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Summary. Engineering systems in industry are most often concerned with safety
issues. Many of these systems are intended to work properly even in contexts where
information is missing, incomplete or unreliable. This chapter introduces a safety
model based on the concept of approximate reasoning for safety analysis. Parameters
of the safety level, including failure rate, failure consequence severity and failure
consequence probability, are all described by fuzzy linguistic variables. A fuzzy rule-
base is used to capture the uncertainty and the non-linear relationships among
these parameters. A safety estimate for possible causes of a technical failure can be
obtained by the approximate reasoning approach. A safety synthesis is then applied
to integrate all possible causes for a specific technical failure, or applied at the
safety estimate made by a panel of experts. The synthesis is based on an ordinal
fuzzy linguistic approach by means of a direct computation on linguistic values
instead of the approximation approach by their associated membership functions.
The use of the ordinal fuzzy linguistic approach makes the safety analysis more
effective. Subsequently, the ranking and interpretation of the final safety synthesis
of a concerned system are also described. Application of this proposed approach is
demonstrated by a real-world case study in the offshore engineering.

1 Introduction

The growing technical complexity of large engineering systems such as offshore
platforms and offshore support vessels, together with the intense public con-
cern over their safety, has stimulated the research and development of novel
safety analysis methods and safety assessment procedures.

Many typical safety assessment approaches (such as probabilistic risk as-
sessment approach) may be difficult to use in situations with a lack of infor-
mation and past experiences, or ill-defined situation for risk analysis [10, 16],
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e.g., at the initial design stages. In certain circumstances, probability theory
can be a powerful tool. However, the type of uncertainty encountered in engi-
neering projects (e.g., offshore) does not always adhere to the axiomatic basis
of probability theory, simply because uncertainty in these projects is usually
caused by the inherent fuzziness of the estimates of the parameters rather
than randomness.

In addition, the safety of a system is affected by various factors, such as
design, manufacturing, installation, commissioning, operations and mainte-
nance [14]. The safety of a structure is often determined by all the associated
failure events of each individual component that makes up the structure. Prob-
lems may then arise such as how to synthesize uncertain evaluations of the
safety analysis for all the failure events of a component in a rational way, as
well as how to attain an evaluation of this component safety. The problem
may be ultimately generalized to estimate the safety of a hierarchy system.

This work aims to establish a framework that provides a basis and hence
a tool for safety analysis and synthesis in engineering systems. In particular
this framework deals with information that may be unquantifiable due to its
nature and that may be imprecise, ill-defined, and incomplete. It will further
provide a subjective safety modelling for safety analysis using an approximate
reasoning approach to capture uncertainty and non-linear casual relationships
in safety assessments.

Fuzzy logic approach [20] provides a systematic way to represent linguistic
variables. It can be used as a powerful tool complementary to traditional
methods to deal with imprecise information, especially linguistic information.
Actually, linguistic variables are commonly used to represent risk factors in
risk analysis [1,2,9,10,13–15]. It does not require an expert to provide a precise
point of a potential risk. Approximate reasoning [19–21] based on fuzzy IF-
THEN rules can model the safety of the system without employing precise
quantitative analyses [5].

Moreover, the use of linguistic variables implies “Computing with Words”
processes. In the literature there are two main linguistic computational ap-
proaches:

(1) The linguistic computational approach based on the Extension Principle
[20, 21], that operates over the associated membership functions of the
linguistic variables.

(2) The linguistic computational symbolic approach (or the ordinal fuzzy lin-
guistic approach) which acts by a direct computation on labels [4,6,17,18].
An extended ordinal fuzzy linguistic approach, called the 2-tuple linguistic
representation model has been presented in [7,8] to improve the accuracy
of the computing with words processes.

Our proposed framework will use for the safety synthesis the 2-tuple lin-
guistic representation approach in order to facilitate the computing with words
processes and the comprehension of the safety estimate.
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This paper is organized as follows. Section 2 introduces a framework for
modelling system safety by an approximate reasoning approach and for safety
synthesis by the 2-tuple linguistic representation approach. A case study based
on the collision risk of a floating production storage offloading (FPSO)-shuttle
tanker during a tandem offloading operation is presented in Sect. 3 to demon-
strate this proposed approach. A conclusion of the approach presented in the
paper is provided in Sect. 4.

2 A Safety Model – A Framework for Safety Analysis
and Synthesis

A generic framework for modelling system safety by an approximate reasoning
approach and for safety synthesis by the ordinal fuzzy linguistic approach is
depicted in Figs. 1 and 2, respectively.

The proposed framework consists of six major phases:

(i) Identify all the anticipated causes/factors to the technical failure of an
engineering system;

(ii) Identify and name the linguistic variables for the antecedent parameters
that define the safety level, i.e., failure rate, consequence severity and
failure consequence probability as well as the linguistic variables for the
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Fig. 1. A generic qualitative safety assessment framework



214 J. Liu et al.

Multi-attribute-multi-expert safety synthesis of an
engineering system 

Multi-expert aggregation by 2-
tuple linguistic representation 

Expert # 1 Expert # 2 Expert # i Expert # j-1 Expert # j 

Multiple causes to a technical failure assessed by each expert

Fig. 2. Multi-attribute-multi-expert safety synthesis

consequent, i.e., safety estimate and create fuzzy membership functions
for all related linguistic variables for the antecedent parameters;

(iii) Construct the fuzzy rule bases;
(iv) Create resultant safety estimate for a particular cause to a technical

failure using a fuzzy inference method;
(v) Safety synthesis using the ordinal fuzzy linguistic approach;
(vi) Ranking and interpretation of the final safety synthesis of a system.

