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Summary. Supporting policy makers requires tools to aid in decision making in
risky situations. Fundamental to this kind of decision making is a need to model the
uncertainty associated with a course of action, an alternative’s uncertainty profile.
In addition to this we need to be able to model the responsible agents decision
function, their attitude with respect to different uncertain risky situations. In the
real world both these kinds of information are to complex, ill defined and imprecise
to be able to be realistically modeled by conventional techniques. Here we look at
new techniques arising from the modern technologies of computational intelligence
and soft computing. The use of fuzzy rule based formulations to model decision
functions is investigated. We discuss the role of perception based granular probability
distributions as a means of modeling the uncertainty profiles of the alternatives.
Tools for evaluating rule based decision functions in the face of perception based
uncertainty profiles are presented. We suggest a more intuitive and human friendly
way of describing uncertainty profiles is in terms of a perception based granular
cumulative probability distribution function. We show how these perception based
granular cumulative probability distributions can be expressed in terms of a fuzzy
rule based model.

1 Introduction

Policy decisions run the gamut from taxation to health care to education to
allocation of resources in combating terrorism. Almost all domains of human
experience are effected by local, national or trans-national policy decisions.
The support of decisions involving policy in most cases require tools to ad-
dress issues related to a desire to satisfy multiple, often conflicting, goals and
a need to negotiate between numerous, often adversarial, constituencies. In
addition choices must be made in the face of uncertainty and associated risks.
Further compounding any formal attempt to support policy decisions is the
imprecision in much of the information provided by the participating agents.
In this work we introduce some tools to address issues related to uncertainty
and risk management. We are particularly concerned with problems inherent
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in the imprecision of our knowledge of uncertainty and the imprecision in the
characterization of the policy makers risk tolerance.

The need for risk management arises when we have to make a choice
involving a risky alternative. One component of a risky alternative is the
uncertainty of the payoff (outcome) resulting from its selection, there are
more than one possible outcome. Making decisions in the face of uncertain
outcomes requires some of representation of our knowledge of uncertainties
associated with the possible outcomes, for example probabilities. Often this
information is impossible to obtain precisely and may require an imprecise and
fuzzy characterization. Here we shall take advantage of Zadeh’s [1–4] work on
perception based probability information.

A fundamental difficulty that arises when making decisions involving al-
ternatives with uncertain outcomes is the comparison of the alternatives. This
is do to the fact that the multiplicity and complexity of these types of the
alternatives makes their direct comparison almost impossible. Here we use
rule based valuation functions to circumvent this difficulty.

An additional feature that distinguishes a risky alternative from one that
is simply uncertain is that at least one of its possible outcomes is bad, ‘unde-
sirable’ or ‘disturbing.’ The concept of undesirable is fuzzy and often involves
aspects of human perception. Let us try to provide some intuition. Consider
a financial decision in which we can make a profit of either $50, $100 or $200.
In this case while we have uncertainty with respect to the outcome and a
preference for 200 over 100 over 50, we don’t have a risky alternative because
none of the payoffs are undesirable. On the other hand, consider an alterna-
tive with payoffs {−$10, 000, $50, $200}. This can be considered as a risky
alternative because in addition to there being an uncertainty with respect to
the outcome, it has at least one undesirable outcome. As another example we
can consider is a person who has a non-life threatening medical disorder and
is offered a treatment that can either cure his disorder or kill him. This can be
clearly seen as a risky alternative. The determination of whether a particular
outcome is undesirable is often subjective and context dependent. It is very
much dependent on the current state of the decision maker, what in some
situations would be considered as disturbing may in other situations not be
considered disturbing.

A fundamental point that we want to make here is that the construction of
decision functions involving these “risky” alternatives often involves some kind
of categorization of outcomes with respect to their being undesirable or bad.
From a formal point of view decision making with risky alternatives requires
that the possible outcomes be expressed on a scale that is richer then an
ordinal scale. The scale used must be of a bi-valent nature [5], having positive
and negative members, and thereby enabling the capturing of concepts good
and bad. An additional feature is that the concepts used to specify “bad” and
“good” outcomes are generally fuzzy and imprecise.
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We should note that in addition to comparing risky alternatives risk man-
agement involves another important aspect, the creation of new alternatives
to better satisfy the needs of the participants. Since this process of alternative
creation is generally domain dependent we shall not focus on this important
issue. However the tools developed here can play an role in the part of risk
management focusing on alternative creation.

