
Evolving Artificial Neural Network Ensembles

Md. Monirul Islam1 and Xin Yao2

1 Department of Computer Science and Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh�,
mdmonirulislam@cse.buet.ac.bd

2 Centre of Excellence for Research in Computational Intelligence
and Applications (CERCIA), School of Computer Science, University
of Birmingham, Edgbaston, Birmingham B15 2TT, UK, x.yao@cs.bham.ac.uk

1 Introduction

Artificial neural networks (ANNs) and evolutionary algorithms (EAs) are both
abstractions of natural processes. In the mid 1990s, they were combined into
a computational model in order to utilize the learning power of ANNs and
adaptive capabilities of EAs. Evolutionary ANNs (EANNs) is the outcome
of such a model. They refer to a special class of ANNs in which evolution is
another fundamental form of adaptation in addition to learning [52–57]. The
essence of EANNs is their adaptability to a dynamic environment. The two
forms of adaptation in EANNs – namely evolution and learning – make their
adaptation to a dynamic environment much more effective and efficient. In a
broader sense, EANNs can be regarded as a general framework for adaptive
systems – in other words, systems that can change their architectures and
learning rules appropriately without human intervention.

EAs have been introduced into ANNs at roughly three different levels:
(i) connection weights, (ii) architectures, and (iii) learning rules. The evolution
of connection weights introduces an adaptive and global approach to train-
ing, especially in the reinforcement learning and recurrent network learning
paradigms, where gradient-based training algorithms often experience great
difficulties. Architecture evolution enables ANNs to adapt their topologies to
different tasks without human intervention. The evolution of learning rules can
be regarded as a process of ‘learning to learn’ in ANNs, where the adaptation
of learning rules is achieved through evolution.

There is strong biological and engineering evidence to support the assertion
that the information processing capability of ANNs is determined by their
� Portions reprinted with permission, from X. Yao and M.M. Islam, “Evolving

artificial neural network ensembles,” IEEE Computational Intelligence Magazine,
3(1):31–42, February 2008. Copyright IEEE.

M.M. Islam and X. Yao: Evolving Artificial Neural Network Ensembles, Studies in Computa-

tional Intelligence (SCI) 115, 851–880 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



852 M.M. Islam and X. Yao

architecture. A large amount of the literature is therefore devoted to finding
optimal or near optimal ANN architectures by using EAs (see review papers
[48,54,59]). However, many real-world problems are too large and too complex
for a single ANN alone to solve. There are ample examples from both natural
and artificial systems that show that an integrated system consisting of several
subsystems can reduce the total system complexity while satisfactorily solving
a difficult problem. Many successes in evolutionary computation have already
demonstrated this. A typical example of the success of ANN ensembles in
improving classifier generalization is [62].

ANN ensembles adopt the divide-and-conquer strategy. Instead of using a
single network to solve a task, an ANN ensemble combines a set of ANNs that
learn to subdivide the task and thereby solve it more efficiently and elegantly.
It offers several advantages over a monolithic ANN [47]. First, it can perform
more complex tasks than any of its components (that is, individual ANNs in
the ensemble). Second, it can make an overall system easier to understand
and modify. Finally, it is more robust than a monolithic ANN, and can show
graceful performance degradation in situations where only a subset of ANNs
in the ensemble performs correctly.

There have been many studies in statistics and ANNs which show that
ensembles, if designed appropriately, usually perform (generalize) better than
any single member system. A theoretical account of why ensembles perform
better than single learners is presented in [12]. Although ensembles perform
better than their members in many cases, constructing them is not an easy
task. As mentioned in [16], the key to successful ensemble methods is to con-
struct individual predictors which perform better than random guessing and
produce uncorrelated outputs. This means individual ANNs in the ensemble
need to be accurate as well as diverse (also mentioned in one of the seminal
works by Hansen and Salamon [23]). Krogh and Sollich formally show that
an ideal ensemble is one that consists of highly correct (accurate) predictors
which at the same time disagree – in other words, uncorrelate as much as pos-
sible (that is, substantial diversity amongst members is exhibited) [28]. This
has also been tested and empirically verified [40,41]. Given that ANN ensem-
bles generalize better as compared with a single ANN, ensemble research has
become an active research area and has seen an influx of researchers devising
myriad algorithms trying to improve the prediction ability of such aggregate
systems in recent years.

2 Evolutionary Ensembles

Although there have been many studies on how to evolve ANNs more effec-
tively and efficiently [48, 54, 59] the issue of how to form the final result from
an evolutionary process has been overlooked [60]. The best individual in the
last generation or among all the generations is generally considered as the final



Evolving Artificial Neural Network Ensembles 853

result. However, the best individual (that is, ANN) with respect to training
or validation data may not be the best for unseen testing data. The remaining
individuals in the population may contain some useful information that may
improve the generalization performance of ANNs.

The aim of this Section is to present an approach proposed by [62] to
form the final result of an evolutionary process. Unlike most previous work,
the approach utilizes the population information, rather than an individual’s
information, to form the final result. It considers each individual in a popula-
tion as a module. Thus different individuals in the last generation are linearly
combined by regarding a population of ANNs as an ensemble. The reason
for using a linear combination is its simplicity, although non-linear combina-
tion methods could be used. The idea of combining different modules is not
new and has been studied in both the ANN field and statistics [24, 42]. How-
ever, few attempts have been made in evolutionary learning to use population
information in forming the final system.

The proposed approach was applied on three real-world problems to
demonstrate the effectiveness of using the population information in form-
ing the final result of an evolutionary process. EPNet [61] was used to evolve
a population of ANNs. Four linear combination methods were used to form
the final result. They were majority voting, the rank-based linear combina-
tion method, the recursive least-square (RLS) algorithm [38], and the subset
method.

2.1 An Evolutionary Design System for ANNs – EPNet

EPNet [61] is an automatic ANN design algorithm based on evolutionary
programming (EP) [18, 20]. It uses an EP algorithm for evolving ANN archi-
tectures and a hybrid training scheme for learning their connection weights.
It puts the emphasis on evolving ANN behaviors, which is the main reason
for using EP in its evolutionary scheme. Since EPNet evolves architectures
and learns connection weights of ANNs simultaneously, it reduces the noise
in fitness evaluation [61] unlike some previous studies (for instance, [58]). The
main structure of EPNet is shown in Fig. 1; a detailed description can be found
in [61].

EPNet relies on novel mutations and a rank-based selection scheme [53].
It does not use recombination operators in order to avoid the permutation
problem (that is, competing conventions) [6, 9, 22]. This not only makes the
evolution inefficient, but also makes crossover operators more difficult to
produce highly fit offspring. To determine an ANN architecture for a given
problem, an algorithm needs to select the number of hidden nodes and con-
nections required for the ANN in solving the problem. In addition, it needs to
assign weights for the architecture. EPNet uses five mutations one after another
to achieve these goals. If one mutation is successful then other mutations are



854 M.M. Islam and X. Yao

Hybrid training
Random initialisation

of ANNs

Initial partial training

Rank-based selection

Obtain the new
generation

yes

yes

yes

no

no

no

no

 Mutations

Further training

yes

Stop?

addition

deletion
Hidden node

Connetion deletion

Connection/node

Successful?

Successful?

Successful?

Fig. 1. The major steps of EPNet [61] c© 1997

not applied. The mutations used in EPNet are hybrid training, node deletion,
connection deletion, connection addition, and node addition. Each mutation
operator in EPNet produces one offspring that can replace at most one indi-
vidual in any generation of a population. This replacement strategy is very
similar to the one used in a steady-state GA [51], or in a continuous EP [19].
The advantage of such replacement has been demonstrated in [19, 51].