Each phase of the framework is described in detail as follows.

Phase #1: Identification of causes/factors

In this phase, all anticipated causes/factors to the technical failure of an engi-
neering system are identified. This needs the judgment from a panel of experts
E = {e1, . . . , ep} during a brainstorming session at the early stages of the sys-
tem.

Phase #2: Identify and name the linguistic variables for the antecedent and
the consequent attributes and create fuzzy membership functions for all
related linguistic variables for the antecedent parameters

The three fundamental parameters used to assess the safety level of an
engineering system on a subjective basis are the failure rate (FR), the con-
sequence severity (CS) and the failure consequence probability (FCP). Sub-
jective assessments (using linguistic variables instead of ultimate numbers in
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probabilistic terms) are more appropriate for their analysis because these three
parameters are always associated with great uncertainty [9, 10,13–15].

The granularity of the linguistic term sets used for describing each funda-
mental parameter is decided according to the situation of the case of interest.
The recent literature survey indicates that linguistic term sets with a granu-
larity from four to seven labels are commonly used to represent risk factors
in risk analysis [1, 2, 9, 10,13–15].

A membership function is a curve that defines how each point in the input
space is mapped to a membership value (or degree of membership) between
0 and 1. The simplest membership functions are the triangular membership
function and trapezoidal membership function. Both of these memberships
are commonly used to describe risks in safety assessment [15].

It is possible to have some flexibility in the definition of membership func-
tions to suit different situations. The application of categorical judgments
has been quite positive in several practical situations [12]. It is also common
and convenient for safety analysts to use categories to articulate safety in-
formation. The fuzzy membership functions are generated utilizing linguistic
categories identified in knowledge acquisition and consisting of a set of over-
lapping curves. The typical linguistic variables used to describe FR, CS and
FCP are defined and characterized as follows [13].

FR describes failure frequencies in a certain period, which directly rep-
resents the number of failures anticipated during the design life span of a
particular system or an item, as illustrated in Fig. 3. Table 1 describes the
range of the frequencies of failure occurrence and defines the fuzzy set of FR.
To estimate the FR, one may choose to use such linguistic values as “very
low,” “low,” “reasonably low,” “average,” “reasonably frequent,” “frequent,”
and “highly frequent.”

CS describes the magnitude of possible consequences, which is ranked
according to the severity of failure effects. To estimate the CS, one may
choose to use such linguistic values as “negligible,” “marginal,” “moderate,”
“critical” and “catastrophic.” The fuzzy CS set definition is shown in Fig. 4.
Table 2 shows the criteria used to rank the CS of failure effects.

1

Negligible Moderate Catastrophic

0 2 4 6 8 10

Marginal Critical

Fig. 3. Fuzzy failure rate set definition
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Table 1. Failure rate (FR)

Rank FR Meaning (general interpretation) Failure rate (1/year)

1,2,3 Very low Failure is unlikely but possible
during lifetime

<10−6

4 Low (Lo) Likely to happen once during
lifetime

0.25 × 10−5

5 Reasonably
low (RLo)

Between low and average 0.25 × 10−4

6 Average
(A)

Occasional failure 10−3

7 Reasonably
Frequent
(RF)

Likely to occur from time
to time

0.25 × 10−2

8, 9 Frequent
(F)

Repeated failure 0.125 × 10−1

9,10 Highly fre-
quent (HF)

Failure is almost inevitable or
likely to exist repeatedly

>0.25 × 10−1

1

H. unlikely 

Unlikely

Likely

DefiniteR. unlikely R. likely 
H. likely 

0 2 4 6 8 10 

Fig. 4. Fuzzy consequence severity set definition

FCP defines the probability of the possible consequences given the occur-
rence of the event. To estimate the FCP, one may choose to use such linguistic
values as “highly unlikely,” “unlikely,” “reasonably unlikely,” “likely,” “reason-
ably likely,” and “definite.” Table 3 and Fig. 5 describe the FCP.

The descriptions of these linguistic variables have been detailed in [13] and
the fuzzy membership functions for these linguistic variables are generated
utilizing linguistic categories identified in knowledge acquisition [13].