2 Modeling the Valuation Function

One approach to addressing the problem of comparing alternatives having
uncertain outcomes is to use a valuation function. These functions map the
possible payoffs associated with an uncertain alternative into a single scalar
value called its valuation. The association of a scalar value with an alternative
allows us to easily compare alternatives. Conceptually these valuation func-
tions can be viewed as a mechanism to enable the responsible decision maker
to reflect their preferences among different uncertain situations. Statistics such
as expected value, median and variance have historically been used to help
provide valuation functions. With the consideration of risky alternatives the
nature of the decision makers’ preferences between different uncertain situa-
tions becomes more complex then can be captured by these simple statistics.
In order to capture the decision makers preference in these situations we need
more sophisticated structures for modeling the valuation functions.

One approach to modeling a decision makers preference structure, i.e. val-
uation function, is to use a rule based [6]. A rule base consists of a collection
of statements, rules, each of which expresses the decision makers valuation
(attitude) about a particular uncertain situation. The totality of these indi-
vidual components constitutes the decision makers preference function. The
use of a rule base allows a decision maker to express their preferences in a
modular fashion. The facility of using a modular expression of their valuation
greatly eases the task of formulating the function.

In Fig. 1 we see how this rule base (knowledge base) is used. An alternative
is presented to the rule base which then provides a value for the alternative.
The value V is some score associated with the alternative.

Fuzzy system modeling [6, 7] provides a well established framework for
constructing these types of models used to capture the decision makers’ val-
uation function in the form of a rule base. An individual component rule in
the preference rule base is of the form

Valuation
V

Alternative Decision Function
Rule Base

Fig. 1. Rule representation of decision function
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If antecedent then V is Si

where the term antecedent describes some characterization of a risky alter-
native. An example could be “if an alternative has a very bad outcome with
a substantial probability of occurrence then give it a very low value.”

In this approach we use predicates to construct the antecedent. Here we
use Predi to indicate a predicate corresponding to some property or feature
of an alternative. For any alternative A we can calculate Predi(A), the degree
to which A satisfies the predicate. The antecedent of a rule may consist of a
single predicate or a collection of predicates connected by some logical or other
aggregation procedure. Typically the antecedent can be expressed in terms of
properties associated with surrogate features of the uncertainty profile of an
alternative. Things like variance, probability of particular situations, expected
values are examples of these features. The consequent of the rule, V is Si

indicates a valuation of an alternative that satisfies this rule.
Given a collection of rules1

Ri: If Predi then V is Si

the general procedure for working with these rules is as follows. For the al-
ternative A we calculate Predi(A), the degree Ri is valid for this alterna-
tive. This gives us a collection of pairs (Predi(A), Si). We then aggregate
these pairs to get an overall valuation for the alternative being valuated,
V(A) = Aggi(Predi(A), Si). The methodology used to aggregate these pairs
depends upon the structure underlying the partitioning of the uncertainty pro-
file space by the rules. We note in fuzzy systems modeling the most common
aggregation is a weighted average

V(A) =

∑
i

Predi(A) Si∑
i

Predi(A)

Our focus here shall be on the formulation and evaluation of some types
of predicates needed to describe antecedents in these rule based models of
valuation functions.

3 Valuation Functions and Uncertainty Profiles

Formally a risky alternative is characterized by an uncertainty profile. In
part an uncertainty profile consists of a collection of possible outcomes (pay-
offs) that can occur as a result of selecting this alternative. We shall denote
this collection of possible payoffs as X. In addition a uncertainty profile usually
contains information about the realizability of each of the payoffs. A general
1 Here for simplicity we assume the antecent is composed of just one predicate. As

we noted more generally the antecent can involve multiple predicates.
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framework for expressing this information can be had in terms of a monotonic
set function µ : 2X → [0, 1] having the properties 1. µ(Ø) = 0, 2. µ(X) = 1
and 3. µ(A) ≥ µ(B) if B ⊆ A [8]. Here µ provides a measure of the belief
of finding the actual payoff in the subset A. If as is often the case in many
applications we assume µ is additive, µ(A ∪ B) = µ(A) + µ(B) for A ∩ B = Ø
then µ is a probability measure.

In the following we assume that the measure associated with the uncer-
tainty profile of an alternative is best captured by a probability model. Thus
we are assuming that the payoff of a risky alternative is a random variable R.
One of our concerns here is with the characterization of the features of this
random variable that can be used as predicates in the antecedent of the rules
used in the rule base definition of the valuation function. We must emphasize
that the representation of the features used must be such that we can evaluate
the degree of satisfaction of the associated predicate for an alternative given
our knowledge of the uncertainty profile of the alternative. Well established
features associated with a random variable are expected value, variance, model
and median. A typical example of the use of these features in a rule based is
the form

“If the expected payoff is high then V is good”

Here the expected value is the feature being used. The predicate here is “the
expected payoff is high .” Thus for a given alternative we must determine the
degree to which this is true. Specifically if we have the uncertainty profile of the
alternative expressed in terms of a random variable with known probability
distribution we can calculate the expected value. With high expressed as
a fuzzy set we can calculate the degree to which the predicate is satisfied.
Another example would be a rule of the form

If the expected payoff is high and the variance is small then
V is very good.

