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1 Introduction

1.1 Multi-Agent Systems and Self-organization

Many interaction processes in complex adaptive systems occur in groups, and
in order to organize knowledge, collaboration and a proper distribution of
functions and tasks, there is a need to analyze, model and develop computa-
tional systems in which several autonomous units interact, adapt and work
together in a common open environment, combining individual strategies into
overall behavior. The approach to engineering a desired system-level behav-
ior, adopted in this work, is based on a multi-agent system [11], in which the
preferred responses emerge as a result of inter-agent interactions.

Multi-agent systems (MAS) represent a new technology to engineer com-
plex adaptive systems. Informally, a MAS is composed of multiple interacting
units (agents). Each individual agent can have individual actions, plans, and
so on, while all agents work together towards a common goal. It is important
to distinguish between agent characteristics and MAS properties. An agent
may be described in terms of the following qualities [4,27, 28]:

e situatedness — an agent can receive sensory input from its environment and
can perform actions which change the environment in some way; no single
agent has access to what everyone else is doing;

e qutonomy — an agent has control over its own actions and internal state
without direct external intervention, and the agents are expected to self-
organize and survive on the basis of local, rather than global, information;

e temporal continuity — an agent is a continuously running process rather
than a function with fixed inputs and outputs;
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e adaptability — an agent makes decisions in accordance with various rules
and modifies the rules on the basis of new information;

e communication — agents frequently engage in communication with users
and each other;

e multi-platform functionality — some agents run on low-end platforms, some
on high-end platforms.

Some key concepts of MAS are as follows:

e cach agent has incomplete capabilities to solve the global problem

addressed by the MAS;

there is no global system control or external coordination;

data processed by the system is decentralized;

computation within the system is asynchronous;

robustness — the system is able to deal with unexpected changes in the

environment, and recover from its own and users’ errors;

e scalability — the system can be easily extended without a major redesign
of its individual parts, in other words, the effort required to extend the
system does not increase exponentially with the growth in the number of
agents;

e solutions obtained at the system level are not explicitly programmed, and
can be interpreted as emergent behavior.

Multi-agent interactions often lead to emergent patterns in overall system
behavior [for example, 28]. The emergence of system-level behavior out of
agent-level interactions is a distinguishing feature of complex multi-agent sys-
tems, making them very different from other complicated multi-component
systems, where multiple links among the components may achieve efficient
interaction and control with fairly predictable and often pre-optimized prop-
erties. However, the concept of emergence is a matter of considerable debate
[6]. In particular, emergence is an expected (but not guaranteed) property of
self-organization, while the latter is typically defined as the evolution of a sys-
tem into an organized form in the absence of external pressures. For example,
[5] described self-organization as:

“a set of dynamical mechanisms whereby structures appear at the
global level of a system from interactions among its lower-level com-
ponents. The rules specifying the interactions among the systems
constituent units are executed on the basis of purely local information,
without reference to the global pattern, which is an emergent property
of the system rather than a property imposed upon the system by an
external ordering influence.”

Despite the huge potential offered by self-organization, a solution based on
MAS technology is warranted only when the problem domain is non-trivial,
and can be characterized by the following three properties:
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e dynamism — the problem itself changes concurrently with the problem-
solving processes, forcing the latter to adapt;

e decentralization — the system’s computational architecture is spatially
distributed;

o computational complexity — the dimension of the full solution search space
is exponential in the dimension of the problem representation, for example,
optimization problems such as the Travelling Salesman Problem [8] and
the Minimum Energy Broadcast Problem [45].

Informally, the problem has ‘depth’ in three dimensions: time, space, and
computation. In the absence of at least one such requirement, it is quite likely
that a more conventional approach would be more appropriate. For instance,
if a problem is NP-hard and spatially distributed, but static, then it might
make sense to establish a predefined hierarchy of problem-solvers that process
and channel data to a single point where the global solution is integrated. If a
problem is NP-hard and changes in time, but is spatially localized, then again
a powerful incremental problem-solver located in a single place is the preferred
choice. Finally, if a problem can be solved in polynomial time, but is dynamic
and spatially distributed, then a dynamic hierarchy of problem-solvers may
be considered. A study of typical trade-offs is described in [34].

1.2 Multi-Agent Networks

A well-known instance of multi-agent systems is a multi-agent network, in
particular, a sensor network. A sensor network interconnects (often7 wire-
lessly) multiple spatially distributed autonomous devices (nodes or agents),
each capable of sensing, computation and communication, requiring limited
memory and power. Typically, a multi-agent network is decentralised. The
following summary proposed by [9], captures this requirement with three
constraints:

e there is no single central information fusion or coordination centre; no
node should be central to the successful operation of the network;

e there is no common communication facility; nodes cannot broadcast
results and communication must be kept on a strictly node-to-node basis
(although a broadcast medium is often a good model of real communication
networks);

e sensor nodes do not have any global knowledge of the sensor network
topology; nodes should only know about connections in their own neigh-
bourhood.