Safety estimate is the output attribute used in this study to produce a
safety assessment for a particular cause to a technical failure. This variable
is described and determined by the above three parameters and also assessed
linguistically, in a linguistic term set noted as, ST, in this paper:

ST = {“Poor”, “Low”, “Average”, “High”, “Good”}
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Table 2. Consequence Severity (CS)

Rank CS Meaning (generic offshore structure/system interpre-
tation)

1 Negligible (N) At most a single minor injury or unscheduled mainte-
nance required (service and operations can continue)

2, 3 Marginal (Ma) Possible single or multiple minor injuries or/and minor
system damage. Operations interrupted slightly, and
resumed to its normal operational mode within a short
period of time (say less than 2 h)

4, 5, 6 Moderate (Mo) Possible multiple minor injuries or a single severe in-
jury, moderate system damage. Operations and pro-
duction interrupted marginally, and resumed to its
normal operational mode within, say no more than
4 h

7, 8 Critical (Cr) Possible single death, probable multiple severe injuries
or major system damage. Operations stopped, plat-
form closed, shuttle tanker’s failure to function. High
degree of operational interruption due to the nature of
the failure such as an inoperable platform (e.g. drilling
engine fails to start) or an inoperable convenience sub-
system (e.g. DP, PRS)

9, 10 Catastrophic (Ca) Possible multiple deaths, probable single death or to-
tal system loss. Very high severity ranking when a
potential failure mode (e.g. fire and explosion) af-
fects safe platform operation and/or involves non-
compliance with government regulations

Any linguistic term, si, of the above linguistic term sets has the following
characteristics:

(1) The set is ordered: si ≤ sj if i ≤ j.
(2) There is the negation operator: Neg(si) = sj such that j = T − 1 − i.
(3) There is the maximization operator: Max(si, sj) = si if sj ≤ si.
(4) There is the minimization operator: Min(si, sj) = si if si ≤ sj .

Phase #3: Construct a fuzzy rule-base

Fuzzy logic systems are knowledge-based or rule-based ones in the form of
fuzzy IF–THEN rules [21]. The starting point of constructing a fuzzy logic
system is to obtain a collection of fuzzy IF–THEN rules from human experts
or based on domain knowledge.

In our case, we assume that the three antecedent parameters, FR, CS
and FCP can be described by Ji linguistic terms {Aij , j = 1, . . . , Ji}, i =
1, 2, 3, respectively. One consequent variable safety estimate is described
by a linguistic term set ST = {D0, D2, . . . , DT−1} with T linguistic terms.
Let Ak

i ∈ {Aij , j = 1, . . . , Ji} be a linguistic term corresponding to the ith
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Table 3. Failure consequence probability (FCP)

Rank FCP Meaning

1 Highly un-
likely (HU)

The occurrence likelihood of possible consequence is highly
unlikely given the occurrence of the failure event (extremely
unlikely to exist on the system or during operations)

2,3 Unlikely (U) The occurrence likelihood of possible consequences is un-
likely but possible given that the failure event happens (im-
probable to exist even on rare occasions on the system or
during operations)

4 Reasonably
unlikely
(RU)

The occurrence likelihood of possible consequences is rea-
sonably unlikely given the occurrence of the failure event
(likely to exist on rare occasions on the system)

5 Likely (Li) It is likely that consequences happen given that the failure
event occurs (a programme is not likely to detect a potential
design or operations procedural weakness)

6,7 Reasonably
likely (RLi)

It is reasonably likely that consequences occur given the
occurrence of the failure event (i.e. exist from time to time
on the system or during operations, possibly caused by a
potential design or operations procedural weakness)

8 Highly likely
(HL)

It is highly likely that consequences occur given the occur-
rence of the failure event

9,10 Definite (D) Possible consequences happen given the occurrence of a fail-
ure event (i.e. likely to exist repeatedly during operations
due to a anticipated potential design and operations proce-
dural drawback)

0 2 4 6 8 10 

1

H. unlikely 

Unlikely

Likely

Definite
R. unlikely

R. likely 
H. likely 

Fig. 5. Fuzzy failure consequence probability set definition

attribute of the kth rule, with i = 1, 2, 3; k ∈ {1, . . . , N}. Thus the kth rule
in a rule base can be written as:

Rk : IF FR is Ak
1 AND CS is Ak

2 AND FCP is Ak
3 THEN safety estimate is Dk

(1)

Here {Ak
1 , Ak

2 , Ak
3} is called the packet of antecedents and for convenience,

denoted as Ak (i.e., the packet of antecedents in the kth rule, k ∈ {1, . . . , N}).
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For the case study in Sect. 3, we suppose that a linguistic term set with
seven labels is used for FR (i.e., J1 = 7); one with five labels for CS (i.e., J2 =
7), and a seven labels term set for FCP (i.e., J3 = 7). They have been described
in Phase #2, respectively. In addition, we also suppose that T = 5, and
Dt ∈ ST = {s0 = ‘Poor’, s1 = ‘Low’, s2 = ‘Average’, s3 = ‘High’, s4 =
‘Good’} (t = 0, . . . , 4).