Here our antecedent consists of two predicates connected by an “and.” The
second predicate, the “variance is small” uses as its feature the variance.
Here then for a given alternative we would calculate its expected value and
its variance from its uncertainty profile. We then calculate the satisfaction of
each of the two predicates and then take the “anding” of these two values.
Using results from multivalued logic [9] we could use the minimum of these
values as the “and.” It important to emphasize that with the use of predicates
and these rules we have circumvented the issue of combining expected values
and variances.

In policy making decisions in which we have risky alternatives the respon-
sible decision maker’s mental preference structure is generally more complex
then that which can expressed simply using the basic features such as ex-
pected value and variance. Making decisions in risky environments require us
to use more sophisticated features of an alternatives uncertainty profile.
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One feature of an uncertainty profile that can play an important role in the
formulating decision rules in the face of risky alternatives is the probability
of some subset of payoffs. An example of a rule using this type of feature is

“If the probability of having a severe loss is low then the value of the
alternative is high.”

In this case the feature used in the rule is “the alternative’s probability of
having a severe loss.” The predicate here is the degree to which this fea-
ture attains a value that is considered as low. The process of evaluating this
antecedent predicate involves the following. We represent the concept “low
probability” as a fuzzy subset, LOW, of the unit interval. If Prob(S) is the
probability of having a severe loss under the alternative then the degree to
which the predicate is satisfied is LOW(Prob(S)), the membership grade of
value Prob(S) in the fuzzy subset LOW.

The issue now becomes that of obtaining Prob(S), the probability of having
a severe loss under the alternative. The determination of this depends upon
our definition of severe loss and our knowledge about the uncertainty profile
associated with the alternative. Initially we shall assume complete information
about the probability associated with the random variable, the uncertainty
profile of the alternative. If R is a continuous random variable, we assume
the availability of the probability density function f. If the random variable
is discrete we assume the availability of the probability mass function. In
addition to our knowledge of the uncertainty profile we need a definition of the
concept of “severe loss.” Here we can use fuzzy sets to help in the definition.
More generally as we shall see the combined use of fuzzy sets with probabilistic
information provides a very powerful way to express features that can play
a role in constructing intelligent decision making functions. Let us look at
this closer.

Consider the payoff random variable whose uncertainty is captured by its
probability density function f(x). Let us calculate the “probability of a severe
loss.” In order to obtain this we first need a definition of the term “severe
loss.” We define the concept of a severe loss as a fuzzy subset S on X such
that S(x) is the degree to which an outcome x satisfies the concept of being a
severe loss. Using this definition and the probability density function f(x) we
obtain the probability of a severe loss as [10]

Prob(S) =
∫

R

f(x) S(x) dx

We note if S is a crisp subset then this becomes Prob(S) =
∫
x∈S

f(x) dx. For
example if S is defined crisply as “any payoff less or equal a” then Prob(S) =∫ a

−∞ f(x) dx.
In similar manner we can define the concept of a large payoff as the fuzzy

subset L obtain Prob(Large Payoff) =
∫
R

f(x) L(x) dx. More generally if E is
any linguistically expressed description of the payoff space which can be repre-
sented as a fuzzy subset E then we can obtain Prob(E) =

∫
R

f(x) E(x) dx. We
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emphasize the subjective nature of the concept E and the related fuzzy subset
E. This situation comes with positives and negatives. While this allows a user
to introduce the concepts needed to describing their preferences it requires a
definition be supplied either by the user or via some default supplementary
mechanism.

Note: In the case in which the random variable describing the payoffs is
discrete and captured by a probability mass P then Prob(E) =

∑
P(x) E(x).

4 Perception Based Granular Probability Distributions

In the complex environment of policy making the information needed to fully
detail the probability measure associated with an alternative’s uncertainty
profile may only be partially or imprecisely available.

Techniques such as the Dempster–Shafer theory of evidence [11] provide
useful structures for representation of an alternative’s uncertainty profile in
the cases of lack of precise knowledge about the exact probability measure.
Another approach recently developed by Zadeh [4] is rooted in the observation
that much of the information appearing in an alternative’s uncertainly profile
is based upon the perceptions of the decision maker. In the light of this un-
derstanding Zadeh [4] has introduced the idea of Perception Based Granular
(PBG) probability distributions to address situations in which we have less
than perfect information about the uncertainty profile. We now consider the
situation where this is the case.

