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Summary. In the present work, an intelligent decision support system is proposed
to assist the operators in fault diagnosis tasks. The underlying approach relies on a
systematic procedure to manipulate measured data of the monitored variables for
constructing transparent fuzzy if-then rules associating different patterns of evolu-
tion to different faults and anomalies. The resulting fuzzy classification model can
then be represented in the form of a Fuzzy Decision Tree. A case study regarding the
classification of simulated faults in the feedwater system of a Boiling Water Reactor
is presented.

1 Introduction

A fundamental task of fault diagnosis consists in the identification of the
occurred fault on the basis of monitored signals representative of the system
behavior. Control Room operators are alerted by any meaningful departure of
the monitored signals from their steady state and then required to identify the
associated fault causes, based on the different patterns of evolution thereby
developing. Assisting the operators in this complex diagnostic task has the
potential to significantly increase the availability, reliability and safety of the
systems and plants, by avoidance of errors that lead to trips or that endan-
ger safety. This is of paramount importance in major hazard plants, such as
the nuclear power plants, where the large number of process parameters and
the complexity of the system interactions pose great difficulties to the hu-
man operators of the control room, especially during abnormal operation and
emergency when stress and emotional states come into play [1].

In recent years, many efforts have been devoted to the development of
automatic diagnostic techniques for the support of the control room opera-
tors in the diagnostic tasks. In particular, techniques based on statistical or
geometric methods, neural networks, expert systems, fuzzy and neuro-fuzzy
approaches have proven very effective, although often remain “black boxes”
as to the interpretation of the physical relationships underpinning the fault
classification [2–5].
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In this work, a systematic approach to fault classification is propounded.
To obtain the classification model, available pre-classified, labeled data are
first fuzzy-clustered using the algorithm proposed in [6]; then, the procedure
presented by the authors in [7] is applied to the fuzzy clusters found in order
to derive the Fuzzy Sets (FSs) and the Fuzzy Rule Base (FRB) underpinning
the classification model.

Once the classification model has been built and its fuzzy rules explicited,
every FS in the Universes of Discourse (UODs) of the monitored signals is
associated to a symptom of the fault and the FRB of the model is translated
into a Symptom Table in which the relationships between faults and symp-
toms are explicitly laid out [8]. During operation, when some symptoms are
detected it is usually difficult to attribute them to a given fault type, given
that one fault may cause several symptoms and thus a symptom may describe
more than one possible fault. To solve this problem, the relationships between
faults and symptoms contained in the FRB are systematically represented in
a Fuzzy Decision Tree (FDT). The occurrence of a symptom is measured by
the degree of Membership Function (MF) of the associated FS: the degrees
of activation of the symptoms are propagated through the FDT to obtain the
fuzzy classification of the transient patterns in the different fault classes [8].

The design of the FDT entails the successive consideration of the symp-
toms. These can be considered in different orders, leading to different struc-
tures of the FDT and thus different classification performances. Hence, a
combinatorial optimization problem arises with regards to the FDT design:
a single-objective genetic algorithm search is devised to find the sequence of
symptoms leading to the optimal configuration of the FDT, i.e. that which
achieves the maximum classification performance.

The main advantages of the proposed approach are the transparency of
the resulting classification model and its visualization to the operator in the
form of a Decision Tree (DT).

The Chapter is organized as follows. In Sect. 2, the basic concepts un-
derpinning the fuzzy reasoning are introduced for completeness. Section 3
sketches the steps of the procedure for obtaining a transparent FRB. In Sect. 4,
the methodology for constructing the FDT is presented. Section 5 presents a
genetic algorithm-based method for optimizing the FDT design. Section 6 re-
ports the case study regarding the classification of faults in a section of the
feedwater system of a nuclear Boiling Water Reactor (BWR) [9].

2 Fuzzy Rules for Classification

The classifier proposed in this work is based on a set of fuzzy if-then rules
inferred from available data. In this Section, a short description of fuzzy rea-
soning is provided [10,11]: the content is limited to the general basic concepts,
terminologies and notation necessary for completeness and self-consistency of
the paper.
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The two key elements of fuzzy reasoning are the FRB and the fuzzy infer-
ence engine. The former consists of a set of R if-then rules. The generic jth
fuzzy rule, j = 1, . . . , R, is made up of a number of antecedent and consequent
linguistic statements, suitably related by fuzzy connections:

Rj : if (x1 is X1j) and . . . and (xn is Xnj)
then (y1 is Y1j) and . . . and (ym is Ymj) (1)

The linguistic variables xp, p = 1, . . . , n, are the antecedents, represented
in terms of the FSs Xpj of the UOD Uxp

, with MFs µXpj
(xp). The linguistic

variables yq, q = 1, . . . , m, are the consequents, represented by the FSs Yqj of
the UOD Uyq

, with MFs µYqj
(yq). The connective operator and links two fuzzy

concepts and it is generally implemented by means of a t-norm, typically the
minimum operator or the algebraic product. The rules of the FRB are joined
by the connective else and are generally implemented by means of an s-norm,
typically the maximum operator [10].

