07965293 o 39411721 v 77 3049 v 76476460 e 48961263
38 6456 31796224 e 15446908 v 78 17663 60833762 e 21518032 v/
39 6519 06532204 e 49151353 v 79 15458 v 40577426 e 17614432
40 5459 v 49217247 e 41358205 80 6769 15416617 e 22654687 v



i €0 Ti,0

1 1 12
2 1 15
3 1 8
4 1 18
5 1 8
6 1 7
7 0 17
8 0 5
9 1 15
10 1 3
11 0 11
12 0 18
13 1 1
14 1 16
15 0 5
16 0 12
17 1 10
18 1 4
19 1 17
20 1 10

i €,0 Ti,0 Tin1
21 1 15 5
22 1 14 5
23 1 19 6
24 1 11 4
25 0 15 0
26 0 16 13
27 0 18 2
28 0 4 5
29 0 17 17
30 1 16 4
31 1 6 9
32 1 4 14
33 0 8 8
34 0 2 0
35 0 13 4
36 1 0 15
37 0 2 10
38 1 8 3
39 1 1 12
40 1 12 10

As ;1 =1 — ¢ 0 we only list here ¢; 0.

The McQ included n = 80 questions. To reduce computational errors, exami-
nees were provided with a form in which they had to report five groups of four
numbers. Examinees were instructed to add four consecutive v; ; valued using
the M+ key and subtract the v; ;s again to control that no addition error oc-
curred. If no error occurred, the result would be recalled using the MRC key and
copied into the table. In the table, the 20 numbers were divided into five groups
of four and added, again, using the same procedure. Finally, the five partial sums
were added to get t.

To ease the students’ task, a lookup table was also given in the test’s appendix.
The table gave, for each group of four consecutive questions, sixteen possible
sums. Hence — all in all — students could compute ¢ by adding (and controlling
the addition of) only 25 integers.
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Example: The student’s choice (materialized by es) results in ¢ = 3355519689.
The examiner computes:

Hence:

g

V’J {388206
q = =

t =

9189

txe = (> ai] modp | = 388206
=1

J:42 and m =

' —qg 388206 — 42 x 9189

k

54

42

As 0 <m < n and m € N we accept m = 42 as the student’s mark and do

not trigger a manual form verification because Pr[ |¢ — 40] < 2] ~ 0.42.

12 For instance table; = v1,0 + V2,1 + V3,1 + V4,0 + V5,1 etc.
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B Compressed Answer Encoding

This appendix describes a way to compress IEMCQ answers for n = 12. Despite
the fact that, in principle, 0 < a < 12 and 0 < ¢ < 12, we compress the answer
into a couple of decimal digits by “reusing” impossible interval notations such
as [7,3].

This is achieved by asking the student to write on the form:

[c—7,d] ifa<3 and ¢>10
[c—3,a—4] ifa>4 and c¢>10
[a, c] otherwise

n = 12 is particularly suitable both in terms of answer compactness and standard
deviation.
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Abstract. This paper presents some theoretical and experimental re-
sults about off-line/on-line digital signatures. The goal of this type of
schemes is to reduce the time used to compute a signature using some
kind of preprocessing. They were introduced by Even, Goldreich and Mi-
cali and constructed by combining regular digital signatures with efficient
one-time signatures. Later Shamir and Tauman presented an alternative
construction (which produces shorter signatures) by combining regular
signatures with chameleon hash functions.

We first unify the Shamir-Tauman and Even et al. approaches by
showing that they can be considered different instantiations of the same
paradigm. We do this by showing that the one-time signatures needed in
the Even et al. approach only need to satisfy a weak notion of security.
We then show that chameleon hashing are in effect a type of one-time
signatures which satisfy this weaker security notion.

In the process we study the relationship between one-time signatures
and chameleon hashing, and we prove that a special type of chameleon
hashing (which we call two-trapdoor) is a fully secure one-time signature.

Finally we ran experimental tests using OpenSSL libraries to test the
difference between the two approaches. In our implementation we make
extensive use of the observation that off-line/on-line digital signatures
do not require collision-resistant hash functions to compress the mes-
sage, but can be safely implemented with universal one-way hashing in
both the off-line and the on-line step. The main application of this obser-
vation is that both the steps can be applied to shorter digests. This has
particular relevance if block-ciphers or hash functions based one-time
signatures are used since these are very sensitive to the length of the
message. Interestingly, we show that (mostly due to the above observa-
tion about hashing), the two approaches are comparable in efficiency and
signature length.

1 Introduction

Off-line/On-line digital signatures were introduced by Even, Goldreich and Mi-
cali in [I2]. In these signatures the signing process is divided in two parts. First

* The full version of the article is available at http://www.dmi.unict.it/ fiore

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 101 2008.
© International Association for Cryptologic Research 2008
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a computationally intensive part is performed off-line, i.e. before the message
being signed is known. This off-line part produces some temporary data which
is stored and then used at the time the message to be signed is known. At that
point, the computation of the actual signature requires very little effort.

The original construction in [I2] was based on combining two different types
of digital signatures: many-times (or “regular”) signatures and one-time signa-
tures [242TU2122126]. While the former can be used to sign a polynomial number
of messages, in the latter a private key can be used to sign only a single mes-
sage. Because of this limitation, one-time signatures can be constructed more
efficiently. The construction in [I2] goes as following. The signer generates a pair
(VK, SK) of keys for a regular signature scheme: she publishes VK and keeps
SK as a secret. In the off-line part she generates vk a one-time public verifica-
tion key, and signs it with SK: let S be the resulting signature. Then when the
message m is available, the signer computes its signature s with the one-time
signing key sk. The final signature is (vk, S, s).

The construction in [T2] utilizes one-way functions based one-time signatures,
such as the ones introduced by Lamport [20]. While these signatures are very
fast to compute and verify, the signature string can be very long, and it grows
quadratically with the length of the message being signed.

To address these issues Shamir and Tauman in [27] offered an alternative
construction which combines regular signatures with chameleon hashing [I8]. A
chameleon hash function is defined by a public key pk and a secret trapdoor tk.
The function C,x(-,-) takes two arguments a message m and a random string
r. The function is collision-resistant, unless one knows the trapdoor tk. But
knowledge of tk allows to find arbitrary collisions, i.e. given ¢ = Cpi(m,r) and
an arbitrary different message m/, the holder of the trapdoor can find r’ such
that ¢ = Cpr(m/, 7). For many chameleon hash functions, this collision-finding
procedure is very efficient, requiring only a single modular multiplication. The
Shamir-Tauman idea is to construct off-line/on-line signatures as follows. The
signer’s public key is VK, like before, and pk. The off-line part would consists
of computing ¢ = Cpi(a,r’) for some arbitrary a,r’ and then computes S the
signature of ¢ using SK. On input the actual message m the signer (who knows
the trapdoor tk as part of the signing key) computes r such that ¢ = Cpp(m, r)
and outputs (S, 7). The verifier re-computes ¢ as Cpx(m, ) and verifies S on it.
As we will see later in the examples of chameleon hashing, the length of r grows
only linearly in the length of the message m, so the Shamir-Tauman approach
provides shorter signatures.

1.1 Our Contributions
This work was motivated by two basic questions:

1. Is the Shamir-Tauman approach conceptually different from the Even et
al. approach, or are they really two different instantiations of the same
paradigm?

2. In practical implementations, for today’s security levels, which approach is
preferable, in terms of speed, memory and ease of implementation?
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This paper presents some theoretical and experimental results about off-
line/on-line digital signatures which are aimed at answering the above questions.

We first show that conceptually the Shamir-Tauman construction is not dif-
ferent from the Even et al. one. Indeed we present a unifying paradigm which
encompasses both the Shamir-Tauman and the Even et al. approaches. We do
this by showing that a chameleon hash function can also be seen as a one-time
signature with a very weak security property. As already observed in [12], this
weak property is sufficient to prove the security of the Even et al. approach.
In the process of exploring the relationship between one-time signatures and
chameleon hashing, we discovered that fully secure one-time signatures can be
obtained from a special type of chameleon hashing that we call two-trapdoor
chameleon hashing.

Finally we ran experimental tests using OpenSSL libraries to test the differ-
ence between the two approaches. In our implementation we make extensive use
of the observation that off-line/on-line digital signatures do not require collision-
resistant hash functions to compress the message, but can be safely implemented
with universal one-way hashing in both the off-line and the on-line step. The main
application of this observation is that both the steps can be applied to shorter di-
gests. This has particular relevance if block-ciphers or hash functions based one-
time signatures are used since these are very sensitive to the length of the message.
Surprisingly, we show that (mostly due to the above observation about hashing),
the two approaches are comparable in efficiency and signature length.

RELATED WORK. As we pointed out, Even et al. introduced the notion of off-
line/on-line signatures in [12] and constructed them combining regular signatures
with efficient one-time signatures. However the length of the signatures is an issue
in this approach. Shorter signatures can be obtained by using chameleon hashing
[18] combined with regular signatures as pointed out by Shamir and Tauman [27].
Off-line/On-Line digital signatures can also be obtained by applying the Fiat-
Shamir heuristic to a variety of identification protocols known as X-protocols.
Example of such schemes are [T3IB0/TTI28]. However such schemes are proved
secure in the random oracle model [3I23]; our paper is focused on schemes which
are secure in the standard model.

2 Preliminaries

In the following, with N we denote the set of integers and with R the set of real
numbers. We denote the security parameter with £. A function f : N — R is
said to be negligible if for any ¢ > 0, there exists an index /. € N such that
f0) <t=¢for all £ > ¢,.

2.1 Hash Functions

For lack of space the definitions of Collision resistant hash functions and Target
collision resistant hash functions, are deferred to the full version.
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Target Division Intractable (TDI) hash functions: Consider a family H =
{h¥i(k, )} (we are making explicit the fact that an element of the family is
parametrized by a key k) with poly(£)-bit input and ¢ bit output. We say that
H is target division intractable if it is hard for the attacker to win the following
game:

1. the attacker chooses polynomially many inputs z1, zs, .. .;

2. a random key k is chosen; '

3. the attacker outputs y # x; such that h'di(k,y) divides the product of the
Rt (k, z;)’s.

This notion was introduced in a stronger variang] by Gennaro et al. [14]. They
conjectured that a random oracle with approximately 600 bits of output would
be a safe choice for a DI function. Later, Coron and Naccache [7] described an
attack that disproves such a conjecture and forces one to use functions with
much longer outputs (see [7] for details).

Recently, Kurosawa and Schmidt-Samoa [19] introduced the notion of weak
division intractability (wDI). Informally, wDI formalizes a weaker (i.e. with re-
spect to the notions discussed above) notion of division intractability. Here, the
adversary A should be unable to find y # x1,...x,, such that hdi(k,y) divides
the product of the h'9(k, x;)’s, when the z;’s are chosen at random (i.e. and
thus are not of A’s choice). Kurosawa and Schmidt-Samoa showed that this
property is sufficient to prove the random-message security (see Section 23)) of
the GHR signature scheme. Very informally, this is because the attack of Coron
and Naccache crucially relies on the attacker choosing the z;’s.

Notice that, by a similar reasoning, the same attack cannot be applied if one
uses a TDI function. This is because, in such a case, the adversary does not
know the key (of the hash function) when choosing the x;’s. This is why in our
constructions we only require the GHR scheme to be obliviously secure and the
underlying hash function to be target division intractable.

2.2 Chameleon Hashing

Definition 1. A chameleon hash function (also known as trapdoor commitment
scheme) is a triplet of polynomial-time algorithms:

CKG(1%): a probabilistic algorithm which, on input a security parameter 1¢, out-
puts a pair of matching public/private keys (pk,tk);

Cpr(m, 1)z the evaluation algorithm which, on input the public key pk, a message
m and a random nonce r, outputs a hashed value;

Coll(tk,m, m’,r): the collision finding algorithm which, on input the private
trapdoor key tk, two messages m, m' and a nonce r, outputs a mnonce r'
such that Cpr(m,r) = Cpr(m/, r").

!'In such a variant, called division intractability (DI), the adversary is allowed to
choose the x;’s after having seen the hash function.
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As required in [I§], the public key defines a particular hash function which, how-
ever, takes a random input additionally to the message. The security properties
of this function are as follows:

Collision Resistance. Without knowledge of the associated trapdoor, this func-
tion is collision resistant, i.e. it is infeasible to find two different pairs (m,r),
(m/,7") such that C,i(m,r) = Cpr(m/,r');

Distribution of Collisions. For every m,m/, and a random r, the distribution
of " = Coll(tk, m,m’,r) is uniform, even when given pk, ¢ = Cpi(m, ), m and
m/. This implies that the chameleon hashing function is also a information-
theoretically hiding commitment.

Two efficient constructions of chameleon hash function follow: the first is due
to Boyar et al. [4] and its security is based on the Discrete Log problem difficulty;
the second [SII0] relies on the RSA assumption.

2.3 Signature Schemes
We recall the definition of secure signature scheme from [I5].
Definition 2. A signature scheme is a triplet (KG, Sign, Ver) of PPT algorithms:

— the key generation algorithm KG(1°) outputs a pair (vk, sk) of matching pub-
lic/private keys;

— the signing algorithm Sign(sk, m) takes as input the private key and a mes-
sage m and produces a signature o;

— the verification algorithm Ver(vk,m, o) takes as input the public key, a mes-
sage and an alleged signature o and outputls a single bit.

For every possible output (vk,sk) of KG, and every m, it is required that
Ver(vk, m,Sign(sk,m)) = 1. We say that a signature scheme is secure against
adaptive chosen message attack (or in short “secure”) if a forger after asking for
the signature on several adaptively chosen messages will not be able to produce
a valid signature on a message he had not previously requested.

Definition 3. (KG, Sign, Ver) is a secure signature scheme if for every efficient
forger F, the following
(vk, sk) «— KG(1%) ;
fori=1to k
Mi — F(Uk, M170'1, ey Mi—la ai—l) 5
o; « Sign(sk, M;) ;
(M,0) « F(vk, My, 01,..., My, 0%) ;
Ver(vk,M,c) =1 and M # M;

Pr

1s negligible in £.

We say that a signature scheme is obliviously secure if in the game above the
adversary chooses the messages M; before seeing the public key. Also we say that
a signature scheme is random-message secure if the above holds for messages M;
chosen randomly in the message space, rather than adaptively and adversarially
chosen. Similar security definitions apply to one-time signatures if the above
hold for k = 1.
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Examples of One-Time Signatures. Lamport et al. [20] proposed a method
to construct a one-time signature scheme from one-way functions. Later Even,
Goldreich and Micali [12] suggested an improved method to shorten the length
of keys and signatures. In the follow we recall their ideas and also describe a
technique due to Jakobsson [I7] to speedup the signature phase.

— Lamport’s scheme: let M be the m-bit message to sign and f : {0,1}* —

{0,1}* be a one-way function. We choose 2m ¢-bit strings 29, z1,... 20 2l

) m?

at random as the signing key. The verification key is computed applying f
to each 29, 2! for i = 1,... ,m: f(a9), f(x1),..., f(22), f(x},).

To sign a message M = pu1,- - -, iy, the signer reveals x4, ... ztm . Given
a message M and its signature s = s1,- -, Sy, the verifier applies f to the
values s1,---, 8, from the signature and checks if they are equal to the
corresponding images in the verification key.

This simple scheme is proved to be secure if f is a one-way function; it
is really fast but has the drawback of quite large keys and signatures.

— Shortening length of keys and signatures (Even et al.’s): let M be
the m-bit message, we partition the message in blocks of ¢ bits, where t|m.
Let f be a one-way function as befordd. We choose at random o+ 1 4-bit
strings o, 1, . . ., Tpy¢ as the signing key. The corresponding verification key
is:

yo = fETV o)y = £ @), g = T @)

To sign a message M = pi1, ..., fiy, /¢, Whose t-bit blocks p; are interpreted
as integers, the signer outputs:

m/t t_ 1 t_ 1
S0 = fzi:l Hz(xo)a 51 = f2 ! #1(331)7' s Sm/t = f2 ! Hm/t(xﬂ"L/t)

Given a message M = p1,. .., fy,/; and a signature so, $1,. .., Sy, /¢ the ver-
ifier applies f to each signature component the proper times and compares
the resulting values with the verification key elements. Namely, it checks:

? DS ™, ? ?
y0=f(2 Dm/t=3 i Hi(s0); yl=f”1(51),~~,ym/tZf”’"”(sm/t)

It is interesting to note the trade-off: a small ¢ makes the signature compu-
tation more efficient (because the hash chains are shorter), but makes the
signature longer (because the number of blocks m/t is bigger).

— Speedup the signature step (Jakobsson’s): in the previous scheme the
length of the hash chains is exponential in the size of the block; this makes
the signature and verification steps computationally expensive for big blocks.
The optimization for one-way hash chains traversal proposed by Jakobs-
son [I7] can be applied here: the idea is to store not only the first and last
value of the chains, but also some intermediate elements (called pebbles) that

2 As explained in Appendix [A] the proof of security requires a stronger assumption
than the inverting infeasibility: the quasi-inverting assumption has to hold on f. Also
in Appendix [A] we make a concrete security analysis of this assumption compared
to the assumption of basic one-wayness.
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permit in the signature procedure to speedup the traversal originating the
iterative computation from the nearer pebble in the chain. In [I7] it is stated
that keeping O(logn) number of pebbles, where n is the chain length, the
traversal time becomes O(logn); in our case, the storage and the running
time become O(t), where ¢ is the size of the block.

Examples of Obliviously Secure Signatures. In this section we recall two
signature schemes: one is due to Gennaro et al. [I4] and the other to Cramer and
Shoup [I0]. Their security is based on the Strong RSA Assumption, and they
are the most efficient signature schemes in the literature whose security can be
proved without using the random oracle model.

We present simplified versions of these schemes which can be proved to be
obliviously secure since that’s all we need later.

— Simplified GHR Signature: This scheme uses a target division-intractable
hash function Ai(-, ).

e Key generation: let N = pg be an RSA modulus where p, g are safe
primes of identical sizes; select a random element s in Z}; and a key k
for the TDI hash function A'i(-,-); the public key is (N, s,k) and the
secret key is ¢(N) = (p— 1)(¢ — 1).

e Signature algorithm: given a message m to sign, compute e = h'i(k, m)
and d = e~! mod ¢(N) and outputs the signature o = s¢ mod N.

e Verification algorithm: on input the public key (N, s, k) and the mes-
sage/signature pair m, o, compute the value e = h'(k,m) and check if
0¢=smod N.

— Simplified CS Signature:

e Key generation: generate an RSA modulus N = pg as in GHR (safe
primes), select two random elements s, ¢ in Z%, and draw a random key
k for a TCR hash function h*'(-,-); the public key is (N, s,t, k) and the
secret key is ¢(N).

e Signature algorithm: given an arbitrary long message m to sign, gen-
erate a random 161-bit prime e and compute d = e~ ! mod ¢(N) and
o = (sth™ (=m))d ;nod N. The signature is (e, o).

e Verification algorithm: on input the public key (NV,s,t, k) and the
message /signature pair m, (e, o), check if o¢ = sth (%™ mod N.

Cramer and Shoup in [I0] suggest an efficient method for the generation of
small primes of 161 bits. This operation is critical for the performance of the
scheme since a fresh 161 bit prime number is necessary to sign a message.

2.4 Off-Line/On-Line Digital Signatures

In this section we recall the Even et al. and Shamir-Tauman approaches to
construct off-line/on-line signatures.

Using one-time signatures. The idea is to combine a random-message secure
signature scheme with a one-time signature. In the off-line step a pair of keys
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for a one-time signature is generated and the public key of this scheme is signed
using the long-term signing key. During the on-line phase, given the message to
sign, its signature is computed using the one-time secret key.

We call this scheme the EGM scheme. A more detailed description follows: let
(KG, Sign, Ver) be a signature scheme, (KG®, Sign®, Ver®") a one-time signature
scheme. The combined off-line/on-line signature works as follows:

— Key generation: this step coincides with the key generation of the ordinary
scheme; run KG(1¢) to obtain a pair of long-term keys (VK, SK); the public
component VK is announced, while SK is kept secret.

— Off-line Signature: in this phase a fresh pair of keys (vk, sk) for a one-time
signature is generated using KG®(1¢). The verification key vk is signed with
the long-term signing key SK as m = Sign(SK, vk). The token (vk, sk, m) is
kept as part of the signer’s state.

— On-line Signature: given the message m to sign, a precomputed token
(vk, sk, ) is retrieved; the message m is signed using the one-time scheme
as o = Sign®(sk, m) and the complete signature is the triple (vk, 7, o).

— Verification: given a message m and its purported signature (vk,m, o), the
master verification key VK is used as follows. First, the algorithm Ver is
used to check that 7 is indeed a valid signature of vk with respect of the
long-term verification key VK. Next, the tag o is verified to be a (one-time)
signature of m using vk; namely, the verification consists in evaluating the
following predicate:

Ver(VK , vk, m) A Ver® (vk,m, o)
The following Theorem appears in [12].

Theorem 1 (EGM [12]). If (KG, Sign, Ver) is a “regular” signature scheme and
(KG®, Sign®, Ver®") is a one-time signature scheme and both the schemes are
secure (as in Definition [3) then the EGM scheme described above is secure in
the standard sense.

Using Chameleon hash functions. This construction is also known as the
“hash-sign-switch” paradigm: in the off-line phase, the signer hashes an arbitrary
message m’ with a chameleon hash. It then signs the results. When, during the
on-line phase, he is given the message m the signer uses its knowledge of the
chameleon hash trapdoor to find a second preimage and “switches” m with the
arbitrary m’ used in the off-line phase.

We call this the ST scheme. Let (KG,Sign, Ver) be a signature scheme and
(CKG, C, Coll) a chameleon hash function family. Given a security parameter £,
an off-line/on-line signature scheme can be constructed as follows:

— Key generation: a pair of keys (VK, SK) is generated using the signature
key generation algorithm KG(1¢); furthermore, a specific chameleon hash
function is selected in the family using the trapdoor key generation algorithm
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as (pk,tk) = CKG(1%). The signing key is (SK,tk) and the verification key
is (VK pk).

— Off-line Signature: an arbitrary message m’ is chosen together with a
random string . The hash value § = Cp(m/, ') is computed and signed
with SK, to compute o = Sign(SK, §); the token (m’,r’,c) is kept in the
signer’s internal state.

— On-line Signature: given the message m to sign, a precomputed token
(m/,r’, o) is retrieved; use Coll with the trapdoor key tk to find r such that
Cpr(m,r) =6 = Cpip(m/,r’); the signature given in output is (r, o).

— Verification: given a message m and a signature (r, o), first compute § =
Cpr(m, ) and then verify the signature o on it using Ver(VK, Cpi(m, 1)).

Theorem 2 (ST [27]). If (CKG,C,Coll) is a chameleon hash function and
(KG, Sign, Ver) is an obliviously secure signature scheme then the ST scheme
described above is a secure signature scheme.

3 A Unifying Paradigm

In this section we show that the Even, Goldreich, Micali [I2] construction and
the Shamir, Tauman [27] solution can be seen as two special cases of the same
methodology. This would be immediate if we could show that chameleon hashing
is a form of secure one-time signatures. Unfortunately that is not true in general,
though in the next subsection, we describe a sufficient condition on chameleon
hashing to be a secure one-time signature. Nevertheless, for a general statement,
we must follow a different approach.

Our starting point, is the observation (originally made in [12]) that the Even,
Goldreich, Micali construction remains secure even if the underlying one-time and
regular signature schemes are obliviously secure. Next, we show that chameleon
hash functions are a form of oblivious one-time signatures. This shows an uni-
fying paradigm that encompasses both the Even et al. and the Shamir-Tauman
approach.

Informally an oblivious one-time signature is guaranteed to be secure only
against an adversary which chooses the (one) message for which she is allowed
to see a valid signature, before seeing the public key. Notice that this level of
security is indeed sufficient for the EGM approach since, in the off-line/on-line
EGM signature, the keys of the one-time signatures are chosen independently
from the message being signed (i.e. the adversary does not see the keys of the
one-time signature when she submits a message to be signed).

Definition 4. (KG, Sign, Ver) is an obliviously secure one-time signature if for
every efficient forger F, the following probability is negligible in £.

(M, state) — F; (vk,sk) — KG(1%); o « Sign(sk, M) ;
Pr | (M',0") «— F(vk,M,o,state) :
Ver(vk, M',c"y =1 and M' # M
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We state the following

Theorem 3 (EGM [12]). If (KG,Sign, Ver) is an obliviously secure signature
scheme and (KG®, Sign®*, Ver®") is an obliviously secure one-time signature scheme
then the EGM scheme described above is a secure signature scheme.

Now we show that an oblivious one-time signature scheme can be implemented
using a chameleon hash function. The construction Cham-Sig is as follows.

KEY GENERATION. On input a security parameter ¢, run CKG(1%). Then it
chooses a message v and a nonce r and computes ¢ = Cpi (e, 7). The public key
is (pk, ¢), the signing key is (tk, o, 7).

SIGNATURE ALGORITHM. On input a message m the signer uses his knowledge
of the trapdoor to compute a nonce s such that, ¢ = C,i(m, s). The signature is
then (m, s).

VERIFICATION. On input a purported signature (m, s), the verifier checks whether
¢ = Cpr(m, s). If this is the case the signature is accepted as valid, otherwise it is
rejected.

Theorem 4. The scheme presented above is an obliviously secure one-time signa-
ture scheme assuming that the underlying primitive is a chameleon hash function.

The proof is very simple. For lack of space it is deferred to the full version of the
paper.

3.1 Double Trapdoor Chameleon Hash Function

In the previous section we showed that a chameleon hash function is an oblivi-
ously secure one-time signature. It is not hard to see why it fails to be a (fully)
secure one-time signature. In the oblivious case, the adversary commits to the
message she wants to be signed before seeing the public key: this allows us to
“prepare” the public key as a commitment to that specific message. In the adap-
tive case, when we prepare the public key we do not know the message, so when
the adversary asks us for a signature we do not know how to produce it.

In order to get a fully adaptively secure one-time signature from chameleon
hashing, a possible way is to compose two different hash functions (i.e. apply one
function over the output of the other). Conceptually this is not surprising as it
corresponds to a chain of length two in the [I5] signature scheme (in that scheme
a chain of length two, instead of a full binary tree, gives a one-time signature).

In some cases we can do better. If a chameleon hashing admits the “double
trapdoor” property (described below) then we can obtain the same effect as
composing two hash functions, but more efficiently.

A double trapdoor chameleon hash function scheme generalizes the notion of
chameleon hash by allowing the existence of two independent trapdoors. Know-
ing either of the two trapdoors, one can can easily find collisions. More formally:
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Definition 5. Let £ be a security parameter. A double trapdoor chameleon hash
function is composed of the following, polynomial-time, algorithms:

CKG(1%): a probabilistic algorithm which, on input the security parameter 1¢,
outputs a triplet of public/private keys (pk, tko, tky)

TCKG(1%,4): a probabilistic algorithm which, on input the security parameter 1°
and a bit i oulputs a pair of public/private keys (pk, tk).

Cpr(m,r): the evaluation algorithm which, on input the public key pk, a message
m € M and a random nonce r € R, outputs a hashed value;

Coll(tk;,m, m’,r): the collision finding algorithm which, on input one of the two
private trapdoor keys tk;, two messages m, m’ and a nonce r, outputs a
nonce 1’ such that Cpi(m,r) = Cpr(m/, ).

We make the following security requirements

Distribution of Keys. Let CKG(1%,4) the algorithm that executes CKG(1%)
and restricts its output to (pk,tk;). We require that the distribution of
the output of TCKG(1%,i) is identical to the distribution of the output of
CKG(1%,4).

Collision Resistance. Let (pk,tko,tk1) = CKG(1%).

1. For every ¢ = 0,1, given pk and tk; it is infeasible to find tk;q;.
2. Moreover there exists an, efficient, algorithm A that on input the public
key pk and a collision m,r,m/,r’ finds at least one of the trapdoors tk;.
As a consequence, it is infeasible to find collisions without at least one of the
trapdoors tk;.

Distribution of Collisions. For every m,m’, and a random r, and for every
i = 0,1, the distribution of ' = Coll(tk;, m,m’,r) is uniform, even when
given pk, ¢ = Cpi(m, ), m and m’. As in the case of the regular’ chameleon
hashing, this implies that the function is an information-theoretically hiding
commitment. Moreover it implies that the distributions of the openings are
the same no matter what trapdoor one uses.

Double trapdoor chameleon hashing leads to a very simple construction of a
fully secure one-time signature scheme (rather than just an obliviously secure
signature scheme as it is the case when using standard chameleon hash func-
tions). The construction given a two-trapdoor chameleon hash (CKG, C, Coll) is
as follows.

KEY GENERATION. On input a security parameter £, run CKG(1%) = (pk, tko, tky).
Then it chooses a message o and a nonce r and computes ¢ = C,;(, 7). The public
key is (pk, c), the signing key is (tko, tk1, a,r).

SIGNATURE ALGORITHM. On input a message m the signer uses his knowledge
of either trapdoor to compute a nonce s such that, ¢ = C,;(m, s). The signature
is then (m, s).

VERIFICATION. On input a purported signature (m, s), the verifier checks whether
¢ = Cpr(m, s). If this is the case the signature is accepted as valid, otherwise it is
rejected.
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Theorem 5. If (CKG, C, Coll) is a two-trapdoor chameleon hash function then
the scheme presented above is a secure one-time signature scheme.

For lack of space the proof is deferred to the full version of the paper.

CONSTRUCTION. The notion of double trapdoor commitment scheme was pro-
posed (even though not explicitly defined) in [6]. There they present a scheme
based on the discrete logarithm problem and they show how to use such a con-
struction to build threshold on-line off-line digital signature schemes. In Ap-
pendix [Bl we briefly recall the double trapdoor commitment scheme given in [6]

4 Experimental Results

As we said in the introduction, this work was motivated by two basic questions
about the relationship between the EGM and the Shamir-Tauman approach to
build off-line/on-line signatures. In the previous section we showed that, at least
conceptually, the Shamir-Tauman approach is really an instantiation of the EGM
paradigm. In this section we set out to discuss a practical comparison between
the two approaches in terms of their efficiency. To achieve that, an extensive work
of implementation was carried out. We implemented all the schemes presented
in the previous sections, in order to directly measure their real efficiency. To get
objective values, all the implementations share the same level of optimization
and all the tests were iterated hundreds of times on a reference hardware: an
Intel Pentium 4 CPU running at 2.80 GHz. We implemented the algorithms in C
using OpenSSL[29] as the underlying library for large number manipulationsﬁ.

4.1 Implementation Details

The different types of hash functions (see Section B required in our construc-
tions were implemented as follows:

— FCR hashing: we use SHA-1 [9] with its full 160-bit output;

— TCR hashing: it is implemented using SHA-1 as follows[I6]: given a message
x and the key k, the function is computed as h'*" (k, z) = Truncy(SHA-1(z @
k")), where k' is the concatenation of copies of k until £” and x have the same
length. T'runce(+) is a function that outputs the first £ bits of its input.

— TDI hashing: as practical construction we use the one suggested in [I4]
with SHA-1 as the underling tool, but with an additional randomizing key.
Given a message x and a key k:

R (k) = Setmsp(Setisy(SHA-L(z 01 @G k) o--- 0 SHA-1(z 0 4 & k')))

where o is the concatenation operator, k' is the concatenation of copies of
k until k" and 2 have the same length and Set,,(+), Setisp(+) are functions
that force the most-significant-bit (resp. least-significant-bit) to be 1; this
function takes arbitrarily long inputs and outputs of 640-bit integers.

3 The sources of the tests are available upon request to the authors.



Off-Line/On-Line Signatures: Theoretical Aspects and Experimental Results 113

One-Time Signatures. In our tests we implemented the one-time signature
proposed by Even et al. with the option to apply Jakobsson’s speedup (see
Section 223]). The one-way function used in the implementation is:
f(z) = Trunc,(SHA-1(z)) with different values for the security parameter £.
The public key in this scheme is composed of m/t strings yo, y1, . - ., Y /¢, but
it can also be replaced with its hash value y = h™ (yo, 1, .. -+ Ym/¢), which is
what we do in our implementation, in order to keep keys shorter (the price to
pay is an extra computation of A" at verification time).

4.2 Using Target-Collision Resistant Hash

USING TCR HASHING IN THE ON-LINE STEP. When signing messages one usually
hashes them down with a FCR function to shorten them. It is well known that
one can uses a TCR function provided that the key of the hash function is signed
together with the message digest and sent as part of the signature. One of the
advantages of using TCR functions is that the message digest may be shorter,
but this advantage is usually off-set by the need to sign the key as well.

However in the case of off-line/on-line signatures, the advantage of using TCR
functions can be substantial. Indeed one can 'prepare in advance’ the key k for
the TCR function to be used in the on-line step, and sign it during the off-line
step with the “regular” signature scheme.

In the EGM construction, this results in a substantial efficiency gain, since the
one-way functions based one-time signatures are very sensitive to the length of
the message being signed. Indeed the size of the signature grows quadratically
in the length. Since the key k of the TCR, function is signed in the off-line step,
the one-time signature is only applied to the digest, resulting in a substantially
shorter signature.

Similarly in the Shamir-Tauman approach, using a TCR function to hash the
message in the online case can improve the efficiency. For example if we use the
RSA-based chameleon hash it will be possible to use a shorter public exponent e.

UsING TCR HASH IN THE OFF-LINE STEP. As we pointed in the previous sec-
tion, the quantities signed in the off-line step are not under the control of the
adversary, and they are actually random quantities (the verification key of the
one-time signature or of the chameleon hashing, and the key of the TCR func-
tion). For this reason it is also possible to use a TCR, function to compress them,
rather than a FCR one. In this case the key k is chosen once and for all and
made part of the public key.

4.3 Test Settings

As we said above we performed implementation of all the schemes described
above. With OTS we denote the “one-time signature” based on one-way func-
tions described in Section

GHR-0TS setting: This implementation uses the GHR scheme for the off-line
step, and the OTS scheme for the on-line case. As pointed above we use TCR
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hashing to compress the message, the key is signed in the off-line part. The
GHR-0TS setting can be configured with various parameters. In all our exper-
iments we set the size of the RSA modulus to 1024. We varied the other pa-
rameters as you can see in the Table. These parameters are: ots 1 = 80,96, 112
the size of the TCR output, i.e. the size of the digest being signed in the OTS
scheme; ots t = 4,8,10,12, 16 the size of the blocks in the OTS scheme; and
ots p=1,5,8,10,12, 16 the number of memorized pebbles in Jakobsson’s opti-
mization (1 means that it is disabled).