A sample of 245 rules of a rule-base will be used in the case study in Sect. 3
for safety estimate [13]:

• Rule # 1: IF FR is very low AND CS is negligible AND FCP is highly
unlikely THEN safety estimate is good

• Rule # 2: IF FR is very low AND CS is negligible AND FCP is unlikely
THEN safety estimate is good

• . . .
• Rule # 244: IF FR is highly frequent AND CS is catastrophic AND FCP

is highly likely THEN safety estimate is poor
• Rule # 245: IF FR is highly frequent AND CS is catastrophic AND FCP

is definite THEN safety estimate is poor

Phase #4: Fuzzy inference scheme

The inference procedure is basically composed of three steps, summarized as
follows:

Step 4.1 : Discretization of an input into the distributed representation of
the linguistic values in antecedents

This step determines the degrees of membership of an input to each lin-
guistic value in the antecedent, i.e., the matching degree between the input
and the antecedents.

An input may be uncertain and can be obtained from history data or
expert’s experiences. This framework offers the following numerical forms to
suit conditions under study:

• A single deterministic value with 100 % certainty;
• A closed interval defined by an equally likely range;
• A triangular distribution defined by a most likely value, with lower and

upper least likely values;
• A trapezoidal distribution defined by a most likely range, with lower and

upper least likely values.

The input is transformed into a distributed representation of linguistic
values in antecedents. In general, we may consider a linguistic term in the
antecedent as an evaluation grade, the input for an antecedent attribute, Ai,
can be assessed to a distribution representation of the linguistic term sets
using matching degrees:

f(A∗
i ) = {(Aij ; αij), j = 1, . . . , Ji}, i = 1, 2, 3, (2)
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f is the distribution representation of a linguistic term, A∗
i (i = 1, 2, 3) that

is the input for FR, CS, FCP respectively, and αij , represents the matching
degree to which A∗

i belongs to the jth defined linguistic term Aij of the ith
antecedent parameter, that is computed by means of a matching function.

A simple matching function, τ , to compute αij is given as follows [21]:

αij = τ(A∗
i , Aij) = max

x
[min(µA∗

i
(x), µAij

(x))],

αij ∈ [0, 1] (i = 1, 2, 3 and j = 1, 2, . . . , Ji) (3)

where x covers the domain of the input A∗
i . In fact, this is the highest point

of intersection of the input A∗
i and the fuzzy linguistic term Aij .

Finally, an input to the rule-base can be expressed as follows:

FR is f(A∗
1) AND CS is f(A∗

2) AND FCP is f(A∗
3) (4)

where f is given by (2) and (3).
Comparing (4) with each rule given in (1), an input can be decomposed

into the following form:

FR is (Ak
1 ;αk

1) AND CS is (Ak
2 ;αk

2) AND FCP is (Ak
3 ;αk

3) (5)

Here Ak
i ∈ {Aij , j = 1, . . . , Ji}, i = 1, 2, 3; αk

i ∈ {αij ; i = 1, 2, 3 and
j = 1, 2, . . . , Ji}. The final objective in this phase is to infer the conclusion
using the rule-base (1) for the given input (4).

If the numerical values for the antecedent parameters (e.g., CS) are not
available at all, then, the assessment of the antecedent parameters can also
be carried out based only on experts’ subjective judgements, i.e., they can
be directly assessed to a distribution representation of each corresponding
linguistic value with the degree of credibility. The corresponding f is a kind
of subjective assignment. For example, CS could be assessed by a subjective
distribution vector as follows:

CS : {(marginal, 0.7), (moderate, 0.2), (critical, 0.1)}.
This input assessment means that we are only 70% sure that CS is marginal,
20% sure that CS is moderate, and 10% sure that CS is critical.

Step 4.2 : Selection of “AND” connectives to reflect the dependencies of
the antecedent parameters of a rule.

Since the IF-part of a given rule has more than one antecedent parameter,
the fuzzy operator AND is applied to obtain one global matching degree for
that rule.

It should be noted that the minimum operator considers only one of sev-
eral antecedent parameters and does not allow for any compensation among
them. Due to this fact, in the safety estimate, we consider “AND” as that
the consequent of a rule is not believed to be true unless all the antecedent
parameters of the rule are activated. Therefore, in such cases we propose the
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use of the product operator as the AND connective to reflect the dependencies
of the three parameters FR, CS, and FCP, i.e., the global matching degree
αk that the input A∗

i(i = 1, 2, 3) belongs to the packet of antecedents Ak in
the kth rule can be calculated as follows:

αk =
3∏

i=1

αk
i . (6)

If the relative importance of the antecedent parameters is considered, the
following weighted multiplicative aggregation function is used to calculate αk:

αk =
3∏

i=1

(
αk

i

)δ̄i (6a)

where
δ̄i =

δi

max
i=1,...,3

{δi} so 0 ≤ δ̄i ≤ 1. (6b)

δi is the weight of the ith parameter (i = 1, 2, 3). Note that 0 ≤ αk ≤ 1,
αk = 1 if αk

i = 1 for all i = 1, 2, 3, and αk = 0 if αk
i = 0 for any i = 1, 2, 3.

Also, the contribution of an antecedent parameter towards αk is positively
related to the weight of the attribute. In other words, the more important
attribute the greater role in determining αk.