The fuzzy inference engine receives the (linguistic) variables which consti-
tute the Fact, viz.,

Fact : x1 is X ′
1 and . . . and xn is X ′

n (2)

where X ′
p is a FS on the UOD Uxp

of the pth linguistic input variable xp,
and compares it with the antecedents of the rules in the FRB to arrive at the
Conclusion, viz.,

Conclusion : y1 is Y ′
1 and . . . and ym is Y ′

m (3)

where Y ′
q is a FS on the UOD Uyq

of the qth output variable yq.
In the case of fault classification, the antecedents are the monitored vari-

ables. A discrete output variable yq, q = 1, . . . , c, is assigned to each fault
class to be distinguished [12, 13]. Each output variable is described by two
linguistic labels {Y ES,NO}, with corresponding singletons FSs Y NO

q and
Y Y ES

q (Fig. 1). In the consequent part of a fuzzy rule representing the jth
class, all the output variables yq, q �= j, appear labeled with the FS Y NO

q ,
except the jth output variable yj , representing the jth class, which is labeled
with Y Y ES

q :

if (x1 is X1j) and . . . and (xn is Xnj) then(
y1 is Y NO

1

)
and . . .

(
yj is Y Y ES

j

)
. . . and

(
yc is Y NO

c

)
(4)

This form of the consequents has been chosen because it allows an easier
handling of multiple faults [12].

The assignment of an incoming pattern of signals to a class is realized as
follows: the fuzzy inference engine (1) receives as Fact the n values of the
monitored variables, possibly fuzzyfied to account for measurement impreci-
sion, (2) computes the ‘strength’ with which each of the R rules in the FRB
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Yq
NO

yq

yq

Yq
YES

mYq
YES

mYq
NO

NO YES

NO YES

Fig. 1. The two singletons FSs Y NO
q and Y Y ES

q associated to the qth output variable

Fig. 2. Example of a classification of a pattern to class 1 (a), as atypical (b), as
ambiguous (c)

is activated by the incoming input Fact and (3) properly combines the con-
sequents of the rules, weighed by their respective strengths, to determine the
output memberships to the different fault classes [10,11].

The final assignment of an incoming pattern of signals to a class is con-
servatively realized as follows: the pattern is assigned to all the classes whose
corresponding output yq, q = 1, . . . , c, has the FS Y ′

q with membership value
to the linguistic label {Y ES} larger than a threshold γ (chosen equal to 0.6 in
the applications which follow). If none of the membership grades to the label
{Y ES} is larger than γ, then the pattern is labeled ‘atypical’. If more than one
membership grade is larger than γ, then the pattern is labeled ‘ambiguous’.

Figure 2 shows an example of classification of a pattern to class 1 (a), as
atypical (b), and as ambiguous (c).
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3 Building a Transparent Fuzzy Rule Base
for the Classifier

For ease of presentation, let us consider the four-dimensional artificial classi-
fication problem of Fig. 3. The relative data comprise six classes of patterns
obtained by random sampling from six different Gaussian distributions and
can be assumed to represent the system response signals resulting from six
different types of faults to be classified.

For the development of the classification model, a set of N, n-dimensional
patterns �xk, k = 1, . . . , N , pre-classified to c a priori known classes, is as-
sumed available. This information is used to find c geometric clusters as close
as possible to the a priori known physical classes, accordingly to the fuzzy
clustering algorithm detailed in [13]. The c identified clusters are FSs in the
n-dimensional space of the monitored variables, each FS being associated to
a different class.

Then, a transparent FRB is constructed from these multidimensional FSs
according to the following 3 steps:

1. Projection of the n-dimensional fuzzy clusters into n mono-dimensional
FSs. According to the clustering classification algorithm presented in [14],
the n-dimensional training patterns �xk, k = 1, . . . , N are classified into
the c classes with given memberships µi (�xk) , i = 1, . . . , c. This produces
c clusters represented by an equal number of n-dimensional FSs, each of
which can be projected onto the input variables as follows [15]:

Fig. 3. Four dimensional data set comprised of six classes (for visual clarity, only
240 data out of the 2,400 available have been plotted)
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Fig. 4. Projections of the cluster corresponding to class 3 of Fig. 3, onto the UODs
of the antecedents x1 and x2 (abscissa: antecedent value; ordinate: membership value
of the generic kth pattern �xk to the cluster projection, k = 1, . . . , N)

Fig. 5. Approximation of the cluster projections of Fig. 4 into convex FSs

Fig. 6. The trapezoidal FSs corresponding to the cluster projections of Fig. 4
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(a) The mono-dimensional MFs of the antecedents FSs are generated by
pointwise projection of the membership value µi (�xk) onto the an-
tecedent variables UODs [1,12,15,16] (Fig. 4).

(b) The resulting non-convex MFs are transformed into convex MFs
(Fig. 5). To do this, starting from the smallest value of the antecedent
xn, only the membership of those values that have a higher member-
ship than the previous one are kept, until the maximum membership
value is reached [17]. Then, the same procedure is applied starting
from the highest value of the antecedent, until the maximum MF is
reached.