The hybrid training scheme consists of modified back propagation (BP)
[46] and simulated annealing. The modified BP can adapt its learning rate for
each individual in a population. Simulated annealing is used to avoid the local
minima problem of the BP algorithm. A distinct feature of hybrid training
is that it is partial. This means that EPNet does not train each individual
until it converges rather it trains the individual for a fixed number of epochs
in each generation. The number of epochs is a user specified parameter. The
main reason behind partial training is to increase the computational efficiency
in fitness evaluation. Hybrid training is always attempted before any archi-
tectural mutations (namely, node/connection deletion/addition) because the
latter cause larger changes in ANN behavior.

Node deletion in EPNet is done totally at random – in other words, a
node is selected uniformly at random for deletion. However, the other three



Evolving Artificial Neural Network Ensembles 855

architectural mutations are not uniformly random. Connection deletion and
addition use a nonuniform probability distribution to decide which connection
to delete or add based on the importance of the connection [17,61]. Node addi-
tion is achieved by splitting an existing node [39], rather than by introducing
a random one. The two nodes obtained by splitting an existing node have the
same connections as the existing node. The weights of these new nodes have
the following values:

w1
ij = w2

ij = wij , i ≥ j

w1
ki = (1 + α)wki i < k (1)

w2
ki = −αwki i < k

where w is the weight vector of the existing node i, w1 and w2 are the weight
vectors of the new nodes, α is a mutation parameter which may take either a
fixed or random value, and j and k indicate nodes which have a connection
to/from node i. This method helps greatly in maintaining the behavioral link
between the parent and its offspring. It also reduces blindness caused by a
random node.

To improve the generalization ability of evolved ANNs, validation sets are
used in EPNet. Each individual (that is, ANN) is trained on a training set,
but it is evaluated on a validation set. All fitness values are calculated based
on the validation, not the training set. After the simulated evolution, all the
individuals in the last generation are trained further by the modified BP on
the combined training and validation set. A second validation set is used to
stop this training and select the best individual as the output of EPNet.

2.2 Combination Methods

The four combining methods used in EPNet are all linear. The simplest linear
combination method is majority voting. That is, the output of the most num-
ber of EANNs will be the output of the ensemble. If there is a tie, the output
of the EANN (among those in the tie) with the lowest error rate on the vali-
dation set will be selected as the ensemble output. The ensemble in this case
is the whole population. All individuals in the last generation participate in
voting. The greatest advantage of majority voting is its simplicity. However,
the problem of majority voting is that it treats all individuals equally though
they are not equally good.

One way to consider differences among individuals without involving much
extra computational cost is to use the fitness information to compute a weight
for each individual. The rank-based linear combination method is such a
scheme that puts weight on each ANN in the population based on their fit-
ness values. More specifically, we can use rankings to generate weights for each
EANN in combining the ensemble output. That is, given N sorted EANNs



856 M.M. Islam and X. Yao

with an increasing error rate, where N is the population size, and their outputs
o1, o2, · · · , oN , then the weight for the ith EANN is:

wi =
exp(β(N + 1− i))∑N

j=1 exp(βj)
(2)

where β is a scaling factor. The ensemble output is:

O =
N∑

j=1

wjoj . (3)

One of the well-known algorithms for learning linear combination weights
(that is, one-layer linear networks) is the RLS algorithm [38]. The idea behind
RLS is to minimize a weighted least squares error. The benefit of using the
RLS algorithm is that it is computationally efficient due to its recursive nature.
The detailed description of the RLS algorithm implemented here can be found
in [38].

In the above three combination methods, all the individuals in the last
generation were used in forming ensembles. It is interesting to investigate
whether one can reduce the size of the ensembles without too much increase
in testing error rates. Such investigation can provide some hints on whether all
the individuals in the last generation will contain some useful information and
shed some light on the importance of a population in evolutionary learning.
As the space of possible subsets is very large (2N – 1) for a population of
size N , it is impractical to use exhaustive search to find an optimal subset.
Instead, a genetic algorithm (GA) [21] is used to search for a near-optimal
subset [62]. The weights for each EANN in each subset were determined by
the same RLS algorithm [38] as used in the previous scheme.

2.3 Experimental Studies

EPNet was applied on three real-world problems. They were Australian credit
card, diabetes and heart disease. The data sets for these problems were
obtained from the UCI machine learning repository [8]. There are 690 exam-
ples in the Australian credit card data set. The problem is to assess appli-
cations for a credit card based on a number of attributes; the 14 attributes
include six numeric values and eight discrete ones. The output has two classes.

The diabetes data is also a two class problem. It has 500 examples of
class 1 and 268 of class 2. There are eight attributes for each example. The
data set is one of the most difficult problems in machine learning due to many
missing attributes. The aim of the heart problem is to predict the presence
or absence of heart disease given the results of various medical tests carried
out on a patient. The data set of the heart problem has 13 attributes, which



Evolving Artificial Neural Network Ensembles 857

have been extracted from a larger set of 75. The description of the extraction
process can be found in [62].

Two validation sets were used in all experiments. One validation set,
V-set 1, was used in the fitness evaluation. The other validation set, V-set 2,
was used in further training of EPNet. The best individual with the minimum
error rate on V-set 2 was chosen as the final result. If there was a tie, the indi-
vidual with the minimum error rate on the combined training set and V-set 1
was the final result. If a tie still existed, the individual with the minimum
error on the combined training set and V-set 1 would be the final result. The
final individual was then tested on an unseen testing set.

Experimental Setup

For all experiments, each data set was randomly partitioned into four subsets,
a training set, V-set 1, V-set 2, and a testing set. According to suggestions
provided in [43, 44] to produce results for ANNs, the size of the training set,
V-set 1, V-set 2, and testing set were chosen to be 50, 12.5, 12.5, and 25%
of all examples, respectively, in a data set. The input attributes used for all
problems were re-scaled to between 0.0 and 1.0 by a linear function. The out-
put attributes were encoded using a 1-of-c output representation for c classes.
The winner-takes-all method was used to determine the output of the ANNs.
In this method, the output with the highest activation designates the class.

The same parameters were used for all data sets. These were as follows:
population size (20); maximum number of generations (100); initial number
of hidden nodes (2–8, which means the number of hidden nodes in any ini-
tial individual was generated at random between 2 and 8); initial connection
density (0.75, which means the probability of having a connection between
two nodes is 75%; the constraint of feedforward ANNs cannot be violated
of course); initial learning rate (0.2); the number of mutated hidden nodes
(1, which means only one node would be deleted/added in each mutation);
and the number of mutated connections (1–3, which means the number of
mutated connections is between 1 and 3). These parameters were selected
after a very modest search. It was found that EPNet was not very sensitive to
these parameters.

Results

Table 1 summarizes the results of [62]. The best individual in the last gener-
ation and the ensemble formed by the four combining methods are presented
in the table. The majority voting method outperformed the single best indi-
vidual on two out of three problems. This is rather surprising since majority
voting did not consider the differences among individuals. It performed worse
than the best individual on the heart disease problem probably because it
treated all individuals in the population equally. The t-test comparing the



858 M.M. Islam and X. Yao

Table 1. Testing accuracies of the best individual in a population and ensemble
formed from individuals in the population by using majority voting, the RLS algo-
rithm [38] and optimal subset. The results were averaged over 30 independent runs.
Mean, SD, Min, and Max indicate the mean value, standard deviation, minimum
and maximum value, respectively (Note that the results in this table have been
summarized from [62])

Problem Best Rank- Error rate RLS Optimal
individual based majority voting algorithm subset

Credit Mean 0.100 0.095 0.095 0.093 0.095
card SD 0.013 0.012 0.012 0.011 0.012

Min 0.081 0.070 0.076 0.076 0.070
Max 0.128 0.116 0.122 0.116 0.116

Diabetes Mean 0.232 0.225 0.222 0.226 0.222
SD 0.018 0.023 0.022 0.021 0.023
Min 0.198 0.172 0.172 0.193 0.182
Max 0.271 0.271 0.255 0.260 0.260

Heart Mean 0.154 0.154 0.167 0.151 0.164
SD 0.028 0.031 0.024 0.033 0.030
Min 0.103 0.088 0.132 0.088 0.118
Max 0.235 0.235 0.235 0.221 0.221

best individual to the ensemble formed by majority voting indicates that the
ensemble is better than the best individual for the credit card and diabetes
problems and worse for the heart disease problem at 0.05 level of significance.