Zadeh [4] observed that the type of probability information associated
with an uncertainty profile is generally a reflection of perceptions as well as
measurements by the decision making entity. He suggested that an appropri-
ate way of representing this type of information is with a Perception Based
Granular (PBG) probability distribution. With the aid of a PBG probability
distribution the human can very naturally express their perceptions of an un-
certainty profile. As we shall see a PBG probability distributions generalize
the idea of ordinary probability distribution.

Let R be a random variable whose domain X is a subset of the real line. A
PBG probability distribution consists of a collection of tuples (Ai, Qi). Within
each tuple Ai is an imprecise element from the domain X of R represented as
a fuzzy subset of X. Qi is an amount of probability allocated to that range,
generally having a imprecise linguistic nature and expressed as a fuzzy subset
of the unit interval. For example if R takes its values in the interval X =
[−10 to 10] then an example of a such a PBG probability distribution is

(low, about 0.5), (near zero, about 0.3), (near 10, about 0.2)

In order to further discuss PBG probability distributions we must first
distinguish between two types of situations regarding the underlying domains.
The first is when X is a continuous subset of the real line, X = [a, b], and the
second is when X is discrete X = {x1, . . . , xn}.
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We first consider the case in which X is discrete. Here the underlying
measure is a probability distribution P, whose actual values are unknown.
The PBG probability distribution is providing partial information about the
underlying probability distribution. Let us look at this situation. First we
recall with X = {x1, . . . , xn} then a valid probability distribution P on X is a

collection [p1, . . . , pn] such that Prob(xi) = pi and pi ∈ [0, 1] and
n∑

i=1

pi = 1.

We shall let PX be the set of all valid probability distributions on X.
Formally a PBG probability distribution induces a possibility distribu-

tion over all the valid probability distribution over X. Let K = {(Ai, Qi)|i =
1, . . . ,m} be a PBG probability distribution on X. If

∏
K is the induced possi-

bility distribution then for each valid probability distribution, P ∈ PX,
∏

K(P)
indicates the possibility that P is the actual probability distribution on X.

With P = [p1, . . . ,pn] in the following we describe one approach to deter-
mine

∏
K(P) given K = ((Ai, Qi)|i = 1, . . . ,m}.

(1) For each Ai calculate Prob(Ai) using P: Prob(Ai|P) =
n∑

j=1

Ai(xj) pj

(2) For each i calculate, τi = Qi(Prob(Ai|p)). This is the compatibility of P
with Qi

(3)
∏

K(P) = Mini[τi]

In the case in which X = [a, b], it is continuous, the random variable is
characterized by a probability measure. Here the PBG probability distribution
is only providing partial information about underlying probability measure.
We note that a valid probability measure f associated with X is such that
f(x) ≥ 0 for all x ∈ [a, b] and

∫ b

a
f(x)dx = 1. We let FX be the collec-

tion of all valid probability measures on X. In this case a PBG probability
induces a possibility distribution over the set FX. Again we shall assume
K = ((Ai, Qi), I = 1, . . . , m) is the PBG probability distribution corre-
sponding to the uncertainty profile. We let

∏
K be the induced possibility

distribution over FX. Here
∏

K(f) indicates the possibility that f can be the
actual probability measure given K. We determine

∏
K(f) as follows:

(1) For each Ai we calculate Prob(Ai|f) =
∫ b

a
f(x) Ai(x) dx

(2) For each i calculate, τi = Qi(Prob(Ai|p)). This is the compatibility of f
with Q

(3)
∏

K(f) = Mini[ti]

Let us look at this nature of the PBG probability distribution in more
detail. As we shall subsequently see a PBG probability distribution is es-
sentially a generalization of the idea of an ordinary probability distribution.
Consider the PBG probability distribution ((Ai, Qi), i = 1, . . . ,m). First
we note that each Qi is a fuzzy number drawn from the unit interval I, it
is normal and unimodal. In particular there exists an r ∈ [0, 1] such that
Qi(r) = 1. In addition since it is unimodal, there exist two values ai and bi ∈ I
such that
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1. Qi(r) is non-decreasing for r ∈ [0, ai]
2. Qi(r) = 1 for r ∈ [ai, bi]
3. Qi(r) is non-increasing for r ∈ [bi, 1]

One implication of the unimodality of the granular probabilities is the
interval nature of the associated level sets [12]. Thus if Qα

i is the α-level set
of Qi, Qα

i = {r/Qi(r) ≥ α}, then Qα
i = [li(α), ui(α)]. It is also the case that

the unimodality of Qi implies that if α > β then Qα
i ⊆ Qβ

i , the level sets are
nested.

