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Summary. DEA (data envelopment analysis) is a non-parametric technique for
measuring and evaluating the relative efficiencies of a set of entities with common
crisp inputs and outputs. In fact, in a real evaluation problem input and output
data of entities evaluated often fluctuate. These fluctuating data can be represented
as linguistic variables characterized by fuzzy numbers for reflecting a kind of general
feeling or experience of experts. Based on the fundamental CCR model, a fuzzy
DEA model is proposed to deal with the efficiency evaluation problem with the
given fuzzy input and output data. Furthermore, a fuzzy aggregation model for
integrating multiple attribute fuzzy values of objects is proposed based on the fuzzy
DEA model. Using the proposed fuzzy DEA models, the crisp efficiency in CCR
model is generalized to be a fuzzy efficiency to reflect the inherent uncertainty in
real evaluation problems. Using the proposed fuzzy aggregation models, the objects
can be ranked objectively.

1 Introduction

Data envelopment analysis (DEA) initially proposed by Charnes et al. [3] is a
non-parametric technique for measuring and evaluating the relative efficiencies
of a set of entities, called decision making units (DMUs), with the common
inputs and outputs. Examples include school, hospital, library and, more re-
cently, whole economic and society systems, in which outputs and inputs are
always multiple in character. Most of DEA papers make an assumption that
input and output data are crisp ones without any variation. In fact, inputs
and outputs of DMUs are ever-changeful. For example, for evaluating oper-
ation efficiencies of airlines, seat-kilometers available, cargo-kilometers avail-
able, fuel and labor are regarded as inputs and passenger-kilometers performed
as an output [4]. It is common sense that these inputs and output are easy to
change because of weather, season, operating state and so on. Because DEA
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is a ‘boundary’ method sensitive to outliers, it is very difficult to evaluate
the efficiency of DMU with varying inputs and outputs by conventional DEA
models. Some researchers have proposed several models to challenge how to
deal with the variation of data in efficiency evaluation problems by stochastic
frontier models [1,9,19]. On the other hand, in more general cases, the data for
evaluation are often collected from investigation by polling where the natural
language such as good, medium and bad are used to reflect a kind of general
situation of the investigated entities rather than a specific case. In the above
example, an expert can make a general conclusion that the airline A is about
200 passenger-kilometers and fuel cost is high based on his rich experience.
These fuzzy concepts are used to summarize the general situation of inputs
and outputs and reflect the ambiguity of the experts’ judgment. The center
of a fuzzy number represents the most general case and the spread reflects
some possibilities. Some DEA models under uncertainty have been research
in papers [5, 6, 10–16,18,21,24].

In this paper, a fuzzy DEA model is proposed which is an extension of
CCR model for evaluating the fuzzy efficiency of DMU with the given fuzzy
input and output data. The crisp efficiency in CCR model is generalized to be
a fuzzy number to reflect the inherent uncertainty in real evaluation problems.

Aggregation operators play an important role in information integration
and decision analysis, which offer the synthesized one-dimensional informa-
tion from the high-dimensional space to facilitate an overall judgment in the
decision-making procedure. Several kinds of aggregation operators have been
researched in papers [2,7,8,17,20,22,23]. In essence, these methods are sorts of
weighted aggregation operators. That is, aggregation is represented as a kind
of generalized weighted sum where weight factors of attributes are predeter-
mined by decision-makers to represent their preference or a sort of threshold.
It is obvious that different weight factors lead to different aggregation results.
Generally speaking, it is very difficult to choose suitable weight factors be-
cause of the existence of inherent uncertainty and subjectivity for determining
them. In particular, sometimes we need some objective rather than subjec-
tive assessment by aggregation operators. In other words, there is no such
authority (decision-maker) with the right to determine the weight factors of
attributes in advance. Let us give a scenario for explaining this viewpoint. A
motorcycle company has designed five kinds of new products and wants to
know which is the most popular so that they can make a decision for mass-
production. In so doing, a demonstration can be held where the questionnaires
on attributes related with sales, such as, price, beauty, comfort and fuel cost
etc. are collected from visitors. In this case, it is unimaginable that this com-
pany can predetermine the weight factors of attributes because buying or not
is completely decided by customers not this company. However, it is certain
that the company can give some suggestion on attributes, for example, “the
price is the most important attribute for a good sale”. Meanwhile, customers
also can’t determine the weight factors of attributes because producing which
kind of motorcycle is completely decided by the company rather than the
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individual preference of some customer. However, customers can express their
comments on the attributes of motorcycles. In a word, there is no author-
ity to determine some specified weight factors of attributes in this example.
The weight factors of attributes should objectively reflect the inherent char-
acteristic of the information from customers and the company. This kind of
evaluation system is called agent-clients evaluation (ACE) system. In ACE
systems the agent (company) can collect some information on the evaluated
objects from clients (customers) and decide which action should be taken to
meet clients’ preference. The ACE systems greatly differ from multi-criteria
decision-making systems in the sense that there is an agent rather than an
authority that has right to specify weight factors of attributes in advance. An
aggregation model for ACE system, called Self-organizing fuzzy aggregation
model, is proposed in the paper [11].