GHR-DL setting: This implementation uses the GHR scheme for the off-line step,
and the discrete-log based chameleon hashing for the on-line case. Here we use
FCR hashing to compress the message in the on-line step. We implemented the
group G as the subgroup of order g in Z; where p, g are primes such that ql(p—1).
The parameters of the GHR-DL setting are: the size of the GHR modulus N and
the sizes of the primes p and q. We only ran experiments with |N| = |p| = 1024
and |¢| = 160.

GHR-RSA setting: This implementation uses the GHR scheme for the off-line
step, and the RSA based chameleon hashing for the on-line case. Here we use
FCR hashing to compress the message in the on-line step. The parameters of
the GHR-RSA setting are: the size of the GHR modulus N (which can be used
also as the modulus for the chameleon hash) and the size of the exponent e for
the chameleon hash. We only ran experiments with |N| = 1024 and |e| = 160.

GHR-DL2 setting: This the same as GHR-DL but use TCR hashing to compress
the message in the on-line step. The key of the TCR hash is signed in the off-line
step. This results in the shortening of some of the exponents used to compute
the chameleon hash. The parameters are the same of GHR-DL with an extra one:
tcr bits = 80,96 the length of the output of the TCR hash function.

GHR-RSA2 setting: the same as GHR-RSA but using TCR hashing to compress
the message in the on-line step. The key of the TCR hash is signed in the off-line
step. This results in the shortening of the public exponent e used to compute
the chameleon hash. In this case the parameter tcr bits = 80,96 denotes the
length of the output of the TCR hash function and of the exponent e (actually
le] = tcr bits + 1).

CS-0TS, CS-DL, CS-RSA, CS-DL2 and CS-RSA2 settings: they are analogous to
the previous settings, but here we use the CS signature scheme instead of the
GHR one. As before the CS signature modulus was always chosen as a 1024-bit
one. The other parameters are the same, as in the above cases.

4.4 Analysis of the Results

In this section we summarize what we learned from our experimental results.

EGM construction vs. ST construction. The use of TCR hashing in the
EGM settings, results in experimental results which are comparable to the ST
measurements. For example if we focus on the time to perform the on-line step
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(arguably the most important measure in off-line/on-line signatures), we see
that for the ST construction this is minimized with a time of about 0.03 ms by
using the Discrete Log based chameleon hashing (no matter if the GHR and CS
signature is used in the off-line step, of course) Nevertheless the setting GHR-0TS
reaches a comparable on-line signing time of 0.47 ms when istantiated with
similar security levels. The drawback is a longer signature, though the difference
is not huge: 2944 bits versus the 1184 bits of GHR-DL. It is possible to shrink
the EGM signature size to 2144 using bigger blocks and applying Jakobsson’s
technique. The on-line signature time continues to be competitive (1.27 ms) at
the cost of a bigger temporary storage (8304 bits). It is important to note that
the hash chain traversals in the verification step do not enjoy the benefit of the
Jakobsson’s technique as the pebbles must be kept secret.

GHR wvs. CS. The GHR signature scheme outperforms the CS signature scheme
in almost all parameters: off-line and on-line signature time, and signature size.
The CS scheme is faster only in verification time, as to be expected since the
GHR must use a longer public exponent, because of the division-intractability
assumptions.

Chameleon hashing: DL-based vs. RSA-based. The time required for the
hash evaluation step is comparable in both the schemes but the DL-based one has
a notable advantage in the collision finding step. This operation is fundamental
in the off-line/on-line signature construction, so it is the optimal choice for the
ST construction.

Use of TCR hashing. As we pointed out above the use of TCR hashing
has a dramatic impact on the efficiency of the OTS schemes. The experiments
also point out that TCR hashing improves also the Shamir-Tauman approach,
as it reduces the size of some of the exponents used in the exponentiations. A
more pronounced improvement is obtained when using the RSA-based chameleon
hashing: as in this construction the use of TCR hashing reduces the size of two
exponents, rather than one as in the Discrete Log based one.

5 Conclusions

This paper presents some theoretical results about off-line/on-line digital signa-
tures. We showed that the Shamir-Tauman approach is conceptually just a differ-
ent instantiation of the generic EGM paradigm. We did this by proving that the
EGM paradigm requires weaker security properties from its components and then
showing that such properties are satisfied by chameleon hash functions. We also
showed that some type of chameleon hash functions can be used as full-fledged
one-time signatures. We performed extensive implementation results to see what
approach is preferable. Surprisingly we found that for appropriate choices of se-
curity parameters the ST and EGM approaches are comparable. Our experiments
also showed that the Gennaro-Halevi-Rabin signature scheme is preferable to the
Cramer-Shoup one on all respects except verification time.
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A On One-Time Signatures

In Section we presented two one-time signature schemes: Lamport’s and
Even et al.’s. The former is faster, but produces long signatures and keys. The
latter allows for an efficiency trade-off between the signature/key sizes and time
required to generate and to verify a signature tag.

SECURITY. Lamport’s scheme is proved secure under the assumption that one way
functions exist. Even et al. solution relies on a seemingly stronger assumption:

Definition 6 (Quasi-Inverting). Let f : {0,1}* — {0,1}* be a polynomial-
time computable function. Given an image, y, the task of quasi-inverting f on
y is to find an x and an i = poly(|y|) so that fiT(x) = fi(y). (Fori =0, the
standard notion of inverting is regained.)

CONCRETE SECURITY ANALYSIS. Here we focus on the security of the two one-
time signature schemes presented in Section In particular we analyze the
efficiency (in terms of signature/key length) of Even et al.’s scheme with respect
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to Lamport’s one, under the additional requirement that the two schemes should
achieve the same security level.

Let f:{0,1}* — {0,1}¢ be a one-way function. In both schemes we assume
to sign messages of length m. In the scheme of Even et al., t represents the block
length.

Let A be an adversary that breaks Lamport’s one-time signature scheme with
probability e. It is possible to prove that this leads to an adversary B that inverts
J with probability .

Similarly, if A’ is an adversary that breaks Even et al. scheme with probability
€', this leads to an adversary B’ that quasi-inverts f with probability (m /te)l2‘+1
(see [12], for details).

In what follows, we restrict to the case where f is a one way permutation (so
that quasi-inverting f is equivalent to inverting f). We assume that no adver-
sary can invert f with probability better than 1/2¢. For the case of Lamport’s

€

scheme, this leads to 5 = 21£ which means that one cannot forge signatures

with probability better than e = 22”}. Similarly for Even et al’s scheme we
have that (m /;WH = 2&,, implies a security for the signature scheme which is

t+1—¢/ . . :
¢ =m2 . Thus, in order for the two schemes to achieve the same security

t
2m 1712’"'1 ¢

level, it has to be the case that ¢ = ¢, which means ot =
Thus, to achieve the same security level, for the two schemes one has to con-
sider a larger security parameter for the Even et al. scheme.

0=0+t—log(t) (1)

SIGNATURE LENGTH. In Lamport’s scheme signatures have length d = m/. In
Even et al.’s, on the other hand, the signature length is d’ = ((m/t) 4+ 1)¢'. From
Equation () we get:

¢
d’:”z +m+e+t—(T+1)zog(t) 2)

Now, we want to establish for which choice of ¢ we have d’ < d. That is, for
which choice of ¢ Even et al. signatures are shorter than Lamport’s ones.

From "¢ +m+ ¢+t — (7 + 1)log(t) < ml one easily derives that if m, ¢ > 2
then ¢ > 1 is the required condition.

EXPERIMENTAL RESULTS. The relation among the variables involved in Equa-
tion () is analyzed through the tabulation of realistic values. We fix the security
parameter for the Lamport’s scheme ¢ = 80 and we assume to deal with messages
of m = 2¢ bits length. For different values of ¢ we determine the corresponding
values for the Even et al.’s parameters £/, d’ using the above relations. All these
values are reported in Table[A} the signature length gain (d — d’) obtained using
the EGM scheme instead of the Lamport’s one is emphasized too (a negative
value means that the use of the EGM construction is self-defeating).

We observe that the EGM solution is a winning solution for each real cases:
the necessary augment of the security parameter ¢’ is minimal.
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Table 1. Experimental results with parameters £ = 80, m = 2/

t d d gain (d—d)
1 81 13041 12800 =241

2 81 6561 12800 6239

3 81.4150 4423.6 12800 8376.4

4 82 3362 12800 9438

5 82.6781 2728.4 12800  10071.6

B A Discrete Log-Based Double Trapdoor Commitment
Scheme

Here we briefly recall the double trapdoor commitment scheme given in [6] and
then we discuss further applications of such a scheme.

KEY GENERATION. Consider a cyclic group G of prime order ¢ (with |g| = £ the
security parameter) like before. Next, denoting with g a generator of G, choose
two random values z,y € Z, and sets hy = ¢g* and hy = g¥. The public key is
(G,q,9,h1,hs) the private key is (z,y).

THE COMMITMENT FUNCTION. To commit to a message m € Z,, we use two
random values 7, s €g Z; and set C(m,r,s) = g™h1h;

Theorem 6. Under the assumption that computing discrete logarithms is hard,
the above function C is a double trapdoor commitment scheme.

Proof. We prove this theorem by showing that the three main properties of
double trapdoor chameleon hash functions are satisfied.

Distribution of keys.. Here we show the details of the TCKG algorithm. On
input 1¢ and a bit 4, it chooses two random generators g, hig € G, a random
thi € Z; and sets, h; = gt*i. The public key is set as (G, ¢, g, h1, h2) the trapdoor
is tk;. It is trivial to verify that all the required properties are satisfied.

Collision resistance. We prove this by contradiction. We assume there ex-
ists an adversary 4 that can find a collision in the proposed double trapdoor
commitment scheme with non-negligible probability e. Then we show how to
build a simulator B that can solve the Discrete Logarithm (DLog) problem with
non-negligible probability at least ¢/6. A finds a collision if, given the pub-
lic key pk, it outputs two triples (m,r,s), (m/,r',s") with m # m’ such that
Cpr(m,r,s) = Cpp(m/, ', s"). We observe that at least one of the following con-
ditions must hold: (1) r # 7’ or (2) s # s’. We can distinguish between three
types of collisions:

Type I m#m/,r#1,s# s
Type II m#m/,r=1",s# s
Type IIT m #m/,r #£1',s =5



120 D. Catalano et al.

Thus A outputs a collision of either type I, type II or type III with probability
at least ¢/3. Now we describe a simulator B that uses such collisions to solve the
DLog problem.

In the first phase B receives in input two primes p,q such that ¢|p — 1, a
generator g of a cyclic subgroup G of Z; of order ¢ and an element X € G. The
aim of B is to output x € Z; such that g* = X.

B has to construct the public key for the double trapdoor commitment scheme.
First it flips a binary coin 3. If 5 = 0 B bets on the fact that A will provide a
collision of type I or III (where condition 1 holds true). Otherwise if 5§ = 1 it
bets on the fact that the received collision is of type I or II (it satisfies condition

2). B chooses random y & Zy. 1t B =0 it sets hy = X, hy = g, otherwise it
sets by = ¢g¥,he = X. It gives PK = (G,q,g,h1,h2) to A. Then A produces
a collision (m,r,s),(m’,r’,s"). Now we distinguish between the three types of
collisions described above.

TYPE I COLLISION. In this case B can solve the DLog problem with non-negligible
probability /3. Indeed if 3 = 0 Boutputsz = ™ 7”?:%5 ~*) mod q as the discrete
logarithm of X. Otherwise if 3 = 1 B outputs x =

m’ —m+y(r' —r
s—s’

) mod q.

TyPE IT COLLISION. In this case if 3 = 0 B loses its initial bet and fails. Other-
wise if 3 = 1 it computes z = ", " 7" mod ¢. Thus with probability at least gé
B solves the DLog problem.

TvyPE III cOLLISION. This case is similar to the previous. If 3 = 1 B loses its
initial bet and fails. Otherwise if § = 0 it computes z = ™ =~ mod ¢. Thus with

r—r/

probability at least § ; the simulator can find the discrete logarithm of X.

Distributions of Collisions. We consider the two distributions:
{m,m',r,s — Zy, : Coll(tky,m,m’,r,s)}
{m,m’,r,s — Z;, : Coll(tka,m,m’,r,s)}

In the first distribution Coll outputs a value (1, s) such that ' = m;m' -+7r mod q.
We observe that s is uniformly distributed in Zj and if r is uniformly distributed
in Zg, then also r’ is uniformly distributed in Zy. In the second distribution Coll
outputs a pair (r,s’) such that s’ = m;m/ + s mod ¢. If s is uniform in Zj,
then also s’ is uniform in Zy. Thus, both the two distributions are perfectly
indistinguishable from uniform in Z;.



Construction of Universal Designated-Verifier
Signatures and Identity-Based Signatures from
Standard Signatures

Siamak F. Shahandashti! and Reihaneh Safavi-Naini?

1 School of Comp. Sci. and Soft. Eng., University of Wollongong, Australia
http://www.uow.edu.au/~sfs166
2 Department of Computer Science, University of Calgary, Canada
http://wuw.cpsc.ucalgary.ca/~rei

Abstract. We give a generic construction for universal designated-ve-
rifier signature schemes from a large class, C, of signature schemes. The
resulting schemes are efficient and have two important properties. Firstly,
they are provably DV-unforgeable, non-transferable and also non-delega-
table. Secondly, the signer and the designated verifier can independently
choose their cryptographic settings. We also propose a generic construc-
tion for identity-based signature schemes from any signature scheme in C
and prove that the construction is secure against adaptive chosen mes-
sage and identity attacks. We discuss possible extensions of our con-
structions to universal multi-designated-verifier signatures, hierarchical
identity-based signatures, identity-based universal designated verifier sig-
natures, and identity-based ring signatures from any signature in C.

1 Introduction

Universal Designated-Verifier Signatures (UDVS). UDVS schemes were
first proposed by Steinfeld et al. [I], based on ideas of Jakobsson et al. [2], with the
goal of protecting users’ privacy when using certificates. In such a scheme, a user
Alice has a certificate that is signed by a certificate issuer. If Alice wants to present
her certificate to a verifier Bob, she will use Bob’s public key to transform the
issuer’s signature into a designated signature for Bob. Bob can verify the issuer’s
signature by verifying the validity of the designated signature. However, he cannot
convince a third party that the certificate was signed by the issuer because he can
use his secret key to construct the same designated signature.

Steinfeld et al. proposed security definitions for UDVS schemes and gave
a concrete scheme based on bilinear group pairs [I]. In [3] Lipmaa et al. ar-
gued that the original security definition in [I] did not sufficiently capture the
verifier-designation property and introduced a new security notion, called non-
delegability. Authors showed that in some UDVS schemes including Steinfeld
et al’s [I], the issuer can delegate his signing ability - with respect to a fixed
designated verifier - to a third party, without revealing his secret key or even
enabling the third party to sign with respect to other designated verifiers. They
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argue that, in many scenarios, such delegation property is undesirable and must
be prevented.

As an example, consider the following scenario. A university uses a digital
signature scheme to issue student cards. Alice, a student, wants to prove her-
self a student in a gym to get a discount. To protect her privacy, she converts
the university’s signature on her card to a designated signature first and then
presents the designated signature as a proof of studentship. Now if the UDVS
in use is delegatable, the university, without having to issue a card for Alex, a
non-student, will be able to publish a value that enables him (and anybody) to
compute a designated signature for himself get the discount at the gym. This
value does not enable Alex to compute university’s private key, sign other docu-
ments on behalf of the university, or even compute a designated signature of the
university to use other services. Besides, since the university has not actually
issued any fraudulent student cards, it cannot be held responsible for any mali-
cious activity. These two facts provide enough safety margin for the university
to abuse such delegation ability.

None of the UDVS schemes proposed to date, except a recent scheme of Huang
et al. [], has treated non-delegatability as a security requirement. Furthermore,
the results of Lipmaa et al. [3] and later results of Li et al. [5] show that many
of the proposed UDVS schemes are delegatable, including the scheme from [I]
and one of the schemes from [6].

Our Contributions on UDVS. We give a generic construction for secure
UDVS schemes from a large class of signature schemes. The class is defined by
requiring certain properties from signature schemes. We use a definition of secu-
rity that includes the original security notions of Steinfled et al, i.e. unforgeability
and non-transferability privacy, and also the notion of non-delegatability inspired
by the work of Lipmaa et al. [3] and adapted to UDVS.

To construct non-delegatable UDVS schemes, we will use Jakobsson et al’s
approach to providing verifier designation [2]: “Instead of proving ©, Alice will
prove the statement: Either © is true, or I am Bob.” In UDVS schemes, Alice
wants to prove validity of her certificate to Bob. A natural construction of UDVS
is a non-interactive version of a proof of the following statement by Alice: “Ei-
ther my certificate is valid, or I am Bob.” Such a signature can be constructed
as follows: first pick a protocol for proof of knowledge of Alice’s certificate and
another for the proof of knowledge of Bob’s secret key; then construct a protocol
for proof of knowledge of Alice’s certificate or Bob’s secret key by combining the
two protocols via e.g. techniques of Cramer et al. [7]; finally make the resulting
protocol non-interactive via e.g. Fiat-Shamir transform [8]. It is intuitively clear
that such a construction yields a secure UDVS scheme, assuming both the under-
lying protocols are honest-verifier zero-knowledge (HVZK) proofs of knowledge.
However, efficient protocols for HVZK proof of knowledge of a signature on a
message are only known for a small group of signature schemes.

We propose a construction for UDVS schemes that works for any combination
of a signature in class C of signature schemes and all verifier key pairs that
belong to a class K, and prove its security in the above sense, in the Random
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Oracle Model (ROM) [9]. The class C of signatures that can be used in our
construction includes signature schemes such as RSA-FDH [I0], Schnorr [I1],
modified ElGamal [12], BLS [13], BB [I4], Cramer-Shoup [I5], and both schemes
proposed by Camenisch and Lysyanskaya [I6]17]. Class K is the set of all key
pairs for which there exist protocols for HVZK proofs of knowledge of the secret
key corresponding to a public key and includes public and private key pairs of
RSA cryptosystem, GQ identification scheme [18], and discrete-log based public
and private key pairs.

Our construction are generic and security proofs guarantee security of a large
class of UDVS schemes that are obtained from standard signature schemes that
are members of the class C. We note that the only other known non-delegatable
UDVS due to Huang et al. [] is in fact an instance of our construction. Secondly,
the construction does not limit the signer and the verifier to have ‘compatible’
settings: the construction works for any choice of signer and verifier settings as
long as the signature scheme is a member of class C and the verifier key belongs
to the class K. All previous constructions only work for a specific combination
of signature schemes and verifier key pairs.

Identity-Based Signatures. Identity-based cryptography was proposed by
Shamir in [I9], where he also proposed an identity-based signature (IBS) scheme.
There are two known generic constructions of IBS. The first is due to Bellare et
al. [20], which generalizes an earlier construction of Dodis et al. [2T]. They show
that a large number of previously proposed schemes are in fact instances of
their generic construction. However, as noted by the authors, there are some
IBS schemes, including Okamoto’s discrete logarithm based IBS [22] (called
OkDL-IBS by Bellare et al.) and a new IBS scheme proposed in [20] (called
BNN-IBS), that are not instances of their generic construction.

The other generic construction is the one of Kurosawa and Heng [23]. Their
construction requires an efficient zero-knowledge protocol for proof of knowledge
of a signature, which makes their construction applicable to only a few schemes
such as RSA-FDH and BLS.

Our Contributions on IBS. We propose a construction of IBS schemes from any
signature in the aforementioned class C and prove the construction secure against
adaptive chosen message and identity attacks. In our construction, a user’s secret
key is basically a signature of the authority on the user’s identity. An identity-based
signature is generated as follows: the user constructs a proof of knowledge of her
secret key (i.e. the authority’s signature on her identity) and then transforms it into
a signature on a message using the Fiat-Shamir transform. For signature schemes
with efficient zero-knowledge protocols for proof of knowledge of a signature, our
constructions will become the same as those of Kurosawa and Heng [23]. Thus, our
constructions can be seen as a generalization of theirs.

Many previous IBS schemes can be seen as instances of our generic construc-
tion; this includes the schemes of Fiat and Shamir [§], Guillou and Quisquater

[18], Shamir [I9], pairing-based schemes from [24I25/2612728/29] and basically all
the convertible IBS schemes constructed in [20]. Both OkDL-IBS and BNN-IBS,
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which are not captured by generic constructions of Bellare et al, fit as instances of
our generic construction as well. However, all the IBS schemes that we construct
are proved secure in ROM. Thus, ROM-free constructions such as the folklore
certificate-based IBS schemes formalized in [20] and the scheme of Paterson and
Schuldt [30] are not captured by our framework.

Further Contributions. Our constructions of UDVS schemes can be nat-
urally extended to (non-delegatable) universal multi-designated-verifier signa-
tures. Furthermore, we observe that our identity-based constructions support a
nesting-like property in the sense that a user can act as a new key generation
authority and issue keys for other users. This fact enables extensions of our
IBS constructions to hierarchical identity-based signatures out of any signature
scheme in the class C. We will also point out the possibility of generic construc-
tion of (non-delegatable) identity-based universal designated verifier signatures
and identity-based ring signatures from any signature in C using our techniques.

1.1 Related Work

UDVS schemes were first proposed by Steinfeld et al. in [I]. The proposed se-
curity definitions and a concrete scheme based on bilinear group pairs. In [6]
authors proposed extensions of Schnorr and RSA signatures to UDVS schemes.
Other pairing-based schemes were proposed in [31] and [32], and Laguillaumie
et al. introduced ‘Random Oracle free’ constructions [33].

Our constructions are very close to Goldwasser and Waisbard’s generic con-
structions of designated confirmer signatures in [34]. They also use protocols for
proof of knowledge of a signature as a tool for their constructions. They also
present such protocols for a number of signature schemes including Goldwasser-
Micali-Rivest [35], Gennaro-Halevi-Rabin [36], and Cramer-Shoup [I5]. This
shows that the above signatures are in class C.

A closely related area is that of ring signatures. Generic constructions of ring
signatures as Fiat-Shamir transformed proofs of knowledge of one-out-of-n se-
cret keys were previously known. Our techniques deal with a similar but different
concept of proofs of knowledge of signatures on known messages. Although pro-
tocols for proof of knowledge of a secret key corresponding to a public key are
more studied and well-known, proof of knowledge of a signature on a message
with respect to a known public key has been less studied.

It is worth noting that the previous constructions of identity-based universal
deignated verifier signatures by Zhang et al. [37] and universal multi-designated-
verifier signatures by Ng et al. [38] are both delegatable. Our generic construc-
tions of the above schemes, as mentioned before, guarantee non-delegatability.

2 Preliminaries

2.1 Notation

We use different fonts to denote Algorithms, SECURITY NOTIONS, and Oracles,
respectively. By ‘¢ « a’ we denote that a is assigned to x and by ‘¢ «— X(a)’
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we denote that X with input a is run and the output is assigned to z. || and A
denote concatenation and definition, respectively.

2.2 Proofs of Knowledge

Let P be ab NP problem and Rel be the corresponding NP relation. Let Rel be the
corresponding (poly-time) membership deciding algorithm, i.e. (Pub, Sec) € Rel
iff Rel (Pub, Sec). Following the works of Camenisch and Stadler [39], we will
use the notation PoK {Sec : Rel (Pub, Sec)} for showing a protocol for proof of
knowledge where the prover proves knowledge of her secret Sec corresponding
to a publicly known Pub, s.t. (Pub, Sec) € Rel.

A public-coin protocol is a protocol in which the verifier chooses all its mes-
sages during the protocol run randomly from publicly known sets. A three-move
public-coin protocol can be written in a canonical form in which the messages
sent in the three moves are often called commitment, challenge, and response,
denoted here by Cmt, Chl, and Rsp, respectively. The challenge Chl is drawn
randomly from a set, called the challenge space. The protocol is said to have
the honest-verifier zero-knowledge property (HVZK) [40], if there exists an al-
gorithm that is able to simulate transcripts that are indistinguishable from the
ones of the real protocol runs without the knowledge of the secret. The protocol
is said to have the special soundness property (SpS from now on) as described
in [7], if there also exists an algorithm that is able to extract the secret from two
transcripts of the protocol with the same commitment and different challenges.
A three-move public-coin protocol with both the HVZK and SpS properties is
usually called a 3 protocol.

2.3 Proofs of Disjunctive Knowledge

Cramer et al. showed how to extend X protocols to witness indistinguishable
(WI) X protocols for proving knowledge of (at least) ¢ out of n values using
secret sharing schemes [7]. They called such protocols proofs of partial knowledge.
Witness indistinguishability guarantees that even a cheating verifier will not be
able to tell which ¢-subset of the n values is known by the prover. Thus, the
transcripts of different runs of the protocol with different t-subsets as prover
input will be indistinguishable from one another.

An instance of such partial proofs of knowledge that we find useful here is a
WI proof of knowledge of one out of two, which we call a proof of disjunctive
knowledge. These proofs were also observed by Camenisch and Stadler [41] for
discrete logarithms. In line with the above, we will use the following notation
to show such proofs: to show a protocol for proof of knowledge of a value Secy
such that Rel; (Puby, Secy) or a value Secy such that Rely (Pubg, Secs), we use
the notation PoK {(Sec; V Secs) : Rely (Puby, Secy) , Rela (Puby, Seca) }. The
3} protocol for proof of knowledge of Sec; or Secy corresponding to Pub =
(Puby, Pubs) can be constructed in the canonical form using simple techniques.
Both HVZK and SpS properties are also inherited by the constructed proof of
disjunctive knowledge.
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2.4 The Fiat-Shamir Transform

Fiat and Shamir proposed a method for transforming (interactive) three-move
public-coin protocols into non-interactive schemes [8]. The idea is to replace the
verifier with a hash function. The rationale is that in such a protocols, all the
verifier does is providing an unpredictable challenge that can be replaced by
a Random Oracle hash function. This idea has been applied in two different
ways depending on what is included in the hash function argument. Firstly, the
challenge can be set to the hash of the concatenation of the public inputs and the
commitment, i.e. Chl « H (Pub || Cmt). This will result in a non-interactive
proof of knowledge. We will denote the resulting algorithms for non-interactive
proof and verification of knowledge by NIPoK and NIVoK, respectively. Note
that the output of the former, denoted by 7, is a non-interactive proof that
can be publicly verified. HVZK and SpS properties for non-interactive proofs
are defined similar to their counterparts in interactive proofs. Pointcheval and
Stern’s Forking Lemma [12] can be used to easily prove in the Random Oracle
Model that if the original interactive proof has HVZK and SpS properties then
the Fiat-Shamir construction will have these properties too.

A second way of applying the Fiat-Shamir method is to set the challenge
as the hash of the concatenation of the public inputs, the commitment, and
an arbitrary message m, i.e. Chl «— H (Pub | Cmt || m). This will give us a
signature scheme. Let Sign and Verify denote the resulting algorithms for signing
and verification, respectively. Similarly, a signature, denoted by o, can be verified
publicly. The resulting signature scheme will be existentially unforgeable under
chosen message attack if the original protocol is a 3 protocol [12/42/43].

We use the phrase signature of knowledge (SoK) for both the NIPoK and Sign
algorithms, and the phrase verification of knowledge (VoK) for both the NIVoK
and Verify algorithms resulting from applying Fiat-Shamir transform to a X
protocol as above. Assuming the original protocol is PoK {Sec : Rel (Pub, Sec)},
we denote the corresponding SoK and VoK by,

SoK {Sec : Rel (Pub, Sec)

( IPoK (Pub, Sec)
VoK {Sec : Rel (Pub, Sec)

(

(

(7 ) = NIVoK(Pub )
(m) = Slgn (Pub, Sec,m)
(m,o) = Verlfy (Pub,m, o).

SoK {Sec : Rel (Pub, Sec)
VoK {Sec : Rel (Pub, Sec)

w—/‘—«—’w—/“v—’

2.5 On Public-Private Key Pairs

Key pairs are generated by a key generation algorithm KeyGen that takes a
security parameter as input and outputs the key pair. In public key systems
it must be hard to compute the secret key corresponding to a given public
key. We call the hard problem of computing the secret key from a given public
key for a key pair, the underlying problem of that key pair. A public key thus
gives an instance of the underlying problem and the corresponding secret key
is the solution to that problem. If key pairs are poly-time verifiable, i.e. one
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can efficiently verify if a given secret key corresponds to a given public key, the
key generation algorithm KeyGen defines an NP relation Pair consisting of all
the possible key pairs. We are interested in key pairs for which there exists a &
protocol to prove knowledge of a secret key corresponding to a given public key.
Let us call the set of these key pairs K. A ¥ protocol for a key pair in K can
be shown as PoK {sk : Pair (pk, sk)}. Some key pairs that have ¥ protocols as
above are listed in [44]. These include key pairs such as GQ identification scheme,
discrete-log-like key pairs, and key pairs of the RSA cryptosystem. We will use
the phrase key type to refer to the types of the keys. For instance, we denote the
keys for the GQ identification scheme by the term ‘GQ-type key pairs’.

3 Defining the Class C of Signatures

Let SS = SS. (KeyGen, Sign, Verify) be a provably-secure (standard) signature
scheme. Security of the scheme, i.e. its existential unforgeability under chosen
message attack (EUF-CMA) [35], is based on the hardness of an underlying prob-
lem denoted here by Pss. We use PK Sp and M Sp to denote the public key space
(i.e. the set of all possible public keys) and the message space of a standard sig-
nature scheme, respectively. We define a class C of standard signature schemes
as follows.

Definition 1. C is the set of all signature schemes SS for which there ezists a
pair of algorithms, Convert and Retrieve, where Convert gets the public key pk,
a message m, and a valid signature o on the message as input and converts the
signature to a pair & = (Gaux, Opre) called converted signature as follows:

G = (Faux; Opre) < Convert (pk,m,o) , such that:

— there exists an algorithm AuxSim such that for every pk € PKSp and
m € MSp the output of AuxSim (pk,m) is (information-theoretically) in-
distinguishable from Gaux,

— there exists an algorithm Compute that on input pk, m, and G,ux computes
a description of a one-way function f () and an I in the range of f, such
that I is the image of Gpre under the one-way function f, i.e. for a converted
signature the output of the following algorithm is true.

Algorithm Valid (pk,m,5)
(f,I) < Compute (pk, m, Gaux)
d—(f (&pre) =1)

return d

— there exists a X protocol for proof of knowledge of a Sec = &pye corresponding
to a Pub = (pk,m, Ganx) such that & is valid with respect to pk and m, i.e.
there exist a X protocol for the following proof of knowledge

PoK {Gpre : Valid (pk, m, (Gaux, pre))}
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and for any candidate converted signature satisfying Valid (pk, m, (Gaux, Opre)), @
valid signature on the message m can be retrieved via the Retrieve algorithm as
follows:

o < Retrieve (pk, m, &)

The properties required by the definition enables the holder of a signature on
a message, that is known to a verifier, to efficiently prove the knowledge of the
signature, by first converting the signature and then revealing the simulatable
part of the converted signature; this will enable the verifier to determine I and
f. Finally, the protocol for proof of knowledge of the pre-image of I under f is
carried out by the two parties. Note that since any NP relation has a 3 protocol
[45] ensures that for any signature scheme there is a protocol that proves the
knowledge of the signature although such protocols are not in general efficient.

Many of the signature schemes in use today fall into the class C. Examples are
RSA-FDH [10], Schnorr [11], Modified ElGamal [12], BLS [13], BB [14], Cramer-
Shoup [15], Camenisch-Lysyanskaya-02 [16], and Camenisch-Lysyanskaya-04 [17]
signatures. In the full version of this paper [44] we briefly show why each of these
schemes belongs to C.

4 Universal Designated Verifier Signatures

In this section, we first review the definitions of UDVS schemes and their security.
We then propose our generic construction of UDVS schemes from signature
schemes in C, and prove its security.

4.1 Definition

A UDVS is a signature scheme with an extra functionality: a holder of a signa-
ture can designate the signature to a particular verifier, using the verifier’s public
key. A UDVS can be described by adding extra algorithms to the ones needed for
the the underlying signature scheme. Here, we briefly recall the definitions from
Steinfeld et al. [I]. A UDVS has eight algorithms: a Common Parameter Gen-
eration algorithm CPGen that on input 1*, where k is the security parameter,
outputs a string consisting of common parameters c¢p publicly shared by all users;
a Signer (resp. Verifier) Key Generation algorithms SKeyGen (resp. VKeyGen)
that on input ¢p, output a secret/public key-pair (sks, pks) (resp. (sky, pky)) for
the signer (resp. verifier); a Signing and a Public Verification algorithm Sign
and PVer, where the former takes as input sks and a message m and outputs
a signer’s publicly-verifiable (PV) signature o and the latter takes as input pks
and (m, o) and outputs a boolean variable for versification result; a Designation
and a Designated Verification algorithm Desig and DVer, where the former on
input pks, pky, and (m, o), outputs a designated-verifier (DV) signature ¢ and
the latter on input pks, sk, and (m, &), outputs a boolean verification decision;
finally a Verifier Key-Registration VKeyReg algorithm, which is a protocol be-
tween a Key Registration Authority (KRA) and a verifier to register verifier’s
public key.
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4.2 Security

Steinfeld et al. identified two security requirements for UDVS schemes: DV-
unforgeability and non-transferability privacy. We consider a third property pro-
posed by Lipmaa et al. called non-delegatability. Intuitively, DV-unforgeability
captures the inability of the adversary to forge designated signatures on new
messages even if it can have signatures on chosen messages and can verify cho-
sen pairs of messages and designated signatures, non-transferability privacy cap-
tures the inability of the designated verifier to produce evidence to convince a
third party that the message has actually been signed by the signer, and finally
non-delegatability captures the inability of everyone else (everyone except the
signature holder and the designated verifier) to generate designated signatures,
hence effectively preventing the signer, the signature holder and the designated
verifier to delegate their ability to generate designated signatures without re-
vealing their corresponding secrets.

DV-Unforgeability. We use Steinfeld et al’s definition of security of UDVS
schemes [20] against existential designated signature unforgeability under chosen
message attack, denoted by DV-EUF-CMA-attack. For the formal definition refer

to [20] or [44].

Non-transferability Privacy. Steinfeld et al. have formalized this property in
detail and proposed a definition capturing the fact that possessing a designated
signature does not add to the computational ability of the designated verifier [IJ.
In their formalization, they require that whatever a designated verifier who has
been given a designated signature can leak to a third party (even at the expense
of disclosing his secret key), he would have been able to leak without the desig-
nated signature. One can easily see that if designated signatures are simulatable
by the verifier himself then a designated signature adds no computational ability
to the verifier and thus, without going into details of the formal definition for
non-transferability privacy, we will state and use the following lemma to prove
our schemes secure.

Lemma 1. A scheme UDVS achieves perfect non-transferability privacy if there
exists an efficient forgery algorithm Forge, such that for any two pairs of keys
(sks,pks) and (sky,pky) generated by the key generation algorithms of UDVS,
and for any message m, the following two random variables have the same dis-
tribution:

Forge (pks, sky, pky, m) and Desig (pks, pky, m, Sign (sks, m))

Other flavors of non-transferability privacy, i.e. statistical and computational
non-transferability privacy can be analogously defined by requiring the two dis-
tributions to be statistically or computationally indistinguishable, respectively.