(c) The convex FSs are approximated by linear interpolation to MFs of
trapezoidal shape (Fig. 6). Before performing the linear interpolation,
all membership values under a threshold (chosen to be 0.1 in the
present work) are rounded off to 0 and analogously all membership
values above an upper threshold (chosen to be 0.9 in the present work)
are rounded off to 1.
By so doing, the n-dimensional FS Xi representing the ith cluster is
transformed into a fuzzy proposition of the kind:

if (x1 is X1i) and . . . and (xn is Xni) (5)

where Xpi is the projection of cluster i onto the pth input variable,
i = 1, . . . , c, p = 1, . . . , n. Obviously, the method is approximate
and some information on the cluster is inevitably lost in the pro-
jection, due to the decomposition error arising from projecting the
multi-dimensional FS into its mono-dimensional constituents [15]. On
the other hand, it enables expressing the FRB in a form with a clear
and interpretable semantic meaning.

2. Enforcement of appropriate semantic constraints on the obtained FSs. To
achieve the physical interpretability of the model, semantic constraints
are imposed to the FSs obtained in the previous step in an attempt to
obtain an “optimal” interface [18]. This is sought through the procedure
described below in which each of the FSs modifications required is actually
carried out only if the classification performance on the training data is
not significantly decreased.
(a) Pruning of FSs covering a large portion of the UOD. Some FSs projec-

tions can turn out to be covering great portions of the variables UODs,
adding little specific information to the model and over-shadowing
more focused FSs. An hypothetical example of FS pruning is shown in
Fig. 7. Such sets can be removed from the antecedents of the rules [19].
The criterion for elimination of the FSs widely covering the UOD Uxp

is [20]:
βolXpi

≥ Uxp
; p = 1, . . . , n; i = 1, . . . , c (6)

where lXpi
is the width at half-height of the ith FS Xpi of variable xp

and βo ≥ 1 is the so-called overlap parameter. The larger is the value
of βo, the more severe is the pruning criterion.
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Fig. 7. Overlapping MFs obtained from the clusters projection. The thick solid line
in the left Figure denotes the FS to be pruned
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Fig. 8. Annihilation of a narrow FS (arrow)

The pruning of a FS modifies only the rules in which the FS appears
as antecedent. The modification amounts to canceling from the an-
tecedents the one corresponding to the eliminated FS.

(b) Addition of FS “nearly zero”. If the training data do not contain real-
izations from the class of no faults (stationary state), there is no cluster
representing such situation and correspondingly no antecedents FSs
and no rules. In this case, a new triangular FS called “nearly zero”
is forced in the partition of the UOD Uxp

of each variable xp. The
new FS is centered in 0 and the zero-membership vertices are arbi-
trarily chosen equal to ±0.1 of the minimum and maximum of the
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UOD Uxp
of the antecedent variable xp, respectively. A rule tailored

to stationary conditions can then be added to the FRB.
(c) Annihilation of narrow FSs. In order to avoid the overlapping among

pairs of linguistic terms and the possible consequent semantic incon-
sistencies, it is necessary to have sufficiently distinct FSs. If a FS Xpj

were too narrow, for example as in Fig. 8, its contribution is too spe-
cific and model transparency is somehow lost. Annihilation of FS Xpj

is performed if there is a FS Xpi for which the following criterion is
satisfied [19]:

lXpi
µXpi

(
z1 + z2 + z3 + z4

4

)
≥ βalXpj

;

i = 1, . . . , c ; j = 1, . . . , c ; i �= j (7)

where lXpi
and lXpj

are the half-height widths of the FSs Xpi and Xpj

of the same input variable xp, βa ≥ 1 is the annihilation parameter and
zs, s = 1, 2, 3, 4, stands for the input variable values corresponding to
the four vertices of a trapezoidal MF [21–23]. The larger is the value of
βa, the more severe is the annihilation criterion [20,21].
The FRB is appropriately modified by replacing the canceled FS Xpj

with the FS Xpi.
(d) Fusion of similar FSs. If two FSs describing the same variable are

sufficiently overlapped, then they should be fused into a single FS
because similar [20,21]. Appropriate measures can be used in order to
asses the pairwise similarity of the FSs in the FRB.
The similarity measure Ω of the two FSs Xpi and Xpj here adopted
is given by the ratio between the intersection and the union of their
two areas [24]:

Ω(Xpi, Xpj) =
|Xpi ∩ Xpj |
|Xpi ∪ Xpj |

=
|Xpi ∩ Xpj |

|Xpi| + |Xpj | − |Xpi ∩ Xpj | (8)

If the value of Ω is higher than a pre-established threshold, the two FSs
are deemed similar and they are fused (Fig. 9). The four parameters
of the new, fused trapezoidal MF will be:

zfus,s =
zilXpi

+ zj lXpj

lXpi
+ lXpj

; s = 1, 2, 3, 4 (9)

where zfus,s stands for the input variable values corresponding to the
four vertices of the trapezoidal MF [20–23] resulting from the fusion and
lXpi

, lXpj
are thehalf-heightwidths of theFSsXpi andXpj , respectively.