We should note two special cases of these granular probabilities. The first
is the case when Qi is a precise value qi in I, Qi = {qi}. The second is when
Qi is an interval, Qi = [ai, bi]. Here Qi(r) = 1 for r ∈ [ai, bi] and Qi(r) = 0
for r /∈ [ai, bi].

Generally the Ai are human comprehensible concepts associated with the
space X. As discussed by Gardenfors [13] concepts on a domain are expressed
as convex subsets. Thus formally the Ai are normal and unimodal, they are
fuzzy numbers from the domain X. Two special cases of Ai are singletons and
crisp intervals.

5 Evaluating Decision Functions with PBG Uncertainty
Profiles

Previously we indicated that the rules based approach for specifying the de-
cision making entities valuation function can involve rules in which we have
antecedent terms of the form:

If Prob(Fuzzy Event) is Large then . . . (I)

Here we shall investigate a method for evaluating the satisfaction of this
type of antecedent by risky alternatives for this case in which an alternative’s
uncertainty profile is expressed in terms of a PBG probability distribution.

We first formalize the above antecedent. Let R indicate the payoff associ-
ated with the alternative being evaluated. Formally it is a random variable on
real line. In order to formalize the antecedent in I we let F be a fuzzy subset
of the domain of R, this corresponds to a general fuzzy event. In addition we
let Q be a fuzzy probability corresponding to what we generically denoted as
Large in (I). Using these notations our rule becomes

If Prob(R is F) is Q then . . . . . . .

Let us use W to indicate the variable corresponding to the “probability of
the event R is F.” Using this notation we can express our rule as

“If W is Q then . . . .”
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The firing of this rule is determined by the compatibility of the value of W
with the fuzzy subset Q.

We now consider a risky alternative whose uncertainty profile is expressed
using the PBG probability distribution K = ((Ai, Qi), i = 1, . . . , m). Here
Ai is a fuzzy subset of X and Qi is a fuzzy subset corresponding to amount of
probability, a fuzzy number in the unit interval.

The task of evaluating the degree to which the risky alternative un-
der consideration satisfies the rule can be formulated as follows. We need
to determine the compatibility of the value of W, the probability of the
event R is F with Q, given that all we know about R is K, ((Ai, Qi), i =
1, . . . , m).

Consider the firing of the rule “If W is Q then . . . . . .” If we know that
the probability of the event R is F is precisely equal to the value b, W = b,
then the degree of firing τ is simply Q(b). More generally, if the value for W is
a fuzzy probability B, then using the established procedure in fuzzy systems
modeling we obtain as the firing level τ = Maxy[Q(y) ∧ B(y)], we take the
maximum of the intersection of Q and B.

The situation we are faced with is slightly different than either of these.
Instead of knowing the value of W, the probability of R is F, all we have is
the PBG probability distribution K on R. In this case our task becomes to
calculate the value of W from our information about R.

If instead of having a PBG probability distribution we had an ordinary
probability distribution P = [(xi, pi)], pi being the probability that R = xi

then to calculate W, probability that R is F, we use

W =
n∑

i=1

F(xi)pi

We must now extend this approach to our situation where we have the PBG
probability distribution K = [(Ai, Qi), i = 1, . . . , m]. With K we have that
both Ai and Qi are fuzzy subsets. The fact that Ai is not crisp conceptually
provides more difficulty than the fuzziness of Qi.

If we temporarily consider the situation in which Qi is precise, Q = qi and
Ai is an interval we can get some insight into how to proceed. We shall also for
simplicity assume that F is a crisp subset. In calculating W we are essentially
obtaining the sum of the probabilities of the possible values of R that lies
in F. When Ai is an interval it is difficult to decide whether the probability
is associated with element in F or not. To get around this problem we must
obtain upper and lower bounds on W. The actual probability lies between
these values.

Using this idea for the more general situation where all the objects are
fuzzy we obtain
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UpperF =
n∑

i=1

Poss[F/Ai] Qi

LowerF =
n∑

i=1

(1 − Poss[F̄/Ai])Qi

where Poss[F/Ai] = Maxx[F(x) ∧ Ai(x)] and Poss[F̄/Ai] = Maxx[(1 − F(x)) ∧
Ai(x)]. Essentially we see that Poss[F/Ai] is the degree of intersection of Ai and
F while 1−Poss[F̄/Ai] is the degree to which Ai is included in F̄. There values
are closely related to the measures of plausibility and belief in Dempster–
Shafer theory [11].

At this point we must draw upon some of results from fuzzy arithmetic [14].
We recall if A and B are two fuzzy numbers then their sum D = A⊕B is also
a fuzzy number such that

D(z) = Max
x, y s.t.
x+y=z

[A(x) ∧ B(y)].