Non-delegatability. Lipmaa et al. defined non-delegatability property of desig-
nated-verifier signatures [3]. Their definition of k-non-delegatability requires the
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designated signature to be a non-interactive proof of knowledge with knowledge
error £ [40], of the signer’s or the designated verifier’s secret key. The reason for
such a definition is to guarantee that only the signer or the designated verifier
are able to produce a designated signature, thus preventing them from being able
to delegate their ability without revealing their secret key. In a UDVS scheme,
we want only the person who holds a signature or the designated verifier be able
to produce a designated signature. Lipmaa et al’s definition can be extended to
the UDVS case as follows. k-non-delegatability for UDVS schemes requires the
designated signature to be a non-interactive proof of knowledge, with knowledge
error Kk, of a signature or the designated verifier’s secret key.

We use an observation of Cramer et al. [47, p. 359] to simplify the non-
delegatability proofs of our constructions. Cramer et al. noted that is that a
three-move public-coin protocol with SpS property and challenge space ChSp
is a proof of knowledge with knowledge error Kk = |C’hSp|_1. Using Forking
Lemma, it can be easily seen that the non-interactive version of this observation
holds in the Random Oracle Model. That is, a Fiat-Shamir non-interactive proof
of knowledge (i.e. our NIPoK) with SpS property and challenge space ChSp is
a non-interactive k-proof of knowledge in the the Random Oracle Model with
knowledge error £ = |ChSp|". Based on these observations, we have the fol-
lowing lemma:

Lemma 2. A scheme UDVS is k-non-delegatable if a designated signature is a
Fiat-Shamir non-interactive proof of knowledge of a signature or the secret key
of the verifier, with SpS property and |ChSp| > i

4.3 Construction of UDVS Schemes from Standard Signatures

We show how to construct a universal designated verifier signature from any
signature scheme in C, assuming the verifier has a key pair with key type in K.
We use the building blocks introduced before, i.e. proof of disjunctive knowledge
and the Fiat-Shamir transform, to construct the UDVS schemes. Our construc-
tion has the distinctive property that the verifier’s key pair type can be chosen
independently from the signer’s signature. That is the construction works for
any combination of a signature in class C and a verifier key pair type in K. Let
SS = (KeyGen, Sign, Verify) be a standard signature scheme in class C and KT
be a verifier-chosen key type in K with key generation algorithm KeyGen and
pair deciding algorithm Pair. The construction is as follows:

— CPGen gets as input 1%, and returns cp = 1* as the common parameter. The
signer and the verifiers choose their own signature scheme and key pair type,
respectively, i.e.

GUDVS. (SKeyGen, Sign, PVer) 2 ss. (KeyGen, Sign, Verify)
and VKeyGen 2 KeyGen .
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— To designate, the signature-holder first converts the signature and then con-
structs a signature of disjunctive knowledge of 6y, or sk,. The DV-signature
is a pair consisting of d,ux and this signature of knowledge, i.e.

Algorithm GUDVS.Desig (pks, pky, m, o)
(Gaux, Opre) < Convert (pks, m, o)
8 «— SoK{(Gpre V sky) : Valid (pks, m, (Gaux, Gpre)) , Pair (pky, sky)}
G — (Faux, 0)
return &

— To verify the DV-signature, one verifies the validity of the signature of knowl-
edge ¢ according to the message, the public keys of the signer and the verifier,
and the value 7., provided, i.e.

Algorithm GUDVS.DVer (pks, pky, m, &)
d — VoK {(Gpre V sky) : Valid (pks, m, (Gaux, Fpre)) , Pair (pky, sky)} (6)
return d

4.4 Security Analysis

DV-Unforgeability. We use the Forking Lemma to prove DV-Unforgeability
of the construction. The Forking Lemma was originally proposed by Pointcheval
and Stern [12]. Recently, Bellare and Neven proposed a general version of the
Forking Lemma in [48]. We use the results and formulations from the latter in our
proof. Basically, our SoK-type constructions guarantees the ability to extract
a signature or the verifier’s secret key from a DV-forger through forking. The
extracted signature or secret key is later used to solve the underlying problem of
the signature scheme or that of the verifier key pair, respectively. Thus, given a
successful DV-forger, we will be able to solve at least one of the above underlying
problems and we have the following theorem. The proof is given in the full version

of this paper [44].

Theorem 1. Let SS be a standard signature in C and Pss be its underlying
problem. Also, let KT be a key type in K and Pxr be its underlying problem.
The construction GUDVS based on the combination of the signature SS and the
verifier key-type KT is DV-unforgeable if Pss and Pkt are both hard.

Non-transferability Privacy. Non-transferability privacy for GUDVS is due
to the very concept behind our construction. The designated signature consists
of two values, a publicly-simulatable value G,.,x and a witness indistinguishable
signature of knowledge of a valid converted signature or the verifier’s secret key.
Both values are generateable by the designated verifier, indistinguishably from
the real designated signatures. To forge a designated signature, the verifier will
first simulate G,ux via the algorithm AuxSim and then, similar to the prover, he
will be able to construct a non-interactive proof of disjunctive knowledge of Gpre
or the verifier’s secret key (knowing the latter, of course). The forged designated
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signature will be consisting of the simulated &,,x along with this signature of
knowledge, i.e. we have the following forge algorithm:

Algorithm GUDVS.Forge (pks, skv, pky, m)
Ganx — AuxSim (pks, m)
6 «— SoK{(Gpre V sky) : Valid (pks, m, (Faux, Opre)) , Pair (pky, sky)}
6 — (Faux, 0)
return &

AuxSim’s ability to simulate &,,x and witness indistinguishability of the signa-
ture of knowledge together, will imply that the output of the algorithm
GUDVS.Forge is indistinguishable from real designated signatures. The existence
of AuxSim and a ¥ protocol for the proof of knowledge of a converted signature
is guaranteed if SS belongs to C. Furthermore, the existence of a 3 protocol for
proof of knowledge of the verifier’s secret key is guaranteed if KT belongs to K.
Thus, GUDVS.Forge will be successful in forging designated signatures for any
combination of a signature in C and a verifier key type in K. Combining this
with Lemma [Il we will have the following theorem.

Theorem 2. The construction GUDVS achieves non-transferability privacy for
any combination of a signature in C and a verifier key type in K.

Non-delegatability. The very design of our UDVS construction is geared to-
wards providing non-delegatability through the use of signatures of knowledge.
However, to meet the requirements of Lemma [, we must first prove that a des-
ignated signature in our scheme is a signatures of knowledge of a signature or
the secret key of the verifier with SpS property. All we know now is that a des-
ignated signature in our scheme consists of a G,,x and a signature of knowledge
of Gpre Or the secret keys of the verifier, with both HVZK and SpS properties.

It can be seen that a designated signature (Gaux, 0) as a signature of knowledge
has the SpS property in the Random Oracle Model. The reason is that two
designated signatures with the same first-move message (i.e. Random Oracle
query, which includes G, along with the commitment) and different challenges
(i.e. Random Oracle responses) will provide two és with the same commitment
and different challenges. This will give us the secret, i.e. oy Or sky. If the former
is given, then one can retrieve a valid signature by running the Retrieve algorithm
on input (Gaux,Opre). Thus, two designated signatures with the same Random
Oracle query and different Random Oracle responses will give us a signature
or the verifier’s secret key. Hence, the designated signature will have the SpS
property as well and by Lemma [2] we will have the following theorem:

Theorem 3. The construction GUDVS is k-non-delegatable for any combina-
tion of a signature in C and a verifier key type in K for which |ChSp| > ;1-;

Note that although a designated signature is an HVZK signature of knowledge of
a Opre OF the verifier’s public key, it may not be an HVZK signature of knowledge
of a signature or the verifier’s public key, since it reveals G,,x which might include
some information about the signature. However, Lemma [2] does not require the
designated signature to have the HVZK property.
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4.5 Further Constructions

Our constructions can be easily extended to universal multi-designated-verifier
signatures, where a signature is designated to more than one verifier. This can
be done by setting the designated signature to be a one-out-of-(n+ 1) disjunctive
signature of knowledge of the (converted) signature and the secret keys of the n
verifiers. Again, these schemes allow the signer and the verifiers to choose their
settings independently, thus the verifiers might have different types of keys.

The construction can also be extended to designate more than one signature
at a time. This is useful in situations where a user wishes to show more than
one certificate to a verifier and does not want the verifier to be able to convince
a third party of the validity of her certificate. For instance, consider a situation
where a user must show at least k out of n certificates to a verifier to obtain
a service from the verifier. The user will construct the designated signature by
constructing a (k + 1)-out-of-(n + 1) signature of knowledge of the n (converted)
signatures and the secret key of the verifier. This construction offers an extra
privacy property in that the verifier, after seeing a designated signature, can not
determine which k certificates is used by the user.

4.6 Comparison

We use constructions in [II6] as benchmarks for our constructions. We choose
instances of our constructions that match the signature scheme and verifier key
type of the benchmark schemes. Similar to [6], we assume the cost of computing
a product a®-bY - ¢* and O(«) low exponent exponentiations both, are equivalent
to a single exponentiation. We use the same typical parameters for lengths of
members of different groups, namely 1.024 kb for DL groups and RSA modules
and 0.16 kb for ChSp. To further simplify the comparison, we only consider the
dominant term for the costs of computation assuming that a pairing (pair.) >
an exponentiation (exp.) = a multiplication (mult.) > an addition, with “-”"
standing for “costs (much) more than”. We note that designation of a certifi-
cate has two phases: before choosing the designated verifier and after that and so
computation can be carried out in accordingly. We off-line and on-line to denote
the two phases, respectively. An interesting property of our construction is that
cost of on-line phase is relatively low (one multiplication). This makes our con-
structions suitable for systems in which certificates must be frequently verified
by (and hence designated to) multiple different verifiers. Table [l summarizes the
comparisons, with “Typ. & len.” and “ND” standing for “Typical & length” and
“Non-Delegatability”, respectively and comparatively more desirable values in
bold. The table shows, our schemes generally have more (yet comparable) costs
of off-line designation and designated verification and result in longer designated
signatures. However, our schemes have less online designation cost and provide
provable non-delegatabilty. Our schemes are also (almost) generic and provide
the desirable property of signer-verifier setting independence. A side effect of
using the Forking Lemma for proof of security is that security reductions are not
tight.
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Table 1. Comparison of the properties of Steinfeld et al’s schemes with those of their
corresponding GUDVS counterparts

Desig cost

Scheme Hard problem . . DVer cost Typ. 6 len. ND
off-line on-line

DVSBM [d] BDH none 1 pair. 1 pair. 1.0kb X
GUDVS (BLS+DL) CDH 2 pair. 1 mult. 2 pair. 53kb v/
SchUDVS; [6] SDH 1 exp. lexp. 1 exp. 2.0 kb X
SchUDVS:; [6] DL 2 exp. lexp. 2exp. 1.5kb 7
GUDVS (Schnorr+DL) DL 4 exp. 1 mult. 3 exp. 53kb vV
RSAUDVS [6] RSA 1 exp. 2exp. 2 exp. 11.6kb 7
GUDVS (RSA-FDH+DL) RSA & DL 2 exp. 1 mult. 2 exp. 43 kb V

5 Identity-Based Signatures

In this section, we first review the definitions of the IBS scheme and its security.
Then we propose a generic construction of IBS schemes from any signature
scheme in C and prove it secure.

5.1 Definition and Security

Identity-based cryptosystems were proposed by Shamir [19] in an attempt to
remove the need for a public-key infrastructure. In such systems, the users’
identities are used as their public keys. However, users lose their ability to choose
their own secret keys and must ask a key-generation center (KGC) to provide
them with their respective private keys.

An identity-based signature is a tuple of four algorithms as follows: a master
key generation algorithm MKeyGen, which on input 1¥, where k is a security pa-
rameter, outputs a pair of master secret key and master public key (msk, mpk),
a user key generation algorithm UKeyGen, which on input msk and a user iden-
tity id, outputs a user secret key usk, a signing algorithm Sign, which on input
usk and a message m, outputs a signature o on the message, and finally a veri-
fication algorithm Verify, which on input mpk, id, and (m, o), outputs a binary
decision indicating whether or not o is a valid signature on m with respect to
mpk and id.

We use Bellare and Neven’s definition for the security of an IBS scheme [20]
against existential unforgeability under chosen message and identity attacks,
denoted by ID-EUF-CMA-attack. For the formal definition refer to [20] or [44].

5.2 Generic Construction of IBS and Its Security

In this section we show how to extend a signature in C to an IBS scheme. The
idea is to use the key pair of the signature scheme as the master key pair of
KGC, and use the signing algorithm as the users’ key generation algorithm in
the following way: a user’s secret key corresponding to her public identity, is
obtained by signing the user’s identity using the KGC'’s secret key. The secret
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key is securely given to the user. Now, the user is able to prove her identity, since
she can prove the knowledge of a converted signature on her identity. The Fiat-
Shamir transform can be used to transform this proof into a signature scheme.
The resulting signature would be an identity-based signature.

The concrete description of the generic construction is as follows. Let that the
standard signature SS = (KeyGen, Sign, Verify) be in C. The generic IBS scheme
GIBS is constructed as follows:

To generate a master key pair, the KCG runs the key generation algorithm of
the signature scheme and outputs the public and secret key pair as the master
public and secret key pair for the identity based signature scheme. To generate a
user’s key pair, the KCG simply signs the user’s identity using his master secret
key and outputs the generated signature (together with the master public key
and the user’s identity) as the user’s secret key, i.e.

Algorithm GIBS.UKeyGen (msk,id)
o « SS.Sign (msk, id)
usk «— (mpk,id, o)
return usk

Algorithm GIBS.MKeyGen (k)
(msk, mpk) «— SS.KeyGen (k)
return (msk, mpk)

An identity-based signature is constructed as a signature of knowledge of
KGC’s signature on the identity of the signer by, first running the corresponding
conversion algorithm on input ¢ (which is contained in the user secret key of the
signer) to obtain (Gaux, Fpre), then constructing a proof of knowledge of &, and,
finally transforming the result into a signature of knowledge on m via the Fiat-
Shamir transform. The signature is a pair consisting of &,,x and this signature
of knowledge, i.e.

Algorithm GIBS.Sign (usk,m)
(Caux, pre) < Convert (mpk, id, o)
8 «— SoK {Gpre : Valid (mpk, id, (Gaux, Opre)) } (M)
0 — (Fanx, 0)
return o

To verify an identity-based signature o, one verifies the validity of the signa-
ture of knowledge ¢ according to the identity of the signer, the master public
key, and the value 7,,x provided, i.e.

M gorithm IBS.Verify (mpk,id, m, o)
d — VoK {Gpre : Valid (mpk, id, (Gaux, Gpre)) } (M, 6)
return d

This construction is a generalized version of Kurosawa and Heng’s construc-
tion [23]. They required a stronger requirement on their signature schemes. We
note the similarities between the ideas behind Kurosawa and Heng’s and our con-
structions, and that of Naor’s observation on transforming any identity-based
encryption to a standard signature scheme [49, p. 226]. In both, a user’s secret
key is a signature of the KGC on the user’s identity. Our constructions can
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be seen as the Naor’s observation in the reverse direction, i.e. from the non-
identity-based world to the identity-based world. A possible result of combining
the two ideas is the construction of identity-based signatures from identity-based
encryptions.

We propose the following theorem for the security of our construction. A
sketch of the proof is given in the full version of this paper [44].

Theorem 4. Let SS be a standard signature in C and Pss be its underlying
problem. The construction GIBS based on the signature SS is ID-EUF-CMA-secure
if Pss is hard.

5.3 Further Constructions

We observe that the above generic construction of IBS schemes has kind of
a nesting property in the sense that if one extends the definition of class C
to identity-based signature schemes, then the construction GIBS will belong to
the class C itself. This is due to the fact that a GIBS signature in the form
0 = (Gaux, (Cmt, Rsp)) can be converted to the converted signature bellow:

5’ = (éau)népre) - ((&auX, Omt) 7R$p)

For all the signatures listed above, knowledge of Rsp can be proved via a %
protocol. Hence, for all the constructions of IBS schemes from these signatures,
the GIBS can be nested in the way that an identity based signer can act as a
new KGC for a new user. This enables construction of hierarchical identity-based
signature schemes [50].

An extension of the GIBS construction that follows from the nesting property
is the construction of identity-based universal designated verifier signatures from
any signature in C. In such a scheme, a designator wishes to designate a cer-
tificate signed by an identity-based signature, and the designated verifier is also
identity-based. The designated verifier’s secret key is a signature on his identity
by the KGC. To designate, the designator will simply construct a disjunctive
proof of knowledge of (a converted version of) her certificate or (a converted
version of) the verifier’s secret key. Proofs of security of the scheme can be
constructed by combining the ideas used to prove the generic UDVS and IBS
schemes secure.

Another possible extension of the GIBS schemes is the construction of iden-
tity-based ring signatures from any signature scheme in C. To generate such a
signature, the signer will construct a one-out-of-n signature of knowledge of the
n user secret keys in the chosen ring, where each user secret key is a signature
of the KGC on the corresponding user identity.

6 Concluding Remarks

We proposed generic constructions of UDVS and IBS schemes from a large class
of signatures. Our constructions result in schemes which have comparable effi-
ciency to those with similar properties. The generic UDVS construction is prov-
ably non-delegatable and offers a desirable property, which is independence of
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the signer’s and the verifier’s setting. Many IBS schemes can be seen as instances
of our generic IBS construction. It is possible to use our techniques to construct
generic universal multi-designated-verifier signatures, hierarchical identity-based
signatures, identity-based universal designated verifier signatures, and identity-
based ring signatures
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Abstract. We provide an enhanced security model for proxy signatures
that captures a more realistic set of attacks than previous models of
Boldyreva et al. and of Malkin et al.. Our model is motivated by concrete
attacks on existing schemes in scenarios in which proxy signatures are
likely to be used. We provide a generic construction for proxy signatures
secure in our enhanced model using sequential aggregate signatures; our
construction provides a benchmark by which future specific constructions
may be judged. Finally, we consider the extension of our model and
constructions to the identity-based setting.

Keywords: proxy signatures, provable security.

1 Introduction

A proxy signature scheme allows an entity, the delegator, to delegate his signing
capabilities to another entity, the proxy, which can then construct signatures on
behalf of the delegator. A signature constructed by the proxy, called a proxy
signature, will not only convince a verifier that the signature was indeed con-
structed by the proxy, but also that the proxy was delegated the signing rights of
the delegator. In a multi level scheme, the proxy has the option of re-delegating
the signing rights obtained from the delegator, to another proxy.

The concept of proxy signatures was first proposed by Mambo, Usuda and
Okamoto in [24]. Among the ideas presented in [24], the concept of delegation
by warrant, in which a signed warrant is used to describe the delegation, has
received the most attention. Kim, Park and Won [16] expanded on this idea
and suggested that a proxy key could be generated from the warrant. One of
the main advantages of the use of warrants is that it is possible to include any
type of security policy in the warrant to describe the restrictions under which the
delegation is valid. Most proxy signature schemes uses a variant of this approach

* This author’s research was supported by the European Commission under contract
IST-2002- 507932 (ECRYPT).

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 141]161] 2008.
© International Association for Cryptologic Research 2008



142 J.C.N. Schuldt, K. Matsuura, and K.G. Paterson

and it is often expected that new proxy signature schemes will implement the
functionality of warrants.

Since their introduction, many proxy signature schemes have been proposed
(e.g. see [2427IRITIN23526]) and many extensions (e.g. see [32U36I29UT7I30])
have been considered. However, the initial security notion introduced by Mambo,
Usuda and Okamoto (slightly expanded by Lee, Kim and Kim [I8]), was based
on a list of security aims, and no security model in which schemes could be
analysed was given. The lack of formal security definitions had a huge impact on
the security of the initially proposed schemes. Many constructions were shown to
be insecure, then fixed, only to be shown insecure again (e.g. see [24[IS[TI3T]).
This not only illustrates the need for well defined security models and a rigorous
security analysis, but also indicates that the security of proxy signatures is more
subtle than was initially assumed.

Security models for proxy signatures. Boldyreva, Palacio and Warinschi [2] were
the first to introduce a proper security model for proxy signatures and to propose
a provably secure proxy signature scheme. These results provided a significant
improvement over previous treatments of proxy signatures in terms of security
analysis and also highlighted security concerns with the trivial scheme in which
the delegator signs the public key of the proxy and proxy signatures are con-
structed with the private key of the proxy. Malkin, Obana and Yung [22] later
proposed an extended security model, allowing multi-level proxy signatures, and
showed that proxy signatures are equivalent to key-insulated signatures [8]. How-
ever, if we consider the typical environments in which proxy signatures will be
used, then these models do not capture all desired properties of proxy signatures.
We expand on this next.

The use of warrants demands special attention in both the definition and se-
curity model of proxy signatures. If warrants are not explicitly modeled, it might
be possible for an adversary to alter the warrant under which a proxy has made
a signature on the delegator’s behalf, even though the scheme has been proved
secure. This is clearly an undesirable property, since users of proxy signatures
should be able to rely on warrants not being mutable once a proxy signature has
been created. Even though the schemes presented in [2] use warrants, these are
not a part of the presented security model. However, the model presented in [22]
rectifies this and explicitly models the warrants.

The security models of [2I22] are both in the registered key model, meaning
that the adversary is required to submit both the public and the private key of all
users used in the security game, except the challenge user. Although this might
be convenient when constructing proofs of security, it does not capture attacks
where the adversary derives and registers a public key for which he cannot
compute the corresponding private key. These types of attacks are also known
from multi- and aggregate signatures (e.g. see [I5]), and are relevant in practice
since users may not be required to prove knowledge of their private key when
registering a public key (for example, due to efficiency concerns). Furthermore,
the attacks seem to pose a real threat to some proxy signature schemes. As
an example of this, consider the construction proposed by Zhang, Safavi-Naini
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and Lin [35]. This construction efficiently combines the Boneh-Lynn-Shacham
signature scheme [0] with the identity-based signature scheme of Hess [I5] to
create a proxy signature scheme. But the construction is insecure in a security
model which does not use the registered key model. In this case, an adversary
will be able to produce proxy signatures on behalf of a user, without that user
having delegated his signing rights (details of this are given in Appendix [A]).
This illustrates the need for a security model which can guarantee security of
a proxy signature scheme when used in the more practical setting where the
registered key model is not required.

Proxy signatures are often proposed for use in applications where signing is
done in a potentially hostile environment. In this setting, it is assumed that
secure storage is available for a long term key pair (e.g. key storage in a TPM
within a laptop), but that it is not possible to perform all signature computa-
tions within the fully trusted device due to the number of signature requests or
the amount of data that needs to be signed. Hence, these computations are per-
formed on a less trusted device (e.g. by the operating system on a laptop which
might become infected with malware). To limit the potential damage resulting
from compromise of the less trusted device, a limited set of signing rights for
the long term key pair can be delegated to this device, which can then act as a
signing proxy. Thereby, only the limited proxy key is exposed in a compromise.
However, this raises the concern that compromised proxy keys might somehow
leak information about the long term key. This is relevant not only in the case
where delegation is performed to protect a long term key, but also in the gen-
eral case of delegation of signing rights from one entity to another. The security
model of [2] does not model this possibility, since an adversary is not allowed
to gain access to any proxy keys. The model of [22] has only limited support
for proxy key exposure, since an adversary is only allowed access to proxy keys
which a user has obtained by self-delegation, i.e. by delegating his signing rights
to himself. However, this is not sufficient to guarantee security in an environ-
ment where any proxy key can potentially be exposed, and the assumption that
only self-delegated proxy keys are at risk of being exposed seems unnatural and
restrictive. Indeed, systems that rely on proxy key material (of any type) not
revealing information about long term keys are already in use today (e.g. in
applications such as the Grid Security Infrastructure [9]). So it is important to
extend the adversarial capabilities to allow a richer set of proxy key exposures
in order to correctly model the threats against these systems. However, if the
adversary gains access to arbitrary proxy keys, many of the existing proxy signa-
ture schemes become insecure. In particular, the scheme proposed by Malkin et
al. [22I23] will be insecure, since private keys double as proxy keys in an ordinary
delegation (i.e. a non-self-delegation). Schemes where this is not the case might
also be vulnerable. For example, the triple Schnorr scheme whose security is an-
alyzed by Boldyreva et al. [2] has the weakness that an adversary can compute
the (long term) private key of a user upon exposure of a proxy key for a dele-
gation procedure for which the adversary has a transcript (details of this attack
are given in Appendix [B]). Lastly, we emphasize that to model the compromise
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of a proxy correctly, the adversary should be given access to all information held
by the proxy. For example, a closer look at [2223] reveals that the adversary
there is given access to an oracle that returns a single self-delegated proxy key,
but that the proxy information in the concrete scheme can potentially contain
many keys (the scheme generates all keys used as self-delegated proxy keys in
the initial key generation phase, and therefore should include any keys needed
for further delegation in the proxy information). We argue that the approach
taken in [22] is not sufficient to model the threat posed by a proxy compromise.

Our contributions. First and foremost, we define a refined security model for proxy
signatures along with the security notion Proxy Signature Unforgeability Under
an Adaptive Chosen Message Attack with Proxy Key FExposure (ps—uf-pke). In
addition to more accurately capturing the threats against proxy signatures, we
claim that our model and security notion are more direct and clear when compared
to the model given in [22]. Hence they more easily allow proposed schemes to be
proven secure. Our model is strictly stronger than the models of [2] and [22] in
that our model allows an adversary to gain access to any proxy key and does not
require the registered key model. Hence, a scheme secure in our model will also be
secure in the models of [2] and [22], whereas the converse does not necessarily hold
(in fact, as mentioned above, the schemes proposed in [2] and [22] will be insecure
in our model).

We then present a simple generic construction for proxy signatures using
sequential aggregate signatures. This is closely related to the delegation-by-
certificate and aggregate-based constructions of [2], but our security proof is
in our enhanced security model. We discuss how the construction can be instan-
tiated (in the random oracle model) to give efficient proxy signature schemes
with security relying on either the bilinear Diffie-Hellman assumption or the as-
sumption that RSA is a claw-free permutation. We also discuss how a scheme
secure in the standard model can be obtained.

Lastly, we sketch how to extend our security model to the identity-based
setting and give a fairly simple generic construction that is secure in the extended
model. We also discuss the possibilities for instantiating this construction.

Since our constructions are relatively simple and easy to prove secure, they
provide a performance benchmark, both in terms of security and efficiency, for
any new proxy signature schemes.

2 Preliminaries

Notation. Let PK = (pka, ..., pky) be alist of public keys (or any other strings).
We use the notation PK; _ ; with ¢ < j to indicate the sublist of keys from the
i-th key to the j-th key in PK, e.g. PKs 4 = (pka, pks, pks). By PK.(pky, 1) we
mean that the key pk, 41 is appended to the end of PK. Lastly we will use the
notation mq||ms to mean the concatenation of the strings m; and ms. When
elements that are not strings appear in a concatenation, we will assume that
they will be encoded as a string before the actual concatenation takes place.
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Signature schemes. We briefly recall the definitions of an ordinary signature
scheme and a sequential aggregate signature scheme.

A signature scheme, S, is given by the following algorithms:

— Setup which on input a security parameter 1* generates a set of global system

parameters params. We assume that params are made publicly available and

will not write params as an explicit argument to the functions defined below.

KeyGen which generates a public/private key pair (pk, sk).

— Sign which on input (sk,m), where m is a message to be signed, generates
a signature ¢ on m.

— Verify which on input (pk,m, o), outputs either accept or reject.

A signature scheme is said to be sound if for all (pk,sk) «— KeyGen and all
messages m, we have that

Pr[Verify(pk, m,Sign(sk,m)) = accept] =1

where the probability is taken over all random coin tosses made in the KeyGen,
Sign and Verify algorithms. A signature o is said to be valid on m under public
key pk if Verify(pk,m,o) = accept.

The standard notion of security for signature schemes is Fristential Unforge-
ability under a Chosen Message Attack (euf-cma) [II].

A sequential aggregate signature scheme, AS, is given by the following
algorithms:

— Setup and KeyGen which are similar to the corresponding algorithms of a
ordinary signature scheme.

— AggSign which takes as input (sk,m, 0444), where sk is a private key, m is a
message to be signed and 0,44 is a sequential aggregate signature on messages
(ma,...,my) under public keys (pki, ..., pk,), constructed by previous calls
to AggSign. The output of AggSign is a sequential aggregate signature oy,
on messages (my, ..., my,, m) under public keys (pki, ..., pkn, pk) where pk
is the public key corresponding to sk. Note that we can construct an ordinary
signature scheme by using an “empty” sequential aggregate signature as part
of the input to AggSign.

— AggVerify takes as input ((pki,...,pkn), (m1,...,mp),0aq9) and outputs
accept or reject.

A sequential aggregate signature scheme is said to be sound if for all n > 1,
all (pk;, sk;) < KeyGen ¢ € {1,...,n}, all messages (m,...,my) and all se-
quential aggregated signatures constructed as o; < AggSign(sk;,m;,0,-1),1 €
{1,...,n} with o9 = (), we have that

Pr[AggVerify((pki,...,pkn), (m1,...,my),0n) = accept] =1

where the probability is taken over all random coin tosses used in the KeyGen,
AggSign and AggVerify algorithms. Validity of sequential aggregate signatures
is defined as one would expect.
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There exist two different security notions for sequential aggregate signatures,
introduced by Lysyanskaya et al. [21I] and Lu et al. [20], respectively. The differ-
ence between the two notions is that the latter requires the registered key model
whereas the former does not. In this paper we will insist that the registered key
model is not required and use the notion defined in [21], referred to as Fzistential
Unforgeability in the Sequential Aggregate Chosen-Key Model.

3 Proxy Signatures

Before formally defining a proxy signature scheme, we will briefly discuss a few
basic assumptions and the format of a proxy signature.

We will assume that users can be uniquely identified by their public keys. So
a delegation chain consisting of an original delegator and a number of proxies
will be uniquely identified by an ordered list of their public keys. This require-
ment can be met in practice by requiring the certification authority not to issue
certificates for two different users on the same public key. This simple expedient
is much simpler to realise than relying on proofs of knowledge (that are implicit
in the registered key model).

A proxy signature scheme is required to implement a prozy identification
algorithm, which, when given a valid proxy signature, outputs the identities
(i.e. public keys) of the proxies in the delegation chain. Since we require this
function to be publicly available (i.e. no secret information is required to run
the algorithm), we have chosen to explicitly include a list PK of the public
keys in the proxy signature itself. This does not represent a restriction, since the
requirement of a public identification algorithm forces the keys to be part of a
proxy signature anyway. For simplicity, we will also require the original delegator
to add his public key to PK, making a proxy signature “self-verifiable”, i.e. only
the signature and a message is required for verification.

It will also be required that a proxy signature contains a list of warrants W
for the delegation chain. It is common not to specify the format of warrants
since a concrete security policy might depend on the particular usage of the
proxy signatures. However, it is also common to assume that some information
about the delegation is a part of the warrant to prevent trivial attacks against the
scheme. We consider the combination of these two assumptions to be bad practice
and suggest that the definition of a proxy scheme should explicitly include all
elements which are required for the scheme to be secure. This will help prevent
implementation flaws from the use of non-standard or perhaps empty warrants.

A multi-level proxy signature scheme is an extension of an ordinary signa-
ture scheme S = {Setup,Keygen, Sign, Verify} with the following additional
algorithms:

— (Delegate, ProxyKeyGen) which is a pair of randomized interactive algo-
rithms for delegation of signing rights.

e Delegate is run by the delegator with input (PK, W, pkq, pky, sk, w),

where PK and W are lists of (public keys of) previous delegators and

previous warrants in the delegation chain, pky and pk,, are the public keys
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of the delegator and the proxy, sk is the private key for which signing
rights are delegated, and w is the warrant for the current delegation.
If the delegator is delegating his own signing rights (i.e. the lists PK
and W are empty), we will set sk = sky where skq is the private key of
the delegator itself. However, if the delegator is delegating signing rights
for a proxy key psk he has obtained playing the role of a proxy in a
previous delegation, we will set sk = psk. Delegate will interact with
ProxyKeyGen to perform the delegation, but will have no local output.

e ProxyKeyGen is run by the proxy and takes as input (pkq, pkp, skp,) where
pkq is the public key of the delegator and (pky, skp) is the public/private
key pair of the proxy. Upon completion of the interaction with Delegate,
ProxyKeyGen returns the local output (PK', W', psk), where PK' and
W' are lists of public keys of the delegators and warrants in the delegation
chain, extended with the public key of the proxy and the warrant of the
current delegation, and psk is a private proxy key which can be used to
create proxy signatures on behalf of the delegator.

— ProxySign is run by the proxy and takes as input (PK, W, psk, m) where
PK and W are the delegators and warrants in the delegation chain, psk is
a proxy key and m is a message to be signed. The output of ProxySign is
a proxy signature (PK, W,po) where po is a signature on the message m
created with the proxy key psk. We say that the proxy signature is generated
by the proxy on behalf of the delegator.

— ProxyVerify is run by the verifier and takes as input (m,(PK, W,po))
where m is a message and (PK, W,po) is a proxy signature as generated
by the ProxySign algorithm. The output of ProxyVerify is either accept
or reject. Note that ProxyVerify does not take any public keys as input
since these are assumed to be part of PK in the proxy signature itself.

Note that a properly generated proxy signature will have one more element
in PK than in W since no warrant will be added by the signing proxy. From
the explicit inclusion of both PK and W in the proxy signature, it is clear that
the public keys of the delegators and the warrants in the delegation chain can
be extracted from a proxy signature. Hence, there is no need to define functions
which provides this functionality.

The above definition can be seen as a multi-level extension of the definition
given in [2], but with explicit modeling of warrants. Compared to the definition
given in [22], there are only minor differences which do not impact the function-
ality of the scheme.

Notation for delegation. To make the notation more clear, we will write

Delegate(PK, W, pkq, pky, sk, w);

PK', W, psk
( psk) — ProxyKeyGen(pkq, pkp, skp);

for the interaction between the algorithms Delegate and ProxyKeyGen with the
inputs (PK, W, pkq, pky, sk, w) and (pkq, pkp, skp) respectively, and let psk be
the proxy key output by ProxyKeyGen.
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Soundness. We say that a proxy signature scheme is sound if, firstly, the basic
signature scheme § is sound, and secondly, for all n > 1, for all possible delega-
tion chains of users with public/private key pairs and proxy keys generated as

(pki, sk;) < KeyGen forie {1,...,n}, psky — sk1 and

Delegate(PKi_l, Wi_1,pki_1,pk;i, psk;_1, wi_l);
ProxyKeyGen(pk;_1, pki, sk;);

fori e {2,... n},

(PK;, Wi, psk;) «—

and all messages m satisfying the warrants W,, = (wx, ..., w,—1), we have that
Pr [ProxyVerify(m,ProxySign(PK,, W, psky,,m)) = accept] =1,

where the above probability is taken over all random coins used by the KeyGen,
Delegate, ProxyKeyGen and ProxySign algorithms.