3. Generation of the fuzzy rules. The implementation of the previous steps 1
and 2 leads to the generation of a FRB formed by c rules, one for each
physical class, of the kind (4).
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Fig. 9. Fusion of two similar FSs (arrows) corresponding to the projection of class 1
and 2, represented in Fig. 3 with ∗ and +, respectively, onto the second signal UOD

Fig. 10. Final FSs obtained after the projection of the clusters corresponding to
the artificial case study

3.1 Application to the Artificial Case Study

Six fuzzy clusters have been identified by applying the algorithm described
in [13] to the 2,400 data of Fig. 3.

The application of the procedure just illustrated in Sect. 3 leads to the
projection of the six clusters into the FSs of Fig. 10 and to the generation of
a corresponding FRB composed of six rules, one for each class (Table 1).
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Table 1. The rules of the FRB
R

u
le x1 x2 x3 x4 y1 y2 y3 y4 y5 y6

1 Low S1 Low S4 Low S9 Medium S12 Yes No No No No No
2 High S2 Medium S5 Medium S10 Medium S13 No Yes No No No No
3 IF High S2 High S6 Medium S10 High S13 T

H
E

N

No No Yes No No No
4 High S2 Low S4 Medium S10 Low S14 No No No Yes No No
5 High S2 Higher S7 Medium S10 Medium S12 No No No No Yes No
6 Higher S3 Highest S8 High S11 Higher S15 No No No No No Yes

Fig. 11. Example of atypical (A, square) and ambiguous (B, circle) patterns

Adopting a class membership threshold γ = 0.6, the classification results
for 600 data newly sampled from the underlying six Gaussian distributions
are: 85.33% patterns correctly assigned, 7% atypical, 7.67% ambiguous and
no pattern assigned to a wrong class.

To picture atypical and ambiguous patterns, consider the patterns A and
B represented in Fig. 11 (square and circle, respectively) in the subspace of
signals x1, x2, x4. Pattern A belongs to class 2 but is located somewhat far
away from the cluster of the other patterns of class 2; for this reason, it is
weakly assigned to all six classes with membership values lower than the pre-
established classification threshold of 0.6 (Fig. 12a) and, thus, classified as
atypical. Pattern B belongs to class 1 but is located at the boundary between
classes 1 and 3; for this reason, it is assigned to both classes with membership
values above 0.6 (Fig. 12b) and, thus, classified as ambiguous.
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Fig. 12. Classification of an (a) atypical pattern and (b) ambiguous pattern

4 The Fuzzy Decision Tree

In this Section, the procedure for constructing a FDT starting from the fuzzy
rule-based model presented in the previous Section is proposed. In general,
DTs are a standard tool used by control room operators for fault classification.
Thus, the fact of translating the classifier into a DT bears the great advantage
of rendering the diagnostic tool easily received and accepted by the operators.

When a generic fault of class Γj , j = 1, . . . , c, occurs, corresponding repre-
sentative symptoms should be observable by the monitoring system. A symp-
tom associated to the fault of class Γj is a deviation, caused by the occurrence
of fault Γj , of a monitored signal from its reference value. In this work, each
one of the FSs obtained in the previous Section represents a deviation and
thus a symptom, except those FSs representing steady state conditions of the
signals, i.e. the introduced “Nearly Zero” FSs. Correspondingly, the generic
FS Xpj associated to the pth antecedent in rule j, p = 1, . . . , n, j = 1, . . . , c,
represents a symptom for the class of faults Γj .

Notice that the relations between faults and symptoms (signals deviations)
are not univocal: one fault may cause several symptoms and in turn one
symptom may represent several possible faults. However, if the monitoring
system is adequately designed it should be possible to associate to each fault a
unique set of symptoms (signals deviations). In our fuzzy classification scheme,
these are the FSs representing the signals deviations in the antecedent part
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Table 2. Symptom Table: Reference relations between faults and symptoms [25]

Fault
class

Symptom type

S1 . . . Sr . . . Ss

Γ1 I11 . . . I1r . . . I1s

. . . . . . . . . . . . . . . . . .
Γj Ij1 . . . Ijr . . . Ijs

. . . . . . . . . . . . . . . . . .
Γc Ic1 . . . Icr . . . Ics

(5) of the corresponding rule. This leads to a Symptom Table such as the one
reported in Table 2, where Sr, r = 1, . . . , s, denotes the generic symptom.

The binary vector σj = [Ij1, Ij2, . . . , Ijs] represents the reference symp-
toms vector for fault class Γj , j = 1, . . . , c. Each Ijr is a binary value that
corresponds to the presence or absence of symptom r when fault Γj is present,
r = 1, . . . , s, j = 1, . . . , c. For example, σ1 = (1, 0, 0, 1, 0, 1) implies that the
occurrence of fault type Γ1 causes S1, S4, and S6 to appear, among the s = 6
possible symptoms.