The last constraint distinguishes between decentralized systems where each
agent still has global information about the group and decentralized systems
where an agent has access only to local information from a small subset [22].

Sensor networks may be utilized in various tasks, for instance, monitoring
physical or environmental conditions at different locations, search, surveil-
lance, target tracking, mapping and exploration [22]. When networked nodes
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are controllable and/or have actuators, one may call such network an active
sensor network [21]. Typically, control complexity of large multi-agent net-
works grows rapidly with the number of agents [37], as well as the number
of simultaneous and spatiotemporally distributed real-time events. Thus, self-
organizing networks are ideally suited to implementing large sensor networks,
being both robust to failures of individual nodes and scalable in terms of
the number of detectable events, network size, and so on. Since the overall
network behavior is spread over multiple reconfigurable communication paths
and interactions, an incremental loss of a portion of the multi-agent network
will lead to an incremental loss in quality, rather than a catastrophic failure.

In general, a self-organizing multi-agent network is expected to be:

e sentient — relying on perception through sensing (but not necessarily
conscious);

e active — interrogating/probing the environment, and self-inspecting both
locally and globally [29, 35];

e reconfigurable — reacting in real time, robust to external and internal fluc-
tuations [32], and adapting to significant change through updating sensor
layouts, communication protocols, and power consumption modes;

e coordinated — behaving coherently as a dynamical system [36]; fusing the
data of individual agents into a joint shared model [9, 30];

e symbiotic — recognizing and forming relationships of mutual benefit or
dependence among various types of agents (for example, nodes in a sensor
network monitoring environment may assist in navigation of multi-robot
teams, while being powered by the robots when required) [13].

These desiderata call for an efficient network structure or topology. It
is obvious that a fixed topology is not likely to meet such objectives as
re-configurability, symbiosis, and the like. Instead, one may consider self-
organizing formation of links between nodes, leading to adaptive topologies.

1.3 Adaptive Topologies and Dynamic Hierarchies

Dynamic creation and maintenance of optimal topologies in large dynamic net-
works is a well-recognized challenge. It appears in many different contexts, for
example, as dynamic hierarchies in Artificial Life [32, 38], coalition formation
in Agent-based Systems [40], decentralized clustering in Multi-Agent Systems
[24], dynamic cluster formation in Mobile Ad Hoc Networks [20], decentralized
sensor arrays [25,26, 31], reconfigurable sensor networks [12, 33|, and similar.
In this Chapter, we consider a sub-problem from this class: dynamic clus-
ter formation in a sensor and communication network without centralized
controllers.

There is a distinction between sensor networks and sensor grids, as pointed
out in the recent literature, for instance:
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“Whereas the design of a sensor network addresses the logical and
physical connectivity of the sensors, the focus of constructing a sensor
grid is on the issues relating to the data management, computation
management, information management and knowledge discovery man-
agement associated with the sensors and the data they generate.”
14]

Dynamic sensor-data clustering is a significant issue addressed by sensor
grids. The clustering process is aimed at grouping entities with similar charac-
teristics together so that main trends or unusual patterns may be discovered.
In the absence of centralized controllers, this process can be described as self-
organization of dynamic hierarchies, with multiple cluster-heads emerging as
a result of inter-agent communications.

Decentralized clustering algorithms deployed in multi-agent networks are
hard to evaluate precisely for the reason of the diminished predictability
brought about by self-organization. In particular, it is hard to predict when the
cluster formation will converge to a stable configuration. The results presented
by [31] identified a predictor for the convergence time of dynamic cluster for-
mation in a specific topology (a rectilinear grid), based on the traffic volume
of asynchronous inter-agent communications. The work presented here is an
extension of the method to scale-free (sensor) grids/networks. In a scale-free
network, some nodes are highly connected in comparison to the rest of the
nodes in the network. Properties of scale-free networks have been extensively
studied in recent times, since a lot of real world networks seem to fall into
this category [1,10,17,46,47]; we shall briefly introduce this important class
of networks in the next Section.

The simple predictor mentioned above is implemented at two levels:

e the global level, where full information on nodes’ states and their inter-
connections is available, and

e the local level, where only partial information is obtained within a small
selected subset of nodes.

Quantitative measures of multi-agent dynamics can be used as feedback for
evolving agent behaviors [36]. Such measures can use either full information
on agent states and their inter-connections, or work with partial information,
obtained locally: localisable measures [34]. Of course localisable measures can
be embedded in the agents themselves and be accessible to selected nodes
(for example, hubs), controlling agent behaviors during run-time via adaptive
feedback. In general, however, the communication role of a hub should not
be confused with its possible control role — in some applications, the only
information available at the hub is the number of transiting messages and not
their content, and the main decision expected from the hub is a decision on
whether to interrupt current multi-agent dynamics without knowing specific
details of the exchanged messages.
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Our immediate goal is predicting when the cluster formation will converge
to a stable configuration. In achieving this goal, we consider an underlying
time series, the traffic volume of inter-agent communications, and relate its
irregularity during an initial interval to the eventual convergence time. Clearly,
the shorter the initial interval, the more efficient is the prediction: for instance,
when a predicted value exceeds a threshold, agents may adjust parameters and
heuristics used in the clustering process.