4 Security Model

We define the security notion Ezistential Unforgeability under an Adaptive Cho-
sen Message Attack with Prozy Key Exposure (ps—uf-pke) for multi-level proxy
signature schemes. The security notion is based on the security game defined be-
low, played between a challenger C and an adversary A. We first introduce some
notation and features of the security model, and then give formal definitions.

In the game, A will control all but a single user, u*, whose public/private
key pair (pk*,sk*™) will be generated by the challenger, and only pk* will be
made available to A. The public/private key pairs of all the other users will be
generated by A, and it will not be required of A to register generated keys or
prove knowledge of the private keys corresponding to the public keys used in the
game. This means that A is allowed to generate and use public keys for which
he cannot compute the private key.

The goal of the adversary in the game is to produce a forgery. In this case,
a forgery is one of the following: (i) an ordinary signature which verifies under
u*’s public key, (i7) a proxy signature that appears to be constructed by u* on
behalf of one of the users controlled by the adversary, or (iii) a proxy signature
on behalf of u* that is computed by one of the users controlled by the adversary
which has not been delegated the signing rights of u*. We will of course have
some requirements on the forgeries to exclude trivial cases, e.g. it is required
for a type (i) or type (ii) forgery that the signature was not obtained in a
query to the challenger. However, when considering a message/proxy signature
pair (m, (PK, W, po)) produced by the adversary as a type (i¢) forgery, we will
treat any query on a different m or with a different PK or W list, as being
unrelated. By this we mean that a forgery will be considered to be valid even if
the adversary, for example, has received a proxy signature on the same message
m from the same delegation chain PK, but with a different set of warrants W'.



Proxy Signatures Secure Against Proxy Key Exposure 149

Lastly, in a type (ii7) forgery we will allow the adversary to place u* anywhere
in the delegation chain except as the last proxy, which would make the forgery
a type (ii) forgery (i.e. we will not restrict u* to be the original delegator).

For convenience, during the game the challenger will maintain two sets of lists:
pskList(x,x) and del List(x, , x). Each list pskList(PK, W) holds all proxy keys
generated by ©* in delegations from the delegation chain with the public keys in
the list PK and with the warrants in the list W. This list will be used by the
challenger to respond to the various queries made by the adversary during the
game. Each list delList(PK, W, w) holds the public keys of users to whom u*
has re-delegated the signing rights of one of the keys in pskList(PK, W) with
the warrant w. This list is only used to define valid type (iii) forgeries. If u*
delegates the signing rights of his own private key under the warrant w, the
public key of the proxy will be stored in delList({}, {}, w) using empty lists, {},
as the previous public key and warrant lists.

The security game is formally defined as follows:

Setup. The challenger C runs Setup with input 1* and generates the pub-
lic/private key pair of u* by running (pk*, sk*) < KeyGen. C then passes pk*
to the adversary A and stores sk*.

Queries. While A is running, it can adaptively make any of the following queries
which are answered by C:

1. Ordinary signature. On input m from A, C runs o < Sign(sk*, m) and
returns o to A.

2. Delegation to u*. On input pkg from A, C interacts with A through
the delegation protocol by running ProxyKeyGen(pkg, pk*, sk*). Upon
completion, C will obtain the proxy information (PK’, W', psk). If no
pskList(PK', W) list exists, C creates one and adds psk to it. Otherwise,
C just adds psk to the existing pskList(PK', W) list.

3. Delegation from u*. For clarity, we will define an oracle for each of
the three different types of delegation the adversary can request u* to
perform:

(a) Delegation of sk*. On input (pk,, w) from A, C interacts with A by
running Delegate({}, {}, pk*, pky, sk*, w). Upon completion of the
delegation protocol, C adds pk), to the list delList({},{}, w).

(b) Re-delegation of psk. On input (PK, W, j, pkp, w) where j € N, C
looks up the j-th proxy key, psk;, in pskList(PK, W). If no such key
exists, C returns L to A. Otherwise, C interacts with A by running
Delegate(PK, W, pk*, pky, psk;). When the delegation is complete,
C adds pk, to delList(PK, W, w).

(¢) Self-delegation. On input (PK, W, j, w), C sets sk = sk* if PK =
W = {} and j = 1. Otherwise, C sets sk to be the j-th proxy key
in pskList(PK, W) (if this proxy key does not exist, C returns L to
A). Then C interacts with itself by running

Delegate(PK, W, pk*, pk*, sk, w);

!
(PK', W, psk) ProxyKeyGen(pk*, pk*, sk*);
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When the delegation is complete, C adds psk to pskList(PK', W)
and send the transcript of the delegation to A.

4. Proxy signature. On input (PK, W, j,m), C looks up the j-th proxy key,
psk;, in pskList(PK, W) and returns L to A if no such key exists. Oth-
erwise, C computes (PK’, W,po) «— ProxySign(PK, W,psk;,m) and
sends (PK', W, po) to A.

5. Prozy key exposure. On input (PK, W, j), C returns the j-th proxy key
in pskList(PK, W) if such a key exists. Otherwise, C returns L to A.

Forgery. The adversary outputs a forgery and halts. The forgery can be of one
of the following forms:

(i) Ordinary signature of u*. The adversary outputs (m, o). This forgery
is said to be wvalid if Verify(pk*, m,o) = accept and m has not been
submitted in an ordinary signature query.

(ii) Prozy signature of u*. The adversary outputs a message/signature tuple,
(m, (PK, W,po)), where the last key in PK is pk*. This forgery is said
to be walid if ProxyVerify(m, (PK, W,po)) = accept, (PK, W,x,m)
has not been submitted in a proxy signature query and (PK, W, %) has
not been submitted in a proxy key exposure query.

(iii) Proxy signature on behalf of u*. The adversary outputs a message/
signature tuple, (m, (PK, W, po)), as a forgery, where the last key in PK
is different from pk*. Let PK = (pki, ..., pky). The forgery is said to be
valid if ProxyVerify(m, (PK, W,pc)) = accept and there exists an 1 <
i* < n—1such that pk;+ = pk*, pki+ 11 & delList(PKy_ i+, Wi _ix—1, W+ )
and (PKy. i+, Wi._;+_1,%) has not been submitted in a proxy key expo-
sure query.

If the forgery output by the adversary is valid, return 1 as a result of the

game. Otherwise, return 0.

Note that a type (i) forgery (m, (PK, W, po)) is not considered to be valid in
our model if the adversary has exposed any of the proxy keys generated by u* in
a delegation from the users PK with the warrants W, or requested a signature on
m with one of these keys. Multiple keys can exists if the delegation is randomized
and the adversary makes identical delegation requests multiple times. However,
since all signatures created with these proxy keys will verify under the same
conditions, a compromise of just one of them should be considered as a complete
compromise of the delegation from the users PK under warrants W.

Let Gmgf;i—pke(k) be the outcome of running the above security game with
proxy signature scheme PS, adversary A and security parameter k. We then
define the advantage of the adversary in the security game as

AdvE P (k) = PriGmi P (k) = 1]

where the probability is taken over all random coins tosses made by the adversary
and the challenger.

Definition 1. An adversary A is said to be a (¢,1, qq, qs)-forger of a prozy signa-
ture scheme if A has advantage at least € in the above game, runs in time at most
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t and makes at most qq and qs delegation and signing queries to the challenger.
A proxy signature scheme is said to be (€, t, qq, qs)-secure if no (€, t, qq, qs)-forger
exists.

5 Proxy Schemes Based on Sequential Aggregation

We will now present a generic proxy signature construction that satisfy the
security definition given in Section Ml using a sequential aggregate signature
scheme that is existentially unforgeable in the sequential aggregate chosen-key
model. To guarantee that no information about a user’s long term secret key is
leaked if proxy keys are exposed, we will let a proxy generate a fresh independent
key pair (pk, sk) in a delegation, create a certificate for pk and keep sk as the
proxy key. The generated public keys will be stored in a separate list F'K. To
avoid trivial attacks against the scheme, we will use the idea of Boldyreva et
al. 2], and introduce symbols dlg, sgn and prx, which will be attached to the
content being signed in, respectively, a delegation, an ordinary signature and a
proxy signature.

Construction 1. Let AS = {Setup’,KeyGen', AggSign, AggVerify} be a sequen-
tial aggregate signature scheme and let the symbols d1g, sgn and prx be defined
as different strings. Then a multi-level proxy signature scheme can be constructed
as follows:

— Setup, KeyGen. Same as the corresponding algorithms from the sequential
aggregate signature scheme.

— Sign(sk,m) Compute o « AggSign(sk,sgn|lm,(), where () indicates an
“empty” sequential aggregate signature, and return ¢ as a signature.

— Verify(pk, m,c) Return the output of AggVerify(pk, sgn||m, o).

— Delegate(PK, W, pkq, pkp, sk, w) Depending on (PK, W), take one of the
following actions:

e If PK and W are empty lists (i.e. sk is an ordinary private key), con-
struct the lists PK' = (pka,pk,), FK = () and W = (w). Compute
odel — AggSign(sk,dlg||PK'||FK||W,0) and send the delegation mes-
sage (PK',FK, W ,04.) to the proxy.

e If PK and W are not empty (i.e. sk is a proxy key), construct PK’ =
PK.(pky,) and W = W.(w). Parse sk as (FK,0ge1, Skprs:), compute

04 — AggSign(skyre, d1g||PK'||FK|| W, 04er)

and send the delegation message (PK', FK, W', 0/,,) to the proxy.

— ProxyKeyGen(pky, pky, sk,) When (PK', FK, W, 04.) is received from the
delegator, generate a fresh proxy key pair (pky,, sk;,) < KeyGen and construct
FK' = FK.(ka’)). Compute o/;,, < AggSign(sk,,dlg||PK'||FK'||W a},,),
set psk = (F'K', 0}y, sk;,) and output (PK’, W, psk).

— ProxySign(PK, W, psk,m) Parse the proxy key psk as (F'K,0g4e, skp) and
compute po «— AggSign(sk,, prx||PK||FK||W||m,cge). Return the tuple
(PK, W, (FK,po)) as a proxy signature.
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— ProxyVerify(m, (PK, W,(FK,po))) Assume that PK contains n + 1 ele-
ments. Construct

m; = dlgHPKl...i+1HFKI...iH Wy, forie {1, . ..,TL} and
m = (ma, ..., mn, prx||PK||[FK|[W][m).

Return the output of AggVerify(PK,m,po).

Theorem 2. Let AS be a (t,qs,€)-unforgeable sequential aggregate signature
scheme. Then Construction 1 yields a (t',q.,q}, €' )-unforgeable proxy signature
scheme where € = € [2qq, t =1 and qs = ¢, + ¢};.

The proof of this theorem is given in Appendix

The above construction can be instantiated with a number of different sequen-
tial aggregate signature schemes to give proxy signature schemes with various
security properties. For example, if the (fully aggregate) scheme of Boneh et al.
[5] is used, we obtain a proxy signature scheme which is secure in the random
oracle model under the Computational co-Diffie-Hellman assumption, a natural
generalization of the CDH assumption suited to bilinear groups. Notice, however,
that since a proxy signature will potentially include many public keys, but only
one aggregate signature, the most efficient scheme (in terms of proxy signature
size) is achieved by minimizing the size of the public keys and not the size of
the aggregate signature. The scheme of [5] easily allows this modification, and
using this we obtain a very efficient scheme, even if only single-level delegations
are considered. Instantiating the scheme with the MNT elliptic curves [25], we
can achieve a public key size of 168 bits and an aggregate signature size of 1008
bits, giving a proxy signature size of 1512 bits, all for a security level of ap-
proximately 80 bits. Hence, the scheme provides proxy signatures which are less
than half the size of the triple Schnorr signatures as they are presented in [2],
while satisfying a stronger definition of security and providing self-verifiability
and multi-level capabilities. Note, however, that the triple Schnorr scheme allows
faster verification.

To achieve an RSA-based proxy signature scheme, we can use the sequential
aggregate signature technique proposed by Lysyanskaya et al. [21], which is se-
cure in the random oracle model given that a claw-free permutation family is
used in the construction. Note that the RSA-based instantiation proposed in
[21] has the disadvantage that the aggregate signature will grow with one bit
for each signer. To avoid this expansion, the slightly more computationally ex-
pensive RSA-family of trap-door permutations with common domain proposed
by Hayashi et al. [I3] can be used. It should be mentioned that to avoid the
need for key certification, a few extra properties are needed to guarantee that
each public key does define a permutation over the common domain; details are
in [21I]. However, with these minor changes, we obtain a scheme at the 80-bit
security level having an aggregate signature size of 1024 bits and, assuming that
all users use the same encryption exponent, a public key size of 1024 bits, giving
a proxy signature size of 4096 bits for a single-level delegation.
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Lastly, it is also possible to construct a scheme which is secure in the standard
model. However, the sequential aggregate scheme proposed by Lu et al. [20]
cannot be used for this purpose since this scheme is dependent on the registered
key model for security. In fact, to our knowledge, it is still an open problem to
construct an efficient sequential aggregate signature scheme which is secure in
the standard model and which does not require the registered key model. This
leaves only the “trivial” construction from an ordinary signature scheme (in
which the aggregate signature is simply a concatenation of ordinary signatures).
Using this together with, for example, the signature scheme of Boneh and Boyen
[3], gives a scheme which is secure, albeit somewhat inefficient, in the standard
model under the ¢-Strong Diffie-Hellman assumption. Instantiating the scheme
with an elliptic curve similar to the one suggested above, it is possible to achieve
a public key size of 336 bits (assuming all users use the same group generator
and that redundant parts of the public key are left out), a signature size of 1176
bits, and a proxy signature size of 4536 bits for a single-level delegation, all at a
security level of 80 bits. We note that if one is willing to downgrade the security
requirements and use the registered key model, the scheme of Lu et al. [20] can
be used, but a direct application will not be efficient due to the large size of the
public keys.

6 Identity-Based Constructions

Identity-based cryptography was originally proposed by Shamir [28] more than
two decades ago, but identity-based encryption was first efficiently instantiated
recently by Boneh and Franklin [4]. The construction methods presented in [4]
inspired the extension of many existing cryptographic primitives to the identity-
based setting along with efficient constructions. Among these, specific identity-
based proxy signatures were also constructed (see, for example, [343312]).

Both our definition of a proxy signature scheme given in Section [3 and the se-
curity model presented in Section H], can easily be extended to the identity-based
setting. However, due to space restrictions, we will not give the full definitions
here, but only briefly discuss the changes needed to obtain the identity-based
formulations.

Identity-based proxy signatures. First of all, in an identity-based setting, the
presence of a master entity is assumed. The role of the master entity is to
initially generate a set of public system parameters and a master key, which
the master entity will use to generate private keys corresponding to identities
in the scheme. An identity-based signature scheme is given by the algorithms
IBS = {Setup,Extract,Sign, Verify}, where Setup generates the system pa-
rameters and the master key, Extract generates a private key for an identity
and Sign and Verify implement similar functionality to the corresponding al-
gorithms of an ordinary signature scheme, with the exception that public keys
are replaced by identities. An identity-based proxy signature scheme extends an
identity-based signature scheme with the algorithms {Delegate, ProxyKeyGen,
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ProxySign, ProxyVerify}, which implement similar functionality to the corre-
sponding algorithms for an ordinary proxy signature scheme, with the exception
that all public keys are replaced by identities.

Security model. The security notion Identity-Based Proxry Signature Unforge-
ability Under an Adaptive Chosen Message Attack with Proxy Key Exposure
(id-ps-uf-pke) can be defined by introducing the following changes to the se-
curity game in Section @t

Setup The adversary is no longer given a public key pair, but only the system
parameters.

Queries The adversary is allowed to make similar queries to those in the ordi-
nary security game, using identities instead of public keys. The adversary will
furthermore be allowed to adaptively request the private keys of identities.

Forgery The adversary is allowed to choose an identity ID* for which he will
produce a forgery (in the ordinary game the adversary was forced to produce
a forgery for pk* chosen by the challenger), but it is required that he has
not requested the private key of ID* during the game. Besides this, the
restrictions on the forgery from the ordinary game apply.

With the above changes to the security game, the advantage of the adversary
can be defined exactly as in the ordinary security game and (e, ¢, ¢4, ¢s)-security
for an identity-based proxy signature scheme can be formulated exactly as in
Definition [I}

Construction Having defined the identity-based security model, it remains to be
seen if Construction 1 will yield a secure identity-based proxy signature scheme,
using an identity-based sequential aggregate signature scheme [I4]. Looking at
the definition of ProxyKeyGen reveals one problem though: a proxy is required
to generate a fresh key pair in a delegation. This represents a limitation in the
identity-based setting, since only the master entity can generate a private key
corresponding to a given identityﬂ. However, note that it is not necessary for
the key pair generated in ProxyKeyGen to be identity-based (i.e. consist of an
identity and a private key) for the overall scheme to maintain its identity-based
properties. In fact, a key pair from an ordinary sequential aggregate signature
scheme will suffice. Since signatures from an ordinary and an identity-based
sequential aggregate signature scheme cannot generally be aggregated in the
same signature, og4e; and po in Construction 1 will have to be split into two
parts — one part containing aggregated identity-based signatures and the other
containing aggregated ordinary signatures. However, with these small changes,
a secure identity-based proxy signature scheme can be obtained.

Theorem 3. Let a (', 4., €)-unforgeable sequential aggregate signature scheme
and a (t", 4", €")-unforgeable identity-based sequential aggregate signature scheme

! We note that a user can generate private keys for new identities if a hierarchical
identity-based signature scheme is used, but due to space limitations, we will not
discuss this alternative approach here.
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be given. Then the above modifications to Construction 1 yields a (t,qs, qa,€)-
unforgeable identity-based proxy signature scheme where € = qq¢ + €, t =
min(t',t") and qs + g4 = min(q., ¢7).

The proof of this theorem is very similar to that of the proof of Theorem
and will not be given here. The main difference from the proof of Theorem 2] is
that a successful forgery against the identity-based proxy signature scheme will
potentially lead to either a forgery of the identity-based or the ordinary signature
scheme, depending on the type of the proxy signature forgery. However, these
different types of proxy signature forgeries are already considered in the proof of
Theorem Pl although only a forgery for the single underlying scheme is produced.

When instantiating the above construction, all of the options for an ordinary
sequential aggregate signature scheme discussed in Section Bl can be used. How-
ever, the choice of an identity-based sequential aggregate signature scheme is
less obvious. One would imagine that the scheme by Gentry and Ramzan [10]
would be an ideal candidate, but this scheme is based on all users agreeing
on a random string w, which is used in the signing process, before signatures
can be aggregated, and the scheme will become insecure if the same w is used
for different aggregate signaturesﬁ. The latter property means that the Gentry-
Ramzan scheme does not have the full flexibility of a sequential aggregate signa-
ture scheme, since an existing aggregate signature cannot be aggregated with two
different signatures to yield two new aggregate signatures. In our construction,
this would mean that a proxy could only delegate the signing rights of a proxy
key once. To our knowledge, no other identity-based sequential aggregate signa-
ture scheme (which provides full aggregation) has been proposed, and it remains
an open problem to construct such a scheme. However, schemes that provide
partial aggregation (i.e. the size of the aggregate signature is not independent
of the number of signers) have been proposed and can be used to instantiate
our construction. For example, the scheme proposed by Herranz [14], which is
secure in the random-oracle model under the Computational co-Diffie-Hellman
assumption, can be used to achieve a fairly efficient scheme.

7 Conclusion

In this paper, we have motivated the introduction of a new security model for
proxy signatures that enhances the existing models of [2[22]. The new model
incorporates warrants, allows unregistered public keys, and lets the attacker re-
cover proxy private keys. These extensions were motivated by practical consid-
erations as well as attacks on existing schemes. We showed how our new security
definition could be achieved through a generic construction involving sequen-
tial aggregate signatures, and considered concrete and efficient instantiations of
the construction. Finally, we sketched how our models and constructions can be
extended to the identity-based setting.

2 This is not just a property of the security proof given in [10], but will enable an
adversary to construct selective forgeries.
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In the full version, we complete the routine investigation of the security and
performance trade-offs of our schemes and provide the full details of the identity-
based setting. We also consider how hierarchical identity-based signatures can
be used to construct efficient identity-based proxy signatures.
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A Key Registration Attack on ZSL-Scheme

We briefly illustrate how an adversary can mount an attack on the proxy signa-
ture scheme proposed by Zhang, Safavi-Naini and Lin [35], if key registration is
not required as a part of the security model.

In the construction presented in [35], delegation is done by letting the dele-
gator construct a Boneh-Lynn-Shacham signature [6] on the warrant w, i.e. by
computing oq = sqH (w) (where sq € Z, is the private key of the delegator and
H is a hash function onto a bilinear group G of prime order ¢), and then sending
o4 to the proxy. Upon receiving o4, the proxy generates a private proxy key psk
by computing his own signature on the warrant, o, = s, H (w), where s, € Z, is
the private key of the proxy, and setting psk = o4 + 0p = (54 + $p) H (w).

A proxy signature is then created by using the identity-based signature scheme
of Hess [I5], letting w act as the signing identity and psk as the private key for
this identity. A verifier can construct a master public key for the Hess signature
scheme in which psk is the private key of w, by summing the public keys for the
delegator and the proxy, i.e. by setting pkq+pk, = (sq+s,)P where P generates
G, and then verify the proxy signature as a signature by the identity w.

However, this construction is insecure if the registered key model is not used.
This can easily be seen as follows: let pk* = s*P be the public key of the
challenge user and let the adversary choose the public key pk = s, P — pk*
for a malicious proxy (note that the adversary cannot compute the private key
corresponding to this public key). Then, for any warrant w, the adversary can
compute s, H(w) = (sq — $* + s*)H(w) = ¢* + 0, and thereby construct the
private key needed for creating proxy signatures on behalf of the challenge user,
without the challenge user having delegated his signing rights.

B Proxy Key Exposure Attack on BPW-Scheme

We briefly illustrate how an adversary can recover the private key of the user in
the triple Schnorr proxy signature scheme analyzed by Boldyreva, Palacio and
Warinschi [2], if a proxy key is exposed.

The key observation is that the value t = G(0||pka||pk,||w,Y) - sk, +s mod ¢
is a part of the proxy key, where G is a hash function, pkq and pk, are the public
keys of the delegator and the proxy, w is a warrant, (Y, s) are values sent by the
delegator to the proxy in a delegation, and sk, is the private key of the proxy.
Since it is not assumed that there is a secure channel between the delegator and
the proxy, (Y, s) can be observed by the adversary, and if a proxy key is exposed,
the adversary can recover the private key sk, of the proxy, simply by computing
sky = (t = 5) - G(O||pkal [pky||w, Y) " mod q.
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C Proof of Theorem

Proof. The proof is by contradiction: we will assume that an adversary A that
(', q., q}, €)-breaks Construction 1 exists, and from this, construct an adversary
B that (t, ¢s, €)-breaks the underlying sequential aggregate signature scheme.
Initially, B will be given a challenge public key pk’ and access to a sequential
aggregate signing oracle Og;4(m, 0444) for the secret key sk’ corresponding to pk’.
Firstly, B flips a fair coin c. If ¢ = 0, B sets pk* = pk’ and sk* = (). Otherwise, B
generates a fresh key pair (pk*, sk*) < KeyGen, and chooses i* € {1,...,¢}} (B
will later use pk’ instead of a fresh key in the i*-th delegation query by A). For
ease of notation, we define the following function for signature generation by B:

. Osig(m, o, if sk =10
Signg(sk,m, 0agg) = {Agggs(ign(sl?,];z, Oagg) Otherwise
B runs A with input pk*. As the challenger in the security game, B will
maintain a set of lists psk List(x, %) while A is running. Each list pskList(PK, W)
will hold all proxy keys generated by B for the delegation chain with the public
keys PK and the warrants W. While running, 4 can make various queries which
B will answer as follows (note that, to answer the queries, B simply implements
the challenger by using his access to the signing oracle and taking into account
the value of ¢):

— Ordinary signature. On input m from A, B returns Signy(sk*, sgn||m,0).
— Delegation to u*. A submits the delegation message (PK, FK, W,04e). If
¢ = 0, or ¢ = 1 and this is not the i*-th delegation query, B generates
a fresh key pair (pk,sk) <« KeyGen, constructs FK' = FK.(pk) and
sets skpry = sk. If ¢ = 1 and this is the ¢*-th delegation query, B con-
structs FK' = FK.(pk*) and sets skp,, = (. Then B computes o/, «—
Signg(skprs, dlg||PK||FK'|| W, 04e) and stores psk = (FK', 0/, skprz) in
pskList(PK, W).
— Delegation from u*. There are three different types of queries A can make:
1. Delegation of sk* On input (pk,, w) from A, B constructs the lists PK’ =
(pk*,pky), FK = () and W = (w). Then B computes the signature
Odel — Signg(sk*,dlg||PK'||FK'||W,0) and sends the delegation mes-
sage (PK',FK, W ,04.) to A.
2. Re-delegation of psk. On input (PK, W, j,pky, w) from A, where j €
N, B looks up the j-th proxy key in pskList(PK, W) and parses it as
(FK, 04el, Skprz ). Then B constructs PK' = PK.(pk,) and W = W.(w),
computes o/, < Signg(skprs,dlg||PK’||[FK||W, 04e), and sends the
delegation message (PK', FK, W,o/,,) to A.
3. self-delegation. Depending on the input (PK, W, j, w) submitted by A,
B will do one of the following:
e If PK and W are empty (self-delegation of sk*), B constructs the
lists PK' = (pk*, pk*), FK = () and W = (w), and sets sk s = sk*
and Oself = (Z)
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o If PK and W are not empty (delegation of psk), B looks up the j-
th proxy key in pskList(PK, W) and parses it as (FK, 04el, Skpra)-
Then B constructs PK’ = PK.(pk*) and W = W.(w), and sets
Skself = Skpra: and Oself = Odel
Then B computes 07,, < Signg(skseis, dlg||PK'||FK||W, 0seir). Now,
if c =0, or ¢c = 1 and this is not the i*-th delegation query, B gen-
erates (pk,sk) < KeyGen and constructs FK' = FK.(pk). Otherwise,
B just constructs FK' = FK.(pk*) and sets sk = (). Finally, B com-
putes o/}, < Signg(sksey,dlg||PK’||[FK'|W', c),,), stores the proxy
key psk = (FK',a/;;, sk) in pskList(PK', W) and sends the transcript
(PK',FK, W, ol.,) to A
— Prozy signature. On input (PK, W, j,m) from A, B looks up the j-th proxy
key, in pskList(PK, W) and parses it as (F K, 0gel, Skprz). Then B com-
putes the signature po «— Signg(skpry, prx||PK||FK||W||m,04e) and re-
turns (PK, W, (FK,po)) to A.
— Prozy key exposure. On input (PK, W, j), B looks up the j-th proxy key in
pskList(PK, W) and parses it as (F K, 04er, Skprs). If skpre = 0, B aborts.
Otherwise, B returns (F' K, 04er, Skpre) to A.

Note that pk*™ will be drawn from the same distribution as public keys generated
by KeyGen and that B’s choice of ¢ will be completely hidden from A, unless an
abort occurs.

If B is not forced to abort, A will eventually output a forgery. We will classify
forgeries into two different categories:

Category A forgeries are either a valid type (7) forgery (m, o), a valid type (i)
forgery (m, (PK, W, (FK,po))) where the last key in F'K was not generated
by B, or a valid type (iii) forgery (m, (PK, W, (F K, po))) where the (i*—1)-
th key in FK was not generated by B.

Category B forgeries are all valid forgeries that are not in Category A, i.e. a
type (i7) or type (iii) forgery where B has generated the public key in FFK
which corresponds to u*’s position in the delegation chain of the forgery.

Informally, Category A forgeries correspond to forgeries where A4 has forged
a signature under u*’s long term key, and Category B forgeries correspond to
forgeries where A has forged a signature under one of the keys generated by u*
in a delegation, but for which A has not received the corresponding private key.

Consider the case where ¢ = 0. In this case, B sets pk* = pk’. If A constructs
a valid Category A forgery, then

— if the forgery is of type (i) i.e. (m,0), then A will not have requested a
signature on m (since the forgery is valid), and B will therefore not have
submitted (sgn||m, () to his own signing oracle. Hence, o is a valid forgery
of a sequential aggregate signature of length 1 on the message sgn||m under
the the public key pk* = pk'.

— if the forgery is of type (ii) i.e. (m,(PK, W,(FK,po))), where the last
key pk, € PK is equal to pk* = pk’, then B will not have submitted
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(d1lg||PK||FK||W,04e) for any o4e to his own signing signing oracle (since
this is a Category A forgery). Hence, po will be a valid forgery of a sequential
aggregate signature containing a signature on the message d1g||PK||FK|| W
under pk* = pk’.

— if the forgery is of type (iii) i.e. (m,(PK, W,(FK,po))), po will be a valid
forgery for the same reasons as in a type (ii) forgery, just having pk* ap-
pearing at a different position in PK.

If A, on the other hand, constructs a Category B forgery, B will abort.

Now consider the case where ¢ = 1. In this case B inserts pk’ as a fresh
key in a delegation query. If A outputs a Category A forgery, B will abort.
However, if A outputs a category B forgery (m, (PK, W, (F K, po))), which will
be of either type (i7) or type (iii), po will be a sequential aggregate signature
containing a signature under a key pk generated by B in a delegation query
(i.e. pk will appear as the last key in F'K' for a proxy key (FK’, 04eir, Skpra) €
pskList(PKy._ ;, Wi, ;—1) for some i), and for which A has not asked for the
proxy key containing the corresponding private key. With probability 1/qg4, B
will have chosen pk = pk’. In this case, B outputs po as a valid forgery for the
underlying sequential aggregate signature scheme. Otherwise, B will abort.

Note that if ¢ = 0, B provides a perfect simulation for A and does not need
to abort before A outputs a forgery. Also note that if ¢ = 1, A is constructing
a Category B forgery and B has guessed the correct value of i* (i.e. guessed the
key pk;~ which A will use in a forgery and inserted pk;- = pk’), B will not have
to abort either since A will not compromise the key pk;« in order to produce a
valid forgery.

Let E; be the event that A produces a Category A forgery, Ey be the event
that A produces a Category B forgery, and F3 be the event that I guesses the
correct value of ¢* in a Category B forgery. The success probability € of A can be
expressed as € = Pr[Eq] + Pr[Es]. The success probability of B can be expressed
as

e =Prlce=0A Eq] 4+ Pr[c=1A Ey A Ej3]
= 1/2Pr[E1] + Pr[Es|lc = 1 A E3] Prc = 1| E3] Pr[Es]
— 1/2Pt[E)] + 1/qq- 1/2 - Pr[Es]
> €' /2qq

Hence, the theorem follows.
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Abstract. There is an inherent difficulty in building 3-move ID schemes
based on combinatorial problems without much algebraic structure. A
consequence of this, is that most standard ID schemes today are based
on the hardness of number theory problems. Not having schemes based
on alternate assumptions is a cause for concern since improved num-
ber theoretic algorithms or the realization of quantum computing would
make the known schemes insecure. In this work, we examine the possi-
bility of creating identification protocols based on the hardness of lattice
problems. We construct a 3-move identification scheme whose security is
based on the worst-case hardness of the shortest vector problem in all
lattices, and also present a more efficient version based on the hardness
of the same problem in ideal lattices.

1 Introduction

Public key identification (ID) protocols allow a party holding a secret key to
prove its identity to any other entity holding the corresponding public key. The
minimum security of such protocols should be that a passive observer who sees
the interaction should not then be able to perform his own interaction and suc-
cessfully impersonate the prover. In a more realistic model, the adversary should
first be allowed to interact with the prover in a “dishonest” way in hopes of ex-
tracting some information, and then try to impersonate the prover. Identification
schemes resistant to such impersonation attempts are said to be secure in the
active attack model [7], and this is currently the de facto security notion.

Since Fiat and Shamir’s seminal paper [9], there have been many proposals for
constructing secure ID protocols. With a few notable exceptions, most of these
protocols (e.g. [TTI26l2TI29/23|T0]) are based on problems from number theory,
and as such, they require fairly costly multiplication and exponentiation opera-
tions. Another potential problem is that the security of these protocols is based
on problems that are easy if (when) practical quantum computers become real-
ity [28]. Thus it is prudent to have viable alternative schemes based on different
hardness assumptions.

The identification protocols not based on number theory problems (e.g. [27U30])
are generally combinatorial in nature. Because of this lack of algebraic structure,
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these combinatorial schemes all seem to have an inherent shortcoming in that they
require a lot more rounds of communication than their algebraic counterparts.
This problem arises because the proof of security is established by showing that
the schemes are zero-knowledge proofs of knowledge. It is shown that the prover
(or adversary) who successfully proves his identity, actually “knows” the secret (as
defined in [7]), yet the protocol is zero-knowledge, and as such, the prover doesn’t
reveal anything about his secret key. The problem is that in order for the protocol
to have negligible soundness error, it must be repeated a polynomial number of
times. But zero-knowledge is not preserved under parallel-repetition, and so the
protocol has to be run sequentially in order for it to maintain the claimed security.

In recent years, lattices have emerged as a possible alternative to number
theory. Cryptography based on lattices was pioneered by Ajtai [1], who showed
a fascinating connection between solving random instances of a certain problem
and solving all instances of certain lattice problems. This opened up a way to
base cryptographic functions on the hardness of worst-case problems. Since then,
there has been a lot of work on improving the average case/worst-case reduction
[19], building cryptographic primitives [3[24)25], and using similar techniques
to build more efficient cryptographic primitives [IT722/T5T6] based on similar
worst-case assumptions. Additionally, there are currently no efficient quantum
algorithms for solving lattice problems.

1.1 This Work

In this work, we present an ID scheme whose security is based on the worst-case
hardness of lattice problems. In addition, we present a more efficient version
of the scheme that is based on the hardness of problems on ideal lattices (see
section 2ZH]). We prove security by showing that an adversary who successfully
attacks our scheme can be used to solve random instances of problems defined
in [T9] and [I7], which were proven to be as hard as lattice problems in the worst
case. Thus, in this work, we do not deal with average-case/worst-case reductions
directly.