We also note that if α is a scalar then α A is a fuzzy number D such that

D(z) = Max
x s.t.
αx=z

[A(x)]

More generally if D1, . . . , Dn are fuzzy numbers and α1, . . . , αn are nonnega-
tive scalars then

D = α1D1 ⊕ α2D2 ⊕ · · · ⊕ αnDn

is a fuzzy number such that

D(z) = Max
xi s.t.

Σiαixi=z

[Ai(xi)]

The point we can conclude from this digression is that we have available to
us the facility to calculate the values UpperF or LowerF. More specifically if
we denote λi = Poss[F/Ai] ∈ [0, 1] then UpperF is a fuzzy number H defined
on the unit interval such that for all z ∈ [0, 1]

H(z) = Max
zi s.t.

ΣiλiZi=z

[Mini[Qi(zi)]

If we denote γi = 1 − Poss[F̄/Ai] ∈ [0, 1] then LowerF is a fuzzy number
L defined on the unit interval such that for all z ∈ [0, 1]

L(z) = Max
zi s.t.

ΣiγiZi=z

[Mini[Qi(zi)]

We must now consider the relationship between the fuzzy subsets H and L.
In anticipation of uncovering this we look at the relationship between λi =
Poss[F/Ai] and γ = 1 − Poss[F/Ai]. Here we use the fact that F and Ai are
normal, they have at least one element with membership grade 1. Assume
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γ = α, then Maxx[(1− F(x)) ∧Ai(x)] = 1− α. Since Ai is normal there exists
some x∗ where Ai(x∗) = 1 and therefore (1−F(x∗))∧ 1 = (1−F(x∗)) ≤ 1−α
hence F(x∗) ≥ α. Since λi = Maxx[F(x)∧Ai(x)] ≥ F(x∗)∧Ai(x∗) ≥ α. Hence

we get λi ≥ γi for all i. Thus we see that L =
n∑

j=1

γjQj and H =
n∑

j=1

λjQj where

λj ≥ γj for all j.
Before preceding we want to introduce a type of relationship between fuzzy

numbers

Definition 1. Let G1 and G2 be two fuzzy numbers such that

Gj(x)is non-decreasing for x ≤ aj

Gj(x) = 1 for x ∈ [aj,bj ]
Gj(x)is non-increasing for x ≥ bj

where a1 ≤ a2 and b2 ≥ b1. If in addition we have

G1(x) ≥ G2(x) for all x ≤ a1.

G2(x) ≥ G1(x). for all x ≥ a2

we shall say G2 is to the right of G1 and denote this as G2 ≥R G1

This relationship G2 ≥R G1 can be equivalently expressed in terms of level
sets. If Gi(α) = [ai(α), bi(α)] is the α level set of Gi, then the relationship
G2 ≥R G1 is equivalent to the condition that for each α ∈ [0, 1] we have
a1(α) ≤ a2(α) and b1(α) ≤ b2(α).

It can be shown that if G2 =
n∑

i=1

λi Qi and G1 =
n∑

i=1

γi Qi where 0 ≤ γi ≤
λi ≤ 1 for all i and the Qi are non-negative fuzzy number then G2 ≥R G1.
From this it follows that H ≥R L, the upper bound is always to the right of
the lower bound.

Earlier we indicated that the value of W, the probability that R is F, lies
between the H and L. In particular, we have the following constraints on the
value of W:

W is greater that or equal L
and

W is less than or equal H.

If we let L∗ indicate the fuzzy subset greater than or equal L and let H∗

indicate the fuzzy subset less than or equal H then W is E where E = L∗∩H∗.
It is the intersection of the fuzzy subsets L∗ and H∗.

Let us now calculate L∗ and H∗ from L and H. L∗ is obtained as

L∗(x) = Maxy[GTE(x, y) ∧ L(y)]

whereGTE is the relationship “greater then or equal” defined on [0, 1]× [0, 1] by

GTE(x, y) = 1 if x ≥ y
GTE(x, y) = 0 if x < y
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Here L(x) is non-decreasing for x ≤ a1 and L(x) = 1 for x ∈ [a1, b1] it is
non-increasing for x ≥ b1. It is easy to show that in this case that L∗ is such
that L∗(x) = L(x) for x ≤ a1 and L∗(x) = 1 for x ≥ a1.