In this paper, an aggregation model for integrating multiple attribute fuzzy
values of objects is proposed based on the fuzzy DEA model, in which the fuzzy
multi-input values of all DMUs become the crisp value 1.

This paper is organized as follows: Section 2 is devoted to a brief intro-
duction of DEA. In Sect. 3, fuzzy DEA models are proposed. In Sect. 4, the
methods for evaluating the objects with multiple fuzzy attribute values are
proposed. For illustration of our methods, numerical examples are given in
Sects. 3 and 4. Section 5 makes some concluding remarks for this paper.

2 Data Envelopment Analysis

DEA (data envelopment analysis) is a non-parametric technique for measuring
and evaluating the relative efficiencies of a set of entities with common crisp
inputs and outputs. CCR model, a basic DEA model, is a linear programming
(LP) based method proposed by Charnes et al. [3]. In CCR model the efficiency
of the entity evaluated is obtained as a ratio of its weighted output to its
weighted input subject to the condition that the ratio for each entity is not
greater than 1. Mathematically, it is described as follows:

max
µ,ν

µtyo

νtxo
(1)

s. t.
µtyj

νtxj
≤ 1 (j = 1, . . ., n),

µ ≥ 0,

ν ≥ 0.

Here the evaluated entities (DMUs) form a reference set and n is the number
of DMUs. yj = [yj1, . . . , yjm]t and xj = [xj1, . . . , xjs]t in (1) are the given
positive output and input vectors of the jth DMU, respectively, and m and s
are the numbers of outputs and inputs of DMU, respectively. µ and ν in (1) are
the coefficient vectors of yj and xj , respectively and the index o indicates the
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evaluated DMU. µ ≥ 0 represents the vector whose elements are not smaller
than zero but at least one element is positive value whereas µ > 0 represents
the vector with positive elements.

The model (1) is equivalent to the following LP problem.

max
µ,ν

µtyo (2)

s. t. νtxo = 1,

µtyj ≤ νtxj (j = 1, . . . , n),
µ ≥ 0,

ν ≥ 0.

It can be seen from (2) that the essence of CCR model is that the DMU
evaluated tries to find out its own weight vector to maximize its weighted
output with the constraints that its weighted input is fixed as unity and the
weighted output is not greater than the weighted input for all DMUs. In other
words, each DMU seeks its favorite weight vector to its own advantage.

3 Fuzzy DEA Models

If the input and output data are fuzzy numbers for representing the judgment
of persons, let us consider how to evaluate the efficiencies of DMUs. Firstly,
the basic concepts of fuzzy sets are introduced in the following section.

3.1 Preliminaries of Fuzzy Sets

Definition 1. A fuzzy number A is called L–L fuzzy number and denoted as
(a, c, d)L if its membership function is defined by

ΠA(x) =

⎧⎪⎨⎪⎩
L((a − x)/c), x ≤ a

1, x = a

L((x − a)/d), x ≥ a

, (3)

where c > 0, d > 0 and reference functions L : [0,+∞) → [0, 1] is a strictly
decreasing functions with L(0) = 1. An L–L fuzzy number (a, c, d)L with
L(x) = max(0, 1 − |x|) is called triangular fuzzy number, denoted as (a,c,d).
A symmetrical L–L fuzzy number is denoted as (a, c)L for the case of c = d.