We believe that the technical details of our ID protocol may also be of in-
dependent interest. While our scheme has the structure of a standard 3-move
commit-challenge-response protocol, for security reasons, an honest prover some-
times “refuses” to respond to the verifier’s challenge. It can be shown that if the
prover always responds to the verifier, then his secret key is leaked to even a pas-
sive observer. On the other hand, by strategically refusing to reply, each round
of the protocol can be shown to be witness-indistinguishable. And since witness-
indistinguishability is preserved under parallel-composition, all the rounds can
be performed in parallel.

1.2 Related Work

The one place in the literature that mentions constructions of lattice-based iden-
tification schemes is the work of Micciancio and Vadhan [20] on statistical zero
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knowledge relating to lattice problems. In this work, the authors show an efficient-
prover SZK proof system for certain lattice problems and mention that one can
convert the proof system into an identification scheme. The conversion is non-
trivial (due to the problem of zero-knowledge not being closed under parallel-
composition), and many details remain to be filled in.

2 Preliminaries

2.1 Notation

We will represent vectors by bold letters. By « & X, we mean that x is cho-
sen uniformly at random from the set X. The notation O(n*) is equivalent to
O(n*log®n) for some constant c.

2.2 Statistical Distance

Informally, statistical distance is a measure of how far apart two distributions
are. Formally, if X and Y are random variables over a countable set A, then the
statistical distance between X and Y, denoted A(X,Y), is defined as

A(X,Y) = ; > |Pr[X =a] - Pr[Y = a
a€A

From the definition, it’s easy to see that

A(X,Z) < A(X,Y) + A(Y, Z)

2.3 Identification Schemes

An identification scheme consists of a key-generation algorithm and a description
of an interactive protocol between a prover, possessing the secret key, and verifier
possessing the corresponding public key. In general, it is required that the verifier
accepts the interaction with a prover who behaves honestly with probability one.
In this work, though, we need to relax this definition, and only require that the
verifier accepts an honest prover with probability negligibly close to one (i.e
1— Q—w(logn)).

The standard active attack model against identification schemes proceeds in
two phases [7]. In the first phase, the adversary interacts with the prover in an
effort to obtain some information. In the second stage, the adversary plays the
role of the prover and tries to make a verifier accept the interaction. We remark
that in the second stage, the adversary no longer has access to the honest prover.
We will say that the adversary has advantage adv, if the verifier accepts the
interaction with the adversary with probability adv (where the probability is
over the randomness of the prover, verifier, and the adversary).
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2.4 Witness Indistinguishability

The concept of witness indistinguishability was introduced by Feige and Shamir
in [8]. For a string « and relation R, a witness set Wg(z) consists of all strings
w such that R(w,z) = 1. For example, « could be a boolean formula and the
relation R could be defined as R(z,w) = 1 iff w is an assignment that makes
x evaluate to 1. Then the set Wg(x) is the set of all assignments that make x
evaluate to 1. In our case, the witness will correspond to the secret key and the
string x is the public key.

Let P and V be two randomized interactive Turing machines and (P,V) be
a protocol between P and V. We denote by Vp(, . (2,y) the output of V' after
participating in the protocol (P, V). We say that (P,V) is statistically witness-
indistinguishable if for all V', all large enough z, any y, and any two w,w’ €
WR<$)7

A (V/’P(m,w)<m7 y)a V/’P(m,w’) (1‘7 y)) < 27w(10g le)

In other words, every cheating verifier V' with any auxiliary input y, cannot
distinguish whether the witness that P is using in the protocol is w or w’. An
important feature of witness indistinguishability is that it is closed under parallel
composition.

2.5 Lattices

General Lattices. An integer lattice £ of dimension n is simply an additive
subgroup of Z™. A fundamental set of parameters associated with a lattice L is
the set of successive minima A;(£) for 1 < i < n. For every i, \;(£) is defined
as the minimal radius of a sphere centered at the origin that contains ¢ linearly
independent lattice vectors. For example, A1(L) corresponds to the length of
the shortest vector in £, and finding a vector of length A;(L£) is known as the
Shortest Vector Problem (SVP). Likewise, the problem of finding n independent
vectors all of length at most A, (£) is known as the Shortest Independent Vector
Problem (SIVP). Approximation versions of SVP and SIVP are defined in the
natural way. That is, an approximate solution to SVP within some factor « is a
vector in the lattice that is of length at most yA1(£). Similarly, an approximate
solution to SIVP within a factor v is a set of n linearly independent lattice
vectors each having length at most yA, (L)

The shortest vector problem was shown to be NP-hard by Ajtai [2] and NP-
hard to approximate to within any constant factor by Khot [13]. The best known
algorithm to find the exact shortest vector, or even some polynomial in n factor
approximation of it, takes time 2°(") [4IT4]. As far as SIVP is concerned, it is
known that this problem is NP-hard to approximate for any constant factor [6],
and finding the exact solution takes time approximately n! [18] (although finding
a (1 + €) approximation takes time 2°(™) for any constant e [5]).

The aspect that makes lattices interesting in cryptography is that one can
build collision-resistant hash function families that are as hard to break on the
average, as solving approximate SIVP in the worst case. This work began with
the seminal paper by Ajtai [I], and the currently tightest reduction is due to
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Micciancio and Regev [19]. Below, we restate the main result of [19] in a way
that will be convenient for our proof.

Definition 1. (The small integer solution SIS(A) problem) Given a matriz A €
Zy*™, find two distinct vectors z,z" € Z™ such that Az mod p = Az’ mod p
and ||z, ]|2'|] < 10m*>.

Theorem 2. [T9, Theorem 5.9] For integer m = [4nlogn]| and some integer
p = O(n3), if there exists a polynomial-time algorithm that solves SIS(A) for
uniformly random A € Zy*™, then the SIVP problem can be approzimated in

polynomial time to within a factor of O(n2) in every n-dimensional lattice.

Ideal Lattices. Ideal lattices were first studied in the context of cryptography
by Lyubashevsky and Micciancio in [I5]. Such lattices are a special class of
general lattices and a generalization of cyclic lattices [I7]. Their usefulness is
attributed to the fact that very efficient and practical collision-resistant hash
functions can be built based on the hardness of finding an approximate shortest
vector in such lattices. Roughly speaking, ideal lattices are lattices corresponding
to ideals in rings of the form Z[x]/(f) for some irreducible polynomial f of degree
n. For simplicity we will only concentrate on rings of the form Z[z]/{z™ + 1),
as they have proved to be the most useful for practical applications [16]. An n-
dimensional ideal lattice in the ring Z[x]/(z™ + 1) is a lattice with the additional
restriction that for every vector (ai,...,an—1,a,) in the lattice, the rotated
vector with the first coordinate negated (—ay,as,...,a,—1) must also be in
the lattice. It was shown in [I5] that efficient collision resistant hash functions
could be built based on the hardness of finding the shortest vector in ideal
lattices. The average-case hard problem in [I5] is essentially the SIS problem
in Definition [Il with the one difference being (and this is what gives the hash
function its efficiency) that the matrix A € Zj*™ is no longer chosen from
the entire domain Zj*™. Instead, it is chosen as follows: first pick any vector
a; € Z, and make it the first column of A. The next n —1 columns of A consist
of consecutive rotations (while always negating the coordinate that gets rotated
to the beginning of the vector) of a;. For column n + 1, we choose another
random vector as and then fill the next n — 1 columns with its rotations. We
continue repeating this process until all m columns are filled (we assume that m
is a multiple of n). We will call this domain of all such matrices ROT(n, m, p),
and selecting a random A € ROT(n, m, p) corresponds to performing the above
procedure while choosing a1, as, . .. a,,, randomly from Zj.

Notice that because of the repetition, it is not necessary to store all m columns
of matrices chosen from ROT(n,m,p). Another extremely important feature is

that multiplying such matrices by any vector in Zj' requires only O(mlogn)

time rather than O(mn) This is because the multiplication can be done using
the Fast Fourier Transform (see [T7/I5] for details).

! We point out that the below result is weaker than what was proved in [T9]. Unfor-
tunately, in this paper we cannot construct an identification scheme with security
based on the strongest results from [19].
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We will now state a convenient form of the main result of [I5] B

Theorem 3. [15, Theorem 2] For integer m = [4nlogn] and some integer
p = O(n3), if there exists a polynomial-time algorithm that solves SIS(A) for
uniformly random A € ROT(n,m,p), then SIVP (and also SVPE) can be approz-
imated in polynomial time to within a factor of O(nQ) in every n-dimensional
lattice corresponding to an ideal in Zlx]/{z™ + 1).

2.6 Leftover Hash Lemma

In this section, we review the leftover hash lemma [I2]. This lemma will be
crucial in proving the witness-indistinguishability property of our protocol.

Lemma 4. (Leftover Hash Lemma) Let X and Y be two finite sets and U
be the uniform distribution over Y. If H is a universal family of hash functionﬂ
log | Y| —log | X |

from X toY, then for all but a 2 4 fraction of the possible h; € H,

A(hi(z),U) < 2" here @ is chosen uniformly at random from X.

The following lemma is a straightforward consequence of the leftover hash lemma.

Lemma 5. Let X be some subset of Z;'. Then for all but a g esrlos X fraction

of all A € Z;*™, we have

nlog p—log | X|

A(Az mod p,u) <2 4 )

where x is a random variable distributed uniformly in X and w is a random
variable distributed uniformly in Z,.

Proof. We consider a family of hash functions H consisting of functions ha
indexed by A € Zy*™, where ha(z) is defined as Az mod p. The domain of
these functions is any subset of Z;" and the range is Zj. To apply the Leftover
Hash Lemma, we need to show that H is a universal family of hash functions.
In other words, for any distinct @, 2’ € X, we need to show that for a randomly
chosen A € Zp*™,
1

Priha@) =ha@) = 0,

In other words, we need to show that for a randomly chosen A € Zp*™,

1
onlogp = Pr[Az mod p = Az’ mod p|
= Pr[A(z — ') mod p = 0] = Pr[Ay mod p = 0]

where y is some non-zero vector. Without loss of generality, assume that the
last coefficient of g is non-zero, and let 4y’ be the first m — 1 coefficients of y.

2 As for general lattices, the below result is weaker than what was proved in [I5].

3 This is because lattices of this form have the property that A\1(£) = ... = A\, (L).

4 Recall that a hash function family H : X — Y is called universal if for every two
distinct elements z,z’ € X, we have Pr, s [h(z) = h(z)] = 1/|Y].
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Similarly, let a be the last column of A and let A’ be the first m — 1 columns
of A. Then,

Pr[Ay mod p = 0] = Pr[A'y’ + ay,, mod p = 0]

1
|
= Prla=y, (-AY)(mod p)] = ,, ., ,
Since p is prime and y,, is non-zero, the multiplicative inverse of y,, modulo p
exists. And since a is chosen uniformly at random from Zy, the probability that
it is equal to any specific value is ,, L. .- And now that we have shown that H
is a family of universal hash functions, the claim of the lemma follows from the

Leftover Hash Lemma. a

The below corollary is obtained by applying Lemma [B twice, and using the
triangular inequality property of statistical distance.

Corollary 6. Let X and Y be any two subsets of Z;'. Then for all but a
nlog p—log | X| nlog p—log |Y|

2 4 +2 4 fraction of all A € Zj*™, we have

nlog p—log | X| nlog p—log |Y|

A(Az mod p, Ay mod p) < 2 4 +2 4 ,

where x is a random variable distributed uniformly in X and y is a random
variable distributed uniformly in'Y .

3 The Identification Scheme

We will first describe one round of our identification scheme (Figure [I). The
prover picks a secret key w € {0,1}"™, and publishes the public keys A & Zp<m
and w «— Aw mod p, where m = [4nlogn] and p is some integer of order
é(n?’)ﬁ We note that the matrix A may either be created by the prover or be
created by a trusted third party. In fact, all users may share the same matrix
A. In the first step of the protocol, the prover picks a uniformly random vector
¥ from the set of vectors {0,1,...,5m — 1}™, and sends y «<— Ay mod p to the
verifier. The verifier then sends a challenge ¢ «— {0,1}. If ¢ = 0, the prover
simply sends z < gy as the response. If, on the other hand, ¢ = 1, the prover
first checks whether the quantity w + ¥ is in the set SAFE={1,2,...,5m —1}".
If it is, then the prover sends z « w + g, and if it is not, then the prover sends
z «—_1 which signifies that he refuses to answer. If the prover sends L, then the
verifier obviously rejects the interaction. Otherwise, the verifier checks whether
2|l < 5m!5 and Az mod p = cw + y. The verifier accepts if and only if those
two conditions are satisfied.

Some comments are in order about the somewhat unusual way in which the
prover picks his response z when the challenge is ¢ = 1. Notice that if the prover

5 For the reader’s convenience, we will make the convention of putting tildes over the
variables which are kept “secret” by the prover (e.g. w,y).
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Prover Verifier

Private key: @ < {0, 1}™
Public key: A & Zm%™,
w «— Aw mod p

< 4{0,1,....5m —1}™
y «— Ay mod p

Y >
c& 0,1}
. ¢
ifc=1and g +w ¢ SAFE
z—1
else
z«— Y+ cw
z

-
if [|z]] < 5m'® and Az modp=cw+y
d+—1
else
d<—0

Fig. 1. One round of our identification scheme. The parameters are p = O(n®), m =
[4nlogn], and the set SAFE is defined as {1,...,5m — 1}™.

always sends z < w + y for ¢ = 1, then even a passive observer can deduce
the secret w after he sees enough rounds. This is because if any coordinate of
z is ever 0, the observer knows that the corresponding bit of w must also be 0.
Similarly, if any coordinate of z is 5m, then the corresponding bit of w must be
1. One might think that a way to resolve this problem would be to choose g in a
way such that seeing w + g will not give anything away about w. The problem
with this approach is that when the verifier sends ¢ = 0, the prover will have
to reveal y, and the distribution of the y’s may actually end up revealing the
secret w. (Consider the nalve idea of never setting any coordinates of ¢ to 0 if
the corresponding bits of w are 0. Then the fact that some coordinates of y are
never 0 will give away the fact that those bits of W were themselves 0’s.) At the
present, the only way that we know of to “fix” this, is to make the integers m of
order n*() . This way, with high probability, the coefficients of ¢ will never be 0
or 5m — 1, and so w will potentially be safe. Unfortunately, setting m to such a
large number significantly weakens the result of the security proof.

A consequence of the prover sometimes refusing to answer is that the verifier
may end up rejecting an honest prover. So it is important that the honest prover
is not rejected too often in each round. This way, if the protocol is repeated
enough times, the prover will answer correctly enough times so that the verifier
will be able to distinguish between an honest prover and an impersonator.
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We will now outline the rest of this section. We first show that an honest
prover will able to get the verifier to accept with a “high enough” probabil-
ity (Lemma [7). We then show that every round of the protocol is statistically
witness-indistinguishable (Theorem [@]). Since witness indistinguishability is pre-
served under parallel composition, we can repeat the protocol in Figure [[l many
times in parallel. The result of this is the identification protocol in Figure[2l In
Theorem [I3] we show that this protocol is secure in the active attack model by
showing that an adversary who successfully attacks the protocol can be used to
solve the SIS problem from Definition [Il which by Theorem 2] implies being able
to solve the approximate Shortest Independent Vector Problem in every lattice.

Lemma 7. For m > 10, the probability that the verifier will accept (i.e. set
d = 1) an interaction with an honest prover during a round is at least .81.

Proof. Notice that if ¢ = 0, then the verifier will always accept because the
prover will always send z = gy and thus Az = Ay = y(mod p). Similarly, if
¢ =1and w+y € SAFE, then the verifier will always accept because the prover
sends z = w+ g and so Az = A(w +y) = w+ y(mod p). Thus the probability
that the verifier accepts is at least the probability that w + y € SAFE.

Pr[d=1] > Prlw + y € SAFE| = (1 - 51 ) > 81 form>10 (1)
m

The equality is true because for every ¢, only one of 5m possibilities for the
coefficient ¢; of g will lead to w + y to be not in the set SAFE. That is, if
w; = 0, then g; can be anything except 0, and if w; = 1, then g; can be anything
except om — 1. O

Before showing that every round of the protocol is witness-indistinguishable, we
need to show that with extremely high probability over the choices of the public
key, there does indeed exist more than one possible secret key.

Lemma 8. For any matriz A € Zy*™ and a randomly chosen w & {0,1}™,
the probability that there exists another w' € {0,1}™\ w such that Aw mod p =
Aw' mod p is at least 1 — 2n1°8P—m

Proof. The result of Aw mod p falls into Zj, and thus there can be at most
|Zn| = 2718 clements w € {0,1}™ such that Aw mod p leads to a unique
element in Z;. Thus the probability that a randomly chosen w € {0,1}™ collides
with some other w’ € {0,1}™ is at least 1 — 2nlesrP—m, O

We now move to showing witness indistinguishability. The proof will roughly
proceed as follows. First, we observe that when the challenge is ¢ = 0, the
protocol is trivially witness indistinguishable because the secret key is completely
uninvolved in the response. So we concentrate on the case where ¢ = 1. In that
case, two things can happen. In one case, w + g will be in the set SAFE and
the prover sends z <« w + y. In this case, we will show that the protocol is
perfectly witness-indistinguishable. In the case that w + g is not in SAFE and
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the prover sends z <1, we will show that the protocol is statistically witness
indistinguishable.

The below theorem actually proves witness indistinguishability of the protocol
for all but a 2=2(1°8* ") fraction of A € Zy*™. Since the matrix A is chosen at

random, there is only a 2~%(* log”n) chance that it is one of the “bad” A’s that
doesn’t result in the protocol being witness indistinguishable.

Theorem 9. For all but a 2~ 2(nlog*n) fraction of A € Zp*™, the following
holds true. For any two vectors w,w’ € {0,1}™ where Aw mod p = Aw’ mod
p = w, any cheating verifier V, and auxiliary input string r,

A (VP(A,’&)) (Aa w, T)7 VP(A,’&)') (A7 w, T)) < 2—Q(n log®n) .

Since the protocol is clearly witness indistinguishable when the verifier sends
c =0, we will assume that ¢ = 1. We will show that

A (VP(A,'&J)(Ay w, 7’)7 V’P(A,'&;/)(A, w, 7")) < 2*n10g2 n

by showing that the distribution of the messages that the prover sends to the
verifier is almost independent of whether the witness is w or w'’.

The messages that the prover sends to the verifier consist of the elements
y and z. For convenience, in the case that the witness is w, we will use the
variables y, z and when the witness is @', we will use the variables y’, 2.

A(Vpaw) (A,w,7),Vpaw) (A w,r)) (2)
<, S 1Py, 2) = (@) - Py’ ) = (. B)] (3)
(e,8)

=0 Y PR = (@B - Pl ) = @) @

(o,B#1)
vy X 1P = (e ] - P ) = (e L] ()

(e,B=1)
In the above equations, the sums are over all @ € {0,1,...,5m — 1} and

Be{l,2,....5m—1}mU{L}.
We will finish the proof of the theorem by showing that (@) is 0 for all matrices
nxm 3 lo - — n 10, 2 n
A € Zy*™ (Lemma [I0), and (B) is negligibly small for all but a 2 @(nlogn)
fraction of A € Z;*™ (Lemma [IT]).

Lemma 10

O 1Prly.2) = (@) - Priy,#) = (@.B)] =0
(a,B#1)

Proof. We will show that for every a and 8 #.1,

Pr((y,z) = (o, B)] = Pr((y', ") = (e, B)]. (6)
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We rewrite Pr{(y, z) = (o, 8)] as

Pr{(y,z) = (e, B)] = PrlAg mod p = a N § + w = 3]
= Pr[Ay mod p = a|y + w = B]Pr[y +w = G

And similarly,
Pri(y’,2") = (o, 8)] = Pr[Ay mod p = a|y’ + @' = B]|Pr[y’ + &' = 3.

Notice that the probability Pr[Ag mod p = a|y+w = 3] is being conditioned on
y, which is the only random variable in the expression, and thus the probability
evaluates to either 1 or 0. It is 1 whenever A(B — w) mod p = o and it is
0 otherwise. Similarly, Pr[Ag’ mod p = a|y’ + @' = B] = 1 whenever A(3 —
w') mod p = a and 0 otherwise. The important thing is that A(8—w) mod p =
A(B —w') mod p (because Aw mod p = Aw’ mod p) and thus

Pr[Ag mod p = a|y +w = 8] = Pr[Ay mod p = a|y’ + @' = 3.
So all that remains to show to prove the equality in equation (@) is to show that
Prig+w=p] = Prly + @' = B].

This is done by observing that since 3 # L, it must be in the set SAFE, which
means that all coefficients of 3 are between 1 and 5m — 1. And since the coef-
ficients of w are all 0 or 1, the coefficients of 3 — w are between 0 and 5m — 1,
which is exactly the range that ¢ is chosen uniformly from. Thus,

Prig +io = B) = Prlj =B — @] = 1/(5m)"

for all values of @ and any secret key w. And by the same reasoning, we have
Prly' =8 —-a']=1/(5m)™. O

Lemma 11. For all but ¢ 2~?(nlog’n) fraction of possible A € Z;*™,

; Z |Pr((y,2) = (o, L)] — Pr{(y/,2') = (e, L)]| < 9—12(nlog? n)
(a,8=1)

Proof. Define the set Sz = {g € {0,...,5m — 1} such that y + w ¢ SAFE}.
The two important characteristics of the sets Sy and Sy, for any two secret
keys w and w’, is that their sizes are equivalent and “large enough”. Both of
these are implicit from equation () in Lemma [[l More precisely,

0] = [a/] = (5m)" = )" (1= ) ")
1/5 -
> m) - em (1) = ) 0
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We now proceed with the proof of the lemma.

> IPrl(y.z) = (e, L)] = Pri(y’. 2) = (e, L)] (9)
(a,8=1)
1 - -
=, Z |Prl[Agy modp=a A g € Sg] (10)
— Pr[Ag' modp=a A ¥ € Sg]| (11)
1 - - -
=, Z |Pr[Ay mod p = a|y € S| Pr(y € Sa) (12)
— PrlAy’ mod p = al|y’ € S/ |Prly’ € Sal| (13)
1
<, > |Pr[Ag mod p = al§ € S| — Pr{Ay mod p = aly’ € Su]|  (14)
1 -
=, Z ‘Prgism [Ag mod p = o] — Prﬂ'isfu, [Ag’ mod p = af (15)

The inequality in equation (I4) is true because |Sg| = |Sa|, and so Pr[y €
Sa] = Pr[y’ € Sag] < 1. We now notice that equation ([[H) is the statistical
distance between the distributions Ay mod p and Ag’ mod p where y and ¥’
are chosen uniformly from the sets Sy and Sy respectively. Using the fact that
|Sa| = |Sa| = R(mlogm) = 2(nlog®n) and p = O(ng)7 we apply Corollary [6]
to obtain the claim of the lemma. O

Having shown that one round of the protocol is witness indistinguishable, we
move on to building the full identification scheme (see Figure 2]). As we alluded
to earlier, the scheme will not have perfect completeness since an honest prover
will sometimes have to refuse to answer and thus get rejected by the verifier. Nev-
ertheless, by having enough rounds, an adversary will reject an honest adversary
with negligible probability.

Lemma 12. The identification protocol in Figure[2 has completeness error less
than 27t/14,

Proof. By Lemma [, we know that the honest prover will respond correctly
to challenge ¢; with probability at least .81. Since the prover is honest, the
probabilities of success are independent for all the challenges, and so using the
Chernoff bound, we obtain:

Pr[REJECT] = Pr{sum < .65t] = Pr[sum < (.81 —.16)t] < ¢ 2(16%) < g=t/14

O
Thus setting ¢ = w(logn) results in the protocol having negligible completeness
error.

We now move to proving the security of the ID scheme. We will show that an
adversary who successfully attacks the protocol can be used to successfully solve
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Prover Verifier

Private key: @ < {0, 1}"™
Public key: A & 71X
w — Aw mod p

fori=1tot
7, < {0,1,....5m —1}™
y; — Ay, mod p

yl?"'vyt>
fori=1tot
¢ < {0,1}
Cly...,Ct
-
fori=1tot
if ¢; =1 and gy, + w; ¢ SAFE
Zi<—J_
else
zi — Y, +cw;
Zly.-.y2¢t
s
fori=1tot

if (]|z4|| < 5m"® and
Az; mod p = c;w + y;)
d; — 1
else
di — 0
sum=dy +...+d;
if sum > 0.65¢t then ACCEPT
else REJECT

Fig. 2. The identification scheme. The parameters are p = O(n®), m = [4nlogn],
t = w(logn), and the set SAFE is defined as {1,...,5m — 1}™.

the SIS problem for random A. By Theorem [ this implies that this adversary
can be used to approximate the length of the Shortest Vector to within a factor
of O(n?) in every lattice.

Theorem 13. If there exists a polynomial-time adversary who can break the ID
protocol in Figure [ with probability adv in the active attack model, then there
exists a polynomial-time algorithm that solves the SIS(A) problem with success
probability {2 ((adv)2 -2 2_t/18) when A is chosen uniformly at random from
Zy*™.

Proof. We explain how to build an algorithm that solves the SIS(A) problem
using an adversary attacking the identification scheme. Given a random matrix
A Zy™™, we create a random secret key w & {0,1}™, and output A and
w «— Aw mod p as the public key of the identification scheme. Since we know the
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secret key, we can perfectly simulate the identification scheme with an adversary
who is acting as the verifier. If the adversary wishes to interact with more than
one prover, we can easily accommodate him by creating more secret keys w; and
public keys w; «— Aw,; mod p and perfectly simulate those interactions as well.

After the adversary finishes his interaction with the prover(s), it’s now his
turn to perform an impersonation of the prover whose public key is (A, w). We
will use this impersonation to extract a solution to the SIS(A) problem. In the
first step of the protocol, the adversary sends us t vectors y1,...,y;. We reply
by sending ¢ random challenges c1,...,c;. The adversary replies with vectors
21,...,2¢. We then rewind the adversary, and send another set of independently
random challenges ¢/, ..., ¢} and receive responses z/, ..., z;. We then find an ¢
such that ¢; # ¢;, Az; mod p = c;w + y;, and Az}, mod p = cw + y; (the fact
that such an ¢ exists will be shown later). Without loss of generality, suppose
that ¢; = 1 and ¢; = 0. We thus obtain that

A(Zi — Z;) modp =w = Aw mod p- (16)

Since our identification scheme is witness-indistinguishable, and there is at least
one other w’ € {0,1}™ such that Aw mod p = Aw’ mod p (Lemma [, the
probability that z;, — 2z, = w is at most 1/2. Also, |z; — 2i|| < |z + ||z <
10m!5. Thus, with probability at least 1/2, the values z; — 2z} and w are a
solution to the SIS(A) problem.

What we now need to show that with high probability, there indeed will exist
an 4 such that ¢; # ¢}, Az; modp = cw + y;, and Az, modp = cw + y,.
We will call this condition (x). We will say that a pair of challenge sequences
Ci,...,¢ and ¢, ..., ¢ is good if Y, |¢; — ¢)| > .35t (they differ on more than
.35t coordinates). Notice that if the adversary succeeds in impersonating on both
sequences of a good pair, then by the pigeonhole principle, (x) will be satisfiedd.
By the Chernoff bound, the probability that a random pair of sequences is not
good is

Pr

t
Z ‘Ci - C;| < 36t‘| < eiQt(~142) < 27t/18
i=1

The adversary succeeds on a random challenge sequence with probability adv,
and thus succeeds on a pair of independently random sequences with probability
(adv)?. Since we just showed that at most a 27%/'® fraction of all pairs is not
good, we know that the adversary must be able to answer correctly on a ran-
domly chosen good pair of sequences with probability at least (adv)? — 2-t/18,
Multiplying this by the probability that the pair of sequences we randomly chose
is good, we get

Pri(»)] > ((adv)2 — 2_t/18> (1 _ 2—t/18) > (adv)? —2- 9—t/18 .

5 Recall that an adversary is allowed to answer incorrectly up to .35¢ times and still
be accepted, and this is why having just one 4 for which ¢; # ¢} is not enough.



176 V. Lyubashevsky

Algorithm 1. (Attack on ID scheme given public keys A € Zp ™, w € Zg)

1: Find @' € {-5m,...,—1,0,1,...,5m — 1} such that Aw’ mod p = w
2: for i =1 to t (performed concurrently for all 7) do

3:  Pick random g, € {0,1}™. Set y; < Ay, mod p

4 Send y; to the Verifier

5:  Receive ¢; € {0, 1} from the Verifier

6: Set z; « cw) + Y,

7 Send z; to the Verifier

8: end for

4 Ideal Lattices

In this section, we discuss how the identification scheme can be sped up by
almost a factor n if we base its security on the hardness of finding the shortest
vector in ideal lattices. The main savings in efficiency, and the only difference in
the protocol, is that the matrix A € Z;*™ will no longer be chosen at random
from Z;*™, but instead from ROT(n, m, p). Everything else in the identification
scheme in Figure 2] remains exactly the same. Notice that the most expensive
operation in the protocol is the multiplication Ay mod p for the prover and
Az mod p for the verifier, which involves O(mn) multiplications of integers of
bit length logp = O(logn). But it’s possible to exploit the algebraic structure
of A € ROT(n,m,p), and perform that same matrix-vector multiplication by
using the Fast Fourier Transform, and thus require only O(mlogn) operations.
The proof of security for the new protocol is extremely similar to the one already
provided for general lattices. Thus, rather than providing complete proofs, we
briefly sketch the necessary modifications.

It is still be true that each round of the protocol remains witness indistinguish-
able, and the proof of witness indistinguishability is almost the same. The only
difference is that we have to be careful to make sure that Corollary [0l remains
valid when the matrix A is chosen from ROT(n,m,p) rather than from all of
Zy*™. A condition that is sufficient for this is that we choose the parameter p
in a way that makes the ring Z,[x]/(z™ +1) a field (i.e. every element in the ring
should have an inverse). We point out that it’s also possible to prove witness-
indistinguishability when Z,[z]/(z™ +1) is not a field, but then we can no longer
use the leftover hash lemma, and we would instead need to use a lemma very
similar to Micciancio’s regularity lemma [I7, Theorem 4.2].

5 Attacks

We have shown that our identification schemes are provably secure in an asymp-
totic sense, but as we’ll show in this section, they unfortunately cannot yet be
put into practice because they are insecure for parameters that one might con-
ceivably use in applications. The core issue behind our schemes’ vulnerabilities is
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that lattice-reduction algorithms seem to work better in practice than in theory.
See Algorithm 1 for the description of the attack.

Notice that the vectors z; will always have coordinates in the range between
—5m and 5m, and so ||z;| < 5m!®. Also notice that the adversary has no need
to hide his “secret key” and so he never has to respond with 1, and thus the
verifier will always accept this interaction. The hard part is performing step [
of the above attack. In fact, performing this step is as hard as approximating
the shortest vector in all lattices to within a factor of O(n'-). As n grows large,
this is believed to be a hard problem, but for small parameters, it is feasible to
solve and we will explain this next.

The problem of finding the @’ in step [ is the problem of finding a vector
x with small coefficients such that Az mod p = y where A is random matrix
in Zp*™ (or in ROT(n,m,p)) and y is a random vector in Zj;. We want to
phrase this problem as a lattice reduction, and so we first construct the matrix
A’ = [Al]y] and consider the problem of finding a vector ' € Z™*! such that
A’z mod p = 0. Notice that if we are able to find such an z’ all of whose
coefficients are small and the last coefficient is —1, then we are able to find an x
that solves the original problem. Also notice that all the ' € Z™*! that satisfy
A’z mod p = 0 form an additive subgroup of Z™*!, and thus an integer lattice
of dimension m+1. So what we need to do is first construct a basis of this lattice
and then find a vector in it with coordinates between —5m and 5m — 1 (and
have the last coordinate be —1).

Constructing a basis for this lattice can be done in polynomial time by viewing
A’ as a linear function mapping Z™*! to Z,, and computing the basis for its
kernel. This basis is exactly the basis of the lattice we referred to above. It’s not
hard to see that by the pigeonhole principle the lattice has a vector all of whose
coefficients are either —1,0, or 1, and so finding a vector that has coefficients
between —5m and 5m—1 roughly equates to finding a short vector within a factor
of m of the shortest one. This becomes a hard problem as m gets large, but for
small and medium-sized m that could potentially be used in practice (around
1000), lattice reduction algorithms can find such vectors fairly efficiently. And
finding such a vector whose last coordinate is —1 is heuristically feasible.

6 Conclusions and Open Problems

We have presented a framework for constructing identification schemes that are
secure in the active attack model based on the worst-case hardness of lattice
problems. A lot of open questions remain, though. The most significant of these
is whether the ideas presented in this paper can be used for the construction of
an identification protocol that can be instantiated with practical-sized parame-
ters. Recent results that provide practical instantiations [I6] of collision resistant
lattice-based hash functions based on theoretical ideas in [22/I5] makes us opti-
mistic that with some new ideas the same could be done for the identification
schemes presented here.
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A possible approach would be to see whether it is somehow plausible to pick
the values g from a smaller set. Notice that the set that y’s got picked from was
designed so that for a random g, the value of y 4w could be safely revealed with
a high enough probability. Since the size of this set played a critical role in the
attack, reducing it would make the attack more difficult to mount. Another open
problem is to somehow modify the ID scheme so that it has perfect completeness.
Having perfect completeness would allow us to reduce the number of rounds ¢
in the protocol.
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Abstract. We present an efficient simultaneous broadcast protocol v-SimCast
that allows n players to announce independently chosen values, even if up to
t < 7 players are corrupt. Independence is guaranteed in the partially syn-
chronous communication model, where communication is structured into rounds,
while each round is asynchronous. The v-SimCast protocol is more efficient than
previous constructions. For repeated executions, we reduce the communication
and computation complexity by a factor O(n). Combined with a determinis-
tic extractor, v-SimCast provides a particularly efficient solution for distributed
coin-flipping. The protocol does not require any zero-knowledge proofs and is
shown to be secure in the standard model under the Decisional Diffie Hellman
assumption.

1 Introduction

1.1 The Simultaneous Broadcast Problem

Simultaneous broadcast allows n participants to simultaneously announce indepen-
dently chosen values. It is useful in many applications such as auctions or coin-flipping,
and is in fact a generic building block for any distributed protocol with an honest ma-
jority [16]. While this goal is trivial to achieve in a perfectly synchronous network
where messages from all participants are broadcast at exactly the same moment, such
a communication model itself is infeasible in practice. Instead, it is common to assume
a partially synchronous network [6/T4T5], where communication is divided into syn-
chronized rounds, while every round is asynchronous, i.e., messages in a given round
may arrive at any given moment within a time frame allocated to that round. Thus, in
a partially synchronous network, every announced message may be chosen depending
on all previously broadcast messages, including earlier messages received in the same
round.