Similarly for H∗ we have H∗(x) = Maxy[LTE(x, y) ∧ H(y)] LTE is the
relationship “less then or equal” defined on [0, 1] × [0, 1] by

LTE(x, y) = 1 if x ≤ y
LTE(x, y) = 0 if x > y

If H(x) is a fuzzy number with value one in the interval [a2, b2] then H∗

is a fuzzy number such H∗(x) = 1 for x ≤ b2 and H∗(x) = H(x) for x > b2.
Combining L∗ and H∗ to get E, the possible values for W, we have E =

H∗ ∩ L∗ hence E(x) = H∗(x) ∧ L∗(x). From this we get

E(x) = L(x) for x ∈ [0, a1]
E(x) = 1 for x ∈ [a1, b2]
E(x) = H(x) for x ∈ [b2, 1]

Returning to our concern with determining the firing level of the rule
If W is Q then

when our input is W = K we now use this E to calculate the firing level of
the rule as

τ = Maxx[Q(x) ∧ E(x)]

6 Cumulative Distribution Functions

Here consider the situation where the information about the uncertainty pro-
file of an alternative is available in terms of a cumulative distribution function
and more generally a Perception Based Granular Cumulative Distribution
function., PBG-CD function.

If R is a random variable that takes its value on the real line we recall that
a cumulative distribution is a function such that F(x) is the probability that
R ≤ x. Formally F is a function F : [− ∝,∝] → [0, 1] which is monotonic,
F(x) ≥ F(y) if x > y. We note F is available
whether R is discrete or continuous. If R is discrete then F(x) =

∑
i s. t.
xi≤x

pi. If

R is continuous with probability density f then F(x) =
∫∞
−∞ f(x) dx. In many

real applications we can assume that the domain of F is bounded, there exists
some value x∗ s.t. such that F(x) = 0 for x ≤ x∗ and some x∗ such that.
F(x) = 1 for all x ≥ x∗.

With the availability of the CDF we can easily provide the information
needed to determine the firing level of a rule of the form

If Prob(A) is then . . . .

If A is a crisp subset, A = {x/a1 ≤ x ≤ a2] then Prob(A) = F(a2)− F(a1)
and the firing level is Q(F(a2) − F(a1)). If A is a fuzzy subset we must look
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a little more carefully at the situation. Here we shall assume A is a fuzzy
number, the fuzzy subset A is of the form

A(x) = 0 for x ≤ b1

A(x) ≥ A(y) for b1 ≤ y < x ≤ a1

A(x) = 1 for a1 < x ≤ a2

A(x) ≤ A(y) for a2 ≤ y ≤ x ≤ b2

A(x) = 0 for x ≥ b2

We now define a fuzzy subset ã1 such that

ã1(x) = A(x) for b1 ≤ x ≤ a1

ã1(x) = 0 elsewhere

We also define the fuzzy subset ã2 such that

ã2(x) = A(x) for a2 ≤ x ≤ b2

ã2(x) = 0 elsewhere

ã1 and ã2 are fuzzy numbers which allow us to express Prob(A) = F(ã2) −
F(ã1). In order to obtain Prob(A) we need to obtain F(ã2) and F(ã1). Since the
processes needed to obtain these values are similar we shall only concentrate
on F(ã2). Using Zadeh’s extension principle [15,16], since ã2 is a fuzzy number
of real line, then F(ã2) is a fuzzy subset of the unit interval such that F(ã2) =⋃

x{ ã2(x)
F(x) } and since ã2(x) = A(x) for x ∈ [a2, b2] and ã2(x) = 0 elsewhere

then F(ã2) =
⋃

x∈[a2, b2]

{A(x)
F(x) }. Here F(ã2) is a fuzzy number. In this case the

possibility that F(ã2) takes the value z is Max
x∈[a2, b2]

F(x)=z

[A(x)]. The monotonic

nature of the cumulative distribution function F and the special form of ã2

results in a form of F(ã2) as shown in Fig. 2. We emphasize that F(ã2) is a
fuzzy number of the unit interval such that its membership grade is one at
the value F(a2), and monotonically decreases to zero at the value F(b2). In
the range from zero to F(a2) and F(b2) to 1 its membership value is also zero.

Some special situations are worth pointing out. If F is such that it is
constant, F(x) = k, in the range x ∈ [a2, b2] then it can be shown that F(ã2)

1

0 1F(a2) F(b2)

Fig. 2. Fuzzy subset F(ã2)
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is a singleton set, F(ã2) = { 1
k} = { 1

F(a2)
}. Another special case occurs if F is

a discrete function. Specifically if F is such that within the interval [a2, b2]
it jumps at the points a2 + δ1, a2 + δ2, a3 + δ3 where the amounts of these
jumps are ∆1, ∆2, ∆3. In this special case we get

F(ã2) =
{

1
F(a2)

,
A(a2 + δ1)
F(a2) + ∆1

,
A(a2 + δ2)

F(a2) + ∆1 + ∆2
,

A(a3 + δ3)
F(a2) + ∆1 + ∆2 + ∆3

}
The significant point here is that here F(ã2) is a discrete function reflecting
the discrete nature of F.