An n-dimensional vector x = [x1, . . . , xn]t can be fuzzified as a symmetri-
cal L–L fuzzy vector A whose membership function is defined as

ΠA(x) = ΠA1(x1) ∧ . . . ∧ ΠAn
(xn), (4)

where ΠAi
(xi) is the membership function of a symmetrical L–L fuzzy number,

denoted as (ai, ci)L. An n-dimensional L–L fuzzy vector is denoted as A =
(a, c)L with a = [a1, . . . , an]t and c = [c1, . . . , cn]t.
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Consider a fuzzy linear system

Y = A1x1 + · · · + Anxn = Atx, (5)

where xi is a real number (i = 1, . . . , n) and A is an n-dimensional symmetri-
cal L–L fuzzy vector whose element is (ai, ci)L. From the extension principle,
it is known that Y is a symmetrical L–L fuzzy number as follows.

Y =
( ∑

i=1,...,n

xiai,
∑

i=1,...,n

|xi|ci

)
L

= (atx, ct |x|)L. (6)

Its h-level set, denoted as [Y ]h, is as follows.

[Y ]h = [atx − L−1(h)ct|x|,atx + L−1(h)ct|x|], (7)

where |x| = [|x1|, . . . , |xn|]t and 0 < h ≤ 1.

3.2 Fuzzy DEA Based on CCR Model

Considering fuzzy input and output data, CCR model (2) can be naturally
generalized to be the following fuzzy DEA model.

max
µ,γ

µtYo

s. t. νtXo ≈ 1̃,

µtYj <
∼

νtXj (j = 1, . . . , n), (8)

µ ≥ 0,

ν ≥ 0,

where Xj = (xj , cj)L and Yj = (yj ,dj)L are an s-dimensional L–L fuzzy
input vector and an m-dimensional fuzzy output vector of the jth DMU, re-
spectively, which generalize crisp input and output vectors in (2). Meanwhile,
“equal”, “smaller than” and “maximizing crisp output” in (2) are extended to
be “almost equal”, “almost smaller than” and “maximizing a fuzzy number”,
respectively. Moreover, 1 in (2) becomes a fuzzy number 1̃ = (1, e)L where
e ≤ 1 is the predefined spread of 1̃. In what follows, we interpret the concepts
of “µtYj � νtXj”, “max µtYo” and “νtXo ≈ 1̃” in sequence.

Definition 2. Given two L–L fuzzy numbers Z1 = (z1, w1)L and Z2 =
(z2, w2)L , the relation Z1<̃hZ2 (0 < h ≤ 1) holds if and only if the following
inequalities are true for any possibility level k ∈ [h, 1].

z1 − L−1(k)w1 ≤ z2 − L−1(k)w2, (9)

z1 + L−1(k)w1 ≤ z2 + L−1(k)w2, (10)

where L−1(·) is the inverse function of L(·).
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Theorem 1. The necessary and sufficient conditions that (9) and (10) hold
for any k ∈ [h, 1] are as follows:

z1 − L−1(h)w1 ≤ z2 − L−1(h)w2, (11)

z1 + L−1(h)w1 ≤ z2 + L−1(h)w2, (12)

Proof. It is trivial to prove the necessity. Let us now prove the sufficiency.
If h = 1, the (11) and (12) are equivalent to (9) and (10), respectively. The
sufficiency obviously holds for h = 1. Thus, we only consider the case of h < 1
in what follows. Taking the sum of (11) and (12) leads to

z2 ≥ z1. (13)

(11) is equivalent to

z2 − z1 ≥ L−1(h)(w2 − w1). (14)

It is straightforward that the relation 0 ≤ L−1(k)/L−1(h) ≤ 1 holds for
0 < h ≤ k. Thus,

z2 − z1 ≥ L−1(h)(w2 − w1) ≥ L−1(k)(w2 − w1). (15)

(15) is equivalent to

z1 − L−1(k)w1 ≤ z2 − L−1(k)w2. (16)

Likewise, we can prove that

z1 + L−1(k)w1 ≤ z2 + L−1(k)w2. (17)

It proves this theorem.