During operation, an observation vector σ′ = (I ′1, I
′
2, . . . , I

′
s) carries the

information on the presence or absence of the symptoms, obtained from the
measurements of the plant signals. As explained earlier, a symptom is present
in the system if its representative measured signal has deviated from its nom-
inal value. For example, a patient has the symptom “fever” if his or her mon-
itored temperature rises to a “high” value, i.e. above 37 ◦C. However, often in
practice the presence or absence of a symptom is affected by uncertainty and
ambiguity due to the complexity of the nonlinear signal behaviors associated
to the various faults, to the measurement errors of the monitoring sensors
and to the imprecise and ambiguous definition of the signal deviation ranges
and the associated linguistic labels. In practice then, to a pattern of devia-
tions of the monitored signals measured in correspondence of a given fault,
a fuzzy observation vector σ′

f = (µ′
1, µ

′
2, . . . , µ

′
s) can be associated, where

µ′
r, r = 1, . . . , s, is the value of the membership of the FS corresponding to

the symptom and gives the degree of presence of symptom Sr in the monitored
situation being examined.

Once the fuzzy observation vector σ′
f has been obtained, the problem is

to identify which fault type is occurring in the plant. To tackle this problem
a systematic procedure for constructing a DT is proposed.

4.1 Decision Tree

The architecture of the tree is obtained by means of a procedure, derived
from [25], which applies a hierarchy of Boolean tests to split the sample space
into disjoint sections.
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Taking into consideration all possible combinations of symptoms, the DT
would have 2s branches given that each of the s symptoms can be either
present or absent. On the other hand, only one combination of symptoms
corresponds to a given fault: thus, only c of the 2s tree branches correspond
to a class while the remaining 2s − c combinations of symptoms cannot be
associated to a class.

For building a smaller, more transparent and easier to interpret DT, two
main hypotheses are assumed [25]: (1) if a symptom is indicated as present
in the measured observation vector σ′, it is certainly present in the system;
(2) the presence of a single symptom characteristic of a fault suffices to con-
clude that the measured pattern of signals belongs to that fault class.

In this context, an “unwanted” symptom is defined as a symptom that,
although not present in the system, somehow is present by mistake in the
observation vector and a “missing” symptom as a symptom that is not ob-
served although it is present in the system [25]: the first hypothesis can then be
called of “impossibility of unwanted symptoms” and the second of “possibility
of missing symptoms”.

The procedure for building the DT proceeds as follows:

1. A root node is placed at the top of the tree. This node refers to all possible
fault classes identified for the system under analysis.

2. A symptom from the Symptom Table is associated to this node.
3. The root node is split into two branches: the left corresponding to the

presence of the symptom, the right to the absence of the symptom.
4. The fault classes for which the symptom is present are associated to a

node under the left branch. If only one fault class is found to contain the
symptom, then the associated node is a terminal leaf of the branch and
its identification is guaranteed by the fact that it has been assumed that
a symptom that is absent in the system cannot be indicated as present
(impossibility of unwanted symptoms hypothesis). The fault class associ-
ated to the identified leaf may be also associated to other leaves, at the
end of other branches in the tree. This accounts for the possibility that a
symptom is not indicated as present by the monitoring system although it
actually is (possibility of missing symptoms hypothesis). If more than one
fault class are associated to the node characterized by the identified symp-
tom, a new symptom is searched in the Symptom Table and associated to
the node in order to differentiate between the identified fault classes. To
select the new differentiating symptom, the previous procedure is applied,
starting from step 2.

5. The right branch from the root node is further developed by first adding
a node associated to all possible fault classes. This node is then treated
as a local root node to which the branching procedure is applied starting
from step 2.

6. The tree development terminates when all symptoms have been considered
and their associated branches developed down to the distinguishing leaves
of the individual fault classes.
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7. A path through the branches of the tree, from the root node to a leaf,
identifies a crisp observation vector σ′ of symptoms representative of the
fault class associated to the leaf. As pointed out above, different paths
may lead to different leaves associated to the same fault class, due to the
possibility of missing symptoms.

In operation, the DT gives the correct diagnosis when the measured symp-
tom vector matches completely with the reference symptom vector of a fault
class; on the contrary, the diagnosis is conservative in case of a missing symp-
tom, i.e. it is not necessary to have all the symptoms to diagnose the fault.

Finally, in case of unwanted symptoms, the classification is driven by the
structure of the tree and the classification will be wrong if the first symptom
considered is an unwanted symptom.

From the above it appears that the DT design must be optimized with
respect to the order with which the successive symptoms are considered, for
optimal classification performance.

4.2 Classification by the FDT

In the realistic case of ambiguity in the presence or absence of a symptom, in
correspondence of a given pattern of signal deviations the degree of activation
of each symptom Sr, r = 1, . . . , s, is computed from the MF of the corre-
sponding FS. The DT then becomes a FDT and the classification of a given
pattern of measured signal deviations is performed by proceeding through all
the branches of the tree and computing the MFs to each fault class, at the
tree leaves.