A simplified version of a decentralized adaptive clustering algorithm
operating within a scale-free network, developed for evaluation purposes, is
described in the next Section. The proposed predictor for the convergence
time of cluster formation is then described, followed by a discussion of the
obtained results.

2 Dynamic Cluster Formation Algorithm

The dynamic cluster formation algorithm has been implemented in a scale-
free topology. In a scale-free topology, it is not uncommon to find nodes with
a degree (the number of connections from a node) that is much higher than
the average degree of that network. These highly connected nodes are called
hubs and can play specific roles in their networks, depending on the network
domain. Hubs are often formed by a growth model that shows preferential
attachment. That is, when a new node is attached to the network, it is more
likely to be attached to a node with a higher degree. A general model of
this type of growth is that the probability of a new node being attached to
a particular existing node is proportional to the number of connections from
that existing node [3]. According to this model, starting from mg vertices (that
are typically fully connected), at each iteration a new vertex with m < myg
edges is attached to old vertices in such a way that the probability of being
connected to the existing vertex i is proportional to the degree k;, and is set
to f;w where the sum is computed over all nodes. If the parameter m = 1,
then the growth results in a scale-free tree graph; otherwise, if m > 1, then a
scale-free network is produced.

A degree distribution (sometimes called vertex degree distribution) is the
probability distribution function describing the total number of vertices in a
network with a given degree. The degree distribution of a scale-free network
follows a power law, in the form of p(z) ~ k™7, where k is the degree. The
power index -y is usually between 2.1 and 3.0 for most biological, social and
technological networks [42]. Some scale-free networks may have rapid cut-
offs after a certain degree, so that the degree distribution takes the form of
p(z) = k77¢(k/€), where ¢(k/&) is the step function [42] which introduces a
cut-off at some characteristic scale £. When & is very small, p(z) =~ k=7¢(k/§)
and the degree distribution is single-scaled. As & grows, a power law with a
sharp cut-off is obtained, while scale-free nets are observed for large €.



Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 491

Scale-free networks generally display the small world phenomenon, in that
the average distance between any two vertices is very small, compared to a
regular or randomly connected network. Scale-free networks also tend to have
higher clustering coefficients. The clustering coefficient C' can be defined as
the probability of two nodes individually connected to a particular third node
being connected to cach other [23]. Formally,

O3 number of triangles in the graph (1)
B number of connected triples of vertices in the graph

where the multiplier 3 indicates that one triangle accounts for three individual
nodes that are each connected to two other nodes.

Scale-free networks are generally robust against random attacks, but highly
vulnerable against targeted attacks. In other words, removal of random nodes
will only slightly affect functionality of the networks, whereas removal of a
hub will drastically affect network functionality [2]. A sensor grid node within
a network communicates only with immediate neighbours: all data are pro-
cessed locally, and only information relevant to other regions of the grid is
communicated as a multi-hop message. A cluster-head may be dynamically
selected among the set of nodes and become a local coordinator of transmis-
sions within the cluster. The intersection of cluster-heads and hubs of the
scale-free network may be empty — in other words, a cluster-head does not
need to have many network connections. On the other hand, a non-hub cluster-
head would generate more intense communication traffic. Clusters may adapt,
that is, re-form when new data is obtained on the basis of local sensor signals.
Importantly, a cluster formation algorithm should be robust to such changes,
failures of individual nodes, communication losses, and the like.

As pointed out earlier, our main goal is an analysis of a representative clus-
tering technique in a dynamic and decentralized multi-agent setting, deployed
within a scale-free sensor grid, in terms of the predictability of its convergence
time. We represent a node’s sensory reading with a single aggregated value,
define ‘differences’ between cells in terms of this value, and cluster the nodes
while minimizing these ‘differences’.

The algorithm input is a series of events detected at different times and
locations, while the output is a set of non-overlapping clusters, each with
a dedicated cluster-head (network node) and a cluster map of its followers
in terms of their sensor-data and relative grid coordinates. The algorithm
is described in Appendix-A, and involves a number of inter-agent messages
notifying agents about their sensory data, together with changes in their rela-
tionships and actions. For example, an agent may send a recruit message to
another agent, delegate the role of cluster-head to another agent, or declare
‘independence’ by initiating a new cluster.