Consider the example of contract bidding where n players participating in a sealed
bid auction wish to announce their bids in a “blind” way, such that the bids are revealed
only once the auction is closed. In the partially synchronous model, simply announcing
the messages in cleartext violates the requirement of blind bidding and allows the player
speaking last to place the winning bid. At first sight, it seems sufficient to commit to
a bid and only open the commitment after the bidding period has elapsed. However,
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if Alice and Bob are competing players, then after seeing Alice’s message, Bob may
be able to create a related bid even if the commitment scheme is hiding. For example,
Bob may simply copy Alice’s message and thus guarantee that their bids are equal. In
cryptography, such an (often undesirable) property is called malleability [9], and the
attack is known as a rushing attack.

Secondly, it is often desirable that participants are bound to their commitments. If
Alice and Bob use non-malleable commitments, Bob is not able to use the rushing at-
tack to create a related bidEl He could, however, decide not to decommit at all after
seeing Alice’s bid, if the outcome is not to his favour. Thus, we need a simultaneous
broadcast protocol that is both non-malleable—participants cannot choose their con-
tribution based on other players’ choices—and robust—nobody can pull out their con-
tribution. Combined, this property is known as independence. Simultaneous broadcast
protocols have many applications beyond contract bidding (see Sect. M), and several
solutions have been proposed to achieve independence in partially synchronous com-
munication [6lT4]. However, previous protocols require each party to broadcast O(n)
messages and perform O(n?) computation, so some authors use more efficient custom
protocols for specific tasks such as coin-flipping [10]. In contrast, we propose a new
generic simultaneous broadcast protocol that is particularly efficient in repeated runs.

1.2 Previous Work

The notion of non-malleability in cryptographic primitives was put forth by Dolev et
al. [9]. In particular, non-malleable commitment schemes exhibit the property that,
given a commitment Com(a), it is difficult to produce a commitment Com(b) to a re-
lated value b. More precisely, we require that if an adversary is capable of creating a
commitment Com(b) satisfying some relation R(a, b) then he is equally successful in
creating such commitments without seeing Com(a) at all. Liskov et al. also introduced
the notion of mutually independent commitments [19]]; however, they propose a solu-
tion for the two-party setting, whereas we are interested in the multi-party case.

Recall that non-malleability alone does not provide independence since, after see-
ing honest players’ values, malicious players may refuse to open their commitments.
To ensure robustness in distributed computations, several authors have proposed to use
verifiable secret sharing (VSS) to “back up” values. Rabin [21]] and Gennaro et al.
propose to use additive (n-out-of-n) sharings of a joint secret key. Such an approach
yields particularly efficient protocols for distributed signatures. For example, if an RSA
signing key d is shared amongst n players as d = d;+- - -+d,,, then each player’s contri-
bution to the signature m? mod N on message m is computed simply as m?% mod N.
The novelty lies in the clever use of VSS to obtain robustness. Namely, they have ev-
ery player verifiably share d; of the key according to a (¢, n)-threshold scheme. This
assures that honest players can restore the contributions of failed players.

The idea of using VSS as back-up has since become quite well known. Returning to
the case of commitments, the simple auction protocol can be made robust by having ev-
ery participant VSS the committed value, as put forth by Gennaro [[14]. We can thus en-
force that all commitments are opened in the second round: if some player aborts, other

! The traditional notion of non-malleability does not, however, preclude exact copying of the
commitment, so extra care must be taken to thwart the “copycat” attack.
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players can open his commitment by reconstructing the shared value. Notice though that
as opposed to the case of threshold signatures, Gennaro’s broadcast protocol requires
a new run of VSS for every round of broadcast, and additional zero-knowledge (ZK)
proofs to ensure that the value under the non-malleable commitment is identical to the
secret-shared value. We note that Pedersen’s verifiable secret sharing could also
be used to provide simultaneous broadcast. This solution would eliminate ZK-proofs
but not the communication overhead induced by verifiable secret sharing, and would be
computationally heavier due to the use of Pedersen commitments.

1.3 Our Contribution

In many applications, the same set of parties need to perform multiple simultane-
ous broadcasts. For example, distributed statistical databases require simultaneous
broadcast for every database query. We present the first simultaneous broadcast protocol
that significantly optimizes communication and computation cost for multiple invoca-
tions. Namely, in all previous solutions, verifiable secret sharing is required in every
invocation of the protocol, even if the previous run was error-free. This means that each
party has to broadcast more than ¢ verification values and perform about ¢tn exponen-
tiations for verification. In contrast, we propose a new broadcast protocol v-SimCast
that requires one run of VSS in the initialization phase, after which multiple (/) runs of
broadcast can be carried out extremely efficiently. An error-free execution requires only
two rounds, during which each party broadcasts only one ciphertext and its decryption.
Consequently, computation cost drops by /2, since each party now needs to compute
only 2n exponentiations. For ¢ ~ n/2, we have order n gain in both computation and
communication. In particular, even though v-SimCast is optimized for repeated execu-
tion, 1-SimCast (a single execution of the protocol with v = 1) is no less efficient than
previous solutions. Table [] (Section compares the performance of simultaneous
broadcast protocols.

Our protocol does not require any zero-knowledge proofs and is thus proven secure
in the standard model (Thm.[I). This makes v-SimCast suitable for coin-flipping, since
players do not need common (known in advance) randomness for non-interactive ZK-
proofs to produce common (unpredictable) randomness as protocol output. We achieve
this by combining Gennaro’s idea of using semantically secure encryption for commit-
ment with Rabin’s idea of backing up secret keys through VSS. Our protocol achieves
independence of outputs (following the definition by Gennaro [14]) with a reduction
to the semantic security of ElGamal. We note that EIGamal can be substituted with
any other semantically secure encryption scheme under somewhat stronger assump-
tions (the common random string model, or trusted setup).

In Section[3.4] we argue that v-SimCast allows participants to broadcast multiple an-
nouncements in parallel. In addition to the broadcast function, we show how v-SimCast
can be used to generate random values (Cor. [[lin Sect. 33). In Section d] we discuss
how to optimize v-SimCast even further to efficiently obtain random bits rather than
random group elements. These results provide a particularly efficient coin-flipping al-
gorithm for e.g. the distributed databases example described above.
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2 Preliminaries

2.1 Communication and Adversary Model

We consider a network of n players P = {Pi, ..., P, }. The players are pairwise con-
nected through private point-to-point links and have access to a reliable public broad-
cast channel. Messages sent via this channel are reliably delivered to all participants,
i.e. all parties receive the same message. The existence of reliable broadcast channels is
a common assumption for cryptographic protocols [6/14].

Private point-to-point links can be simulated by using encryption on the public chan-
nel. If physical broadcast channels are not available, they can be implemented with
special broadcast protocols [3I18]. However, reliable broadcast is costly when imple-
mented on realistic networks such as the Internet. The protocol of Cachin et al. has
message complexity O(n?) when run amongst a group of n parties and is “only” prob-
abilistic, i.e., it introduces a small error probability.

In our setting we allow the adversary A to corrupt an arbitrary set of ¢ < n/2 play-
ers. Corrupt players can act in any way during protocol execution, including protocol
violation and early abort. The adversary is considered to be static, i.e., the set of corrupt
players is fixed before the protocol execution. A special broadcast protocol further re-
stricts the corruption tolerance to ¢ < n/3, although it is possible to keep the resilience
at t < n/2 under certain additional assumptions (e.g., the existence of a PKI) [18].

We structure the communication in rounds, and model delay in the transmission of
messages by assuming partially synchronous communication. In contrast to the per-
fectly synchronous model where all messages in a given round are delivered simulta-
neously, the partially synchronous model allows an arbitrary delay within each round.
In practice, such a model can be implemented by using synchronized clocks: if a par-
ticipant does not finish its operations during a predefined time frame, he is disquali-
fied from further processing. In a way, the partially synchronous communication model
augments the adversary’s power by allowing to fix the delay of messages sent by cor-
rupt parties. As a consequence, a protocol that claims to be secure in the partially
synchronous model has to withstand an adversary that speaks last in each round and
incorporates all information learned from all honest parties in the same as well as pre-
vious rounds.

2.2 Cryptographic Components

In the following, we use the concept of a negligible function (k) to express that for
every constant ¢ > 0 there exists an integer k. such that (k) < k=€ for all k > k..

Semantically Secure Encryption. We model public key encryption as a triple of prob-
abilistic polynomial-time algorithms Gen, Enc and Dec for key generation, encryption
and decryption, respectively. Intuitively, a public key encryption scheme is said to be
semantically secure if a ciphertext does not reveal any information on the encrypted
message other than what is known a priori. This is formalized as a game Sem-Sec
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where the adversary A has to guess a bit b corresponding to the correct plaintext. Let R
be the appropriate domain of randomness:

Sem-Seclk] :
(pk,sk) «— Gen(1%);
(state, mg, m1) — A(pk);
b—{0,1};r — R;
¢ — Encpe(my,7);
output A(state, ¢);

The semantic security of the scheme is then quantified by the adversary’s success
probability.

Definition 1. A public-key encryption scheme (Gen, Enc, Dec) is said to be semanti-
cally secure if for any probabilistic, polynomial-time bounded adversary A the advan-
tage e(k) = Pr[Sem-Sec[k] = b] — } is negligible in the security parameter k.

In our construction, we explicitly require that the encryption scheme is committing, i.e.,
no two different messages encrypt to the same ciphertext under the same public key.

ElGamal Encryption. Let p and ¢|p — 1 be primes. Let g € Z,, be the generator
of a cyclic group G of prime order ¢. Recall that given a secret key x € Z, and the
corresponding public key y = ¢, a (randomized) ElGamal encryption of a message
m € G is atuple ¢ = (g",y"m), where r € Z, is chosen uniformly at random. The
semantic security of the ElGamal scheme is equivalent to the Decisional Diffie-Hellman
assumption [23]]. ElGamal is a committing encryption scheme: given an ElGamal public
key y, one can commit to a message m by Com(m) = ¢ = (¢",y"m) and decommit
by revealing (7, m). Naturally, the same commitment can also be opened by anyone
who knows the secret exponent x. This property will be crucial for us in achieving
robustness.

Verifiable Secret Sharing. In a (¢, n)-threshold secret sharing scheme, a dealer D
shares a secret s amongst a group of players P = { P, ..., P, } during the Share phase
by sending a share s; to P;. In the Recover phase, a group of at least ¢ 4+ 1 players
can reconstruct the secret s, using their shares s;. Unfortunately, simple secret shar-
ing suffers from two drawbacks: first, a corrupt dealer can easily distribute inconsistent
shares. Second, other share-holders cannot detect a corrupt share-holder P; presenting
a fake share s; in the Recover-phase. A verifiable secret sharing scheme (VSS) solves
both problems by adding a third primitive Verify that allows parties to verify the con-
sistency of sharing and recovery. As an inherent property, VSS guarantees that if D is
not disqualified during the sharing process, then any set of ¢ 4 1 shares of honest par-
ties define the same unique secret s (except with possibly a neglible error probability).
Unless mentioned otherwise, we assume that the reconstruction error is zero.

Feldman VSS. Feldman’s VSS scheme [11] builds on Shamir secret sharing [22]] and
consists of the following phases (omitting some details of error handling):

— Share: Let GG be a cyclic subgroup of prime order ¢ with generator g. To share a
secret s, the dealer chooses a polynomial f(z) = ap+ayz+- - +a;xt, a;~0 €r F,
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over the field F, with ag = s and degree ¢. The dealer sends each party P; the share

— Verify: The dealer broadcasts commitments Ay = g%, Ay = g™,..., Ay = g™

and each player P; verifies g% z H;zO(Aj)ij.
— Recover: Given a set of ¢ + 1 shares s; = f (), one can reconstruct the polynomial
and find the secret free coefficient s by employing Lagrange interpolation. The

validity of each submitted share can be verified as above.

In Feldman’s VSS, a cheating dealer will always be caught. Finally, we will need the
following result, stating that the scheme is perfectly simulatable:

Proposition 1. Given any t shares of a secret s and the public value g°, there exists an
efficient simulator S that produces an outcome of the Share phase that is identical to
the real execution of the Share phase.

The simulation property shows that an adversary, controlling up to ¢ participants, can
compute consistent verification values A;, ¢ = 1,..., ¢ himself. Thus, Feldman’s VSS
leaks no information about the secret beyond what is implied by the public value g°.

Note that it is not know how to construct such a simulator for an adaptive adversary
that may only corrupt some players at a later point. Thus, we present all security claims
in the static adversary setting. In order for our protocol to achieve security against an
adaptive adversary, one would first have to address the adaptive security of Feldman
VSS (.

Pedersen VSS. Compared to Feldman’s VSS, Pedersen’s scheme requires an additional
element h € G (presumably generated by a trusted party during parameter setup) such
that the discrete logarithm log, % is kept secret. The sharing goes as follows:

— Share: To share a secret s, the dealer D now generates two degree ¢ polynomials
f(x) =ao+arx+ -+ axt and g(x) = bo + by + - - - + bewt, where ag = s,
and hands each participant two shares s; = f(¢) and s} = g(7).

— Verify: The dealer broadcasts commitments A; = g% h% fori = 0, ..., t. and each

player P; verifies g% h* — HE:O(A]-)Z'J.

— Recover: Given a set of ¢ + 1 shares s; = f(¢), one can reconstruct the polynomial
f and find the secret free coefficient s by employing Lagrange interpolation. The
validity of each share can be verified as above, by having parties broadcast both

shares s; and s.

Pedersen VSS assumes that a cheating dealer cannot solve the discrete logarithm
problem. On the other hand, the next result shows that it guarantees unconditional pri-
vacy of the secret (while the privacy of Feldman’s scheme is computational). More
precisely, the adversary’s view and thus actions are independent of the secret [20]:

Proposition 2. For any (computationally unbounded) adversary A corrupting at most
t parties and any view view 4,

Pr[D has secret s|view 4] = Pr[D has secret s].
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3 The Simultaneous Broadcast Protocol -SimCast

3.1 The Basic Protocol

Our n-party protocol v-SimCast allows each player P; to announce a value u;, such that
the values announced by corrupt players are independent of the values announced by
honest players. We divide the protocol into two phases: the Setup phase is executed only
once, after which the SimCast phase can be iterated v times sequentially or in parallel
to announce v values (where v = v(k) is polynomial in the security parameter). The
protocol has maximum possible fault tolerance: it remains secure if up to t < n/2
players are controlled by an adversary.

We first present a version of v-SimCast using ElGamal encryption and Feldman’s
VSS. For simplicity, we also assume that all players use the same cyclic subgroup G of
prime order ¢ with generator g. In Section[3.2] we discuss other possible instantiations.

v-SimCastlt,n, G, g, k|

I. Setup:

1. Share: Each party P; generates an ElGamal key pair (x;, y;) and verifiably
shares the secret key x; using (¢, n) Feldman-VSS. The public key y; = ¢**
is broadcast as a verification value during the Share phase.

2. Verify: Each party P; verifies each share. If verification fails for some party
P;, P; broadcasts a complaint against F;.

3. For each complaint, P; (as a dealer) reveals the correct share. Parties who re-
ceive more than £ complaints or fail to deliver correct shares are disqualified.
Each party builds the set of qualified parties QUAL C P.

II. SimCast (v iterations):

Each party P; € QUAL publishes an announcement u;:

1. Encrypt: Each party P; € QUAL wishing to announce u; chooses a
random value r; < Z, and broadcasts a ciphertext

ci = (9" y; ui) .

If some party P; does not broadcast a ciphertext, he is disqualified and
his output is set to u; = L.

2. Decrypt: For every published ¢;, the party P; broadcasts the decryption
(i, 7).

3. Recover: Each party P; verifies the decryption values of each other party
P; by checking that ¢; L (9", v /u'L) If verification fails for some P;,
parties run Recover to reconstruct the secret key x; and compute the
decryption u; = Dec,, (c;). Players who failed to deliver a valid de-
cryption message are disqualified from the next iterations and the set
QUAL is updated.

Fig. 1. Simultaneous broadcast protocol v-SimCast
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Informally, the protocol works as follows. In the Setup phase, each player generates
a key pair (z;,y;) for ElIGamal and shares the secret key x; amongst all players us-
ing (¢,n) Feldman VSS. The SimCast phase consists of only two rounds of broadcast
followed by fault handling:

1. Each player P; broadcasts an ElGamal encryption ¢; = (¢, y; ‘u; ), where u; € G
and r; < Z, is the encryption randomizer;

!/ /

2. Each player P; reveals (u},r;). If the revealed values do not match, i.e., ¢; #

(g7, y;"ul), players run the Recover phase of the VSS scheme to recover u;.

Notice that it is also possible to decrypt the contribution of a corrupt player P; with-
out revealing his personal secret key z; by using standard threshold decryption tech-
niques. This may be useful if the adversary model includes fail-corruptions [12]), where
players are simply unavailable from time to time. As a drawback, ElGamal threshold
decryption requires additional ZK-proofs to verify the validity of decryption shares.

For efficiency reasons, we may also allow parties not to contribute an announce-
ment in an iteration of SimCast, as long as they faithfully participate in verification
and reconstruction. Such a behavior can easily be integrated in our security analysis.
Some applications such as coin-flipping do however require everyone to participate
(see Cor.[T).

3.2 Generalizing v-SimCast for other Cryptosystems

The instantiation of the v-SimCast protocol using ElGamal encryption and Feldman
VSS is particularly efficient: it does not require any zero-knowledge proofs and can
be proven secure in the standard model. The fact that verifiably shared keys are never
combined to a single threshold encryption/signing key allows us to use simple Feldman
verifiable secret sharing in the Setup phase instead of the less efficient Pedersen VSS.
In principle, one could instantiate v-SimCast, using any semantically secure com-
mitting encryption scheme and any suitable VSS scheme. However, the efficiency of
v-SimCast relies on the discrete-log setting in one intricate detail: we must ensure that
the verifiably shared secret key indeed corresponds to the player’s public key. Feldman
VSS for ElGamal keys solves this problem automatically, since the public key ¢g** is
broadcasted as a verification value during the Share phase and all players check that
their received shares are consistent shares of the secret key ;. This may require addi-
tional zero-knowledge proofs, and thus we may have to give up the standard model. Al-
ternatively, one may assume trusted setup, which is a reasonable assumption in settings
where malicious faults are expected to be relatively rare. Even under those assumptions,
our scheme is likely to be more efficient than the previous protocol [14]], which requires
complex zero-knowledge proofs during every iteration (see Section[3.3lfor details).

3.3 The Security of v-SimCast

First, a secure simultaneous broadcast protocol should satisfy the basic properties of
broadcast: the protocol outcome is consistent for all honest parties and each honest party
correctly receives the announcement of each other honest party. In addition, we require
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independence: for each iteration of SimCast, there should be no correlation between the
announcements of corrupt parties and the announcements of honest parties.

Let A be a static polynomially bounded adversary that corrupts at most ¢ out of the
n parties and coordinates their action. Denote by B the subset of corrupt parties and
set G = P\B. Consider one iteration of SimCast. Let u; € G be the group element
that P; announces and let u; ; € M = G U {L} be the value that P; receives as P;’s

announcement. Set EZ = (ui1,-.. ,um), ie., ﬁ: is the announcement vector received
by F; in one iteration of SimCast.

Our security definition of a simultaneous broadcast protocol is based on the def-
inition introduced by Gennaro [14]. The latter requires that the output of any single
corrupt party should be uncorrelated with the output of honest parties. Hevia and Mic-
ciancio note that this definition does not capture the collaboration of corrupt par-
ties, and bring an (admittedly artificial) example of a protocol that satisfies Gennaro’s
definition, but allows two corrupt parties to output values whose XOR is correlated to
the output of honest parties. Thus, we modify the definition of independence to require
that not only the output of a single corrupt party should be independent of the output of
honest parties but also that there is no correlation between the announcement vector of
any subset of corrupt and honest parties.

For each iteration of SimCast the following properties have to hold:

Consistency: For any A, and for any pair of honest players F;, P; the probability
Pr[ﬁi + ﬁj] is negligible in the security parameter k.

Correctness: For any A and for any pair of honest players P;, P; the probability
Pr{u; ; # u;] is negligible in k.

Independence: For any A, for any subset of corrupt players Q C B, forall m € M@l
and all W, v € G" ¢, we have that

P2 - =2 | < k), (1)

where ', ¥ are the announcements of honest players, € is a negligible function of
k and
p%ﬁ = Pr[Players in () announce 7| |
denotes the probability that corrupt players in () announce vector 7, given that honest
players have announced .

Intuitively, the independence property of v-SimCast follows from the fact that each
player P; must know the value u; he chose to broadcast. Indeed, since P; has verifiably
shared his secret key x;, he can always compute the decryption of the published value
¢;. In approaches that combine non-malleable commitments with VSS-ing the value
under commitment, complex ZK-proofs are required to ensure that the shared value is
identical to the one under commitment. In contrast, knowledge of the secret key acts
as an implicit proof of knowledge of the encrypted value and no additional proofs are
required. We proceed to give a formal security proof.

Theorem 1. Lett < 7. If the Decisional Diffie-Hellman assumption holds in group G,
then v-SimCast[t, n, G, g, k] is a simultaneous broadcast protocol.
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Proof. First, notice that in each iteration all honest parties use the same set QUAL, as
disqualification of parties is done solely based on public information. In the following
we set B= (PN QUAL)\G. Itis easy to see that honest players are never disqualified.

Let P, P; € G. It P, € G, then u;y = uj¢ = uy, since Py publishes the correct
unique opening of ¢,. If Py € B then there are two options. First, P, does not broadcast
c¢. Inthis case u; ¢ = uj,, = L. Second, P, publishes a ciphertext ¢, but fails to decrypt
it in Step 2. Since there are at least ¢ + 1 honest parties, the Recover-procedure of
Feldman-VSS allows to reconstruct the unique value u, corresponding to ¢y, SO u; ¢ =
uj ¢ = ug. This shows consistency and correctness.

The independence property is proven by reduction to the DDH assumption, or equiv-
alently, the semantic security of EIGamal. Suppose that an adversary .4, given a security
parameter k, achieves advantage ¢ = (k). We build a second adversary A’ that wins
the semantic security game Sem-Sec[k] with a related advantage €, showing that (k)
must be negligible in k.

Assume that A corrupts ¢ parties (wlog B = {P,_t1, ..., P,}) and that for at least
one iteration s € [1,v] there exist two vectors @, v € G"t, a subgroup Q C B,

and an announcement of corrupt parties 1 € M@l such that | p% - pm 7\ > €in

iteration 5. We use a similar hybrid argument as in [14]]. Namely, for the vectors u and

7 in iteration s, define hybrids () = (v1,...,vg, ups1,.. . up_¢) for £ € [0,n — t].
Clearly, @) = % and @ ("~ = 7. Now,
n—t n—t
Q Q _ Q Q
Pmw ~Pmw| = Z(Pm,mm Pm 20)| <D ‘pm, e T PR g
=1 £=1
so there must exist an index j for which
Q Q €
\Pm’mj—l) _pm’)ﬁ(j)‘ > n_t (2)

Wlog assume that p%ﬂ(j_l) - p%ﬂ(j) > (n2y) (otherwise we simply modify A’ such

that it flips the output of A). Note that the hybrids ") and @) differ only in
position j, where the corresponding values are u; and v;.

As specified in the game Sem-Sec, A’ gets as input a challenge public key . We let
A’ choose mo = u; and my = v; as the two messages. A’ then obtains the challenge
¢ = Ency(my, 1), where b — {0,1} and r is a random value. Now, A’ runs A. In the
following, A’ has to perform the steps of the protocol on behalf of the honest players G
and simulate the view of A:

1. For the simulation of the Setup phase, A’ follows the protocol instructions for each
player P; € G\{P;}, i.e., he generates a key pair (x;,y;) and shares ;. For P;, A’
deals ¢ random shares to A and runs the simulator S from Proposition [I] on input
y; = § to publish the challenge public key ¢ and appropriate verification values.

2. For iterations 1,...,s — 1,8 + 1,...v of SimCast, A’ simply follows protocol
instructions. That is, for all honest players P; € G, A’ broadcasts a ciphertext c;
and its decryption.

3. For iteration s, A" follows the protocol instructions for all parties P; € G\{P;}
using as announcement the appropriate value from the hybrid vector @ /). For P;,
it publishes the challenge ciphertext c.
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Since A’ controls more than ¢ parties, for all P, € B that have not been disqualified
it has received ¢ + 1 shares of z; in the Setup phase. This allows A" to decrypt P;’s
encrypted announcements ¢; and obtain u;. Let 7Q be the announcements of the parties
in Q. If W = m then A’ outputs b’ = 0; otherwise it outputs b’ = 1.

First, we have to show that the simulation is indistinguishable from a real run of
v-SimCast.

Ad. 1: For all parties P; € G\{P;} our adversary A’ follows exactly the protocol
description. For P;, A’ uses the simulator S of Proposition [Il which produces a
distribution that is identical to the distribution of a real execution.

Ad. 2: The simulation of iterations 1,...,s — 1, s+ 1,...v(k) of SimCast is done as
described in the protocol. Thus, both distributions are identical.

Ad. 3: A’ simply follows the protocol, using announcements from hybrid j — 1 (if
b = 0) or hybrid j (if b = 1).

It remains to show that A’ breaks the semantic security with a sufficiently large
advantage €’

¢’ = Pr[Sem-Seclk] = b] — 1/2 = Pr[t/ =b] —1/2
CPr =0 =0+ Pri =1b=1] 1
a 2 2

Notice that Pr[b’ = 0[b = 0] = p2 ., and Pr[t) = 1|b =1] =1 - p2 _ . s0
from above we get

Q
_ Pmwe-v +1 P ww 1 €

O
2 27 2n—t)"

The following corollary shows that v-SimCast can be used for fair coin-flipping. We
discuss this application in detail in Section 4l

Corollary 1. Let A corrupt at most t < n/2 parties. If v-SimCast[t, n, G, g, k| is used
to announce values u; <— G chosen uniformly at random, then the productu = [[!"_; u;
is also random in G.

Proof. The productu = ", u; contains the random announcement u; of at least one
honest party P;, which by Thm.[Iis independent from the announcements of corrupt
parties. Thus, u is a random group element. O

3.4 Parallel Execution of SimCast

Up to this point, we have considered the security of v-SimCast in a strictly sequential
communication model. This means that parties first execute the Setup phase and then
sequentially execute v iterations of SimCast. However, when our protocol is executed
in a real-world network such as the Internet, it is often advantageous when instances of
the protocol can be run in parallel. Unfortunately, parallel execution of protocols often
makes the security analysis more subtle or even allows new attacks. Mostly, this is due
to the need to rewind protocol execution in the simulation.
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Table 1. Performance of simultaneous broadcast protocols with n participants and threshold ¢

rounds comm. broad. exponent. |rand. elem.| model | sec.
Gennaro-00 [14] 5 |[n+t+160|~t+ 160\~ nt—+ 160n| t+1 CRS |DDH
Pedersen-VSS [20]| 3 2n+t+1 t+1 ~nt 2t +1 |standard| DL
SimCast (setup) 2 n—+t t+1 ~ nt t
SimCast (iter) 2 4 4 2n 1 standard| DDH
1-SimCast 4 n+t+4 t+5 ~ nt t+1

Our protocol can be simulated without rewinding. Additionally, we do not require
a full parallelization of v-SimCast and rather focus on a simpler case where Setup is
executed once after which the participants run iterations of SimCast in parallel, i.e. for
all parallel instances, the Encrypt step of SimCast has to be completed before a single
decryption takes place. Such a scenario is sufficient to decrease the running-time for
many practical purposes (see SectionH). It is easy to see that the independence of non-
decrypted announcements is still guaranteed, with a factor 1/ loss in the tightness of
the reduction.

We believe that full concurrency of SimCast iterations is also possible but requires a
more thorough analysis.

3.5 Performance Comparison for Simultaneous Broadcasts

We compare the performance of v-SimCast with Gennaro’s simultaneous broadcast pro-
tocol [14]] and an approach based on Pedersen’s verifiable secret sharing [20], which to
the best of our knowledge are the most efficient solutions for simultaneous broadcast. For
explicit comparison, we present all protocols in the same familiar discrete-log setting.

Table [Il summarizes the key properties. We count communication and computation
costin terms of group elements for a single player. For simplicity, we only consider expo-
nentiations, as they dominate the computation cost. Additionally, we analyze the number
of privately generated random group elements, the number of rounds and the number of
broadcasts, as for practical implementations they are the most expensive factor.

All three protocols under comparison employ exactly the same mechanism—
verifiable secret sharing—for error handling. Thus, we describe all protocols in the op-
timistic scenario, where all parties follow the protocol. Notice that since in the fault-free
scenario no errors occur, no additional communication and computation is needed in the
protocols’ complaint phases. Also, in all our evaluations, we assume that polynomial
evaluation does not require any exponentiations, i.e., that the values =7 are precomputed
forallx =1,...,nand j =0,...,t.

We start by briefly reviewing Gennaro’s protocol, which we call Gennaro-00. The
protocol consists of the following steps (note that we omit steps for verifying the zero-
knowledge proofs):

1. Each party P; publishes its own public key y;.
2. P;, wishing to announce u;, publishes an ElGamal encryption Enc,, (u;,7;) and
proves knowledge of u;.
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3. P, verifiably shares u; and proves in zero-knowledge that the VSS-ed value is iden-
tical to the encrypted value.

4. The parties process complaints.

5. Each P, reveals the values u; and r;.

In the discrete-log setting, the proof in Step 2—knowledge of a value u; encrypted
under y; = ¢ as (¢9"*,y; u;)—can be done efficiently by proving knowledge of
the discrete logarithm of log, yzE The equivalence of the value under commitment
and the value under VSS (Step 3) can be proven, using standard cut-and-choose tech-
niques [214]]. However, in order to guarantee that a cheating prover cannot succeed with
probability greater than 27", roughly n iterations are required. In other words, in order
to achieve error probability 278, the prover has to compute 80 ElGamal encryptions.
Recently, Camenisch et al. proposed a practical verifiable encryption scheme that avoids
cut-and-choose techniques altogether [3]]. However, to guarantee soundness, the secret
key of the encryption scheme has to be unknown to the prover. Thus, the scheme cannot
be employed here, unless we assume trusted setup in Step 1.

To sum it up, Gennaro-00 runs in five rounds: in the first two rounds, each party
publishes a public key, an ElIGamal ciphertext and a (short) ZK-proof. Round 3 requires
each party to privately send n — 1 shares, and broadcast ¢ + 1 verification values for the
polynomial together with a non-interactive ZK-proof involving 80 ElGamal ciphertexts.
In Round 4 no extra work has to be done in the fault-free case. The last round adds two
more broadcasted values. The total communication cost for one player is about n + ¢ +
160 group elements including the ¢ + 3 expensive reliable broadcasts. Computation cost
is dominated by verification of shares and ZK-proofs—each party needs to compute
about ¢ exponentiations for each received share and 160 exponentiations for each proof,
resulting in about n(¢ + 160) exponentiations for each player.

Second, we note that Pedersen’s verifiable secret sharing (Pedersen-VSS) can also be
employed for simultaneous broadcast. The security of the scheme follows from Propo-
sition 2] and the hardness of the discrete logarithm (refer to [13] for a similar proof).
It also requires an additional element A € G such that the discrete logarithm logg4h is
kept secret. Ignoring malicious faults, Pedersen-VSS then runs in three rounds, where
in the first round each party P; runs Share to announce a value a;y = u;, followed by a
complaint phase and, finally, P; opens the announcement by revealing a,;o and b;g.

Compared to Gennaro’s protocol, Pedersen-VSS does not require any zero-knowledge
proofs and is thus also secure in the standard model. On the other hand, the VSS increases
the amount of communication and computation, and each player needs to generate twice
as many random elements for the coefficients of the polynomials. Both v-SimCast and
Gennaro-00 can employ the more efficient Feldman VSS scheme, even though stand-
alone Feldman VSS is malleable [[13]].

The v-SimCast protocol is comparable to Gennaro-00 and Pedersen-VSS in the setup
phase, where verifiable secret sharing dominates the cost. However, each subsequent
error-free iteration is much cheaper, requiring only 4 broadcast elements (one El1Gamal
ciphertext and its decryption from each player), 2n exponentiations for verifying the

% Tt is not guaranteed that each party actually knows the secret key corresponding to the public
key v, and thus we indeed need an additional proof here.
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decryption, and only a single random element for the ciphertext. To model the worst-
case scenario when faults are frequent, we may look at the cost of 1-SimCast. We
see that 1-SimCast still clearly outperforms Gennaro-00, and is slightly more efficient
than Pedersen-VSS, at the cost of one extra round. However, in most applications that
require simultaneous broadcast frequently, one does not expect malicious faults at every
iteration, and thus v-SimCast is clearly more practical than Pedersen-VSS. We discuss
applications in detail in the next section.

4 Applications

The v-SimCast protocol is a generic protocol that can be employed whenever players
need to simultaneously announce independent values. As we have seen, this allows
for the so-called sealed envelope auctions: non-malleability of SimCast guarantees that
players cannot choose their bids to be higher than (or related in any other way to)
previously announced bids; robustness further enforces that all “sealed” bids can later
be opened.

Moreover, Corollary [[lshows that v-SimCast can be used for joint generation of ran-
dom values, opening up many applications beyond auction protocols. In particular, as
our protocol does not employ zero-knowledge proofs, it can be used for the distributed
generation of challenges for ZK-proofs without contradiction. We present some of the
most prominent examples, and discuss efficiency matters.

4.1 Multi-Party Computation

The v-SimCast protocol can be applied whenever a multi-party computation (MPC)
protocol requires publicly known random values. As a prominent example, we present
the Commitment Multiplication Protocol (CMP) [[7I8] that is widely used in secure
multi-party computation. Namely, in order to add verifiability to an MPC protocol and
thus protect against active adversaries, players start by broadcasting commitments to
their inputs. In order to detect malicious behaviour, each player then needs to create
commitments to his output in a verifiable manner after every operation. Using a ho-
momorphic commitment scheme, addition and multiplication with a public constant
are straightforward operations: given a constant m, and P’s commitments Com(a)
and Com(b) to inputs @ and b, everyone can compute commitments Com(a + b) =
Com(a) - Com(b) and Com(ma) = mCom(a). Verifying the correctness of a commit-

ment Com(c) L Com(ab) is done interactively, using the following protocol:

1. P chooses a random (3 and broadcasts commitments Com(c), Com(3), Com(3b).

2. Other players jointly generate a random challenge r using 1-SimCast.

3. P opens commitment Com(ra+(3) to reveal 7’ and commitment Com(r’'b— Bb—rc)
to reveal 0.

4. Other players accept the commitment Com(¢) iff all openings succeed.

Thus, such a protocol allows P to convince others that he has correctly generated a
commitment to the product of two inputs without revealing anything about his inputs
or output. More specifically, the protocol can be used to add verifiability to any MPC
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protocol based on multiplicative secret sharing schemes (SSS). Namely, given shares
of two secrets, any linear SSS allows participants to locally compute shares of their
sum, and a multiplicative SSS allows to locally compute shares of their product. CMP
then adds verifiability to the computations, since every participant can prove that he has
correctly generated commitments to the new shares.