The symptoms degrees of activation are then propagated through the FDT
according to the rules of FS theory. In particular, the logic operator of nega-
tion of a symptom Sr is implemented by (1 − µSr

) in the right branch cor-
responding to the absence of the symptom whereas its complement µSr

is
propagated along the left branch associated to its presence (Fig. 13). The

Fig. 13. Propagation of fuzzy information to the DT
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connection between two nodes of the tree represents a logic operator of in-
tersection (and), here implemented by means of the algebraic product of the
membership values.

Finally, since more than one terminal leaf can indicate the same class, the
final membership to a given class is computed through the logic operation of
union (or) of all the leaves associated to that class. The logic operator or is
here implemented as the MFs sum limited to 1, accordingly to the rules of FS
arithmetic.

Differently from the case of crisp symptoms which activate only one termi-
nal leaf, the fuzzy propagation of ambiguous symptoms in the FDT leads to
a more realistic classification into different faults with different membership
degrees of an ambiguous pattern of deviations, rather than to one definite
fault, possibly wrong.

4.3 Application to the Artificial Data

To build the FDT, first each antecedent FS of Fig. 10 is associated to a symp-
tom, resulting in 15 possible symptoms, indicated as Si, i = 1, . . . , 15, in
Table 1. This allows the translation of the FRB in the Symptom Table 3.

By applying the steps 1–6 of the procedure for building the DT (Sect. 4.1)
on the sequence of symptoms Σ0 = [S1;S2; . . . ;S15], one obtains the DT
reported in Fig. 14.

The quantification of the degree of membership to the different classes is
performed as previously described, by propagating through the branches of
the tree the degree of activation of each symptom.

The test on the same set of 600 data considered in Sect. 3.1, with mem-
bership threshold γ = 0.6, results in only 40.67% correct classifications to the
six fault classes, while 10.5% of the data are considered as atypical, 2.33% as
ambiguous and 46.5% are assigned to the wrong class.

The obtained performance is obviously unacceptable and motivates the
search for an optimal or near-optimal sequence of symptoms upon which to
build the FDT. The objective of the optimization algorithm is to find the
sequence of symptoms that leads to the FDT with the best classification
performance in terms of percentage of correct classifications. The number of

Table 3. Symptom Table

Class S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

Γ1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
Γ2 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
Γ3 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0
Γ4 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
Γ5 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0
Γ6 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1
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Fig. 14. DT for classification of the artificial data of Sect. 3.1, built with the ordered
sequence of symptoms Σ0

possible sequences of symptoms is 15! (∼1011). A procedure based on a single-
objective genetic algorithm is adopted to solve this combinatorial optimization
problem.

5 FDT Optimization by a Genetic Algorithm

In this Section, a procedure based on a single-objective genetic algorithm is
carried out for determining the sequence of symptoms to which corresponds
the FDT with the maximum classification performance. The genetic algorithm
can be seen as performing a wrapper search [26] around the classification
algorithm (Fig. 15) in which the symptoms sequence selected during the search
is evaluated using as criterion (fitness) the percentage of correct classified data
achieved by the FDT itself.

The data and rules of the genetic algorithm search are given in Table 4.
These parameters have been established through a systematic procedure of
experimentation. The objective (fitness) function to be maximized is the
percentage of correct data classifications; the decision variable is the symp-
toms sequence.

With reference to the artificial case study, each chromosome is made up by
15 genes, one gene for each symptom. The single gene can assume any integer
value in [15, 15] that encodes the “swap” position of the symptom along the
sequence. An example of a chromosome coding a particular sequence is given
in Fig. 16. To decode the chromosome in its corresponding symptom sequence,
a 15–steps procedure is performed, one for each gene. At the generic step
i = 1, . . . , 15, the ordered sequence Σi−1 and the value k contained in the ith
gene are considered: the symptom in the ith position of Σi−1 is then swapped
with the symptom in the kth position of the sequence. For example in the first



204 E. Zio et al.

Fig. 15. Single-objective genetic algorithm “wrapper” search

Table 4. GA run parameters

Number of chromosomes in the population 100
Number of generations (termination criterion) 50
Selection Standard Roulette
Replacement Children – Parents
Mutation probability 0.01
Crossover probability (one-site) 1

Fig. 16. Example of a chromosome and the corresponding sequence
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step of Fig. 16, the value 7 in gene 1 means that the symptom S1 is placed
in position 7 of the sequence and simultaneously the symptom that occupied
position 7 is swapped to position 1. This operation is carried out until the
15th gene of the chromosome is worked out, leading to the final sequence:

Σ15 = [S3;S11;S5;S12;S6;S8;S7;S2;S1;S10;S13;S9;S14;S4;S15]

Note that this original random design of the chromosome leads to a co-
herent symptom sequence, i.e. without repetition of symptoms, thus avoiding
computationally burdensome chromosome coherence checking a posteriori of
its creation.