Most of these and similar decisions are based on the clustering heuristic
described by [24], and a dynamic offset range introduced by [26]. This heuristic
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determines if a cluster should be split in two, as well as the location of this
split. Each cluster-head (initially, each agent) broadcasts its recruit message
periodically, with a broadcasting period, affecting all agents with values within
a particular dynamic offset of the sensor reading detected by this agent. Every
recruit message contains the sensor data of all current followers of the cluster-
head with their relative coordinates (a cluster map). Under certain conditions,
an agent (which is not a follower in any cluster) receiving a recruit message
becomes a follower, stops broadcasting its own recruit messages and sends
its information to its new cluster-head indicating its relative coordinates and
the sensor reading. However, there are situations when the receiving agent
is already a follower in some cluster and cannot accept a recruit message by
itself — a recruit disagreement. In this case, this agent forwards the received
recruiting request to its present cluster-head. Every cluster-head waits for a
certain period, collecting all such forward messages, at the end of which the
clustering heuristic is invoked on the union set of present followers and all
agents who forwarded their new requests [26, 31].

Firstly, all n agents in the combined list are sorted in decreasing order
according to their sensor reading value x. Then, a series of all possible divisions
in the ordered set of agents is generated. That is, the first ordering is a cluster
with all agents in it; the second ordering has the agent with the largest value
in the first cluster and all other agents in the second cluster; and so forth (the
n th division has only the last n th agent in the second cluster). For each
of these divisions, the quality of clustering is measured by the total squared

error: ;
Ej =% % llz—myl|? (2)

i—1 ZEEArL',j

where z is a number of considered clusters (z = 2 when only one split is
considered), A; ; are the clusters resulting from a particular division, and m;_;
is the mean value of the cluster A; ;. We divide E? values by their maximum to
get a series of normalized values. Then we approximate the second derivative
of the normalized errors per division:

(E? | + E? | —2E?)
e T (3)

where h = 1/n.

If the peak of the second derivative is greater than some threshold for the
division j, we split the set accordingly; otherwise, the set will remain as one
cluster. When the clustering heuristic is applied, it may produce either one
or two clusters as a result. If there are two clusters, the offset of each new
cluster-head is modified. It is adjusted in such a way that the cluster-head of
the ‘smaller’” agents (henceforth, references like ‘larger’ or ‘smaller’ are relative
to the value x) can now reach up to, but not including, the ‘smallest’ agent in
the cluster of ‘larger’ agents. Similarly, the cluster-head of ‘larger’ agents can
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now reach down to, but not including, the ‘largest’ agent (the cluster-head)
of the cluster of ‘smaller’ agents. These adjusted offsets are sent to the new
cluster-heads along with their cluster maps.

The cluster-head which invoked the heuristic notifies new cluster-heads
about their appointment, and sends their cluster maps to them: a cluster-
information message. There are other auxiliary messages involved in the
algorithm but importantly, the cluster formation is driven by three types:
recruit, cluster-information, and forward messages. The first two types are
periodic, while the latter type depends only on the degree of disagreements
among cluster-heads. On the one hand, if there are no disagreements in the
clustering (for instance, if a clustering heuristic resulted in optimal splits even
with incomplete data), then there is no need to forward messages. On the other
hand, when cluster-heads frequently disagree on formed clusters, the forward
messages are common. In short, it is precisely the number of forward messages
traced in time — the traffic volume of inter-agent communications — that we
hope may provide an underlying time series {v(¢)} for our prognostic analysis,
as it exhibits both periodic and chaotic features.

The quality of clustering is measured by the weighted average cluster
diameter [49]. The average pair-wise distance D for a cluster C' with points
{z1,22,...,2n} is given by

7an 7an d(w;, ;)

i—1j-1

b= m(m —1)/2 )

where d(x;,2;) is the Euclidean distance between points x; and x;. The
weighted average cluster diameter for k clusters is given by

(m

i
= %
D:
i

i —1)D;
(5)

m;(m

k
2
, b

m
1

k
>
1
where m; is the number of elements in the cluster C; with pair-wise distance
D;. This metric is known to scale well with the size of data points and number

of clusters in a particular clustering. It does not, however, account for singleton
clusters, while at the same time favouring small clusters.

As pointed out by [26], the algorithm does not guarantee a convergence
minimizing this criterion. In fact, it may give different clusterings for the same
set of agent values, depending on the relative node locations within the net-
work. The reason is a different communication flow affecting the adjustment
of the offsets. Each time the clustering heuristic is executed in an agent, its
offsets are either left alone or reduced. The scope of agents involved in the
clustering heuristic depends on the order of message passing, which in turn
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Fig. 1. Varying convergence times 7" for different experiments tracing the whole
communication space

depends on the relative node locations. The adjusted offsets determine which
agents can be reached by a cluster-head, and this will affect the result of clus-
tering. Therefore, for any set of agent values, there are certain sequences of
events which yield better clustering results than others.

We conducted extensive simulations to determine whether the algorithm
is robust and scales well in terms of the quality of clustering and convergence,
as measured by the number of times the clustering heuristic was invoked
before stability is achieved with each data set — both for rectilinear grids [26]
and scale-free networks. While the simulation results show that the algorithm
converges and scales well in all cases, and in addition, is robust to dynam-
ics of the sensor data flux, the convergence time varies significantly (Figs. 1
and 2), without obvious indicative patterns — highlighting the need for its
better prediction.