It is clear from Table 1 that the results of the ensemble formed by the rank-
based linear method are either better than or as good as those produced by
the best individual. The t-test comparing the best individual to the ensemble
indicates that the ensemble is better than the best individual for the credit
card and diabetes problems at the 0.05 level of significance. The ensemble also
outperforms the best individual for the heart disease problem (no statistical
significance, however).

The ensemble formed by the RLS algorithm [38] is better than the best
individual for all three problems (Table 1). The results also indicate that a
better combination method can produce better ensembles. In fact, the RLS
algorithm is one of the recommended algorithms for performing linear com-
binations [24, 42]. However, other algorithms [7] can also be used. The t-test
comparing the best individual to the ensemble formed by the RLS algorithm
indicates that the ensemble is better than the best individual at the 0.05 level
of significance for the credit card and diabetes problems, and better at the
0.25 level of significance for the heart disease problem.

The ensemble formed by the subset method is also better than the best
individual for the credit card and diabetes problems at the 0.10 and 0.005
levels of significance, respectively. It is worse than the best individual for



Evolving Artificial Neural Network Ensembles 859

the heart disease problem at the 0.05 level of significance. This worse result
might be caused by the small number of generations (only 50) used in the
experiments. A large number could probably produce better results, but would
increase the search time.

All the above results indicate that a population contains more informa-
tion than any individual in it. Such information can be used effectively to
improve generalization of the learning systems. In a sense, the use of popu-
lation information provides a natural way of evolving modular ANNs, where
each module is an individual in the population. However, no special consider-
ations were made in the evolution of ANNs about modularization in EPNet.
If the evolution of modular ANNs could be encouraged in the evolutionary
process, one can expect to improve the results further. One way to encour-
age modularization is by speciation. That is, we can use techniques like fitness
sharing [14,21] to automatically form species in a population. Each species will
be a specialist in dealing with part of a complex problem and will be treated
as a module of the final system. In this case, modules are evolved specifically
for an integrated system. Co-evolutionary learning is usually used in evolv-
ing modular systems. This idea has been tested successfully in a rule-based
system [15] and described in the next Section.

3 Automatic Modularization

Many problems are too large and too complex to be solved by a monolithic
system. Divide-and-conquer has often been used to tackle such problems. The
key issue here is how to divide a large problem into smaller sub-problems.
Tedious trial-and-error processes have often been used by human experts in
coming up with a good method for breaking up a large problem into smaller
components that are easier to solve. However, it is possible to make use of
evolutionary computation techniques to divide a large problem into simpler
sub-problems automatically.

Darwen and Yao proposed a novel approach to automatic divide-and-
conquer, known as automatic modularization, in evolving a rule-based system
for playing iterated prisoner’s dilemma games without any human interven-
tion [15]. Their results have shown clearly that automatic modularization
can be used to evolve an integrated rule-based system consisting of several
sub-systems, each of which is specialized in dealing with certain aspects of
a complex problem (for instance, iterated prisoner’s dilemma games). Such
sub-systems can be regarded as modules of the integrated system (hence
‘automatic modularization’).

The main idea behind automatic modularization is a speciated evolution-
ary algorithm. In the case of evolving game-playing strategies for the iterated
prisoner’s dilemma games, each individual in the population is a rule-based
system representing a strategy. The implicit fitness sharing scheme used in



860 M.M. Islam and X. Yao

the speciated evolutionary algorithm will encourage the evolution of species
automatically in a population [15]. Each species can be regarded as a sub-
system (module) in the integrated system, which is represented by the entire
population. The experimental results have shown that automatic modular-
ization can lead to substantial performance gain in evolving game-playing
strategies for iterated prisoner’s dilemma games [15].

Although the original work on automatic modularization was done using
rule-based systems, the idea is equally applicable to neural networks, decision
trees and other classifiers. [26] described the most recent work related to
automatic modularization using neural networks.

4 Negative Correlation Learning

Although ANN ensembles perform better than single ANN in many cases, a
number of issues need to be addressed when using ensembles. Two such impor-
tant issues are the determination of an ensemble size and the maintenance
of diversity among different ANNs in the ensemble. Both theoretical [27, 28]
and empirical studies [40,41] have shown that when individual ANNs are accu-
rate and their errors are negatively correlated, improved performance can be
obtained by combining the outputs of several ANNs. There is little to be
gained by combining ANNs whose errors are positively correlated and are not
accurate.

Liu and Yao proposed a new learning paradigm, called negative correla-
tion learning (NCL), for training ANN ensembles. The essence of NCL is that
it can produce negatively correlated ANNs for ensembles [33]. A number of
works (for example, [13, 34, 37]) have utilized this feature in training ensem-
bles. Unlike previous learning approaches for ANN ensembles, NCL attempts
to train individual ANNs in an ensemble and combine them in the same learn-
ing process. In NCL, all the individual ANNs in the ensemble are trained
simultaneously and interactively through the correlation penalty terms in
their error functions. Rather than producing unbiased ANNs whose errors
are uncorrelated, NCL can create negatively correlated networks to encourage
specialization and cooperation among the individual ANNs.

Suppose that we have a training set

D = {(x(1), d(1)), · · · , (x(N), d(N))} (4)

where x ∈ Rp, d is a scalar, and N is the size of the training set. The assump-
tion that the output d is a scalar has been made merely to simplify exposition
of ideas without loss of generality. This Section considers estimating d by
forming an ensemble whose output is a simple averaging of outputs of a set
of ANNs

F (n) =
1
M

ΣM
i=1Fi(n) (5)



Evolving Artificial Neural Network Ensembles 861

where M is the number of the individual ANNs in the ensemble, Fi(n) is the
output of ANN i on the nth training pattern, and F (n) is the output of the
ensemble on the nth training pattern.

NCL introduces a correlation penalty term into the error function of each
individual network in the ensemble so that all the networks can be trained
simultaneously and interactively on the same training data set D. The error
function Ei for network i in negative correlation learning is defined by

Ei =
1
N

ΣN
n=1Ei(n)

=
1
N

ΣN
n=1

1
2
(Fi(n)− d(n))2 +

1
N

ΣN
n=1λpi(n) (6)

where Ei(n) is the value of the error function of network i at presentation
of the nth training pattern. The first term in the right side of Eqn. (6) is
the empirical risk function of network i. The second term, pi, is a correlation
penalty function. The purpose of minimizing pi is to negatively correlate each
network’s error with errors for the rest of the ensemble. The parameter 0 ≤
λ ≤ 1 is used to adjust the strength of the penalty. The penalty function pi

has the form:

pi(n) = (Fi(n)− F (n))Σj �=i (Fj(n)− F (n)) (7)

The partial derivative of Ei(n) with respect to the output of network i on the
nth training pattern is

∂Ei(n)
∂Fi(n)

= Fi(n)− d(n) + λ
∂pi(n)
∂Fi(n)

= Fi(n)− d(n) + λΣj �=i (Fj(n)− F (n))
= Fi(n)− d(n)− λ(Fi(n)− F (n))
= (1− λ)(Fi(n)− d(n)) + λ(F (n) − d(n)) (8)

where we have made use of the assumption that F (n) has constant value with
respect to Fi(n). The standard BP algorithm [46] has been used for weight
adjustments in the mode of pattern-by-pattern updating. That is, weight
updating of all the individual networks is performed simultaneously using
Eqn. (8) after the presentation of each training pattern. One complete pre-
sentation of the entire training set during the learning process is called an
‘epoch’.