Step 4.3 : Rule combination using an aggregation operator to create a
resultant safety estimate

To reach a final conclusion, all rules must be combined since the conclusion
is based on the testing of all the rules in a fuzzy inference system. The input
of the aggregation process is the list of global matching degrees for the an-
tecedents in each rule. The classical fuzzy inference method infers the output
with the greatest matching degree. Hence, the Arithmetic Mean aggregation
function is suggested to use in this study. The assessment done by the ith ex-
pert ei on the lth potential cause al to a technical failure by the aggregation of
the consequent across the rules, i.e., the safety estimate S(ei(al)), is expressed
as follows:

S (ei (al))=
{(

Poor; ϑl
0i

)
;
(
Fair; ϑl

1i

)
,
(
Average; ϑl

2i,
)

;
(
Low; ϑl

3i,
)

;
(
Good; ϑl

4i

)}
,

(7)

where ϑl
ti =

∑
r∈Kt

αr

|Kt| (t = 0, . . . , T = 4), αr =
3∏

i=1

αr
i , ei represents the ith

expert (i = 1, . . . , p) and al represents the lth (l = 1, . . . , q) potential cause to
a technical failure. Let R be the number of all the rules fired in the evaluation,
Kt represents the set of all the fired rules in which Dt (t = 0, . . . , 4) is the
output term, here Dt ∈ ST · |Kt| is the cardinality of the set Kt, hence

R =
4∑

t=0
|Kt|. Note that S(ei(al)) actually can be viewed as a fuzzy set on

ST , ϑl
ti ∈ [0, 1] represents the membership degree of which the safety estimate

belongs to Dt.
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Phase #5: Safety synthesis

To achieve a logical and effective evaluation process, it is necessary to break
down the complex systems into the simpler sub-systems in a hierarchical man-
ner. The hierarchical framework of attributes or experts is used to guide the
overall evaluation of multi-attributes or multi-experts or a combination of
multi-attributes-multi-experts decision problems as shown in Figs. 1 and 2.

The first four phases of the framework mainly focus on the safety assess-
ment of a single cause to a technical failure done by an expert. This phase is
concerned with the safety synthesis of a system at various levels, such as:

• A synthesis of the safety estimates of various causes to a technical failure
done by an expert; or

• A synthesis of the safety estimates of a specific cause to a technical failure
done by a panel of experts; or

• A combination of the above two forms, i.e., a multi-attribute-multi-expert
safety synthesis (see Fig. 2).

Considering that the safety level is expressed as a linguistic variable in
qualitative nature, it is difficult to establish their membership functions. The
ordinal fuzzy linguistic approach is considered here to use the direct compu-
tation on linguistic values instead of using their membership functions. In this
framework, particularly a 2-tuple linguistic representation model [7,8] is used
to perform the safety synthesis of an engineering system with a structure that
is capable of being decomposed into a hierarchy of levels. The number of lev-
els required in safety synthesis is determined by the degree of complexity of a
system under scrutiny or the number of experts taking part in the assessment.

The safety synthesis procedure can be summarised as the following five steps:
Step 5.1 : Transforming the safety estimate into the linguistic 2-tuple.
Advantages of the 2-tuple linguistic representation to manage linguistic

information over classical models were shown in [8], some concepts and prop-
erties are referred to [7, 8].

In this phase we transform the fuzzy set S(ei(al)) obtained in (7) on the
ST into a linguistic 2-tuple over the ST . A function χl

i is introduced that
transforms a fuzzy set in a linguistic term set ST into a numerical value in
the interval of granularity of ST , [0, T −1], T is the cardinality of ST ; F (ST )
denotes the set of all fuzzy sets on the ST :

χl
i : F (ST ) → [0, T − 1], χl

i({(st;ϑl
ti), t = 0, . . . , T − 1})

=
∑T

t=0 tϑl
ti∑T

t=0 ϑl
ti

= βl
i ∈ [0, T − 1] . (8)

Then its 2-tuple linguistic representation is calculated by the operator ∆:

∆ : [0;T − 1] → ST × [−0.5, 0.5),

∆(βl
i) = (sround(βl

i)
, λ = βl

i − round(βl
i)), where λ ∈ [−0.5, 0.5). (9)
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Here ST = {s0 = ‘Poor, ’ s1 = ‘Low, ’ s2 = ‘Average, ’ s3 = ‘High, ’ s4 =
‘Good’}, T = 5. βl

i ∈ {0, . . . , T −1} is obtained using (8). Therefore, applying
the ∆ function to βl

i (i = 1, . . . , p; l = 1, . . . , q) we shall obtain a safety esti-
mate (by the ith expert on the lth potential cause to a technical failure) whose
values are linguistic 2-tuple, e.g., if βl

i = 1.2, then its 2-tuple representation
is (Low, 0.2). There is always a ∆−1 function, such that, from a linguisitc
2-tuple it returns its equivalent numerical value β ∈ [0, g].

∆−1 : S × [−0.5, 0.5) → [0; g], ∆−1(si; λ) = λ + i = β. (10)

Step 5.2 : Relative weights assignment
It is highly unlikely for the selected experts to have the same importance,

and usually, weights of importance need to be utilised. Each expert is assigned
with a weight to indicate the relative importance of his or her judgment in
contributing towards the overall safety evaluation process. The analyst must
decide which experts are more authoritative. Weights are then assigned ac-
cordingly.