3 Regularity of Multi-Agent Communication-Volume

In this Section, we focus on our main objective: prediction of the conver-
gence time T, based on regularity of an initial segment 0,...,{2 of the
‘communication-volume’ series {v(t)}, where 2 < T and v(t) is the number of
forward messages at time ¢. The series {v(t)} may be obtained by monitoring
the whole communication space, or by monitoring the communication mes-
sages through only selected nodes. Given the role played within the scale-free
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Fig. 2. Varying convergence times 7T for the same experiments as shown in Fig. 1,
but tracing communication traffic through the highest-ranked hub only

network by hubs, we rank the nodes by the number of their connections, and
monitor every node, producing multiple series {vy (¢)},1 < h < H, where H is
the total number of nodes in the network. Thus, each series {v,(¢)} traces the
number of messages passed through the first h nodes ranked by the number
of connections — for instance, {vy(¢)} traces the number of messages passed
through the hub with the most connections; {vs(t)} combines the number of
messages passed through the first two hubs with the highest number of con-
nections; and {vg (¢)} is identical to {v(t)}, as it traces the messages through
all the nodes in the network. The idea is then to determine whether monitor-
ing only a subset of nodes, ideally with h being small, is almost as good as
monitoring the whole network.

It is known that in many experiments, time series often exhibit irregular
behavior during an initial interval before finally settling into an asymptotic
state which is non-chaotic [7] — in our case, eventually converging to a fixed-
point (v(T') = 0; henceforth, we shall drop the subscript A if it does not matter
which series is being considered). The irregular initial part of the series may,
nevertheless, contain valuable information: this is particularly true when the
underlying dynamics are deterministic and exhibit ‘transient chaos’ [7,16]. Tt
was conjectured and empirically verified [31] that the described algorithm for
dynamic cluster formation creates multi-agent transient chaotic dynamics.

[31] used the Kolmogorov-Sinai entropy K, also known as metric entropy
[19,41], and its generalization to the order-¢ Rényi entropy K, [39]. The
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entropy K or K, is an entropy per unit time, or an ‘entropy rate’, and is
a measure of the rate at which information about the state of the system is
lost in the course of time. In particular, the predictor estimated the ‘correla-
tion entropy’ Ks using the algorithm of [15]. The predictor based on K5 uses
the initial segment of length 2 of the observed time series {v(¢)} in ‘convert-
ing’ or ‘reconstructing’ the dynamical information in one-dimensional data
to spatial information in the 7-dimensional embedding space [43], and also
depends on the length {2 and the embedding dimension 7. The method for
computing the Ko predictor is described in Appendix-B.

The predictor based on Ky was used in predicting convergence of clus-
ter formation within rectilinear grids. Here we apply this method to cluster
formation in scale-free sensor networks.

For each experiment s, we

(a) select an initial segment of length (2 of the time series; and

(b) compute the regularity predictor: the correlation entropy K (d, r, {2) for a
range of embedded dimensions d and a suitable precision r (see Appendix-
B for details).

Then,

(¢) given the estimates Ks(d,r, £2) for all the experiments, we correlate them
with the observed convergence times T by linear regression T' = a + bK5
and the corresponding correlation coefficient p(d, r, §2) between the series
T, and Ko(d,r, 2)s;

(d) we determine the embedding dimension d and the distance # which provide
the best fit: the maximum of p(d,r, £2).

This allows us to predict the time 7" of convergence to v(T') = 0, as
T = a(d, 7, 2) + b(d, 7, 2)K2(d, 7, 2) (6)

for any real-time run that produced the predictor value Ks(d,r, £2).

4 Experimental Results

The experiments included multiple scenarios, each of which was defined by a
specific scale-free tree graph, @ (more precisely, a specific degree distribution
in the corresponding graph); the number of nodes in the network, H; and
the number of events sensed by network, N. For example, two different scale-
free tree graphs @; and @2, both with 400 nodes and 100 events, may be
compared (Figs.3 and 4). In particular, we considered different values for N
(for example, N was set to 1/8,1/4,1/2 of H), given the same network @ with
fixed H. This approach evaluated the predictor with respect to the dynamics
in the communication space brought about by multiple events. In addition,
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Fig. 3. A scale-free tree graph &; used in experiments

Fig. 4. A scale-free tree graph @, used in experiments
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the predictor was verified by varying degree distributions @ for a fixed number
H —in other words, by considering a different network of the same size. Again,
the number of events IV was increased as a proportion of H. Finally, we verified
the results by increasing the network size H.