NCL from Eqn. (8) is a simple extension to the standard BP algorithm. In
fact, the only modification that is needed is to calculate an extra term of the
form λ(Fi(n)− F (n)) for the ith network. From Eqns. (6)–(8), we may make
the following observations:

1. During the training process, all the individual ANNs interact with each
other through their penalty terms in the error functions. Each ANN i



862 M.M. Islam and X. Yao

minimizes not only the difference between Fi(n) and d(n), but also the
difference between F (n) and d(n). That is, NCL considers errors that all
other ANNs have learned while training an ANN.

2. For λ = 0.0, there are no correlation penalty terms in the error functions
of the individual ANNs, and the individual ANNs are just trained indepen-
dently. That is, independent training for the individual ANNs is a special
case of NCL.

3. For λ = 1, from Eqn. (8) we get

∂Ei(n)
∂Fi(n)

= F (n)− d(n) (9)

Note that the empirical risk function of the ensemble for the nth training
pattern is defined by

Eens(n) =
1
2

(
1
M

ΣM
i=1Fi(n)− d(n)

)2

(10)

The partial derivative of Eens(n) with respect to Fi on the nth training
pattern is

∂Eens(n)
∂Fi(n)

=
1
M

(
1
M

ΣM
i=1Fi(n)− d(n)

)
=

1
M

(F (n)− d(n)) (11)

In this case, we get
∂Ei(n)
∂Fi(n)

∝ ∂Eens(n)
∂Fi(n)

(12)

The minimization of the empirical risk function of the ensemble is achieved
by minimizing the error functions of the individual ANNs. From this point
of view, NCL provides a novel way to decompose the learning task of the
ensemble into a number of subtasks for different individual ANNs.

4.1 Evolutionary Ensembles with Negative Correlation Learning

Based on NCL [33] and evolutionary learning, Liu and Yao proposed evolution-
ary ensembles with NCL (EENCL) to determine automatically the number
of individual ANNs in an ensemble and to exploit the interaction between
individual ANN design and their combination [34]. In EENCL, an evolution-
ary algorithm based on EP [18, 20] was used to search for a population of
diverse individual ANNs for constructing ensembles. This means an evolu-
tionary algorithm is used here for determining automatically the number of
ANNs required for constructing an ensemble.

Two schemes are used in EENCL to maintain diversity in different indi-
viduals (that is, ANNs) of the population. They are fitness sharing [63] and



Evolving Artificial Neural Network Ensembles 863

NCL [33]. The fitness sharing accomplishes speciation by degrading the raw
fitness (in other words, the unshared fitness) of an individual according to the
presence of similar individuals. If one training example is learned correctly by
n individuals in a population, each of these n individuals receives fitness 1/n,
and the remaining individuals in the population receive fitness zero. Other-
wise, all the individuals in the population receive fitness zero. This procedure
is repeated for all examples in the training set. The fitness of an individual is
then determined by summing its fitness over all training examples.

EENCL uses Gaussian mutation to produce offspring from parents, al-
though non-Gaussian mutation such as Cauchy mutation [64] and Lévy
mutation [32] can also be used. The mutation is carried out in two steps:
(i) weight mutation, and (ii) further weight training. In the first step, nb par-
ent networks are selected at random to create nb offspring. The parameter
nb is a parameter specified by a user. The probability for selecting a parent
network is same. The following is used for weight mutation [34]:

w
′
ij = wij + N(0, 1) (13)

where w
′
ij and wij denote the weights of offspring i and parent i, respectively,

i = 1, · · · , nb, j is the index number of weights. N(0, 1) denotes a Gaussian
random variable with mean zero and standard deviation one.

In the second step, the nb offspring ANNs are further trained by NCL [33].
EENCL selects the fittest M ANNs from the union of M parents ANN and
nb offspring ANN. Here M is the number of individuals in the population.
EENCL repeats the process of offspring generation and selection process for
the g generation specified by a user.

A population of ANNs is found after the evolutionary process has finished.
Now a question arises as to how to form the ensemble from a population of
ANNs. The most convenient way is to use all ANNs – that is, the whole
population in the last generation. The other way is to use a subset of popula-
tion by selecting one representative from each species in the last generation.
The species in the population can be obtained by clustering the individuals
in the population using any clustering algorithm (such as the k-means algo-
rithm) [35]. The latter may reduce the size of an ensemble without worsening
its performance too much. In EENCL, these two approaches were used to form
ensembles.

Three combination methods were used to determine the output of an en-
semble from different ANNs used for forming the ensemble, these being simple
averaging, majority voting and winner-takes-all. In simple averaging, the out-
put of the ensemble is obtained by averaging the output of individual ANNs
in the ensemble. In majority voting, the output of the greatest number of
individual ANNs will be the output of the ensemble. If there is a tie, the



864 M.M. Islam and X. Yao

output of the ensemble is rejected. In winner-takes-all, the output of the
ensemble is only decided by the individual ANN whose output has the highest
activation.

4.2 Experimental Studies

EENCL was applied on two benchmark problems: the Australian credit card
assessment problem and the diabetes problem. The n-fold cross-validation
technique was used to divide the data randomly into n mutually exclusive
data groups of equal size. In each train-and-test process, one data group is
selected as the testing set, and the other (n− 1) groups become the training
set. The estimated error rate is the average error rate from these n groups. In
this way, the error rate is estimated efficiently and in an unbiased way. The
parameter n was set to be 10 for the Australian credit card data set, and 12
for the diabetes data set.

The same parameters were used for both problems. They are as follows:
population size 25, number of generations 200, reproduction block size nb 2,
strength parameter λ for NCL [33] 0.75, number of training epochs 5, mini-
mum number of cluster sets 3, and the maximum number of cluster sets 25.
The ANNs used in the population are multilayer perceptrons with one hidden
layer and five hidden nodes.

Results

All the results presented in this Section are summarized from results presented
in [34]. Table 2 shows the results of EENCL for the two data sets, where the

Table 2. Accuracy rates of EENCL for the Australian credit card and the diabetes
data sets. The results are averaged on 10-fold cross-validation for the Australian
credit card data set, and 12-fold cross-validation for the diabetes data set. The
Mean, SD, Min, and Max indicate the mean value, standard deviation, minimum,
and maximum value, respectively (Note that the results presented in this table have
been summarized from [34])

Accuracy
rate

Simple averaging Majority voting Winner-takes-all

Training Testing Training Testing Training Testing

Credit Mean 0.910 0.855 0.917 0.857 0.887 0.865
card SD 0.010 0.039 0.010 0.039 0.007 0.028

Min 0.897 0.797 0.900 0.812 0.874 0.812
Max 0.924 0.913 0.928 0.913 0.895 0.913

Diabetes Mean 0.795 0.766 0.802 0.764 0.783 0.779
SD 0.007 0.039 0.007 0.042 0.007 0.045
Min 0.783 0.703 0.786 0.688 0.774 0.703
Max 0.805 0.828 0.810 0.828 0.794 0.844



Evolving Artificial Neural Network Ensembles 865

Table 3. Accuracy rates of the ensemble formed by the representatives from species.
The results are averaged on 10-fold cross-validation for the Australian credit card
data set, and 12-fold cross-validation for the diabetes data set. Mean, SD, Min, and
Max indicate the mean value, standard deviation, minimum, and maximum value,
respectively (Note that the results presented in this table have been summarized
from [34])

Accuracy
rate

Credit card Diabetes

Training Testing Training Testing

Mean 0.887 0.868 0.783 0.777
SD 0.004 0.030 0.009 0.042
Min 0.881 0.812 0.770 0.719
Max 0.890 0.913 0.798 0.844

ensembles were formed using the whole population in the last generation.
The accuracy rate refers to the percentage of correct classifications produced
by EENCL. Comparing the accuracy rates obtained by the three combina-
tion methods, winner-takes-all outperformed simple averaging and majority
voting on both problems. In simple averaging and majority voting, all individ-
uals are treated equally. However, not all individuals are equally important.
Because different individuals created by EENCL were able to specialize to dif-
ferent parts of the testing set, only the outputs of these specialists should be
considered to make the final decision of the ensemble for this part of the test-
ing set. The winner-takes-all combination method performed better because
there are good and poor individuals for each pattern in the testing set, and
winner-takes-all selects the best individual.