Now, let us consider maximizing a fuzzy number. Referring to Definition 2,
“Maximizing an L–L fuzzy number Z = (z, w)L” can be explained as simul-
taneously maximizing z − L−1(h)w and z + L−1(h)w. Here, the following
weighted function

λ1(z − L−1(h)w) + λ2(z + L−1w), (18)

is introduced to obtain some compromise solution where λ1 ≥ 0 and λ2 ≥ 0 are
the weights of left and right endpoints of the h-level set of Z, respectively, with
λ1 +λ2 = 1. Taking λ1 = 1 is regarded as a pessimistic opinion of maximizing
Z because the worst situation is considered, whereas taking λ2 = 1 is regarded
as an optimistic opinion because the best situation is concerned with.

Next, let us consider the relation νtXo ≈ 1̃ in (8) which plays the same role
as νtxo = 1 in (2). The crisp input vector x0 in CCR model becomes a fuzzy
vector X0 so that νtx0 = 1 is generalized to be νtX0 ≈ 1̃ where 1̃ = (1, e)L

is a fuzzy unity given by decision-makers. Different from the crisp case, that
is, νtxo = 1, where the vector ν can be found out to satisfy this equality, the
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z

z 1 1

h

Fig. 1. Explanation of Z ≈ 1̃

vector ν can not always be found out to make the equality νtXo = 1̃ hold in
the sense that νtXo and 1̃ have the same membership function. As a result,
finding out a vector ν to make νtXo = 1̃ is translated into finding out ν to
make the fuzzy number νtXo approach 1̃ as much as possible, simply denoted
by νtXo ≈ 1̃. Considering Definition 2, the fuzzy number νtXo that satisfies
νtXo ≈ 1̃ can be regarded as an upper bound subject to νtXo <

∼
1̃. It means

that the left endpoints of the h-level sets of νtXo and 1̃ overlap while the right
endpoint of νtXo expands rightwards as much as possible but is not larger than
that of 1̃ shown in Fig. 1. Thus, with considering the formulations (5) and (7),
the problem for finding out ν such that νtXo ≈ 1̃, i.e., Z = (νtxo, νtco)L ≈ 1̃,
can be converted into the following optimization problem.

max
ν

νtco (19)

s. t. νtxo − L−1(h)νtco = 1 − L−1(h)e,

νtxo + L−1(h)νtco ≤ 1 + L−1(h)e,
ν ≥ 0.

Remarks. The optimization problem (19) is used to find out the maximum Z =
νtXo constrained by νtXo ≤ 1̃ with the same left endpoint as the one of fuzzy
number 1̃ in h-level sets. This procedure can be regarded as a generalization
of the procedure that seeking a value x such that x = 1 is equivalent to finding
out the biggest x subject to x ≤ 1.

Using (9), (10), (18) and (19) and considering (5) and (7), the fuzzy opti-
mization problem (8) can be transformed into the following LP problem with
a primary objective function and a secondary objective function.

max
µ,ν

λ1(µtyo − L−1(h)µtdo) + λ2(µtyo + L−1(h)µtdo) (20)

s. t. max
ν

νtco

s. t. νtxo − L−1(h)νtco = 1 − L−1(h)e,

νtxo + L−1(h)νtco ≤ 1 + L−1(h)e,
ν ≥ 0,
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µtyj − L−1(h)µtdj ≤ νtxj − L−1(h)νtcj (j = 1, . . ., n),

µtyj + L−1(h)µtdj ≤ νtxj + L−1(h)νtcj (j = 1, . . . , n),
µ ≥ 0.

It should be noted that the optimization problem (19) is embedded into (20)
to obtain ν such that νtXo ≈ 1̃. The obtained optimal vectors from (20) are
denoted as ν∗ and µ∗.

Remarks. It can be seen that when ci = 0, di = 0 and e = 0, the fuzzy DEA
(8) just becomes CCR model. It means that the model (8) can evaluates the
efficiencies of DMUs in more general way, by which the crisp, fuzzy and hybrid
inputs and outputs can be handled homogeneously.

Assuming that the optimal value of the objective function of (19) is go,
the optimization problem (20) can be rewritten as the following LP problem.

max
µ,ν

λ1(µtyo − L−1(h)µtdo) + λ2(µtyo + L−1(h)µtdo) (21)

s. t. νtxo ≥ go

µtyj − L−1(h)µtdj ≤ νtxj − L−1(h)νtcj (j = 1, . . ., n),

µtyj + L−1(h)µtdj ≤ νtxj + L−1(h)νtcj (j = 1, . . . , n),
µ ≥ 0,

ν ≥ 0.