4.2 Coin Flipping

Our protocol can also be used in situations where random bits are required, rather than
random group values. In practice, it is common to apply a hash function to the group
element to obtain, say, a symmetric key from Diffie-Hellman key exchange. For a more
rigorous approach, a recent result by Fouque et al. implies that in subgroups of Z,
efficient deterministic extractors exist in the standard model [13]]. More precisely, the
authors bound the distance from uniform of the k least significant bits of a random
group element. For example, if p is a 2048-bit prime, then one can extract 128 bits with
a bias ¢ < 2730 in a suitably sized prime order subgroup of Zy.

Dwork et al. consider distributed noise generation for privacy-preserving statistical
databases [[10]. In order to guarantee a particular (Gaussian) distribution of the noise,
their protocol requires n public random bits (where n is the number of participants).
They obtain those bits by having each participant verifiably share out 2 bits, and then
applying a deterministic extractor to the 2n low-quality bits to obtain n bits from a
“close-to-uniform” distribution. Using 1-SimCast, we can directly obtain (a constant
number of) random bits with a provably small bias in two rounds (excluding setup).
Compared to the VSS-based solution, we again have a factor ¢ gain. If one requires
more random bits or stronger randomness guarantees than one execution of 1-SimCast
can provide, we can run v-SimCast with v > 1 parallel executions in two rounds.

5 Conclusion

v-SimCast is an efficient protocol for simultaneous broadcasting that allows n parties
to announce independently chosen values, even if up to ¢ < 7 players are corrupted.
In contrast to previous solutions, our protocol only requires one run of verifiable secret
sharing in the initialization phase, after which an arbitrary number of broadcasts can be
carried out. During each broadcast, each party broadcasts only one ElGamal ciphertext
and its opening, and verifies n — 1 encryptions, which gives a factor ¢t ~ n improvement
in communication and computation, compared to previous protocols. Also, our security
properties do not rely on the usage of any ZK-proofs. Instead, we combine semanti-
cally secure encryption with backing up secret keys through VSS and obtain security in
the standard model. Simultaneous broadcasting has various applications in distributed
computations: for instance, v-SimCast can be used to jointly generate random values.
Multiple random bits can efficiently be extracted from the output of a single execution
of 1-SimCast, making it practical in coin-flipping applications.
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Abstract. New trends in consumer electronics have created a strong de-
mand for fast, reliable and user-friendly key agreement protocols. How-
ever, many key agreement protocols are secure only against passive
attacks. Therefore, message authentication is often unavoidable in order
to achieve security against active adversaries. Pasini and Vaudenay were
the first to propose a new compelling methodology for message authenti-
cation. Namely, their two-party protocol uses short authenticated strings
(SAS) instead of pre-shared secrets or public-key infrastructure that are
classical tools to achieve authenticity. In this article, we generalise this
methodology for multi-party settings. We give a new group message au-
thentication protocol that utilises only limited authenticated communica-
tion and show how to combine this protocol with classical key agreement
procedures. More precisely, we describe how to transform any group key
agreement protocol that is secure against passive attacks into a new pro-
tocol that is secure against active attacks.

Keywords: Groups, multi-party, message authentication, key agreement.

1 Introduction

Recently, Pasini and Vaudenay [I8] analysed a peer-to-peer Voice over IP (VoIP)
protocol and deduced that two users starting an (insecure) call through the In-
ternet can build an authenticated channel thanks to their ability to recognise
the voice and behaviour of the other speaker. This channel can thus be used
to exchange authenticated data. In particular, exchanging Diffie-Hellman [10]
public values leads to a shared secret key. As such messages are very long, they
proposed to use a message cross-authentication (MCA) protocol instead of au-
thenticating them directly. Indeed, an MCA protocol sends messages through
an insecure channel and then authenticates them by using short authenticated
strings (SAS), e.g. 20 bits. Similar protocols are used in Bluetooth and WUSB
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standards for authentication [I4]. Different from other approaches such as certifi-
cate chains and password-based authentication, the security can be introduced
as an afterthought—there is no need for a supporting infrastructure, the mere
presence of limited authentic communication is sufficient.

The main aim of this article is to extend the SAS-based methodology pre-
viously outlined in [2T] from a two-party setting to a group setting. Namely,
manual authentication can be used to secure group key agreement protocols,
i.e., group members can establish a shared secret over an insecure network. Af-
terwards, the group can use standard cryptographic methods to establish secure
communication. The corresponding group formation protocol significantly sim-
plifies common key establishment and works even if the participants of the group
are not known ahead. Although the group structure is often predetermined, e.g.
participants of the conference calls know to whom they want to talk, ad hoc
group formation is quite common, too. The most obvious example is automatic
device detection in wireless networks. In particular, a user may form a secure
piconet from all accessible Bluetooth devices. Ad hoc formation of secure WLAN
groups is another natural example both in the military and civil context.

In principle, two party protocols are sufficient to establish message authenti-
cation for groups. On the other hand, such an approach requires a lot of user-
interaction that diminishes usability of the corresponding solutions in practical
applications. It is clearly more convenient to join 10 guest computers into a
WLAN network together, than repeat the same procedure over and over again.
Motivated by this concern, we propose a new SAS-based group authentication
protocol that significantly minimises the required user interaction, see Section Bl
Essentially, the amount of user interaction for the pairwise and group authen-
tication coincides—user has to remember only single test value. The latter is
significantly more convenient than operating with 10 different test values that
are needed when we iterate pairwise authentication protocol.

The security of our SAS-based protocol is based on the non-malleability of a
commitment scheme. Fach user chooses a secret key, then commits to it while
revealing the input message to be authenticated. When all participants have
committed, then the secrets are opened. Next, each party uses an almost univer-
sal hash function to compute a test value from the received messages and secrets
and then compares it with the others using authenticated communication. Thus,
an adversary that wants to modify input messages has to find a “collision” on
the hash function or break the commitment scheme. The corresponding security
proof itself is straightforward but technical due to the complicated nature of
non-malleability. All definitions that are needed for the formal proof are given
in Sections 21 and [3] and the proof itself is presented in Section [l

Section [Al provides a solution to the group key agreement problem. Shortly
put, we can achieve immunity against active attacks if we first run a standard
group key agreement protocol over the insecure channel and then authenticate
the corresponding protocol transcript. Moreover, if we additionally authenti-
cate some long term public keys, then we can form separate subgroups without
relying on authenticated communication. In other words, there is no need for
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additional user interaction when we decide to expel some group members. Such
an “authenticate once” philosophy is particularly useful in the context of wireless
home networks, as it provides a simple and provably secure method for hosting
guest computers in the network for limited time.

2 Cryptographic Preliminaries

All of our results are stated in the framework of exact security, i.e., our main
goal is to construct protocols that are secure against all ¢-time adversaries. In
particular, all security properties are formally specified by a game or a game pair
between an adversary A and a challenger C. For a single game G, the advantage
is defined by Adv(A) = Pr[G# = 1]. For a game pair Go, G, the advantage is
defined Adv(A) = |Pr[Gg' = 1] — Pr[Gy* = 1]|. Typically, one requires that for
all t-time adversaries A the advantage Adv(A) is upper bounded by e. Of course,
all results can be translated back to the non-uniform polynomial security model
by considering asymptotics.

Keyed Hash Functions. A keyed hash function A : M x R — 7 takes two
arguments: a message m € M and a key r € R, and outputs a digest t € 7. A
hash function h is e,-almost universal, if for any two inputs xg # 1,

Prlr €, R: h(zo,7r) = h(z1,7)] < ey .

The notion can be extended to handle n sub-keys of the same domain, i.e.,
h: M xR"™ — T. A hash function h is e,-almost universal w.r.t. the sub-key
pairs, if for any two inputs z¢ # z1, indices 4,7 and r1,..., 7y, 71,...,7, € R:

Prr. €4 R: h(zo,r) = h(z1,7)] < ey ,

where r = (’1"17 ey =1 Ty T 1y - - - 7’I"n)7 T = (fl, ‘e ,72]‘_1, Tx, fj—&-la ‘e 7fn) and
1 = j is allowed. That is, output values are likely to be different if the corre-
sponding hash functions share at least one correctly formed sub-key r, €, R. A
function h is e;-almost regular w.r.t. to the sub-key r;, if for any x,71,..., 7y, y:

Pr [Ti Cu Rz : h(axl,fl,...,fi_l,ri,fi+1,...,fn) = y] <er .

We need a hash function that is e,-almost universal and e,-almost regular
and could handle variable number of sub-keys at the same time. A priori it is
not clear that such hash functions exist. Therefore, we give one possible ex-
plicit construction. Let all sub-keys be from {0, 1}25 and messages from {0,1}°
for a certain integer s which bound the message space. To hash a message
x, we first compute an intermediate key a «— 71 @ -+ @ ry,; split a into two
halves a1, as; interpret x, aj, as as elements of the Galois field GF(2¢) and define
h(z,r1,...,m) = a1z + ag over GF(2%). If zy # x1 then it is straightforward to
verify that a pair h(zo,r), h(z1,#) is uniformly distributed over {0,1}** in the
universality experiment. To get shorter hash values, we can output £ lowest bits.
Then the hash function has optimal bounds ¢, = ¢, = 2-¢.
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Common Reference String Model. In the common reference string (CRS)
model, a trusted third party generates system wide initial parameters pk and
automatically transfers them to all participants. Most of the communication and
computation efficient commitment schemes are specified for the CRS model.

Although such a model seems quite restrictive at first glance, all communica-
tion standards provide system-wide public parameters such as specifications of
hash functions or a bit length of public keys. In other words, the CRS model
is not problem in practise. Nevertheless, one should make a trade-off between
computational efficiency and reusability and the size of system-wide public pa-
rameters pk. Also, there are theoretic constructions that allow generation of a
common reference string in the standard model.

Commitment Schemes. A commitment scheme Com is specified by a triple
(setup, commit, open). The setup algorithm setup generates public parameters pk
for the commitment scheme. The randomised commitment algorithm commit,y :
M — C x D maps messages m € M into a commitment string ¢ € C of fixed
length and a decommitment value d € D. Usually the decommitment value is a
pair d = (m,r), where r is the randomness used to compute c¢. A commitment
scheme is functional if for all (¢, d) « commityk(m) the equality open,, (c,d) = m
holds. Incorrect decommitment values should yield a special abort value L.

Proofs usually rely on three cryptographic properties of commitment schemes:
hiding, binding and non-malleability. Non-malleability is the strongest property,
as binding and hiding properties directly follow from non-malleability and not
vice versa. Many notions of non-malleable commitments have been proposed
in cryptographic literature [TTJ9JT2I7IT4]. All these definitions try to capture
requirements that are necessary to defeat man-in-the-middle attacks. We adopt
the modernised version of non-malleability w.r.t. opening. The corresponding
definition [I4] mimics the framework of non-malleable encryption [5] and leads to
more natural security proofs compared to the simulation based definitions [9U7].

Non-malleability and security against chosen ciphertext attacks (CCA) are
known to be tightly coupled. In fact, these notions coincide if the adversary is al-
lowed to make decryption queries throughout the entire attack [I] and thus usage
of decryption oracles can simplify many proofs without significantly increasing
the security requirements. Unfortunately, a similar technique is not applicable
to commitment schemes as there can be several different valid decommitment
values d; for a single commitment c. Thus, we must use explicit definitions of
binding and non-malleability properties in our proofs. A commitment scheme
Com is (t,ep)-binding if for any t-time adversary A :

pk « setup, (C7 dOa dl) — A(pk) :

AdvZ (A) = Pr <e
(4) 1 +# openpk(c7 dp) # openpk(c, di) #L

Com b >

The non-malleability property is defined by complicated games, and thus we use
an illustrative pictorial style to specify security games, see Fig.[Il Intuitively, the
goal is: given a valid commitment ¢, it is infeasible to generate related commit-
ments ¢, ...,¢, that can be successfully opened after seeing a decommitment
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Gge" i

A C A C

—r pk « setup — pk < setup

Ai(pk) MGen Zo «— MGen Ai(pk) _ MGen | o, x1 «— MGen

< (¢, d) < commitpk (o) - (¢, d) <= commitp(zo)

Abort if ¢; = ¢

A .81 5eeesCm A G815y
1) ! Abort if & = ¢ 1(¢) :

Ai(d)

i —open,, (¢;,d;)

Az(+) Az(+)

Return out

Return out

Fig. 1. Non-malleability games Gi" and Gi™

value d. More formally, the adversary A consists of two parts: A; corresponds to
the active part of the adversary that tries to create and afterwards open com-
mitments related to ¢ while Ay captures a desired target relation. Note that Ay
is a stateful algorithm and can pass information from one stage to the other but
no information can be passed from A; to As except . By convention, a game
is ended with the output L if any operation leads to L.

Fig.Mlshould be read as follows. In Gg", a challenger C first generates the pub-
lic parameters pk. Given pk, the adversary outputs a message generator MGen.
Next, the challenger C selects o < MGen and computes (c,d). Given ¢, the
adversary outputs some commitment values ¢; and an advice o for A, and then,
given d he generates some decommitment values d;. Finally, C opens all com-
mitments §; «— openpk(éi,(ii) and tests whether A; won or not by computing
As(o, 20,91, .,9n). The condition é; # ¢ eliminates trivial attacks. The game
Gim is almost the same, except the challenger tests a relation As(o, 1,91, .., Un)
instead, where x1 «<— MGen is chosen independently from the rest of the game. A
commitment scheme is (¢, eym )-non-malleable w.r.t. to opening if for any adver-
sary A such that the working times of G§™ and Gi™ are less than ¢, the advantage

Advgy, (A) = [Pr(Gg" = 1] = Pr(gi" = 1]| < éum -
Note that A5 can be any computable relation that is completely fixed after seeing
c. For instance, we can define Ay (o, x,y) = [z = y|. Hence, it must be infeasible
to construct a commitment ¢ that can be opened later to the same value as c.

Non-malleable commitments schemes can be easily constructed based on
simulation-sound trapdoor commitments from Mac-Kenzie and Yang [16] as de-
tailed by Vaudenay [21]. They can also be built using a CCA2 secure encryption
scheme, or by using a hash function as detailed by Laur and Nyberg [14].

3 Manual Group Message Authentication

Although our final goal is to establish a secure group key agreement protocol,
we start from the group message authentication. Since active attacks can be
detected by group authentication, any cryptographic key agreement protocol
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secure against passive attacks can be made fully-secure, see Theorem 1 in [I§]
and Section

Communication Model. As usual, the communication is asynchronous. Par-
ticipants can send two types of messages. Insecure in-band communication is
routed via an active adversary A who can drop, delay, modify and insert mes-
sages. But participants can also send short authenticated strings (SAS) aka out-
of-band messages. Out-of-band communication is authentic: the adversary can
only read and possibly delay SAS messages.

Note that there are no true broadcast channels in our model. Although sev-
eral networks such as WLAN in ad hoc mode offer physical broadcast channels,
there are no guarantees that the signal actually reaches all nodes. If we can
guarantee this by physical means, then the authentication task becomes triv-
ial. Otherwise, different recipients can receive different broadcast messages and
there is no difference between broadcasting and standard messaging except for
efficiency. Similarly, broadcasting authenticated messages does not change the
security analysis, although in practise, broadcasting can significantly reduce the
necessary human interaction and make the protocol more user-friendly. For in-
stance, considering the Bluetooth pairing, a human entering the same PIN on
each mobile device is considered a broadcast primitive. Considering a VoIP-based
conference, when participants are talking together, they use an (insecure) au-
thenticated channel that broadcasts messages. The authentication comes from
the ability of other users to recognise the speaker, e.g. by its voice and behaviour.

It is hard to formalise desired security properties for group authentication,
as there are many different attack scenarios and security goals. Hence, we first
consider a simple stand-alone security model and then gradually extend our
definitions to cover more complex settings including key agreement protocols.

Idealised Functionality. Consider a network Pq,...,Px of N nodes. A node
name is a label id € {1,..., N} that uniquely determines the corresponding node
Piq. In principle, node names can be non-consecutive such as hardware addresses,
ie, {1,...,N} is only a set of potential group members. A group message au-
thentication (GMA) protocol for an n-element subgroup § = {idy, ..., id,} works
as follows: each participant Pjq, id € G starts with inputs miq and ends with out-
puts § and m, where m = (miq, , . .., M4, ) is ordered w.r.t. the sender identities
id; <ide < --- <idy,. In other words, given § and m it is trivial to restore who
participated in the protocol and what was its input.

Stand-Alone Security. There are several important aspects to note. First, a
group may be dynamically formed based on the participation in a GMA protocol,
for example fast setup of ad hoc military networks. But then an adversary can
always split the group into several subgroups and block the traffic between the
subgroups. As a result, each subgroup agrees on a different output. Such attacks
cannot be defeated unless parties know the description of § in advance, i.e.,
there is some authenticated way to broadcast §. Second, an adversary may set
up several dummy network nodes in order to corrupt communication or secretly
shuffle different groups. Thus, we consider a scenario where a subset § of all
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network nodes wants to establish a common message m. At the end of the
protocol, either all participants halt or each Piy, id € G obtains values G and
miq. We allow adaptive malicious corruption] of group participants, i.e., at any
time during the protocol execution A can take total control over any node Pq.

Let H C G be the set of uncorrupted participants at the end of the protocol.
Then the adversary A succeeds in deception if at least two uncorrupted group
members a, § € H have different outputs (G, 7124) # (G5,75) and the group
was not trivially split, i.e., § C é,y for some v € H. In other words, at least one
honest participant gets messages from all members of §. Formally, it is impossible
to assure § = G, as an honest party cannot distinguish whether a node freely
joined or was forced to join by A. If the question of free will is irrelevant, then
we can postulate that after the successful execution honest participants obtain
G. This is the maximum achievable security level, as honest members cannot
detect corruption and missing messages caused by the splitting of the network.
An alternative is to state correctness for each subgroup separately, but then
protocol instances are run in parallel and this is covered by Section [l

Since commitment schemes are often defined only for common reference string
model, we give the security definition in the CRS model. To assure reusability
of public parameters, we must consider chosen input attacks. More precisely, an
adversary A can choose the group members § and their contributed messages
miq depending on the shared authentic common reference string pk « setup.
The advantage of A against a protocol instance 7 is defined as

AdvP®=(A) = Pr[pk « setup, (m,G) < A(pk) : A succeeds in deception]

A protocol instance 7 is (¢, )-secure in the stand-alone model if for any t-time
adversary A, the corresponding advantage is bounded Adv?®(A) < e.

Note that stand-alone security model covers only the case where no other
protocols are executed together with 7. In particular, it is not clear whether
parallel execution of several different instances of 7 remains secure. We will
return to this issue in Section B] and show that parallel composition remains
secure if some natural assumptions are satisfied. Still, for many cases where
GMA is used once, the stand-alone security is sufficient. For example, many ad
hoc groups use GMA to share a common secret to establish secure channels.

4 A SAS-Based Group Message Authentication Protocol

Our new group message authentication protocol SAS-GMA (See Fig.[2l) borrows
ideas from Vaudenay’s cross-authentication protocol SAS-MCA [21, App. A] and
MANA IV [14J19]. Both aforementioned protocols use commitments to temporar-
ily hide certain keys. Similarly to SAS-MCA, all sub-keys are released after the
adversary has delivered all messages. And similarly to MANA IV, messages m;
are sent in the clear and authenticated test values are ¢-bit hash codes.

! In many cases, adaptive corruption is impossible, but with our new protocol being
secure against adaptive corruption, it makes no sense to consider weaker models.
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As the SAS-GMA protocol is symmetric, Fig. [2 only specifies the behaviour of
a single party P; who wants to participate in the protocol. Here G, denotes the
group of participants who joined P; during the first round before the timeout.
Of course, if the group G; is known beforehand then P; can wait until all other
group members have sent their first messages. For clarity, variables i, ¢4, dji
denote the values from P; that are received by P;. The hats indicate a possible
modification by an adversary. The output vector m = (17;;) and the sub-key
vector 7; = (7;;) are ordered w.r.t. sender identities, see Section Bl To be exact,
Mi; = my, 7 = r; and j ranges over G,. Also note that (i,7;) and (9z,ml) are
shorthands for binary strings that uniquely encode the corresponding elements.

P; with input m; JjE€ S \ {4}

R1: Pickr;ea R
(¢i, d;) «— commitp (i, ;)
Wait for (j,m;i, ¢;:) until timeout

broadcast(i,m; ,c;)

Jyjis€ji

R2: Save a description of G,. broadfaSt(di)
. N ~ 5 d

Vi1 (4, 7ji) < openy, (&, dji)
Abort if abnormal behaviour

ji

auth-broadcast (sas; )

SAS: Form 1, 7; from received M, 7j;. —
PN . j
Sas; «— h((91, mi), T‘Z‘)

Abort if some sas; # sas;

Output 91-, m;

Fig. 2. The proposed SAS-GMA Protocol

Implementation Details. The cryptographic requirements for the hash func-
tion h and the commitment scheme Com are formally specified by Theorem [I]
but there are many other minor details that are not covered by Fig. Bl

Assume that the final output (91, m;) can be always encoded as s-bit string.
Then the hash function h : {0,1}® x R* — 7 must support variable number of
sub-keys r;, since the size of the group can vary. For example, we can use a single
keyed hash function h; and some sort of secure combiner to derive a new master
key from sub-keys, as described in Section Bl The restriction (S;,7;) € {0,1}°
is not limiting in practise, as we can use collision resistant hash functions like
SHA-256 to compress an encoding of any length to 256-bit string.

Secondly, we assume that the description of h and the public parameters of
Com are fixed and distributed by a trusted authority. Thirdly, we assume that
a participant P; halts if there is any hint of an attack: (a) some group member
halts; (b) there are duplicates (j,72i,¢5i) # (j,m};,¢5); (c) a sub-key is in
invalid form (j, ) # open,, (¢;i, dj;); (d) some SAS messages do not match.

Another important aspect is secure comparison of SAS messages. In principle,
it is sufficient to deliver minimal amount of messages so that participants can
detect sas, # sasg for o, € G, where G is the set of all active participants
of the protocol. If it is possible to detect all these active nodes, then a single
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node can broadcast the SAS message so that the remaining nodes can compare
to their SAS messages. For many applications such as securing conference calls
over VoIP, forming Bluetooth piconets and other wireless device networks, the
group is known in advance and thus broadcast of a single SAS message is a
viable option. Also note that the group formation can be combined with node
detection in the Bluetooth networks and thus the timeout effect is marginal.

Stand-Alone Security. The security proof for SAS-GMA is straightforward
but quite technical. Hence, we present the proof of Theorem [l in smaller chunks
to make it more comprehensible. Note that the security level depends linearly on
|G| but the constant term max {e,,&,} ~ 1/|7| ~ 27¢ dominates over the term
n - €nm + €p. Therefore, the deception probability asymptotically approaches the
theoretical lower bound 2.

Theorem 1. Let n be the mazximal size of the group G and h be ey-almost
uniwersal w.r.t. each sub-key pair and ey-almost reqular w.r.t. each sub-key.
Then for any t there exists T = t + O(1) such that if the commitment scheme
is (1,ep)-binding and (7,enm)-non-malleable, then the SAS-GMA protocol is
(t,n - enm + b + max {ey, &, })-secure in the stand-alone model.

Proof. For a sake of contradiction, assume that ¢-time adversary B violates the
bound on the deception probability. Then we transform B to an adversary against
the non-malleability games Gi", Gi" depicted in Fig. [[l The exact reduction is
depicted on Fig. Bl and explained further in Lemma [I] and 2l Here, we just note
that A; simulates an instance 7 of the SAS-GMA protocol for B so that As can
compute the predicate ‘B succeeds in deception’ in the non-malleability game.

More precisely, A; replaces the commitment ¢ of Py by the challenge com-
mitment ¢ < commityk(k, ) for r €, R. As A; can pass information to As only
via the commitment vector ¢ and the advice o, then the predicate ‘B succeeds
in deception’ must be computable from o, ¢ and corresponding decommitment
vector d. The latter is possible only if Py is the last honest party to release his
decommitment value di, see Lemma 2l Thus, A; must choose k& randomly from
the group G provided by B after seeing pk. Lemma [TH3] establish

Adv™(A) = Prld; # 1] [Pr(Gy = 1|As # L] - Pr(Gp = 1|4, # 1]

1 1
> n(Advf‘”ge(B) —ep) — , - nax {ew&r} > €nm -

As the working time of (A1, As) is 7 =t + 2t + O(n) = t + O(1) where t, is the
working time of the honest parties, we have reached a desired contradiction. 0O

Lemma 1. The sub-adversary A; described below satisfies Pr[A; # 1] > |-
(Adv™=(A) —e1,) and the challenger C never halts unless A; = L.

Proof. The sub-adversary A; sketched by Fig. [ first forwards pk to B that
replies § and m. Hence, A;(pk) can choose k& €, § and return a description
of the uniform distribution over {k} x R as MGen. Given ¢ «— commity(k, r),
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B A C
P [Choose k €u g PR pk < setup
g.m MGen — {k} x R As (pk) MGen
Simulate 7 for G: zo,x1 — {k} xR
(imi,ci) o set inputs to m — <% (e, d) « commitpk(z0)
(4,745,¢i5) o follow the specifications
d olet ¢, — ¢
g | If dj is required,
dij pass all variables to Az
. through o and ¢ Ai(e) | »e
$ o let dy « d and continue. +
= halt if F1 V F2 V F3 Aq (d) R
Compute Qi, 7i,M;,sas; 1 € H. SRR Uji openpk(éji, (ijz)
Output out = 0 if either:
oVyeH:5¢G,
oda,BE€H:  sasq ;ésgs[g
oVa,B € H:(Ga,7a)=(9s,73)
else out = 1 As() | —2 - Output out

Fig. 3. Reduction to the NM game Gp" for b € {0, 1}

the sub-adversary A; can continue simulation of 7 so that ¢, « ¢ and collect
all messages received by all nodes in §. To be precise, the simulation follows
the specification of SAS-GMA except for computing ¢, di. In particular, if B
corrupts P;, then A; gives the control over P; to B as in the real execution of 7
(If Py is corrupted then di must be released). The simulation continues until Py,
must release di. To proceed, A; passes all variables that are needed to compute
the predicate ‘B succeeds in deception’ to C:

1. Compute sets Z = {(j,1) : ¢j; # ¢} and J = {(J, %) : & = c}.

2. Send sets Z,J, G, all observed 1;, and current value of H as o to C.

3. Send all plausible commitments ¢ = (¢;;) for (j,7) € Z to C.

Then the challenger C releases d, and A; continues the simulation of 7= with
dy, <+ d until the end and halts if one of the following conditions is satisfied:

Fi: The adversary B fails in deception. A
Fa: A double opening is revealed: open,, (c,d) # open,(c,d;;) # L.
F3: The node P}, is not the last honest node to reveal the decommitment.

By this construction, Pr [=F;] = Adv®(B) and Pr [Fs] < &}, or otherwise .A; can
be used to defeat the binding property of the commitment scheme. Note that
the simulation is perfect and thus Py is the last honest node that releases dj

with probabilityﬂ |é|. The latter is true even if =F; and —F5 and we obtain

1
Pr [.Al 7& J_] =Pr [_|F3|_|F1 A _\FQ} - Pr [_\Fl N _|F2] Z n . (Advf;rge(lg) — €b) .

2 Note that B cannot succeed if it corrupts all nodes and thus w.l.o.g. that F{ % ().
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Finally, note that C halts only if some Ciji is an invalid decommitment value but
then B fails also in the simulation of 7 and A; = L. m]

Lemma 2. If Ay # L in the game Gg", then Ay described below correctly recov-
ers the end state of the simulation and thus Pr[Gi™ = 1|A; # L] = 1.

Proof. Assuming that A4; # L, then the simulation conducted by A; ended
with a successful deception. As P, was indeed the last honest node to release d,
then ;;, 75 for indices (j,7) € Z U J are sufficient to recover all SAS messages
computed by 3. By the construction, (j,7;) = open, (¢;i, dﬂ) = gy for (j,i) €
and openpk(cﬂ,dﬂ) = open(c,d) = xo for (j,i) € J since Fy cannot happen.
As a result, Ay can compute all 7; and 7; for i € H by setting (k, rer) «— xp
and replacing open, (¢;;, CZji) calls with appropriate values specified above. Then

it remains to restore sas; « h((éz,ml) 7;) for i € H and test sas, = sasg for
@, 8 € H and output 1 in case of deception. Recall that deception happens only
if the test values sas,, match but some (SQ,ma) * (Sg,mg) and G C G,,.
As As computes the predlcate ‘B succeeds in deception’ and since A; # L
implies —F;, we have Pr[Gy" = 1|4; # 1] = 1. O

Lemma 3. Let As be as described in Lemmald Then we can bound the condi-
tional probability Pr[Gi™ = 1|A; # 1] < max {ey, & }.

Proof. Assuming that A4; # L, then the simulation conducted by A; ended
with a successful deception. Consequently, ¢ = commitpi(k, r;) could have been
broadcast only as ¢j;, otherwise B would have failed in deception. Therefore,
T C{k} xH and G,, m; and all components of 7; except 7y; for i € H are fixed
when Aj starts. Next, we bound the probability sas, = sasg for a, f € H.

Consider the authentic broadcast of ¢ first, i.e., the case Z = {k} x H. The
condition —F; implies (G, 124) # (G5, 1M5) for some a, 3 € H. As xy €, {k} xR
the universality of h w.r.t. to all sub-key palrsﬁ yields

Pr(ir€u R:h((Sa,Ma), -7k ) =h((G5,728), -, Py - - )] < €u

where ... denote the fixed components of 7, and 3. So, we have obtained
PrA; = 1|7 = {k} x H] < Prsas, = sasg|Z = {k} x H] < &,.

In the remaining case, let Hy be the set of honest nodes that receive ¢y, i.e.,
Z = {k} x Ho. Since there is a compulsory node v such H C § C 97 there are
nodes a € Hy and § € H\Hy such that Ay compares sas,, and sasg. Moreover, «,
(3 and sasg are fixed before x; and almost regularity w.r.t. all sub-keys provides

Pr[ir €4 R: h((Gaya), ..., Fr,...) =sasg] < &,

where ... denote the fixed components of .. Therefore, we have proved the
desired claim, i.e. Pr[Gy" = 1]4; # 1] < max{ey, &, }. a

3 Note that the varying components 7o = 73 can be in different locations of 7, 7 3.
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5 Security of Parallel Compositions

The parallel composition of message authentication protocols is often insecure
although a single instance of the protocol is secure in a stand-alone setting.
The phenomenon is caused by shared long term secrets. Bellare and Rogaway
formalised a corresponding security model [3[4] where an adversary can execute
several protocol instances concurrently and succeeds in deception if at least one
protocol reaches an accepting state with incorrect outputs. The model was later
extended to capture security of key agreement protocols [2] and then used in the
context of manual authentication [2II20/T7I18].

The possible security drop emerges only if two protocol instances are not sta-
tistically independent, i.e., share long-term keys. Clearly, an independent pro-
tocol instance cannot help the adversary, as the adversary can generate the
protocol transcript himself. Therefore, the SAS-GMA protocol can be securely
composed with any other protocol, provided that the following restrictions hold:

R;: Randomness used in the SAS-GMA instance is freshly generated.

Ro: The output (G, m) is never used before all parties reach accepting state.
Rs3: The SAS messages determine unique instance of SAS-GMA.

Ry4: All group members have different identities, i.e., G is indeed a set.

The claim itself is valid for any protocol but we prove only that the SAS-GMA
protocol is self-composable. The proof for the general case is analogous but
requires a very fine-grained formalism similar to [I5, p. 394-396] and provides
no additional insight. Due to the space limitations, we omit such dubious details.

Bellare-Rogaway Model. Similarly to the stand-alone setting, an adversary
A has complete control over the protocol participants § and their inputs m and
in addition adaptive corruption is allowed. However, as opposed to the stand-
alone model, A can adaptively launcH new instances 7 of the protocol for
G and m®. The adversary A succeeds in deception if the end state of at least
one protocol instance 7 is invalid, i.e., honest parties accept different outputs.
Since a single instance of SAS-GMA has non-negligible deception probability we
must bound the number of protocol instances that can be launched. A protocol
7 is (t,q,¢€)-self-composable if any t-time adversary A that can launch up to ¢
instances of 7 succeeds in deception with probability less than e.

The SAS-GMA protocol in the original form is not suitable for parallel ex-
ecution, as a party P; who receives two first round messages from P; cannot
decide whether P; invites him to participate in two separate group authentica-
tion protocols or an adversary tries to attack a single protocol instance. There
must be a legitimate way to divide message between several protocols. As a so-
lution, we assume that each protocol has an initiator P; who first broadcasts or
sends directly to group members a unique tag tag for the GMA protocol and
tag is appended as an identifier to each protocol message. We emphasise that an
adversary can alter tag. To assure condition R3, no participant P; can have two
parallel runs of SAS-GMA with the same set of participants ;.

* See [2] for the thorough formalisation of the Bellare-Rogaway model.
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Theorem 2. Let the parameters of SAS-GMA protocol be such that a SAS-GMA
instance is (t,e)-secure in the stand-alone model. Then the protocol instances are
also (1, q, ge)-self-composable for T =t —O(1) if restrictions R1-Ry are satisfied.

Proof. Let B be such a 7-time adversary that contradicts the claim. W.l.o.g. we
can assume that an adversary launches the protocol instances in the following
way. First, it chooses the initiator P; and then the set of participants that get
the introduction message tag from P; and decide to reply. Second it provides
the corresponding inputs to the participants. For simplicity, assume that tag €
{1,...,q} and let €.y denote the probability that B succeeds in deception w.r.t.
the instance 7®®. By the assumption €1 + --- 4+ &4 > ¢e. Hence, we have the
following simple reduction strategy A. Given pk from C:

1. Choose a protocol instance k €, {1,...,q}.

Simulate the Bellare-Rogaway model until B specifies Gj, and my.

Send G and 1y to the challenger C in the stand-alone model.

Continue the simulation by generating all messages tagged by tag # k.
Obtain other messages with tag = k from the stand-alone environment.
If required by B, corrupt the true nodes in the stand-alone environment.

S oW

Clearly, A provides a perfect simulation of the Bellare-Rogaway model, thus

. . e1+-+e
Pr[A succeeds in deception] = “>¢
q

and we have a desired contradiction. O

Note 1. Recall that we had a problem in the stand-alone model if an adversary
decided to split the group. The latter cannot happen anymore as the initiator is
always in G; and thus all nodes in the group must have same SAS test values.