In [7, 8], some of the 2-tuple linguistic aggregation operators were pre-
sented, such as the Arithmetic Mean operator and the Weighted Mean oper-
ator by means of the linguistic 2-tuples. Therefore, to aggregate the linguistic
2-tuples, we shall choose one of these operators and apply it for combining
the linguistic 2-tuples, obtaining as a result an aggregation linguistic 2-tuple
assessed in ST for safety synthesis as follows.

Step 5.3 : The synthesis of 2-tuple expression of safety estimates of a
specific cause to a technical failure done by a panel of experts by using the
2-tuple weighted mean aggregation operator.

βl = W AM∗ ((w1; βl
1

)
, . . . ,

(
wp; βl

p

))
,

= ∆
(∑p

i=1 ∆−1(∆(βl
i)) · wi∑p

i=1 wi

)
= ∆

(∑p
i=1 βl

i · wi∑p
i=1 wi

)
. (11)

W = {w1, . . . , wp} is the associated experts’ weight vector, ∆ and ∆−1 are
given in (9) and (10) respectively.

Step 5.4 : Ranking and interpretation of the safety synthesis
The safety estimate results obtained from the approximate reasoning have

been transformed into the 2-tuple linguistic representations. Moreover, based
on the multi-expert synthesis results on each potential cause from Step 5.3,
this step compares the overall 2-tuple representation of the risk level by a
panel of experts. Then the identified potential causes are ranked on the basis
of their 2-tuple expressions. The ranking results for risks due to various poten-
tial causes may help designers understand the anticipated technical problem,
so that an improved risk reduction measure can be incorporated or a more
innovative design can be carried out in order for higher safety level.

The following are some concepts on the comparison of the linguistic
2-tuples [7, 8] used in the ranking process.
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Let (sk, λ1) and (sl; λ2) be two linguistic 2-tuples, with each one repre-
senting a counting of information, then

• if k < l then (sk, λ1) is smaller than (sl, λ2)
• if k = l then

(1) if λ1 = λ2 then (sk, λ1), (sl, λ2) represent the same information
(2) if λ1 < λ2 then (sk, λ1) is smaller than (sl, λ2)
(3) if λ1 > λ2 then (sk, λ1) is bigger than (sl, λ2)

Step 5.5 : The synthesis of safety estimate of various causes to a technical
failure by using the 2-tuple Arithmetic Mean aggregation operator.

AM∗(β1, . . . , βq) = ∆(
1
q

q∑
l=1

βl). (12)

Finally, a multi-attribute-multi-expert safety synthesis can be obtained.

3 Case Study: Collision Risk of FPSO & Shuttle Tanker
During a Tandem Offloading Operation

Floating production storage offloading (FPSO) systems combine traditional
process technology with marine technology, and thus are dependent on the
technical design and the operational safety control [11]. It is essential that
the anticipated hazards due to technical factors can be identified, risk control
options be proposed, and risk reduction or control measures be taken to re-
duce the risk to as low as reasonably practical (ALARP). Scenarios involving
potential major hazards, which might threaten an FPSO or loss of operational
control, are assessed at an early stage in the design of new facilities to opti-
mise technical and operational solutions [13]. Collision between a FPSO and
a shuttle tanker in tandem offloading operation has caused a growing concern
in the North Sea as well as the rest of the world [11].

In this section, safety assessment is carried out on risks introduced by
the collision of FPSO and shuttle tanker during tandem offloading operation.
Only the technical failures caused risk is assessed here, though the operational
failure has been also recognised as one of the major causes of collision. For
the purpose of safety modelling, it is assumed that each antecedent parameter
(i.e., FR, CS, and FCP) will be fed to the proposed safety model in term of
any of the four input forms described in Phase #3 of Sect. 2.

According to the literature survey, the technical failures that might cause
collisions between an FPSO and a shuttle tanker during tandem offloading
operations are malfunction of propulsion systems [3]. The four major causes
to these technical failures are:

(1) Controllable pitch propeller (CPP) failure
(2) Thruster failure
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(3) Position reference system (PRS) failure
(4) Dynamics positioning system failure (DP)

A panel of five experts from different disciplines participated in risk analy-
ses of the above four identified causes to the technical failures. They used
different input forms to describe the collision risk scenario in terms of FR,
CS and FCP.

The safety estimate of each technical failure is assessed by five experts
separately. The assessment made by the five experts in terms of FR, CS, and
FCP is depicted in Table 4 for collision between FPSO and shuttle tanker
during tandem offloading operation due to controllable pitch propeller (CPP)
caused technical failure. Other three kinds of assessments are depicted in
Tables 5–7, respectively.