In order to estimate the statistical significance of the results, each scenario
(fixed @, H, N) included 100 runs of the clustering algorithm on a scale-free
tree graph, where every run involved N events in random network locations,
tracing the communication-volume time series {v(¢)}, as well as multiple series
{vn(t)},1 < h < H. We then selected an initial segment 2 = 1500 (while the
longest run is 5000) and carried out the steps b), ¢) and d) described previously
in Sect. 3. These runs produced a 2-dimensional array Ko(d,r, £2) for varying
dimensions d and precisions r and each run s(s = 1,...,100). Given the
array, the correlation coefficient p(d,r, {2) between the actual convergence
time T, (standardized series) and the auto-correlation predictor Ks(d,r, {2)
(standardized series) was determined for the ranges of d and r. The higher
the maximal correlation coefficient p(d,r, £2) is, the more predictive power is
contained in the predictor Ky (d,r, £2).

The correlation coefficient p(d,r, {2) is obviously decreased to pp(d,r, §2)
as the series {v(t)} is replaced with the series {vy,(¢)}, if h < H. We observed,
however, that the difference between p(d,r, 2) and py,(d, r, 2) is insignificant
when h > 1, for at least one embedding dimension. In other words, monitoring
a single highest-ranked hub (or two highest-ranked hubs) is sufficient in order
to predict the convergence of cluster formation in a scale-free tree graph. This
result holds for all the considered scenarios, and supports our conjecture that
a localisable predictor is feasible, although in general it is harder to maintain
predictability when the number of events is large.

Figure 5 plots the correlation coefficients p(d, r, 2) for a range of dimen-
sions d and different precisions r in the scenario (¢ = @, H = 400, N = 50).
The precision r = 10 (messages) yields the highest predictive power (shown
as the plot with squares). Evaluation of the precision r = 10 was continued
with higher dimensions d. Figures 6, 8 and 9 plot the correlation coefficients
p(d,r, 2) for a range of dimensions d (and the best precision r) in the sce-
narios (¢ = ¢1,H = 400,N = 50), (¢ = &1, H = 400, N = 100), and
(@ = &1, H = 400, N = 200), respectively — based on the series {v(¢)} tracing
the whole communication-space and the series {v;(¢)} at the highest-ranked
hub only. All results are statistically significant (significance levels of 0.999),
and are within reasonable confidence limits (Fig. 7). The results with the alter-
native network @ = @5, as well as different network sizes H, are analogous,
and also support the localized predictor based on the series {v;(t)}.
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Fig. 5. Correlation coefficient p(d, r, £2) between series T and predictor K2 (d, r, §2),
for the scenario (¢ = &1, H = 400, N = 50), based on series {v(¢)} tracing the whole
communication-space, for a range of precisions 7. The precision r = 10 (messages)
yields the highest predictive power (shown as the plot with squares). Evaluation of
the precision r = 10 was continued with higher dimensions d

Fig. 6. Correlation coefficient p(d, r, £2) between series T and predictor Kz (d,r, §2),
for the scenario (¢ = &1, H = 400, N = 50), based on series {v(¢)} tracing the whole
communication-space, shown as the plot with squares (r = 10), and series {v1 ()}
traced at the highest-ranked hub (r = 2)
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Fig. 7. Confidence limits of the correlation coefficient p(d,r, {2) between the series
Ts and predictor Ks(d,r,§2), for the scenario (& = &1, H = 400, N = 50), based
on the series {v(t)} tracing the whole communication-space, shown as the plot with
squares (r = 10)
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Fig. 8. Correlation coefficient p(d, r, £2) between series Ts and predictor Ka(d, 7, £2),
for the scenario (¢ = @1, H = 400, N = 100), based on series {v(t)} tracing the whole
communication-space (the plot with squares; precision r = 20), and series {v1(t)}
traced at the highest-ranked hub (r = 2)
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Fig. 9. Correlation coefficient p(d, r, £2) between series Ts and predictor Ka(d, 7, £2),
for the scenario (® = &1, H = 400, N = 200), based on series {v(t)} (squares:
precision r = 40), the series {v1(t)} traced at the highest-ranked hub (r = 2), and
series {v2(t)} traced at two highest-ranked hubs (crosses: r = 4)

5 An Application Scenario — Distributed Energy
Management and Control

Distributed energy refers to the generation of power (for heating and cooling)
within close proximity to the point of use. CSIRO is developing a range of
small scale distributed energy technologies [18] based on both renewable and
fossil fuels (mainly natural gas). A major part of this program is identify-
ing the most efficient ways of integrating large numbers of small generation
plants (including solar and wind) into the existing power networks to deliver
maximum efficiency with minimum environmental impacts.

A decentralized approach to the problem of power load management is
described [48], using modeling of direct load management as a computa-
tional market. A load, in this context, is any device that consumes electric
energy, such as a water heater or an electric motor. Load management involves
controlling the loads at the demand side to achieve a better use of energy: bet-
ter for the utility, the customer or both. [48] define direct load management
as a process when the utility determines what loads are to be connected,
reduced, or disconnected at specific occasions, and contrast it with indirect
load management when the utility sends some signal to customers, such as
price information, and expects them to adjust to this signal. Decentralized
multi-agent algorithms become usable in power load management due to the
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inherent parallelism of the underlying network increasing the computational
power. In addition, according to [48]:

“from the energy utility point of view it is desirable to have a sys-
tem that hides most details of the different loads while still providing
enough information for energy optimization. The system should be
able respond to high level control commands for — for example,
reduction of the current load in the distribution system by a certain
amount”.