Definition 3. The fuzzy efficiency of an evaluated DMU with the L–L fuzzy
input vector Xo = (xo, co)L and output vector Y0 = (yo,do)L is defined as
an L–L fuzzy number E = (wl, η, wr)L as follows:

η =
µ∗tyo

ν∗txo
,

wl = η − µ∗t(yo − doL
−1(h))

ν∗t(xo + coL−1(h))
,

wr =
µ∗t(yo + doL

−1(h))
ν∗t(xo − coL−1(h))

− η.

It is obvious that the uncertainty from the inputs and outputs of DMUs char-
acterized by fuzzy numbers is transferred to the uncertainty of the evaluated
efficiency, which is very close to human thinking.

Definition 4. The DMU with η + wr ≥ 1 for a given possibility level h is
called an h-possibilistic D efficient DMU (PD DMU). On the contrary, the
DMU with η + wr < 1 for a given possibility level h is called an h-possibilistic
D inefficient DMU (PDI DMU). The set of all PD DMUs is called the h-
possibilistic nondominated set, denoted by Sh.

It is obvious that the h-possibilistic D efficient DMUs (PD DMUs) and the
h-possibilistic D inefficient DMUs (PDI DMUs) in the case of h = 1 become
the conventional D efficient DMUs and D inefficient DMUs in CCR model.
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Theorem 2. The center of the fuzzy efficiency of any DMU obtained from
(20) is not greater than 1.

Proof. Suppose that µ◦ and ν◦ are obtained from (20) for an evaluated DMU.
Thus the following inequalities hold.

µotyj − L−1(h)µotdj ≤ νotxj − L−1(h)νotcj (j = 1, . . . , n), (22)

µotyj + L−1(h)µotdj ≤ νotxj + L−1(h)νotcj (j = 1, . . . , n). (23)

Taking the sum of (22) and (23), the following inequalities hold.

µ◦tyj ≤ ν◦txj (j = 1, . . . , n). (24)

Then,

η =
µ◦tyo

ν◦txo
≤ 1, (25)

which proves Theorem 2.

The formulation (25) means that evaluating fuzzy efficiencies of DMUs by
the model (20) is similar to evaluating crisp efficiencies of DMUs by CCR
model. Both of them seek the nondominated one by other DMUs.

Now, we discuss the given possibility level h. If we take a large value for h,
it means that we consider a relatively narrow range of input and output data
where all of the data considered have high possibilistic grades. Conversely, if
we take a small value for h, it means that we investigate the input and output
data in relatively wide range.

Let us consider a special case of Definition 1, that is, the symmetrical
triangular fuzzy number, denoted as (a, c) where its membership function is
defined as follows:

πA(x) =

{
1−|x − a|/c, a − c ≤ x ≤ a + c, c > 0
0 , otherwise

. (26)

Assume the given fuzzy inputs and outputs of the ith DMU are symmetrical
triangular fuzzy vectors, denoted as (xi, ci) and (yi, di), respectively, the
optimization problem (20) can be rewritten as follows [10]:

max
µ,ν

λ1(µtyo − (1 − h)µtdo) + λ2(µtyo + (1 − h)µtdo) (27)

s. t. max
ν

νtco

s. t. νtxo − (1 − h)νtco = 1 − (1 − h)e,

νtxo + (1 − h)νtco ≤ 1 + (1 − h)e,
ν ≥ 0,

µtyj − (1 − h)µtdj ≤ νtxj − (1 − h)νtcj (j = 1, . . . , n),

µtyj + (1 − h)µtdj ≤ νtxj + (1 − h)νtcj (j = 1, . . ., n),
µ ≥ 0.
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The value of e in (27) is take as

e = max
j=1,...,n

(max
k=1,...,s

cjk/xjk). (28)

3.3 Numerical Examples

First, a simple numerical example is considered where input and output are
symmetrical triangular fuzzy numbers. The data are listed in Table 1.