The results of the ensemble formed by the representatives from species
are given in Table 3. The combination method used is winner-takes-all. The
t-test statistics comparing the accuracies of the ensembles using the represen-
tatives from species to the ensembles using the whole population are 0.80 for
the Australian credit card data set, and −0.36 for the diabetes data set. No
statistically significant difference was observed between them for both data
sets (p > 0.05), which implies that the ensemble does not have to use the
whole population to achieve good performance. The size of the ensemble can
be substantially smaller than the population size. The reduction in the size of
the ensembles can be seen from Table 4, which gives the sizes of the ensembles
using the representatives from species.

5 Constructive Approaches to Ensemble Learning

Determination of ensemble size by an evolutionary approach was presented in
Sect. 4.1. The problem with ENNCL [34] is that it only determines the number
of individual ANNs in the ensemble automatically, but the sizes of the ANNs



866 M.M. Islam and X. Yao

Table 4. Sizes of the ensembles using the representatives from species. The results
are averaged on 10-fold cross-validation for the Australian credit card data set, and
12-fold cross-validation for the diabetes data set. Mean, SD, Min, and Max indicate
the mean value, standard deviation, minimum, and maximum value, respectively
(Note that the results presented in this table have been summarized from [34])

Ensemble size

Mean SD Min Max

Credit card 13.2 7.8 5 25
Diabetes 16.3 6.4 5 25

need to be specified by the user. It is well known that the accuracy of ANNs
is greatly dependent on their size. This means random selection of the ANN
sizes may hurt the ensemble performance. This is because the performance of
ensembles not only depends on the diversity of individual ANNs but also on
ANN accuracy. The aim of this Section is to present a constructive algorithm
for training cooperative neural-network ensembles (CNNEs) [37].

Unlike most previous studies on training ensembles, CNNE puts empha-
sis on both accuracy and diversity among individual ANNs in an ensemble. It
uses a constructive approach to determine automatically the number of ANNs
in an ensemble and of hidden neurons in the ANNs. The automatic determi-
nation of hidden neurons ensures accuracy of individual ANNs in designing
the ensemble. CNNE trains each individual ANN with a different number of
training epochs, which is determined automatically by its training process.
Like ENNCL [34], it also uses NCL [33] to train individual ANNs so that
they can learn different aspects or parts of the training data. The use of NCL
and different training epochs reflects CNNE’s emphasis on diversity among
individual ANNs in the ensemble.

A number of issues – such as the number of individual ANNs in an ensem-
ble, the number of hidden nodes in the ANNs, and the number of epochs
required for training ANNs – need to be addressed when designing ensem-
bles. This means the design of ANN ensembles could be formulated as a
multi-objective optimization problem. CNNE uses a simple approach based on
incremental training in designing ensembles. It tries to minimize the ensemble
error first by training a minimal ensemble architecture, then by adding several
hidden nodes one by one to existing ANNs, and lastly by adding new ANNs
one by one. The minimal ensemble architecture consists of two ANNs with
one hidden layer in each ANN and one node in the hidden layer.

The main structure of CNNE is shown in Fig. 2, and a detailed description
can be found in [37]. It is not clear from the figure when and how to add
hidden nodes and individual ANNs to the ensemble architecture. CNNE uses



Evolving Artificial Neural Network Ensembles 867

Final enseble
Yes

No

Yes

Yes

Create a minimal ANN
ensemble architecture

Replace the labels of ANNs

Stop ANN
construction or add

nodes to ANNs 

Ensemble error
E acceptable

?

Add a new
ANN to the
ensemble

Train all individual ANNs
in the ensemble

Add nodes to ANNs

No

Fig. 2. The major steps of CNNE [37] c© 2003



868 M.M. Islam and X. Yao

a simple criteria for adding hidden nodes and ANNs, based on the contribution
of ANNs to the ensemble. The following is used to determine the contribution:

Ci = 100
(

1
E
− 1

Ei

)
(14)

where E is the ensemble error including individual ANN i, and Ei is the
ensemble error excluding individual ANN i. CNNE adds hidden nodes to an
individual ANN when its contribution to the ensemble does not improve much
after a certain amount of training. An individual ANN is added to the ensem-
ble when adding several hidden nodes to the previously added ANN have failed
to reduce the ensemble error significantly. When a new ANN is added to the
ensemble, CNNE stops the construction process of the previously added ANN.
This means that no hidden node will be added to the previously added ANN
in future.

5.1 Experimental Studies

CNEE was applied to seven benchmark problems: the Australian credit card
assessment problem, the breast cancer problem, the diabetes problem, the
glass problem, the heart disease problem, the letter recognition problem, and
the soybean problem. The data sets representing these problems were obtained
from the UCI machine learning benchmark repository. For all our experiments,
each data set was partitioned into three subsets: a training set, a validation
set and a testing set. The size of the training set, validation set, and testing
set was 50, 25, and 25% of all examples, respectively. The only exception is
the letter data set, where 16,000 and 2,000 examples were randomly selected
from 20,000 examples for the training and validation sets, and the remaining
2,000 examples were used for the testing set.

Initial connection weights for individual ANNs in an ensemble were ran-
domly chosen in the range −0.5 to 0.5. The learning rate and momentum
for training individual ANNs were chosen in the range 0.10–0.50 and 0.5–0.9,
respectively. The number of training epochs for partial training of individual
ANNs was chosen between 5 and 25. The number of hidden nodes used for
halting the construction of individual ANNs was chosen between one and five.
The threshold value ε was chosen between 0.10 and 0.20. These parameters
were chosen after some preliminary experiments; they were not meant to be
optimal. The parameter λ used to adjust the strength of the penalty term was
set to 1.0.

Results

Table 5 show the results of CNNE over 30 independent runs on the seven
different problems. The results presented in this table are summarized from
[37]. The error rates in the table refer to the percentage of wrong classifications



Evolving Artificial Neural Network Ensembles 869

Table 5. Architectures and accuracies of ensembles produced by CNNE for seven
different classification problems. The results were averaged over 30 independent
runs. M and N indicate the number of ANNs in an ensemble and of hidden nodes
in an ANN, respectively (Note that the results presented in this table have been
summarized from [37])

τ = 10, mh = 4 τ = 10, mh = 2 τ = 15, mh = 2

M N Error M N Error M N Error
rate rate rate

Credit card 6.5 5.3 0.090 7.8 4.7 0.092 7.4 4.3 0.091
Breast cancer 3.9 3.6 0.015 4.8 2.9 0.013 4.5 2.5 0.012
Diabetes 4.7 4.5 0.201 6.5 3.4 0.198 6.2 3.2 0.196
Glass 4.9 4.6 0.261 6.2 3.8 0.268 6.0 3.5 0.258
Heart 4.6 6.5 0.140 5.5 4.9 0.134 5.8 4.2 0.138
Letter 11.6 10.6 0.067 15.3 8.5 0.062 13.9 8.1 0.060
Soybean 5.3 5.5 0.081 7.1 4.2 0.076 6.8 3.8 0.078

produced by the trained ensemble on the testing set. M and N represent the
number of ANNs in an ensemble and of hidden nodes in an ANN, respectively.