The US Department of Energy’s recent report to Congress on demand
response [44] notes that:

“if you take a system balancing and reliability perspective, active
demand gives you another set of tools, another resource on which
you can call to enable system balancing to avoid triggering capacity
constraints and involuntary interruptions. Furthermore, double-sided
markets have important economic efficiency benefits as well as system
reliability benefits”.

Typically, an efficient demand response is provided by a multi-agent coali-
tion (a cluster of agents), comprising both generators and loads, sharing/
fusing some information while trying to cooperatively solve a distributed
decentralized problem. We believe that the efficient methods of decentral-
ized dynamic clustering deployed in scale-free power grids will increase the
efficiency of the overall solution.

6 Conclusions

We considered decentralized and dynamic cluster formation in scale-free multi-
agent sensor grids, and described and experimentally evaluated a predictor
for the convergence time of cluster formation. The new predictor estimates
regularity of the inter-agent communication space via the ‘correlation entropy’
(the order-2 Rényi entropy) Ko, and was observed to be well correlated with
the time of cluster formation.

The predictor is implemented and experimentally evaluated at the global
level, where full information on nodes’ states and their inter-connections is
available, as well as at the local level, using only partial information obtained
within a small selected subset of nodes. In other words, the predictor Ko
does not have to employ full information on nodes’ states and their inter-
connections — instead it may use only partial information obtained within
a small selected subset of nodes. Thus, the analysis and presented results
support the deployment of localisable predictors monitoring a small part of
the inter-agent communication space — the part contained within the most
connected hubs of the scale-free sensor network.
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Efficient and reliable algorithms for cluster formation in sensor grids may

include a convergence predictor, such as predictor K», as a feedback to the
algorithms, and this is a subject for future research. Another direction is an
evaluation of other decentralized algorithms in terms of multi-agent dynamics
within the communication spaces.
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Decentralised Clustering Algorithm

This Appendix reproduces the description of the clustering algorithm pro-
posed by [26].

Each agent is initially a follower to itself, and its followers’ list will contain

only itself. Each agent is also a cluster-head initially (a singleton cluster).
The communication messages (shown in italics) are ‘flooding’ broadcasts. The
algorithm involves the following steps carried out by each cell (agent) which
sensed the value x (henceforth, references like ‘larger’ or ‘smaller’ are relative
to this value):

1.

It keeps broadcasting its recruit message initially (recruit messages will
always contain the followers’ list of an agent). This broadcasting is done
periodically, with a broadcasting-period P, affecting all agents with values
within a particular offset of the value x of this agent — in other words, with
values between = — ¢ and x + ¢. The offset ¢ is initially set to a proportion
« of its agent value: € = au;

If an agent in a singleton cluster receives a recruit message from a ‘smaller’
agent, it ignores it;

If an agent p in a singleton cluster receives a recruit message from a ‘larger’
agent ¢ in a singleton cluster, it becomes its follower, stops broadcasting its
own recruit messages and sends its information to its new cluster-head ¢:
an acceptance message with its relative coordinates and the agent-value z.
It also stores details of the cluster-head g: the agent-value z, and relative
coordinates;

If an agent p in a singleton cluster receives a recruil message from a
‘larger’ agent ¢ which does have other followers, it ignores the message:
simply because the ‘larger’ agent ¢ would also receive and handle a recruit
message from p itself (see step 6);

If an agent receives an acceptance message from some potential follower
agent, it adds the agent involved in its followers’ list;
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6. If a member of a non-singleton cluster, either the head or a follower,
receives a recruil message (either from a ‘larger’, ‘smaller’ or ‘equal’ agent),
it forwards it to its present cluster-head;

7. After forwarding a recruit message to its cluster-head, a follower ignores
further recruit messages until the identity of its head has been re-asserted
(as a result of the clustering heuristic being invoked somewhere);

8. The cluster-head waits for a certain period W, collecting all such for-
ward messages (the period W, called heuristic-period, should be greater
than 2P). At the end of the heuristic-period, the clustering heuristic is
invoked by the cluster-head on the union set of followers and all agents
who forwarded the messages. The ‘largest’ agent in any resulting cluster
is appointed as its cluster-head;

9. The cluster-head which invoked the heuristic notifies new cluster-heads
about their appointment, and sends their cluster maps to them: a cluster-
information message;

10. A cluster-head stops sending its recruit messages P cycles before it invokes
the clustering heuristic. If it is re-appointed as a cluster-head, it resumes
sending recruit messages;

11. If an agent receives cluster-information message it becomes a cluster-head.
If it was already a cluster-head with a cluster map, it erases that cluster
map and accepts the new cluster map. It also notifies all its new followers;

12. A follower will periodically get recruit messages from its cluster-head. If
this does not happen for a while, then it means that this follower is no
longer in the followers’ list of its cluster-head. Then it will make itself
a cluster-head and start sending its own recruit messages. The offset of
these recruit messages will be determined by the offsets it had when it
was a cluster-head the last time (not necessarily the same as ¢).