The fuzzy efficiencies of DMUs (A, B, C, D, E) were obtained by the
model (27) with λ1 = 1, λ2 = 0 for the different h values and illustrated
in Table 2, where e = 0.25. Table 2 shows that as the value of h increases,
the center of fuzzy efficiency becomes larger and the width of fuzzy efficiency
becomes smaller. For the case of h = 1, the fuzzy efficiencies of DMUs become
crisp values which are the same as the ones obtained from CCR model. From
Table 2, we have S1 = S0.75 = S0.5 = {B} and S0 = {B,D}. It means
that decreasing the value of h offers more opportunities for PD DMUs in this
example. It can be seen from the simulation results that the inherent fuzziness
from input and output data has been reflected by fuzzy efficiencies evaluated.

Next, an example with two symmetrical triangular fuzzy inputs and two
symmetrical triangular fuzzy outputs illustrated in Table 3 is considered.
Fuzzy efficiencies obtained from the model (27) with λ1 = 1, λ2 = 0 for
different h values are listed in Table 4. The results in Table 4 show that with
h being higher the center of fuzzy efficiency almost increases except DMU

Table 1. DMUs with single fuzzy input and single fuzzy output

Branches A B C D E

inputs (2.0,0.5) (3.0,0.5) (3.0,0.6) (5.0,1.0) (5.0,0.5)
outputs (1.0,0.3) (3.0,0.7) (2.0,0.4) (4.0,1.0) (2.0,0.2)

Table 2. Fuzzy efficiencies of DMUs with different h values

h A B C D E

0 (0.21,0.47,0.35) (0.32,0.95,0.45) (0.21,0.63,0.32) (0.28,0.76,0.43) (0.07,0.38,0.08)
0.5 (0.12,0.49,0.15) (0.18,0.97,0.21) (0.12,0.65,0.14) (0.16,0.78,0.19) (0.04,0.39,0.04)
0.75 (0.06,0.49,0.07) (0.09,0.98,0.10) (0.06,0.66,0.07) (0.08,0.79,0.09) (0.02,0.39,0.02)
1 (0.0,0.5,0.0) (0.0,1.0,0.0) (0.0,0.67,0.0) (0.0,0.8,0.0) (0.0,0.4,0.0)

Table 3. DMUs with two fuzzy inputs and two fuzzy outputs

Branches A B C D E

x1 (4.0,0.5) (2.9,0.0) (4.9,0.5) (4.1,0.7) (6.5,0.6)
x2 (2.1,0.2) (1.5,0.1) (2.6,0.4) (2.3,0.1) (4.1,0.5)
y1 (2.6,0.2) (2.2,0.0) (3.2,0.5) (2.9,0.4) (5.1,0.7)
y2 (4.1,0.3) (3.5,0.2) (5.1,0.8) (5.7,0.2) (7.4,0.9)
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Table 4. The fuzzy efficiencies of DMUs with different h values

h A B C D E

0 (0.15,0.81,0.18) (0.10,0.98,0.11) (0.22,0.82,0.3) (0.22,0.93,0.32) (0.18,0.79,0.23)
0.5 (0.08,0.83,0.09) (0.03,0.97,0.03) (0.12,0.83,0.14) (0.12,0.97,0.15) (0.10,0.82,0.11)
0.75 (0.04,0.84,0.04) (0.03,0.99,0.03) (0.06,0.83,0.07) (0.06,0.98,0.07) (0.05,0.83,0.06)
1 (0.0,0.85,0.0) (0.0,1.0,0.0) (0.0,0.86,0.0) (0.0,1.0,0.0) (0.0,1.0,0.0)

B in the case of h = 0.5 and the width becomes smaller as in the first ex-
ample. In this example, the nondominated sets with different h values are
S0 = {B,C,D,E}, S0.5 = {B,D}, S0.75 = {B,D} and S1 = {B,D,E}. It
can be seen that h = 0.0 gives the most opportunities for PD DMUs and
the increasing of the value of h can not always lead to the increasing of the
number of PD DMUs. These phenomena indicate that efficiency evaluation
via fuzzy DEA models is more complex than the normal DEA because of the
inherent fuzziness contained in inputs and outputs.