It can be observed from Table 5 that the ensemble architectures learned by
CNNE were influenced by the values of user specified parameters τ and mh.
For example, for the credit card problem, when τ = 10 and mh = 4 the average
number of individual ANNs and hidden nodes were 6.5 and 5.3, respectively,
and the average number of individual ANNs and hidden nodes were 7.8 and
4.7, respectively, when τ = 10 and mh = 2. This indicates that for the same
value of τ the number of individual ANNs in an ensemble increases when the
number of hidden nodes in the ANNs decreases. This is reasonable because
a small ANN has only a limited processing power. CNNE added more ANNs
to the ensemble when the size of individual ANNs was small. However, it
is worth noting that the testing error rate remained roughly the same for
different parameter settings and different ensemble architectures. The choice
of different parameters did not affect the performance of the learned ensembles
much, which is a highly desirable feature for any ANN training algorithm.

The ability of CNNEs to automatically construct different ensembles for
different problems can be clearly seen from Table 5. CNNE produced large
ensembles for the letter problem, which is large in comparison with the other
problems here, and smaller ensembles for other problems. However, there are
other factors in addition to the size of training sets – for example the com-
plexity of the given problem and noise in the training set – that influence the
ensemble architecture. For instance, the number of training examples for the
diabetes problem was 384, while it was 342 for the soybean problem. In terms
of average results, CNNE produced ensembles that had 4.7 individual ANNs
with 4.5 hidden nodes for the diabetes problem, while it produced ensembles



870 M.M. Islam and X. Yao

that had 5.3 individual ANNs with 5.5 hidden nodes for the soybean problem.
In general, all the above examples illustrated the same point, namely CNNEs
ability to determine the ensemble automatically for different problems without
human intervention.

6 Multi-Objective Approaches to Ensemble Learning

As mentioned previously, ensemble learning could be formulated as a multi-
objective optimization problem. The aim of this Section is to introduce multi-
objective evolutionary approaches to ensemble learning. The idea of designing
ANNs using a multi-objective evolutionary approach was first considered
by [3], in which a new algorithm, called memetic Pareto artificial neural net-
work (MPANN) is proposed for training ANNs. It combines a multi-objective
evolutionary algorithm and a gradient-based local search in reducing network
complexity and training error. MPANN was later applied for learning and
formation of ANN ensembles with a different multi-objective formulation [4,5].

When a population of ANNs is evolved using a multi-objective evolution-
ary approach different ANNs in the population may be good for different
objectives. This means we are getting a set of near optimal ANNs that can
easily be used for constructing ensembles. In addition, the use of an evolu-
tionary approach would speed up finding a set of near optimal solutions. This
is because the evolutionary approach uses a multi-directional search scheme
instead of a unidirectional search scheme as used by conventional approaches.

Recently Chandra and Yao proposed an algorithm, called diverse and
accurate ensemble learning algorithm (DIVACE), that a uses multi-objective
evolutionary approach to ensemble learning [13]. DIVACE tries to find an
optimum tradeoff between diversity and accuracy by treating them explicitly
as multi-evolutionary pressures. [12] give a good account of why diversity is
necessary in ANN ensembles, and present a taxonomy of methods that enforce
it and which are used in practice. The evolutionary process of DIVACE is quite
similar to the one used in pareto differential evolution [1] and in MPANN [4,5].
It also has three main components – namely fitness evaluation, selection and
genetic operations, as with conventional EAs.

Fitness evaluation in DIVACE is not straightforward and is based on the
non-dominated sorting procedure proposed by [49]. This sorting procedure
can be described as follows: Let there are two solutions S1 and S2 for a given
problem. A solution is considered optimal if it satisfies all n objective of the
problem. According to [49], the solution S1 is said to ‘dominate’ solution S2

if S1 is not worse than S2 in all n objectives and S1 is strictly better than S2

in at least one objective. This is the concept of non-domination. After non-
dominated sorting, a set of individuals is found which is better than the rest
of the individuals in the population.



Evolving Artificial Neural Network Ensembles 871

Since the evolutionary process of DIVACE is similar to one used in Pareto
differential evolution [1] – a variant of differential evolution [50] – three parents
are randomly selected from the non-dominated set for the crossover and muta-
tion genetic operations. DIVACE incorporates the idea of simulated annealing,
which makes the variance of the Gaussian distribution used for crossover
adaptive. The following equations are used to produce offspring by crossover:

whi = wα1
hi + N

(
0, σ2

)
(wα2

hi − wα3
hi ) (15)

woh = wα1
oh + N

(
0, σ2

)
(wα2

oh − wα3
oh ) (16)

where whi and woh are the weights (input to hidden layer and hidden to out-
put layer, respectively) of the child generated; α1, α2 and α3 indicate three
parents. Mutation is applied on an offspring generated by crossover with prob-
ability 1/N , where N is the size of the population. The following equations
are used for mutation.

whi = whi + N (0, 0.1) (17)
woh = woh + N (0, 0.1) (18)

6.1 Experimental Studies

This Section presents some results obtained on testing DIVACE on the
Australian credit card assessment and diabetes problems. The experimental
setup is similar to that in [4, 5], in order to facilitate comparison with pre-
vious work and for consistency. We used 10-fold and 12-fold cross validation
for the card and diabetes problems, respectively. Three combining methods
– namely simple averaging, majority voting and winner-takes-all are used in
the experiments.

Results

During the course of the evolutionary process, it was expected that each mem-
ber in the Pareto (non-dominated) set (after every generation) would perform
well on different parts of the training set. Table 6 shows the performance

Table 6. Performance (accuracy rates) of the ensemble formed using DIVACE on the
Australian credit card assessment data set (the results in this table are summarized
from [13])

Simple averaging Majority voting Winner-takes-all

Training Testing Training Testing Training Testing

Mean 0.872 0.862 0.867 0.857 0.855 0.849
SD 0.007 0.049 0.007 0.049 0.007 0.053
Max 0.884 0.927 0.879 0.927 0.864 0.927
Min 0.859 0.753 0.856 0.768 0.842 0.753



872 M.M. Islam and X. Yao

Table 7. Performance (accuracy rates) of the ensemble formed using DIVACE on
the Diabetes data set (the results in this table are summarized from [13])

Simple averaging Majority voting Winner-takes-all

Training Testing Training Testing Training Testing

Mean 0.780 0.773 0.783 0.766 0.766 0.766
SD 0.006 0.050 0.005 0.057 0.017 0.049
Max 0.791 0.859 0.791 0.875 0.796 0.843
Min 0.768 0.687 0.772 0.671 0.730 0.671

accuracy of the formed ensemble on the Australian credit card assessment
data set. Table 7 shows the same for the Diabetes data set. Good performance
can be observed for the DIVACE algorithm.

7 Conclusions

Combining ANNs with evolutionary computation has been a popular topic
since the late 1980s. While the early work tended to focus on evolving single
ANNs, at the level of weights, architectures and learning rules, recent work
has moved towards evolving ANN ensembles. This is a natural trend because
it is often impractical to evolve or design a monolithic ANN when the problem
to be solved becomes larger and more complex; a divide-and-conquer strat-
egy must be used in practice. ANN ensembles can be regarded as an effective
approach to implement the divide-and-conquer strategy in practice. Evolu-
tionary computation provides a powerful method for evolving such ensembles
automatically, including automatic determination of weights, individual ANN
architectures and the ensemble structure. This Chapter has reviewed some of
the latest developments in the area of evolving ANN ensembles.

Acknowledgements

Portions of this chapter originally appeared in X. Yao and Md. M. Islam,
Evolving artificial neural network ensembles, IEEE Computational Intel-
ligence Magazine, 3(1): 31–42, February 2008. Permission to reprint this
material in the current Compendium is gratefully acknowledged.