The optimal sequence found at convergence of the genetic algorithm is:

Σ1 = [S4;S6;S7;S3;S12;S10;S13;S15;S5;S1;S14;S11;S8;S9;S2]

The FDT built following this sequence increases the fraction of patterns
correctly classified from 85.33%, obtained with the FRB classifier, to 91.34%.
The percentage of patterns considered atypical is reduced to 5.33% with re-
spect to the previously obtained 7%. Furthermore, the percentage of ambigu-
ous patterns is reduced to 0.33% from the previously obtained 7.6% whereas
the percentage of patterns assigned to the wrong class increases from 0 to 3%.

In particular the atypical and ambiguous, patterns A and B of Fig. 11 are
now correctly classified. Pattern A is assigned to class 2 with a membership
value of 1 due to the symptom S5 that is characteristic only of this class and
that has an activation degree equal to 1 for this pattern. Pattern B is correctly
assigned to class 1 due to the degree of activation equal to 1 of the symptom
S9 that is characteristic only for class 1. Thus, the resolution of previously
ambiguous and atypical classifications by the FRB is achieved by the FDT
thanks to the fact that in the cases considered the activation with high degree
of membership of just one characteristic symptom is sufficient for assigning
the pattern to the corresponding class. On the other hand, in general the
percentage of errors may increase due to the fact that for a given pattern an
unwanted symptom activated with a high membership by such pattern, may
be placed in the FDT before the representative symptoms for the real class
of the pattern.

6 Fault Classification in a Boiling Water Reactor

6.1 Problem Statement

The problem under consideration concerns the identification of a predefined
set of faults in a BWR. A set of transients of the monitored signals under
different fault conditions have been simulated by the HAMBO simulator of
the Forsmark 3 BWR plant in Sweden [9]. Figure 17 shows a sketch of the
system [9].
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Fig. 17. Sketch of the feedwater system [9]

The considered faults occur in the section of the feedwater system of a
BWR where the feedwater is preheated from 169 ◦C to 214 ◦C in two parallel
lines of high-pressure preheaters while going from the feedwater tank to the
reactor. Process experts have identified a set of 18 faults that are generally
hard to detect for an operator and that produce efficiency losses if unde-
tected [27]. The c = 6 faults regarding line 1 are here considered as the classes
to be distinguished by the classification. These are numbered F1–F5 and F7,
coherently with the original numbering [9].

For each type of fault, the patterns to be used for building the classification
model have been constructed by simulating transients with the plant at 80%
of full power, taking values every 6 s from tin = 80 s to tfin = 200 s.

Among the 363 monitored signals, only n = 5 signals have been chosen
for the transient classification using the feature selection algorithm proposed
in [28]: position level of control valve for preheater EA1 (PLV), temperature
of drain 4 before valve VB3 (T1), water level of tank TD1 (WL), feedwa-
ter temperature after preheater EA2 (T2) and feedwater temperature after
preheater EB2 (T3).

6.2 Application and Results

To test the methodology proposed in this work, the available set of pre-
classified patterns is subdivided as follows: 80% have been used for building
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Fig. 18. DT for the classification of BWR feedwater system faults

the diagnostic fuzzy rules and the associated FDT and the remaining 20%
have been used for testing the method accuracy.

The application of the fuzzy clustering method presented in this Chap-
ter leads to six clusters, each one corresponding to a different type of fault.
Projecting the multi-dimensional clusters onto the UODs of the five input
signals and applying the transparency constraints of Sect. 3 for obtaining an
optimal partition of the UODs a FRB composed of six rules characterized by
five antecedents in the form of (5) is obtained.

As a result, 96% of the test patterns are correctly classified using this more
transparent FRB. In particular, all the test patterns are correctly classified
except one pattern, which turns out to be characterized by the first input
variable x1 having a value out of the range of the training patterns. This
pattern is correctly labelled as atypical by the FRB of the classification model.

As explained in Sect. 4 to build the DT, first each antecedent of the FRB
is associated to a symptom. This gives rise to the translation of the FRB in
the form of a Symptom Table. On the basis of the Symptom Table the DT is
developed (Fig. 18) following the guidelines illustrated in Sect. 4.

Propagating the symptoms fuzzy membership information along the DT
of Fig. 18, the test pattern classified as atypical using the fuzzy rule-based
classifier turns out now to be correctly assigned to fault class F1. Notice that,
in this case S1 is a missing symptom but the pattern is still correctly classified,
thanks to the hypothesis of possibility of missing symptoms underlying the
DT construction procedure.

7 Conclusions

Fault classification is often based on ambiguous information which can be
effectively handled within a fuzzy logic framework.
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In this context, this Chapter has illustrated a fuzzy-logic based intelligent
decision support system to assist the operators in the fault diagnosis tasks.
Each step of the proposed methodology is presented with respect to a case
study regarding the classification of a set of artificial data randomly sampled
from six different Gaussian distributions.