A sample of the 245 rules in the rule base [13] is used in this case study.
For illustration, we take CPP for example, Expert # 1 used triangular form
to address the inherent uncertainty associated with the data and information

Table 4. Experts’ inputs for the technical failure caused by malfunction of the
controllable pitch propeller (CPP)

Expert Shape of input form FR CS FCP

E # 1 Triangular (6.5, 8, 9.5) (7.5, 8.5, 9.5) (5.5, 7, 8.5)
E # 2 Triangular (5.5, 7.5, 9) (7, 8.5, 10) (5, 7.5, 9.5)
E # 3 Closed interval [6, 8] [7, 9] [6.5, 9]
E # 4 Trapezoidal {5.5, 6.5, 9, 10} {5.5, 7, 8, 10} {5, 7, 8, 8.5}
E # 5 Single deterministic 7.75 8.25 7.6

Table 5. Experts’ inputs for the technical failure caused by malfunction of the
thruster

Expert Shape of input form FR CS FCP

E # 1 Triangular (6, 7, 7.5) (6.5, 7, 8) (4.5, 5.5, 6)
E # 2 Triangular (6, 6.5, 8) (7, 8, 9) (6, 7.5, 8)
E # 3 Closed interval [5.5, 7.5] [6, 8] [6, 8]
E # 4 Trapezoidal {5, 6, 7, 8} {5, 7, 8, 9} {5, 6, 7, 9}
E # 5 Single deterministic 7.15 7.95 7.25

Table 6. Experts’ inputs for the technical failure caused by malfunction of the
position reference system (PRS)

Expert Shape of input form FR CS FCP

E # 1 Triangular (6.5, 7, 7.5) (8, 8.5, 9) (5.5, 7, 8)
E # 2 Triangular (6, 7.5, 8) (7.5, 8, 9.5) (5, 6, 7)
E # 3 Closed interval [6.5, 8] [7, 7.5] [6.5, 7.5]
E # 4 Trapezoidal {6, 7, 8, 9} {5, 7, 8, 8.5} {6, 7, 8, 9}
E # 5 Single deterministic 7.5 7.2 7.1
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Table 7. Experts’ inputs for technical failure caused by malfunction of the dynamics
positioning system (DP)

Expert Shape of input form FR CS FCP

E # 1 Triangular (7, 7.5, 8) (7.5, 8.5, 9) (6, 7, 7.5)
E # 2 Triangular (6.5, 7, 8) (6.5, 7, 8.5) (5.5, 6, 7)
E # 3 Closed interval [7, 9] [7.5, 9.5] [7, 8]
E # 4 Trapezoidal {6.5, 7, 7.5, 8} {6, 6.5, 7, 8} {6.5, 7, 7.5, 9}
E # 5 Single deterministic 7.95 8.25 7.9

available, while carrying out the assessments on the three input parameters.
The FR is described triangularly as (6.5, 8.0, 9.5) on the fuzzy scale. The
most likely value is 8.0, 6.5 and 9.5 are the lower and upper least likely values,
respectively.

The safety estimates made by the five experts for the technical failure
caused by malfunction of the controllable pitch propeller (CPP) are performed
separately according to the proposed fuzzy-logic-based approximate reasoning
approach. The safety estimate assessed by Expert # 1 for the potential cause
# 1 (CPP) to a technical failure has the result as follows by using (7):

S (e1 (a1)) = {(good; 0), (low; 0), (average; 0), (high; 0.0764), (poor; 0.1999)} .

The output can be interpreted in such a way that the safety estimate of
the system is “high” with a membership degree of 0.0764 and “Poor ” with
a membership degree of 0.1999. Furthermore, it can be transformed into a
linguistic 2-tuple value in ST using (8) and (9):

χ1
1({(st, ϑ

1
t1), t = 0, . . . , 4}) =

∑4
t=0 tϑ1

t1∑4
t=0 ϑl

t1

= 0.2765 = (Poor, 0.2765).

The similar computations are performed for the safety assessments by
all five experts using the proposed fuzzy-logic-based approximate reasoning
approach for all four technical failures. The results attained for thrusters, PRS
and DP caused technical failures by the five experts are shown in Table 8.

As shown in Fig. 1, the aggregation operators on the 2-tuple linguistic
representations are used to synthesise the information thus produced to assess
the safety of the whole system. This step is concerned with the safety synthesis
of a system at various configurations such as: the first type is multi-attribute
synthesis, and the second type is multi-expert evaluation of a particular failure
mode. The last one is a multi-attribute-multi-expert synthesis and evaluation.

Table 9 shows the results of multi-expert safety synthesis on the collision
risk between FPSO & shutter tanker due to the CPP, thrusters, PRS and DP
caused technical failure, obtained using the weighted mean operator on the
2-tuple linguistic representations. The synthesis is carried out with the relative
weights assigned to each expert by the 2-tuple weighted mean aggregation
operator.
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Table 8. Safety estimate by each expert on collision risk between FPSO & shutter
tanker due to CPP, the thrusters, PRS and DP caused technical failure

Expert # E # 1 E # 2 E # 3 E # 4 E # 5

CPP Safety
estimate

{(Poor;
0.1999),
(Low;
0.0764)}

{(Poor;
0.3170),
(Low;
0.1385)}

{(Poor;
0.9118),
(Low; 1)}

{(Poor;
0.4314),
(Low;
0.3165),
(Average;
0.1309)}

{(Poor;
0.1299)}

2-Tuple
expres-
sion

(Poor,
0.2765)

(Poor,
0.3041)

(Low,
−0.4769)