References

1. Abbass HA, Sarker R, Newton C (2001) PDE: A Pareto-frontier differential
evolution approach for multi-objective optimization problems. In: Kim J-H (ed.)
Proc. IEEE Conf. Evolutionary Computation (CEC2001), 27–30 May, Seoul,
South Korea. IEEE Press, Piscataway, NJ: 971–978.



Evolving Artificial Neural Network Ensembles 873

2. Abbass HA (2002) The self-adaptive Pareto differential evolution algorithm. In:
Fogel DB, El-Sharkawi MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton
M (eds.) Proc. IEEE Conf. Evolutionary Computation (CEC2002), 12–17 May,
Honolulu, HI. IEEE Press, Piscataway, NJ: 831–836.

3. Abbass HA (2003) Speeding up backpropagation using multiobjective evolu-
tionary algorithms. Neural Computation, 15(11): 2705–2726.

4. Abbass HA (2003) Pareto neuro-evolution: constructing ensemble of neural net-
works using multi-objective optimization. In: Sarker R, Reynolds R, Abbass H,
Tan KC, McKay B, Essam D, Gedeon T (eds.) Proc. IEEE Conf. Evolutionary
Computation (CEC2003), 8–12 December, Canberra, Australia. IEEE Press,
Pisctaway, NJ: 2074–2080.

5. Abbass HA (2003) Pareto neuro-ensemble. In: Gedeon TD, Chun L, Fung C
(eds.) Proc. 16th Australian Joint Conf. Artificial Intelligence, 3–5 December,
Perth, Australia. Springer-Verlag, Berlin: 554–566.

6. Angeline PJ, Sauders GM, Pollack JB (1994) An evolutionary algorithm that
constructs recurrent neural networks. IEEE Trans. Neural Networks, 5(1): 54-65.

7. Baldi PF, Hornik K (1995) Learning in linear neural networks: a survey. IEEE
Trans. Neural Networks, 6(4): 837–858.

8. Blake C, Merz C UCI repository of machine learning databases. (available
online at http://www.ics.uci.edu/m̃learn/MLRepository.html – last accessed
September 2007).

9. Belew RK, McInerney J, Schraudolph NN (1991) Evolving networks: using
genetic algorithm with connectionist learning. Technical Report CS90- 174
(revised), Computer Science and Engineering Department (C-014), University
of California, San Diego, February.

10. Bollé D, Dominguez DRC, Amari S (2000) Mutual information of sparsely coded
associative memory with self-control and tenary neurons. Neural Networks, 1:
452–462.

11. Brown G, Wyatt JL (2003) Negative correlation learning and the ambiguity
family of ensemble methods. In: Windeatt T, Roli F (eds.) Proc. Intl. Workshop
Multiple Classifier Systems, 11–13 June, Guildford, UK. Springer-Verlag, Berlin:
266–275.

12. Brown G, Wyatt JL, Harris R, Yao X (2005) Diversity creation methods: a
survey and categorisation. J. Information Fusion, 6: 5–20.

13. Chandra A, Yao X (2006) Ensemble learning using multi-objective evolutionary
algorithms. J. Mathematical Modeling and Algorithms, 5(4): 417–445.

14. Darwen PJ, Yao X (1996) Every niching method has its niche: fitness sharing and
implicit sharing compared. In: Ebeling W, Rechenberg I, Schwefel H-P, Voight
H-M (eds.) Parallel Problem Solving from Nature (PPSN) IV, 22–26 September,
Berlin, Germany. Lecture Notes in Computer Science 1141. Springer-Verlag,
Berlin: 398–407.

15. Darwen PJ, Yao X (1997) Speciation as automatic categorical modularization.
IEEE Trans. Evolutionary Computation, 1: 101–108.

16. Dietterich TG (1998) Machine-learning research: four current directions. AI
Magazine, 18(4): 97–136.

17. Finnoff W, Hergent F, Zimmermann HG (1993) Improving model selection by
nonconvergent methods. Neural Networks, 6: 771–783.

18. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence Through Simulated
Evolution. Wiley, New York, NY.



874 M.M. Islam and X. Yao

19. Fogel GB, Fogel DB (1995) Continuous evolutionary programming: analysis and
experiments. Cybernetic Systems, 26: 79–90.

20. Fogel DB (1995) Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE Press, Piscataway, NJ.

21. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA.

22. Hancock PJB (1992) Genetic algorithms and permutation problems: a com-
parison of recombination operators for neural net structure specification. In:
Whitley D, and Schaffer JD (eds.) in Proc. Intl. Workshop Combinations
Genetic Algorithms Neural Networks (COGANN-92), 6 June, Maryland, IEEE
Computer Society Press, Los Alamitos, CA: 108–122.

23. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(10): 993–1001.

24. Hashem S (1993) Optimal linear combinations of neural networks. PhD disser-
tation. School of Industrial Engineering, Purdue University, West Lafayette, IN,
December.

25. Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, Chichester, UK.

26. Khare V, Yao X, and B. Sendhoff B (2006) Multi-network evolutionary systems
and automatic problem decomposition. Intl. J. General Systems, 35(3): 259–274.

27. Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and
active learning. Neural Information Processing Systems, 7: 231–238.

28. Krogh A, Sollich P (1997) Statistical mechanics of ensemble learning. Physics
Reviews E, 55: 811–825.

29. Kwok TY, Yeung DY (1997) Constructive algorithms for structure learning
in feedforward neural networks for regression problems. IEEE Trans. Neural
Networks, 8: 630–645.

30. Kwok TY, Yeung DY (1997) Objective functions for training new hidden units
in constructive neural networks. IEEE Trans. Neural Networks, 8: 1131–1148.

31. Lehtokangas M (1999) Modeling with constructive backpropagation,” Neural
Networks, 12: 707–716.

32. Lee CY, Yao X (2004) Evolutionary programming using the mutations based
on the Lévy probability distribution. IEEE Trans. Evolutionary Computation,
8(1): 1–13.

33. Liu Y, Yao X (1999) Ensemble learning via negative correlation,” Neural
Networks, 12: 1399–1404.

34. Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative corre-
lation learning. IEEE Trans. Evolutionary Computation, 4(4): 380–387.

35. MacQueen J (1967) Some methods for classification and analysis of multi-
variate observation. In: Proc. 5th Berkely Symp. Mathematical Statistics and
Probability, Berkely, CA, University of California Press, 1: 281–297.

36. Mahfoud SW (1995) Niching methods for genetic algorithms. PhD Thesis, Dep-
tartment of General Engineering, University of Illinois, Urbana-Champaign,
IL.

37. Monirul Islam M, Yao X, Murase K (2003) A constructive algorithm for training
cooperative neural network ensembles. IEEE Trans. Neural Networks, 14: 820–
834.

38. Mulgrew B, Cowan CFN (1988) Adaptive Filters and Equalizers. Kluwer,
Boston, MA.



Evolving Artificial Neural Network Ensembles 875

39. Odri SV, Petrovacki DP, Krstonosic GA (1993) Evolutional development of a
multilevel neural network. Neural Networks, 6(4): 583–595.

40. Opitz DW, Shavlik JW (1996) Generating accurate and diverse members of a
neural-network ensemble. Neural Information Processing Systems, 8: 535–541.

41. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study.
J. Artificial Intelligence Research, 11: 169–198.

42. Perrone MP (1993) Improving regression estimation: averaging methods for vari-
ance reduction with extensions to general convex measure optimization. PhD
Dissertation, Department of Physics, Brown University, Providence, RI, May.

43. Prechelt L (1994) Proben1-A set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, Fakultät für Informatik, University
of Karlsruhe, Germany, September.