The method is based on a FRB made of one fuzzy classification rule for
each fault class. The antecedent FSs in each rule represent the characteristic
symptoms (signals deviations) for the corresponding fault class.

A DT is then built to logically structure the uncertain information avail-
able. Such DT is quantitatively processed by propagating the degrees of pres-
ence of the various possible symptoms.

The classification performance by the resulting FDT is dependent on
the order in which the symptoms are considered in the building procedure
of the DT. This leads to a combinatorial optimization problem with respect
to the construction of the tree. As shown in this work, this problem can be
effectively tackled by a genetic algorithm search.

The proposed intelligent decision support system has been tested on a
case study regarding the classification of simulated faults in a section of the
feedwater system of a BWR. The results obtained are very satisfactory in
both classification performance and transparency.
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2. R. Isermann, P. Ballé, Trends in the application of model-based fault detec-
tion and diagnosis of technical processes, Control Engineering Practice, No. 5,
pp. 709–719, 1997

3. S. Leonhardt, M. Ayoubi, Methods of fault diagnosis, Control Engineering Prac-
tice, No. 5, pp. 683–692, 1997

4. J. Du, M.J. Er, Fault diagnosis in air-handling unit system using dynamic
fuzzy neural network, Proceedings of the sixth International FLINS Conference,
pp. 483–488, 2004

5. G. Goddu, B. Li, M.Y. Chow, J.C. Hung, Motor bearing fault diagnosis by a fun-
damental frequency amplitude based fuzzy decision system, IEEE Transaction
on Systems, Man, Cybernetics, pp. 1961–1965, 1998



Intelligent Decision Support Systems for Fault Diagnosis 209

6. E. Zio, P. Baraldi, Evolutionary fuzzy clustering for the classification of tran-
sients in nuclear components, Progress of Nuclear Energy, Vol. 46, No. 3–4,
pp. 282–296, 2005

7. E. Zio, P. Baraldi, I.C. Popescu, From fuzzy clustering to a rule-based model for
fault classification, submitted for publication in IEEE Transactions on Fuzzy
Systems Journal

8. E. Zio, P. Baraldi, I.C. Popescu, A Fuzzy Decision Tree for fault classification,
submitted for publication in Risk Analysis

9. E. Puska, S. Noemann, 3-d core studies for hambo simulator, Proceedings of
Presentation on Man-Machine System Research, Enlarged Halden Programme
Group Meeting, Vol. 2, September 2002

10. G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Application, Prentice
Hall, Englewood Cliffs, NJ, 1995

11. M. Marseguerra, E. Zio, P. Baraldi, I.C. Popescu, P. Ulmeanu, A fuzzy logic-
based for the classification of faults in the pump seals of seals of the primary
transport system of a CANDU 6 reactor, Nuclear Science and Engineering,
Vol. 153, No. 2, pp. 157–171, 2006

12. G. Castellano, A.M. Fanelli, C. Mencar, A fuzzy clustering approach for mining
diagnostic rules, IEEE Conference on Systems, Man, Cybernetics, 2003

13. E. Zio, P. Baraldi, D. Mercurio, Identification of transients in nuclear systems
by a supervised evolutionary possibilistic clustering approach. In: D. Ruan,
P. D’hondt, P. Fantoni, M.D. Cock, M. Nachtegael, E.E. Kerre (eds.), Applied
Artificial Intelligence: Proceeding of the 7th International FLINS Conference,
pp. 962–969, Genova, Italy, August 2006

14. E. Zio, P. Baraldi, Identification of nuclear transients via optimized fuzzy clus-
tering, Annals of Nuclear Energy, Vol. 32, No. 10, pp. 1068–1080, 2005

15. R. Babuska, H.B. Verbuggen, Identification of composite linear models via fuzzy
clustering, Proceedings of 3rd European Control Conference, pp. 1207–1212,
Rome, Italy, September 1995

16. O. Nelles, A. Fink, R. Babuska, M. Setnes, Comparison of two construction al-
gorithms for Takagi–Sugeno fuzzy models, 7th European Congress on Intelligent
Techniques & Soft Computing (EUFIT), Aachen, Germany, 1999

17. M. Sugeno, T. Yasukawa, A fuzzy-logic-based approach to qualitative modelling,
IEEE Transaction on Fuzzy Systems, Vol. 1, No. 1, February 1993

18. J.V. De Oliviera, Semantic constrains for membership function optimization,
IEEE Transactions on Systems, Man, Cybernetics-part A: Systems and Humans,
Vol. 29, No. 1, pp. 128–138, 1999

19. R. Babuska, Data-driven fuzzy modeling: transparency and complexity issues,
Proceedings European Symposium on Intelligent Techniques ESIT’99, AB-01,
Crete, Greece, June 1999

20. B.G. Song, R.J. Marks II, S. Oh, P. Arabshahi, T.P. Caudell, J.J. Choi, Adaptive
membership function fusion and annihilation in fuzzy if-then rules, Proceedings
of Second IEEE Conference on Fuzzy Systems, pp. 961–967, San Francisco, CA,
USA, 1993
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