In a similar way we can show generally F(ã1) is a fuzzy number of the unit
interval such that F(ã1) =

⋃
x∈[b1, a1]

{A(x)
F(x) }, see Fig. 3.

Using these fuzzy values for F(ã2) and F(ã1) we obtain Prob(A) = F(ã2)−
F(ã1) as a fuzzy number of unit interval having nonzero membership grade in
the interval (F(a2)−F(a1)) to (F(b2)−F(b1)). Here if we let PA be the fuzzy
subset denoting the value Prob(A) then

PA(z) = 0 z < F(a2) – F(a1)
PA(z) = 1 z = F(a2) – F(a1)
PA(z) is decreasing F(a2) – F(a1) < z < F(b2) – F(b1)
PA(z) = 0 z > F(b2) – F(b1)

In some practical situations it may be much more efficient to defuzzify
F(ã1) and F(ã2) and use these scalar values to obtain a scalar value for
Prob(A).

Let us consider the defuzzification of F(ã2) which we recall was F(ã2) =⋃
x∈[a2, b2]

{A(x)
F(x) }. Letting d2 denote the defuzzified value of F(ã2) we get

d2 =

∫ b2

a2
F(x) A(x) dx∫ b2

a2
A(x)dx

.

We observed that if F(x) is constant, F(x) = k in the range [a2, b2], then
d2 = k. Actually as we have already pointed out if F(x) = k in the range a2

to b2 then F(ã2) is itself a constant value k, no fuzziness exists.

1

0 1F(b1) F(a1)

Fig. 3. Fuzzy subset F(ã1)
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In many real situations it may be difficult for a decision maker to obtain
a precise manifestation of the cumulative distribution of the payoff of a risky
alternative. In these cases a decision maker may be only able to obtain a im-
precise characterization of the underlying cumulative distribution in the form
of what we shall call a Perception Based Granular Cumulative Distribution
function, PBG-CD function. A PBG-CD is a granular description of the cu-
mulative distribution function in a form that is widely used in fuzzy model-
ing [6]. When using a PBG-CD we partition the range R into fuzzy intervals
B1, . . . ,Bn. We then express the value of F in each one of these fuzzy ranges
using a fuzzy subset of the unit interval Fi. With PBG-CD function we have
a rule based representation of the cumulative distribution function F

If U is B1 then F is F1.
. . . . . . . . . . . ..
If U is Bi then F is Fi.
. . . . . . . . . . . ..
If U is Bn then F is Fn.

In working with the fuzzy rule based description of the underlying function
we can draw upon the well established literature of fuzzy systems modeling.

In order to find the value of F at some value for U, a, we proceed as follows.
We first obtain the firing level of each rule τi = Bi(a). We then calculate

ωi = τi
n∑

i=1
τi

. Using this we calculate F(a) as the fuzzy subset Fa =
n∑

i=1

ωiFi.

Here we get for F(a) a fuzzy subset of the unit interval such that Fa(y) is
the possibility that F(a) assumes the value y. We can apply a defuzzification
operation on Fa to obtain a scalar value.

In the following example we illustrate the generation of a perception based
granular CD function

Example. We consider an investment alternative in which the investor has the
following perceptions of the outcome of his investment.

He is certain that he won’t lose more then $500 dollars
He believes his chances of losing more then $100 is about 10%
He believes his chances of losing any money is 20%
He feels that there is about a 90% chance that he will win at most $500
He is certain that he won’t win more then a $1,000

We can use this to construct a rule based description of the cumulative dis-
tribution function. In particular if F(U) = Prob(R ≤ U) with R being the
random payoff then the rule base is

If U is less then $500 then F is zero
If U is “near −$100” then F is about 10%
If U is zero then F is about 20%
If U is about $500 then F is about 90%
If U is greater then 1,000 then F is 100%
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7 Conclusion

We focused on the issue of decision making in risky situations. We discussed
the need for using decision functions to aid in capturing the decision maker’s
preference among these types of uncertain alternatives. The use of fuzzy rule
based formulations to model these functions was investigated. We discussed
the role of Zadeh’s perception based granular probability distributions as a
means of modeling the uncertainty profiles of the alternatives. We look at var-
ious properties of this method of describing uncertainty and showed how they
induced possibility distributions of the space of probability distributions Tools
for evaluating rule based decision functions in the face of perception based
uncertainty profiles were presented. We considered the situation in which un-
certainty profiles are expressed in terms of a cumulative distribution function.
We introduced the idea of a perception based granular cumulative distribution
and describe its representation in terms of a fuzzy rule based model.
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