(Low,
−0.3419)

(Poor, 0)

Thruster Safety
estimate

{(Poor;
0.2571),
(Low;
0.1634),
(Average;
0.0438)}

{(Poor;
0.3101),
(Low;
0.5262)}

{(Poor;
0.6664),
(Low;
0.7223),
(Average;
0.5005)}

{(Poor;
0.2955),
(Low;
0.3435),
(Average;
0.2428)}

{(Poor;
0.25)}

2-Tuple
expres-
sion

(Low,
−0.4594)

(Low,
−0.3708)

(Low,
−0.0878)

(Low,
−0.0526)

(Poor, 0)

PRS Safety
estimate

{(Poor;
0.1222),
(Low;
0.0294)}

{(Poor;
0.3635),
(Low;
0.2823)}

{(Poor;
0.5), (Low;
0.5003)}

{(Poor;
0.4019),
(Low;
0.3907)}

{(Poor;
0.25)}

2-Tuple
expres-
sion

(Poor,
0.1939)

(Poor,
0.4423)

(Low,
−0.4999)

(Poor,
0.4929)

(Poor, 0)

DP Safety
estimate

{(Poor;
0.125)}

{(Poor;
0676),
(Low;
0.0479)}

{(Poor;
0.125)}

{(Poor;
0.4405),
(Low;
0.3536)}

{(Poor;
0.125)}

2-Tuple
expres-
sion

(Poor, 0) (Poor,
0.4157)

(Poor, 0) (Poor,
0.4453)

(Poor, 0)

Regardless of the weight difference between each expert allocated, the po-
tential risk caused by the thruster failure is always the lowest and DP the
highest from Table 9. As the relative weights of the panel experts change as
{WE#1, WE#2, WE#3, WE#4, WE#5} = {5, 4, 3, 2, 1}, DP caused technical
failure is ranked first, whereas the potential risk induced by PSR and DP are
ranked second and third, respectively. As the relative weights change to {4,
5, 1, 2, 3}, then DP is ranked first, CPP second, PSR third and thrusters
last. The results of other weight configurations are depicted in Table 10. The
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Table 9. Multi-expert synthesis on each attribute (expert with different weights)

Expert’s Weight Ranking

E #1 E #2 E #3 E #4 E #5 CPP Thruster PSR DP

1 1 1 1 1 (Poor,
0.3524)

(Low,
−0.3941)

(Poor,
0.3259)

(Poor,
0.1720)

5 4 3 2 1 (Poor,
0.3656)

(Low,
−0.3433)

(Poor,
0.3483)

(Poor,
0.1700)

1 2 3 4 5 (Poor,
0.3391)

(Low,
−0.4450)

(Poor,
0.3034)

(Poor,
0.1740)

4 5 1 2 3 (Poor,
0.2977)

(Low,
−0.4590)

(Poor,
0.2982)

(Poor,
0.1976)

3 4 5 1 2 (Poor,
0.3546)

(Low,
−0.3569)

(Poor,
0.3563)

(Poor,
0.1403)

Table 10. Safety ranking (experts with different weights) based on the 2-tuple
linguistic representation

Expert’s Weight Ranking

E #1 E #2 E #3 E #4 E #5 CPP Thruster PSR DP

1 1 1 1 1 3 4 2 1
5 4 3 2 1 3 4 2 1
1 2 3 4 5 3 4 2 1
4 5 1 2 3 2 4 3 1
3 4 5 1 2 2 4 3 1

Table 11. Multi-attribute-multi-expert safety synthesis by the experts carrying
different weights

Expert’s Weight Safety synthesis

E #1 E #2 E #3 E #4 E #5

1 1 1 1 1 (Poor, 0.3640)
5 4 3 2 1 (Poor, 0.3852)
1 2 3 4 5 (Poor, 0.3429)
4 5 1 2 3 (Poor, 0.3336)
3 4 5 1 2 (Poor, 0.3736)

ranking results for risks, which are based on various potential causes as as-
sessed by a panel of experts, can lay out a guideline for the designers to
enhance the safety level of FPSO.

The results of multi-attribute-multi-expert safety synthesis for other
weight variance configurations are depicted in Table 11, which is based on
Table 8 using the 2-tuple mean operators on multi-attributes.
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4 Conclusions

The framework for modelling system safety proposed in this paper introduced
a subjective safety modelling for engineering risk analysis, which is done by
combination of the approximate reasoning approach and the ordinal fuzzy
linguistic assessment approach.

The safety assessment using the approximate reasoning approach can for-
mulate the domain human experts’ experience and the safety engineering
knowledge. At the same time, information with different properties from vari-
ous sources can be transformed into the knowledge base and used in the fuzzy
inference process. The safety synthesis approach based on the 2-tuple ordinal
linguistic representation is computationally simple and quick.

The results obtained from the case study on collision risk between FPSO
and shuttle tanker has shown that such a framework provides the safety an-
alysts and designers with a convenient tool for risk analysis, especially in the
initial concept design stages where the related safety information is scanty or
with great uncertainty involved. The method described forms a supplement
to the methodologies already used in engineering safety assessment.
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