4 Evaluation of Objects with Multiple Fuzzy Attribute
Values

4.1 Fuzzy Aggregation Models Based on Fuzzy DEA

Let us now consider an evaluation system D = (O,A, Y ), where O =
{o1, . . . , on} is a set of the objects evaluated, A = {A1, . . . , Am} is a set
of the attributes of oi (i = 1, . . . , n) and Y is a mapping defined as:

Y : O × A → V, (29)

where V is a set of all fuzzy numbers defined on the space R1. Yj is an m-
dimensional fuzzy vector whose element is a realization of the mapping Y to
represent an attribute value of oj . For the sake of simplicity, the L–L fuzzy
vector is used to represent Yj , denoted as Yj = (yj ,dj)L. It should be noted
that Yj is the evaluation vector rather than the original attribute vector. For
example, there are three motorcycles A, B and C, their prices are 5,000$,
3,000$ and 1,000$, respectively. The evaluations of them from an evaluator
may be “high”, “middle” and “low” instead of “5000$”, “3000$” and “1000$”.

The problem for evaluating objects with multiple attributes can be re-
garded as a special case of the FDEA model (8) with unity input shown as
follows [11].

max
uo

µt
oYo (30)

s. t. µt
oYj <

∼
1 (j = 1, . . . , n),

µoi − µoj ≥ d(i, j) ≥ 0(i �= j, (i, j) ∈ B ⊂ {1, . . . ., m}2)
µoi ≥ ε (i = 1, . . .,m),
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where ε is a positive constant. The constraint µoi − µoj ≥ d(i, j) ≥ 0 rep-
resents some suggestion from an evaluator, namely, the minimum difference
of importance degrees between the attributes Ai and Aj . For example, that
motorcycle company can make such a suggestion that price is more important
than beauty for sale. If no such suggestion, these constraints will disappear.
The constraints µoi ≥ ε (i = 1, . . . , m) mean that the weight factors of the
attributes are at least larger than ε which plays a crucial role to prevent
the dominance effect of some large-valued attribute, which will be explained
later. Denote the optimal solution of (30) as µ∗

o. The value of objective func-
tion µ∗t

o Yo is the aggregated evaluation of the object o. The essential feature
of (30) is that each evaluated object tries to find out the weight factors of
attributes to its own advantage under the same constraint conditions. Thus
the weight factors can be regarded as the results of fair competition rather
than the one predetermined by an evaluator.

If an evaluator can suggest a linearly ordered attribute set Aorder whose
ith element is the ith most important attribute in A, we can detail (30) as
follows.

max
uo

µt
oYo (31)

s. t. µt
oYj <

∼
1, (j = 1, . . . , n),

µoi − µo(i+1) ≥ εi ≥ 0 (i = 1, . . .,m − 1),
µom ≥ εm > 0,

where Yj is reordered to correspond to Aorder and εi (i = 1, . . . , m − 1) are
positive constants reflecting the differences of important degrees between two
consecutive attributes in Aorder and εm represents the lowest limit of weight
factors.

If “<
∼

” is explained by Definition 2, the model (31) can be transformed into

the following optimization problem with considering (5), (7), (9), (10) and (18).

max
uo

λ1(µt
oyo − L−1(h)µt

odo) + λ2(µt
oyo − L−1(h)µt

odo) (32)

s. t. µt
oyj + L−1(h)µt

odj ≤ 1 (j = 1, . . . , n),
µoi − µo(i+1) ≥ εi ≥ 0 (i = 1, . . .,m − 1),
µom ≥ εm > 0.

In order to clarify the role of the constraints µoi ≥ ε (i = 1, . . . , m) in (31),
let us consider the following LP problem.

max
uo

µt
oyo (33)

s. t. µt
oyj ≤ 1 (j = 1, . . . , n),

µo ≥ 0.
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It is a special case of (31) for h = 1. The constraints µoi − µo(i+1) ≥ εi ≥ 0
(i = 1, . . . , m − 1) and µom ≥ εm > 0 in (31) are simply replaced by µo ≥ 0.
As a result, some large-valued attribute will dominate the rank so that the
result is unacceptable to commonsense. For example, the evaluation of three
objects with three attributes are {(0.4, 0, 0),(0.3, 0.9, 0.9),(0.3, 0.5, 0.7)}.
Using (33) the object 1 with (0.4, 0, 0) is in the first rank because the value
of attribute 1 of the object 1 dominates the values of the same attribute of
other two objects even if other two attribute values of object 1 are very poor.
If the weight factor µi (i = 1, 2, 3) are limited to be more than 0.2, then the
rank becomes 2, 3, 1 which is harmony with the common feeling.