44. Prechelt L (1995) Some notes on neural learning algorithm benchmarking. Neu-
rocomputing, 9(3): 343–347.

45. Rissanen J (1978) Modeling by shortest data description. Automatica, 14: 465–
471.

46. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal represen-
tations by error propagation. In: Rumelhart DE, McClelland JL (eds.) Parallel
Distributed Processing: Explorations in the Microstructures of Cognition, I. MIT
Press, Cambridge, MA: 318–362.

47. Sharkey AJC (1996) On combining artificial neural nets. Connection Science,
8(3/4): 299–313.

48. Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of genetic algorithms
and neural networks: a survey of the state of the art. In: Whitley D, Schaffer
JD (eds.) Proc. Intl. Workshop Combinations Genetic Algorithms Neural Net-
works (COGANN-92), 6 June, Maryland. IEEE Computer Society Press, Los
Alamitos, CA: 1–37.

49. Srinivas N, Deb K (1994) Multi-objective function optimization using non-
dominated sorting genetic algorithms. Evolutionary Computation, 2(3): 221–248.

50. Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 con-
test by differential evolution. In: Fukuda T, Furuhashi T, Back T, Kitano H,
Michalewicz (eds.) Proc. IEEE Intl. Conf. Evolutionary Computation, 20–22
May, Nagoya, Japan. IEEE Computer Society Press, Los Alamitos, CA: 842–844.

51. Syswerda G (1991) A study of reproduction in generational and steady state
genetic algorithms. In: Rawlins GJE (ed.) Foundations of Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA: 94–101.

52. Yao X (1991) Evolution of connectionist networks. In: Proc. Intl. Symp. AI,
Reasoning & Creativity, Griffith University, Queensland, Australia, 49–52.

53. Yao X (1993) An empirical study of genetic operators in genetic algorithms.
Microprocessors and Microprogramming, 38: 707–714.

54. Yao X (1993) A review of evolutionary artificial neural networks. Int. J. Intelli-
gent Systems, 8(4): 539–567.

55. Yao X (1993) Evolutionary artificial neural networks. Int. J. Neural Systems,
4(3): 203–222.

56. Yao X (1994) The evolution of connectionist networks. In: Dartnall T. (ed.)
Artificial Intelligence and Creativity. Kluwer, Dordrecht, The Netherlands: 233–
243.

57. Yao X (1995) Evolutionary artificial neural networks. In: Kent A, Williams JG
(eds.) Encyclopedia of Computer Science and Technology 33, Marcel Dekker,
New York, NY: 137–170.



876 M.M. Islam and X. Yao

58. Yao X, Shi Y (1995) A preliminary study on designing artificial neural net-
works using co-evolution. In: Toumodge S, Lee TH, Sundarajan N (eds.) Proc.
IEEE Intl. Conf. Intelligent Control Instrumentation, 2–8 July, Singapore. IEEE
Computer Society Press, Los Alamitos, CA: 149–154.

59. Yao X (1999) Evolving artificial neural networks. Proc. IEEE, 87: 1423–1447.
60. Yao X, Liu Y (1996) Ensemble structure of evolutionary artificial neural net-

works. In: Fukuda T, Furuhashi T, Back T, Kitano H, Michalewicz (eds.)
Proc. 1996 IEEE Intl. Conf. Evolutionary Computation (ICEC96), 20–22 May,
Nagoya, Japan. IEEE Computer Society Press, Los Alamitos, CA: 659–664.

61. Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural
networks. IEEE Trans. Neural Networks, 8(3): 694–713.

62. Yao X, Liu Y (1998) Making use of population information in evolutionary arti-
ficial neural networks. IEEE Trans. Systems, Man, and Cybernetics B, 28(3):
417–425.

63. Yao X, Liu Y, Darwen P (1996) ‘How to make best use of evolutionary learn-
ing’. In: Stocker R, Jelinek H, Durnota B (eds.) Complex Systems: From Local
Interactions to Global Phenomena. IOS Press, Amsterdam, The Netherlands:
229–242.

64. Yao X, Liu Y, Lin G (1999) Evolutionary Programming Made Faster. IEEE
Trans. Evolutionary Computation, 3(2): 82–102.

65. Yao X, Islam MM (2008) Evolving artificial neural network ensembles. IEEE
Computational Intelligence Magazine, 3(1) (in press).



Resources

1 Key Books

Fogel DB (1995) Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ.

Haykin SY (1998) Neural Networks: A Comprehensive Foundation (2nd ed).
Prentice Hall, Englewood Cliffs, NJ.

Yao X (ed.) (1999) Evolutionary Computation: Theory and Applications.
World Scientific, Singapore.

Sharkey AJC (ed.) (1999) Combining Artificial Neural Nets: Ensemble and
Modular Multi-Net Systems. Springer-Verlag, London, UK.

Kuncheva LI (2004) Combining Pattern Classifiers Methods and Algorithms.
Wiley, Hoboken, NJ.

2 Key Survey/Review Articles

Kohonen T (1988) An introduction to neural computing. Neural Networks,
1(1): 3–16.

Yao X (1999) Evolving artificial neural networks. Proc. IEEE, 87(9): 1423–
1447.

Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a
survey and categorization. J. Information Fusion, 6: 5–20.



878 M.M. Islam and X. Yao

3 Organizations, Societies, Special Interest Groups

IEEE Computational Intelligence Society
http://www.ieee-cis.org/

International Neural Network Society
http://www.inns.org/

European Neural Network Society
http://www.snn.ru.nl/enns/

4 Research Groups

Natural Computation Group at the University of Birmingham, UK
http://www.cs.bham.ac.uk/research/labs/natural computation/

Machine Learning Research Group (MLRG) at the University of Wisconsin –
Madison, USA.
http://pages.cs.wisc.edu/∼shavlik/mlrg/

Neural Networks Research Group at the University of Texas, Austin
http://nn.cs.utexas.edu/

Computer Science and Artificial Intelligence Laboratory, MIT
http://www.csail.mit.edu/index.php

Centre of Excellence for Research in Computational Intelligence and Appli-
cations (CERCIA), UK
http://www.cercia.ac.uk/

5 Discussion Groups, Forums

Neural Network Forums
http://www.makhfi.com/cgi-bin/teemz/teemz.cgi

Neural Network Discussion Group
http://itmanagement.webopedia.com/TERM/N/neural network.html

6 Key International Conferences and Workshops

Congress on Evolutionary Computation (CEC)

International Conference on Parallel Problem Solving from Nature (PPSN)



Evolving Artificial Neural Network Ensembles 879

Neural Information Processing Systems (NIPS)

International Joint Conference on Neural Networks (IJCNN)

International Conference on Artificial Neural Networks (ICANN)

European Symposium on Artificial Neural Networks (ESANN)

International Conference on Neural Information Processing (ICONIP)

7 (Open Source) Software

Emergent Neural Network Simulation Software
http://neurobot.bio.auth.gr/archives/000116emergent neural network
simulation software formerly pdp.php

Forecasting with artificial neural networks
http://www.neural-forecasting.com/

NeuroDimension
http://www.nd.com/

Neural archive at FuNet
http://www.nic.funet.fi/

The PDP++ Software
http://www.cnbc.cmu.edu/Resources/PDP++//PDP++.html

Amygdala for simulating spiking neural networks
http://amygdala.sourceforge.net/

8 Data Bases

Birmingham Repository: Evolutionary Computation Benchmarking Reposi-
tory (EvoCoBR)
http://www.cs.bham.ac.uk/research/projects/ecb/

UCI repository of machine learning databases
http://www.ics.uci.edu/m̃learn/MLRepository.html

Neural Networks Databases – Benchmarks
http://www.fizyka.umk.pl/neural/node12.html



880 M.M. Islam and X. Yao

UCI KDD Archive
http://kdd.ics.uci.edu/

Netlib Repository
http://www.netlib.org/

Statlib
http://lib.stat.cmu.edu/