Because of the unpredictable timing of the clustering heuristics being invoked
in various agents, it is possible that a cluster-head keeps a particular agent
as its follower even after its offset € has changed and this particular agent is
now out of range. To counter this, the cluster-head checks its followers’ list
periodically and removes agents with values out of range. It is also possible
that a node detects a new sensor reading, possibly increasing the agent-value
by a large amount. If this agent was a follower, it immediately becomes a
cluster-head and updates its former cluster-head. The former cluster-head will
delete it from its followers’ list.

Depending on the nature of the set of agent values, the offset € may be
initially too small to reach any other agent. To counter this, an agent peri-
odically (with a period ¢) increases its offsets exponentially until a certain
limit: exy1 = max(2eg, [x), where €9 = ¢ initially, and [ is the limit pro-
portion (for example, the initial g may be 0.0lz and after 5 periods the
offset would become &5 = 0.32x). Alternatively, the increase will stop when
the offsets of an agent have been reset by the clustering heuristic. When the
clustering heuristic is applied, it may produce either one or two clusters as a



Decentralized Multi-Agent Clustering in Scale-free Sensor Networks 509

result. If there are two clusters, the offset of each new cluster-heads is modi-
fied. It is adjusted in such a way that the cluster-head of the ‘smaller’ agents
can now reach up to, but not including, the ‘smallest’ agent in the cluster
of ‘larger’ agents. Similarly, the cluster-head of ‘larger’ agents can now reach
down to, but not including, the ‘largest’ agent (the cluster-head) of the cluster
of ‘smaller’ agents. These adjusted offsets are sent to the new cluster-heads
along with their cluster maps.



Predictor K,

This Appendix describes the estimation method adopted by [34].

Suppose that the d-dimensional phase space is partitioned into boxes of
size r?. Let Py, ...i, , be the joint probability that a trajectory is in box 4g
at time 0, in box 47 at time At,..., and in box i4_1 at time (d—1)At, where
At is the time interval between measurements on the state of the system (in
our case, we may assume At = 1, and omit the limit ;¢ in the following
definitions). The order-2 Rényi entropy K> is defined as

1
Kz = lim lim Jim dAtl”, Z P . (1)
20" ld—1

It is well-known that KS Entropy K = 0 in an ordered system, K is infinite
in a random system, and K is a positive constant in a deterministic chaotic
system. Grassberger and Procaccia (1983) considered the ‘correlation entropy’
K5 in particular, and capitalised on the fact K > K5 in establishing a suffi-
cient condition for chaos K5 > 0. The Grassberger and Procaccia algorithm
estimates the entropy Ko as follows

et i 1 CaVT)
Ko =l Jim lim I oy

2)

where Cy(N,r) is the correlation integral

1 N N
Ca(N,7) = N(N_l);;m— ViVl (3)

Here 6 is the Heaviside function (equal to 0 for negative argument and 1
otherwise), and the vectors V; and V; contain elements of the observed time
series {v(t)}, ‘converting’ or ‘reconstructing’ the dynamical information in
one-dimensional data to spatial information in the d-dimensional embedding
space: Vi = (Uk, Ukt1,Vk+2;-- -5 Vkta—1) [28]. The norm || V; — V; || is the
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distance (sometimes called precision) between the vectors in the d-dimensional
space, for example, the maximum norm

I Vi = Vj ||= maal g (visr = vjtr) (4)

Put simply, Cyq(N,r) computes the fraction of pairs of vectors in the d-
dimensional embedding space that are separated by a distance less than or
equal to r. Since we consider only an initial segment of the times series, we
simply set N = {2, estimating the entropy as

Ca(£2,7) )

Covr (2,7) (5)

Ks(d,r,2) =ln <
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http://www.nd.edu/~ networks /index.htm

The Complex Systems Lab, The Universitat Pompeu Fabra
http://complex.upf.es/" ricard /complexnets. html

Networks and Chaos: Kaneko’s Lab

http://chaos.c.u-tokyo.ac.jp/

5 Discussion Group, Forum

Complexity Digest

http:/ /www.comdig.org

6 Key International Conferences/Workshops
International Conference on the Simulation of Adaptive Behavior (SAB)

European Conference on Artificial Life (ECAL)
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Int. Conf. on the Simulation and Synthesis of Living Systems (ALife)
Intl. Joint Conf. Autonomous Agents and Multi-Agent Systems (AAMAS)

Intl. Conf. Multisensor Fusion € Integration for Intelligent Systems (MFT)