Theorem 3. [11]. There exits an optimal solution in (32) if and only if the
constants εi (i = 1, . . . , m) satisfy the following inequalities

rt(yj + L−1(h)dj) ≤ 1 (j = 1, . . ., n) (34)

where
ri =

∑
j=i,...,m

εj , (35)

Proof. Necessary condition: Suppose there is a feasible solution in (32) and
µom satisfies the following relation

µom = x ≥ εm. (36)

Thus, the following relations hold.

µo(m−1) ≥ x + εm−1,

µo(m−2) ≥ x + εm−1 + εm−2, (37)
. . . . . .

µo1 ≥ x +
∑

i=1,...,m−1

εi.

Then
µt

oyj + L−1(h)µt
odj ≥ rt(yj + L−1(h)dj), (38)

where r is defined by (35). Considering the constraint ut
oyj +L−1(h)ut

odj ≤ 1
in (32), the following inequality should hold.

rt(yj + L−1(h)dj) ≤ 1 (j = 1, . . ., n). (39)

It proves the necessity condition.

Sufficient condition: Suppose (34) holds, it is easy to check that there is a
feasible solution in the constraint conditions of (32). That is

µi =
∑

j=i,...,m

εj (i = 1, . . .,m). (40)
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Table 5. Evaluation from an evaluator

Objects Attribute 1 Attribute 2 Attribute 3 Attribute 4

A (0.3,0.1) (0.5,0.2) (0.7,0.2) (0.9,0.1)
B (0.2,0.1) (0.9,0.1) (0.7,0.2) (0.4,0.2)
C (0.5,0.3) (0.5,0.2) (0.9,0.1) (0.6,0.3)
D (0.7,0.3) (0.8,0.1) (0.8,0.1) (0.9,0.1)
E (0.4,0.1) (0.6,0.2) (0.3,0.2) (0.5,0.2)

Moreover, the constraint condition of (32) is a bounded closed set (compact
set). Thus, there exists an optimal solution in (32). It proves the sufficiency
condition.

Corollary [11]. If εi = a (i = 1, . . . , m), then a satisfies

a ≤ 1/(mt(yj + L−1(h)dj)) (j = 1, . . ., n), (41)

where m = [m,m − 1, . . . , 1]t.

4.2 Numerical Example

In Table 5, the evaluations of five objects from an evaluator are given. Sym-
metrical triangular fuzzy numbers are used for represent the evaluations.

Suppose that from attributes 1 to 4 their important degrees decrease and
εi (i = 1, . . . , 3) take 0.001 which offer some difference of weight factors be-
tween two consecutive attributes. ε4 takes 0.001 to give the lowest limit of
weight factors. The aggregated evaluations of objects A, B, C, D and E ob-
tained by (32) for h = 0.6, λ1 = 1 and λ2 = 0 are (0.70, 0.17), (0.72, 0.16),
(0.76, 0.24), (0.93, 0.17) and (0.60, 0.18), respectively. Let us simply analyze
the evaluation results obtained. If only considering the center value, the rank
of objects is {D, C, B, A, E}. It is obvious that D is the best one and C is
the second one among all objects from Table 5. B is better than A because
though B is a litter bit worse than A for the most import attribute 1 and
worse than A for the unimportant attribute 4, it is remarkably better than
A for the second important attribute and has the same value as A for the
third important attribute. Compared with A, E has the almost same values
for the first and second important attributes but remarkably small values for
the third and fourth important values so that E is inferior to A. It can be
concluded that the obtained result is very close to human intuition.

5 Conclusions

In this paper, fuzzy DEA models are proposed for evaluating the efficiencies
of DMUs with fuzzy input and output data. The obtained efficiencies are
fuzzy numbers to reflect the inherent fuzziness in evaluation problems. It
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can be concluded that the proposed fuzzy DEA models extend CCR model
to more general forms where crisp, fuzzy and hybrid data can be handled
easily. Moreover, based on the fuzzy DEA model, an aggregation model for
integrating multiple attributes fuzzy value of objects is proposed. Using the
proposed fuzzy aggregation models, the objects can be ranked objectively.
Because uncertainty always exists in human thinking and judgment, fuzzy
DEA models can play an important role in perceptual evaluation problems
comprehensively existing in the real world.
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