6 Manually Authenticated Group Key Agreements

The main application of manual group message authentication (MGMA) is to
establish a commonly shared secret key among the group members. We show
how to combine MGMA with any group key agreement (GKA) protocol so that
the resulting group key agreement protocol is secure against active attacks.

There is a trade-off between the security and the amount of authenticated
communication. For many practical applications, the SAS message consists of 6
digits and thus has only 20 bits of entropy. So, an adversary can always succeed in
deception with probability 272°. On the other hand, 272° is also the probability
of not noticing an active attack. The latter is small enough to demotivate most
of the possible attackers. Consequently, the subjective security level can be much
higher, for example 2740 if the probability of an active attack is below 1076,

Of course, the cryptographic security levels can be achieved only with suffi-
ciently long SAS messages. Therefore, it is important to minimise the amount of
manually authenticated communication in scenarios where nodes can form many
subgroups. In particular, it should be easy to exclude corrupted nodes from the
group without transferring any additional SAS messages.
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Idealised Functionality. A group key agreement protocol m between n partic-
ipants G = {idy,...,id,} starts with no input, is independent from the current
state, and outputs § and a shared common secret key key €, .

Immunity Against Active Attacks. A group key agreement protocol 7 is
(t,e)-immune against active attacks if for any t-time adversary A that can choose
a group § = {idy,...,id,} then the probability that uncorrupted parties H do
not detect active attack is less than €. Obviously, any GKA protocol that is
(t,e1)-immune against active attacks and (¢, e2)-secure against passive attacks is
also (t,e1 + €2)-secure, as long as both definitions are given in the same attack
model. For many practical cases, stand-alone security is sufficient.

Burmester-Desmedt Key Agreement Protocol. The Burmester-Desmedt
(BD) key agreement protocol [§] is provably secure against passive attacks [6] and
thus is a perfect starting point for a manually authenticated GKA. Though the
Burmester-Desmedt GKA protocol is a generalisation of the Diffie-Hellman key
agreement protocol, it can also be generalised for other two-party key agreement
protocols, see the compiler of Just and Vaudenay [13]. For simplicity, consider
a group of n participantsﬁ Po,...,P,_1 arranged in a ring, see Fig. @ The
protocol has two rounds over an authenticated channel, while most of the schemes
requires O(n) rounds. Here, let g be a generator of a g-element secure Diffie-
Hellman Decision Group G. At the end of the protocol, each participant P;

obtains key; = gFiketheks+.+knk1 gee Appendix [Al

Ps osdess (e jeS\{i}
roadcast( z;
R1: Pick k; €u Zq and set z; — g* 2
R2: X, — ( Zit1 ) ks broadcast (X ;)
Zi—1 X

J

key; < (zi—1)™ - X[ X2 X
Output key,

Fig. 4. The BD Group Key Agreement Protocol

New Manually Authenticated Group Key Agreement. Ideally, group
members should run manually authenticated GKA only once to obtain a com-
mon group key key and long-term pairwise authentication keys, which provides
possibility to re-run ordinary GKA protocols without additional SAS messages.
The long-term pairwise authentication keys are formed based on Diffie-Hellman
key exchange and the group key key generated by the BD GKA, see Fig.

As the transcript of the BD GKA is authenticated with the SAS-GMA, the
protocol is immune against active attacks with the same guarantees as Theorem/[I]
and Theorem [ specify. Moreover, any two parties a, 5 € H can establish a
pairwise secret key key, 5 = f(g“**?), as they both know the corresponding

5 The protocol can be trivially generalised to any n-element group .
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R1: Generate a Diffie-Hellman pair (z;,y;):
O L €u Lq, Yi — g*"
Start the BD protocol:
o ki €u g, zi — gk

broadcast(y;,z;)

broadcast(i,m; ,c;)

R2-3: Continue with the BD protocol:
o Compute X;. broadcast (d; )
SAS: Use the SAS-GMA protocol
© to authenticate m; «— (yi, zi, X5).

auth-broadcast (sas; )

Po: If the SAS-GMA was accepting:
o Output key and G according BD.
o Store z; and y;, j € G for later use.

Fig. 5. The final SAS-based AKA Protocol with simplified notations

long-term public keys y; = g** for all group members i € §. Hence, they can use
any classical authentication protocol to protect new instances of GKA against
active attacks. In particular, we can merge small groups Gi,Go, if there is an
honest party P; € §1 N Gs, by sending all intergroup communication through P;.

Of course, if the formed group is known to have a static nature, then one can
skip the setup of long-term Diffie-Hellman keys key,, 5.

7 Applications and Conclusion

As shown in this article, our new SAS-based group message authentication pro-
tocol is provably secure in any computational context, provided that simple and
natural restrictions R1—Ry4 are fulfilled. We also provided proofs under the natu-
ral non-malleability requirement that must be satisfied for all protocols that use
commitments to temporarily hide sub-keys of hash function.

It allows building of secure SAS-based group key agreements, as presented in
the last section. Such a key agreement protocol has the advantage that it does
not require any trusted third party, any public-key infrastructure, nor any pre-
shared key. Security is ensured peer-to-peer by using an authentication primitive,
e.g. voice recognition for VoIP or string copy for devices. Therefore, consumers
can establish and reconfigure security associations for electronic devices with
minimal effort. In a certain sense, security can be provided as an add-on feature.
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A Burmester Desmedt Key Derivation Proof

key; = (zi—1)™ - X]71 - XT2 X

+1
= [szH] . [ Xi] . [Ziil 'Xi'X¢+1} [Zfil 'Xi'Xi+1""Xi—2]
_ [g i 11%] [ ki k1+1] A [gkwﬂfuz] Co [gki—Zki—l]
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Abstract. Montgomery modular multiplication is one of the fundamen-
tal operations used in cryptographic algorithms, such as RSA and Ellip-
tic Curve Cryptosystems. At CHES 1999, Tenca and Kog introduced a
now-classical architecture for implementing Montgomery multiplication
in hardware. With parameters optimized for minimum latency, this archi-
tecture performs a single Montgomery multiplication in approximately
2n clock cycles, where n is the size of operands in bits. In this paper we
propose and discuss an optimized hardware architecture performing the
same operation in approximately n clock cycles with almost the same
clock period. Our architecture is based on pre-computing partial results
using two possible assumptions regarding the most significant bit of the
previous word, and is only marginally more demanding in terms of the
circuit area. The new radix-2 architecture can be extended for the case of
radix-4, while preserving a factor of two speed-up over the corresponding
radix-4 design by Tenca, Todorov, and Ko¢ from CHES 2001. Our archi-
tecture has been verified by modeling it in Verilog-HDL, implementing
it using Xilinx Virtex-II 6000 FPGA, and experimentally testing it using
SRC-6 reconfigurable computer.

Keywords: Montgomery Multiplication, MWR2MM Algorithm, Field
Programmable Gate Arrays.

1 Introduction

Since the introduction of the RSA algorithm [I] in 1978, high-speed and space-
efficient hardware architectures for modular multiplication have been a subject
of constant interest for almost 30 years. During this period, one of the most
useful advances came with the introduction of Montgomery multiplication algo-
rithm due to Peter L. Montgomery [2]. Montgomery multiplication is the basic
operation of the modular exponentiation, which is required in the RSA public-
key cryptosystem. It is also used in Elliptic Curve Cryptosystems, and several
methods of factoring, such as ECM, p-1, and Pollard’s “rho” method, as well as
in many other cryptographic and cryptanalytic transformations [3].

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 214-[ZZ8] 2008.
© International Association for Cryptologic Research 2008
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At CHES 1999, Tenca and Kog introduced a scalable word-based architec-
ture for Montgomery multiplication, called a Multiple-Word Radix-2 Mont-
gomery Multiplication (MWR2MM) [45]. Several follow-up designs based on
the MWR2MM algorithm have been published to reduce the computation time
[6I708]. In [6], a high-radix word-based Montgomery algorithm (MWR2¥MM)
was proposed using Booth encoding technique. Although the number of scan-
ning steps was reduced, the complexity of control and computational logic in-
creased substantially at the same time. In [7], Harris et al. implemented the
MWR2MM algorithm in a quite different way and their approach was able to
process an n-bit precision Montgomery multiplication in approximately n clock
cycles, while keeping the scalability and simplicity of the original implemen-
tation. In [§], Michalski and Buell introduced a MWRKMM algorithm, which
is derived from The Finely Integrated Operand Scanning Method described in
[9). MWRKMM algorithm requires the built-in multipliers to speed up the com-
putation and this feature makes the implementation expensive. The systolic
high-radix design by MclIvor et al. described in [I0] is also capable of very high
speed operation, but suffers from the same disadvantage of large requirements for
fast multiplier units. A different approach based on processing multi-precision
operands in carry-save form has been presented in [I1I]. This architecture is
optimized for the minimum latency and is particularly suitable for repeated se-
quence of Montgomery multiplications, such as the sequence used in modular
exponentiations (e.g., RSA).

In this paper, we focus on the optimization of hardware architectures for
MWR2MM and MWR4MM algorithms in order to minimize the number of clock
cycles required to compute an n-bit precision Montgomery multiplication. We
start with the introduction of Montgomery multiplication in Section 2l Then, the
classical MWR2MM architecture is discussed and the proposed new optimized
architecture is demonstrated in Section Bl In Section El the high-radix version
of our architecture is introduced. In Section Bl we first compare our architec-
ture with three earlier architectures from the conceptual point of view. Then,
the hardware implementations of all discussed architectures are presented and
contrasted with each other. Finally, in Section [6] we present the summary and
conclusions for this work.

2 Montgomery Multiplication Algorithm

Let M > 0 be an odd integer. In many cryptosystems, such as RSA, computing
XY (mod M) is a crucial operation. Taking the reduction of XY (mod M) isa
more time consuming step than the multiplication X -Y without reduction. In [2],
Montgomery introduced a method for calculating products (mod M) without
the costly reduction (mod M), since then known as Montgomery multiplication.
Montgomery multiplication of X and Y (mod M), denoted by M P(X,Y, M),
is defined as X - Y - 27" (mod M) for some fixed integer n.
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Table 1. Conversion between Ordinary Domain and Montgomery Domain

Ordinary Domain <= Montgomery Domain
X — X'=X-2" (mod M)
Y — Y'=Y 2" (mod M)
XY — (XY)=X-Y-2" (mod M)

Algorithm 1. Radix-2 Montgomery Multiplication

Require: odd M,n = |log, M| +1, X = Z?:_Ol i -2Y, with 0 < X, Y < M
Ensure: Z =MP(X,Y,M)=X-Y -27" (mod M),0<Z < M

1: S[0] =0

2: for i =0ton —1step 1 do

3 q¢:S[i]o@xi~Yo

4: Sii+1] =S4+ zi-Y +q-M)div 2
5: end for

6: if (S[n] > M) then

7. S[n]=Snh]-M

8: end if

9: return Z = Sin|

Since Montgomery multiplication is not an ordinary multiplication, there is
a process of conversion between the ordinary domain (with ordinary multiplica-
tion) and the Montgomery domain. The conversion between the ordinary domain
and the Montgomery domain is given by the relation X «— X’ with X/ = X.2"
(mod M), and the corresponding diagram is shown in Table [

The Table [0l shows that the conversion is compatible with multiplications in
each domain, since

MP(X', Y, M)=X'.Y -27" = (X.2") . (Y .27).2°" (1a)
=X-Y-2"=(X-Y) (mod M). (1b)

The conversion between each domain can be done using the same Montgomery
operation, in particular X’ = M P(X,22"(mod M), M) and X = MP(X',1, M),
where 22" (mod M) can be precomputed. Despite the initial conversion cost, if
we do many Montgomery multiplications followed by an inverse conversion, as
in RSA, we obtain an advantage over ordinary multiplication.

Algorithm [I] shows the pseudocode for radix-2 Montgomery multiplication,
where we choose n = |log, M | 4+ 1, which is the precision of M.

The verification of the above algorithm is given below: Let us define S[i] as

i—1
S[i]z; S a2 | Y (mod M) 2)
=0
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Algorithm 2. The Multiple-Word Radix-2 Montgomery Multiplication

Algorithm

Require: odd M,n = [log, M| + 1, word size w, e = ["1'], X = Y7 fay - 27,
Y =35 YW owd M =3 MO 2w with 0 < X, Y < M

Ensure: Z =3 52,8 .2%7 = MP(X,Y,M)=X-Y -27" (mod M),0 < Z <2M

1: S=0 — initialize all words of S
2: forizOton—lstepldo

3: = (m; - Y(O)) @ S(O)

4 (Cu) SOy g, YO 4 g MO 4 5O

5 for j=1toe—1step 1do
6 (CUHD, §D) = 0O 4 4, YD) 4 g - MO 4 §O)
T SUTY = (s, 8000)
8: end for
e— e e—1

9 sV = (G750
0: end for

1: return Z = S

with S[0] = 0. Then, S[n] =X -Y -27" (mod M) = MP(X,Y,M). Thus, S[n]
can be computed iteratively using dependence:

i i1
. 1 ; 1 , :

S[Z+1]52i+1 ij.2j 'Y52i+1 ij.2J+mi.2 Y (3a)

=0 =0
11 [ 1
= i ;ac] 21 Y4 Y| = 2(5[2]—1—30Z Y) (mod M)
(3b)
Therefore depending on the parity of S[i] + z; - Y, we compute S[i + 1] as

Sl i Y Sl i Y+ M

Si+1] = [] +2x or li] + J:2 + 7 (@)

to make the numerator divisible by 2. Since Y < M and S[0] = 0, one has
0 < S[i] < 2M for all 0 < ¢ < n. Thus only one conditional subtraction is
necessary to bring S[n| to the required range 0 < S[n] < M. This subtraction
will be omitted in the subsequent discussion since it is independent of the specific
algorithm and architecture and can be treated as a part of post processing.

3 Optimizing MWR2MM Algorithm

In [], Tenca and Kog proposed a scalable architecture based on the Multiple-
Word Radix-2 Montgomery Multiplication Algorithm (MWR2MM), shown as
Algorithm 2

In Algorithm 2] the operand Y (multiplicand) is scanned word-by-word, and
the operand X is scanned bit-by-bit. The operand length is n bits, and the
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sO=0

Fig.1. The data dependency graph for original architecture of the MWR2MM
Algorithm

wordlength is w bits. e = f“f} words are required to store S since its range
is [0,2M — 1]. The original M and Y are extended by one extra bit of 0 as the
most significant bit. Presented as vectors, M = (M=D . MM MOy =
(yle=b vy yOy g = (g1 s SO X = (z, 1,...,21,20).
The carry variable C9) has two bits, as shown below. Assuming C'(® = 0,
each subsequent value of CUt1) is given by (CUTD SU)) = CU) 4+ g; - Y) +
qi - M) + SU) | Assuming that C) < 3, we obtain (CUTD,S0)) = CU) + g, -
YO g - M) 480 <343.(2¢ —1) =3-2% <2%+2 1 and thus CU+Y < 3.
Thus, by induction, C¥) < 3 for any 0 < j < e.

The dependency graph for the MWR2MM algorithm is shown in Figure [
Each circle in the graph represents an atomic computation and is labeled ac-
cording to the type of action performed. Task A consists of computing lines
and [ in Algorithm 2l Task B consists of computing lines [2] and 2] in Algorithm
The computation of each column ends with Task C' consisting of line 2] of
Algorithm 2

The data dependencies between operations within the loop for j makes it
impossible to execute the steps in a single j loop in parallel. However, parallelism
is possible among executions in different ¢ loops. In [4], Tenca and Kog suggested
that each column in the graph may be computed by a separate processing element
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j=2

s@=p Y@

Fig. 2. The data dependency graph of the proposed new architecture of MWR2MM
Algorithm

(PE), and the data generated from one PE may be passed into another PE in
a pipelined fashion. Following this way, all atomic computations represented by
circles in the same row can be processed concurrently. The processing of each
column takes e + 1 clock cycles (1 clock cycle for Task A, e — 1 clock cycles
for Task B, and 1 clock cycle for Task C). Because there is a delay of 2 clock
cycles between processing a column for x; and a column for z;1, the minimum
computation time 7' (in clock cycles) is T = 2n + e — 1 given Ppqp = [“5']
PEs are implemented to work in parallel. In this configuration, after e + 1 clock
cycles, PE#0 switches from executing column 0 to executing column Py, ,,.. After
additional two clock cycles, PE#1 switches from executing column 1 to executing
column P,,,. + 1, etc.

The only option for improving the performance of Algorithm [ seems to reduce
the delay between the processing of two i loops that are next to each other. Here
we present a new data dependency graph of MWR2MM algorithm in Figure
The circle in the graph represents an atomic computation. Task D consists of
three steps, the computation of g; corresponding to line 2 of Algorithm 2 the
calculation of Equations Fal and BB with j = 0 and C(©) = 0, and the selection
between two sets of results from Equations [Bal and BB using an additional input

S(()j 1 which becomes available at the end of the processing time for Task D.

(coUth 5o sy =1,89, Y+ CD 4a; YO 4 g MO (5a)
(CE(jJrl)?SEz(j)—l? Sz(j)—ZO) = (07 Sz(j)—ll) + C(j) + T Y(j) + qi M(j) (5b)
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Algorithm 3. Pseudocode of the processing element PE#;j of type E
Require: Inputs: ¢;, z;, 9, YO M) S(()jH)
Ensure: Output: CUH), S(()J)

1: (CO(H'I), Soiuj_)_u Sfuj_lz.o) =(1, 3311..1) +CV a2 YD 4 g MY
2: (CE(j_-H)v SESlp Sfujlz.o) = (0, 35511..1) +CV oz YO 4 qi M)
3. if (YT =1) then

4 CUTD — cOU+D

5: S = (5055),1’51(312..0)
6: else

7 oG+t — o pU+D

8 SW=(SEY,, S, )
9: end if

Task E corresponds to the calculation of Equations [Fal and Bhl and the selection
between two sets of results using an additional input S(()J 1 The feedback in
the new graph is used for making the selection in the last step of Tasks D and
E, and will be discussed in detail as we proceed. Similar to the previous graph,
the computation of each column in Figure [2] can be processed by one separate
PE. However there is only one clock cycle latency between the processing of two
adjacent columns in the new data dependency graph.

The two data dependency graphs map the Algorithm [l following different
strategies. In Figure[I], each column maps to one single ¢ loop and covers all the
internal 5 loops corresponding to this ¢ loop. In contrast, each column in Figure
Rlmaps to one single j loop and covers this particular part of all external ¢ loops.

Following the data dependency graph in Figure[2] we present a new hardware
architecture of MWR2MM algorithm in Figure [3 which can finish the compu-
tation of Montgomery multiplication of n-bit precision in n + e — 1 clock cycles.
Furthermore, our design is simpler than the approach given in [4] in terms of
control logic and data path logic.

As shown in Figure Bl(d), the architecture consists of e PEs that form a com-
putation chain. Each PE focuses on the computation of a specific word in vector
S, i.e., PE #j only works on S, In other words, each PE corresponds to one
fixed round in loop for j in Algorithm 2l Meanwhile, all PEs scan different bits
of operand X at the same time.

In order to avoid an extra clock cycle delay due to the right shift, each PE#j
first computes two versions of CU*+1) and Sg)_l simultaneously, as shown in
Equations [Bal and [BBl One version assumes that S(()] ) 4s equal to one, and the
other assumes that this bit is equal to zero. Both results are stored in registers,
and the bit S(()j ) is forwarded to the previous stage, j — 1. At the same moment,
the bit S(()J 1 hecomes available and PE#j/ can output the correct CU*+1 and
use the correct SU). These computations are summarized by the pseudocode
given in Algorithm [l
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The internal logic of all PEs is same except the two PEs residing at the head
and tail of the chain. PE#0, shown in Figure Bla) as the cell of type D, is also
responsible for computing ¢; and has no CY) input. PE#(e— 1), shown in Figure
Bl(c) as type F, has only one branch inside because the most significant bit of
S(e=1) is equivalent to C(ge) and is known already at the end of the previous clock
cycle (see line 2] of Algorithm [2]).

Two shift registers parallel to PEs carry x; and g;, respectively, and do a right
shift every clock cycle. Before the start of multiplication, all registers, including
the two shift registers and the internal registers of PEs, should be reset to zeros.
All the bits of X will be pushed into the shift register one by one from the head
and followed by zeros. The second shift register will be filled with values of ¢;
computed by PE#0 of type D. All the registers can be enabled at the same time
after the multiplication process starts because the additions of Y and M)
will be nullified by the zeros in the two shift registers before the values of zy and
qo reach a given stage.

Readers must have noticed that the internal register of PE #7 keeps the value
of S that should be shifted one bit to the right for the next round calculation.
This feature gives us two options to generate the final product.

1. We can store the contents of 51(511__0 clock cycle by clock cycle after PE #0
finishes the calculation of the most significant bit of X, i.e. after n clock
cycles, and then do a right shift on them, or

2. We can do one more round of calculation right after the round with the most
significant bit of X. To do so, we need to push one bit of “0” into two shift
registers to make sure that the additions of Y¥) and M) are nullified. Then
we go to collect the contents of Sq(ujll..o clock cycle by clock cycle after PE
#0 finishes its extra round of calculation. We concatenate these words to
form the final product.

After the final product is generated, we have two methods to collect them.
If the internal registers of PEs are disabled after the end of computation, the
entire result can be read in parallel after n + e — 1 clock cycles. Alternatively,
the results can be read word by word in e clock cycles by connecting internal
registers of PEs into a shift register chain.

The exact way of collecting the results depends strongly on the application.
For example in the implementation of RSA, a parallel output would be preferred,
while in the ECC computations, reading results word by word may be more
appropriate.

4 High-Radix Architecture of Montgomery Multiplication

The concepts illustrated in Figure 2 and [ can be adopted to design high-radix
hardware architecture of Montgomery multiplication. Instead of scanning one bit
of X, several bits of X can be scanned together for high-radix cases. Assuming we
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Algorithm 4. The Multiple-Word Radix-4 Montgomery Multiplication

Algorithm

Require: odd M,n = |log, M| + 1, word size w, e = ["T1], X = Z[EJ”&” 4%
Y=Yy zwij, M = oMY 2w with 0 < XY < M

Ensure: Z =3 5", 8% .2%7 = MP(X,Y,M)=X-Y -2"" (mod M),0 < Z < 2M

1: S=0 — initialize all words of S
2: for i =0 ton —1 step 2 do _ _
3 ¢ = Func(S(O) @) Y(O) M(O)) — ¢ and 29 are 2-bit long
4: (C<1> SOy = S —I—a:(z YO @ p©@ — C'is 3-bit long
5 for j=1toe—1step 1 do
6: (C(j+1)75(j)) CW 4 80U 4 2y W) 4 @ a0
T SO = (570, 8000)
8: end for
e— e e—1
9: S = (Ci..)msq(ufl.).Z)
10: end for

11: return Z = S

want to scan k bits of X at one time, 2¥ branches should be covered at the same time
to maximize the performance. Considering the value of 2* increases exponentially
as k increments, the design will become impractical beyond radix-4.

Following the same definitions regarding words as in Algorithm 2 we have the
radix-4 version of Montgomery multiplication shown as Algorithm [l We scan
two bits in one step this time instead of one bit as in Algorithm 2l The radix-4
version design still has e PEs working parallel but it takes § +e —1 clock cycles
to process n-bit Montgomery multiplication.

The value of ¢ at line @ of Algorithm [ is defined by a function involving
S%O)O, @, Y( ) andM(O) such that the Equation[@lis satisfied. The carry variable
C has 3 bltb Wthh can be proven in a similar way to the proof for the size of
CU) for the case of radix 2.

SO+ 2@ v+ D M) =0 (mod 4) (6)

Since M is odd, Méo) = 1. From Equation [6, we can derive

=50 @ (o) ¥y") (")

where ac(()) and q(()) denote the least significant bit of z(* and ¢?) respectively.

The bit q1 is a function of only seven one-bit variables and can be computed
using a relatively small look-up table.

The multiplication by 3, necessary to compute (V) - Y@ and ¢ .- M) can
be done on the fly or avoided by using Booth recoding as discussed in [G]. Using
the Booth recoding would require adjusting the algorithm and architecture to
deal with signed operands.
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Furthermore we can generalize Algorithm @l to handle MWR2*MM algorithm.
In general, () and ¢ are both k-bit variables. () is a k-bit digit of X, and
¢ is defined by Equation Bl

SO 1 2@ yO 4@ Ar© =0 (mod 2*) (8)

Nevertheless the implementation of this architecture for k£ > 2 would be imprac-
tical in majority of applications.

5 Hardware Implementation and Comparison of Different
Architectures

In this section, we compare and contrast four major types of architectures for
Montgomery multiplication from the point of view of the number of PEs and
latency in clock cycles. In the architecture by Tenca and Kog, the number of
PEs can vary between one and Py,q, = [“5']. The larger the number of PEs the
smaller the latency, but the larger the circuit area, which allows the designer to
choose the best possible trade-off between these two requirements. The architec-
ture of Tenca and Kog is often referred as a scalable architecture. Nevertheless,
the scalability of this architecture is not perfect. In order to process operands
with different number of bits, the sizes of shift registers surrounding process-
ing units must change, and the operation of the internal state machines must
be modified, which makes it impractical to utilize the same circuit for different
operand sizes.

The architecture by Harris et al. [7] has the similar scalability as the original
architecture by Tenca and Kog []. Instead of making right-shift of the interme-
diate SU) values, their architecture left-shifts the Y and M to avoid the data
dependency between SU) and SU=1). For the number of processing elements
optimized for minimum latency, the architecture by Harris reduces the number
of clock cycles from 2n 4+ e — 1 (for Tenca and Kog []) to n + 2e — 1. Similar
to the original architecture, changing n or w requires changes in the sizes of
shift registers and/or memories surrounding processing units, and the operation
of the internal state machines, which makes it impractical to utilize the same
circuit for different operand sizes.

Our architecture and the architecture of Mclvor et al. both have fixed size,
optimized for minimum latency. Our architecture consists of e processing units,
each operating on operands of the size of a single word. The architecture of
Meclvor et al. consists of just one type of the processing unit, operating on multi-
precision numbers represented in the carry-save form. The final result of the
Mclvor architecture, obtained after n clock cycles is expressed in the carry-save
form. In order to convert this result to the non-redundant binary representa-
tion, additional e clock cycles are required, which makes the total latency of this
architecture comparable to the latency of our architecture. In the sequence of
modular multiplications, such as the one required for modular exponentiation,
the conversion to the non-redundant representation can be delayed to the very
end of computations, and thus each subsequent Montgomery multiplication can
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start every n clock cycles. The similar property can be implemented in our ar-
chitecture by starting a new multiplication immediately after the first processing
unit, PE#0, has released the first least significant word of the final result.

Our architecture is scalable in terms of the value of the word size w. The
larger w, the smaller the maximum clock frequency. The latency expressed in
the number of clock cycles is equal to n + [((n + 1)/w)] — 1, and is almost
independent of w for w > 16. Since actual FPGA-based platforms, such as SRC-
6 used in our implementations, have a fixed target clock frequency, this target
clock frequency determines the optimum value of w. The area of the circuit is
almost independent of w (for sufficiently large w, e.g., w > 16), as the size of
each cell is proportional to w, and the number of cells is inversely proportional
to w. Additionally, the same HDL code can be used for different values of the
operand size n and the parameter w, with only a minor change in the values of
respective constants.

The new architecture has been implemented in Verilog HDL and its code
verified using reference software implementation. The results matched perfectly.

We have selected Xilinx Virtex-II6000FF1517-4 FPGA device used in the
SRC-6 reconfigurable computer for a prototype implementation. The synthesis
tool was Synplify Pro 8.1 and the Place and Route tool was Xilinx ISE 8.1.

We have implemented four different sizes of multipliers, 1024, 2048, 3072 and
4096 bits, respectively, in the radix-2 case using Verilog-HDL to verify our ap-
proach. The resource utilization on a single FPGA is shown in Table Pl For
comparison, we have implemented the multipliers of these four sizes following
the hardware architectures described in [4] as well. In both approaches, the word
length is fixed at 16 bits. Because the frequency of FPGA on SRC-6 platform is
fixed at 100MHz, we targeted this frequency when we implemented the design.
At first, we selected 32 bits as the word length and it turned out the max fre-
quency of the multiplier was 87.7 MHz. So, we halved the word length to meet
the timing on SRC-6 platform. In order to maximize the performance, we used
the maximum number of PEs in both approaches.

Additionally, we have implemented the approach based on CSA (Carry Save
Addition) from [II] as a reference, showing how the MWR2MM architecture
compares to other types of architectures in terms of resource utilization and
performance.

Compared to the design by Harris et al. in [7], our architecture accomplishes
the same objective, however, using a totally different and never published before
approach. The exact quantitative comparison between our architecture and the
architecture by Harris [7] would require implementing both architectures using
exactly the same FPGA device, environment and design style.

From Table[2] we can see that our architecture gives a speed up by a factor of
almost two compared to the architecture by Tenca et al. [4] in terms of latency
expressed in the number of clock cycles. The minimum clock period is comparable
in both cases and the extra propagation delay in our architecture is introduced
by the multiplexers directly following the Registers, as shown in Figures [Bf(a)
and (b). At the same time both architectures almost tie in terms of resource
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Table 2. Comparison of hardware resource utilization and performance for the imple-
mentations using Xilinx Virtex-II6000FF1517-4 FPGA

1024-bit  2048-bit  3072-bit  4096-bit

Architecture of Max Freq.(MHz) 110.1
Tenca & Kog [4] Min Latency (clks) 2113 4225 6337 8449
(radix-2)  Min Latency (us) 19186  38.363  57.540  T6.717
(with the # of Area (Slices) 3,937 7,756 11,576 15,393

PEs optimized for MinLatency x Area

.. . 75,535 297,543 666,083 1,180,905
minimum latency) (usxslices)

Max Freq.(MHz) 123.6 110.6 116.7 92.81

Min Latency (clks) 1025 2049 3073 4097

Architecture of Min Latency (us) 8.294 18.525 26.323 44.141
Mclvor et al. [IT] Area (Slices) 6,241 12,490 18,728 25,474

(radix-2) MinLatency x Area
(psxslices)
Latency x Area Gain

51,763 231,377 492,977 1,124,448

vs. Tenca & Kog (%) 31.47 22.24 25.99 4.78

Max Freq.(MHz) 100.0

Min Latency (clks) 1088 2176 3264 4352
Our Proposed Min Latency (us) 10.880 21.760 32.640 43.520
Architecture  Area (Slices) 4,178 8,337 12,495 16,648

(radix-2) MinLatency x Area
(psxslices)
Latency x Area Gain
vs. Tenca & Kog (%)

45,457 181,413 407,837 724,521

39.82 39.03 38.77 38.65

utilization expressed in the number of CLB slices, in spite of our architecture
using almost twice as many processing elements (PEs). This result is caused
by the fact that our processing element shown in Figure B(b) is substantially
simpler than processing element in the architecture by Tenca et al. [4]. The
major difference is that PE in [4] is responsible for calculating not only one, but
multiple columns of the dependency graph shown in Figure[ll and it must switch
among Tasks A, B and C, depending on the phase of calculations. In contrast, in
our architecture, each processing element is responsible for only one column of
the dependency graph in Figure[2l and is responsible for only one Task, either D
or E or F. Additionally in [4], the words Y and M) must rotate with regard
to PEs, which further complicates the control logic.

Compared to the architecture by Mclvor et al. [11], our architecture has a
latency (expressed in the number of clock cycles) comparable for radix-2, and
almost twice as low for radix-4. At the same time, the resource utilization, ex-
pressed in the number of CLB slices, is smaller in our design with radix-2 by
about 33%.

For radix-4 case, we only have implemented a 1024-bit precision Montgomery
multiplier as a showcase. The word-length is the same as in radix-2 case, 16 bits.
One radix-4 1024-bit precision core takes 9,471(28%) slices and has a latency of
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Table 3. Comparison of the radix-2 and radix-4 versions of our architecture (n=1024,
w=16) for the implementation using Xilinx Virtex-II6000FF1517-4 FPGA

Max Freq. Min Latency Min Latency

(MHz) (clocks) (ps) Slices
radix-2 100 1088 10.880 4,178(12%)
radix-4 94 576 6.128  9,471(28%)

576 clock cycles. Further, the max frequency of the radix-4 case drops to 94MHz.
These figures fall within our expectations because radix-4 PE has 4 internal
branches, which doubles the quantity of branches of radix-2 version, and some
small design tweaks were required to redeem the propagation delay increase
caused by more complicated combinational logic. Some of these optimization
techniques are listed below,

1. At line@of Algorithm Ml there is an addition of three operands whose length is
w-bit or larger. To reduce the propagation delay of this step, we precomputed
the value of (9 . Y + ¢ . M) one clock cycle before it arrives at the
corresponding PE.

2. For the first PE in which the update of §(9) and the evaluation of ¢(*) happen
in the same clock cycle, we can not precompute the value of z(? . Y0 4 ¢ .
M© in advance. To overcome this difficulty, we precompute four possible
values of z(" . V(O 4 ¢ . MO corresponding to ¢(P = 0,1,2,3, and make
a decision at the end of the clock cycle based on the real value of ¢(*).

As mentioned at the beginning of Section [ the hardware implementation of
our architecture beyond radix-4 is no longer viable considering the large resource
cost for covering all the 2* branches in one clock cycle, and the need to perform
multiplications of words by numbers in the range 0..2F — 1.

6 Conclusion

In this paper, we present an optimized hardware architecture to implement the
word-based MWR2MM and MWR4MM algorithms for Montgomery multiplica-
tion. The structure is scalable to fit multi-precision Montgomery multipliers, the
approach is easy to be realized in hardware, and the design is space efficient.
One n-bit precision Montgomery multiplication takes n + e — 1 clock cycles for
the radix-2 version, and 3 + e — 1 clock cycles for the radix-4 version. These
latencies amount to almost a factor of two speed-up over now-classical designs
by Tenca, Kog¢, and Todorov presented at CHES 1999 (radix-2) [4] and CHES
2001 (radix-4) [6]. This speed-up in terms of latency in clock cycles has been ac-
complished with comparable maximum clock frequencies and less than 10% area
penalty, when both architectures have been implemented using Xilinx Virtex-
IT 6000 FPGA. Although our architecture is not scalable in the same sense as
architecture by Tenca and Kog, it performs better when both architectures are
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optimized for minimum latency. It is also easily parameterizable, so the same
generic code with different values of parameters can be easily used for multiple
operand sizes. Our radix-2 architecture guarantees also almost the same latency
as the recent design by Meclvor et al. [I1], while outperforming this design in
terms of the circuit area by at least 30% when implemented in Xilinx Virtex-
IT FPGA. Our architecture has been fully verified by modeling it in Verilog-
HDL, and comparing its function vs. reference software implementation based
on GMP. The code has been implemented using Xilinx Virtex-II 6000 FPGA
and experimentally tested using SRC-6 reconfigurable computer.
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